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ABSTRACT

BEHDAD VATANI. Modeling and Optimization of Demand-Side and Supply-Side
Energy Management in Electricity Markets. (Under the direction of DR. BADRUL

CHOWDHURY)

An energy management system (EMS) is a system designed for owners of generation

companies (GenCos), operators of electricity markets and electric utility grids, as well

as consumers and aggregators to monitor, control, and optimize the performance of

the generation, transmission, and demand systems.

This Ph.D. dissertation is devoted to studying the modeling and optimization

of energy management problems associated with demand-side and supply-side of

the electricity market comprising of a comprehensive comparison amongst several

robust self-scheduling models of GenCos using real-world electricity market prices in

which different self-scheduling strategies are proposed based on the price data and

the generation company’s desired robustness level. Moreover, to practically evaluate

the performance of various methodologies, a post-optimization procedure has been

proposed to determine the actual profit of each method in different real-market-

environment cases. The conclusions drawn from the evaluations can help GenCos

select and model the most appropriate non-deterministic self-scheduling approach

based on the price information and price forecast method that they have adopted, as

well as the robustness level that they desire in their solution.

In addition, a novel integrated capacity market and demand response model is

introduced as an alternative solution to the transmission expansion planning problem.

This strategy includes the use of the demand response resources (DRRs) as power

supply resources to participate in the capacity market. The proposed model is

implemented on the Base Residual Auction (BRA) of 2020/2021 PJM capacity market

real data, and the influence of several important parameters are investigated in detail.

As a final step, a comprehensive transactive energy system framework is proposed
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for the integration of the aggregated load reduction demand response (DR) such as

load curtailment and load shifting, and plug-in electric vehicle (PEV). It is observed

that utilizing other distributed energy resources (DERs) including on-site renewable

energy (RE) resources and behind-the-meter energy storage (ES) systems can increase

the obtained profits from day-ahead electricity markets, and improve interactions of

aggregators with retail customers.
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CHAPTER 1: INTRODUCTION

An energy management system (EMS) is a system designed for owners of generation

companies (GenCos), operators of electricity markets and electric utility grids, as well

as consumers and aggregators to monitor, control, and optimize the performance of

the generation, transmission, and demand systems [1]. The EMS includes supply-side

energy management (SSEM) and demand-side energy management (DSEM) systems.

GenCo owners and/or grid operators can use SSEM to increase profit, improve system

operation, enhance grid reliability, increase grid capacity, and optimize energy usage to

reduce cost [2, 3]. The benefits from DSEM are potentially two-fold; first, consumers

can reduce their electricity bills by adjusting the timing and amount of electricity use,

while providing electric utilities a means to improve customer service. Second, DSEM

can provide cost-effective energy and capacity resources to help defer the need for new

sources of power, including generating facilities, power purchases, and transmission

and distribution capacity additions [4, 5].

In the following sections, supply-side energy management systems including genera-

tion and transmission systems are reviewed. Also, demand-side energy management

systems and methodologies are reviewed. Finally, the outline and overview of the

dissertation will be discussed.

1.1 Supply-Side Energy Management

Owners of generation companies, regardless of whether they are traditional regulated

entity, a renewable energy provider, or an independent power producer, can face several

challenges, as well as uncertainty in their forecasts (such as price, forced outages,

wind energy availability, and so on). Hence, integration and coordination of a more



2

diverse mix of generations are needed to manage such a complex system with so many

constraints.

An offer curve construction process for wind power producers in the day-ahead

electricity market is presented in [6]. The algorithm is based on the multivariate

distribution of the real-time price and wind power forecasting errors, since the bivariate

distribution results in more profitable offers based on the conditional probability of

wind power forecasting errors with regard to the RT price forecasting errors. Figure 1.1

illustrates a three-stage parametric probabilistic wind power forecasting algorithm

proposed to decrease the standard deviation of the bivariate distribution, and further

increase the profitability from the offer curve.

The self-scheduling models for GenCos are presented in [7, 8] in which uncertainties

of generating units’ forced outage and market price are modeled via stochastic opti-

mization approach. This framework allows the producer to maximize its profit while

controlling the risk of profit variability through well-known conditional value-at-risk

index.

0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2830785, IEEE
Transactions on Power Systems
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where the CAP is the wind farm capacity, and the fWt
(w) is

the marginal distribution of wind power forecasts at t. We can
also represent the bivariate distribution of RT price and wind
power forecasts as the f⇤t,Wt

(�, w), which is represented in
(3) as the expected value of the conditional distribution of
RT price with respect to the wind power E[�t|wt] and the
fWt

(w). Since there is no constraint in (2), we can get the x⇤
t

by differentiating the (3) with respect to xt as

pt =

Z x⇤
t

0

E[��
t |w]fWt(w)dw +

Z CAP

x⇤
t

E[�+
t |wt]fWt(w)dw. (4)

If x⇤
t in (4) is represented as a function of pt, we have the

offer curve at the given pt. It should be noted that (4) cannot
be solved for general distributions analytically, so it should be
solved numerically.

If we do not consider the bivariate structure between the RT
price and wind power, we can separate the expected value of
the ��

t and �+
t from the conditional expectation of RT price

with respect to the wind power in (4). Then, the optimal offer
amount at the DA price pt is given in [22] as

x̂t = F�1
Wt

✓
pt � E[�+

t ]

E[��
t ] � E[�+

t ]

◆
, (5)

where the FWt is the cumulative distribution function of wind
power forecasts. Therefore, the relative position of the DA
price with respect to the expected RT prices with penalties
determines the offer amount x̂t. The offer curve in (5) is
bounded by the upper bound E[��

t ] and the lower bound
E[�+

t ].
If we consider the bivariate structure between the RT price

and wind power, we should calculate the E[�t|wt]. Specifi-
cally, if we assume that the RT price and wind power follow
the bivariate Gaussian distribution, (5) can be rewritten as

pt =(1 + "�)

Z x⇤
t

0


µ�t +

��t⇢t

�wt

(w � µwt)

�
fWt(w)dw

+(1 � "+)

Z CAP

x⇤
t


µ�t +

��t⇢t

�wt

(w � µwt)

�
fWt(w)dw,

(6)

where the µ�t is the mean of the RT price at t, the µwt is
the mean of the wind power forecasts, the ��t

is the standard
deviation (SD) of the RT price, the �wt

is the SD of the wind
power, and the ⇢t is the correlation coefficient. Furthermore,
fWt

(w) can be substituted as the Gaussian distribution at t.
The key premise in (4) is that the accuracy of the E[��

t |wt]
and E[�+

t |wt], which can be derived from f⇤t,Wt
(�, w),

determines the profitability of the offer curve. The forecast-
shifted version of the bivariate distribution of the RT price and
wind power forecasting errors, f⇤t,Wt(�, w), will be estimated
in Section III through the parametric probabilistic wind power
forecasting algorithms. Then, the offer curve in (4) will be
finalized with the market related parameters ✏+ and ✏+ and
evaluated at the given DA price pt in Section IV. In addition,
the theoretical expected profit increment of E[⇧(x⇤

t , pt)] over
E[⇧(x̂t, pt)] is around 0.1% at the fixed parameters, but we
will verify in Section IV whether the profit increment is around
0.1% using actual data.

Fig. 1. The three-stage parametric probabilistic forecasting algorithm.

III. PARAMETRIC PROBABILISTIC FORECASTING

In this section, we develop the three-stage parametric prob-
abilistic forecasting algorithm in [23] to more accurately
estimate the f⇤,W (�, w) and the profitability of the offer curve
in (4). First, the univariate skewed student’s t-distribution
(SStD) of the wind power forecasting errors is estimated by
using the data and forecasting protocols from the 2014 Global
Energy Forecasting Competition (GEFCom) [10] to verify the
forecasting algorithm by forecasting the error distribution of
hour-ahead wind power outputs. The internal parameters are
estimated through the EM algorithm and then adjusted by
the pinball loss function because the forecasting performance
in the pinball loss should be compared to those of other
forecasting models. Second, the bivariate SStD f⇤,W (�, w) of
the wind power and RT price forecasting errors is estimated
by using the data from the Iberian peninsula. In this case,
the internal parameters are not adjusted by the pinball loss
function to save computational time, but a similar process
can be added whenever a specific performance measure is
required. The forecast error is defined by a subtraction of the
forecast from the actual value so that we can recover the error
distribution by adding a mean value.

A. Three-Stage Parametric Probabilistic Forecasting

We propose a three-stage parametric probabilistic fore-
casting architecture in Fig. 1 to estimate the marginal or
univariate distribution of wind power fW (w). In the first stage,
we perform the point forecasting, measure the performance
of individual forecasting machines, and collect forecasting
errors through the k-fold cross validation for all training data.
For all training data, the point forecast and its forecasting
errors are estimated for each forecasting machine, which are
the ridge regression, NN, support vector machine (SVM),
Gaussian process (GP), GBM, RF, and BAG. Furthermore,

Figure 1.1: The three-stage parametric probabilistic forecasting algorithm [6].
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A new stochastic security-constrained hydrothermal unit commitment model for an

electricity market operator is proposed in [9], in which the uncertainty of load forecast

prediction of inflows to hydro reservoirs and unavailability of units is considered. Also,

to obtain more realistic results, an AC network modeling is included in the model. To

solve the large-scale and mixed-integer non-linear nature of the model, a new hybrid

decomposition strategy composed of generalized Benders decomposition and outer

approximation/ equality relaxation (OA/ER) as shown in Figure 1.2 is introduced.

Current models of capacity market designs in the U.S. and elsewhere ignore the

important issue of carbon emission produced by electric power plants. While the

current designs may produce optimal and efficient capacity market prices, these designs

contribute little or nothing to reduce such emissions. In [10], a novel alternative to

the current capacity market design which can realistically achieve the noble goal of

power system decarbonization is presented. While there are a number of possible

design choices, the new design developed in the work explicitly models carbon pricing

in the market clearing problem. Using PJM capacity market as a base model, it is shown

Figure 1.2: Structure of the proposed hybrid decomposition strategy [9].
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that the new capacity market design can achieve the decarbonization goal with some

reasonable increase of capacity market prices.

1.2 Demand-Side Energy Management

According to Figure 1.3 of North American Electric Reliability Corporation (NERC),

DSEM includes two main categories: demand response (DR), and energy efficiency

[11]. Based on the U.S. Energy Information Administration (EIA), DSEM does not

refer to energy and load-shape changes arising from the normal operation of the

marketplace or from government-mandated energy-efficiency standards [4]. The main

DSEM category is DR which based on Federal Energy Regulator Commission (FERC),

is a reduction in the consumption of electric energy by customers from their expected

consumption in response to an increase in the price of electric energy or to incentive

payments designed to induce lower consumption of electric energy [12]. DR offers

a variety of financial and operational benefits for electricity customers, load-serving

entities and grid operators. Power systems have three important characteristics:

1. Due to the fact that electricity cannot be stored economically, electricity supply

of and demand must be maintained in balance in real-time.

2. Grid conditions can change significantly from day-to-day, hour-to-hour, and even

within moments. Demand levels also can change quite rapidly and unexpectedly, and

resulting mismatches in supply and demand can threaten the integrity of the grid over

very large areas within seconds.

3. The power system is highly capital-intensive, and generation and transmission

system investments have long lead times and multi-decade economic lifetimes.
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Figure 1.3: Demand-side management categories [11].

These challenges and uncertainties are what make DR so valuable [13].

A two-stage stochastic joint energy and reserve day-ahead market structure incor-

porating the participation of demand side resources in the provision of load following

reserves is presented in [14]. Since a load that incurs a demand reduction may need

to recover this energy in other periods, different types of load recovery requirements

are modeled. Furthermore, in order to evaluate the risk associated with the decisions

of the system operator and to assess the effect of procuring and compensating load

reductions, the Conditional Value-at-Risk metric is employed. In order to solve the

resulting multi-objective optimization problem, a new approach based on an improved

variant of the epsilon-constraint method is adopted. The overview of the proposed

methodology is shown in Figure 1.4.
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Fig. 1. Overview of the proposed methodology.

the cost of deploying reserves from DRPs, the penalty of invol-
untary load shedding, the wind spillage cost, as well as the cost
of energy not recovered after the deployment of a DRP load
reduction are considered in (3).

EC = ECSI +
∑

s

πs · ECSD
s (1)

ECSI =
∑

t

[∑

i

(∑

f

(
CG

i,f ,t · Psg
i,f ,t

)

+ (SUCi · yi,t + SDCi · zi,t) +

(
CG,U

i,t · RG,U
i,t

+CG,D
i,t · RG,D

i,t

))
+
∑

j

(
CDRP,U

j,t · RDRP,U
j,t

)
⎤
⎦

(2)

ECSD
s =

∑

t

⎡
⎣∑

i

∑

f

(
CG

i,f ,t · rG
i,t,f ,s

)

+
∑

j

(
cDRP,U
j,t · rDRP,u

j,t,s + V EN S
j · Lshed

j,t,s

)

+
∑

w

(
V S · Sw,t,s

)
]

+
∑

j

(
V EN S

j · ENRj,s

)
∀s

(3)

2) Conditional Value-at-Risk: Although attempting to min-
imize the expected cost of the operation of the system is ad-
vantageous in comparison with a deterministic approach in
which a perfect forecast for the wind power generation is con-
sidered, the characteristics associated with the distribution of

the outcomes of the individual scenarios are disregarded. As a
result, an acceptable expected cost value may correspond to a
cost distribution in which the probability of facing significant
costs in several scenarios is high. To overcome this ambiguity, a
notion of risk should be incorporated in the optimization prob-
lem. A risk measure is a scalar function characterizing the risk
associated with the obtained expected cost.

There are various perceptions of risk and therefore, several
different risk measures may be used. Extensive discussion on
how to incorporate different risk measures in stochastic pro-
gramming formulations is performed in [48]. The risk measure
employed in this study is the Conditional Value-at-Risk (CVaR)
metric [49] since it presents three important advantages: 1) it is a
coherent risk measure, 2) in contrast with the popular Value-at-
Risk (VaR) metric, it quantifies “fat tails” in the cost distribution
and, 3) it is compatible with a linear formulation.

For a given confidence level α ∈ (0, 1) the V aRa is equal to
the minimum value ξ for which the probability of obtaining a
cost less than ξ is higher than α. It should be noted that ξ is
a variable representing the value of the risk metric and not a
pre-fixed parameter. V aRα is defined by (4).

V aRα = min{ξ : P (s|ECSI + ECSD
s ≤ ξ} ≥ α} (4)

CV aRα is defined as the expected value of the cost of the
scenarios with cost higher than the (1 − α)-quantile of the cost
distribution (V aRα ). The mathematical definition of CV aRα

is given in (5).

CV aRα =

min

{
ξ +

1

1 − α

∑

s

[
πs · max

(
ECSI + ECSD

s − ξ, 0
)]
}

(5)

Risk aversion may be enforced by considering (6) as an ob-
jective function (see Section III) and (7)–(8) as constraints of the
optimization problem. Constraint (7) states that the risk metric
is considered with respect to the expected cost of each scenario.
Finally, (8) states that the auxiliary variable is nonnegative. It
should be noted that the continuous auxiliary variable ηs equals
to the maximum of ECSI + ECSD

s − ξ and 0 according to (5).

CV aRα = ξ +
1

1 − α
·
∑

s

πs · ηs (6)

ECSI + ECSD
s − ξ ≤ ηs ∀s (7)

ηs ≥ 0 ∀s (8)

In this study it is considered that wind producers are exempt
from the participation in the market and the wind energy that is
accepted in the day-ahead market is determined by the SO. For
instance this might be imposed by policies that consider RES
generation as must-take. At any rate, costly reserve services
have to be procured from conventional generating units on a
market basis in order to satisfy this requirement in real-time,
a fact that increases the financial risk that the SO is exposed
to. It is to be noted that in markets in which wind producers
are considered as Balance Responsible Parties, they bear the
financial obligation of covering the imbalances that they cause

Figure 1.4: Overview of the proposed methodology [14].

A stochastic decentralized active demand response system including a mathematical

model of the decentralized active demand response system comprising of functional

and technical requirements as well as general principles of decentralized active demand

response operation and control algorithm is presented in [15]. Due to the high dynamic

response of the system in dealing with disturbance phenomena, the strategy may

be used as part of both the primary and the secondary load frequency control in

electrical power systems. Fulfillment of all assumed decentralized active demand

response system requirements concerning high dynamic, fair share in service as well

as minimization of degradation in comfort of use of decentralized active demand

response controlled devices were evaluated. Figure 1.5 illustrates the equivalent circuit

of the power system with the decentralized active demand response, as well as a block

diagram of frequency system.
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Figure 1.5: a) Equivalent circuit of power system with the decentralized active demand
response, b) block diagram of frequency system [15].

1.3 Outline and Overview of the Dissertation

This Ph.D. dissertation is devoted to studying the modeling and optimization of

problems associated with generation, transmission, and demand sides of the different

electricity markets. It comprise of a comprehensive comparison amongst several robust

self-scheduling models of GenCos using real-world electricity market prices, a novel

integrated capacity market and demand response model as an alternative solution

to the transmission expansion planning problem, and a comprehensive transactive

energy system framework for the integration of the aggregated load reduction DR and

plug-in electric vehicle (PEV).

For a generation company trading in an electricity market, efficient control of the

financial risks and robustness is as vital as maximizing profit. A robust approach is

preferred since the generation company can obtain an optimal self-schedule considering
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price volatility as a source of uncertainty. In Chapter 2, different robust approaches

such as robust optimization methods with different uncertainty sets, conditional

value-at-risk based stochastic programming, and information gap decision theory for

self-scheduling of generation companies are implementd and compared. Moreover,

all robust framework are utilized to test systems with different price behaviors in

the long-run to illustrate the performance and features of each method. Finally,

the different self-scheduling strategies based on the price data and the generation

company’s desired robustness level are proposed.

DR cannot only be used as an electric power supply resource to produce a negawatt

in high power prices or when the reliability of the grid is threatened, but also can be

utilized to resolve a transmission expansion planning problem instead of implementing

a costly and complex transmission upgrade solution. Essentially, the demand response

resources (DRRs) can relieve the capacity requirement for a load area, and thereby

relieve the import transmission requirement. In Chapter 3, the role of DRRs as an

alternative solution to the required transmission upgrades in the context of a proposed

capacity market modeled based on PJM’s capacity market model is explored. Results

show that the DRRs can indeed replace the needed transmission upgrades.

Increasing the penetration of DR, ES, and PEVs exploits the integration of RE

resources and electricity demand, which can lead to addressing resource adequacy, en-

hancing wholesale electricity market reliability and flexibility, and facilitating customer

behavior changes. In Chapter 4, a design of a novel day-ahead transactive energy

system (TES) framework is proposed for the integration of the aggregated DR and PEV

as well as other DERs including on-site RE resources and behind-the-meter ES systems

to enhance demand-side energy management. My methodology not only provides the

amount of offered DR, but also determines optimal PEV schedules to increase the

profit while considering customers’ willingness. DR providers and aggregators can

take into account the influence of the customers’ willingness on their offers by utilizing
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the proposed comfort index. Finally, to derive a tractable optimization problem, while

handling the uncertainty of electricity market clearing prices and renewable power

generations, the TES framework is reformulated as an affinely adjustable robust model

using extended linear decision rules (ELDR). Simulation results on a large-scale case

study demonstrate the applicability and effectiveness of the proposed model.



