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ABSTRACT

LIPIKA GHOSH. Analysis of failure time data with missing and informative
auxiliary covariates.

(Under the direction of DR. YANQING SUN & DR. JIANCHENG JIANG)

In this dissertation we use Cox’s regression model to fit failure time data with
continuous informative auxiliary variables in the presence of a validation subsample.
The work is motivated by a common problem of missing or mismeasured covariates
in survival analysis as a result of which the relative risk function is not available
for all the subjects in the sample. Here we introduce a two-stage procedure for
estimating the parameters in the model. We first estimate the induced relative risk
function with a kernel smoother based on the validation subsample, and then improve
the estimation by utilizing the information from the non-validation subsample and
the auxiliary observations from the primary sample. Asymptotic normality of the
proposed estimator is obtained. The proposed method allows one to efficiently model
the failure time data with informative multivariate auxiliary covariate. Comparison
of the proposed approach with several existing methods is made via simulations. A

real dataset is analyzed to illustrate the proposed method.
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CHAPTER 1: INTRODUCTION

1.1 Motivation & Background

In epidemiologic studies the researchers often wish to investigate the association
between a particular risk factor or exposure variable with disease. The exposure
variable may be hard or expensive to measure whereas some auxiliary variables vector
are easy to measure for all subjects in the study cohort. Statistical methods that take
advantage of existing auxiliary information about an expensive exposure variable are
desirable in practice. For example, in a large scale nutritional study, it would be
prohibitively expensive to obtain the exact dietary intake on each individual. Instead,
a self administered quantitative food questionnaire is conducted on all subjects and
a validation set consisting of a subset of the full study cohort is selected. The
individuals in the validation set are asked to provide more detailed and accurate
dietary information. Although the true covariates are missing, there exist some
surrogates or auxiliary measurements which convey information about them and serve
as common proxy measure. How to utilize the available auxiliary information is
important for achieving higher statistical efficiency in the estimation of the effect of
covariates. In this thesis, we study censored failure time regression with a continuous
auxiliary covariate vector.

A variety of authors have contributed their work to this field. Related works
include Prentice (1982), Pepe (1989), Lin and Ying (1993), Hughes (1993), Lipsitz
and Ibrahim (1996), Zhou and Wang (2000), Fan and Wang (2009), Liu, Wu and Zhou
(2010), etc. In particular, Prentice (1982) introduced a partial likelihood estimator

based on the induced relative risk function. This method was further developed
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by Pepe (1989) using parametric modeling. Zhou and Pepe (1995) proposed an

estimated partial likelihood method for discrete auxiliary covariates to relax the
parametric assumptions on the frequency of events and the underlying distributions
of covariates. This method was extended by Zhou and Wang (2000) to deal with
continuous auxiliary variables, based on the Nadaraya-Watson kernel smoother method
(Nadaraya, 1964; Watson, 1964). Fan and Wang, Liu (2009) and Wu, Zhou (2010)
used the same approach for multivariate failure time data with auxiliary covariates.
While Zhou and Wang’s (2000) approach is useful in certain situations, there are some
restrictions on it. First, the approach is effective only when the auxiliary variable W
is of low dimension so that “curse of dimensionality” in nonparametric smoothing can
be avoided. Secondly, it requires that, conditionally on X, W provides no additional
information about the hazard of failure; that is, all of the effects of WW on failure and
censoring are mediated through X, which is somewhat restricted since W may not
be a true surrogate and depends on the failure given X. In addition, the resulting
estimators of the parameters are not efficient if the ratio of validation observations
is small, which is mainly due to the fact that their smoothing method only used
the data in the validation set to predict the induced relative risk function r; for j
in the non-validation set. Since the important information from the observations in
the non-validation subsample is not fully utilized, this method cannot be efficient in
certain situations. We here propose a new method to deal with the problems. The
proposed method allows W to be highly dimensional and to be informative in the sense
that, conditional X, it may provide additional information on the hazard of failure.
We first estimate the induced relative risk function with a kernel smoother based on
the validation sample, and then improve the estimation by utilizing the information
on the incomplete observations from the non-validation subsample. In addition, the
local linear smoother (see for example in Fan and Gijbels, 1996) is employed to

enhance the performance of the kernel smoother in Zhou and Wang (2000) at the
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boundary regions. The newly proposed method will be expected to improve the
efficiency of the estimators of parameters in various situations. Asymptotic normality
of the proposed estimators is derived. The results in theory and practice show that
the proposed method is efficient in certain situations even if auxiliary variable W is
not very informative about X.

In the following sections of Chapter 1 we give a brief introduction of proportional

hazards models and a brief overview of the remaining dissertation.

1.2 Proportional Hazard Models and Partial Likelihood

Proportional hazard models are popular models used in survival analysis that
can be used to assess the importance of various covariates in the survival times of
individuals or objects through the hazard function. In survival data, we need special
techniques to explore the relationship between the survival times of an individual
and the explanatory variables. The most frequently used model was proposed by
Cox(1972) and is widely known as the Cox Proportional Hazards model. Prior to Cox
Regression the leading approach to analyze mutivariate survival data was parametric
which requires one to know the nature of the survival distribution. Also we need to be
careful about violation of the model assumptions for some parametric models. Cox’

regression model has the following advantages over those methods.
(1) Cox regression is a distribution free modeling approach.

(2) This model allows us to estimate the regression coefficients without specifying
the baseline hazard function, and the estimates depend on the rank of the event

times, not their numerical values.

(3) Since the model depends on ranks, the coefficients remain unchanged by any

monotonic transformation of the hazard function.

(4) This model permits us to incorporate time varying covariates.
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(5) With appropriate specification Cox’s model can be employed to answer many

challenging research questions.

1.2.1 Formulation of the Cox model

Let z = (21, 22, ..., 2p) be a p x 1 vector of covariates of risk factors and A(¢|z) be
the hazard function which depend on the covariates z. The generalized form of the

proportional hazards model is

A(t]z) = Xo(t)exp(Brz1 + ... + Bpzp)

where Ao(t) is the underlying baseline hazard function at time t and /i, s, ..., 5, are
the regression coefficients.

This model is known as a semiparametric model. The nonparametric part is \o(t)
since it does not require any assumption about the shape of the underlying hazard
function. The parametric part of the model reflects the effect of the predictors,
exp('z) , which is called the risk function. Cox’s model is also called the proportional
hazards model since it assumes a constant ratio of hazards over time for any two

individuals or units.
1.2.2 Partial Likelihood

The concept of Partial Likelihood was introduced by Cox (1972) for analysis of
multiplicative hazard models. It was subsequently modified by many authors, such
as Wong (1986) and Anderson & Gill(1982). Why partial likelihood is used instead of
the full likelihood? First, we are interested in making inference about the regression
parameters but not the form of the baseline hazard; second, the partial likelihood
avoids misspecification of the baseline and hence assuages the modeling bias; third,
under certain conditions the partial likelihood estimator is semiparametrically efficient.
We will first give brief description of Partial Likelihood. Consider a sample of N

individuals who are followed up in time prospectively. Suppose that k of these
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individuals die during the observed period. Also assume that, N-k individuals are
right censored, that is they are still alive at the end of the observation period.

Let t; <ty < ... <t be the ordered failure times for the k individuals who die
during the observation period.

For the individual j(i = 1,2,..N), let
t; = observed follow up time, Z; = vector of predictors, and R(t;) = the risk set
at time ¢;, that is the number of individuals who are alive and at risk at time ¢;.
The probability that the individual j with covariates z; dies at time ¢; given that

individuals in R(t;) are at risk and only one individual dies at ¢; is given by

exp(B'2;))

L
EieR(tj) exp(B'2(i))

j =

The partial likelihood (PL) is then obtained by taking the product of all these
probabilities across all the individuals in the sample who failed. Therefore, the partial
likelihood can be interpreted as the ratio of the risk for the individual who fails at a
specific time with the risk of all other individuals at the same time. The estimates
of the parameters can be obtained by maximizing the partial likelihood. We note
that, the censored observations contribute information only in the denominator of
the partial likelihood. Since each term in the partial likelihood contributes small
information about the parameters [, the goodness of PL does not depend on the
sample size but on the censoring rate. If the number of censored observations is large,
partial likelihood is less informative. Cox’s partial likelihood method is invalid when
there are ties in the dataset. In case of tied dataset, that is multiple individuals having

the same survival time, we can use Breslow’s approximation to partial likelihood.
1.2.3 Time Dependent Covariates

A time-dependent covariate in a Cox model is a predictor whose values may

vary with time. Fisher and Lin (1999) extended the cox model to include the
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time-dependent covariates. In this work Xi(t), Z;(t) and W;(t) are time dependent,

i.e, at time t, the measurements are Xi(t), Z;(t) and W;(t) respectively. For simplicity
sometimes X;, Z; and W; are used instead of Xi(t), Z;(t) and W;(t).

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2 we introduce
a new estimation approach to predict the induced relative risk for individuals in
the non-validation subsample based on the local linear smoother. In Chapter 3 we
establish asymptotic properties of the proposed estimators of the parameters. In
Chapter 4 we conduct simulations to compare the performance of different estimating
methods. In Chapter 5 we apply the proposed method to analyze a real dataset. In

chapter 6 we summarize the dissertation and discuss future research work in this area.



CHAPTER 2: ESTIMATED PARTTAL LIKELIHOOD FOR THE COX MODEL

Motivated by the idea of the partial likelihood approach in Zhou & Pepe (1995)
and Zhou Wang (2000) we introduce a new approach to estimate the induced relative

risk function for an individual in the non-validation set.
2.1 Notations

To facilitate exposition, we here employ the notations in Zhou and Wang (2000).
Suppose that there are n independent individuals in a study cohort. Let {X;(t), Z;(¢)}
denote the covariate vectors for the 7" subject at time ¢ (i = 1,--- ,n). Assume that
X;(-) is observed only in the validation subsample which is chosen at the baseline
under the ignorable missing mechanism condition (Rubin, 1976). Let Z;(-) be the
remaining covariate vector that is always observed and W (-) the informative auxiliary
variables for X (-). Let n; be an indicator variable with n; = 1 if the " individual
is in the validation set and 0 if in the non-validation set. Put V = {i : n; = 1}
and V = {i: n; = 0}. We assume that individuals in the validation subsample are
randomly selected and hence representative. Then observed data for the ith subject
is {S;, 05, Z; (1), Wi(+), X5 (1)}, if m; = 1 and {S;, d;, Z;(+), Wi(+)}, if ;; = 0, where S; is
the observed event time for the ith subject which is the minimum of the potential
failure time 7; and the censoring time C; and §; is the indicator of failure. Now,we
consider the following conditional hazard function of failure time

1
MEX(D,Z(0) = lim | Pr{t < T <t + AT, 2 1, Xi(0), Zi(1))

= Ao(t) exp{B1 Xi(t) + B3 Z:(t)}, (2.1)
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where A\g(-) > 0 is unspecified which is called the base-line hazard rate and 3 =
(81, B5) is the relative risk parameter vector to be estimated.

Model (2.1) can be fitted using the partial likelihood estimation based on the
validation set V' which leads to the complete-case partial likelihood estimator (see
Cox, 1972). The resulting estimator is consistent, but it neglects the important

information on the auxiliary W. For individuals in V', the relative risk functions are

exp{ 1 Xi(t) + 55 Zi(t)}.

For subjects in V, the true variate X is not observed, but the relative risk functions

can be imputated by estimators of

exp{ 55 Z:(t)} Elexp{ 81 Xi (1) }T; = t, Zi(t)].

Then under the independent censoring assumption (Prentice, 1982), the induced

relative risk for an individual 7 can be written as

ri(B,t) = miexp{B1X;(t) + ByZi(t)}

+(1 = ;) exp{ By Z;(t) Elexp{ 81 X;(t) }] S = t, Zi(t)]. (2.2)

Then the partial likelihood function for the § is

- (B, Si) %
PL(B) = E{zj@(&) SES) (23)

In order to estimate the parameters 5 based on the above partial likelihood, one needs
an imputation value for the conditional expectation Elexp{sX;(t)}S; > t, Z;(t)].
Different imputation approaches generally yield different estimation of 5. Zhou

and Wang (2000) employed an imputation method for the relative risk functions
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for subjects in V, where the relative risk functions are imputated by nonparametric

estimators of

exp{ 8y Z:(t) } Elexp{ 81 Xi(1)}Si > t, Zi(t), Wi(t)]. (2.4)

under the assumption that W is not informative, that is, all of the effects of W on

failure and censoring are mediated through X, so that

Mt Xa(t), Zi(t), Wilt) }

1
1 J— < . > . . .
1&%[ tPr{t <T; <t+ AT > t, X,(t), Z;(t), Wi(t)}]

1
1&5[ tPr{t < T <t+ AHT; > t, X,(t), Z;(1)}]

= Ao(t) exp{ B X;(t) + B57Z;(t)}

Mt Xi (1), Z:(1)},

Zhou and Wang (2000) derived the consistency and asymptotic normality of the
estimator. However, if W is informative, their method will generally be biased. In
addition, this method directly used information in the auxiliary covariate W and
estimated the conditional expectation in (2.4). So it may encounter the so-called
“curse of dimensionality” if W is of high dimension. For the present study, the

information in W will be used in a new way.
2.2 Local Linear Regression

We employ the kernel regression approach for estimating the relative risk function
for the subjects with missing covariate measurements. Here, we give a brief description
of the local linear regression. Local linear regression is a popular modeling procedure
in nonparametric regression. Fan and Gijbels(1996) illustrated the techniques and
theoretical properties in their literature. The local linear smoother possesses some
advantages over the Nadaraya Watson (1964) method employed in Zhou & Wang
(2000).

