
VISUAL SLAM: SENSORS, EFFICIENCY, AND 3D OBJECTS

by

Jincheng Zhang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2024

Approved by:

Dr. Andrew R. Willis

Dr. James M. Conrad

Dr. Hamed Tabkhi

Dr. Srijan Das

ii

©2024
Jincheng Zhang

ALL RIGHTS RESERVED

iii

ABSTRACT

JINCHENG ZHANG. Visual SLAM: Sensor, Efficiency, and 3D Objects. (Under the
direction of DR. ANDREW R. WILLIS)

Simultaneous Localization and Mapping (SLAM) is pivotal for autonomous robots

to navigate and operate in complex environments autonomously. Despite strides in

SLAM technology, challenges persist in achieving accuracy and efficiency, especially in

dynamic and resource-limited scenarios. This dissertation tackles three critical facets

of the visual SLAM problem: environment simulation and sensor data processing,

resource efficiency, and 3D object representation.

The first segment concentrates on simulating realistic environments and optimizing

sensor data processing for mapping applications. It aims to enhance algorithm eval-

uation and refinement across diverse operational contexts, including UAV flights and

challenging lighting conditions. The second part introduces a novel SLAM solution

emphasizing low-bandwidth and computational constraints by capitalizing on planar

semantic maps. Finally, the dissertation proposes an advanced method for 3D shape

generation, integrating deep learning systems with shape grammars, to provide more

accurate representations of common objects.

Contributions encompass a simulation framework tailored for mapping applications,

a thermal sensor photometric correction model, an efficient RGB-D SLAM system

emphasizing planar semantic mapping, and a fusion technique for enhanced 3D shape

representation. These advancements collectively empower SLAM systems to perceive,

navigate, and interact with spatial environments more effectively in the digital age.

They enable agents to generate and communicate compressed map information within

resource constraints, fostering closer collaboration between humans and robots.

iv

ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Dr. AndrewWillis, for his exceptional guidance,

support, and mentorship throughout my doctoral journey. His expertise, encourage-

ment, and unwavering commitment to my success have been instrumental in shaping

this dissertation and my academic growth.

I extend my sincere appreciation to my colleagues and peers for their collaboration,

camaraderie, and intellectual exchange, which have enriched my research experience

and broadened my perspectives.

I would like to thank my dissertation committee members, Dr. James Conrad,

Dr. Hamed Tabkhi, and Dr. Srijan Das, for their valuable insights, feedback, and

contributions to this work.

I am also grateful to the University of North Carolina at Charlotte and the Depart-

ment of Electrical and Computer Engineering for providing the resources, facilities,

and opportunities necessary for the completion of this dissertation. Additionally, I

am grateful for the financial support provided by the Graduate Assistant Support

Plan (GASP), which enabled me to pursue my doctoral studies.

To my family, I offer my deepest gratitude for their unwavering love, encourage-

ment, and sacrifices throughout this endeavor. Their steadfast support has been my

anchor, and I am truly blessed to have them by my side.

Lastly, I want to express my heartfelt appreciation to my girlfriend, Yuanyuan Gu.

Her love, understanding, and encouragement have been my source of strength and

inspiration. I am profoundly grateful for her unwavering support and presence in my

life.

This dissertation is a testament to the collective support, encouragement, and

contributions of all those mentioned above, and I am sincerely thankful for every one

of them.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 1

1.1.1. Environment Simulation and Sensor Data Processing 2

1.1.2. Resource Intensity of SLAM Systems 3

1.1.3. Shape Representations for 3D Objects 3

1.2. Structure and Contribution 4

REFERENCES 8

CHAPTER 2: SIMULATION AND SENSOR DATA PROCESSING 12

2.1. UAV-Borne Mapping Algorithms for Low-Altitude and High-
Speed Drone Applications

12

2.1.1. Introduction 12

2.1.2. Related Work 15

2.1.3. Methodology 21

2.1.4. Results 34

2.1.5. Conclusions 45

2.2. Photometric Correction for Infrared Sensors 46

2.2.1. Introduction 46

2.2.2. Related Work 48

2.2.3. Methodology 51

vi

2.2.4. Results 57

2.2.5. Conclusion 67

REFERENCES 69

CHAPTER 3: LOW-BANDWIDTH AND COMPUTE-BOUND SLAM 77

3.1. Introduction 77

3.2. Related Work 81

3.2.1. Bandwidth of SLAM 81

3.2.2. Computational Cost of SLAM 82

3.2.3. Depth Compression 83

3.2.4. Semantic Segmentation Neural Networks 84

3.2.5. RGB-D SLAM 85

3.3. Background 86

3.3.1. Graph SLAM 86

3.3.2. Real-time Plane Fitting to RGB-D data 89

3.4. Methodology 91

3.4.1. Depth Compression 91

3.4.2. Stream Meta Data 94

3.4.3. Plane Cloud Odometry 96

3.4.4. Semantic SLAM 99

3.5. Results 101

3.5.1. Depth Compression 102

3.5.2. Odometry Estimation 107

3.5.3. Semantic Segmentation 109

vii

3.6. Conclusion 113

REFERENCES 115

CHAPTER 4: FUSION OF SHAPE MODELS AND DEEP LEARNING 121

4.1. Introduction 121

4.2. Related Work 125

4.2.1. Shape Grammar 125

4.2.2. Generative Models of 3D Shapes 126

4.3. Methodology 127

4.3.1. Procedural Shape Modeling Language (PSML) 127

4.3.2. Benefits of PSML-driven Data Generation 129

4.3.3. Fusion of PSML and Deep Learning 136

4.3.4. Data Synthesis for DL systems 138

4.4. Results 142

4.4.1. Comparison with Other Generative Methods 143

4.4.2. Comparison with Other Data Representations 144

4.4.3. Deep Learning Integration 146

4.5. Conclusions 152

REFERENCES 153

CHAPTER 5: CONCLUSION AND OUTLOOK 157

viii

LIST OF TABLES

TABLE 2.1: Quantitative evaluation of the point clouds. 38

TABLE 2.2: Statistics of the keyframe creation results. 42

TABLE 2.3: Statistics of the road reconstruction performance. 61

TABLE 2.4: Statistics of the trajectory estimation performance. 64

TABLE 2.5: Tracking performance for different algorithms. 67

TABLE 2.6: Standard deviation of observed intensities. 67

TABLE 3.1: Comparison of 3D SLAM systems. 86

TABLE 3.2: Statistics of the compressed image size. 103

TABLE 3.3: Statistics of depth data encoding and decoding time. 104

TABLE 3.4: Compression performance for different configurations 106

TABLE 3.5: Accuracy performance of different odometry algorithms. 109

TABLE 3.6: Mean IoU for classes in the SUN RGB-D dataset. 111

TABLE 4.1: Memory in byte required by different representations. 146

TABLE 4.2: Performance for 3D object detection and shape estimation. 150

ix

LIST OF FIGURES

FIGURE 2.1: Epipolar geometry of stereo image pair. 17

FIGURE 2.2: Dependency between depth estimation accuracy and the
baseline of the stereo camera design.

18

FIGURE 2.3: LiDAR sensors evaluated for inclusion on the platform. 23

FIGURE 2.4: A collection of commercial event cameras. 24

FIGURE 2.5: An example of an AirSim city environment. 29

FIGURE 2.6: Realistic environments created using Unreal Engine and
Cesium Plug-in.

30

FIGURE 2.7: The proposed flight simulation pipeline. 31

FIGURE 2.8: Generations of the ground truth geometry. 32

FIGURE 2.9: An example of point cloud registration. 33

FIGURE 2.10: A simulated UNC Charlotte campus world. 36

FIGURE 2.11: The ground truth point cloud of the scene. 36

FIGURE 2.12: Point clouds generated by different mapping algorithms. 37

FIGURE 2.13: Quantitative analysis of the distribution of the closest
point distances for correspondences.

39

FIGURE 2.14: Dependency between the mapping accuracy and point
depth.

40

FIGURE 2.15: Qualitative results of the reconstructed maps. 41

FIGURE 2.16: Keyframe creation time at each frame. 43

FIGURE 2.17: Frame tracking time of different algorithms. 45

FIGURE 2.18: An illustration of microbolometer pixels’ behavior. 53

FIGURE 2.19: Examples from FLIR ADAS dataset. 59

x

FIGURE 2.20: Amount of tracked features for each video frame. 62

FIGURE 2.21: Histogram of the fitting error for different algorithms. 63

FIGURE 2.22: Qualitative performance of the photometric correction. 65

FIGURE 2.23: Excerpts from the IR video in the BU-TIV dataset. 66

FIGURE 3.1: Pipeline of the proposed SLAM system. 92

FIGURE 3.2: Pipelines of the custom depth compression algorithm. 94

FIGURE 3.3: Compressed image size for each frame and frame examples. 104

FIGURE 3.4: Performance of UNCC and zlib algorithms. 105

FIGURE 3.5: Compression performance for different configurations. 106

FIGURE 3.6: Computational time of different odometry algorithms. 108

FIGURE 3.7: Qualitative results of semantic segmentation performance. 110

FIGURE 3.8: Label fusion results. 112

FIGURE 3.9: Global map with RGB appearance and semantic map. 113

FIGURE 4.1: Deep learning methods face significant challenges in grasp-
ing the geometric and physical constraints inherent in 3D objects.

122

FIGURE 4.2: Semantic variations of the table models generated using
different PSML program parameters.

130

FIGURE 4.3: Shape grammar representation allows for the systematic
generation of doors with realistic interactive behavior.

131

FIGURE 4.4: An example of PSML constructing a chair hierarchically
from its components.

133

FIGURE 4.5: Semantic variations of objects generated using PSML. 135

FIGURE 4.6: The fused system of PSML and DL for 3D shape estimation. 136

FIGURE 4.7: Different stages in the proposed data generation pipeline. 138

xi

FIGURE 4.8: A room scene generated using PSML. 139

FIGURE 4.9: Vertex coordinate transformation from local space to screen
space.

140

FIGURE 4.10: Objects generated by competitive shape generation
approaches.

144

FIGURE 4.11: Shape grammar representation requires much less data to
describe object geometry.

146

FIGURE 4.12: Examples in the synthetic dataset generated using PSML. 148

FIGURE 4.13: RGB images, point cloud and ground truth labeling of the
proposed synthetic dataset.

151

xii

LIST OF ABBREVIATIONS

3D three-dimension

3DGANs 3D Generative Adversarial Network

3DSVAE 3D Shape Variational Autoencoder

AI Artificial Intelligence

BPS Bits per Symbol

CNN Convolutional Neural Network

DL Deep Learning

DSO Direct Sparse Odometry

DSOL Direct Sparse Odometry Lite

ECE Electrical and Computer Engineering

FOV Field Of View

GANs Generative Adversarial Networks

GNSS Global Navigation Satellite System

IMU Inertial Measurement Unit

IR Infrared

LZSS Lempel-Ziv-Storer-Szymanski

MAE Mean Absolute Error

mAP Mean Average Precision

mIoU Mean Intersection over Union

xiii

PSML Procedural Shape Modeling Language

QSS Quantization Step Size

RLE Run-Length Encoding

RMSE Root Mean Square Error

RMSE the Root Mean Square Error

SD the Standard Deviation

SDSO Stereo Direct Sparse Odometry

SfM Structure-from-Motion

SJC Score Jacobian Chaining

SLAM Simultaneous Location and Mapping

UAV Unmanned Aerial Vehicle

UNCC the University of North Carolina at Charlotte

VAE Variational Autoencoders

CHAPTER 1: INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in

robotics that involves building a map of an unknown environment while simulta-

neously tracking the robot’s position. SLAM algorithms have become increasingly

important in developing autonomous robots that can navigate and operate in un-

structured environments without relying on pre-existing maps or GPS. The SLAM

problem is challenging due to the need for robust sensor fusion and estimation tech-

niques to overcome uncertainties and noise in sensor measurements. Over the years,

various approaches to SLAM have been developed, ranging from probabilistic tech-

niques like Kalman filters [1, 2, 3] to more recent deep learning-based approaches

[4, 5, 6]. In this context, SLAM remains an active area of research and a critical

technology in the advancement of robotics.

The emergence of modern consumer imaging sensors including RGB, depth, and

infrared has had a significant impact on the visual SLAM research fields. They are

low-cost, low-power, and low-size alternatives to traditional range sensors such as

LiDAR [7]. Motivated by the advancement in imaging sensors, a lot of researchers

have worked on visual SLAM (vSLAM), such as monocular SLAM [8, 9], RGB-D

SLAM [10, 11], and stereo SLAM [12, 13].

1.1 Problem Statement

Despite the significant progress made in visual SLAM, existing SLAM approaches

face several challenges that hinder their performance and applicability in real-world

scenarios. This dissertation focuses on three perspectives of the visual SLAM problem:

environment simulation and sensor data processing (Chapter 2), resource efficiency

2

(Chapter 3), and 3D object representation (Chapter 4). By delving into the intrica-

cies of environment simulation and sensor data processing, this research endeavors to

enhance the accuracy and robustness of SLAM systems in dynamic and complex envi-

ronments. Furthermore, it explores methods to optimize resource utilization, ensuring

that SLAM algorithms can operate efficiently across various platforms and computa-

tional constraints. Additionally, the dissertation delves into novel approaches for 3D

object representation within SLAM frameworks, to improve scene understanding and

facilitate higher-level tasks such as human-robot interaction.

1.1.1 Environment Simulation and Sensor Data Processing

Despite the advancements in simulation technologies [14, 15, 16] developed for eval-

uating SLAM systems, there remains a critical need to explore how simulations can

effectively replicate real-world scenarios to conduct realistic experiments. While sim-

ulations offer the advantage of controlled environments and cost-effective experimen-

tation, achieving high levels of realism that accurately represent complex real-world

dynamics presents a significant challenge. Furthermore, there is a lack of standard-

ized methodologies for assessing the fidelity and validity of simulated environments

compared to their real-world counterparts. Addressing these challenges is essential

to harnessing the full potential of simulations for conducting realistic experiments

across various domains, ultimately advancing scientific research, technology develop-

ment, and decision-making processes.

Conventional RGB-D cameras are popularly adopted as sensors in visual SLAM

systems. However, their characteristic of operating under the human visible spectrum

can be hindered by challenging environments such as fog, dust, and dynamic lighting

conditions. This can cause visual SLAM to fail if distinct visual features are insuf-

ficiently available. This dissertation seeks to develop novel techniques that improve

the fidelity of sensor data processing, thereby enhancing the overall performance of

SLAM systems in challenging conditions.

3

1.1.2 Resource Intensity of SLAM Systems

Real-world applications of SLAM technology are limited by the robots’ onboard

resources. This is because the computational cost increases quadratically as map size

grows [17], and the generated maps, popularly represented by point cloud, require sig-

nificant memory and bandwidth budget to share with other robots. Researchers have

attempted to mitigate these challenges by utilizing the map topology [18, 19] or re-

ducing the problem size throughout the whole SLAM system including feature/frame

selection, and keyframe/3D point decimation [20], at the expense of pose accuracy.

Recent SLAM systems can utilize deep learning for extracting semantic information

of the world [21, 22, 23, 24], however, such information is not used to simplify map

representation, hindering downstream processing from saving computational cost and

memory. These challenges make SLAM unsuitable for robots with limited resources,

such as light-duty UAVs and swarm-style robots.

1.1.3 Shape Representations for 3D Objects

The generation and understanding of three-dimensional (3D) geometries hold sig-

nificant importance across diverse domains, from computer graphics to robotics and

virtual reality. Recent advancements in deep learning (DL) and generative modeling

have propelled research in the area of 3D shape generation. Notably, techniques such

as Variational Autoencoders (VAEs) [25, 26, 27], 3D Generative Adversarial Networks

(3D-GANs) [28, 29, 30], and 3D Stable Diffusion [31, 32, 33, 34] have shown promise

to autonomously produce realistic and diverse 3D shapes. Shape grammars have also

been demonstrated as a powerful approach for formal model generation by providing

a rule-based framework for generating complex geometric structures and enforcing

constraints within objects [35, 36, 37]. Each methodology has its advantages and

limitations. This research seeks to provide a fusion of these two methodologies to

achieve the best of both worlds for novel 3D shape synthesis.

4

1.2 Structure and Contribution

To provide solutions to the aforementioned problems, this dissertation develops

several novel techniques for SLAM systems. The contributions are divided into three

topics: (1) environment simulation and sensor data processing for mapping applica-

tions, (2) SLAM with bounded computational cost and low bandwidth utilization,

and (3) deep learning fusion with 3D procedural model representation. The remain-

der of Chapter 1 introduces the solutions this dissertation proposes to the three

topics and summarizes the contributions of this dissertation. Chapters 2, 3, and 4

respectively further detail the three topics and the proposed approaches to addressed

problems. For each topic a general overview of the problem and related literature

is presented, followed by the proposed methodology which includes both completed

work and proposed work, then concluded with an overview of how the dissertation

makes a contribution to each of these fields. Chapter 5 concludes this dissertation

and suggests further research.

Chapter 2 first presents an approach to simulating high-fidelity realistic environ-

ment and sensor data for SLAM applications. The approach was then used to analyze

several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focus-

ing on low-altitude and high-speed scenarios. Findings quantify compromises in UAV

algorithm selection, allowing researchers to find the mapping solution best suited to

their application, which often requires a compromise between computational perfor-

mance and the density and accuracy of geometric map estimates.

Chapter 2 then explores techniques that allow state-of-the-art SLAM systems to

extend the concepts beyond the visible spectrum. A novel mathematical model that

characterizes the pixel generation process of microbolometers, the infrared radiation

detector, is proposed to solve the photometric correction problem for thermal cameras.

Chapter 3 proposes a semantic SLAM system that uses planar surfaces to greatly

reduce the resource burden for localization and mapping. Two novel compression

5

algorithms for depth data and a method to independently fit planes to RGB-D data

are provided so that plane data can be used for real-time odometry estimation and

mapping. Additionally, the maps are extended with semantic information predicted

from sparse geometries (planes) by a CNN.

Chapter 4 proposes a novel fusion of 3D shape representation using shape grammars

and DL model estimation. Shapes are represented as a formal shape grammar using

Procedural Shape Modeling Language (PSML) [38] which applies a sequence of rules

to construct a 3D geometric model as a collection of 3D primitives. In contrast to

competing approaches from the DL literature, the inclusion of dynamic parameterized

formal shape models promises to allow DL applications to more accurately represent

the structure of commonplace objects.

The contributions of this dissertation include:

1. An approach of simulating real-world environments and sensor data for the

context of low-altitude high-speed UAV mapping application. (Chapter 2.1)

(a) A novel approach to creating a real-world environment in simulation using

the AirSim open-source simulator with Cesium Tiles Plugin that provides

highly accurate 3D geometric models developed by Google.

(b) A framework to simulate realistic flight for Unmanned Aerial Vehicles

(UAVs).

(c) An application of using the simulation framework to evaluate the different

algorithms for UAV mapping.

2. An approach for state-of-the-art mapping solutions for RGB sensor data to be

used for infrared sensors. (Chapter 2.2)

(a) A photometric correction model for thermal sensors.

6

(b) Experimental work showing the proposed photometric correction approach

enables the infrared mapping results to achieve comparable performance

with RGB mapping results.

3. An resource-efficient RGB-D SLAM system that constructs 3D planar semantic

maps. (Chapter 3)

(a) An efficient and effective compression algorithm for depth images.

(b) A real-time fast plane fitting method that can fit planes independently of

the sensor intrinsic camera parameters.

(c) A real-time odometry algorithm based on plane constraints.

(d) A CNN that performs semantic segmentation on plane input.

4. A novel fusion of deep learning systems and shape grammar for 3D shape gen-

eration. (Chapter 4)

(a) Shape estimates can be guaranteed to satisfy complex geometric shapes

and physical constraints.

(b) Shape estimates are guaranteed to satisfy important geometric model prop-

erties by providing water-tight, i.e., manifold, and polygon models.

(c) Shape estimates provide a highly compact parametric representation of

objects allowing objects to be efficiently shared over communication links.

(d) User-provided shape programs allow human-in-the-loop control over DL

estimates.

(e) Users can control the complexity and diversity of DL-estimated shapes for

each object and each object component directly through the construction

of the DL network.

7

(f) Object models can be used to synthesize training data for DL systems

improving over current 3D model databases which use static 3D models

and therefore lack geometric diversity.

(g) An example of the proposed DL fusion is provided that detects objects and

their parametric representation given a PSML shape grammar is demon-

strated.

These contributions significantly advance the state-of-the-art for SLAM. The en-

vironment simulation approach provides the ability to simulate or reproduce a real-

world experiment in simulation and generate comparable results. The proposed pho-

tometric correction model for thermal infrared sensors equips the SLAM systems

designed for RGB sensors to provide stable feature tracking and accurate mapping

when processing thermal data. Taking advantage of the geometric primitives (planes

and shape models generated using shape grammars), the proposed techniques provide

new representations for 3D geometries that can (1) be quickly calculated and repre-

sent the data to a similar degree of geometric accuracy using far fewer parameters.

The joint effect of these contributions allows agents with 3D sensing capabilities to

calculate and communicate compressed map information commensurate with their

onboard computational and bandwidth resources. Furthermore, the ability to inter-

pret the world in a generative way that human beings also understand allows the

possibility of closer collaboration between humans and robots.

8

REFERENCES

[1] S. Huang and G. Dissanayake, “Convergence and consistency analysis for ex-
tended kalman filter based slam,” IEEE Transactions on robotics, vol. 23, no. 5,
pp. 1036–1049, 2007.

[2] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and improvement
of the consistency of extended kalman filter based slam,” in 2008 IEEE Interna-
tional Conference on Robotics and Automation, pp. 473–479, IEEE, 2008.

[3] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and conquer: Ekf slam in o(n),”
IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1107–1120, 2008.

[4] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense
monocular slam with learned depth prediction,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 6243–6252, 2017.

[5] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-slam: A
semantic visual slam towards dynamic environments,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174,
IEEE, 2018.

[6] X. Long, W. Zhang, and B. Zhao, “Pspnet-slam: a semantic slam detect dynamic
object by pyramid scene parsing network,” IEEE Access, vol. 8, pp. 214685–
214695, 2020.

[7] J. Civera and S. H. Lee, “Rgb-d odometry and slam,” in RGB-D Image Analysis
and Processing, pp. 117–144, Springer, 2019.

[8] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular
SLAM,” September 2014.

[9] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM system
for monocular, stereo, and RGB-d cameras,” IEEE Transactions on Robotics,
vol. 33, pp. 1255–1262, oct 2017.

[10] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2100–2106, IEEE, 2013.

[11] C. Wang, J. Yuan, and L. Xie, “Non-iterative slam,” in 2017 18th International
Conference on Advanced Robotics (ICAR), pp. 83–90, IEEE, 2017.

[12] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct slam with stereo cam-
eras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1935–1942, IEEE, 2015.

9

[13] R. Wang, M. Schworer, and D. Cremers, “Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3903–3911, 2017.

[14] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2149–2154, 2004.

[15] Robotis and Perception Group – University of Zurich, “Agilicious.”
https://github.com/uzh-rpg/agilicious. (accessed: Sep. 25, 2023).

[16] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating System
(ROS): The complete reference (volume 1), ch. 23, pp. 595–625. New York, NY,
USA: Springer, Cham, 2016.

[17] Y. Park and S. Bae, “Keeping less is more: Point sparsification for visual slam,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7936–7943, IEEE, 2022.

[18] O. KÃ€hler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale dense
3d reconstruction with loop closure,” in Computer Vision – ECCV 2016, pp. 500–
516, Springer International Publishing, 2016.

[19] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald,
“Real-time large scale dense rgb-d slam with volumetric fusion,” International
Journal of Robotics Research: Special Issue on Robot Vision, vol. 34, pp. 598 –
626, April 2015.

[20] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leuteneg-
ger, “Elasticfusion: Real-time dense SLAM and light source estimation,” The
International Journal of Robotics Research, vol. 35, no. 14, pp. 1697–1716, 2016.

[21] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion:
Dense 3d semantic mapping with convolutional neural networks,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4628–4635,
2017.

[22] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Sieg-
wart, and C. Cadena, “Segmap: Segment-based mapping and localization using
data-driven descriptors,” The International Journal of Robotics Research, vol. 39,
no. 2-3, pp. 339–355, 2020.

[23] S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping through
efficient high order crfs,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 590–597, IEEE, 2017.

[24] Z. Xuan and F. David, “Real-time voxel based 3d semantic mapping with a hand
held rgb-d camera,” 2018.

10

[25] E. A. Ajayi, K. M. Lim, S.-C. Chong, and C. P. Lee, “3d shape generation
via variational autoencoder with signed distance function relativistic average
generative adversarial network,” Applied Sciences, vol. 13, no. 10, p. 5925, 2023.

[26] B. Dai and D. Wipf, “Diagnosing and enhancing vae models,” arXiv preprint
arXiv:1903.05789, 2019.

[27] A. R. Kosiorek, H. Strathmann, D. Zoran, P. Moreno, R. Schneider, S. Mokrá,
and D. J. Rezende, “Nerf-vae: A geometry aware 3d scene generative model,” in
International Conference on Machine Learning, pp. 5742–5752, PMLR, 2021.

[28] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling,”
Advances in neural information processing systems, vol. 29, 2016.

[29] A. Frühstück, N. Sarafianos, Y. Xu, P. Wonka, and T. Tung, “Vive3d: Viewpoint-
independent video editing using 3d-aware gans,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4446–4455, 2023.

[30] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, O. Gallo,
L. J. Guibas, J. Tremblay, S. Khamis, et al., “Efficient geometry-aware 3d gen-
erative adversarial networks,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16123–16133, 2022.

[31] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick,
“Zero-1-to-3: Zero-shot one image to 3d object,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9298–9309, 2023.

[32] Stability AI, “3D couch generated using Zero123-XL models.”
https://stability.ai/news/stable-zero123-3d-generation. [accessed 07-Apr-2023].

[33] H. Wang, X. Du, J. Li, R. A. Yeh, and G. Shakhnarovich, “Score jacobian chain-
ing: Lifting pretrained 2d diffusion models for 3d generation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12619–12629, 2023.

[34] J. Xu, X. Wang, W. Cheng, Y.-P. Cao, Y. Shan, X. Qie, and S. Gao, “Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20908–20918, 2023.

[35] CityEngine, “http://www.esri.com/software/cityengine.”

[36] L. Yang, J. Li, H.-T. Chang, Z. Zhao, H. Ma, and L. Zhou, “A generative urban
space design method based on shape grammar and urban induction patterns,”
Land, vol. 12, no. 6, p. 1167, 2023.

11

[37] K. Zhang, N. Zhang, F. Quan, Y. Li, and S. Wang, “Digital form generation of
heritages in historical district based on plan typology and shape grammar: case
study on kulangsu islet,” Buildings, vol. 13, no. 1, p. 229, 2023.

[38] A. R. Willis, P. Ganesh, K. Volle, J. Zhang, and K. Brink, “Volumetric proce-
dural models for shape representation,” Graphics and Visual Computing, vol. 4,
p. 200018, 2021.

CHAPTER 2: SIMULATION AND SENSOR DATA PROCESSING

2.1 UAV-Borne Mapping Algorithms for Low-Altitude and High- Speed Drone

Applications

2.1.1 Introduction

UAVs, also known as drones, have transcended conventional applications to become

indispensable tools across an array of disciplines, from environmental monitoring and

precision agriculture to disaster response and infrastructure inspection. At the heart

of their efficacy lies the sophisticated interplay between UAVs and mapping algo-

rithms, which serve as the backbone for converting raw sensor data into coherent,

high-fidelity maps. These algorithms play a pivotal role in navigating complex ter-

rains, extracting meaningful information, and ensuring precise localization of the UAV

in real time. From traditional photogrammetry to advanced techniques like Simul-

taneous Localization and Mapping (SLAM), these algorithms continuously evolve to

meet the diverse demands of UAV applications ranging from agriculture and forestry

to disaster response and urban planning.

Mapping algorithms for UAVs are significantly influenced by flight altitude, dictat-

ing the scale of environmental perception and mapping capabilities. For high-altitude

flights, the imagery changes between successive frames are slower than for low-altitude

flights, which allows more overlap/correspondence between successive frames. How-

ever, as altitude increases, challenges such as reduced sensor performance, dimin-

ished feature visibility, and heightened geometric distortions emerge. While 3D or

2D laser scanners generate effective terrain models, their weight and sensitivity to

ground proximity pose challenges. Compact depth-sensing devices, though commer-

13

cially available, often fall short in operational range. Camera-based mapping systems,

while lightweight and scalable, face accuracy challenges at high altitudes due to re-

duced texture and discernible features. This limitation hampers feature tracking and

matching, impacting overall mapping algorithm performance. High-altitude flights

also amplify drift and uncertainty in UAV trajectory estimation, particularly affect-

ing SLAM algorithms relying on sensor fusion. The accumulation of errors over time

compromises poses estimations, emphasizing the critical consideration of flight alti-

tude in optimizing mapping algorithm outcomes. This article focuses on multirotor

UAVs and analyzes UAV algorithm performance at altitude ranges from 12 m to 20 m

from the ground, which is considered to be “low-altitude” in this article. Investiga-

tions for this context provide an analysis of key sensor options and their strengths and

weaknesses. Specific recommendations are also provided for light-duty UAVs (U.S.

military UAS Group 1).

Mapping algorithms tailored for high-speed UAVs address the specific demands of

dynamic and rapid flight scenarios. Real-time operation in these contexts is impera-

tive, necessitating synchronization and integration of data from diverse sensors such

as LiDAR, cameras, and inertial measurement units (IMUs). Adaptive navigation is

equally crucial to accommodate the UAV’s swift maneuvers and maintain mapping

precision. Overcoming challenges related to large distances covered between sensor

readings during high-speed flights is essential for achieving precise mapping results.

Additionally, robustness in the face of environmental variability, including changes in

lighting, weather conditions, and terrains, is vital. High-speed UAVs, integral in appli-

cations like surveillance and emergency response, benefit from ongoing advancements

in mapping algorithms. These improvements enhance effectiveness, allowing UAVs

to navigate rapidly changing environments and deliver precise and timely mapping

outcomes. This article analyzes multirotor UAV algorithm performance for speed

ranges from 15 m/s to 20 m/s which corresponds to the maximum speed for typical

14

commercially available platforms in this Group [1].