CHAPTER 2: A CRITICAL REVIEW OF ROBUST SELF-SCHEDULING FOR

GENERATION COMPANIES UNDER ELECTRICITY PRICE UNCERTAINTY

For a generation company trading in an electricity market, efficient control of the

financial risks and robustness is as vital as maximizing profit. A robust approach is

preferred since the generation company can obtain an optimal self-schedule considering

price volatility as a source of uncertainty. The goal of this chapter of the dissertation

is to implement and compare different robust approaches such as robust optimization

methods with different uncertainty sets, conditional value-at-risk based stochastic

programming, and information gap decision theory for self-scheduling of generation

companies. Moreover, all robust methods are applied to test cases with different

price behaviors in the long-run to demonstrate the performance and features of each

method. Finally, the different self-scheduling strategies based on the price data and

the generation company’s desired robustness level are proposed.

Nomenclature

A. Functions

fu(·) Generation cost function of unit u.

B. Parameters

Au Coefficient of the piecewise linear generation cost function of unit u.

au , bu , cu Coefficients of the quadratic generation cost function of unit u.

Bss′
ut Binary parameter for unit u in hour t, which is zero if ets = ets′ and

one otherwise.

CSCu Cold startup cost of unit u ($).

Difft Difference between maximum and minimum prices of each price interval
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in hour t ($/MWh).

DiffDP Difference between maximum and minimum deterministic profits of

each profit interval ($).

Et Predicted electricity price for hour t ($/MWh).

Ets Electricity price of hour t in scenario s ($/MWh).

Êt Respective range of Ẽt ($/MWh).

Emax
t , Emin

t Upper and lower limit Et ($/MWh).

HSCu Hot startup cost of unit u ($).

i, j Loop counters.

J Set of uncertain electricity market prices.

| J | Number of elements for the uncertainty set J .

MDu ,MUu Minimum down and up time of unit u, respectively (h).

Ni Number of electricity price intervals.

Nj Number of profit intervals.

N l
u Number of blocks of the piecewise linear generation cost function of

unit u.

Ns Number of scenarios.

P l
u Upper limit of block l of the piecewise linear generation cost function

of unit u (MW).

Pmax
u , Pmin

u Upper and lower limit for unit u, respectively (MW).

RDu ,RUu Ramp down and ramp up limit of unit u, respectively (MW/h).

Slu Slope of block l of the piecewise linear generation cost function of unit

u.

SDRu , SURu Shutdown and startup ramp limit of unit u, respectively (MW/h).

SU uτ Startup cost of unit u after τ hours down time ($).

T coldu Required time to cool down unit u (h).

T Total hours of the scheduling period.
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U Total number of units.

ΨB Degree of robustness for the box uncertainty set.

ΨE Degree of robustness for the ellipsoidal uncertainty set.

ΨP Degree of robustness for the polyhedral uncertainty set.

λ A non-negative weight factor that weighs conditional robust profit

against expected profit.

Πs Probability of scenario s.

α Per unit confidence level.

σ Profit deviation factor.

C. Variables

ht, qt, v Continuous auxiliary robust modeling variables.

mss′
ut Non-negative auxiliary variable used for modeling non-decreasing con-

straints.

put Power offered by unit u in hour t for energy auction; puts is put value

in scenario s (MW).

pblut Power in block l of the piecewise linear generation cost function of unit

u in hour t (MW).

rss
′

ut Free auxiliary variable used for modeling non-anticipativity constraints.

usuut Startup cost of unit u in hour t ($).

xut, yut Binary variables indicating startup and shutdown status of unit u in

hour t, respectively.

zut Binary variable indicating status of unit u in energy auction in hour t

(1/0 for accepted/not-accepted).

ẽt Uncertain electricity price in hour t ($/MWh).

βs Continuous auxiliary stochastic modeling variable.

µ Value-at-risk (VaR).

θ Uncertainty parameter for information gap decision theory.
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2.1 Introduction

2.1.1 Background and Motivation

In a competitive market environment, a generation company (GenCo), as a decision-

maker, not only tries to attain a profitable bidding strategy, but also strives to achieve

a robust position (i.e. a strategy hedged against any realization of the uncertainty

as the difference between the forecasted and actual values). The self-scheduling of

a GenCo is a complex and difficult optimization problem, not only due to the need

for meeting all equality and inequality constraints of the generating units during

the entire scheduling period, such as minimum on/off duration, generation capacity

limits, ramping up/down limits of generating units, but also due to all issues affecting

electricity market prices and increasing their volatility, such as system load forecasting,

predicting rival GenCos’ bidding strategies, and transmission congestion. In other

words, electricity market prices and their volatility are the key factors complicating

the self-scheduling problem of a GenCo. The price signal forces the on/off status of a

generation unit and its volatility significantly affects the self-scheduling problem of

a GenCo. Since the forecasted electricity market prices are subject to uncertainty

due to their high volatility [16], it is necessary to characterize the uncertainty of the

forecasted electricity market prices aiming at hedging the self-schedules of GenCos

against different realizations of uncertain electricity market prices. In other words,

a GenCo should adopt optimization methods considering uncertainty for its self-

scheduling approach. This has led to a growth in non-deterministic self-scheduling

methods. These methods include robust optimization (RO) with different uncertainty

sets [17, 18, 19, 20], conditional value-at-risk based stochastic programming (CVaR-SP)

[21, 22], and information gap decision theory (IGDT) [23, 24].

The RO methodology models uncertainty sets as bounded intervals, such as box,

ellipsoidal, and polyhedral uncertainty sets [25]. The ellipsoidal uncertainty set has
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been applied to the self-scheduling problem leading to a second-order cone model in

[17]. An ellipsoidal RO method has also been used in [18] to determine the worst-

case robust profit of the self-scheduling problem. Besides, there is some research

work concentrated on the combination of the uncertainty sets with each other. The

combination of the box and polyhedral uncertainty sets for RO as a linear optimization

framework has been presented in [26]. Moreover, this combined uncertainty set has

been used to construct the offer curve of a generation company in [19]. The RO

approach presented in [26] has been implemented to construct the bidding strategy

of a wind farm and energy storage devices in [20]. In addition, the combined box

and ellipsoidal uncertainty set for RO has been introduced in [27]. In RO methods

including various uncertainty sets, a decision-maker can change the robustness of the

solution by changing a specific parameter named the degree of robustness (DR).

The stochastic programming (SP) approach uses scenarios to model uncertainty

sources [28]. In this method, the scenarios are generated by using the probability

distribution function (PDF) of uncertain variables. Also, to model the financial risk,

conditional value-at-risk (CVaR) index has been used in the stochastic framework [29].

The CVaR-SP has been applied to the weekly self-scheduling and offering problem of

a GenCo in [5]. In this model, a forward contract is considered as the first-stage of the

CVaR-SP framework and pool market as the second-stage. The CVaR-SP method has

also been used to model the day-ahead self-scheduling of a GenCo for multi-auction

markets in [22]. The presented methodology simultaneously models two uncertainty

sources of electricity market prices and unavailability of units. In both models, the

producer, who is the decision-maker, can adjust the financial risk of the framework

and switch from risk-averse to risk-seeker GenCo and vice versa, only by changing

the weight factor of the CVaR index. In other words, CVaR-SP has the capability to

control the robustness of the solution.

The information gap decision theory (IGDT) expounds that the decisions made
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under severe uncertainty should not require more information than what is dependably

provided by the decision-maker [30]. Moreover, the IGDT obtains optimal values of

the uncertain variables with a guarantee that the objective function (OF) does not

become worse than a definite threshold. In [23], the IGDT has been used to model

non-deterministic self-scheduling problem considering electricity price uncertainty.

The IGDT has been applied to the bidding strategy problem of a GenCo in which

demand response is also modeled [24]. Note that the IGDT, like the RO approaches

and CVaR-SP, can control the robustness of the problem by changing the horizon of

uncertain variables.

2.1.2 Contributions

The main contributions of this chapter of the dissertation are:

1. The mathematical formulations of different robust approaches including Box

RO (BRO), Ellipsoidal RO (ERO), Polyhedral RO (PRO), Box and Ellipsoidal

RO (BERO), Box and Polyhedral RO (BPRO), CVaR-SP, and IGDT models

are proposed. Also, the characteristics of the uncertainty sets corresponding

to BRO, ERO, PRO, BERO, and BPRO are presented by means of relevant

theorems and proofs. Previous research work in this area have either only used

these approaches [17, 18, 19, 20, 21, 22, 23, 24] or compared these methods

without any mathematical proof [31]. Accordingly, to the best of my knowledge,

there is no existing research work that mathematically characterizes the robust

approaches.

2. Various self-scheduling strategies based on the robust approaches are proposed

for GenCos to participate in an electricity market considering the price data

and desired robustness level.

3. To correctly analyze and compare the performance of these robust methodologies

in the uncertain environment of self-scheduling, a post-optimization procedure
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is proposed. This procedure evaluates the long-run performance of the robust

methodologies encountering different realizations of uncertain electricity prices.

2.1.3 Assumptions

For simplicity and better illustration of the underlying ideas of the robust approaches

in the self-scheduling models presented in this chapter of the dissertation, the following

assumptions are made:

1. The GenCo is a price taker, in which the GenCo must accept prevailing prices

(i.e. market clearing prices) in a market without the capability of changing it.

2. Only the uncertainty source of electricity price is considered. Based on [16],

“in a power market, the price of electricity is the most important signal to all

market participants.”

3. Only energy auction is taken into account.

4. Shutdown costs of units are neglected.

These assumptions are in line with many other self-scheduling research work such as

[16, 17, 18, 19, 20, 21, 22, 32, 33].

2.2 Deterministic and Non-Deterministic Self-Scheduling Models

2.2.1 Deterministic Self-Scheduling Model

The deterministic self-scheduling model based on the mentioned assumptions can be

formulated as a mixed-integer linear programming (MILP) problem given in (2.1)-(2.9)

[34]:

max
Ω




T∑

t=1

U∑

u=1

(Et.put)−
T∑

t=1

U∑

u=1

usuut −
T∑

t=1

U∑

u=1

fu(put)

︸ ︷︷ ︸
DT


 (2.1)
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s.t.

usuut ≥ SUuτ .(zut −
τ∑

n=1

zu(t−n)) usuut ≥ 0 ∀u,∀t|τ = 1, ..., t (2.2)

SUuτ =





CSCu if τ > T coldu +MDu

HSCu if τ ≤ T coldu +MDu

∀u (2.3)

t∑

n=t−MUu+1

xun ≤ zut ∀u, ∀t (2.4)

zut +
t∑

n=t−MDu+1

yun ≤ 1 ∀u, ∀t (2.5)

zu(t−1) − zut + xut − yut = 0 ∀u, ∀t (2.6)

Pmin
u · zut ≤ put ≤ Pmax

u · zut ∀u, ∀t (2.7)

put ≤ pu(t−1) +RUu · zu(t−1) + SURu · xut ∀u, ∀t (2.8)

pu(t−1) ≤ put +RDu · zut + SDRu · yu,t ∀u, ∀t (2.9)

In (2.1), Ω includes the decision variables of the self-scheduling model: Ω = {put, zut,

xut, yut}, ∀u,∀t. The first, second and third terms of (2.1), denoted by DT , indicate

revenue from selling energy, startup cost and operation cost of GenCo, respectively.

The objective function of (2.1) represents profit of GenCo in the energy auction. The

generation cost functions of fu(.) are linearized by the piecewise linear approximation

of [35], which is given in Appendix A. Constraints (2.2) and (2.3) model startup

costs of units including the costs of hot and cold starts. Minimum up and down time

limits of units are modeled in (2.4)-(2.6) based on three-binary variable formulation

(including xut, yut, and zut), which is more effective than conventional one-binary

variable formulation [32]. Unit generation limits are represented in (2.7). Ramp up

and down rate limits of units considering startup and shutdown ramps are given in
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(2.8)-(2.9).

2.2.2 Non-deterministic Self-Scheduling Models

To model electricity price uncertainty in the self-scheduling framework, various

non-deterministic approaches comprising BRO, ERO, PRO, BERO, BPRO, CVaR-SP,

and IGDT are proposed. These approaches provide robust solutions against the

uncertainty source with the capability of modeling the solution robustness. Details of

each non-deterministic self-scheduling model are presented in the following.

2.2.2.1 BRO-based Self-Scheduling Model

In this approach, the uncertainty source is modeled using infinite-norm as a box

uncertainty set (BS):

BS =

{
ẽj ∈ [Ej − Êj, Ej + Êj] ∀j ∈ J :

∥∥∥∥
ẽ− E
Ê

∥∥∥∥
∞
≤ ΨB

}
(2.10)

where
∥∥∥∥
ẽ− E
Ê

∥∥∥∥
∞

= max

{∣∣∣∣
ẽ1 − E1

Ê1

∣∣∣∣ ,
∣∣∣∣
ẽ2 − E2

Ê2

∣∣∣∣ , ... ,
∣∣∣∣∣
ẽ|J | − E|J |

Ê|J |

∣∣∣∣∣

}
.

In my self-scheduling model, j = t and |J | = T , thus:

BS =

{
ẽt ∈

[
Et − Êt, Et + Êt

]
∀t :

∣∣∣∣
ẽt − Et
Êt

∣∣∣∣ ≤ ΨB∀t
}

(2.11)

The same value of box DR, i.e. the same value of ΨB ∈ [0, 1], is adopted for all

uncertain electricity prices to control the size of BS. DR in RO approaches gives the

decision-maker the capability of changing the robustness of the RO solution.

To construct the BRO-based robust counterpart of the deterministic self-scheduling
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model (2.1)-(2.9), only (2.1) is changed since only (2.1) includes the uncertain variables:

max
Ω

min
ẽt∈BS

[
T∑

t=1

U∑

u=1

(ẽt · put)−
T∑

t=1

U∑

u=1

usuut

−
T∑

t=1

U∑

u=1

fu(put)

]
, s.t. (2.2)− (2.9)

(2.12)

Considering BS given in (2.11), the bi-level optimization problem of (2.12) can be

reformulated as the single-level optimization problem of (2.13) [25]:

max

[
DT −ΨB ·

T∑

t=1

U∑

u=1

(
Êt · put

)]
, s.t. (2.2)− (2.9) (2.13)

where DT is as given in (2.1). The BRO-based self-scheduling model of (2.13) has

MILP form.

2.2.2.2 ERO-based Self-Scheduling Model

Through ERO, the ellipsoidal uncertainty set of electricity market prices, i.e. ES,

is modeled using Euclidean norm (2-norm) as given below:

ES =

{
ẽj ∈

[
Ej − Êj, Ej + Êj

]
∀j ∈ J :

∥∥∥∥
ẽ− E
Ê

∥∥∥∥
2

≤ ΨE

}
(2.14)

where
∥∥∥∥
ẽ− E
Ê

∥∥∥∥
2

=

√[
ẽ− E
Ê

]
.

[
ẽ− E
Ê

]
=

√√√√
|J |∑

j=1

[
ẽj − Ej
Êj

]2

.

Hence,

ES =



ẽt ∈

[
Et − Êt, Et + Êt

]
∀t :

√√√√
T∑

t=1

[
ẽt − Et
Êt

]2

≤ ΨE



 (2.15)

In the ERO approach, the ellipsoidal DR of ΨE ∈ [0,
√
|J |] (i.e., [0,

√
T ]) controls the

solution robustness. The robust counterpart of the ERO approach can be obtained
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from (2.12) by changing the argument of the ’min’ operator from ẽt ∈ BS to ẽt ∈ ES

. Subsequently, the ERO-based robust counterpart can be constructed as follows [25]:

max


DT −ΨE ·

√√√√√
T∑

t=1



[
Êt

]2

·
[

U∑

u=1

put

]2




 , s.t. (2.2)− (2.9) (2.16)

where DT is as given in (2.1). The ERO-based non-deterministic self-scheduling

model of (2.16), which is a mixed-integer second-order cone programming (MISOCP)

model with convex (hull) [36], is solved as a mixed-integer quadratic constrained

programming (MIQCP) problem [37].

2.2.2.3 PRO-based Self-Scheduling Model

PRO uses 1-norm to formulate the polyhedral uncertainty set PS of electricity

market prices as given in (2.17):

PS =

{
ẽj ∈

[
Ej − Êj, Ej + Êj

]
∀j ∈ J :

∥∥∥∥
ẽ− E
Ê

∥∥∥∥
1

≤ ΨP

}
(2.17)

where
∥∥∥∥
ẽ− E
Ê

∥∥∥∥
1

=

∣∣∣∣
ẽ1 − E1

Ê1

∣∣∣∣+
∣∣∣∣
ẽ2 − E2

Ê2

∣∣∣∣+ ...+

∣∣∣∣∣
ẽ|J | − E|J |

Ê|J |

∣∣∣∣∣ , therefore

PS =

{
ẽt ∈

[
Et − Êt, Et + Êt

]
∀t :

T∑

t=1

∣∣∣∣
ẽt − Et
Êt

∣∣∣∣ ≤ ΨP

}
(2.18)

The polyhedral DR of ΨP ∈ [0, |J |] (i.e. [0, T ]) is used to control the solution robustness.

Considering PS instead of BS in (2.12), the following PRO-based robust counterpart

can be obtained [25]:

max [DT − (ΨP · v)] (2.19)

s.t. v ≥ Êt ·
U∑

u=1

put v ≥ 0 , ∀t, (2.2)− (2.9) (2.20)

where DT is as given in (2.1). The PRO-based self-scheduling model of (2.19)-(2.20)

has MILP form.



21

The last term within the brackets of (2.13), (2.16) and (2.19) represents the pro-

tection functions (PFs). By changing box DR, ellipsoidal DR, and polyhedral DR

(i.e. ΨB, ΨE, and ΨP ), the magnitude of the PF and so the solution robustness of the

BRO-based, ERO-based, and PRO-based non-deterministic self-scheduling models,

respectively, can be adjusted.

2.2.2.4 BERO-based Self-Scheduling Model

BERO employs the intersection of box and ellipsoidal uncertainty sets, denoted by

BES, presented in (2.21):

BES = BS ∩ ES =
{
ẽt ∈

[
Et − Êt, Et + Êt

]
∀t :

∣∣∣∣
ẽt − Et
Êt

∣∣∣∣ ≤ ΨB ∀t,

√√√√
T∑

t=1

[
ẽt − Et
Êt

]2

≤ ΨE





(2.21)

As shown in [38], the following property for infinite-norm and 2-norm of the n-

dimensional vector X holds:

|X|∞ ≤ |X|2 ≤
√
n · |X|∞ (2.22)

Similarly, for the uncertain electricity market prices during the scheduling period (i.e.,

ẽt for t = 1, ..., T ), it can be concluded that:

∥∥∥∥
ẽ− E
Ê

∥∥∥∥
∞
≤
∥∥∥∥
ẽ− E
Ê

∥∥∥∥
2

≤
√
T ·
∥∥∥∥
ẽ− E
Ê

∥∥∥∥
∞

(2.23)

Also,
∥∥∥ ẽ−E

Ê

∥∥∥
∞
≤ ΨB and

∥∥∥ ẽ−E
Ê

∥∥∥
2
≤ ΨE, as shown in (2.21). Accordingly, in the

proposed BERO model, ΨE ∈ [ΨB,ΨB.
√
T ] where ΨB ∈ [0, 1].