1. Local linear estimator has less bias while it does not increase the variance.
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2. Local linear smoothing is very adaptable and can be applied for for different

types of data design.

3. Local linear smoothing has the advantage that it adapts automatically to the

boundary effects, and so no boundary modifications are needed.

Consider the bivariate data (X1, Y}), (X2, Ys), ...., (X,, Y;,) which form an independent
and identically distributed sample from the population (X,Y). We want to estimate
the regression function m(xg) = E(Y|X = z¢) and its derivative m’(zy). The data is

generated from the model

Yi=m(X;)+e 1<i<n,

where, {¢;}7 denote zero mean random variables with variance o2.

Suppose that the second order derivative at xzy exists. We then approximate the
unknown regression function m(x) locally by a linear equation. Using Taylor’s expansion

in the neighborhood of zy we have,
m(z) = m'(xg) + (z — zo)m/(x0).

The above polynomial is locally fitted by a weighted least squares problem:
Minimize

D_Yi= Bo = Bul(Xi = m) PR (X = )

over 3;, j=0,1, where h is a smoothing parameter controlling the size of the local
neighborhood and Kj(.) = K(./h)/h. Here K is a symmetric kernel function which
assigns weight to each data point. We denote by Bj, j = 0,1, the solution of the
above weighted least squares problem. From the Taylor’s expansion we can see that
1, (o) = V1B, is an estimator of m®)(zo) (v = 0,1). The estimator 7iz(z) is termed

as a local linear regression smoother or a local linear fit. This estimator can be
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explicitly expressed as

A _ Z?:l w;Y;
o) = e
=1 "1

w; = Kh(Xi - ﬂf)Sn,z - (Xi - ﬂf)Sn,b
where, S,,; = Y7 Kp(X; — 2)(X; — z)?. For convenience we work with the matrix
notation below.

Let X be the design matrix of the given least squares problem. Then,

]. (Xl — ZE())
X =
Y1 Bo
Also, let Y = | and f=
Yri; Bp

Further, let W be the n x n diagonal matrix of weights .i.e.
W = diag{Ky(X; — xo)}.
The weighted least squares problem can then be written as
ming(Y — XB)TW(Y — X3)
with 8 = (8, 81)". The solution vector can be obtained by

B=XT"TWX) ' XTWy.
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2.3  Estimation Method

Throughout this dissertation, we assume that model (2.1) holds. In this section, we
propose a new estimated partial likelihood approach to estimate the model parameters

in (2.1).
2.3.1 Estimation of the Relative Risk Function

Denote 7(8, ¢) = exp{ B Xi(t) + 4 Zi(¢)}, and
0(6.,1) = exp{ B Zi(1) Elexp{ B Xi(0)}|S; > t, Zi(1)].

Then,
ri(B,t) = nvi(B, 1) + (1 — m:) (B, 1).

Put ¢(p1,t) = exp(B1Xi(t)) and v;(fr,t) = E[((51,1)|S; > t,Z;(t)]. Since the
validation subsample is representative, we can estimate based on the local linear

regression which leads to the following estimators of v;(8;,t) for j € V:

7 (B1) = Dl Z(0): G0, (2

where h is the bandwidth,

{52 — (Zi(t) — Z;(t))s1 H s, >0 Kn(Zi(t) — Z;(t))
Y ievise — (Zi(t) — Z;(t))s1H s, >0 Kn(Zi(t) — Z;(1))

wilt, Z5(t); ) =

and s, = 32y (Zi(t) — Z;(1)* (L5, >0 Kn(Zi(t) — Z;(2))

with K, (-) = h=¢K(-/h) for a d-variate kernel function K(-) (d is the dimension
of 7).

Here, w;(t,Z;(t);h) is known as the effective kernel ( Fan & yao 2005). In
Zhou and Wang (2000), the Nadaraya Watson (1964) estimator was used for the

nonparametric smoothing in the estimation of E[v;(5,t)|S; > t, Z;(t), Wi(t)], where
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“curse of dimensionality” can happen if W is of high dimension. The estimator is
given by,
617 sz t Z CZ(BD )7 (26>

eV

where h is the bandwidth and

Oty Z5(8): h) = Dis,on BKn(Zi(t) = Z;(0)] Y Lis.za Kn(Zi(t) = Z4(t))
eV
with Kj(-) = h=?K(-/h) for a d-variate kernel function K(-) (d is the dimension of
7).

Note that the above estimation method uses only the complete observations in V
and neglects the important information on incomplete observations in V. It follows
that this approach can not be expected to be efficient in certain situations. Also note
that even for one dimensional Z and W, the method in Zhou and Wang (2000) requires
a two-dimensional smoother while the new method needs only one-dimensional smoother.
To have a performance comparable with that of one-dimensional nonparametric smoother
using M; = 50 data points, for a 2-dimensional nonparameteric smoother, we need
about M = M}? = 109 data points. Hence the loss of efficiency due to highly
dimensional smoothing is large and increasing exponentially fast (see page 317 of Fan

and Yao, 2003).
2.3.2 Improved Estimation of the Relative Risk Function

Recall that, W is an auxiliary variable for X and is hence correlated with X. Let
&i(a,t) = exp(a’W;(t)), where « is a parameter vector to be chosen. Considering
the conditional expectation of ¥;(«,t) = E[&;(c, 1)|S; > t, Z;(t)], (e, t) can also be

estimated by local linear smoothing based on the data in V:

Oy(Brt) = S wilt, Z(0): WE(Bu B), (27)

eV
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In the above, the weight function , w;(t, Z;(t); h), kernel Kj(.), bandwidth h and

s have the same interpretation as in (2.5).

Proposition 2.1 Suppose that the conditions in section (3.5) holds and n, denotes
the number of observations in the validation set. Given (S; > t, Z;(t)), V/noh¥[(D;(B1, t)—
vi(f1,1)), (gﬂj(a,t) — j(a,t))] is jointly asymptotically normal with mean zero and
covariance matrix

Y= ’Uo(K)pil(Zj) U%(Zj’t) pZ(Zjat)o-l(Zj,t)Uz(Zj,t)

Pe(Zj,t)o1(Z;,t)0a(Z;, 1) 03(Z;,t)

where vo(K) = [ K*(u)du, 01(Z;,t) = Var[(|S; > t,Z;], 05(Z;,t) = Var[§|S;

v

t,Zj, pi(Z;,t) is the conditional correlation coefficient between (; and &; given (S; >

t,Z;), and p(-) is the density function of Z.

By the distribution theory for multivariate normal variates, the conditional distribution
of Vn,h[D;(By1,t) —v; (P, t)] given v/n,h? [@Z] (a, t) =1 (a, t)] is asymptotically normal
with mean

P2 GV 0,0) = )

The conditional mean can then be estimated by substituting consistent estimators
based on the validation sample for p’(Z;,t), 01(Z;,t) and 02(Z;,t), and replacing

Y;(a, t) with the primary sample based estimator

Di(But) = Y wilt, Zi(1); WE(B, 1), (2.8)

iEvuv

where h is the bandwidth and

{82 = (Zi(t) — Z;(t))$1 H s, >0 Kn(Zi(t) — Z;(t))
Y ievuvise — (Zi(t) — Z;(t)s1Hs,>0 Kn(Zi(t) — Z;(t))

wilt, Z;(t); h) =

and 8, = Y cpup (Zi(t) — Z; ()" (Iis,0 Kn(Zi(t) — Z;(1))
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with Kj(-) = h=@K(-/h) for a d-variate kernel function K(-) (d is the dimension of

7).
Here, w;(t, Z;(t); h) is also known as the effective kernel. By equating vnhd[0;(f;,t)—
vj(P1,t)] with its estimated conditional mean and solving for v;(f,t), we obtain an

improved estimate v;(/1,t):

7,(B1,t) = 0,(But) — 7. (Zs, t)%j’gwa,w Gyt (2.9)

The updated estimator 7; depends on « which is related to the efficiency of the

estimator.

Proposition 2.2 Assume that the conditions in section (3.5) holds. Given (S; >
i, Zj (t))i
Vrhd[5;(B1,1) = v(B1,6)] = N(0,),

where (Z;,1) = o325, )1~ (1~ p)pi2(Zy, )oK )p~(Z)).

When p!, = 0, the estimator v; is asymptotically equivalent to 7;, which corresponds
to the kernel regression estimator based on only the validation set V.

By Propositions 2.1 and 2.2, 7; is more efficient than ;. The proposed estimator is
consistent for any a. However, its limiting covariance matrix depends on the choices
of a. We chose the optimum value a,, by minimizing the trace of the covariance
matrix of the EPL estimator with B rpr substituted by the initial estimator obtained
from complete-cox regression which uses the data available only on the validation set.
In particular, BEPL(aopt) is guaranteed to be more efficient than the complete-case
estimator BEPL(O). In this study agp is estimated by minimizing the trace of the
covariance matrix of B EPL.

The proposed estimation method was similarly used in Chen and Chen (2000)
for estimating parameters in a parametric regression model. Our estimation can be

regarded as an extension of their estimation approach in nonparametric regression. In



16

addition, we do not need a working model to specify the regression relation between
the surrogate and the covariate, and hence there is no risk of mispecification of the
working model.

We propose to estimate the reduced relative risk r;(3,t) by

where ¢;(3,t) = v;(B1,t) exp{33Z;(t)}. Then the parameters 3 can be estimated by

maximizing the following estimated partial likelihood function:

n

ags) |
EPL(B) = ]1 { Zjemif ﬂ,()ﬂ, Si)} , (2.11)
where R(S;) is the risk set at time S;. We denote Sgp, = argmaxz EPL().

For an extreme case with W = Z, the ﬂj equals 1/_}j, which leads to 7; = 7; and
that the resulting estimator BEPL is the same as that in Zhou and Wang (2000). In
above estimation of the reduced relative risk, we used an improved estimator ¢,(f,t)
for j € V. The “curse of dimensionality ” problem in Zhou & Wang (2000) can be
avoided for a highly dimensional W. Our approach would be useful in cases where
the number of variables in Z which are correlated with the missing covariate X is
low, whereas the exposure variables of interest and their auxiliary variables may be

of high dimension.



CHAPTER 3: ASYMPTOTIC RESULTS

3.1 Counting Process Formulation for the Cox Model

In this section we will develop the counting process formulation for Cox’s type
of model. We are going to use the framework developed in Anderson and Gill(1982)
and the basic theory from Fleming and Harrington (1991). For simplicity, we assume
the time interval to be finite. We take the time interval as [0,1] without loss of
generality. To prove the asymptotic properties, we consider a sequence of models. A
multivariate counting process with n components is a non-decreasing integer valued
stochastic process which can be expressed as

N® = {Ni(n)(t) 0<t<o0;i=1,2,..,n}

Here, Ni(") is the number of observed events in the life of the i"* subject (i =
1,2,...,n) in the n'™ model ( n=1,2,...) over the time interval [0,1]. For simplicity we
shall drop the subscript n in the following sections.

It is assumed that V;(0) = 0 for all i and the jump size is +1. This process may
count the number of events in the n* individual that happened upto time t. If it
is the death of the individual then N;(t) € {0,1}. N;(t) is right continuous and no
two components of N jump at the same time. So there will be atmost one jump
for each subject in the study. In our model we consider the nondecreasing family
{F: : t €]0,1]} of sub g-algebra on the probability space {2, F,P}. F; is known as
the filtration which is history of everything that happens upto time t. We shall use
the results for counting processses and local martingales with respect to the filtration

given above. Counting process is associated with a cumulative intensity process A



18

whose components are given by

Ai(t) = At +dt) — Ay(t)

= P(Ni(t +dt) — Ni(t) = 1|F),

where F;_ represents everything that has happened upto just before t. This history
includes paths of N;(.) and also other information about the predictor variables and
censoring etc. A martingale with respect to a filtration F; is a right-continuous
stochastic process M (t) with left-hand limits such that, in addition to some technical

conditions:
(1) M(t) is adapted to history,
(2) E|M(t)| < oo for all t, and
(3) M(t) possesses the key martingale property E (M (t)|Fs) = M(s) for all s <.

Following Anderson and Gill (1982), our model can be generalized as

Nt +dt) — A1) = N()dt

where

ri(B,t) = miexp{BXi(t) + BZi(1)}

+(1 —m) exp{ByZi(t) Elexp{/1 Xi(t)}|S; = £, Zi(t), Wi(t)], (32)

Y;(t) = 1, if the i*" individual is under observation just before time t and 0 otherwise.
Yi(.) is known as the“at-risk” indicator process and Ao(t) is the baseline hazard
function. We assume that the covariate processes X (t) and Z(t) are predictable and

locally bounded. Since X (t) and Z(t) are taken to be adapted and left continuous
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with right hand limits, these assumptions hold true as illustrated in Fleming and
Harrington(1991). Therefore by considering the counting process N and associated

intensity process A\, we can define the process M;(t) by
t
M) = Ni(t)— / N(u)du,i = 1,2, n, t€[0,1]. (3.3)
0

Then M;(t) are local martingales on the time interval [0,1]. Then local martingales
are local square integrable martingales since the intensity process A(.) is locally
bounded. Following the theory and discussions in Fleming and Harrington (1991)

, the predictable variation process of M(t) is given by
t
< My M > = / N(u)du (3.4)
0

and < M;, M; >= 0 when ¢ # j.
The last equation implies M; and M; are orthogonal for i # j.
To prove the asymptotic properties of our estimator we use the the following

theorem on local martingales.

