
MULTIPHYSICS SYNTHESIS OF BLAST PHENOMENON

by

Surabhi Parab

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2024

Approved by:

Dr. Andrew Willis

Dr. James Conrad

Dr. Artur Wolek

ii

©2024
Surabhi Parab

ALL RIGHTS RESERVED

iii

ABSTRACT

SURABHI PARAB. Multiphysics Synthesis of Blast Phenomenon. (Under the
direction of DR. ANDREW WILLIS)

This thesis develops an advanced simulation framework within the Gazebo environ-

ment to enhance the realism and efficiency of modeling blast phenomena. It tackles

the challenge of synchronizing visual, acoustic, and pressure data to simulate explo-

sions accurately. By integrating a suite of technologies-including a robotic operating

system (ROS), an unmanned aircraft mission planner (QGroundControl), a vehicle

autopilot simulator (PX4 Software In The Loop - SITL), and a flight control neu-

ral network training environment (OpenAI GymFC)-the framework facilitates precise

emulation of real-time events: visual effects at the speed of light, acoustic propagation

through seismic and air mediums, and dynamic pressure variations. The implementa-

tion utilizes a client-server architecture, enabling real-time adjustments and reducing

latency, which enhances the simulation quality. The research introduces specialized

plugins to model and manage different aspects of the blast, demonstrating significant

improvement in both fidelity and operational efficiency. These enhancements make

the simulation tool a valuable asset for training and analytical applications in safety

and defense sectors, providing comprehensive insights into blast dynamics.

Keywords: Blast Simulation, Gazebo Simulation, Robot Operating System (ROS),

Acoustic Simulation, Visual Simulation, Visual Rendering, Pressure Dynamics, Com-

putational Fluid Dynamics (CFD), Physics-based

iv

ACKNOWLEDGEMENTS

My Master’s Thesis is supported by a Research Assistantship working on a project

sponsored by Corvid Technologies, a Teaching Assistantship for the class ’Analytical

Foundations of Electrical and Computer Engineering’ under Dr. Yawo Amengonu,

from the UNC Charlotte Graduate School’s Graduate Assistant Support Plan (GASP)

and the Electrical and Computer Engineering Department of William States Lee

College of Engineering at the University of North Carolina Charlotte.

I would like to begin by expressing my sincere appreciation to my advisor, Dr.

Andrew Willis, for believing in my potential, and for his invaluable expertise and

guidance throughout my MS in Electrical Engineering studies. I am grateful for

the knowledge he imparted and his assistance in the preparation of this thesis. His

insightful discussions and direction were essential to the completion of this work.

I also appreciate Dr. James Conrad, a committee member, who has supported me

since my first semester of my Master’s. His guidance has been invaluable, closely

following my progress and challenges throughout my studies. I am also thankful to

Dr. Artur Wolek, another committee member, for his constant feedback during my

thesis work.

I am deeply thankful to Dr. Jincheng Zhang and Chris Beam, my colleagues in the

’Machine Vision Laboratory’. Their support was essential in helping me adapt to the

lab’s operational methods and deeply enhanced my grasp of the involved technologies.

Additionally, I am deeply grateful to Dr. Dipankar Maity for his ongoing feedback

throughout my thesis, even though he was not on my committee.

Finally, I must acknowledge my mother, Leena Yeshwantrao, for her unwavering

support. Her commitment has enabled me to progress from undergraduate studies to

a Master’s degree and now towards a Ph.D., marking a first in our family.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 2

1.2. Structure of the Thesis 2

CHAPTER 2: RELATED WORKS 4

CHAPTER 3: METHODOLOGY 9

3.1. Overview 9

3.2. Camera Plugin 11

3.2.1. Perceptual Modeling of Blast Events 12

3.2.2. Rendering a Blast Image 12

3.2.3. Creating a Perceptual Dataset 14

3.2.4. Algorithm for the Camera Plugin 16

3.3. Microphone Plugin 16

3.3.1. Acoustic Modeling of Blasts 19

3.3.2. Audio Packetization and Streaming 24

3.3.3. Algorithm for the Microphone Plugin 27

3.4. Model Plugin 29

3.4.1. Signal Modeling of Blast Waves 29

3.4.2. Algorithm for the Model Plugin 30

vi

3.5. World Plugin 30

3.5.1. Algorithm for the World Plugin 32

CHAPTER 4: RESULTS 35

4.1. Camera Plugin 35

4.2. Microphone Plugin 36

4.2.1. Analysis of Propagation Times 38

4.3. Model Plugin 40

4.4. World Plugin 42

4.5. Experimentation 42

4.5.1. Blast Visualization and Data Plotting 42

4.5.2. Path Tracking and Error Analysis 42

CHAPTER 5: PROSPECTIVE DEVELOPMENTS 46

5.1. Detectors 47

5.1.1. Visual Events Detector 47

5.1.2. Audio Signal Detector 47

5.2. Machine Learning Optimization 49

5.3. Interdisciplinary Applications 49

CHAPTER 6: CONCLUSIONS 52

REFERENCES 54

vii

LIST OF TABLES

TABLE 4.1: Comparison of observed and calculated propagation times,
the specific case of Q=15 and R=20 meters

40

viii

LIST OF FIGURES

FIGURE 3.1: shows a flow diagram of framework used. 10

FIGURE 3.2: shows a flow diagram of the Camera plugin. 11

FIGURE 3.3: shows a blast generated using Blender 14

FIGURE 3.4: shows the Fibonacci lattice (top row) and the Fibonacci
spiral (bottom row) for various values of n

15

FIGURE 3.5: shows a flow diagram of the Microphone plugin 16

FIGURE 3.6: shows sound propagation after a blast 21

FIGURE 3.7: shows a recorded audio signal post packetization 22

FIGURE 3.8: shows a recorded audio signal post packetization, where a
0.6 second delay is introduced to the air signal

22

FIGURE 3.9: demonstrates the three steps of transmitting the back-
ground audio signal through packetization

25

FIGURE 3.10: shows the two cases of receiving the blast signal on top of
the background loop audio signal

26

FIGURE 4.1: shows the RGB mode of the Camera Plugin 35

FIGURE 4.2: shows the Event mode of the Camera Plugin 36

FIGURE 4.3: shows a plot of the output audio signal. 37

FIGURE 4.4: shows a zoomed in plot of the low frequency seismic output
signal, followed immediately by the air propagated signal.

38

FIGURE 4.5: shows the trajectory followed by the UAV 40

FIGURE 4.6: shows the trajectory followed by the UAV 41

FIGURE 4.7: shows a screen capture of the results generated while per-
forming the Blast Visualization and Data Plotting experiment

43

FIGURE 4.8: shows a screen capture of the results generated while per-
forming the Path Tracking and Error Analysis experiment

44

ix

LIST OF ABBREVIATIONS

API An acronym for Application Programming Interface

CFD An acronym for Computational Fluid Dynamics

GANs An acronym for Generative Adversarial Networks

ROS An acronym for Robot Operating System

SDF An acronym for Simulation Description Format

SITL An acronym for Software In The Loop

TNT An acronym for Trinitrotoluene

UAV An acronym for Unmanned Aerial Vehicle

CHAPTER 1: INTRODUCTION

Simulating the intricate dynamics of a blast phenomenon in real time presents

formidable computational challenges. Fast time simulation is a computational tech-

nique that accelerates the simulation of system dynamics or processes, enabling rapid

analysis and decision-making beyond real-time constraints. This research leverages a

fast time simulation to a certain extent. A perceptual dataset is specifically designed

to synchronize the playback of visual data for a blast. Images are played back at

the moment they would be perceived, mimicking the speed of light and capturing

the visual essence of the blast. Concurrently, acoustic signals are played back in two

stages: first, at the time when pressure waves would travel through the ground at a

accelerated rate due to seismic P waves, and subsequently, at the moment they would

be heard traveling through the air at the speed of sound. This approach facilitates

a more realistic and computationally efficient simulation of blast events, adhering

to the underlying physical phenomena they represent. Notably, there is currently

no open-source software available to simulate blasts, explosions, and the perceptual,

seismic, acoustic and wind/pressure environmental phenomena they generate.

To streamline the execution of simulation-based experiments, our simulation solu-

tion integrates four technologies: (1) Gazebo and enhancements [1], [2], (2) the Robot

Operating System (ROS) [3], (3) QGroundControl [4] and (4) PX4 Software In The

Loop (SITL) firmware [5]. It can be time consuming to issue commands separately to

get all applications running and to execute a mission. A script was written that au-

tomatically runs a complete flight mission which saves time by not requiring manual

intervention to arm, initiate calibration, issue takeoff commands, execute the mission,

and send landing commands to the vehicle. Furthermore, this ROS setup is replaced

2

with a new OpenAI GymFC framework [6] [7] [8].

1.1 Problem Statement

In the field of defense simulations, accurately predicting and visualizing the impact

of blast phenomena poses significant computational challenges. Many existing models

struggle to effectively synchronize visual and acoustic data with the dynamics of real-

time physical phenomena, which can render the simulations less realistic and limit

their practical application. This research addresses these gaps by developing an inte-

grated simulation framework in Gazebo that enhances the realism and computational

efficiency of blast event simulations, even when not processed in real-time. Specifi-

cally, the project focuses on leveraging advanced computational models to index and

playback pre-staged visual and acoustic data at moments that mimic real-time events.

This method ensures more accurate synchronization of sensory data with the physical

dynamics of blasts, improving the quality and utility of the simulations for training

and analysis purposes.

1.2 Structure of the Thesis

The structure of this thesis is organized into six chapters, each addressing distinct

aspects of the simulation of blast phenomena. Below is an overview of each chapter,

outlining the main focus and contributions of the research presented in this thesis.

