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ABSTRACT

JAMES YOUNG.  PseudotimeDE Analysis of Single Cell RNA Sequencing Malaria Data.
(Under the direction of DR. SHAOYU LI)

Malaria is a preventable disease that kills hundreds of thousands of people worldwide

each year. Focusing on the sporozoite stage of the parasite  Plasmodium berghei, we identified

561 differentially expressed genes (DEG) across different developmental stages using a dataset

published in  Nature,  which contained salivary gland (SG) and midgut  (MID) sporozoites.  A

recently  published  differential  expression  method  PseudotimeDE  was  used  for  the  DEG

identification.  We  compared  the  DEG  results  with  the  reference  paper,  finding  that

PseudotimeDE identified fewer DEG than the current method, tradeSeq, for multiple possible

reasons, and found several vaccine target genes. Finally, we ran Gene Ontology (GO) enrichment

and identified additional potential malaria treatment genes, which will require future research to

test and confirm.
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INTRODUCTION

Background and Goals

Malaria is an ongoing problem in many countries throughout the world, occurring most

commonly in tropical and subtropical climates on or near the equator. The regions most affected

are  Africa,  followed by South and Central  America and Asia1.  Malaria  has  a  whole host  of

symptoms  ranging  from  the  mild  symptoms  of  fever,  headache  and  chills  to  more  severe

symptoms of extreme tiredness, difficulty breathing, and jaundice, whereby the eyes and skin of

the person become yellowed. 

Overall, malaria causes hundreds of thousands of deaths globally every year. In 2022, the

number was estimated to be 608,000, 95% of which occurred in Africa, most of which occur in

children, due to a lack of previous exposure and immunity to the disease. Adults who get malaria

were often exposed to the disease as children and survived, building the necessary immunity or

partial immunity to survive subsequent infections2. 

Most cases of malaria in humans are caused by a bite from an infected female mosquito

of the Anopheles genus. Male mosquitoes do not transmit the disease as they do not bite humans.

Other  ways malaria  spreads includes  transfusing blood from an infected person and using a

contaminated needle. It can be prevented by avoiding the infectious bite in the first place or by

taking one of the two available vaccines. If infection has already occurred, it can be treated using

an anti-malaria drug2. 

To  understand  how  malaria  infection  occurs,  it  is  important  to  first  understand  the

parasites which cause the infection itself: the organisms of the  Plasmodium genus. There are

three stages in the life cycle of this parasite: gametocytes, sporozoites, and merozoites3. When a
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mosquito bites an infected host, both male and female gametocytes (the sexual parasite stage)

can be taken up by it. The gametocytes then travel to the mosquito Midgut (MID), where they are

fertilized and mature into ookinetes. These ookinetes then travel to the hemocoel, where they can

develop  into  oocysts  and  form  into  sporozoites.  Some  of  these  sporozoites  travel  to  the

mosquito’s Salivary Glands (SGs), where they can then bite a human and transfer the sporozoites

to them. The sporozoites then travel to the liver and become merozoites, which can eventually

develop into gametocytes and be taken up by a new mosquito, beginning the process over again4.

Figure 1: The life cycle of a malaria parasite. Image credit: 
https://www.cdc.gov/malaria/about/biology/index.html

2



The  primary  objective  of  this  paper  is  to  better  understand,  at  a  genomic  level,  the

differences between the sporozoites that make it to the SGs and those that do not. In doing so, it

is hoped that some insight may be gleaned on how to prevent or treat malaria. This could be

accomplished in at least three ways: firstly, by targeting a component of the sporozoite that is

more  active  in  those  that  reach  the  SGs,  damaging  them  before  transmission  to  humans,

secondly, by triggering something in the sporozoites that causes them to remain in the MID, thus

stopping the life cycle of the Plasmodium, or thirdly, by finding a gene that codes for a protein

that could be used as a vaccine target and adding it to a vaccine to train the immune system to

identify and combat malaria cells or infected human cells.

Current Research Overview

We will present the state of the current research can in three parts: (1) the overall state of

malaria  genomics  research,  (2)  methods  used  gather  the  genomics  data  and  (3)  methods  to

analyze the results of this data.

Around 20 years ago, the first paper was published that included reference genomes for

the most deadly malaria parasite and mosquito vector5. Since then, the human malaria reference

genomes  have  been  published  for  all  malaria  parasites  and  half  of  the  mosquito  vectors5.

Historically, these samples were processed in bulk, but more recent advances in Single-Cell RNA

sequencing (scRNA-seq) have allowed it to be used to analyze the parasites at the level of the

individual cell.
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Single-Cell RNA Sequencing

Single-Cell  RNA Sequencing  (scRNA-seq)  is  a  process  where  individual  cells  are

isolated, and their transcriptomes are independently sequenced6. This allows researchers to assess

the individual differences in genetics from a sample of cells. 

scRNA-seq is not without its drawbacks, however. When attempting to perform a cluster

analysis of genetic data, there are a large number of dimensions and thus it suffers the curse of

dimensionality.  Therefore,  the  data  must  be  reduced  to  only  a  handful  of  dimensions.

Additionally, the data produced is sparse, meaning that most of the values are zeroes. It is also

more challenging to quantify the uncertainty in the data. Finally, it raises the question of whether

single-cell is the correct level of analysis, or if it better to analyze this data at the level of the

bulk tissue, or based on cell types7.

It  is  important  to  understand  the  basic  steps  involved  in  scRNA-seq  to  be  able  to

understand and analyze the resulting data. These steps include preparing the sample, generating

droplets with unique barcodes and creating the libraries with the sequencing data6. The resulting

data is split up into by library and the cells in the datasets are identified by their unique 16 letter

barcodes.

Pseudotime, Differential Expression and PseudotimeDE

Pseudotime is defined as “a time-like variable indicating the relative position a cell takes

in  a  lineage,”  and  Differential  expression  (DE)  is  when  a  gene’s  mean  expression  changes

between different experimental conditions. In this study, particularly, we are interested in finding

those  genes  whose  mean  expression  pattern  changes  along  the  pseudotime8 (Figure  2).  An

4



important implication of this is if there are multiple lineages, every gene will have one DE p-

value per lineage it is part of.

There are multiple existing methods to calculate pseudotime and differential expression.