The robust counterpart of BERO method, presented in (2.24)-(2.25), is obtained by

replacing BS with BS∩ES in (2.12). The last two terms of (2.24) are the combination

of the last terms of (2.13) and (2.16); (2.25) presents the relationship among power
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and auxiliary variables of the PFs of BERO [27]. The BERO model of (2.24)-(2.25) is

an MISOCP problem with convex (hull) [36], which is solved as an MIQCP [37].

max


DT −

(
ΨB ·

T∑

t=1

ht

)
−


ΨE ·

√√√√
T∑

t=1

(qt)
2




 (2.24)

s.t. ht + qt ≥ Êt.
U∑

u=1

put ht ≥ 0, qt ≥ 0,∀t, (2.2)− (2.9) (2.25)

where DT is as given in (2.1).

2.2.2.5 BPRO-based Self-Scheduling Model

The intersection of box and polyhedral uncertainty sets, denoted as BPS, is used

in BPRO approach [26]:

BPS = BS ∩ PS =
{
ẽt ∈

[
Et − Êt, Et + Êt

]
∀t :

∣∣∣∣
ẽt − Et
Êt

∣∣∣∣ ≤ ΨB ∀t,
T∑

t=1

∣∣∣∣
ẽt − Et
Êt

∣∣∣∣ ≤ ΨP

} (2.26)

where similar to the DRs of BERO in Subsection 2.2.2.4, it can be shown that the DRs

should satisfy ΨB ∈ [0, 1] and ΨP ∈ [ΨB,ΨB. T ]. The robust counterpart of BPRO

approach is given in (2.27)-(2.28), which is an MILP problem [26]:

max

[
DT − (ΨP · v)−

(
ΨB ·

T∑

t=1

ht

)]
(2.27)

s.t. v + ht ≥ Êt ·
U∑

u=1

put v ≥ 0 , ht ≥ 0 ∀t, (2.2)− (2.9) (2.28)

where DT is as given in (2.1).

2.2.2.6 Stochastic Programming-based Self-Scheduling Model

The stochastic programming framework models uncertain variables by considering

their various likely realizations known as scenarios. Here, two-stage CVaR-based



23

stochastic programming (CVaR-SP) approach is used to model non-deterministic

self-scheduling problem. Within this approach, which is given in (2.29)-(2.35), the

first-stage including commitment decision variables, and the second-stage comprising

dispatch decision variables are scenario independent/dependent, respectively:

max

[
(1 + λ)

{
Ns∑

s=1

Πs

(
T∑

t=1

U∑

u=1

(Ets · puts)

−
T∑

t=1

U∑

u=1

fu(puts)

)
−

T∑

t=1

U∑

u=1

usuut

}

− λ

(
µ+

1

1− α
Ns∑

s=1

Πsβs

)]
(2.29)

s.t. (2.2)-(2.6)

Pmin
u · zut ≤ puts ≤ Pmax

u · zut ∀u, ∀t, ∀s (2.30)

puts ≤ pu(t−1)s +RUu · zu(t−1) + SURu · xut ∀u,∀t, ∀s (2.31)

pu(t−1)s ≤ puts +RDu · zut + SDRu · yut ∀u, ∀t, ∀s (2.32)

(puts − puts′) ≥ mss′
ut . (Ets − Ets′) ∀u, ∀t, ∀s, s′ (2.33)

(puts − puts′) = rss
′

ut .
t∑

n=1

Bss′
un ∀u, ∀t, ∀s, s′ (2.34)

βs ≥
Ns∑

s′=1

πs′

[
T∑

t=1

U∑

u=1

(Ets′ · puts′)−
T∑

t=1

U∑

u=1

fu(puts′)

]

−
[

T∑

t=1

U∑

u=1

(Ets · puts)−
T∑

t=1

U∑

u=1

fu(puts)

]
− µ βs ≥ 0 ∀s (2.35)

The compact form of (2.29) is max [(1 + λ).EP− λ.CVaR] obtained from max [EP+

λ.CRP] where EP is the expected profit, CRP is the conditional robust profit, and λ is

a weight factor to model the financial risk of the self-scheduling problem. Higher/lower

values of λ lead to more risk-averse/risk-seeker models. In this stochastic approach,

the constraints (2.2)-(2.6) of the deterministic model are directly applied, while the
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scenario-based version of the constraints (2.7)-(2.9), in the form of (2.30)-(2.32), is

considered. Constraints (2.33) and (2.34) present non-decreasing and non-anticipativity

constraints, respectively, which are essential to obtain reasonable solution in the SP

model. In non-decreasing constraint (2.33), the non-negative auxiliary variable mss′
ut is

used to ensure that puts is more than puts′ if Ets is more than Ets′ . In non-anticipativity

constraint (2.34), the binary parameter Bss′
un is 0, if the realization of the uncertain

price variables in hour t are the same in two scenarios s and s′, otherwise 1. The

free auxiliary variable rss′ut is used to ensure that puts and puts′ can take any value if
t∑

n=1

Bss′
un = 0, otherwise puts = puts′ [22]. The CVaR constraint of the model is shown

in (2.35). For the mathematical details of this approach, the interested reader can

refer to [22]. The CVaR-SP model of (2.29)-(2.35) has MILP form.

2.2.2.7 IGDT-based Self-Scheduling Model

The IGDT focuses on decision making under severe uncertainty. Under severe

lack of information, uncertainty is considered as the gap between what is known

(historical data) and what needs to be known (actual data) to make competent

decisions [30]. There are different IGDT models such as Energy-bound, Minkowski-

norm, Slope-bound, Fourier-bound, Hybrid info-gap, and so forth, which are quadratic

or non-linear [30]. Since the envelope-bound model is a proficient linear and convex

approach to characterize the forecast uncertainties [30], in line with previous research

work in the power system area [23, 24, 39, 40, 41, 42], this uncertainty model is used

in this chapter of the dissertation instead of other non-linear and non-convex ones

to characterize the forecast uncertainties of electricity prices in the self-scheduling

problem of GenCos. The uncertainty set of envelope-bound-based IGDT, denoted by

IS, is as follows:

IS =

{
ẽt :

∣∣∣∣
ẽt − Et
Et

∣∣∣∣ ≤ θ ∀t
}

(2.36)
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The IGDT includes robust and opportunistic approaches to quantify pernicious and

propitious variations of uncertain variables by means of robustness and opportuneness

immunity functions [30]. The robust approach in the self-scheduling problem of

GenCos focuses on pernicious variations of uncertain electricity prices on the profit

(i.e. the realized electricity prices are lower than their forecasted values) and finds

the greatest variations of the uncertain electricity prices when the minimum profit

is not lower than a critical value (with guarantee). The opportunistic approach in

the self-scheduling problem of GenCos focuses on propitious variations of uncertain

electricity prices on the profit (i.e. the realized electricity prices are higher than their

forecasted values) and finds the lowest variations of the uncertain electricity prices

when the maximum profit is higher than a target value (but without guarantee). This

research focuses on the robust approach of IGDT, which a risk-averse decision-maker

desires to use.

The generic form of robust approach is as follows:

max θ (2.37)

s.t. minimum requirements are always satisfied

Thus, the robust IGDT model of the self-scheduling problem becomes as follows:

(2.37)

s.t.
T∑

t=1

U∑

u=1

[(1− θ)Et.put]−
T∑

t=1

U∑

u=1

usuut

−
T∑

t=1

U∑

u=1

fu (put) ≥ (1− σ) .DP, (2.2)-(2.9)

(2.38)

where DP is the deterministic profit obtained from (2.1)-(2.9). The IGDT model has

a mixed-integer non-linear programming (MINLP) form.
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2.2.3 Construction of Hourly Offer Curve

The construction of hourly offer curve is designed based on the price forecast

confidence intervals, since confidence intervals for price forecasts can capture price

volatility better than point price forecasts [43]. Then, the GenCos can efficaciously

control the profit volatility. For the sake of fair comparisons, the same historical prices

are used to find Emin
t and Emax

t of the confidence intervals for all non-deterministic

self-scheduling models presented in the previous section.

2.2.3.1 RO-based Hourly Offer Curve for Models 1-5

1. Set initial values: i = 0, Et = Emax
t ∀t, DR = DRmax. The highest DR is

considered, since price forecast error typically occurs in all hours of a day

[19, 44, 45].

2. Set Diff t =
(
Emax
t − Emin

t

)/
Ni ∀t.

3. Based on the models 1-5, solve the robust optimization approaches for the

interval:

Et ∈ [Emax
t − i×Difft, Emax

t ] ∀t [19, 33].

4. i = i+ 1, if i < Ni, go to Step 3, otherwise the offer curve is obtained.

2.2.3.2 SP-based Hourly Offer Curve for Model 6

1. Set Diff t =
(
Emax
t − Emin

t

)/
Ns ∀t and Πs = 1/Ns [46, 47].

2. Set Ets = Emax
t − s×Difft ∀t,∀s ∈ Ns.

3. Solve the CVaR-SP model of (2.29)-(2.35) by means of Ets ∀t,∀s ∈ Ns.

2.2.3.3 IGDT-based Hourly Offer Curve for Model 7

1. Set j = 0, Et = Emax
t ∀t, also obtain DPmax and DPmin as deterministic profit

for Emax
t and Emin

t , respectively.
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2. Set DiffDP=
(
DPmax −DPmin

)/
Nj.

3. DP = DPmax and σj = (j ×DiffDP )/DPmax.

4. Solve the IGDT model of (2.37)-(2.38) for σj.

5. j = j + 1, if j < Nj, go to Step 3, otherwise the offer curve is obtained.

2.2.4 Post-Optimization Procedure

To correctly and practically assess the efficiency of the non-deterministic self-

scheduling approaches, their performance should be evaluated in the real market

environment, i.e. with the realized market prices. To address this issue, a post-

optimization procedure (POP) is proposed in this chapter of the dissertation to

determine the actual profit of each approach in different real-market-environment

cases. After constructing the hourly offer curve of every method, the real clearing

prices are used in the POP to determine the actual profit associated with each offer

curve. For every hourly offer curve, the real clearing price of the market determines

the accepted power from the GenCo, and thereby its profit for that hour.

For clarity, the schematic of the proposed self-scheduling framework including

pre-optimization, optimization, and post-optimization procedures, is illustrated in

Figure 2.1.
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Figure 2.1: Schematic of the proposed self-scheduling framework.
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2.3 Case Studies

In this section, all non-deterministic self-scheduling methods discussed in the

previous section are implemented on the IEEE 30-bus [48] and IEEE 118-bus test

systems [49] (the generator data for two test systems is presented in Appendix B).

It is assumed the GenCo has 6, and 54 thermal generating units in the first and

second test systems, respectively, and that the data obtained from [48, 49] pertains

to these units. Real price data for four months, including January, April, July, and

October of the years 2010 to 2013 in the electricity market of New York Independent

System Operator (NYISO) [50] is used as the historical data to determine the interval
[
Emin
t , Emax

t

]
. Additionally, the real price data of these four months of the year 2014

in NYISO electricity market is used as the clearing price for the offer curves. Thus,

the test period, i.e. the four months of the year 2014, is different from the setup

period. Accordingly, the performance of each non-deterministic self-scheduling method

is evaluated by the out-of-sample data. For each hour of the test period, i.e. the four

months of the year 2014, the obtained interval
[
Emin
t , Emax

t

]
is shifted such that its

mean value becomes the price forecast of that hour [16]. Every non-deterministic

self-scheduling model uses the shifted price interval to construct its hourly offer curve

as described in the previous section. Moreover, Ni = 100, Ns = 100, Nj = 100 are

considered for RO approaches, CVaR-SP model and IGDT method, respectively. In

line with previous research work in the area, such as [19], Ni is considered equal to 100.

And for the sake of fair comparisons, Nj and Ns are also considered equal to 100. In

this case, the offer curves of all robust approaches would have 100 blocks. In CVaR-SP

model, α = 0.99 and λ = 100 are adopted [21, 22]. All numerical experiments of this

chapter of the dissertation have been performed by CPLEX solver (for MILP and

MISOCP models) and BARON solver (for MINLP models) in GAMS environment [51]

on a 64-bit Windows-based server with 60 GB of RAM and 24 Intel Xeon processors

clocking at 3.33 GHz.
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It is assumed in the RO models, DR = DRmax in the numerical experiments of this

section based on the reason described in the previous section.

Tables 2.1 and 2.2 present the POP results of the deterministic and robust approaches

for the four months of the year 2014 in NYISO. In January, July, and October there

are 744 (24×31), and in April there are 720 (24×30) hourly offer curves. It is seen that

for DR = DRmax the profits of BRO, BERO, and BPRO become the same (the proof

is provided in Appendix C). Moreover, for the same DR, ERO is less conservative than

PRO and BRO is less conservative than ERO (the proof is provided in Appendix D).

In each column of Tables 2.1 and 2.2, the bolded value expresses the maximum profit

among all discussed methods and the related technique is indicated in the last row.

Table 2.1: Actual profit of deterministic and robust approaches for four months using
the IEEE 30-bus test system ($)

App. DRMax 0.75×DRMax 0.50×DRMax 0.25×DRMax

Deterministic 51,089,643 10,685,023 4,046,865 3,287,281

BRO 52,708,930 11,529,019 4,308,318 3,400,501

ERO 51,822,839 10,765,150 4,224,054 3,381,691

PRO 50,705,777 10,430,887 3,957,208 3,271,716

BERO 52,708,930 11,529,019 4,308,318 3,400,501

BPRO 52,708,930 11,529,019 4,308,318 3,400,501

CVaR-SP 60,425,869 10,625,768 4,130,990 3,367,875

IGDT 44,342,860, 9,743,124 3,187,930 2,783,550

Selected CVaR-SP
BRO/BERO BRO/BERO BRO/BERO

BPRO BPRO BPRO
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Table 2.2: Actual profit of deterministic and robust approaches for four months using
the IEEE 118-bus test system ($)

App. DRMax 0.75×DRMax 0.50×DRMax 0.25×DRMax

Deterministic 471,258,168 61,072,434 18,601,805 15,178,593

BRO 474,637,872 62,772,835 20,595,063 15,927,308

ERO 472,270,721 62,241,532 19,527,073 15,624,733

PRO 470,798,359 60,612,528 18,337,130 14,680,805

BERO 474,637,872 62,772,835 20,595,063 15,927,308

BPRO 474,637,872 62,772,835 20,595,063 15,927,308

CVaR-SP 564,601,839 61,902,364 19,117,962 15,405,367

IGDT 352,420,273 54,543,388 17,133,489 14,027,273

Selected CVaR-SP
BRO/BERO BRO/BERO BRO/BERO

BPRO BPRO BPRO

To more accurately evaluate the POP results, three days of the test period with

different price behaviors have been considered. The actual clearing prices realized in

the market are mostly higher than, mostly lower than, and close to the mean values

of the expected ranges in these three test days, which are January 18, April 14, and

July 7, respectively. It is worth to mention that these evaluations can be generalized

as all days can be categorized into the above-mentioned three types of days.

Tables 2.3 and 2.4 show the impact of different DR values on the POP results of the

RO approaches for the three days in 2014 in NYISO. By decreasing DR from DRmax

to 0.25 × DRmax (in the steps of 0.25 × DRmax), the conservation level of each RO

approach reduces. The following points can be seen from Tables 2.3 and 2.4:

1. On the first test day (i.e. January 18), the actual clearing prices realized in the

market are mostly higher than the mean values of the expected ranges. In this

case, the less/more conservative methods lead to higher/lower profit. Therefore,
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the least conservative approach, i.e. BRO, obtains the highest profit on this test

day.

2. On the second test day (i.e. April 14), the actual clearing prices are mostly lower

than the mean values of the expected ranges. On this test day, the less/more

conservative methods lead to lower/higher profit and the most conservative

approach, i.e. PRO, obtains the highest profit.

3. On the third test day (i.e. July 7), the actual clearing prices are close to the

mean values of the expected ranges. On this day, ERO, which is less conservative

than PRO and more conservative than BRO, leads to the highest profit.

4. BERO/BPRO are less conservative than ERO/PRO and more conservative than

BRO.
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Table 2.3: Actual profit of RO approaches vs. DR for the IEEE 30-bus test system ($)

Day App. DRMax 0.75×DRMax 0.50×DRMax 0.25×DRMax

January 18th

BRO 329,503 337,932 345,425 351,324

ERO 317,545 323,951 332,168 341,873

PRO 283,910 305,980 314,775 323,031

BERO 329,503 335,902 339,571 343,320

BPRO 329,503 334,194 336,042 342,882

April 14th

BRO 515,700 512,371 510,148 507,274

ERO 519,315 517,854 514,125 512,969

PRO 525,437 522,761 519,186 516,316

BERO 515,700 513,410 511,845 510,109

BPRO 515,700 514,872 512,768 511,623

July 7th

BRO 430,610 431,485 432,811 433,328

ERO 437,693 438,729 440,004 441,983

PRO 424,853 425,982 428,552 429,250

BERO 430,610 432,942 434,710 435,532

BPRO 430,610 432,254 433,558 434,390
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Table 2.4: Actual profit of RO approaches vs. DR for the IEEE 118-bus test system
($)

Day App. DRMax 0.75×DRMax 0.50×DRMax 0.25×DRMax

January 18th

BRO 1,698,159 1,731,237 1,781,518 1,797,305

ERO 1,619,552 1,662,324 1,699,042 1,746,495

PRO 1,269,494 1,528,546 1,645,453 1,686,445

BERO 1,698,159 1,721,165 1,745,129 1,773,516

BPRO 1,698,159 1,715,569 1,730,930 1,764,231

April 14th

BRO 3,216,165 3,186,802 3,114,267 3,093,979

ERO 3,247,017 3,226,484 3,206,519 3,173,068

PRO 3,347,114 3,309,194 3,246,771 3,220,232

BERO 3,216,165 3,196,611 3,146,469 3,114,757

BPRO 3,216,165 3,207,036 3,177,934 3,147,114

July 7th

BRO 1,946,799 1,949,798 1,952,537 1,953,489

ERO 2,131,164 2,139,315 2,141,716 2,145,541

PRO 1,881,772 1,891,269 1,906,837 1,925,260

BERO 1,946,799 1,955,492 1,961,201 1,965,030

BPRO 1,946,799 1,951,798 1,955,489 1,959,772
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Table 2.5: Actual profit of robust approaches vs. forecast error for the IEEE 30-bus
test system ($)

Forecast error App. January 18th April 14th July 7th

Original error

Deterministic 307,440 516,092 432,120

BRO 329,503 515,700 430,610

ERO 321,545 519,315 437,693

PRO 286,910 525,437 424,853

CVaR-SP 318,724 519,186 435,934

IGDT 280,265 521,883 421,785

Selected BRO PRO ERO

0.5×Original error

Deterministic 343,585 537,960 462,087

BRO 341,033 521,564 451,470

ERO 329,684 543,850 460,532

PRO 296,350 532,990 443,694

CVaR-SP 355,480 556,273 487,425

IGDT 288,540 526,500 438,224

Selected CVaR-SP CVaR-SP CVaR-SP

2×Original error

Deterministic 249,378 486,124 401,356

BRO 258,638 490,508 404,950

ERO 263,152 497,550 407,327

PRO 269,789 503,685 410,540

CVaR-SP 260,850 494,442 405,898

IGDT 275,780 506,967 412,890

Selected IGDT IGDT IGDT
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Table 2.6: Actual profit of robust approaches vs. forecast error for the IEEE 118-bus
test system ($)

Forecast error App. January 18th April 14th July 7th

Original error

Deterministic 1,407,548 3,225,150 1,972,900

BRO 1,698,159 3,216,165 1,946,799

ERO 1,619,552 3,247,017 2,131,164

PRO 1,269,494 3,347,114 1,881,772

CVaR-SP 1,475,327 3,238,478 2,057,170

IGDT 1,196,083 3,249,557 1,475,970

Selected BRO PRO ERO

0.5×Original error

Deterministic 1,886,543 4,745,230 2,445,980

BRO 1,795,289 4,561,480 2,141,588

ERO 1,755,845 4,878,188 2,284,994

PRO 1,362,530 4,674,811 2,044,199

CVaR-SP 2,075,485 5,043,600 3,408,220

IGDT 1,240,546 4,664,170 1,991,751

Selected CVaR-SP CVaR-SP CVaR-SP

2×Original error

Deterministic 987,860 2,847,950 1,114,752

BRO 1,008,476 2,908,185 1,136,588

ERO 1,067,628 2,971,476 1,164,949

PRO 1,116,361 2,967,949 1,279,036

CVaR-SP 1,045,623 2,938,120 1,150,422

IGDT 1,142,334 3,046,693 1,377,099

Selected IGDT IGDT IGDT

Tables 2.5 and 2.6 demonstrate the actual profit of BRO, ERO, PRO, CVaR-SP,

and IGDT obtained from POP considering different price forecast errors. Note that
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according to Appendix C, BRO, BERO, and BPRO lead to the same profit for

DR = DRmax.