Chapter 1 introduces the challenges of simulating blast phenomena with high

realism and computational efficiency. It outlines the research objectives, emphasizing

the need for improved synchronization of visual, acoustic, and pressure data within

simulations. The chapter provides an overview of the thesis structure, setting the

stage for detailed discussions in subsequent chapters.

Chapter 2 reviews existing literature related to blast simulation, identifying gaps

in visual and acoustic simulation technologies and dynamic physical modeling. It

contextualizes the current research within the broader field, highlighting how this

3

work builds upon and enhances existing methodologies.

Chapter 3 is the Methodology chapter which is the core of the thesis, where

the development and integration of the simulation framework are comprehensively

described. It is divided into subsections that detail the design, implementation, and

function of each plugin developed for the Gazebo simulator:

Camera Plugin: Explains how visual simulations of explosions are captured and syn-

chronized. Microphone Plugin: Details the methods for simulating and synchronizing

blast-related acoustic signals. Model Plugin: Describes the simulation of pressure and

environmental impacts from blasts. World Plugin: Discusses the integration of all

simulations to produce a cohesive and dynamic output.

This chapter not only elaborates on the technical aspects but also explains the

rationale behind various design choices, underscoring their relevance to the research

goals.

Chapter 4, the Results chapter, evaluates the simulation framework, presenting

results from various test scenarios to demonstrate improvements in accuracy and

efficiency. It assesses the performance of individual plugins and the integrated system,

providing evidence to support the research hypothesis.

Chapter 5 discusses future enhancements and broader applications of the simula-

tion framework. It suggests potential for advanced detection algorithms, integration

of machine learning, and application extensions to other interdisciplinary fields, em-

phasizing the framework’s adaptability and scalability.

Chapter 6 consolidates the key findings and contributions of the thesis. It briefly

highlights the potential applications and future research directions to further improve

and expand the simulation framework.

CHAPTER 2: RELATED WORKS

Contributions to multiphysics simulations include studies on interactive environ-

ments for household tasks by Fu et al. [9], accidental fire and explosion simulations

by Henderson et al. [10], fluid dynamics courses by Bridson and Müller-Fischer [11],

large scale smoke phenomena by Rasmussen et al. [12], and liquid splash modeling

using neural networks by Um et al. [13].

Preliminary reviews that offered insights into the development of the acoustic mod-

els for this research included innovative approaches to earthquake detection using deep

learning with fiber-optic distributed acoustic sensing by Hernandez et al. [14], ad-

vancements in earthquake detection at geothermal fields through distributed acoustic

sensing and template matching by Li and Zhan [15], and the novel detection of earth-

quakes from balloons utilizing their acoustic signatures by Brissaud et al. [16]. These

studies, while not directly aligned with the core objectives of this thesis, provided

valuable contextual understanding and contributed to the foundational knowledge

base.

The paper "Explosion Simulation Using Compressible Fluids" [17] is closely related

to my work, as it explores the physical-based simulation of explosions, an approach

that mirrors the methodologies employed in my research to simulate blast phenomena

in Gazebo. By exploring the use of compressible Navier-Stokes equations for simulat-

ing the dynamics of explosions, this paper provides valuable insights into accurately

modeling the complex interactions of gases and pressure waves during a blast. These

methods can improve the accuracy and realism of my blast models, especially when it

comes to modeling how explosions affect the surrounding area. This is in line with the

goal of my project, which is to include true physical events into virtual simulations.

5

Karl Sims’ seminal work on "Particle Animation and Rendering Using Data Par-

allel Computation" (1990) [18] offers critical methodologies that can be adapted for

enhancing blast simulations within the Gazebo framework used in our project. Sims

demonstrates the use of data parallel supercomputers to animate and render particle

systems, covering a spectrum from kinematic motions to physically based simulations.

This approach is particularly relevant for our simulation of dynamic blast phenomena,

where rendering complex particle interactions such as debris and smoke with high fi-

delity is crucial. Additionally, Sims’ implementation of advanced rendering features,

including antialiasing and motion blur, can significantly improve the visual realism

of our simulations. These techniques ensure not only enhanced visual accuracy but

also improved computational efficiency, making them invaluable for real-time appli-

cations in safety and defense training simulations. Incorporating these data parallel

computation strategies aligns with our objectives to achieve more realistic and com-

putationally efficient simulations, highlighting the ongoing evolution of simulation

technology in response to complex real-world phenomena.

The research presented by Martins, Buchanan, and Amanatides in "Visually Be-

lievable Explosions in Real Time" [19] primarily focuses on the graphical rendering

of explosions to achieve real-time visual believability for interactive applications like

video games. In contrast, my project extends beyond visual effects to include acous-

tic modeling, aiming for a comprehensive simulation of blast phenomena in Gazebo

that integrates both visual and acoustic data. While Martins et al. optimize for

immediate visual feedback and interaction, emphasizing speed and visual appeal, my

work prioritizes physical accuracy and detailed simulation of sound and shock wave

propagation. This approach not only enhances realism but also provides a more sci-

entifically robust tool for applications in safety training and analysis, where accurate

replication of physical phenomena is crucial. Thus, although both projects deal with

the simulation of explosions, mine focuses on a more detailed and accurate repre-

6

sentation, particularly suited for educational and analytical purposes in safety and

defense sectors.

The paper "Physics Based Real-Time Explosion Simulation" (2012) [20] offers in-

sights into real-time physics-based simulation techniques, which contrast with the

methodologies used in this thesis. While the paper focuses on real-time dynamics

for digital home applications, this research develops a high-fidelity simulation frame-

work in Gazebo that is not processed in real-time but instead uses pre-staged data

for visual and acoustic synchronization. This approach allows for detailed, accurate

simulations ideal for analysis and training within safety and defense sectors, without

the computational overhead demanded by real-time processing.

The study detailed in "Animating Explosions" by Yngve et al. (2000) [21] presents

a computational fluid dynamics approach primarily aimed at generating visually com-

pelling explosion effects for the entertainment industry. While Yngve et al. emphasize

the visual aspects of explosions, utilizing computational models to simulate shock

wave propagation and interactions with objects, their approach lacks the integration

of acoustic effects and the precise synchronization of visual, acoustic, and pressure

data that are critical to this research. The methodology developed in this thesis not

only seeks to achieve visual realism but also extends to practical training applica-

tions by incorporating a multidimensional data integration framework that enhances

both the fidelity and utility of simulations for educational and analytical purposes in

safety-critical settings. This distinction underscores the broader applicative potential

of the simulation framework developed herein, contrasting with the aesthetic focus of

the referenced work.

The paper "Animating Suspended Particle Explosions" by Feldman, O’Brien, and

Arikan [22] introduces a novel method for animating explosions, focusing on visible

effects like fire and smoke rather than the blast wave itself. Utilizing an incompress-

ible fluid model, it adjusts fluid divergence to simulate the expansion of combustion

7

gases and movement of particulate matter. This approach is significant to this thesis

as it offers a complementary perspective on explosion simulations by emphasizing

secondary visible effects, enhancing the scope and realism of explosion modeling in

computer graphics.

The paper "Fluid Animation with Dynamic Meshes" by Klingner et al. [23] presents

a method for fluid simulation that uses dynamically changing unstructured tetrahedral

meshes. This approach adapts the mesh to fluid boundaries and areas of high interest,

which parallels this thesis’s focus on high-fidelity blast phenomena simulations.

The research in the paper, "A Vortex Particle Method for Smoke, Water and Ex-

plosions" [24], uses a hybrid method combining vortex particle and grid-based tech-

niques, similar to my integration of multiple simulation plugins. However, this paper

primarily enhances visual realism, while the thesis research also integrates acoustic

and pressure data for a comprehensive simulation approach.

The paper "Visual Simulation of Smoke" by Ronald Fedkiw, Jos Stam, and Henrik

Wann Jensen [25] proposes an innovative method for simulating smoke in computer

graphics, utilizing the inviscid Euler equations and a novel vorticity confinement ap-

proach. Their technique efficiently handles smoke’s interactions with dynamic objects

and enhances realism on coarse computational grids, making it suitable for real-time

graphics applications. This research is relevant to my thesis in the context of opti-

mizing fluid simulations for enhanced visual and computational efficiency. Another

similar study is mentioned in [26].

The paper "Blast wave kinematics: theory, experiments, and applications" [27]

offers a comprehensive analysis of the propagation dynamics of blast waves from var-

ious types of explosions. The authors develop a theoretical framework that extends

the standard strong-shock solutions to describe the decay of blast waves into acoustic

waves. This is accomplished by introducing dimensionless coordinates that facilitate

the direct comparison and visualization of data from different explosions. Through

8

experiments and theoretical modeling, the paper outlines the derivation of general

expressions for the Mach number of the shock front, providing essential insights for

applications in blast engineering and explosion analysis. These methodologies en-

hance understanding of the critical parameters that govern the behavior of blast

waves, contributing significantly to the fields of safety, military, and engineering.

CHAPTER 3: METHODOLOGY

3.1 Overview

This research utilizes an integrated simulation framework integrating both tradi-

tional and innovative technologies to enhance the analysis of blast phenomena. The

core framework comprises four primary technologies: Gazebo with specific enhance-

ments, the Robot Operating System (ROS), QGroundControl, and PX4 Software In

The Loop (SITL) firmware. Automation scripts facilitate seamless execution of full

flight missions, reducing manual interventions and improving operational efficiency.

Gazebo allows users to choose between four different physics engines: (1) the

Open Dynamics Engine (ODE) [28], (2) Bullet [29], (3) the Dynamic Animation

and Robotics Toolkit (DART) [30], from Georgia Tech, and (4) Simbody [31], from

Stanford University. Configuration of the engine including the maximum allowable

time step for integrating the environmental dynamics is provided in a Gazebo world

file.

