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ABSTRACT 

 

 

MAHMOODREZA AREFI. Data-Driven diagnostics of issues related to power system 

dynamics using PMU measurement (Under the direction of Dr. BADRUL 

CHOWDHURY) 

 

 

    This work investigates the use of data driven techniques to diagnose issues related 

to power system dynamics. The source behind the data are simulated Phasor Measurement 

Unit (PMU) measurements. First, this study examines the application of Weighted Support 

Vector Machine (WSVM), ensemble WSVM and Adaptive Neuro Fuzzy Inference System 

(ANFIS) for prediction of post-fault transient stability condition. The performance of the 

ensemble classifier is compared with other methods for accuracy of prediction. The method 

is tested on the IEEE 39-bus test system. Second two methods are introduced for predicting 

the voltage and rotor angle stability status of a power system instantly after a large 

disturbance. Generator voltages and angles gathered instantly after clearing a fault are used 

as inputs of Feedforward Neural Networks to classify stability status of a system. Grey 

Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) are applied as training 

methods for Feedforward Neural Networks. The performance of two methods are 

determined by applying the two methods on the IEEE 39 bus test system.  Results show 

that the ensemble method achieves the highest accuracy using rotor angles of generators 

and voltage magnitudes after fault clearance.  

The resulting accuracy of GWO and PSO are compared. Examination showed that the 

applied methods can predict the stability status 30 cycles after fault clearance.  

This study also presents a model-free method for detecting coherency of generators in 

power systems by means of the Wavelet Packet Decomposition and the Recurrence 
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Quantification Analysis (RQA). The time-series rotor angles of generators are used in this 

approach to detect coherent group of generators. Noise is a critical issue that needs to be 

considered when evaluating the performance of the coherency detection methods based on 

monitored data. This work also focuses on a method to detect low-frequency oscillations 

and identify frequency modes by applying measured data from PMUs. An algorithm based 

on reduced dimensionality of the data for detection of oscillations is proposed. The Slow 

Feature Analysis is applied to extract low-dimensional features from the PMU data. Based 

on the RQA, two thresholds are applied to identify low-frequency oscillations by using the 

slow features. The recurrence-derived Fourier Transform is applied to determine frequency 

modes. A 29-machine 179-bus system is considered for the study. Studies on the system 

shows the effectiveness of the proposed methods. 

  Finally, a method is proposed for disturbance event detection and classification by 

applying the RQA. To evaluate the characteristics of location and type of disturbance 

events, nonlinear measures of the power system, such as voltage and frequency, are 

examined based on recurrence plots. For dimensionality reduction, the Principle 

Components Analysis is used. An unsupervised clustering method is applied to determine 

two types of disturbance events, which are fault and generator tripping. Simulations 

conducted on the 29-machine 179-bus system model and results reveal that the RQA might 

be an effective tool to identify the location and type of disturbance events. 
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Chapter 1 : OVERVIEW 

 

1.1 Introduction 

Future smart grids may run closer to their stability limits due to market conditions 

provoked by newer generation types and loads. To empower safer operation, corrective 

control and stabilization are likely feasible options. Ensuring the stability of a power 

system is critical in averting cascading failures. During major disturbances, rapid detection 

of unstable system behavior is essential in providing enough time for taking necessary 

automatic corrective control actions [1].  

Research in this field shows the utilization of machine learning methods like decision 

trees, fuzzy logic, artificial neural networks (ANN), and support vector machines (SVM) 

[2]- [3] are useful methods for solving some complicated power system problems. 

Meta-heuristic optimization methods have become prominent during the last two 

decades. Some of them such as Genetic Algorithm (GA) [4], Ant Colony Optimization 

(ACO) [5], and Particle Swarm Optimization (PSO) [6] have been used in computer 

science as well as in other fields. The reason for the popularity of these methods are: 

simplicity, flexibility, derivation free system, and local optima prevention. 

Electricity demand is increasing steadily, albeit at a slow pace, while transmission 

capacity does not always keep pace [7].  Exacerbating the situation is the rapid growth [8] 

in utility-scale renewable energy capacity, which can create operational uncertainties 

because of its variability.  These factors have forced the power grid to occasionally run 
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closer to its maximum stability limit, which makes it more susceptible to any possible 

disturbances. In the worst-case scenario, severe blackouts can result from small-signal 

instability associated with low frequency oscillations [9], [10]. After the Northeast blackout 

of 1965, several studies were done in order to prevent blackouts in North America. 

Nevertheless, cascading events causing widespread blackouts have occurred [11] in North 

America and other countries around the world. Consequently, there is a need for improved 

methods to quickly detect the onset of instability such that preventive or remedial actions 

can be taken to avoid blackouts. The detection of unstable behavior begins with the 

identification of one or more generators that tend to lose coherency or synchronism.  

Wide-area measurement systems have the important duty to monitor the dynamic 

characteristics of a power system. There are several measurement units that can furnish 

important parameters about a system such as generator voltages, frequencies and rotor 

angles [12]. Applying this measurement is a dilemma to examine instinctive changes in 

dynamic characterization of a system. Determining the coherency of generators after fault 

clearance, on the other hand, could be indicative of the state of stability of multi-machine 

power system.   

Generator coherency can be determined by examining and comparing rotor angles 

through synchronized measurement. This can eventually help operators to take corrective 

actions if the system exhibits symptoms of instability.  

Model based approaches are used in [13], [14] and are grounded on the eigenvalue study 

of a power system. The accuracy of these methods is good when predominant system 

condition and different parameters are accurate. Nevertheless, changes in topology and 
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serious load alterations can force certain generators with low synchronizing torque to 

switch from one group to another [15]. 

One of the main concerns in stable power system operations is low frequency 

oscillations. Some power quality problems could be a result of oscillations and might 

damage equipment in the power system. In some serious cases, increasing oscillations may 

cause serious blackouts [16]. A 0.25 Hz oscillation lead to the 1996 Western Electricity 

Coordination Council (WECC) [17] blackout. For detecting low-frequency oscillations 

traditional methods need detailed dynamical demonstration of the system to perform modal 

analysis [18]. Nevertheless, the penetration of renewable resources causes difficulties for 

precise dynamic modeling of the system.  

Synchrophasors have demonstrated the capability for successful wide-area monitoring 

and protection [19]. Analyzing low-frequency oscillations by online data is possible since 

PMUs can provide 30 Hz or higher sampling rates [20]. Estimation of eigenvalues for 

monitoring inter-area oscillation was done by applying Fourier spectral analysis to 

synchrophasor data in [21]. PMUs have been used in power systems to deliver system states 

and dynamics in real time [22].  A monitoring system using PMU measurements that has 

different capabilities such as detecting phase angle stability, voltage stability and power 

system oscillations was introduced by ABB [23].  By considering the growing number of 

PMU data, there is a need to find a good solution to manage and use the huge amount of 

data provided by synchrophasors in real-time. 

Data for real time wide-area monitoring, control, and protection applications are mostly 

provided by Phasor Measurement Units (PMU) [24]. Parameters of the power system are 

measured by each PMU and Global Positioning System provides a time reference. The 
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time stamped data from different PMUs are stored in Phasor Data Concentrators (PDC) 

which includes disturbance data that can be applied for secure operation of power systems 

by improved monitoring, and customized remedial actions. 

There are many discussions in the pertinent literature about applying PMUs to improve 

wide-are monitoring, protection and control [25], [26] , [27]. The Lyapunov exponents of 

the voltage phasors were used for monitoring short-term voltage stability [28]. The discrete 

Fourier transform was used in [29],  [30] for transmission line fault detection and location. 

The system topology with phasor angle measurements were applied in [31] to identify line 

outages.   

Specific criteria for dynamic disturbance recording which includes placement of 

recorders, recording durations and electrical quantities to be recorded are provided by the 

North American Electric Reliability Corporation (NERC) standards [32]. A PMU measures 

voltage phasor, frequency and the rate of change of frequency. When the records change 

from a pre-specified value, the disturbance recording feature activates [33]. There are 

different reasons for the change, such as changes in generations, or loads, faults, capacitor 

switchings, etc. A disturbance may propagate from one utility to another in a large system 

like the Western Electricity Coordinating Council (WECC). Finding the exact location of 

the event can be a stiff challenge for large multi-area systems. 

In this dissertation an adaptive neuro fuzzy weighted combined SVM is used to establish 

a technique that can predict the transient stability of a system. Also, two metaheuristic 

methods: Grey Wolf Optimization and Particle Swarm Optimization are applied to train 

weights of FNN for prediction of stability status of power systems after a large disturbance. 
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This work mainly focuses on: 1)  finding coherent groups of generators from data 

collected by PMU throughout a given network; 2)  detecting low-frequency oscillations, as 

well as identifying frequency modes by applying the RQA method; 3) finding the type and 

location of disturbance events by implementing the dimensionality reduction of the RQA 

measures and applying a clustering method. 

The main contributions of this dissertation are applying the RQA method for diagnosing 

anomalies in system dynamics, including: 

(a) post-fault coherency detection of generators 

(b) post-fault detection of sustained oscillations, and 

(c) identification of the class of disturbance event. 

The definition of blocks (light blue rectangles in Fig. 1.1) is explained in related chapters. 

For coherency detection, Fig. 1(a) shows the nonstationary time series obtained by PMU 

is decomposed into different scales by applying wavelet packet decomposition. Measures 

of the RQA method are derived, and since these features may lead to an extremely high 

dimensionality, a feature selection method is applied for feature reduction. Finally, a 

clustering technique is used to detect the coherent groups of generators. 

Fig. 1(b) shows the overview of the proposed method for detection of sustained 

oscillation, where a Slow Feature Analysis (SFA) is carried out on the frequency of 

generators to extract the slowly varying features.  One of the RQA measures is applied on 

the selected features to detect low-frequency oscillations. Also, the recurrence-derived 

Fourier Transform (FT) is applied to determine the frequency modes. 
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The method for identifying the class of disturbance events is shown in Fig. 1(c).  For 

determining the fault location, two measures of the RQA are used on each bus. To identify 

the type of disturbance events, thirteen measures of the RQA are applied on the PMU data, 

and then the Principle Component Analysis (PCA) method is used on the RQA measures 

for feature reduction.  Finally, a clustering method is considered to detect the event type. 

 

 

 

 

                                                                                                   

 

 

 

 

1.2 Contribution 

A summary of the contributions are as follow: 

• In terms of formulation, two methods are proposed for prediction of transient 

stability. The first method considers the SVM and ANFIS, and the second 

method studies training of a feedforward neural network by the PSO and the 

GWO. 

PMU 

PMU 

PMU 

Coherency  Detection 

WPD RQA Feature Selection Clustering 

Frequency Matrix SFA RQA 

Sustained Oscillation Detection 

Identifying the Class of Disturbance 

RQA 
Location of Fault 

PCA Clustering 

Coherent 

Generators 

Detection of 

Sustained 

Oscillations 

Location and 

type of 

disturbance 

Figure 1-1: Flowchart of proposed algorithms based on the RQA 

(a) 

(b) 

(c) 
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• For detecting coherent generators this dissertation examines recurrence 

dynamics in multiple wavelet scales and improves the performance of 

recurrence attributes. The application of wavelet transform allows one the 

capability to consider the recurrence property in various wavelet scales and the 

correlation of recurrence behaviors across scales. 

•  A novel method is proposed for early detection of low-frequency oscillations 

by applying synchrophasor data. This research considers the problem of 

detecting the oscillations quickly. The proposed method is based on measured 

data from PMUs. The SFA is used to extract the slow varying features, SFs, 

from the raw measurements. Then, two thresholds based on RQA is used by 

applying the SFs for oscillation detection. The recurrence-derived FT is applied 

to identify frequency modes. 

• A method is proposed to identify location and type of disturbance events based 

on the RQA measures. The RQA captures the characteristics of obtained data 

such as voltage, phase angle and frequency. Then, the PCA and an unsupervised 

clustering method are applied to determine two disturbance events which are 

generator tripping and fault. 

• In term of analysis, this thesis establishes useful measures. Rotor-angles are 

applied to predict transient stability and to detect coherency. Also, measures 

applied on frequency and active power of transmission lines to identify low-

frequency oscillation and frequency modes are discussed. Voltages, phase 

angles and frequency are used to find location of fault and to determine type of 
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disturbance events. These analyses are performed in several case studies such 

as natural oscillations, cascading failures, trained neural networks. 

• In term of testing, this dissertation uses two power system case studies 

including, the IEEE 39-bus system and a reduced Western Electricity 

Coordinating Council (WECC) ac transmission system that includes 29 

generators, 179 buses, and 263 branches. These case studies are tested by using 

Powerworld and PSSE software. 

1.3 Dissertation Organization 

Smart grids may evolve into a stressed condition as a result of network complication, 

uncertainties, renewable generation and market requirement. The incident of transient 

disturbances is more probable to drive a system over its stability restraint. In this 

framework, to evaluate and predict system stability, new and more effective methods are 

needed so that remedial control actions can be taken to prevent instability of the system or 

reduce its consequences. Detecting coherent group of generators based on the RQA and 

WPD is a way to take preventive actions and to avoid possible blackouts. We are interested 

in detecting low-frequency oscillations, identifying frequency modes, determining location 

and type of disturbance events.   

Chapter 2 provides reviews of previous work for prediction of transient stability, coherency 

detection, detecting low-frequency oscillation, identifying frequency mode and 

determining location of disturbance events as well as type of disturbance events. 

Chapter 3 focuses on prediction of transient stability and proposes an algorithm grounded 

on the Adaptive Neuro-Fuzzy Inference Systems and the Support Vector Machine. 
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Chapter 4 investigates the prediction of transient stability by applying two metaheuristic 

methods namely PSO and GWO to train weights of neural network. 

Chapter 5 develops a flexible and reliable algorithm for distinguishing coherency to 

consider noisy measurement data. A method for detecting wide-area coherency employing 

wavelet packet decomposition and recurrence quantification analysis is proposed. 

Chapter 6 proceeds with a novel method for early detection of low-frequency oscillations 

and identifying frequency mode based on the RQA method.  

Chapter 7 concentrates on disturbance event problem and proposes an algorithm for 

determining the location of fault and identifying two type of disturbance events based on 

the RQA and PCA methods. 

Chapter 8 concludes the dissertation and discusses possible future work. 
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Chapter 2 : REVIEW OF LITERATURE 

 

2.1 Transient Stability 

The simplest approach to identify unstable behavior is by solving differential-algebraic 

equations (DAE) that are related to a power system dynamic behavior [34], [18]. This 

method needs precise configuration of the system all along and after a fault. The Transient 

Energy Function (TEF) is a direct approach for detecting stability after a disturbance [35]. 

In this case, evaluation of stability can be performed by analyzing the difference between 

the kinetic energy (KE) and potential energy (PE) for a specific disturbance. Determining 

the KE and PE amounts for certain cases has many complications [35]. The prominent 

equal area criterion (EAC) presents another direct means of evaluating transient stability 

of multi machine systems by considering all generators of a power system as a single 

generator that are linked to an infinite bus and no need for solving the DAE. In this method, 

an equivalent machine is created from all the generators present, and at the same time, just 

the dynamic parameters which are related to mechanic part of equivalent generator are 

considered [36], [37]. The combination of energy functions and time domain simulations 

are used in what has become known as the extended equal area criterion (EEAC) method 

[38]. This method is more efficient in computing the end result of a disturbance, but is less 

accurate than time-domain simulations. 

The support vector machine introduced in [39] has its primary application in the 

identification of optical characters. Support Vector Classifiers (SVC) have been applied to 

transient stability assessment in [40] where only post-fault voltages are considered, while 
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generator rotor angles are not included. A linear SVM using scaled variables to study 

stability of power system is applied in [41]. To improve the performance of SVM in the 

presence of outliers and noise, the weighted SVM is introduced in [42], and results showed 

an improvement in accuracy.  

A core vector machine is used in [43] to assess transient stability and results exhibited 

the speed and performance of the applied method. Machine learning techniques that predict 

transient stability of a system has been used earlier in [44]. The decision tree method shown 

in [45] needed about 2 seconds to predict the stability of the Hydro-Quebec system after 

fault clearance, which does not provide enough time for automatic corrective actions. In 

[46], only out of–step conditions in a tie line is predicted by using the decision tree method. 

An SVM classifier in association with a several pre-defined voltage curve templates is used 

in [40] to predict transient stability condition. To evaluate fuzzy memberships, the voltages 

obtained from busses are compared with voltage patterns. This process identifies 

similarities between the measured voltages and the templates. For training purposes, the 

input of the SVM has similarity values. 

Swarm intelligence (SI) is one of population-based metaheuristics, class of methods that 

are mainly created from natural colonies. Some of the most well-known techniques are 

ACO [5], PSO [6] and Artificial Bee Colony (ABC) [47]. Some advantage of SI algorithms 

to other metaheuristic methods, such as evolutionary and physics based methods, are as 

follows [48]: 1) In SI, information about search space is maintained during the iteration, 

though the information of previous generation is neglected in evolutionary algorithms. 2) 

SI has fewer parameters to adjust. 3)  Compared to evolutionary methods, SI methods have 

fewer operators. 
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The ACO algorithm [5] is stimulated by the social behavior of ants in an ant colony. 

The main inspiration of ACO is their social intelligence that seeks to find the shortest path 

between the nest and source of food. The ABC algorithm imitates the collective behavior 

of bees in finding food sources. The Bat algorithm [49] inspired by the location of objects 

which is the result of reflection by sound and has been suggested lately. The literature 

shows that stochastic training methods have received more attention as a result of high 

local optima prevention. 