In each column of Tables 2.5 and 2.6, the bolded value shows the maximum profit

among all non-deterministic approaches and the associated method is indicated in the

last row. Based on Tables 2.5 and 2.6, it is concluded that:

1. The actual profit of the deterministic model is not always less/more than that

of the non-deterministic models in all cases. The deterministic actual profit

in several cases is higher/lower than the non-deterministic actual profits, since

those non-deterministic models are more/less conservative than the deterministic

model, or price forecast is more/less accurate. While price forecast is less accurate

(e.g. forecast error = 2×original error), the actual profit of the deterministic

model is less than that of the non-deterministic models. Therefore, improving

the price forecast accuracy increases the deterministic profit.

2. With the original price forecast errors, i.e. the errors obtained from the employed

price forecast method [52], BRO, PRO, and ERO attain the highest profit in

January 18, April 14, and July 7, respectively.

3. If half of the original price forecast errors are considered, i.e. if 200% more

accurate price forecast method could be used, the CVaR-SP obtains the highest

profit in the three test days. This can be explained as follows. The performance

of CVaR-SP depends heavily on its scenarios. When the price forecast errors

become half, much more accurate scenarios can be constructed and so the

performance of CVaR-SP greatly improves. Indeed, with half forecast errors, the

performance of all non-deterministic approaches of Tables 2.5 and 2.6 improve,

but the amount of improvement of CVaR-SP is more than the other methods

such that it becomes the most profitable method in this case.

4. If the price forecast errors doubles, i.e. if 200% less accurate price forecast method
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is used, the performance of all non-deterministic approaches of Tables 2.5 and

2.6 degrades. In this case, which is just the opposite of the previous case, the

performance of CVaR-SP degrades more than the other approaches such that it

obtains the lowest profits. On other hand, the IGDT method that gained the

lowest improvement in the previous case, suffers from the lowest degradation in

this case, since it is the most robust non-deterministic approach in Tables 2.5 and

2.6. The IGDT method builds offer curves for the greatest level of uncertainty

which guarantees the profit does not become worse than a definite threshold.

The above points can help a GenCo select the most advantageous self-scheduling

approach based on the price information and price forecast method that it has as well

as the robustness level that it desires.

The offer curves of unit 39 in hour 10 on January 18th, April 14th, and July 7th

are illustrated in Figure 2.2. These offer curves are associated with the results of the

original forecast error of the IEEE 118-bus test system presented in Table 2.6. The

offer curves in Figure 2.2 demonstrate that BRO, PRO, and ERO compared to other

approaches obtain highest profits for unit 39 in hour 10 on January 18th, April 14th,

and July 7th, respectively.

Table 2.7 compares the computation time of different robust methodologies for

one scheduling day. Table 2.7 shows that a) the MILP approaches of BRO, PRO,

BPRO, and CVaR-SP have low computation times in the range of 160s to 334s, b)

the MISOCP approaches of ERO and BERO have higher computation times of 3,556s

and 7,355s, c) the MINLP approach of IGDT has the highest computation time of

24,729s based on the complexity of their models.
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Figure 2.2: Offer curves of unit 39 in hour 10 on January 18th, April 14th, and July
7th.

Table 2.7: Computation time (s) of the robust approaches on the test case

App. BRO ERO PRO BERO BPRO CVaR-SP IGDT

Time 232 3,556 334 7,355 261 160 24,729

Table 2.8 presents a summary of the self-scheduling strategies for different real-

market-environment cases. The self-scheduling strategies can help GenCos in making

the most appropriate self-scheduling decision based on the price information and

price forecast method that they have adopted as well as the robustness level that

they desire in their solution. In Table 2.8, “Actual” term refers to the actual clearing

prices realized in the market and “Mean Value” term refers to the mean values of the

expected ranges. Note that since price forecast error typically occurs in all hours of

a day, it is assumed in the RO models DR = DRmax, and according to Appendix C,

BRO, BERO, and BPRO lead to the same profit for DR = DRmax.
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Table 2.8: Summary of the self-scheduling strategies for difference real-market-
environment cases

Cases

Strategies
BRO ERO PRO CVaR-SP IGDT

More Accurate Forecasted Price •

Actual > Mean Value •

Actual ≈ Mean Value •

Actual < Mean Value •

Less Accurate Forecasted Price •

2.4 Conclusion

Various non-deterministic self-scheduling approaches have been presented in recent

years. These approaches are mostly based on RO methodologies, SP frameworks and

IGDT models. Which of the self-scheduling methods is appropriate for a specific

GenCo depends on many factors including the company’s objectives, model complexity,

available data, and computation time. The main motivation of this study was to

evaluate and compare the performance of various robust self-scheduling methodologies.

These robust methodologies have different uncertainty modeling approaches, as well

as a range of tools for controlling the conservativeness of their solutions.

In addition to recasting the robust methodologies in more applicable forms, offer

curve constructing strategy for each method has been presented. Moreover, to practi-

cally evaluate the performance of various methodologies, a POP has been proposed to

determine the actual profit of each method in different real-market-environment cases.

The conclusions drawn from the evaluations can help GenCos select and model the

most appropriate non-deterministic self-scheduling approach based on the price infor-

mation and price forecast method that they have adopted, as well as the robustness

level that they desire in their solution.
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Analyzing and comparing the performance of the non-deterministic approaches

for multi-auctions self-scheduling model as well as considering different sources of

uncertainty, such as electricity market price, renewable resources and so on, are set

aside to be studied as future work [53].



CHAPTER 3: The ROLE OF DEMAND RESPONSE AS AN ALTERNATIVE

TRANSMISSION EXPANSION SOLUTION IN A CAPACITY MARKET

Demand response cannot only be used as a power supply resource to produce a

negawatt in high power prices or when the reliability of the grid is threatened, but

can also be applied to resolve a transmission expansion planning problem instead

of implementing a costly and complex transmission upgrade solution. Essentially,

the demand response resources (DRRs) can relieve the capacity requirement for a

load area, and thereby relieve the import transmission requirement. This section of

the dissertation explores the role of DRRs as an alternative solution to the required

transmission upgrades in the context of a proposed capacity market modeled based on

Pennsylvania-New Jersey-Maryland (PJM) capacity market model. Numerical results

show that the DRRs can indeed replace the needed transmission upgrades.

Nomenclature

A. Indices

b Index of offering/bidding curve’s blocks.

c Index of curtailment service providers.

l Index of load deliverability areas.

r Index of generation resources.

B. Parameters

CETLl Capacity Emergency Transfer Limit which is the transmission import

capability limit for locational deliverability area (LDA) l.

CETOl Capacity Emergency Transfer Objective which is the transmission import

capability requirement for LDA l.
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PDR,max
c,b Upper limit of the bidding demand response resource capacity of block b

of curtailment service provider c.

PGR,max
r,b Upper limit of the offering generation resource capacity of block b of

generation recourse r.

PVRR,max
l,b Upper limit of the bidding variable resource requirement of block b of

LDA l.

RelReql Reliability requirement in LDA l.

UCAPl Unforced Capacity which is the capacity availability rating in LDA l.

πDR
c,b Bidding price of block b of curtailment service provider c.

πGR
r,b Offering price of block b of generation recourse r.

πTU
l Transmission upgrade price of LDA l.

πVRR
l,b Bidding price of variable resource requirement of block b of LDA l.

C. Sets

B Set of offering/bidding curve’s blocks.

C Set of curtailment service providers.

L Set of load deliverability areas.

R Set of generation resources.

D. Variables

PDR
c,b Bidding demand response resource capacity of block b of curtailment

service provider c.

PGR
r,b Offering resource capacity of block b of generation recourse r.

PTU
l Transmission upgrade capacity of LDA l.

PVRR
l,b Bidding variable resource requirement of block b of LDA l.

P
VRR_DR
l,b Auxiliary variable to model variable resource requirement decrement due

to demand response resource bidding.
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3.1 Introduction

3.1.1 Background and Motivation

In some markets such as Pennsylvania-New Jersey-Maryland (PJM), and Indepen-

dent System Operator New England (ISO-NE), capacity markets are also developed

in addition to the most well-known energy markets (day-ahead and real-time markets)

and ancillary services market. The capacity market is designed to guarantee that

adequate amounts of necessary resources can be available to ensure the reliability of

the grid. Generally, to mitigate market power concerns, the energy price or bids in

some energy markets are capped which allows generators to cover only their short-term

variable costs. To cover long-term fixed costs, a second revenue stream is developed

via a capacity market. As an augmented mechanism, capacity markets can increase

the revenues received by the cleared generators in the market. This is in addition

to the revenue received by the same generators in the energy markets. While the

majority of the revenue for each participating generator comes from energy markets,

the revenue that can be received from the capacity market can substantially improve

the business viability and profitability of the generator.

The important roles that demand response (DR) plays in a major wholesale elec-

tricity market have been recognized gradually and more widely. It is widely believed

that the DR can bring many benefits to the system. The most important benefit

of demand response is improved resource-efficiency of electricity production due to

closer alignment between customers’ electricity prices and the value they place on

electricity [13]. Notably, Federal Energy Regulatory Commission (FERC) Order 745

sets standards for demand response practices and pricing in wholesale markets and

brought the practice under the agency’s jurisdiction. This federal regulatory authority

to regulate demand response programs in wholesale markets was recently upheld by

U.S. Supreme Court which reaffirmed that demand response is primarily a wholesale

market function [12]. In fact, in all electricity markets in the US, DR can participate
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in any relevant energy market in which DR can influence the system reliability and

the market price on equal footing with the supply side resources. The same DRs are

also allowed to participate in any capacity market. Similar to the situation of DR

role in energy markets, DR can also impact the system reliability and market clearing

price in capacity markets.

In [54], a demand curve-based approach instead of a fixed demand is proposed for

PJM capacity market which makes revenues more predictable for generators, and

reduce consumers costs. In [55], the authors evaluate the application of capacity

market for hydrothermal systems with a significant portion of hydro generation. A

game-theory based simulation is presented to assess the performance of the model

under different levels of competitive conditions. A dynamic capacity investment

framework is proposed in [56] to evaluate the impact of different capacity market

design scenarios, and the results are compared based on affordability, reliability, and

sustainability criterion. The authors in [57] present an investigation on the process

and trends of demand response procurement and energy efficiency in the New England

capacity market, and the design of the integration mechanisms. The integration of

DR into PJM capacity market incremental auction is proposed in [58], and its impact

on the market clearing solution and prices is discussed. Therefore, to the best of my

knowledge, there is no existing research work that uses DR in the capacity market as

a transmission expansion planning solution.

3.1.2 Contributions

The main contributions of this chapter of the dissertation can be summarized as

follows:

1. Proposing a novel integrated capacity market and demand response model as an

alternative solution to the transmission expansion planning problem.

2. Including the use of the demand response resources as power supply resources
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to participate in the capacity market.

3.2 PJM Capacity Market

PJM’s capacity market, also known as the Reliability Pricing Model (RPM), guar-

antees long-term grid reliability by obtaining the adequate amount of necessary power

supply resources to meet the minimum requirement of energy demand three years in

the future. A capacity market can be analogous to an insurance policy which allows for

an additional cost (payment to generators which perform well) in return for the avail-

ability of generating resources to maintain the reliability of the system. Reliability is

extremely important for the power system particularly during extreme events such ice

storms. In this way, consumers have greater protection from power interruptions and

price spikes. By matching energy supply with future energy demand, PJM’s capacity

market produces long-term price signals to attract required energy-related investments

and power supply resources required to provide consumer needs for electricity, years

into the future.

The RPM is a multi-auction structure including the following market mechanisms

[59]:

1. Base Residual Auction (BRA) is run during the month of May three years prior

to the start of the Delivery Year.

2. Incremental Auctions (IAs) are conducted at least three times after the BRA

to adjust resource procurement that are known prior to the beginning of the

Delivery Year.

3. Conditional Incremental Auction (CIA) may be held if a backbone transmission

line is delayed, additional capacity procurement in a Locational Deliverability

Area (LDA) is needed to remedy the corresponding reliability problem.

4. Bilateral Market gives power supply resources an opportunity to cover any
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auction commitment shortages. It also provides load serving entities (LSEs) the

opportunity to hedge against the locational reliability charge.

Figure 3.1 illustrates the structure of the above mentioned auctions of RPM.

The LSEs that provide electricity to consumers in the PJM market have obligations

to procure sufficient generation capacities to meet their projected peak loads now and

in the future. This required capacity can be acquired via bilateral contracts or those

entities (PJM members) can secure these resources for the future through the PJM

capacity market (BRA, IAs, and CIA). The essential elements of the capacity market

are [60]:

1. Capacity procurement three years prior to it is needed through a competitive

auction.

2. Locational pricing for capacity that changes to reflect limitations on the trans-

mission system and to account for the differing needs for capacity in different

areas.

3. A variable resource requirement curve (VRR) or demand curve, which is the

energy demand load formula used to set the price paid to market participants

for capacity.

4 months4 months
11 months11 months

21 months21 months
3 years3 years

1st IA

MayMayMayMay

BRA

June

2nd IA 3rd IACIA

May be scheduled at 
any time prior to 

Delivery Year

Delivery Year

Bilateral Market

FebruaryJulySeptember

Figure 3.1: PJM capacity market (i.e. RPM) structure.
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Capacity market participants offer or bid power supply resources into the market

that either increase energy supply or reduce demand, respectively. These resources

comprise new generators, upgrades for existing generators, demand response, energy

efficiency and transmission upgrades (TUs). When a participant bids these supply

resources into the market, the participant is committed to increase their supply or

reduce their demand by the amount they offered, three years into the future.

Having adequate amounts of supply resources is necessary but not sufficient for

system reliability. The potential power supply from these resources must be able to be

transported to the load centers where the power is needed. If there is a transmission

limitation to a load area, the load area needs to rely on more expensive resources

located in that area, or the transmission limitation needs to be resolved. The market

clearing price (MCP) of each LDA’s - locational marginal price (LMP) - may be

higher than the system MCP if additional capacity is needed in the LDA. In other

words, LMP for that import-constrained load area is higher than those for load areas

where there is no import limitation. LDAs are defined based on transmission capacity

transfer capability into an area. Those load areas or load deliverability areas are

shown in Figures 3.2 and 3.3 [61]. Figure 3.2 shows the fundamental level of LDAs,

called zonal LDAs, while Figure 3.3 shows the larger LDAs, called global LDAs, which

represent a collection of some zonal LDAs.

3.3 Proposed Integrated Capacity Market and Demand Response Model

In this section, first the capacity market model including transmission upgrade

solution is described in detail. Then, a comprehensive and integrated model of a

capacity market and demand response model is proposed. Note that those models

are applied to Base Residual Auction (BRA) without loss of generality, and they can

easily be extended to other capacity market auctions such as IAs.
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Figure 3.2: Zonal LDAs.

 

Figure 3.3: Global LDAs.

3.3.1 Capacity Market Model Considering Transmission Upgrade

The objective of a capacity market is to minimize the total cost which is achieved by

minimizing the cost of selling capacity from generation resources, and maximizing the

obtained revenue of purchased capacity from the demand side. The actual capacity
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markets in the real-world is cleared for several years forward. For example, the capacity

market in PJM (i.e. RPM) is cleared for the next three years. Similarly, the Forward

Capacity Auctions (FCA) for the capacity market in New England market, known as

Forward Capacity Market (FCM), are held three years prior to the operating period

[62].

In a capacity market, as in any other markets, there are buyers and sellers of the

capacity resources. The buyers of the capacity resources are generally LSEs that have

obligations to serve load for their respective service territories. The sellers of the

capacity market are generally the owners of the generating units. The mathematical

formulations of the reliability pricing model of PJM capacity market are proposed

in (3.1)-(3.7). The objective function (3.1) shows the minimization of the capacity

market cost [63].

Minimize
R∑

r=1

B∑

b=1

(
πGR
r,b . P

GR
r,b

)
(3.1a)

−
L∑

l=1

B∑

b=1

(
πVRR
l,b . PVRR

l,b

)
(3.1b)

+
L∑

l=1

(
πTU
l . PTU

l

)
(3.1c)

There are three components in the proposed objective function (OF) in (3.1). The

first term (3.1a) is the cost of accepted generation resource offers; the second term

(3.1b) represents the revenue obtained from variable resource requirements (VRRs) as

the demand of all regions, and the last term i.e. (3.1c) is the cost that an independent

system operator (ISO) or a regional transmission organization (RTO) should pay for

new transmission capacity as the transmission upgrades to solve the transmission

expansion planning problem (TEP). An example of generation offering and VRR

bidding curves is shown in Figure 3.4, in which the intersection of the rising generation

offers with decrement VRR bids, determines the clearing values of the price and the
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Figure 3.4: Generation offering and VRR bidding curves.

capacity. It is worth mentioning that the regions are referred to as LDAs in the PJM

capacity market.

Constraints (3.2) and (3.3) represent the limits of each block of the offered resource

capacities and VRR, respectively.

PGR
r,b ≤

(
PGR,max
r,b − PGR,max

r,(b−1)

)
∀r,∀b (3.2)

PVRR
l,b ≤

(
PVRR,max
l,b − PVRR,max

l,(b−1)

)
∀l,∀b (3.3)

In the above inequalities, the amount of the capacity in each block i.e. left-hand-side

(LHS) can change between the upper level of the block minus the upper level of the

previous block, i.e. right-hand-side (RHS).

The objective function is subject to a number of equality and inequality constraints.

Constraint (3.4) guarantees that the amount of the available resource in each LDA

meet the reliability requirements which show the target level of reserves required to
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meet reliability standards and principles.