Each method has its  own strengths  and limitations.  Three primary limitations  of the current

pseudotime methods are as follows: Firstly, custom pseudotime inference data cannot be input

into DE methods; secondly, uncertainty in pseudotimes cannot be inferred, specifically, it is not

possible to infer if there a high certainty that the predicted lineage is the true one; and, finally,

these methods may have suboptimal power since it is difficult to detect DEG in sparse data. 

Figure 2: Two examples of differentially expressed genes from the preliminary analysis. The
gene on the left, PBANKA_1002500, has a low expression from a (scaled) pseudotime of zero to
around 0.7, where it begins increasing until it reaches a maximum at 1. The gene on the right,
PBANKA_1400800, begins with a high gene expression,  reaches a maximum at around 0.2,
reaches a minimum at around 0.7, before increasing slightly.
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A recently  published statistical  method,  PseudotimeDE,  could  potentially  address  the

issues discussed earlier. PseudotimeDE works in four overall steps. In step 1, it  creates 80%

subsamples of the datasets and permutes the cells. Then, in step 2, it infers pseudotime for the

original data and subsamples using the chosen method. In step 3, it fits a zero-inflated negative

binomial GAM (ZINB-GAM) to each gene in the original data. Finally, in step 4, it fits the same

model  from  the  original  data  to  each  subsample  by  permuting  the  cell  labels  “to  obtain

approximate null values of the gene’s test statistic.” At the end, either a gamma distribution or a

gamma mixture model is fitted and used to compute analytical p-values8.

Figure 3: The PseudotimeDE workflow. Image credit: Ruberto, A. A. et al.8

From  these  steps,  the  advantages  of  PseudotimeDE  can  be  seen:  it  allows  for  any

pseudotime method as input (Slingshot, Monocle3-PI, etc.), subsampling allows for uncertainty

in inferred psuedotimes to be taken into account, it has higher power to detect DEG, and its

ZINB-GAM option to “excludes excess zeroes” and “treat [the zeroes] as non-biological zeroes”

provides a better model option for the zero-inflated scRNA-seq data8. 
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The  primary  drawback  of  PseudotimeDE is  that  it  is  computationally  intensive:  the

lineages must be separately calculated for each subsample of the original dataset, and the model

that is fitted to each gene in each lineage must also be fitted to that same gene in each subsample,

potentially  increasing  computational  requirements  by  hundreds  of  times  compared  to  other

methods.

ZINB-GAM Model

The  negative  binomial-generalized  additive  model  (NB-GAM)  is  used  to  model  the

relationship between the pseudotime of a cell and the expression of each gene in that cell. The

ZINB-GAM builds on this by adding a hidden variable to turn the NB-GAM into a mixture

model between the hidden variable and a negative binomial distribution. The full model is as

follows8:

{
Z ij ∼Ber (pij) ,

Y ij∣Z ij∼Z ij⋅NB (μij , ϕ j)+(1−Z ij)⋅0 ,

log (μij)=β j 0+ f j (T i) ,

logit ( pij)=α j 0+α j 1 log (μij)

where Yij is “the read count of gene j in cell i”8

Ti is the normalized pseudotime for cell i inferred from the pseudotime method8

Zij is the probability of “a dropout event of gene j on cell i,”8 or zero-inflation

NB(μij, φj) is “the negative binomial distribution with mean μij and dispersion φj”8

Ber(pij) is a Bernoulli distribution with probability pij

fi(Ti) is a cubic spline function with six knots by default8
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Gene Ontology Enrichment

An ontology is “a set of well-defined terms with well-defined relationships”9, and the

goal  of  the  Gene  Ontology  (GO)  Initiative  is  “to  produce  a  structured,  precisely  defined,

common,  controlled  vocabulary  for  describing  the  roles  of  genes  and gene  products  in  any

organism”9. The three categories of GO are biological processes, the biological objective of the

gene or product of the gene; molecular functions, the biochemical activity of the product of the

gene; and cellular components, the resulting location where the product of the gene is active.

These categories may be independent of one another, and each gene product may have multiple

processes, functions and components9.
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METHODS

The datasets used in this analysis all came from the malaria reference paper by Ruberto,

A. A. et al. published in 202110. In this paper, the authors took two samples of mosquitoes, with

50-80 mosquitoes per sample, allowed them to bite an rodent that was already infected with

malaria and dissected the mosquitoes after 21 days. Then, they centrifuged the mosquito parts to

separate out the sporozoites from the mosquito, sequenced the sporozoites using scRNA-seq and

generated three libraries: two with a 50:50 ratio of sporozoites from the SG and MID and one

90:1010.

The reference paper generated a total  of three data files from the three libraries.  The

structure of the data files are as follows: each row of the data is a gene label, each column is a

unique  cell  barcode,  and  the  data  are  the  number  of  times  the  gene  was  counted  as  being

expressed for that cell, so called read counts. Low-quality genes and cells were filtered out by the

authors of the paper10. 

Both the preliminary analysis and the  final comprehensive analysis on the full dataset

used similar methods, albeit with some differences. All datasets and scripts referenced were from

the  provided  files  in  the  GitHub  linked  under  the  Data  Availability  section  of  the  malaria

reference paper10. After filtering for this low-quality data, the final datasets had 922 genes and

2004 cells, 829 genes and 2024 cells and 1535 genes and 4326 cells, respectively, for datasets

Pb1, Pb2, and Pb3 (as labeled in the output files). The .rds output files that were used were from

the DOI linked under the Outputs section of the same GitHub page.

In this  paper,  we used Slingshot  to infer  the pseudotimes of the cells  and then used

PseudotimeDE for the DEG identification. The decision to use PseudotimeDE was threefold:
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Firstly, it infers the uncertainty in the estimated pseudotime by integrating a subsampling step.

Secondly, the availability of the ZINB-GAM as an option for the model allows a more suitable

fit  for  the  scRNA-seq  data  under  consideration.  Lastly,  PseudotimeDE  facilitates  the

computation of parametric p-values, which will enhance the robustness of our statistical analysis.

We conducted the same analysis for each inferred lineage and performed GO enrichment analysis

for the results. We expect more reliable results form our proposed analysis pipeline.