Theorem 3.1 If H; is a locally bounded and F,_—predictable process, then > ., [ H;dM,;

15 a local square integrable Martingale, and the predictable covariance process is given

by
< /Hl-dMi, / HydM; >=Y < /Hfd < M;, M; > .
i=1
For the proof of the above , see Theorem 2.4.3 (Page 70) in Fleming and Harrington
(1991).

Using the new notation we write down the logarithm of the partial likelihood function

using the information upto time t as

Z / log{rs(u)}AN;(u / log{ZY WYN(W),  (3.5)
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where N = Y"1 | N;. For the individuals in the non-validation set the induced relative
risk function r(/3,t) is unknown. In section (2.2) we proposed an imputation method
for the this function based on the kernel smoothing approach and then estimated the
parameter vector 8 = (f31, 85)" from the partial likelihood function given in (2.11).
Therefore to obtain the proposed estimator B rpr, we need to find the solution of the
estimating equation

0

To obtain the above, we substitute r(4,t) by 7#(3,t) given in (2.10). Then the vector
of derivatives of the logarithm of partial likelihood function with respect to 8 can be

expressed as

— Z/O A(#(u))dN; (u), (3.6)

() S (i (w)

A = S0y ™ S Vi)

Using the Doob Meyer decomposition, from (3.1) and (3.3) we rewrite the estimating

equation as

Z/ ) dM;(u +Z/ N () do(w)du. — (3.7)

Also, with the estimator of (3, BA epL, from the estimating score equation given above,
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the cumulative hazard Ay(t) = fot Ao(w) dw can be consistently estimated as

M@=bZWW%wWZMM (38)

3.2 Notations

In this section we will define some notations which will be used in the proofs. All
the limits are taken as n — oo unless otherwise stated. This implies numbers of
subjects in the validation set and non-validation set, both, n, — oo and (n—n,) —
o0o. Let d be the dimension of Z;, n, be the subsample size of the validation set,
p € (0, 1] be the limit of ratio of validation observations, lim,,_, n,/n. For a vector a,
define |a| = Va'a = /a?. Also, we write the matrix aa’ = a®? and (aa’)(aa’)’ = a®*.
For the relative risk function r (for 7, r*, 7*, ¢ and ngS as well) , let 77 denote the j

derivative of  with respect to 3, j=0,1,2, where r(®) = r. Define
sO(8,1) = BEIYi(t)ri(B, 1)),

s(B.1) = (9/98)s(8,1) = EYi(t)ri" (8,1,

s?(B,1) = (0/087)sV (8, 1) = E[Yi(t)rP(8,1))],

0

(5.0 = B[y (% Dy o),
o

(8,0 = [y 0 (= )i 0],
r(l) ®2

AW@ozEWw(&f§>rm%m
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where Y;(t) = Ijs,>4 is the at-risk indicator, rgl)(ﬁ, t) = (9/0B)r:(B,t) and 7“ @ )(B,t) =

(9/08)r{" (8,1).
Observe that,

Next we define
SW(B,t) = (0/08)SV (5 ZY v

S (B,t) = (9/987)S ZY 2

)
ZY t) 7 (o),

e (B0, 1),

i—1 ri(ﬁu t)
“ rt) ®2
SO (B, 1) = %ZY(t)( ;z(;ﬁ,;i)) ri (Bo, 1),
- r? 2
S©(B,1) = %ZY(t)( ;Z((;”t;))@ ri (Bo, 1),

n (1)
(7) Bt ZY ﬁa)) ®4 *(B()at)a

For k =1,2,...,7, we similarly define S(k)(ﬁ, t) with (3, t) replaced by 7(5,t) and

r*(B,t) by 7*(5,t), respectively.

Now, we define,

¢ (Bt) = exp{ByZi(t) Elexp{ B Xi(t)}|S; > t, Zi(t), Wi(t)], (3.9)
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and
ri(B:0) = mv(B,t) + (1= m)oi (B, 1). (3.10)
Let N;(t) = Ijs,<t,5,=1) and

M) = Nit)— /0 Vi () (Bo, ) o (1) du, (3.11)

which is a martingale (Kalbfleisch and Prentice (1980), Fleming and Harrington
(1991)) as discussed in section 3.1.

Next, without loss of generality, we assume that ¢ € [0,1]. Put
A(gi)(u) = o1 (w) /() — sV /s
AG)(w) = 7P (w) () = sV /5O
a- | A6 )Yi(0) B ) — 1o ) o),
-/ " A B0 ()Yi(0)6h s ) o),

Qr = / A(62) () Yi(0)[6 (Bor 1) — (o )] Ao(u)d

where ¢{"(8,u) = (9/98):(8,u), and
0i(u; o) = [&i(v, u) — ¥i(a, w)] exp(ByZi(u)) p5(Zi, w)o1 (Zs, w) [o2(Zs, w).
By using counting process notations, the score function corresponding to the

estimated partial likelihood function (2.11) at time point ¢ can be written as

U(p,1) = Z/ (B, w)dM;(u +Z/ (72) (8. )7 (Bos ) Yi(u)Ao(u)du(3.12)
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where
(1) n 1)
AV (y) — T, (B>U) 21:13/;(“)7”1 (ﬁ,u)
AR =260 S ViwhB )

Next we define I(3), ¥1(8) and 35(5) and X(3) respectively, which will be required

in the proof of asymptotic normality of our estimator.

Let

2) (1) 2 2 1 ®2
T (5,11) 7ai (ﬁau) 5( )(ﬁvu) S( )<57U)
) { f } ) o) ) dN"(“} |

®2
,and

%)= B[ [ st - =L (- - pe]

Y(8) = pXa(B) + (1 = p)Xa(B).

From Theorem 3.6 proved in section (3.7) , the asymptotic covariance matrix of B EPL
is of sandwich form, which can be consistently be estimated by Q = I~1(3)2(8)1~1(3),

where [ (8) and f]( B) are the corresponding sample quantities, respectively. Specifically,




~ ~

0 = / AG) OV (8. £) — di(B. )] dAolt),

~

a- [ MGVt o) dho (o),

0 = f(]l A(Qgi)(t)yz‘@)[ﬁzgi*(ﬁa t) — ¢s(B,1)] dAo(t), p = n,/n,

AB) () = ¢ (B, 8)/ds(B, 1) — SV (B,1) /5O (8, 1),

~

A () =30 (8, 8)/3:(8, 1) — SD(B,1) /5O (8, 1),

and
0i(t; ) = [, t) — tila, t)] exp(B] Zi()) i (Zi, 1)61(Zi, u) [ 65(Zi t).

3.3 Consistency of Sgpr

To show the consistency of the estimator 3 rpr, We use the inverse function theorem
from Walter and Rudin(1964) and Foutz’s (1977) argument.
Inverse Function Theorem: Suppose f is a mapping from an open set © in
Euclidean p space R, into R,, the partial derivatives of f exist and are continuous

on O, and the matrix derivatives f’(6*) has inverse f/(6*)~! for some 0* € ©. Write

A=1/4] f ) I

Use the continuity of elements of f’(6*) to fix a neighborhood Uy of #* of sufficiently

small radius § > 0 to insure || f'(8) — f/(6*) ||) < 2\, whenever § € U;. Then
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(a) for every 6,0, in Uy,

| £(01) — f(02)] = 2[00 — 05,

and (b) the image set f(Us) contains the open neighborhood with radius Ad about
i)

(a) insures that f is one-to-one on U; and that f~! is well defined on the image set
f(Us). The proof of the theorem is given in p 194 ( Walter & Rudin, 1964). Consider
the inverse function %U ~1 which is a mapping from p-dimensional Euclidean space to
an open subset of B. BEPL is the value at 0 of this function. In the later section we
show that, this inverse function is well defined in an open neighborhood about 0 with
probability tending to 1. Then we can prove that Bgp; = %U ~1(0) is a consistent

estimate of fj.
3.4 Asymptotic Normality of BEPL

To prove the asymptotic normality of the estimator BEPL we use martingale
approach under multivariate counting process framework. The main techniques we
employed are Taylor’s expansion of the score function corresponding to the estimated
likelihood function (2.11), Lenglart inequality, the martingale central limit theorem
(see e.g. Fleming and Harrington, 1991), and nonparametric regression techniques.

We use the first order Taylor’s expansion of the score function U(ﬁ , 1) around Sy,
which gives

(5", 1)(6 — Bo),

where, [£* is between B and fy. Since BEPL is the solution of the score equation

ﬁ(ﬁ ,1) =0, we can rewrite the above equation as

n’l/sz(ﬁo, 1) = {—n’1 4

5" U, 1)}n**(Bepr — Bo).
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We will show that
L, 0U(Bx, 1)

,
o5 — 1(5)-

Then the asymptotic normality of n'/2(3gp,— ;) follows by showing that n=/20(5,,1)
is asymptotically normal with mean 0 and variance (1 — p)X1(8y) + pXa(5o), where
p, 1(Bo), X1(Po) and Xa(fp) are defined in the section (3.2).

3.5 Definitions and Conditions

The following conditions are needed throughout the remaining part of the dissertation:
(1) fol Ao(8)ds < oo.
(2) Pr(Y (1) =1|V) > 0 for any V.

(3)There exists an open subset B, containing the true (3, 5y, of the Euclidean
space R,. In addition, 7’2(2)(5,15) with elements (92/03,08;)r(B,t) exists and
is continuous on B for each ¢ € [0, 1], uniform in ¢, and ¢(f,¢) is bounded away
from 0 on B x [0,1]. Furthermore, I(5y) defined in section (3.2) is positive

definite.

(4)
E{ sup [Y()r'D(B,t)|} < oo, j=0,1,2,

Bx[0,1]
T(l)(ﬁ,t) ®2j . o
E{Bi‘%?u’”“ (o) rwolj <o g
E v (T80 - / =1,2
Bi%i” ()(W) (8o, t)| p <00, j=1,2.

(5) Let Fy 1),z be the joint distribution of (Y'(¢), Z), and f(t, 2) = (0/0z) Fyw),-(1, 2).
For each t € [0, 1], both f(t, 2) and ¢(3,t) have the 2nd continuous derivative

almost everywhere.

(6) h — 0, nh?™3 — 0 and nh?(logn)? — oo, as n — oo.
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3.6 Properties of Local Polynomial estimators

Our proposed estimator is based on local linear estimation which we introduced

in section 2.2. In particular, we employed the local linear kernel smoother (p = 1)

in section (2.2) of chapter 2. In this section we will mention some properties of

local linear estimators. Most of the proofs are given in Fan and Gijbels (1996), Fan

and Yao (2005). First we show, how a local polynomial kernel smoother can be

expressed as usual kernel estimator introduced by Nadaraya and Watson. Define Sy,
for k =0,1,..p given by,

Sk =Y (Xi — z0) K (X; — x0).

=1

Now, let, S = XTW X, the (p+ 1) x (p+ 1) matrix Sy, 0 < k, I < p.

Then the estimator 3, from section (1.4) can be written as

N

61/ = €Z+1ﬁ
= ezjxﬂHSilXTWy

_ ZWV<XZ;$°)K-(¢), (3.13)

eV

where, W, is called the effective kernel and can be expresses as the following
W,(z) = el S™Y1,zh, ..., (zh)’}K(z)/h (3.14)

In the expression above W, depends on the design points and locations. That is
why it can adapt automatically to various designs and to boundary estimation. The

weights W, satisfies the following discrete moment conditions

n

X —
Z(Xz - J;O)qu,( 7 5130) = 0 0<v,g<p, (3.15)
1=1
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where 0, , = 0 if v # ¢ and 1, otherwise. It follows from the above result, that the
local polynomial estimator is unbiased for estimating [, when the true regression
function m(x) is polynomial of order p. To prove the asymptotic properties we need
the asymptotic form of the estimator in (3.13) .

Let S be the (p + 1) x (p + 1) matrix whose(i,j)" element is p;;;_2, where,

My = ffooo uw? K (u)du. With these notations we can define the equivalent kernel by,

Ki(w) =l STV, a, ..., ()P} K (x) = (i s%l)m:o, (3.16)
1=0
where S" is the (v + 1,1+ 1)-element of S™"..
Note that,
S = nb*fao)udl + op(1)} (3.17)
From this, it follows that,
S = nh"f(ze)HSH{1 + 0,(1)} (3.18)

where, H = diag(1, h, .., h?). substituting the above in the definition of W, we have

1

W(z) = nhv + 1f(xg)

el 1 STHL z, o, (2)PIK (2){1 + 0,(1)} (3.19)

Therefore,

_— 1 "X — 1) A
b = iy o (F R e (320)

where K(z) is already defined in (3.16).
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The kernel K satisfies the following moment conditions:

/qu:(u)du — b, 0< v, q<p,

This is an asymptotic version of the discrete moment conditions in (3.15). Next we
give the expressions for bias and variance of the estimator m”(xy) with respect to the

equivalent kernels K

mP () RPHY 4 0, (RPT1TV)(3.21)

bias (i (x0) = / W (u)du ) TR

and

Var(i, (z0)) = / K22 (u)du f<;20>;%°+)2y+op(nhf+gy). (3.22)

Finally, we state two important results. The proofs are given in fan and Gijbels
(1996).

If the design density f is uniformly continuous on [a,b] with inf,cpf(z) > 0,
then the local polynomial estimator has the following uniform convergence under the

condition

SUPsefay|M(z) —m(z)| = Op< Wy

W} 1/2) (3.23)

Under condition (1) in §6.6.2 of Fan and Yao(2005) and if h = O(n'/*r+3)) and

m®+1 () is continuous at the point x, then as n — oo,

P R Mm@t ()
Vnh|diag(1, W) {BP(x) — Bolx)} — WS Cp

— N{0,0%(z)S7'S*S™'/f(2)}, (3.24)

where S = {1 j o} itP™, 8% = {vi oY with gy = [% W K (u)du and v; =
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[ W K (u)du.