∑

r⊆l

B∑

b=1

PGR
r,b ≥ RelReql ∀l (3.4)

where RelReql = UCAPl − CETOl ∀l, UCAPl = PeakLoadForecast× FPR, and

Forecast Pool Requirement (FPR) includes installed reserve margin, and forced outage

rates. CETOl is transmission import capacity requirement to meet the area reliability

criterion of Loss of Load Expectation (LOLE) of one occurrence in 25 years; if the

CETO of an LDA is positive, it means there is import capacity in the LDA and the

required amount due to reliability issue (i.e. RelReql) would decrease; if the CETO

of an LDA is negative, there is export capacity from the LDA to other LDAs, and the

RelReql should increase.

The constraint (3.5) represents the balance of available supply resource, demand

load, and CETO in each LDA. For positive CETO of an LDA, the difference between

requested load and available resource cannot be more than the import capacity in the

LDA; and for negative CETO of an LDA, the difference between available resource

and requested load cannot be less than the export capacity in the LDA.

B∑

b=1

PVRR
l,b −

∑

r⊆l

B∑

b=1

PGR
r,b ≤ CETOl ∀l (3.5)

For each LDA, if the transmission import capability limits, called Capacity Emer-

gency Transfer Limit (CETL), is less than CETO, transmission upgrade can be

used as the solution of the TEP through the constraint (3.6). In other words, if

CETL ≤ CETO for a specific LDA, the transmission facilities in the LDA require an

upgrade.

CETOl ≤ CETLl +
B∑

b=1

PTU
l,b ∀l (3.6)

Note that in (3.6), the absolute values of CETO and CETL should be used. In
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both import and export (i.e. positive, and negative of CETO/CETL, respectively),

the capacity limit (CETL) should be more than the capacity objective (CETO).

Equation (3.7) ensures that the total available supply resources in the capacity

market is equal to the total demand loads of all LDAs in the capacity market.

R∑

r=1

B∑

b=1

PGR
r,b −

L∑

l=1

B∑

b=1

PVRR
l,b = 0 (3.7)

The dual variable associated with the balance constraint (3.7) represents the MCP

for LDAs which do not have import limitation. There are different capacity prices

in different regions if there are import constraints to those regions. If an LDA is

import-constrained, the LMP of that location increases. In other words, LMP of each

LDA is equal to the MCP plus a dual variable associated with the balance constraint

(3.5) in the LDA.

3.3.2 Integrated Capacity Market and Demand Response Model

Transmission upgrade is a very expensive and physically limited solution. However,

Demand Response (DR) is a relatively inexpensive and easy alternative solution

which avoids the complexity of adding new transmission line structure. DR can be

categorized into two types. The first type is Price Responsive Demand (PRD) in

which consumers are not paid directly for reductions in their electricity use, but they

save money on their bills. The second type is Demand Response Resources (DRRs) in

which large customers or end-use customers, through curtailment service providers

(CSPs), submit their curtailment and reduction bids to the market, and if the bids are

accepted, they can receive payments. In this chapter of the dissertation, the DRR is

used as an alternative solution of TEP since DRR, unlike PRD, participates in PJM’s

reliability pricing model capacity market as a supply resource. Indeed, PRD is not

applicable in this case, because PRD represents load that will be offline when LMP

reaches a certain threshold. PRD is only treated as a predictable change in the amount
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of electricity used, not as additional generation resource [64]. Therefore, a novel

integrated capacity market and DR model is proposed in (3.8)-(3.17) in which DRR

not only plays a role as a solution to the transmission expansion planning problem,

but also participates in the capacity market as a power supply resource. However,

according to Capacity Performance (CP) requirement introduced by PJM, capacity

resources such as generation resources (GRs), and DRRs are required to be capable of

sustained, predictable operation that allows the resource to be available throughout

the entire delivery year to provide energy and reserves when PJM determines that a

power system emergency condition exists. Only resources that meet the requirements

of the capacity performance resource product-type is used in PJM capacity market

effective with the 2020/2021 delivery year and beyond [59, 65].

Minimize
R∑

r=1

B∑

b=1

(
πGR
r,b . P

GR
r,b

)
(3.8a)

−
L∑

l=1

B∑

b=1

(
πVRR
l,b .

[
PVRR
l,b − PVRR_DR

l,b

])
(3.8b)

+
L∑

l=1

(
πTU
l . PTU

l

)
(3.8c)

+
C∑

c=1

B∑

b=1

(
πDR
c,b . P

DR
c,b

)
(3.8d)

The first and three terms of (3.8) (i.e. (3.8a) and (3.8c)) similar to (3.1a) and (3.1c)

represent the cost of available generation resources, and the cost of transmission

upgrades, respectively. But, there is a difference in the second term (3.8b). By

increasing the amount of the accepted DR (i.e PVRR_DR
l,b ), the VRR revenue decreases.

The last term (3.8d) shows the cost of the accepted demand response bids.

Constraints (3.9) and (3.10) are similar to (3.2) and (3.3), respectively, and con-
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straint (3.11) presents the limits of each block of the DR.

PGR
r,b ≤

(
PGR,max
r,b − PGR,max

r,(b−1)

)
∀r,∀b (3.9)

PVRR
l,b ≤

(
PVRR,max
l,b − PVRR,max

l,(b−1)

)
∀l,∀b (3.10)

PDR
c,b ≤

(
PDR,max
c,b − PDR,max

c,(b−1)

)
∀c,∀b (3.11)

It is worth mentioning that limits of constraints (3.9)-(3.11) are obtained according

to the offers and bids submitted to the market.

Since the capacity value and price of each block of DR and VRR bidding curves

might be different, to model the impact of the DR on the VRR, an auxiliary variable

(i.e. PVRR_DR
l,b ) is introduced. Based on equation (3.12), the total DR of all blocks

of CSPs in an LDA is equal to the total blocks of the auxiliary variable in the LDA.

Constraint (3.13) limits each block of the auxiliary variable similar to the VRR bidding

curve.

∑
c⊆l

B∑
b=1

PDR
c,b =

B∑
b=1

P
VRR_DR
l,b ∀l (3.12)

P
VRR_DR
l,b ≤

(
PVRR,max
l,b − PVRR,max

l,(b−1)

)
∀l,∀b (3.13)

Constraints (3.14)-(3.17) are the reformulated form of the constraints (3.4)-(3.7) in

which the impact of DR is modeled. In (3.14), DR can help generation resources

to meet the reliability requirement in each LDA. Instead of using more expensive

resources, DR may be used to satisfy the reliability standards.

∑
r⊆l

B∑
b=1

PGR
r,b +

∑
c⊆l

B∑
b=1

PDR
c,b ≥ RelReql ∀l (3.14)

Also, based on constraint (3.15), DR can reduce demand, and then, by increasing the
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DR usage in each area, fewer LDAs are required to import capacity from other areas.

B∑

b=1

PVRR
l,b −

∑

r⊆l

B∑

b=1

PGR
r,b −

∑

c⊆l

B∑

b=1

PDR
c,b ≤ CETOl ∀l (3.15)

DRR, in constraints (3.14) and (3.15), plays a role as a power supply resource to

participate in the capacity market, but it is not the only application of DRR in my

proposed capacity market model. In constraint (3.16), DRR is used as the alternative

solution of TEP. When in an LDA, CETL is less than CETO, both solutions (i.e. TU,

and DRR) can be used, and it depends on the price and capacity limit of each solution.

For instance, if DRR’s capacity is not enough to meet the required transmission

capacity limit, transmission upgrade would also be used.

CETOl ≤ CETLl +
∑

c⊆l

B∑

b=1

PDR
c,b +

B∑

b=1

PTU
l,b ∀l (3.16)

Constraint (3.17) shows the modified balance equation in which DR can easily help to

achieve the balance between generation, and demand sides.

R∑

r=1

B∑

b=1

PGR
r,b +

C∑

c=1

B∑

b=1

PDR
c,b −

L∑

l=1

B∑

b=1

PVRR
l,b = 0 (3.17)

3.4 Case Studies

In this section, the proposed integrated methodology is implemented on BRA of

2020/2021 PJM capacity market data [61]. For generation resource and demand

response - one-block offering curves, and for VRR - three-block bidding curves [59]

are considered. All case studies have been run using CPLEX within GAMS [51] on a

Macintosh-based computer with 3.3 GHz Intel Core i7 processor and 16 GB of RAM.

To correctly evaluate the efficiency of the proposed model, its performance should
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Table 3.1: The capacity market cost, revenue, and costs vs. different maximum
capacity of DR ($/Day)

0×PDR,max
c,b 0.25×PDR,max

c,b 0.50×PDR,max
c,b 0.75×PDR,max

c,b 1×PDR,max
c,b

Capacity
47,168,850 26,377,019 5,588,237 -15,200,554 -31,578,796

Market Cost

Generation
11,778,870 11,675,050 11,577,830 11,480,600 11,383,370

Cost

VRR Revenue 42,707,820 42,928,860 43,153,450 43,378,040 43,587,430

Upgrade Cost 78,097,800 57,466,200 36,834,600 16,203,000 0

DR Cost 0 164,629 329,257 493,886 625,264

be assessed with respect to different core parameters. In the following, the impacts of

DR, generation capacity, and CETO on the proposed model are discussed in detail.

3.4.1 Impact of DR on the Proposed Model

Table 3.1 presents the capacity market cost (3.8), generation cost (3.8a), VRR

revenue (3.8b), upgrade cost (3.8c), and DR cost (3.8d) versus different maximum

capacity of DR. When capacity of DR is zero, the proposed model becomes the model

of subsection 3.3.1 and only TU is used to remedy the TEP problem. By increasing

the percentage of maximum capacity of DR from 0% to 100%, the total cost of the

proposed model decreases from $47,168,850 to $-31,578,796 (note that a negative cost

is equivalent to a profit), which is mainly due to increasing the effect of DR instead of

TU on the capacity market. The cost of TU, which is too high, decreases, and the

cost of DR, as the less expensive solution, increases.

Figure 3.5 illustrates the total profit that consumers can benefit from participa-

tion in the proposed integrated capacity market and demand response program. As

shown in Figure 3.5, the total profit of consumers includes demand response profit (i.e.

DR) obtained from selling capacities of reductions in their electricity use to the capacity
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0×P 0.25×P 0.50×P 0.75×P 1×P

DR 0 164,629 329,257 493,886 625,264

VRR DR 0 165,800 331,601 497,402 656,261
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Figure 3.5: Total profit of consumers vs. different maximum capacity of DR (P is
PDR,max
c,b ).

market, and saving money on their bills due to decreasing their demands leading to an

increase in DR (i.e. VRR_DR). Increasing the capacity of DR in the capacity market

allows consumers to be able to obtain more profits.

Figure 3.6 demonstrates the total capacity of generation resource, VRR, upgrade,

and DR for different maximum capacity of DR. By increasing the DR’s capacity, the

total capacity of the generation resource decreases. Since DR is not only used for TEP

problem, but also in some LDAs, it participates in the capacity market as a resource,

the total capacity of the generation resource decreases.

Although VRR increases when DR increases (top right of Figure 3.6), the final

net load (i.e. VRR−DR) decreases from 198,750 to 196,165 (MW-Day). DRs give

ISOs/RTOs the opportunity to increase transmission line capacities, by reducing the
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Figure 3.6: Total capacity of generation, VRR, upgrade, and DR vs. different maximum
capacity of DR.

load in some areas, whence VRR can increase in other LDAs. In other words, DR

increases the flexibility of a market, which is a vital issue for ISOs/RTOs. Consequently,

DRs increase the social welfare of a market by reducing the total cost, and increasing

the total revenue (Table 3.1).

3.4.2 Impact of Generation Capacities on the Proposed Model

Generation resources are the principal participants of a capacity market, and vari-

ation in their capacity impacts the market very noticeably. Figure 3.7 illustrates

the total capacity of the generation resource, VRR, and DR for different maximum

capacity of the generation resource. It shows that by decreasing the generation re-

source’s capacity, more DR capacity is required to help the reliability requirement to

be met (constraint (3.14)). DR tries to compensate the generation decrement, but if

the decrement is more than the DR capacity, VRR capacity would decrease. Note

that in this experiment for 100% of DR capacity, TU is zero. Therefore, only generation,
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Figure 3.7: Total capacity of generation, VRR, and DR vs. different maximum
capacity of generation resource.
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Figure 3.8: Capacity market locational marginal price vs. different maximum capacity
of generation resource.

VRR, and DR are presented. As discussed in section 3.2, the locational price is one
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of the essential elements of the capacity market. Figure 3.8 shows the impact of

the maximum capacity of the generation resource on the capacity market locational

marginal price. By decreasing the generation resource maximum capacity, some LDAs

have to import capacity from other LDAs; therefore the LMP increases in these

constrained LDAs. For example in LDA number 16, price increases from 112 to 193.51

($/MW-Day).

3.4.3 Impact of CETO on the Proposed Model

CETO is the final parameter that is examined for its effect on the proposed model.

CETO not only impacts the decision whether an LDA requires new transmission line,

but it can also change the LMP price of each LDA by determining the import capacity

for each LDA. Figure 3.9 represents the capacity market LMP for different CETO

values. When CETO decreases, based on constraint (3.14) (or (3.4)), reliability

requirement increases. Therefore, in some LDAs, the generation increases; then based

on constraint (3.15), the VRR capacity can also increase. Figure 3.4 demonstrates

that by increasing the VRR capacity, the bidding price decreases, and by increasing

generation capacity, the offering price increases. Therefore, increasing or decreasing

the LMP price is related directly to the offering/bidding prices. If an LDA is non-

import-constrained, the VRR capacity increases leading to an decrease in the LMP

of that location. For example, the LMP of LDA number 1 varies from 112 to 97.07

($/MW-Day). For an import-constrained LDA which requires the import capacity,

the price increases, since the import capacity is limited and more generation capacity

is required, then marginal price increases. For instance, the LMP of LDA number 10

changes from 113.27 to 210.7 ($/MW-Day).
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Figure 3.9: Capacity market locational marginal price vs. different CETO values.

3.5 Conclusion

An integrated capacity market and demand response model is developed in which

demand response resource can participate in the capacity market to reduce the required

transmission capacity as an alternative transmission expansion planning solution

instead of the expensive transmission upgrade solution. In addition, demand response

resource can be used in the capacity market as a resource to decrease the load to meet

the reliability requirement and improve the social welfare of the capacity market. The

proposed model is based on the PJM capacity market model (i.e. reliability pricing

model). The designed model in this chapter of the dissertation can help ISOs/RTOs

to manage the capacity market and transmission expansion planning more efficiently

and flexibly. It can also help large consumers or LSEs to manage their loads and earn

a profit. To investigate the performance of the proposed framework, it is implemented

on the BRA of 2020/2021 PJM capacity market real data, and the influence of several

important parameters are investigated in detail [66].



CHAPTER 4: ROBUST TRANSACTIVE ENERGY SYSTEM FRAMEWORK

WITH INTEGRATED DEMAND RESPONSE AND DER USING EXTENDED

LINEAR DECISION RULES

Increasing the penetration of demand response (DR), energy storage (ES), and plug-

in electric vehicles (PEV) exploits the integration of renewable energy (RE) resources

and electricity demand, which can lead to addressing resource adequacy, enhancing

wholesale electricity market reliability and flexibility, and facilitating customer behavior

changes. In this chapter of the dissertation, a design of a novel day-ahead transactive

energy system (TES) framework is proposed for the integration of the aggregated

DR and PEV as well as other distributed energy resources (DER) including on-

site RE resources and behind-the-meter ES systems to improve demand-side energy

management. The methodology not only provides the amount of offered DR, but also

determines optimal PEV schedules to increase the profit while considering customers’

willingness. DR providers and aggregators can take into account the influence of the

customers’ willingness on their offers by utilizing the proposed comfort index. Finally,

to derive a tractable optimization problem, while handling the uncertainty of electricity

market clearing prices and renewable power generations, the TES framework is

reformulated as an affinely adjustable robust model using extended linear decision rules

(ELDR). Simulation results on a large-scale case study demonstrate the applicability

and effectiveness of the proposed model.

Nomenclature

A. Indices/Sets

b ∈ B Index of DR bidding curve blocks.
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l ∈ L Index of affine policy pieces.

t ∈ T Index of time intervals in a day.

u ∈ U Index of customers.

B. Parameters

KLR,I
but Upper limit of block b of load reduction part of I program for customer

u in hour t, I = {load curtailment (LC), load shifting (LS)} (KW).

M A large enough number.

NE,I
u Number of events of I program for customer u during a scheduling

horizon.

P
P

ut, P
P
ut Upper and lower boundary of purchased power by customer u in hour

t, respectively (KW).

P
RE

ut Forecasted power of RE of customer u in hour t; P̃RE
ut and P̂RE

lut are

the uncertain parameter and the variation range of RE resource, respectively (KW).

P
Λ,ch

u , P
Λ,dch

u Upper boundary of charge and discharge of Λ for customer u, respec-

tively, Λ = {ES,PEV} (KW).

rd
LR

u , rdLR
u Upper and lower boundary of load reduction duration of customer u,

respectively (h).

SOC
Λ

u , SOC
Λ
u Upper and lower boundary of Λ state of charge for customer u, respec-

tively, Λ = {ES,PEV} (KWh).

∆T Duration of a time interval.

ηΛ,ch
u , ηΛ,dch

u Charging and discharging efficiency of Λ system for customer u, re-

spectively, Λ = {ES,PEV}.

λ1, λ2, λ3, λ4 Transactive energy control coefficients.

µΛ
u Self-discharge rate of Λ system for customer u, Λ = {ES,PEV}.

πLR
but Load reduction incentive rate for customer u in block b and hour t;

πLR
ut is the base value for πLR

but ($/KWh).

πX
ut Residential rate of X event for customer u in hour t, X = {S,P}
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($/KWh).

π
X,LMP
t Forecasted electricity market locational marginal price of X in hour

t; π̃X,LMP
t and π̂X,LMP

lt are uncertain parameter and variation range of X, X ={selling

(S), purchasing (P)} ($/KWh).

ρLR
but Load reduction comfort index for customer u in block b and hour t.

ρLS
ut Load shifting comfort index for customer u in hour t.

C. Variables

P h,LR
but , P h,X

ut Non-adjustable auxiliary variables relating to the ELDR of P LR
but and

PX
ut, respectively, X = {S,P} (KW).

P I
ut Household compensated power of I program for customer u in hour t,

I = {LC,LS} (KW).

P LR
but Load reduction power offered through customer u in block b and hour

t; P LR,I
but is a component of P LR

but related to I program, I = {LC,LS} (KW).

PRE−G
ut Total power of RE and grid for customer u in hour t (KW).

Pw,LR
Y,lbut, P

w,X
Y,lut Adjustable auxiliary variables relating to the ELDR of P LR

but and PX
ut,

respectively, Y = {S,P,RE} and X = {S,P} (KW).

PX
ut Power of X event for customer u in hour t, X = {S,P} (KW).

PΛ,ch
ut , PΛ,dch

ut Charging and discharging power of Λ system of customer u in hour t,

respectively, Λ = {ES,PEV} (KW).