In recent decades, research investigating methods for 3D reconstruction from im-

ages has thrived. Examples of approaches include Structure-from-Motion (SfM) al-

gorithms [2, 3, 4, 5, 6, 7] and stereo reconstruction (Stereo3D) algorithms [8, 9, 10,

11, 12]. These approaches are the algorithms that can be used as components of a

SLAM system. SfM and Stereo3D differ in both computation methods and output

formats. SfM algorithms analyze a sequence of 2D images from a camera and esti-

mate the relative motion of the camera and the geometric structure of the observed

3D scene. Motion estimates include the camera pose, i.e., position and orientation,

at each recorded image and the scene 3D structure observed in each image. Stereo3D

estimates 3D scene structure from a pair of 2D images captured simultaneously by

two cameras with known relative positions. Depth information is derived from the

correspondence of observed scene points between the two images. While both SfM

and Stereo3D target 3D scene reconstruction, they excel in different applications and

scenarios.

The contributions of this article include:

• A comprehensive analysis outlining the strengths and limitations of state-of-

the-art SfM and stereo reconstruction algorithms;

• A benchmark of the geometry accuracy and computation speed of various map-

ping algorithms;

• A theoretical foundation for sensor selection tailored to low-altitude and high-

speed UAV mapping applications;

• A technical approach for extracting high fidelity geometric models from Cesium

Tile data to perform analysis on 3D mapping and odometry algorithms;

• An innovative approach to simulate realistic flights, utilizing Unreal Engine for

15

high-realism environment synthesis, Cesium plug-in for geographical context,

AirSim for vehicle dynamics, and PX4 Autopilot for precise vehicle control.

These contributions provide researchers new insight into how to best adopt mapping

technologies for their UAV design in low-altitude and high-speed drone applications.

An initial discussion evaluates the theoretical suitability of a wide variety of sensors

for this application and eliminates many sensors from candidacy for various technical

reasons. Subsequent evaluation of algorithms is contingent on the proposed selection

of best-practice sensors for this context.

Mapping algorithm analysis surveys current state-of-the-art real-time reconstruc-

tion algorithms suited to the sensors that were previously identified as appropriate for

low-altitude and high-speed multirotor UAV mapping applications. From a wide ar-

ray of possible algorithms, three were evaluated: (1) Direct Sparse Odometry (DSO)

[13], (2) Stereo Direct Sparse Odometry (SDSO) [14], and (3) Direct Sparse Odometry

Lite (DSOL) [15]. While many algorithms are available in the literature, the selected

algorithms provide a representative sampling of reconstruction methods for the rec-

ommended camera sensors.

2.1.2 Related Work

This article compares three methods for 3D mapping in terms of their suitability

for use on Group 1 UAVs at high-speed, low-altitude flight. Discussion of current

sensing options indicates that camera-based methods are well-suited to this appli-

cation. Experiments use a simulated environment to evaluate leading camera-based

methods. For these reasons, a review of the related literature to this article is divided

into three parts:

• A comparison of SfM and stereo3D reconstruction methods including recent

leading implementations of these methods;

• A compact review of three 3D-from-images algorithms;

16

• A review of different 3D simulation options for developing and evaluating these

mapping algorithms for the context of low-altitude high-speed flight.

A comprehensive literature review motivates the methodology and experimental

approach for this article. Specifically, the choice of mapping algorithms analyzed and

the simulation environment used was based on a comprehensive review of candidate

solutions.

2.1.2.1 Structure-from-Motion vs. Stereo Reconstruction

Structure from Motion (SfM) and stereo reconstruction are two leading techniques

employed in 3D reconstruction. This subsection describes the principles of both

techniques to provide insights into their distinctive attributes and how they relate to

high-speed low-altitude mapping applications.

Structure-from-Motion

SfM [16] is the process of reconstructing a 3D structure from its projections into

a series of images taken from different viewpoints. It leverages the relative move-

ment between a camera and objects in a scene to reconstruct the 3D structure. SfM

estimates the camera poses and the spatial arrangement of points in the scene by an-

alyzing the changes in perspective across multiple images. SfM has been extensively

studied and applied in diverse fields, including 3D modeling [17, 18], augmented

reality [19, 20], autonomous navigation [21, 22], and remote sensing [23, 24]. Re-

searchers have explored various algorithms and optimization methods to enhance the

accuracy [2, 25, 26, 27] and efficiency [4, 28, 6, 7] of SfM, making it a robust solu-

tion for scenarios where camera poses change dynamically, a common occurrence in

high-speed low-altitude flights.

Stereo Reconstruction

Stereo reconstruction (stereo3D) involves the process of estimating the 3D struc-

ture of a scene from a pair of 2D images captured by two cameras with known relative

17

positions. By analyzing the disparities between the two images, stereo reconstruc-

tion algorithms can calculate the depth information of the scene points. This depth

information allows for the creation of a 3D representation of the scene. Stereo3D

is critical to enabling autonomous capabilities in a wide range of fields including

robotics [29, 30], autonomous vehicles [31, 9], and 3D modeling [32, 33, 12].

Figure 2.1a illustrates the epipolar geometry of two pinhole cameras observing a 3D

point M. Stereo reconstruction estimates M’s distance by analyzing its projections

m and m′. The baseline B connects camera origins CL and CR, defining epipolar

geometry with epipoles e and e′. The epipolar plane intersects with image planes

π and π′, forming epipolar lines. According to epipolar geometry, m in π′ lies on

epipolar line l′. Depth estimation involves finding corresponding points, simplified by

image rectification in Figure 2.1b, ensuring m and m′ align. Depth d is estimated

through triangulation represented by Equation (2.1), considering column differences

from m and m′ to the center of the left and right images, baseline B, focal length f ,

and pixel width δ in the rectified image sensor.

d =
Bf

δ (x− x′)
(2.1)

(a) (b)

Figure 2.1: (a) Epipolar geometry of two cameras. (b) Epipolar geometry of a rectified
image pair.

Figure 2.2 shows the theoretical dependency between the baseline parameter of a

stereo camera pair and the accuracy of the depth estimates that the stereo sensor will

18

produce. Red lines show the depth deviations associated with a ±1 pixel error in the

disparity. The plot shows that the disparity decreases as a square of the depth and

error increases as a square of the depth.

Figure 2.2: The dependency between depth estimation accuracy and the baseline of
the stereo camera design for a baseline, B of 34 cm, based on [34].

SfM can be computationally intensive and requires feature matching and bundle

adjustment for robust results. Stereo3D, with fixed camera positions, is typically less

computationally intensive and more straightforward compared to SfM. SfM systems

estimate the scene structure to an unknown scale and usually require fusion with

other metric data, e.g., from an IMU or a GPS sensor, to make estimated geometric

measurements consistent with the real geometric scene structure. Stereo3D directly

estimates the scene structure and uses the baseline distance to provide scene scale

estimates that are metrically consistent with the 3D scene geometry and do not require

sensor fusion to recover the unknown scale.

2.1.2.2 Mapping Algorithms

This article focuses on the following three representative state-of-the-art real-time

algorithms to investigate their applications to multirotor UAV-borne mapping:

• Structure-from-Motion: Direct Sparse Odometry (DSO) [13];

• Stereo Reconstruction: Stereo Direct Sparse Odometry (SDSO) [14] and Direct

Sparse Odometry Lite (DSOL) [15].

19

DSO: Direct Sparse Odometry

DSO is a visual odometry technique that adapts SfM methods for 3D reconstruc-

tion. It directly estimates the camera motion and the sparse 3D structure of the

environment from a sequence of 2D images by minimizing photometric errors. DSO

differs significantly from traditional techniques by directly optimizing photometric er-

rors in images, without relying on keypoint detectors or geometric priors. For a point,

p in reference frame Ii, observed as p′ in target frame Ij, the photometric error, given

by Equation (2.2), is formulated as the weighted Sum of Squared Differences (SSD)

over a small neighborhood of pixels.

Epj :=
∑
p∈Np

wp

∣∣∣∣0 (Ij [p′]− bj)−
tje

aj

tieai
(Ii[p]− bi)

∣∣∣∣ 0γ (2.2)

where Np is the set of pixels in the SSD; (ti, tj) the exposure times of the frame Ii

and Ij; (ai, bi, aj, bj) the brightness transfer variables defined in DSO for frame Ii and

Ij, respectively, and |0 · |0γ is the Huber norm. In addition to using robust Huber

penalties, a gradient-dependent weighting wp is applied. Further, p′ stands for the

projected point position of p with inverse depth dp, given by

p′ = Πc

(
RΠ−1c (p, dp) + t

)
(2.3)

with  R t

0 1

 := TjT
−1
i (2.4)

where Πc : R3 → Ω denotes projection, Π−1c : Ω × R → R3 denotes back-projection,

c denotes the intrinsic camera parameters, and Ti,Tj ∈ SE(3) are the camera poses

represented by transformation matrices for frame Ii and Ij.

To minimize the photometric error between the corresponding points in two frames,

20

DSO incorporates a fully direct probabilistic model that jointly optimizes all model

parameters, including camera motion and geometry, represented as inverse depth in a

reference frame. The optimization is accomplished using the Gauss-Newton algorithm

in a sliding window [35].

SDSO: Stereo Direct Sparse Odometry

SDSO is a stereo version of DSO. In a monocular mapping system like DSO, to ini-

tialize the whole system, i.e., to track the second frame with respect to the initial one

using Equation (2.2), the inverse depth values dp of the points in the first frame are

required. In DSO, the points are initialized to have random depth values ranging from

0 to infinity, corresponding to a large depth variance. Unlike that, SDSO uses stereo

matching to estimate a semi-dense depth map for the first frame, which significantly

increases the tracking accuracy. The constraints from static stereo introduce scale

information into the system. They also provide good geometric priors to temporal

multi-view stereo.

DSOL: Direct Sparse Odometry Lite

DSOL presents an enhanced version of DSO and SDSO, proposing several algorith-

mic and implementation improvements to significantly speed up computation. Fol-

lowing the same practice as DSO of defining the photometric error in Equation (2.2),

DSOL adopts the inverse compositional alignment method [36] to perform computa-

tionally expensive calculations, i.e., the Gauss-Newton approximation to the Hessian

matrix, at the pre-computation phase, which largely improves the running speed of

the algorithm. Compared to DSO and Stereo DSO, key aspects of optimization in

DSOL include the following: (1) utilizing an inverse compositional alignment method

for frame tracking, improving accuracy and speed; (2) adapting a better stereo photo-

metric bundle adjustment formulation compared to SDSO; (3) simplifying keyframe

creation and removal criteria from DSO, allowing for better utilization of computa-

21

tional resources and parallel processing; and (4) implementing algorithmic enhance-

ments to streamline the computation process, making it more suitable for real-time

applications, especially in resource-constrained environments. The focus of DSOL is

on mapping speed and efficiency while maintaining accuracy.

2.1.2.3 Aerial Simulation Solutions

There are various simulation platforms for vehicles and environments catering to

the diverse needs of researchers. Gazebo [37], with its open-source nature, stands

as a versatile choice, emphasizing realism and adaptability. Agilicious [38] special-

izes in agile quadrotor flight, providing unique applications such as drone racing.

RotorS [39], integrated with the Robot Operating System (ROS), offers high-fidelity

UAV simulation. Flightmare [40], part of the AirSim project, excels in simulating mul-

tiple drones for swarm robotics research. Kumar Robotics Autonomous Flight [41]

addresses GPS-denied quadcopter autonomy. MIT’s FlightGoggles [42] offers an im-

mersive experience with photorealistic graphics. AirSim, developed by Microsoft,

on top of the Unreal Engine, excels in generating highly realistic perceptual simula-

tion data in complex and dynamic environments.

An approach is proposed in [43] to reproduce real-world experiments in simulation

using the AirSim open-source simulator with the Cesium Tiles plugin, allowing for

large-scale 3D geometry analysis. This paper adapts the methodology and extends

it with other aerial vehicle control technologies, achieving precise vehicle control in

high-realism virtual models that replicate real-world contexts world.

2.1.3 Methodology

The overall approach for the methods of this article consists of three steps:

• Describe the benefits and shortcomings of various candidate sensing modalities

for low-altitude high-speed mapping using Group 1 UAVs resulting in a recom-

mendation for using one or more high-frame rate conventional camera sensors

22

for this application (Section 2.1.3.1).

• Describe the simulation methods used to collect data using a highly realistic 3D

environment made possible by integrating the AirSim simulator with Google’s

3D map database using the Cesium Tiles plugin for the Unreal Engine (Section

2.1.3.2).

• Describe the evaluation methods adopted to compare the mapping results gen-

erated from experimental flights within the simulated environment (Section

2.1.3.3).

2.1.3.1 Sensors for UAV Mapping

Three prominent sensor types are investigated as potential components of the UAV

perceptual payload. These sensor types are listed below:

• LiDAR (Light Distance and Ranging) Sensors;

• Event Cameras;

• Conventional EO and IR Cameras.

Our assessment considered leading examples of each sensor that would be poten-

tially appropriate for the high-speed low-altitude context and commercially available.

The specifications of the sensors were then reviewed in terms of their ability to provide

measurements that meet the requirements of UAV mapping. Based on this analysis,

a determination was reached regarding the suitability of each sensor.

LiDAR

Figure 2.3 shows several LiDAR sensors evaluated for inclusion in the platform

payload. LiDAR sensors have emerged as a popular choice for UAV mapping ap-

plications with significant advancements in LiDAR-based techniques [44, 45, 46, 47].

However, it was quickly determined that these devices would not be appropriate for

23

the UAV mapping application. The shortcomings of these sensors are described in

the list below:

• Weight: LiDAR sensors typically weigh 500 g. or more which would be equiva-

lent to approximately 5 image sensors of 100 g.

• Measurement Method: LiDAR sensors measure individual 3D points at one time

or a collection of 3D points using a laser line-scanning technology. In either case,

a rotating mirror in the sensor scans the scene over time. Accurate integration of

scan data requires motion compensation for individual 3D point measurements

for mapping and geometry estimation.

• Measurement Speed: LiDAR sensors typically scan at low rates (10–20 Hz)

which makes the capture of a complete 3D scene geometry impractical for the

rates required by high-speed flight.

(a) (b) (c) (d)

Figure 2.3: Several LiDAR sensors were evaluated for inclusion on the platform. Left
to right are shown (a) the Ouster OS1, (b) the HRL131, (c) the RIEGL miniVUX-
HA, and (d) the L3 Harris Tactical Geiger-Mode LiDAR sensors.

The data stream, resulting from the combination of the measurement method and

measurement speed, requires highly accurate flight pose tracking over long distances

at high speeds for the accurate integration of data into a unified 3D map. Achieving

this may pose challenges considering the tracking accuracy limitations of onboard

instruments, and substantial computation may be required for per-point or per-scan

line motion compensation. Due to these reasons, the utilization of LiDAR sensing

instrumentation for high-speed UAV mapping is not advisable.

24

Event Cameras

Figure 2.4 shows several event camera sensors evaluated for inclusion in the plat-

form payload. The key attractive aspect of event cameras that has sparked consid-

erable interest from researchers and industry alike is the extremely high temporal

accuracy. Specifically, event cameras can resolve intensity changes in the perceptual

field at a temporal resolution of approximately 1 µs. For this reason, event cameras

have been used in high-speed contexts.

Figure 2.4: A collection of event cameras commercially available from the iniVation
Corp [48].

While the deployment of event cameras as a component of UAVs may seem attrac-

tive due to the temporal resolution, there are several shortcomings associated with

integrating this hardware into the UAV payload:

• Resolution: Resolution is a key parameter for depth accuracy as discussed in the

stereo reconstruction Section 2.1.2.1. Accuracy strongly ties to both resolution

and pixel size, δ, as shown in Figures 2.1b and 2.2. Event camera resolution,

0.3 MPixels, is a factor of 5–10 times lower than conventional image sensors,

and the pixel size of δ = 18 µm is a factor of 6–18 times larger than conventional

image sensors, e.g., the Sony IMX472 sensor has a resolution of 21 megapixels

25

and a pixel size of 3.3 µm.

• Weight: While these sensors are lighter than LiDAR sensors, they weigh ∼100

g. and much lighter camera sensors are available.

• Latency: While the temporal resolution of event cameras is an impressive 1 µs,

the latency of the measurements is on the order of <1 ms. This latency is

similar to that of high frame rate conventional image sensors with frame rates

of +100 fps and similar <1 ms latency.

• Nighttime Performance: Event cameras operate on similar principles to conven-

tional visible light cameras. As such, they are suited to deployment in daytime

contexts. The lack of an infra-red event camera requires completely separate

perceptual software stacks for the vehicle in daytime and nighttime contexts.

Event cameras are a recent technology that has emerged and matured over the

past decade. These sensors have unparalleled temporal resolution of 1 µs which

makes them popular for capturing high-speed phenomena endemic to high vehicle

speed applications. Yet, current technology has not matured to the extent required

to make this sensor a viable option. Further, the development of a nighttime IR

sensing event camera is an active area of sensor development under initiatives with

no commercially viable examples. The drawbacks of having low sensor resolution,

large pixel size, and no nighttime performance combined with comparable latency and

weight to standard conventional cameras suggest that this sensor is not appropriate

for inclusion as a component of the UAV payload for high-speed mapping applications.

Electro-Optical and Infrared Cameras

Conventional image sensors, including electro-optical (EO) and infrared (IR) sen-

sors, have many beneficial attributes that often make them the sensor of choice for

perception designs that must satisfy low Size, Weight, and Power (SWaP) require-

ments. They are well suited for UAV mapping tasks for several reasons:

26

• SWaP: Both EO and IR camera modules are available commercially in a very

large variety of form factors. This includes a compact 25 mm3 weighing 10–

50 g requiring ∼1 W for power and providing temporally synchronized high

framerate (60 fps) images.

• High-Quality Imaging: Modern cameras offer high-resolution imaging with the

ability to capture fine details, which is crucial for mapping tasks, especially in

scenarios where identifying objects is essential.

• Mapping and Geospatial Data: Cameras can be used for aerial imaging and

photogrammetry to create detailed maps and 3D models of areas, making them

valuable for urban planning, environmental monitoring, and disaster manage-

ment.

• Stereo Vision: Cameras can be paired to create a stereo vision system. By cap-

turing images from two slightly offset viewpoints, they can calculate depth infor-

mation through triangulation, using the disparity between corresponding points

in the two images. This method provides accurate 3D information.

• Integration with Other Technologies: Cameras can be integrated with other sen-

sors and technologies, such as Inertial Measurement Units (IMUs) and Global

Navigation Satellite System (GNSS), to enhance their capabilities and im-

prove accuracy.

• Wide Field of View: Many cameras have wide-angle lenses or the ability to pan,

tilt, and zoom (PTZ), providing a broad field of view and the flexibility to focus

on specific areas of interest.

• Daytime and Nighttime Versatility: Camera sensors are capable of sensing in

both daylight and nighttime conditions. If high sensitivity is needed in both

scenarios, it is possible to replace daytime image sensors with infrared image

27

sensors during nighttime conditions. This can be achieved with minor modifi-

cations to the underlying software and algorithms.

• Large Active Algorithm Ecosystem: Researchers worldwide develop cutting-

edge algorithms for these sensors at top institutions. Utilizing this sensor type

enables leveraging the latest, optimized, and theoretically advanced algorithms

for vehicle perception tasks.

• Cost-Effectiveness: Compared to some other sensing technologies, cameras are

cost-effective, making them accessible for a wide range of surveillance and map-

ping applications.

Conventional image sensors have many beneficial attributes that make these sen-

sors attractive for multirotor UAV applications. These sensors have low SWaP re-

quirements and can record >16 M measurements at a time from the environment.

These sensors can be combined with lens components that provide both wide-angle

viewpoints, e.g., a 230◦ FOV via the fisheye lens, for omnidirectional perception and

confined viewpoints, e.g., 80◦ FOV “standard” lens, for high fidelity target tracking

and mapping. The intensive work required to integrate these sensors and develop op-

timized algorithms to process their data to work using onboard computing resources

can be reused between daytime (EO) and nighttime (IR) sensing contexts.

Image sensors designed for both infrared (IR) and visible light often share common

image processing algorithms, including basic processes like filtering, noise reduction,

contrast enhancement, and image registration. Additionally, object detection, recog-

nition, feature extraction, and image fusion algorithms can typically be adapted for

both IR and visible light images, leveraging shared features and patterns. How-

ever, notable differences emerge, primarily related to spectral characteristics, illu-

mination, noise, calibration, temperature considerations, environmental conditions,

and the unique sensitivities of IR images to object materials. These distinctions

28

necessitate adjustments in algorithms to address variations in contrast, object recog-

nition, and material discrimination, showcasing the need for specialized approaches

in certain contexts.

Recommendations

The assessment of available sensors suggests that the conventional image sensors

are the best-practice sensors for multirotor UAV applications. EO and IR sensors,

being lighter in weight and faster in measurement speeds compared to LiDAR sensors,

also offer better image quality and nighttime measurement capability in contrast to

event cameras. The choice of conventional sensors not only aligns with budgetary

constraints but also caters to the diverse needs of UAV operations, encompassing

navigation, mapping, and surveillance with exceptional performance and reliability.

2.1.3.2 Benchmark Dataset

A virtual environment that mimics real-world scenes was used for evaluation. Com-

pared to real datasets, synthetic datasets for evaluating mapping algorithms bring a

notable advantage in the form of readily available ground truth 3D models. This

availability of ground truth data facilitates a more rigorous assessment of mapping

performance, ensuring precise comparisons between the algorithm’s outputs and the

known true state of the environment.

Environment Simulation

AirSim [49] was used to simulate the dynamics of the drone. AirSim, developed

by Microsoft, stands as a groundbreaking and influential simulator that has become

a cornerstone in the development of autonomous drones and robotics. What sets

AirSim apart is its capacity to simulate complex and dynamic environments with

exceptional fidelity, replicating not only the physics of flight but also the intricacies

of various sensors like cameras (RGB and depth), LiDAR, and GPS. Figure 2.5 shows

an example of the AirSim simulated images captured by the cameras mounted on

29

the multirotor.

(a) (b) (c) (d)

Figure 2.5: An example of an AirSim city environment showing the following: (a)
the FPV view in the simulator where the drone is hovering, (b) RGB image from
the simulated left camera mounted on the drone, (c) RGB image from the simulated
right camera, and (d) depth image from the simulated depth sensor where objects
closer to the depth camera appear darker.

The proposed approach used the Cesium plugin for the Unreal Engine, also known

as “Unreal Cesium”, to simulate real-world scenes, and enhance the effectiveness of

simulations. Although AirSim provides rich virtual environments for testing and fine-

tuning a wide array of autonomous systems, these environments are often designed

for games and lack realism. To synthesize virtual models that replicate real-world

contexts, AirSim can be integrated into the Unreal Engine to allow the Unreal Cesium

plugin to create digital twins of real-world environment models. The Cesium plugin,

given the latitude and longitude coordinates of desired locations, can load 3D tilesets

at the location from Google Maps in the AirSim simulator.

The Unreal Cesium plugin creates a powerful combination by integrating the Unreal

Engine’s advanced rendering and simulation capabilities with Cesium’s geo-spatial

visualization and data streaming features. By streaming high-resolution 3D mod-

els from Google Maps, overlying them onto real-world maps, and applying dynamic

lighting and shadows, to provide precise representations of real-world locations, such

as cities, terrains, and 3D models of buildings. This integration allows developers

to create highly realistic and spatially accurate virtual environments for various ap-

plications. Once the 3D map is generated, it behaves as a collision object in the

Unreal Engine. The UAV then interacts with this model using the geometry of the

30

environment and a physics engine. Figure 2.6 demonstrates the benefits of the Un-

real Cesium plugin for simulation. It shows three real-world locations: (1) the UNC

Charlotte campus, USA, (2) the Grand Canyon, USA, and (3) Paris, France.

(a) (b) (c)

Figure 2.6: Realistic environments created using Unreal Engine and Cesium Plug-in.
(a) UNC Charlotte, NC, USA; (b) Grand Canyon, AZ, USA; (c) Eiffel Tower, Paris,
France.

Flight Simulation

Figure 2.7 depicts the proposed pipeline for flight simulation. QGroundControl

and PX4-Autopilot are software components commonly used in the field of UAVs

and drones. They work together to provide a comprehensive solution for controlling

and managing drone flights. The missions are planned by defining waypoints, flight

paths, and specific actions for the drone to perform and QGroundControl sends the

mission plans to the autopilot system PX4-Autopilot. As an open-source flight control

software for UAVs, PX4-Autopilot runs on the flight controller onboard the drone and

is responsible for stabilizing the aircraft, executing flight plans, and interfacing with

sensors and actuators. Controlled by PX4-Autopilot, the simulated UAV in AirSim

follows the planned trajectory in a high-realism virtual environment created by Unreal

Engine and Cesium plug-in. The cameras mounted on the UAV then capture the

images (RGB, depth, etc) of the scene. These images, along with the ground truth

vehicle odometry, can be obtained from AirSim, which then can be applied together

to generate the ground truth 3D model of the world.

31

Figure 2.7: The flight simulation pipeline integrates the following four robot de-
velopment technologies to facilitate development and testing: (1) Unreal Engine
and Cesium plugin (high-realism image synthesis), (2) AirSim (vehicle dynamics),
(3) QGroundControl (mission planning), and (4) PX4-Autopilot (vehicle control and
Software-In-The-Loop).

Ground Truth Geometry

The ground truth geometry is generated by applying AirSim’s built-in function-

ality for ground truth pose and noiseless telemetry to collect color-attributed point

cloud data from simulated noiseless pixel-aligned RGB and depth images captured

by a drone that traverses the environment. The telemetry is extracted from Cesium

Tile data for generating high-fidelity geometric models. Poses and point clouds are

integrated using standard mapping methods to reconstruct the scene geometry. Fig-

ure 2.8 shows an example of integrating the drone odometry (shown as the red curve

Figure 2.8c) and the point cloud from RGB-D image sequences to create a geometric

model of the scene.

2.1.3.3 Evaluation Methods

Mapping algorithm performance is evaluated using the following two key perfor-

mance criteria: (1) mapping accuracy, and (2) mapping speed. Mapping accuracy is

assessed by comparing the geometry of the reconstructed point cloud with the ground

truth point cloud. Geometric accuracy measures each mapping algorithm’s ability to

32

faithfully capture spatial relationships in the environment. Algorithm performance

speed quantifies the amount of 3D estimates generated per unit of allocated compu-

tational resources. More computation allows more points to be tracked in sequential

frames and the creation of more keyframes. Both tracked points and keyframe data

feed non-linear bundle adjustment and batch trajectory optimization processes which

improve map fidelity but can require significant computational resources. The eval-

uation methods allow result analysis that indicates design trade-offs associated with

each mapping algorithm.

(a) (b) (c)

Figure 2.8: Ground truth geometry can be generated by transforming the point clouds
of RGB-D frame sequences to the odometry of the drone which is shown in red in
Figure 2.8(c). (a) An RGB frame captured by the drone; (b) A depth frame captured
by the drone; (c) Integrating pose and point clouds to generate a map.

Point Cloud Registration

Point cloud registration seeks to compute the alignment between two 3D point

clouds measured from the same surfaces in distinct coordinate systems. Alignment al-

gorithms identify point correspondences between the misaligned point cloud datasets

and compute the rigid Euclidean transformation that makes corresponding points co-

incide. To accomplish this, a point cloud is selected as the staticdataset and all other

measured point clouds are transformed to align with the measurement coordinate

system of the static dataset. Figure 2.9 shows an example of registering two point

clouds where the red point cloud is the source set and the blue is the static dataset.

The Iterative Closest Point (ICP) algorithm [50] is employed to estimate point

33

cloud alignments. The ICP algorithm consists of the following two steps: (1) com-

pute correspondences and (2) compute the best alignment given the correspondence.

Steps (1) and (2) are iterated until the alignment of Step (2) stops changing. Cor-

respondences for a given iteration are calculated by finding the closest point in the

static dataset to each point in the dataset being aligned. Closest point searches stop

at a user-specified search radius for each point. The ICP algorithm seeks to minimize

the RMSE (Root Mean Square Error) of all the distances between corresponding

points and terminates when the gradient of RMSE is below a predefined threshold or

a predetermined maximum iteration count is reached. Alignments resulting from the

ICP algorithm are used to evaluate the geometry accuracy of mapping algorithms.

Figure 2.9: An example of point cloud registration [51]. Red: source point cloud.
Blue: target point cloud. Purple: registration result.

Geometric Accuracy

With the correspondences found using the ICP algorithm, the geometric accuracy

of the reconstructed map is measured by the distance between corresponding points

in the ground truth 3D model and the reconstructed 3D map. The mean of this

distance of all the corresponding points is used to evaluate the accuracy performance,

calculated as follows:

x̄ =
1

N

N∑
i=1

||Pi −Ti|| (2.5)

where N is the total number of corresponding points, Pi is the position of the i-th

corresponding point, and Ti is the ground truth (reference) position for that point.

Further, the standard deviation (std) of the errors (distances) is used to evaluate

34

the variability in the errors, calculated as follows:

σ =

√∑N
i=1(||Pi −Ti|| − x̄)2

N
(2.6)

Computational Cost

To assess the computational efficiency of mapping algorithms, two key metrics were

focused on in this article: keyframe creation time and frame tracking time. These

metrics were selected to provide insights into the mapping speed of the algorithms.

Keyframe Creation Time: Keyframe creation time quantifies the time required

to identify keyframes during the mapping process. Keyframe creation is arguably

the most time-consuming process of the mapping pipeline, often 5–10× slower than

tracking [15]. Creating too many keyframes will cause the system to eventually lag

behind the frame rate. Keyframe creation time reflects the computational efficiency

of map reconstruction.

Frame Tracking Time: Frame tracking time represents the duration required for the

algorithms to process and track individual frames with respect to the keyframes. This

metric reflects the algorithm’s ability to track and update the mapping information

in real-time.

These two metrics collectively provide a comprehensive evaluation of the compu-

tational cost of mapping algorithms. The results of these evaluations are discussed

in Section 2.1.4.2, providing the relative efficiency and performance trade-offs among

the implemented algorithms.

2.1.4 Results

The experimental scene was a virtual model of the UNC Charlotte campus near the

football stadium. The model was generated using AirSim and the underlying Unreal

Engine in combination with the Cesium Tiles plugin.

35

Experiments were conducted on an Intel i7-12700KF CPU. The implementations of

DSO and DSOL that were made available on GitHub by the authors were used [52, 53].

SDSO implementation by the authors is not available so an open-source third-party

implementation on GitHub was chosen [54]. All implementations adhered to the orig-

inal configuration optimized by their authors for accuracy and/or speed performance

including the number of active keyframes and maximal tracking points per frame.

Customized modifications made to all three algorithms respectively for collecting ex-

perimental data include the following: (1) saving the generated point cloud to a PCD

file; (2) saving the keyframe ID and associated creation time to a text file; (3) saving

the frame ID and associated tracking time to a text file.

Experiments consist of a simulated quadrotor vehicle that traverses the virtual

scene at heights ranging from 12 m to 20 m and at speeds ranging from 16.5 m/s

to 20 m/s. During the flight camera sensor telemetry was recorded from a stereo

pair of camera mounts to the UAV chassis. Algorithms processed the telemetry to

generate mapping data for the environment. The SfM algorithm (DSO) used data

from the left camera of the stereo rig while DSOL and SDSO (stereo reconstruction)

utilized all the available image data. The left camera is chosen to define the sensor

coordinate system and the noiseless depth sensor is co-located with the left camera to

record ground truth depth for each pixel measured within the view of the left camera.

Figure 2.10a illustrates the simulated drone’s flight over the UNC Charlotte football

stadium, covering a 3-minute flight duration and capturing 1027 RGB stereo pair

frames and associate ground truth depth. Sample images from the drone’s simulated

RGB and depth sensors are displayed in Figure 2.10b,c.

36

(a) (b) (c)

Figure 2.10: A simulated UNC Charlotte campus world. (a) A quadrotor flying in a
virtual model of UNC Charlotte; (b) A RGB image captured by the drone camera;
(c) A depth image captured by the drone camera .

2.1.4.1 Mapping Accuracy Evaluation

Using the methods of Section 2.1.3.2, a ground truth point cloud of the experi-

mental scene was calculated which is shown in Figure 2.11. This point cloud serves

as the ground truth geometry to evaluate the mapping accuracy of different algo-

rithms. Figure 2.12 shows the point cloud respectively reconstructed by DSO, SDSO,

and DSOL. All three maps qualitatively encode the shape and size of objects from

the experimental scene. However, the point density and scene details of DSO and

DSOL maps outperform the DSOL map.

Figure 2.11: The ground truth point cloud of the scene generated by applying the
ground truth odometry to the point cloud of each RGB-D frame.

37

(a) (b) (c)

Figure 2.12: Point clouds generated by (a) DSO , (b) SDSO, and (c) DSOL. DSO
and SDSO generated much more point clouds than DSOL. The color of the points is
represented by the grayscale color of the scene point.

Quantitative Analysis

Table 2.1 details the density and accuracy characteristics of mapping results ob-

tained from different algorithms. The ICP algorithm was used to align estimate

maps with the ground truth point cloud. Criteria for alignment convergence and

correspondence calculation included the following: (1) a search radius of 0.5 m, (2)

algorithm termination criteria which are triggered when either the RMSE of corre-

sponding points changes by less than 0.00001 or the maximum number of iterations

exceeds 1500. Alignment results allow for statistics to be tabulated on the point

cloud accuracy for each algorithm. DSO, as a monocular SfM algorithm, is unable

to estimate the scene scale accurately. The scale factor was estimated from the ICP

algorithm for DSO and the DSO mapping result (point cloud) was scaled by the es-

timated factor for accuracy evaluation. For SDSO and DSOL, the scale factor was

not estimated since the scale of the scene can be derived from the stereo data. In our

experiments, the estimated map scale of DSO was 35.98. Table 2.1 captures key

statistics of the alignment process for the three algorithms evaluated. Each row of

this table is explained below:

• points: Total points in the reconstructed point cloud.

• correspondences: Total amount of correspondences.

38

• mean: Mean of the distance between all corresponding points.

• std: Standard deviation of the distance between all corresponding points.

Table 2.1: Quantitative evaluation of the point clouds generated by three mapping
algorithms.

DSO SDSO DSOL

points 204345 212179 6662

correspondences 172862 183460 2799

mean (m) 0.110 0.110 0.177

std (m) 0.110 0.111 0.145

Notably, DSO and SDSO maps, similar to each other in the total amount of points,

encompass ∼30 times more points than the DSOL map. This aligns with the obser-

vations in Figure 2.12. The difference in the correspondence sets is more pronounced,

with DSO and SDSO revealing ∼65 times more correspondences than DSOL. DSO,

after scaling, follows very closely to SDSO in terms of mapping accuracy perfor-

mance, while both of them exhibit a 60.9% lower mean error than DSOL and a 31.8%

smaller standard deviation. DSO and SDSO prove more accurate and consistent in

their mapping results, while DSOL lags in terms of both precision and reliability.

Figure 2.13 depicts the distribution of the distance between corresponding map

locations for the three algorithms. DSO and SDSO exhibit similar distributions and

most 3D measurements lie within 0.15 m to their corresponding location in the ground

truth model. In contrast, DSOL has significantly fewer points within the 0.15 m

distance range and a nearly constant number of points having similar errors for greater

distances. This supports the mapping accuracy results shown in Table 2.1.

Figure 2.14 indicates the capability of each algorithm to estimate large depths from

a given viewpoint (Figure 2.14a) and expected error for a depth estimate for each

depth (Figure 2.14b) where depths have been binned to 5 m intervals for tabulation.

39

Figure 2.14a shows the distribution of depth values for the keyframes of the trajec-

tory which are responsible for generating depth values. Figure 2.14a indicates that a

majority of depth estimates range from 20 m to 60 m. One can also see that DSO

is capable of generating estimates at larger depths than the two other algorithms

(see ranges 100–130 m). DSOL tends to reconstruct points within 60 m and shows a

slightly bimodal behavior with a high population of measurements in the 60–100 m

range which may be an artifact due to the experimental context. Figure 2.14b por-

trays the expected depth error in each keyframe. Figure 2.14a also lacks any presence

of short ranges. This can be attributed to flying at low-altitude where most data is

further than 10 m away.

Figure 2.13: Quantitative analysis of the distribution of the closest point distances
for correspondences from the mapping results to the ground truth point cloud.

40

(a) (b)

Figure 2.14: (a) Distribution of point depth in the reconstructed maps and (b) the
average distance between the matched points at different depth ranges.

Figure 2.14b, shows the expected depth error for estimate depths. Inspection of the

results for distances of 20–40 m, the reconstruction error of DSOL is approximately

0.15 m per point while DSO and SDSO are close to each other having an error

of approximately 0.085 m. DSO outperforms SDSO across most depth ranges with

slightly smaller distance measurements. Additionally, the error distributions exhibit a

quadratic growth pattern as predicted by theoretical models as described in Figure 2.2.

High error is noted at short ranges of less than 25 m. This can be attributed to a

lack of sufficient supporting image data due to the high velocity of the UAV. Surfaces

close to the vehicle move quickly through the field of view and exhibit more motion

artifacts leading to higher depth estimation error.

Figure 2.14 indicates that DSO exhibits lower error values across all ranges yet

has fewer points. This can be attributed to a strong filter on the acceptable point

depth covariance for map points within the algorithm. SDSO and DSOL exhibit lower

accuracy compared to those produced by DSO.

Qualitative Analysis

Figure 2.15 shows reconstructed maps from DSO, SDSO, and DSOL. A qualitative

examination of these results unveils notable distinctions in their alignment with the

41

ground truth. DSO and SDSO, with their significantly higher point densities appear

to exhibit good accuracy as evidenced by the details of the road network that have

been captured and include intricate and well-aligned geometries, e.g., road curbs.

The enhanced point density, particularly evident in the football stadium region, allows

for a more detailed reconstruction and appears to provide better alignment results

relative to ground truth here. Conversely, DSOL, characterized by a sparser point

cloud provides a reduced level of detail, particularly in complex structures like the

football stadium. Although DSOL shows good alignment for roads, the sparsity of

the estimate limits the map details.

(a) (b) (c)

Figure 2.15: Reconstructed point clouds (blue) overlaid with the ground truth point
cloud (actual color): (a) DSO, (b) SDSO, and (c) DSOL. DSO point cloud has been
scaled by the factor estimated by ICP.

2.1.4.2 Computational Cost Evaluation

Computation cost for the considered algorithms considers the resources required

by two critical mapping algorithm functions cost: (1) keyframe creation time and

(2) frame tracking time. These metrics serve as crucial benchmarks in assessing the

algorithms’ ability to swiftly and accurately generate keyframes, as well as tracking

real-time camera pose changes during the mapping process. Through this exami-

nation, we seek to offer valuable insights that contribute to the informed selection

and deployment of mapping solutions for low-altitude UAV flights, particularly for

high-speed applications.

42

Keyframe Creation Time

Figure 2.16 illustrates the keyframe creation time for DSO, SDSO, and DSOL.

It can be seen that SDSO requires the most time to create a keyframe, averaging

∼220.73 ms per keyframe, as reported in Table 2.2. DSO incurs lower computational

cost for keyframe creation since the stereo disparity map estimation algorithm is not

required resulting in keyframe times averaging around ∼200.28 ms per keyframe.

DSOL requires ∼7.39 ms per keyframe which is approximately 30 times faster than

competing approaches. This can be attributed to the simplified keyframe creation

process facilitated as a combination of a simplified disparity computation algorithm

and parallel processing. The columns in Table 2.2 delineate the statistical distribu-

tion of keyframe creation times, including the minimum, maximum, and mean values,

with the “std” column denoting the standard deviation. In summary, SDSO necessi-

tates 10.21% more keyframe creation time than DSO and 2886.87% more than DSOL,

while DSO requires 2610.15% more time than DSOL.

Table 2.2: Statistics of the keyframe creation results of three mapping algorithms.

Total kfs min (ms) max (ms) mean (ms) std (ms)

DSO 330 151.83 274.44 200.28 19.63

SDSO 359 172.19 300.79 220.73 23.08

DSOL 61 1.88 17.99 7.39 2.66

43

Figure 2.16: The points plotted along the curves represent the keyframe creation time
at each frame.

Table 2.2 contains data that provides quantitative measures for the aggregate num-

ber of keyframes generated by the three algorithms (“total kfs” column). DSOL gener-

ates approximately ∼80% fewer keyframes compared to its counterparts which can be

attributed to slightly more restrictive requirements for keyframe creation. Noteworthy

is the observation that DSO creates 29 fewer keyframes than SDSO. This discrepancy

is attributed to a delayed initialization of the DSO system, commencing at the 50th

frame in our experiments, in contrast to the immediate initialization of SDSO and

DSOL. Such delay is also illustrated in Figure 2.16 as the DSO curve starts later

than SDSO and DSOL. The DSO initialization process relies on assigning random

depth values to candidate points and predicting the initial camera movement pat-

tern, demanding precise assumptions about initial depth values and camera motion.

In contrast, mapping systems employing stereo cameras, such as SDSO and DSOL,

leverage stereo matching for enhanced depth initialization, leading to increased ac-

curacy. Divergence in keyframe quantities among the algorithms also mirrors the

disparities in point cloud density depicted in Figure 2.12, given that these points are

derived from the keyframes.

44

Frame Tracking Time

Figure 2.17 depicts the frame tracking time across various algorithms, employing

scatter points for visualization. Results show the very high performance achieved by

DSOL which requires very little computation for each tracked frame. In the case of

DSO and SDSO, the tracking time is stratified into two distinct regions. The up-

per region, requiring approximately ∼60 ms for tracking, corresponds to keyframes,

while the lower region, with an average tracking time of ∼20 ms per frame, pertains

to non-keyframes. This 3× difference in tracking time arises from the creation of

a new keyframe, where existing point tracks must be terminated and a collection

of new point tracks must be initialized incurring significant computational cost to

transfer the tracking information. Subsequent frames are then exclusively tracked

to this keyframe, employing traditional two-frame direct image alignment methods.

This stratification in tracking time offers insights into the computational demands

associated with keyframe and non-keyframe tracking, highlighting the intricacies in-

volved in SfM methods that must maintain accurate and efficient tracking across

consecutive frames.

45

(a) (b)

Figure 2.17: Frame tracking time of different algorithms. (a) shows the tracking
time for all frames including keyframes and non-keyframes. The data are plotted as
scatter points for a clear visualization. (b) shows the DSO and SDSO tracking time
for frames 290∼310 which corresponds to the region highlighted by the red box in
(a).

Figure 2.17 also shows two apparent bands in the lower region for results of DSO

and SDSO. The higher band characterizes the tracking time for frames immediately

succeeding keyframes, while the lower band denotes the tracking time for other frames.

A repeated pattern exists where ∼5 ms of addition time is required to process frames

following keyframes. Figure 2.17b zooms into a subsection of the data associated with

frame indices 290–310. Close examination of this phenomenon indicates that newly

formed tracks require more time as the points of the initial keyframe have to be sorted

into reliable and unreliable tracks thereby necessitating slightly more computation.

2.1.5 Conclusions

This paper presents a study on low-altitude and high-speed drone applications. An

examination of various sensors underscored their strengths and challenges, guiding

the selection of suitable devices for specific operational scenarios. The experiments

centered on evaluating three prominent mapping algorithms-DSO, SDSO, and DSOL-

in a simulated environment, providing valuable insights into the performance of these

mapping algorithms. Each algorithm exhibits unique strengths and trade-offs, cater-

46

ing to specific requirements in UAV-based mapping scenarios. DSO, operating as

a monocular mapping algorithm, demonstrates versatility in capturing scenes with

a single camera, albeit with limitations in scale estimation. SDSO, incorporating

stereo depth perception, excels in accuracy and spatial fidelity, as evidenced by its

superior point cloud density and detailed reconstructions, particularly in complex

structures like the football stadium. On the other hand, DSOL, designed for efficiency,

streamlines the mapping process, offering reliable reconstructions with reduced com-

putational demands. The findings suggest that, in cases where UAVs have limited

computing resources, DSOL emerges as the optimal choice. For systems equipped

with payload capacity and moderate compute resources, SDSO proves to be the most

suitable option. When dealing with a single camera, DSO is the preferred choice for

applications demanding dense mapping results.

Future work may involve refining these algorithms for optimized performance in di-

verse environments, ultimately contributing to advancements in UAV-based mapping

for low-altitude and high-speed drone applications. This study contributes to the

ongoing discourse on mapping algorithms, providing valuable insights for researchers

and practitioners navigating the dynamic landscape of UAV applications in remote

sensing and environmental monitoring.

2.2 Photometric Correction for Infrared Sensors

2.2.1 Introduction

Infrared (IR) imaging sensors consist of a grid of radiation-sensitive optoelectronic

components that are sensitive to radiated energy having wavelengths from the IR

frequency band which spans wavelengths λ ∈ [0.7µm, 1000µm]. The IR frequency

band is commonly divided into the NIR (Near IR, λ ∈ [0.7µm, 2.5µm]), MWIR (Mid-

Wavelength IR, λ ∈ [2.5µm, 5µm]), LWIR (Long-Wavelength IR, λ ∈ [8µm, 15µm]),

and the FIR (Far IR, λ ∈ [15µm, 1000µm]). Thermal infrared (TIR) cameras are a

special type of infrared camera which use microbolometer sensors to detect radiation

47

in the MWIR and LWIR frequency ranges.

Infrared sensors have essential applications in a wide variety of sensing contexts

and have recently seen much interest as a sensor to facilitate autonomous ground

and aerial vehicle navigation. Heightened interest is largely due to the IR sensor’s

capability to sense accurate scene image data under low light conditions. This is

particularly useful in contexts where illumination is unavailable, e.g., navigating at

night and when the visible light sources, surface appearance textures, and surface

reflections introduce difficulties to visible light algorithms, e.g., camouflaged targets

[55, 56, 57, 58].

Due to the modality difference, the existing visual SLAM frameworks do not di-

rectly translate to the thermal domain. Thermal infrared cameras have several char-

acteristics that can cause photometric inconsistency for vision algorithms. Such in-

consistency invalidates the ”viewpoint invariant” assumption of scene points enforced

in most low-level computer vision tasks. First, the rapid automatic gain change

(AGC) can incur that the scene point with constant thermal radiant energy appears

with different image intensities in consecutive frames [59]. Secondly, microbolometer

sensors typically have long response time (8 ∼ 15 ms) that lead to “ghosting” of sensed

values where the value of a pixel in a past frame persists in the current frame creating

a spatial-temporal blur of moving objects in sensed IR images.

Similar to related work for RGB cameras [60], photometric correction for thermal

infrared sensors promises to improve the accuracy of measured pixels by estimating

the underlying scene irradiance responsible for generating a pixel value. Accurate

estimates of the scene irradiance promise to improve the output quality of many

existing computer vision algorithms [61, 62] including SLAM.

This chapter proposes a photometric correction model and a SLAM system for ther-

mal infrared sensors. The contributions include novel theoretical and experimental

results including:

48

• A novel photometric correction model for thermal infrared sensors is proposed.

• A SLAM system for thermal infrared sensors using this model is developed.

• Experimental work showing the proposed photometric correction model can

improve algorithm performance for thermal infrared SLAM problems.

The impact of the proposed photometric correction is important to several sensor

types, sensing conditions, and sensing contexts which include: (1) uncooled TIR

sensors, (2) TIR sensors that move or observe moving scenes, (3) IR sensors that

operate in high-temperature environments and (4) TIR sensors that operate at high

frame rates. Each of these circumstances can lead to photometric inconsistency both

spatially and temporally. The proposed TIR photometric correction approach seeks

to compensate for these effects.

2.2.2 Related Work

2.2.2.1 Infrared Imaging with Microbolometers

An infrared camera is a device that converts infrared radiation into a visual image

that depicts temperature variations across an object or scene. Infrared radiation is a

characteristic of all objects that have a temperature higher than absolute zero (zero

Kelvin or -273 Celsius) [63]. Thermal energy radiated by scene objects is focused onto

the sensor image plane where a grid of microbolometer sensors is placed to convert

the optical energy focused onto each grid element into a pixel voltage indicative of

the object temperature.

The characteristic response of microbolometers is known in the literature [64, 65].

The physical response of each pixel element is governed by a heating and cooling

mechanism as the camera shutter is opened and closed. Similar to RGB optical

sensors, microbolometer sensors integrate incident radiation into stored charge when

the camera shutter is open and dissipate the stored charge when the camera shutter

is closed. This process generates a response analogous to an RC circuit driven by a

49

square wave excitation where the square wave period is determined by the exposure

time and its amplitude is determined by the radiated energy of the scene onto the

pixel sensor. The rate of integration and dissipation is driven by a sensor-specific

time constant, τ .

One shortcoming of microbolometer sensors is their response time. RGB pixel

sensors based on CMOS technology have been shown to have time constants τ ∈

[1µs, 500µs] with the median sensor performance across RGB sensors τ ≈ 10µs at

room temperature [66]. Typical response times for microbolometer sensors are τ ∈

[8ms, 15ms] which is more than two orders of magnitude larger. Long response times

lead to “ghosting” of sensed values where the value of a pixel in a past frame persists

in the current frame creating a spatiotemporal blur of moving objects in sensed IR

images.

2.2.2.2 Photometric Correction

Photometric correction for TIR cameras is a new topic in the computer vision field.

Many works focus on performing sensor-specific photometric calibration for specific

tasks [67, 68]. In [59], an affine sensor response model is proposed to provide a general

photometric correction for TIR cameras. A similar affine model is also applied by

[69]. Other than these efforts, we have been unable to find other references within

the computer vision literature detailing similar approaches.

In contrast, photometric correction has been a well-researched area for visual spec-

tral (RGB) cameras. Early work focuses on estimating the camera response function

or vignetting function from only one image [70, 71]. Other works using multiple im-

ages require a large number of pixel correspondences to be easily acquired by aligning

overlapping image pairs [72, 73]. All of them can only estimate for either camera

response or vignetting function, requiring knowledge of the other. To address this

problem, [74, 75, 76] propose linear or non-linear optimization frameworks to jointly

solve for response and vignetting functions, which have laid the foundation for more

50

recent work. In [60], a framework without imposing a parametric model is proposed to

calibrate a non-parametric response function and vignetting map. In [77], researchers

apply the nonlinear estimation formulation in [74] to arbitrary video sequences using

gain robust feature tracking, recovering response function, vignetting, exposure times,

and radiances of the tracked scene points.

2.2.2.3 Thermal Infrared SLAM

The robustness of motion estimation under low-illumination conditions highlights

the thermal infrared camera in the literature. Thermal SLAM methods can be mainly

divided into two categories: sensor-fusion and non-fusion. Fusion works combine ther-

mal information with other sensors, such as LiDAR [69, 78, 79], radar [80], visible

camera [81, 82, 83, 84], and IMU (inertial measurement unit) [85, 86, 87, 88]. Shin

and Kim [69] propose a direct localization and mapping method tracking the sparse

depth provided by LiDAR on the raw thermal image. Chen et al. [78] develop a

SLAM framework that uses both the raw data and detected features to improve the

system’s accuracy and robustness. Sehwan et al. An enhanced point cloud genera-

tion method in proposed in [79] for indoor odometry under low-visibility conditions

by fusing a LiDAR sensor with a stereo thermal infrared camera. Doer and Trom-

mer [80] propose a Kalman-filter-based system that fuses 3D radar ego velocity with

monocular thermal inertial odometry. RGB-thermal fusion can make full use of the

complementary information of RGB and thermal images, making it an ideal solution

for better and more robust image analysis and application tasks under complex illu-

mination [89]. Early work in [81] shows a handheld setup consisting of an RGB-D and

a thermal camera for thermographic mapping of objects. However, the underlying

odometry estimation relies purely on RGBD data. Recent work [82, 83, 84] detects

features in both RGB and thermal images and combines them together for simulta-

neous location and mapping. Inertial data is also popularly used along with thermal

data in the sensor-fusion method [85, 86, 87, 88]. Inertial data in these methods can

51

improve the tracking performance when the observation in thermal images is noisy.

Non-fusion method focuses on leveraging thermal infrared sensors alone to perform

SLAM [90, 91]. However, one of the challenges is that photometric consistency cannot

be guaranteed in consecutive frames due to rapid automatic gain change (AGC) [59].

When thermal-infrared cameras capture images of hot objects that move in and out

of their field of view, it causes large regions of pixels to become over-saturated. To

prevent this, the camera automatically adjusts its gain to darken the image, resulting

in significant changes in intensity from one frame to the next. Such a problem also

occurs in the fusion methods. In this chapter, we propose a photometric correction

model to compensate for the AGC that can be used in any thermal infrared SLAM

system to improve performance.

2.2.3 Methodology

In our previous work published in [92], we proposed a photometric correction model

appropriate for microbolometer sensors typically integrated into infrared cameras. A

new theoretical model for the pixel response is proposed and the parameters of this

model are characterized. The photometric correction model was integrated into a

state-of-the-art SfM (Structure-from-Motion) algorithm, DSO (Direct Sparse Odom-

etry) [13], where it was shown to improve upon the structure and camera motion es-

timates. Prior literature has made clear that photometric correction is an important

component in improving the performance of SfM for RGB sensors and the results

of this article indicate that appropriate models for infrared photometric correction

also improve estimates in the infrared frequency regime. We hypothesize that the im-

pact of the proposed infrared photometric correction further generalizes to potentially

improve other computer vision algorithms when applied to IR image sensors, partic-

ularly those with the “view invariance” or Lambertian assumption for the radiance of

scene points over short motion distances.

Photometric correction is necessary for uncooled infrared image sensors because the

52

microbolometers used by these sensors have a response that is entirely different from

photon detector imagers such as RGB cameras. Specifically, uncooled microbolome-

ter devices require a certain portion of each frame time to integrate signals. Hence for

high-speed temperature measurement with short frame time, pixels in a microbolome-

ter usually do not have enough time to reach the temperature of the scene to be

measured (a steady temperature state) before the pixels receive new radiance from

objects in the next frame. Moreover, microbolometers do not have a mechanism to

reset the integrated signal from the previous frame, and therefore signals captured in

previous frames will have a residual impact on the microbolometer pixel reading in

the current frame. Both of these factors result in an “inaccuracy” of sorts in pixel val-

ues in the images generated by infrared sensors as they are not determined solely by

the “current scene” and this results in unreliable reconstruction results via structure

from motion.

53

(a) Microbolometers heating and cooling process

(b) Microbolometers behavior for two consecutive frames

Figure 2.18: An illustration of microbolometer pixels’ behavior during the heating
and cooling process. (a) Pixels do not have enough time to reach the temperature of
the scene being measured. (b) In two (or more) consecutive frames the later frame(s)
has a memory of the energy residual in the previous frame(s).

The proposed model for photometric correction of microbolometer measurements

consists of two parts: (1) a heating model which characterizes the IR pixel response

during a frame exposure and (2) a cooling model which characterizes the IR pixel

response when the sensor is not exposed. This section describes these models using

continuous differential equations and combines these models into a comprehensive

photometric correction model for IR pixels measured at arbitrary framerates. We

discuss camera models that allow these corrections to be position invariant and, under

these circumstances, algorithms can quickly apply photometric correction across all

image pixels using lookup tables to improve their performance. We then integrate

this model into the DSO SfM solution and detail how the SfM problem is modified

54

by the integration of this new photometric correction.

2.2.3.1 Model for Pixel Heating

Heating the IR pixel is modeled as a differential equation with a unit step forcing

function, µ(t), where the amplitude of the step is proportional to the scene irradiance.

We then seek to calculate the steady pixel value that reflects the unknown irradiance

of the scene point which corresponds to the asymptotic of the step response. The

rate of the convergence of the pixel value to the steady state response is determined

by the heating time constant, τh. The process of pixel heating up can be depicted in

Fig. 2.18.

The model denotes the initial measurement time as t = t0 and uses the “black

body” assumption to set the initial value of the IR pixel, i.e., Im(t0) = 0.

A first-order differential equation model is provided in Eq. 2.7 to characterize

heating an IR pixel.

τh
dIm(t)

dt
+ Im(t) = Iss

Im(t0) = 0

(2.7)

where Im(t) is the pixel intensity value measured by the camera sensor at time t, and

Iss is the steady state pixel intensity value if the microbolometers were given sufficient

heating time.

Let te = t1 − t0 denote the exposure time, meaning that the shutter is open from

the beginning time t0 to time t1. Solving the first-order differential equation at t = t1

gives

Iss =
Im(t0 + te)

(1− e−
te
τh)

(2.8)

By modeling the heating process of a microbolometer, we find the value of the

forced response at a steady state due to the excitation of the pixel from the associated

55

portion of the 3D scene.

2.2.3.2 Model for Pixel Cooling

Cooling the IR pixel is modeled as the natural response of the same differential

equation after the heating forcing function, µ(t), has been set to zero. We then seek

to calculate the measured pixel value at the time t = t0 + T where T is the time of

each frame. This pixel value will then contribute as a non-zero initial condition for

the subsequent image at time t0 + T . The decay rate of the pixel value is determined

by the cooling time constant, τc. The process of pixel cooling is depicted in Fig. 2.18.

The model denotes the excitation of the pixel at the time that the forcing function

is removed as t = t1 when the shutter is closed and uses the value of the measured

pixel at t = t1 as the initial value of the IR pixel, i.e., Im(t1) = I0.

Similarly, another first-order approximation is used to describe the cooling process.

τc
dIm(t)

dt
+ Im(t) = 0

Im(t1) = I0

(2.9)

Let tr = t0 + T − t1 denote the sensor readout time when the shutter is closed.

Solving this first-order differential equation at time t = t0 + T gives

Im(t0 + T) = I0e
− tr
τc (2.10)

By modeling the cooling process of a microbolometer, we find the pixel value at the

end of each frame period, which is also the initial measurement for the next frame.

2.2.3.3 Complete Video Sensing Model

We consider sensors that record images at a framerate of fs or equivalently having a

temporal sample period T = 1
fs
. The time interval between each frame, T , is further

subdivided into a measurement or exposure time during which time the shutter is

open, te, and a readout time during which the shutter is closed, tr. During the

56

exposure time period, the microbolometer is heated. During the period that the

sensor reads out the pixel values, the microbolometer is cooling. Fig. 2.18 shows the

pixel value convergence when the microbolometer is heating and the heat residual

from the previous frames left on the new frame when the microbolometer is cooling.

We seek to calculate the steady state pixel value excited by a scene point with the prior

heat residual removed. Assuming that the effect from previous frames is dominated

by the most recent prior frame when there are no drastic temperature gradients in

the scenes, the earlier frames are ignored in the model. The complete video sensing

model in Eq. 2.11 merges these two models into a comprehensive model for the pixel

response, I ′i(te, tr) at frame i while recording a time-sequence of images.

I ′i(te, tr) =
Ii − Ii−1(e−

tr,i−1
τc)

(1− e−
te,i
τh)

(2.11)

where Ii−1 and Ii are two continuous frame, tr,i−1 is the readout time in the previous

frame i− 1, and te,i is the exposure time of the current frame i.

By combining the heating model and cooling model, the irradiance, or the tem-

perature of the measured scene point, can be more accurately reflected by the stable

pixel value I ′i.

In the remainder of this chapter, Ii will always refer to the photometrically corrected

image I ′i, except where otherwise stated.

2.2.3.4 IR Sensor-Based Structure From Motion (SfM)

In DSO the authors develop advanced photometric correction models for both cam-

era lens and RGB pixel sensing compensation. This is coupled with camera calibration

data to perform highly accurate SfM at real-time rates with impressive 3D structure

reconstruction results. To leverage such a system and apply it to infrared sensors,

the brightness transfer model used for RGB sensors in DSO is replaced by our in-

frared sensor photometric correction model with the following modifications in the

57

SfM algorithm.

• Added a time history (previous sensed values) to tracked pixels.

• Modified the optimization approach to use the derivatives and Hessian of our

photometric correction model.

To reconstruct a 3D scene from infrared images using structure from motion, a

map is computed to associate two pixels in different frames that both correspond to

the same 3D scene point. The photometric error between them is defined in a similar

way as [13]. For a point, p in reference frame Ii, observed in target frame Ij, the

photometric error, given by Eq. 2.12, is formulated as the weighted Sum of Squared

Differences (SSD) over a small neighborhood of pixels.

Epj :=
∑
p∈Np

wp|0Ij [p′]− Ij,o[p′]− β(Ii[p]− Ii,o[p′])|0γ

Ij,o[p
′] = e−

tr,j−1
τc · Ij−1[p′]

Ii,o[p
′] = e−

tr,i−1
τc · Ii−1[p′]

β =
1− e−

te,j
τh

1− e−
te,i
τh

(2.12)

where Np is the set of pixels in the SSD, and |0 · |0γ is the Huber norm. In addition

to using robust Huber penalties, a gradient-dependent weighting wp [13] is applied.

To minimize the photometric error between the corresponding points in two frames,

the optimizer then optimizes the heating and cooling time constants τc and τh, instead

of the brightness transfer variables in DSO. The optimization is accomplished using

the Gauss-Newton algorithm in a sliding window [35].

2.2.4 Results

In this section, the proposed photometric model for infrared sensors is evaluated on

two datasets, the FLIR ADAS Dataset v1.3 [93] and the BU-TIV dataset [94]. Both

58

datasets contain RGB and thermal images for the same scene. The FLIR dataset

contains a video sequence of cameras mounted on a vehicle moving in an area during

nighttime while the BU-TIV dataset contains a video sequence of a daytime street

scene recorded by stationary cameras. The experimental results are obtained on a

32-core Intel Xeon Silver 4110 CPU.

2.2.4.1 Evaluations on FLIR Dataset

The FLIR ADAS Dataset consists of a video sequence of images taken from an

IR camera and an RGB camera mounted to the front of a vehicle. The dataset was

acquired with an RGB and IR camera mounted on a vehicle (car) where the IR sensor

was a Teledyne FLIR Tau 2 thermal camera and the RGB a Teledyne FLIR Blackfly

camera. Both RGB and IR videos were recorded at 30 frames per second (fps) under

generally clear conditions during the night. Experiments use a subset of the complete

ADAS dataset that corresponds to a video sequence of 600 images where the vehicle

drives straight down a road at night. Example images from this video sequence are

shown in Fig. 2.19. The results are summarized in two experiments:

• Evaluations on the reconstruction quality of the road show that our photomet-

ric correction enables DSO to track more points on IR data and improve the

accuracy of reconstruction.

• Evaluations on the camera motion show that with the proposed correction

model, the trajectory is more stable and less deviated in terms of being at

a certain distance away from the RGB camera trajectory.

59

(a) (b)

Figure 2.19: An image pair sample from the FLIR ADAS dataset: IR image (left)
and RGB image (right).

Evaluation Metrics

Our photometric correction algorithm for IR pixel value correction was integrated

into the code for the DSO algorithm [13] as a representation of a state-of-the-art SfM

algorithm for RGB image sensors. Experiments are performed using RGB and IR

image data as input to the DSO algorithm. We consider 3 outputs: (1) the SfM

estimates using the input RGB images, referred to as “RGB ”, (2) the SfM estimates

using the input IR images without the proposed correction, referred to as “IR”, and

(3) the SfM estimates using the IR input images with the proposed correction, referred

to as “IR+cor ”.

As the only public infrared dataset containing certain data (a series of images taken

from different viewpoints) that can be used for solving SfM problems, the FLIR ADAS

dataset, however, has some limitations that pose challenges to our experiments: (1)

the exposure time information of each frame is not available; (2) the 3D scan of the

scene is not provided, and (3) the ground truth of the camera pose is not provided.

Missing the accurate exposure time can undermine the advantage of the proposed

photometric correction model for IR sensors. The lack of 3D scan and camera pose

ground truth makes it difficult to analyze the exact improvements brought by the

correction model.

60

To overcome these drawbacks, based on the appearance of the objects shown in the

dataset, for example, the street appears to be flat and the vehicle was driving toward

one direction on the same lane, three hypothesizes are made for our experiments:

• Exposure Time Hypothesis: The exposure time of each frame is around 10

milliseconds.

• Planar Road Hypothesis: The road where the video was recorded can be

approximated as a planar surface.

• Straight-line Trajectory Hypothesis: The trajectory of the camera, when

the vehicle is driving straight on the road, can be approximated as a line.

According to the FLIR Tau2 camera document [95], the exposure time of the

Tau2 camera is measured to be about 10 milliseconds. The value is then used as

an approximation of the exposure time for each frame in the dataset. The Planar

Road Hypothesis allows us to define a plane that fits the structure of the road to

serve as a ground truth for the reconstruction quality evaluation. The Straight-line

Trajectory Hypothesis provides an opportunity to evaluate the accuracy of the camera

pose by looking into the deviation of the trajectory from the line.

Structure Estimate Evaluation

The Planar Road Hypothesis in Section 2.2.4.1 is used for evaluating the structure

reconstruction accuracy. The “ground truth” of the road is defined by: (1) segmenting

the road area within the point cloud, (2) sampling from each point cloud the same

amount of points located within the region around the road surface, and (3) merging

the points from all three point clouds and fitting a plane to the combined road points.

This way a common reference of the road surface is available for evaluation.

The “kfs” and “total pts” rows of Table 2.3 show that the proposed IR photometric

correction model allows for more scene points to be tracked for the SfM estimation al-

gorithm. The “kfs” row denotes the total number of keyframes for the image sequence

61

Table 2.3: Statistics of the road reconstruction performance.

RGB IR IR+cor
kfs 219 181 246

total pts 55562 42411 65229
road pts 1395 1304 1890
RMSE 0.0153 0.0137 0.0119
SD 0.0088 0.0073 0.0065

and the “total” pts row indicates the total number of tracked features for the image

sequence. As shown in the table, the SfM algorithm using the IR correction tracks

53.8% more points (total pts) and 35.9% more keyframes (kfs) than IR input images

without photometric correction. Similarly, the SfM algorithm using IR correction

tracks 17.4% more points and 12.3% more keyframes than RGB input images using

the RGB image photometric correction. We also note that similar numbers are found

for the point clouds identified as inside the segmented region around the road surface

(road points). These results indicate that the IR photometric correction allows more

points to be tracked and the resulting SfM solution, therefore, yields a denser 3D

point cloud for both the camera motion trajectory (number of keyframes) and the

scene structure.

The number of actively tracked features over the 600-frame video sequence is plot-

ted in Fig. 2.20. Actively tracked points are used for both camera motion and scene

structure estimation as each new frame in the video is measured. Overall running

the “IR+cor ” enables more points for tracking while both the “IR” and the “RGB ”

track fewer points but are comparable to each other. An interesting undulation of the

curves shown in the figure occurs at frame index 200. This corresponds to a sequence

of images within a large two-way street intersection. The RGB image sensor can track

better in this particular context due to rich structural appearance data provided by

the white lines and cross-walk textures on the ground which have little thermal con-

trast. This explains the decrease in tracked points for frames 150-220 from the IR

image sensor.

62

Figure 2.20: The amount of tracked features for each video frame is plotted for “RGB ”
(blue), “IR” (red), and “IR+cor ” (yellow) SfM estimates. The plot shows that the
proposed IR photometric correction allows more stable feature detection which results
in more tracked features leading to denser SfM estimates.

To evaluate the accuracy of the structure reconstruction identical sections of the

estimated reconstruction data in the vicinity of the road surface were segmented from

the complete structure estimate. In each case, the segmented surface points were

compared against a pre-defined road plane. Evaluation of performance was done by

computing the Root-Mean-Square deviation (RMSE) and the standard deviation (SD)

of the perpendicular distance between reconstructed 3D points and the road surface.

As presented in Table 2.3, “IR+cor ” improves the reconstruction accuracy of the road

by 15.1% over the “IR” approach and 28.5% over the “RGB ” approach. The road

points detected in “IR+cor ” exhibit less noise relative to the road plane model having

10.9% and 26.1% less deviation than the results of the “IR” and “RGB ” methods

respectively. These results indicate that the proposed IR photometric correction

model reduces the noise in the estimated scene structure.

This conclusion can be further supported by the histogram of the fitting error

and error distribution in Fig. 2.21, from which we can also see that DSO on the

63

Figure 2.21: Histogram and approximated Gaussian distributions of the fitting error
of SfM-estimated 3D points to a common planar surface (the road plane). RGB
(green) and IR (blue) show more error variance than the proposed IR photometric
correction approach (purple).

IR data with infrared photometric correction achieves the best performance in terms

of accuracy (closest to zero mean value) and stability (least standard deviation).

Although RGB data can sometimes provide more features for detection and tracking

(more tracked points), the reconstruction quality is not as well as the results from

infrared data. This can be because the RGB intensity values are very prone to bad

illumination conditions such as at night, which was the case when the dataset was

recorded.

Motion Estimate Evaluation

Performance analysis for the motion estimates uses a Straight-line Trajectory Hy-

pothesis in Section 2.2.4.1 for the vehicle motion and examines the observed errors

of the estimated camera motion for each approach. In the video, the vehicle where

the two cameras were mounted was driving on a straight street, as a result of which

the trajectory of the cameras can be approximated to be straight as well. Towards

this end, a 3D line segment is fit to the positions of the estimated camera trajectories

for three approaches: (1) IR, (2) IR+cor, and (3) RGB. Table 2.4 shows the RMSE

64

(root-mean-square error) and standard deviation (SD) of the perpendicular distances

between camera positions and the estimated 3D line model.

Table 2.4: Statistics of the trajectory estimation performance.

RGB IR IR+cor
RMSE 0.0128 0.0109 0.0106
SD 0.0061 0.0049 0.0045

The RMSE error row of Table 2.4 indicates that the camera motion estimates for

the infrared data using the proposed photometric correction model exhibit less error

relative to the line model by a factor of 2.8% for the IR method and 17.2% for the RGB

method. The standard deviation (SD) row of Table 2.4 indicates that the variability in

the camera motion for the IR photometric correction is also less than that for the other

two approaches. The reduction in noise for both IR estimates relative to the RGB

data suggests that IR image data in this low-light context may provide advantages

over RGB data for SfM estimation and that the proposed photometric correction

further improves the SfM estimation performance in accuracy and stability.

Qualitative Analysis

The point cloud reconstructions from the IR and RGB data are illustrated in Fig.

2.22 respectively. The green box in both Fig. 2.22 and Fig 2.22 includes the build-

ing of our interest. The red and blue boxes in the other three figures highlight the

area where the reconstruction results differ. Compared to Fig. 2.22, Fig. 2.22 shows

sharper edges on the windows in the building (red box) and contains more points to

reflect the edge of the top of the building (blue box). This indicates that the photo-

metric correction model we propose can enable SfM algorithms to track more features

(points) for reconstruction and the features are less noisy and more stable. As shown

in Fig. 2.22, the top of the building (blue box) is completely missing and unrecogniz-

able, and the point cloud of the windows in the building is very noisy (red box). This

is because the top area of the building is interfered with by the illumination from the

65

street light and RGB sensors can easily suffer from such illumination conditions and

will fail to detect reliable features. The infrared sensors, however, are more robust in

this scenario as they are sensitive to thermal contrast instead of photons. Note that

the example image here comes from the same intersection area in the street as the

image illustrated in Fig. 2.20, the point clouds here further prove that in this area of

the street, more active points are tracked in the RGB data than the IR data due to

the fact that rich structure but little thermal contrast are available in this area, as

explained previously in Section 2.2.4.1.

(a) (b) (c)

(d) (e)

Figure 2.22: Qualitative illustration. (a) Infrared image from the FLIR ADAS
Dataset. (b) “IR” point cloud reconstruction. (c) “IR+cor ” point cloud reconstruc-
tion. (d) RGB image of the same scene from the dataset. (e) “RGB ” point cloud
reconstruction.

2.2.4.2 Evaluations on BU-TIV Dataset

To show that the proposed photometric correction model can also be applied to

other IR image-processing contexts, the proposed photometric correction model is

applied to the BU-TIV dataset for solving a human being tracking problem. The

BU-TIV dataset is designated for the object-tracking problem using infrared data

66

and consists of video sequences in different scenes that were recorded with FLIR

SC8000 cameras. A subset of the dataset of a daytime crowded street view during

a marathon competition was used. The results are summarized in two experiments:

(1) Experiment 1 tracks pedestrians in IR image sequences. (2) Experiment 2 tracks

the observed temperature for a stationary target in the IR video.

Experiment 1 evaluates the proposed photometric correction for pedestrian tracking

from an IR image sequence. Results are shown in Fig. 2.23 for three distinct photo-

metric correction approaches: (1) RGB correction (RGB), (2) no correction (IR), and

(3) the proposed correction (IR+cor). Table 2.5 shows the quality of each estimate as

measured by three distinct metrics: (1) the Discrete Frechet (DF) distance [96], (2)

the Dynamic Time Warping (DTW) [97], and (3) a custom metric referred to as the

Mean Distance. Mean distance calculates the average distance between the person’s

estimated and actual positions for all corresponding frames. Table 2.5 indicates that

the proposed IR correction improves the performance across all three metrics, where

lower scores are better. The last row shows the number of frames where the person is

tracked and again the proposed IR correction algorithm outperforms the other cases.

(a) (b)

Figure 2.23: Excerpts from the IR video in the BU-TIV dataset. (a) shows pedestrian
(magenta box) tracking results relative to the ground truth (yellow), for the proposed
correction (blue), RGB correction (green), and no correction (red). Table 2.5 provides
quantitative performance metrics. (b) shows the roof of the parked car (cyan box)
where the temperature is tracked.

67

Table 2.5: Tracking differences measured by different algorithms between the esti-
mated trajectories and ground truth.

RGB IR IR+cor
DF [96] 23.77 39.82 22.84

DTW [97] 4444.43 4339.27 4257.07
Mean Distance 8.81 8.82 8.51

Tracked frames count 496 537 555

Experiment 2 tracks the temperature of a parked car roof as shown in Fig. 2.23

and seeks to analyze the stability of the temperature before and after applying the

proposed IR photometric correction. Table 2.6 shows that the proposed photometric

correction improves the stability of pixel intensity and, by extension, the estimate of

the unknown constant temperature of the observed object.

Table 2.6: Standard deviation of observed intensities for the roof of a parked car
denoted as a cyan box in Fig. 2.23 over time.

RGB IR IR+cor
SD 0.884 0.918 0.877

2.2.5 Conclusion

This chapter proposes a photometric correction model appropriate for microbolome-

ter sensors typically integrated into infrared cameras. A new theoretical model for the

pixel response is proposed and the parameters of this model are characterized. The

photometric correction model was integrated into a state-of-the-art SLAM algorithm

where it was shown to improve upon the localization and mapping estimates. Prior

literature has made clear that photometric correction is an important component in

improving the performance of SLAM for RGB sensors and the results of this arti-

cle indicate that appropriate models for infrared photometric correction also improve

estimates in the infrared frequency regime. We hypothesize that the impact of the

proposed infrared photometric correction further generalizes to potentially improve

68

other computer vision algorithms when applied to IR image sensors, particularly those

with the “view invariance” or Lambertian assumption for the radiance of scene points

over short motion distances.

69

REFERENCES

[1] N. Kakavitsas, A. Willis, J. M. Conrad, and A. Wolek, “Comparison of size and
performance of small vertical and short takeoff and landing uas,” in 2024 IEEE
Aerospace Conference, IEEE, 2024.

[2] R. Szeliski, Computer vision: Algorithms and applications. Springer Nature,
2022.

[3] M. Spetsakis and J. Y. Aloimonos, “A multi-frame approach to visual motion
perception,” International Journal of Computer Vision, vol. 6, no. 3, pp. 245–
255, 1991.

[4] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustmentâa modern synthesis,” in Vision Algorithms: Theory and Practice:
International Workshop on Vision Algorithms Corfu, Greece, September 21–22,
1999 Proceedings, pp. 298–372, Springer, 2000.

[5] M. I. Lourakis and A. A. Argyros, “Sba: A software package for generic sparse
bundle adjustment,” ACM Transactions on Mathematical Software (TOMS),
vol. 36, no. 1, pp. 1–30, 2009.

[6] D. J. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher, “Sfm with mrfs:
Discrete-continuous optimization for large-scale structure from motion,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12,
pp. 2841–2853, 2012.

[7] B. U. Meinen and D. T. Robinson, “Mapping erosion and deposition in an agri-
cultural landscape: Optimization of uav image acquisition schemes for sfm-mvs,”
Remote Sensing of Environment, vol. 239, p. 111666, 2020.

[8] D. B. Gennery, “A stereo vision system for an autonomous vehicle.,” in IJCAI,
pp. 576–582, 1977.

[9] T. Cao, Z.-Y. Xiang, and J.-L. Liu, “Perception in disparity: An efficient navi-
gation framework for autonomous vehicles with stereo cameras,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 16, no. 5, pp. 2935–2948, 2015.

[10] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-
time,” in 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 963–968, IEEE,
2011.

[11] C. H. Esteban and F. Schmitt, “Silhouette and stereo fusion for 3d object mod-
eling,” Computer Vision and Image Understanding, vol. 96, no. 3, pp. 367–392,
2004.

[12] O. Krutikova, A. Sisojevs, and M. Kovalovs, “Creation of a depth map from
stereo images of faces for 3d model reconstruction,” Procedia Computer Science,
vol. 104, pp. 452–459, 2017.

70

[13] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 40, no. 3, pp. 611–625,
2017.

[14] R. Wang, M. Schworer, and D. Cremers, “Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3903–3911, 2017.

[15] C. Qu, S. S. Shivakumar, I. D. Miller, and C. J. Taylor, “Dsol: A fast direct sparse
odometry scheme,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10587–10594, IEEE, 2022.

[16] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-
bridge University Press, 2003.

[17] A. Eltner and G. Sofia, “Structure from motion photogrammetric technique,” in
Developments in Earth surface processes, vol. 23, pp. 1–24, Elsevier, 2020.

[18] S. M. Hasheminasab, T. Zhou, and A. Habib, “Gnss/ins-assisted structure from
motion strategies for uav-based imagery over mechanized agricultural fields,”
Remote Sensing, vol. 12, no. 3, p. 351, 2020.

[19] M. Kalacska, J. P. Arroyo-Mora, and O. Lucanus, “Comparing uas lidar and
structure-from-motion photogrammetry for peatland mapping and virtual reality
(vr) visualization,” Drones, vol. 5, no. 2, p. 36, 2021.

[20] J. Mooser, S. You, U. Neumann, and Q. Wang, “Applying robust structure from
motion to markerless augmented reality,” in 2009 Workshop on Applications of
Computer Vision (WACV), pp. 1–8, IEEE, 2009.

[21] F. Mumuni and A. Mumuni, “Bayesian cue integration of structure from mo-
tion and cnn-based monocular depth estimation for autonomous robot naviga-
tion,” International Journal of Intelligent Robotics and Applications, vol. 6, no. 2,
pp. 191–206, 2022.

[22] A. Zhanabatyrova, C. S. Leite, and Y. Xiao, “Structure from motion-based map-
ping for autonomous driving: Practice and experience,” ACM Transactions on
Internet of Things, vol. 5, no. 1, pp. 1–25, 2024.

[23] D. Turner, A. Lucieer, and C. Watson, “An automated technique for generating
georectified mosaics from ultra-high resolution unmanned aerial vehicle (uav)
imagery, based on structure from motion (sfm) point clouds,” Remote sensing,
vol. 4, no. 5, pp. 1392–1410, 2012.

[24] R. Fujiwara, T. Kikawada, and Y. Akiyama, “Comparison of remote sensing
methods for plant heights in agricultural fields using unmanned aerial vehicle-
based structure from motion,” Frontiers in Plant Science, vol. 13, p. 886804,
2022.

71

[25] G. Caroti, I. Martínez-Espejo Zaragoza, and A. Piemonte, “Accuracy assessment
in structure from motion 3d reconstruction from uav-born images: The influence
of the data processing methods,” The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, vol. 40, pp. 103–109,
2015.

[26] S. I. Deliry and U. Avdan, “Accuracy of unmanned aerial systems photogramme-
try and structure from motion in surveying and mapping: a review,” Journal of
the Indian Society of Remote Sensing, vol. 49, no. 8, pp. 1997–2017, 2021.

[27] P. Lindenberger, P.-E. Sarlin, V. Larsson, and M. Pollefeys, “Pixel-perfect
structure-from-motion with featuremetric refinement,” in Proceedings of the
IEEE/CVF international conference on computer vision, pp. 5987–5997, 2021.

[28] H. Cui, T. Shi, J. Zhang, P. Xu, Y. Meng, and S. Shen, “View-graph construction
framework for robust and efficient structure-from-motion,” Pattern Recognition,
vol. 114, p. 107712, 2021.

[29] A. Islam, M. Asikuzzaman, M. O. Khyam, M. Noor-A-Rahim, and M. R. Pick-
ering, “Stereo vision-based 3d positioning and tracking,” IEEE Access, vol. 8,
pp. 138771–138787, 2020.

[30] S. Pillai, S. Ramalingam, and J. J. Leonard, “High-performance and tunable
stereo reconstruction,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3188–3195, IEEE, 2016.

[31] N. Kemsaram, A. Das, and G. Dubbelman, “A stereo perception framework
for autonomous vehicles,” in 2020 IEEE 91st vehicular technology conference
(VTC2020-Spring), pp. 1–6, IEEE, 2020.

[32] J. Liu, P. Ji, N. Bansal, C. Cai, Q. Yan, X. Huang, and Y. Xu, “Planemvs: 3d
plane reconstruction from multi-view stereo,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8665–8675, 2022.

[33] Z. Shang and Z. Shen, “Topology-based uav path planning for multi-view stereo
3d reconstruction of complex structures,” Complex & Intelligent Systems, vol. 9,
no. 1, pp. 909–926, 2023.

[34] P. Irmisch, Camera-based distance estimation for autonomous vehicles. PhD
thesis, Technische Universität Berlin, 2017.

[35] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, “Keyframe-
based visual–inertial odometry using nonlinear optimization,” The International
Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[36] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”
International journal of computer vision, vol. 56, pp. 221–255, 2004.

72

[37] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2149–2154, 2004.

[38] Robotis and Perception Group – University of Zurich, “Agilicious.”
https://github.com/uzh-rpg/agilicious. (accessed: Sep. 25, 2023).

[39] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating System
(ROS): The complete reference (volume 1), ch. 23, pp. 595–625. New York, NY,
USA: Springer, Cham, 2016.

[40] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare:
A flexible quadrotor simulator,” in Proceedings of the 4th Conference on Robot
Learning, pp. 1–11, 2020.

[41] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, D. Thakur, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar, “Fast,
autonomous flight in GPS-denied and cluttered environments,” Journal of Field
Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[42] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgoggles: Photo-
realistic sensor simulation for perception-driven robotics using photogrammetry
and virtual reality,” in Proceedings of the 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 6941–6948, 2019.

[43] C. Beam, J. Zhang, N. Kakavitsas, C. Hague, A. Wolek, and A. Willis, “Cesium
tiles for high-realism simulation and comparing slam results in corresponding
virtual and real-world environments,” 2024.

[44] J. Li, B. Yang, C. Chen, and A. Habib, “Nrli-uav: Non-rigid registration of
sequential raw laser scans and images for low-cost uav lidar point cloud quality
improvement,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 158,
pp. 123–145, 2019.

[45] T.-M. Nguyen, M. Cao, S. Yuan, Y. Lyu, T. H. Nguyen, and L. Xie, “Viral-fusion:
A visual-inertial-ranging-lidar sensor fusion approach,” IEEE Transactions on
Robotics, vol. 38, no. 2, pp. 958–977, 2021.

[46] Y.-C. Lin, Y.-T. Cheng, T. Zhou, R. Ravi, S. M. Hasheminasab, J. E. Flatt,
C. Troy, and A. Habib, “Evaluation of uav lidar for mapping coastal environ-
ments,” Remote Sensing, vol. 11, no. 24, p. 2893, 2019.

[47] K.-W. Chiang, G.-J. Tsai, Y.-H. Li, and N. El-Sheimy, “Development of lidar-
based uav system for environment reconstruction,” IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 10, pp. 1790–1794, 2017.

73

[48] “Event cameras comparison.” https://inivation.com/wp-
content/uploads/2022/10/2022-09-iniVation-devices-Specifications.pdf. Ac-
cessed: 2024-03-14.

[49] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and
physical simulation for autonomous vehicles,” in Field and Service Robotics: Re-
sults of the 11th International Conference, pp. 621–635, Springer, 2018.

[50] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor
fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606, Spie,
1992.

[51] T. Zodage, “Point cloud registration as a classification problem,” Master’s thesis,
Carnegie Mellon University, Pittsburgh, PA, August 2021.

[52] “Direct sparse odometry official implementation.”
https://github.com/JakobEngel/dso. Accessed: 2024-01-02.

[53] “Direct sparse odometry lite official implementation.”
https://github.com/versatran01/dsol. Accessed: 2024-01-02.

[54] “Stereo direct sparse odometry non-official implementation.”
https://github.com/JiatianWu/stereo-dso. Accessed: 2024-01-02.

[55] R. Grimming, B. McIntosh, A. Mahalanobis, and R. G. Driggers, “Lwir sensor
parameters for deep learning object detectors,” OSA Continuum, vol. 4, no. 2,
pp. 529–541, 2021.

[56] N. Pinchon, O. Cassignol, A. Nicolas, F. Bernardin, P. Leduc, J.-P. Tarel, R. Bré-
mond, E. Bercier, and J. Brunet, “All-weather vision for automotive safety: which
spectral band?,” in International Forum on Advanced Microsystems for Automo-
tive Applications, pp. 3–15, Springer, 2018.

[57] A. Rankin, A. Huertas, L. Matthies, M. Bajracharya, C. Assad, S. Brennan,
P. Bellutta, and G. W. Sherwin, “Unmanned ground vehicle perception using
thermal infrared cameras,” in Unmanned Systems Technology XIII, vol. 8045,
pp. 19–44, Spie, 2011.

[58] S. Kim, W.-J. Song, and S.-H. Kim, “Infrared variation optimized deep con-
volutional neural network for robust automatic ground target recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 1–8, 2017.

[59] M. P. Das, L. Matthies, and S. Daftry, “Online photometric calibration of auto-
matic gain thermal infrared cameras,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2453–2460, 2021.

[60] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated benchmark
for monocular visual odometry,” arXiv preprint arXiv:1607.02555, 2016.

74

[61] J. K. Suhr, “Kanade-lucas-tomasi (klt) feature tracker,” Computer Vision
(EEE6503), pp. 9–18, 2009.

[62] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” ACM
computing surveys (CSUR), vol. 27, no. 3, pp. 433–466, 1995.

[63] M. Wilson, “Temperature measurement,” Anaesthesia & Intensive Care
Medicine, vol. 22, no. 3, pp. 202–207, 2021.

[64] N. Boudou, A. Durand, S. Tinnes, S. Cortial, A. Gorecki, M. Cueff, and A. Virot,
“Ulis bolometer improvements for fast imaging applications,” in Infrared Tech-
nology and Applications XLV, vol. 11002, pp. 366–375, SPIE, 2019.

[65] M. Kohin and N. R. Butler, “Performance limits of uncooled vox microbolometer
focal plane arrays,” in Infrared Technology and Applications XXX, vol. 5406,
pp. 447–453, SPIE, 2004.

[66] C. Y.-P. Chao, H. Tu, T. Wu, K.-Y. Chou, S.-F. Yeh, and F.-L. Hsueh, “Cmos
image sensor random telegraph noise time constant extraction from correlated
to uncorrelated double sampling,” IEEE Journal of the Electron Devices Society,
vol. 5, no. 1, pp. 79–89, 2017.

[67] C. Papachristos, F. Mascarich, and K. Alexis, “Thermal-inertial localization for
autonomous navigation of aerial robots through obscurants,” in 2018 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pp. 394–399, IEEE,
2018.

[68] H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,”
Journal of Sensors and Sensor Systems, vol. 4, no. 1, pp. 187–197, 2015.

[69] Y.-S. Shin and A. Kim, “Sparse depth enhanced direct thermal-infrared slam
beyond the visible spectrum,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2918–2925, 2019.

[70] Y. Zheng, S. Lin, C. Kambhamettu, J. Yu, and S. B. Kang, “Single-image vi-
gnetting correction,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 31, no. 12, pp. 2243–2256, 2008.

[71] S. Lin and L. Zhang, “Determining the radiometric response function from a sin-
gle grayscale image,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 66–73, IEEE, 2005.

[72] S. J. Kim and M. Pollefeys, “Robust radiometric calibration and vignetting cor-
rection,” IEEE transactions on pattern analysis and machine intelligence, vol. 30,
no. 4, pp. 562–576, 2008.

[73] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant
features,” International journal of computer vision, vol. 74, pp. 59–73, 2007.

75

[74] D. B. Goldman, “Vignette and exposure calibration and compensation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 32, no. 12,
pp. 2276–2288, 2010.

[75] A. Litvinov and Y. Y. Schechner, “Radiometric framework for image mosaicking,”
JOSA A, vol. 22, no. 5, pp. 839–848, 2005.

[76] A. Litvinov and Y. Y. Schechner, “Addressing radiometric nonidealities: A uni-
fied framework,” in 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), vol. 2, pp. 52–59, IEEE, 2005.

[77] P. Bergmann, R. Wang, and D. Cremers, “Online photometric calibration of
auto exposure video for realtime visual odometry and slam,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 627–634, 2017.

[78] W. Chen, Y. Wang, H. Chen, and Y. Liu, “Eil-slam: Depth-enhanced edge-based
infrared-lidar slam,” Journal of Field Robotics, vol. 39, no. 2, pp. 117–130, 2022.

[79] S. Rho, S. M. Park, J. Pyo, M. Lee, M. Jin, and S.-C. Yu, “Lidar-stereo thermal
sensor fusion for indoor disaster environment,” IEEE Sensors Journal, vol. 23,
no. 7, pp. 7816–7827, 2023.

[80] C. Doer and G. F. Trommer, “Radar visual inertial odometry and radar ther-
mal inertial odometry: Robust navigation even in challenging visual conditions,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 331–338, IEEE, 2021.

[81] S. Vidas, P. Moghadam, and M. Bosse, “3d thermal mapping of building interiors
using an rgb-d and thermal camera,” in 2013 IEEE international conference on
robotics and automation, pp. 2311–2318, IEEE, 2013.

[82] L. Chen, L. Sun, T. Yang, L. Fan, K. Huang, and Z. Xuanyuan, “Rgb-t slam:
A flexible slam framework by combining appearance and thermal information,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 5682–5687, IEEE, 2017.

[83] Y. Ni, Y. Wang, S. Yang, R. Chen, and X. Wang, “Large field of view cooperative
infrared and visible spectral sensor for visual odometry,” IEEE Access, vol. 8,
pp. 74237–74249, 2020.

[84] S. Khattak, C. Papachristos, and K. Alexis, “Visual-thermal landmarks and
inertial fusion for navigation in degraded visual environments,” in 2019 IEEE
Aerospace Conference, pp. 1–9, IEEE, 2019.

[85] J. Jiang, X. Chen, W. Dai, Z. Gao, and Y. Zhang, “Thermal-inertial slam for
the environments with challenging illumination,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 8767–8774, 2022.

76

[86] M. R. U. Saputra, C. X. Lu, P. P. B. de Gusmao, B. Wang, A. Markham,
and N. Trigoni, “Graph-based thermal–inertial slam with probabilistic neural
networks,” IEEE Transactions on Robotics, vol. 38, no. 3, pp. 1875–1893, 2021.

[87] Y. Wang, H. Chen, Y. Liu, and S. Zhang, “Edge-based monocular thermal-inertial
odometry in visually degraded environments,” IEEE Robotics and Automation
Letters, vol. 8, no. 4, pp. 2078–2085, 2023.

[88] S. Khattak, C. Papachristos, and K. Alexis, “Keyframe-based thermal–inertial
odometry,” Journal of Field Robotics, vol. 37, no. 4, pp. 552–579, 2020.

[89] K. Song, Y. Zhao, L. Huang, Y. Yan, and Q. Meng, “Rgb-t image analysis
technology and application: A survey,” Engineering Applications of Artificial
Intelligence, vol. 120, p. 105919, 2023.

[90] S. Vidas and S. Sridharan, “Hand-held monocular slam in thermal-infrared,” in
2012 12th International Conference on Control Automation Robotics & Vision
(ICARCV), pp. 859–864, IEEE, 2012.

[91] T. Mouats, N. Aouf, L. Chermak, and M. A. Richardson, “Thermal stereo odom-
etry for uavs,” IEEE Sensors Journal, vol. 15, no. 11, pp. 6335–6347, 2015.

[92] J. Zhang, A. R. Willis, and K. Brink, “Photometric correction for infrared sen-
sors,” arXiv preprint arXiv:2304.03930, 2023.

[93] “TELEDYNE FLIR Dataset.” https://flir.box.com/s/suwst0b3k9rko35homhr3rnyytf3102d.
Accessed: 2022-05-31.

[94] Z. Wu, N. Fuller, D. Theriault, and M. Betke, “A thermal infrared video bench-
mark for visual analysis,” in CVPR PBVS Workshop, pp. 201–208, 2014.

[95] “Time Constant Design of Tau2 and Quark2.”
https://flir.custhelp.com/app/answers/detail/aid/3171/related/1. Accessed :
2022− 11− 06.

[96] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” 1994.

[97] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in
time series.,” in KDD workshop, vol. 10, pp. 359–370, Seattle, WA, USA:, 1994.

CHAPTER 3: LOW-BANDWIDTH AND COMPUTE-BOUND SLAM

3.1 Introduction

Many autonomous agent tasks require robust localization and a good representation

of the environment, especially when GPS is unavailable. Mobile robots for indoor

navigation often operate in structured environments hence indoor navigation focuses

more on generating a 2D map. For more complicated tasks, robots need more mobility

to operate in more dynamic environments such as slopes, stairs, and tunnels [1, 2, 3].

In these scenarios, robots are usually equipped with LIDAR and high-quality IMU

sensors to estimate the poses and the 3D map [4, 5, 6]. However, these sensors are

quite expensive and relatively fragile. The emergence of modern consumer RGB-D

sensors has had a significant impact on the robotic research fields. They are low-

cost, low-power, and low-size alternatives to traditional range sensors such as LiDAR

[7]. RGB-D sensors also provide additional depth information which enhances the

ability of robots to sense the environment and estimate its structure for navigation.

Motivated by RGB-D cameras, a lot of researchers have worked on 3D Visual SLAM,

such as monocular SLAM [8, 9], RGB-D SLAM [10, 11], and stereo SLAM [12, 13].

The motivation of our work is to construct a compact representation of maps that

can be efficiently shared among robots. Multi-agent systems have demonstrated vari-

ous applications, such as self-driving cars, warehouse robots, and so on. These appli-

cations require collaborative mapping in multi-agent environments where each agent

needs to share information about their past and current state. The use of SLAM to

generate high-quality 2D or 3D maps is a classical subject and recent work focuses on

real-time applications of this algorithm in distributed environments to generate and

update large-scale maps. Existing SLAM solutions endow robots with capabilities to

78

accurately estimate maps and their positions in these maps [14, 15, 16, 17]. Yet, these

solutions use representations that are not efficient. In terms of computation, many

proposed algorithms either have fixed computational costs or require a complete set

of sensed data. In terms of bandwidth usage, the typical point cloud representation

[9, 8] requires large bandwidth budgets to share with other robots. These two key

shortcomings, the high computational cost (often requiring GPU acceleration) and

bandwidth requirement, prohibit SLAM from being used in robots that have limited

computational or memory resources, e.g., light-duty UAVs and swarm-style robots.

Hence, efficient use of computational resources and communication bandwidth is crit-

ical to deploying multi-agent systems.

Recent SLAM systems leverage deep learning frameworks to extract high-level in-

formation such as semantics for use in downstream algorithms, e.g., natural language

processing [18, 19, 20, 21, 22]. However, these systems do not leverage semantic infor-

mation to simplify the geometric representation of the sensed data or the SLAM map.

This work investigates methods that promise to allow this information to be feedback

into low-level processing functions such as relative pose estimation and depth map

sharing, or higher-level tasking.

Objects with a complex pattern in the environment can be transformed into ge-

ometric primitives and can be also reconstructed from these primitives based on

some visual rules, such as shape grammars [23], which can help address many of the

aforementioned problems. With these modeling grammars being known by robots in

advance, the robots are able to reconstruct the scene using very limited information

like the model of objects (determined by semantics) and their locations with respect

to the robots. Further, the grammatical description of the world makes it possible to

extract abstract natural language (NL) descriptions of the world. For example, “there

is a wall (associated with the shape grammars of the wall) behind a table (associated

with the shape grammars of the table) at the position (x, y, z)”. This level of NL

79

description not only permits natural-language-facilitated human-robot cooperation

(NLC) but also provides a compressed description of the world. This allows closer

collaboration between humans and robots which has received increasing attention in

the recent decade [24]. By using NL, human intelligence at high-level task planning

and robot physical capability at low-level task executions, such as force, precision,

and speed, are combined to perform intuitive cooperation.

Our work takes the first step in the exploration towards the goal, to enable mobile

robots to describe the world with compressed data and share maps with much less

bandwidth requirement. As an initial step towards this broader goal, we limit the

geometric primitives described above to planes to construct our SLAM system. We

base our solution on DVO-SLAM [10] and our previous work, compute-bound and

low-bandwidth RGB-D graph SLAM [25]. As a popular visual SLAM system, DVO

performs well for RGB-D camera tracking and building accurate maps. It was ex-

tended in [25] with a fast plane fitting algorithm to extract surface information from

scenes. A Quadtree [26] structure was also used to compress maps into a planar rep-

resentation. However, this map representation is sparse and, thus, may contain large

holes and ambiguous regions. Moreover, RGB-D data rather than plane data were

used for odometry estimation, which lacked computation efficiency. Finally, neither

RGB-D nor semantic information was available for representing the map (only ge-

ometries). In this article, we extend our previous framework for bandwidth and com-

putation reduction with two novel depth compression algorithms and one improved

independent plane fitting algorithm. These efficiently provide the system with dense

plane fits. With the dense plane data available, we are able to utilize the fitted planes

to calculate the odometry and then reconstruct dense maps. To provide robots with

model information of the objects in the scene, we integrate a convolutional neural

network (CNN) into the SLAM system to extract semantic information correlated to

the planes in the environment. To summarize, the main contributions of our work

80

are as follows:

• Two efficient and effective compression algorithms for depth images are intro-

duced and implemented;

• A real-time fast plane fitting method is proposed which can fit planes indepen-

dently of the sensor intrinsic camera perimeters;

• A real-time odometry algorithm based on plane constraints is established;

• An RGB-D SLAM approach is developed which can construct and share 3D

semantic maps with much less computational cost and bandwidth requirement;

• The potential is shown to estimate semantics from compressed geometric infor-

mation by feeding planes to an RGB-D CNN for semantic segmentation;

These contributions significantly advance the state of the art for RGB-D SLAM.

Taking advantage of one of the geometric primitives, planes, our method provides

a new representation for point clouds that can be quickly calculated and represents

the data to a similar degree of geometric accuracy using far fewer parameters. The

joint effect of these contributions allows agents with 3D sensing capabilities to calcu-

late and communicate compressed map information commensurate with their onboard

computational and bandwidth resources. Our results show the ability of the proposed

method to compress a depth image of 1MB in real-time to as little as 144KB. Plane

fits can also be calculated independently in real-time which enables multiple agents

to efficiently share the compressed map and build the map, which helps significantly

reduce the bandwidth consumption. The results of our experiments also demonstrate

that by using plane data for odometry, the computational cost can be saved by as

many as 12 times. Additionally, our analysis of semantic segmentation results shows

the potential and benefits of extracting semantic information from compressed geom-

etry data. As a first step towards a generalized parametric/semantic model of the

81

world, our work motivates future research on SLAM where robots can estimate mod-

eling information of objects from more shape primitives and share this understanding

of the world with limited communication channel capacities.

The paper is organized as follows: Section 3.2 reviews prior work on saving com-

putational cost and bandwidth for SLAM systems; Section 3.3 briefly discusses some

background work that the proposed method is based on; Section 3.4 presents our

solution; Section 3.5 analyzes the performance of the proposed method through an

extensive evaluation. Finally, Section 3.6 concludes the paper.

3.2 Related Work

In this section, we provide an overview of prior work done on our contributions,

focusing on how bandwidth usage is reduced and how computational cost is saved by

state-of-the-art SLAM systems. We also review the currently used semantic segmen-

tation neural networks in the field, to explore the use of deep learning techniques in

interpreting geometric information.

3.2.1 Bandwidth of SLAM

Due to the bandwidth constraints and limited communication range, it is challeng-

ing to share large amounts of data among the agents in a distributed SLAM system

[27]. To overcome this, Montijano et al. [28] propose a distributed communication

network where every robot only exchanges the local matches with its neighbors. The

algorithm propagates local to global contexts to solve for a global correspondence

[29, 30] and manages to reduce bandwidth requirements by transmitting a subset

of the map information as a collection of sparse features. Recent research has ex-

plored the use of compact geometric representations like planes to reduce the map

size [31, 25, 32]. These sparse representations give rise to sparse map data that may

however contain large holes and ambiguous regions. Renaud et al. [33] propose a

multi-agent system that reduces the required communication bandwidth and com-

82

plexity by partitioning point clouds into parts. They then compactly describe each

part using discriminating features to efficiently represent the environment. Cieslewski

et al. [34, 35] minimize bandwidth usage by running place recognition on image frames

and only sending the extracted feature vectors to the robots.

While all of these SLAM systems work efficiently in reducing bandwidth, these so-

lutions suffer from multiple issues. They are either not designed for RGB-D data, or

they do not provide dense 3D maps as part of their SLAM solution. Moreover, they

may not be optimized for distributed multi-agent systems. Our bandwidth-reducing

solution, in contrast, allows agents to fit planes to dense point clouds independently

and to easily compare plane fits with each other. We leverage a dense planar repre-

sentation of the world, as our first step to interpret the world with more geometric

primitives.

3.2.2 Computational Cost of SLAM

Another major challenge for current visual 3D SLAM approaches is to overcome

the burden that processing sensed RGB-D data places on the host’s available compu-

tational resources. Centralized approaches [36, 37, 38] address computational cost by

aggregating data from multiple robots at a central server having more computational

resources where SLAM estimates can be calculated. Yet, such approaches are not

viable for RGB-D data since sharing this data requires a prohibitively large network

bandwidth. Further, this computational model does not scale as the number of robots

increases. Lajoie et al. [27] solves the SLAM optimization problem via distributed

computation approaches. In this context, robots utilize only local computation and

communication to optimize the SLAM pose graph and estimate robot trajectories as

well as environment maps. Another distributed mapping algorithm [39] optimizes the

SLAM algorithm by sharing key informative features. Recent research [40, 41] has

extended this implementation as a backend to larger SLAM solutions as a method to

reduce the computational burden of solving multiple robot trajectories in multi-agent

83

systems.

There has also been significant interest in compact shape models to mitigate com-

putational issues. Planes, for example, have been used in SLAM for efficient surface

data representation that can be associated and integrated with low computational

complexity. Many plane-involved SLAM solutions, however, either extend feature-

based SLAM with the use of planar surfaces [42], or have an orthogonal assumption

on the environment which is less applicable [43]. Salas-Moreno et al. [44] build

a dense planar SLAM system using a dense ICP method to estimate sensor poses,

which requires GPU for real-time computation. A quaternion-based minimal plane

representation is utilized by Kaess et al. [45] to update the planes during optimiza-

tion without using GPU but the system does not perform well in real-time. Real-time

CPU-only execution of dense planar SLAM algorithm succeeds in exceeding current

popular online 3D reconstruction methods in pose estimation [31], while the com-

putational cost can be further saved by aligning planes for loop closures instead of

searching for 3D point pairs.

While some of these solutions can be computation-efficient, they are either not ap-

plicable to 3D mapping scenarios in bandwidth-constrained contexts or not designed

for multi-agent systems. In this article, to further reduce the computational complex-

ity, we distribute the computation burden across the SLAM system, perform plane

fitting to RGB-D data in real time, and utilize plane representation for odometry and

map building.

3.2.3 Depth Compression

The compression of sensed raw data is also critical for distributed visual-SLAM

systems to perform in bandwidth-constraint platforms. Shum et al. [46] presents a

detailed summary of image-based representations of video, textures, depth and etc.

Researchers have previously tried to apply color image-based compression techniques

on depth images but, considering that depth images are significantly different from

84

color images, standard color compression techniques may not be optimal. Neverthe-

less, several lossy schemes which are based on color image-based compression have

been proposed for compressing depth images. For example, Krishnamurthy et al. [47]

use a JPEG2000-based technique to achieve an approximate compression ratio of 50×

on depth images. Mehrotra et al. [48] present a lossless entropy encoding algorithm

that stores the inverse depth values as integers. Wildeboer et al. [49] present an

H. 264-based scheme to compress depth maps from a video sequence. Pratapa et

al. [50] present a random-access depth compression algorithm that generates a com-

pressed depth image by partitioning the scene into three parts and processing each

part independently.

With the lack of study in this area, in this article, we introduce and implement

two novel compression algorithms for depth images. The first algorithm is an imple-

mentation of the lossless data compression library zlib [51] on depth data, which uses

a dictionary-based compression entropy encoding scheme. The second algorithm is a

novel random access compression algorithm that implements the zlib algorithm on 8

× 8 blocks and is described in detail in Section 3.4.1.

3.2.4 Semantic Segmentation Neural Networks

Assigning meaningful semantic labels to objects on the map is a non-trivial task

and there exists a great deal of prior work on the subject. Some of the many ap-

proaches to this are presented here for context. The first design decision is whether

to generate many labels by performing semantic segmentation or fewer with object

detection/recognition. The difference is that object detection/recognition attempts

to assign a label to an entire image or sub-image. Alternatively, semantic segmenta-

tion attempts to assign a label to each pixel. There are advantages and disadvantages

to each approach, but in this work, we are interested in making dense planar maps,

so we utilize semantic segmentation.

In the context of machine-learned semantic segmentation, the most well-known

85

semantic segmentation network is Mask R-CNN [52] which is a large network that

is available pre-trained on a large dataset of images of everyday objects in context.

Unfortunately, the objects it is trained on are poorly represented by planes and also

generally make poor landmarks. Instead, we use a modified version of the RedNet [53]

architecture. RedNet differs from Mask R-CNN in that it was intended to be used

for indoor navigation and as such has two branches, one for RGB images and one for

depth images. These branches extract features from their respective inputs and then

merge the two data streams to perform the segmentation. This has the advantage

that the depth images are more useful for segmentation and extracting object edges

while RGB images contain more information for object recognition. We modify the

network to use plane coefficient images and retrain on the same the SUN RGB-D [54]

dataset but with the depth images pre-processed into plane coefficient images. As

will be discussed in the Methodology section, operating on plane images provides an

inductive bias that allows for certain classes to be more easily segmented.

3.2.5 RGB-D SLAM

We choose some representative state-of-the-art RGB-D systems and make a com-

parison in Table 3.1. Ours particularly stands out in providing bandwidth reduction

and semantic information. Additionally, in contrast to [10, 55, 56, 45], our SLAM

system has frontend-backend separability. This allows the system to distribute com-

putation tasks on different CPUs or on completely distinct connected hosts, from

which a multi-agent system can benefit. Note that the discussion of bandwidth is not

applicable to systems that cannot be directly deployed in a distributed network, as

those systems only run on a single host. All of the mentioned SLAM systems can

run in real-time according to their articles while some of them require GPU acceler-

ation. As shown in the table, we are working on a new space in terms of bandwidth

reduction and a semantic world, which makes a fair comparison difficult. The main

purpose of this article is to provide different solutions to the ultimate goal which is

86

making robots understand and communicate the knowledge of the world with limited

onboard resources.

Table 3.1: Comparison of selected existing RGB-D SLAM with our SLAM system.

Frontend Bandwidth CPU only Local Mapping Semantic
-backend Reduction

Separability
DVO [10] - X Point-Based

ORB-SLAM2 [9] - X Point-Based
Bundle Fusion [55] - Volumetric
BAD-SLAM [56] X Point-Based

Dense Planar SLAM [44] - Plane-Based
SLAM w/ Infinite Planes[45] - X Plane-Based

Point-Plane SLAM [57] X X Plane-Based
Ours X X X Plane-Based X

3.3 Background

In this section, we provide background on key concepts of the planar semantic

SLAM which were discussed in detail in our previous publications. We will specifically

focus on giving readers background on graph SLAM and the plane fitting algorithm

previously described in [25].

3.3.1 Graph SLAM

Building a factor graph representation of a robot’s state is a popular technique for

solving the SLAM problem [58, 59, 60, 61, 62, 63, 64]. Factor graphs use a sparse rep-

resentation of the robot’s states to estimate the full trajectory of a robot and are ideal

for compute-bound systems. The graph SLAM problem can be formulated as estimat-

ing the posterior probability shown in Equation (3.1), where a graph is constructed

as the robot moves through an unknown environment map m along a trajectory

represented by the sequence of random variables x1:T = {x1, ...,xT}. While moving

from an initial position xo, the robot acquires a sequence of odometry measurements

u1:T = {u1, ...,uT} and perceptions of the environment z1:T = {z1, .., zT}.

p(x1:T ,m|u1:T , z1:T , xo) (3.1)

87

In a graph-based SLAM approach, the robot poses are represented as nodes/ver-

tices which relate to their position in the environment. The spatial constraint between

vertices are obtained from either the odometry measurements ut or sensor measure-

ments zt and are represented as edges. An edge constraint is obtained either between

two consecutive robot positions or by aligning sensor observations between two robot

locations (loop closures).

Solving the posterior leads to an optimization problem over a sum of nonlinear

quadratic constraints in the graph. Once the graph is constructed, we seek the con-

figuration of the graph vertices that best satisfy the set of constraints and we seek a

Gaussian approximation of the posterior distribution of Equation (3.1). The optimal

trajectory, x?, is estimated by minimizing the joint log-likelihood of all constraints as

described by Equation (3.2) [65].

x? = min
x

(xTo Ωoxo +
∑
t

[xt − g(ut, xt−1)]
TR−1t [xt − g(ut, xt−1)]+

∑
t

[zt − h(xt,mi)]
TQ−1t [zt − h(xt,mi)])

(3.2)

The leftmost term, xTo Ωoxo, represents our prior knowledge of the initial pose where

Ωo is the inverse covariance matrix associated with the initial motion. Often, xo is

set to zero, anchoring the map to the origin. The middle term describes a sum over

the motion constraints. The residual vector xt− g(ut, xt−1), is then the difference be-

tween the expected pose, xt, and the pose observed by applying the motion estimate

g(ut, xt−1). Similarly, The rightmost term describes a sum over landmark constraints.

The residual vector zt − h(xt,mi), is then the difference between the expected land-

mark pose in the global coordinate system, and the estimated global landmark pose

resulting from the local landmark measurement. R−1t and Q−1t are the information

matrices or inverse covariance matrices associated with the motion constraint and the

landmark constraint respectively.

88

As mentioned earlier, the minimization is commonly solved using nonlinear opti-

mization approaches like, e.g., Levenberg-Marquardt, Gauss-Newton, etc. It can also

be solved efficiently by exploiting the sparse structure of the graph SLAM formulation

[66], thereby allowing the use of sparse methods such as sparse Cholesky decompo-

sition or the method of the conjugate gradient. Many graph optimization libraries,

such as the g2o library [67, 68], leverage these sparse methods in order to quickly

optimize large graphs.

Many SLAM systems can be well described in terms of two fundamental com-

ponents: (1) the frontend and (2) the backend. The frontend tracks camera pose

changes from RGB-D images by minimizing the reprojection errors between two im-

age pairs, which results in a delta-pose measurement of the camera’s ego-motion and

associated uncertainty. The backend is responsible for large-scale map integration.

The estimated camera poses and their uncertainties are used to establish a vertex ob-

tained from keyframe data. Edges connect vertices using sensor data from connected

keyframes. When two keyframes include overlapping views of the same geographic

map regions, the graph creates a new constraint also called loop-closures.

One important visual SLAM implementation is Direct Visual Odometry (DVO)

[10]. DVO implements a keyframe-based approach for map building where the visual

odometry algorithm uses an RGB-D pair (keyframe) and estimates odometry between

this frame and subsequent frames. Once a certain threshold such as distance, bear-

ing change, or uncertainty, a new keyframe is established. The 3D map which is

constructed on the backend is a collection of the keyframe pose at the time it was

established.

Our previous work [25] extends DVO SLAM by adding several new capabilities.

One of the most significant new capabilities allows separates the frontend, and back-

end components of this system into distinct applications which share information via

network communication. These components can run on the same or different CPUs

89

or on completely distinct hosts connected over a low-bandwidth network.

3.3.2 Real-time Plane Fitting to RGB-D data

In [25], we seek to approximate the measured depth data with 3D planar surfaces.

The planar representation for 3D scenes promises to significantly reduce the size of

the RGB-D image data which serves to reduce both memory usage and computational

costs. Plane fitting is accomplished in real-time using an ultra-fast-fitting algorithm

proposed in [69]. This accelerated fitting of planes is made possible by a rearrange-

ment of the standard plane fitting error functions for RGB-D data. Standard planar

representations adopt a form of equation aX+bY +cZ+d = 0 where X = Z ∗
(
x−cx
fx

)
and Y = Z ∗

(
y−cy
fy

)
and Z = Z(x, y), where (x, y) is the image pixel coordinate and

(cx, cy, fx, fy) are camera intrinsic parameters. We substitute the 3D reconstruction

equations for the variables X and Y then simplify the resulting equation to fit directly

to only the measured RGB-D depths and, in doing so, save significant computational

cost.

The re-arrangement of the terms gives

aX

dZ
+
bY

dZ
+
c

d
+

1

Z
= 0 (3.3)

In order to fit planar models to sets of 3D points, we leverage an explicit least-

squares formulation to compute the coefficients of the plane as shown by the objective

function in the equation. We rename the variables as follows α1 = a
d
, α2 = b

d
and

α3 = c
d
and solve the explicit least-squares fitting problem in Equation (3.4) below.

f(x, y) =
∑
(x,y)

∥∥∥∥α1

(
x− cx
fx

)
+ α2

(
y − cy
fy

)
+ α3 +

1

Z

∥∥∥∥2 (3.4)

Note that x−cx
fx

and y−cy
fy

can be pre-computed from the known integer (x, y) pixel

coordinates and the calibration parameters.

90

This equation provides us the benefit of conceiving a computational algorithm

that will fit an explicit 3D planar surface directly to the measured, i.e., perspective-

projected, N depth image values. The result of the fit depends on the camera intrinsic

parameters (fx, fy, cx, cy). The least-squares scatter matrix for this fitting approach

has the form as shown in Equation (3.5) below.

MtM =
N∑
i=1


(
xi−cx
fx

)2 (
xi−cx
fx

)(
yi−cy
fy

) (
xi−cx
fx

)
(
xi−cx
fx

)(
yi−cy
fy

) (
yi−cy
fy

)2 (
yi−cy
fy

)
(
xi−cx
fx

) (
yi−cy
fy

)
1

 (3.5)

where M denotes the matrix of planar monomials formed from the 3D (X, Y, Z)

surface data having ith row Mi =

[
xi−cx
fx

yi−cy
fy

1

]
. The least squares solution

for the unknown vector αt =

[
α1 α2 α3

]
is then α = (MtM)

−1
Mtb where b is

the inverse of the measured, i.e., perspective projected, depths; b =

[
1
Z0

. . . 1
ZN

]
which is proportional to the pixel disparity typically used for depth calculation in

depth sensors [70].

It is important to note that none of the elements of the scatter matrix depend

on the measured depth data and, as such, this matrix requires a constant number of

operations to compute for each measured image, i.e., it can be pre-computed given the

RGB-D camera parameters. Hence, explicit plane fitting in the RGB-D range space

requires the only computation of the vector b =

[
1
Z0

. . . 1
ZN

]
for each range image

and the best-fit plane is given by a single matrix multiplication: (MtM)−1Mtb, where

the value of Mtb is given below:

Mtb =
N∑
i=1

1

Zi


xi−cx
fx

yi−cy
fy

1

 (3.6)

91

3.4 Methodology

The goal of the proposed approach is to efficiently and effectively compress the

knowledge of the world. This enables robots with limited resources to contribute to

and potentially benefit from 3D maps in a distributed 3D SLAM system. This goal

is achieved by the following modifications to the previous work [25].

• Independent fast plane fitting - a coordinate transformation is applied so that

solving the least-squares fitting problem is independent of the sensor’s intrinsic

parameters.

• Compression algorithm - a bitmap is used to record NaN value locations before

compressing the depth and then encoding the depth with a custom dictionary-

based compression algorithm.

• Odometry algorithm with planes - camera transforms are calculated by aligning

the compact plane fits of the point cloud instead of repetitively matching every

point.

• Semantic maps - plane images are populated to an RGB-D CNN for semantic

segmentation as input to show how geometries help extract semantics.

The cumulative effect of these modifications generates a new SLAM system that

advances the state-of-the-art for efficient multi-agent map building. The framework

of the overall SLAM system is shown in Fig. 3.1, and it contains two parts: (1) the

frontend where the depth data is compressed and the camera pose is estimated, and

(2) the backend where the global semantic planar map is generated.

3.4.1 Depth Compression

When building multi-agent distributed SLAM systems, data compression plays an

important role in reducing the bandwidth budget of agents, especially in Visual SLAM

92

Figure 3.1: Framework of our low-bandwidth 3D planar semantic SLAM system. The
frontend takes sensor data as input and then performs depth compression (Section
3.4.1) and plane fitting (Section 3.4.2) at the same time. The plane coefficients and
RGB images are used for fast camera pose estimation (Section 3.4.3). Local maps
contain all image and plane data, as well as camera pose and camera parameters.
The backend takes as input local maps to recover the RGB, depth, and plane im-
ages (an image of plane coefficients), and create a SLAM graph with loop closures.
The semantics are predicted by a CNN and integrated into the graph to generate a
global map. Note that in our experiments the loop closure detection uses depth and
RGB images to perform the more accurate mapping. However, for fast loop closure
detection, the depth data can be replaced with plane data.

applications that use RGB-D sensors. While there are very well-established and

highly-tuned algorithms to compress RGB data, not many algorithms are available

for depth image compression. Several lossy schemes that work for standard color

images have been used to compress depth images but do not perform as well. This is

because the depth images have different properties than standard color images so the

compression algorithms have unique needs to compensate for NaN values scattered

through the image. This prevents typical grid-based algorithms for compression like

the Discrete Cosine Transform (DCT) in JPEG compression, or the wavelet transform

in JPEG 2000. To overcome these challenges, we propose two novel depth compression

techniques, (1) a zlib based entropy encoding technique and (2) a custom dictionary-

based compression approach that allows random access.

In our first approach, we leverage zlib library for lossless compression of depth im-

93

ages. zlib is a free, open-source library that is used in thousands of applications for

data compression like compressing TLS connections and storing Git version control

files. However, to the best of our knowledge, no previous work has applied it to depth

compression. zlib library uses a deflate-inflate method to encode and decode data

which in turn uses a combination of the Lempel-Ziv-Storer-Szymanski (LZSS) algo-

rithm [71] and Huffman coding [72]. The LZSS is a dictionary-based algorithm that

replaces recurring bytes of data with a reference to a previously occurred byte. The

algorithm uses a sliding window-based approach to find sequences of repeated data.

Then the Huffman encoding breaks LZSS encoded data into blocks and generates

codes for each data block. The Huffman encoding uses a statistic-based approach to

encode symbols whose lengths are based on the frequencies of occurrence. The inflate

method follows similarly in reverse.

In our custom dictionary-based approach, we adopt the concept of the bitmap to

locate the pixels with invalid depth (NaN values). We divide a 640x480 depth image

into multiple 8x8 blocks. For each block, we create a bitmap to denote if an invalid

pixel is existent. Specifically, in this bit pattern, for each location, if the pixel contains

a NaN value, the bit value is set to 1. Essentially we create a bitmap representation

of the block where 1 indicates where the NaNs are and 0 indicates where the depth

measurements are. This representation requires 64 bits (8 bytes) to map the location

of NaNs. Having all NaN values located, we traverse the bitmap in a zigzag pattern

to convert the 2D data to a 1D vector while jumping over all of the NaN values that

are possibly scattered in the bitmap. We then compute a compressed bitmap buffer of

these NaN pixel locations and encode it with run-length encoding (RLE). The non-

NaN values are encoded by a dictionary-based lossless compression algorithm using

zlib. By filtering invalid pixels beforehand and respectively encoding the NaN value

locations and valid depth information, we are able to compress the geometric data

while avoiding the potential problems of direct depth compression. To decompress

94

the data, the algorithm decodes the NaN bitmap and recovers the dictionary used in

the encoding stage to decode the values. The steps for both encoding and decoding

are summarized in Fig. 3.2.

(a)

(b)

Figure 3.2: A block diagram summarizing the steps involved in encoding and decoding
the depth map in the custom depth compression algorithm.

3.4.2 Stream Meta Data

On top of our compressor, we can optionally add a layer of surface information

metadata by fitting planes to 8x8 blocks of depth data. For each block of the depth

image, if the block contains sufficient valid depth data (more than 50% pixels), we

apply the surface fitting algorithm mentioned in Section 3.4.2.1 to calculate a surface

representation and an entity of metadata, including the plane coefficient vector and

its covariance that summarizes the log-likelihood of the pixel in that block given the

plane fit.

3.4.2.1 Independent Plane Fitting

To approximate the measured depth data with a 3D planar surface, we leverage

the plane fitting algorithm discussed in Section 3.3.2 and extend it to serve better

in multi-agent scenarios. We devise a method to fit explicit planar surfaces to local

image patches without the need to know the location of the image center. This allows

local N ×N image patches to be compressed without the knowledge of their absolute

location in the image. Let (x, y) denote the pixel coordinates within an image region

bounded by upper-left coordinate (x0, y0) and lower right coordinate (x1, y1). We

denote the patch center as the point (xc, yc) = (x1−x0
2

, y1−y0
2

). We then make the

95

coordinate transformation in Equation (3.7).

xi = x′i − xc + cx

yi = y′i − yc + cy

(3.7)

The impact of this coordinate transformation changes the scatter matrix MtM

from the Equation (3.5) to the Equation (3.8) in (x′, y′) shown below.

MtM =
N∑
i=1


(x′i−xc)

2

f2x

(x′i−xc)(y′i−yc)
fxfy

(x′i−xc)
fx

(x′i−xc)(y′i−yc)
fxfy

(y′i−yc)
2

f2y

(y′i−yc)
fy

(x′i−xc)
fx

(y′i−yc)
fy

1

 (3.8)

Equations formulated in the coordinate system (x′, y′) enjoy the benefit of being

independent of the sensor intrinsic camera parameters (cx, cy), and require only the

knowledge of the size of the image patch, i.e., (x0, y0) and (x1, y1). Calculation of

surface fits at the coordinates (x′, y′) can then be linearly put into the 3D coordinate

system appropriate for a sensing camera by a single linear transformation on the

estimated variable α as shown in Equation (3.9) below.

Tα′ =


1 0 0

0 1 0

cx−xc
fx

cy−yc
fy

1

 (3.9)

This allows inverse values for the matrix MtM to be pre-computed and enables

the resulting fit surfaces to be placed in 3D with a single linear transformation of the

estimated coefficient vector: α = Tα′α
′.

Various applications including multi-agent SLAM can be benefited from this sep-

aration of the plane fitting algorithm and the sensor information. In a multi-agent

SLAM system where agents are likely equipped with different cameras, our camera-

independent fitting algorithm allows the possibility of easily sharing and comparing

96

plane fits across the cameras which enables an efficient cooperative SLAM system.

In addition to encoding the depth map, our compression algorithm also encodes the

camera calibration information at the same time. After compressing all information,

we send from frontend to backend the compressed depth image, the plane fits each

of which takes three 24-bit values and plane coefficient covariance (six 24-bit values)

for all blocks having 32 or more valid depths in an 8x8 window.

3.4.3 Plane Cloud Odometry

Similar to DVO SLAM, we use alignment results between images for odometry.

Given an image pair with intensity and depth information (I1, Z1) and a second image

pair taken at a later time (I2, Z2), DVO odometry algorithm seeks to estimate the

set of transformation parameters ξe, that best aligns the images after a warp function

τ(x, T) is applied to all pixels x where T is the transformation matrix of the camera

motion and can be calculated from ξe using the matrix exponential T = exp(ξe). The

warped location in the second image, x′, of an image pixel x in the first image can be

computed given the transformation matrix, T , and the projection function, π, from

pixel coordinates to a 3D point.

x′ = τ(x,T) = π(Tπ−1(x, Z1(x))) (3.10)

The goal here is to find the best correspondence that is determined by the difference

between the warped image, W (x′), and the reference image, I(x) or Z(x) in terms of

intensity and depth value. The error function can be written as:

f(ξ) =
1

2

∑
x

(WI(x
′)− I(x))2 +

1

2

∑
x

(WZ(x′)−Z(x))2 =
1

2

∑
x

rI(x)2 +
1

2

∑
x

rZ(x)2

(3.11)

Note that the error term above is nonlinear, and we, therefore, find ourselves in the

97

midst of a nonlinear least-squares problem. It is worth mentioning that a multi-scale

methodology is adopted by DVO for odometry calculation. At different levels, it first

computes the residuals for intensity and depth, then computes the sum of residual

weighted gradient vectors for parameter update.

The problem of matching image measurements (depth and intensity) is that it re-

quires the existence of the same sample from the same surfaces, which is not always

available with the camera moving. The common solution to this problem is to per-

form interpolation which introduces much computation to the problem. For example,

DVO Odometry performs interpolations for depth images, intensity images, depth

gradients in x, y directions, and intensity gradients in x, y directions at every itera-

tion, as a result of which, it is very computationally expensive. This can be addressed

by directly solving for the correspondences between plane fits from two plane images

[32]. We use the compact representation of the world in terms of planar algebraic

surfaces, i.e., surfaces having equation ax+by+cz+d = 0, to establish the likelihood

that a given hypothesized plane image pair can be aligned with the intent to piece

together large geometric map regions in a manner similar to puzzle-solving. This is

accomplished by minimizing an error function that solves for both the correspondence

of planar surfaces between the plane images and the Euclidean transform that aligns

these algebraic surfaces. The magnitude of the algebraic alignment error then serves

as a goodness-of-fit metric to validate or refute the plane image pair hypotheses. We

base our Plane Odometry algorithm on this and it saves much computational cost by

avoiding searching for corresponding measurements from surfaces at the correspond-

ing location. Instead, it computes the optimal alignment (in the least-squares sense)

between planes that are hypothesized to have the same equation up to an unknown

Euclidean transformation. For our derivation, we denote πj and πl as two collections

of N plane equations. Equation (3.12) expresses the optimization problem at hand.

Here we seek to estimate the transformation T̂i→j that takes the planes of πl into the

98

coordinate system of planes πj. Note that Euclidean transformations, when applied

to planes, follow the transformation rule π′ = (T−1)tπ for πt = [a, b, c, d].

T̂i→j = min
Ti→j

∑
{i,j}pairs

|0πj − (T−1i,j)tπi|02 (3.12)

To benefit from both image measurements and algebraic representation of points,

we can alternatively add a stream of metadata from our plane fitting on top of the

intensity constraints in Equation 3.11, in replace of the depth constraints. The new

error function is shown in Equation 3.13. We call this approach Hybrid Odometry.

Specifically, our Hybrid Odometry treats plane coefficients (a, b, c, d) as four images

in addition to the intensity image that is already used by DVO. The transformation

to be solved needs to bring 4 plane coefficients and intensity values into an agreement

between two frames. Intensity images are required to be downsampled to match the

size of plane images and interpolations are performed during calculation. By taking

advantage of the metadata within blocks, our method aligns images by performing

calculations on a much smaller collection of values instead of visiting every pixel in

the image.

f(ξ) =
1

2

∑
x

rI(x)2 +
1

2

∑
x

rP (x)2 (3.13)

We also perform graph-SLAM incorporating only motion constraints into the back-

end optimization like DVO SLAM. However, in contrast to DVO SLAM, our backend

keyframes store compressed plane clouds in lieu of RGB-D data. This fundamentally

changes the function g(ut, xt−1) in the second term of the graph-SLAM optimization

problem in Equation (3.2) from an RGB-D point cloud alignment problem to that of

aligning compressed plane clouds. The new optimal pairwise motion estimate for a

keyframe pair is replaced by a new odometry algorithm g(ut, xt−1) that estimates the

relative motion of a pair of point clouds by minimizing the corresponding pairwise

99

plane cloud data error.

3.4.4 Semantic SLAM

Our semantic slam approach applies a CNN that takes in RGB images and plane

images which are sets of plane coefficients associated with each pixel, to produce

semantic labels for each input pixel. Once semantic labels are assigned to each element

label fusion is used to ensure that labels are consistent across time and multiple views.

These are the core components of semantic slam: semantic segmentation to generate

labels and label fusion to combine and track them. These are discussed in the following

subsections.

3.4.4.1 Plane Semantic Segmentation Network (RedNet)

We use RGB + Plane coefficient data as the inputs into a multi-branch convolu-

tional neural network that performs semantic segmentation. Semantic segmentation

is a combination of image segmentation, in which pixels correspond to the same ob-

ject and object classification, identifying and labeling that object. This is useful both

for producing labeled maps and for reducing the computational burden of identifying

correspondences and loop closures as there is no sense in trying to match a table to

a wall.

There are many networks, such as RedNet [53] and BiSeNEt [73] that use both RGB

and depth information to perform semantic segmentation. These networks generally

perform convolutional operations on the RGB and depth images in parallel and then

fuse the information together before scaling back up to the original resolution, though

implementation details differ. We are forced to retrain on a targeted dataset with

modifications to the depth branch to operate on plane images.

A plane image is similar to a depth image except it contains plane coefficients

instead of depth values. Since a plane can be represented with as few as 4 coefficients,

we are able to reconstruct 3D geometric data into a 4-channel image but with 3D

100

information for the following semantic segmentation work. In a real-world scene,

especially an indoor scene, many of the objects can be fitted by planes, such as floors,

walls, and tables. For this work, we operate on plane coefficients but do not merge

contiguous planes so as to keep the convolutional architecture. Operating on irregular

collections of planes is deferred to future work.

One advantage of performing the segmentation on planes rather than on the depth

values is that depth values are independent but the plane coefficients encode informa-

tion about the local geometry. Based on preliminary results, we elected to focus on

modifying and retraining RedNet for our application. RedNet was originally trained

on RGB+D data from the SUN RGB-D dataset [54]. We train our whole network on

a modified version of the same dataset in which the depth channel has been converted

to a grid of plane coefficients, i.e., plane images and the RGB images scaled to align

with the plane images.

We reused the PyTorch implementation of RedNet and retrained both branches

with the depth branch converted to use plane images in the place of depth images.

Both branches are downsampled by necessity as calculating each plane requires at

least 3 valid depth points within one fitting block. No pre-trained weights for the

RGB branch are available, but we follow the training regimen specified in the original

RedNet paper.

3.4.4.2 Label Fusion

Generating a semantic map requires the temporal consistency of the semantic pre-

diction. When observing a scene from a moving camera such as on a mobile robot,

the system obtains multiple different views of the same objects. Nevertheless, as the

viewpoint varies, different semantic cues estimated by the CNN may become avail-

able and a previously semantically ambiguous region may become more distinctive.

To address this problem, we perform data association by warping sequential frames

of different views into a common reference view and fusing the semantics.

101

As discussed in Section 3.4.3, given 2D image coordinate x ∈ R2, the warped pixel

location can be determined by Equation (3.10). With the warped pixel location, we

can find the pixel correspondences for two label images SA, SB in sequential keyframes

sharing a common field of view (FOV). We then compare the labels and their asso-

ciated prediction confidence for those pixels in the common FOV. If the labels are

the same for two corresponding pixels, we remain the same label in the label image

of the second view and update the predicted confidence by averaging the two confi-

dence. If not, we update the pixel label in both label images with the label of higher

confidence. The new confidence is obtained by lowering the higher confidence by 10%

as a penalty for semantic inconsistency.

The underlying intuition of our label fusion is that corresponding pixels must have

the same semantic label, as well as similar (but not necessarily the same) prediction

confidence. Unlike the photo-consistency assumption adopted by tracking algorithms

like DVO SLAM [10], the semantic consistency assumption is comparatively weak

since it is not anchored to any actual measurement. However, it is possible to use

it as a constraint for graph optimization. In this work, we only focus on using label

fusion to generate a global semantic map, not on any optimization.

3.5 Results

In this section, we evaluate the key components of our SLAM system that we

contribute to. We conduct experiments on each component separately and compare it

to the state of the art when available. Specifically, (1) we compare and analyze the size

of our compression data to the raw data, showing bandwidth reduction in sharing the

geometry information among agents. (2) We also compare our odometry algorithms

with a popular RGB-D camera tracking algorithm DVO Odometry, demonstrating

that using plane data accelerates the odometry estimation process by reducing the

data size and calculation complexity. (3) We then evaluate the performance of our

CNN with a common RGB-D semantic segmentation CNN, RedNet. Our results

102

outperforming RedNet on some classes suggest the potential of extracting semantics

from plane data in an indoor scene where most objects have regular shapes. The

TUM RGB-D dataset [74] is used for evaluation and comparison for most of the

experiments while the neural network training uses the SUN-RGBD dataset. More

details are discussed in the following sections respectively.

3.5.1 Depth Compression

Depth compression for SLAM is a relatively new concept and to the best of

our knowledge, there exists no open-source implementation of compression on non-

synthetic depth data. In this work, we present two novel depth compression tech-

niques, zlib Compression and the UNCC Compression technique. We conduct our

experiments on a laptop with an Intel Core i9 processor (no GPU used). We evaluate

the performance of the two algorithms by examining the time taken to encode and

decode a depth image and by investigating the size of the compressed depth map. Fig.

3.3a shows the size of the compressed depth map for each of the 2510 depth images

from a benchmark TUM RGB-D dataset. Table 3.2 provides statistics on the size of

the compressed depth images for the same experiment. It is observed that both the

zlib and UNCC Compression have a compression ratio of 9.6× and 8.5× respectively.

As expected, the UNCC compression algorithm has a larger compressed image, as

it encodes the compressed image with meta-data containing the plane coefficients.

Additionally, each 8× 8 block has its own dictionary taking up more space.

As described in the previous section, the UNCC compression algorithm splits an

image into 8×8 blocks and encodes the non-NaN values using a dictionary generated

by the zlib algorithm, which means that each 8×8 block has a dictionary that needs to

be encoded. This gives the user flexibility in the decoding process in terms of decoding

only parts of the image and parallelizing the decoding process. In addition to the

depth map, the UNCC compression technique also encodes the camera calibration

information and the plane fits for each block, thus taking up more time and size to

103

encode a depth map. Upon further investigation, the average size difference for the

encoded depth map produced by the zlib algorithm and the UNCC compression is

∼17kB.

Table 3.2: Statistics of the compressed image size

Compression zlib Compression UNCC Compression Original Size
Mean [kB] 127.16 144.24 1228.8

Std Dev. [kB] 12.99 15.74 N/A
Max [kB] 159.84 184.32 N/A
Min [kB] 101.72 114.76 N/A

Fig. 3.3a shows the size of the compressed depth image obtained from both the

zlib and UNCC algorithms for each frame in the test dataset. Depth sensors perform

better when objects are near the camera when compared to objects that are further

away. This means that they encode more information on nearby objects producing

high-resolution maps on scenes with lots of objects near the cameras like the one

shown in Fig. 3.3b as compared to the scene shown in Fig. 3.3c. As the amount

of information encoded in the original depth image is high, it results in a larger

compressed image, which is seen in Fig. 3.3a. Fig. 3.3b and 3.3c are the 4000th and

4500th frames in the dataset respectively.

We show the statistics for the time taken to encode and decode depth images for the

two compression algorithms in Table 3.3. The time taken to decode the compressed

depth image is significantly lower than the time taken to encode the data, especially

for the UNCC compression technique. This is expected because to encode the depth

map, the algorithm has to sort values in an 8 × 8 block and then remove redundant

values to generate the dictionary, which is not necessary for decoding. The small

duration to decode the depth image and the small size of the compressed image

opens the door to storing the depth image in a compressed format. This frees up

storage space for running the algorithm for longer and saves more data in memory.

In addition, the ability of the UNCC algorithm to decode blocks individually allows

104

3000 3500 4000 4500 5000 5500 6000

Frame Number

100

110

120

130

140

150

160

170

180

190

S
iz

e
 o

f
C

o
m

p
re

s
s
e

d
 I

m
a

g
e

 i
n

 k
B

UNCC Approach

ZLib Approach

(a)

(b) (c)

Figure 3.3: (a) The size of the compressed depth image (in kB) for each frame in
depth dataset. (b) The depth point cloud capture at frame 4000. The depth image
consists of objects near the camera thus containing more information to encode (as
seen in the plot). (c) The depth point cloud at frame 4500. The majority of the
objects captured are relatively far from the sensor, resulting in a low-resolution depth
image thus resulting in a smaller compressed depth image.

the reconstruction of the depth map by sharing only the plane metadata between the

frontend and the backend. It is noted that it takes an average of 1.24µs to decode a

single block from the compressed depth image which is comparable to Pratapa et al.

[50] who present a random access compression technique on individual depth frames.

This allows the possibility to further decrease the bandwidth of the computation load

on both the frontend and the backend in future work.

Table 3.3: Statistics of the time required to encode and decode depth images for two
compression algorithms.

zlib Compression UNCC Compression
Encode Decode Total Encode Decode Total

Mean [µs] 5544.89 3844.98 9389.87 13997 1665.93 15663.26
SD [µs] 433.74 191.97 601.79 818.75 62.68 869.15
Max [µs] 9568 5691 15259 22485 2930 24524
Min [µs] 4590 3312 7944 12044 1505 13592

105

3000 3500 4000 4500 5000 5500 6000

Frame Number

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

E
n

c
o

d
e

 T
im

e
 i
n

 s
e

c

UNCC Approach

ZLib Approach

(a)

3000 3500 4000 4500 5000 5500 6000

Frame Number

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

T
im

e
 i
n
 s

e
c

10 -3

UNCC Approach

ZLib Approach

(b)

Figure 3.4: Comparison between UNCC and zlib algorithms based on compression
size and time.

A key difference between the UNCC compression technique and the zlib technique

is that the UNCC technique allows the user to change the behavior of the compressed

depth image by varying the bits per symbol (BPS) and the quantization step size

(QSS). The BPS determines the number of bits in each symbol of the dictionary

whereas QSS determines how close two neighboring entries in a dictionary can be.

The QSS values are represented as the inverse of the distance threshold between depth

entries and have the units of m−1.

Fig. 3.5 shows the variations in the size of the compressed depth image and the

total time taken to encode and decode a depth image for every frame in the dataset.

We note that while the size of the encoded depth image changes significantly, the

time taken to encode and decode the depth image does not change. Upon further

investigation, we find that the majority of the time taken to perform the encoding

operation is taken up by the bit-packing algorithms and the time taken to move data

to and from memory. Hence, we notice no significant changes in time when both BPS

and QSS parameters are varied. Table 3.4 summarizes the size and time when the

parameters are varied.

106

3000 3500 4000 4500 5000 5500 6000

Frame Number

100

150

200

250

300

350

400

S
iz

e
 i
n
 k

B

Bits/Symbol=15

Bits/Symbol=14

(a)

3000 3500 4000 4500 5000 5500 6000

Frame Number

0.015

0.02

0.025

0.03

0.035

0.04

T
im

e
 i
n
 s

e
c

Bits/Symbol=15

Bits/Symbol=14

(b)

Figure 3.5: Plot showing the changes in the size of the compressed depth image and
the total time takes to encode and decode a depth image when the bits per symbol
are varied.

Table 3.4: Average size of the compressed image and total time while varying QSS
and BPS

Avg. Size of
Compressed Image (kB)

Total Time
(sec)

Quantization Step Size=1000
Bits/Symbol = 15 144.24 0.015

Quantization Step Size=700
Bits/Symbol = 15 446.81 0.02

Quantization Step Size=1000
Bits/Symbol = 14 297.87 0.021

107

3.5.2 Odometry Estimation

Odometry can be estimated using plane coefficients much faster than using depth

and intensity measurements as DVO Odometry does. To the best of our knowledge,

popular RGB-D SLAM systems perform very similarly in odometry estimation to

DVO Odometry. Instead of matching depth for different frames, we match the alge-

braic representation of the surface itself. As discussed in Section 3.4.3, Plane Odom-

etry, achieved by aligning two surface representations, avoids the effort of looking for

corresponding measurements from surfaces at the corresponding locations. All of the

points that are on the same surface would share the same plane coefficients, making

the plane representation of the point cloud much more efficient. This is confirmed by

our experiment results. We compare our Plane Odometry to our implementation of

DVO Odometry in Matlab and measure the computation time for odometry estima-

tion. It is worth noting that DVO does an excellent job in architecture acceleration

and is able to achieve real-time odometry computation. Our implementation of it

is not metrically consistent with the wall-clock analysis of running their algorithm.

Additionally, unlike the original DVO implementation with multi-scale calculation on

the images, we only compute odometry at one single scale as the depth images and

plane images have different sizes, which may require different scale numbers. Our

experiments are conducted on the benchmark TUM RGB-D dataset. The results

of our evaluation on 100 pairs of frames are presented in Fig. 3.6. It shows that

our Plane Odometry is far more computationally efficient, running at about 12 times

faster overall than DVO Odometry.

To take advantage of both image measurement and algebraic representation, as

proposed in Section 3.4.3 we integrate our plane representation into DVO Odometry.

In this Hybrid Odometry approach, by grouping depth data into 8 × 8 blocks and

representing them with 4 coefficients (a, b, c, d), more computation savings can be

achieved as visiting overall pixels can be avoided (although it actually introduces

108

more interpolation operations). The experiment results are also included in Fig.

3.6. Our Hybrid Odometry performs between DVO and Plane Odometry in terms of

computational cost. It overall runs 3 times faster than DVO and 4 times slower than

Plane Odometry.

The acceleration of odometry calculation compared to DVO odometry, a real-time

implementation, suggests the real-time capability of our algorithms. Given that RGB-

D image data is captured at a resolution of N = 640× 480 ≈ 307k and a frame rate

of 30 images/second, these computational savings from using planar representation

for odometry calculation may significantly affect the run-time of real-time image

processing algorithms for this class of image sensors.

Figure 3.6: Average computational time of different odometry algorithms.

We also compare the accuracy of estimated odometry from the three aforemen-

tioned algorithms with ground truth which are shown in Table 3.5. While benefiting

from handling much less data to achieve higher processing speed, both Hybrid Odome-

try and Plane Odometry suffer from larger errors and variances than DVO Odometry.

109

Table 3.5: Accuracy performance of different odometry algorithms (yaw, pitch, and
roll are in degrees, and tx, ty, and tz are in meters).

yaw (◦) pitch (◦) roll (◦) tx (m) ty (m) tz (m)
RMSE (DVO) 0.2741 03646 0.2042 0.0070 0.0028 0.0049

Std. Dev (DVO) 0.3585 0.4443 0.2969 0.0051 0.0042 0.0071
RMSE (Hybrid) 0.9417 1.7444 1.9219 0.0430 0.0441 0.0487

Std. Dev (Hybrid) 2.9798 5.9445 5.2683 0.1842 0.1830 0.1485
RMSE (Plane) 1.7984 1.9692 0.4452 0.0552 0.0489 0.1126

Std. Dev (Plane) 1.2027 1.0511 0.5727 0.0687 0.0312 0.0412

This provides an insight to balance the trade-off here based on the real application,

for example, to achieve a good balance between speed and accuracy performance,

in a multi-scale odometry calculation scenario, Plane Odometry can be applied in

the higher level to initialize the estimator weights for lower-level DVO Odometry to

leverage.

3.5.3 Semantic Segmentation

3.5.3.1 Network Training

Our modified version of RedNet architecture with a ResNet34 backbone is trained

from random initialization on the preprocessed SUN RGB-D dataset in which the

depth channel has been converted to a grid of plane coefficients. The SUN RGB-D

dataset contains a vocabulary of 37 classes from indoor scenes. The optimizer used

was Stochastic Gradient Descent with a learning rate of 0.002, a momentum of 0.9,

and a weight decay rate of 0.0001. The training ran for 250 epochs on four NVIDIA

1080 GPUs.

3.5.3.2 Performance Evaluation

We evaluate our modified version of RedNet architecture on the test dataset from

the preprocessed SUN RGB-D dataset. Overall, our network performs well on the

modified SUN RGB-D dataset described above but compares unfavorably to the orig-

inal implementation. This is partially attributable to the downsampling required to

110

calculate the plane coefficients, in this case shrinking the images by a factor of roughly

four, and to the architecture not being structured to fully exploit the information in

the plane coefficients. As a result, we achieved an overall pixel accuracy of 62.15%

as opposed to 80.8% for the original RedNet and a mIoU of 0.272 as opposed to

0.468. The qualitative performance for three classes (floor, chair, and table) shown in

Fig. 3.7a indicates that it fits for the purpose of generating semantic labels for map-

ping. Please note that both the ground truth (second row) and prediction (third row)

show artifacts from repeated down/upsampling and lossy compression used solely for

exporting the data to make this figure.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.7: Qualitative results of an example image. (a) Example image. (b-d)
Ground truth segmentation for three classes (floor, chair, and table). (c) Predicted
segmentation for the three classes.

Those top-line statistics do not tell the whole story though. Table 3.6 shows the

111

Table 3.6: Mean IoU for classes in the SUN RGB-D dataset

Class mIoU Class mIoU Class mIoU Class mIoU
Floor 0.766 Sofa 0.366 Whiteboard 0.235 Box 0.112
Ceiling 0.547 Window 0.358 Counter 0.208 Person 0.108
Wall 0.519 Mirror 0.340 Bookshelf 0.197 Night Stand 0.099
Chair 0.502 Cabinet 0.318 Lamp 0.187 Bag 0.068
Curtain 0.445 Door 0.296 Blinds 0.182 Shelves 0.058
Toilet 0.437 Fridge 0.294 Bookshelf 0.164 Curtain 0.005
Sink 0.421 Dresser 0.286 Desk 0.139
Table 0.120 TV 0.279 Clothes 0.130
Bed 0.412 Pillow 0.254 Towel 0.127

Bathtub 0.411 Picture 0.250 Paper 0.121

mean intersection over union (mIoU) for each of the SUN RGB-D classes. The mIoU

values show that performance is much better on common classes that are well rep-

resented in the training data and classes that are well represented by large planes.

Ceilings, walls, and floors have the highest mean pixel accuracy and mIoU, as is to

be expected. Other classes such as toilets and sinks have unexpectedly high scores,

presumably because they are isolated in view and protrude from walls and floors.

For the top ten classes as ranked by mIoU, the accuracy for just those classes was

calculated and listed in the third column. For the top three, the mean pixel accuracy

is even higher than the overall accuracy of 81.3% reported for the original implemen-

tation of RedNet based on the larger ResNet-50 backbone and trained for longer on

RGB-D data.

3.5.3.3 Semantic Map

We show an example of our label fusion results in Fig 3.8. By performing the

warping we can align different keyframes if an overlap exists (second row). Label

fusion will update the labels based on prediction confidence for all of the keyframe

labeling results. From the last row of Fig 3.8, we can observe the consistency of

labeling in different keyframes, for example, after performing fusion many pixels of

the chair in the right image are modified and is consistent with the left image. Such

consistency does not appear in the keyframes before the fusion (first row). Note

112

that this result is only for the purpose of displaying the process of label fusion. The

labeling accuracy in terms of labels and associated confidence is dependent on both

the network and the data we run experiments on, i.e. if the bagfile we use contains

enough objects that the network can recognize after training. This is not the focus

of the discussion.

Figure 3.8: Label fusion: the first row shows three keyframe label images. The second
row shows the reprojection of the image in the middle of the keyframe to the previous
and next keyframe using the odometry measurement. The third row shows the pixels
where the labels are updated by the fusion and the last row shows the results of label
fusion. Labels across three keyframes are consistent after fusion.

We also present an example of our planar map with textures as well as with semantic

labels in Fig 3.9. Note that these maps are represented by plane clouds which are

a collection of smaller planar blocks instead of point clouds. The bagfile we use for

113

experiments does not contain sufficient objects that can be recognized by our trained

network, thus the labels shown here are not necessarily perfectly reliable compared

to the ground truth.

Figure 3.9: Global map with RGB appearance (left) and semantic map (right).

3.6 Conclusion

In this article, we propose a semantic SLAM system that uses planar surfaces to

reduce the resources for communicating the complexity of the world. We propose

two depth compression algorithms and integrate our plane-fitting algorithms on top

of them. The plane fits can be computed efficiently and independently of the sensor’s

intrinsic camera parameters, and these planes can be used for many purposes such as

fast odometry estimation. We also extend maps with semantic information predicted

from sparse geometries by a CNN. Although the CNN architecture we adopt is not

designated for the plane data and to be able to use it to train on plane data, we treat

planar information as regular images, it still shows the potential to match semantic

labels with planar models of the objects for efficient mapping. More research can

be performed to address the aforementioned problems. With semantics and shape

models available, our approach enables us to share among the robots very compressed

knowledge of the world. In the future, we can explore more complicated geometry

primitives for object representation. Estimating semantics and modeling rules at

the same time is another interesting topic. The ultimate goal of this work is to

114

enable robots to achieve high-level tasking efficiently in distributed and collaborative

settings.

115

REFERENCES

[1] F. Colas, S. Mahesh, F. Pomerleau, M. Liu, and R. Siegwart, “3d path plan-
ning and execution for search and rescue ground robots,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 722–727, IEEE,
2013.

[2] K. Pathak, A. Birk, S. Schwertfeger, I. Delchef, and S. Markov, “Fully au-
tonomous operations of a jacobs rugbot in the robocup rescue robot league 2006,”
in 2007 IEEE International Workshop on Safety, Security and Rescue Robotics,
pp. 1–6, IEEE, 2007.

[3] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson, D. Hah-
nel, D. Montemerlo, A. Morris, Z. Omohundro, et al., “Autonomous exploration
and mapping of abandoned mines,” IEEE Robotics & Automation Magazine,
vol. 11, no. 4, pp. 79–91, 2004.

[4] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid map-
ping with rao-blackwellized particle filters,” IEEE transactions on Robotics,
vol. 23, no. 1, pp. 34–46, 2007.

[5] A. Birk, N. Vaskevicius, K. Pathak, S. Schwertfeger, J. Poppinga, and H. Buelow,
“3-d perception and modeling,” IEEE robotics & automation magazine, vol. 16,
no. 4, pp. 53–60, 2009.

[6] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scal-
able slam system with full 3d motion estimation,” in 2011 IEEE international
symposium on safety, security, and rescue robotics, pp. 155–160, IEEE, 2011.

[7] J. Civera and S. H. Lee, “Rgb-d odometry and slam,” in RGB-D Image Analysis
and Processing, pp. 117–144, Springer, 2019.

[8] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular
SLAM,” September 2014.

[9] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: An open-source SLAM system
for monocular, stereo, and RGB-d cameras,” IEEE Transactions on Robotics,
vol. 33, pp. 1255–1262, oct 2017.

[10] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d cameras,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2100–2106, IEEE, 2013.

[11] C. Wang, J. Yuan, and L. Xie, “Non-iterative slam,” in 2017 18th International
Conference on Advanced Robotics (ICAR), pp. 83–90, IEEE, 2017.

[12] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct slam with stereo cam-
eras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1935–1942, IEEE, 2015.

116

[13] R. Wang, M. Schworer, and D. Cremers, “Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 3903–3911, 2017.

[14] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale dense 3d
reconstruction with loop closure,” in ECCV 2016, pp. 500–516, 2016.

[15] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald,
“Real-time large scale dense rgb-d slam with volumetric fusion,” International
Journal of Robotics Research: Special Issue on Robot Vision, vol. 34, pp. 598 –
626, April 2015.

[16] M. Rünz and L. Agapito, “Co-fusion: Real-time segmentation, tracking and fu-
sion of multiple objects,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4471–4478, May 2017.

[17] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leuteneg-
ger, “Elasticfusion: Real-time dense SLAM and light source estimation,” The
International Journal of Robotics Research, vol. 35, no. 14, pp. 1697–1716, 2016.

[18] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion:
Dense 3d semantic mapping with convolutional neural networks,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4628–4635,
2017.

[19] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Sieg-
wart, and C. Cadena, “Segmap: Segment-based mapping and localization using
data-driven descriptors,” The International Journal of Robotics Research, vol. 39,
no. 2-3, pp. 339–355, 2020.

[20] S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping through
efficient high order crfs,” in 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 590–597, IEEE, 2017.

[21] X. Li and R. Belaroussi, “Semi-dense 3d semantic mapping from monocular
slam,” arXiv preprint arXiv:1611.04144, 2016.

[22] Z. Xuan and F. David, “Real-time voxel based 3d semantic mapping with a hand
held rgb-d camera,” 2018.

[23] A. R. Willis, P. Ganesh, K. Volle, J. Zhang, and K. Brink, “Volumetric proce-
dural models for shape representation,” Graphics and Visual Computing, vol. 4,
p. 200018, 2021.

[24] R. Liu and X. Zhang, “A review of methodologies for natural-language-facilitated
human–robot cooperation,” International Journal of Advanced Robotic Systems,
vol. 16, no. 3, p. 1729881419851402, 2019.

117

[25] J. Zhang, A. R. Willis, and J. Godwin, “Compute-bound and low-bandwidth
distributed 3d graph-slam,” in Unmanned Systems Technology XXII, vol. 11425,
p. 1142504, 2020.

[26] R. Finkel, “Quad trees: A data structure for retrieval on composite keys.,” Acta
Inf., vol. 4, pp. 1–9, 03 1974.

[27] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “DOOR-
SLAM: Distributed, online, and outlier resilient SLAM for robotic teams,” arXiv
preprint arXiv:1909.12198, vol. 0, 2019.

[28] E. Montijano, R. Aragues, and C. Sagüés, “Distributed data association in robotic
networks with cameras and limited communications,” IEEE Transactions on
Robotics, vol. 29, no. 6, pp. 1408–1423, 2013.

[29] E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh, “Decentralised
SLAM with low-bandwidth communication for teams of vehicles,” in Field and
Service Robotics, pp. 179–188, Springer, 2003.

[30] D. Tardioli, E. Montijano, and A. R. Mosteo, “Visual data association in narrow-
bandwidth networks,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2572–2577, IEEE, 2015.

[31] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based dense planar
SLAM,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 5110–5117, IEEE, 2017.

[32] K. M. Brink, J. Zhang, A. R. Willis, R. E. Sherrill, and J. L. Godwin, “Maplets:
An efficient approach for cooperative SLAM map building under communica-
tion and computation constraints,” IEEE/ION Position Location and Navigation
Symposium, April 2020.

[33] R. Dubé, A. Gawel, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena, “An
online multi-robot SLAM system for 3d lidars,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1004–1011, IEEE,
2017.

[34] T. Cieslewski and D. Scaramuzza, “Efficient decentralized visual place recogni-
tion using a distributed inverted index,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 640–647, 2017.

[35] T. Cieslewski and D. Scaramuzza, “Efficient decentralized visual place recognition
from full-image descriptors,” in 2017 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS), pp. 78–82, IEEE, 2017.

[36] T. Bailey, M. Bryson, H. Mu, J. Vial, L. McCalman, and H. Durrant-Whyte, “De-
centralised cooperative localisation for heterogeneous teams of mobile robots,”
in 2011 IEEE International Conference on Robotics and Automation, pp. 2859–
2865, IEEE, 2011.

118

[37] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, and G. Grisetti, “Multi-
robot SLAM using condensed measurements,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1069–1076, IEEE, 2013.

[38] J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “Distributed
real-time cooperative localization and mapping using an uncertainty-aware ex-
pectation maximization approach,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5807–5814, IEEE, 2015.

[39] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert,
“Distributed mapping with privacy and communication constraints: Lightweight
algorithms and object-based models,” The International Journal of Robotics Re-
search, vol. 36, no. 12, pp. 1286–1311, 2017.

[40] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient decentralized
visual SLAM,” in 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2466–2473, IEEE, 2018.

[41] W. Wang, N. Jadhav, P. Vohs, N. Hughes, M. Mazumder, and S. Gil, “Active
Rendezvous for Multi-Robot Pose Graph Optimization using Sensing over Wi-
Fi,” 2019.

[42] A. Trevor, J. Rogers, and H. Christensen, “Planar surface SLAM with 3D and 2D
sensors,” in Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on, pp. 3041–3048, May 2012.

[43] V. Nguyen, A. Harati, A. Martinelli, N. Tomatis, and B. Sa, “Orthogonal SLAM:
a step toward lightweight indoor autonomous navigation,” in In: Proceedings of
the IEEE/RSJ Intenational Conference on Intelligent Robots and Systems, IROS,
2006.

[44] R. F. Salas-Moreno, B. Glocken, P. H. J. Kelly, and A. J. Davison, “Dense
planar SLAM,” in 2014 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pp. 157–164, 2014.

[45] M. Kaess, “Simultaneous localization and mapping with infinite planes,” in 2015
IEEE International Conference on Robotics and Automation (ICRA), pp. 4605–
4611, 2015.

[46] H.-Y. Shum, S. B. Kang, and S.-C. Chan, “Survey of image-based representa-
tions and compression techniques,” IEEE transactions on circuits and systems
for video technology, vol. 13, no. 11, pp. 1020–1037, 2003.

[47] R. Krishnamurthy, B.-B. Chai, H. Tao, and S. Sethuraman, “Compression and
transmission of depth maps for image-based rendering,” in Proceedings 2001
International Conference on Image Processing (Cat. No. 01CH37205), vol. 3,
pp. 828–831, IEEE, 2001.

119

[48] S. Mehrotra, Z. Zhang, Q. Cai, C. Zhang, and P. A. Chou, “Low-complexity, near-
lossless coding of depth maps from kinect-like depth cameras,” in 2011 IEEE 13th
International Workshop on Multimedia Signal Processing, pp. 1–6, IEEE, 2011.

[49] M. O. Wildeboer, T. Yendo, M. P. Tehrani, T. Fujii, and M. Tanimoto, “Color
based depth up-sampling for depth compression,” in 28th Picture Coding Sym-
posium, pp. 170–173, IEEE, 2010.

[50] S. Pratapa and D. Manocha, “Randm: Random access depth map compression
using range-partitioning and global dictionary,” in Symposium on Interactive 3D
Graphics and Games, pp. 1–11, 2020.

[51] “zlib.” https://zlib.net. Accessed: 2021-06-17.

[52] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of
the IEEE international conference on computer vision, pp. 2961–2969, 2017.

[53] J. Jiang, L. Zheng, F. Luo, and Z. Zhang, “Rednet: Residual encoder-decoder net-
work for indoor rgb-d semantic segmentation,” arXiv preprint arXiv:1806.01054,
2018.

[54] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 567–576, 2015.

[55] A. Dai, M. Nießner, M. ZollhÃ¶fer, S. Izadi, and C. Theobalt, “BundleFusion,”
ACM Transactions on Graphics, vol. 36, pp. 1–18, jul 2017.

[56] T. Schops, T. Sattler, and M. Pollefeys, “Bad slam: Bundle adjusted direct rgb-
d slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 134–144, 2019.

[57] X. Zhang, W. Wang, X. Qi, Z. Liao, and R. Wei, “Point-plane slam using sup-
posed planes for indoor environments,” Sensors (Basel, Switzerland), vol. 19,
2019.

[58] F. Lu and E. Milios, “Globally consistent range scan alignment for environment
mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–349, 1997.

[59] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications to
large-scale mapping of urban structures,” The International Journal of Robotics
Research, vol. 25, no. 5-6, pp. 403–429, 2006.

[60] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and
mapping via square root information smoothing,” The International Journal of
Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

[61] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose graphs with
poor initial estimates,” in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pp. 2262–2269, IEEE, 2006.

120

[62] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state filters
for view-based slam,” IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1100–
1114, 2006.

[63] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment to real-time
visual mapping,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1066–1077,
2008.

[64] D. O. Wheeler, D. P. Koch, J. S. Jackson, T. W. McLain, and R. W. Beard,
“Relative navigation: A keyframe-based approach for observable gps-degraded
navigation,” IEEE Control Systems Magazine, vol. 38, no. 4, pp. 30–48, 2018.

[65] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005.

[66] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-
based SLAM,” IEEE Intelligent Transportation Systems Magazine, vol. 2, pp. 31–
43, winter 2010.

[67] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A
general framework for graph optimization,” in 2011 IEEE International Confer-
ence on Robotics and Automation, pp. 3607–3613, May 2011.

[68] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” tech. rep.,
Georgia Institute of Technology, 2012.

[69] J. Papadakis and A. R. Willis, “Real-time surface fitting to rgbd sensor data,”
in SoutheastCon 2017, pp. 1–7, March 2017.

[70] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth
data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454,
2012.

[71] J. A. Storer and T. G. Szymanski, “Data compression via textual substitution,”
Journal of the ACM (JACM), vol. 29, no. 4, pp. 928–951, 1982.

[72] D. A. Huffman, “A method for the construction of minimum-redundancy codes,”
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[73] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral
segmentation network for real-time semantic segmentation,” in Proceedings of
the European conference on computer vision (ECCV), pp. 325–341, 2018.

[74] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark
for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ international con-
ference on intelligent robots and systems, pp. 573–580, IEEE, 2012.

CHAPTER 4: FUSION OF SHAPE MODELS AND DEEP LEARNING

4.1 Introduction

The generation and understanding of three-dimensional (3D) geometries hold sig-

nificant importance across diverse domains, from computer graphics to robotics and

virtual reality. Recent advancements in deep learning (DL) and generative modeling

have propelled research in the area of 3D shape generation. Notably, techniques such

as Variational Autoencoders (VAEs) [1, 2, 3], 3D Generative Adversarial Networks

(3D-GANs) [4, 5, 6], and 3D Stable Diffusion [7, 8, 9, 10] have shown promise to

autonomously produce realistic and diverse 3D shapes. Shape grammars have also

been demonstrated as a powerful approach for formal model generation by providing

a rule-based framework for generating complex geometric structures and enforcing

constraints within objects [11, 12, 13]. Each methodology has its advantages and lim-

itations. This article seeks to provide a fusion of these two methodologies to achieve

the best of both worlds for novel 3D shape synthesis.

Despite the progress achieved, challenges and limitations persist in deep learning 3D

shape generation methodology. Figure 4.1 showcases several failure instances of these

methodologies. VAEs, as evidenced in Figure 4.1(a), often struggle with capturing

complex and high-dimensional distributions of 3D shapes. GANs often struggle with

mode collapse in training, where the generator produces a limited diversity of shapes

or collapses to a few modes, failing to capture the full distribution of the data, as

shown in 4.1(b). Mode collapse can make GANs difficult to train and lead to the

generation of unrealistic or repetitive shapes, limiting the variety and quality of the

generated outputs. Figure 4.1(c) shows a car model generated by 3D stable fusion

techniques which may struggle with preserving fine-grained details and local geometric

122

(a) (b) (c)

Figure 4.1: Deep learning methods face significant challenges in grasping the geo-
metric and physical constraints inherent in 3D objects, resulting in shortcomings in
the generated objects. (a) A VAE generated couch model only provides a rough
approximation of the complex geometry of a couch [1]. (b) A 3D GANs generated
table model lacks manifold geometry for the legs and fails to enforce self-similarity
constraints, resulting in variations in shape and size among the four legs [4]. (c) A
stable diffusion generated car model is smoothed on the object edges and fails to ad-
here to real-world constraints, as one of the front wheels occupies the spatial location
intended for the car’s front fender [9].

features, leading to information loss in complex shapes or smoothed shapes.

Shape grammars have been used commonly in computer graphics and design to

describe the generation of complex shapes through a set of production rules [14, 15].

These rules define how basic shapes or components can be combined and manipulated

to form more intricate structures. Shape grammars provide a systematic approach

to generating shapes by specifying the relationships between various components and

enforcing constraints to ensure the coherence and consistency of the generated designs.

Shape grammar rules can be implemented using the modeling language as the

formal syntax and vocabulary [16, 17, 18, 19]. Users can define programs that describe

objects as a semantic hierarchy of 3D shape elements where each element may be a

semantic group of objects, e.g., a floor of a building, or an indivisible object, i.e.,

a brick within a building. Each indivisible object, e.g., a brick from a building, is

modeled in terms of its geometry and appearance.

Shape grammars offer a means to encode the implicit generation rules and geometric

constraints inherent in objects, which remains challenging for deep learning models

to grasp. However, common objects typically have predictable generation rules which

123

are satisfied by all instances of these objects. For example, tables usually feature a

top surface and multiple supporting legs connected to the top, and cars typically have

four wheels on two sides that can roll. However, deep learning neural networks find

it challenging to comprehend these constraints, hindering their ability to accurately

generate such objects. Shape grammars provide a solution by implementing these

rules to construct objects and allowing users to define the parameters of these rules.

Bridging deep learning techniques with shape grammars presents significant poten-

tial. Users can define shape programs and convey shape rules to artificial intelligence

(AI) systems. By employing DL networks to learn the parameters of these rules rather

than the rules themselves, AI models gain the ability to internalize such constraints.

This capability leads to disentangled representations within the latent space, where

each dimension corresponds to a meaningful attribute of the data. This promises

enhanced controllability and interpretability of the generated shapes.

This article proposes a novel fusion of 3D shape representation using shape gram-

mars and DL model estimation. Shapes are represented as a formal shape grammar

using Procedural Shape Modeling Language (PSML) [19] which applies a sequence of

rules to construct a 3D geometric model as a collection of 3D primitives. In contrast

to competing approaches from the DL literature, the inclusion of dynamic parame-

terized formal shape models promises to allow DL applications to more accurately

represent the structure of commonplace objects. In this article, we demonstrate sev-

eral benefits of our approach that fuses shape models with DL estimation which are

listed below:

• Shape estimates using can be guaranteed to satisfy complex geometric shape and

physical constraints including self-symmetry, self-similarity, and free-standing

stability properties.

• Shape estimates are guaranteed to satisfy important geometric model properties

by providing water-tight, i.e., manifold, polygon models that require a small

124

number of triangle primitives to describe the basic object geometry.

• Shape estimates provide a highly compact parametric representation of objects

allowing objects to be efficiently shared over communication links.

• User-provided shape programs allow human-in-the-loop control over DL esti-

mates. Aspects of this control include specifying lists of candidate objects, the

shape variations that each object can exhibit, and the level of detail or, equiv-

alently, dimension of the latent representation of the shape. These aspects of

our approach allow humans to more easily control the DL estimate outputs

and also enable humans to more easily interpret DL estimate results which we

collectively refer to as "human-in-the-loop" benefits.

• Users can control the complexity and diversity of DL-estimated shapes for each

object and for each object component directly through the construction of the

DL network.

• Object models can be used to synthesize training data for DL systems improving

over current 3D model databases which use static 3D models and therefore lack

geometric diversity. Object models can be combined to generate extremely

large synthetic 2D/3D datasets having rich geometric diversity and including

important annotations to support a wide variety of 3D and 2D DL applications.

• An example of the proposed DL fusion is provided that detects objects and their

parametric representation given a PSML shape grammar is demonstrated. Key

metrics for the model estimates are shown that demonstrate the benefits of this

approach.

These contributions open the door to the integration of shape-grammar-based data

generation methods with deep learning techniques for 3D object/scene understanding.

125

User-defined shape programs offer various benefits and advantages over competing

approaches which are demonstrated by the results of this study.

4.2 Related Work

This study explores the advantages of shape grammar in data synthesis compared

to other methods of data generation. Through experiments, the PSML-driven data

generation approach shows significant potential for various computer vision applica-

tions. For these reasons, a review of the related literature to this article is divided

into two parts:

• A overview of shape grammar and its applications.

• An examination of deep learning generative models of 3D shapes.

4.2.1 Shape Grammar

Shape grammar, proposed in the 1970s [20], provides a formal framework for gener-

ating and analyzing complex shapes and designs. As as a shape-based visual descrip-

tion grammar and a rule-based automated design grammar, shape grammar has been

applied to many domains, including urban planning [12, 13], industrial design [14],

and computer-aid design [15]. Over the years, advancements in shape grammar have

led to the development of sophisticated methods for shape generation [21], analysis

[22], and optimization [23], integrating computational techniques such as procedural

modeling [19], parametric design [24], and machine learning [25].

There has been a considerable amount of work that investigates the use of shape

grammars for vision tasks with a large number of articles being produced that focus

on segmentation of architecture within images [26, 27] or segmentation of building

facade images [28, 29, 30, 31]. However, these techniques were limited to 2D gram-

mars since the labeled primitives produced by the used grammars were limited to 2D

faces. Other work leverages shape grammar to model 3D indoor scenes from point

126

clouds [32]. Recently, researchers have been leveraging shape grammar to guide 3D

shape semantic labeling [33] or scene graph generation [34]. This study systematically

explores the benefits of the data generation method driven by the shape grammar and

its potential in deep learning computer vision tasks and machine understanding where

an AI system emulates the sense-making and decision-making ability of human beings.

4.2.2 Generative Models of 3D Shapes

Deep learning generative models have significantly advanced the field of 3D shape

generation, with methodologies such as Variational Autoencoders (VAEs) [1, 2, 3],

Generative Adversarial Networks (GANs) [4, 5, 6], and Stable Diffusion [7, 8, 9, 10]

emerging as popular methodologies. VAEs encode input shapes into a latent space and

reconstruct them via a decoder, but often struggle with capturing complex and high-

dimensional distributions of 3D shapes. GANs leverage a generator-discriminator

framework to produce realistic shapes but may suffer from mode collapse leading to

the generation of unrealistic or repetitive shapes. Stable diffusion, a recent inno-

vation, that offers improved training stability and control over generated samples,

may struggle with capturing fine-grained details and preserving complex geometric

properties present in real-world objects.

These methods train the AI systems to learn the geometric constraints such as

self-similarity and physical constraints such as the free-standing stability of the 3D

objects. This is extremely difficult for AI systems as their training data typically does

not encode these rules or principles. It results that these methods tend to generate

an approximation of instances of objects but not a geometric model that adheres to

real-world constraints. The fundamental difference of this study is to encode into

training data the organizations of objects in terms of their components and their

relationships to other objects.

127

4.3 Methodology

The methodology of this article is organized into the following sections:

• An introduction to the Procedural Shape Modeling Language (PSML) that

incorporates shape grammar programs as elements within the sequential pro-

gramming code (Section 4.3.1).

• A discussion of the benefits offered by the PSML data generation approach

(Section 4.3.2).

• A fused system of PSML and DL that takes point cloud as input and generates

3D shape estimates of objects (Section 4.3.3).

• An application of using the PSML-driven method to generate synthetic datasets

(Section 4.3.4).

4.3.1 Procedural Shape Modeling Language (PSML)

PSML [19] is a programming language to generate 3D shapes procedurally based

on shape grammar rules. It is similar in syntax and structure to Java but also

incorporates shape grammar programs as elements within the sequential programming

code. It provides programmers the ability to describe shapes in terms of their 3D

elements where each element may be a semantic group of 3D objects, e.g., a brick

wall, or an individual object, e.g., an individual brick. Modeling shapes in this manner

facilitates the creation of models that more closely approximate the organization and

structure of their real-world counterparts. As such, users may query these models

for volumetric information such as the number, position, orientation, and volume of

3D elements. PSML grammar associates labels to both object-space, i.e. geometric

objects, and void-space, i.e. the space that bounds objects. These labels may be

used to facilitate analysis that requires knowledge of both types of information, e.g.,

furniture placement, accessibility, navigation of virtual spaces, path planning, etc.

128

Algorithm 1 The contents of PSML program: Table.psm
1 public class Table extends ShapeGrammar {
2 public Table(Shape myShape, double l, double w, double h, double t, double offset_w, double

offset_l) {
3 double R = 0.73;
4 double G = 0.55;
5 double B = 0.39;
6 rules {
7 axiom::I("box", new double[]{l, h, w}) {table};
8 table::split("y", new double[]{scope.s.y-t, t}) {bottom, top};
9 top::appearance("diffuse", new double[]{R, G, B}){terminal};

10 // round table top
11 // top::I("cylinder", new double[]{w/2, t})appearance("diffuse", new double[]{R, G,

B}){terminal};
12 bottom::split("x", new double[]{offset_w, t, scope.s.x-2*t-2*offset_w, t,

offset_w}){space, side, space, side, space};
13 side::split("z", new double[]{offset_l, t, scope.s.z-2*t-2*offset_l,t, offset_l}){space,

legMass, space, legMass, space};
14 legMass::I("cylinder", new double[]{t/2, h-t}){leg};
15 // square table legs
16 // legMass::I("box", new double[]{2*leg_rad, 2*leg_rad, h-t}) R(Math.PI/2, 0, 0) {leg};
17 leg::appearance("diffuse", new double[]{R, G, B}){terminal};
18 space::void(){terminal};
19 }
20 }
21

22 public static void main(String[] args) {
23 Shape zShape = new Shape("root");
24 Table s = new Table(zShape, 1, 1, 0.8, 0.05, 0.05, 0.05);
25 s.showShapes("table");
26 }
27}

Algorithm 1 shows an example of a PSML program to generate a table object. The

overall structure of a PSML program includes one ShapeGrammar declaration that

contains one or more method declarations. Each method declaration must include

at least one rules declaration. Typically, the body of each PSML grammar may

include variable declarations and initialization as well as a collection of methods that

are analogous to functions. Rule blocks must be defined within each method and

each rules block contains a set of shape grammar production rules. Execution of a

production rule causes the non-terminal symbol referred to as the predecessor to be

replaced by the successor which may be one or more terminal or non-terminal symbols.

Terminal symbols, indicated by the special string “terminal” in PSML algorithms, do

not appear as predecessors in any production rule and are visible elements that exist

in the final 3D model except terminals declared to be space. PSML is constrained to

work entirely from closed geometries and associates semantic labels to non-terminals,

129

visible terminals, and empty spaces. In PSML, terminals are drawn from a pre-defined

set of 3D shape primitives, for example, box, cylinder, sphere, and cone, and non-

terminals are constructed from multiple terminals to represent complicated shapes.

Shape grammars specified within the rule blocks use the passed shape, argument

variables, and locally defined variables to generate an instance of the grammar shape.

Algorithm 1 generates a “table” shown in Figure 4.2a. With the rule block of the

table method, a box is first defined (line 7). The box is then split into two sections

“top” and “bottom” (line 8) with the “top" being the surface of the table and the

bottom the space where the table legs are. The algorithm then creates a space in

the center of the “bottom” part and only keeps two faces on the side of the plane

where the legs are (line 12). These two sides then respectfully get cut in the middle

to finally create two table legs on each side (lines 13–14). The appearance of the

table is colored brown (lines 9 and 17). The Table.psm generates a table object with

a square top and four round legs. The commented lines (lines 10, 11, 15, and 16)

offer the opportunity to generate a table object with different semantic structures, a

round top, and square legs. In this example, the tabletop (line 19) and legs (line 17)

are the “terminals” of the program and all other symbols are non-terminal symbols

which are replaced by terminal or non-terminal symbols.

Figure 4.2 shows various realizations of the table object and demonstrates how

the representation guarantees that target shapes satisfy the shape constraints over

all possible parameter variations, e.g., there are always table legs connecting to a

surface for these variations. More generally, PSML’s syntax for detecting the size

and position of the current volume allows the user to develop shapes that re-organize

their components consistently over parametric variations, e.g., anisotropic scaling.

4.3.2 Benefits of PSML-driven Data Generation

Shapes represented using PSML offer significant benefits, including:

• Enforced geometric constraints and physical constraints.

130

(a) (b) (c) (d) (e)

Figure 4.2: Semantic variations of the table models generated by different PSML
program parameters. (a) A visualization of the shape generated by Table.psm (Al-
gorithm 1). (b) A variation of l = 2. (c) A variation of t = 0.12. (d) A variation of
offset_l = offset_w = 0.12. (e) A variation with round top and square legs.

• Manifold polygon models.

• Compact parametric representation.

• Unlimited semantic variability.

• Human-in-the-loop control and interpretability of DL estimates.

Each of these benefits will be discussed in the following subsections.

4.3.2.1 Geometric and Physical Constraints

Shapes generated using PSML are guaranteed to adhere to the geometric and phys-

ical constraints, including self-symmetry, self-similarity, and free-standing stability.

By incorporating these constraints into the generation process, PSML ensures that

the resultant shapes not only exhibit desired geometric properties but also possess

structural integrity and functional coherence.

In the provided table example, the four legs are generated from the same shape

primitive “cylinder” and the same parameters t and h (Algorithm 1 line 14). By

employing this generation approach, PSML ensures that all legs exhibit precisely the

same shape, thereby guaranteeing uniformity among them. This geometric constraint

mirrors real-world manufacturing practices commonly employed in producing table

objects, where consistency in leg design is important for structural stability.

PSML programming also allows components of objects to be constructed with ap-

propriate relative positions. The relative position of the legs is delineated by the

131

(a) (b)

Figure 4.3: Shape grammar representation allows for the systematic generation of
doors with realistic interactive behavior. (a) A closed door. (b) An open door.

common parameters, denoted as offset_l and offset_w (Algorithm 1 line 13).

These geometric parameters define the spatial arrangement of the legs, ensuring con-

sistency and symmetry in their positioning relative to each other and to the table top

they support. The precise relative positions of the legs, together with the uniform

shapes, promote balanced weight distribution and stability of the table, ensuring its

suitability for applications such as real-world simulation.

Algorithm 2 The contents of PSML program: Door.psm
1 public Shape makeDoor(Shape myShape, double doorOpening, double frameWidth, double doorThickness) {
2 double angle = doorOpening * Math.PI / 2;
3 rules {
4 parent::T(-(myShape.s.x / 2) * Math.cos(angle) + myShape.s.x / 2, 0, - (myShape.s.x / 2) *

Math.sin(angle)) R(0, - angle, 0)
5 I("box", new double[]{myShape.s.x, myShape.s.y, myShape.s.z}){door};
6 door::split("y", new double[]{frameWidth, myShape.s.y - 2 * frameWidth, frameWidth}){wood,

mass1, wood};
7 mass1::split("x", new double[]{frameWidth, myShape.s.x - 2 * frameWidth, frameWidth}){wood,

mass2, wood};
8 mass2::split("z", new double[]{(myShape.s.z - doorThickness) / 2, doorThickness,

(myShape.s.z - doorThickness) / 2}){space, lightWood, space};
9 wood::appearance("diffuse", new double[]{0.2, 0.1, 0}){terminal};

10 lightWood::appearance("diffuse", new double[]{0.3, 0.15, 0}){terminal};
11 space::void(){j3d.terminal};
12 }
13 return myShape;
14 }

The constraints not only apply to individual objects but can also extend across

different objects. In Figure 4.3, an example illustrates how a door generated using

PSML can open and close within a wall. The PSML program for generating the door

is outlined in Algorithm 2. The grammar rules (lines 2–5) dictate the mechanism

132

where the door can open or close by rotating along its side connected to the wall. By

incorporating these constraints, the PSML program enables doors to exhibit realis-

tic behavior when interacting with other objects, ensuring that the generated doors

adhere to principles of real-world physics.

4.3.2.2 Manifold Polygon Models

Shapes generated by PSML are water-tight, i.e., manifold, models. This is at-

tributed to PSML-generating objects from volumetric geometries, characterized by a

pre-defined set of 3D closed-shape primitives such as boxes, cylinders, spheres, and

cones. These primitives accurately describe the fundamental geometry of the object.

This generation approach provides the ability to generate manifold geometries and

represent objects as a semantic hierarchy of 3D shape elements. Other shape repre-

sentations like point clouds and voxel meshes lack such properties. The components

of these representations-points or voxels-operate independently, without constraints

to enforce connectivity or the creation of a manifold geometry.

Figure 4.4 illustrates a chair instance generated from its hierarchical components.

The chair is constructed from a set of components including a seat, front legs, rear

legs, back, and stretchers. The shape derivation tree depicted in Figure 4.4b showcases

the hierarchical composition. The blue nodes represent “non-terminal” objects whose

child objects can further refine the shape of their parent objects by substituting the

parent shape with one or more terminal or non-terminal shapes. The green nodes

represent “terminal” objects, indicating that no further decomposition of this shape

is available. These terminal objects, represented by boxes that are closed primitives,

construct a chair object with a manifold polygon model. For simplicity, the shape

derivation for the back and stretchers is omitted from the derivation tree.

This hierarchical representation of objects allows associating semantic labels to the

components, which offers the opportunity for AI systems to understand objects at

multiple levels of abstraction, from individual parts to complex assemblies.

133

(a) (b)

Figure 4.4: (a) An example of PSML constructing a chair hierarchically from its
components. (b) Derivation tree of the chair. The components of the chair are
colored. Shapes represented using PSML are constructed from their components and
satisfy the relative constraints of the components.

4.3.2.3 Compact Parametric Representation

With pre-defined generation rules, shapes generated using PSML can be repre-

sented by a set of parameters that succinctly describe the geometry and appearance

of objects. Parametric representations result in highly compact encoding of object

information, minimizing the amount of data that needs to be transmitted or stored.

This significantly reduces the dimensionality of the data compared to voxel-based or

polygonal mesh representations.

The parametric representation provided by PSML offers a lightweight yet powerful

solution for encoding object information in resource-constrained environments, mak-

ing it well-suited for applications like mobile robotics where efficient communication

and collaboration are essential. In mobile robotic systems, where communication

bandwidth is often limited, sharing detailed object representations like point clouds

or meshes may be impractical due to their high data volume. However, if all robots

share knowledge of the grammar of objects or scenes, they can simply communicate

semantic labels and associated parameters to convey their understanding of the scene

effectively. By transmitting only the semantic labels and relevant parameters, robots

134

can share information about the scene efficiently while minimizing data transmission

overhead.

4.3.2.4 Unlimited Semantic Variability

Objects generated using PSML adhere to specific design rules and are defined by

a set of parameters. Modifying the shape, size, or appearance of an object can be

achieved by simply adjusting these parameters, rather than manipulating complex

geometric data directly. This promises the unlimited semantic variability of object

models which can be used to synthesize training data for DL systems improving over

current 3D model databases which use static 3D models and therefore lack geometric

diversity.

Figure 4.2 shows different variations of the table object generated by the Algo-

rithm 1 using different PSML parameter values (Figure 4.2(b-e)) and rules (Figure

4.2(e)). The structure of the table object is controlled by the length l, the width w,

the height h, the thickness of the tabletop t, and the position of the legs which are

determined by the offset from the edges of the table, represented by offset_w and

offset_l respectively. Figure 4.2(a-d) show the table variations generated by setting

different values to these parameters. Figure 4.2(e) visualizes a table variation with

round tabletop and square legs, which are opposite from other tables in Figure 4.2.

More examples of other objects are shown in Figure 4.5 where variations of shelves

and couches are generated by editing associated PSML programs, demonstrating the

capability of generating unlimited semantic variations for DL systems. By applying

different construction rules and/or passing different parameter values to the gener-

ation program of objects, indefinite variations of the object can be synthesized as

training data for DL systems.

135

(a) (b) (c) (d)

Figure 4.5: (a) A shelf with 3 rows and 2 columns. (b) A single-column shelf. (c) A
regular couch with 3 seats. (d) A couch with a round seat and back.

4.3.2.5 Human-In-The-Loop Control and Interpretability

User-provided shape programs allow human-in-the-loop control over DL estimates.

Aspects of this control include specifying lists of candidate objects, the shape varia-

tions that each object can exhibit, and the level of detail or, equivalently, dimension

of the latent representation of the shape. These aspects of our approach allow humans

to more easily control the DL estimate outputs and also enable humans to more easily

interpret DL estimate results which we collectively refer to as “human-in-the-loop”

benefits. Users can control the complexity and diversity of DL-estimated shapes for

each object and its components directly through the construction of the DL network.

Through parameterization, shapes generated using PSML allow to formalization of

the DL estimate results into specific rules and constraints. Shape grammar rules in-

corporate parameters that define properties of generated elements, such as shape, size,

orientation, and position. Parameters can also function within shape grammar rules

to enforce constraints during generation. These parameters encode domain-specific

knowledge of the shapes, for example, symmetry, alignment, and spatial relationships

between components. When discrepancies arise between DL-estimated parameter

values and ground truth, these errors serve as indicators of specific knowledge gaps

within the model, such as its inability to learn rotational or positional relationships

accurately. Analyzing the nature and frequency of these errors allows us to inform

model improvement efforts, such as refining the network architecture or augment-

136

Figure 4.6: The fused system of PSML and DL for estimating 3D shapes.

ing the training data. The transparent attribution of errors to specific aspects of

the input data enhances the interpretability of the model’s results, enabling humans

to understand and assess its predictions more effectively. This interpretability ad-

dresses a crucial challenge in making deep learning systems more comprehensible and

trustworthy for real-world applications.

4.3.3 Fusion of PSML and Deep Learning

Figure 4.6 illustrates the fused system of PSML and DL for estimating 3D shapes.

The proposed system takes the point cloud as input and outputs 3D shape estimates

of objects. A DL network, 3DETR [35], was adapted and modified to perform 3D

object detection and estimation of the PSML parameters. The estimated parameters,

together with the semantic labels for determining the associated shape programs, are

passed to the PSML to generate estimates of 3D shapes.

The 3DETR network [35] is an end-to-end Transformer-based object detection

model for 3D point clouds. Unlike traditional convolutional neural networks (CNNs)

which rely on spatial hierarchies to extract features from images, the 3DETR network

leverages the self-attention mechanism of Transformers to capture both spatial and

contextual information in an integrated manner. This enables the network to effec-

tively process point cloud data, which lacks the grid-like structure present in images,

while also facilitating global context understanding and precise localization of objects

137

within a 3D scene. The 3DETR network adapts an encoder-decoder architecture that

produces a set of features. These features are fed into prediction Multi-Layer Per-

ceptrons (MLPs) to predict bounding boxes. A 3D bounding box contains attributes

including (a) location, (b) size, (c) orientation, and (d) the semantic class of the

object.

Two modifications were implemented in the 3DETR network to facilitate the esti-

mation of PSML parameters:

• A new multi-layer perceptron (MLP) was added to the existing architecture for

PSML parameters estimation.

• The PSML parameters were encoded as an additional attribute of the 3D bound-

ing boxes for prediction.

In this article, unless specified otherwise, the modified 3DETR network is denoted

as 3DETR-P where P stands for PSML, while 3DETR refers to the original network.

A vector of dimension 5 was chosen to encode the PSML parameters representing

each object in the dataset. The dimensionality of this vector corresponds to the

latent representation of the shape. By adjusting this size, DL networks are enforced

to capture finer details of the object when increased, while reducing it provides more

flexibility in the estimated solution space.

The L1 regression loss, i.e., the mean absolute error (MAE), was used as the loss

function to measure the difference between the predicted values and the ground truth

values. The equation for the PSML parameter loss is as follows:

LPSML =
1

n

n∑
i=1

|pi − p̂i| (4.1)

where n is the number of PSML parameters, pi is the ground truth value for the i-th

paramter, and p̂i is the network predicted value for the i-th parameter. This loss was

138

Figure 4.7: Different stages in the proposed data generation pipeline. The design of
3D models of scenes and objects happens in the PSML engine. These models are
then passed to OpenGL where RGB and depth sensors are simulated for rendering
RGB-D images and associated ground truth labels. Point clouds can be derived from
depth data using the camera’s intrinsic parameters.

added to the naive 3DETR loss with weight as the new final loss function to train

the network. The final loss function is as follows:

L = L3DETR + λLPSML (4.2)

where λ is the weight associated to the PSML loss and L3DETR was defined in [35].

4.3.4 Data Synthesis for DL systems

Object models can be combined to generate extremely large synthetic 2D/3D

datasets having rich geometric diversity and including important annotations to sup-

port a wide variety of 3D and 2D DL applications. This section describes a novel

pipeline shown in Figure 4.7 to synthesize image data from user-written PSML pro-

grams. Physically realistic objects and/or scenes are first designed by shape grammar

rules and created using PSML programs. These scenes are then passed to a rendering

engine, for example, OpenGL to produce sensor data required by the users for their

applications such as simulated RGB and/or depth image data, along with associated

ground truth labels including 2D/3D bounding boxes, semantic segmentation labels,

and PSML parameters.

139

Figure 4.8: A room scene generated using PSML that combines multiple furniture
objects.

4.3.4.1 Scene Data Generation

Figure 4.8 shows a room scene consisting of different objects including tables, chairs,

couches, bookshelves, a door, and a window. Shape grammar and PSML are utilized

to generate 3D designs of scenes and objects within them. Users first define shape

grammar programs specifying the desired scene elements and their attributes. These

programs are similar to Algorithm 1 and 2, outline the rules governing the structure,

arrangement, and characteristics of the scene components. Subsequently, the PSML

engine interprets and executes these shape grammar programs, generating physically

realistic 3D designs of scenes. Through this process, the PSML engine determines

the spatial relationships between objects, their shapes, sizes, orientations, and other

relevant properties. Users can interactively adjust the parameters and rules within

the shape grammar programs to refine the generated designs according to their pref-

erences. This integration of shape grammar and PSML allows users to efficiently

generate diverse and customizable 3D designs of scenes and objects.

4.3.4.2 Sensor Data Generation

OpenGL has been previously used by other researchers as a sensor simulator [36].

In this study, both sensor values and ground truth labels are generated through

OpenGL by rendering the 3D models produced by PSML into 2D images. The process

140

Figure 4.9: Vertex coordinate transformation from local space to screen space [37].
Object-relative vertex coordinates (local space) are converted to world coordinates
(world space) using a model matrix Mmodel, and then world coordinates are converted
to view coordinates (view space) using a view matrix Mview.

of converting 3D coordinates into 2D pixels is managed by the OpenGL graphics

pipeline [37], which comprises two main parts: (1) projecting 3D surface coordinates

(x, y, z) to their corresponding 2D locations (x, y) in the sensor image using the sensor

projection model, and (2) assigning the value of these locations to the sensed values at

the projected (x, y, z) location, representing the surface appearance for RGB images

and the surface-to-sensor depth for depth images.

Figure 4.9 illustrates the OpenGL rendering pipeline and its internal transforma-

tions. In OpenGL, the transformation of local coordinates to screen (image) coordi-

nates involves 4 steps: (1) Local-space coordinates, denoting the position of an object

relative to its local origin, are transformed to world-space coordinates using a model

matrix Mmodel. These world-space coordinates represent the object’s position rela-

tive to a broader world context and are referenced against a global origin shared by

multiple objects within the scene. (2) The world coordinates are converted to view-

space coordinates using a view matrix Mview, aligning them with the perspective of

the camera or viewer. This transformation ensures that each coordinate reflects the

object’s appearance from the viewpoint of the observer. (3) The view-space coordi-

141

nates are projected to clip-space coordinates using a projection matrix Mprojection,

where they are processed to fit within the -1.0 and 1.0 range, determining which

vertices will be visible on the screen. (4) The clip-space coordinates are transformed

into screen-space coordinates through a process known as viewport transformation.

The coordinates are mapped to the coordinate range defined by the viewport using

the OpenGL function glViewport. Through this series of transformations, OpenGL

accurately positions objects within the rendered scene, thereby generating the 2D

OpenGL image. Step (1–3) can be represented in the following equation where V

indicates vertex and M indicates transformation matrix:

Vclip = Mprojection ·Mview ·Mmodel ·Vlocal (4.3)

The resulting screen coordinates are then forwarded to the rasterizer, where they

are converted into fragments, each containing the necessary data for rendering a single

pixel. The main purpose of the fragment shader is to calculate the final color of a

pixel. Typically, the fragment shader contains data about the 3D scene, such as

lighting, shadows, and light color, to determine the pixel’s ultimate color.

OpenGL is also employed to simulate depth sensors through the utilization of

the depth buffer. The depth buffer, created by the OpenGL windowing system,

stores depth values as 16-bit floats within each fragment, representing the fragment’s

depth value. To mimic real depth sensors, noise consistent with actual sensors is

introduced into these depth measurements, as documented in literature such as [38],

which outlines observed accuracy for depth images from RGB-D sensors like the

Microsoft Kinect sensor. This depth noise follows a Gaussian model, where depth

variance increases quadratically with the sensor-to-surface depth. During rendering,

OpenGL compares the depth values of each fragment with the current depth buffer.

Fragments that are behind other fragments are discarded, while fragments that pass

this depth test are rendered, and the depth buffer is updated with the new depth

142

values. This automated process, known as depth testing, is seamlessly handled by

OpenGL.

4.3.4.3 Synthetic Dataset

The capability to generate 3D models and simulate sensors offers the flexibility to

generate diverse datasets tailored to specific applications. In this study, a pin-hole

camera model was used as the perspective model in OpenGL to simulate the sensors

for an RGB-D image dataset creation. The poses of the sensors varied in different

images. This was achieved by moving all objects in the scene in the reverse direction of

camera movements, as OpenGL by itself is not aware of the concept of a camera [37].

Using the inverse camera model re-projection and the perfect depth map, it is also

possible to calculate the 3D position of each surface in the scene. This integration

of PSML and OpenGL for synthesizing data provides (1) RGB-D images, (2) the

ground truth information of the object poses relative to the camera, (3) hierarchical

decomposition of objects, and (4) parametric representation of objects, where (1),

(3) and (4) benefit from PSML scene generation and (2) from the OpenGL sensor

simulation.

This versatile data generation framework extends to diverse research goals, facilitat-

ing tasks such as city scene modeling with accurate labeling, object part segmentation

with component-level ground truth labeling, and analysis of various object realiza-

tions to address data scarcity issues. Additionally, customization for different sensor

types or views, such as fish-eye cameras or bird-view perspectives, and adjustments to

illumination settings in OpenGL, further expand the framework’s applicability across

varied research domains.

4.4 Results

This section presents the results of three experiments. The results demonstrate

the benefits offered by the PSML shape generation method and its fusion with deep

143

learning techniques.

4.4.1 Comparison with Other Generative Methods

This experiment was conducted to demonstrate the advantages of 3D models gen-

erated using the PSML programs over the models generated by other competing

methods. Specific cases of shapes generated by different methods were analyzed.

From a wide array of possible algorithms, three algorithms representing VAE, GANs,

and stable diffusion respectively, were evaluated against the PSML approach: (1) 3D

Shape Variational Autoencoder (3DSVAE) [1], (2)3D Generative Adversarial Network

(3DGANs) [4], and (3) Score Jacobian Chaining (SJC) [9]. While many algorithms are

available in the literature, the selected algorithms provide a representative sampling

of generative methods for 3D shapes.

Figure 4.10 illustrates the comparison between 3D shapes generated using PSML

and using other approaches including VAE, GANs, and stable diffusion. The ex-

amples for comparison were sourced from their respective papers. The couch model

generated by 3DSVAE (Figure 4.10(a)) lacks the structural characteristics of a couch

object, offering only a rough approximation of its complex geometry. In contrast, the

couch model generated using the PSML approach (Figure 4.10(d)) contains sufficient

geometric features to represent a couch object. In the case of the table model gen-

erated by 3DGANs, the second leg from the left lacks manifold geometry, resulting

in a discontinuous geometry and an unrealistic gap. Additionally, the legs lack self-

similarity and self-symmetry in terms of size and length, which are typically present

in real-world manufactured table objects. Conversely, the table model generated us-

ing PSML (Figure 4.10(e)) is a manifold polygon model and satisfies the geometric

and physical constraints, attributed to its rule-based volumetric generation method.

The car model generated by SJC (Figure 4.10(c)) lacks fine-grained details and fails

to adhere to physical constraints, as one of the front wheels occupies the spatial lo-

cation intended for the car’s front. Its PSML-generated counterpart (Figure 4.10(f)),

144

however, presents a high-quality and physically realistic model.

Although the objects in Figure 4.10(d-f) may be rigid and visually simplistic, they

do satisfy important common constraints for these commonplace objects. These con-

straints, for example, closed-shape geometry and free-standing capability, are neces-

sary to be exhibited for objects to be classified into the correct category. The objects

in Figure 4.10(a-c), while being visually sophisticated, would fail most realistic tests

for symmetry and usability, for example, the couch cannot be sat on, the table would

not stand, and the car wheels would not roll. The PSML approach ensures the gen-

eration of manifold 3D models that conform to important constraints. Building upon

this technology to add more realistic details has the promise to achieve both visually

compelling and reliable 3D geometry.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: (a) A VAE-generated couch model [1]. (b) A 3D-GANs-generated table
model [4]. (c) A stable-diffusion-generated car model [9]. (d-f) Models generated
using PSML programs.

4.4.2 Comparison with Other Data Representations

This experiment was conducted to demonstrate the efficiency of the compact para-

metric shape representation offered by the PSML approach.

145

Figure 4.11 shows a table generated using Algorithm 1, and its polygonal mesh

and point cloud representations. The shape grammar representation only requires 6

parameters (l, w, h, t, offset_w, and offset_l) to represent the geometry and 3

more parameters to describe the color appearance. In contrast, the polygonal mesh

contains 674 vertices and 1328 triangular faces. The point cloud sampled from the

mesh representation contains 5000 3D points. Assuming the data is represented using

single-precision floating points (4 bytes), the total memory usage is 24,024 bytes for

the polygonal mesh, 60,000 bytes for the point cloud representation, and only 36

bytes for the PSML parametric representation. The PSML representation requires

to work with the associated program. Assuming each character in the Algorithm

1 is represented using 2 bytes, the program occupies 1,662 bytes, making the total

memory necessitated for a PSML table object 1,698 bytes. Compared to the other two

representations, this parametric representation reduces the data required to describe

the geometry by ∼14 times compared to the polygonal mesh and ∼35 times to the

point cloud.

Table 4.1 illustrates the memory usage of three representations for various object

instances. The memory usage for the point cloud representation was determined by

sampling 2000 points per area unit of the mesh, while the PSML usage includes the

memory required for the source code. The results indicate that PSML substantially

reduces memory usage for most object instances, except for the chair, where polygon

meshes achieved minimal usage. As the complexity of objects increases, such as

in a room scene model containing various furniture pieces, the efficiency of PSML

parametric representation becomes increasingly significant.

The results presented herein underscore the data efficiency offered by paramet-

ric representation in contrast to alternative methods. Through parameterization, the

PSML approach retains considerable potential for achieving high data efficiency. This

efficiency not only conserves memory but also streamlines the transmission and pro-

146

Table 4.1: Memory in byte required by different representations.

Table (box) Chair Couch Bookshelf Window Door Room
PSML 1046 6410 3606 2350 2244 798 21328

Polygon Mesh 92496 3840 3360 15600 18960 1920 529344
Point Cloud 63360 42000 7063680 647760 786960 192240 14986080

cessing of object information, rendering it particularly advantageous for applications

constrained by limited resources or bandwidth.

(a) (b) (c)

Figure 4.11: Shape grammar representation requires much less data to describe object
geometry. (a) A table generated using Algorithm 1. Only 6 parameters are required
to represent the geometry and 3 more parameters to describe the color appearance.
(b) A polygonal mesh representation of the table with 674 vertices (blue) and 1328
points (red) each of which requires 3 parameters to represent the 3D coordinates. (c)
A sampled point cloud from the mesh representation with 5000 3D points.

4.4.3 Deep Learning Integration

In this experiment, a synthetic dataset was generated, and the 3DETR-P network

was trained on this dataset to detect 3D objects in the scene and estimate the asso-

ciated PSML parameters.

4.4.3.1 Synthetic Dataset

An experiment was conducted to demonstrate that object models can be used to

synthesize training data for DL systems, improving over current 3D model databases

which use static 3D models and therefore lack geometric diversity.

147

A PSML program of the indoor room scene was written that involved other 6

PSML programs of common indoor furniture: table, chair, couch, bookshelf, window,

and door. The proposed human-in-the-loop approach fixed various attributes of this

shape-generation process and allowed other aspects to vary. Fixed aspects included

the size of the room and some relative and physical constraints between objects in-

cluding that (1) all of the objects are on the ground, (2) bookshelves are always

against the wall, and (3) solid objects do not overlap with each other. The variations

included occurrence, location, orientation, and structural characteristics of the furni-

ture. This was achieved by controlling the PSML parameters for each object type.

These parameters were set to follow uniform distributions and to ensure realism while

adhering to relative constraints within and among objects. For example, the length

and width of the table object were uniformly generated from 1 to 2 units, while the

thickness ranged from 0.05 to 0.15 units. Similarly, the height of chair seats ranged

from 0.5 to 0.8 units, reflecting real-world proportions where chairs typically sit lower

than adjacent tables.

An RGB-D image dataset of the room scene was generated using the method in

Section 4.3.4. The dataset was then utilized in a deep learning task for detecting 3D

objects within the room, where the objective was to predict the 3D bounding boxes

for each object based on the input point cloud. The point cloud data was derived

from the depth data using the cameras’ intrinsic parameters. Ground truth data was

generated for each sample, comprising a semantic label, 3D bounding box (location,

orientation, and size), and 5 PSML parameters. Specifically, for the bookshelf object,

these PSML parameters included length, width, height (to define the object’s 3D

dimensions), number of horizontal panels, and vertical panels (to describe its struc-

tural characteristics). While the bookshelf necessitated all 5 parameters for PSML

generation, it’s important to note that not all objects require the same number of

parameters. For instance, the door object in Algorithm 2 only requires 3 parameters

148

Figure 4.12: Examples in the synthetic dataset. Each row is one sample from the
dataset. The images on each row from left to right are the RGB image, depth image,
and point cloud with 3D bounding box ground truth shown in green.

as program arguments; in such cases, the extra 2 parameters are set to zero. The

DL estimation of PSML parameters can be adjusted by increasing or decreasing the

parameters for prediction. For example, limiting DL models to estimate only three

parameters will result in less constraint within the DL solution space.

Figure 4.12 shows the RGB-D image pair and associated point cloud of 3 samples

from the dataset containing 2000 samples. It can be seen that the occurrence of

the objects, their shapes (length, width, height, etc.), positions, and orientations are

different in the room space but still obey the physical constraints. Both RGB and

depth images are rendered at a resolution of 640×480. The total processing time,

including rendering and file writing, for each sample ranged from 1 to 2 seconds on

an NVIDIA GeForce RTX 4090 GPU.

149

4.4.3.2 3D Object Detection

An experiment was conducted to demonstrate the capability of the proposed DL

fusion in computer vision tasks, specifically detecting objects and their parametric

representation. Key metrics for the model estimates are presented, highlighting the

benefits of this approach.

The dataset generated in Section 4.4.3.1 was split into the train, validation, and

test sets with 1200, 400, and 400 samples respectively (60%-20%-20%). The 3DETR-

P network designed in Section 4.3.3 was trained to detect 3D objects in the scene

and estimate the associated PSML parameters. The training was performed on an

NVIDIA GeForce RTX 4090 GPU for 350 epochs with a batch size of 16. The weight

for LPSML loss in Equation 4.1 was set to 3. Other parameters were configured to be

consistent with the [35].

Table 4.2 shows the testing results of the trained network. Following the practice

in [35], the detection performance was reported on the test set using mean Average

Precision (mAP) at two different IoU (Intersection of Union) thresholds of 0.25 and

0.5, denoted as AP25 and AP50. The PSML parameters were evaluated by calculating

the Mean Absolute Error (MAE) between the estimation and ground truth. The

row corresponding to 3DETR-P in the table presents its performance on the room

dataset created within this study. Overall, it succeeded in detecting objects within

the scene, although its performance on door detection was comparatively lower. This

discrepancy may be attributed to the fact that doors in the scene often (1) lack

sufficient thickness to be distinctly separated from the wall they are embedded within

and (2) lack sufficient depth variations within the object to provide more features for

the network to learn the structure. The MAEP row denotes the MAE of the PSML

parameters, quantitatively showcasing the success of estimating the 3D shapes from

the input point cloud.

Table 4.2 also includes the AP25 results of naive 3DETR on other datasets, re-

150

ported in [35]. The row corresponding to 3DETR-SUN reflects the 3DETR results

from [35] on the SUN-RGBD dataset [39] and The 3DETR-SN row shows results on

the ScanNetV2 dataset [40]. Although a direct comparison between the results in

this article and theirs is not possible, it can be seen that 3DETR-P on the gener-

ated synthetic dataset achieved comparative detection performance than 3DETR on

ScanNetV2 dataset for classes like chair, couch, and door, and outperformed 3DETR

for other classes. The detection performance, together with the MAE results of the

estimated PSML parameters, indicates the capability of the proposed PSML and DL

fused system in detecting objects and their parametric representation.

Figure 4.13 visualizes three examples presenting the RGB image of the scene, the

input point cloud, the ground truth and predicted 3D bounding boxes, and the 3D

shapes estimated/reconstructed using the PSML parameters estimated by 3DETR-P.

The appearance of the shapes was omitted as such information was not estimated by

the network in this experiment. The reconstructed 3D shapes closely resemble those

observed in the RGB images and the point cloud, thereby qualitatively demonstrating

the success of 3D shape estimation from the input point cloud.

Table 4.2: Per-class performance for 3D object detection and shape estimation.
MAEP denotes the MAE of the PSML parameters. The 3DETR-P results were
reported on the dataset generated in this article. The 3DETR-SUN row shows the
3DETR results from [35] on the SUN-RGBD dataset where “-” indicates such mea-
surement is not available. The 3DETR-SN row shows the results of 3DETR on the
ScanNetV2 dataset.

Table Chair Couch Bookshelf Window Door Overall

3DETR-P
AP25 98.90 87.60 99.30 98.95 93.89 56.84 89.25
AP50 89.64 61.76 95.16 93.96 62.51 13.16 69.36
MAEP 0.14 0.11 0.19 0.16 0.23 0.20 0.17

3DETR-SUN AP25 52.6 72.4 65.3 28.5 - - 54.7
3DETR-SN AP25 67.6 90.9 89.8 56.4 39.6 52.4 66.1

151

Figure 4.13: RGB image of scenes (left), input point cloud to the 3DETR-P with the
ground truth and predicted bounding boxes in red and green respectively (middle),
and some of the estimated 3D shapes reconstructed using the PSML parameters
estimated by 3DETR-P and PSML programs.

152

4.5 Conclusions

This article introduced a novel fusion approach that combines a generative formal

model for 3D shapes with deep learning (DL) methods to enhance the understanding

of geometric structures and component relationships within objects. The proposed

method leverages shape grammar programs written in Procedural Shape Modeling

Language (PSML) to encode complex object descriptions. By allowing users to write

PSML programs that enforce fundamental rules and encode object attributes, this fu-

sion approach facilitates the generation of parametric representations for 3D shapes.

One of the key strengths of the proposed approach is offering human-in-the-loop con-

trol over DL estimates, users can specify candidate objects, shape variations, and

the level of detail, providing flexibility and control over the generated shapes. By

enabling more accurate and controllable generation of 3D shapes, this fusion of gen-

erative modeling with DL enhances the interpretability of DL estimates and offers AI

models a deeper understanding of object geometry and relationships, opening up new

avenues for applications in computer graphics, robotics, and virtual reality.

153

REFERENCES

[1] E. A. Ajayi, K. M. Lim, S.-C. Chong, and C. P. Lee, “3d shape generation
via variational autoencoder with signed distance function relativistic average
generative adversarial network,” Applied Sciences, vol. 13, no. 10, p. 5925, 2023.

[2] B. Dai and D. Wipf, “Diagnosing and enhancing vae models,” arXiv preprint
arXiv:1903.05789, 2019.

[3] A. R. Kosiorek, H. Strathmann, D. Zoran, P. Moreno, R. Schneider, S. Mokrá,
and D. J. Rezende, “Nerf-vae: A geometry aware 3d scene generative model,” in
International Conference on Machine Learning, pp. 5742–5752, PMLR, 2021.

[4] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling,”
Advances in neural information processing systems, vol. 29, 2016.

[5] A. Frühstück, N. Sarafianos, Y. Xu, P. Wonka, and T. Tung, “Vive3d: Viewpoint-
independent video editing using 3d-aware gans,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4446–4455, 2023.

[6] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. De Mello, O. Gallo,
L. J. Guibas, J. Tremblay, S. Khamis, et al., “Efficient geometry-aware 3d gen-
erative adversarial networks,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 16123–16133, 2022.

[7] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick,
“Zero-1-to-3: Zero-shot one image to 3d object,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9298–9309, 2023.

[8] Stability AI, “3D couch generated using Zero123-XL models.”
https://stability.ai/news/stable-zero123-3d-generation. [accessed 07-Apr-2023].

[9] H. Wang, X. Du, J. Li, R. A. Yeh, and G. Shakhnarovich, “Score jacobian chain-
ing: Lifting pretrained 2d diffusion models for 3d generation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12619–12629, 2023.

[10] J. Xu, X. Wang, W. Cheng, Y.-P. Cao, Y. Shan, X. Qie, and S. Gao, “Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20908–20918, 2023.

[11] CityEngine, “http://www.esri.com/software/cityengine.”

[12] L. Yang, J. Li, H.-T. Chang, Z. Zhao, H. Ma, and L. Zhou, “A generative urban
space design method based on shape grammar and urban induction patterns,”
Land, vol. 12, no. 6, p. 1167, 2023.

154

[13] K. Zhang, N. Zhang, F. Quan, Y. Li, and S. Wang, “Digital form generation of
heritages in historical district based on plan typology and shape grammar: case
study on kulangsu islet,” Buildings, vol. 13, no. 1, p. 229, 2023.

[14] M. Barros, J. P. Duarte, and B. Chaparro, “A grammar-based model for the
mass customisation of chairs: modelling the optimisation part,” Nexus Network
Journal, vol. 17, pp. 875–898, 2015.

[15] I. Jowers, C. Earl, and G. Stiny, “Shapes, structures and shape grammar imple-
mentation,” Computer-Aided Design, vol. 111, pp. 80–92, 2019.

[16] S. Havemann and D. Fellner, “Generative parametric design of gothic window
tracery,” in Proceedings Shape Modeling Applications, 2004., pp. 350–353, IEEE,
2004.

[17] N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum,
“Church: a language for generative models,” arXiv preprint arXiv:1206.3255,
2012.

[18] S. Havemann, Generative mesh modeling. PhD thesis, Havemann, 2005.

[19] A. R. Willis, P. Ganesh, K. Volle, J. Zhang, and K. Brink, “Volumetric proce-
dural models for shape representation,” Graphics and Visual Computing, vol. 4,
p. 200018, 2021.

[20] G. Stiny, “Introduction to shape and shape grammars,” Environment and plan-
ning B: planning and design, vol. 7, no. 3, pp. 343–351, 1980.

[21] D. Ritchie, B. Mildenhall, N. D. Goodman, and P. Hanrahan, “Controlling pro-
cedural modeling programs with stochastically-ordered sequential monte carlo,”
ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1–11, 2015.

[22] H. Jiang, D.-M. Yan, X. Zhang, and P. Wonka, “Selection expressions for pro-
cedural modeling,” IEEE transactions on visualization and computer graphics,
vol. 26, no. 4, pp. 1775–1788, 2018.

[23] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Mech, and V. Koltun, “Metropolis
procedural modeling.,” ACM Trans. Graph., vol. 30, no. 2, pp. 11–1, 2011.

[24] M. P. Mata, S. Ahmed-Kristensen, and K. Shea, “Implementation of design rules
for perception into a tool for three-dimensional shape generation using a shape
grammar and a parametric model,” Journal of Mechanical Design, vol. 141, no. 1,
p. 011101, 2019.

[25] R. K. Jones, T. Barton, X. Xu, K. Wang, E. Jiang, P. Guerrero, N. J. Mitra, and
D. Ritchie, “Shapeassembly: Learning to generate programs for 3d shape struc-
ture synthesis,” ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1–20,
2020.

155

[26] P. Koutsourakis, L. Simon, L. Teboul, G. Tziritas, and N. Paragios, “Single
view reconstruction using shape grammars for urban environments,” in IEEE
International Conference on Computer Vision, pp. 1–8, 2009.

[27] G. Kyriakaki, A. Doulamis, N. Doulamis, M. Ioannides, K. Makantasis, E. Pro-
topapadakis, A. Hadjiprocopis, K. Wenzel, D. Fritsch, M. Klein, et al., “4d re-
construction of tangible cultural heritage objects from web-retrieved images,”
International Journal of Heritage in the Digital Era, vol. 3, no. 2, pp. 431–451,
2014.

[28] B. Hohmann, U. Krispel, S. Havemann, and D. Fellner, “Cityfit: High-quality
urban reconstructions by fitting shape grammers to images and derived textured
point clouds,” in ISPRS International Workshop, pp. 1–8, 2009.

[29] P. Zhao, T. Fang, J. Xiao, H. Zhang, Q. Zhao, and L. Quan, “Rectilinear parsing
of architecture in urban environment,” in IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–8, 2010.

[30] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios, “Shape
grammar parsing via reinforcement learning,” in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2273–2280, 2011.

[31] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios, “Segmentation of build-
ing facades using procedural shape prior,” in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8, 2010.

[32] H. Tran, K. Khoshelham, A. Kealy, and L. Díaz-Vilariño, “Shape grammar ap-
proach to 3d modeling of indoor environments using point clouds,” Journal of
Computing in Civil Engineering, vol. 33, no. 1, p. 04018055, 2019.

[33] R. K. Jones, A. Habib, R. Hanocka, and D. Ritchie, “The neurally-guided shape
parser: Grammar-based labeling of 3d shape regions with approximate infer-
ence,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11614–11623, 2022.

[34] T. Liu, S. Chaudhuri, V. G. Kim, