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ABSTRACT 

 

LUCAS MARCOS VALDEZ. Improved measurement methods for in-process Metrology 

on large-scale components. (Under the direction of DR. JOHN ZIEGERT) 

 

 

Manufacturing processes have inherent errors during machining and in-process 

metrology is used to determine and correct for these manufacturing errors. In this research, 

the determination of size (diameter) and form error (surface profile) of large-scale circular 

features are considered. The objective of the research is to measure, simultaneously, the 

size and form error of a large-scale circular component through mathematically sound 

methods with the aid of a novel measuring instrument. 

This research is motivated by the influence of current manufacturing processes and 

their in-process metrology methods. The current methods for the determination of 

component size is accomplished using mechanical instruments, such as calipers and 

micrometers. These mechanical indicators have the potential to produce unreliable results 

because the measuring methodology is tied to a two-point measuring method and is 

dependent upon the skill of the human operator. The method used in this research to 

measure the size of the component uses three measurement points and reconstructs the 

diameter of the component using a geometrical model.  
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Every machine with a spindle will experience spindle error motions, which describe 

the variable position and orientation of the spindle axis as a function of the rotating angle. 

However, with the spindle having off-axis error motions and the component not having a 

perfect geometry, measurement of the component form error using a single indicator will 

be a combination of both the components surface non-uniformity and the spindles axis 

error motions. In this research a multi-probe error separation method is used to accurately 

isolate the component form error from the spindle error motions.  

This research developed a novel measuring instrument able to simultaneously measure 

both diameter and form error of circular features. The measuring instrument uses three 

pivoting arms attached to a body, in which is adaptable to a lathe’s turret. The three arms 

are accompanied by three high-resolution angular encoder modules that produce the 

angular displacement of the arms, coupled with a kinematic model of the system, are used 

to reconstruct the diameter and form error of the large-scale circular component.  

In this research, the results from the measuring instrument, show that it is capable of 

measuring both diameter and the form error simultaneously. The form error values produce 

a maximum error of 0.004 𝑚𝑚 (0.00016”) and the diameter values produce a maximum 

error of 0.022 𝑚𝑚 (0.00087”). These error values are determined with a comparison to a 

Coordinate Measuring Machine (CMM) value of form error and diameter. 

Finally, an expanded uncertainty of 0. 024 𝑚𝑚 (0.00094”) is determined for the 

diameter measurement process of the measuring instrument and an expanded uncertainty 

of 0.004 𝑚𝑚 (0.00016”) is determined for the form error measurement process of the 

measuring instrument. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Large-scale Metrology 

Manufacturing is the process of making products by means of manual methods or 

industrial machinery. Manufacturing processes of components can range drastically, such 

as the initial step of forging or casting of a steel cylinder to precision grinding the inner 

diameter bore of the finished ball bearing, with stated tolerances 

of ±0.0012 𝑚𝑚 (±0.000047"). Advancements in manufacturing processes have 

produced exceptional products and the boundaries of these processes continue to be 

exceeded every day. Manufacturing is still a primary industry in today’s technological 

society and in more recent times the demand for better precision manufactured items has 

increased. Thus, the metrology methods of manufacturing processes have also been making 

progress and being developed along the way, albeit at a slower rate. 
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The definition of metrology comes from the International Vocabulary of Metrology 

(VIM) [61]. It states, “Metrology is the science of measurement and its applications”. This 

definition also states that metrology includes all theoretical and practical aspects of 

measurements, whatever the measurement uncertainty and field of application. Metrology 

can range from measuring the length of a gage block with a set of calipers to measuring 

the involute of a medium-sized spur gear with a coordinate measuring machine (CMM) to 

measuring a cargo ships propeller with laser trackers [52]. FIGURE 1 shows a typical large-

scale metrology application of measuring a wind turbine blade with a laser tracker. 

 

FIGURE 1: Large-scale metrology application (source: M7tek.com) 
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The scale of the component to be measured has a direct influence on what system(s) 

need to be used for making measurements. The larger the component of interest, the more 

restrictive the system that can be used to take measurements. Another issue with 

component scale increase, is how precise and accurate the measurements must be and what 

is the stated uncertainty within the measurement. These issues are of major concern for 

manufacturing processes because the component will more than likely be a component of 

an assembly and assemblies inherit all errors in each manufactured component.  

In most manufacturing processes, especially of large-scale components, the metrology 

is done with in-process measurements. As the component is being machined, the 

dimensions and form (shape) of the features being created must be checked for compliance 

with stated tolerances. For very large components, it is impractical to dismount them from 

the machine tool and measure them with, say with a gantry type CMM. This would be 

expensive for both production time and money. Thus in-process measurement tools are a 

necessity. Standard practice for this type of in-process measurements is to use simple 

mechanical measuring technologies, which can be traced back to early days of 

manufacturing. FIGURE 2 shows typical in-process measurement equipment. 

 

FIGURE 2: Large micrometer and dial indicator (source: micrometer – Fowler Precision 

and dial indicator – Mitutoyo) 
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The large-micrometer can be used for measuring the diameter of a circular component, 

however, one drawback is that multiple micrometers are needed to span different size 

diameters. A bigger issue with this measurement is that a micrometer is a two-point 

measuring method, a distance measurement, and thus will not pick-up odd lobing spatial 

frequencies in the machined component surface profile, if present. It takes a minimum of 

three, non-collinear, points to fully define a circle (diameter).  

The component surface profile, or form error, is measured with a dial indicator. 

However, as a single-point measurement system, measuring a turned component has the 

potential to produce one-for-one errors [33] since any error motions of the spindle are 

included in the measurement. Furthermore, since the form errors of the component are not 

synchronous with the spindle motion errors, the placement of the indicator will cause the 

results to vary. As an example, if an indicator replaces the tool on the lathe, the profile the 

indicator traces will be the same path the tool point made, if the spindle errors are zero, on 

the component, and therefore should show essentially zero reading. 
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With an assortment of large-scale manufactured products, the metrology methods are 

not just restricted to hand-instruments and indicators. The advancements of measuring 

technologies for large-scale products have been on the rise. The laser tracker was first 

developed by Lau, Hocken and Haight in 1986 and was motivated by the need for high-

accuracy measurements of positioning errors of robots [39]. Laser trackers have advanced 

so greatly that the market now extends from robotics to aerospace, automotive and 

shipbuilding industries. Another development for large-scale metrology purposes is 

photogrammetry. Photogrammetry is a metrology method in which the shape, size and 

position of objects are determined from measurements of two-dimensional images [52]. 

Photogrammetry is often associated with the production of topographical maps from aerial 

and satellite images. 
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The laser tracker and photogrammetry methods are major advancements in large-scale 

metrology and have been beneficial for their intended purpose. The in-process 

measurements on machine tools, more specifically lathe operations, have been lagging 

behind, for large-scale components. The manual methods mentioned earlier were 

acceptable when first developed and implemented, however with advancements in 

computers, electronics, data processing algorithms, etc., these in-process measurements are 

in need of major updates, both through software and hardware. The main motivating factor 

of this research is to determine and demonstrate, with acceptable measurement results, 

more efficient and accurate algorithms and hardware for in-process measurements of large-

scale axis of rotation manufacturing processes, with an emphasis on turning operations. 

The next few sections will provide an overview of the how the axis of rotation affects both 

the machining and in-process measurements of turning operations and the objective and 

scope of what the research intends to demonstrate. 

1.2. Axis of Rotation Overview 

Historically, machine tool spindles have been considered to be very good compared to 

the axis motions and other structures on the machine [18]. However, as machine tool 

structures continue to improve their capability and precision, the demand for better 

component geometry and surface finishes have become more critical and spindles errors 

have become a larger percentage of the total error. 
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In order to achieve the best component profile and surface finish, the performance of 

the spindle must be characterized to the lowest errors possible. In 1985, the American 

National Standards Institute (ANSI) and the American Society of Mechanical Engineers 

(ASME) published ANSI/ASME B89.3.4M Axes of Rotation: Methods for Specifying and 

Testing [58]. As recently as of 2010, the new version of the standard has been published 

[18]. This standard characterizes vocabulary and testing procedures for axis of rotations 

and some important concepts from the standard are outlined and introduced in this research. 

1.2.1. Axis of Rotation 

With the ever evolving field of precision engineering, state-of-the-art machines were 

beginning to take shape. The diamond turning machines developed could machine complex 

geometries to accuracies better than 25 𝑛𝑚 (1 𝜇𝑖𝑛), with optically flat surfaces of less then 

5 𝑛𝑚 𝑅𝑎 (0.2 𝜇𝑖𝑛 𝑅𝑎) [53]. The most important component of a diamond turning machine 

is the spindle axis, because it provides a very accurate rotation of a component or tool in 

the machining process. If the spindle performance is poor, meaning lots of error motion, 

dynamics and temperature effects, then the actual component surface profile and surface 

finish will be of poor quality. Spindle performance is a major concern for metrology 

equipment such as roundness testers, which require an accurate reference axis; thus any 

deviation from theoretically pure rotation can be a direct influence to the error of the 

measurements. Review of the literature confirms that spindles are a major component in 

the overall accuracy of a machine tool or metrology instrument/machine. The following 

sections describe what major influences affect axis of rotation metrology. 
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1.2.2. Error Motions 

The axis of rotation standard defines vocabulary associated with the measurement of 

the motions of an axis of rotation. A spindle is a physical structure of a machine or 

metrology tool. It is a combination of a stator, non-rotating component of the structure, and 

a rotor, the rotating component of the structure. There are either mechanical or fluid 

bearings in the rotor, to allow the rotor to rotate with respect to the stator. The desired 

motion of a spindle is pure rotation, with no motion in the other degrees of freedom. Since 

there can be no pure rotational motion, motions in the other degrees of freedom are called 

error motions. Normally on spindles, the 𝑧 axis is through the axis of rotation or center line. 

If the reference axis of the rotor is aligned with the 𝑧 axis of the stator, any linear (𝑥, 𝑦, 𝑧) 

or angular (𝜃𝑥, 𝜃𝑦) motion, is an error motion. FIGURE 3 shows the different 

measurements of the spindle error motions. 

 

FIGURE 3: Different error motions of the axis of rotation B89.3.4m [18] 
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In the standard, all measurements of the errors are made with a displacement indicator. 

The axial error motion is measured when the displacement indicator is aligned along the 

axis, as can be seen in FIGURE 3a. The radial error motions are measured perpendicular 

to the axis of rotation, as can be seen in FIGURE 3c. The axial location is the distance from 

a reference line, usually on the stator, to the displacement indicator. It is important to know 

this distance because the tilt error motion can affect the measurement. The face motion is 

measured in the axial direction, but the displacement indicator is set at a known distance 

from the axis of rotation, as can be seen in FIGURE 3b. The tilt motion can be measured 

in two ways. It can be derived from two radial motion measurements, with the distance 

known between the displacement indicators. It can also be measured with two face motion 

measurements, with the distance known between the two displacement indicators 

Normally all the error motions of the spindle are made with the displacement indicator 

targeting a precision artifact that is mounted in the spindle. Using a low-form error artifact, 

25 𝑛𝑚 (1 𝜇𝑖𝑛), is normal in the testing of precision air-bearing spindles, however, the 

testing done in this research is on a synchronous two revolution per minute (RPM) rotary 

table, with un-calibrated large-scale components. While all other error motions are 

important, this research is only concerned with the radial error motion of the spindle, which 

leads to the form error measurement of the components as of most interest, as well as its 

diameter. However, the introduction of the axis of rotation standard is a necessary step to 

justifying the research.  
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1.2.3. Centering Error 

Before taking any type of measurement on a component, the component should be 

aligned to the axis of rotation. No component is ever truly perfectly aligned and thus there 

is a misalignment of the component’s axis of symmetry to the spindle axis of rotation [18]. 

The following example for the misalignment of a circular component is taken from Gredja 

[19] and Cappa, et al [4], with the example considering the radial error motion. FIGURE 

4 shows a view of a misaligned circular component and the axis of rotation. The circular 

component’s radius is defined as 𝑅, where it’s center is 𝑅𝑜, and is not aligned with the axis 

of rotation center, 𝑂. This misalignment is called the eccentricity and is represented by 𝑒. 

 

FIGURE 4: Sketch of eccentricity of component to axis of rotation [9] [10] 



11 

 

 

If the axis of rotation is perfect, the displacement indicator will measure the change in 

length of the line segment 𝑂𝐴, which lies between the indicator measuring point 𝐴 and the 

axis of rotation 𝑂. The length of 𝑂𝐴 can be written in terms of eccentricity, 𝑒, and the 

radius of the circular component, 𝑅, stated in Eq. (1). 

 𝑂𝐴 = 𝑒𝑐𝑜𝑠(𝜃) + √𝑅2 + 𝑒2𝑠𝑖𝑛2(𝜃) (1) 

When the amount of eccentricity is small compared to the radius of the component, the 

second term in Eq. (1) can be simplified with a first-order approximation expansion of 

𝑠𝑖𝑛2(𝜃), which results in Eq. (2). 

 
𝑂𝐴 = 𝑒𝑐𝑜𝑠(𝜃) + 𝑅 + 

𝑒2

2𝑅
𝑠𝑖𝑛2(𝜃) (2) 

Simplifying the 𝑠𝑖𝑛2(𝜃) term with trigonometric identities, Eq. (3) represents a 

simplified version of Eq. (2). 

 
𝑂𝐴 = 𝑒𝑐𝑜𝑠(𝜃) + 𝑅 + 

𝑒2

4𝑅
(1 − 𝑐𝑜𝑠(2𝜃)) (3) 

The first two terms in Eq. (3) are the polar form of a limacon. A limacon is a convex 

curve generated by a point lying on a line at a fixed distance from the intersection of the 

line with a fixed circle, the line rotating about a point on the circumference of the circle.  

In most radial error applications, the eccentricity is removed mathematically with a best-

fit circle. The eccentricity is not an error motion in radial error motion measurements and 

is considered the fundamental error. Any frequency after the fundamental is considered an 

error motion. 
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All radial error motions measurements, as well as CMM measurements of the 

components, made in this research have the eccentricity removed with a best-fit circle. The 

best-fit circle equation used to remove eccentricity is from the ASME B89.3.4M standard 

[18]. Eq. (4), Eq. (5) and Eq. (6) represent the equations used to calculate the best-fit. 

 
𝑎 =

2

𝑛
∑𝑅𝑖𝑐𝑜𝑠 (𝜃𝑖)

𝑛

𝑖=1

 (4) 

 
𝑏 =

2

𝑛
∑𝑅𝑖𝑠𝑖𝑛 (𝜃𝑖)

𝑛

𝑖=1

 (5) 

 
𝑅 =

∑𝑅𝑖

𝑛
 (6) 

Where 𝑎 and 𝑏 are the 𝑥 and 𝑦 center points of the best-fit circle, respectively and 𝑅 is 

the radius of the best-fit circle. Thus the best-fit circle is calculated by Eq. (7) 

𝑅𝐵𝐹 = 𝑅 + 𝑎𝑐𝑜𝑠(𝜃𝑖) + 𝑏𝑠𝑖𝑛(𝜃𝑖) (7) 

Now with the best-fit circle defined, the actual radial error motions can be calculated 

by subtracting out the best-fit circle, Eq. (7), from the radial measurement, 𝑀𝑟𝑎𝑑𝑖𝑎𝑙. 

 𝐸𝑀 = 𝑀𝑟𝑎𝑑𝑖𝑎𝑙 − 𝑅𝐵𝐹 (8) 

To re-iterate, in this research, only radial error measurements are determined, thus it is 

important to understand that this eccentricity is removed because it is not considered an 

error motion, but is just a rigid body translation of the artifact relative to the spindle. 
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1.2.4. Synchronous vs. Asynchronous  

If the component which the displacement indicator is measuring is perfectly round, the 

indicator will measure the total error motion of the spindle. The total error motion of the 

spindle measurements has two types of error motions: synchronous error motion and 

asynchronous error motion [18]. The synchronous error motion, also known as average 

error motion, is the error motion that repeats, at integer values, from revolution-to-

revolution. It is calculated by taking the average of the revolution-to-revolution data, at the 

integer values. The asynchronous error motion is the error motion that does not repeat at 

integer values from revolution-to-revolution. The asynchronous error motion is calculated 

by subtracting out the synchronous error motion from the total raw error motion. 

Normally the synchronous and asynchronous error motions are displayed in polar plots. 

The synchronous error motion plot can be demonstrated with plotting out the total error 

motion and then plotting the average of that total error motion overlaid. FIGURE 5 shows 

synchronous error motions for 10 revolutions of data with 500 samples per revolution. 

 

FIGURE 5: X and Y error motion with synchronous error motion 
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FIGURE 6 shows the asynchronous error from FIGURE 5 error motions, which is the 

synchronous error motion subtracted from the total error motion. 

 

FIGURE 6: X and Y asynchronous error motion 

The synchronous error value is the peak-to-valley range of the measurement and the 

asynchronous error value is the maximum scaled width of the asynchronous error band [1] 

[18]. The asynchronous value is normally much larger than the synchronous value, in 

magnitude. The synchronous error motion data is used to determine all component form 

errors, in this research. The asynchronous error motion is of more concern for spindle error 

motions of ultra-precision machine tools since it can lead directly to undesirable surface 

finish. The asynchronous error motion is not considered in this research. 
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1.3.    Reversals and Error Separation Methods 

With the axis of rotation, synchronous and asynchronous error motions and eccentricity 

defined, the subject of measurement reversals and error separations can be discussed. This 

section will describe classical reversal and error separation methods with general 

overviews of the methods and detailed schematics for graphical means. The only error 

separation method that will not be described in this section is the multi-probe method, 

which is a major basis in this research. It will be fully detailed in a later section and will be 

employed in the measuring instrument developed and used for the in-process metrology 

methods. 

Reversal and error separation methods are one of the fundamental concepts for 

rotational metrology [1] [18] [20]. Reversal methods are very simplistic, but very powerful 

methods that yield a complete separation of the form errors of the component and the 

spindle’s error motions [20]. The reversal methods thus can be used on artifacts, 

components and instruments without needing a comparison with a master artifact, which 

is traceable to a national standards laboratory, such as the National Institute of Standards 

and Technology (NIST). The error separation methods however are not true reversals, in 

the sense of the definition, and also are not capable of a complete separation of the spindle 

error and component form error [20]. Evans, Hocken and Estler published a broad survey 

of the reversal and error separation methods, which include measurements utilizing 

straightedges, optical flats, master ball artifacts and interferometry instruments [20]. The 

next sections give brief overviews of rotational reversals and spindle error separation 

methods. 
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1.3.1. Reversal Methods 

The reversal methods described are different than error separation methods because 

they provide a complete separation of spindle error motions and form error of the 

component [18] [20] [21]. Reversals require two measurements to compute a single 

component of spindle error (i.e. radial). Both the component and displacement indicator 

must be moved between measurements. A reversal is theoretically better than other 

methods, but it requires very stiff hardware to achieve nanometer-level repeatability. 

Bryan’s initial work on spindle and machine tool metrology showed the need for 

separating the error of a master ball from the error motions of the spindle [57]. For all 

measurements in a spindle application, the displacement indicator used for measurements 

will detect a combination of the spindle error motions and component form error. When 

the errors of the spindle motions and component form are of the same magnitude, there is 

a need to separate the two [1]. Donaldson extended the simple straightedge reversal to 

spindles tested with a master ball to separate the errors [21].  FIGURE 7 illustrates the 

Donaldson reversal method. 

 

FIGURE 7: Donaldson reversal method 
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With the first setup of the Donaldson reversal, the angular displacement of the rotor, 

component and displacement indicator are aligned with a fiducial, seen in FIGURE 7a. For 

the reverse measurement, the displacement indicator and component are rotated 180° with 

respect to the rotor, as seen in FIGURE 7b. The component form error and spindle radial 

error motion can be determined completely from the two measurements. Eq. (9) and Eq. 

(10) show the form error and spindle radial error for the Donaldson reversal. 

 
𝑅(𝜃) =

𝑀𝐹(𝜃) + 𝑀𝑅(𝜃)

2
 (9) 

 
𝑆(𝜃) =

𝑀𝐹(𝜃) − 𝑀𝑅(𝜃)

2
 (10) 

Where 𝑅(𝜃) is the component form error and 𝑆(𝜃) is the spindle radial error. This 

reversal method is typically used for radial error motions, but can be used for tilt error 

motion with the use of a cylindrical component. This reversal method laid the ground work 

for the other reversal methods in spindle metrology. Estler used the Donaldson reversal for 

face error motion reversals [1] [18]. In essence the measurements are the same, however, 

the measurements are now taken on the face of a circular component.  

Grejda enhanced both Donaldson reversal and Estler’s face error motion reversal. 

Grejda introduced a precision rotary table which could rotate the spindle stator 180° with 

respect to the displacement indicator, which is never moved [47]. To solve the eccentricity 

issue with the setup, a special reversal chuck with a lapped spherical pilot and precision-

ground holes sized for slip fit, will index the component with an alignment pin. This 

method eliminated the need for multiple indicators and repositioning indicators, which 

changed the accuracy of the measurements to nanometer-level. FIGURE 8 shows a 

schematic view of the Grejda reversal. 
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FIGURE 8: Schematic of Grejda reversal 

The benefit from the Grejda reversal is it not only reduces measurement uncertainty, 

but also in general, it simplifies the reversal method. It works just as well for the Estler 

face error motion reversal and can actually be used for multi-position error separation, if 

necessary [47]. 

There is a generalized reversal formulation that measures form error of a spherical 

component at an arbitrary latitude [1] [18]. In theory it is possible to separate the spindle 

errors from the component form errors at an inclined plane with respect to the axis of 

rotation, if the radial and face errors are independently measured using a reversal. FIGURE 

9 shows a schematic of the generalized reversal method. 

 

FIGURE 9: Generalized reversal formulation method 
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From the figure above, the displacement indicator locations are at the axial position 

𝑍(𝜃) and radial measurement 𝑅(𝜃) and the general measurement is taken at an arbitrary 

latitude 𝑀(∅).  Eq. (11) shows the generalized measurement from the arbitrary latitude 

including the form error of the component, 𝑃(∅). 