SOCΛ
ut State of charge of Λ system for customer u in hour t (KWh), Λ =

{ES,PEV}.

xLR,I
ut , yLR,I

ut Binary variables indicating startup and shutdown status of customer

u for I in hour t, respectively, I = {LC,LS}.

zΛ,ch
ut , zΛ,dch

ut Binary variables indicating charge/discharge status of Λ system for

customer u in hour t.

z?ut Binary variable indicating status of customer u for ? in hour t (1/0
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for online/offline), ? = {LR,LC; LR,LS; P; home(H)}.

πX,LMP
lt , PRE

ut Continuous auxiliary modeling variables, X = {S,P}.

4.1 Introduction

4.1.1 Background and Motivation

Orders 719 and 745 of the U.S. Federal Energy Regulatory Commission (FERC)

are addressing demand response (DR) as a means to help improve the competitiveness

of the wholesale electricity markets by facilitating regional transmission organizations

(RTO) and independent system operators (ISO) to reduce wholesale electricity prices,

increase awareness of energy usage, enhance reliability, and mitigate market power

[12, 67].

All customers including those in commercial, industrial, and residential sectors can

participate in DR and demand-side energy management (DSEM) at the wholesale

market level [13, 66, 68]. However, based on the U.S. Energy Information Admin-

istration (EIA), retail customers including those in the residential as well as small

commercial and industrial sectors are the largest part in electricity demand. For

instance, in 2016, the residential sector at 38%, was the highest percentage of the total

electricity consumption [69]. Thus to involve retail customers in DR programs, demand

response providers (DRP) and aggregators offer the power from demand response

on behalf of retail customers directly into the wholesale electricity markets. Then,

DRPs/aggregators provide incentives and benefits to retail customers as compensation

for their flexibility in the timing and amount of their electricity consumption.

Extensive integration of distributed energy resources (DER) comprising of DR,

renewable energy (RE) resources, energy storage (ES) systems, and electric vehicles

(EV) can facilitate resource adequacy, improve system flexibility, reduce load curtail-

ment, and enable customer behavior changes [70]. Significant research work has been

concentrated on the incorporation of DR, RE, ES, and EV into demand-side energy

management. In [71], an equilibrium problem with equilibrium constraints is proposed
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to model interactions between merchant DR aggregators and merchant ES investors

in a competitive electricity market. In [72], a residential dynamic energy management

model optimizes the scheduling of controllable appliances and plug-in electric vehicles

(PEV) of a single household to minimize the consumer electricity-related expenditures.

A two-stage stochastic day-ahead power procurement model for energy consumers

is introduced in [73] using DR to adjust energy consumption regarding time-varying

electricity price, and ES to mitigate RE fluctuation and volatile prices.

DRPs and aggregators aim to obtain the maximum profit from the wholesale

electricity market while a certain level of customers comfort and willingness are

retained. The comfort level of thermostatically controlled loads of users (thermal

comfort) is determined based on temperature thresholds [74]. In the stochastic model of

[75], customers are divided into two subgroups based on the capability and willingness

to respond to incentives and participate in DR: the responding group, and the non-

responding group. In [76], the loss of customer comfort is modeled by waiting cost

term in which a parameter controls the trade-off between minimizing the household

payment and waiting time for the operation. A quadratic cost of providing DR is

presented in [77], in which a customer’s willingness to participate in curtailing its load

is modeled by a coefficient between zero and one.

Additionally, non-deterministic methodologies such as stochastic programming [78],

and robust optimization [79] have been used for characterizing the uncertainty of

electricity market price and RE resources in DSEM problems. The stochastic pro-

gramming approach uses scenarios to characterize uncertainty sources, and the robust

optimization approach models uncertainty sources through bounded interval uncer-

tainty sets [53]. Furthermore, to tackle the computational complexity of large-scale

DSEM problems, distributed techniques such as decomposition [80], and alternating

direction method of multipliers (ADMM) [81] are utilized. Iterative calculations in

the decomposition method may necessitate noticeable computation time, and the
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ADMM method requires a convex model. Linear decision rules (LDR) [82, 83] have

been developed to overcome the aforementioned issues, and have been applied to solve

complex decision-making problems [84, 85, 86, 87, 88]. In LDR-based approaches,

linear relationships between the optimization variables and the uncertain parameters

are assumed. In this chapter of the dissertation though, piecewise affine policies is used

as extended LDRs (ELDR) [89, 90] to capture certain responses of the optimization

variables to the uncertain parameters in order to obtain more accurate and realistic

results.

4.1.2 Contributions

The main contributions of this chapter of dissertation are twofold:

1) A novel and comprehensive transactive energy system (TES) framework is pro-

posed for the integration of the aggregated load reduction DR such as load curtailment

(LC) and load shifting (LS), and PEV in which utilizing other DERs including on-site

RE resources and behind-the-meter ES systems can increase the obtained profits

from day-ahead electricity markets, and enhance DRPs/aggregators interactions with

retail customers. In the proposed framework, load reduction offers and optimal PEV

schedules are determined while considering customers willingness. To consider the

impact of customers willingness, a comfort index (CI) in the proposed framework is

designed.

2) A new ELDR to reformulate the TES as an affinely adjustable robust model

is introduced to consider the uncertainties of electricity market clearing prices and

renewable power generations. The impact of the budget of uncertainty on the ELDR-

based robust TES is evaluated. Also, an out-of-sample procedure is presented to analyze

the efficacy and performance of the proposed ELDR-based robust TES encountering

different realizations of uncertain parameters.
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4.2 Problem Description

4.2.1 Deterministic TES Model

The objective function (OF) of the proposed deterministic TES model (4.1) maxi-

mizes the profit of the DRP/aggregator.

Max
Ω1

∑
t∈T

∑
u∈U

[∑
b∈B

[
[π

S,LMP
t − πLR

but].P
LR
but

]
+

[πP
ut − π

P,LMP
t ].PP

ut + [π
S,LMP
t − πS

ut].P
S
ut + [λ1.P

LC
ut +

λ2.ρ
LS
ut .P

LS
ut + λ3.[π

P
ut − π

P,LMP
t ].PES,dch

ut −λ4.P
S
ut]
]

(4.1)

where Ω1 =
{
P LR
but , P

S
ut, P

P
ut, P

LC
ut , P

LS
ut , P

LR, LC
but , P LR,LS

but , zP
ut, z

LR,I
ut , xLR,I

ut , yLR,I
ut , zΛ,ch

ut ,

zΛ,dch
ut , PRE−G

ut , PΛ,ch
ut , PΛ,dch

ut ,SOCΛ
ut

}
. The first row of (4.1) demonstrates the obtained

profit through LR. The first and second terms of the second row of (4.1) represent the

profit of purchasing from and selling to the grid, respectively. Also, the transactive

energy can be restrained by coefficients λ1-λ4 to control the trade-off between the

profit and customers comfort level. λ1 and λ2 are capable of increasing the amount of

the household power as compensation of the load reduction of LC and LS programs,

respectively. Based on λ3 as well as the purchasing residential and market prices, ES

can be utilized instead of purchasing from the grid to decrease a customer’s bill. The

selling power to the grid can be adjusted to consider the customer’s comfort level

using the λ4 coefficient.

A comfort index (CI) is introduced for each customer which includes two components:

load reduction CI ρLR
but and load shifting CI ρLS

ut . In ρLR
but, each block represents a different

value of the willingness of customer u in hour t for a different amount of LR, in which

the higher block is associated with less CI and more LR, 0 ≤ ρLR
But ≤ ρLR

but ≤ ρLR
1ut ≤ 1.

The CI appears in πLR
but which is a pricing function based on an inclining block rate
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structure as an incentive price for the load reduction (LR) strategy:

πLR
but =

[
1 +

[
1− ρLR

but

]]
.πLR
ut

if KLR
(b−1)ut < P LR

but ≤ KLR
but ∀b,∀u,∀t

(4.2)

where KLR
0ut and KLR

But are the lower and upper limits of LR, respectively. The second

CI component, ρLS
ut , shows the willingness of customer u for shifting load to hour

t, 0 ≤ ρLS
ut ≤ 1. The shifting CI is used in λ2.ρ

LS
ut .P

LS
ut term of (4.1) to manage the

household power compensation related to the LS program.

4.2.1.1 Demand Response Constraints

Constraint (4.3) defines the purchasing power bounds.

PP
ut. z

P
ut ≤ PP

ut ≤ P
P

ut. z
P
ut ∀u,∀t (4.3)

Equation (4.4) states that LR includes LC and LS reductions, and their block limits

are modeled through (4.5) and (4.6). The minimum operator in constraint (4.6) forces

the block limits if the previous block is not equal to zero. Constraints (4.7)-(4.11)

model the duration and number of each LR event, and constraint (4.12) enforces that

either reduction events or purchasing can occur for customer u in hour t.

P LR
but = P LR,LC

but + P LR,LS
but ∀b,∀u,∀t (4.4)

KLR,I
0ut . z

LR,I
ut ≤ P LR,I

1ut ≤ KLR,I
1ut . z

LR,I
ut ∀u,∀t (4.5)

P LR,I
but ≤ Min

{
[KLR,I

but −KLR,I
(b−1)ut],M.P LR,I

(b−1)ut

}

∀b = 2...B, ∀u,∀t (4.6)

rdLR,I
u .xLR,I

ut ≤
∑t+rdLR,I

u −1

n=t
zLR,I
un ∀u,∀t (4.7)

xLR,I
ut ≤

∑t+rd
LR,I
u

n=t
yLR,I
ut ∀u,∀t (4.8)



71

∑
t∈T

xLR,I
ut ≤ NE,I

u ∀u (4.9)

zLR,I
ut − zLR,I

u(t−1) − x
LR,I
ut + yLR,I

ut = 0 ∀u,∀t (4.10)

xLR,I
ut + yLR,I

ut ≤ 1 ∀u,∀t (4.11)

zLR,LC
ut + zLR,LS

ut + 2.zP
ut ≤ 2 ∀u,∀t (4.12)

where I = {LC,LS}.

4.2.1.2 Transactive Energy Control Constraints

The TES conceptual diagram of the proposed TES is illustrated in Figure 4.1, and

its related transactive energy control is proposed in constraints (4.13) and (4.14).

Household power compensation, and PEVs can be supplied by ESs as well as the grid.

And, only the excess RE can be sold to the grid. Constraints (4.16) and (4.17) enforce

that the selling can only occur when there is no purchasing and power compensation.

According to (4.18) and (4.19), ESs only be used for household power compensation

and PEVs. The amount of LC power compensation should be less than the total

amount of LC reduction for customer u in hour t (4.20). Equation (4.21) forces the

total amount of LS reduction during a day to be equal to the total amount of the

compensated power for customer u during the day.

Aggregator

Electricity 
Market

Figure 4.1: TES conceptual diagram.
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P LC
ut + P LS

ut + PES,ch
ut + PPEV,ch

ut = PES,dch
ut + PRE−G

ut

∀u,∀t (4.13)

PRE−G
ut = P

RE

ut + PP
ut − P S

ut ∀u,∀t (4.14)

PG
ut = PP

ut − P S
ut ∀u,∀t (4.15)

0 ≤ P S
ut ≤ M.

(
1− zP

ut

)
∀u,∀t (4.16)

0 ≤ P S
ut ≤ M.

(
1− zH

ut

)
∀u,∀t (4.17)

0 ≤ P LC
ut + P LS

ut + PPEV,ch
ut ≤ M. zH

ut ∀u,∀t (4.18)

PES,dch
ut ≤ P

ES,dch

u .zH
ut ∀u,∀t (4.19)

∑
b∈B

P LR,LC
but ≥ P LC

ut ∀u,∀t (4.20)

∑
t∈T

∑
b∈B

P LR,LS
but =

∑
t∈T

P LS
ut ∀u (4.21)

Without loss of generality, it assumed solar photovoltaics (PV) to be representative of

RE resources, and behind-the-meter battery storage (BS) to represent ES systems.

4.2.1.3 Battery Storage and Plug-in Electric Vehicle Constraints

The charge and discharge limits of BS and PEV units are represented in constraints

(4.22) and (4.23), respectively. The status of charging and discharging of BS and PEV

units are indicated in constraint (4.24). The state of charge (SOC) limits of BS and

PEV units, as well as the relationship of SOC at hour t+ 1 to SOC, and the related

power at hour t are declared in constraints (4.25) and (4.26), respectively.

PΛ,ch
ut ≤ P

Λ,ch

u .zΛ,dch
ut ∀u,∀t (4.22)

PΛ,dch
ut ≤ P

Λ,dch

u .zΛ,ch
ut ∀u,∀t (4.23)
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zΛ,ch
ut + zΛ,dch

ut ≤ 1 ∀u,∀t (4.24)

SOCΛ
u ≤ SOCΛ

ut ≤ SOC
Λ

u ∀u,∀t (4.25)

SOCΛ
ut = (1− µΛ

u ).SOCΛ
u(t−1) + (ηΛ,ch

u .PΛ,ch
ut −

1

ηΛ,dch
u

.PΛ,dch
ut ).∆T ∀u,∀t (4.26)

where Λ = {ES,PEV}.

4.2.2 ELDR-based Robust TES Framework

4.2.2.1 Uncertainty Sets and Decision Policies

The uncertain parameters including electricity prices and the PV power generations

are defined in a polyhedral uncertainty set as follows:

US =





π̃S,LMP
t = π

S,LMP
t −∑l∈L π

S,LMP
lt ∀t

π̃P,LMP
t = π

P,LMP
t +

∑
l∈L π

P,LMP
lt ∀t

P̃RE
ut = P

RE

ut −
∑

l∈L P
RE
ut ∀u,∀t

0 ≤ πX,LMP
lt

π̂X,LMP
lt

≤ 1 : ΠX
#,lt ∀l,∀t

0 ≤ PRE
lut

P̂RE
lut

≤ 1 : ΠRE
#,lut ∀l,∀u,∀t

∑
t∈T
∑

l∈L
πX,LMP
lt

π̂X,LMP
lt

≤ ΘX : ΓX
#

∑
t∈T
∑

u∈U
∑

l∈L
PRE
lut

P̂RE
lut

≤ ΘRE : ΓRE
#





(4.27)

where X = {S,P}. ΠX
#,lt ≥ 0, ΠRE

#,lut ≥ 0, ΓX
# ≥ 0, and ΓRE

# ≥ 0 are the dual variables,

and # indicates the number associated with each constraint. In the proposed ELDR

methodology, to immunize against worst-case uncertainties, the worst-case realization

of the uncertain parameters is considered. The uncertain selling LMPs, and uncertain

renewable generations take their lower estimates, while the uncertain purchasing LMPs

take the upper estimates.

The model variables can be distinguished in terms of being adjustable to the
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uncertain data. While, the auxiliary variables (i.e. P LR,LC
but , P LR,LS

but , P LC
ut , P LS

ut , P
RE−G
ut ,

PΛ,ch
ut , PΛ,dch

ut , SOCΛ
ut) can tune themselves to varying data, the here-and-now decision

variables (i.e. zLR,I
ut , xLR,I

ut , yLR,I
ut , zP

ut, z
Λ,ch
ut , zΛ,dch

ut ) cannot be adjusted to the data. And

wait-and-see decision variables (i.e. P LR
but , P S

ut, PP
ut) can be provided when parts of

the uncertain data become known to adjust themselves to all the data or to a part

of it [82]. The ELDR policy between wait-and-see decision variables and uncertain

parameters are defined in (4.28)-(4.30), in which P LR
but , P S

ut, and PP
ut are parameterized

based on a piecewise affine policy and by non-adjustable variables, and adjustable

variables related to selling LMPs, purchasing LMPs, and PV power generations.

P LR
but = P h,LR

but +
∑

l∈L
[Pw,LR

S,lbut.π
S,LMP
lt + Pw,LR

P,lbut.π
P,LMP
lt

Pw,LR
RE,lbut.P

RE
lut ] ∀b,∀u,∀t (4.28)

P S
ut = P h,S

ut +
∑

l∈L
[Pw,S

S,lut.π
S,LMP
lt + Pw,S

P,lut.π
P,LMP
lt

+Pw,S
RE,lut.P

RE
lut ] ∀u,∀t (4.29)

PP
ut = P h,P

ut +
∑

l∈L
[Pw,P

S,lut.π
S,LMP
lt + Pw,P

P,lut.π
P,LMP
lt

+Pw,P
RE,lut.P

RE
lut ] ∀u,∀t (4.30)

In the ELDR-based robust TES formulation, for each uncertainty source, the uncertain

parameters and related adjustable variables are divided into several pieces to increase

the flexibility and control of the conservativeness and robustness of the optimal

solution against any realization of the uncertain parameters. The subinterval limits of

adjustable variables are set as follows:

Pw,LR
Y,lbut ≤ Min

{
[LLR,Y

lbut − LLR,Y
(l−1)but],M.Pw,LR

Y,(l−1)but

}

∀l,∀b,∀u,∀t (4.31)
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Pw,P
Y,lut ≤ Min

{
[LP,Y

lut − LP,Y
(l−1)ut],M.Pw,P

Y,(l−1)ut

}

∀l,∀u,∀t (4.32)

Pw,S
Y,lut ≤ Min

{
[LS,Y

lut − LS,Y
(l−1)ut],M.Pw,S

Y,(l−1)ut

}

∀l,∀u,∀t (4.33)

where Y = {S,P,RE}.

4.2.3 Mathematical Formulation

The robust TES model of (4.1) can be written in the following compact epigraph

form:
Max
ϑ,z,y,p

ϑ

s.t. Az + By + Cp− dϑ ≥ Rξ + r ∀ξ ∈ US

(4.34)

The wait-and-see variable p can take any relationship with uncertain parameter ξ and

optimization over all possible relationships makes the model intractable. To make the

proposed model tractable, the piecewise affine policy p = h+Wξ, i.e. (4.28)-(4.30), is

replaced in (4.34), then the worst case reformulation to obtain the robust counterpart

is equivalent to the following:

Max
ϑ,z,y,p

ϑ

s.t. (4.35)

Az + By + Ch− dϑ−max
ξ∈US

(R−CW)ξ ≥ r ∀ξ ∈ US

The constraint (4.35) is still intractable. By using duality theory for the inner

maximization over the uncertain parameter ξ, the tractable robust counterpart can

be obtained. To apply the duality, the inner maximization must be fixed independent

of ξ. In (4.35), (R−CW) is fixed, therefore the reformulated robust counterpart is
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equivalent as follows [83, 91]:

Max
ϑ,z,y,h,W,Π

ϑ

s.t. Az + By + Ch− dϑ−ΠT ≥ r (4.36)

ΠTE ≥ e (R−CW)

where Π ≥ 0 is equal to ΠX
#,lt, ΠRE

#,lut as well as 0 ≤ E
e
≤ 1 equals 0 ≤ πX,LMP

lt

π̂X,LMP
lt

≤ 1,

and 0 ≤ PRE
lut

P̂RE
lut

≤ 1 of the polyhedral uncertainty set US (4.27). Note that according

to the constraint 0 ≤ E
e
≤ 1, the coefficient of the associated dual variable Π in the

main constraint equals one [53]. The corresponding ELDR-based formulation of the

proposed deterministic TES framework (4.2.1) is provided in Appendix (E). The

proposed ELDR-based robust TES model has a mixed-integer linear programming

(MILP) form.