There are other SI techniques like: Artificial Fish-Swarm Algorithm [50], Monkey 

search [51], Cuckoo Search [52], Firefly Algorithm [53], Krill Herd [54], etc. Their 

convergence rates are slow, and so they are not preferable for transient stability prediction. 

The GWO introduced in [48], has several advantages over other techniques. These are: 

easier to implement due to simpler structure; less storage requirement; faster convergence 

due to continuous reduction of search space; and fewer number of parameters to adjust. 

Different heuristic optimization methods have been used to train FNNs like Simulated 

Annealing (SA) [55], [56], Genetic Algorithm (GA) [57], Particle Swarm Optimization 

(PSO) [58], and Magnetic Optimization Algorithm (MOA). According to [59], some of 

these methods could avoid local minima, but still have slow convergence rates. The PSO 

is one of the most efficient [60] optimization algorithms which has the ability of avoiding 

local minima and has a fast convergence rate. 

2.2 Coherency of Generators 

Wide-area measurement systems have the important duty to monitor the dynamic 

characteristics of a power system. There are several measurement units that can furnish 

important parameters about a system such as generator voltages, frequencies and rotor 
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angles [61]. Applying this measurement is a dilemma to examine instinctive changes in 

dynamic characterization of a system. Determining the coherency of generators after fault 

clearance, on the other hand, could be indicative of the state of stability of multi-machine 

power system.  Generator coherency can be determined by examining and comparing rotor 

angles through synchronized measurement. This can eventually help operators to take 

corrective actions if the system exhibits symptoms of instability. Model based approaches 

are used [13], [14] and are grounded on the eigenvalue study of a power system. The 

accuracy of these methods is good when predominant system condition and different 

parameters are accurate. Nevertheless, changes in topology and serious load alterations can 

force certain generators with low synchronizing torque to switch from one group to another 

[15]. With rapidly increasing placement of  PMUs in power systems, approaches based on 

measurements have been broadly examined in recent literature to observe the coherency of 

power systems. The methods using these measurements can detect coherent group of 

generators without depending on dynamic models of generators, prime-movers or even the 

topology of the system. In order to detect a coherent group of generators, the Artificial 

Neural Network (ANN) is used in [62].  

Particle Swarm Optimization and K-means clustering (PSO-KM) method are applied in 

[63] for coherency detection. Partitioning Around Medoids (PAM) is a clustering algorithm 

used in [64] to identify coherent groups, the representative objects of a data set are called 

Medoids. A graph theory-based method is proposed in [65] to determine coherent groups 

of generators. System coherency is identified in [66] by applying Hilbert-Huang Transform 

(HHT). In [67] and [68], Fast-Fourier Transform (FFT) was applied for detection of 

coherent generators. The Principle Component Analysis (PCA) was investigated in [69] to 
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find the coherent generators, and Independent Component Analysis (ICA) was used in [70] 

to eliminate noise in the obtained measurement to identify coherent generators. Wavelet 

phase difference was used in [71] to determine coherent generators. Magnitude and phases 

of the Koopman modes was used in [72] to identify coherent groups.  

In [73] the RQA method is used to detect coherent group of generators. Wavelet 

transform method was used in [74], [75] to detect low frequency oscillations and local 

oscillations. The empirical mode decomposition and wavelet shrinkage analysis is used in 

[76] to specify nonlinear trends of large interconnected power systems. For detecting 

oscillation modes, wavelet based support vector data description is applied in [77]. 

Continuous wavelet transform is used in [78] to study power system low-frequency 

oscillations. Coherency detection was also studied using the Projection Pursuit [79] method 

and the Spectral Clustering [80] method. Even though the methods mentioned above 

demonstrated satisfactory results to identify coherent groups of generators, each of them 

has a number of constraints. 

ANN algorithms [62] need enormous offline training data, while the PSO-KM and PAM 

[63], [64] engender excessive computational burden to detect coherent generators. The 

graph theory method [65], in some cases needs subjective decisions to detect coherency. 

The HHT [66] is unable to determine the frequency mode if closely spaced. The Fast 

Fourier Transform [21], [22] considers stationary data and linearized systems to detect 

coherent groups of generators.  

By obtaining measured data, the PCA [23] and the ICA [1] can directly detect coherent 

groups of generators, but to detect precise coherent groups, a priori information of the 

system is needed. In addition, the PCA is sensitive to noisy measurements. The wavelet 
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phase difference [2] and Koopman [3] methods need to decompose the measurement data, 

which will carry high computational burden.  Only two measures of the RQA are 

considered in [4], and noisy data was not considered. The wavelet based methods 

decompose the signal and need more computation time. 

2.3 PMU and data reduction methods 

By considering the growing amount of PMU data, there is a need to find a good solution 

to manage and use the huge amount of data provided by synchrophasors in real-time. A 

Phasor Data Concentrator (PDC) that collects data from 100 PMUs with sampling rate of 

30-Hz creates more than 50 GB of data every day [81]. 

There are different methods for phenomenon detection, and they can be classified into 

two categories: statistical algorithms and signal processing algorithms. For statistical 

algorithms [82], the challenging task is to set a threshold for detecting the phenomenon. 

There are different techniques applied in signal processing such as waveform analysis and 

Fourier [83], nonlinear adaptive filter [84] and Kalman filters [85]. The signal processing 

methods have a proven track record as powerful tools in power systems. The drawback of 

these methods is applying complex matrix calculation or high sampling rates that raises 

computational burden. 

The data reduction methods are compressing techniques like wavelet analysis [86] and 

linear-feedback shift register reseeding [87]. Adaptive fuzzy logic method has been used 

to detect power-quality issues from waveforms [88]. Nevertheless, a few compressing 

techniques have been considered to real power systems and less attention is drawn to the 

compressing methods that contain the critical phenomenon such as sustained oscillations. 



16 

 

SFA [89] is essentially parameter-free and only two parameters dimension and time delay 

of the embedding vectors should be selected. Also, this method is not sensitive to noise. 

2.4 Frequency Mode 

Different reasons can cause oscillations in the power systems. Most of the oscillations 

are damped by the system but a few of them may remain undamped and lead to system 

collapse. So, investigation of low-frequency oscillations in the power system is necessary 

for power system operation and control. The Prony analysis [90] of the signals gives the 

low- frequency modes but when the signal has noise it is difficult to estimate actual 

frequencies existing in the signal. Fast Fourier Transform [91] gives the dominant low 

frequency modes with the related amplitudes. The Stockwell transform [92] of the signals 

provides a contour plot that helps to find the zone of disturbance, therefore this method 

helps to detect the low- frequency modes of oscillations related with the zone of 

disturbances. The Wigner distribution [92] helps in finding the contour plot of the signals, 

so it would be easy to find out low- frequency modes of oscillation. The Estimation of 

Signal Parameters by Rotational Invariance Technique [92] has negligible bias in the 

presence of the colored Gaussian noise. 

2.5 Disturbance Events 

Some studies have been done for identification and classification of disturbance events. In 

[93], frequency deviation before and after a disturbance, and the peak initial swing 

frequency derivative was applied as features for each disturbance signal. The difference 

between the normal and the post-disturbance values of voltage, current, and frequency is 

used in [94] as features to identify and classify disturbance events. A decision tree is used 
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in [95] to identify and classify three types of faults which are single phase to ground, double 

phase to  ground, and three phase to ground.  

To identify disturbance events, frequency and voltage indicators have been studied in [96], 

[97], and [98]. Event identification based on wavelet and the PCA are presented and 

examined in [99], [100], [101]. The unsupervised clustering method is examined in [102]. 

To identify patterns of events, machine learning methods have been used to analyze PMU 

data [103] , [104]. 
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Chapter 3 : ENSEMBLE ADAPTIVE NEURO FUZZY SUPPORT VECTOR                                                                                                       

MACHINE FOR PREDICTION OF TRANSIENT STABILITY 

 

3.1 Introduction 

In power systems, transient instability has been the foremost problem because, if the power 

system becomes unstable, the consequences will be catastrophic and lead to huge financial 

losses [105]. Hence, for the security operation of power systems, studies on transient 

stabilityare essential.  

Since machine learning techniques have the capability of mining the useful information 

from PMU data as well as high speed calculation and accuracy, they have been used to 

predict transient stability based on PMU data [106], [107]. Transient stability prediction 

can be considered as a two-class classification problem. For offline training relevant 

features should be selected under different operation conditions and then suitable 

classification method should be applied to predict the stability status. 

For prediction of transient stability, the features used as input for the machine learning 

techniques include rotor angle and speeds [106], [107] generator terminal voltage [108]. 

The combination of different variables and time series are considered as input features 

[109], [110]. The transient energy functions were considered in [111] as input features and 

prediction accuracy of applied classifier has shown enhanced results. 

For predicting transient stability, different machine learning methods, such as artificial 

neural networks [106], decision trees (DTs) [109], support vector machines (SVMs) [40], 

and extreme learning machines [112] have been examined. The DT algorithm can deliver 

the prediction results and make known the rules it learned [113]. Also, key features through 

the training process can be filtered. 
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The main contributions of this chapter are: 1) Three separate weighted support vector 

machine are considered as base classifiers; 2) a combined WSVM and ANFIS method is 

proposed to build the classifier, where the WSVM is applied to obtain better classification 

accuracy, and the ANFIS is applied to find the most proper membership functions to predict 

stability; the proposed method can predict the transient stability with a very high accuracy. 

The rest of this chapter is organized as follows. Section 3.2 introduces support vector 

machine. Section 3.3 introduces test system, data generation and cross validation. Section 

3.4 includes the proposed method based on the WSVM and ANFIS methods. Results and 

conclusions are provided in Sections 3.5 and 3.6 respectively. 

3.2 Support Vector Machine 

Support Vector Machines in machine learning are supervised learning models which are 

related to learning algorithms that examine data applied for classification. Having a set of 

training instances, each labeled as fitting to one of two categories, the SVM shapes a model 

based on its training algorithm that allocates new data set to one of two categories.  The 

points in the space can be represented by SVM model, which are mapped to distinct 

categories with the maximum distance.  Same space will be considered for mapping new 

data and projected to fit in a category based on which side of border they fall. Besides linear 

classification, SVMs are capable of performing nonlinear classification by kernel function 

which maps their inputs to high dimensional feature space. 

In SVM technique the main purpose is to construct a hyperplane that considers 

maximum distance for classifying input data. Given n training data points, Fig. 3.1 shows 

the hyperplane: 
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 1{(x ,y )} , x , y 1,1n n

i i i i iR=   −  (3.1) 

. 1 1i iw x b when y+  + = +  (3.2) 

. 1 1i iw x b when y+  − = −  (3.3) 

 

Where xi are the input vectors and yi are class labels [114]. N is the number of inputs.  

Hyperplane H is defined such that: 

 

Figure 3-1:SVM hyperplane 

    and  are the planes. The plane is the median in between, where .  

is the shortest distance to the closest positive point and  is the shortest distance to the 

closest negative point.  is a weight vector,  is bias. The distance between  and  is 

calculated by  

.
( )

w x b
d positive

w

+
=  (3.4) 

                                                      

The objective function, shown below, is the solution of the support vector method: 

1H 2H 0H . 0iw x b+ = +
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w b 0H 1H
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Subject to: 

( , ( ) ) 1 , 1,...,i i iy w x b i n +  − =  (3.6) 

0, 1,...,i i n  =  (3.7) 

 

The function   maps the training vector xi into a higher-dimensional space, parameter C 

plays the role to make adjustment between classification errors and having maximum 

distance specified by user, the norm of a vector which is perpendicular to isolated 

hyperplane is called w. The slack variable i  assess the rate of data are not classified 

correctly.  The kernel function [115] is defined by the product ( ( ). ( ))i jx x  and designated 

by ( , )i jK x x . There are different kernel functions like polynomials, radial basis function 

(RBF) and sigmoid function. The RBF is used in this paper because it gives better results 

when compared to other alternatives. The width of the Gaussian is shown by  and xj are 

the support vectors. 

2( /2 )
( , ) i jx x

i jK x x e
− −

=  
(3.8) 

 

 The theory of SVM is extended in [116] since each data point in the real world is not 

exactly classified into one of two classes. Each data point in the weighted support vector 

machine (WSVM) has a different influence to create the hyper-plane, so weighted 
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memberships are allocated to each data point to show the importance of each point in 

building the SVM hyperplane, so we have same objective function as equation 3.5 and the 

only added term is fuzzy membership . 

1

1
( )

2

n
T

i i

i

Minimize w w w C s 
=

= +   (3.9) 

The term is the major difference between SVM and WSVM. Considering as the error in 

the SVM, the fuzzy membership  can increase or reduce the impact of each training data 

point. The constraints are similar to those for the SVM. 

3.3 Transient stability predictors 

Transient instability happens in a system when at least one rotor angle becomes 

unbounded in comparison to the rest of the system under the condition that the system 

experiences high power flows, and therefore is under stress. Angle measurements are made 

with respect to a reference commonly known as the center of inertia angle (COI) [34], [18]. 

However, a certain time after fault clearance is needed to observe the evolution of 

generators angles that determines stability. Thus, both rotor angles and voltage magnitudes 

are investigated for predicting transient instability.  

3.3.1 Test System 

To assess the ANFIS training and the performance of the classifier, the IEEE 39-bus 

test system [117] is used. This system consists of 39 buses, ten generating units, 46 

transmission lines and 19 loads. The system diagram is shown in Fig. 3.2. 

is
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Figure 3-2: IEEE39-bus test system 

3.3.2 Data generation and cross validation 

For the training classifier, the PowerWorld software was used to generate data for the 

system. Three-phase to ground faults were created on each transmission line at 25%, 50% 

and 75%. For each contingency, the fault clearing time is assumed to be 5 cycles, and the 

fault is removed by opening circuit breakers at both ends of the line. Load levels are 

considered base load and overloaded for 5%, 10%, 15% and 20%. Single phase to ground 

faults are not considered in this paper. A total of 300 simulations were created, and for each 

case, variations of rotor angles and voltage magnitudes are reported. For each simulation, 

a class label was defined according to transient stability index which is based on the angle 

[108], [118]. If the system falls in the ‘stable’ class, label “1” is used for the simulation; 

alternatively, if the system is unstable, then a class label “-1” is assigned for the simulation. 

Due to the large number of samples, a 10-fold cross validation sample was chosen. 

Almost 80% of the generated data was applied for training purpose, and the other 20% was 

used for testing the performance. To obtain better accuracy of the weighted SVM, the 
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parameters C and   are optimized through a grid search. C=64 and  =32 gives the best 

classification accuracy which is 93.05%. Table 3.1 provides the classification accuracies 

of the SVM and the WSVM methods; as seen, the classification accuracies of the WSVM 

are higher than the SVM. 

Table 3-1: Classification performance 

 

 

 

3.4 Adaptive neuro fuzzy inference combined WSVM 

An ANFIS is a fuzzy system that, by using neuro-adaptive learning techniques, tunes 

its membership function parameters. In Madani’s [119] fuzzy system, fixed membership 

functions are selected arbitrarily, and the user specifies rules based on characteristic of 

variables in the model. 

The membership function parameters are fine-tuned by the back-propagation method 

only, or a hybrid method, which is a combination of backpropagation and least squares 

type. Fuzzy systems learn from the data they are modeling by applying the necessary 

adjustments. Fig. 3.3 shows ANFIS inference which has 5 layers. Inputs  1  and 2  

distances are obtained from weighted SVMs and f is the output that indicates system 

transient stability status. The detailed structure of the ANFIS is [119] shown in Fig. 3.5. 

Classifiers 
C 

Parameter 

Kernel 

Parameter () 

Classification 

Accuracy (%) 

 

SVM 

 

64 

32 93.05 

10 90.12 

1 87.35 

 

WSVM 

 

100 

32 95.08 

10 93.58 

1 89.66 
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Figure 3-3:Adaptive neuro-fuzzy architecture 

In order to increase the performance of WSVM, three different classifiers are combined. 

Combination of base classifiers determine the final decision, and this is shown in Fig. 3.4. 

For classification two stages are considered. Identical training data are used for train of all 

WSVMs in first stage. ANFIS is applied to combine the result of three WSVM in second 

stage. The output of ANFIS determines transient stability status. 

The WSVM classifier and the ANFIS process are described in sections 3.4.1 and 3.4.2 

Training and 
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Figure 3-4: Two stage scheme for prediction 
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3.4.1 Base classifiers 

 Development of the WSVM with RBF kernel using different values of  and C leads to 

six different base WSVMs. Base classifiers, kernel parameters with different values, 

classification accuracy and validation accuracy are shown in Table 3.2. Table 3.3 gives the 

distances  of six different operating conditions from separating hyperplanes of base 

classifiers A1, A4 and A6. A few selected cases are shown; the first five conditions are 

related to unstable cases, and the last one is related to a stable case. 

Table 3-2:Base classifiers 

 

 

 

                                    

The load at three different buses are increased by 10% and 50%. Distances for each 

classifier and for different operating condition are computed. 

Table 3-3: Distances of testing data 

 

 

 

 

1 2 3, ,  

 

Kernel 
Function 

Base 

SVM 

No. 