3.7 Proofs

First we prove the two propositions mentioned in Chapter 2.
Proof of Proposition 2.1. Note that 0;—v; = >, wi(vi—v;)+ >0 Wil G—14)-

In the above wj is the effective kernel weight and can be expressed as

{52 = (Zi(t) = Z;(O)s1} 15,20 Kn(Zi(t) — Z(t)) -
Yievise = (Zi(t) — Z;(t))s1H s, Kn(Zi(t) — Z;(1)) Y

wilt, Z;(t); h) =

By standard nonparametric regression techniques (see for example Héardle, 1990; Fan
and Gijbels, 1996 ), it can be shown that the first term above is O,(h™!) as in (3.21)
(v = 0), which is of order 0,(1/v/n,h?) if one uses an undersmoothing bandwidth
such that nh?*3 — 0, so that 0; — v; = >, wi(G — i) + 0p(1/v/nyh).

Similarly, @Ej—@bj =D ev wi(&—1;)+0,(1/v/n,h?). Then the asymptotic normality
can be obtained by using the Cramé-Wald device and directly computing the asymptotic
mean and variance (see, for example the Lemma 6.3 in Jiang and Mack, 2001).

Let,

an =V nv — V] Zwl z _'_ Op(l)

and

W, = Vnohd[é; = wi(G — i) + 0,(1)

Let W, = aV,, + bV, + 0,(1), where a, b are scalars.
NOW, E{Wn|S] Z t, Z](t)} = E{aan + an2|SJ Z t, Z](t)}

E{aVa|$; 2, 2(6)} = Ead {wi(G — B(GIS; = t, Z,(0}S: = £, 21

0

I

Similarly, E{bV,,|S; > t, Z;(t)} = 0.
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Now,

Var [Wnysj > ¢, Zj(t)}

= Var{aV,, +bV,,|S; > t. Z;(t)}

— aVar [Z wilG — v)|Si > ¢, Z,-(t)] +0*Var [Z wil& — U)|S: > t, Zi(t)
2abCo0 | (S enlG— ). Y il — )18 > 1. 21|
L (@ b)T(a b,

01(Z;, 1) P (Zj,t)01(Zj,t)02(Z5, 1)
pe(Zj t)or(Zj,t)oa(Z;,t) 05(Z;,t)

where vy(K) = fKQ(u)du, o3 (Z;,t) = Var[(;|S; > t,Z;], 05(Z;,t) = Var[§|S;

v

t,Z;], pi(Z;,t) is the conditional correlation coefficient between (; and &; given (S; >
t,Z;), and p(-) is the density function of Z.

Now, by properties of normal distribution, the result in (3.24) and Cramer-Wold
device

Vo k[ {0;(Br,t) — v (B1, 1)}, {1 (g, ) — (e, 1) }] is jointly asymptotically normal

with covariance matrix X defined above. Hence the proof is completed.

Proof of Proposition 2.2. Note that from (2.9)

25222 (s = ) = (& — )] (1 + 0,(1)).

_p*(Zja t)

The asymptotic normality of v/n,h?(7; — v;) is obtained by the asymptotic normality
of vVn,hi(v; — v;), \/nvhd(@@j — ;) and Vnhi(; — ;).

Note that 2+ — p as n — oo.
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Using the property of multivariate normal variables and Slutsky’s theorem

V nvhd(ﬂj — VJ) i> N(O, Q),
where

= K)o () [o(25:0) + 02020 B b2

OZE) 27, 0) — 20722, t>%m<zj,t>@<zj,t>

hN

tiag<zj,t>+2pp (2.0 75032,

t)
1—p)pil(Zj, t)]vo(K)p~ ' (Z;)

Hence proved.
Next we need the following theorems and lemmas to show the consistency and

asymptotic normality of our proposed estimator. Some of the proofs are given in
Anderson and Gill(1982) and Zhou PhD Dissertation(1992). We follow their idea

and the proofs relevant to our model.

Theorem 3.2 Under the conditions in section (3.5)

SUPpx|0,1] | Q_S(ﬂat) —¢(B,t) [[= 0as and SuPgx|o,1] | 7(8,t) —r(B,t) |- 0 as

Proof. Consider the notations defined in section 2.2. Note that from (2.9)

7 — vl = [ — vyl
(B s =)+ (= )]

Now applying the theorem 6.5 in Fan and Yao (2005) given in (3.23) and the condition
(6) in section 3.5, we have 0 — v; — 0.
Similarly from the definition of 1@» and @j, and the same argument for local

polynomial estimators
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(thj = 15) =50

(5 —bs) = 0.

Also the local polynomial kernel estimates p’(Z;,t), 61(Z;,t) and 61(Z;, t) converges
to pi(Z;,t), 01(Z;,t) and 09(Z;,t) respectively.

Therefore,

SUPgy 0,1 | (B,t) — o(B,t) || 0 a.s.

Now, (7;(8,t) — r;(8,t))=0 when n; = 1.

So Supr[OJ} H f(ﬁa t) - T(ﬁa t) ||% 0 a.s.

Theorem 3.3 Under the conditions in section , for k=0,1,.....,4

sup || SP(8,8) = SP(B,1) |- 0 as
Bx[0,1]

and

sup || S®(B,t) — sW(B,1) |- 0 a.s
Bx[0,1]

Proof. We shall prove the above result for for £ = 0. The remaining results can
be proved in a similar way. By the definition of S©(,¢) and S©(8,¢) and by the
theorem (3.2)

SUPg0,1 || 5’(0)(ﬁ,t) —SOB,) |-+ 0 a.s

Next, by the definition of s(°) and applying the uniform stron law of large numbers

sup || SOB,t) — (B, 1) [|= 0 as
Bx[0,1]

Now,

sup || SO, 1) —sD(B,0) | < sup || SO(B,1) = SO(B,1) |
Bx0,1] Bx0,1]

+ sup || SOB,t) — 505, ||
Bx[0,1]
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Hence, it follows directly,

sup || SO(B,) = sO(B,1) |- 0 as
Bx[0,1]

Lemma 3.1

1/22/ (8o, w) — 1) By, W) 2Yi(w)rs (o w)Ao(w) dw 50, k= 0,1

‘WZ/ 59 (B0, 1) — 5% (B 0)PYi(w)r (o w)dofas) o 5 0, & = 0,1.

Proof. The proof of the above theorem is similar to the lemma 2.4 of Zhou (1992,

PhD dissertation)

Lemma 3.2

n‘lﬂz;/o A(73)(Bo, w)Yi (w)ri(Bo, w) Ao(w) dw
= —n_l/QZ/ A(r:) (Bo, w)Yi(w) [ (o, w) = 7i(Bo, w)]Ao(w) dw

_nfwz / A1) (Bo, w)Yi(w)[ri(Bo, w) — 77 (Bo, w)]Ao(w) duw + 0,(1)

Proof. By the Taylor expansion, the second term of U(S,t) in (3.7) admits the

following decomposition

Y / A(E3) (B, w)Y: ()1 (o, w) () duo
- _n,wz / (1) (B ) Yi(a0) 75 Bos ) — 73(B, ) Mo(uw)duw

'/ Z/ (13) (Bo, w) Y (w)[ri(Bo, w) — 77 (Bo, w)] Ao (w)dw + 0,(1).
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Of(x,y)
flx,y) = flwo,90) + P (z — x0)
x 0,40
f(z,y
S ) O ) (- 00,
Y T0,Y0
if %, g%’;, and _afafy are finite. Then @ = # — —r(l)g_” +O[(F —r)? + (P — r1))?]

s &) S((§—gO . .
S0 = 50 SUEZSO) 1 0[(S — SO)2 4 (50 — s,

Note that Y A7 (u)7;(uw)Y;(u) = 0.

It follows that the left side of the result in the lemma can be expressed as

Ry / A7) (Bo, ) Yi(aw)r (Bo, w)Ao(uw) deo
Y / AGE) (Boy )Y ()[4 Bor w) — 2 (Bo, w) o w) du

= —n—l/ZZ/O A(rz)(ﬁo,w)}/z(w)[ﬁ(ﬁo,w) —’f‘i<60,w) +n~(60,w)
—r!(Bo, w)|Ao(w) dw + 0,(1)
= =Y [ A o)V B ) = (o ) Do) o

—n1? Z/ A(r3)(Bo, w)Yy(w)[rs( Bo, w) — 75 (Bo, w)ho(w) dw + 0, (1)

where the last equality is from Lemma 2.4 of Zhou (1992). Therefore the result holds.

Lemma 3.3

10U(8,1
supmes| — - 2 — 109 L0

Furthermore, —%%50) s positive definite with probability going to 1.

Proof. From equation (3.6) we have

. "t (8, " Y)Y (8, u
Uug,t) = Z/O [ - (B,u) _ jlm ) - (B, u) dNi(u) (3.25)
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Differentiating with respect to 3, we have,

- [f?)w,w . <vj§”<ﬂ,t>)®2

o/~ [ By

=1 TAZ(O)(ﬁat) T(O)(ﬂat)
S&(B,1) | (SW(B, 1)\
50 <S<O>(6,t>) Jarice
Now, we define the process,
C(B,1)
S OB R RN
- /o;[f?)(ﬁ,t) <f§°><ﬁ,t>>
SO@B 1) (SVB O\,
5ot <S<0>(ﬁ,t)> ]Yz(t)ri (Bos )Mo (t)dt
Then,
1 n__o(2) A1) 5
_16U a . _10 _ -1 T (/Bat)_ Ty (57t) ®
S /” ;[f§°)(6,t) <f§°><6,t>>
S&(B,1) , (S8
“Soen  Gogg) 190

which is a local square integrable martingale by condition (3) and the covariance

process is given by

(n'oU(B,.)/08 — n~'C(B,.),n OU(B,1)/08 — n~'C(B,1)) = B(B,.),
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where

+ remaining terms

By the definitions in section (3.2) and conditions in (3.5) all the terms converge to
zero. Therefore | B(5,1)|5 L 0. Now, by Lenglart’s inequality( Apendix I Anderson
and Gill 1982) it follows that %U(ﬁ, t) and C(f3,t) converges in probability to the

same limit uniformly in § € B. By theorem (3.3) and conditions in section (3.5)
1
-C
n

(8,1)
P "L 5 s
_>/0 Z[S”(ﬁ,t)—s”(ﬁ,t)—#

B,t)

5O (Bo, 1) + <s(0)(@’ t))®25<o>(50, H|o(t)dt

= —I(p) uniformly in f in the neighborhood of f.
Hence,

10U(3,1
supmesly T — 1(8)] 5 0

At 8=y, I(B) = I(By) which is positive definite by condition (3). Hence the proof

is completed.
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Lemma 3.4 Under the conditions in section (3.5) , we have:

nil/Qﬁ(ﬁo, 1)

NP
— 2 o; (50710) (507 ) s o n- o o
> /0 {@(5{»“) (6o >}dM<) Qi Qr | +o)
[ (. (1
n-1/2 T (6(»“)_ (B0, u) I s Y S
" Zv/{U”) G )} AMi(s) = "M@ - 0 >].

where Q, QF, Q™ are defined in section (3.2).

Proof. Note that 7;—r; = (1—n;) (¢ —¢;) and r;—rF = (1—n;)(¢;—¢F). Applying the
first order expansion x/y = xo/yo+(x—20)/yo— (¥ —10)o/y3 +O((x—x0)*+ (y —10)*)
to 7V /7 and SM /SO around (r®,r) and (1), s, respectively, and by lemma 3.2

we can rewrite the second summation of n~ /20 (f5,, 1) in (3.12) as

) (B )Y )17 o) = (B ) i ) = B ) o) o +-0,(1)
- *1/22 / A () (B ) Vi) Bos w) = il oy ) do(w) du

1/22/ () (Bo, w) Y (w)[ri(Bo, w) — 77 (B, w)] Ao (w) dw + 0,(1)

— ey / 03) ()Y (u) o (u)d

JEV

- 1/22/ (67 — 6;)A(65)(w)Y; () o (u)du + 0,(1)

JeEV
= I, + 1, +0,(1). (3.26)

Note that éj(ﬁ,t) = 0;(B1,t) exp{ByZ;(1)}.
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Since
n 2 / * Ul(Zjvu) h "
¢j—¢; = (¢ — ;) —exp{BrZ;(u)}po(Z;, u) >(Z;. u)(%’—wj)(lJrop(l))
= Zwi(%_gbj)_exp{ﬁé sz i @Z)] pa Z],U)%
(6 — )t (20w T L o (L
- 3 ale - B0 S o) +al )
= Xl = 65) — e {BZ ) 2 2 (6~ )]0+ 0p(1)
Y as— ) el B LA L) 2 (14 0y(1) + 02
the first term in (3.26) can be rewritten as
——n Y / A(6)(@)Y;(w)Aofu)
{3l - ) — exp{ 32,0 >}pz<zj,u>j;§?’g (& — )
2% 7
b Y a6~ ) exp B2, 2, 4 2 b1+ 0,(1) + (1)
VUV 7

= JatJdnt Op(l)-

Note that
ny' > Vi) Kn(Zi — Z) = f(t, Z;)(1 + 0,(1)),

eV

nt Z Yi(t)Kn(Zi — Z;) = f(t, Z;)(1 + 0,(1)),

ievuv

wit, Zi h) = 71t Z;) (1 + 0p(1)) n, Yi() EKn(Z: — Z;),

wit, Zish) = 1t Z;) (1 + 0p(1)) nYi() Kn(Z: — Z;),
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uniformly for j =1,--- ,n. Then

)Y | Ay . z)-

o1(Zj,u)

-;E:Y u)Ku(Ze = Zy)l( = 6) = exp{BaZ; ()l Zg, ) S (6 = )ldu
+ op(1)
- Y0 Qi+ o),
I = =3 [ AG) @Y {52 )i (20 2
<2 Y VK2 = )(6 — 6)f  Z)du +o,(1)
_ 1 n — n, Z Qr +0p
ievVuv

Again, since ¢! — ¢; = ¢ — E{$3|Yi(t) = 1, Z(t)}

The second term in (3.26) can be rewritten as

Iny = w2y / — B{6IYi(w) = 1, Zi(w)] A(65) ()Y (w)ho(u)

jev

= p /2 Z Qr.

jev

Therefore, the second summation of n="/2U(f, 1) in (3.12) equals

1l n=-mn, Z[Qi—Qf o Ltn—n, Z O —l—Tfl/QZQ**ﬂLOp

IEVUY jev

Hence, nil/QU(/B, 1) can be expressed as
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g [ -t o 5 s o0
ey [ et o - —@r";"w] -
Lemma 3.5 Under the conditions in section (3.5)
n~tU(Bo, 1) =5 0.
Proof. From lemma (3.4) we can write,
Y206y, 1)
e [ e ] o
s | [ e o >—"2f”<@i—@f"2””>]~

Note that M;(t) is a martingale with mean zero. Also F [Qf] = 0, E'[Qf*] = 0 and

E[Q;] = 0. Then, by strong law of large numbers, we have
n'U(Bp, 1) =5 0

3.7.1 Proof of consistency of Bppr,

Theorem 3.4 BEPL s a consistent estimator for [y.