All programming was performed using R. For the preliminary analysis, the beginning .rds

file  used  was  1_PB1_sce.rds,  which  was  generated  from  the  Pd_Spz_10X.Rmd file.  Then,

adapting the .Rmd files that followed to apply to only Pb1, the necessary variables were created

and lineages, principal curves and pseudotimes were inferred by using Slingshot. 

This is where the R code began to significantly diverge from the reference code, as the

reference  paper  used  tradeSeq  for  DE analysis10,  while  one  goal  of  this  paper  was  to  use

PseudotimeDE. For each lineage identified (three in the preliminary analysis and four on the full

dataset),  the  data  was  cleansed  and  subsamples  were  generated.  The  Slingshot  data  and

subsamples were entered into the runPseudotimeDE command in batches and the analysis was

performed on those results.

The  preliminary  analysis  was  performed  only  on  the  first  of  the  three  datasets;  the

runPseudotimeDE module was run with a total of 80 subsamples that each contained 80% of the

original dataset, and each subsample was generated independently of one another. The DE p-

value cutoff had a Bonferroni corrected value of was 0.05/m, where m=992 was the total number

of genes tested for significance.
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To  achieve  results  that  could  be  compared  to  the  malaria  reference  paper,

5_Pb_integrated_10X_only.rds was  used  as  the  beginning  data  file  for  the  comprehensive

analysis.  This  file  was  output  from  Pb_Spz_10X_5.Rmd, and,  from that  point  forward,  the

method leading up to the analysis was identical to those used in the preliminary analysis., except

that 200 subsamples were generated for each lineage instead of 80, and the DE p-value cutoff

was  0.05/m,  where  m  =  1648  was  the  number  of  genes  contained  in  the

5_Pb_integrated_10X_only.rds file.

GO  enrichment  was  performed  on  the  top  50  DEG  from  each  lineage  in  the

comprehensive  analysis  with  the  organism  parameter  Plasmodium  berghei ANKA and  an

FDR<0.05. Although the summarized GO enrichment results in Tables 1, 2 and 3 only included

names with greater than one result, the analysis included names with exactly one result as well.

GO results mentioned in the preliminary analysis were obtained by searching the DEG in an

online GO database15,17.
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RESULTS AND DISCUSSION

Preliminary Analysis

The  preliminary  analysis  consisted  of  a  visual  trajectory  analysis  followed  by  the

PseudotimeDE analysis and DE analysis. The DE analysis focused on the top 10 most significant

genes from each lineage, as measured by the smallest parametric p-value. In other words, the

focus was on those genes with the lowest probability of a false positive of a gene “changing in

the mean expression over pseudotime.”

Beginning with the UMAP plot (Figure 4a),  all  three lineages began on the left  side

before curving down and back up and to the right. It is at this point that they diverge noticeably.

Lineages 1 and 3 continue to move up and to the right, while Lineage 2 moves down and to the

right. If these lineage correspond to the end locations of the sporozoites (SG vs MID), then it

visually appears that Lineages 1 and 3 end in the SG and Lineage 2 ends in the MID, since

Lineages 1 and 3 take the longest path the furthest from the main cluster of cells, although this

was not confirmed.

The  most  notable  and  potentially  relevant  result  in  the  preliminary  analysis  was  the

detection of the gene PBANKA_0403200. This gene was significant in all three lineages, with a

p-value of p = 3.0e-42, p = 3.0e-22, and p = 1.5e-32, for Lineage 1, 2 and 3, respectively. It was

detected  in  the  top  10  most  DEG  in  Lineages  2  and  3,  but  not  in  Lineage  1.   The  gene

PBANKA_0403200 has an annotation of “circumsporozoite (CS) protein”11.  

12



a)

b) 

Figure  4:  The  UMAP plots  from  the  a)  preliminary  and  b)  comprehensive  analysis.  The
preliminary analysis focused on the first dataset only. The colored points correspond to different
clusters determined by an unsupervised clustering approach.
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Figure  5:  Left  to  right,  top  to  bottom,  uncertainty  density  plots  for  Lineages  1,  2  and  3
respectively, from the preliminary analysis. The legends each have their own scale. Lineage 1
had the highest density of any of the plots from a scaled pseudotime of around 0.75 to 1.

14



a)

b)

Figure 6: Venn diagrams displaying the total number of DEG detected in the a) preliminary and
b) comprehensive analysis. In the preliminary analysis, Lineage 1 had the highest number of
unique DEG at 278, while in the final analysis, Lineage 4 had the highest number at 109.
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The CS protein is  extremely common and is  found in many species,  including every

malaria species. The protein is located on the surface of cell, and it is evenly distributed across

the surface12. It is used in vaccine research13; the RTS,S vaccine, which has already completed

Phase III trials, uses a portion of the CS protein from the P. falciparum species14. R21, a vaccine

in development at the University of Oxford, builds on this vaccine and ultimately uses an even

larger proportion of the CS proteins by removing free  Hepatitis B Antigen that is found in the

RTS,S vaccine13. 

The GO Terms related to adhesion to/entry into host cells, and located in the membrane,

among others15, agree with this previous research that used it for a vaccine target. The annotation

and GO Terms may help provide an explanation as to why this protein is so important in malaria

research.  By  training  the  mammal’s  immune  system  to  detect  and  fight  this  protein,  these

parasites could be detected and killed before they ever adhere to or enter into the host cell, and

by being located in the membrane of the parasite, it makes it easy for the mammal’s immune

system to detect it early on in the process of infection. Additional research could be performed in

the future to investigate a drug that inhibits or disables this protein altogether, preventing the

sporozoite cell from ever functioning to be able to infect its host.

Gene PBANKA_0501200, which is the only gene to be in the top 10 DEG for all three

lineages in our dataset, is annotated as a “early transcribed membrane protein”11, and our data

confirms this, as the cell expression vs pseudotime graphs for each lineage each show a high

expression early on in the inferred pseudotime and a dropoff as the pseudotime continues to

increase. Its name is UIS416, which stands for “Up-regulated in infective sporozoites”17. Its GO

term is  “Membrane”15.  Note  that  “Although UIS4 is  highly  expressed  by sporozoites  in  the
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mosquito salivary glands, genetic studies in the rodent malaria parasites have shown that UIS4 is

required only after transmission to the mammalian host,” and thus the translation of this gene is

suppressed in the mosquito salivary glands18.