Transitioning from the conventional ROS framework to the OpenAI GymFC frame-

work offers improved control and configurability within the simulation environment.

The GymFC framework is a critical enabling technology for RL and control tasks as

it provides a very high speed interface directly to the simulator physics engine. This

allows rapid experimentation for control algorithm development but is an absolute

requirement for satisfying the episode data generation needs of Reinforcement Learn-

ing control algorithm training. A study of different frameworks has been discussed in

the paper: [32].

The methodology is structured around four specialized plugins:

10

Figure 3.1: shows a flow diagram of the simulation framework

1. Camera Plugin: This plugin ensures accurate capture of the visual aspects of

the blast, synchronizing visual data with real-time phenomena.

2. Microphone Plugin: It processes the acoustic signals from the blast, aligning

auditory outputs with corresponding visual simulations.

3. Model Plugin: This component models the environmental impacts, specifi-

cally simulating the dynamics of pressure and forces within the wind caused by the

explosion.

4. World Plugin: Serving as the integration hub, this plugin consolidates inputs

from other plugins, ensuring cohesive and comprehensive simulation outputs.

Employing a client-server architecture, the world plugin functions as the server,

with the other plugins acting as clients. This setup allows for the pre-staging of

blast data by communicating blast events to clients well before the actual simu-

lation time. This approach facilitates the playback of impulse response data at a

simulation-configured rate of 50-100 Hz, crucial for managing local storage within the

simulator for force generation and sensor telemetry generation plugins. This strat-

egy significantly reduces latency in communication within the Gazebo simulation for

11

short-duration events.

By integrating these plugins and utilizing a client-server architecture, the blast

simulation project achieves a high level of realism and accuracy, enhancing our ability

to understand and investigate blast phenomena thoroughly.

3.2 Camera Plugin

Figure 3.2: shows a flow diagram of the Camera plugin.

The camera plugin, a crucial component of the blast simulation project, is designed

to capture and process the visual aspects of blast events. Implemented as a Gazebo

sensor plugin, it interfaces with the simulation environment to provide realistic and

synchronized visual data. Upon initialization, the plugin configures its parameters,

such as image width, height, depth, and format, based on the specifications of the

attached camera sensor. It utilizes the Gazebo API to access camera properties and

subscribe to image frames. The plugin employs computer vision techniques, leveraging

OpenCV for image processing tasks. It calculates the differences between consecutive

frames to detect and highlight significant changes, simulating the dynamic visual im-

pact of a blast. This is done with the help of an event camera [33] [34]. Furthermore,

the plugin supports the integration of blast-specific visual effects. It can read and

process a sequence of pre-generated images representing different stages of a blast,

blending them with the real-time simulation to enhance realism. This feature al-

lows for the depiction of complex blast phenomena, such as fire and post-blast smoke

12

clouds, which are challenging to simulate in real-time. To facilitate data exchange and

integration with other components of the simulation, the plugin publishes processed

image frames and associated event data to designated topics within the Gazebo trans-

port system. This ensures seamless communication and synchronization with other

plugins, such as the microphone and model plugins, enabling a comprehensive and

coherent simulation of blast events. In summary, the camera plugin plays a pivotal

role in the blast simulation project by providing a dynamic visual representation of

blast events. Its capabilities extend beyond simple image capture, incorporating ad-

vanced image processing and integration techniques to simulate the complex visual

effects associated with blasts.

3.2.1 Perceptual Modeling of Blast Events

A model was developed to generate perceptual blast data within the Gazebo envi-

ronment. This developed model is integrated as a component to the blast simulation

Gazebo plugin.

3.2.2 Rendering a Blast Image

This study employs advanced perceptual simulation techniques to accurately depict

blast phenomena. The simulation uses state-of-the-art open-source computer graphics

rendering methods with Computational Fluid Dynamics (CFD) solvers to achieve

realistic visualizations of explosions.

The core of our simulation framework utilizes the Mantaflow CFD solver, integrated

within the Blender computer graphics software to simulate explosions and capture

images from these simulations, which forms the basis for creating a comprehensive

3D blast image dataset.

Mantaflow, an open-source framework initiated in 2009 at the ETH Zürich Com-

13

puter Graphics Laboratory and currently maintained by the Thuerey group at the

Technical University of Munich (TUM), is utilized for its fluid simulation capabilities.

It features a parallelized C++ solver core and a Python scene definition interface, en-

abling rapid prototyping of complex fluid dynamics scenarios. Mantaflow supports

a range of Navier-Stokes solver variants and has been enhanced in recent research,

including a 2018 study utilizing Generative Adversarial Networks (GANs) to accel-

erate CFD simulations [35]. The latest version of Blender (v4.1), incorporating the

Mantaflow component, was compiled into a Python module to facilitate automated,

script-driven simulation of explosions.

In the simulated environment, explosions are visualized using a nominal camera

model, capturing images from all possible camera angles. This method ensures the

creation of a detailed 3D blast image dataset. The captured images are indexed based

on the sensor camera’s intrinsic parameters and the relative pose between the blast

and sensor. These images are then scaled according to the sensor’s range, bearing,

and camera parameters, which ensures that the simulation accurately represents the

observed phenomena from various perspectives.

To optimize the simulation process, a Python script was developed to automate the

generation of explosion scenarios. This script leverages the integrated capabilities of

Mantaflow for simulating the fluid dynamics of explosions and Blender for rendering

image sequences from multiple views of the explosion. The automation significantly

enhances the efficiency of generating diverse and realistic visual representations of

blast events, facilitating more comprehensive research and analysis.

14

Figure 3.3: shows a blast generated using Blender

Figure 3.3 shows an example of one view of a script-generated explosion with the

viewing camera frustum shown (in orange) at the bottom right corner. Blast images

are generated having transparent backgrounds to allow the image data to be seam-

lessly inserted into observed images of the Gazebo environment using conventional

cameras and event camera sensors [33]. Image sequences were taken at discrete lo-

cations on the upper hemisphere at a fixed range that allows the explosion image

to entirely fall within the camera frame. During simulation, frames will be selected

from the dataset using the sphere-vehicle relative geometry. The projection of the

vehicle onto the unit sphere centered on the explosion will determine the spherical

(θ, φ) coordinate from which to extract the image. The vehicle range and camera

sensor orientation will determine the scale and projection location of the explosion

into the image sensor. Sensor locations where the explosion has a non-zero value will

be merged or occluded by the computed explosion pixel data.

3.2.3 Creating a Perceptual Dataset

A blast image dataset was generated by creating a script that uses Blender Python

packages. This script leverages Blender, a 3D computer graphics software tool, to

15

produce images of a blast from multiple camera viewpoints. A simplistic blast scene

was developed using the Blender tool, featuring a blast captured from a single front-

view camera [36]. The blast is designed with a transparent background, allowing it

to be seamlessly superimposed onto various environments, such as Gazebo worlds.

Figure 3.4: shows the Fibonacci lattice (top row) and the Fibonacci spiral (bottom
row) for various values of n

Figure 3.4 shows the viewpoint sampling strategy adopted to uniformly sample

explosion image sequences across the surface of the upper hemisphere. Conventional

spherical coordinates yield highly asymmetric surface density samplings which would

incur more error at elevations close to the equator and less at other elevations. To

address anisotropic behavior due to sampling, a Fibonacci sphere sampling pattern is

adopted which approximately solves the problem of computing an equidistant sam-

pling across a spherical surface. The Fibonacci sphere sampling strategy combines

number theory associated with the Fibonacci sequence and its extension to higher

dimensions, referred to as the Fibonacci lattice. The Fibonacci lattice sampling ap-

proach is then merged with the numerical pattern given by the Golden Spiral, a

logarithmic spiral that grows by a factor of the golden ratio for every quarter turn

16

it makes, to generate the canonical implementation of the Fibonacci sphere sampling

pattern. Recent refinements for this approach have been incorporated that offset the

points slightly away from the poles resulting in improvement in the sampling config-

uration by up to 8% in terms of packing distance, as demonstrated by Hardin et al.

[37] and discussed in other works[38]

3.2.4 Algorithm for the Camera Plugin

As shown in Algorithm 1, the GazeboBlast3DCameraPlugin is designed to inte-

grate with a camera sensor within the Gazebo simulation environment to process

and respond to simulated blast effects visually. Upon loading, the plugin initializes

and configures itself based on parameters specified in the SDF (Simulation Descrip-

tion Format). It then connects to the camera, retrieves frame dimensions, and sets

up necessary publishers and subscribers for communication. During each simulation

update, the plugin checks for new frames from the camera. If a blast event is ac-

tive, it blends blast images into the current camera frame to simulate visual effects

of explosions, such as changes in visibility or direct impact visualization. The algo-

rithm effectively handles the reception of new frames, processes them by potentially

overlaying blast effects, and then outputs the modified frames for further use in the

simulation or for visualization purposes.