Proof. We have shown that n_l%lj (8,1) exists and is continuous in an open
neighborhood B of 5y. Now, by the lemma (3.3) —n‘l%ff (B3, 1) converges in probability
to a fixed function I(8), uniformly in an open neighborhood of ;. Also every

element of 7(3) is a continuous function of 3 in the neighborhood of 3y and I~1(f)
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exists. Next, by condition 3 in section (3.5) —n_l%ff (B8, 1) is positive-definite with

probability going to 1. Finally from lemma (3.5) we have, nil%ﬁ(ﬁo, 1) 2% 0.
Using the above results, Inverse Function Theorem given in section 3.3 and following

closely the arguments of Foutz (1977), BEPL is a consistent estimator for .

3.7.2  Proof of Asymptotic Normality of BEPL

Theorem 3.5
0

55U (B Dla=r = 1(50)

1
n

Proof. In lemma (3.3) we have shown that,

A~

—%%U(ﬁ, 1) =% I(B) for any B € B and that I(f3) is positive definite, where

~

(5o)

g s (Bo,t) (5" (Bo,t)
/0[3(0)(60,15) (s«»(@O,t)

(2) @
[3(3)(507,5) _ 3(4)(507t) _ %S(O)WOJ) + (W)ws(m(@o,t)})\o(ﬂdt

)]s o, (01

I(B) is continuous in . Now, for (3, lying between Brpr and B,

10

| —E%U(ﬁa 1) —I(Bo) |

U(8,1) = 1(8") + 1(5") = 1(5o) |
U(3,1) = 1(B) | + [1(B) = 1(6o)
The first term on the right hand side goes to zero in probability by lemmma 2. Since

BEPL is consistent estimator for 5y by theorem 3.4 and [ is continuous, the second

term converges to zero in probability. Hence,

1 8 il a.s
_E%U(ﬂ,l)“}:ﬁ* — I(fp) as n — 0
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Theorem 3.6 Suppose that Conditions in section 3.5 holds. Then BEPL satisfies
Vi(Bepr — o) — N(0,Q(8)),

where Q(By) = I7(Bo)X(Bo) I (Bo) with (Bo) = (1 — p)X1(Bo) + pXa2(bo),

Proof: By (3.12), Brpr solves the equation U(B, 1) = 0. By Taylor’s expansion,

_,—19UB ) oU (B,

1) R
5 Vn(Bepr — o), (3.27)

n~ V20U (B, 1) =

where 3, is between BEPL and fy. By Lemma (3.3) and consistency of BEPL,

—1 80(5*7 1)

o5 1)

Therefore, to prove the asymptotic normality it suffices to show that n="/ 207 (6o, 1)
is asymptotically normal with mean 0 and variance (1 — p)X;(8o) + pXa(f5o)-

From lemma (3.4) we have,

[ 1 (1) (
n71/2 ¢z (607 ) )(507 ) s _n .k 0
;/0 {@(50,“) SO (Fo, )}dM() Q + Q| +0,(1)
[ (D)
n1/2 i (ﬁo,u)_ Y (B, u) Ty T
ey | {n%,u) T )}de - @i >].

Now, A¢(f5y,u) is locally bounded by the given conditions. By the martingale
central limit theorem the first term above converges weakly to a gaussian process
with covariance (1 — p)¥1(fp). The third term above is a sum of independently
distributed terms with mean zero from the validation subsample. Then this term is
asymptotically normal with mean zero and variance pYs(fy). By independence of the

two terms, nil/QU(ﬁo, 1) £ N(0,%(8p)) with (o) = (1 — p)X1(Bo) + pX2(Bo)-



CHAPTER 4: SIMULATIONS

In this section, we conduct finite-sample simulations. The aims of the simulations
are three-fold: one is to examine the small sample behavior of BEPL, another is to
compare the performance of our estimator with some existing estimators under various
situations, and the third and the most important is to illustrate that the proposed

estimation allows for an informative auxiliary vector W.
4.1 Generation of Data

The covariates (X, Z) are generated from the following transformation to create

correlation:

- , (4.1)
Z 05 1 U,

where U;’s are independent and identically distributed as U(0,2). The failure time T

conditional on covariate X is from an exponential distribution with hazard function

A(t; X) = deaxp(61X + B22),

where, A is the baseline constant hazard. We only consider the case A = 1.
Then
ft: X, 2) = exp(BiX1 + BoXo)ewp(—tePFH02))

The auxiliary variable W is generated from

W =X+ ~log(T) +e, (4.2)
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where e ~ N (0, 0?) and 02 is the parameter controlling the strength of the association
between X and W. We consider the settings with v = 0, 2 and 4. The model (4.2)
with v = 2 allows one to explore the effectiveness of the proposed method with an
informative surrogate W. For v = 0, it also allows us to compare the performance of
the newly proposed method and that in Zhou and Wang (2000). We do simulations
for 0 = 0.2, 0.8 and 1.6. The censoring variable C is uniformly distributed and
is independent of the failure time variable. It is generated from the uniform (0, c)
distribution where c is a parameter which determines the percentage of censoring in
the sample.

For 8 = (In(2),0.5)), the values of ¢ for 20%, 50% and 80% censoring obtained
are 0.1353, 0.372 and 0.0965 respectively. The observation time is then obtained from
S=TAnNC.

The validation set is randomly selected by using P(n; = 1) = 0.5. We choose
the Gaussian kernel function with the bandwidths h = (6,n'/% which satisfy the

bandwidth conditions in section 3.5, where 7 is the sample standard deviation of Z.

4.2 Implementation method in finite samples

In the proposed estimation method we obtained the pseudo-partial likelihood by
considering all the subjects both in the validation and non-validation sets. For the
subjects in the non-validation set we estimated the relative risk function by the kernel
smoothing approach. Recall that, the estimated relative risk defined in (2.9) is given
by

(B, 1) = mvi(B, 1) + (1 —n:)¢a(B, 1),

where ¢;(8,t) = 7i(B1,t) exp{8,Zi(t)} and for j € V,

7(00,1) = 55(50,8) = (2, TN g 0, 8) — o, ).

Q(Zj7 t)
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Now consider the weight function in the definitions of ©;(f, ), &l(ﬁ ,t) and 1;(3,1) in

Section (4.1). 7j(f1,t) is undefined when the denominator is zero. It happens when
the risk set in the validation set is a null set. Similar situations occur in estimation
of 1@(6 ,t) and v;(8,t). In practice, when we have a finite sample it is indeed possible
that there will be no subject in the validation set at time t which usually happen in the
latter part of the time interval being studied. Consequently 7;(51,t) (i = 1,2,...,n)
becomes impossible to calculate. In this case we could use either of the following two

approaches

(a) perform estimation without using those points where the risk set in the validation

set becomes empty.

(b) perform estimation after imputation of the relative risk function at those points

by interpolation based on neighboring points.

Since Z is assumed to be a continuous variable, we employed the latter approach
in our study to deal with the problem. For those observations, for which the risk set
is empty, the relative risk functions can be estimated by the relative risk function
of the subject with maximum observation time at risk in the validation set. Then
the parameters [ can be estimated by maximizing the following estimated partial

likelihood function:

n 0;
EPL(3 (8, %)
H{ 2 jers) TP S)} ’

=1

where R(S;) is the risk set at time S;. We denote BEPL = argmaxg EPL(J). The
performance of the proposed estimator in finite sample is illustrated in the following

section.

4.3 Simulation Results

Tables 4.1-4.9 provide the results for the following settings:
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1. By [In(2),0.5].

2. n: 100, 200 and 300.

3. Censoring percentage: 20%, 50% and 80%.
4. 0:0.2,0.8, 1.6.

5. v:0,2 4.

6. validation fraction p: 30%, 50% and 70%.

In this section we will discuss the results in regards to bias and asymptotic
normality of BEPL. We will also observe the performance of the variance estimator

proposed in our study.
4.3.1 Bias of Brpr

Examining the first column in the Tables 4.1-4.9, we find that there exists a bias
in different situations which tends to zero. In all the situations BEPL is observed to
be a consistent estimator of true fy.

We observed the effect of four different factors on the bias of the estimator B EPL

which is illustrated below.
1. n: As the sample size n increases, the bias decreases.

2. Censoring Percentage: We did not observe any significant effect of censoring

percentage on the bias of BEPL.

3. o: o represents the strength of association between X and W. Since we include

the information contained in W both from the validation and non-validation

2

sets the effect of o on the bias of the estimator is not dramatic. When n

increases, the bias of Sgpy goes to zero.
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4. Validation fraction: As the validation fraction increases the bias decreases. In
Tables 4.10 and 4.11, we have shown the bias of estimator for different validation

fractions and n = 300.

4.3.2 Normality of Bgpr,

In chapter 3 we proved the asymptotic normality of the proposed estimator B EPL-
In Figures 4.1-4.6 we draw the QQplot of the estimates for different values of ¢ and
when n equals 300. We observe that the plot is close to a straight line. As n increases,
the points lie closer to the line. Therefore, we can conclude that BEPL = (Bl, Bg)’ are

approximately normally distributed.
4.3.3 Performance of estimator of standard error of B EPL

The sample standard error of B epr 1s calculated from 500 simulations and shown
in the Tables 4.1-4.9 for different settings. This simulation standard error can be
used as an estimate of the true standard error of the estimator. We also calculated
the mean of the 500 estimates of standard error using the variance estimator of B EPIL
suggested in chapter 3. By examining the corresponding columns in the tables, we
observe that the estimated standard errors provide very good estimates of the true
standard errors of the EPL estimator. The mean of the estimated standard error is
very close to the simulated standard errors of B EPL-

We also calculated the nominal 95% confidence intervals using the following formula

Bepr + 1.965.¢(BeprL).

The coverage probabilities are listed in the table which ranges from .91-.96 in most

of the cases. This implies that standard error estimates of B Epr are quite reasonable.