In Lineage 3, all late expressed, low expression genes (see Figure 8a) in the top 10 had an

annotation that included the words “ribosomal protein” (RP). The ribosome is a structure inside

the cell that makes proteins, it does this by surrounding the mRNA molecule on the top and

bottom. This allows tRNA to match the mRNA segment by segment and add an amino acid onto

the peptide chain19. The Ribosomal Proteins, which make up the structure of the ribosome, are

used not only to build the amino acid chains, but also for extra-ribosomal functions, such as

“activation of... pathways in response to stress, resulting in cell cycle arrest and apoptosis”20.

This may be useful in an anti-malaria drug by perhaps increasing the number of the RPs relevant

for apoptosis, causing the malaria cells to commit it at higher rates. 

All mentioned RP genes had GO terms for “structural constituent of ribosome.” All genes

except  PBANKA_0407700  had  GO  terms  for  “translation.”  Additionally,  gene

PBANKA_1338600 had a GO term for “enables rRNA binding.” PBANKA_0407700 also had

GO terms for “involved in cytoplasmic translational elongation” and “part  of cytosolic large

ribosomal subunit”17.

Gene PBANKA_0911650, a top 10 DEG in Lineage 3 and also significant in Lineage 1

but not 2 (p = 1e-26, p = 1e-17, and p = 0.104, respectively), had an interesting shape in the cell

expression vs pseudotime graph where all of the high expression cells for this gene had a (scaled)

inferred pseudotime of close to 0.8. All of this suggests that it plays an important specific role in

that  stage  of  the  sporozoite’s  life.  It  has  an  annotation  of  “U2  spliceosomal  RNA”11.  U2
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spliceosomal  RNA is  found in  almost  every eukaryotic  organism and encodes  for  U2 small

nuclear ribonucleaoprotein (snRNP)21.

a)

b)

Figure 7: The first two genes in the preliminary analysis. a) PBANKA_0403200, has the same
annotation of “Circumsporozoite Protein”11 as equivalent genes in other malaria species that have
been used in multiple vaccines, including the RTS,S vaccine, which has completed Phase III
trials14. b)  PBANKA_0501200, the only gene in the preliminary analysis to be in the top 10 most
DEG of all three lineages, has an annotation of “early transcribed membrane protein”11 and a
name of “Up-reguated in infected sporozoites 4”16.
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a)

b)

Figure 8: The remaining genes in the preliminary analysis. a) All genes in the top 10 of Lineage
3, in order of decreasing significance, that have a maximum cell expression of <10, where the
maximum occurs after a scaled pseudotime of 0.6. The respective annotations are: 60S ribosomal
protein L44, putative, 40S ribosomal protein S7, putative, 40S ribosomal protein S6, putative,
60S  ribosomal  protein  L13-2,  putative,  60S  ribosomal  protein  L23,  putative,  60S  acidic
ribosomal protein P2, putative11  . b) PBANKA_0911650 has an annotation of “U2 spliceosomal
RNA” and spikes in cell expression in the two lineages it is significant in (Lineage 1 at a scaled
pseudotime of 0.6 and Lineage 3 at a scaled pseudotime of 0.8)11.
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Proposal and Comprehensive Analysis of the Full Dataset

The proposal had three aims: Firstly, to use a combined dataset that includes all three

datasets and increase the number of subsamples generated from 80 to 200, secondly, to compare

the DEG results from the combined dataset to the preliminary analysis and the reference paper,

and  finally,  to  identify  marker  genes  that  show  unique  expression  patterns  at  different

developmental stages.

In addition to the uncertainty density plots (Figure 9), Venn Diagram (Figure 6b) and cell

expression vs pseudotime plots (Figures 10 and 11 and Appendix C), the annotations of the top

20 genes  in  each  lineage  were  recorded  and placed into  tables  with  the  parametric  p-value

(Appendix A) and then placed into six categories: UIS genes, enzymes ending in -ase, ribosomal

proteins,  genes  with  unknown  functions,  other  top  20  DEG  from  Lineages  1,  2  or  3  not

significant in Lineage 4 and all other top 20 DEG (Appendix B).

Preliminary vs Comprehensive Analysis

On average, the uncertainty density plots for the final analysis (Figure 9) have a higher

density, or lower uncertainty, than those generated from the preliminary analysis (Figure 5). This

is likely due to the increased number of subsamples, which in turn decreased the uncertainty in

the inferred pseudotimes.

Next,  the  three  genes  highlighted  in  the  preliminary  analysis,  PBANKA_0403200,

PBANKA_0501200 and PBANKA_0911650 (Figure 7a, Figure 7b and Figure 8b, respectively),

were compared to the same plots for the comprehensive analysis (Figure 10).  
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Figure 9:  Left  to  right,  top to  bottom, uncertainty density  plots  for Lineages  1,  2,  3 and 4,
respectively, as identified in the comprehensive analysis. Each legend has its own scale. Lineage
1 had the highest density of any of the plots from a (scaled) pseudotime of 0 to around 0.2.
Lineage 2 had the lowest density, which agrees with the UMAP plot where it “wraps around”
back where it started.
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In the comprehensive analysis, gene PBANKA_0403200, the CS protein11, had a similar

cell  expression vs pseudotime pattern for the first  three lineages and a different  one for the

fourth. The first three lineages are most similar to the Lineage 1 in the preliminary analysis,

where the first cluster increases until around 0.2 pseudotime, then decreases until it hits nearly

zero at around 0.35 pseudotime (0.7 in the preliminary analysis) and finally increases until it

reaches its maximum value.

Gene PBANKA_0501200, which was in the top 10 DEG in all  three lineages of the

preliminary analysis  and has an annotation of early transcribed membrane protein11 and Up-

regulated in infective sporozoites17,  was in the top 20 DEG in the first  three lineages of the

comprehensive analysis but not the fourth. It also had higher maximum expression in the first

three lineages when compared to the fourth. 

The expression levels, plots and UIS annotation agree with the malaria paper predicting

that the fourth lineage consists of sporozoites that stay in the MID, while the first three lineages

end in the SGs. However, the shape of the plots do not necessarily agree with the annotation of

“early transcribed membrane protein,” since the expression levels do not reach a maximum until

around 0.6-0.8 pseudotime for Lineages 1 through 3.