3.3 Microphone Plugin

Figure 3.5: shows a flow diagram of the Microphone plugin

17

Algorithm 1 Load and operate the GazeboBlast3DCameraPlugin
1: procedure Load(sensor, sdf)
2: if sensor is NULL then
3: print “Invalid sensor pointer.”
4: return
5: end if
6: Initialize sensor and world references
7: Read parameters from sdf
8: Setup camera properties: width, height, depth
9: Configure topic subscriptions and publications

10: Load and configure blast images if applicable
11: end procedure

12: procedure OnUpdate
13: Get current time
14: if interval elapsed then
15: Capture image from camera
16: Process and send image based on mode
17: end if
18: end procedure

19: procedure OnNewFrameCamera(image)
20: Convert image to appropriate format
21: if explosion triggered then
22: Blend explosion imagery into current frame
23: end if
24: Publish modified image
25: end procedure

26: procedure BlendEventOutput(roll)
27: Perform event-driven image blending
28: Update event list based on image differences
29: Publish event messages
30: end procedure

31: procedure PublishRGBMessage(image)
32: Format and publish RGB image data
33: end procedure

18

The microphone plugin is designed to capture and process the acoustic signals as-

sociated with the blast scenario. As a Gazebo model plugin, it is responsible for

simulating the auditory experience of a blast, including the initial explosion sound

and subsequent environmental effects. This plugin simulates the propagation of sound

waves from the blast source to the microphone sensor. It considers both the direct air

path and the seismic path, accounting for the differences in propagation speed and at-

tenuation. The plugin uses a simple model to calculate the time delays and amplitude

reductions for the sound reaching the microphone through these paths. To enhance

realism, the microphone plugin uses pre-recorded audio files for the background en-

vironment and the explosion sound. These audio files are loaded at the start of the

simulation and played back as needed. The background audio is continuously looped

to provide a consistent ambient sound, while the explosion audio is triggered by spe-

cific events in the simulation, such as the detection of an explosion. Furthermore,

the plugin also includes low-pass filtering for the seismic component of the explosion

sound, simulating the effect of the ground absorbing higher frequencies. This filtered

seismic audio is then combined with the direct air blast sound to create a compos-

ite audio signal that is published to a designated topic within the Gazebo transport

system. In summary, the microphone plugin provides a realistic auditory simulation

of blast events, complementing the visual simulation provided by the camera plugin.

It captures the complex acoustic phenomena associated with explosions, including

the direct blast sound, ground-transmitted vibrations, and ambient environmental

noise. This comprehensive auditory simulation enhances the overall realism of the

blast simulation project and aids in the analysis and understanding of blast effects.

In the development of the microphone plugin for the blast simulation project, an

effective approach to audio streaming is employed, mirroring the continuous yet dis-

crete nature of the universe’s ambient sound. This method involves the segmentation

of audio data into small, manageable packets, which are then transmitted sequentially

19

to simulate a continuous audio stream. The determination of an optimal packet size

is critical for efficient data transmission and processing, to accommodate the dynamic

nature of the simulation environment. The plugin is designed to operate at an update

rate of 100 Hz, with an audio sample rate of 200 Hz, ensuring that at least two samples

are included in each packet. This configuration provides a simulation experience that

closely mimics real-world audio streaming services, which utilize buffers at both ends

of the transmission to manage latency and ensure smooth playback. In the context

of the blast simulation, the use of a buffer system is instrumental in detecting and

compensating for latency, thereby maintaining the temporal integrity of the audio

stream and enhancing the overall realism of the simulation.

3.3.1 Acoustic Modeling of Blasts

The audio data model consists of two acoustic energy sources: (1) ambient acous-

tics and (2) blast acoustics. Ambient acoustics sources persist across all time and

are intended to mimic the acoustic signals generated within the given simulation

environment in the absence of a blast.

3.3.1.1 Ambient Acoustic Model

In the design of the microphone plugin for this project, consideration is given to the

natural attenuation of background ambient sound with respect to height or altitude,

specifically to support the development of low-latency acoustic blast detection algo-

rithms. This phenomenon is modeled using a circular buffer that dynamically adjusts

the intensity of the background noise relative to the ground plane. As a result, the

simulated auditory experience accurately reflects real-world behavior, where ambient

sound becomes less pronounced as a UAV ascends, and conversely, more pronounced

as it descends closer to the ground. This approach not only ensures a realistic rep-

resentation of the acoustic environment but also enhances the overall immersion and

accuracy of the simulation, crucial for effective blast detection in varied operational

20

scenarios.

3.3.1.2 Blast Acoustic Model

Blast acoustics seek to capture multi-modal acoustic realizations of blasts in the

environment. As shown in figure 3.6, acoustic energy resulting from blasts propagate

to scene objects using two models: (1) free space propagation and (1) seismic/free-

space propagation. In free space propagation, the sound waves travel through the

air, while in seismic space propagation, the sound waves travel through solid medi-

ums such as the ground. Due to the higher speed of sound in solids, seismic space

propagation allows the sound waves to travel faster through the soil compared to

free space propagation. This dual-mode propagation model ensures a comprehensive

simulation of the acoustic signature of a blast, capturing both the aerial and through-

ground transmitted components which offer low-latency opportunities for detection

for downstream blast control algorithms.

In the blast acoustic model, the attenuation of the acoustic signal is governed by

Stokes’ law [39] (see Eqn. 3.1), which defines the rate of sound attenuation [40],

α, based on the dynamic viscosity (η), density (ρ) of the medium, the speed of

sound (V), and the angular frequency of the wave (ω). In Eqn. 3.2, the signal’s

amplitude at a specific observation point in space, A(ps), is determined using an

exponential decay function, where the initial amplitude (A0) decreases as the sound

travels through the medium. The decay is influenced by the distance between the

source (pb), where the blast originates, and the observation point (ps), where the

amplitude is measured. This distance, denoted as ‖ps − pb‖, crucially impacts how

much the amplitude diminishes, encapsulating the attenuation effects over spatial

extents. This comprehensive model ensures the accurate simulation of acoustic energy

from blasts, capturing how waves propagate through both air and solid mediums.

The model thus offers reliable low-latency detection opportunities for downstream

algorithms, facilitating enhanced responsiveness in acoustic sensing applications.

21

α =
2ηω2

3ρV 3
(3.1)

A(ps) = A0e
−α||ps−pb|| (3.2)

Figure 3.6: shows sound propagation after a blast

Figure 3.6 illustrates the dual-pathway propagation of sound from the epicenter

of a ground-level blast to the sensors aboard on a drone. The diagram presents two

distinct trajectories for the acoustic energy emanating from the blast. The hypotenuse(√
x2 + h2

)
represents the direct path through which sound waves travel through

the air (free space propagation), moving diagonally from the blast location to the

drone. This airborne route reflects the typical propagation of sound through free

space, where the waves spread out spherically from the source, gradually attenuating

with distance and experiencing minimal dispersion in the absence of obstructions.

In parallel, a second pathway is characterized by seismic propagation, where sound

energy initially travels horizontally (ground propagation), represented as x, through

the soil - a medium through which sound travels faster due to its higher density

compared to air. Upon reaching the vertical alignment with the drone, the seismic

waves transition to the vertical free space propagation, represented as h, ascending

through the air column to reach the drone’s sensors. This ground-to-air route is

significant as it captures the transmission of vibrations from solid ground to the

22

drone, providing a unique acoustic signature compared to the direct air path.

Figure 3.7: shows a recorded audio signal post packetization

Figure 3.8: shows a recorded audio signal post packetization, where a 0.6 second
delay is introduced to the air signal to clearly distinguish it from the seismic signal,
for debugging

The arrival times of shock wave propagation in the air and seismic surface waves

were estimated using the empirical models proposed in Wu and Hao (2005) [41].

For explosions on rock surfaces, the models are scaled based on the TNT equivalent

23

charge weight (Q in kilograms) and the distance (R in meters) from the blast center,

employing dimensionless scaling to standardize results across varying conditions. The

seismic wave arrival time at a ground surface point is given by Eqn. 3.3.

ts =
0.91R1.03Q−0.02

cs
(3.3)

where cs is the P-wave velocity of the granite mass. The average P-wave velocity of

an intact rock core is around 6000 m/s and the average in-situ P-wave is around 5660

m/s.

The arrival time of the shock wave propagation in the air is expressed in Eqn. 3.4.

ta =
0.34R1.4Q−0.2

ca
(3.4)

where ca is 340 m/s, the sound speed in dry air at 20 ◦C. This formula incorporates

the effects of both the explosive charge size and the propagation distance on the shock

wave’s travel time through air.

Free Space Propagation In this mode, the sound waves from the explosion

propagate through the air, encountering attenuation and dispersion effects that are

dependent on the distance from the source and atmospheric conditions.

Seismic Space Propagation This mode simulates sound transmission through

the ground [42]. Seismic waves, due to the denser medium of the earth, travel signifi-

cantly faster than air-propagated waves and interact differently with the environment.

The simulation models how seismic waves interact with the surface and couple with

air-propagated sound waves, providing a comprehensive depiction of how blasts are

heard and felt.

The model acknowledges the differing propagation speeds and attenuation charac-

teristics of these pathways, contributing to the temporal and intensity profiles of the

24

sound as detected by the drone. This dual-pathway approach to acoustic simulation

enables a more nuanced understanding of the blast phenomenon’s auditory footprint,

integral for applications in surveillance, damage assessment, and drone navigation in

complex acoustic environments.

3.3.2 Audio Packetization and Streaming

The microphone plugin employs an audio packetization and streaming approach,

ensuring a seamless auditory experience within the simulation. This process involves

dividing the continuous audio data into discrete packets, which are then transmitted

sequentially to simulate a persistent audio stream.

3.3.2.1 Background Ambient Audio Looping:

The ambient background audio, typically of a finite duration, is looped multiple

times to extend its playback for the entirety of the simulation. For example, a 10-

second background audio looped three times results in a continuous 30-second audio

stream.

25

3.3.2.2 Transmitting Scenario

Figure 3.9: demonstrates the three steps of transmitting the background audio signal
through packetization

Figure 3.9 illustrates the transmission of the background audio data in the micro-

phone plugin, which is managed through a systematic packetization process, and can

be delineated into the following three distinct steps:

Step 1: Packet Size Determination

The initial step involves determining the optimal size of the audio packet to be

transmitted. This size is crucial for ensuring efficient data transmission while main-

taining audio continuity. For instance, if the packet size is set to 30% of the first loop

of the background audio, this fraction of audio data is prepared for transmission.

Step 2: Packet Transmission

Subsequently, the determined packet of background audio is transmitted. Concur-

rently, an equivalent portion of audio data, corresponding to the packet size, is clipped

from the beginning of the original background audio loop. This process ensures that

the transmitted audio packet is seamlessly integrated into the ongoing simulation.

26

Step 3: Packet Appending

The clipped audio packet is then appended to the end of the background audio

loop. This action effectively recycles the transmitted audio data, maintaining the

continuity of the background audio stream.

Conditional Appending

To prevent excessive elongation of the audio signal, a conditional check is imple-

mented. The appending of packets is allowed only if the total size of the signal remains

below a predefined threshold, typically three times the length of the original back-

ground audio loop. This condition ensures that the audio stream remains manageable

and aligns with the temporal dynamics of the simulation.

Blast Audio Integration: The blast audio, representing the sudden explosion

sound, is integrated into the background audio stream at specific time intervals, de-

pending on the simulated blast event. The integration point, termed as end_index,

marks the junction where the blast audio is appended to the background stream.

3.3.2.3 Receiving Scenario

Figure 3.10: shows the two cases of receiving the blast signal on top of the background
loop audio signal

27

Figure 3.10 illustrates the two cases at the receiving end of the output signal i.e.

the background audio loop integrated with the bomb audio signal.

Case 1: If the blast occurs within the first loop of the background audio, the audio

stream remains unchanged, maintaining the original sequence.

Case 2: If the blast occurs after the completion of the final loop of the background

audio, the audio stream is extended to accommodate the blast sound. The new audio

stream length becomes equivalent to ’end_index + duration of the background audio

loop’.

The microphone plugin’s packetization and streaming mechanism mirrors real-

world audio streaming services, utilizing buffers to manage latency and ensure unin-

terrupted playback. This approach is crucial in the blast simulation for preserving

the audio stream’s temporal integrity, thereby enhancing realism and immersion. By

dynamically managing the audio signal size and adapting to evolving requirements,

the plugin significantly contributes to the fidelity and engagement of the simulated

auditory environment.

3.3.3 Algorithm for the Microphone Plugin

As shown in Algorithm 2, the GazeboBlast3DMicrophonePlugin simulates the

acoustic effects of blasts within a Gazebo simulation by processing and broadcast-

ing audio signals corresponding to simulated explosions. Initially, the plugin loads

and sets parameters from the SDF file, establishes necessary communication channels,

and prepares audio files for background and blast noises. During each simulation tick,

it checks if the conditions for publishing new audio data are met based on a prede-

fined interval. If so, it processes the stored audio data, applies necessary filters (like

averaging filters for seismic audio), and simulates the audio effect of a blast based on

its distance and characteristics. This processed audio is then sent over the network,

mimicking the real-time acoustic impact of blasts in a simulated environment.

28

Algorithm 2 Load and operate the GazeboBlast3DMicrophonePlugin
1: procedure Load(model, sdf)
2: if model is NULL then
3: print “Invalid model pointer.”
4: return
5: end if
6: Initialize model, world, and link references
7: Read parameters from sdf
8: Set namespace, link names, and register topics
9: Load audio files and configure audio parameters

10: Apply audio filters to simulate environmental effects
11: Calculate audio physics properties based on environment
12: Setup node and subscriptions for audio topics
13: Register update event connection
14: end procedure

15: procedure OnUpdate
16: Capture current simulation time
17: if publish interval elapsed then
18: Prepare and send audio packet
19: Replenish buffer with audio data if necessary
20: end if
21: end procedure

22: procedure PublishAudioMessage(sampleData)
23: Format audio data for transmission
24: Set metadata (timestamp, frame id, etc.)
25: Send audio data over network
26: end procedure

27: procedure Blast3DCallback(blast3d_msg)
28: Extract blast information from message
29: Compute audio attenuation and propagation delay
30: Insert blast audio into buffer based on computed timing
31: Adjust audio data based on environmental physics
32: end procedure

33: function averageFilterWithCutoff(signal, cutoffFreq, samplingFreq)
34: Calculate window size based on cutoff frequency
35: Apply average filter across the signal window
36: Return the filtered signal
37: end function

29

3.4 Model Plugin

The model plugin is a key component of the blast simulation project, responsible

for simulating the pressure and wind effects generated by a blast within the Gazebo

environment. As a Gazebo model plugin, it interacts with the simulation environment

to provide a realistic representation of the environmental impact of a blast scenario.

The model plugin is responsible for simulating the dynamic effects of the blast, such

as changes in pressure and wind velocity, and updating the simulation environment

accordingly. Additionally, the plugin offers flexibility in simulating different types

of blasts by utilizing both pre-defined and custom blast data. It is equipped to

read detailed and specific blast profiles from CSV files, enabling the simulation of a

wide range of blast scenarios and enhancing the versatility of the blast simulation

project. In conclusion, the model plugin is crucial for simulating blast events in

Gazebo, offering versatility with pre-defined and custom data and ensuring realistic

environmental effects through integration with the Gazebo transport system.

3.4.1 Signal Modeling of Blast Waves

A description of a nominal blast pressure wave model is as follows:

The simplest form of a blast wave model has been described and termed

the Friedlander waveform. It occurs when a high explosive detonates in

a free field, that is, with no surfaces nearby with which it can interact.

Blast waves have properties predicted by the physics of waves. For exam-

ple, they can diffract through a narrow opening, and refract as they pass

through materials. Like light or sound waves, when a blast wave reaches

a boundary between two materials, part of it is transmitted, part of it is

absorbed, and part of it is reflected. The impedances of the two materi-

als determine how much of each occurs. The equation for a Friedlander

waveform (Eqn. 3.5) describes the pressure of the blast wave as a function

30

of time:

P (t) = Pse
− t

t∗

(
1− t

t∗

)
(3.5)

where Ps is the peak pressure and t∗ is the time at which the pressure

first crosses the horizontal axis (before the negative phase). – Blast Wave,

Wikipedia [43]

3.4.1.1 Signal propagation models and temporal consistency of visual, audio and

shock wave sensor telemetry

Our payload sensor model includes an event camera, microphones, and anemometer

data. The arrival times of shock waves that propagate using the seismic/air model are

computed using the same equations mentioned earlier in section 3.3.1, Eqn.3.3 and

Eqn.3.4, which originates from academic studies of blast events from the literature[41].

3.4.2 Algorithm for the Model Plugin

As shown in Algorithm 3, the GazeboBlast3DModelPlugin focuses on applying

physical effects from simulated blast events directly to model elements within the

Gazebo environment. When loaded, the plugin sets up connections and reads nec-

essary configurations from the SDF file. It registers callbacks to handle incoming

messages that contain blast event data and updates model states based on these

events. In each update cycle, the plugin evaluates if any registered blast should be

applied by checking its scheduled time against the current simulation time. If the

criteria are met, it computes the force imparted by the blast based on its TNT equiv-

alent and the distance to the affected link, applying this force directly to the model in

the simulation, thereby altering its physical state as one would expect in a real-world

scenario.

3.5 World Plugin

The World Plugin serves as a central coordinator within the blast simulation frame-

work, operating within the Gazebo simulation environment. Its primary function is

31

Algorithm 3 Operation of the GazeboBlast3DModelPlugin
1: procedure Load(model, sdf)
2: if model is NULL then
3: print “Invalid model pointer.”
4: return
5: end if
6: Initialize model and world references
7: Display model name for debugging
8: Read and set parameters from sdf for namespaces and topics
9: Attempt to get link based on the specified link name

10: Connect to the world update event
11: end procedure

12: procedure OnUpdate
13: if not already done then
14: Create and configure publishers and subscribers
15: Mark pubs and subs as created
16: end if
17: Get current simulation time
18: for each blast message in list do
19: if blast is due then
20: Calculate blast effects on the model
21: Apply force to the model link based on blast parameters
22: Optionally remove the blast message from the list
23: end if
24: end for
25: Remove handled blast messages from list
26: end procedure

27: procedure Blast3DCallback(blast3d_msg)
28: print “Blast message received.”
29: Copy message details to local structure
30: Add to list of upcoming blasts
31: end procedure

32: procedure CreatePubsAndSubs
33: Advertise registration and blast topics
34: Subscribe to blast messages
35: Send registration message to server
36: end procedure

32

to manage and disseminate information about simulated blast events to various com-

ponents of the simulation, ensuring a synchronized and realistic representation of

explosions. Upon initialization, the plugin establishes its communication channels by

subscribing to a topic designated for receiving blast event registration requests. This

allows other plugins or simulation entities to register themselves as recipients of blast

event notifications, thereby enabling a coordinated response to simulated explosions.

The World plugin is equipped with the capability to randomly generate blast events

using a stochastic model based on a uniform distribution. The use of a uniform

distribution is particularly effective in environments where no prior data suggests

a pattern or trend in blast occurrences, ensuring that simulations remain unbiased

and encompass a broad spectrum of potential scenarios. By drawing parameters

uniformly at random, the model prevents any unintentional bias that might influence

the training or analysis outcomes of the simulation, making it a robust tool for testing

and developing blast response strategies. This model systematically determines the

occurrence, location, TNT equivalent, and timing of blasts, drawing each parameter

uniformly at random from predefined ranges specified for the operational environment.

The resulting blast information is then encapsulated in messages and disseminated

to registered entities within the simulation, enabling them to respond appropriately.

Furthermore, the plugin maintains a registry of entities that have subscribed to

receive blast event notifications. This ensures that all registered components are

promptly and accurately informed about occurring blast events. This registration

system promotes a modular and adaptable simulation architecture, allowing various

components to independently process and react to blast events.

3.5.1 Algorithm for the World Plugin

As shown in Algorithm 4, the GazeboBlast3DWorldPlugin administers the overall

environment in which blasts occur within the Gazebo simulation. This plugin initial-

izes by setting up the simulation environment, subscribing to specific topics to listen

33

Algorithm 4 Operation of the GazeboBlast3DWorldPlugin
1: procedure Load(world, sdf)
2: Initialize world reference
3: Create a node handle and initialize
4: Read parameters from sdf for topic names and rates
5: Subscribe to the blast registration topic
6: Connect to the update event for simulation iteration
7: end procedure

8: procedure RegisterLinkCallback(msg)
9: Extract registration details from msg

10: if model and link are valid then
11: Register link for receiving blast effects
12: Log registration
13: else
14: Log failure to find model or link
15: end if
16: end procedure

17: procedure OnUpdate
18: Capture current simulation time
19: if interval elapsed and random condition for blast met then
20: Generate random parameters for blast
21: Log blast occurrence details
22: Distribute blast details to registered links
23: end if
24: end procedure

34

for blast registrations, and connecting to the simulation update event. Its primary

function during the simulation is to randomly initiate blasts based on predefined

probabilities and intervals. When a blast is decided to occur, it randomly generates

blast characteristics such as location, time of occurrence, and intensity. These details

are then communicated to all registered entities within the simulation that might be

affected by the blast, ensuring that the simulated world dynamically responds to these

random events, mimicking unpredictability and chaos of real-life explosions within a

controlled virtual environment.

CHAPTER 4: RESULTS

This chapter presents the results obtained from the deployment of the four spe-

cialized plugins within the Gazebo simulation framework. Each plugin was critically

evaluated to assess its effectiveness in enhancing the realism and computational effi-

ciency of simulating blast phenomena.

4.1 Camera Plugin

The Camera Plugin was crucial for capturing the visual dynamics of the blast

events. It offers two operational modes to accommodate different observational needs:

RGB Mode: This mode provides a realistic representation of the blast as it would

appear to the human eye.

Events Mode: This mode displays the events of the blast, capturing dynamic

changes as the UAV maneuvers and the camera detects the blast. The visibility

of background elements can be adjusted based on the threshold settings. The plugin

successfully indexes and manages the rotation of visual data to align with the UAV’s

orientation, ensuring accurate visual representation from various perspectives.

Figure 4.1: shows three frames of the RGB mode of the Camera Plugin

36

Figure 4.2: shows three frames of the Event mode of the Camera Plugin

Figures 4.1 and 4.2 are screenshots illustrating the RGB and Events modes of

the Camera Plugin, respectively. These images display the visual dynamics of the

blast events, capturing the blast’s appearance to the human eye in RGB mode and

highlighting dynamic changes in the environment through the Events mode.

4.2 Microphone Plugin

The Microphone Plugin’s performance was evaluated based on its ability to ac-

curately simulate the acoustic effects of blasts. The plugin successfully replicated

the dual nature of sound propagation - through the ground as seismic waves and

through the air as sound waves. Audio fidelity tests confirmed that the simulated

blast sounds were consistent with empirical data, with minimal discrepancies. The

plugin efficiently managed ambient noise levels, adjusting audio outputs based on the

simulated altitude changes, which added an additional layer of realism to the acoustic

environment.

37

Figure 4.3: shows a plot of the output audio signal

38

Figure 4.4: shows a zoomed in plot of the low frequency seismic output signal, followed
immediately by the air propagated signal

Figures 4.3 and 4.4 present the overall output plot of the audio signal and a zoomed-

in view focusing on the low-frequency seismic audio, respectively. These figures il-

lustrate the slight but noticeable delay between the air propagated signal and the

seismic signal, effectively capturing the sequence in which the events are perceived.

4.2.1 Analysis of Propagation Times

The propagation times for seismic and air waves, as observed in the simulation, were

meticulously compared to the theoretical values derived from the empirical models

introduced in Chapter 3. Specifically, the arrival times were calculated using the

equation for seismic waves Eqn. 3.3 and the equation for air waves Eqn. 3.4 .

4.2.1.1 Observed Propagation Times

The observed propagation times from the simulation were as follows:

• Seismic propagation: 1.88535 seconds.

39

• Air propagation: 1.91778 seconds.

4.2.1.2 Theoretical Validation

These observed times were closely examined against the theoretical predictions.

The parameters used for these calculations included:

• Equivalent TNT charge weight (Q): [5,15] kg.

• Distance from the blast center (R): [10, 20] meters.

• Seismic wave velocity (cs): 6000 m/s (as per granite mass properties).

• Air wave velocity (ca): 340 m/s (speed of sound in dry air).

The theoretical arrival times were calculated using dimensionally consistent em-

pirical models, where distance (R) and charge weight (Q) are transformed into di-

mensionless parameters by normalizing with the relevant scaling factors, as described

in Wu and Hao (2005). This normalization ensures that the models are applicable

across different scales of blasts and observational distances.

4.2.1.3 Comparison and Discussion

The calculated theoretical values, adjusted for dimensionless scaling, were found

to be closely aligned with the observed results. This alignment validates the model’s

accuracy and the application of dimensionless scaling in predicting propagation times

for seismic and air waves. The slight discrepancies noted between observed and theo-

retical values are attributed to computational precision limitations and the simplified

assumptions used in the wave propagation models.

The ’Difference’ results in table 4.1 substantiate the efficacy of the implemented

simulation model in reproducing the temporal dynamics of blast-induced wave propa-

gation, offering a robust tool for accurate analysis. Further analysis for the simulation

as an integrated system are included in section 4.5.

40

Table 4.1: Comparison of observed and calculated propagation times, the specific
case of Q=15 and R=20 meters

Propagation Type Observed Time (s) Calculated Time (s)
Seismic (ts) 1.88535 0.00314
Air (ta) 1.91778 0.03857

Difference (ta - ts) 0.03243 0.03543

4.3 Model Plugin

Figure 4.5: shows the trajectory followed by the UAV, as it is being affected by the
model plugin

The Model Plugin’s performance is crucial for simulating the environmental im-

pacts of blasts, particularly in terms of pressure wave propagation. To assess its

effectiveness, the plugin was supplied with a detailed shockwave pressure dataset in

.csv format. This dataset included various blast parameters such as time delay, dis-

tance, and directional angles, which were used to generate simulations of blast effects.

41

Figure 4.6: shows the zoomed-in path followed by the UAV, particularly between
waypoints 18-19, 4-5-6, and 31-32 (clockwise)

The Model Plugin processed the inputs from the dataset to display the simulated

blast effects within the Gazebo environment, showing how the UAV deviates from

its intended trajectory due to the blast impact as seen in figure 4.5. The deviation

from original trajectory is very clear between waypoints 4-5-6, 18-19, and 31-32, as is

observed in figure 4.6. This trajectory is based on the latitude and longitude coordi-

nates of the University of North Carolina Charlotte campus in the QGroundControl

tool. The deviation is a direct result of the forces applied by the simulated blast,

as calculated by the plugin. Additionally, the blast’s arrival time is indicated on the

Gazebo terminal with a future time marker, demonstrating the latency and real-time

capabilities of the simulation. This visual and data-driven feedback from the plu-

gin highlights its precision and utility in creating realistic blast scenarios that can

dynamically affect the environment and objects within the simulation.

42

4.4 World Plugin

The integration capabilities of the World Plugin were thoroughly tested, showing

excellent management of data flow and synchronization across the simulation frame-

work. The plugin effectively coordinated the operations of the other three plugins,

ensuring that all sensory data was aligned with the simulated time frame. This

synchronization was crucial for maintaining the continuity and coherence of the sim-

ulation, allowing for complex scenarios involving multiple blasts to be accurately

depicted.

4.5 Experimentation

In the experimental validation of the blast simulation framework, two critical setups

were analyzed through live plotting within the Gazebo simulation environment:

4.5.1 Blast Visualization and Data Plotting

During the experiments, a vehicle was navigated along a predefined path while the

blast plugin was active. This setup allowed for the real-time visualization and live

plotting of force, torque, audio, and color and/or event imagery associated with the

blast events. The objective was to demonstrate the vehicle’s real-time response to

the simulated blast dynamics and to illustrate the plugin’s capability to accurately

simulate the physical and acoustic effects on the vehicle. The result of one such

experiment can be seen in Fig. 4.7.

4.5.2 Path Tracking and Error Analysis

Another setup focused on evaluating the vehicle’s ability to maintain or regain its

course following a blast-induced disturbance. As the vehicle traversed the designated

path, live plots captured force, torque, and particularly path error metrics both before

and after the blast. This included documenting the recovery time necessary for the

vehicle to reacquire nominal path-tracking status post-disturbance. The live plotting

provided a clear, quantitative insight into the simulation’s effectiveness in replicating

43

the real-world disruptions caused by explosions. The result of one such experiment

can be seen in Fig. 4.8.

Figure 4.7: shows a screen capture of the results generated while performing the Blast
Visualization and Data Plotting experiment

The figure 4.7 displays a multi-faceted view of a vehicle navigating through a virtual

environment while subjected to blast simulations. The top left section shows the

Gazebo simulation environment where the vehicle’s trajectory is visualized. Next to

it, the QGroundControl software maps the vehicle’s path over actual geographic data,

adding a layer of realism and enabling precise path tracking and mission planning.

Below these, there are synchronized live plots depicting the waveform of the blast’s

audio signal and graphs showing the force and torque experienced by the vehicle

over time. This setup demonstrates the integration of visual, auditory, and physical

simulation data, which helps in understanding the vehicle’s response to simulated

blast forces and sound waves.

44

Figure 4.8: shows a screen capture of the results generated while performing the Path
Tracking and Error Analysis experiment

In the figure 4.8, a comprehensive analysis of path tracking and error metrics is

presented. It includes a 3D plot showing the vehicle’s trajectory through the simula-

tion environment, highlighting deviations and adjustments post-blast. Accompanying

this are detailed plots measuring the error between the vehicle’s actual position and

the setpoints over time, which vividly illustrate the impact of the blast on the vehi-

cle’s path. Additional graphs again detail the force and torque over time, underlining

the physical strains imposed by the blast events. This configuration provides clear,

quantifiable insights into the vehicle’s capability to adjust its path in response to ex-

ternal disturbances, which is critical for assessing the effectiveness of the simulation

in mimicking real-world explosive interactions.

These figures collectively capture the dynamic interplay between visual, acoustic,

and physical data in the simulation, offering a robust tool for analyzing the complex

effects of blasts on vehicle dynamics within a controlled virtual environment.

45

These live experimental setups were crucial in assessing the robustness of the blast

simulation framework. They provided immediate visual and quantitative feedback

on how well the system predicts and replicates the complex interactions between a

moving vehicle and blast-induced forces within a virtual environment.

To enhance the performance of these experimental setups, integrating a ring buffer

data structure could significantly improve data management:

Continuous and Efficient Data Handling: The ring buffer provides a fixed-size, cyclic

storage mechanism that allows continuous data capture without pauses for memory

reallocation, crucial for managing high-frequency data streams like audio and force

measurements.

Real-Time Processing: With a ring buffer, the most recent data is always available

for quick access and processing, enabling real-time analysis and live plotting. This

ensures immediate feedback and minimal latency in dynamic simulations, vital for

accurate monitoring and response to blast effects.

CHAPTER 5: PROSPECTIVE DEVELOPMENTS

In this chapter, it is crucial to address the limitations of the microphone and event

camera used in the simulations. In future iterations of the simulation framework, for

the microphone, issues such as decibel saturation-the point at which a microphone’s

response to sound becomes non-linear and compressed-must be carefully managed.

Advanced algorithms for dynamic range compression and better calibration methods

could mitigate these effects, ensuring more accurate acoustic data capture, particu-

larly in high-intensity environments like explosions.

Similarly, the resolution, distortion, and intrinsic parameters of the event cam-

era need rigorous examination. The current setup may not fully account for optical

distortions and resolution limitations, which can affect the accuracy of visual data,

especially in dynamic and complex visual fields. Future work can include imple-

menting distortion correction techniques and evaluating higher-resolution cameras to

enhance the fidelity of visual simulations. Additionally, refining the camera’s intrinsic

parameters, such as focal length and lens characteristics, will improve the precision

of event detection and image processing, critical for accurate reproduction of blast

phenomena.

Future enhancements of this work will focus on improving the scalability of the

simulation framework to handle larger and more complex environments. Optimiza-

tions may include refining the data handling and processing capabilities of the World

Plugin to reduce latency further and extend the framework’s application to other

types of explosive phenomena in industrial and mining sectors.

47

5.1 Detectors

The initial development phase of the explosion detector has yielded promising re-

sults, yet the system currently functions independently of the integrated simulation

environment and associated plugins. This separation represents a significant opportu-

nity for future integration, which is expected to enhance both the utility and realism

of the overall simulation framework.

The explosion detection system is comprised of two distinct components, each de-

signed to operate on a different sensory modality but united by their common goal

to achieve ultra-low-latency detection of blast events using C++.

5.1.1 Visual Events Detector

The visual detector operates based on principles similar to those used in the camera

plugin. It specifically monitors rapid movements within the visual frame, with a

particular focus on vertical movements along the y-axis. This detection criterion

is based on the observation that explosions typically result in significant upward

displacement of smoke and debris, which manifests as a sharp increase in y-axis

values. Such changes, occurring virtually at the speed of light, can reliably indicate

an explosion when they exceed a predetermined threshold.

5.1.2 Audio Signal Detector

The acoustic detector employs a matched filtering technique to discern the pres-

ence of a "bomb audio" signature within a noisy audio signal. The process involves

several key steps: initially, both the reference and input audio signals undergo a Fast

Fourier Transform (FFT) to convert them into the frequency domain. The FFT of

the input signal is then multiplied by the complex conjugate of the FFT of the ref-

erence signal. The product of these transforms is subjected to an inverse FFT to

generate the filtered output signal. The effectiveness of this detection is determined

by analyzing the peaks in the filtered output, applying an amplitude threshold to

48

Algorithm 5 Visual Event Detection for Blast Identification
Require: Folder containing sequential grayscale images
Ensure: Detection of blast based on significant vertical event changes
1: Initialize:
2: previous_image← None
3: previous_event_count← 0
4: blast_detected← False
5: Process Images:
6: for each image i in the folder do
7: current_image← load_image(i)
8: if previous_image is not None then
9: events← generate_events(previous_image, current_image)

10: current_event_count← count_vertical_events(events)
11: if current_event_count − previous_event_count > verti-

cal_event_increase_threshold then
12: Print "Blast detected between images (i− 1) and i!"
13: blast_detected← True
14: break
15: end if
16: previous_event_count← current_event_count
17: end if
18: previous_image← current_image
19: end for
20: Finalize:
21: if not blast_detected then
22: Print "No blast detected in the sequence."
23: end if

49

differentiate genuine detections from noise, and calculating the signal-to-noise ratio

(SNR) for each peak to assess detection quality. Remarkably, this acoustic detection

process can identify explosions in just a few milliseconds, underscoring its potential

for real-time applications. The computational efficiency and efficacy of this process

are crucial, with performance metrics including the time required for filtering and the

accuracy of "bomb audio" identification based on peak and SNR analysis.

Looking ahead, the prospective integration of these detectors into the larger simula-

tion framework is a primary focus. Such integration promises to streamline processes

and improve the real-time responsiveness and accuracy of the simulation. This effort

will involve embedding the detectors within the existing plugin architecture, allow-

ing them to leverage real-time data directly from the simulation environment. This

enhancement is expected to improve the performance of the simulation significantly,

making it a more effective tool for training and analysis in safety-critical applications.

5.2 Machine Learning Optimization

Implementing machine learning algorithms to optimize simulation parameters dy-

namically could improve the realism and efficiency of the simulations. For instance,

machine learning could be used to automatically adjust the parameters for visual and

acoustic effects based on real-world data, enhancing the predictive accuracy and visual

fidelity of the simulations. Relevant examples of such applications include the inno-

vative rendering techniques by Kallweit et al. [44], fluid simulation enhancements by

Tompson et al. [45], and advanced learning frameworks for unmanned aerial systems

by Jagannath et al. [46].

5.3 Interdisciplinary Applications

This framework serves as a pioneering case study demonstrating its versatility and

adaptability to other fluid dynamics simulations beyond blast phenomena. Specifi-

50

Algorithm 6 Audio Signal Processing for Bomb Detection using Matched Filter
Require: Input audio file with potential bomb sound, Reference bomb sound file
Ensure: Detection of bomb sound
1: Read WAV Files:
2: Reference ← read_wav("reference_bomb.wav")
3: Input ← read_wav("input_audio.wav")
4: Perform FFT:
5: Reference_FFT ← perform_fft(Reference)
6: Input_FFT ← perform_fft(Input)
7: Matched Filtering:
8: for i = 0 to length(Reference_FFT) do
9: Result_FFT[i] ← Input_FFT[i] * conj(Reference_FFT[i])

10: end for
11: Inverse FFT:
12: Output_Signal ← inverse_fft(Result_FFT)
13: Save Output Signal:
14: save_wav(Output_Signal, "output_signal.wav")
15: Detect Peaks:
16: Peaks ← detect_peaks(Output_Signal, Threshold)
17: Check Signal-to-Noise Ratio (SNR):
18: for each peak in Peaks do
19: SNR ← calculate_snr(Output_Signal, peak)
20: if SNR > SNR_Threshold then
21: Bomb Detected ← True
22: break
23: end if
24: end for
25: Print Detection Result:
26: if Bomb Detected then
27: Print "Bomb audio detected!"
28: else
29: Print "Bomb audio NOT detected."
30: end if

51

cally, the methodologies and computational techniques developed for blast simulations

could be directly applicable to the study of fluid flows in scenarios such as water cur-

rents, oil spills, or atmospheric disturbances. By leveraging the existing architecture,

researchers can model the behavior of various fluids under different environmental

conditions, providing valuable insights in fields ranging from environmental science

to chemical engineering. This approach not only broadens the applicability of the

current project but also sets a foundation for future research that could lead to

breakthroughs in understanding complex fluid dynamics in natural and industrial

contexts.

CHAPTER 6: CONCLUSIONS

This thesis has successfully developed and implemented a comprehensive simulation

framework within Gazebo, designed to enhance the realism and accuracy of blast

phenomenon simulations. By integrating visual and acoustic data, the project has

demonstrated significant improvements in the fidelity and effectiveness of simulations

used for safety and defense training. The implementation of four specialized plugins

- the Camera, Microphone, Model, and World plugins - has allowed for a nuanced

simulation environment where each aspect of a blast, from visual appearance to sound

propagation and the pressure modeling, is dynamically represented.

The integration of the Robot Operating System (ROS) with enhancements from

Gazebo and the utilization of QGroundControl and PX4 Software In The Loop (SITL)

firmware have streamlined the simulation process, reducing manual intervention and

increasing efficiency. The transition to the OpenAI GymFC framework has further

enabled a more controlled and configurable simulation environment, proving essential

for detailed analysis and robust simulation capabilities [8].

Furthermore, the project has extended the utility of these simulations by focusing

on realistic rendering of explosions, making these tools not only more accurate but

also more responsive to the needs of real-world applications. The development of an

ambient acoustic model that adjusts background noise based on altitude is a testa-

ment to the project’s commitment to creating an immersive and authentic simulation

environment.

Future research will delve deeper into refining these simulations, exploring advanced

computational techniques to further reduce latency and enhance the detail and accu-

racy of both visual and acoustic simulations. There is also potential to expand the

53

use of these simulations in other realms such as urban planning and disaster manage-

ment, where understanding the impacts of explosions can lead to better preparedness

and response strategies.

In conclusion, this thesis has laid a solid foundation for the realistic simulation of

blast phenomena, providing a valuable tool for training, planning, and research. It

has set the stage for future innovations that will continue to push the boundaries of

what is possible in simulation technology.

54

REFERENCES

[1] “Gazebo — gazebosim.org.” https://gazebosim.org/home. [Accessed 06-05-2024].

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–
2154 vol.3, 2004.

[3] “ROS: Home — ros.org.” https://www.ros.org/. [Accessed 06-05-2024].

[4] “QGroundControl.” https://qgroundcontrol.com/. [Accessed 06-05-2024].

[5] “Open Source Autopilot for Drones - PX4 Autopilot — px4.io.” https://px4.io/.
[Accessed 06-05-2024].

[6] “Open AI.” https://openai.com/. [Accessed 06-05-2024].

[7] “GitHub - wil3/gymfc: A universal flight control tuning framework —
github.com.” https://github.com/wil3/gymfc. [Accessed 06-05-2024].

[8] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement Learning for
UAV Attitude Control,” ACM Transactions on Cyber-Physical System, vol. 3,
feb 2019.

[9] H. Fu, W. Xu, H. Xue, H. Yang, R. Ye, Y. Huang, Z. Xue, Y. Wang, and
C. Lu, “RFUniverse: A Physics-based Action-centric Interactive Environment
for everyday household tasks,” CoRR, vol. abs/2202.00199, 2022.

[10] T. Henderson, P. McMurtry, P. Smith, G. Voth, C. Wight, and D. Pershing,
“Simulating accidental fires and explosions,” Computing in Science Engineering,
vol. 2, no. 2, pp. 64–76, 2000.

[11] R. Bridson and M. Müller-Fischer, “Fluid simulation: Siggraph 2007 course
notes,” in ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07, (New York, NY,
USA), p. 1â81, Association for Computing Machinery, 2007.

[12] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, “Smoke simulation
for large scale phenomena,” in ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,
(New York, NY, USA), pp. 703–707, Association for Computing Machinery, 2003.

[13] K. Um, X. Hu, and N. Thuerey, “Liquid splash modeling with neural networks,”
Computer Graphics Forum, vol. 37, no. 8, pp. 171–182, 2018.

[14] P. Hernandez, J. Ramírez, and M. Soto, “Deep-learning-based earthquake detec-
tion for fiber-optic distributed acoustic sensing,” Journal of Lightwave Technol-
ogy, vol. PP, pp. 1–1, Dec. 2021.

55

[15] Z. Li and Z. Zhan, “Pushing the limit of earthquake detection with distributed
acoustic sensing and template matching: a case study at the Brady geothermal
field,” Geophysical Journal International, vol. 215, pp. 1583–1593, Sept. 2018.

[16] Q. Brissaud, S. Krishnamoorthy, J. M. Jackson, D. C. Bowman, A. Komjathy,
J. A. Cutts, Z. Zhan, M. T. Pauken, J. S. Izraelevitz, and G. J. Walsh, “The
first detection of an earthquake from a balloon using its acoustic signature,”
Geophysical Research Letters, vol. 48, June 2021.

[17] A. Golas, A. Khan, P. Kalra, and S. Kumar, “Explosion simulation using com-
pressible fluids,” in 2008 Sixth Indian Conference on Computer Vision, Graphics
Image Processing, pp. 63–70, 2008.

[18] K. Sims, “Particle animation and rendering using data parallel computation,” in
Proceedings of the 17th Annual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’90, (New York, NY, USA), pp. 405–413, Associa-
tion for Computing Machinery, 1990.

[19] C. Martins, J. Buchanan, and J. Amanatides, “Visually believable explosions in
real time,” in Proceedings Computer Animation 2001. Fourteenth Conference on
Computer Animation (Cat. No.01TH8596), pp. 237–259, 2001.

[20] X. He, L. Yang, S. Li, and A. Hao, “Physics based real-time explosion simulation,”
in 2012 Fourth International Conference on Digital Home, pp. 309–314, 2012.

[21] G. D. Yngve, J. F. O’Brien, and J. K. Hodgins, “Animating explosions,” in
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’00, pp. 29–36, ACM Press, Jan 2000.

[22] B. E. Feldman, J. F. O’Brien, and O. Arikan, “Animating suspended particle
explosions,” pp. 708–715, July 2003.

[23] B. Klingner, B. Feldman, N. Chentanez, and J. O’Brien, “Fluid animation with
dynamic meshes,” ACM Trans. Graph., vol. 25, pp. 820–825, July 2006.

[24] A. Selle, N. Rasmussen, and R. Fedkiw, “A vortex particle method for smoke,
water and explosions,” ACM Transactions on Graphics, vol. 24, pp. 910–914,
July 2005.

[25] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,” in Pro-
ceedings of the 28th annual conference on Computer graphics and interactive
techniques, SIGGRAPH01, ACM, Aug. 2001.

[26] J. Sewall, N. Galoppo, G. Tsankov, and M. Lin, “Visual simulation of shock-
waves,” Graphical Models, vol. 71, no. 4, pp. 126–138, 2009. Special Issue of
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2008.

[27] J. S. Díaz and S. E. Rigby, “Blast wave kinematics: theory, experiments, and
applications,” Shock Waves, vol. 32, pp. 405–415, July 2022.

56

[28] E. Drumwright, J. Hsu, N. Koenig, and D. Shell, Extending Open Dynamics
Engine for Robotics Simulation, pp. 38–50. Springer Berlin Heidelberg, 2010.

[29] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015 Courses,
SIGGRAPH ’15, ACM, July 2015.

[30] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman,
and C. Karen Liu, “Dart: Dynamic animation and robotics toolkit,” The Journal
of Open Source Software, vol. 3, p. 500, Feb. 2018.

[31] M. A. Sherman, A. Seth, and S. L. Delp, “Simbody: multibody dynamics for
biomedical research,” Procedia IUTAM, vol. 2, pp. 241–261, 2011.

[32] D. Ferigo, S. Traversaro, and D. Pucci, “Gym-ignition: Reproducible robotic
simulations for reinforcement learning,” CoRR, vol. abs/1911.01715, 2019.

[33] J. Kaiser, J. C. V. Tieck, C. Hubschneider, P. Wolf, M. Weber, M. Hoff,
A. Friedrich, K. Wojtasik, A. Roennau, R. Kohlhaas, R. Dillmann, and J. M.
Zöllner, “Towards a framework for end-to-end control of a simulated vehicle with
spiking neural networks,” in 2016 IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 127–134,
Dec 2016.

[34] H. Rebecq, D. Gehrig, and D. Scaramuzza, “ESIM: an open event camera simu-
lator,” Conf. on Robotics Learning (CoRL), Oct. 2018.

[35] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempogan: a temporally coherent,
volumetric gan for super-resolution fluid flow,” ACM Transactions on Graphics,
vol. 37, pp. 1–15, July 2018.

[36] S. Pearson, “Blender Tutorial - Creating a Simple Explosion Simulation —
YouTube.” https://www.youtube.com/watch?v=MxfctMsd0Ck, Feb 2023. [On-
line; accessed 5-May-2024].

[37] D. P. Hardin, T. J. Michaels, and E. B. Saff, “A Comparison of Popular Point
Configurations on S2 - arxiv.org.” https://arxiv.org/abs/1607.04590, 2016. [Ac-
cessed 07-05-2024].

[38] M. Roberts, “How to evenly distribute points on a sphere more effectively than
the canonical fibonacci lattice,” Feb 2024.

[39] Wikipedia contributors, “Stokes’s law of sound attenuation —Wikipedia, the free
encyclopedia.” https://en.wikipedia.org/w/index.php?title=Stokes2024. [On-
line; accessed 5-May-2024].

[40] Wikipedia contributors, “Acoustic attenuation — Wikipedia, the free encyclope-
dia,” 2023. [Online; accessed 5-May-2024].

57

[41] C. Wu and H. Hao, “Modeling of simultaneous ground shock and airblast pressure
on nearby structures from surface explosions,” International journal of impact
engineering, vol. 31, no. 6, pp. 699–717, 2005.

[42] E. C. Pielou, “Wave Energy: Sound Waves and Seismic Waves,” in The Energy
of Nature, University of Chicago Press, May 2001.

[43] Wikipedia contributors, “Blast wave — Wikipedia, the free encyclopedia,” 2024.
[Online; accessed 5-May-2024].

[44] S. Kallweit, T. Müller, B. Mcwilliams, M. Gross, and J. Novák, “Deep scattering:
rendering atmospheric clouds with radiance-predicting neural networks,” ACM
Trans. Graph., vol. 36, nov 2017.

[45] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating Eulerian
Fluid Simulation With Convolutional Networks,” CoRR, vol. abs/1607.03597,
2016.

[46] J. Jagannath, A. Jagannath, S. Furman, and T. Gwin, “Deep learning and re-
inforcement learning for autonomous unmanned aerial systems: Roadmap for
theory to deployment,” CoRR, vol. abs/2009.03349, 2020.