4.3 Numerical Results

4.3.1 Data

In this section, numerical analyses are conducted on a 7500-household case study

obtained from PecanStreet [92]. The characteristics of the battery storage and the

plug-in electric vehicle are taken from [93]. The day-ahead electricity market prices

have been derived from the real price data of the electric reliability council of Texas

(ERCOT) [94]. And time-of-use rates (TOU) for residential purchasing are available

through [95]. To simulate the realistic customer behaviors in the load reduction CI ρLR
but,

three time periods including off-peak, mid-peak, and on-peak are considered in which

CIoff−peak and CIon−peak have the highest and lowest values, respectively, and for each

time period, three blocks are expressed as ρLR
3ut ≤ ρLR

2ut ≤ ρLR
1ut. The maximum deviation

of the electricity price and PV power generation forecasts are equal to 0.2× πX,LMP
t

and 0.5× P
RE

ut , respectively [34, 88]. The DER penetration considered in this chapter
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of the dissertation equals 10%, 20% and 30% for BS, PEV, and PV, respectively.

NE,I
u = 1, and the minimum and maximum duration of each reduction event are 3 and

6 hours, respectively. Also, it is assumed that λ1, λ2, λ3, and λ4 equal one, as well as

ρLS
ut = 1. All numerical experiments have been performed using CPLEX within GAMS

[51] on a Macintosh-based computer with 3.3 GHz Intel Core i7 processor and 16 GB

of RAM.

4.3.2 Evaluation of the Proposed Deterministic TES

Different scenarios are introduced to analyze the impact of DERs on the proposed

TES model. The scenarios are as follows: Scen. 1 (DR), Scen. 2 (DR with PV), Scen.

3 (DR with PV, & BS), Scen. 4 (DR with PV, BS, & PEV). Note that the Scen. 4 is

equivalent to the proposed deterministic TES framework. Table (4.1) provides the

TES profit for different scenarios, and the following observations can be explained:

Scen. 1: The DRP/aggregator profit includes the LR profit, and the benefit obtained

from purchased power as shifted loads.

Scen. 2: By adding PV to the basic model (i.e. Scen. 1), although the DRP/aggregator

profit reduces, the customers’ expense for purchasing power decrease. Due to limited

DR events during a day, the remaining PV should be sold. Then, according to the

constraint (4.17), the LR profit decreases.

Scen. 3: BS can store excess PV energy generated and the power purchased during the

day to use for household compensated power. Therefore, LR and purchasing profits

increase, while the selling profit decreases.

Scen. 4: The proposed TES for the integrated DERs including DR, PV, ES, and

PEV not only attempts to attain a profitable strategy for DR programs, but also

strives to achieve an efficient PEV charging schedule, while considering the customer’s

willingness. Hence, although LR profit in Scen. 4 is less than in Scen. 3, scheduling

the charging PEV increases the purchasing profit, and therefore, the total obtained

profit increases.
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Table 4.1: The TES profit vs. different scenarios ($)

Profit Scen. 1 Scen. 2 Scen. 3 Scen. 4

Total 14,016 12,825 13,474 15,819

Load Reduction 12,011 10,892 11,406 11,107

Purchasing from Grid 2,005 882 1,689 3,744

Selling to Grid 0 1,051 979 968
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Figure 4.2: Total power of load reduction, grid, home, and battery storage.

The compensation of the total power of Scen. 1, and Scen. 4 is demonstrated in

Figure 4.2. Although, the integration of DERs can lead to less LR, the grid power

profile is flatter, and the household compensated power is increased which means more

comfort for the customers. Note that the positive terms for grid power and BS power

are the purchasing power, and BS discharging power, respectively. Also, a negative

grid power and BS power refer to sold power, and charging BS power, respectively.

Then, according to Table 4.1 and Figure 4.2, utilizing DERs not only is useful for

DRPs/aggregators, but also increases the customer’s comfort.
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Figure 4.3: Total power of load reduction, grid, home, and battery storage.

The impact of different DER penetration on the proposed TES is illustrated in

Figure 4.3. By doubling the original DER penetration (i.e. 20%, 40%, and 60% for ES,

PEV, and PV, respectively), more BS can be charged by means of more PV or off-peak

grid power. Then PV and BS can be used during peak times to increase the amount

of the household compensation and PEV charging power. For instance, in hour 19,

an increase in the household compensation and PEV charging power can be supplied

by means of the increased PV and BS discharging power, and less power purchase is

required. The maximum total power of the load reduction is 26 MWh, which means

around 3.5 KWh load reduction for each customer. It is worth mentioning here that

the positive PEV power, which is discharging power is determined by customers, and

the negative PEV power, which is charging power, is obtained by the proposed TES

model.
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4.3.3 Evaluation of the Proposed ELDR-based Robust TES

In this section, the performance of the proposed ELDR-based robust TES is com-

pared to the LDR-based robust TES. In the LDR approach, due to 24 hours, the

budget uncertainties ΘS, ΘP are capable to change between [0, 24]. And since only

30% of 7500 customers have PV power, ΘRE ∈ [0, 24 × 2500]. While, in the ELDR

methodology, since two pieces (i.e. L = 2), ΘS ∈ [0, 2 × 24], ΘP ∈ [0, 2 × 24], and

ΘRE ∈ [0, 2 × 24 × 2500] are considered. For the sake of fair comparisons, the ap-

proaches are compared based on their conservation levels. For instance, 0.00 × ΘY

shows the zero robustness which equals the deterministic TES model, and 1.00×ΘY

represents the maximum robustness.

4.3.3.1 Robust TES vs. Budget of Uncertainty

The impact of the budget of uncertainty on the total profits and the computation

time for all scenarios of the proposed TES model are illustrated in Table 4.2. By

increasing the robustness level, the total profits of both LDR and ELDR approaches

decrease. But, since the ELDR-based robust TES is designed to be less conservative

than the LDR model, the total profit of the ELDR model is higher than the LDR

model, while, the computational burdens of both the ELDR and the LDR are relatively

close. Note that the presented times are the average of the four scenario times. The

approaches can rapidly reach to their maximum robustness, even before the maximum

budget of uncertainty, since all uncertain parameters have adopted their worst values.

4.3.3.2 Out-of-Sample Procedure

Finally, an out-of-sample procedure is introduced to practically compare the ef-

fectiveness and performance of the two methodologies. For the sake of simplicity,

the procedure is only applied to Scen. 4 – the most comprehensive scenario of the

proposed TES framework. The decision variables of the robust TES model are fixed at

the obtained optimal results of the energy transaction schedule for a specific value of
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Table 4.2: The total profit ($) and computation time (s) of the proposed robust TES
model vs. budget of uncertainty

ΘY
Scen. 1 Scen. 2 Scen. 3 Scen. 4 CPU Time

LDR-based Robust TES

0.00×ΘY 14,016 12,825 13,474 15,819 1,692

0.25×ΘY 11,369 9,034 9,569 11,713 1,759

0.50×ΘY 11,369 9,034 9,569 11,713 1,793

0.75×ΘY 11,369 9,034 9,569 11,713 1,824

1.00×ΘY 11,369 9,034 9,569 11,713 1,868

LDR-based Robust TES

0.00×ΘY 14,016 12,825 13,474 15,819 1,692

0.25×ΘY 11,577 9,454 10,065 12,280 1,790

0.50×ΘY 11,577 9,454 10,065 12,280 1,834

0.75×ΘY 11,577 9,454 10,065 12,280 1,875

1.00×ΘY 11,577 9,454 10,065 12,280 1,915

the budget of uncertainty. This is the schedule that the DRP/aggregator provides for

the customers. Day-ahead LMPs [94], and PV power generations [92] are utilized to

obtain the actual profit. Also the deviation of the actual realized PV power generation

should be compensated through real-time power purchasing. Therefore, the actual

profit includes the customers’ schedule with actual LMPs and PV power as well as

the real-time purchased power cost. The above-mentioned out-of-sample procedure

is run for seven days, and the mean value is presented as the out-of-sample profit in

Table 4.3. By changing the budget of uncertainty from zero to 0.04×ΘY in 0.01 steps,

the total profit of the proposed robust TES in both approaches decreases, while in the

LDR-based and ELDR-based frameworks, after 0.03×ΘY and 0.04×ΘY respectively,

the total profits are identical. The out-of-sample results imply that the ELDR-based
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Table 4.3: The total profit and out-of-sample results

ΘY

Robust TES Out-of-Sample Profit Increment

($) ($) (%)

LDR ELDR LDR ELDR LDR ELDR

0.00×ΘY 15,819 15,819 12,594 12,594 0.00 0.00

0.01×ΘY 13,541 14,306 14,635 14,386 16.21 14.23

0.02×ΘY 12,528 13,657 15,509 14,863 23.15 18.01

0.03×ΘY 11,713 12,902 14,497 16,223 15.11 28.82

0.04×ΘY 11,713 12,280 14,497 15,264 15.11 21.20

robust TES model with the budget of uncertainty 0.03×ΘY obtains the highest profit

$16,223 with 28.82% increment than the out-of-sample profit of the deterministic

model, which indicates the efficacy and flexibility of the proposed framework. Note

that increasing the budget of uncertainty to 0.04×ΘY leads to a reduction in ELDR-

based out-of-sample profit, since this robustness is excessively conservative for the

uncertainty sources.

4.4 Conclusion

A new TES is proposed for the integrated DERs comprising the aggregated load

reduction DR, PEV, on-site RE resources, and behind-the-meter ES systems. Si-

multaneously, a CI is designed to consider the impact of customer willingness to

accept the LR offer and PEV schedule to obtain the optimal profit while enhancing

DSEM. A new ELDR is introduced to model the uncertainty sources of electricity

market clearing prices and renewable real power generation by reformulating the

proposed TES framework as an affinely adjustable robust optimization model. The

results on a large-scale case study demonstrate the applicability and effectiveness of

the proposed model. The impact of DERs on the TES model has been assessed by

considering different scenarios. Also, the performance of the proposed ELDR-based
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robust TES has been compared with the LDR-based robust TES with respect to the

budget of uncertainty and an out-of-sample procedure. By changing the budget of

uncertainty, the ELDR-based robust TES demonstrates less conservative behavior

than the LDR-based model. Additionally, the out-of-sample procedure has indicated

the effectiveness of the ELDR-based robust TES framework encountering different

realizations of uncertain parameters [96].



CHAPTER 5: CONCLUSIONS

In Chapter 2, the performance of various robust self-scheduling methodologies

was evaluated and compared. These robust methodologies have different uncertainty

modeling approaches, as well as a range of tools for controlling the conservativeness of

their solutions. In addition to recasting the robust methodologies in more applicable

forms, offer curve constructing strategy for each method has been presented. Moreover,

to practically evaluate the performance of various methodologies, a post-optimization

procedure has been proposed to determine the actual profit of each method in different

real-market-environment cases. The conclusions drawn from the evaluations can

help GenCos select and model the most appropriate non-deterministic self-scheduling

approach based on the price information and price forecast method that they have

adopted, as well as the robustness level that they desire in their solution.

In Chapter 3, an integrated capacity market and DR model was developed in which

DRR can participate in the capacity market to reduce the required transmission

capacity as an alternative transmission expansion planning solution instead of the

expensive transmission upgrade solution. In addition, DRR can be used in the capacity

market as a resource to decrease the load to meet the reliability requirement and

improve the social welfare of the capacity market. The proposed model was based

on the PJM capacity market model. The designed model in this chapter of the

dissertation can help ISOs/RTOs to manage the capacity market and transmission

expansion planning more efficiently and flexibly. It can also help large consumers or

LSEs to manage their loads and earn a profit. To investigate the performance of the

proposed framework, it was implemented on the BRA of 2020/2021 PJM capacity

market real data, and the influence of several important parameters are investigated
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in detail to control the capacity market cost and LMP.

In Chapter 4, a novel TES for the integrated DERs comprising the aggregated

load reduction DR, PEV, on-site RE resources, and behind-the-meter ES systems

was proposed. Simultaneously, a CI was designed to model the impact of customer

willingness to accept the LR offer and PEV schedule to obtain the optimal profit while

enhancing DSEM. A new ELDR was introduced to model the uncertainty sources of

electricity market clearing prices and renewable real power generation by reformulating

the proposed TES framework as an affinely adjustable robust optimization model.

The results on a large-scale test system illustrate the applicability and effectiveness of

the proposed model. The impact of DERs on the TES model has been evaluated by

considering different scenarios. Also, the performance of the proposed ELDR-based

robust TES has been compared with the LDR-based robust TES with respect to the

budget of uncertainty and an out-of-sample procedure. By changing the budget of

uncertainty, the ELDR-based robust TES demonstrates less conservative behavior

than the LDR-based model. Additionally, the out-of-sample procedure has indicated

the effectiveness of the ELDR-based robust TES framework encountering different

realizations of uncertain parameters.

5.1 Contributions

A summary of the main contributions of the dissertation are as follows:

1. The mathematical formulations of different robust approaches including Box

RO (BRO), Ellipsoidal RO (ERO), Polyhedral RO (PRO), Box and Ellipsoidal

RO (BERO), Box and Polyhedral RO (BPRO), CVaR-SP, and IGDT models

are proposed. Also, the characteristics of the uncertainty sets corresponding

to BRO, ERO, PRO, BERO, and BPRO are presented by means of relevant

theorems and proofs. Previous research work in this area have either only used

these approaches [17, 18, 19, 20, 21, 22, 23, 24] or compared these methods

without any mathematical proof [31]. Accordingly, to the best of my knowledge,
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there is no existing research work that mathematically characterizes the robust

approaches [53].

2. Various self-scheduling strategies based on the robust approaches are proposed

for GenCos to participate in an electricity market considering the price data

and desired robustness level [53].

3. To correctly analyze and compare the performance of these robust methodologies

in the uncertain environment of self-scheduling, a post-optimization procedure

is proposed. This procedure evaluates the long-run performance of the robust

methodologies encountering different realizations of uncertain electricity prices

[53].

4. Proposing a novel integrated capacity market and demand response model as an

alternative solution to the transmission expansion planning problem [66].

5. Including the use of the demand response resources as power supply resources

to participate in the capacity market [66].

6. A novel and comprehensive transactive energy system (TES) framework is

proposed for the integration of the aggregated load reduction DR such as load

curtailment (LC) and load shifting (LS), and PEV in which utilizing other

DERs including on-site RE resources and behind-the-meter ES systems can

increase the obtained profits from day-ahead electricity markets, and enhance

DRPs/aggregators interactions with retail customers. In the proposed framework,

load reduction offers and optimal PEV schedules are determined while considering

customers willingness. To consider the impact of customers willingness, a comfort

index (CI) in the proposed framework is designed [96].

7. A new ELDR to reformulate the TES as an affinely adjustable robust model

is introduced to consider the uncertainties of electricity market clearing prices
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and renewable power generations. The impact of the budget of uncertainty on

the ELDR-based robust TES is evaluated. Also, an out-of-sample procedure is

presented to analyze the efficacy and performance of the proposed ELDR-based

robust TES encountering different realizations of uncertain parameters [96].

5.2 Future Work

Analyzing and comparing the performance of the non-deterministic approaches

for multi-auctions self-scheduling model as well as considering different sources of

uncertainty, such as electricity market price, renewable resources and so on, are set

aside to be studied as future work.

The application of the demand response as an alternative solution for different

problems such as frequency control in different electricity markets, e.g. real-time or

ancillary service markets can be studied in future.

The transactive energy system for commercial or industrial customers considering

different types of demand response programs such as critical peak pricing, time-of-use,

as well as different DERs can be proposed.
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APPENDIX A: The LINEARIZATION OF THE GENERATION COST

FUNCTIONS

The quadratic generation cost function fu (.) is as follows:

fu (put) = au + bu.put + cu.p
2
ut ∀u,∀t (A.1)

By applying the piecewise linear approximation [35] to (A.1), the linearized generation

cost function is obtained in (A.2)-(A.6).

fu (put) = Au.zut +

N l
u∑

l=1

(Slu.pblut) ∀u,∀t (A.2)

put = Pmin
u .zut +

N l
u∑

l=1

pblut ∀u,∀t (A.3)

pb(l=1)ut ≤ P l=1
u − Pmin

u ∀u,∀t (A.4)

pblut ≤ P l
u − P l−1

u ∀u,∀t,∀l = 1, ..., N l
u

(A.5)

pbN l
uut
≤ Pmax

u − PN l
u−1

u ∀u,∀t (A.6)

where Au = au + bu.P
min
u + cu.

(
Pmin
u

)2 ∀u.
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APPENDIX B: THE GENERATOR DATA OF IEEE 30 AND 118-BUS TEST

SYSTEMS

Table B.1: IEEE 30-bus generator data

Bus Pmin
u Pmax

u Cost Coefficients

No. (MW) (MW) au($/h) bu($/MWh) cu ($/MW2h)

1 50 200 0 2.00 0.00375

2 20 80 0 1.75 0.01750

5 15 50 0 1.00 0.06250

8 10 35 0 3.25 0.00834

11 10 30 0 3.00 0.02500

13 12 40 0 3.00 0.02500

Table B.2: IEEE 118-bus generator data

Unit
Bus Pmin

u Pmax
u MDu MUu RDu RUu SUuτ Cost Coefficients

No. (MW) (MW) (h) (h) (MW/h) (MW/h) ($) au

($/h)

bu

($/MWh)

cu

($/MW2h)

1001 4 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1002 6 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1003 8 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1004 10 150 300 8 8 150 150 440 6.78 12.8875 0.01088

1005 12 100 300 8 8 150 150 110 6.78 12.8875 0.01088

1006 15 10 30 1 1 15 15 40 31.67 26.2438 0.06966

1007 18 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1008 19 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1009 24 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1010 25 100 300 8 8 150 150 100 6.78 12.8875 0.01088
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Unit
Bus Pmin

u Pmax
u MDu MUu RDu RUu SUuτ Cost Coefficients

No. (MW) (MW) (h) (h) (MW/h) (MW/h) ($) au

($/h)

bu

($/MWh)

cu

($/MW2h)

1011 26 100 350 8 8 175 175 100 32.96 10.7600 0.00300

1012 27 8 30 1 1 15 15 40 31.67 26.2438 0.06966

1013 31 8 30 1 1 15 15 40 31.67 26.2438 0.06966

1014 32 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1015 34 8 30 1 1 15 15 40 31.67 26.2438 0.06966

1016 36 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1017 40 8 30 1 1 15 15 40 31.67 26.2438 0.06966

1018 42 8 30 1 1 15 15 40 31.67 26.2438 0.06966

1019 46 25 100 5 5 50 50 59 10.15 17.8200 0.01280

1020 49 50 250 8 8 125 125 100 28.00 12.3299 0.00240

1021 54 50 250 8 8 125 125 100 28.00 12.3299 0.00240

1022 55 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1023 56 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1024 59 50 200 8 8 100 100 100 39.00 13.2900 0.00440

1025 61 50 200 8 8 100 100 100 39.00 13.2900 0.00440

1026 62 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1027 65 100 420 10 10 210 210 250 64.16 8.3391 0.01059

1028 66 100 420 10 10 210 210 250 64.16 8.3391 0.01059

1029 69 80 300 8 8 150 150 100 6.78 12.8875 0.01088

1030 70 30 80 4 4 40 40 45 74.33 15.4708 0.04592

1031 72 10 30 1 1 15 15 40 31.67 26.2438 0.06966

1032 73 5 30 1 1 15 15 40 31.67 26.2438 0.06966

1033 74 5 20 1 1 10 10 30 17.95 37.6968 0.02830



99

Unit
Bus Pmin

u Pmax
u MDu MUu RDu RUu SUuτ Cost Coefficients

No. (MW) (MW) (h) (h) (MW/h) (MW/h) ($) au

($/h)

bu

($/MWh)

cu

($/MW2h)

1034 76 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1035 77 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1036 80 150 300 8 8 150 150 440 6.78 12.8875 0.01088

1037 82 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1038 85 10 30 1 1 15 15 40 31.67 26.2438 0.06966

1039 87 100 300 8 8 150 150 440 32.96 10.7600 0.00300

1040 89 50 200 8 8 100 100 400 6.78 12.8875 0.01088

1041 90 8 20 1 1 10 10 30 17.95 37.6968 0.02830

1042 91 20 50 1 1 25 25 45 58.81 22.9423 0.00977

1043 92 100 300 8 8 150 150 100 6.78 12.8875 0.01088

1044 99 100 300 8 8 150 150 100 6.78 12.8875 0.01088

1045 100 100 300 8 8 150 150 110 6.78 12.8875 0.01088

1046 103 8 20 1 1 10 10 30 17.95 37.6968 0.02830

1047 104 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1048 105 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1049 107 8 20 1 1 10 10 30 17.95 37.6968 0.02830

1050 110 25 50 2 2 25 25 45 58.81 22.9423 0.00977

1051 111 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1052 112 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1053 113 25 100 5 5 50 50 50 10.15 17.8200 0.01280

1054 116 25 50 2 2 25 25 45 58.81 22.9423 0.00977

where generation cost function is equal to fu (put) = au + bu.put + cu.p
2
ut
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APPENDIX C:

Theorem: The BRO, BERO, and BPRO models lead to the same result for

DR = DRmax.

Proof: As (2.24) should be maximized and its last two terms are negative (since

ht ≥ 0 ∀t and qt ≥ 0 ∀t based on (2.25)), in the optimal solution of BERO, the

inequality of (2.25) becomes an equality:

ht + qt = Êt.

U∑

u=1

put ⇒
T∑

t=1

(ht + qt) =
T∑

t=1

U∑

u=1

Êt.put (C.1)

Similarly, for (2.28), the following relation in the optimal solution is found:

T∑

t=1

(v + ht) =
T∑

t=1

U∑

u=1

Êt.put (C.2)

The above relations (C.1) and (C.2) can be written as:

T∑

t=1

ht +
T∑

t=1

qt =
T∑

t=1

U∑

u=1

Êt.put (C.3)

T.v +
T∑

t=1

ht =
T∑

t=1

U∑

u=1

Êt.put (C.4)

Based on DR = DRmax, there are ΨB = 1, ΨE =
√
|J | =

√
T and ΨP = |J | = T in

BERO, and BPRO. Thus, the PF of (2.24), and (2.27) become:

[
ΨB.

T∑

t=1

ht

]
+


ΨE.

√√√√
T∑

t=1

q2
t


 =

T∑

t=1

ht +
√
T

√√√√
T∑

t=1

q2
t (C.5)

[ΨP · v] +

[
ΨB.

T∑

t=1

ht

]
= T · v +

T∑

t=1

ht (C.6)
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From Cauchy-Schwarz inequality, it is well-known that [97]:

〈a,b〉 ≤ 〈a, a〉 1
2 〈b,b〉 1

2 (C.7)

where 〈., .〉 is the inner product. Consider a = {1, 1}, b = {q1, q2}, and based on

constraint (2.25).

q1 + q2 ≤
√

2.
√
q2

1 + q2
2 (C.8)

This result can easily be extended to T terms as:

√
T .

√√√√
T∑

t=1

q2
t ≥

T∑

t=1

qt (C.9)

Therefore, for DR = DRmax to obtain the maximum value of (2.24), the ERO term

(
√
T .

√
T∑
t=1

q2
t ) equals

T∑
t=1

qt. Using this result, combining (C.3) with (C.5), and (C.4)

with (C.6) yield:

[
ΨB.

T∑

t=1

ht

]
+


ΨE.

√√√√
T∑

t=1

q2
t


 =

T∑

t=1

U∑

u=1

Êt.put (C.10)

[ΨP · v] +

[
ΨB ·

T∑

t=1

ht

]
=

T∑

t=1

U∑

u=1

Êt.put (C.11)

The right-hand-side of (C.10) and (C.11) is the last term of (2.13) for ΨB = 1. Thus,

for DR = DRmax, the BRO, BERO, and BPRO models have the same PF, and thus

lead to the same optimal result. Figure C.1 illustrates the uncertainty set of BRO,

BERO, and BPRO for DR = DRmax.
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a.

b.

c.

1B<  

1,B E J<  <  

1,B P J<  <  

Figure C.1: BRO (a.), BERO (b.), and BPRO (c.) uncertainty set for DR = DRmax.
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APPENDIX D:

Theorem: In terms of conservativeness, BRO, ERO and PRO are sorted as: BRO

≤ ERO ≤ PRO.

Proof: For DR = DRmax the PF of the ERO in (2.16) becomes:

ΨE.

√√√√√
T∑

t=1


Ê2

t .

[
U∑

u=1

put

]2

 =
√
T .

√√√√
T∑

t=1

[
Êt.

U∑

u=1

put

]2

(D.1)

Using (C.8), for this PF it can be written that:

√
T ×

√√√√
T∑

t=1

[
Êt.

U∑

u=1

put

]2

≥
T∑

t=1

[
Êt.

U∑

u=1

put

]
(D.2)

The right-hand-side of (D.2) is the PF of BRO in (2.13) for DR = DRmax, i.e. ΨB = 1.

Thus, ERO has a higher PF than BRO and so is more conservative than BRO for

DR = DRmax.

Considering the inequality v ≥ Êt.
U∑
u=1

put in (2.20), the PF of the ERO can be

written as:
√
T .

√√√√
T∑

t=1

[
Êt.

U∑

u=1

put

]2

≤
√
T .

√√√√
T∑

t=1

v2 = T.v (D.3)

For DR = DRmax, the PF of the PRO in (2.19) becomes:

Ψp · v = T · v (D.4)

(D.3) and (D.4) yield that PRO has a higher PF than ERO, and so is more conservative

than ERO for DR = DRmax. This result and the previous one proves the theorem for

DR = DRmax. Similarly, this theorem can be proved for the other values of DR.
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APPENDIX E:

Constraints (4.5)-(4.13), and (4.18)-(4.26) are not changed in the ELDR-based

methodology since they include only the here-and-now, and auxiliary variables. The

reformulated constraints (4.1), (4.3), (4.4), and (4.14)-(4.17) are provided in this

section. The piecewise affine polices (4.28)-(4.30) are replaced in the associated

constraints. Then, to end up with the tractable robust counterpart of the TES model,

the duality theory can be applied to reformulate each constraint.

As mentioned in subsection (4.2.3), to apply the duality the inner maximization

must be fixed independent of ξ. While, in (4.1) the products of selling LMP and

LR power, purchasing LMP and power, and selling LMP and power are dependent

to ξ. To remedy this issue a new auxiliary variable ξ′ = ξ.ξ is defined. Also, the

non-adjustable variable h is divided into two components h1 and h2, and the piecewise

affine policy can be rewritten as:

p = h1 + h2 + Wξ (E.1)

The piecewise affine policy of the product pξ can be defined as follows:

pξ = h1 + h2ξ + Wξ′ (E.2)

Accordingly, the duality theory can be applied to (4.1) using piecewise affine policies

(E.1) and (E.2):

Max ϑ (E.3)
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s.t.

∑
t∈T

[∑
u∈U

[∑
b∈B

[
[π

S,LMP
t − πLR

but].(P
h1,LR
but +

P h2,LR
but )

]
+ [πP

ut − π
P,LMP
t ].(P h1,P

ut + P h2,P
ut ) + [π

S,LMP
t

−πS
ut].(P

h1,S
ut + P h2,S

ut ) + λ1.P
LC
ut + λ2.ρ

LS
ut .P

LS
ut + λ3.[π

P
ut

−πP,LMP
t ].PES,dch

ut − λ4.(P
h1,S
ut + P h2,S

ut )]−
∑

l∈L
(ΠRE

1,lut

+ΠA,4
lut + ΠA,5

lut )
]
−
∑

l∈L
(ΠS

1,lt + ΠP
1,lt + ΠA,1

lt + ΠA,2
lt +

ΠA,3
lt )
]
−ΘS.ΓS

1 −ΘP.ΓP
1 −ΘRE.ΓRE

1 − ϑ ≥ 0 (E.4)

∑
l∈L

ΠS
1,lt + ΓS

1 ≥
∑

l∈L

[
π̂S
lt.
∑

u∈U

[∑
b∈B

[
(πLR

but −

π
S,LMP
t ).Pw,LR

S,lbut + P h2,LR
but ] + (π

P,LMP
t − πP

ut).P
w,P
S,lut + [πS

ut

−πS,LMP
t ].Pw,S

S,lut + P h2,S
ut + λ4.P

w,S
S,lut

]]
∀t (E.5)

∑
l∈L

ΠP
1,lt + ΓP

1 ≥
∑

l∈L

[
π̂P
lt .
∑

u∈U

[∑
b∈B

[
(πLR

but−

π
S,LMP
t ).Pw,LR

P,lbut] + (π
P,LMP
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ut).P
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P,lut + P h2,P
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ut

−πS,LMP
t ].Pw,S

P,lut + λ3.P
ES,dch
ut + λ4.P

w,S
P,lut

]]
∀t (E.6)

∑
l∈L

ΠRE
1,lut + ΓRE

1 ≥
∑

l∈L

[
P̂RE
lut .

∑
b∈B

[
(πLR

but−

π
S,LMP
t ).Pw,LR

RE,lbut + (π
P,LMP
t − πP

ut).P
w,P
RE,lut + [πS

ut−

π
S,LMP
t ].Pw,S

RE,lut + λ4.P
w,S
RE,lut

]]
∀u,∀t (E.7)

∑
l∈L

ΠA,1
lt ≥

∑
l∈L

π̂S
lt.π̂

S
lt.
∑

u∈U

[∑
b∈B

Pw,LR
S,lbut

+Pw,S
S,lut

]
∀t (E.8)

∑
l∈L

ΠA,2
lt ≥

∑
l∈L

π̂S
lt.π̂

P
lt .
∑

u∈U

[∑
b∈B

Pw,LR
P,lbut

+Pw,P
S,lut + Pw,S

P,lut

]
∀t (E.9)
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∑
l∈L

ΠA,3
lt ≥

∑
l∈L

π̂P
lt .π̂

P
lt .
∑

u∈U
Pw,P

P,lut ∀t (E.10)

∑
l∈L

ΠA,4
lut ≥

∑
l∈L

π̂S
lt.P̂

RE
lut .

[∑
b∈B

Pw,LR
RE,lbut

+Pw,S
RE,lut

]
∀u,∀t (E.11)

∑
l∈L

ΠA,5
lut ≥

∑
l∈L

π̂P
lt .P̂

RE
lut .P

w,P
RE,lut ∀u,∀t (E.12)

where ΠA,1
lt ≥ 0, ΠA,2

lt ≥ 0, ΠA,3
lt ≥ 0, ΠA,4

lut ≥ 0, and ΠA,5
lut ≥ 0 are the dual vari-

ables associated with πS,LMP
lt .πS,LMP

lt , πS,LMP
lt .πP,LMP

lt , πP,LMP
lt .πP,LMP

lt , πS,LMP
lt .PRE

lut , and

πP,LMP
lt .PRE

lut , respectively.

The constraints (E.13)-(E.20), (E.21)-(E.24), and (E.25)-(4.28) are the reformulated

form of the constraints (4.3), (4.4), and (4.14), respectively. Without loss of generality,

the equality constraints of (4.4), (4.14), and (4.15) are replaced with the inequality

constraints of (E.21), (E.25), and (E.31), respectively [86].

(P h1,P
ut + P h2,P

ut )− PP
ut.z

P
ut −

∑
l∈L

[
ΠS

3.1,lt + ΠP
3.1,lt

+ΠRE
3.1,lut

]
−ΘS.ΓS

3.1 −ΘP.ΓP
3.1 −ΘRE.ΓRE

3.1 ≥ 0 ∀u,∀t (E.13)

∑
l∈L

ΠS
3.1,lt + ΓS

3.1 ≥ −
∑

l∈L
π̂S
lt.P

w,P
S,lut ∀u,∀t (E.14)

∑
l∈L

ΠP
3.1,lt + ΓP

3.1 ≥ −
∑

l∈L
π̂P
lt .P

w,P
P,lut ∀u,∀t (E.15)

∑
l∈L

ΠRE
3.1,lut + ΓRE

3.1 ≥ −
∑

l∈L
P̂RE
lut .P

w,P
RE,lut ∀u,∀t (E.16)

P
P

ut.z
P
ut − (P h1,P

ut + P h2,P
ut )−

∑
l∈L

[
ΠS

3.2,lt + ΠP
3.2,lt

+ΠRE
3.2,lut

]
−ΘS.ΓS

3.2 −ΘP.ΓP
3.2 −ΘRE.ΓRE

3.2 ≥ 0 ∀u,∀t (E.17)

∑
l∈L

ΠS
3.2,lt + ΓS

3.2 ≥
∑

l∈L
π̂S
lt.P

w,P
S,lut ∀u,∀t (E.18)

∑
l∈L

ΠP
3.2,lt + ΓP

3.2 ≥
∑

l∈L
π̂P
lt .P

w,P
P,lut ∀u,∀t (E.19)
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∑
l∈L

ΠRE
3.2,lut + ΓRE

3.2 ≥
∑

l∈L
P̂RE
lut .P

w,P
RE,lut∀u,∀t (E.20)

P LR,LC
but + P LR,LS

but − (P h1,LR
but + P h2,LR

but )−
∑

l∈L

[
ΠS

4,lt

+ΠP
4,lt + ΠRE

4,lut

]
−ΘS.ΓS

4 −ΘP.ΓP
4 −ΘRE.ΓRE

4

≥ 0 ∀b,∀u,∀t (E.21)

∑
l∈L

ΠS
4,lt + ΓS

4 ≥
∑

l∈L
π̂S
lt.P

w,LR
S,lbut ∀b,∀u,∀t (E.22)

∑
l∈L

ΠP
4,lt + ΓP

4 ≥
∑

l∈L
π̂P
lt .P

w,LR
P,lbut ∀b,∀u,∀t (E.23)

∑
l∈L

ΠRE
4,lut + ΓRE

4 ≥
∑

l∈L
P̂RE
lut .P

w,LR
RE,lbut∀b, ∀u,∀t (E.24)

PRE−G
ut − P

RE

ut − (P h1,P
ut + P h2,P

ut ) + (P h1,S
ut + P h2,S

ut )−
∑

l∈L

[
ΠS

14,lt +ΠP
14,lt + ΠRE

14,lut

]
−ΘS.ΓS

14 −ΘP.ΓP
14

−ΘRE.ΓRE
14 ≥ 0 ∀u,∀t (E.25)

∑
l∈L

ΠS
14,lt + ΓS

14 ≥
∑

l∈L
π̂S
lt.[P

w,P
S,lut − Pw,S

S,lut] ∀u,∀t (E.26)

∑
l∈L

ΠP
14,lt + ΓP

14 ≥
∑

l∈L
π̂P
lt .[P

w,P
P,lut − Pw,S

P,lut] ∀u,∀t (E.27)

∑
l∈L

ΠRE
14,lut + ΓRE

14 ≥
∑

l∈L
P̂RE
lut .[P

w,P
RE,lut − Pw,S

RE,lut

−1] ∀u,∀t (E.28)

By replacing equality constraint of (4.14) with the inequality constraint of (4.25),

PRE−G
ut variable is unbounded. To resolve this problem, the auxiliary constraints (E.29)

and (E.30) are introduced.

P
RE

ut + P
P

ut.z
P
ut − PRE−G

ut −
∑

l∈L
ΠRE

A,lut −ΘRE.ΓRE
A

≥ 0 ∀u,∀t (E.29)

∑
l∈L

ΠRE
A,lut + ΓRE

A ≥
∑

l∈L
P̂RE
lut ∀u,∀t (E.30)
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(P h1,P
ut + P h2,P

ut )− (P h1,S
ut + P h2,S

ut )− PG
ut −

∑
l∈L

[
ΠS

16,lt

+ΠP
15,lt + ΠRE

15,ut

]
−ΘS.ΓS

15 −ΘP.ΓP
15 −ΘRE.ΓRG

15 ≥ 0 ∀u,∀t (E.31)

∑
l∈L

ΠS
15,lt + ΓS

15 ≥
∑

l∈L
π̂S
lt.(P

w,S
S,lut − Pw,P

S,lut) ∀u,∀t (E.32)

∑
l∈L

ΠP
15,lt + ΓP

15 ≥
∑

l∈L
π̂P
lt .(P

w,S
P,lut − Pw,P

P,lut) ∀u,∀t (E.33)

∑
l∈L

ΠRE
15,lut + ΓRE

15 ≥
∑

l∈L
P̂RE
lut .(P

w,S
RE,lut − Pw,P

RE,lut) ∀u,∀t (E.34)

The robust counterpart of the constraints (4.16) and (4.17) are represented in the

constraints (E.35)-(E.38) and (E.39)-(E.42).

M.(1− zP
ut)− (P h1,S

ut + P h2,S
ut )−

∑
l∈L

[
ΠS

16,lt + ΠP
16,lt+

ΠRE
16,ut

]
−ΘS.ΓS

16 −ΘP.ΓP
16 −ΘRE.ΓRE

16 ≥ 0∀u,∀t (E.35)

∑
l∈L

ΠS
16,lt + ΓS

16 ≥
∑

l∈L
π̂S
lt.P

w,S
S,lut ∀u,∀t (E.36)

∑
l∈L

ΠP
16,lt + ΓP

16 ≥
∑

l∈L
π̂P
lt .P

w,S
P,lut ∀u,∀t (E.37)

∑
l∈L

ΠRE
16,lut + ΓRE

16 ≥
∑

l∈L
P̂RE
lut .P

w,S
RE,lut ∀u,∀t (E.38)

M.(1− zH
ut)− (P h1,S

ut + P h2,S
ut )−

∑
l∈L

[
ΠS

17,lt + ΠP
17,lt+

ΠRE
17,ut

]
−ΘS.ΓS

17 −ΘP.ΓP
17 −ΘRE.ΓRE

17 ≥ 0∀u,∀t (E.39)

∑
l∈L

ΠS
17,lt + ΓS

17 ≥
∑

l∈L
π̂S
lt.P

w,S
S,lut ∀u,∀t (E.40)

∑
l∈L

ΠP
17,lt + ΓP

17 ≥
∑

l∈L
π̂P
lt .P

w,S
P,lut ∀u,∀t (E.41)

∑
l∈L

ΠRE
17,lut + ΓRE

17 ≥
∑

l∈L
P̂RE
lut .P

w,S
RE,lut ∀u,∀t (E.42)

The final formulation of the ELDR-based robust TES framework is as follows:

(E.3)

s.t. (4.5)-(4.13), (4.18)-(4.26), (4.31)-(4.33), and (E.4)-(E.42)