The spike of cell expression for Gene PBANKA_0911650 (U2 spliceosomal RNA)11 in

Lineages 1 and 3 of the preliminary analysis mostly disappeared in the comprehensive analysis,

except for in Lineage 2, where there is spike at around 0.85 and Lineage 4, where there are a few

(possibly outlier) cells with high expression at around 0.6.

Similarly  to  how the  Ribosomal  Protein  (RP)  DEG in  Lineage  3  of  the  preliminary

analysis (Figure 8a) all exclusively followed a similar pattern of low expression, late peak, the
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RP DEG in the comprehensive analysis (Appendix B, Table 8; plots in Appendix C), all had low

expression, early peak. Specifically, they all had a maximum cell expression of less than 12,

where the  maximum occurred  near  a  pseudotime of  zero,  then  decreased until  around 0.35,

where it either leveled off or increased slightly from there. 

Additionally,  no  non-RP gene  except  PBANKA_1340100 (L-lactate  dehydrogenase)11

had this pattern. Lineage 4 had the fewest RP DEG in the top 20 (8 total compared to 11, 10 and

15 for Lineages 1, 2 and 3, respectively). One way to filter genes with unknown function in the

future  to  search  for  unannotated  RP genes  may  be  to  find  genes  with  this  early  peak,  low

expression pattern. However, since there were no genes with unknown function (Figure 11) with

this pattern, it does not apply here.

23



a)

b)

c)

Figure  10:  Comprehensive  analysis  cell  expression  vs  pseudotime  plots  for  the  three  genes
highlighted in the preliminary analysis  a)  PBANKA_0403200, b) PBANKA_0501200 and c)
PBANKA_0911650. PBANKA_0501200 was in the top 20 DEG in Lineages 1, 2 and 3 but not
4, which agrees with its  annotations of “up-regulated in infective sporozoites” if the malaria
reference paper is correct that Lineages 1 through 3 consists of sporozoites that end in the SG,
while Lineage 4 ends in the MID. PBANKA_0911650 only contains the late spike (found in the
preliminary analysis) for Lineage 2, which is likely in a cluster of cells near where all of the
Lineages began. This is consistent with the fact that the cell expression begins higher on each of
the lineages then decreases somewhat.

24



Figure 11: Top to bottom, cell expression vs pseudotime plots for top 20 DEG with unknown 
functions for Lineage 1, 2, 3 and 4, respectively. None of these plots have the same early peak, 
low expression as the annotated RP genes.
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Malaria Paper vs Comprehensive Analysis

Comparing the number of DEG detected between here and the malaria reference paper,

the paper used tradeSeq to detect DEG, and found 661 (FDR<0.05)10 while PseudotimeDE with

200 subsamples detected 561 DEG. We identified exactly 100 fewer genes.

There are three possible reasons that PseudotimeDE identified fewer DEG than tradeSeq.

One is  that tradeSeq generates more false positives than PseudotimeDE, since PsudotimeDE

returns better calibrated p-values than tradeSeq, and therefore has a better FDR control.8 Another

explanation could be that tradeSeq has a higher power on bifurcated datasets when measured

using  “an  actual  5%  false  discovery  proportion  (FDP,  defined  as  the  proportion  of  false

discoveries among the discoveries in one synthetic dataset) instead of the nominal 5% FDR”8

and,  since  the  dataset  used  here  is  bifurcated,  tradeSeq is  better  at  detecting  true  positives.

Finally, the <5% nominal FDR could have resulted in a different cutoff than a Bonferroni cutoff

of 0.05/m, making the results not directly comparable.

The malaria reference paper focused its gene analysis at three points: before the trajectory

analysis  using  the  UMAP plots  as  well  as  Seurat’s  FindAllMarkers,  and after  the  trajectory

analysis  using  GO.  While  the  focus  in  our  study  was  on  the  genes  detected  during  and

immediately after the trajectory analysis, the genes mentioned in the paper can still be compared

to those detected here to build a bigger picture.

The authors of the malaria paper mention that they “detected various ‘up-regulated in

infective  sporozoite’  (UIS)  genes,  of  which  PBANKA_1328000  (Serine/threonine  protein

phosphatase;  UIS2),  PBANKA_1400800  (UIS3),  PBANKA_0501200  (Early  transcribed

membrane  protein;  UIS4),  and PBANKA_1128100 (Phospholipase,  UIS10)  were  among the
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most highly expressed. They also found genes with known expression in MID sporozoites, such

as  PBANKA_0901300  (Membrane-associated  erythrocyte  binding-like  protein)  and

PBANKA_1306500 (TRAP-like protein; UOS3).”10

Our analysis confirms these results: UIS2, 3, 4 and 10 were found to be the among the

most significant DEG in the first  three lineages. Additionally, genes PBANKA_0901300 and

PBANKA_1306500 were detected as significant only in Lineage 4, and not in any other lineage.

The  malaria  paper  mentions  gene  PBANKA_0719200,  related  to  puf2  transcripts,

although this gene was not found in the top 20 DEG of any lineage here. It also mentions genes

with unknown function, which “indicate that other markers linked to sporozoite biology may

exist.”10 The cell expression vs pseudotime plots for genes with unknown function are in Figure

11. These genes all have low expression, except for PBANKA_1465051, which does not have an

obvious expression pattern.

Gene Ontology Enrichment Analysis

The summarized GO enrichment results are given in Tables 1, 2 and 3. Possible vaccine

target genes could include such biological process terms as ATP generation, since stopping this

would prevent the parasite from generating usable energy, entry into host, as stopping this would

prevent infection form progressing, as well as cellular component terms of extracellular, as these

proteins would be more detectable by and vulnerable to the host immune system.

The genes associated with ATP generation are  PBANKA_1214300 (enolase, putative11)

and PBANKA_1340100 (L-lactate dehydrogenase11). 

27



Enolase converts 2-phospho-D-glycerate to phosphoenolpyruvate. It is a catalytic enzyme

and has been the target of new drug development for H. pylori23. Lactate dehydrogenase converts

lactate to pyruvate. It is an catalytic enzyme and this conversion is reversible24.