Kernel 

Parameter 

Classification 
Accuracy 

%  

Validation 

Accuracy  

% 

 

 

RBF 

 

C=100 

  A1 =32 95.08 93.05 

A2 =10 93.58 91.12 

A3 =1 89.66 87.25 

 

C=120 

A4 =32 93.41 91.32 

A5 =10 91.75 89.78 

A6 =1 85.14 85.01 

Operating  

Conditions 

 

  

 

  

 

  

Load increased 150% at bus 16 -0.34 -0.338 -0.378 

Load increased 110% at bus 16 -0.163 -0.158 -0.181 

Load increased 150% at bus 18 -0.293 -0.291 -0.248 

Load increased 110% at bus 18 -0.156 -0.153 -0.106 

Load increased 150% at bus 8 -0.305 -0.296 -0.383 

Load increased 110% at bus 8 0.153 0.142 0.1811 

1 2 3
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3.4.2 Fuzzy Integration (Stage 2) 

To study transient stability entire contingencies are applied for training. Distances of for 

all operation conditions are used from Table 3.3.  The ANFIS used here has 8 rules, with 

two membership functions being assigned to each input variable. 250 training data and 50 

checking data were sampled from inputs. The training data is applied for the training of 

ANFIS; at the same time checking data is applied for validation of the established ANFIS. 

The structure of the ANFIS after training is shown in Fig. 3.5. Two membership functions 

are assigned to each input and there are 8 rules that define the output of system. The logical 

operation for rules are the AND operators. 

The input distances from WSVM1 and WSVM 2 (input 1 and input 2) and the output 

are illustrated in Fig. 3.6. The surface has two important regions, yellow and dark blue. 

When the inputs are mapped to the yellow region, the output of the system is “1”, which 

indicates a stable system, and when inputs are mapped to the dark blue region, the output 

is “-1” which indicates that the system is unstable. The hybrid method for membership 

optimization is used (mixed least squares and backpropagation). For training purpose, error 

tolerance is set to zero. For comparison, the average percentage error is used. 

 

Figure 3-5:Three input ANFIS with 8 rules 



28 

 

 

Figure 3-6: Surface at 40 epochs 

The training error is about 1.1%. By increasing the number of epochs, the error decreases. 

The average percentage error is 2.1% for testing data.   

3.5 Results 

The combined ANFIS consists of classifies A1, A4, A6 and result of classification are 

shown in Table 3.4. After 40 epochs, the training average percentage error (APE) is 1.1%, 

which has high accuracy when compared to accuracy of base weighted classifiers. 

Table 3-4: Classification result 

Model APE Train (%) APE chk(%) Training set size 

Combined ANFIS 1.1 2.1 250 

 

In this dissertation, we assume the structure of ANFIS to be fixed and tuning of 

membership function to be solved through the hybrid learning rule.  To demonstrate 

reliability of method, process examined under different conditions by changing the 

topology of the system. Assessment is based on three cases: 1) the transmission line 

interconnecting buses 16 and 24 was taken out of service by opening both circuit breakers 

at the end of the line; 2) the transmission line interconnecting busses 4 and 14 was taken 
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out of service; and 3) the transmission line interconnecting busses 25 and 26 was taken out 

of service. Such network alteration, although unusual, could happen on a given day because 

of line maintenance or forced outages. When the topology of power system changes 

consequently power flows and voltages of system alters. So, after a fault happens, the 

recovery characteristic would be new and different. The classifier introduced in section 3.4 

was assumed to have been trained with the fully intact system, and then used to predict the 

transient stability of the altered system. A three phase fault was created in each 

transmission line, and fault clearance time was about 5 cycles. A three-phase-to-ground 

fault was created on each of the remaining transmission lines at 25%, 50% and 75% of 

capacity. For each scenario, 200 cases were created.  The results of stability status for 

classification are illustrated in Table 3.5. Results reveal that the applied ensemble method 

can predict stability status with high precision for a power system under different 

contingencies and topology changes. Comparison of result Table 3.5 with results Table 3.1 

shows that proposed method has better accuracy. 

Table 3-5:Stability prediction under topology changes 

 

Scenarios 

Prediction Accuracy 

 Classified as Stable 
(%) 

Classified as 
Unstable (%) 

Line 16-24 open Stable 99.16% (119/120) 

 

 

 

 

 

 

 

 

 

 

 

 

0.83% (1/120) 

 Unstable  0% (0/80) 100% (80/80) 

 Line 4-14 open Stable 100% (120/120) 0% (0/120) 

Unstable  1.25% (1/80) 98.75 (79/80) 

 Line 25-26 open Stable 97.5(117/120) 2.5% (3/120) 

Unstable  1.25% (1/80) 98.75 (79/80) 

 

3.6 Conclusion 

Although the SVM can create classifiers with high prediction accuracy, in order to 

decrease the effect of outliers in the training model, and to contribute more weight to the 
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important training data points, a weighted support vector machine (WSVM) was built. The 

fuzzy membership related training data helps to provide different degrees of membership 

in the training of the classifier. Hence, the WSVM obtains superior classification accuracy 

compared to the SVM. Numerical tests show that the applied approach is adequate to 

determine the stability status of a power system. Multiple SVM classifiers were combined 

with an adaptive neural fuzzy system that considers distances of the data points from the 

optimal hyperplane. The improvement of this method is seen when the WSVMs are 

combined with an ANFIS that is able to tune its membership function parameters to achieve 

higher accuracy. The proposed adaptive neuro fuzzy combined WSVM persistently 

exceeds the individual base SVM classifiers. 

 

 

 

 

 

 

 

 

 



31 

 

Chapter 4 : POST-FAULT TRANSIENT STABILITY STATUS PREDICTION         

USING GREY WOLF AND PARTICLE SWARM OPTIMIZATION  

 

4.1 Introduction 

The power system stability can be considered as the capability of a power system to 

recover from a large disturbance such as a fault, and settle back to an operating equilibrium 

state. When most of the system variables are constrained which means variables such as 

voltages and angle of busses are within their limits, the entire system remains in steady-

state condition [105].  

The power system deviates from the pre-fault equilibrium and experiences a change in 

the direction of the post-fault dynamics when a disturbance occurs on the system. Rotor 

angle stability denotes the capability of synchronous machines to be in synchronism with 

the rest of the system after a fault occurrence. The rotor angle increase of some generators 

causes the loss of their synchronism with other generators and, in this case, instability 

happens. Transient instability could happen when the system faces a severe disturbance 

(N-1 contingency). The system response includes a large increase of generator rotor angles, 

which is described by the nonlinear power-angle relationship. The reason for this kind of 

instability is inadequate synchronizing torque [105]. 

Lately, Feedforward Neural Networks (FNNs) with two layers have been used 

extensively [120] and are appropriate for classification of nonlinearly separable patterns 

[121]. Any continuous and non-continuous function can be estimated by two-layer FNNs 

[122]. Learning is a necessary part of neural networks and the standard [123] or improved 

[124] back-propagation (BP) algorithm are mostly used for training of FNNs. The 

drawbacks of BP algorithm are slow convergence [59] and trapping in local minima. 
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Throughout the learning process of FNNs, the aim is to find finest combination of 

weights and biases to obtain the minimum error. Nevertheless, in most cases the 

convergence of FNNs lead to best locally solutions and not globally. The initial values of 

weights, biases, learning rate and momentum [59] has high impact on the convergence of 

the BP algorithm. Based on the literature, to improve the algorithms founded on BP 

algorithm, applying novel heuristic optimization methods or evolutionary algorithm is 

prevalent alternative. 

For training of FNNs different heuristic optimization methods have been applied, such 

as Simulated Annealing (SA) [55], Particle Swarm Optimization [58], Magnetic 

Optimization Algorithm (MOA) [125], and Differential Evolution (DE) [126]. Some 

methods such as SA and GA [59] can decrease the probability of being stocked in local 

minima, but slow convergence rates are a problem yet. For reducing both mentioned 

drawbacks PSO is one of the most [60] efficient algorithms. In this chapter, the 

performance of GWO is examined for training FNNs in comparison with PSO. The 

contribution of this chapter is applying the PSO and GWO methods on FNNs to train their 

weights for classification of stable and unstable cases, post-fault rotor angles and voltages 

magnitudes are used as inputs to feedforward neural network classifiers. 

The reminder of this chapter is organized as follows. Section 4.2 presents transient 

stability prediction approaches, as well as the GWO and PSO algorithms. The test system 

and data generation are discussed in Section 4.3. Section 4.4 shows how the FNN is trained 

by the GWO and PSO. Results and conclusions are provided in Sections 4.5 and 4.6 

respectively. 
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4.2 Transient stability prediction approaches 

4.2.1 Grey Wolf Optimization 

The main idea of GWO includes social hierarchy and hunting behavior of wolves: 

4.2.1.1 Social hierarchy and encircling prey 

For designing the GWO, the social hierarchy of wolves can be considered; the leaders 

are called alpha; the second level is beta; and the lowest ranking wolves is named omega. 

The alpha wolf is dominant since his commands should be followed by others. The beta is 

second level in the hierarchy of grey wolves; betas are subordinates’ wolves that help the 

alpha in decision-making. Delta wolves dominate the omega and should submit to alphas 

and betas. To design the GWO, the social hierarchy of wolves is mathematically modeled 

such that the fittest solution is considered alpha (α); beta (β) and delta (δ) are specified the 

second and third best solution respectively. 

The last candidate solutions are considered as omega (ω). The optimization in the GWO 

algorithm is directed by α, β and δ, and they are pursued by ω wolves. The following 

equation shows the encircling behavior of wolves: 

| . ( ) ( ) |pD C X t X t
→ → → →

= −  (4.1) 

( 1) ( ) .pX t X t A D
→ → → →

+ = −  
(4.2) 

X
→

 shows the position vector of a grey wolf and  is the position vector of the prey, 

and  is distance between the grey wolf and prey. Current iteration is shown by t; A  and 

are coefficient vectors, and calculated as follow: 

( )pX t
→

D
→

C



34 

 

12 .A a r a= −  (4.3) 

22.C r
→

=  
(4.4) 

        The value of a  linearly decreases from 2 to 0 in the process of iterations, r1 and r2 

are random vectors in the range [0, 1]. These values are considered based on [48]; other 

values result in reduced training accuracy. To observe the effects of equations (4.1) and 

(4.2), a position vector with two dimensions are depicted in Fig. 4.1. As illustrated in the 

figure, a grey wolf in the position (M, N) can change its position according to the position 

of the prey (M*, N*). By adjusting the value of A  and C , each wolf (agent) has good 

flexibility to reach the prey. 

 

Figure 4-1: Search agents position updating mechanism 

The same approach can be extended to higher dimensions, for instance, n dimensions, and 

the grey wolves will move in hyper-cubes around the best solution achieved earlier.  

:Prey

(M*-M,N)

(M*,N)
(M,N)

(M*,N*)

(M,N*)

(M,N*-N)

(M*,N*-N)

(M*-M,N*-N)

(M*-M,N*)

:Wolf
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4.2.1.2 Hunting 

Generally, we know about the location of the optimum (prey), and so, it is assumed 

alpha, beta, and delta have better knowledge about the possible location of the optimum. 

As a result, the first three best solutions achieved until now is memorized and require other 

search agents to adjust their positions in proportion to the position of the best agents. The 

related formulas are shown in [48] as follows: 

    
1| . |D C X X

→ → → →

= −  (4.6) 

2| . |D C X X 

→ → → →

= −  (4.7) 

3| . |D C X X 

→ → → →

= −  (4.8) 

1 1 .( )X X A D

→ → → →

= −  (4.9) 

2 2 .( )X X A D

→ → → →

= −  (4.10) 

3 3 .( )X X A D

→ → → →

= −  (4.11) 

     2 31( 1)
3

X X X
X t

→ → →
→ + +

+ =
 (4.12) 

 

a) Exploitation: To find the optimum, the value of decreases [48]. It should be 

considered that variation range of  is decreased by . is a random value in the 

interval (-2a, 2a) where a decreases from 2 to 0 [48] during the iterations. The next 

position of a search agent can be in any position between its current position and 

the position of optimum when the random values of are in range [-1, 1]. 

a
→

A a
→

A

A
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b) Exploration: Grey wolves’ pattern search is based on the position of the alpha, beta 

and delta parameters. First they spread to search for prey (optimum) and then they 

get together to attack the prey.  A  is assigned with random values greater than 1 or 

less than -1 to compel the search agent to diverge from the prey. It forces the GWO 

algorithm to search globally. The condition 1A    makes the grey wolves to 

diverge from the prey in order to try and find a better and fitter prey. 

In the GWO algorithm, the search starts with creating a random population of grey 

wolves. During iteration, alpha, beta and delta wolves estimate the possible position of 

the prey. Each possible solution adjusts its distance from the prey. The parameter  

decreases from 2 to 0 to accentuate exploration and exploitation. Possible solutions are 

likely to diverge from the prey when  1A   and converge close to the prey when 1A 

. Finally, by meeting the convergence criteria, GWO algorithm terminates. The GWO 

algorithm is as follow: 

GWO Algorithm 

Set the initial values of the population size parameter a, coefficient vectors A, C 
and max no. of iteration. 
Set t: =0 

For (i=1 : i<n) do 
Generate an initial population Xi (t) randomly. 
Evaluate the fitness function of each search agent f(Xi) 
End 

Assign the values of the first, second and the third best solution Xα, Xβ and Xδ 

respectively. 
For (i=1: i<n) do 
Update each agent in the population  
Decrease the parameter a  from 2 to 0. 
Update the coefficients  and . 
Evaluate the fitness function of each search agent f(Xi) 
End 

Update the vectors Xα, Xβ and Xδ 
Set t=t+1 
Until (t<Maxit) 
Produce the best solution Xα. 

A C
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4.2.2 Particle Swarm Optimization 

The PSO is formed based on the swarming nature of particles seeking food in a 

cooperative style. The algorithm has become well known by researchers because of its 

faster convergence rate, limited selection of parameters, and straight forward application. 

The algorithm includes a swarm in a search space that has D dimensions in which each 

particle’s position xi = [ni1,ni2,…,nik] consists of K cluster vectors. The centroid cluster 

of cik is nik. Each particle’s position is related to a velocity Vi=[vi1,vi2,…,vik] where  they 

are initialized as random numbers in the search space. An appropriate fitness function 

assesses the fitness of particles. According to fitness values, the best previous positions 

obtained by the particles express the local solutions given by Pi=[pi1,pi2,….pik]. For the 

first run Pi=xi is considered. The best position obtained by the swarm in a generation given 

by Pg=[pg1, pg2, …,pgt] is  the global solution, t represents the number of iteration 

(generation). 

1 1 2 2( 1) * ( ) * *( ( ) ( )) * *( ( ) ( ))ik p ik ik ik g ikV t w v t c r p t x t c r p t x t+ = + − + −  (4.12) 

( 1) ( ) ( 1)ik ik ikX t x t v t+ = + +  (4.13) 

Where w is the inertia weight which is considered 4.12. The acceleration constants are 

c1 and c2 both with a value of 2, r1 and r2 are random numbers between 0 and 1. These 

values are considered based on [17]; other values result in less training accuracy. The PSO 

algorithm as follow: 
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PSO Algorithm 

  
    Initialize particle 
While maximum iteration is not obtained 
    For each particle  
        Calculate fitness value (f) 
        If the fitness value is better than the best fitness value (pik) until now 
            set current value as the new pik 
    End 
 
    Choose the particle with the best fitness value of all the particles as the pg 
(global solution) 
    For each particle  
        Calculate particle velocity based on (6.12) 
        Update particle position based on (6.13) 
    End 
 

 

4.3 Test System and data generation 

Although, all power systems are different, faults have to be cleared within a specific 

amount of time (usually, a few cycles) to maintain stability. Voltage magnitude and rotor 

angle trajectories should be monitored for several more cycles after the fault clearing to 

determine whether the system maintains stability after the fault inception and fault clearing 

events. We consider 30 cycles (or ½ second of a 60 Hz cycle) from fault inception for 

training the FNN. If the stability condition can be determined within this timeframe, certain 

corrective actions can be taken. 

4.3.1 Test system 

The IEEE39-bus test system is considered to determine the performance of the FNN 

classifier that is trained by the GWO and the PSO algorithms. This system consists of 39 

buses, ten generator units, 46 transmission lines and 19 loads. The single line diagram of 

the test system is shown in Fig. 4.2. 



39 

 

 

Figure 4-2: New England 39-bus system 

4.3.2 Data generation 

For training the FNN-classifier, several cases are simulated in PowerWorld software to 

generate data. Three phase to ground faults were simulated at 25%, 50% and 75% length 

of transmission lines. Fault clearing time is considered to be 5 cycles when the fault is 

removed by opening the line at both ends. A total of 300 contingencies were created, and 

for each case, the data for trajectory of bus voltage magnitudes and generator rotor angle 

recorded. According to transient stability index, which is based on rotor angle [18] a class 

label is assigned for each case. If system is considered as stable, class label “1” is selected, 

and for unstable cases, the class label “-1” is used. 

4.4 The GWO and PSO Algorithms for training a feedforward neural network 

The GWO and PSO are applied to train the weights of a feedforward neural network 

(FNN) with two layers. Fig. 4.3 illustrates the structure of the FNN, in which, the input 

layer has 2 nodes; the hidden layer has H nodes and output layer has O output nodes. H is 

the number of nodes in the hidden layer, and O is the number of nodes in the output layer. 
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Considering that the hidden transfer function is sigmoid, and the output transfer function 

is a linear activation, the output of the hidden node would be: 

1

( ) 1/ (1 exp( ( . ))), j 1,2,..., H
n

j ij i j

i

f s w x 
=

= + − − =  
(4.14) 

Where wij is the connection weight from the ith node of input layer to the jth node of 

hidden layer, n is the number of input node, θj is the bias of the jth hidden node (threshold) 

and xi is the ith input. The weight input sum in the hidden layer is indicated by sj and is as 

follow: 

1
.x

n

j ij i ji
s w 

=
= −  (4.15) 

                           
1

. ( ) 1,2,...,O
H

r rj j r

j

y w f s r
=

= − =  
(4.16) 

                                              
1 1

/ ( * ) ( )
u O

r r

r r i i

r i

E E u O where E y d
= =

= = −   
(4.17) 

The connection weight from jth hidden node to the rth output node is wrj and threshold 

of the rth output unit is shown by θr. The learning error E can be calculated by equation 

(4.17): Where u is the total number of training sample, 
r r

i iy d−  is the error of the desired and 

actual output of the ith output unit when rth training sample is used for training. So the 

fitness function of the ith training sample is defined as follows: Fitness (Xi)=E(Xi)       

For the GWO algorithm, a set of weights are presented by each member of population 

and for training weights of the FNN by PSO algorithm, a set of weights are expressed by a 

particle. 
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Figure 4-3:Feedforward Neural Network 

 

In this approach, each population in the GWO method and every particle in the PSO 

method are encoded for a matrix. As an example, an FNN with the structure of 2-4-2 can 

be written as follows according to equations (4.15) and (4.16): 

 

Where W1 is the input layer weight matrix, T1 is the hidden layer bias matrix, W2 is the 

output layer weight matrix and T2 is the output layer bias matrix. Structure 2-4-2 indicates 

that feedforward neural network has 2 inputs, 4 nodes in the hidden layer and two outputs. 

4.5 Results and discussions  

We compare the performance of the GWO algorithm and the PSO algorithm in training 

the FNN for predicting post-fault transient stability of the IEEE 39-bus test system. For 

GWO based on [48], the population size is considered 100; the value of   linearly decreases 
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from 2 to 0 in the process of iterations; r1 and r2 are random vectors in the range [0,1]. For 

PSO, it is assumed [59] that the weights generated at random in the range of [0,1] are 

allocated to every initial particle. The values of acceleration constants c1 and c2 are 2, the 

initial weight w is 1.8 and r1 and r2 are two random numbers in the range of [0,1]. The 

population size is 30, and initial velocities of the initial particles were generated randomly 

in the range of [0,1]. Other values for the above-mentioned parameters results in less 

training accuracy. 

Three cases for inputs are considered 1) voltage magnitudes 2) rotor angles 3) both 

voltage magnitudes and rotor angles. 30 cycles of data are considered after the clearance 

of fault. For instance, FNN is trained with the structure of 30-H5-2 meaning 30 inputs, five 

nodes in the hidden later, and 2 outputs. The input can be voltage magnitudes, rotor angles 

or both. When the output is 1, it indicates that the system is stable, and if it is -1, system is 

considered to be unstable. 

For training purpose, cross validation is used. Assuming the number of samples is M, 

we train the FNN with M-1 samples. One sample is used to test generalization performance 

of the FNN. This process is repeated M times to ensure the generalization performance. 

For every fixed hidden unit number, two algorithms were run and maximum training 

iterations is set to 300. Comparison of the two algorithms when the inputs are voltage 

magnitudes are given in Table 4.1. Results show that training error when training by GWO 

is less than when trained by PSO. We also see that when the hidden layer has 10 neurons, 

the FNN has the lowest training error, which is 0.057977. Table 4.2, shows the results when 

the inputs of FNN are only rotor angles. The GWO algorithm has better performance 
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compared to the PSO algorithm. It is also clear that training error is less when compared to 

Table 4.1. 

When using both rotor angles and voltage magnitudes, we consider 60 inputs - 30 for 

voltage magnitude samples and another 30 for rotor angles. Table 4.3 shows that the results 

when the FNN is trained by GWO are better than those from the FNN when trained by 

PSO. Generally, using both rotor angles and voltage magnitudes yields better training 

errors. 

Table 4-1: Comparison of the performance of the two training algorithms when inputs are 

voltage magnitudes only 

 

 

 

Table 4-2: Comparison of the performance of the two training algorithms when inputs are rotor angles only  

 

 

 

Table 4-3: Comparison of the performance of the two training algorithms when inputs are both voltage 

magnitudes and rotor angles 

 

 

 

Hidden 
Neurons 

Training 
Error by 
GWO 

Testing Error 
By PSO 

5 0.063298 0.071995 

10 0.057977 0.080121 

15 0.060096 0.078075 

Hidden 
Neurons 

Training Error 
by GWO 

Training Error 
By PSO 

5 0.0028239 0.015411 

10 0.0027488 0.045658 

15 0.0051686 0.024059 

Hidden 
Neurons 

Training Error 
by GWO 

Training Error 
By PSO 

5 0.0018413 0.0029389 

10 0.0014557 0.0043846 

15 0.0038142 0.0099064 
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The training errors for FNN-GWO and FNN-PSO are shown in Figs. 4.4 through 4.6 

for the three types of inputs. In all three cases, the FNN-GWO has a smaller training error. 

Figure 4.6 indicates that when both rotor angles and voltage magnitudes are considered as 

inputs to the FNN, it converges in the fewest number of iterations. 

 

Figure 4-4:Training error with 15-nodes FNN with voltage magnitudes as inputs 

The average Mean squared Error (MSE) for all training samples are based on 10 

independent run. These figures confirm that the FNN-GWO achieves the best classification 

accuracy for all values of hidden neurons. Also it can be inferred that the FNN-GWO has 

a better training accuracy than FNN-PSO, and the FNN-PSO has a faster convergence rate 

than FNN-GWO. 

 

Figure 4-5: Training error for the 15-node FNN with rotor angles as inputs 
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Figure 4-6: Training error for the 15-node FNN with both voltage magnitudes and rotor angles as inputs 

To determine the robustness of the methods, the transient stability prediction procedure 

was checked by changing the topology of the test system. Transmission line 4-14 is opened, 

and a three-phase fault simulated with fault clearing time set to about 5 cycles. Three-phase 

to ground faults were initiated on each transmission line at 25%, 50% and 75% length of 

the line. A total of 100 cases were created for each scenario. The testing errors are 

illustrated in Table 4.4. According to the obtained results both classifiers predict transient 

stability status with good accuracy even if the topology of system is changed even though, 

the GWO-trained FNN has better accuracy.  Figures 4.7-4.9 illustrates that FNN-GWO has 

better training accuracy for all three cases and FNN-PSO has faster convergence rates. 

 

Figure 4-7: Testing error for 15-node FNN with voltage magnitudes as inputs when system topology is 

changed 
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Figure 4-8: Testing error for 15-node FNN rotor angles as inputs when system topology is changed 

 

Figure 4-9: Testing error for 15-node FNN with both voltage magnitudes and rotor angles as input when 

system topology is changed 

  

Results show that the FNN-GWO has the smallest training and testing errors when both 

voltage magnitudes and rotor angles are used. The reasons that the FNN-GWO has better 

training accuracy may be explained as follows: 1) Adaptive values of a  and A  guarantees 

the exploration and exploitation. By decreasing A  , half of the iterations are committed to 

exploration, and the rest of the iterations are allocated to exploitation. It should be 

mentioned here that C  does not decrease linearly and it provides stochastic values 

regularly to point out exploration both on initial and final iterations. This is useful in case 
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of local optima inactivity which means that final solution is a global solution among all 

possible solutions and not just restricted to particular local neighborhood of values. 

 Table 4-4: Comparison of the performance of the two algorithms for a 15-node FNN 

 

 

 

 

4.6 Conclusion  

Accurate prediction of power system instability can lead to prevention of blackouts. 

Two metaheuristic methods for training the weights of an FNN to predict the stability status 

of a power system using post-disturbance voltage magnitudes and generator rotor angles 

are studied. The FNN trained by the grey wolf optimization method can predict system 

stability status better than the particle swarm optimization method, even though the latter 

method converged faster. This method could predict transient stability of the system with 

good accuracy even when the network topology was changed. 

It is possible to use the adopted intelligent methods for real time transient stability 

assessment and control of larger systems.  However, some effort will be needed to train the 

FNN with credible contingencies under varying operating conditions. 

 

 

 

Input Data Type Testing Error 
by GWO 

Testing Error 
By PSO 

Voltage 
Magnitudes 

0.077571546    0.095881884 

Rotor Angles 0.0081111439 0.038471153 

Voltage 
Magnitudes and 

Rotor Angles  

0.005424561  0.012661489  
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Chapter 5 : COHERENCY DETECTION OF GENERATORS USING         

RECURRENCE QUANTIFICATION ANALYSIS 

 

5.1 Introduction 

With the increasing installations of PMUs, enormous data related with operation of 

power systems can be obtained more quickly. Therefore, the situational awareness [127] 

should be improved in the smart grid with the attained PMU data. Applying data-driven 

methods to determine the coherency among the generators in power system is one of the 

important tasks of situational awareness [128].  

Methods for examining the hidden patterns of nonlinear systems have recently improved 

and they bring more opportunities to better understand nonlinear behavior of power 

systems from new perspectives. For example, an effective time-frequency study for 

nonstationary data can be accomplished by the use of wavelets. The RQA was 

demonstrated as an effective method to examine and quantify the nonlinear and 

nonstationary signals [129]. It should be mentioned here that power system measurements, 

such as voltage and current, are nonstationary in nature. The combination of WPD and 

RQA can bring more accurate results because the RQA statistics are computed from 

multiple wavelet scales, and these statistics are more sensitive to path variation and less 

sensitive to noise. By applying the WPD and RQA, the measured rotor angles, which are 

actually measured bus angles, are first decomposed into several wavelets by discrete 

wavelet packet transformation. Then the rotor angles are quantified inside every wavelet 

scale. Hence, the RQA measures consider both the main scale and several wavelet scales, 

whereby the transient and steady-state nature of the signal can be obtained more effectively 
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since they are dependent on local scales. The scales at each level of wavelet decomposition 

are known as local scales. 

The chapter is organized as follows: the WPD and RQA theory are studied in section 

5.2. The proposed method is presented in section 5.3. Simulation results and case studies 

are discussed in section 5.4. Comparison with other approaches are presented in section 

5.5. Finally, conclusions are drawn in section 5.6. 

5.2 Review of the WPD and RQA theory 

5.2.1 Wavelet Packet Decomposition 

The wavelet decomposition (WD) has an extended version called WPD which offers 

enhanced signal examination [130]. The main signal is divided into two subspaces V and 

W by wavelet decomposition. One of the subspaces V carries low frequency information 

and the other subspace W carries high frequency information related to the main signal. 

The subspace V which contains low frequencies is decomposed and shown in Fig. 5.1. The 

WD only divides the frequency 

                                             

V0

V1 W1

V2 W2

V3 W3

 

Figure 5-1:Wavelet decomposition structure 

axis precisely approaching low frequencies. While the high frequency information is 

ignored in WD, the WPD [30] considers the high frequency information and decomposes 

them into different scales. The WPD considers whole packet tree of a wavelet as illustrated 
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in Fig. 5.2, where ,j nU  is the nth subspace (n is frequency factor) of wavelet packet at the 

jth scale, and  /2

, ( ) 2 (2 )n j n j

j kU t u t k− −= −    (k can be interpreted as time localization 

parameter), which are defined as: 

,0 0 1,( ) ( ) ( )n i

j j k

k

u t h k u n is even−=  (5.1) 

,0 1 1,( ) ( ) ( )n j

j j k

k

u t h k u n is odd−=  (5.2) 
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Figure 5-2: Wavelet packet decomposition structure 

Where 0 1, , 0,1,2,...,2 1, (k),h ( )jj k Z n h k = − stand as pairs of multiply mirror filters that are 

unrelated to scales, and described by means of: 

1

1 0( ) ( 1) (1 )kh k h k−= − −  (5.3) 

The coefficient of WPD at the jth level and kth samples can be defined by quadrature mirror 

filters for both low and high frequency information. 

5.2.2 Recurrence Quantification Analysis 

Recurrence is an equity of dynamical systems that demonstrates whether the states 

revisit points in the phase space trajectory. Briefly, two points on the phase-space trajectory 

are deliberated to be recurrent if the distance between them is less than a threshold value 
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[131]. R is a two-dimensional squared matrix which visualize recurrence of a state at time 

i at a different time j with dots; both axes here are time axes. 

,

, ( ) , 1...im

i j i i jR x x i j N
 =  − − =  (5.4) 

Where N is the number of considered states xi, εi is the threshold distance, m is the 

dimensional phase space trajectory, and Θ(.) is the Heaviside function [131]. 

Fig. 5.3 and Fig. 5.4 demonstrates a Recurrent Plot (RP) for a sinusoidal and random 

noise. RPs are specified by line-of-identity (LOI) which is the solid main diagonal. The 

periodicity of the signal can be shown by large diagonals repeating themselves periodically. 

Short diagonals are representation of non-deterministic or stochastic behavior. Stationary 

data leads to homogenous plot while non-stationary data leads to RP with the upper side of 

the plot on left and the lower side of the plot on right side disappearing. 

 

Figure 5-3: Sine wave recurrence plot 

 

Figure 5-4: White noise recurrence plot 

Recurrence Rate (RR): RR sums the total number of the black points in the RP without 

considering the LOI. It represents the relative frequency of recurrence points. 

,

,2
1

1
( , )

N
m e

i j

i j

RR N R
N N


 =

=
−

  
(5.5) 

 Where N is the length of data, and R is the recurrence matrix. 
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Determinism (DET): The portion of recurrence points which shape diagonal lines with 

minimum length are denoted by DET.  Definition of lines in the RP are specified by dmin 

parameter which sets the lower bounds and normally is considered as 2. 

min
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l d

N

i j

i j

lH l

DET

R

=
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=


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(5.6) 

Where ( )DH l  represents how many times a diagonal with length l exits. 

Maximal line length in the diagonal direction (Dmax): Dmax represents the length of longest 

diagonal in RP. 

max arg max ( )D
l

D H l=  (5.7) 

Shanon Entropy (ENT): ENT is Shanon entropy of the frequency distribution of the 

diagonal line lengths. It shows the complexity of the deterministic structure in the system. 

The higher ENT means that the dynamics are more complex. For instance, the value of 

ENT is small for uncorrelated noise or oscillations, which means low complication in the 

dynamics of the system. 

min
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l d

ENT p l p l
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= −  
(5.8) 
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(5.9) 
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Laminarity (LAM): LAM indicates the percentage of recurrent points in vertical 

structures though the fraction of recurrent points in diagonal structures are represented by 

DET. 

min
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(5.10) 

Trapping Time (TT): TT is the average length of vertical structures; it applies the 

minimum length. It indicates how long the state is trapped. 
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5.3 Proposed Methodology 

The proposed method advances the performance of recurrence attributes by inspecting 

recurrence dynamics in multiple wavelet scales. The recurrence properties are considered 

in various wavelet scales and the correlation of recurrence behaviors across scales. 

As illustrated in Fig. 5.2, the nonlinear and nonstationary time series is decomposed into 

short-term subseries in different scales by applying wavelet packets. After this stage, the 

recurrence dynamics are quantified in the wavelet subseries rather than the main time 

series. Hence, the nonstationary presence will be transformed into non-overlapped wavelet 

scales to simplify the characterization of nonlinear dynamics. Additionally, the subseries 

will make the computation of recurrence plots more effective. Lastly, feature selection and 

clustering will be applied to determine coherent groups of generators. 
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5.3.1 Feature Selection 

For each of the wavelet subseries RQA measures, RR, DET, LMAX, ENT, LAM, and 

TT are derived based on the flowchart shown in Fig 5.5. The kth level packet 

decomposition will create a high-dimensional feature space (6  x  2k =48). Respectively, 

this may cause “curse of dimensionality” for the clustering techniques. When the number 

of features increases overfitting problem typically happens. Here, a feature selection 

method is applied to optimally choose a subset of features that are correlated with variation. 
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      K-Clustering based on selected features from step 4 

Figure 5-5: Flow chart of applied methodology 

The minimum-redundancy-maximum-relevance (mRMR) is a feature selection method 

[132] where the mutual information between the joint distribution of the designated 

features and classification variable are maximized and a feature’s relevancy by its 

repetition in the existence of the other elected features are penalized. It could be written as 

an optimization problem: 

Generator rotor angle 



55 

 



, 11

20,1
1 1

( )( )( )
max

( ) ( ( ))
ng

ngng

ij i ji i i ji

ng ng
x

i ii i

a xg xgc xg
mRMR

xg xg

==


= =

 
 = −
 
 



 
 

 

(5.12) 

 

                                          ( ; )i ic I f c=                
( , )ij i ja I f f=

 

Where ng is the full-set features, xgi denotes the established membership index function 

for feature fi (xgi=1 shows existence and xgi=0 shows lack of the feature fi in the most 

relevant features). The individual feature fi and the class c has mutual information and its 

average value is shown by ci and indicates the importance of a feature for that class. The 

redundancy of features is shown by aij and it specifies average value of mutual information 

between two features fi and fj.  The mRMR method is a supervised learning method, while 

the task of this research is an unsupervised learning task. The test system has 29 generators, 

and each generator is assumed to have a PMU installed at the terminal. Thus, PMU1, for 

example, is related to generator 1. So, in the mRMR method, each rotor angle is labeled 

the same as its associated generator. Now, to avoid overfitting, the most relevant features 

are selected, which are correlated with variation, meaning that the dependency between the 

joint distribution of the selected feature and classification variable can be maximized by 

mRMR. After this stage, k-clustering method will be performed on selected features to 

determine the coherent group of generators. 

5.3.2 Clustering 

For a specific contingency, coherent generators that demonstrate similar oscillatory 

nature should be determined. The k-means clustering method is used considering features 

selected by mRMR method. The k-means clustering is based on vector quantization and 

originated from signal processing, and it is used for cluster examination in data mining.  
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The purpose of k-means clustering is dividing the number of observations into a defined 

number of clusters, and each observation fits into the cluster with the nearest mean. It uses 

an iterative algorithm which has two phases that minimizes the total distances of point-to-

centroid, which are summed over all defined clusters. For finding the proper number of 

clusters in a dataset, the elbow method [133] is used. This method considers the percentage 

of variance described as a function of the number of clusters.   

5.4 Case Studies 

In this section, the proposed method is applied to the 179-bus system shown in Fig. 5.6. 

This system is a reduced Western Electricity Coordinating Council (WECC) ac 

transmission system that includes 29 generators, 179 buses, and 263 branches. The data for 

23 simulated contingencies [134] are used as test cases. For the base instance, synchronous 

generators are represented as classical machines with damping parameter D set to 4 for all 

generators except generators at buses 45 and 159. The value of damping parameter D for 

generators at 45 and 159 are set at -2 and 1 respectively [134]. This makes generator 45 the 

source of the disturbance. All loads in the system are modeled as constant MVA. 
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Figure 5-6: The reduced WECC 179-bus power system 

The algorithm for one of the contingencies is described as follows. The results of a small 

signal study show a low damping 0.01% for the local mode at 1.41 Hz. This mode can be 

excited by creating a disturbance at bus 159. In order to meaningfully excite the 1.41 Hz 

mode, a three-phase short circuit is applied on bus 159 at 0.5s and cleared after 0.05s. It 

should be mentioned here that the generator which has the negative damping value is the 

source of the oscillation. The rotor angles of all generators in the system are investigated 

to see the impact of the disturbance. Fig. 5.7 shows plots of a subset of these rotor angles, 

specifically for G36, G159, G45, G162, G9, G18, G35 and G47.   
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Figure 5-7: Rotor angles of some generators 

Results of 23 simulated contingencies are used in the study. Generator coherency can 

be studied based on fluctuations of generator rotor angles after the fault is cleared. It 

expands further beyond the transient duration in large wide area power systems that exhibit 

poor damping. In order to monitor the system performance after a fault, mostly a 20-s (1200 

cycles) time window is considered as acceptable [135]. Based on the IEEE recommended 

practice for synchrophasor measurements in power systems, a 100 Hz sampling frequency 

is used [136]. The time trends in Fig. 5.7 are used to create recurrent plots. 

The recurrence analysis breaks down and represents the repeated dynamics of the 

system at distinct levels that captures the transient and steady-state behavior of the system.  

The rotor angle of generator 159 is examined in several wavelet scales 

0 1 2 3 4 5 6

3 3 3 3 3 3 3, , , , , ,U U U U U U U  and 7

3U . The recurrence plots for scales 0

3U   to 7

3U    are calculated 

from the wavelet detail series. The three wavelet scales with related recurrence plots for 

generator 159 are shown in Fig. 5.8. The different frequency components in the rotor angle 

of generator 159 are separated for the investigation of recurrence dynamics that facilitates 

exploring the transient and steady-state behavior of a system. All rotor angles are 

considered after fault clearance. 
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(a) (b) 

(c) (d) 

 

(e) 
(f) 

Figure 5-8: Recurrence plot of generator 159 (rotor) in wavelet scales 

In this examination, the decomposition level is elected to be 8 for the rotor angles. The 

wavelet scale and recurrence plot of wavelet scales
0

3U ,
1

3U  and 
5

3U are shown in Fig. 5.8. For 

wavelet scale 
0

3U  recurrence plots, there is a long diagonal which shows the deterministic 

behavior as seen in Fig. 5.8(b). Some single points are away from the main diagonal which 

shows states are rare and they are present only for a short time.  For wavelet scale 
1

3U , the 

periodicity of the signal can be shown by large diagonals repeating themselves periodically 

as seen in Fig. 5.8(d). For wavelet scale 
5

3U , the darker areas consist of several hundred 

dots, which shows the presence of noise, as seen in Fig. 5.8(f). In the latter figure, there is 

also a very short diagonal at around 10 cycles which represents the transient behavior. The 
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lighter area for wavelet scale 
5

3U  indicates sudden changes in the dynamic behavior. So 

recurrence plots can give detailed quantified measures about rotor angles.  

Six measures of the RQA, considering RR, DET, LMAX, ENT, LAM and TT are 

derived from the recurrent plots for each wavelet scale. Totally, 48 features are pulled in 

for recurrence examination in order to determine generator coherency indication.  

Since each rotor angle has 48 features and it may lead to the “curse of dimensionality” 

in the clustering process, the mRMR feature selection method is applied to choose a 

subgroup of features that are correlated with the process variation. Additional analysis of 

selected feature subset will detect which measures of RQA play more significant roles in 

determining coherent groups of generators. The clustering error is shown in Fig. 5.9. This 

error can be decreased by adding optimal features into the clustering method. It should be 

mentioned here that when there is no noise in the measured data, there is no error in the 

clustering.  The number of selected features by the mRMR method has direct effect on the 

clustering error. More details are provided in [132]. 

The error rate does not decrease when the number of features is greater than 16. Hence, 

the optimal number of selected features is considered to be 16 for the study, which also 

brings a consistent number of features for building the clustering model, which is shown 

in Table 5.1. 
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Figure 5-9: Cluster error against the number of features 

The feature selection is based on the mRMR method as mentioned in section 5.3. Table 

5.1 shows that for scale 
0

3U , measures RR, LMAX and TT are the selected features. The 

black dots represent selected features for each scale. The meaning of RQA measures such 

as RR and DET is explained in section 5.3.2. 

Table 5-1: Selected features of RQA measures 

 RR DET LMAX ENT LAM TT 

0

3U  
      

1

3U  
      

2

3U  
      

3

3U  
      

4

3U  
      

5

3U  
      

6

3U  
      

7

3U  
      

 

In all, 23 cases are considered and for each case, the selected features are different. The 

number of most relevant features varies based on different cases. For example, for case 2, 

the number of selected features is 14 and for case 3 the number of selected features is 18. 
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After applying clustering, it is observed that the four generators - G36, G162, G159, 

G45 - create four different groups namely group 1, group 2, group 3 and group 4. 

Generators G9 and G18 swing together and form a separate cluster of generators, 

specifically group 5.  The other generators G4-G149, form group 6. Table 5.2 shows the 

coherent areas of the test system. 

Table 5-2: Coherent groups for 179 bus system 

Group  Coherent Generators 

1 36 

2 162 

3 159 

4 45 

5 9,18 

6 4,6,70,103,138,11,77,144,148,13,79,15,112,116,118,30

,40,35,43,140,65,47,149 

 

The six measures of RQA at level 3 scale for some of the generators are shown in Table 

5.3. 

Table 5-3: Measures of RQA at level 3 for scale U0 

Generator RR DET LMAX ENT LAM TT 

36 0.31 93.82 128 3.84 0 0 

30 9.17 99.68 1132 5.61 99.40 24.32 

40 8.78 99.69 1132 5.23 99.74 27.98 

35 10.1 99.68 1132 5.88 99.77 28.14 

159 0.00 53.33 5 1 0 0 

9 1.95 95.60 1121 3.47 16.12 3.00 

45 0.00 50 4 1 0 0 

162 0.39 89.60 139 3.42 0.53 3.5 

18 1.91 95.782 1122 3.55 69.46 3.89 

 

According to Table 5.1, the measures RR, LMAX and TT play important roles for this 

scale, in determining the coherent groups of generators. Generators G30, G40 and G35 are 

in the same group and their RR value are close to each other. LMAX is the same for all of 
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them, and trapping times are very close to each other in comparison to other coherent 

groups.  

The generators G9 and G18 are in the same coherent group, as their RR are close to 

each other, the LMAX is almost same for both generators, and trapping times are close in 

comparison to other coherent groups. The four generators G36, G159, G45 and G162 each 

form distinct groups, and their RR values are zero or close to zero, LMAX is different for 

each of them, and the trapping time is zero except for generator G162. 

5.5 Comparison with other Methods 

The accuracy of the determination of coherent generators, achieved by applying the 

RQA technique, is examined in contrast with the PCA method [69] with and without noise 

in the measurement on the same test system. 

5.5.1 Comparison without noise 

The PCA method [69] is applied to detect coherent groups of generators when there is 

no noise, and results reveal that the PCA method identified the coherent groups of 

generators in 6 clusters. This indicates that, applying both the proposed RQA method and 

the PCA method in this paper reveal similar coherent groups of generators. 

5.5.2 Comparison under noise 

The Signal to Noise ratio (SNR) compares the level of a signal such as voltage to the 

noise level. The performance of methods based on measurements can be affected by the 

presence of noise in the acquired data. The performance of the RQA in the presence of 

noise is evaluated against the PCA.  For this investigation, identical datasets are applied by 

considering white noise with varying levels of SNR ranging from 20 to 100.  
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White Gaussian noise is added to rotor angles using Matlab. The trajectories of rotor 

angles are the same except that noise is added, and it is independent and identically 

distributed from a zero-mean normal distribution with variance N.  Different signal to noise 

ratios are considered such as SNR=80 dB and SNR=20 dB. After fault clearance, the two 

methods - the RQA and the PCA - are applied to detect coherent groups of generators. 

For both methods, the rotor angles of all generators of the test system are obtained at 

each cycle for 20s after fault clearance. A three-phase short circuit is created at bus 159 at 

0.5s and cleared after 0.05s. The results achieved by means of the RQA technique is shown 

in Fig. 5.10 and the coherent groups identified applying the PCA method are shown in Fig. 

5.11, both for SNR=20. 
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Figure 5-10: RQA method (Comparison of coherency methods) 

 

Figure 5-11: Comparison of coherency methods (PCA method) 

From Fig. 5.10, it is clear that the power system comprised of 6 coherent groups as 

determined by the RQA method. A group of coherent generators (group5) is formed by 

generators G09 and G18. TT1 and TT3 are the trapping times at scales 1 and 3 at level 

three of the wavelet packet decomposition. Generators G4, G6, G70, G103, G138, G11, 

G77, G144, G148, G13, G79, G15, G112, G116, G118 form group 6. The other four 

generators, G36, G162, G159, and G45 each forms a distinct coherent group, which are 

respectively, groups 1, 2, 3 and 4. 

Fig. 5.11 illustrates the coherency of generators achieved by applying the PCA 

technique when the SNR is considered to be 20. With an SNR of 20, the PCA method was 

not able to determine coherent groups correctly. However, when the SNR was 60, the 



66 

 

method yielded more accurate classification when compared with an SNR of 20. The RQA 

method, on the other hand, could detect coherency even when the SNR was 20. 

When the SNR is less than 20, the RQA method is unable to detect coherent generators 

with good accuracy. This shows that the presence of noise in the measured rotor angles has 

an important role in accurately determining the outcome of techniques based on 

measurement. 

5.5.3 Robust PCA 

One of the most widely used statistical tool [137] for data analysis and dimensionality 

reduction is the PCA. However, it is sensitive to noisy observations. For a given matrix the 

PCA tries to find the best L2-norm low-rank approximation of that matrix. Nonetheless, 

the L2-norm is sensitive to outliers and noise, which is often observed in measurement 

data.  

Hence, much attention has been drawn to the robust PCA. The robust PCA has been 

introduced in [138] and it decomposes a given data matrix into a low-rank matrix and a 

sparse matrix. It is represented by M - the original data matrix, L the low-rank component 

and N the sparse component. The robust PCA can be formulated by convex optimization 

problem as follow: 

, * 1
minL E L N+  (5.13) 

                                           subject to M=L+N 

Where 
*

L  represents the nuclear norm of L, 
1

N  represents the L1-norm of N. It has 

been proven that L and N can be recovered from M with high probability under certain 

noise sparsity. The robust PCA has certain limitations. As indicated in equation 5.13, it 
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uses L1-norm to describe N and it is only optimal for Laplacian noise. While the, L1-norm 

can better fit sparse noise than the L2-norm, the real noise has much more complex 

structures in statistical terms, and is often not Gaussian or Laplacian.  

5.5.4 Coherency detection under noise (Robust PCA) 

The performance of the robust PCA in the presence of noise is assessed against the PCA.   

For this investigation,  identical datasets as in the previous section are applied by 

considering white noise with varying levels of SNR. 

 

Figure 5-12: Comparison of coherency methods (robust PCA) 

The robust PCA is applied on the rotor angles when the SNR is considered to be 40 and 

the method was able to identify coherent groups correctly as shown in Fig. 5.12. For SNRs 

in the range of 40-100, the accuracy of the robust PCA is investigated and results show 

good accuracy, which means the method can determine the coherent generators in six 

groups like the proposed method which applies the WPD and the RQA. Group 6 is 

represented by red color, Group 5 which includes generator 9 and 18 is shown by light 

blue, and the other four distinct groups are illustrated by green, blue, yellow and pink. 

However, when the SNR was 20, the method produced less accurate classification when 
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compared with SNR 40-100. The RQA method is capable to detect coherency even when 

the SNR was 20. 

5.5.5 Empirical Mode Decomposition 

The Empirical Mode Decomposition (EMD) is a signal processing method introduced 

in [137]. This method is suitable for nonlinear and nonstationary signal processing and it 

is widely used in different applications such as process control and biology. 

This method identifies a baseline signal within a distorted waveform, and then extracts 

it from the main waveform. The mean of an upper envelope and a lower envelope 

determines the baseline signal. By interpolating between the local maxima, the upper 

envelope is formed, and by interpolating the local minima, the lower envelope is attained. 

The original distorted signal is continually examined till no further baseline signals can be 

identified. This new attained signal is called an IMF. The IMFs have two features: a) the 

number of local minima equals (or varies by one) from the number of local maxima. b) All 

maxima are positive, and all minima are negative. The following steps show the process 

for obtaining IMF from a distorted waveform ds(t). 

1) Determine local maxima and minima of distorted signal, ds(t).  

2) To obtain upper eu (t) and lower envelopes el(t), implement cubic spline interpolation 

between the maxima and the minima.  

3) Calculate the mean of the two envelopes.  

                                                        em(t)= (eu(t)+el(t))/2                                           (5.13) 

4) Extract  
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                                                          imf(t)=ds(t)-em(t)                                              (5.14) 

5) If the number of local extrema of imf(t) is equal to, or differs from the number of zero 

crossings by one, and also the average of imf(t) is zero, then imf(t) is an IMF. Otherwise, 

steps 1-4 should be repeated, and ds(t) should be replaced by imf(t), until the conditions of 

being an IMF is met by the new imf(t).  

6) Calculate the residue: 

                                                            r(t)=ds(t)-imf(t)                                                (5.15) 

To prevent “over-improving” the IMF, which can cause loss of modal information, proper 

stopping criteria should be used in step 5.  

When all IMFs are extracted from a distorted waveform, the final residue has one or zero 

extremum points. The original signal can be obtained as follows: 

( ) ( ) ( )s

n

d t imf t r t= +                                             (5.16) 

5.5.6 Coherency detection under noise 

 The performance of the WPD in the presence of noise is evaluated against the EMD,  

For this examination, identical datasets are used by considering white noise with varying 

levels of SNR which were applied in the previous section. 

The EMD method is applied on rotor angles and all IMFs extracted; then the measures 

of the RQA are applied on the IMFs. Since each rotor angle is decomposed into three IMFs 

and 6 measures of the RQA are applied on these three IMFs, the total number of features 

for each rotor angle would be 18 (3x6=18). To avoid the overfitting problem, a feature 

reduction method is applied, and then K-clustering method is used to identify the coherent 
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groups of generators. The EMD of the rotor angles are processed to give 3 IMFs for each 

rotor angle. For example, three IMFs of rotor angle of generator 9 are shown in Fig. 5.12. 

The results achieved by means of the EMD technique are shown in Fig. 5.13 for SNR=50. 

 

 

 

 

Figure 5-13: IMFs extracted from the rotor angle of gen. 9 

Fig. 5.13 shows the coherency of generators obtained by applying the EMD technique 

when the SNR is 50.  Results show that under the noise condition, the EMD method cannot 

perform accurately when compared with the WPD method. 
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Figure 5-14: Comparison of coherency methods (EMD) 

Fig. 5.13 illustrates that the power system contains 5 coherent groups as specified by the 

EMD method. These groups are identified in Table 5.4. and when these results are 

compared with the WPD method (Table 5.3), it is clear that by applying the EMD in the 

proposed method, accurate result cannot be obtained. 

Table 5-4: Coherent group for 179 bus system (EMD) 

Group  Coherent Generators 

1 36,40,35,4,103,159,11,43,45,140,47,112,18,116 

2 138,77,144,79,149 

3 9,148,65,162,13,118 

4 30,70,15 

5 6 

 

5.6 Conclusion 

The RQA method based on data acquisition is proposed to detect generator coherency 

in a power system. The rotor angles decomposed by wavelet decomposition and the RQA 

measures are used to capture characteristics of rotor angles, and then coherent groups of 

generators are detected by applying a clustering technique. 

A wavelet transform decomposes the nonstationary time series into different frequency 

bands to efficiently keep apart the system transient and steady-state behaviors. 

Additionally, wavelet subsampling facilitates the computation of recurrence plots from the 
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time series data. Further, recurrence analysis becomes more compelling in the multiple 

wavelet scales under a stationary premise. 

 The results obtained by the RQA method are compared with results obtained by the 

PCA and the robust PCA methods. When there is noise in the measured data, the PCA 

method is unable to accurately detect the coherent group of generators. The robust PCA 

has better performance in the presence of noise when the SNR is in range 40-100. However, 

when the SNR is set to 20, the accuracy of the method decreases. Since the RQA method 

investigates recurrence dynamics in multiple wavelet scales, and advances the performance 

of recurrence characteristics, it can determine the coherent groups of generators precisely 

even in the presence of noise. 

To evaluate the performance of the proposed method the WPD was replaced by the 

EMD. When the EMD was used to decompose the rotor angles, the results showed that the 

algorithm can not detect coherent group of generators accurately. This indicates that the 

WPD method has better computing efficiency than the EMD method. 
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Chapter 6 : DATA-DRIVEN DETECTION OF SUSTAINED OSCILLATIONS        

AND FREQUENCY MODE IN POWER SYSTEMS USING RQA 

 

6.1 Introduction 

Different events may cause oscillations in power systems and the problem of low-

frequency oscillation in 0.1-2 Hz range is observed in many power systems. The instability 

could happen if the oscillation is not damped adequately. Therefore, it is necessary to 

investigate the low-frequency oscillation modes for dynamic system security. Rich 

information are obtainable by ringdown portion of the signal about the low-frequency 

oscillatory modes and can be used for this purpose. 

A few linear analysis methods have been considered to exactly examine inter-area 

oscillations. The Kalman filter and the Prony analysis methods are implemented in national 

grids [137]. The Prony analysis technique considers a signal to identify low frequency. 

Combination of WAMS with the Kalman filter is used in [138] to determine poorly damped 

oscillations. In [139] an enhanced the Prony analysis is introduced for detection of small 

frequency oscillations. For the parameter detection of low-frequency oscillation the 

Discrete Fourier Transform is applied in [140].  Identification of low-frequency oscillation 

is investigated by applying wavelet method and result give better understanding for low 

frequency approximation from PMU data, still the instantaneous frequencies cannot be 

identified from the contour plot.  

In this chapter, we propose a new method to detect low-frequency oscillation and 

identify frequency modes. Chapter focuses on the SFA and RQA method. The main 
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contribution of this chapter is the theoretical and application of the proposed algorithm in 

the power system. The proposed method is evaluated by using different created cases on 

the WECC 179 bus system. 

This chapter is organized as follows: Section 6.2 introduces the SFA and the RQA 

methods.  The proposed method is presented in Section 6.3.  Case studies and simulation 

results are presented in section 6.4. Conclusions are discussed in section 6.5. 

6.2 Review of SFA and RQA 

Non-linear dynamics for investigating the unobserved patterns have enhanced recently 

and yields a convenient opportunity to realize non-linear behavior of the power systems. 

The SFA is a method for getting features that change slowly from a rapidly altering signal. 

A single underlying driving force with high precision can be projected by applying SFA to 

nonstationary time series such as frequencies of generators in the power system.  For 

example, an effective slowly varying features study for nonstationary data can be shaped 

by SFA. The RQA was shown as a useful method to investigate dynamics of a system, and 

can provide a quantitative description for the nonlinear and nonstationary signals [141]. By 

applying the SFA and the RQA on the acquired frequencies of generators, first slowly 

varying features will be extracted; then related slowly varying features are quantified. 

6.2.1 Slow Feature Analysis 

The main purpose of the SFA is to get slowly varying features from a signal that varies 

swiftly. If x(t) is considered as input signal with M dimension where t indicates time, the 

objective is to try to find a function g(x) that creates an output signal y(t)= g(x(t)) that varies 

very slowly by considering the following optimization problem:                                               
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g x t
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  
 

(6.1) 

2. . [ ( ( ))] 0, [ ( ( ))] 1j js t g x t g x t =  =  (6.2) 

[ ( ( )) ( ( ))] 0i ig x t g x t =  (6.3) 

1,...., ,i J j i=   (6.4) 

Where the first order derivative of gj (x(t)) is shown by  g
•

 and Φ represents the sample 

mean over time. The objective is to decrease the temporal variation of yj(t) by minimizing 

the objective function. The output yj(t) should have zero mean and unit variance which is 

shown by constraint (2). The constraint (3) indicates that J outputs y1(t) through yj (t) should 

be mutually uncorrelated. If gj is linear in x(t), then the objective function has a closed form 

solution such as gj(x(t)) = T

jw  x(t) where wj  is a weighting vector. Then, SFA can be solved 

as a generalized eigenvalue problem [89]: 

[ ( ) ( ) ] [ ( ) ( ) ]T Tx t x t W x t x t W E
• •

 =   
(6.5) 

 Where the weighting vectors are the same as the generalized eigenvectors and E is a 

diagonal matrix of the generalized eigenvalues. The eigenvalues specify the order of slow 

features and the lowest index represents the most slowly varying signal. Reference [89] 

provides more details. The SFA is not sensitive to noise since it focuses on small 

eigenvalues after sphering and determining the time derivative; so it rejects small but 

rapidly changing noise elements that naturally have large eigenvalues. It is necessary to 

mention these eigenvalues are different from the eigenvalues of the power system and 

related to the SFA optimization problem.  



76 

 

The SFA comprises of four steps: 1) use some fixed nonlinear functions to expand the 

input signal 2) To achieve components with zero mean and unit covariance matrix, sphere 

the expanded signal 3) calculate the derivative of sphered expanded signal to identify the 

normalized eigenvector of its covariance matrix 4) In order to get the output signal, project 

the sphered expanded signal onto this eigenvector. 

Fig. 6.1 shows that frequency of generators is considered as time varying input signals 

x(t). Non-linear functions g(x) transform the input signals to slowly-varying signals y(t). 

Left side of the figure shows the generators frequency and the right-side demonstrations 

slowly-varying output signals. It is necessary to mention that since the transformations 

must be instantaneous, solution such as low-pass filtering is not possible. 

Generator frequency 

 

 

Slow varying features 

 

 

 

 

Figure 6-1: Schematics of the optimization problem solved by slow feature analysis 

0 200 400 600 800 1000 1200 1400
59.85

59.9

59.95

60

60.05

60.1

60.15
Generator 1

Time (cycle)

F
re

q
u

e
n

c
y
 (

H
z
)

0 200 400 600 800 1000 1200 1400
-3

-2

-1

0

1

2

3

Time (cycle)

y
1

0 200 400 600 800 1000 1200 1400
59.8

59.85

59.9

59.95

60

60.05

60.1

60.15

60.2
Generator 29

Time (cycle)

F
re

q
u

e
n

c
y
 (

H
z
)

0 200 400 600 800 1000 1200 1400
-6

-4

-2

0

2

4

6

8

10

Time (cycle)

y
5

8



77 

 

 

6.2.2 Recurrence Quantification Analysis 

A vital property of a deterministic dynamical system is the recurrence of states [131]. 

Recurrence Plots (RP) introduced in [131] can explain the recurrence property of a 

deterministic dynamical system, and the main step of RP is to calculate the subsequent 

matrix: 

,

, ( ) , 1...im

i j i i jR x x i j N
 =  − − =  (6.6) 

Where N is the number of considered states xi, threshold distance is shown by ε, m is a 

dimensional phase space trajectory, and Θ (.) is the Heaviside function. The main 

advantage of RP is its application to analyze nonstationary data, such as power system data, 

and RP can explain the attributes of both large and small-scale patterns of a dynamical 

system [131].  

Recurrence rate (RR): The RR is one of the measures of RQA that counts the black dots 

in the RP without considering the line of identity which is a solid main diagonal [131]. It 

is a measure of the recurrence point’s density. Further details are explained in [131]. 

,

,2
1

1
( , )

N
m e

i j

i j

RR N R
N N


 =

=
−

  
(6.7) 

Where N is the length of data and R is the recurrence matrix. The probability of 

occurrence of the same states in a system is shown by the recurrence rate.  This measure 

responds to the correlation sum. 

 The power system is considered as a discrete-time dynamical system, where the 

sampling rate of PMUs are measured as time points. Fig. 6.2 shows the frequency of a 
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generator connected to a transmission system, when at time 0.5 seconds (30 cycles), a 

three-phase fault occurs at its terminals, and then is cleared after 0.05 second (33 cycles). 

Low-frequency oscillations are observed after the fault clearance. Fig. 6.3 illustrates the 

RR plot, when the system exhibits low-frequency oscillations. From the plot, the RR 

decreases from 1.0 to 0.1. In the steady state condition, the value of RR is equal to 1.0. 

 

Figure 6-2: Generator Frequency 

 

Figure 6-3: Recurrence rate of generator frequency 

 In case of high damping the system returns to the steady state condition. The value of 

RR starts to increase from zero after fault clearance and would eventually reach 1.0 after a 

short period. Details are discussed in section 6.4. 

Fig. 6.4 shows the RR plot of the generator frequency for the same fault condition: a 

three-phase fault occurs at time 0.5 second (30 cycles), and then cleared after 0.05 second 

(33 cycles). When the fault occurs, the RR decreases from 1.0 to almost zero almost 

immediately. After the clearance of the fault, the frequency returns close to 60 Hz at t=13 

seconds (780 cycles), while the RR increases from zero to 1.0, and the system returns to 

steady-state condition. 
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Figure 6-4: Recurrence rate for frequency of a generator 

6.3 Proposed Methodology 

6.3.1 Low-Frequency oscillations detection 

For detecting low-frequency oscillations, we propose an algorithm in this section. The 

flowchart is presented in Fig. 6.5. For offline learning, historical phenomena from PMU 

data is considered to form Xoff, which is the frequency of generators, and then SFA is 

carried out on Xoff to extract the slowly varying features.  

When the slowly varying features have been determined by the SFA method, the 

question that should be addressed is which components represent the oscillation sources. 

The pattern of extracted features should be similar to the sources of oscillations. 

Considering that slowly varying components are linear combinations of monitored 

generator frequencies, the following similarity index [142] is applied: 

1( , ) / ( ) , (X )
T TT T
i i ij j j j j i jSI i j u u u u u X X X u

 
−= =  

(6.8) 

Where slowly varying j is denoted by ui, the frequency of generators is shown by iX . 

The similarity index SI (i,j) has a value between 0 and 1. If the generator is disturbed and 

the source of disturbance is uj, then uj can be described by  to some extent, and has an 
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obvious connection with iX . The strong connection will be near to 1, and weak connection 

will be near to zero. 

The method of specifying the sources of oscillation is as follows: a) Obtaining the 

frequency of generators and forming matrix X. b) Extracting slowly varying components 

by applying the SFA. c) Applying cross-correlation analysis to eliminate the slowly varying 

components which have same periods in comparison with previous ones. d) Calculating 

the similarity index (SI) for all slowly varying components, the component which has the 

highest values is the probable source of oscillation. 

Then, the RR is calculated by applying the selected slow varying feature, and two 

thresholds for detection of low-frequency oscillations are specified. When the system is in 

the steady state condition, the value of RR is equal to one (first threshold). After the 

occurrence of a phenomenon the value decreases. The value of |RR| is calculated for three 

consecutive window sizes dt=120, and the difference between the first and the second 

window sizes, as well as the second and the third window sizes is determined, the higher 

value will be considered as the second threshold. For online monitoring, the SFA method 

is applied on real-time PMU data on X, and then the RR is calculated using the current 

selected slow varying features. If the value of RR is less than 1 (first threshold), then 

|d(RR)/dt| for window size dt=120 is calculated. These values are stored for 3 window 

sizes. If the changes for these three values from one window size to the next window size 

are less than 0.02 (threshold 2), then low-frequency oscillation is detected. Otherwise, the 

algorithm indicates steady-state behavior in the system. A modal analysis can be initiated 

at time t, else X will be updated and iterated. 
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Figure 6-5: Flow chart of Low-frequency oscillation 

The mathematical explanation for RR is as follows: the probability of a recurrence plot 

(RP) can be obtained by [143]: 

,2
, 1

1
( ) lim

i j

N

b
N i j

P R
N


→ =

=   
(6.9) 

For a straight line with magnitude of “b” the probability distribution function is 

1,
( )

0 .

if x b
x

else


=
=


 
         (6.10) 
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A recurrent point in the RP has the probability of         

0
( ) ( ). ( ) 2 ( )* ( ). ( )bP R x d x x x d x

 


  

−
= =   (6.11) 

     Where ( )bP   is the probability of a recurrence plot, ( )x is the probability density 

function and R(x) is the distance distribution by applying the self-convolution on ( )x . 

Two points are called recurrent if the distance between them is less than a threshold ξ. All 

the points in the RP will be recurrent when the value of RR=1. The recurrence rate is 

determined by the probability density function of the generator frequency and threshold ξ. 

Since RR calculation is based on convolution integral of probability density function in the 

range of ξ to -ξ, when the density function decreases, the RR decreases, and when the 

density function increases, the RR increases consequently. 

6.3.2 Recurrence-derived FT 

The Wiener-Khinchin theorem mentions that the Fourier Transform of the 

autocovariance function is the power spectrum. One way of getting autocovariance 

function could be applying recurrence quantification. The probable advantages of applying 

a recurrence-derived FT [144] are use of the embedding theorem to catch dynamics of 

higher dimensional spaces, as well as its relaxed assumptions of stationary and non-

linearity. Therefore, periodicities are not determined in the regular FT periodogram, or the 

autocovariance- derived Fourier Transform will be detected in this method. The magnitude 

squared of the signal’s Fourier Transform represents the power spectrum of a deterministic, 

discrete-time signal, x(i): 
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The power spectrum of a signal is equal to the Fourier Transform of the autocovariance 

function Cx of the signal when the Wiener-Khinchin theorem is applied: 

( ) ( ) j

x xS C e 



 


−

=−

=   (6.13) 

Where the autocovariance function of a stochastic time series x(n) is described as: 

1
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= +  (6.14) 

The distance matrix D between all data points is the base for calculation of a RP from 

phase space vectors  mx R  (m the dimension of the system): 

( , ) ( ) ( )D i j x i x j x R= −   (6.15) 

The average of the distance values ( )d   for a specific    described as:  

1
( ) ( , )

i

d D i i
N

 = +  
(6.16) 

It is discussed in [144] that by applying a threshold to distance matrix D, the matrix will 

be limited to periodic orbits: 

( )R D= −  (6.17) 

 Where R is the recurrence matrix. At that point, it is considered that the probability the 

system recurs after time:       

1

1
( ) ( , )

N

i

RR R i i
N
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  and replace ( )xC    in equation (6.13) by  ( )RR  . Actually, the expectation values are 

replaced here. More details are discussed in [144]. 

 ( ( ) ( )E x i x i  − − +  (6.19) 

 

6.4 Case Study 

The proposed method is applied on the 179-bus system illustrated in Fig. 6.6 This is the 

reduced Western Electricity Coordination Council (WECC) ac transmission system that 

consists of 29 generators, 179 buses, and 263 branches. There are 8 simulated contingency 

cases, which are created by Powerworld software, and applied as test cases. These cases 

include poorly damped oscillations, which include single sources, and local or inter-area 

modes. The threshold 2 for rate of change RR is specified 0.02 based on an analysis of 

these phenomena. 
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Figure 6-6: A 179-bus power system 

The classical model is considered for all generators. A value of 4 is selected as the damping 

parameter for all generators, except generators 65 and 30. All loads are modeled as constant 

MVA. The algorithm for one of the contingencies is described as follows: The value of 

damping parameter D  for generator 65 is considered to be -1.5 and for generator 30 set as 

0.5; so generator 65 would be the source of the oscillation. The outcome of a small signal 

study indicates a low damping ratio for the inter-area mode at 0.73 Hz.  There is presence 

of a large excitability at bus 30 for this mode.  A three-phase short circuit is applied on bus 

30 at 0.5s and cleared after 0.05s to implicitly excite the 0.73 Hz. The source of oscillation 

is the generator with the negative damping value.   
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6.4.1 Synchrophasor data dimension reduction 

The effectiveness decreasing dimension for synchrophasor data will be shown in this 

section. Assuming that for each generator, a PMU is installed, and the sampling rate is 60 

Hz. Also, noise is added to the data with signal-to-noise ratio (SNR) of 92 dB. The two 

slowest features f1-f2 are illustrated in Fig. 6.7, and a maximum similarity index that shows 

the jth slowly changing feature is the result of source influence, and is more  

 

 

Figure 6-7: Slowly varying component 

probable to be the source of oscillation as shown in Fig. 6.8. It can be determined that f4 

has the most similarity with the behavior of the source generator than the rest of the 

features. For the generator frequency ω, the similarity index calculated from SFA is 

96.24%. 
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Figure 6-8: Similarity index of 58 features 

Comparison between the most relevant varying component f4 (red) and generator 65 (blue) 

normalized frequency is shown in Fig. 6.9. It can be discovered the source signal can be 

represented by the slowly varying signals. The latter are a good estimation of source 

signals. 

 

Figure 6-9: Normalized generator frequency vs slowly varying feature 

6.4.2 Recurrence Quantification Analysis 

The initial stage in the RQA method is to reconstruct the phase space trajectory with m-

dimension. The embedding dimension m and delay time    of the selected feature f4 are 

determined by using the mutual information (MI) and Cao’s method [145]. By applying 

the MI method, the delay time was chosen to be 4 at the first local minimum to reconstruct 

the phase space. For specifying the embedding dimension, the Cao method was used, and 

more details are explained in [145]. The embedding dimension does not have major 
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changes at m=3, and so, the minimum embedding dimension was selected as 3. Fig. 6.10 

shows the RR of the most relevant feature f4. 

 

Figure 6-10: Recurrence rate for feature f24 (dt=120) 

It is seen that for every 120 cycle (dt=120), the change in RR is less than 0.02 as time 

elapses, and it is a representation of oscillations.  If RR increases continuously at every dt, 

it is an indication of steady-state in the power system. An RR equal to one indicates a 

steady state condition. Fig. 6.10 shows the RR values are not the same, and the reason is 

that in Fig. 6.9, the magnitude of the slowly varying feature, which is shown in orange, is 

not constant and varies with time. 

6.4.3 Frequency mode detection 

 The signals attained from the simulated cases have two zones that are the ambient zone 

which is related to the pre-disturbance zone and the ring down zone, which is related to 

after-fault conditions. The ringdown portions are considered for analysis in this paper 

because it gives richer information about the low-frequency oscillatory modes. Detrending 

is a statistical operation of removing the trend from the signal and considered for pre-

processing of the PMU signals. 
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The first case has one lightly damped local mode of 0.73 Hz, and the source of 

oscillation is the generator at bus 65. A three-phase short circuit is created at bus 30 at 0.5s 

and cleared at 0.55s. Fig. 6.11 shows the active power in line 84-99. 

 

Figure 6-11: Active power in transmission line 84-99 

 To specify if the recurrence-derived FT can identify frequency modes, the active power 

in transmission line 84-99 was considered. The embedding (dimension 3, and the delay 4), 

and a recurrence threshold ε of 0.1 is applied. Also, for comparison, a FT spectrum is 

calculated. Fig. 6.12 shows the FT spectrum and Fig. 6.13 shows the recurrence-derived 

FT. 

 

Figure 6-12: FT Spectrum 

 

Figure 6-13: Recurrence-derived FT spectrum 

 The FT method detects a frequency mode of 0.73 Hz. The recurrence-derived FT is 

able to specify a frequency mode of 0.73 Hz, and some other frequencies in the signal 
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which are not detectable by the FT method. These frequencies are in the range 0.1- 1.70 

Hz. 

The second case has a single source, one local mode and two poorly damped inter-area 

modes. The source of oscillation is generator 11. A three-phase short circuit is created at 

bus 79 at 0.5s and cleared after 0.05s. Fig. 6.14 shows the active power in line 84-89. 

 

Figure 6-14: Active power in transmission line 84-99 

 The Fourier method detects one local and two inter-area modes when applied on active 

power transmission line 81-84. Fig. 6.15 shows the frequency modes. The recurrence-

derived FT applied on the same line to determine frequency modes. The local mode at 1.42 

Hz is detected and also inter-area modes of 0.88 Hz and 0.52 Hz are identified. Fig. 6.16 

indicates that results are consistent with the FT method. 
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Figure 6-15: FT Spectrum (line 81-84)  

 

Figure 6-16: Recurrence-derived FT (line 81-84) 

In the recurrence-derived FT method, some other frequencies which less than 0.52 Hz and 

more than 2 Hz are  detected, which are not identified by the FT method. 

6.5 Comparison with other methods 

The accuracy of the determination of frequency modes, achieved by applying the 

recurrence-derived FT technique, is examined in contrast with the Welch’s method on the 

same test system. 

6.5.1 Periodgram 

A nonparametric estimate of the Power Spectral Density (PSD) of a stationary random 

process is called the periodogram [146]. It is the Fourier Transform of the biased estimate 

of the autocorrelation sequence. The periodogram of a signal xn , with frequency sample fs 

can be described as : 
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Where ∆t is the sampling interval. The periodgram has several drawbacks. The spectral 

leakage causes high variance and severe bias which is one of the major drawbacks. In order 
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to get an estimator with better variance and bias properties there are some methods to 

modify periodogram. 

6.5.2 Welch’s method 

A modified version of the periodogram is called Welch’s estimator [147] and the 

following steps are considered for this method. The original N samples are divided into NB 

overlapping blocks with NS samples each. A data taper (ht) is applied on each block. Data 

taper is a method for smoothing the periodogram in the frequency domain. The most 

advantage of tapering is an improved convergence of periodogram estimates to spectral 

density.  In order to reduce the bias because of spectral leakage, it is suggested that each 

block is windowed by a Hamming data taper. For each block obtain a periodogram and 

average the individual periodograms together to shape an overall spectral estimate. The 

Welch’s estimator will be given by 
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(4.21) 

Where n represents the amount of overlap between each block. The nonparametric 

spectral estimators such as the Welch are likely to yield high resolution PSDs with low 

variance and low bias. This method is applied on two cases in this section. The first case 

has one lightly damped local mode and the second case has one  local mode and two poorly 

damped inter-area modes. The figure 6.17 and 6.18 show the frequency modes detected by 

the Welch’s method on the first and the second cases accordingly. 
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Figure 6-17: Power spectra the Welch's method line 81-84 

 

Figure 6-18: Power spectra the Welch’s method line 81-84 

 The system modes identified by Welch’s method, and the visible peaks are 

representation of modes in the spectrum estimate. Fig. 6.17 shows the frequency mode at 

0.73 Hz for case 1, which has the highest magnitude. Fig. 6.18 shows the three peaks of 

high magnitude that happen at 0.52, 0.88 and 1.42 Hz, which represents the inter-area 

modes and local mode in case 2. 

6.6 Conclusion 

A new data-driven method to detect low-frequency oscillations early at inception is 

proposed by considering the dimensionality reduction of PMU data.  The linear SFA 

dimensionality reduction method for the synchrophasor data is considered to extract slow 

features (SFs) features. The similarity index is applied on slowly varying components to 

specify a probable oscillation source. Two threshold values are used. The first threshold is 

applied to detect the power system is not in steady state condition, and the second threshold 

is applied to distinguish low-frequency oscillation and steady-state. By applying the RQA 

method on extracted features, oscillation detection is achieved. Case studies on the test 

system show the effectiveness of the oscillation detection algorithm in on-line applications.  

The bus frequency recurrence rate of change is applied to detect low-frequency 

oscillation of the power system. This method does not depend on ubiquitous network 
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topology and operating conditions. A recurrence-derived FT method is applied to detect 

frequency mode of low-frequency oscillation. This method has two advantages. First it 

relaxes assumptions of stationary and non-linearity and second it applies embedding 

theorem to obtain dynamics of higher dimensional spaces. So, frequencies not observed in 

the regular FT periodogram are specified by this method.   
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Chapter 7 : CLUSTERING OF DISTURBANCE EVENTS USING          

RECURRENCE QUANTIFICATION ANALYSIS 

 

7.1 Introduction 

As more intelligence trickles into the power grid, the better situational awareness can 

be attained by identification of disturbance events through converting data to knowledge. 

This awareness can be useful when the system is under stress, or is in the initial phases of 

a probable blackout. For example, the study of the telephone log of a blackout   [148] shows 

the system operators report all disturbance events to control centers. The implemented 

emergency responses are formulated based on this information. Real-time identification of 

disturbance events can perform the same task in an automated way, and in much faster 

speed. This paper introduces a novel method for developing a real-time event 

identification.   

The main features of the proposed algorithm are: 1) it is data-driven and there is no need 

to know the system topology in advance; 2) it implements the dimensionality reduction of 

RQA features to extract key characteristics of the PMU data; 3) the lengthy buffering data, 

which is essential for frequency-domain analysis, is not needed here.  

This chapter is organized as follows: Section 7.2 introduces the RQA and PCA methods.  

The proposed method is presented in Section 7.3.  Case studies and simulation results are 

presented in section 7.4. Finally, conclusions are provided in section 7.5. 
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7.2 RQA and PCA 

 To investigate the hidden patterns of nonlinear systems, methods have been recently 

enhanced and they help to better understand nonlinear behavior of power systems from 

new standpoints. For examining and quantifying the nonlinear and nonstationary signals, 

the RQA was verified as a productive method [131]. It is necessary to mention that power 

system measurements, such as voltage and frequency, are nonstationary. 

The goal of this section is to define and give possible explanations of all the thirteen 

RQA features, as reported in [131].  The features are RR, DET, D, Dmax, ENT, LAM, TT, 

Vmax, recurrence time of 1st type, recurrence of 2nd type, Trec, clust and  . These 

features are explained in more detail in the next section. 

7.2.1 Recurrence Quantification Analysis 

Recurrence is the representation of dynamical systems that determines whether the 

states revisit points in the phase space trajectory. 

In summary, two points are called recurrent on the phase-space trajectory if the distance 

between them is less than a threshold value [149]. The recurrence of a state at time i at a 

different time j are visualized by R which is a two-dimensional squared matrix. 

,

, ( ) , 1...im

i j i i jR x x i j N
 =  − − =

 
         (7.1) 

 

Where N is the number of considered states xi, εi is the threshold distance, m is the 

dimensional phase space trajectory, and Θ(.) is the Heaviside function [150]. 

Fig. 7.1 shows a recurrence plot (RP) for voltage (sine signal) when there is no fault and 

Fig. 7.2 shows the voltage when a fault happens at t=5 seconds. The line-of-identity (LOI) 
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which is the solid main diagonal specifies RPs. Generally, large diagonals repeating 

themselves periodically represent periodicity of the signal which are shown in Fig. 7.1. 

Short diagonals are indication of non-deterministic or stochastic behavior which are 

observed in Fig. 7.2. Homogenous plot is result of stationary data while the RP with the 

upper side of the plot on left and the lower side of the plot disappearing is a result of non-

stationary data. 

 

Figure 7-1: Recurrence plot (voltage) with no fault 

 

Figure 7-2: Recurrence plot (voltage) with fault 

The explanation and equation six measures of the RQA which are RR, DET, Dmax, 

ENT, LAM and TT were discussed in chapter 5 section 5.2.2. The rest of measures will be 

discussed here.  

 Average (D) line length in the diagonal direction: D denotes the length of the average 

diagonal line in RP. 
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           (7.2) 

  

Longest vertical line:  Vmax is the representation of the longest vertical line. 
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max argmax ( )vV H l=
 

(7.3) 

Recurrence times of 1st and 2nd type: These are the mean times between consecutive 

points. 

Recurrence period density entropy (Trec): The entropy delivers information about the 

aperiodicity. 

max

1max

1
. ( ).ln( ( ))
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T
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T =

= − 
 

(7.4) 
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=
=   

(7.5) 

Where P(T) is the recurrence time probability. The histogram of recurrence times are 

shown by R(T) and the maximum recurrence time is represented by Tmax. 

Clustering coefficient (clus): Among the recurrent states clus indicates the mean number 

of very closely related states. 
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(7.6) 

Transitivity (  ) : The probability that two nodes connected to a third node are also 

connected directly is called transitivity. Regular dynamics like a sine wave are related with 

a higher transitivity and disordered systems demonstrate low values of transitivity. It is an 

indication of how strong the recurrent states are. 
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           (7.7) 
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7.2.2 Principle Component Analysis 

The main application of the principal components analysis is the examination of data to 

specify patterns to reduce the dimensions of the dataset with insignificant loss of 

information. 

Since the number of PMU’s can be quite large, and the data size can be massive, 

dimensionality analysis and reduction methods are being studied in the literature [151], 

[152] . The PCA is one the most common methods used to reduce dimensionality by 

maintaining the most variance of the main data [153]. It is used for coherency detection 

[154], extraction of fault features [155], and determining fault locations [156]. 

The steps for the PCA method are as follow: 

1- Consider the dataset which includes d-dimensional without class labels 

2- Compute the d-dimensional mean vector 

3- Compute the covariance matrix of the data set 

4- Compute eigenvectors and related eigenvalues 

5- Sort the eigenvectors based on eigenvalues to shape dxk dimensional matrix W 

6- Transform samples to new subspace by using dxk eigenvector matrix. The equation 

y=WT×x can represent this, where x is a d×1 dimensional vector which shows one 

sample and y is the transformed k×1-dimensional sample in the new subspace. 
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7.3 Proposed Methodology 

The proposed method is illustrated in Fig. 7.3. The main steps to identify different 

events are: (i) reading PMU data, (ii) constructing the RQA measures in each window, (iii) 

dimensionality reduction and (iv) applying k-means clustering. 

  The ratio of DET to RR is defined as variable ratio (RATIO) [150], and it is the frequency 

distribution of the lengths of the diagonal lines. The study of physiological systems 

indicated that the RATIO is suitable in identifying dynamic transitions [149]. For certain 

types of transitions, the DET does not change, while the RR decreases; thus, the ratio 

increases. 

2 min

2

1

( )

( ( ))

N

Dl l

N

Dl

lH l DET
RATIO N

RRlH l

=

=

= =


  

           (7.8) 

As illustrated in Fig. 7.3, the two RQA measures of the nonlinear and nonstationary 

time series obtained by PMU data will be calculated at every 120 cycles. These measures 

are RR and DET. If the RATIO is 1, no action will be taken. When the RATIO is less than 

1, the location of the event and the type of the event will be identified. The explanation of 

these steps is mentioned in the following sections as feature extraction and clustering. 
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Figure 7-3: Flow chart for location detection and type of disturbance event 

7.3.1 Feature extraction from disturbance events 

Since the RQA is a successful method in obtaining dynamic behavior of different 

systems [149], the method was applied to extract features from disturbance events. Three 

data windows are considered in this study as shown in Fig. 7.4.  To cover the pre-

disturbance and post disturbance w0 is considered before triggering, and both w1 and w2 

are considered after triggering, for disturbance events. The interval is chosen 2-s for each 

data window. Then, to encircle every data window, the RQA measures are calculated for 

each bus. Voltage, phase angle, frequency were separately applied to calculate measures 

of the RQA. Characteristic features such as RR, DET, explained in section 7.2.1 were 

calculated. For constructing a feature vector, the total number of 117 features was gathered 

from each disturbance. By combining feature vectors for all disturbances, the feature 

matrix is formed. Fig. 7.5 shows the steps for shaping the feature matrix. This feature 

matrix is used as input to the PCA method for dimensionality reduction. 

Read PMU data

Calculate RATIO 

for 120 cycles

RATIO=1 
Yes 

Calculate RQA measures for 

window size w0, w1 and w2

Apply PCA for feature 

reduction

No 

K-means clustering to detect 

event type

Store values of RATIO for 

each bus

Find the value of smallest 

RATIO

Smallest value of RATIO 

determines location of event



102 

 

 

Figure 7-4: Plots of a sample event 

Each row is the representation of one bus. Since the test system has 179 buses the feature 

matrix has 179 rows. Feature f1,w0 consists of the RQA measures of voltage, phase angle 

and frequency before an event happens (w0) for bus 1. Features f1,w1 and f1,w2 include same 

measures of the RQA after an event happens for the same bus. 
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Figure 7-5: Feature Matrix 

7.3.2 K-means Clustering 

Different disturbance events that illustrate similar behavior should be identified. 

Features build by the PCA are applied to k-means clustering method to identify distinct 

categories of events. The k-means clustering is a partitioning method. In this method,  data 

is partitioned into k mutually exclusive clusters, which represent different category of 

events.  

K-means method applies the centroids of clusters to describe the data. They are specified 

by minimizing the sum of squared errors, 
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Where the data matrix is (x1,…,xn) =X and mk= /
k

i ki c
x n

    is the centroid cluster Ck and 

nk is the number of points in Ck. The elbow method [157] is used to find the proper number 

of clusters. In this method the percentage of variance is defined as a function of the number 

of clusters. 

7.4 Case Study 

In this section, the effectiveness of the event detection algorithm, including the RQA 

and the dimensionality reduction method are shown.  The Powerworld® software is used 

to produce the synthetic PMU data. 

 The proposed method is applied to the 179-bus system shown in Fig. 7.6. This system 

is a reduced Western Electricity Coordinating Council (WECC) ac transmission system 

that includes 29 generators, 179 buses, and 263 branches. We assume that each bus in the 

system has a  PMU.  For emulating field condition, we added noise to the simulated data 

with a signal-to-noise ratio (SNR) of 92 dB. 
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Figure 7-6: The reduced WECC 179-bus power system 

7.4.1 Detecting location line tripping event 

The proposed algorithm in Fig. 7.3 shows that when RATIO is equal to one, the system 

is in a steady state, and when it is less than 1, an event is detected. The test system has 179 

buses and all voltages, phase angles, and frequencies are measured. As shown in Fig. 7.7, 

a fault happens at line 86-88 at t=5 s (300 cycles), and after 6 cycles, the fault clears. 

Figs 7.9 and 7.11 show that before the fault occurs on line 86-88, the RR and DET 

values are one, and so,  RATIO is one. This represents the fact that the system is in  steady 

state condition. When the fault happens, the voltage drops from 1.04 p.u. to zero. Fig 7.9 

indicates that the RR of bus 86 is 0.5 from 300 to 420 cycles, and Fig. 7.11 shows that the 
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relevant DET did not change from its value of 1. The RATIO value for the fault event is 

1.98.   

Bus 88 is a neighboring bus to 86 and Fig. 7.8 shows that the voltage during the fault 

decreases from 1.06 p.u. to 0.73 p.u. Fig. 7.10 shows the RR of bus 88 decreases from 1 to 

0.4 and Fig. 7.12 indicates that the DET value is 1, and so RATIO would be 2.47. 

Table 7.1 shows the RATIO value for some of the busses. Since the fault happens at 

line 86-88, bus 86 has the lowest RATIO value, and is therefore, the location of the fault. 

Bus 73 is far away from the other buses, and has the lowest voltage drop; so it has a 

minimum RR among the other busses, and highest value of RATIO, which is 3.19. It is 

necessary to mention here that the distance of a bus from the location of the fault does not 

always mean a lower value of RR. In this test system, a bus might be far from the fault 

location, but close to another generator; so it would not have a large voltage drop, and 

consequently, a lower value of RR. 

Table 7-1: Measures of RATIO for some busses 

BUS RR DET RATIO 

86 0.5 0.99 1.98 

88 0.40 0.99 2.47 

82 0.44 0.99 2.25 

73 0.31 0.99 3.19 
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Figure 7-7: Fault at bus 86 

 

Figure 7-8: Fault at bus 88 

 

Figure 7-9: RR of bus 86 

 

Figure 7-10: RR of bus 88 

 

Figure 7-11: DET of bus 86 

 

Figure 7-12: DET of bus88 

Based on the proposed algorithm, RATIO will be calculated for all busses at the same 

time, and these values will be compared whereby, the bus with the lowest value would be 

identified as the location of an event. 
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7.4.2 Detecting location unit tripping event 

As shown in Fig. 7.13, a generator at bus 66 (Montana) is tripped at t=5s, and the voltage 

decreases from 1.04 p.u. to 0.65 p.u. The voltage of two other substations which are in 

different areas are also shown. These voltages are measured at busses 46, 22. The voltage 

drop for these busses are low since they are not close to the location of the fault. 

 

Figure 7-13:Voltage profile of some generators (generator trip at bus 66) 

The RR and DET of generator at bus 66 are shown in Fig. 7.14 and 7.16. Before the 

generator trips at t=5 second (300 cycles), their values are 1, but after trip, the RR value 

changes from 1 to 0.51, but the DET remains unchanged. The RR and DET values for bus 

46, which is in a different area, and far away, are shown in Figs. 7.15 and 7.17. The values 

of RR and DET were constant before the generator trip, while after the DET still remains 

constant, but RR changes from 1 to 0.32. Since the voltage pattern of busses 46 and 22 are 

similar, the RQA measures of bus 22 are not considered here. 

The RATIO value for some of the generators and busses are shown in Table 7.2. At bus 

66, RATIO is 1.94, and at bus 46, it is 3.09. The lowest value of RATIO identifies the 

location of the event, and in this case, it is bus 66 (Montana) where the generator trips. The 

RR has the highest value at bus 66, which has the maximum voltage drop. Busses 22, 46, 
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99 and 164 are not close to the location of the generator trip, and as expected, they have 

lower values of RR, and as a result, a higher values of RATIO. As seen, the value of DET 

for all busses are 0.99, except for busses 99 and 164, which have lower values. The impact 

of these lower values in determining values of RATIO is negligible though. 

Table 7-2: Measures of RATIO for some busses 

BUS RR DET RATIO 

66 0.51 0.99 1.94 

46 0.32 0.99 3.09 

22 0.22 0.99 4.50 

99 0.06 0.92 15.33 

164 0.08 0.97 12.12 

 

Figure 7-14: RR of bus 66 

 

Figure 7-15: RR of bus 46 

 

Figure 7-16: DET of bus 66 

 

Figure 7-17: DET of bus 46 

 Three different windows, shown in Fig. 7.4, i.e., window w0 before an event happens 

and windows w1 and w2 after the disturbance event, were captured to build the thirteen 

measures of the RQA. Some of these measures related to the time before the event are 
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shown in Table 7.3. These measures are related to pre-disturbance for busses 172, 124 and 

26 and all measures have the same values as expected. 

Since most of the post-event variation happens right after the fault, we show just the 

data for window w1 in Tables 7.4 and 7.5. 

Some measures of the RQA are presented in Table 7.3. These measures are related to 

the pre-disturbance period for busses 172, 124 and 26, and all measures have the same 

values for each bus, as expected. Some measures of the RQA for windows w0 are not 

applicable when compared with Tables IV and V; so they are not shown here. These 

variables are laminarity, trapping time, recurrence time of the 2nd type, and recurrence 

period density entropy. For laminarity, ( )vH l  is the number of times a vertical line with 

length l exists. Since for window w0 which is a flat line, there is no diagonal line, the 

numerator, as well as the denominator, are both zero; therefore, the value is indeterminate. 

Also, for trapping time, both the numerator and the denominator are zero, and therefore, 

the output is indeterminate. The recurrence time of the 2nd type is defined as the mean time 

between consecutive points  [158], and since the voltage does not change for window time 

w0, it is not applicable here. 

In order to investigate recurrence period density entropy we consider recurrence 

distance tends to be zero for a trajectory. The recurrence time probability [159] density is 

: 

1
( )

0

if T kk
P T

otherwise

=
= 


 
(7.10) 
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Where kk is the period of the trajectory. Since the recurrence time in the phase space is not 

equal to the period of trajectory, the value of P(T) is zero, and when substituted in (7.4), 

results rec   to be zero. 

Table 7-3:Some measures of RQA for window w0 

Fault 

Location 

RR DET D Dmax ENT 

Bus 172 1 0.99 31 60 4.07 

Bus 124 1 0.99 31 60 4.07 

Bus 26 1 0.99 31 60 4.07 

 

Table 7.4 shows some measures of the RQA for faults at busses 172, 124 and 26 and 

Table V shows the same measures for generator trips at buses 35, 30 and 79. The RR values 

are higher for fault events, and the DET is almost 0.99 for both events as expected. For 

periodic behaviors, DET can be considered as the predictability of the system. The periodic 

behavior here refers to systems that do not show a chaotic process. 

The TT, Vmax and recurrence time of the 2nd type (the mean times between consecutive 

points) are higher for fault events. The recurrence period density entropy, or Trec, for the 

generator trip events are higher than that for the fault events. 

Table 7-4: Some measures of RQA for window w1 (Fault) 

Fault 

Location 

RR DET   TT Vmax Recu. time 

2nd type 

Trec 

Bus 172 0.79 0.99 17.67 52 24.16 0.25 

Bus 124 0.73 0.99 14.25 51 19.42 0.40 

Bus 26 0.68 0.99 14.00 50 18.57 0.30 
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Table 7-5: Some measures of RQA for window w1 (Generator trip) 

Generator 

trip 

RR DET   TT Vmax Recu. Time 

2nd type 

Trec 

Gen. 35 0.11 0.97 4.53 12 9.13 0.77 

Gen. 30  0.16 0.99 6.08 18 10.64 0.75 

Gen. 79 0.17 0.97 5.32 19 12.27 0.72 

 

7.4.3 Identifying disturbance events  

     Three phase to ground faults were created on 100 transmission lines in the 179-bus test 

system. Once again, the PowerWorld simulator was used to generate the data. The clearing 

time for faults is considered to be 6 cycles. A generator trip is also considered for all 29 

generators. Thus, a total of 129 simulations were conducted, and for each case, voltages, 

angles and frequencies were recorded. For each simulation, w0, w1 and w2 were considered. 

Fig. 7.18 shows the cumulative variance calculated from the PCA method. The first four 

PCs contains about 92.62% of the variance and the first 7 PCs preserves about 98.45% 

variance. It is observable from Fig. 7.18 that the dimensionality reduction can indeed be 

obtained by the PCA method. 

 

Figure 7-18: Cumulative variance preserved by PCs 

 Principle component coefficients for four variables D, Dmax, Vmax and clust as well as 

the principal component scores for  20 events are visualized in Fig. 7.19. This figure shows 
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all four variables by a vector. The contribution of each variable to the two-principal 

components are illustrated by the direction and length of the vector. For instance, the first 

principal component, PC1, has positive coefficients for the Dmax, clust and Vmax variables. 

Thus, the direction of these vectors are toward the right half of the plot. For PC1, the largest 

coefficient is Vmax. The vertical axis represents the second principal component, or PC2. It 

has positive coefficients for the variables D, Dmax, and clust, and a negative coefficient for 

the measure Vmax. 

Each of the 20 events is shown in the biplot (red circles), and the coordinates indicate 

the score of each event for the first two principal component.  For instance, the highest 

scores for PC1 are located on right side of the plot. It is necessary to mention that all the 

RQA measures illustrated in Fig. 7.19 are related to voltages. 

  

 

Figure 7-19: Orthonormal principal component coefficients 

 

 Thirteen measures of the RQA, including RR, DET, LMAX, ENT, LAM, TT are 
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examination for each window, and since three windows are considered, the number of 

features would be 39. Subsequently, we are measuring voltage, angle and frequency, and 

so the total number of features would be 117 (39×3=117).  

Fig. 7.20 illustrates the fact that disturbance events are divided into two groups. The red 

cluster (circles) shows the generator trip events, and the blue cluster (triangles) illustrates 

the fault events. PC1 and PC2 are the first two components of the PCA. Out of 129 

simulations, only 49 events are shown for clarity, twenty-nine events are related to 

generator trips, and the other 20 are related to the three phase to ground faults. 

 

Figure 7-20: Disturbance event clusters for generator trip and fault 

7.4.4 Missing data 

Time stamped data are continuously sent by PMUs to the PDC.  Nonetheless, in some 

cases, there may be missing data because of lapses in communication between the PMUs 

and the PDC. If a long interval of communication failure happens, or the related equipment 

breaks down, all the data, or a substantial portion of the data may go unrecorded. 
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To process the amount of missing data, we examine the voltage, phase angle and 

frequency recordings to identify the total number of missing data. Each event file has 360 

samples (3 seconds) of data, out of which, 60 samples (1 second) are from before the 

disturbance event, and 120 samples (2 seconds) are from after the event. Since there are 

179 PMUs and the total number of samples are 360, we expect a total of 360×179 =64440 

samples to make the classification of event type. A threshold of 5% (3222 samples) is 

considered for the disturbance file. Thus, if the total number of missing data is more than 

5% of the total number of data samples, then that disturbance event cannot be considered. 

However, if the missing data amounted to less than the defined threshold, then the average 

of the two previous samples can be considered to fill the missing data.  

To evaluate the effectiveness of the proposed approach in the presence of missing data, 

we consider three cases which are shown in Table 7.6. For the first case, only voltages are 

considered, and it is observed that the error in correctly identifying faults is 20% that for 

correctly identifying generator trips is 24.13%. This would mean that 24.13% of generator 

trips were misclassified as fault events. In the second case, voltage magnitudes and phase 

angles were considered. The error for fault events was 10% and that for generator trips was 

17.24%. When voltage and frequency were considered in the third case, we observed that 

the error for correctly identifying faults was 5% and that for generator trips is 13.79%. 

Table 7-6: Clustering error for faults and generator trip 

Scenarios Clustering error 

for faults (%) 

Clustering error for  

Generator trips (%) 

Volt 20.00% 24.13% 

Volt and Phaseangle 10.00% 17.24% 

Volt and Frequency  5.00% 13.79% 
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7.5 Conclusion 

 A novel method based on data acquisition is proposed in this study for determining the 

location and types of disturbance events based on the RQA method. The voltages, phase 

angles and frequencies are obtained for each bus, and RQA measures are used to capture 

specific characteristics of these system quantities. The PCA method is applied for 

dimensionality reduction of the data, along with a clustering method to identify different 

types of disturbance events. 

 The proposed method identifies the location and differentiates between two types of 

disturbance events in the system: faults and generator trips. The method is applicable on 

large systems since it does not depend on training data. Also, there is no need for the system 

topology because it is entirely data-driven. Results for a 179-bus test system reveal the 

accuracy of the proposed method in locating and identifying disturbance events. 

Missing data was considered in evaluating the performance of the proposed method. 

When the missing data is less than a defined threshold, the averaging method is applied, 

and results of the clustering method reveal that the accuracy of the proposed method in 

identifying disturbance events decreases somewhat. However, the misclassification errors 

in identifying fault events were less than that for generator trips. 
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Chapter 8 : CONCLUSIONS AND FUTURE WORKS 

 

Some disturbances in power systems can lead to sustained interruptions causing 

extensive blackouts.. Data-driven methods can play an important role to fully understand 

the consequence of serious incidences. The goal of applying technologies such as 

synchrophasor data in power systems is to reach better management of the system security. 

In this dissertation, novel data-driven methods for predicting transient stability, 

detecting of generators coherency, identifying low-frequency oscillation, recognizing 

frequency mode of the power system and determining location and type of disturbances are 

proposed. 

8.1. Concluding remarks 

In chapter 3, a method based on WSVM and ANFIS was proposed. Although the SVM 

can create classifiers with high prediction accuracy, in order to decrease the effect of 

outliers in the training model, and to contribute more weight to the important training data 

points, a weighted support vector machine (WSVM) was built. The fuzzy membership 

related training data helps to provide different degrees of membership in the training of the 

classifier. Hence, the WSVM obtains superior classification accuracy compared to the 

SVM. Numerical tests show that the applied approach was adequate to determine the 

stability status of a power system. Multiple SVM classifiers were combined with an 

adaptive neural fuzzy system that considers distances of the data points from the optimal 

hyperplane. The improvement of this method was seen when the WSVMs were combined 

with an ANFIS that was able to tune its membership function parameters to achieve higher 
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accuracy. The proposed adaptive neuro fuzzy combined WSVM persistently exceeded the 

individual base SVM classifiers.  

In chapter 4, two metaheuristic methods for training the weights of an FNN to predict 

the stability status of a power system using post-disturbance voltage magnitudes and 

generator rotor angles were studied. The FNN trained by the grey wolf optimization 

method can predict system stability status better than the particle swarm optimization 

method, even though the latter method converged faster. This method could predict 

transient stability of the system with good accuracy even when the network topology was 

changed. 

It is possible to use the adopted intelligent methods for real time transient stability 

assessment and control of larger systems.  However, some effort will be needed to train the 

FNN with credible contingencies under varying operating conditions. 

In chapter 5, the RQA method based on data acquisition was proposed to detect 

generator coherency in a power system. The rotor angles decomposed by wavelet 

decomposition and the RQA measures were used to capture characteristics of rotor angles, 

and then coherent groups of generators were detected by applying a clustering technique. 

A wavelet transform decomposes the nonstationary time series into different frequency 

bands to efficiently keep apart the system transient and steady-state behaviors. 

Additionally, wavelet subsampling facilitates the computation of recurrence plots from the 

time series data. Further, recurrence analysis becomes more compelling in the multiple 

wavelet scales under a stationary premise. 
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The results obtained by the RQA method were compared with results obtained by the 

PCA method. When there is noise in the measured data, the PCA method is unable to 

accurately detect the coherent group of generators. Since the RQA method investigates 

recurrence dynamics in multiple wavelet scales, and advances the performance of 

recurrence characteristics, it can determine the coherent groups of generators precisely 

even in the presence of noise.  

In chapter 6, a new data-driven method to detect low-frequency oscillations early at 

inception was proposed by considering the dimensionality reduction of PMU data.  The 

linear SFA dimensionality reduction method for the synchrophasor data was considered to 

extract slow features (SFs) features. The similarity index was applied on slowly varying 

components to specify a probable oscillation source. Two threshold values were used. The 

first threshold was applied to detect that the power system was not in steady state condition, 

and the second threshold was applied to distinguish low-frequency oscillation and steady-

state. By applying the RQA method on extracted features, oscillation detection was 

achieved. Case studies on the test system show the effectiveness of the oscillation detection 

algorithm in on-line applications.  

The bus frequency recurrence rate of change was applied to detect low-frequency 

oscillation of the power system. This method does not depend on ubiquitous network 

topology and operating conditions. 

A recurrence-derived FT method was applied to detect frequency mode of low-

frequency oscillation. This method has two advantages. First it relaxes assumptions of 

stationary and non-linearity and second it applies embedding theorem to obtain dynamics 
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of higher dimensional spaces. So, frequencies not observed in the regular FT periodogram 

were specified by this method.     

In chapter 7, a novel data-driven method based on the RQA was proposed to determine 

location of disturbance events and identify two types of disturbance events. For each bus 

the voltages, phase angles and frequencies were considered, the RQA measures were 

applied to capture the features of obtained data. For dimensionality reduction of PMU data, 

the PCA method was applied and then k-means clustering was used to identify disturbance 

events. 

The location and two types of disturbance events (faults and generator tripping) were 

determined by the proposed method. Since the method does not depend on training data, it 

can be applied on large systems. The proposed method is data-driven and does not depend 

on topology of the system. Results indicates the accuracy of the proposed method by 

applying it on the 179-bus system. 

8.2. Direction for Future Work 

Renewable Energy: 

Wind energy is growing very fast, and with penetration of these wind turbines, power 

systems will include many asynchronous machines. Therefore, dynamics and operational 

characteristics of power systems will experience alteration.  Hence, the influence of these 

technologies on the system stability needs to be considered. For future work, the impact 

that enormous wind farms may have on the stability of the power system is recommended. 

The following items are needed to be addressed: 
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1- The determination of the coherent group of generators in a power system when 

there is a large penetration of wind energy. 

2- The effect of wind power intermittency on the identification of coherent group of 

generators. 

PMU: 

The data presented in dissertation is generated by Powerworld software. Real data provided 

by filed PMUs can be applied on proposed techniques for evaluating the performance of 

the algorithms.  
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