 𝑀(∅) = 𝑅(𝜃) 𝑠𝑖𝑛(∅) + 𝑍(𝜃) 𝑐𝑜𝑠(∅) + 𝑃(∅) (11) 

Once the radial and axial error motions are known, the spindle and component form 

error can be separated from the spindle at any arbitrary latitude without any additional 

reversals. 

These methods are good for calibrations and laboratory setting, however in a shop- 

floor environment, these methods would be much more complex to implement because of 

all the extrinsic effects. In this research, the measuring instrument must be adaptable to 

shop-floor usage, so any type of reversal method is not favorable and would take a great 

deal of effort to implement in the hardware. However, error separation methods are much 

more adaptable and produce almost equivalent spindle error motion and form error results 

as reversal methods [1]. 

1.3.2. Error Separation Methods 

Evans, et al [20] describe error separation methods as model-based because they 

incorporate “assumptions about the component form error in the measurement”. Both the 

multi-position and multi-probe methods use Fourier series to represent the spindle error 

motion or the component form error. The multi-step method uses Fourier series for the 

spindle error motions while the multi-probe method uses Fourier series for representing the 

component form error [1].  
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The multi-step error separation uses a series of measurements in which the component 

is indexed around, in equal angular spacing [1] [6] [18] [19] [20] [35] [47]. The standard 

method for implementing the multi-step methods requires data with the component 

oriented in 𝑛 different equally-spaced angular increments around its circumference. When 

enough data is sampled around the circumference of the component, it is then possible to 

separate the component form error, which moves with every step, from the spindle error, 

which remains static. FIGURE 10 shows a schematic of the multi-step error separation 

method. 

 

FIGURE 10: Multi-step error separation method from B89.3.4m [18] 

From the above picture, with a single displacement indicator, the component is indexed 

and each measurement has a combination of the spindle error and component form error. 

Each measurement can be expressed in the following equation containing the above 

mentioned errors, where the form error, 𝑅(𝜃), is phase shifted with each indexed point. 
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 𝑀𝑛(𝜃) = 𝑆(𝜃) + 𝑅(𝜃 + ∅(𝑛 − 1)) (12) 

Where 1 ≤ 𝑛 ≤ 𝑁. Summing the measurements for 𝑁, and solving for the radial 

spindle error motion, 𝑆(𝜃), leads to Eq. (13). 

 

𝑆(𝜃) =
1

𝑁
∑ 𝑀𝑛

𝑁

𝑛=1

+
1

𝑁
∑ 𝑅(𝜃 + ∅(𝑛 − 1))

𝑁

𝑛=1

 

=
1

𝑁
∑ 𝑀𝑛

𝑁

𝑛=1

+
1

𝑁
∑ 𝑅(𝜃 + 𝑘∅)

𝑁−1

𝑘=1

 

(13) 

The component form error can be presented as a Fourier series. 

 
𝑅(𝜃) = ∑ 𝐴𝑝 𝑐𝑜𝑠(𝑝𝜃) + 𝐵𝑝𝑠𝑖𝑛 (𝑝𝜃)

∞

𝑝=1

 (14) 
 

After using Eq. (13) and Eq. (14), and simplifying, the estimated spindle radial error 

and component form error can be determined from Eq. (15) and Eq. (16). 

 

𝑆(𝜃) ≈
1

𝑁
∑ 𝑀𝑛

𝑁

𝑛=1

 (15) 

 𝑅(𝜃 + 𝑛∅) = 𝑀𝑛(𝜃) − 𝑆(𝜃) (16) 

The multi-step error separation method is not a very well suited approach to in-process 

measurements, thus it will not be discussed any further.  
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1.4.    Diameter Measurements in Manufacturing 

In-process diameter measurements are normally done using a mechanical instrument, 

such as a caliper or micrometer, depending on the size and accuracy needed for a 

measurement. A CMM could also be used for diameter measurements; however, it is not 

feasible for in-process measurements. The type of measurement instrument could also 

depend on if the measurement is an inner or outer diameter. Some researchers have used 

very complex, non-contact double-edged laser-scanning combined with grating 

displacement measurements [2] to calculate in-process diameter measurements. However, 

this measurement system is very expensive, has only been described theoretically and not 

been verified correctly through experimentation. Another method for measuring outer 

diameters in manufacturing is using a friction-roller wheel supported by a spring structure 

of fixed equipment and is closely contacted with the surface of the rotator [2] [51]. When 

the rotator rotates, encoder pulses and a Hall switch, control the counting valves. When the 

magnet goes through the Hall switch, the valve will open. Simultaneously, a computer 

sums up the pulses. One rotation of the magnet goes though the Hall switch and the valve 

closes and the total number of pulses from the encoder is used to calculate the diameter. 

This method is not very accurate because of environmental factors and isn’t used very 

often, if at all.  
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The caliper is a translation of the linear form of a component, which is accomplished 

by referencing the calipers jaws to a measurement scale by mechanical means [42]. As 

useful as calipers are for simple measurements, they have the tendency to not produce very 

accurate measurements. Calipers are can be classified as two-point measurements or a 

distance measurement. These two-points cannot precisely represent a diameter if the 

component shape is odd-lobed. Another fault is the caliper suffers from a cosine error and 

abbe offset. 

 The micrometer, which is a specialized version of a caliper, is purely a screw turning 

in a nut with the point or end of the screw advancing toward or receding from the opposite 

anvil of a C-frame [42]. Another issue with the calipers and micrometers is that these 

instruments can only measure a certain range of sizes. This issue then leads to having 

multiple instruments of various sizes as well as reference artifacts to check the distance 

from end to end. As the size of the component goes up, the measurement errors increase.  

With the issues of the mechanical instrument measurements, there is a need to develop 

a measuring instrument using a more precise method for in-process diameter 

measurements. This research describes such a measuring instrument, which has the means 

to measures both diameter and form error, with three contact points on the surface of the 

circular component. The method used to reconstruct the diameter of the component is based 

on a geometrical model, which uses the area and semi-perimeter of a triangle to produce a 

circumcircle, which is an estimate of the circular components diameter. 
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1.5.    In-process Metrology Method Improvement 

The objective of this research is to improve in-process measurements of diameter and 

form error measurements, simultaneously, for large-scale components, by developing 

software through mathematically sound algorithms and demonstrated with the 

development of a novel measuring instrument, designed to use the multi-probe error 

separation method to determine the circular component form error, as well as measure the 

diameter of the component by using a geometrical model with three points. With the 

diameter measurement, the center position of the component can also be determined, in the 

measuring instrument’s coordinate system. This is a byproduct of the design and will only 

be used for determining the direction cosines later in the research. Testing results from the 

measuring instrument are compared to a CMM. 
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The measuring instrument is designed with three pivoting arms, attached to a 

monolithic steel body that has milled pockets to fit encoder modules. The measuring 

instrument can interface with a 25.4 𝑚𝑚 𝑥 25.4 𝑚𝑚 (1” 𝑥 1”) tool-post turret. The arms 

are attached to the body of the measuring instrument via a clamp ring with a locking screw. 

The clamp ring is connected to a lock ring and then finally connected to a bore adapter. 

The bore adapter is positioned on the body. Each arm assembly is connected to the high-

precision encoder module, which is located inside the body. Each arm is attached, at the 

opposite end of the pivot, with a low-form error steel sphere used to make contact with the 

surface of the component. The arm is spring loaded with a beam spring that is attached to 

the lock ring. The clamp ring with the locking screw is used to ensure the correct spring 

force is on each arm to ensure contact with the component. The sensing system in the 

measuring instrument is a high-resolution absolute encoder, with an integrated high-

precision bearing, which determines the arm’s absolute position relative to a reference 

mark on the scale of the encoder. The encoder module data, as well as the measuring 

instrument’s kinematic model, is used to produce all metrology results in this research. 

The final objective of this research is the verification of the multi-probe error separation 

and diameter with the measuring instrument along with an uncertainty budget for each 

measuring process. 
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The research is structured as follows. Chapter 2 discusses the multi-probe error 

separation method in full detail, as well as how the planar angle locations for the multi-

probe method are determined through the measuring instrument design. Chapter 3 

discusses the geometrical model used for determining the diameter measurement, as well 

as the center position used for the direction cosines. Chapter 4 fully describes and details 

the measuring instrument used to incorporate all forms of metrology discussed in this 

research. Chapter 5 discusses the experimental setup, preliminary tests and results from the 

diameter and form error tests using the measuring instrument. Chapter 6 discusses 

uncertainty sources affecting both the form error and diameter measurements and combines 

all uncertainty values in a budget to quantify the measuring process. Chapter 7 discusses 

the conclusions from the research and future work. 

  



 

 

 

CHAPTER 2: COMPONENT FORM METROLOGY 

 

2.1. Multi-probe Error Separation Method 

Whitehouse is one of the first researchers to demonstrate the multi-probe error 

separation method, with the use of capacitance indicators that target an artifact, collecting 

data to separate the component form errors from the spindle errors [6] [7]. The multi-probe 

error separation method normally uses three displacement probes (e.g. capacitance 

indicators) [1] [35] [36], however, in this research, the measuring instrument used for 

testing, uses high-resolution angular encoder modules. Normally the capacitance indicators 

are arranged around the circumference of the component; however, the angular encoders 

are attached at pivot points/joints on the measuring instruments body, as mentioned in 

Chapter 1, and each arm is attached to the body of the measuring instrument at pivot points 

and a low-form error steel sphere is attached at opposite end of each arm. Each arm sphere 

is in contact with the component surface and represents the measurement point needed for 

the multi-probe method. In chapter 4, the details of integrating the angular encoder modules 

into the measuring instrument are discussed. 

The measurement points are labeled as 𝑀𝐴(𝜃), 𝑀𝐵(𝜃) and 𝑀𝐶(𝜃), where 𝑀𝐴(𝜃),  

𝑀𝐵(𝜃) and 𝑀𝐶(𝜃) are separated in the 𝑥𝑦 plane from the positive 𝑥 axis by planar angles 

𝛼, 𝛽 and 𝛾.  FIGURE 11 shows a general schematic of the multi-probe method. 
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FIGURE 11: Three-point error separation method for component form error and spindle 

error motion 

The equations for the measurements are a combination of the component form error, 

𝑃(𝜃), including the phase shift of the measurement point locations, and the 𝑥(𝜃) and 𝑦(𝜃) 

coordinates of the spindle error motions. 



29 

 

 

 𝑀𝐴(𝜃) = 𝑃(𝜃 − 𝛼) + 𝑥(𝜃) 𝑐𝑜𝑠(𝛼) + 𝑦(𝜃)𝑠𝑖𝑛 (𝛼) (17) 

 𝑀𝐵(𝜃) = 𝑃(𝜃 − 𝛽) + 𝑥(𝜃)𝑐𝑜𝑠(𝛽) + 𝑦(𝜃)𝑠𝑖𝑛 (𝛽)  (18) 

 𝑀𝐶(𝜃) = 𝑃(𝜃 − 𝛾) + 𝑥(𝜃) 𝑐𝑜𝑠(𝛾) + 𝑦(𝜃)𝑠𝑖𝑛 (𝛾) (19) 

In most published research, the angle 𝛼 is used as the reference or initial angle for the 

multi-probe method. Thus 𝛼 = 0° is used, so Eq. (17), simplifies to  

𝑀𝐴(𝜃) = 𝑃(𝜃) + 𝑥(𝜃). This simplified version of Eq. (17) is used throughout the research, 

for simulation and real data.  

With the simplified equation, the multi-probe approach then combines these three 

measurements through a linear combination of a weighted measurement, 𝑀(𝜃), using 

coefficients 𝑎 and 𝑏. 

 𝑀(𝜃) =  𝑀𝐴(𝜃) + 𝑎𝑀𝐵(𝜃) + 𝑏𝑀𝑐(𝜃) (20) 

Where 𝑎 and 𝑏 coefficients are found from solving Eq. (21) and Eq. (22) 

simultaneously.  

 𝑎𝑐𝑜𝑠 (𝛽) + 𝑏𝑐𝑜𝑠(𝛾) + 1 = 0 (21) 

 𝑎𝑠𝑖𝑛 (𝛽) − 𝑏𝑠𝑖𝑛(𝛾) = 0 (22) 

Thus the coefficients are: 

 
𝑎 = −

𝑠𝑖𝑛 (𝛽)

𝑠𝑖𝑛(𝛽 − 𝛾)
            𝑏 =

𝑠𝑖𝑛 (𝛾)

𝑠𝑖𝑛 (𝛽 − 𝛾)
 (23) 

The form error of the component can be modeled as a Fourier series of periodic motion, 

with Fourier coefficients represented by 𝐴𝑘 and 𝐵𝑘. The form error equation is: 

 
𝑃(𝜃) = ∑ 𝐴𝑘𝑐𝑜𝑠 (𝑘𝜃) + 𝐵𝑘𝑠𝑖𝑛 (𝑘𝜃)

∞

𝑘=2

 (24) 
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Where 𝑘, is the series count, but for the multi-probe method, it is the number of 

undulations per revolution (UPR). Eq. (25) shows the results when Eq. (17), Eq. (18), Eq. 

(19) and Eq. (24) are substituted in Eq. (20), using trigonometric angle identities for the 

𝑐𝑜𝑠 and 𝑠𝑖𝑛 terms, and grouping common terms; 𝑀(𝜃) can be represented as: 

 𝑀𝐴(𝜃) + 𝑎𝑀𝐵(𝜃) + 𝑏𝑀𝐶(𝜃)

= ∑ 𝐴𝑘𝑐𝑜𝑠 (𝑘𝜃)

∞

𝑘=1

(1 + 𝑎𝑐𝑜𝑠 (𝑘𝛽) + 𝑏𝑐𝑜𝑠(𝑘𝛾))

+ ∑ 𝐴𝑘

∞

𝑘=1

𝑠𝑖𝑛 (𝑘𝜃)(𝑎𝑠𝑖𝑛 (𝑘𝛾) − 𝑏𝑠𝑖𝑛(𝑘𝛽))

+ ∑ 𝐵𝑘 𝑠𝑖𝑛(𝑘𝜃)

∞

𝑘=1

(1 + 𝑎𝑐𝑜𝑠 (𝑘𝛽) + 𝑏𝑐𝑜𝑠(𝑘𝛾))

+ ∑ 𝐵𝑘

∞

𝑘=1

𝑐𝑜𝑠 (𝑘𝜃)(𝑏𝑠𝑖𝑛(𝑘𝛾) − 𝑎𝑠𝑖𝑛 (𝑘𝛽)) 

(25) 

Notice that the parentheses in Eq. (25) are similar to Eq. (21) and Eq. (22) and setting 

those parentheses values in Eq. (25) to 𝛿𝑘 = 1 + 𝑎𝑐𝑜𝑠 (𝑘𝛽) + 𝑏𝑐𝑜𝑠(𝑘𝛾) and 𝜀𝑘 =

𝑏𝑠𝑖𝑛(𝑘𝛾) − 𝑎𝑠𝑖𝑛 (𝑘𝛽), Eq. (25) can be simplified to Eq. (26).  

 
𝑀(𝜃) = ∑(𝐴𝑘𝛿𝑘 + 𝐵𝑘𝜀𝑘)𝑐𝑜𝑠 (𝑘𝜃) + ∑(𝐵𝑘𝛿𝑘 − 𝐴𝑘𝜀𝑘)𝑠𝑖𝑛 (𝑘𝜃)

∞

𝑘=2

∞

𝑘=2

 (26) 

The coefficients of 𝑐𝑜𝑠𝑘𝜃 and 𝑠𝑖𝑛𝑘𝜃 are the Fourier coefficients of the summed 

measurement, so 𝐴𝑘 and 𝐵𝑘 can be found by solving the matrix in Eq. (28). 𝐹𝑘 and 𝐺𝑘 are 

the Fourier coefficients of 𝑀(𝜃), and found by Discrete Fourier Transform. 
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𝑀(𝜃) = ∑ 𝐹𝑘𝑐𝑜𝑠 (𝑘𝜃) + 𝐺𝑘𝑠𝑖𝑛 (𝑘𝜃)

∞

𝑘=2

 (27) 

 
[

𝛿𝑘 𝜀𝑘

−𝜀𝑘 𝛿𝑘
] {

𝐴𝑘

𝐵𝑘
} = {

𝐹𝑘

𝐺𝑘
} (28) 

Notice that Eq. (26) and Eq. (27), have the series starting at 𝑘 = 2. This is done to 

exclude the fundamental error component, which is the eccentricity of the component 

setup. Thus the centering error described in section 1.2.3 is not included in the graphics 

displayed later in the research. Also to note, when 𝑘 = 1, Eq. (25) is zero, as defined by 

Eq. (21) and Eq. (22). 

With 𝐴𝑘 and 𝐵𝑘 now known, the component form error, 𝑃(𝜃), is determined by Eq. 

(24).   

For completeness of the multi-probe error separation method, the form error is now 

used to determine the spindle error motion of the in the 𝑥 and 𝑦 directions. To determine 

the spindle error motions, Eq. (18) and Eq. (19) are solved simultaneously to determine the 

spindle error motions. The 𝑦(𝜃) direction is found by subtracting Eq. (18) from Eq. (19), 

to eliminate the 𝑥(𝜃), thus 𝑦(𝜃) is expressed as: 

 
𝑦(𝜃) =

[−𝑀𝑏(𝜃) + 𝑃(𝜃 − 𝛽)] 𝑐𝑜𝑠(𝛾) + [𝑀𝑐(𝜃) + 𝑃(𝜃 − 𝛾)]𝑐𝑜𝑠 (𝛽)

𝑠𝑖𝑛(𝛾 − 𝛽)
 (29) 

Now that the 𝑦 direction is expressed, to solve for the 𝑥 direction, Eq. (18) or Eq. (19) 

is used, with substituting Eq. (29). The 𝑥 direction can be expressed as Eq. (30). Eq. (19) 

is used to determine the 𝑥 direction spindle error.  

 
𝑥(𝜃) =

[𝑀𝑐(𝜃) − 𝑃(𝜃 − 𝛾)] − 𝑦(𝜃)𝑠𝑖𝑛 (𝛾)

𝑐𝑜𝑠(𝛾)
 (30) 
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Eq. (29) and Eq. (30) are expressed in terms of the angles 𝛽 and 𝛾 because the 

measuring instrument will not have a measuring point aligned with either the 𝑥 or 𝑦 axis, 

so the angles of the measuring points need to be determined beforehand and then the form 

error and spindle errors can be determined for the 𝑥 and 𝑦 directions.  

The above formulas will be the basis of the software for determining the form error of 

the component under test. To prove the multi-probe method is capable of reconstructing 

the component profile, synthetic data is created, with and without noise, and the above 

algorithms are used to simulate the component profile and then reconstruct the profile with 

the multi-probe method. The reconstructed profile will be compared to the simulated 

profile. 

2.2.1. Simulation of Multi-probe Technique 

Synthetic data is created using Eq. (17), Eq. (18) and Eq. (19), with and without noise. 

The noise levels of the signals are approximately 0.005 𝑚𝑚 (0.0002"), with a random 

uniform distribution. This noise level is chosen to represent a shop-floor test. The planar 

angle locations used for the synthetic data and reconstructing the component profile, are 

0°, 99.84375°, 202.5° (𝛼, 𝛽, 𝛾), which have proven to have low harmonic suppression [1] 

[19] [35] [36]. It is common practice to use zero as the first angle, or reference angular 

location, in the multi-probe method, because it simplifies Eq. (17) and is easier to determine 

𝑥(𝜃) [1] [19]. FIGURE 12 and FIGURE 13 show the synthetic data without noise, and 

profile reconstructed as well as compared to the simulated profile. There are 25 UPR 

included in the simulated profile of the component and 10 UPR included in the simulated 

spindle errors. All 25 UPR are extracted from the simulated weighted measurement, which 

are used to truncate the approximate component profile.  
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FIGURE 12: Synthetic data without noise. 

 

FIGURE 13: Reconstructed component profile and simulated component profile (w/out 

noise) 
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From FIGURE 13, it can be seen that the reconstructed profile does not 100% 

completely match the simulated profile. This can be attributed to the fact that the multi-

probe error separation technique has assumption about the form error [18] [20] [21]. Even 

with published planar angles, harmonic suppression in the frequency domain is still 

included, even on a small scale [31] [32]. FIGURE 14 shows the point-to-point difference 

in the reconstructed to the simulated component profile. It has an approximate 

±0.0004 𝑚𝑚 (±0.000016") error band. 

 

FIGURE 14: Point-to-point difference between simulated and reconstructed component 

profile (w/out noise) 
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FIGURE 15 and FIGURE 16 show the synthetic data now corrupted with noise and the 

approximate reconstruction of the component profile compared to the simulated profile. 

 

FIGURE 15: Synthetic data with noise (0.005 𝑚𝑚 (0.0002")). 

 

FIGURE 16: Reconstructed component profile and simulated component profile (w/noise) 
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From FIGURE 16, it can be seen that the reconstructed profile does not completely 

match the simulated profile, as was apparent in the simulation without noise. FIGURE 17 

shows the point-to-point difference in the reconstructed to the simulated component 

profile. It has an approximate ±0.0007 𝑚𝑚 (±0.000028") error band. 

 

FIGURE 17: Point-to-point difference between simulated and reconstructed component 

profile (w/noise) 

As can be seen from the simulations, the component profile can be reconstructed pretty 

accurately with the multi-probe error separation method with a reasonable amount of noise. 

Again, in published literature, there cannot be a complete separation and thus a complete 

reconstruction of the component profile error.  
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2.2.  Planar Angle Orientation Determination 

In the multi-probe error separation method, the performance of the method is dependent 

upon accurate knowledge of the location of planar angles 𝛼, 𝛽 and 𝛾 [1]. Normally the 

multi-probe method is done using displacement indicators (i.e. capacitance indicators) and 

with the indicators precisely aligned in the same plane and sensitivity of all indicators 

matched, the accuracy of the method will be best [1]. Much work has been done on 

investigating the effects of the planar angular locations, normally predetermined, of the 

indicators, which control the accuracy of the separation of the harmonic content [1] [4] [5] 

[7] [9] [10] [11] [19] [34] [35] [36]. For the measuring instrument developed in this 

research the planar angles change with different component diameters and with the distance 

of the measuring instrument incremented from the component being measured. With the 

new measuring instrument concept, the planar angles can be calculated from both the 

measuring instrument coordinate system and spindle coordinate system, if the absolute arm 

angles are known. Since the measuring instrument uses absolute angular encoders, the 

absolute position of the arms can be determined, and this method can be used to determine 

the planar angles. FIGURE 18 shows a schematic of the measuring instrument in contact 

with the component. 
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FIGURE 18: Measuring instrument in contact with component for planar angle 

determination 

The measuring instrument coordinate system is treated as the global coordinate system 

because the measurements for the diameter and form error will be calculated from these 

coordinates. The planar angles are to be determined relative to the spindle coordinate 

system and measured from the positive 𝑥 axis of the spindle. FIGURE 19 shows the 

relationship between the measuring instrument coordinate system and spindle coordinate 

system for each of the points of contact. 
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FIGURE 19: Relationship between measuring instrument and spindle coordinate systems 

To determine the angles of the contact points, the direction cosines can be used to 

determine the angle locations, relative to the 𝑥 axis of the spindle. FIGURE 19 shows the 

direction cosines vectors of each point, which consist of the component center coordinates 

and the surface contact point coordinates, in measuring instrument coordinates. From 

FIGURE 19, the direction cosines for each measurement point can be determined, in two-

dimensions, as: 
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 𝑐𝑜𝑠(𝛼) =  
𝑎1

√𝑎1
2 + 𝑏1

2
 (31) 

 𝑐𝑜𝑠(𝛽) =  
𝑎2

√𝑎2
2 + 𝑏2

2
 (32) 

 𝑐𝑜𝑠(𝛾) =  
𝑎3

√𝑎3
2 + 𝑏3

2
 (33) 

Where 𝛼, 𝛽 and 𝛾 are the direction angles of the vectors with positive 𝑥 and 𝑦 axes, 

respectively. Point one’s, 𝑝1, coordinate points are (𝑥𝑎, 𝑦𝑎), point two’s, 𝑝2, coordinate 

points are (𝑥𝑏 , 𝑦𝑏), point three’s, 𝑝3, coordinate points are (𝑥𝑐, 𝑦𝑐) and the center 

coordinates of the component are (𝑋𝑐𝑒𝑛𝑡, 𝑌𝑐𝑒𝑛𝑡). 𝑎1 = < 𝑥𝑎 − 𝑋𝑐𝑒𝑛𝑡 >  and 𝑏1 = < 𝑦𝑎 −

𝑌𝑐𝑒𝑛𝑡 >,  are 𝑥 and 𝑦 vectors, respectively, from the spindle center to the surface contact 

point of point one. 𝑎2 = < 𝑥𝑏 − 𝑋𝑐𝑒𝑛𝑡 > and 𝑏2 = < 𝑦𝑏 − 𝑌𝑐𝑒𝑛𝑡 >,  are 𝑥 and 𝑦 vectors, 

respectively, from the spindle center to the surface contact point of point two. 𝑎3 = < 𝑥𝑐 −

𝑋𝑐𝑒𝑛𝑡 > and 𝑏3 = < 𝑦𝑐 − 𝑌𝑐𝑒𝑛𝑡 >, are 𝑥 and 𝑦 vectors, respectively, from the spindle 

center to the surface contact point of point three. Using the defined 𝑎 and 𝑏 vectors, the 

direction cosines can be determined, by taking the inverse cosine, and the planar angle 

location, from the 𝑥 axis of the spindle, can be determined for each of the measurement 

contact points. 

The 𝑥 and 𝑦 coordinates for the surface contact points, as well as the component center 

coordinates, can be determined, in measuring instrument coordinates, by the arms angles 

and the kinematic model of the measuring instrument. The measuring instruments’ physical 

design and kinematic model is detailed in a later chapter and in this later chapter, the 

necessary equations for determining the needed coordinate points are also detailed.  
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With the 𝛼, 𝛽 and 𝛾 now defined, for simplification of the multi-probe method, 𝛼 will 

be assumed to be the zero angle, or reference angular location, like in the simulation and 

literature [1]. The actual 𝛽 value used in the research will be the planar angular location of 

arm two contact point, referenced from arm one, 𝛼, and the actual 𝛾 value used in the 

research will be the planar angular location of arm three contact, referenced from arm one, 

𝛼, as well. Using 𝛽 and 𝛾, as well as measurement signals two and three, the form error of 

the component can be determined and when the component form error is determined, the 

spindle error motions can be determined for both the 𝑥 and 𝑦 directions.   

From the measuring instrument design, described in detail in a later section, the planar 

angle locations, at the measuring instruments arm end, may not move in a purely radial 

direction relative to the component as it rotates. This is important because the multi-probe 

method needs the angular displacement from the measuring instrument, to be converted to 

linear displacement at the arm end. This can be done with the arc-length formula, however, 

the actual motion the arm end moves, may not be radial and needs to be projected into the 

radial direction. This will be described in more detail in a later section.  



 

 

 

CHAPTER 3: SIZE METROLOGY 

 

3.1. Diameter Determination 

As mentioned earlier, simple mechanical tools are often used to take in-process 

diameters measurements. As an example, a caliper provides a two-point measurement of a 

nominally circular shape as a distance which represents the diameter of the circular shape. 

However, if the component is odd-lobed shaped, then the two-point measurement system 

could potentially measure a high-high, low-low or high-low spot, which will produce three 

different measurement results. In this research, the circle is defined using three, non-

collinear, points which geometrically uniquely defines a circle. While the issue of varying 

measurement results due to component non-circularity will still exist, the method 

developed here is capable of nearly automated operation over a wide range of diameters 

without the need for a calibrated artifact to master the measuring instrument, and with 

reduced reliance on operator skill. 

Given three unique points on a circle, the diameter of the circle in question can be 

determined with a geometrical model. The three points on the circle create a unique triangle 

and the geometrical model states that if the area of the triangle, its semi-perimeter and side 

lengths, are known, a circumcircle is created and the diameter of the circumcircle can be 

computed by the given parameters [12]. FIGURE 20 shows a circle with three unique 

points, which is used to determine the area of the triangle, semi-perimeter, side lengths and 

thus its diameter. 
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FIGURE 20: Circle used for diameter and angle determinations of circular component 

To determine the above parameters, an algebraic proof using Pythagoreans theorem is 

used [12]. Using the triangle portion from FIGURE 20 and drawing a line from point 𝐶 

and cutting the base into two sections, Pythagoreans theorem can now be used for 

determining the parameters of area, semi-perimeter, side lengths and diameter. FIGURE 

21 shows the triangle portion from FIGURE 20 with additional variables 𝑑 and ℎ. The 

triangle is rotated for clarity. 
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FIGURE 21: Triangle with sides A, B, C and sections for Pythagoreans Theorem 

From FIGURE 21, using Pythagoreans theorem for both triangles created by the 

bisection of ℎ, the area of the triangle can be determined as follows: 

 𝑏2 = ℎ2 + 𝑑2 (34) 

 𝑎2 = ℎ2 + (𝑐 − 𝑑)2 (35) 

Now subtracting 𝑎2 from 𝑏2 , to eliminate ℎ, produces: 

 𝑎2 − 𝑏2 = 𝑐2 − 2𝑐𝑑       (36) 
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Solving for 𝑑 

 
𝑑 =

−𝑎2 + 𝑏2 + 𝑐2

2𝑐
 (37) 

Now with 𝑑 expressed and using Eq. (34) to solve for ℎ, the height of the triangle can 

be found. Some algebraic steps are not included to reduce clutter. 

 
ℎ2 = 𝑏2 − 𝑑2 = (

2𝑏𝑐

2𝑐
)
2

− (
−𝑎2+𝑏2+𝑐2

2𝑐
)
2

  

=
(2𝑏𝑐 − 𝑎2 + 𝑏2 + 𝑐2)(2𝑏𝑐 + 𝑎2 − 𝑏2 − 𝑐2)

4𝑐2
 

=
(𝑏 + 𝑐 − 𝑎)(𝑏 + 𝑐 + 𝑎)(𝑎 + 𝑏 − 𝑐)(𝑎 − 𝑏 +)

4𝑐2
 

=
4𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑐2
 

ℎ =  √
4𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑐2
 

(38) 

Where 𝑠 =
(𝑎+𝑏+𝑐)

2
, is the semi-perimeter of the triangle, and now applying the formula 

for the area of a triangle, which uses the height of the triangle, ℎ, and 𝑐 for its base: 

 
𝐴 =

𝑐ℎ

2
 

= √
𝑐2

4
∙
4𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑐2
 

= √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) 

(39) 

Since all triangles are cyclic in nature and are classified as polygons, a circumscribed 

circle can be fitted to the triangle points, more specifically a unique minimum bounding 

circle. With the area of the triangle expressed, the diameter from the triangle can be 

determined with the following equation. 
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𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =

(𝑎𝑏𝑐)

2𝐴
 (40) 

To determine the side lengths of the triangle, the 𝑥 and 𝑦, coordinates of the points 

𝐴(𝑥1, 𝑦1), 𝐵(𝑥2, 𝑦2) and 𝐶(𝑥3, 𝑦3) from FIGURE 20, are needed. These 𝑥 and 𝑦 

coordinates will be determined from the measuring instrument’s kinematic model, which 

will described in Chapter 4. The side lengths of the triangle are as follows: 

 𝑎 =  √(𝑥3 − 𝑥1)2 + (𝑦3 − 𝑦1)2 (41) 

 𝑏 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (42) 

 𝑐 =  √(𝑥2 − 𝑥3)2 + (𝑦2 − 𝑦3)2  (43) 

Where 𝑎 = 𝐴𝐶̅̅ ̅̅ , 𝑏 = 𝐴𝐵̅̅ ̅̅  and 𝑐 = 𝐶𝐵̅̅ ̅̅ .  

The above formulas will be the basis of the software for determining the diameter of 

the component under test. To prove that the diameter measurement method is capable of 

reconstructing the diameter, simulations with synthetic encoder data (w/noise) is done.  
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3.1.2. Simulation of Diameter Measurement Method 

A diameter of 457.2 𝑚𝑚 (18” ) is chosen to simulate. This diameter is chosen because 

it is typical diameter size in a large-scale manufacturing setting. When the measuring 

instrument engages with the component, the measuring instrument’s absolute encoders, 

produce the angular position for each arm, relative to a reference index on the encoders 

scale. These angular displacements, as well as their angular offsets from the measuring 

instrument’s global coordinates system relative to the reference index on the scale, are then 

used to calculate the 𝑥 and 𝑦 coordinates, of each arm’s contact point on the surface of the 

component. From the 𝑥 and 𝑦 coordinates, Eq. (41), Eq. (42) and Eq. (43) are then used to 

determine the sides of the triangle and thus the semi-perimeter of the triangle, s. With the 

sides of the triangle and semi-perimeter found, the area of the triangle can be determined 

using Eq. (39). With the area and semi-perimeter found, the diameter of the component can 

be estimated using Eq. (40).  

The noise level in the data is assumed to be approximately 2.5 𝑎𝑟𝑐 − se𝑐  (0.00069°), 

which is the stated bi-directional accuracy of the encoder modules in the measuring 

instrument. Results for the simulation can be seen in TABLE 1. 

 

 

 

 

 

 

 



48 

 

 

TABLE 1: Simulation results for diameter measurements. 

 

A typical diameter this size, could have tolerances in the range of 

±0.0508 𝑚𝑚 (±0.002"), so from TABLE 1, this method has good potential for 

reconstructing diameter measurements using the previously described method.  

3.2.  Center Position Determination 

In order to determine the center position of the component, in the measuring instrument 

coordinates, the 𝑥 and 𝑦 coordinates from the three contact point must be expressed, which 

will be determined from the measuring instruments kinematic model. From FIGURE 20, 

the three points are labeled as 𝐴(𝑥1, 𝑦1), 𝐵(𝑥2, 𝑦2)  and 𝐶(𝑥3, 𝑦3) and also shows lines 𝑡 

and 𝑟, which connect points 𝐵 and 𝐶 and points 𝐴 and 𝐵, respectively. The center of the 

circle, in measuring instrument coordinates, lies at the intersection of the perpendicular 

bisector of these lines, the orange dot. The slope for lines 𝑡 and 𝑟 can be expressed as: 

  

Noise = 2.5 Arc-Sec inch mm

Simulated 18 457.2

Reconstructed 18.00018 457.2048

Difference 0.00018 0.0048
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 𝑚𝑟 =
𝑦3 − 𝑦2

𝑥3 − 𝑥2
=

𝑦𝑟 − 𝑦2

𝑥 − 𝑥2
 (44) 

 𝑚𝑡 =
𝑦3 − 𝑦1

𝑥3 − 𝑥1
=

𝑦𝑡 − 𝑦1

𝑥 − 𝑥1
 (45) 

Where 𝑚𝑟 is the slope of line 𝑟 and 𝑚𝑡 is the slope of line 𝑡. Now with the slopes 

expressed, the equations of each line can be determined. 

 𝑦𝑟 − 𝑦2 = 𝑚𝑟(𝑥 − 𝑥2) 

𝑦𝑟 = 𝑚𝑟(𝑥 − 𝑥2) + 𝑦2 

(46) 

 𝑦𝑡 − 𝑦1 = 𝑚𝑡(𝑥 − 𝑥1) 

𝑦𝑡 = 𝑚𝑡(𝑥 − 𝑥1) + 𝑦1 

(47) 

Geometrically, the center of the circle lies on the lines that pass through the mid points 

of chords 𝐶𝐵̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅  and are perpendicular to each chord. Lines that are perpendicular 

have negative reciprocal slopes. These new line can be called 𝑟𝑝 and 𝑡𝑝 to indicate their 

perpendicular connections to lines 𝑟 and 𝑡, respectively. The midpoint equations are: 

𝑜𝑛 𝑙𝑖𝑛𝑒 𝑟, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝐶𝐵,̅̅ ̅̅̅  𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 

 
(
𝑥3 + 𝑥2

2
,
𝑦3 + 𝑦2

2
) (48) 

 

 

𝑜𝑛 𝑙𝑖𝑛𝑒 𝑡, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝐴𝐶,̅̅ ̅̅̅  𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 

 
(
𝑥3 + 𝑥1

2
,
𝑦3 + 𝑦1

2
) (49) 

 

 

 

 

Now Eq. (46) and Eq. (47) of the lines are expressed as: 
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𝑦𝑟𝑝 −

𝑦3 + 𝑦2

2
= −

1

𝑚𝑟
(𝑥 −

𝑥3 + 𝑥2

2
) 

𝑦𝑟𝑝 = −
1

𝑚𝑟
(𝑥 −

𝑥3 + 𝑥2

2
) +

𝑦3 + 𝑦2

2
 

(50) 

 
 𝑦𝑡𝑝 −

𝑦3 + 𝑦1

2
= −

1

𝑚𝑡
(𝑥 −

𝑥3 + 𝑥1

2
) 

 𝑦𝑡𝑝 = −
1

𝑚𝑡
(𝑥 −

𝑥3 + 𝑥1

2
) +

𝑦3 + 𝑦1

2
 

(51) 

These two line intersect at the center of the circle, (𝑦𝑟𝑝 = 𝑦𝑡𝑝). Setting Eq. (50) and 

Eq. (51) equal, and solving for 𝑥, will produce 𝑥 center point, in measuring instrument 

coordinates. This is shown below. 

 
−

1

𝑚𝑟
(𝑥 −

𝑥3 + 𝑥2

2
) +

𝑦3 + 𝑦2

2
= −

1

𝑚𝑡
(𝑥 −

𝑥3 + 𝑥1

2
) +

𝑦3 + 𝑦1

2
 (52) 

 
𝑋𝑐𝑒𝑛𝑡𝑒𝑟 =

𝑚𝑟𝑚𝑡(𝑦3 − 𝑦2) + 𝑚𝑟(𝑥3 + 𝑥1) − 𝑚𝑡(𝑥3 + 𝑥2)

2(𝑚𝑟 − 𝑚𝑡)
 (53) 

Where 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 is equal to 𝑥 in Eq. (52). Thus when 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 is determined, and 

substituted into Eq. (50), 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 is then determined.  

𝑌𝑐𝑒𝑛𝑡𝑒𝑟 = −
1

𝑚𝑟
(𝑋𝑐𝑒𝑛𝑡𝑒𝑟 −

𝑥3 + 𝑥2

2
) +

𝑦3 + 𝑦2

2
 (54) 

Eq. (54) will not be reduced further. These equations are used for the direction cosines 

described in section 2.2 and the scale projections in section 5.4.1.  

For both the diameter and center position algorithms, the actual 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3 

coordinate points are found from the kinematic model for the measuring instrument. The 

measuring instrument concept and design will be detailed in chapter 4 of the research. 

  



 

 

 

CHAPTER 4: COORDINATE MEASUREMENT SYSTEM DESIGN 

 

4.1. Measuring Instrument Concept 

Typical in-process measurements for circular component diameter and form error is 

done with very basic methods such as friction-rollers, caliper-type instruments and dial 

indicators [2] [28] [51]. These methods inherently have error and have the potential to 

produce erroneous results. Another issue, is that these processes are all individualized with 

setup, fixturing and data collection. This increases time in the entire manufacturing process. 

The in-process measuring instrument developed in this research will incorporate both form 

and size measurements into a single device, which will be interfaced with a lathe’s turret.  

The measuring of the circular component is done by three pivoting arms attached to the 

measuring instrument’s body, which uses high-resolution angular encoders to read the 

angular displacement of the arms. These encoder angular displacements are used for 

calculating the circular component’s diameter and form error. Section 4.2 gives full detail 

of the entire measuring instrument design. 

The measuring instrument has gone through two full designs for prototyping. The first 

measuring instrument will be described, but not in full detail, just the major points of the 

design. The second version of the measuring instrument improved all the short comings of 

the first design. The second version of the measuring instrument will be described in full 

detail since it is the system that produced all the results in this research.   
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4.2. Measurement Instrument Design 

The measuring instrument developed in this research utilizes three high-resolution 

angular encoder modules with integrated high-precision bearings to measure the angular 

displacement of the three arms that contact the circular component being measured. The 

angular displacements are converted into coordinates of the contact points by using the 

physical dimensions of the measuring instrument, via a kinematic model. The kinematic 

model contains unknown parameters that are defined by the actual dimensions of the as-

built measuring instrument. Once the measuring instrument is constructed, the as-built 

values of these parameters must be measured on a high-precision CMM. From the CMM 

measured kinematic model, these measured values are used in the software to calculate the 

diameter and the form error of the components under test. 

4.2.1. Kinematic Parameters 

Kinematics is the study of classical mechanics which describes the motion of points, 

bodies (objects) and systems of bodies without considering the causes of motion. It is also 

referred to as the study of the geometry of motion [13].  FIGURE 22 shows the kinematic 

parameters of the measuring instrument. 

 

FIGURE 22: Kinematic parameters of the measuring instrument 
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For the measuring instrument, there will be nine kinematic parameters. Six of the 

parameters will have the unit of length and three will be units of angle. The length 

parameters are the lengths of each arm and the 𝑥 and 𝑦 coordinates of arm pivot points 𝑏 

and 𝑐 relative to the measuring instrument origin, 𝑂𝐺, at the pivot point of arm one. 𝑋𝑐 is 

defined as zero because the 𝑦 axis of the measuring instrument is defined to pass through 

the pivot points of arms one and three. 𝑋𝑏 is nominally zero but is expected to have a very 

small offset from the 𝑦 axis in the as-built measuring instrument. The three other 

parameters are the offsets of the encoder module scales reference point, relative to the 

measuring instruments 𝑥 axis. The angular encoder modules absolute position reference 

point is set in the electronics of the module. The angular offsets are from the mounting 

position of the angular encoder modules in the measuring instrument’s body. Thus the 

offset from the angular encoder modules reference scale and the measuring instruments 

coordinate’s 𝑥 axis is needed to convert encoder module readings into absolute arm angles 

relative to the measuring instrument’s coordinate system origin.  

𝐿1, 𝐿2, 𝐿3 are defined as the arm lengths of the measuring instrument, 𝑌𝑏 , 𝑌𝑐, 𝑋𝑏 are 

defined as the 𝑥 and 𝑦 coordinates of arms’ two and three pivot points from the origin of 

the measuring instrument, ∆𝜃1, ∆𝜃2, ∆𝜃3 are the angular displacements from the reference 

of the encoder modules and 𝜃1,𝑜𝑓𝑓 , 𝜃2,𝑜𝑓𝑓, 𝜃3,𝑜𝑓𝑓 are the offsets from mounting of the 

encoder modules to the measuring instrument origin. Absolute angular displacement is 

defined as 𝜃𝑖 = ∆𝜃𝑖 + 𝜃𝑖,𝑜𝑓𝑓, where the actual data from the encoders is ∆𝜃𝑖’s, which are 

angular displacements from the reference mark on the angular encoder modules scale. 

These nine parameters will be measured on a CMM for calculating the diameter and form 

error of the components. 
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4.2.2. Kinematic Parameters Coordinates 

For the size and center position of the circular component be measured, the 𝑥 and 𝑦 

coordinates of the contact points, 𝐴, 𝐵 and 𝐶 on FIGURE 22, need to be determined from 

the kinematic parameters or model. The encoders read angular displacement data, so the 

unit of length must be introduced from the kinematic parameters. It was first intended to 

use an identification process or routine, to determine the kinematic parameters of the 

measuring instrument. However, the previous version of the measuring instrument did not 

produce correct approximations of the kinematic parameters. This was due to poor 

kinematic coupling between a reference standard and the arms themselves. So in this 

section, only the coordinate points for each arm, from the kinematic model will be derived 

and these equations will be used for calculating the diameter and center position values.  

When the kinematic parameters are measured on the CMM, the 𝑥 and 𝑦 coordinates of 

point 𝐴, 𝐵 and 𝐶, can be determined relative to the measuring instrument coordinate system 

using the angular encoder modules position. The coordinate points from the kinematic 

model are expressed below. 

 𝑥𝐴,𝐼𝑁𝑆𝑇 = 𝐿1,𝐶𝑀𝑀𝑐𝑜𝑠 (∆𝜃1 + 𝜃1𝑜𝑓𝑓,𝐶𝑀𝑀) (55) 

 𝑦𝐴,𝐼𝑁𝑆𝑇 = 𝐿1,𝐶𝑀𝑀 𝑠𝑖𝑛(∆𝜃1 + 𝜃1𝑜𝑓𝑓,𝐶𝑀𝑀) (56) 

 𝑥𝐵,𝐼𝑁𝑆𝑇 = 𝑋𝑏 + 𝐿2,𝐶𝑀𝑀𝑐𝑜𝑠 (∆𝜃2 + 𝜃2𝑜𝑓𝑓,𝐶𝑀𝑀) (57) 

 𝑦𝐵,𝐼𝑁𝑆𝑇 = 𝑌𝑏 + 𝐿2,𝐶𝑀𝑀 𝑠𝑖𝑛(∆𝜃2 + 𝜃2𝑜𝑓𝑓,𝐶𝑀𝑀)  (58) 

 𝑥𝐶,𝐼𝑁𝑆𝑇 = 𝑋𝑐 + 𝐿3,𝐶𝑀𝑀𝑐𝑜𝑠(∆𝜃3 + 𝜃3𝑜𝑓𝑓,𝐶𝑀𝑀) (59) 

 𝑦𝐶,𝐼𝑁𝑆𝑇 = 𝑌𝐶 + 𝐿3,𝐶𝑀𝑀 𝑠𝑖𝑛(∆𝜃3 + 𝜃3𝑜𝑓𝑓,𝐶𝑀𝑀) (60) 

These coordinates are the 𝑥 and 𝑦 values used for calculating the diameter and center 

position of the component, as described in sections 3.1 and 3.2.  
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4.2.3. Values of Kinematic Parameters of Measuring Instrument 

The optimal values of the kinematic parameters or model were determined though an 

optimization routine using a constrained minimization technique. This process was created 

by a simulation of the measuring process to create synthetic measurement data. This was 

followed by a Monte Carlo simulation where the synthetic data is corrupted by random 

noise to produce statistics of expected variations in the measurement result. Finally, a 

constrained minimization optimization routine was created with the Monte Carlo 

simulation to select the physical dimensions of the instrument that would lead to the best 

overall measurement performance. This optimization produced a vector of possible 

solutions for the optimal kinematic parameters of the measuring instrument. However, it 

was found that the physical dimensions (kinematic parameters) could vary significantly 

without dramatically affecting the measurement uncertainty, allowing the design to be 

tailored to enable measurement of a wide range of component diameters. 

The nominal values for the final design were chosen to enhance its ability to measure 

a significant variety of diameters ranging from 101.6 𝑚𝑚 −  1778 𝑚𝑚 (4" - 70"). The 

values also were chosen so that the measuring system would not become bulky and cause 

ergonomic issues.  

TABLE 2 shows the kinematic parameters chosen as the nominal values for the second 

version of the measuring instrument. All chosen kinematic parameters values are of the 

unit length. The angular offset kinematic parameters are not design values, but depend on 

the physical construction of the encoder units and their orientation when installed in the 

measuring instrument.   
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TABLE 2: Kinematic parameter design values for measuring instrument  

 

Now that all the kinematic parameters dimensions have been determined, an actual 

physical prototype of the measuring instrument can be designed and built. The measuring 

instrument design will be fully detailed in section 4.2.4. The first version of the measuring 

instrument will be briefly discussed along with its shortcomings. Then the second 

measuring instrument will be discussed with the different modifications.  

4.2.4.     First Physical Design of Measuring Instrument 

The prototype measuring instrument went through two different designs. The first 

design of the measuring instrument was designed using optimized kinematic parameters, 

which were determined through an optimization routine of both the measuring process of 

the measuring instrument and an identification routine that was intended to identify the 

kinematic parameters of the measuring instrument during use in an actual manufacturing 

process.  

KP's in mm

14.4125 366.0775

11.6925 296.9895

14.4375 366.7125

0.0000 0.0000

5.0000 127.0000

0.0000 0.0000

21.7000 551.1800

𝐿1𝐿1

𝐿2𝐿2

𝐿3𝐿3

𝑋𝐵𝑋𝐵

𝑌𝐵𝑌𝐵

𝑋𝐶𝑋𝐶

𝑌𝐶
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The first design can be seen in FIGURE 23 as a CAD model that went through 

numerous iterations in design for the measuring instrument’s body, arms, inner assemblies 

of each arm, etc.  

 

FIGURE 23: CAD model of first design of measuring instrument. 

FIGURE 24 is the exploded view of the first design of the measuring instruments’ sub-

assemblies. 
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FIGURE 24: First design measuring instrument sub-assemblies 

The first design of the measuring instruments body is a monolithic piece of aluminum, 

designed to ensure concentricity of the holes for the bearing shaft assemblies. The body 

cross-section, from the top view is U-shaped to decrease the weight and to allow all arms 

to have a larger range of motion. The three larger holes in the middle of the body are for 

the purpose of reducing weight. 
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This first design of the measuring instrument has kinematic parameters for 𝑋𝐵, 𝑌𝐵 

and 𝑋𝐶 that are located from the measuring instruments’ origin to their respective positions 

based on optimized values. FIGURE 25 points out some details of the body design. 

 

FIGURE 25: First design of measuring instrument body (w/ kinematic parameters). 

The arms are an I-beam design, to reduce weight but maintain stiffness. FIGURE 26 

shows the design for all three arms. 
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FIGURE 26: Arm design for first design of measuring instrument (w/kinematic parameter) 

The pivot point of each arm is designed to have a split clamp on the end, so it can slip 

onto the shaft it pivots about and is secured with a 6 − 32 bolt. There is a 3/32 dowel pin, 

lightly press-fit into the arm and is where the torsion spring will be attached to the arm. 

The other end of the torsion spring will be attached to another 3/32 dowel pin mounted on 

the measuring instruments body. The torsional springs preload the arms to ensure that the 

contactor at the end of the arms will be lightly forced against the surface of the circular 

component to be measured.  
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Each arm has a hole for a retaining pin to go through, so that the arm can be held in a 

fixed position. At the end of each arm is a high-precision bearing to contact the circular 

component that is being measured and is held in place by a precision shoulder screw. The 

original purpose of these bearings was to act as a roller-follower on the surface of the 

circular component, however, upon assembly, the slop in the bearing was too high. A 

change to a sliding contact was made. The bearings are hardened steel, so they should not 

be subject to a high-wear rate when sliding along the surface of the circular component. 

FIGURE 26 shows the assembly of each arm. 

The bearing shaft assembly for each arm pivot is a combination of a shaft, two high-

precision bearings, three custom made washers and a wave spring, used for preloading the 

bearings. The encoder disk is mounted on the right hand end of the shaft. FIGURE 27 

shows the bearing shaft assembly for each arm. 

 

FIGURE 27: Bearing shaft assembly for each arm, first measuring instrument design 

FIGURE 28 shows a section view of each arm assembled with the measuring 

instrument body and the force path of the bearings when preloaded with a plate and bolts. 
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FIGURE 28: Section view of each arm assembly with body and force path for preloading 

bearing, first measuring instrument design 

The encoder system used for the first measuring instrument are Renishaw® ATOMTM 

miniature angular encoders. The ATOM system is a non-contact optical incremental 

encoder system that combines a compact encoder size with exceptional metrology 

performances and high durability for most shop-floor environments. 

The encoder systems used for the first design of the measuring instrument are ATOM 

0.020 𝑚𝑚 (0.00079") pitch read-heads, with a TONIC interface that interpolates up to 

4000 times the resolution. The glass scales is of a 30 𝑚𝑚 (1.18") diameter, with a single 

reference (index) mark, with a line count of 4096 per revolution, which converts to an 

interpolated resolution of approximately 16.4 million counts per revolution, to get more 

accurate data. The interpolated resolution is thus converted to 2.2𝑥10−5° (0.079 𝑎𝑟𝑐 −

sec). The output of the encoder is a digital signal or an A QUAD B square wave. All 

specifications are per manufacturer. 
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The difference between the absolute and incremental encoders is that when the encoder 

system is powered off, the absolute encoder stores the systems reference or “home” 

position, while incremental encoders do not. Thus when the system is off and restarted, the 

incremental encoder must be referenced, to a reference mark, every time. The second 

design of the measuring instrument uses absolute encoders with integrated high-precision 

bearings to create a module. These encoder modules will be discussed fully in the next 

section. 

The encoder system assembly for each arm consists of the read-head of the encoder, 

glass scale, a couple of nylon washers and custom design mounts for the read-head to attach 

to the measuring instrument body. FIGURE 29 shows the encoder system assembly. 

 

FIGURE 29: Encoder system assembly for first design of measuring instrument 
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The last subassembly in the first design of the measuring instrument is the tool-post 

interface with the body. The tool-post adapter is a 

25.4 𝑚𝑚 𝑥 25.4 𝑚𝑚 𝑥 127 𝑚𝑚 (1” 𝑥 1” 𝑥 5”) T-shape part.  It is made of steel and 

connects the measuring instrument to the lathe. The tool-post interface is connected with 

two 3/32 dowel pins, which are used as locating pins for aligning the tool-post to the 

measuring instrument’s body. Four ¼ − 20 bolts are used to secure the tool-post adapter 

to the measuring instrument’s body. FIGURE 30 shows the tool-post interface assembly. 

 

FIGURE 30: Tool-post interface assembly for first design of measuring instrument 

From the CAD model of the first design of the measuring instrument, a prototype of 

the system is fabricated and is shown in FIGURE 31. 
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FIGURE 31: First design of measuring instrument prototype 

With the first design, it was thought that the system can be initialized with a reference 

standard to identify the kinematic parameters of the measuring instrument. The reference 

standards that would be used for the initialization routine are made from a single piece of 

coated steel, have a V-shape at each end with two 1/4” steel dowel pins between the V-

shapes that contact the surface of the bearings on the arm ends. The dowel pins each sit in 

a semi-circular groove and the pins are used to kinematically contact the surface of the 

bearing as the arms are motioned back and forth. To maintain contact with the bearing 

surface, a magnet is placed at the bottom of the V-shape, seated in a drilled hole. The 

magnet is held in place with a set screw on the side of the body of the reference standard. 

FIGURE 32 shows the reference standards. 
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FIGURE 32: Reference length standards for identification routine, first design of 

measuring instrument 

After assembly of the prototype of the first design of the measuring instrument was 

done, testing of the instrument could be done. The measuring instrument was first measured 

on a high-precision CMM to obtain the as-built kinematic parameter values. After 

measuring the kinematic parameters, it was noticed that the angular offsets for the encoders 

were not repeating well. This gave an indication that when the incremental encoders were 

being initialized over the 𝑧-index reference point, the reference point was not repeating to 

the same place. The next test was the identification routine with the reference standards, 

which showed that the encoder values were not following the same return path when 

motioned back and forth. FIGURE 33 shows the back and forth motion of arms one and 

three and the non-repeatability of the four-bar linkage created by the measuring instrument 

and the reference standards. 
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FIGURE 33: Four-bar motion of the first design of measuring instrument (arms one and 

three) 

 

The reasons for the lack of repeatability are most likely due to improper kinematic 

contact between the ends of the reference rods and the arm contactor cylinders, but may 

also be due to reversal errors, too much friction in the bearing shaft assemblies or too much 

slop from the bearings. This test indicates that the measuring instrument will have too much 

error in the assembly to provide an accurate result in the diameter. Some initial test of the 

first design of the measuring instrument on 508 𝑚𝑚 (20”) component show that, even 

with the CMM measured kinematic parameters, the measuring instrument measures the 

diameter of the component by approximately 1 𝑚𝑚 (0.0393”) difference from the CMM 

measured diameter of the component. This is unacceptable and indicated that a new design 

of the measuring instrument is needed. 

4.2.5.     Second Physical Design of Measuring Instrument 

The new design and current prototype of the measuring instrument corrects for all the 

known short-comings and issues with the first design of the measuring instrument.  
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The first measuring instrument was designed to using incremental angular encoders. 

These encoders lose their ‘home’ or reference position when the system is turned off. So 

the encoders had to be initialized over a reference point every time the system was initiated. 

This led to repeatability issues with the reference point, in which the encoders were 

referenced to a different home position every time the system initiated. This was confirmed 

when the angular offsets of the first measuring instrument were measured on the CMM and 

the values did not repeat. The new measuring instrument uses absolute encoders and the 

reference position is to the same place every time the system is initiated and shut off. 

Furthermore, the new system’s encoders are modules with high-precision bearings 

integrated into the system, thus eliminating the need to design and construct high-precision 

rotary joints and making it easier to integrate them into the measuring instrument.  

The next issue for correcting was the type of contact the measuring instrument would 

make on the surface of the component. The first design of the measuring instrument used 

high-precision cylindrical bearings as arm end contact points; but it was realized that any 

non-parallelism between the contactor surface and the shaft being measured would lead to 

improper contact with the surface of the component. This also was an issue for the reference 

standards created for the first measuring system, since the reference standards had two 

dowel pins to ride on the contactor, resulting in an over-constrained contact. This was 

solved in the new design by using spherical contactors to ensure exact kinematic constraint.  

A CAD model of the new design can be seen in FIGURE 34. 
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FIGURE 34: CAD model of new measuring instrument design 

The new measuring instrument still uses three arms that pivot about the body, and each 

arm has a spherical contact on the end of the arm to make contact with the component 

surface to be measured. The body is made of a monolithic piece of steel, which is coated 

for wear-resistance and a tool-post adaptor is bolted on to interface with a lathe. The body 

has milled pockets to house the angular encoder modules and covers are bolted onto the 

back of the body to protect the modules from debris. There are three cable connectors, one 

for each module, and three handles to carry the measuring instrument.  

FIGURE 35 shows the major components of the measuring systems design and 

assembly.  
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FIGURE 35: Major components of the new measuring system 

From FIGURE 35, the new measuring instrument consists of a very different arm 

assembly than the first measuring instrument design. Each arm assembly consists of an arm 

with a spherical contact, a clamp ring with a locking screw to lock the arm in place, a lock 

ring with a beam spring and follower, so the arm can be spring loaded into the component 

to keep contact, and a bore adapter used to connect the arm, clamp ring and lock ring to the 

body and encoder module.  

Each arm is assembled in the same manner. FIGURE 36 shows step one of assembly.  

 

FIGURE 36: Arm assembly step one 
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From FIGURE 36, the angular encoder module is placed in the inside of the body. On 

the outside of the body, the lock ring and clamp ring are bolted to the body through a six-

hole bolt pattern, which can be seen in FIGURE 36. The clamp ring is placed inside of the 

lock ring, which is where a clamp screw is set to lock the clamp ring to the lock ring to 

create tension on the beam spring connected to the lock ring. FIGURE 37 shows how the 

lock ring and clamp ring work. 

 

FIGURE 37: Lock ring and clamp ring (w/screw)  

FIGURE 38 shows the rest of the arm assembly. 

 

FIGURE 38: Arm assembly step two 
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Once the clamp ring and lock ring are in place, the bore adapter is bolted in to the 

angular encoder module through a six-hole bolt pattern. The angular encoder module has 

a bolt pattern on the inner race. The arm is then bolted onto the bore adapter through its 

six-hole bolt pattern. The beam spring is connected to the lock ring on one end and then 

connected to a follower on the other end, which is engaged with the arm, shown in FIGURE 

38.  

FIGURE 39 shows how each arm assembly operates. 

 

FIGURE 39: Arm operation 

From FIGURE 39, when the lock ring is turned, and the arm is in contact with the 

surface of the component, the beam spring is tensioned and adds a force to the arm, which 

is locked with the clamp screw, to ensure the arm stays in contact with the surface of the 

component. There are two mechanical stops located on the lock ring, to prevent the springs 

from overtravel, which could lead to yielding of the spring. There is also a lock screw, 

which is threaded through the arm and the lock ring. This lock screw prevents the arm 

rotating relative to the lock ring, during handling and storage, so that the arms are not 

damaged.  
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The encoder modules used in this measuring instrument are Heidenhain MRP 

5010 absolute encoder modules. The encoder modules are a combination of an absolute 

angular encoder and a high-precision bearing that are pre-assembled and adjusted. The 

modules are characterized by their high degree of measuring accuracy, high-resolution, 

high-repeatability and a low starting torque which permits a very smooth motion. The 

rolling bearings are adapted to the requirements of high-precision rotary axes. Per 

manufacturer specifications, the radial/axial guideways of the bearings have an accuracy 

of ±0.0003 𝑚𝑚 (±0.000012"), high-rigidities, and constant continuous torques. The 

encoders fulfill the requirements for the high-accuracy metrology applications. Their most 

important features are very high-resolution, 28 𝑏𝑖𝑡𝑠 (228~268 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑠/

𝑟𝑒𝑣𝑜𝑢𝑙𝑡𝑖𝑜𝑛), very good system accuracy of: ±2.5 𝑎𝑟𝑐 − 𝑠𝑒𝑐  (0.00069°), a bi-directional 

repeatability of: ±1.2 𝑎𝑟𝑐 − 𝑠𝑒𝑐  (0.00033°), and excellent signal quality, even when 

operating at varying temperatures. FIGURE 40 shows the encoder module.  

 

FIGURE 40: Heidenhain angular encoder module MRP 5010  (source: Heidenhain) 
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The measuring instrument incorporates a module for each arm. The encoders output 

EnDat2.2 status words for absolute positon. The modules work with an EIB 741 

Heidenhain interface box and can be used with provided in-house software or customer 

specific software, such as LabVIEW for this measuring instrument.   

Before the new measuring instrument is fabricated, a couple calculations were done to 

see if the measuring instrument can handle up to the rigors of a measuring process. The 

first calculations done were some arm strength and stiffness tests, to see how the arm would 

hold up to loading. Finite Element Analysis (FEA) of the arm was done in SolidWorks 

Cosmos package. The arm material is assumed 4041 steel with a yield stress of 

655 𝑀𝑃𝑎 (95 𝑘𝑠𝑖). The arm is treated as a simple cantilever beam, where the fixed-end is 

attached to the body. FIGURE 41 shows the setup of the FEA analysis. 

 

FIGURE 41: Arm strength and stiffness setup for FEA 
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The arm was constrained to test in-plane loads and out-of-plane loads. For the in-plane 

loading, with a 4.44 𝑁 (1 𝑙𝑏𝑓) located at the end of the arm, the max displacement of the 

arm is approximately 0.0089 𝑚𝑚 (0.00035"). The estimated max force during 

measurement is approximately 0.444 𝑁 (0.1 𝑙𝑏𝑓), from the beam spring, so the 

displacement of the arm end bending should not significantly affect the results of the 

measurement. The load to cause in-plane yielding of the arm is approximately 

2.5 𝑘𝑁(561 𝑙𝑏𝑓). For the out-of-plane loading, the load to cause yielding is approximately 

226 𝑁 (50.86 𝑙𝑏𝑓), indicating that the arms should be safe from improper handling of the 

instrument.  

The spring design for the arm is considered for desired stiffness and range-of-motion 

at the contact sphere. FIGURE 42 has a detailed view of the arm and spring design. 

 

FIGURE 42: Arm spring design 
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The desired stiffness at the contact point is 𝐾𝑐 = 87.5
𝑁

𝑚
 (0.5

𝑙𝑏

𝑖𝑛
) with a desired range 

of motion of ±31.75 𝑚𝑚 (±1.25" ), which is approximately 5° (18000 𝑎𝑟𝑐 − sec),  of 

arcing motion. The required stiffness of the spring is 𝐾𝑠 = 𝐾𝑐(
𝐿𝑎𝑟𝑚

𝐿𝑠𝑝𝑟𝑖𝑛𝑔
)2 =

809.1
𝑁

𝑚
 (4.62

𝑙𝑏

𝑖𝑛
), where 𝐾𝑠 is the required spring stiffness, 𝐾𝑐 is the desired contact point 

stiffness, 𝐿𝑎𝑟𝑚 is the length of the arm and 𝐿𝑠𝑝𝑟𝑖𝑛𝑔 is the length of the spring. The required 

range-of-motion is ±10.41 𝑚𝑚 (±0.41"). Using a spring made of ASTM A228 music 

wire, with an effective length of 76.2 𝑚𝑚 (3”), and with the required spring stiffness, 

𝐾𝑠, the max stress of the spring arm design is  1631.8 𝑀𝑃𝑎 (236,675 𝑝𝑠𝑖), with a yield 

stress of 1999.5 𝑀𝑃𝑎 (290,000 𝑝𝑠𝑖). So the spring design will hold up to the necessary 

forces from the measurement.  

FIGURE 43 shows the prototype of the new measuring system.  

 

FIGURE 43: Prototype of second measuring instrument  



 

 

 

CHAPTER 5: EXPERMENTAL SETUP AND TESTING 

 

5.1. Preliminary Testing 

Before testing the measuring instrument in an experiential setup, some preliminary 

testing is done to ensure that errors from the measuring instrument are a small influence on 

the measured data. The tests done before testing the measuring instrument are a drift test, 

hysteresis test and repeatability test.  

5.1.1. Drift Test 

The drift test is used to see how the measuring instrument will be influenced by 

temperature over a certain period of time. Thermal effects can have a significant effect on 

the measuring instrument if it is being used for an extended period of time and can also 

support the effectiveness of procedural solutions, such as working during the evening 

versus the day. The test is done by setting up the measuring instrument on a granite table 

and placing the arms up against angles blocks and locking the arms against the angle blocks 

with the spring force from the arms. The measuring instrument is constrained to the table 

with more angle blocks and C-clamps. The setup can be seen in FIGURE 44. 
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FIGURE 44: Drift test setup. 

The environment, in which the drift test is conducted, is in the Siemens Large-scale 

Manufacturing Solutions Laboratory. The ambient temperature range, from the calibration 

certificate, is 20℃ ± 0.5℃. The measuring instrument collects data for approximately 60 

minutes. The length of time is chosen because the average measuring time for using the 

measuring instrument is approximately 20 minutes from start to finish but could last up to 

an hour. This includes setting up the measuring instrument on the turret, engaging the 

measuring instrument on the circular component and rotating the circular component, while 

the measuring instrument is collecting data. FIGURE 45 has the drift test results.  
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FIGURE 45: Drift test results 

After the measuring instrument collected data for an hour, the drift is determined for 

both the 20 minute and 60 minute time frames. The drift, for both time frames, is 

determined by calculating the range of the data for the 20 minute time frame and then a 

60 minute time frame, respectively. The results can be seen in TABLE 3. 

TABLE 3: Drift test result values (20 and 60 minutes)  

 

The average drift of 20 minutes is 0.000157° (0.5625 𝑎𝑟𝑐 − 𝑠𝑒𝑐) and the 60 minute 

average is 0.000338° (1.2616 𝑎𝑟𝑐 − 𝑠𝑒𝑐). From the results, drift error should not 

contribute significantly to the measurement result, however the uncertainty from the 

environmental factors will be included in the uncertainty analysis of the measuring 

instrument result. 
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Drift Results 20 min 60 min

Arm 1 0.0002149°(0.773999 arc-sec) 0.0003500° (1.26000 arc-sec)

Arm 2 0.0001290° ( 0.464400 arc-sec) 0.0001958° (0.70488 arc-sec)

Arm 3  0.0001270° (0.457200 arc-sec) 0.0004680° (1.6848  arc-sec)
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5.1.2. Hysteresis Test 

The hysteresis testing is done to see how well each arm reacts to a force applied on the 

contact sphere and to see if the measurement returns back to its initial readings. This can 

also tell if an external force is momentarily applied to the sphere contact, how deformation 

can affect the measuring process.  

To test the hysteresis in each arm, the measuring instrument is setup on a very stiff 

base, and each arm is placed up against another very stiff object, an angle block. Initially, 

the only force acting on the arm, the normal force from the angle block, is due to the spring 

force in the arm. After the setup is complete, an external force is applied to the arm through 

the sphere, force from a finger push, into the angle block and then released after about a 

second time lapse. This is done approximately 10 times to see how well the system 

responds and see how much hysteresis error there is in each arm. FIGURE 46 shows the 

hysteresis test setup.  

 

FIGURE 46: Hysteresis test setup 



81 

 

 

FIGURE 47 shows the results of the hysteresis test. 

 

FIGURE 47: Hysteresis test results 

FIGURE 48 shows a close up of the hysteresis results.  

 

FIGURE 48: Hysteresis results (zoomed) 
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The hysteresis error for each arm can be seen in TABLE 4. 

TABLE 4: Hysteresis test result values 

 

The results are determined by taking the absolute difference between the last data value 

to the first data value. The average hysteresis is 0.00024° (0.6143 𝑎𝑟𝑐 − sec). From the 

results, the hysteresis should not contribute significantly to the measurement result, 

however the uncertainty from the hysteresis test will be included in the uncertainty analysis 

of the measuring instrument result.  

Arm 1 0.0002810° (1.01160 arc-sec)

Arm 2 0.0000259° (0.09324 arc-sec)

Arm 3 0.0002050° (0.73800 arc-sec)

Hysteresis
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5.1.3. Arm Repeatability Test 

The arm repeatability test is used to see how well each angular encoder module on the 

measuring instrument will repeat the same measurement under the same conditions. Each 

arm is tested for uni-directional repeatability by using a glued down angle block and letting 

each arm end sphere rest up against the angle block, with the force of the spring holding 

the arm in place. Each arm is then pulled away from the angle block, then eased back into 

its initial position and the measurement value is recorded. This is done a total of five times 

to see how well the arm angle repeats. The reason for uni-directional repeatability is 

because the spring force acts in one direction and the arms can only contact a component 

surface in one direction. FIGURE 49 shows the arm repeatability setup. 

 

FIGURE 49: Arm repeatability test setup 
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              FIGURE 50 shows the results from the arm repeatability test. 

 

FIGURE 50: Arm repeatability test results 

The repeatability of the three arms can be seen in TABLE 5.  

TABLE 5. Arm repeatability test result values 

 

The arm repeatability values are calculated by calculating the averages of the plateaus 

and then taking the standard deviation of the five averages. From TABLE 5, it can be seen 

that the measuring instrument has very good arm repeatability. The average arm 

repeatability is 0.000123° (0.4448 𝑎𝑟𝑐 − sec).  
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Arm 1 0.000160° (0.577285 arc-sec)

Arm 2 0.000123° (0.444531 arc-sec)

Arm 3 0.000086° (0.312066 arc-sec)
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Further testing of the form error and diameter measurements are conducted to look at 

the repeatability of the actual measuring process and the uncertainty associated with it. This 

preliminary test is used as step to look to see if there are any significant errors from 

assembly. 

5.2. Kinematic Parameter Measurements 

The kinematic parameters of the measuring instrument are measured on a high-

precision CMM and these values are used for the calculation of the components diameter 

and form error. The measuring instrument is setup in the CMM volume, via a portable 

granite table. C-clamps are used for holding the measuring instrument to the granite table 

and to an angle block, and 1 − 2 − 3 blocks are used to raise the measuring instrument off 

the granite table. All blocks are glued to the granite table, to ensure the measuring 

instrument does not move during the CMM measurements. FIGURE 51 has the measuring 

setup. 

 

FIGURE 51: Measuring instrument setup on CMM for measuring kinematic parameters 
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To measure the kinematic parameters on the CMM, each arm is moved in an arcing 

path to five different locations, during which the contact sphere is measured. The sphere is 

measured multiple times at each position, to determine the 𝑥 and 𝑦 coordinates at each 

position. FIGURE 52, FIGURE 53 and FIGURE 54 show schematics of measuring the 

kinematic parameters of each arm, respectively. 

 

FIGURE 52: Schematic of measuring arm one kinematic parameters on CMM 

 

FIGURE 53: Schematic of measuring arm two kinematic parameters on CMM 
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FIGURE 54: Schematic of measuring arm three kinematic parameters on CMM 

During the measurement of the arms, the angle of each arm position is collected from 

the encoder module. The arm angles can be used to calculate the angular offset of each 

arm, along with the 𝑥 and 𝑦 coordinates of the spheres from the CMM measurement, at the 

current position. A byproduct of the measurements is the diameters of the spheres. The 

radius of the spheres are needed, to subtract out from the measured diameter data, to 

represent that actual diameter measured. If this radius is not subtracted out, the diameter 

measurement will be off by the radius of the contact spheres.  

From FIGURE 52, the kinematic parameters 𝐿1 and 𝜃1,𝑜𝑓𝑓𝑠𝑒𝑡, can be determined, from 

FIGURE 53, the kinematic parameters 𝐿2, 𝑌𝑏 , 𝑋𝑏 and 𝜃2,𝑜𝑓𝑓𝑠𝑒𝑡, can be determined and from 

FIGURE 54, the kinematic parameters 𝐿3, 𝑌𝑐,𝑋𝑐 and 𝜃3,𝑜𝑓𝑓𝑠𝑒𝑡 can be determined.  
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For the length kinematic parameters to be determined, the coordinates from the CMM 

measurements need to be transformed into the measuring instrument coordinates via a 

transformation matrix. First the CMM coordinates are fit to a least squares fit, to determine 

the center position (𝑂1, 𝑂2, 𝑂3) of each arm pivot and the center-to-center lengths of each 

arm. All CMM measurements are referenced from the origin of the first arm, as can be seen 

in the previous figures, thus the length kinematic parameters can be determined, in CMM 

coordinates, from the least square fit. Once the center positions are determined for each 

arm, a transformation matrix can be calculated. The transformation matrix is shown in Eq. 

(61). 

 

𝑇𝐼𝑛𝑠𝑡
𝐶𝑀𝑀 =

[
 
 
 
 
𝑌𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑌𝑐𝑒𝑛𝑡𝑒𝑟1

𝐷13
−

𝑋𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑋𝑐𝑒𝑛𝑡𝑒𝑟1

𝐷13
−𝑋𝑐𝑒𝑛𝑡𝑒𝑟1

𝑋𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑋𝑐𝑒𝑛𝑡𝑒𝑟1

𝐷13

𝑌𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑌𝑐𝑒𝑛𝑡𝑒𝑟1

𝐷13
−𝑌𝑐𝑒𝑛𝑡𝑒𝑟1

0 0 1 ]
 
 
 
 

 (61) 

Where 𝐷13 = √(𝑋𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑋𝑐𝑒𝑛𝑡𝑒𝑟1)
2 + (𝑌𝑐𝑒𝑛𝑡𝑒𝑟3 − 𝑌𝑐𝑒𝑛𝑡𝑒𝑟1)

2, is the distance from 

arm pivot one to arm pivot three, in CMM coordinates. The (𝑋𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑌𝑐𝑒𝑛𝑡𝑒𝑟) values are 

from the least square fit of the CMM coordinates. With the transformation matrix defined 

and all values known, the transformation matrix can now be used to transform the CMM 

coordinates to the measuring instrument coordinates. By multiplying the transformation 

matrix by the original CMM coordinates, a new set of coordinates is determined with 

reference to the measuring instruments origin, 𝑂1. Using the new coordinates, the same 

least square fit is used to determine the length kinematic parameters, in the measuring 

instrument coordinates. TABLE 6 has the length kinematic parameters. 
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TABLE 6: Length kinematic parameters 

 

The angular offset kinematic parameters, 𝜃1,𝑜𝑓𝑓 , 𝜃2,𝑜𝑓𝑓, 𝜃3,𝑜𝑓𝑓, are also measured on the 

CMM. Using FIGURE 52, FIGURE 53 and FIGURE 54, when the CMM measures the 

different positions of the arms, the angular displacement of the arms is collected from the 

encoder modules. These angular displacements are referenced to a home position on the 

scale of the encoder module. The CMM measures the arm positions and determines 𝑥 and 

𝑦 coordinates, of each position and 𝑎𝑡𝑎𝑛2 function is used to determine the absolute angle 

positions, from the coordinates. However, the CMM angles must be determined from the 

transformed coordinates, since all measurements are referenced to the measuring 

instrument, thus 𝑎𝑡𝑎𝑛2 is used on the transformed coordinates determined earlier. The 

CMM measurements are absolute from the positive 𝑥 axis of the CMM coordinate system, 

which can been seen in FIGURE 52, FIGURE 53 and FIGURE 54, and the angles for the 

measuring instrument are to be referenced from its positive 𝑥 axis, so the difference from 

the calculated CMM angles and encoder module angles, are the angular offsets. The offsets 

are an average of the five different positions.  

TABLE 7 shows the angle offset kinematic parameters.  

 

KP's mm in

368.77843 14.51884

298.52935 11.75312

368.39609 14.50378

-0.03715 -0.00146

127.03384 5.00133

-1.90E-05 0.00000

551.18689 21.70027

𝐿1𝐿1

𝐿2𝐿2

𝐿3𝐿3

𝑋𝐵𝑋𝐵

𝑌𝐵𝑌𝐵

𝑋𝐶𝑋𝐶

𝑌𝐶
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TABLE 7: Angular offset kinematic parameters 

 

5.3. Experimental Setups 

The testing of the measuring instrument is conducted on several different components, 

a 25.4 𝑚𝑚 (1") thick aluminum plate, with an approximate diameter of 508 𝑚𝑚 (20"), a 

38.1 𝑚𝑚 (1.5") thick aluminum ring, with an approximate diameter of 254 𝑚𝑚 (10"), 

and an aluminum stock cylinder, with an approximate diameter of  101.6 𝑚𝑚 (4"). All 

three components will be measured for both the diameter and the form error and compared 

to the CMM measured value. The component’s sizes are chosen to simulate typical 

diameters that can be seen in a large-scale manufacturing environment. To test a larger 

range of diameters, 508 𝑚𝑚 − 1778 𝑚𝑚 (20" − 70"), a testing setup to simulate large 

“virtual” components is done. It should be noted that the form error of these large “virtual” 

components is not measured because the setup cannot continuously rotate and there is not 

constant contact with the component. 

The smaller components are shown below in FIGURE 55. 

 

FIGURE 55: Components for testing measuring instrument 

KP's

deg 167.45108 -1.22949 239.40301

𝜃1,𝑜𝑓𝑓 𝜃2,𝑜𝑓𝑓 𝜃3,𝑜𝑓𝑓
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To setup the components to measure both the diameter and the form error, a spindle is 

needed. The new measuring instrument is designed to be fit into a lathe’s tool-post, 

however, the available lathes cannot adapt the new measuring instrument because it is too 

large to fit vertically for testing. All the components from FIGURE 55 are measured 

horizontally on a synchronous rotary table that rotates at a constant speed of two RPM. 

Each component is glued down to the rotary table, to ensure it will not move during 

measurement. The component’s centers are visually aligned with the center of the rotary 

table. This is done to see how well the measuring instrument can measure components not 

sufficiently centered. The measuring instrument is also placed on two blocks, to match the 

height of the components, and is also held in place to the blocks with glue to ensure it 

doesn’t move during measurements. FIGURE 56, FIGURE 57 and FIGURE 58 show the 

measuring instrument setup for all three components measured on the rotary table setup.  

 

FIGURE 56: Setup for measuring instrument testing (aluminum plate) 
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FIGURE 57: Setup for measuring instrument testing (aluminum ring) 

 

FIGURE 58: Setup for measuring instrument testing (aluminum stock) 

As the component rotates, a small piece of tape is placed on the component, which is 

used to clock the data so that multiple revolutions of data can be superimposed and 

averaged to obtain the synchronous (average) data of multiple revolutions. Data is collected 

for at least ten revolutions of data at a sampling rate is 1000 
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑠𝑒𝑐
.  
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For the virtual component setup, a manual rotary table is mounted onto a portable 

granite table. A piece of aluminum bar stock is clamped along the center of the rotary table, 

with a bearing ring glued to the end of the bar stock. This bearing ring simulates a low-

form error surface and the bar stock simulates a large-scale radius. Different radii can be 

created by varying the stick-out length of the bar stock.  

 

FIGURE 59: Large-scale “virtual” diameter setup 

The rotary table is securely attached to the granite surface using angle blocks, C-

clamps, and glue.  
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The measuring instrument is vertically mounted in the same plane as the aluminum bar, 

so that all the arms can contact the bearing ring during measurements. C-clamps hold the 

measuring instrument in place during measurements. FIGURE 60 shows the measuring 

instrument setup for measuring the virtual disks.  

 

FIGURE 60: Measuring instrument setup for virtual disks 



95 

 

 

5.4. Measuring Instrument Testing and Results 

The actual location of the point of contact between the contact sphere and the 

component being measured depends on the arm angle. However, the center of each contact 

sphere is always one sphere radius away from the physical contact point. Therefore, all of 

the measurement algorithms will find the properties of a circle that passes through the 

centers of the contact spheres. To obtain the correct circle diameter, the average radius of 

the contact spheres is subtracted out from the measured data. The radius of each sphere 

was measured during the kinematic parameter measurements on the CMM. This radius 

corrected data is used for both the reconstruction of the form error and diameter 

measurements. 

During component rotation, the data is periodic, which is caused by the synchronous 

component of the form errors, spindle error motions and eccentricity in the component 

setup. To segment the data into individual revolutions for processing, a physical mark is 

placed on the actual component under test, which can be a scribe in the component or in 

the case of this testing a piece of tape. The data from the testing is averaged over a number 

of revolutions, 10 − 15, which produces the synchronous motion.  

The measuring instrument is capable of measuring diameter and form error with 

different separation distances from the component. Ideally it should give the same results 

regardless of separation. This will be tested by repeating measurements of the same object 

with the measuring instrument moved in its 𝑥 direction over an approximate 50.8 𝑚𝑚(2”) 

range, and results will be compared.  FIGURE 61 shows a schematic of the measuring 

instrument incrementing out of the component, from position one to position two.  



96 

 

 

 

FIGURE 61: Measuring instrument incrementing of component schematic 

During the measurement process, the encoder modules read the angular displacement 

of the arms. The CMM measured angular offsets, TABLE 7, are added to the measuring 

instrument values, to reference all angles to the absolute position of the positive 𝑥 axis of 

the measuring instrument coordinate system. FIGURE 62 shows raw data from the 

measuring instrument when the component under-test is rotated for several revolutions.  
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FIGURE 62: Raw angular data, multiple periods (revolutions) 

The angular range of the data is large due to the centering errors of the part on the 

turntable, but this should ideally not affect either the diameter or form error measurement 

results. 

 After the data is collected, the data is truncated to include an integer number of 

revolutions. The number of revolutions of data is determined by finding the number of 

times the arms go over the physical mark, tape. From FIGURE 62, it can be seen that the 

range of data is too large to see the peak in the data from the physical mark, however, the 

software for calculating the diameter and form error, also takes into account finding the 

peak from the physical mark, to determine the number of revolutions and to calculate the 

average data. Zooming in on the raw data from FIGURE 63, the peak from the physical 

mark on the component of measure can be seen in FIGURE 63. 
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FIGURE 63: Zoomed in raw data, with physical mark peak in data 

Using the physical mark peak as the starting point for a period of data, the number of 

revolutions is now determined by counting the number of peaks in the data. With the data 

now truncated, the data from each revolution can be placed into a matrix of rows equal to 

the number of data points per period and columns equal to the number of revolutions in the 

data set. The time step for the data is also converted to the angular domain, to represent the 

angular position around the circumference of the component. FIGURE 64 shows the 

reshaped data. 
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FIGURE 64: Reshaped data from single vector to matrix the length of period by number 

of revolution 

The data from FIGURE 64 is averaged over the number of revolutions and is used for 

determining the component’s diameter.  

 

FIGURE 65: Averaged periodic data of component  
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The multi-probe error separation technique requires radial linear displacements from 

an average position. To determine the residuals of the averaged data, a best-fit circle is fit 

to the averaged data using methods described in ASME B89.3.4M standard [18]. This 

method is also used for removing eccentricity from the CMM measurements that will be 

presented in section 5.4.2.  FIGURE 66 shows the average data with the best-fit data. 

 

FIGURE 66: Average periodic data with best-fit circle 

Now the residuals can be found by subtracting the averaged data from the best-fit data. 

FIGURE 67 shows the residual data.  
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FIGURE 67: Residual data of component 

The noise in the measured data is a combination of rotary table vibration, encoder 

module electronic noise and other sources attributed to setup. To smooth the data, a simple 

11-point moving average low-pass filter is used. The moving average filter is used because 

it will clean up all the high-frequencies of the data, but leave the low-frequencies intact, so 

there is still enough data for reconstructing the size and form metrology.  
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FIGURE 68: Filtered residual data of component 

The multi-probe error separation method uses a change in radial linear displacement 

for measuring the form error of a surface. However, the encoder modules produce angular 

displacements, from an absolute reference, so a relationship between angular displacement 

and radial linear displacement is needed.  
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When a rigid body rotates about a fixed axis, the angular displacement is ∆𝜃, which is 

the angle in degrees through which a point or line has been rotated in a specified sense 

about a specified axis. FIGURE 69 shows an example of angular displacement. 

 

FIGURE 69: Angular displacement from reference point 

Thus the angular displacement is calculated by Eq. (62). 
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 ∆𝜃 = 𝜃𝑓 − 𝜃0 (62) 

 Where 𝜃𝑓 is the measured angle of the encoder module and 𝜃0 is the offset from the 

reference point on the encoder module scale. Now that angular displacement is expressed, 

the relationship between angular and linear displacement can be determined. First the arc-

length of the angular displacement can be expressed if the radius of the circle is known. 

Since the encoder modules read the angular displacement of the arms, each arm length is 

treated as a radius of a circle, 𝑅𝐴𝑅𝑀,𝑖 = 𝑅𝑖. Where 𝑖 =  1,2,3, for the number of arms. The 

relationship between angular displacement and linear displacement can be seen in FIGURE 

70. 

 

FIGURE 70: Relationship between angular displacement and linear displacement 
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Where the linear displacement can be derived from the following formula. 

 
∆𝜃𝑖 =

∆𝑆𝑖

𝑅𝐴𝑅𝑀,𝑖
⟹ ∆𝑆𝑖 = ∆𝜃𝑖𝑅𝐴𝑅𝑀,𝑖 ≈ ∆𝐿𝑖     (𝑅𝐴𝑅𝑀,𝑖 ≫ ∆𝜃𝑖) (63) 

Where ∆𝑆 is the arc-length, 𝑅𝐴𝑅𝑀 is the arm length (radius) and ∆𝜃 is the angular 

displacement. When the measuring instrument interfaces with the component and the 

component is rotated, the encoder modules will collect data streams of the arms at nearly 

constant angles. The actual angular displacement of the encoders will be very small 

compared to the arm lengths, (𝑅𝐴𝑅𝑀 ≫ ∆𝜃1, ∆𝜃2, ∆𝜃3). So when the angular displacements 

are small relative to the radius, then the assumption of the arc-length representing a linear 

displacement can be used, ∆𝐿𝑖 ≈ ∆𝑆𝑖.  

The direction of motion of the end of the arm is not necessarily in pure radial motion, 

unless the arm is perpendicular to the radius of the circular component at the contact point. 

In this case the linear displacement of the end of the arm needs to be projected into the 

radial direction. FIGURE 71, shows the linear displacement projected into the radial 

direction, all arms follow this method. 
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FIGURE 71: Schematic for projecting the linear displacement into the radial direction 

(exaggerated and not to scale. Arm one example) 

From FIGURE 71, the angle, ∅, projection angle, is needed for the linear displacement 

to be projected into the radial direction. From the figure, the linear displacement is now a 

function of the cosine of the projection angle. Eq. (63) is the updated linear displacement. 
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 ∆𝐿𝑖 = 𝑅𝐴𝑅𝑀(∆𝜃)𝑐𝑜𝑠 (∅) (64) 

Since the 𝑥 and 𝑦 coordinates of the contact point (𝑥𝐴, 𝑦𝐴), arm pivot point (𝑥𝑃, 𝑦𝑃) and 

the center of the component (𝑥𝑐, 𝑦𝑐), all in measuring instrument coordinates are known, 

the projection angle, ∅, can be determined by using the scalar projection of the arm end 

displacement vector and unit vector from the component center point to the contact point.  

 ∅ = 𝑐𝑜𝑠−1(
�⃗� ∙�̂�

‖�⃗� ‖
) (65) 

Where 𝑎 =< 𝑋𝐴 − 𝑥𝑝, 𝑌𝐴 − 𝑦𝑝, >, is the arm end displacement vector of point 𝐴, �̂� =

�⃗� 

‖�⃗� ‖
, is the unit vector from the contact point 𝐴 to the center of the component in measuring 

instrument coordinates, where �⃗� =< 𝑋𝐴 − 𝑥𝑐 , 𝑌𝐴 − 𝑦𝑐, > , ‖𝑎 ‖, is the magnitude of the arm 

end vector and ‖�⃗� ‖, is the magnitude of the vector from the contact point to the center of 

the component in measuring instrument coordinates. Contact points 𝐵 and 𝐶 follow the 

same method for determining the angle of projection. This angle is used for the corrected 

linear displacement. Eq. (65).  

FIGURE 72 show the angular displacement data converted to linear displacement.  
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FIGURE 72: Linear displacement data used for the multi-probe method (unit = in.) 

 

All components tested in this research follow the same data processing method for 

analyzing the form error and the diameter. 

5.4.1. Form Error Results 

To measure the form error of the component under testing, linear displacement data, 

like FIGURE 72, along with the algorithms from section 2.1, are needed for reconstructing 

the form error. The spindle error motions for each of the components measured are also 

determined and detailed, graphically and quantitatively, in Appendix B. The form error is 

obtained by using the multi-probe error separation method, by reconstruction of the 

component surface profile from a truncated Fourier series approximation using the first 25 

UPR. Each component is measured twice, with the measurement instrument moved 

approximately 50.8 𝑚𝑚 (2”) in the negative 𝑥 direction of the measuring instrument 

coordinate system. The planar angle locations, located from contact point one, 𝛼 = 0°, for 

each of the measurements can be seen on TABLE 8. 
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TABLE 8: Planar angle locations for each measurement of form error 

 

All reconstructed component profile form errors are determined through 10 revolutions 

of data, to produce a good synchronous motion, needed to get the best possible results 

through averaging. FIGURE 73 and FIGURE 74 show the components profile form error 

for each of the components, for both measurements one and two. 

 

FIGURE 73: Component profile reconstruction, measurement one, a.) aluminum plate, b.) 

aluminum ring, and c.) aluminum stock  

Component Beta (β) Gamma (γ) Meaurement

125.8638° 196.1335° 1

113.1614° 175.8258° 2

156.2565° 210.0782° 1

105.3458° 175.8258° 2

148.0625° 199.6503° 1

81.2632° 162.6973° 2

Aluminum Plate

Aluminum Ring

Aluminum Stock
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FIGURE 74: Component profile reconstruction, measurement two, a.) aluminum plate, b.) 

aluminum ring, and c.) aluminum stock 

Since each component is measured twice, the two measurements can be compared to 

see how capable the measuring instrument is at measuring the same component profile, 

with different planar angles to reconstruct the form error. To see how comparable the 

measurements are, the two profiles are overlaid on the same plot and the point-to-point 

difference is determined from the profiles. FIGURE 75 and FIGURE 76 show the two 

measurement component profiles, overlaid, and the point-to-point difference between the 

two measurements, respectively.  

 

FIGURE 75: Measurements one and two, overlaid, for each component under test, a.) 

aluminum plate, b.) aluminum ring and c.) aluminum Stock 
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FIGURE 76: Point-to-point difference between reconstructed component profiles, a.) 

aluminum plate, b.) aluminum ring and c.) aluminum stock 

The two measurement for each component measured, produce similar shapes, at the 

difference planar angle locations. From FIGURE 76, the error bands of the two 

measurements for each component can be determined. TABLE 9 shows the error bands. 

TABLE 9: Error band of difference between the two measured profiles 

 

Component MAX MIN

Aluminum Plate 0.0025 mm (0.00010") -0.0020 mm (-0.00008" )

Aluminum Ring 0.0015 mm (0.00006") -0.0018 mm (-0.00007")

Aluminum Stock 0.0030 mm (0.00012" ) -0.0030 mm (-0.00012" )
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These results show that the measuring instrument is capable of measuring the same 

component profile, at difference planar angle locations.  

Each component is also measured by a CMM, at the same axial plane. The CMM 

measurements of the components are in 𝑥 and 𝑦 coordinates, so the data is post processed 

and analyzed in MATLAB. The CMM data is converted from Cartesian data to Polar data 

and the best-fit circle removed, to produce the residual data of the component, which is the 

surface profile, or form error, of the component. The residual data is then filtered with the 

same 11-point moving average filter used on the measuring instrument data. The CMM 

data is resampled to the same length as the measuring instrument data, for each 

measurement of each component, for a point-to-point comparison. A fiducial mark on the 

component is used to match up the two data sets, as best as possible. FIGURE 77 and 

FIGURE 78 shows the measuring instrument measured surface profile compared to the 

CMM measured surface profile and the point-to-point difference between the two profiles, 

for the aluminum plate, for each measurement, respectively. 

 

FIGURE 77: CMM and measuring instrument component profile comparison, aluminum 

plate, a.) measurement one and b.) measurement two 



113 

 

 

 

FIGURE 78: Point-to-point difference between CMM and measuring instrument profiles, 

aluminum plate, a.) measurement one and b.) measurement two 

FIGURE 79 and FIGURE 80 shows the measuring instrument measured surface profile 

compared to the CMM measured surface profile and the point-to-point difference between 

the two profiles, for the aluminum ring, for each measurement, respectively. 

 

FIGURE 79: CMM and measuring instrument component profile comparison, aluminum 

ring, a.) measurement one and b.) measurement two 
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FIGURE 80: Point-to-point difference between CMM and measuring instrument profiles, 

aluminum stock, a.) measurement one and b.) measurement two 

FIGURE 81 and FIGURE 82 shows the measuring instrument measured surface profile 

compared to the CMM measured surface profile and the point-to-point difference between 

the two profiles, for the aluminum stock, for each measurement, respectively. 

 

FIGURE 81: CMM and measuring instrument component profile comparison, aluminum 

stock, a.) measurement one and b.) measurement two 
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FIGURE 82: Point-to-point difference between CMM and measuring instrument profiles, 

aluminum stock, a.) measurement one and b.) measurement two 

From the previous figures, the CMM and the measuring instrument produce similar 

shapes, of the same component under test. From FIGURE 78, FIGURE 80 and FIGURE 

82, the error bands of the measuring instrument and the CMM measurements for each 

component can be determined.  

TABLE 10: Error band of difference between the CMM and measuring instrument 

profiles 

 

Component MAX MIN Measurement

0.0063 mm (0.00025" ) -0.0051 mm (-0.00020" ) 1

0.0063 mm (0.00025" ) -0.0043 mm (-0.00017" ) 2

0.0018 mm (0.00007" ) -0.0023 mm (-0.00009" ) 1

0.0019 mm (0.00008" ) -0.0015 mm (-0.00006" ) 2

0.0026 mm (0.00014" ) -0.0030 mm (-0.00012" ) 1

0.0025 mm (0.00010" ) -0.0023 mm (-0.00009" ) 2

Aluminum Plate

Aluminum Ring

Aluminum Stock
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These results show that the measuring instrument is capable of measuring a similar 

component profile as the CMM. 

The CMM and measuring instrument do not perfectly match up, and this may be caused 

by numerous sources. The rotary table used in testing can add in some error, since it is not 

designed as stiff as a machine tool spindle. Only 25 UPR are used in the Fourier series for 

approximating the form error results, but this is done because high UPR numbers would 

include more of the inherent errors in the machining process in the result and that result 

would be better suited for spindle error motions. The main concern in this research is the 

component form error, and diameter, so the low number of UPR is acceptable for the 

testing. 

The possible error source that is of most concern, is the suppression of harmonic 

content. It is stated in the literature, [1] [19] [35] [36], that if the planar angles are not 

chosen precisely, loss of harmonic content is apparent. The arm angles of the measuring 

instrument are dependent on the size of the component being measured and the distance 

from the measuring instrument to the component; so there is no way for optimized angles 

to be consistently used during in-process measurements. 

To fully characterize the form error of the components under test, the form error value 

from the measuring instrument will be compared to the CMM form error value. The scalar 

values for the form error of each component is determined using the Minimum Radial 

Separation (MRS) method (ASME/B89.3.4 [18]). The form error peak-to-valley results 

from the measuring instrument and CMM are presented for comparison. TABLE 11 shows 

the peak-to-valley values of the measuring instrument and CMM for the aluminum plate, 

for each measurement. 
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TABLE 11: Peak-to-valley form error values for CMM and measuring instrument, 

aluminum plate, a.) measurement one and b.) measurement two 

 

TABLE 12 shows the peak-to-valley values of the measuring instrument and CMM for 

the aluminum ring, for each measurement. 

TABLE 12: Peak-to-valley form error values for CMM and measuring instrument, 

aluminum ring, a.) measurement one and b.) measurement two 
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TABLE 13 shows the peak-to-valley values of the measuring instrument and CMM for 

the aluminum stock, for each measurement. 

TABLE 13: Peak-to-valley form error values for CMM and measuring instrument, 

aluminum stock, a.) measurement one and b.) measurement two 

 

These results show that the measuring instrument is capable of measuring the surface 

profile form errors of a large-scale component with reasonable accuracy. The multi-probe 

method, proven in a laboratory environment, has shown its capabilities, with good 

precision, to measure large-scale components, in a non-controlled environment. 
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5.4.2. Diameter Results 

The diameter of each component under test is calculated from the averaged angular 

data. This average data has thousands of points, thus there are thousands of diameters 

calculated; so the best way to represent the data of each component when it is rotated, is 

the averaged diameter. Using the algorithms from section 3.2, and the averaged angular 

data, the diameter can now be calculated for each component. As mentioned earlier, each 

component is measured twice, incremented about 50.8 𝑚𝑚 (2”) in the negative 𝑥 direction 

of the measuring instrument coordinate system, which can be referred to FIGURE 61. The 

diameter measurements from the measuring instrument are compared to the same 

component measured on the CMM. TABLE 14 and TABLE 15 show the diameter results 

in inches and millimeter, respectively.   

TABLE 14: Diameter results from measuring instrument compared to CMM measurements 

(unit = inch.) 

 

 

 

 

 

 

 

Diameter Meas. Instr. CMM Difference Measurement

19.49784 19.49740 0.00044 1

19.49652 19.49740 -0.00088 2

10.05141 10.05122 0.00019 1

10.05089 10.05122 -0.00033 2

3.98827 3.98774 0.00053 1

3.98687 3.98774 -0.00087 2

Aluminum Plate

Aluminum Ring

Aluminum Stock
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TABLE 15: Diameter results from measuring instrument compared to CMM measurements 

(unit = mm.) 

 

From TABLE 14 and TABLE 15, it can be seen that the diameter results from the 

components under test are comparably close to the CMM measured values. The largest 

diameter difference, for the three components, from the measuring instrument measured 

diameter to the CMM measured diameter is approximately −0.0223 𝑚𝑚 (−0.00088”), 

from the aluminum plate, and the smallest diameter difference is approximately 

0.0048 𝑚𝑚 (0.00019”)  from the aluminum ring.  

Diameter Meas. Instr. CMM Difference Measurement

495.2451 495.2340 0.0111 1

495.2117 495.2340 -0.0223 2

255.3058 255.3011 0.0047 1

255.2927 255.3011 -0.0084 2

101.3020 101.2886 0.0134 1

101.2665 101.2886 -0.0221 2

Aluminum Plate

Aluminum Ring

Aluminum Stock
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It is noticed that there is a difference between each of the two measurements of each of 

the components measured. For the aluminum plate, the difference in diameter measured 

from measurements one to two is 0.0334 𝑚𝑚 (0.0013”), the aluminum ring from 

measurement one to two is 0.0131 𝑚𝑚 (0.00052”) and the aluminum stock from 

measurement one to two is 0.0355 𝑚𝑚 (0.0014”). One issue may be a misalignment of 

the measuring instrument arms along the same plane on the component. Another difference 

in the measured values can potentially be attributed to the environment in which the 

measurements are made. The measuring instrument’s kinematic parameters were measured 

in an environmentally-controlled room of 20 ± 0.5℃ (68 ± 0.5℉). The measurements 

were taken outside of the environmentally controlled room at approximately 

20.61℃ (69.1℉). These differences in temperature will result in changes in the kinematic 

parameters and contribute to the measurement error. The coefficients of thermal expansion 

(CTE) differ by a factor of two, from steel to aluminum for the measuring instrument and 

components, respectively. The uncertainty in these environmental factors will be quantified 

in a later section, but the current results verify, though with a lower accuracy than 

anticipated, that the measuring instrument is capable of measuring the diameter of a 

component.  
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The measuring instrument is also tested to see how well it can measure larger diameters 

than 508 𝑚𝑚 (20”), which is a more common occurrence in large industrial 

manufacturing plants. No large diameter artifacts were available for testing so the next 

option was to create “virtual” disk components. The virtual disk components will be able 

to simulate larger diameters without the need to purchase a large component and can be 

assembled with available items in the shop setting. Refer back to FIGURE 59 for setup of 

the virtual disk tests and FIGURE 60 for the measuring instrument setup.  

From FIGURE 59 and FIGURE 60, the rotary table rotates the bar and bearing ring to 

different positions, where the arm from the measuring instrument contacts the bearing ring. 

This max angle the arm reads during contact is recorded. After the max angle is recorded, 

the bar stock and bearing ring are locked in position with a lock on the rotary table and the 

CMM is used to measure the position of the bearing ring. The max angle measurement and 

CMM position measurement are done for arms two and three also. FIGURE 83 shows a 

schematic of the arm angles and incrementing of the measuring instrument. 

 

FIGURE 83: Large-scale virtual disk arm angles positions 
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When all angles are collected, the algorithms in section 3.2 are used to calculate the 

diameter of the virtual disk. The diameter of the bar stock/bearing ring is computed with a 

least square fit, with the radius of the bearing ring added to the least square result, to 

represent the radius of the bar stock/bearing ring at the surface and not the center of the 

bearing ring. The max arm angles and position of the bar stock/bearing ring are measured 

for the diameter ranges of 508 𝑚𝑚 –  1778 𝑚𝑚 (20” − 70”). For the diameters of  

508 𝑚𝑚, 1016 𝑚𝑚, 1270 𝑚𝑚, 1778 𝑚𝑚 (20”, 40”, 50”, 70”) the measuring instrument 

body is approximately positioned 50.8 𝑚𝑚 (2”) from the bar stock/bearing ring, in the 𝑥 

direction of the measuring instrument coordinate system. For diameters of 

762 𝑚𝑚, 1524 𝑚𝑚 (30”, 60”), the measuring instrument is incremented by 

76.2 𝑚𝑚, 50.8 𝑚𝑚, 25.4 𝑚𝑚 (3”, 2”, 1”), from the measuring instrument body, in the 𝑥 

direction of the measuring instrument coordinates system. The measuring instrument is 

also placed on a 1 − 2 − 3 block, to change the 𝑦 position, for the 

762 𝑚𝑚, 1524 𝑚𝑚 (30”, 60” ), range of diameter. FIGURE 83, shows the schematic of 

the measuring instrument incremented in both the 𝑥 and 𝑦 directions. The results from the 

virtual disk measurements are as follows: 

TABLE 16: Virtual disk results from measuring instrument and CMM (unit = in.) 

 

 

Diameter 70" 60" (3") 60" (2") 60" (1") 50"

Meas. Instr. 69.5925 59.8537 59.8534 59.8532 49.8912

CMM (LS) 69.5988 59.8589 59.8587 59.8587 49.8970

Difference -0.0064 -0.0052 -0.0052 -0.0055 -0.0058

Diameter 40" 30" (3") 30" (2") 30" (1") 20"

Meas. Instr. 40.1826 30.0114 30.0113 30.0112 20.0243

CMM (LS) 40.1872 30.0148 30.0148 30.0147 20.0267

Difference -0.0045 -0.0035 -0.0035 -0.0036 -0.0024



124 

 

 

TABLE 17: Virtual disk results from measuring instrument and CMM (unit = mm.) 

 

The results show that the measuring instrument is consistently measuring the virtual 

disks small compared to the CMM measured data. There can be several reasons for the 

measuring instrument to be deviating from the CMM value.  

It was noticed that when determining the max arm angles, once it was reached, the 

angle tended to fluctuate. The rotary table has a locking latch, but even with the table locked 

in place, the arm angle could still change. Also when the spring was engaged on the arm, 

the angle would change. Finding the max arm angle proved to be more of an approximation.  

A test was done to see how well the rotary table returns back to its original position. 

The rotary table was rotated in 450 increments, starting at 00 and returning back to 00, and 

the centerbore of the rotary table and bearing ring were measured at each position. Back at 

its original position, the centerbore moved about 0.004 𝑚𝑚 (0.00016”) in 𝑥 and 

0.007 𝑚𝑚 (0.00028”) in 𝑦. FIGURE 84 shows the centerbore data.  

Diameter 1778mm 1524mm (76.2mm) 1524mm (50.8mm) 1524mm (25.4mm) 1270mm

Meas. Instr. 1767.6483 1520.2850 1520.2767 1520.2720 1267.2363

CMM (LS) 1767.8097 1520.4159 1520.4100 1520.4118 1267.3841

Difference -0.1614 -0.1309 -0.1333 -0.1398 -0.1478

Diameter 1016mm 762mm (76.2mm) 762mm (50.8mm) 762mm (25.4mm) 508mm

Meas. Instr. 1020.6388 762.2883 762.2872 762.2833 508.6173

CMM (LS) 1020.7537 762.3765 762.3765 762.3743 508.6776

Difference -0.1149 -0.0882 -0.0893 -0.0910 -0.0603
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FIGURE 84: X and Y centerbore position  

FIGURE 84 shows that the centerbore does not return to its original position after a full 

rotation and is more than likely due to insufficient stiffness in the setup and the force 

required to actuate the table. The centerbore to bearing ring distance varies by 

about 0.003 𝑚𝑚 (0.00012”), which is consistent with the CMM capabilities. The arms 

not moving in the same plane can have an effect on the diameter. 

 Overall, the measuring instrument showed it has the capabilities to measure diameters 

and from error simultaneous, however, with a lower accuracy than anticipated. 



 

 

 

CHAPTER 6: UNCERTAINTY ANALYSIS 

 

6.1. Measurand of Measuring Instrument 

The measurands of the measuring instrument will consist of both the form error and 

diameter measurements. The definition of the form error measurand is the form error value 

at discrete angular points around the circumference of the component. The definition of the 

diameter measurand is the average diameter value of the component. The diameter can be 

calculated by any three points on the component, but since the component is rotated on the 

rotary table, diameter values are produced as the same length of the number of points 

collected around the circumference of the component. For example, if there are 1000 

points collected around the circumference of the component, there will be 1000 diameter 

measurements, so an average value is used to determine the diameter of the component. 

However, for the large virtual diameters, the measurand will be the three-point diameter 

value and not an average. 

With the measurands defined, the uncertainty sources, distributions, types, divisors 

(factors) and standard uncertainties can be determined. When all standard uncertainties are 

determined, for both form error and diameter, they will all be combined in the root-sum-

squared (RSS) method and multiplied by a coverage factor, 𝑘 = 2 for a 95% confidence 

interval, for each measurand. Each measurands uncertainty analysis will be compiled into 

an uncertainty budget, using methods from Guide to the Expression of Uncertainty in 

Measurement [14]. 



127 

 

 

Most of the uncertainty sources for the measuring instrument will affect both the form 

error measurand and diameter measurand. Section 6.2 covers sources affecting the form 

error measurand, section 6.3 covers sources affecting the diameter and section 6.4 covers 

sources for both measurands. 

6.2. Form Error Uncertainty Sources 

The measuring instrument measures the form error of the component with the multi-

probe method described in section 2.1. Recently published work on the uncertainty sources 

of the multi-probe error separation method [5], covers the uncertainty in the determination 

of the planar angles needed for the method to work correctly and how incorrect choices of 

planar angles affects the separation methods results. Further research [15] finds that with 

large error in the planar angle location, Eq. (27) can become ill-conditioned and harmonic 

content can become suppressed, the determinant of the matrix will be near zero and 

reconstruction of the surface profile will be incorrect.  

6.2.1. Planar Angle Location 

The planar angles are normally pre-determined through simulation and chosen to 

produce the lowest harmonic suppression and variation. The measuring instrument’s planar 

angles cannot be determined before-hand, because they change with different diameter 

sizes and different 𝑥 direction positions as the measuring instrument is incremented into or 

out of the component. However, the multi-probe method can work reasonably well, as long 

as the planar angles are asymmetric to one another, as previously shown in section 5.4.1.  
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To look at what effect the planar angle location has on the form error measurement, the 

variation in the point-to-point difference between each component’s two form error 

measurements (with different arm angles) is used to determine the uncertainty associated 

with variation in probe angular positions. These values can be seen in section 5.4.1, 

FIGURE 76. To quantify the uncertainty, the standard deviation of the point-to-point 

difference is determined for each component’s measurements. The average of the standard 

deviation of the three component point-to-point differences is determined and is used to 

determine the uncertainty in the planar angle location. 

TABLE 18: Point-to-point standard deviation of each component profile form errors 

 

The type is A, the distribution is assumed normal, with a divisor of 1. The standard 

uncertainty in the planar angle locations from the average standard deviation of the point-

to-point difference is 0.001 𝑚𝑚 (0.00004”).  

Component P-to-P Standard Devaition

Aluminum Plate 0.0011 mm (0.000043")

Aluminum Ring 0.0008 mm (0.000030")

Aluminum Stock 0.0015 mm (0.000060")
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6.2.2.     Form Error Repeatability 

The repeatability of the form error measurement is evaluated by measuring the 

aluminum plate five times. The aluminum plate is chosen because it has the worst form 

error. The component is rotated, measured, the arms are released and then the measuring 

instrument is moved away from the component, then the measuring instrument is placed 

back again in the original setup and measured again. This is done until five total 

measurements are collected. The arm angles from the first measurement are noted and the 

physical position of the measuring instrument is marked on the granite, so that the 

following four measurements are taken in approximately the same position. The same 

measurements are used to determine the diameter uncertainty in section 6.3. FIGURE 85 

shows an example of the setup. 

 

FIGURE 85: Repeatability setup for determining form error and diameter uncertainties 
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FIGURE 86 shows the form error measurement repeatability and point-to-point difference. 

 

FIGURE 86: Form error repeatability and point-to-point difference 

The form error repeatability measurement results are determined from statistical 

methods, so a type A, normal distribution is assumed for the standard uncertainty, with a 

divisor of 1. From the five form error measurements, the range of the point-to-point 

standard deviation between the five measurements is used as the uncertainty in the 

repeatability of the form error. The standard uncertainty of the repeatability is 

0.00091 𝑚𝑚 (0.000036”).   
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6.3. Diameter Uncertainty Sources 

Sources such as the kinematic parameters of the measuring instrument or the contact 

sphere radius can affect the uncertainty in the measured average diameter values. These 

sources of uncertainty as well as the diameter measurement repeatability will be discussed 

in the following sections. The uncertainty sources affecting the diameter are determined, 

then used to test the sensitivity of the measured results to these sources. The error sources 

are varied by the uncertainty value and the resulting diameter is compared to the non-varied 

measured diameter. The diameter difference divided by the amount of variation of the error 

source is used to establish the sensitivity of the measurand to the error source.  

6.3.1. Kinematic Parameter  

 As shown in chapter 4, the measuring instrument kinematic parameters are needed to 

reconstruct the diameter from the raw arm angle data. The kinematic parameters for the 

measuring system are measured on a high-precision CMM, and the method for measuring 

on the CMM is explained in section 5.2. The CMM measured kinematic parameters have 

uncertainty which can be determined through the maximum permissible error (MPE) of the 

CMM [63]. If the assumption that all values are equally probable, a type B uniform 

distribution is assumed, and the uncertainty of the CMM measurements is the MPE divided 

by √3, thus 𝑢𝐶𝑀𝑀 =
𝑀𝑃𝐸

√3
 [63]. The MPE for the CMM is equal to 2.3 + 0.0025𝐿, where 

𝐿 is in millimeters (𝑚𝑚),  but the MPE is in units of micrometers (𝜇𝑚). This MPE is from 

manufacture specifications. This uncertainty can be used directly for the kinematic 

parameters that are unit of length.  
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For the unit length kinematic parameter uncertainty, the measured values needed for 

the CMM uncertainty are expressed in section 5.2. TABLE 19 shows the standard 

uncertainty values for the length kinematic parameters, using the 𝑢𝐶𝑀𝑀, approximation. 

𝑋𝐶 ≡ 0, so the uncertainty in it will not be considered. 

TABLE 19: Standard uncertainty values for length kinematic parameters 

 

To determine the uncertainty of the angle offsets relative to the diameter measurements, 

from section 5.2, the angle offsets were determined by finding the difference between the 

CMM measured angle and encoder module angles. Each arm is measured in five different 

arcs, so this produces five different angle offset values for each parameter. Since the angle 

offsets kinematic parameters are averaged, the standard uncertainty of the mean, 
𝑠

√𝑛
, can be 

used for the uncertainty in the angle offset kinematic parameters. TABLE 20 shows the 

standard uncertainty values for the angle offset. 

TABLE 20: Standard uncertainty values for angle offset kinematic parameters 

 

KP's in mm

0.0001 0.0019

0.0001 0.0018

0.0001 0.0019

0.0001 0.0013

0.0001 0.0015

0.0001 0.0021

𝐿1𝐿1

𝐿2𝐿2

𝐿3𝐿3

𝑋𝐵𝑋𝐵

𝑌𝐵𝑌𝐵

𝑌𝐶

KP's

deg 0.00029 0.00200 0.00090

rad 0.00001 0.00003 0.00002

𝜃1,𝑜𝑓𝑓 𝜃2,𝑜𝑓𝑓 𝜃3,𝑜𝑓𝑓
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Now that the uncertainty in the kinematic parameters are expressed, they will be used 

to see how sensitive the diameter measurements are to these uncertainties. Each measured 

CMM kinematic parameter is varied by its standard uncertainty, one at a time; and the 

resulting diameter is computed. The diameter difference is divided by the amount of 

variation of the parameter and is the estimate of the sensitivity of the measurand to the 

error source. TABLE 21 shows the resulting sensitivity of the diameter to each of the 

kinematic parameters for both the 508 𝑚𝑚 (20” ) and1778 𝑚𝑚 ( 70” ) diameters. 

TABLE 21: Sensitivity coefficients of each kinematic parameter to the diameter 

measurement, a.) 508 𝑚𝑚 (20”) , b.) 1778 𝑚𝑚 (70” ) 

 

Now with sensitivities and the variations determined, TABLE 19 and TABLE 20, the 

uncertainty in the diameter, due to the kinematic parameters, can be estimated by using the 

law of propagation of uncertainty. The model is as follows: 
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𝑢2(𝐷) =  (

𝛿𝐷

𝛿𝐿1
)
2

𝑢2(𝐿1) + (
𝛿𝐷

𝛿𝐿2
)
2

𝑢2(𝐿2) + (
𝛿𝐷

𝛿𝐿3
)
2

𝑢2(𝐿3) 

+(
𝛿𝐷

𝛿𝑋𝐵
)
2

𝑢2(𝑋𝐵) + (
𝛿𝐷

𝛿𝑌𝐵
)
2

𝑢2(𝑌𝐵) + (
𝛿𝐷

𝛿𝑌𝐶
)
2

𝑢2(𝑌𝐶) 

+(
𝛿𝐷

𝛿𝜃1,𝑜𝑓𝑓
)

2

𝑢2(𝜃1,𝑜𝑓𝑓) + (
𝛿𝐷

𝛿𝜃2,𝑜𝑓𝑓
)

2

𝑢2(𝜃2,𝑜𝑓𝑓) 

+(
𝛿𝐷

𝛿𝜃3,𝑜𝑓𝑓
)

2

𝑢2(𝜃3,𝑜𝑓𝑓) 

(66) 

Taking the square-root of Eq. (66) gives a standard uncertainty in the diameter result 

from the kinematic parameters as 0.0076 𝑚𝑚 (0.0003” ) for the 508 𝑚𝑚 (20”)  and 

0.0165 𝑚𝑚 (0.00065” ) for the 1778 𝑚𝑚 (70”) .  

6.3.2. Diameter Repeatability 

To test the repeatability of the diameter measurement, the aluminum plate is measured 

five times. The setup is the same as that for the form error, the plate is rotated, measured, 

the arms are released and then the measuring instrument is moved away from the 

component, then the measuring instrument is placed back again in the original setup and 

measured again. This is done until five total measurements are collected. The arm angles 

from the first measurement are noted and the physical position of the measuring instrument 

is marked on the granite, so that following four measurements are taken in approximately 

the same position. FIGURE 85 shows an example of the setup. 

The measured values for the diameter measurements from the five measurements are 

seen in TABLE 22. 
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TABLE 22: Measurement values for diameter repeatability  

 

The diameter repeatability measurement results are determined from statistical 

methods, so a type A, normal distribution is assumed for the standard uncertainty and the 

divisor is 1. From the five diameter measurements, standard deviation between the five 

average diameter measurements is used as the standard uncertainty in the repeatability of 

the diameter. However, since the diameter value is an average, then the more appropriate 

standard uncertainty would be that of the mean. The standard uncertainty of the mean can 

be determined by 𝑢�̅� =
𝑠

√𝑛
, where 𝑠 is the standard deviation and 𝑛 is the number of 

measurements. For 𝑛 equal to five and 𝑠 equal to 0.0048 𝑚𝑚 (0.00019"), so the standard 

uncertainty of the mean diameter is 0.002 𝑚𝑚 (0.00008” ). This uncertainty is also used 

for the 1778 𝑚𝑚 (70” ) diameter because that measurement was not repeated due to lack 

of available resources. 

in mm

19.49789 495.24649

19.49752 495.23706

19.49755 495.23782

19.49747 495.23578

19.49761 495.23929
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6.3.3. Contact Sphere  

The three-point diameter calculation finds the diameter of a circle passing through the 

centers of the three contact spheres. To obtain the component diameter, the contact sphere 

radius is subtracted from the three-point diameter result to obtain the actual measured 

component diameter. The contact spheres are made of stainless steel and the error of the 

surface profile of the sphere is assumed negligible to the diameter error of the sphere. The 

manufacture of the contact sphere, Bal-tec, states an uncertainty of 

±0.001 𝑚𝑚 (±0.00004") in the diameter of the ball. It is assumed the distribution is 

uniform with a divisor of √3. Thus the uncertainty in the contact sphere, from manufacture 

specification is ±0.00058 𝑚𝑚 (±0.000023"). The uncertainty the contact sphere has on 

the diameter measurements is found by determining the sensitivity of the measured result 

by varying the contact sphere radius by the stated uncertainty and comparing the two results 

and using the difference as the uncertainty. The average diameter is 

495.2116 𝑚𝑚 (19.49652”) and contact sphere radius uncertainty induced averaged 

diameter is 495.2103 𝑚𝑚 (19.49647”). The difference is 0.00127 𝑚𝑚 (0.00005”), this 

value is the standard uncertainty for the 508 𝑚𝑚 (20”). The large diameter is 

1767.648 𝑚𝑚 ( 69.59245”) and contact sphere large radius uncertainty induced diameter 

is 1767.647 𝑚𝑚 (69.59241”). The difference is 0.00127 𝑚𝑚 (0.00005”), this value is 

the standard uncertainty for the 1778 𝑚𝑚 (70"). 

6.4. Sources Affecting Form Error and Size  

There are several uncertainty sources that affect both the form error and diameter 

measurements from the measuring instrument. Likely sources of uncertainty for both 

measurands are: 
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 Hysteresis 

 Encoder noise 

 Encoder module eccentricity due to bearings 

 Encoder sensitivity (including resolution and accuracy) 

 Measurement plane misalignment 

 Arm bending due to contact load 

 Operator influence 

 Environmental factors 

The uncertainty in these sources are determined and then used to check how sensitive 

the measured result is to these uncertainties for both form error and diameter measurement 

results. The uncertainty will be evaluated for both diameter sizes and only form error for 

the smaller diameter.  

6.4.1. Hysteresis 

The hysteresis error from the measuring instrument can be seen in section 5.1.2, 

however, the uncertainty in the measurement needs to be determined. To determine the 

hysteresis uncertainty in the measuring instrument, the values from TABLE 4 are converted 

to represent the hysteresis at the end of the arm motion. This can be done using Eq. (63). 

TABLE 23 shows the arm end hysteresis.  

TABLE 23: Hysteresis values at arm end 

 

Arm 1 0.0018 mm (0.00007" )

Arm 2 0.0001 mm (0.000005" )

Arm 3 0.0013 mm (0.00005")

Hysteresis
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To see how the hysteresis uncertainty affect both the form error and diameter, these 

uncertainty values will be used to vary the measured results from the aluminum plate, since 

it has the worst diameter and form error. The virtual disk is used for the large diameter. 

The difference between the varied and non-varied results will be used for the uncertainty 

in the diameter and form error.  

The average diameter is 495.2116 𝑚𝑚 (19.49652”)  and the hysteresis uncertainty 

induced averaged diameter is 495.5086 𝑚𝑚 (19.4964”) .  The difference is 

0.003 𝑚𝑚 (0.00012”), this value is the standard uncertainty for diameter. The large 

diameter is 1767.6482 𝑚𝑚 (69.59245”) and the hysteresis uncertainty induced large 

diameter is 1767.7651 𝑚𝑚 (69.59257”) .  The difference is 0.003 𝑚𝑚 (0.00012” ), this 

value is the standard uncertainty for diameter. 

The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the hysteresis uncertainty induced peak-to-valley form error is 

0.01410 𝑚𝑚 (0.000557”). The difference is 0.00018 𝑚𝑚 (7𝑥10−6") , this value is the 

standard uncertainty in the form error. The form error is almost negligible from the 

hysteresis, while the diameter is affected slightly.   
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6.4.2. Encoder Noise 

The noise from the measuring instrument is determined from the encoder noise and the 

noise from the encoders are determined from the manufacturer’s specifications [64]. The 

manufacture specifies a root-mean-square (RMS) noise of 0.037 𝑎𝑟𝑐 − sec  (0.00001°). 

It is assumed the distribution is normal, but that there is a 95% confidence in the stated 

noise, so the value in the specification is divided by two. The uncertainty from noise of the 

encoder from manufacture specification is 0.0185 𝑎𝑟𝑐 − sec  (0.000005°). These values 

are converted by Eq. (63), to get the noise of the end motion of the arm. TABLE 24 shows 

the encoder noise from the arm end.  

TABLE 24: Encoder noise from arm end motion 

 

The uncertainty from the encoder noise is used to see the effects they have on the 

diameter and form error of the measured results. The aluminum plate is used for both the 

form error and diameter. The virtual disk is used for the large diameter. 

The average diameter is 495.2116 𝑚𝑚 (19.49652”) and the encoder noise uncertainty 

induced averaged diameter is 495.21165 𝑚𝑚 (19.496522”).  The difference is 

0.00005 𝑚𝑚 (0.000002”), this value is the standard uncertainty of the diameter. The 

large diameter is1767.648 𝑚𝑚 ( 69.59245”)and the encoder noise uncertainty induced 

large diameter is 1767.647 𝑚𝑚 (69.59244”).  The difference is 

0.00025 𝑚𝑚 (0.00001”), this value is the standard uncertainty of the diameter. 

Arm 1 0.000032 mm (0.0000013")

Arm 2 0.000025 mm (0.000001")

Arm 3 0.000032 mm (0.0000013" )

Encoder Noise
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The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the encoder noise uncertainty induced peak-to-valley form error is 

0.013977 𝑚𝑚 (0.0005503”). The difference is 0.000007 𝑚𝑚 ( 3𝑥10−7"), this value is 

the standard uncertainty of the form error. The form error is almost negligible from the 

encoder noise, while the diameter is affected slightly. 

6.4.3. Encoder Eccentricity 

The encoder modules are a combination of an absolute encoder and a high-precision 

bearing [64]. From the literature, this integration eliminates the critical mounting of the 

encoder and all necessary adjustments are made. This solution leads to a smaller deviation 

of the actual rotational axis of the bearing from the nominal axis (encoder scale) or 

eccentricity of the module setup. Manufactures specification’s states an eccentricity of the 

bearing as 0.7 𝑎𝑟𝑐 − 𝑠𝑒𝑐" (0.000194°). It is assumed the distribution is normal, but that 

there is a 95% confidence in the stated eccentricity, so the value in the specification is 

divided by two. The standard uncertainty from manufacture specification is 0.35 𝑎𝑟𝑐 −

sec (±0.000097°). This value can be converted to a linear value using Eq. (63), for arm 

end motion. Conversion of the uncertainty to arm end motion is shown in TABLE 25. 

TABLE 25: Arm end encoder eccentricity 

 

The uncertainty from the encoder eccentricity is used to see the effects they have on 

the diameter and form error of the measured results. The aluminum plate is used for both 

the form error and diameter. The virtual disk is used for the large diameter. 

Arm 1 0.00006 mm (0.000025" )

Arm 2 0.00005 mm (0.000019" )

Arm 3 0.00006 mm (0.000025" )

Encoder Eccentrcity
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The average diameter is 495.2116 𝑚𝑚 (19.49652”) and the encoder eccentricity 

uncertainty induced averaged diameter is 495.2117 𝑚𝑚 (19.496525”).  The difference is 

0.00013 𝑚𝑚 (0.000005” ), this value is the standard uncertainty for the diameter. The 

large diameter is 1767.648 𝑚𝑚 (69.59245”) and the encoder eccentricity uncertainty 

induced large diameter is 1767.645 𝑚𝑚 (69.59233”).  The difference is 

0.003 𝑚𝑚 (0.00012” ), this value is the standard uncertainty for the diameter. 

The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the encoder eccentricity uncertainty induced peak-to-valley form error is 

0.01399 𝑚𝑚 (0.000551” ). The difference is 0.000025 𝑚𝑚 (0.000001"), this value is 

the standard uncertainty for the form error. The form error is almost negligible from the 

encoder eccentricity, while the diameter is affected slightly. 
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6.4.4. Encoder Sensitivity 

The encoder sensitivity is determined through manufacture specifications, which 

includes the resolution error. The resolution is 28 bits, approximately 268,435,456 counts 

per revolution. This equates to approximately 0.0000013° theoretical resolution. The 

resolution is small enough that the error in it is negligible to the system accuracy of the 

encoder module. The system accuracy of the encoder module is measured by a combination 

of the radial guideway accuracy and the axial guideway accuracy [64]. The radial guideway 

accuracy is the radial deviation, measured in the 𝑥 and 𝑦 directions, from the nominal axis 

of the bearing when it is rotated. The axial guideway accuracy is axial deviation, measured 

in the z direction, from the nominal axis of the bearing when it is rotated. The system 

accuracy is stated as 2.5 𝑎𝑟𝑐 − sec  (0.00069°). It is assumed the distribution is normal but 

that there is a 95% confidence in the stated accuracy, so the system accuracy in the 

specification is divided by two. The standard uncertainty from manufacture specification 

is 1.25 𝑎𝑟𝑐 − sec (0.00035°). This value can be converted to a linear value using Eq. (63), 

for arm end motion. Conversion of the uncertainty to arm end motion is shown in TABLE 

26. 

TABLE 26: Arm end system accuracy 

 

The uncertainty from the system accuracy is used to see the effects they have on the 

diameter and form error of the measured results. The aluminum plate is used for both the 

form error and diameter. The virtual disk is used for the large diameter. 

Arm 1 0.0022 mm (0.000087")

Arm 2 0.0017 mm (0.000071")

Arm 3 0.0022 mm (0.000087")

System Accuracy
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The average diameter is 495.2116 𝑚𝑚 (19.49652”) and the encoder eccentricity 

uncertainty induced averaged diameter is 495.2114 𝑚  (19.496512”).  The difference is 

0.0002 𝑚𝑚 (0.000008”), this value is the standard uncertainty for diameter. The large 

diameter is 1767.648 𝑚𝑚 (69.59245”) and the encoder eccentricity uncertainty induced 

large diameter is 1767.657 𝑚𝑚 (69.59281”).  The difference is 0.009 𝑚𝑚 (0.00036” ), 

this value is the standard uncertainty for diameter.  

The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the encoder eccentricity uncertainty induced peak-to-valley form error is 

0.0142 𝑚𝑚 (0.00056”). The difference is 0.00025 𝑚𝑚 (0.00001"), this value is the 

standard uncertainty form error. The system accuracy uncertainty affects the form error 

peak-to-valley and average diameter measurements about the same for the average 

diameter.  
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6.4.5. Measuring Instrument Misalignment 

The misalignment of the measuring instrument to the component can add an error into 

the measurement results. The possible misalignments are the tilt and yaw alignment errors. 

Also included in the yaw is non-parallelism of the measuring instruments arms, relative to 

arm one pivot location. A schematic of misalignment can be seen in FIGURE 87.  

 

FIGURE 87: Measuring instrument misalignment to components 

Normally, the accuracy of alignment for the measuring instrument is controlled by the 

tool-post mounting. In the testing in this research, the measuring instrument was not 

mounted in a tool-post, because it could not fit in an available lathe. The assumption is that 

the tilt and yaw each have a worst-case misalignment error of ±1° (0.017𝑟𝑎𝑑).  

This worst case misalignment causes a 0.0127 𝑚𝑚 (0.0005”) diameter error for yaw 

and 0.0508 𝑚𝑚 (0.002”) diameter error for tilt of a 508 𝑚𝑚 (20”) diameter 

measurement, approximately the same size for the aluminum plate. Since the misalignment 

is plus/minus, a uniform distribution is assumed with a divisor of √3. The uncertainty from 

these errors are 0.007 𝑚𝑚 (0.00029”) for tilt and 0.029 𝑚𝑚 (0.0012”) for yaw.  

This worst case misalignment causes a 0.062 𝑚𝑚 (0.0024”) diameter error for yaw 

and 0.132 𝑚𝑚 (0.0052”) diameter error for tilt of a 1778 𝑚𝑚 (70”) diameter 

measurement. Since the misalignment is plus/minus, a uniform distribution is assumed 
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with a divisor of √3. The uncertainty from these errors are 0.036 𝑚𝑚 (0.0014”) for tilt 

and 0.076 𝑚𝑚 (0.003”) for yaw.   

The uncertainty from the misalignments are used to see the effects they have on the 

diameter and form error of the measured results. The aluminum plate is used for both the 

form error and diameter. The virtual disk is used for the large diameter.  

The average diameter is 495.2116 𝑚𝑚 (19.49652”) and the tilt and yaw uncertainty 

induced averaged diameter is 495.2070 𝑚𝑚 (19.49634”).  The difference is 

0.0045 𝑚𝑚 (0.000018”), this value is the standard uncertainty for diameter. The large 

diameter is 1767.6482 𝑚𝑚 (69.59245”) and the tilt and yaw uncertainty induced large 

diameter is 1767.6962 𝑚𝑚 (69.59434”).  The difference is 0.0483 𝑚𝑚 (0.0019”), this 

value is the standard uncertainty for diameter.  

The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the tilt and yaw uncertainty induced peak-to-valley form error is 

0.015 2𝑚𝑚 (0.0006”). The difference is 0.00127 𝑚𝑚 (0.00005"), this value is the 

standard uncertainty if for form error. The misalignment uncertainty affects the average 

diameter measurements significantly more than the peak-to-valley form error.   
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6.4.6. Arm Bending 

The measured results from the measuring instrument can be affected by bending of the 

arms from excess contact force. In section 4.2.4.2, FEA was conducted on the measuring 

arms to see how much stress and max displacement error would occur when an 

approximate ±4.44 𝑁 (±1 𝑙𝑏𝑓) was applied to the arm. The results showed an error of 

±0.0089 𝑚𝑚 (±0.00035" ) in arm displacement error. The distribution of the error is 

uniform, type B, with a divisor of √3. The standard uncertainty from the arm bend is 

0.0051 𝑚𝑚 (0.0002” ). The uncertainty from the arm bend is used to see the effects they 

have on the diameter and form error of the measured results. The aluminum plate is used 

for both the form error and diameter. The virtual disk is used for the large diameter. 

The average diameter is 495.2116 𝑚𝑚 (19.49652”) and the arm bend uncertainty 

induced averaged diameter is 495.2108 𝑚𝑚 (19.49649”).  The difference is 

0.0007 𝑚𝑚 (0.00003”), this value is the standard uncertainty of the diameter. The large 

diameter is 1767.6482 𝑚𝑚 (69.59245”) and the arm bend uncertainty induced large 

diameter is 1767.6815 𝑚𝑚 (69.59376”).  The difference is 0.033 𝑚𝑚 (0.0013”), this 

value is the standard uncertainty of the diameter.  

The peak-to-valley form error of the aluminum plate is 0.01397 𝑚𝑚 (0.00055”) and 

the arm bend uncertainty induced peak-to-valley form error is 

0.01432 𝑚𝑚 (0.000564”). The difference is 0.00036 𝑚𝑚 (0.000014"), this value is the 

standard uncertainty for the form error. The arm bend uncertainty affects the form error 

peak-to-valley slightly less than the average diameter measurements. 
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6.4.7. Operator Influence 

Errors can be introduced by the operator when taking measurements with the measuring 

instrument. There is a potential that an operator can produce a systematic influence during 

the measuring of the components [63]. Operator influence has a somewhat random 

characteristic due to inconsistencies in human behavior and response. The random 

characteristics of operator influence can be determined from the measurement 

repeatability. Since there is only one operator of the measuring instrument, the uncertainty 

from this operator influence should be included in the uncertainty budget. The assumption 

is that the operator influence works on a type A, normal distribution with a divisor of 1. To 

estimate the uncertainty in the operator influence, half of the standard uncertainty in the 

repeatability of both measurands are used as an estimate of the standard uncertainty of the 

operator influence [63]. The standard uncertainty in the averaged diameter repeatability is 

0.002 𝑚𝑚 (0.00008”), so the standard uncertainty in the operator influences in is 

0.001 𝑚𝑚 (0.00004”). This uncertainty is the same for the large diameter since there is 

not repeatable measurements of the large diameter. 

The standard uncertainty in the form error repeatability is 0.00093 𝑚𝑚 (0.000036”), 

so the standard uncertainty in the operator influences in is 0.0005 𝑚𝑚 (0.000018”). 
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6.4.8. Environmental Factors 

Errors can result from variations in the environmental conditions, such as temperature. 

Additional errors are introduced when measurement results are corrected for environmental 

conditions [62] [66] [67]. An example is correcting a diameter for thermal expansion or a 

form error for thermal expansion. The uncertainty in the correction error is a function of 

the uncertainty in the error in the thermal expansion. Error models for both diameter and 

form error are expressed and the uncertainties from the thermal expansion of the measuring 

instrument, thermal expansion of the component and the temperature, are of main interest.  

The effect of temperature deviation from 20℃ on the diameter measurement is: 

 
∆𝐷 = 𝐷(𝛼𝐶𝑂𝑀 − 𝛼𝐼𝑁𝑆𝑇)∆𝑇 (67) 

Where 𝐷  is the component diameter, 𝛼𝐶𝑂𝑀 is the coefficient of thermal expansion 

(CTE) for aluminum components, 
22.2 𝑝𝑝𝑚

∙℃
 , 𝛼𝐼𝑁𝑆𝑇 is the coefficient of thermal expansion 

(CTE) for steel, 
12.0  𝑝𝑝𝑚

℃
 and ∆𝑇 is the ambient temperature (shop-floor) minus the 

reference temperature,  20.61℃ − 20℃ = 0.61℃.  

The effect of temperature deviation from 20℃ on the form error measurement is: 

 ∆𝑃𝑃𝑡𝑜𝑉 = 𝑃𝑃𝑡𝑜𝑉(𝛼𝐶𝑂𝑀 − 𝛼𝐼𝑁𝑆𝑇)∆𝑇 (68) 

Where 𝑃𝑃𝑡𝑜𝑉  is the peak-to-valley form error value and all other variables are the same 

as diameter. The error models presented can be used to correct the measured values from 

sections 5.4.1 and 5.4.2, for temperature effects [63] [66] [67]. 
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With the error model expressed, the uncertainty model can be determined by 

determining the sensitivity coefficients of the sources and the uncertainty for each source 

[14] [63]. The models of the sensitivity coefficients are expressed. The sensitivity 

coefficients for diameter are: 

 
𝑐1𝐷 =

𝜕(∆𝐷)

𝜕𝛼𝐶𝑂𝑀
= (𝐷)∆𝑇 

 𝑐2𝐷 =
𝜕(∆𝐷)

𝜕𝛼𝐼𝑁𝑆𝑇
= −(𝐷)∆𝑇, 

 𝑐3𝐷 =
𝜕(∆𝐷)

𝜕∆𝑇
= (𝐷)(𝛼𝐶𝑂𝑀 − 𝛼𝐼𝑁𝑆𝑇) 

(69) 

The sensitivity coefficients for form error are similar: 

 
𝑐1𝑃 =

𝜕(∆𝑃𝑃𝑡𝑜𝑉)

𝜕𝛼𝐶𝑂𝑀
= (𝑃𝑃𝑡𝑜𝑉)∆𝑇 

 𝑐2𝑃 =
𝜕(∆𝑃𝑃𝑡𝑜𝑉)

𝜕𝛼𝐼𝑁𝑆𝑇
= −(𝑃𝑃𝑡𝑜𝑉)∆𝑇, 

 𝑐3𝑃 =
𝜕(∆𝑃𝑃𝑡𝑜𝑉)

𝜕∆𝑇
= (𝑃𝑃𝑡𝑜𝑉)(𝛼𝐶𝑂𝑀 − 𝛼𝐼𝑁𝑆𝑇) 

(70) 

No correlation exist between the expansion coefficients and or the temperature 

difference, so correlation terms are assumed zero. The uncertainty in the dimension 

changes are expressed as: 

 
𝑢∆𝐷 = √𝑐1𝐷

2 𝑢𝛼𝐶𝑂𝑀
2 + 𝑐2𝐷

2 𝑢𝛼𝐼𝑁𝑆𝑇
2 + 𝑐3𝐷

2 𝑢∆𝑇
2  (71) 

 
𝑢∆𝑃𝑝𝑡𝑜𝑣

= √𝑐1𝑃
2 𝑢𝛼𝐶𝑂𝑀

2 + 𝑐2𝑃
2 𝑢𝛼𝐼𝑁𝑆𝑇

2 + 𝑐3𝑃
2 𝑢∆𝑇

2  (72) 
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The uncertainty values in the CTE’s are expressed as 𝑢𝛼 =
0.1𝛼

√3 
, where a type B, 

uniform distribution is assumed [66] [67]. The uncertainty in the component’s CTE is 

𝑢𝛼𝐶𝑂𝑀
=

0.1(
22.2 𝑝𝑝𝑚

∙℃
)

√3
=

1.2 𝑝𝑝𝑚

℃
 and uncertainty from the measuring instrument CTE is 

𝑢𝛼𝐼𝑁𝑆𝑇
=

0.1(
12 𝑝𝑝𝑚

℃
)

√3
=

0.69 𝑝𝑝𝑚

℃
. The uncertainty in the temperature difference is expressed 

as 𝑢∆𝑇 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

√2
, where a type B, U-shaped distribution is assumed, because the 

temperature is cyclic in nature [66] [67]. Using the estimate of 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 as the range 

of temperature values is used for uncertainty because the measuring instrument and 

component have been in the same environment for a long duration of time, giving adequate 

time for reaching thermal equilibrium with the surroundings. The range is assumed ±2℃, 

so the uncertainty in the temperature difference is 𝑢∆𝑇 =
2℃

√2
= 1.41℃.  

Now that all terms are defined, Eq. (71) and Eq. (72) can be expressed with the 

available terms. Uncertainty of the diameter due to thermal effects, simplified: 

 𝑢∆𝐷 = 𝐷𝑥14.394 𝑝𝑝𝑚 (73) 

Uncertainty of the form error due to thermal effects, simplified: 

 𝑢∆𝑃 = 𝑃𝑃𝑡𝑜𝑉𝑥14.394 𝑝𝑝𝑚 (74) 
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Eq. (73) and Eq. (74) are expressed in part per million (PPM). With PPM stated, now 

the uncertainty due to thermal effects, can be quantified in units of length. Eq. (73) and Eq. 

(74) are expressed as a measurement-by-measurement case, so to incorporate this 

uncertainty in the testing of this research, the worst measured value, compared to the CMM, 

for average diameter and peak-to-valley form error value will be used in the uncertainty 

budget. The virtual disk testing from section 5.4.2, are also to be considered for the 

diameter measurements. From section 5.4.1, the worst peak-to-valley form error value of 

the components is seen in TABLE 11, which is measurement one of the aluminum plate, 

0.014 𝑚𝑚 (0.00055”). From section 5.4.2, the worst average diameter value of the 

components is seen in TABLE 14, which is measurement two of the aluminum plate, 

495.217 7𝑚𝑚 (19.49652”). From section 5.4.2, the worst large diameter value of the 

virtual disk is seen in TABLE 16, which is the 1778 𝑚𝑚 (70”) diameter, at 

1767.6482 𝑚𝑚 (69.59245”). 

The standard uncertainty in the peak-to-valley form error due to thermal effects, for the 

worst measured value is 2𝑥10−7 𝑚𝑚 (8𝑥10−9”). 

The standard uncertainty in the average diameter due to thermal effects, for worst 

measured value is 0.0071 𝑚𝑚 (0.00028”) for the 508 𝑚𝑚 (20”) diameter and the 

standard uncertainty in the 1778 𝑚𝑚 (70”) diameter due to thermal effects is 

0.025 𝑚𝑚 (0.00098”). 
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6.5. Measuring Instrument Overall Uncertainty 

Now that the uncertainty sources, distributions, type, divisors (factors) and standard 

uncertainties have been determined, the combined standard uncertainty, as well as the 

expanded uncertainty, 95% confidence interval, can be expressed individually for the form 

error and diameter measurements. Methods from the Guide to the Expression of 

Uncertainty in Measurement [14], will be used for calualting the combined and expanded 

uncertainties.  

The best way to express the uncertainty in the measuring process for each measurand 

is via an uncertainty budget. TABLE 27 shows the uncertainty budget for the measuring 

instrument’s (508 𝑚𝑚/20") diameter measurement process. 

TABLE 27: Uncertainty budget for (508 𝑚𝑚/20") diameter measurement process (unit = 

mm) 

 

From the uncertainty budget, the measuring instrument produces an expanded 

measurement uncertainty of 0.024 𝑚𝑚 (0.00094”), with a 95% confidence level for the 

508 𝑚𝑚 (20”) diameter measurements.  

Uncertainty Component Dia. Unc.(mm) Type Distribution Factor Standard Uncertainty (mm)

Kinematic Parameters 0.008 A Normal 1 0.008

Measurement Repeatability 0.002 A Normal 1 0.002

Contact Sphere 0.002 B Uniform 0.577 0.001

Hysteresis 0.003 A Normal 1 0.003

Encoder Noise 0.000 B Normal 1 0.000

Encoder Eccentricity 0.000 B Normal 1 0.000

Encoder Sensitivity 0.000 B Normal 1 0.000

Misalignment 0.008 B Uniform 0.577 0.005

Arm Bend 0.001 B Uniform 0.577 0.001

Operator Influence 0.001 A Normal 1 0.001

Environmental Factors 0.007 B Normal 1 0.007

0.012

0.024

Combined Standard Uncertainty (RSS) : uc(y)

Expanded Uncerainty (k = 2, 95% Confidence): U(y)
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FIGURE 88: Uncertainty source percent contribution for diameter (508 𝑚𝑚/20") 

measurements 

FIGURE 88 shows the percent contribution of each uncertainty source, relative to the 

95% expanded uncertainty, for the 508 𝑚𝑚 (20”) diameter measurement process. It can 

be seen that the largest contributions are the environmental factors, misalignment of the 

measuring instrument and the kinematic parameters. The plot gives a good indication of 

places to correct errors at in the measuring process.  

TABLE 28 shows the uncertainty budget for the measuring instrument’s (1778 𝑚𝑚/

70") diameter measurement process. 
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TABLE 28: Uncertainty budget for diameter (1778𝑚𝑚/70") measurement process (unit 

= mm) 

 

From the uncertainty budget, the measuring instrument produces an expanded 

measurement uncertainty of 0.122 𝑚𝑚 (0.0048”), with a 95% confidence level for the 

1778 𝑚𝑚 (70”) diameter measurements.  

 

FIGURE 89: Uncertainty source percent contribution for diameter (1778 𝑚𝑚/ 70") 

measurements 

Uncertainty Component Dia. Unc.(mm) Type Distribution Factor Standard Uncertainty (mm)

Kinematic Parameters 0.017 A Normal 1 0.017

Measurement Repeatability 0.002 A Normal 1 0.002

Contact Sphere 0.002 B Uniform 0.577 0.001

Hysteresis 0.003 A Normal 1 0.003

Encoder Noise 0.000 B Normal 1 0.000

Encoder Eccentricity 0.003 B Normal 1 0.003

Encoder Sensitivity 0.009 B Normal 1 0.009

Misalignment 0.083 B Uniform 0.577 0.048

Arm Bend 0.033 B Uniform 0.577 0.019

Operator Influence 0.001 A Normal 1 0.001

Environmental Factors 0.025 B Normal 1 0.025

0.061

0.122

Combined Standard Uncertainty (RSS) : uc(y)

Expanded Uncerainty (k = 2, 95% Confidence): U(y)
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FIGURE 89 shows the percent contribution of each uncertainty source, relative to the 

95% expanded uncertainty, for the 1778 𝑚𝑚 (70” ) diameter measurement process. It can 

be seen that the largest contributions are the misalignment of the measuring instrument, 

environmental factors, arm bend and the kinematic parameters. This plot give a good 

indication of places to correct errors at in the measuring process. 

TABLE 29 shows the uncertainty budget for the measuring instrument’s form error 

measurement process. 

TABLE 29: Uncertainty budget for form error measurement process (unit = mm) 

 

From the uncertainty budget, the measuring instrument produces an expanded 

measurement uncertainty of 0.004 𝑚𝑚 (0.00016”), with a 95% confidence level for the 

form error measurements.  

Uncertainty Component Form Unc. (mm) Type Distribution Factor Standard Uncertainty (mm)

Planar Angle Location 0.001 A Normal 1 0.001

Measurement Repeatbility 0.001 A Normal 1 0.001

Hysteresis 0.000 A Normal 1 0.000

Encoder Noise 0.000 B Normal 1 0.000

Encoder Eccentricity 0.000 B Normal 1 0.000

Encoder Sensitivity 0.000 B Normal 1 0.000

Misalignment 0.002 B Uniform 0.577 0.001

Arm Bend 0.001 B Uniform 0.577 0.000

Operator Influence 0.000 A Normal 1 0.000

Environmental Factors 0.000 B Normal 1 0.000

0.002

0.004

Combined Standard Uncertainty (RSS) : uc(y)

Expanded Uncerainty (k = 2, 95% Confidence): U(y)
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FIGURE 90: Uncertainty source percent contribution for form error measurements 

FIGURE 90 shows the percent contribution of each uncertainty source, relative to the 

95% expanded uncertainty, for the form error measurement process. It can be seen that the 

largest contributions are the misalignment of the measuring instrument, planar angle 

locations and measurement repeatability. The plot give a good indication of places to 

correct errors at in the measuring process. 

 

 

  

0 5 10 15 20 25 30

Noise

Environment

Hysteresis

Eccentricity

Sensitivity

Bend

Operator

Repeatability

Location

Misalignment

 Uncertainty Percent Contributions (Form Error)

Percent Contribution (%)

S
o
u
rc

e
s



 

  

 

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1. Conclusions 

This research documents an improved approach to measuring circular component’s 

form errors and diameters, simultaneously, through a novel measurement instrument. 

Firstly, the form error uses a known error separation method to measure the surface profile 

form more accurately and precisely then conventional digital indicators, which include 

spindle error motions in their data. The error separation method also produces a more 

complete shape of the estimated surface profile. Secondly, the diameter measurements are 

determined through a geometrical model, using three unique non-collinear points, which 

are fit to a circle produce a components diameter. Lastly, these more mathematically sound 

algorithms are implemented through a novel measuring instrument which contacts the 

surface of a circular component at three points, which can be used for both the form error 

separation method and geometrical model for the diameter.  
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The form error results from the measuring instrument produced a max deviation in the 

form error value, compared to a CMM measurement of the same component, of 

0.004 𝑚𝑚 (0.00016”). It also produced a max point-to-point error band, compared to the 

CMM, of +0.0063 𝑚𝑚/−0.0051 𝑚𝑚 (+0.00025"/-0.00020"). Overall the measuring 

instrument measured a similar shape to that of the CMM and thus proving it capability for 

form error measurements in a shop-floor environment. 

The diameter results from the measuring instrument produced a max deviation in the 

diameter value, compared to a CMM measurement of the same component, of 

0.022 𝑚𝑚 (0.00087”). The large-scale diameter test proved a max deviation, compared 

to the CMM, of 0.1524 𝑚𝑚 (0.006”), for a 1778 𝑚𝑚 (70”) virtual disk. The results for 

the diameter measurements are quite a bit different in magnitude compared to the form 

error results. There are several factors that can contribute to the diameter measurements 

errors. One error noticed, it that the measuring instrument body, when laid on top of a 

surface plate, measured with a height measuring instrument, produced an approximate bow 

shape, of 1.02 𝑚𝑚 (0.040”). This is likely due to the residual stresses in the raw material. 

The bow in the body causes the arm axes of rotation to not be parallel and the arms to move 

out of plane, which contributes error to the diameter and form measurements.  
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The uncertainty budget in the form error and diameter measuring process shows the 

typical error sources, with accompanying results. An expanded uncertainty of 

0.024 𝑚𝑚 (0.00094”) is determined for the 508 𝑚𝑚 (20”) diameter measurement 

process of the measuring instrument and an expanded uncertainty of 

0. 004 𝑚𝑚 (0.000016”) is determined for the form error measurement process of the 

measuring instrument. There is an expanded uncertainty of 0.122 𝑚𝑚 (0.0048”) is 

determined for the 1778 𝑚𝑚 (70”) diameter measurement process of the measuring 

instrument. There is no form error uncertainty analysis for a 1778 𝑚𝑚 (70”) because of 

lack of setup for data collection. The percent contributions, relative to the expanded 

uncertainty, for each measuring process is also shown with the biggest contributions of 

error and thus can be considered for investigating corrective measures. 

Though lacking the intended accuracy in the results, the measuring instrument is still 

able to measure relatively good, thus proving the concept of measuring both form error and 

diameter simultaneously.  

7.2.  Future Work 

With the measuring instrument body having a bow in it, a new body is needed to get 

better accuracy out of the measured results. The bow compounds the error in the 

misalignment by affecting the out of plane motion if the arms, which can lead to errors in 

related to the 𝑧 direction of the measuring instrument coordinate system.  

The results can also be helped by implementing an adjustable mount, for alignment 

purposes. This mount can adjust the measuring instrument to be more true to the component 

axis, thus minimizing the alignment errors in mounting. 
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The springs in the arms can be replaced with a magnetic base principle. The spring 

force works for the current design, but can be inconvenient to use in a factory setting. To 

adapt a magnetic base, the measuring instrument would need to be made of aluminum and 

special containment, with a steel sphere on the end to contact the surface of the component, 

where a magnet can be “switched” on, to make magnetic contact with the component 

under-test via the contact sphere. A drawback is it can only be used on magnetic material, 

so aluminum is not an option to measure, but the intended purpose of this measuring 

instrument is for a manufacturing plant to use it on steel generator rotors, so the magnetic 

base principle would be applicable. 

The last change would be to implement an “identification” routine for the kinematic 

parameter identification. Since the kinematic parameters are measured on a CMM, the 

kinematic parameters are effected by the controlled environment of the laboratory. Since 

the measurements in this research are taken in an environment close to that where the 

kinematic parameters were measured, the results were not affected significantly. If the 

measuring instrument is out in a higher temperature environment, the measuring instrument 

would expand and the kinematic parameters would have to be corrected for the difference. 

With the identification process, the measuring instrument could be tuned to the current 

environment and produce a more accurate results to that environment.  
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APPENDIX A: LABVIEW PROGRAM 

 

 

FIGURE 91: LabVIEW program for measuring instrument
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APPENDIX B: SPINDLE ERROR MOTIONS 

 

The spindle error motions of each measurement, from each component, is shown in the 

following figures. FIGURE 92 shows the spindle error motions for measurements one and 

two, from the aluminum plate component.  

 

FIGURE 92: Spindle error motions for aluminum plate, a.) measurement one and b.) 

measurement two 
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FIGURE 93 shows the spindle error motions for measurements one and two, from the 

aluminum ring component. 

 

FIGURE 93: Spindle error motions for aluminum ring, a.) measurement one and b.) 

measurement two 
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FIGURE 94 shows the spindle error motions for measurements one and two, from the 

aluminum stock component. 

 

FIGURE 94: Spindle error motions for aluminum stock, a.) measurement one and b.) 

measurement two 

The spindle used in testing is a synchronous, two RPM, motorized spindle. This spindle 

is not a high-precision spindle, thus the error motion are not very repeatable. It was used 

for the sole purpose of rotating the components under test, to measure the form error of the 

components. These spindle error motions are presented for completion of the axis of 

rotation testing, via the multi-probe error separation method. 
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Scalar values for the spindle error motions were determined using the Minimum Radial 

Separation (MRS) method (ASME/B89.3.4 [18]). The spindle error motion peak-to-valley 

scalar values are presented for each component. TABLE 30 shows the spindle error 

motions for the aluminum plate, for each measurement.  

TABLE 30: Peak-to-valley spindle error motions, aluminum plate a.) measurement one, 

and b.) measurement two 

 

TABLE 31 shows the spindle error motions for the aluminum ring, for each 

measurement. 
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TABLE 31: Peak-to-valley spindle error motions, aluminum ring a.) measurement one, and 

b.) measurement two 

 

TABLE 32 shows the spindle error motions for the aluminum stock, for each 

measurement. 

TABLE 32: Peak-to-valley spindle error motions, aluminum stock a.) measurement one, 

and b.) measurement two 

 

 