The genes associated with entry into host are PBANKA_0403200 (circumsporozoite (CS)

protein11), PBANKA_0407700 (60S acidic ribosomal protein P2, putative11), PBANKA_1349800

(thrombospondin-related anonymous protein11) and PBANKA_1222500 (plasmepsin X (PMX),

putative11). 

Thrombospondin-related anonymous protein is used by sporozoites to glide and enter into

the host cell. It has previously been the target of in vivo antibody research which found that these

antibodies do not stop infection25.

Although its structure and full function are the topics of recent research, PMX has been

shown to be  essential  for  the  formation  and activation  of  multiple  proteins,  including those

required for host cell invasion and rupture in human host cells26. One of these proteins is PfRh5,

a candidate as a vaccine target26 undergoing multiple Phase I and II clinical trials27, so disrupting

PMX could also disrupt these proteins and thus the invasion of the parasite.  The GO terms of

interaction with host and entry into host support that this gene is necessary for, among other

things, host cell invasion.

The  genes  associated  with  extracellular  are  PBANKA_0501200  (early  transcribed

membrane  protein11,  Up-regulated  in  infective  sporozoites17 (UIS4)9),  PBANKA_0910900

(sporozoite surface protein essential for liver stage development11),  PBANKA_1003000 (liver

specific  protein  211),  PBANKA_1128100  (phospholipase11,  UIS1010),  PBANKA_1328000

(serine/threonine protein phosphatase UIS211) and PBANKA_1400800 (protein UIS322),
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The only GO result related to the DEG with an unknown function annotation is for gene

PBANKA_1465051, which has GO terms of host cell and host cellular component for Lineage 1

cellular component and Lineage 2 cellular component, respectively.
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Table 1: GO biological process summary for annotations with more than one total result
Result Count and Percent of Background for
Lineage...

GO Term (BP) 1 2 3 4

translation 23 15.60% 26 17.70% 26 17.70% 21 14.30%

biological process involved in interaction with 
host

5 6.30% 4 5.00% 6 7.50% 4 5.00%

biological process involved in symbiotic 
interaction

5 6.00% 4 4.80% 6 7.20% 4 4.80%

biological process involved in interspecies 
interaction between organisms

5 6.00% 4 4.80% 6 7.10% 4 4.80%

movement in host environment 4 5.70% 3 4.30% 5 7.10%

glycolytic process 2 14.30%

ADP metabolic process 2 14.30%

purine nucleoside diphosphate metabolic 
process

2 14.30%

purine ribonucleoside diphosphate metabolic 
process

2 14.30%

ATP generation from ADP 2 14.30%

ribonucleoside diphosphate metabolic process 2 14.30%

carbohydrate catabolic process 2 13.30%

nucleoside diphosphate phosphorylation 2 11.80%

nucleotide phosphorylation 2 11.80%

nucleoside diphosphate metabolic process 2 11.10%

pyruvate metabolic process 2 11.10%

exit from host cell 2 10.00% 2 10.00%

exit from host 2 9.50% 2 9.50%

entry into host 3 5.90% 3 5.90%

biological process 6 3.00%
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Table 2: GO molecular function summary for annotations with more than one total result
Result Count and Percent of Background for
Lineage...

GO Term (MF) 1 2 3 4

structural constituent of ribosome 24 16.80% 28 19.60% 27 18.90% 22 15.40%

structural molecule activity 24 14.80% 28 17.30% 27 16.70% 22 13.60%

molecular function 25 4.70% 29 5.50% 30 5.60% 22 4.10%
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Table 3: GO cellular component summary for annotations with more than one total result
Result Count and Percent of Background for
Lineage...

GO Term (CC) 1 2 3 4

ribosome 24 14.40% 28 16.80% 28 16.80% 24 14.40%

non-membrane-bounded organelle 27 7.40% 30 8.20% 30 8.20% 26 7.10%

intracellular non-membrane-bounded organelle 26 7.20% 29 8.00% 29 8.00% 25 6.90%

ribosomal subunit 6 14.60% 9 22.00% 9 22.00% 7 17.10%

symbiont-containing vacuole membrane 5 17.90% 3 10.70% 3 10.70%

host cell 9 6.30% 7 4.90% 6 4.20%

host cellular component 9 6.30% 7 4.90% 6 4.20%

host cell part 8 6.70% 6 5.00% 6 5.00%

cytosolic ribosome 4 20.00% 7 35.00% 7 35.00% 6 30.00%

large ribosomal subunit 4 20.00% 6 30.00% 5 25.00% 3 15.00%

cell surface 6 9.00% 3 4.50% 4 6.00%

extracellular membrane-bounded organelle 6 9.00% 4 6.00% 4 6.00%

symbiont-containing vacuole 6 9.00% 4 6.00% 4 6.00%

host cell nucleus 2 100.00
%

2 100.00
%

2 100.00
%

1 50.00%

extracellular organelle 6 8.80% 4 5.90% 4 5.90%

extracellular region 6 8.70% 4 5.80% 4 5.80%

host cell cytoplasm 7 6.60% 5 4.70% 5 4.70%

host intracellular part 7 6.60% 5 4.70% 5 4.70%

host intracellular region 7 6.50% 5 4.70% 5 4.70%

host cell cytoplasm part 6 6.90% 4 4.60% 4 4.60%

host intracellular membrane-bounded organelle 2 50.00% 2 50.00% 2 50.00% 1 25.00%

host intracellular organelle 2 40.00% 2 40.00% 2 40.00%

cytosolic large ribosomal subunit 2 22.20% 4 44.40% 3 33.30% 2 22.20%

microneme 3 9.40% 3 9.40% 5 15.60%

cytosolic small ribosomal subunit 2 18.20% 3 27.30% 4 36.40% 4 36.40%

ribonucleoprotein complex 6 3.60% 9 5.40% 9 5.40% 7 4.20%

small ribosomal subunit 2 9.50% 3 14.30% 4 19.00% 4 19.00%

cytosol 5 3.30% 7 4.60% 7 4.60% 6 3.90%

apical complex 5 6.00%

apical part of cell 5 4.20%
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Discussion

There are many candidate genes for malaria vaccines and therapeutics being researched

today.  The three  most  promising  genes  identified  in  this  paper  are  PBANKA_0403200 (CS

protein11),  PBANKA_0501200  (early  transcribed  membrane  protein,11 UIS49) and