Table 4.1: Simulation Results with 8 = [0.693 0.5]', v = 0 and 50% censoring

4.3.4 Results

n o BEPL mean  median se mean(se) cp
100 0.2 61 0.701 0.679 0.436 0.405 0.948
By 0.509 0.513 0.310 0.277 0.926

0.8 Bl 0.744 0.726 0.443 0.399 0.940

Bg 0.505 0.499 0.307 0.279 0.926

1.6 Bl 0.761 0.745 0.438 0.404 0.950

By 0.503 0.495 0.304 0.277 0.936

200 0.2 Bl 0.727 0.700 0.304 0.283 0.936
By 0.503 0.516 0.201 0.194 0.944

0.8 Bl 0.761 0.720 0.312 0.287 0.930

Bg 0.492 0.510 0.205 0.197 0.944

1.6 Bl 0.763 0.727 0.311 0.290 0.922

by 0.494 0.514 0.204 0.199 0.944

300 0.2 Bl 0.671 0.671 0.238 0.249 0.940
Bo  0.505 0.504 0.163 0.161 0.946

0.8 Bl 0.693 0.697 0.243 0.227 0.930

Bg 0.498 0.503 0.166 0.159 0.942

1.6 Bl 0.697 0.697 0.242 0.228 0.938

By 0.497 0.504 0.166 0.160 0.952

20

1BEPL denotes the proposed estimator, se is the standard error of BEPL from simulation,
mean(se) denotes the mean of the estimated standard errors and cp denotes the 95% coverage

probability.
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Table 4.2: Simulation Results with § = [0.693 0.5]', v = 2 and 50% censoring

n o BEPL mean  median se mean(se) cp
100 0.2 B 0.745 0.727 0.432 0.403 0.948
By 0.516 0.514 0.312 0.280 0.928

0.8 £ 0.747 0.740 0.436 0.406 0.942

By 0.515 0.508 0.310 0.281 0.920

1.6 B 0.741 0.717 0.425 0.412 0.950

By  0.516 0.507 0.311 0.278 0.922

200 0.2 B, 0.747 0.713 0.296 0.287 0.944
By 0.502 0.513 0.202 0.198 0.952

08 B 0.748 0.719 0.291 0.287 0.948

By 0.502 0.512 0.203 0.198 0.952

1.6 B 0.758 0.740 0.296 0.289 0.942

By 0.498 0.503 0.202 0.199 0.950

300 02 B 0.691 0.683 0.242 0.233 0.938
By 0.500 0.509 0.169 0.161 0.938

08 B 0.689 0.687 0.234 0.226 0.942

By 0.500 0.512 0.163 0.159 0.948

1.6 B, 0.688 0.677 0.242 0.227 0.942

By 0.501 0.513 0.167 0.159 0.944

54



Quantiles of the Estimator (;

Quantiles of the Estimator (2

=
3
:

0.5+

-0.5¢

+ +
oA

i
4 /Jri;

1 1

-4

15¢

-0.5

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

o

1 1 1 1 1

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

Figure 4.4: QQplot of Bgpr = (61 fs) for n =300, v =2 and o = 0.2
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Figure 4.5: QQplot of Bgpr = (1 () for n =300, v =2 and o = 0.8

26



Quantiles of the Estimator (;

Quantiles of the Estimator (2

0.5+

-0.5

+

1 1

15¢

0.5¢

-0.5

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

g+ +

1 1 1 1 1

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

Figure 4.6: QQplot of Bgpr = (1 () for n =300, v =2 and 0 = 1.6
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Table 4.3: Simulation Results with 8 = [0.693 0.5]', v = 4 and 50% censoring

n o BEPL mean  median se mean(se) cp
100 02 B 0.733 0.714 0.436 0.415 0.954
By 0.521 0.511 0.314 0.285 0.922

0.8 B 0.735 0.727 0.435 0.432 0.946

By 0.517 0.509 0.314 0.295 0.922

1.6 B 0.732 0.716 0.443 0.478 0.952

By 0.513 0.510 0.326 0.299 0.926

200 02 /B, 0.738 0.713 0.297 0.287 0.946
By 0.504 0.515 0.205 0.198 0.944

08 B 0738 0.717 0.287 0.285 0.944

By 0.504 0.509 0.202 0.197 0.944

1.6 B, 0.743 0.725 0.291 0.288 0.944

By 0.502 0.518 0.201 0.198 0.944

300 02 B 0.681 0.677 0.237 0.226 0.944
By 0.503 0.509 0.167 0.159 0.950

08 B 0.681 0.679 0.234 0.226 0.942

By 0504  -0.513  0.166 0.159 0.944

1.6 B 0.685 0.684 0.236 0.226 0.946

By 0.504 0.512 0.165 0.159 0.950
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Figure 4.7: QQplot of fgpr = (61 fs) for n =300, v =4 and o = 0.2
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Figure 4.8: QQplot of Bgpr = (1 fs) for n =300, v =4 and o = 0.8

60



Quantiles of the Estimator (;

Quantiles of the Estimator (2

=
3
:

0.5+

-0.5¢

QQ Plot of Sample Data versus Standard Normal

+ +EF

1 1

-4

15¢

-0.5

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

QQ Plot of Sample Data versus Standard Normal

4+ T

1 1 1 1 1

-3 -2 -1 0 1 2 3 4
Quantiles of Standard Normal

Figure 4.9: QQplot of Bgpr = (1 () for n =300, v =4 and 0 = 1.6
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Table 4.4: Simulation Results with 8 = [0.693 0.5]', v = 0 and 20% censoring

n o BEPL mean  median se mean(se) cp
100 02 B 0.705 0.692 0.346 0.308 0.914
By 0.506 0.503 0.224 0.213 0.934

08 B 0.740 0.718 0.350 0.314 0.922

By 0.517 0.504 0.229 0.216 0.940

1.6 B 0.751 0.742 0.347 0.318 0.914

By 0.504 0.503 0.231 0.220 0.940

200 0.2 B 0.722 0.702 0.250 0.220 0.920
By 0.498 0.491 0.167 0.151 0.930

08 [ 0.754 0.736 0.260 0.229 0.904

By 0.492 0.491  0.168 0.155 0.936

1.6 B 0.761 0.746 0.255 0.225 0.928

By 0.489 0.489 0.171 0.156 0.936

300 0.2 B 0.682 0.670 0.192 0.178 0.942
By 0.497 0.495 0.126 0.123 0.940

08 £ 0.700 0.695 0.197 0.205 0.932

By 0.494 0.494  0.131 0.136 0.950

1.6 B, 0.706 0.690 0.194 0.288 0.936

By 0.493 0.491 0.129 0.173 0.952
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Table 4.5: Simulation Results with § = [0.693 0.5]', v = 2 and 20% censoring

n o BEPL mean  median se mean(se) cp
100 0.2 Bl 0.743 0.737 0.337 0.318 0.926
By 0.513 0.506 0.233 0.222 0.944

0.8 Bl 0.737 0.742 0.332 0.315 0.930

Bg 0.515 0.513 0.231 0.219 0.952

1.6 Bl 0.737 0.738 0.345 0.326 0.920

by 0.513 0.507 0.231 0.217 0.932

200 0.2 b1 0.754 0.742 0.243 0.222 0.922
By 0.492 0.485 0.167 0.154 0.944

0.8 Bl 0.748 0.735 0.246 0.222 0.934

By 0500 0488  0.170 0.154 0.942

1.6 Bl 0.754 0.732 0.253 0.223 0.928

By 0.493 0.490 0.170 0.155 0.946

300 0.2 By 0.701 0.689 0.190 0.179 0.940
By 0.494 0.489 0.128 0.125 0.956

0.8 Bl 0.706 0.691 0.192 0.180 0.944

Bg 0.493 0.486 0.128 0.126 0.952

1.6 Bl 0.700 0.683 0.193 0.184 0.938

BQ 0.495 0.491 0.132 0.127 0.946
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Table 4.6: Simulation Results with 8 = [0.693 0.5]', v = 4 and 20% censoring

n o BEPL mean  median se mean(se) cp
100 0.2 61 0.716 0.701 0.334 0.334 0.928
By 0.523 0.510 0.232 0.231 0.942

0.8 Bl 0.731 0.715 0.347 0.318 0.922

Bg 0.522 0.515 0.235 0.224 0.944

1.6 Bl 0.736 0.712 0.344 0.319 0.940

Bs  0.520 0.517 0.233 0.222 0.940

200 0.2 B1 0.738 0.718 0.242 0.222 0.936
By 0.499 0.498 0.169 0.155 0.942

0.8 Bl 0.741 0.725 0.246 0.222 0.920

Bg 0.496 0.496 0.170 0.154 0.942

1.6 Bl 0.740 0.729 0.253 0.225 0.926

By 0.497 0.492 0.171 0.162 0.938

300 0.2 51 0.690 0.681 0.187 0.178 0.940
by 0.499 0.495 0.129 0.125 0.946

0.8 Bl 0.692 0.687 0.190 0.179 0.934

Bg 0.500 0.501 0.127 0.126 0.950

1.6 Bl 0.690 0.676 0.189 0.182 0.942

Bg 0.500 0.503 0.129 0.127 0.952
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Table 4.7: Simulation Results with 8 = [0.693 0.5]', v = 0 and 80% censoring

n o BEPL mean  median se mean(se) cp
100 0.2 61 0.717 0.699 0.756 0.784 0.946
By 0.531 0.489 0.498 0.490 0.944

0.8 Bl 0.743 0.710 0.803 0.774 0.952

Bg 0.532 0.507 0.517 0.468 0.944

1.6 Bl 0.765 0.752 0.752 0.713 0.960

By 0.529 0.504 0.494 0.463 0.946

200 0.2 61 0.742 0.738 0.492 0.470 0.942
By 0.501 0.489 0.319 0.317 0.956

0.8 Bl 0.776 0.764 0.491 0.472 0.942

By 0492 0491  0.318 0.317 0.964

1.6 81 0.772 0.763 0.497 0.475 0.952

By 0.496 0.502 0.318 0.320 0.960

300 0.2 51 0.690 0.681 0.187 0.178 0.940
by 0.499 0.495 0.129 0.125 0.946

0.8 Bl 0.692 0.687 0.190 0.179 0.934

Bg 0.500 0.501 0.127 0.126 0.950

1.6 Bl 0.700 0.692 0.397 0.376 0.934

Bg 0.509 0.511 0.259 0.259 0.960
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Table 4.8: Simulation Results with 8 = [0.693 0.5]', v = 2 and 80% censoring

n o BEPL mean  median se mean(se) cp
100 02 £ 0.752 0.690 0.740 0.723 0.962
By 0.536 0.503 0.506 0.474 0.952

08 B 0.762 0.735 0.763 0.819 0.958

By 0.532 0.511 0.503 0.505 0.956

1.6 B 0.772 0.731 0.751 0.742 0.956

By 0.536 0.504 0.501 0.485 0.948

200 0.2 B, 0.757 0.768 0.489 0.469 0.950
By 0.501 0.496 0.323 0.318 0.952

08 [ 0.752 0.760 0.481 0.469 0.952

By 0.501 0.500  0.319 0.317 0.960

1.6 B 0.771 0.785 0.484 0.473 0.950

By 0.496 0.502 0.323 0.319 0.956

300 0.2 B, 0.688 0.677 0.391 0.374 0.942
By 0.513 0.518 0.259 0.257 0.960

08 [ 0.689 0.677 0.374 0.368 0.938

By 0.512 0.512 0.260 0.257 0.960

1.6 B 0.692 0.674 0.391 0.375 0.938

By 0.513 0.517 0.262 0.258 0.956
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Table 4.9: Simulation Results with 8 = [0.693 0.5]', v = 4 and 80% censoring

n o BEPL mean  median se mean(se) cp
100 0.2 61 0.752 0.690 0.740 0.723 0.962
By 0.536 0.503 0.506 0.474 0.952

0.8 Bl 0.761 0.719 0.762 1.077 0.950

Bg 0.533 0.481 0.503 0.732 0.946

1.6 Bl 0.772 0.718 0.745 0.807 0.956

By 0.530 0.505 0.493 0.509 0.946

200 0.2 B1 0.745 0.761 0.487 0.469 0.940
Bs  0.505 0.505 0.323 0.318 0.962

0.8 Bl 0.747 0.777 0.487 0.472 0.950

By 0505 0505  0.323 0.318 0.964

1.6 81 0.762 0.781 0.481 0.471 0.956

By 0.500 0.500 0.323 0.319 0.958

300 0.2 £1 0.685 0.670 0.392 0.374 0.934
By 0.515 0.518 0.259 0.258 0.956

0.8 Bl 0.682 0.674 0.391 0.440 0.938

Bg 0.517 0.524 0.259 0.285 0.960

1.6 Bl 0.686 0.675 0.395 0.374 0.936

Bg 0.517 0.517 0.257 0.258 0.956
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In the following two tables we illustrate the effect of validation fraction on the

estimator.

Table 4.10: Simulation Results with o = 0.2

n  Validation Prop BEPL mean

median se mean(se) cp

100 0.3 B1 0.745 0.756 0.537 0.528 0.924
B2 0.514 0.500 0.314 0.308 0.928

0.5 By 0.701 0.679 0.436 0.405 0.948

Bg 0.509 0.513 0.310 0.277 0.926

0.7 Bl 0.700 0.674 0.370 0.338 0.918

B2 0.507 0.497 0.292 0.261 0.912

200 0.3 f1 0.731 0.704 0.371 0.352 0.936
B2 0.503 0.511 0.215 0.212 0.944

0.5 Bl 0.727 0.700 0.304 0.283 0.936

Bg 0.503 0.516 0.201 0.194 0.944

0.7 Bl 0.713 0.717 0.224 0.269 0.948

B2 0.509 0.516 0.185 0.204 0.958

300 0.3 B1 0.709 0.703 0.320 0.279 0.920
B2 0.495 0.495 0.180 0.170 0.918

0.5 Bl 0.670 0.671 0.238 0.249 0.940

By 0505 0504 0163 0.161 0.946

0.7 By 0.670 0.661 0.191 0.193 0.946

Bg 0.505 0.513 0.152 0.151 0.956




Table 4.11: Simulation Results with ¢ = 0.8
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n  Validation Prop BEPL mean  median se mean(se) cp

100 0.3 By 0.805 0.788 0.540 0.633 0.938
By 0.511 0.496 0.330 0.357 0.936

0.5 By 0.744 0.726 0.443 0.399 0.940

By 0.505 0.499 0.307 0.279 0.926

0.7 B 0.720 0.701 0.376 0.340 0.920

B 0.507 0.502 0.293 0.261 0.916

200 0.3 B 0.782 0.762 0.385 0.372 0.950
By 0.496 0.503 0.221 0.229 0.944

0.5 B 0.761 0.720 0.312 0.287 0.930

By 0.492 0.510 0.205 0.197 0.944

0.7 B 0.723 0.725 0.226 0.228 0.948

By 0.506 0.514 0.186 0.188 0.960

300 0.3 B 0.746 0.727 0.335 0.287 0.904
By 0.485 0.493 0.187 0.178 0.932

0.5 B 0.693 0.697 0.243 0.227 0.930

By 0.498 0.503 0.166 0.159 0.942

0.7 B 0676 0668  0.193 0.193 0.952

By 0.503 0.513 0.152 0.152 0.950
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4.4 Comparison of different methods

In this section, we have explored five different methods to estimate the unknown

parameter in our simulation study.

1. B r-The full-data Cox regression estimator which uses the the full data without

any missing covariate.

2. BCC—The complete-case Cox regression estimator which uses the data available

only on the validation set.

3. B ~-The Cox regression estimator with W substitued for the missing X for the

subjects in the non-validation set.

4. Byw-The estimated partial likelihood estimator suggested by Zhou and Wang
(2000), and

5. BEPL—The newly proposed estimator.

4.4.1 Performance of different methods

Tables 4.11-4.21 provide the results for the following settings for different methods

discussed above.
L. B0 = (Bor, Bo2)": [In(2),0.5]".
2. n: 100 and 300.
3. Censoring percentage: 20% and 50%.

4. 0:0.2, 08, 1.6.

[

.y :0.2, 4.

6. Validation fraction p: 50%.
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4.4.2 Results

In Tables 4.12-4.29 we present our simulation results obtained using the estimation
procedures described above.

For a given sample size, mean(BEpL) — fp)(bias), median(BEpL)—Bg,(robust bias),
standard errors, mean of the estimated standard errors and 95% confidence intervals
for the estimators are obtained using 500 independent runs. In this section we discuss
the results with regards to the bias and variance of the estimators. We also discuss
the performance of the estimated variances obtained using these methods.

Bias: From these results we observe that, the full-data Cox Regression estimator
(Br) the complete-case Cox Regression estimator(f¢c) and our proposed estimator (S pr)
have acceptable small bias for all values of o and v considered. The estimated partial
likelihood method ((BZW)) proposed by Zhou and Wang (2000) works for v = 0 but
biased for 7 # 0. The naive estimator Sy is biased.

Variance: The standard errors of all the estimators are obtained. We note that,
(B ) is the most efficient estimator. The proposed estimator (B gpr) is more efficient
than (BCC) in all the situations considered. We also compared our estimator with Zhou
and Wang’s estimator (BZW). When v = 0, Zhou’s method is more efficient for very
small value of o but for higher values of & both methods are almost equally efficient
and their estimator has more bias than our estimator. For situations where v # 0,
the consistency property of their estimator does not hold. So, we cannot compare the
efficiency of both the estimators in that case.

Estimated Standard Error: We observe that the estimator of the standard
error performs very well for all the estimators when v = 0. When v # 0, the
standard error estimates of both BN and BZW are biased whereas the standard error
estimates of B £pr remains to be consistent for all values of v and o. The 95% coverage

probabilities shown in the Tables also demonstrate this fact.



Table 4.12: n =100, ¢ =0.2 and =0
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C mean — By median — By se mean(se) cp
50% Br B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B 0.068 0.076 0.158 0.158 0.926

By 0.024 0.028 0.146 0.145 0.954

Bow B 0.045 0.033 0.346 0.329 0.940

By 0.013 -0.001 0.283 0.257 0.914

Bepr B 0.008 -0.014 0.436 0.405 0.948

By 0.009 0.013 0.310 0.277 0.926

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.031 -0.029 0.234 0.223 0.934

By 0.018 0.011 0.210 0.204 0.938

Bow B 0.044 0.038 0.272 0.263 0.966

By 0.013 0.005 0.212 0.204 0.952

Beppr B 0.012 -0.001 0.346 0.308 0.914

By 0.006 0.003 0.224 0.213 0.934

1BEPL denotes the full data Cox regression estimator, ﬁcc denotes the complete case Cox
regression estimator, BN denotes the naive Cox regression estimator replacing missing X by W,
B zw denotes the partial likelihood estimator proposed by Zhou and Wang(2000) and B epr denotes
the proposed estimator; C represents percentage of censoring, se is the standard error of B gpr from
simulation, mean(se) denotes the mean of the estimated standard errors and ¢p denotes the 95%
coverage probability.



Table 4.13: n =100, ¢ =0.8 and =0
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C mean — By median — By se mean(se) cp
50% Br B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.369 -0.381 0.206 0.196 0.504

By 0.139 0.028 0.260 0.249 0.914

Bow B -0.045 -0.052 0.374 0.356 0.940

By 0.055 0.051 0.287 0.262 0.932

Bppr Bi 0.051 0.033 0.443 0.399 0.940

By 0.005 -0.001 0.307 0.279 0.926

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.368 -0.372 0.165 0.156 0.352

By 0.126 0.122 0.202 0.198 0.918

Byw B -0.046 -0.052 0.272 0.263 0.966

By 0.052 0.053 0.213 0.207 0.942

Bepr B 0.046 0.025 0.350 0.314 0.922

By 0.007 0.004 0.229 0.217 0.940




Table 4.14: n =100, ¢ =1.6 and =0
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C mean — By median — By se mean(se) cp
50% fp [ 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.566 -0.572 0.130 0.112 0.026

By 0.208 0.191 0.252 0.244 0.878

Bow B -0.102 -0.098 0.391 0.364 0.928

By 0.077 0.074 0.291 0.263 0.920

Beppr B 0.004 0.004 0.242 0.228 0.938

By -0.003 0.004 0.166 0.160 0.952

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.567 -0.574 0.105 0.096 0.002

By 0.188 0.182 0.196 0.195 0.864

Byw B -0.046 -0.052 0.272 0.263 0.966

By 0.052 0.053 0.213 0.207 0.942

Bepr B 0.058 0.049 0.347 0.318 0.914

By 0.004 0.003 0.231 0.220 0.940




Table 4.15: n =300, ¢ =0.2 and =0
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C mean — By median — By se mean(se) cp
50% Br P -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Bee B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B 0.068 0.076 0.158 0.158 0.926

By 0.024 0.028 0.146 0.145 0.954

Bow B -0.007 -0.012 0.176 0.177 0.950

By 0.010 0.018 0.150 0.147 0.944

Beppr B 0.022 0.022 0.238 0.249 0.940

By 0.005 0.004 0.163 0.161 0.946

20% fBr B -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Bee B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.056 -0.064 0.127 0.126 0.928

By 0.016 0.011 0.116 0.115 0.952

Bow B -0.006 -0.006 0.141 0.142 0.966

By 0.004 0.003 0.119 0.117 0.952

Brppr B -0.011 -0.023 0.192 0.178 0.942

By -0.003 -0.005 0.126 0.123 0.940




Table 4.16: n =300, ¢ =0.8 and =0
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C mean — By median — [y se mean(se) cp
50% Br B -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Boe B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.392 -0.392 0.114 0.108 0.068

By 0.139 0.139 0.142 0.140 0.830

Byw B -0.056 -0.055 0.198 0.223 0.932

By 0.033 0.044 0.156 0.157 0.946

Beppr B 0.000 0-.004 0.243 0.227 0.930

By -0.002 0.003 0.166 0.159 0.942

20% Br [ -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Bee B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.390 -0.393 0.092 0.086 0.018

By 0.123 0.123 0.115 0.112 0.792

Bow B -0.048 -0.058 0.159 0.172 0.954

By 0.026 0.028 0.123 0.123 0.944

Brppr B 0.007 0.004 0.243 0.227 0.930

By -0.007 0.031 0.166 0.159 0.942




Table 4.17: n =300, ¢ =1.6 and =0

7

C mean — By median — By se mean(se) cp
50% Br B -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Boe B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.579 -0.580 0.071 0.067 0.0

By 0.207 0.207 0.139 0.138 0.684

Bow B -0.096 -0.045 0.209 0.229 0.908

By 0.097 0.053 0.157 0.158 0.936

Brppr B1 0.000 0-.004 0.243 0.227 0.930

By -0.002 0.003 0.166 0.159 0.942

20% Br [ -0.007 -0.019 0.131 0.131 0.948
By -0.001 ~0.002 0.116 0.116 0.952

Boe B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.580 -0.582 0.057 0.053 0.0

By 0.184 0.187 0.112 0.110 0.614

Byw B -0.084 -0.089 0.170 0.192 0.904

By 0.034 0.042 0.192 0.125 0.942

Beppr B 0.007 0.004 0.243 0.227 0.930

By -0.007 0.031 0.166 0.159 0.942




Table 4.18: n =100, ¢ =0.2 and =2
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C mean — By median — By se mean(se) cp
50% fp [ 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.988 -0.983 0.084 0.068 0.0

By 0.169 0.160 0.237 0.244 0.920

Bow B -0.434 -0.484 0.574 0.373 0.670

By 0174 0.172 0.324 0.274 0.892

Beppr B 0.052 0.034 0.432 0.403 0.948

By 0.016 0.014 0.312 0.280 0.928

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -1.003 -1.000 0.071 0.062 0.0

By 0.155 0.151 0.180 0.195 0.924

Bow B -0.455 -0.466 0.467 0.292 0.550

By 0.163 0.159 0.241 0.214 0.862

Bepr B 0.050 0.044 0.337 0.318 0.926

By 0.013 0.006 0.233 0.222 0.944




Table 4.19: n =100, ¢ =0.8 and =2
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C mean — By median — By se mean(se) cp
50% fBr B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.961 -0.955 0.076 0.064 0.0

By 0.177 0.164 0.243 0.244 0.904

Bow B -0.325 -0.368 0.569 0.374 0.721

By 0.141 0.140 0.325 0.271 0.888

Beppr B 0.054 0.046 0.435 0.406 0.942

By 0.015 0.008 0.310 0.281 0.920

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.969 -0.966 0.064 0.057 0.0

By 0.163 0.168 0.186 0.195 0.910

Bow B -0.328 -0.354 0.450 0.291 0.658

By 0.128 0.124 0.238 0.212 0.878

Beppr B 0.044 0.049 0.332 0.315 0.930

By 0.015 0.013 0.231 0.219 0.952




Table 4.20: n =100, 0 =1.6 and =2
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C mean — By median — By se mean(se) cp
50% fBr B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.906 -0.905 0.064 0.055 0.0

By 0.194 0.183 0.253 0.254 0.874

Bow B -0.214 -0.243 0.518 0.373 0.794

By 0108 0.109 0.312 0.269 0.904

Brppr B1 0.048 0.024 0.425 0.412 0.950

By 0.016 0.007 0.311 0.278 0.922

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.902 -0.899 0.054 0.049 0.0

By 0.180 0.185 0.194 0.195 0.876

Bow B -0.243 -0.229 0.409 0.292 0.766

By 0.097 0.089 0.229 0.211 0.900

Beppr B 0.044 0.045 0.345 0.326 0.920

By 0.013 0.007 0.231 0.217 0.932




Table 4.21: n =300, 0 =0.2 and =2
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C mean — 3y median — Sy se mean(se) cp
50% Bp  f1 -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Bee B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.994 -0.991 0.048 0.039 0.0
By 0.166 0.169 0.127 0.137 0.796
Bow B -0.630 -0.635 0.246 0.170 0.108
By 0.202 0.199 0.137 0.125 0..630
Bepr B -0.003 0-.010 0.242 0.233 0.938
By -0.001 0.009 0.169 0.161 0.938
20% fBp B -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952
Bee  Bi -0.009 -0.016 0.190 0.187 0.960
By 0.008 0.002 0.164 0.166 0.954

By B -1.001 0.152 0.044 0.034 0
By -1.007 0.154 0.100 0.110 0.748
Bow B -0.617 -0.613 0.304 0.219 0.244

By 0.223 0.224 0.178 0.161 0.70
Bepr Bi 0.007 -0.004 0.190 0.17 0.940
By -0.006 -0.011 0.128 0.125 0.956




Table 4.22: n =300, ¢ =0.8 and =2
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C mean — By median — By sse mean(se) cp
50% Br P -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Bee B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.965 -0.963 0.044 0.129 0.0

By 0175 0.176 0.036 0.137 0.770

Bow B -0.399 -0.395 0.325 0.213 0.520

By 0.147 0.145 0.180 0.157 0.808

Beppr B 0.004 0-.006 0.234 0.226 0.942

By 0.000 0.012 0.163 0.159 0.948

20% fBr B -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Bee B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.972 -0.972 0.039 0.033 0.0

By 0.161 0.164 0.102 0.110 0.716

Byw B -0.388 -0.399 0.262 0.168 0.412

By 0.127 0.128 0.138 0.122 0.784

Beppr B 0.012 -0.002 0.192 0.180 0.944

By -0.007 -0.014 0.128 0.126 0.952




Table 4.23: n =300, 0 =1.6 and =2
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C mean — By median — By se mean(se) cp
50% Br B -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Bee B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.906 -0.908 0.037 0.031 0.0

By 0.194 0.197 0.134 0.137 0.728

Bow B -0.225 -0.222 0.312 0.232 0.716

By 0.089 0.091 0.176 0.160 0.894

Bepr B1 -0.005 -0.017 0.242 0.227 0.942

By 0.001 0.013 0.167 0.159 0.944

20% fBr B -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Bee B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.902 -0.902 0.032 0.105 0.0

By 0178 0.180 0.105 0.110 0.620

Byw B -0.208 -0.208 0.248 0.175 0.670

By 0.074 0.077 0.135 0.123 0.902

Bepr Bi 0.007 -0.010 0.193 0.184 0.938

By -0.005 -0.009 0.132 0.127 0.946




Table 4.24: n =100, ¢ =0.2 and y=4
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C mean — By median — By se mean(se) cp
50% fBr B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.852 -0.849 0.042 0.034 0.0

By 0.104 0.090 0.239 0.245 0.952

Bow B -0.126 -0.127 0.595 0.375 0.845

By 0.081 0.085 0.335 0.273 0.938

Beppr B 0.040 0.021 0.436 0.415 0.954

By 0.021 0.011 0.314 0.285 0.922

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.865 -0.864 0.037 0.032 0.0

By 0.092 0.088 0.180 0.195 0.960

Bow B -0.134 -0.138 0.494 0.290 0.736

By 0.075 0.083 0.250 0.215 0.908

Bepr B 0.023 0.008 0.334 0.334 0.928

By 0.023 0.010 0.232 0.231 0.942




Table 4.25: n =100, ¢ =08 and yv=4
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C mean — By median — By se mean(se) cp
50% fBr B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.845 -0.846 0.041 0.034 0.0

By 0.108 0.093 0.241 0.245 0.946

Bow B -0.102 -0.127 0.606 0.401 0.894

By 0118 0.108 0.336 0.271 0.888

Beppr B 0.042 0.034 0.435 0.432 0.946

By 0.074 0.085 0.336 0.275 0.794

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.859 -0.857 0.035 0.031 0.0

By 0.096 0.097 0.182 0.195 0.952

Bow B -0.121 -0.121 0.492 0.300 0.726

By 0.072 0.072 0.250 0.215 0.908

Beppr B 0.034 0.022 0.347 0.318 0.922

By 0.022 0.015 0.235 0.224 0.944




Table 4.26: n =100, ¢ =1.6 and yv=14
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C mean — By median — By se mean(se) cp
50% fBr B 0.018 0.013 0.323 0.292 0.916
By 0.004 -0.015 0.281 0.258 0.956

Bee  Bi 0.026 0.024 0.234 0.233 0.930

By 0.017 0.001 0.217 0.209 0.942

By B -0.837 -0.834 0.038 0.248 0.0

By 0.117 0.102 0.032 0.245 0.904

Bow B -0.081 -0.141 0.575 0.390 0.812

By 0.069 0.080 0.327 0.275 0.908

Beppr B 0.039 0.023 0.443 0.478 0.952

By 0.013 0.010 0.326 0.299 0.926

20% fBr [ 0.021 0.016 0.248 0.232 0.936
By 0.001 -0.008 0.211 0.205 0.938

Bee B 0.020 0.014 0.339 0.340 0.956

By 0.014 -0.001 0.305 0.302 0.956

By B -0.837 -0.834 0.038 0.032 0.0

By 0.117 0.102 0.248 0.243 0.938

Bow B -0.095 -0.119 0.464 0.292 0.760

By 0.066 0.069 0.246 0.214 0.904

Beppr B 0.043 0.019 0.344 0.319 0.940

By 0.020 0.017 0.233 0.222 0.940




Table 4.27: n =300, ¢ =0.2 and yv=4
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C mean — By median — By sse mean(se) cp
50% Br B -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Boe B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.856 -0.854 0.024 0.020 0.0

By 0.097 0.099 0.129 0.138 0.910

Bow B -0.293 -0.292 0.331 0.213 0.608

By 0.111 0.111 0.181 0.158 0.878

Bppr B -0.013 0-.016 0.237 0.226 0.942

By 0.003 0.009 0.167 0.159 0.944

20% Br [ -0.007 -0.019 0.131 0.131 0.948
By -0.001 ~0.002 0.116 0.116 0.952

Boe B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.868 -0.867 0.023 0.018 0.0

By 0.087 0.090 0.100 0.110 0.904

Byw B -0.310 -0.301 0.284 0.167 0.508

By 0.103 0.096 0.143 0.123 0.814

Brppr B -0.003 -0.011 0.187 0.178 0.940

By -0.002 -0.005 0.129 0.125 0.946




Table 4.28: n =300, ¢ =08 and yv=4
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C mean — By median — By sse mean(se) cp
50% Br B -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Boe B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.851 -0.850 0.024 0.019 0.0

By 0.100 0.099 0.128 0.138 0.908

Bow B -0.218 0.191 0.335 0.221 0.682

By 0.086 0.081 0.183 0.159 0.892

Brppr B -0.012 0-.014 0.234 0.226 0.942

By 0.004 0.013 0.166 0.160 0.944

20% Br [ -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Boe B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.868 -0.867 0.023 0.018 0.0

By 0.087 0.090 0.100 0.110 0.904

Byw B -0.221 -0.217 0.284 0.169 0.614

By 0.076 0.074 0.143 0.123 0.874

Brppr B -0.001 -0.006 0.190 0.179 0.934

By -0.001 0.001 0.127 0.125 0.950




Table 4.29: n =300, 0 =16 and yv=4
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C mean — By median — By se mean(se) cp
50% Br P -0.019 -0.028 0.161 0.164 0.944
By 0.006 0.007 0.146 0.146 0.956

Bee B 0.026 0.024 0.234 0.233 0.942

By 0.017 0.001 0.217 0.209 0.942

By B -0.839 -0.837 0.022 0.018 0.0

By 0.115 0.118 0.130 0.138 0.884

Bow B -0.119 -0.099 0.333 0.217 0.760

By 0.053 0.052 0.182 0.157 0.908

Beppr B 0.008 0.009 0.236 0.226 0.946

By 0.004 0.012 0.165 0.159 0.950

20% fBr B -0.007 -0.019 0.131 0.131 0.948
By -0.001 -0.002 0.116 0.116 0.952

Bee B -0.009 -0.016 0.190 0.187 0.960

By 0.008 0.002 0.164 0.166 0.954

By B -0.846 -0.845 0.019 0.017 0.0

By 0.105 0.106 0.102 0.110 0.868

Byw B -0.114 0.115 0.273 0.182 0.724

By 0.045 0.044 0.141 0.125 0.912

Brppr B -0.003 -0.017 0.189 0.182 0.942

By -0.001 -0.003 0.129 0.127 0.952




CHAPTER 5: REAL DATA ANALYSIS

We apply the proposed approach to the primary biliary cirrhosis(PBC) data from
the Mayo Clinic trial which was conducted between 1974 and 1984. PBC is a rare and
fatal chronic liver disease in which the bile ducts in the liver become inflamed and
damaged and, ultimately, destroyed. The cause of this disease is unknown. It develops
over time and may cause the liver to stop working completely. There was a total of
424 patients who met the eligibility criteria for the randomized, placebo-controlled
study of treatment of PBC with drug D-penicillamine. Complete data were collected
on the first 312 cases who participated in the randomized trial. The remaining 112
cases did not participate in the clinical trial but some basic measurements on them
were recorded to be followed for survival. Six of these cases were lost to follow-up
shortly after diagnosis, so the data here are on an additional 106 cases as well as
the 312 randomized participants. A detailed description about this dataset and the
covariates recorded can be found in Dickson et al. [6] and Markus et al. [27].

The PBC data can be used to estimate a survival distribution, test for differences
between two groups and estimate covariate effects via a regression model. The

variables involved in our specfic analysis include:
(1) id: case number;

(2) days: number of days between registration and the earlier of death, transplantation,

or study analysis time;
(3) status: status of censoring;

(4) chol: serum cholesterol (inmg/dl);
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(5) bili: serum bilirubin (in mg/dl) and

(6) Age: age in days.

For this dataset, we wanted to analyze the effect of patients’ serum cholesterol and
age on the survival of the patients. This type of failure time data can be modeled by
the Cox Proportional hazards models with an unknown baseline hazard function but
special techniques are required when we have missing data. About 31% outcomes of
cholesterol were missing in the data set. If we remove those observations, we may get
biased estimates. In such situation we wanted to use the information from auxiliary
covariates if available. To choose the auxiliary covariates, we performed preliminary
statistical analysis on the available covariates. We observed that the outcomes of
serum bilirubin were completely obtained with no missing values and we found that
a significant correlation (0.4490) exists between serum cholesterol and bilirubin. We
performed a Cox regression analysis to explore whether bilirubin has some additional
effect on the hazard of failure. The results obtained are shown in the following table.

We observed that, the estimates of the coefficients and their standard error estimates

Table 5.1: Regression Analysis of Primary Biliary Cirrhosis (PBC) data

Method Variable Estimates of the Standard Error 95%  Confidence

Parameter Interval
logbili < 1.6 cC logchol  0.271 0.393 (-0.499, 1.040)
age 0.055 0.012 (0.031, 0.079)
logbili > 1.6 W logchol  -0.635 0.345 (-1.312, 0.042)
age -0.005 0.016 (-0.037, 0.027)

are quite different for both the situations and the 95% confidence intervals for the
coefficient of age are nonoverlapping. Though there is a significant correlation between
bilirubin and cholesterol, from the above analysis, we can conclude that serum bilirubin
has some additional effect on the hazard of failure given the available information on
serum cholesterol. That means it may not be a true surrogate for cholesterol. Hence,

our proposed method can be applied to this dataset by considering serum bilirubin
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as an informative auxiliary covariate. In a preliminary step, we take the logarithmic
transformation of cholesterol and bilirubin as suggested in the clinical literature. The
following table displays the analysis results based on the the CC method, the ZW
method proposed by Zhou and Wang(2000) and the proposed EPL method. The
CC method uses only 284 complete-case observations and the other two methods use
all 418 observations. Variable “logchol” denote the logarithm of cholesterol. The

estimates of the coefficients and their standard errors are given in the Table 5.2.

Table 5.2: Regression Analysis of Primary Biliary Cirrhosis (PBC) data
Method Variable Estimates of the Standard Error 95% Confidence

Parameter Interval
e logchol  0.853 0.214 (0.432, 1.273)
age 0.048 0.010 (0.029, 0.067)
W logchol  1.054 0.168 (0.726, 1.383)
age 0.046 .008 (0.032, 0.061)
EPL logchol  0.871 0.212 (0.456, 1.287)
age 0.043 0.007 (0.029, 0.058)

The regression analysis confirm that both serum cholesterol and age are significantly
related to the time to event. The estimates of the regression parameters from the
EPL method are very close to those obtained from the CC method. Note that
there is a discrepancy between the estimates for “logchol”from complete data and
Zhou and Wangs estimate which could be due to the fact that the latter method
does not consider the additional effect contributed by the auxiliary covariate. The
variance estimate for BEPL is calculated using the proposed estimator Q(ﬁ) We
observe that the estimated standard errors from the EPL and ZW methods are
smaller than those from the CC method. The ratio of estimated standard errors
for Bppr, and Bz relative to Boc are(0.991, 0.7) and (0.785, 0.8) respectively.
The 95% confidence interval for the regression parameter of “logchol” from the CC
method, ZW method and EPL methods are (0.432, 1.273), (0.726, 1.383) and (0.456,

1.287) respectively. In our simulations we observed that the standard errors of the
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estimates were underestimated by ZW method (2000) method when the auxiliary

variable was informative. In the real data analysis also the standard error estimate
for serum cholesterol might be underestimated. In addition, the computation burden
for our method is much less than that for Zhou and Wang’s(2000) method. This is
because the latter needs to run two-dimensional smoothing and the former just runs

one-dimensional smoothing. This is also true for simulations.



CHAPTER 6: CONCLUSION AND FUTURE WORK

In this dissertation we have studied the proposed partial likelihood method (EPL)for
dealing with missing and auxiliary covariates in failure time data. We compared
the proposed method with several others methods. We assumed that the auxiliary
covariate Z is continuous. In our model the auxiliary covariate W is assumed to be
informative about the hazard of failure conditional on X, where X is the exposure
variable which is missing for some of the subjects in the study cohort. We discussed
the asymptotic properties of the proposed estimator. We have shown that the proposed
estimator BEPL is consistent for the parameter J and is asymptotically normally
distributed. We also derived the consistent estimator of the asymptotic covariance of
Brpr.-

In the simulation study, we investigated the finite sample performance of the proposed
estimator and compared the performance with several existing methods. It was
observed that in most practical scenarios our estimator performs favorably and it is
more efficient than the Cox partial likelihood estimator based only on the validation
set. It was also found that the proposed method performs much better than Zhou
and Wang’s estimator when auxiliary covariate W is informative about the hazard of
failure given X. In real life we often have auxiliary covariates which may not be true
surrogates for X. This demonstrates advantages of our estimator.

A brief description of the nice properties of our proposed estimator BEPL is given

below:

(a) The proposed method allows W to be high dimensional and to be informative

in the sense that, conditional X, it provide additional information about hazard
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of failure.

This method utilizes the information about § in the non validation set since

the partial likelihood includes all the individuals in the cohort.

The validation set in our model is taken as a simple random sample from
the cohort. This model can be extended to different sampling schemes like
stratified sampling or outcome dependent sampling, which is under investigation

in another project.

The method is computationally straight forward and the computation time is

much less than Zhou and Wang’s method.
The problem of curse of dimensionality has been partially removed.

As illustrated in the simulation study, Zhou and Wang’s estimator is consistent
for different values of o when v = 0. In finite samples their method is more
efficient for very small values of o but for higher values of ¢ both methods are
almost equally efficient and their estimator has more bias than our estimator.
Also for situations where v # 0, the consistency property of their estimator

does not hold whereas our estimator remains to be consistent.

CONCERNS:

We have few concerns with the proposed method.

1.

2.

The proposed estimator will not perform well if the dimension of Z is high. In

such situations we can introduce some additive structure.

We used the same bandwidth as suggested by Zhou and Wang (2000) in our
estimation. Though it performs reasonably well, it would be worthwhile to

consider a bandwidth selection criteria like generalized cross-validation.
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3. It is desirable to increase the efficiency of the estimation. In future, We can
consider modifying our model by including a suitable weight in the partial

likelihood score equation.

FUTURE RESEARCH:

In our study, the sampling scheme is simple random sampling. We would like to
extend our method for outcome dependent sampling (ODS) which is a cost effective
sampling strategy. In the ODS design, one observes the exposure with a probability,
maybe unknown, depending on the outcome.

Also another extension of our method is multivariate failure time data which arise

in many contexts. In that case our model can be modified to a stratified model.
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