PBANKA_1222500 (PMX, putative11).  PBANKA_0403200 is  included in a  vaccine that  has

already  completed  Phase  III  trials14 and  PBANKA_1222500  is  a  necessary  enzyme  for  the

creation and activation of many genes, notable among them PfRh5. PfRh5 is part of a vaccine

that,  as  of  December  2023,  is  undergoing  no  fewer  than  four  Phase  I  and  II  trials27.  The

disruption of  PBANKA_1222500 could therefore disrupt PfRh5 and thus is a possible target for

malaria treatment.
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APPENDIX A: TOP 20 DEG TABLES BY LINEAGE

Table 4: Top 20 DEG Lineage 1
Gene Label Gene Annotation Parametric 

p-value

PBANKA_1039400 ribosomal protein S27a, putative11 9.97e-155

PBANKA_1355100 40S ribosomal protein S6, putative11 9.41e-88

PBANKA_0501200 early transcribed membrane protein11, Up-regulated in 
infective sporozoites17 (UIS4)9

2.84e-86

PBANKA_0407700 60S acidic ribosomal protein P2, putative11 1.56e-67

PBANKA_1234200 40S ribosomal protein S24, putative11 1.75e-52

PBANKA_1401300 40S ribosomal protein S7, putative11 4.96e-52

PBANKA_1340100 L-lactate dehydrogenase11 6.41e-49

PBANKA_1202400 60S ribosomal protein L13, putative11 1.22e-42

PBANKA_1312700 gamete egress and sporozoite traversal protein11 5.34e-42

PBANKA_1135100 40S ribosomal protein S15, putative11 3.76e-41

PBANKA_1400800 protein UIS322 2.13e-40

PBANKA_1128100 phospholipase11, UIS1010 6.69e-37

PBANKA_0605500 conserved Plasmodium protein, unknown function11 5.85e-35

PBANKA_1231700 60S ribosomal protein L2, putative11 8.68e-34

PBANKA_0911650 U2 spliceosomal RNA11 1.13e-33

PBANKA_1346700 60S ribosomal protein L23, putative11 2.15e-33

PBANKA_1328000 serine/threonine protein phosphatase UIS211 2.68e-33

PBANKA_1117500 ribosomal protein L27a, putative11 3.98e-33

PBANKA_1354500 60S ribosomal protein L18-2, putative11 2.30e-32

PBANKA_1455700 conserved Plasmodium protein, unknown function11 2.31e-30
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Table 5: Top 20 DEG Lineage 2
Gene Label Gene Annotation Parametric 

p-value

PBANKA_1117500 ribosomal protein L27a, putative11 7.78e-69

PBANKA_0501200 early transcribed membrane protein11, Up-regulated in 
infective sporozoites17 (UIS4)10

1.41e-68

PBANKA_1401300 40S ribosomal protein S7, putative11 4.67e-67

PBANKA_0923400 60S ribosomal protein L35, putative11 3.83e-65

PBANKA_0622921 18S ribosomal RNA11 3.44e-57

PBANKA_0407700 60S acidic ribosomal protein P2, putative11 4.73e-53

PBANKA_1354500 60S ribosomal protein L18-2, putative11 9.53e-47

PBANKA_1039400 ribosomal protein S27a, putative11 1.27e-46

PBANKA_0911650 U2 spliceosomal RNA11 2.08e-42

PBANKA_1220800 conserved Plasmodium protein, unknown function11 3.45e-42

PBANKA_1400800 protein UIS322 6.76e-41

PBANKA_1340100 L-lactate dehydrogenase11 1.04e-37

PBANKA_0403000 60S ribosomal protein L44, putative11 6.85e-37

PBANKA_1312700 gamete egress and sporozoite traversal protein11 1.54e-35

PBANKA_0622961 28S ribosomal RNA11 2.05e-34

PBANKA_1457550 ACEA small nucleolar RNA U311 8.01e-33

PBANKA_1135100 40S ribosomal protein S15, putative11 2.74e-32

PBANKA_0928200 conserved protein, unknown function11 1.96e-31

PBANKA_1355100 40S ribosomal protein S6, putative11 3.53e-29

PBANKA_0417500 60S ribosomal protein L32, putative11 1.50e-27
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Table 6: Top 20 DEG Lineage 3
Gene Label Gene Annotation Parametric 

p-value

PBANKA_0501200 early transcribed membrane protein11, Up-regulated in 
infective sporozoites17 (UIS4)10

1.25e-60

PBANKA_1401300 40S ribosomal protein S7, putative11 6.56e-58

PBANKA_0407700 60S acidic ribosomal protein P2, putative11 7.12e-52

PBANKA_1039400 ribosomal protein S27a, putative11 1.61e-51

PBANKA_1117500 ribosomal protein L27a, putative11 2.44e-50

PBANKA_1400800 protein UIS322 5.93e-49

PBANKA_1231700 60S ribosomal protein L2, putative11 1.67e-48

PBANKA_1355100 40S ribosomal protein S6, putative11 3.02e-43

PBANKA_1013100 60S ribosomal protein L14, putative11 3.09e-38

PBANKA_1220800 conserved Plasmodium protein, unknown function11 7.30e-38

PBANKA_1338600 60S ribosomal protein L23, putative11 7.53e-38

PBANKA_1312700 gamete egress and sporozoite traversal protein11 2.94e-37

PBANKA_1346700 60S ribosomal protein L23, putative11 5.44e-37

PBANKA_0923400 60S ribosomal protein L35, putative11 4.05e-36

PBANKA_1103400 60S ribosomal protein L31, putative11 1.42e-35

PBANKA_1135100 40S ribosomal protein S15, putative11 2.27e-35

PBANKA_1340100 L-lactate dehydrogenase11 2.42e-34

PBANKA_1234200 40S ribosomal protein S24, putative11 3.68e-34

PBANKA_0314500 40S ribosomal protein S26, putative11 3.98e-34

PBANKA_0403000 60S ribosomal protein L44, putative11 2.21e-33
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Table 7: Top 20 DEG Lineage 4
Gene Label Gene Annotation Parametric 

p-value

PBANKA_1039400 ribosomal protein S27a, putative11 3.38e-64

PBANKA_1002500 sporozoite-specific protein S1011 1.05e-62

PBANKA_0901300 membrane associated erythrocyte binding-like protein11 1.18e-59

PBANKA_1204200 IMP1-like protein, putative11 7.86e-57

PBANKA_1425200 sporozoite surface protein 311 9.51e-44

PBANKA_0403200 circumsporozoite (CS) protein11 6.47e-39

PBANKA_1465051 Plasmodium exported protein, unknown function11 1.02e-33

PBANKA_1346700 60S ribosomal protein L23, putative11 2.60e-33

PBANKA_1306500 TRAP-like protein11 1.13e-31

PBANKA_1018600 60S ribosomal protein L21, putative11 4.42e-30

PBANKA_0407700 60S acidic ribosomal protein P2, putative11 2.22e-29

PBANKA_1106700 60S ribosomal protein L4, putative11 1.08e-28

PBANKA_1206800 zinc finger (CCCH type) protein, putative11 2.42e-26

PBANKA_0615900 cysteine repeat modular protein 211 3.69e-26

PBANKA_1123800 GAS8-like protein, putative11 3.14e-25

PBANKA_0617200 40S ribosomal protein S10, putative11 1.45e-24

PBANKA_0417500 60S ribosomal protein L32, putative11 5.25e-24

PBANKA_1433700 conserved Plasmodium protein, unknown function11 7.19e-24

PBANKA_1025700 inner membrane complex protein 1l, putative11 1.09e-23

PBANKA_0923400 60S ribosomal protein L35, putative11 2.15e-23
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APPENDIX B: TOP 20 DEG TABLES BY ANNOTATION GROUP

Table 8: UIS genes in top 20 DEG
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_0501200 early transcribed membrane protein11, Up-
regulated in infective sporozoites17 (UIS4)10

3 2 1

PBANKA_1400800 early transcribed membrane protein (UIS3)22 11 11 6

PBANKA_1128100 phospholipase11, UIS1010 12

PBANKA_1328000 serine/threonine protein phosphatase UIS211 17
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Table 9: Enzymes ending in -ase in top 20 DEG
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_1340100 L-lactate dehydrogenase11 7 7

PBANKA_1128100 phospholipase10, UIS1010 12

PBANKA_1328000 serine/threonine protein phosphatase UIS211 17
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Table 10: Ribosomal proteins in top 20 DEG
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_1039400 ribosomal protein S27a, putative11 1 8 4 1

PBANKA_1355100 40S ribosomal protein S6, putative11 2 19 8

PBANKA_0407700 60S acidic ribosomal protein P2, putative11 4 6 3 11

PBANKA_1234200 40S ribosomal protein S24, putative11 5 18

PBANKA_1401300 40S ribosomal protein S7, putative11 6 3 2

PBANKA_1202400 60S ribosomal protein L13, putative11 8

PBANKA_1135100 40S ribosomal protein S15, putative11 10 17 16

PBANKA_1231700 60S ribosomal protein L2, putative11 14 7

PBANKA_1346700 60S ribosomal protein L23, putative11 16 13 8

PBANKA_1117500 ribosomal protein L27a, putative11 18 1 5

PBANKA_1354500 60S ribosomal protein L18-2, putative11 19 7

PBANKA_0923400 60S ribosomal protein L35, putative11 4 14 20

PBANKA_0403000 60S ribosomal protein L44, putative11 13 20

PBANKA_0417500 60S ribosomal protein L32, putative11 20 17

PBANKA_1013100 60S ribosomal protein L14, putative11 9

PBANKA_1338600 60S ribosomal protein L23, putative 11

PBANKA_1103400 60S ribosomal protein L31, putative11 15

PBANKA_0314500 40S ribosomal protein S26, putative11 19

PBANKA_1018600 60S ribosomal protein L21, putative11 10

PBANKA_1106700 60S ribosomal protein L4, putative11 12

PBANKA_0617200 40S ribosomal protein S11, putative11 16

42



Table 11: Genes with unknown function in top 20 DEG
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_0605500: conserved Plasmodium protein, unknown 
function11

13

PBANKA_1455700 conserved Plasmodium protein, unknown 
function11

20

PBANKA_1220800 conserved Plasmodium protein, unknown 
function11

10 10

PBANKA_0928200 conserved protein, unknown function11 18

PBANKA_1465051 Plasmodium exported protein, unknown 
function11

7

PBANKA_1433700 conserved Plasmodium protein, unknown 
function11

18
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Table 12: All other top 20 DEG in Lineages 1, 2 or 3 not significant in Lineage 4
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_0911650 U2 spliceosomal RNA11 15 9 N/A

PBANKA_0622921 18S ribosomal RNA22 5 N/A

PBANKA_0622961 28S ribosomal RNA11 15 N/A

PBANKA_1457550 ACEA small nucleolar RNA U311 16 N/A
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Table 13: All other top 20 DEG
Top 20 DEG 
Significance Ranking in
Lineage...

Gene Label Gene Annotation 1 2 3 4

PBANKA_1312700 gamete egress and sporozoite traversal protein11 9 4 12

PBANKA_1002500 sporozoite-specific protein S1011 2

PBANKA_0901300 membrane associated erythrocyte binding-like 
protein11

3

PBANKA_1204200 IMP1-like protein, putative11 4

PBANKA_1425200 sporozoite surface protein 311 5

PBANKA_0403200 circumsporozoite (CS) protein11 6

PBANKA_1306500 TRAP-like protein11 9

PBANKA_1206800 zinc finger (CCCH type) protein, putative11 13

PBANKA_0615900 cysteine repeat modular protein 211 14

PBANKA_1123800 GAS8-like protein, putative11 15

PBANKA_1025700 inner membrane complex protein 1l, putative11 19
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APPENDIX C: TOP 20 CELL EXPRESSION VS PSEUDOTIME PLOTS FOR RP DEG

Figure 12: Cell expression vs pseudotime plots for all top 20 RP DEG for Lineage 1
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Figure 13: Cell expression vs pseudotime plots for all top 20 RP DEG for Lineage 2
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Figure 14: Cell expression vs pseudotime plots for all top 20 RP DEG for Lineage 3
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Figure 15: Cell expression vs pseudotime plots for all top 20 RP DEG for Lineage 4
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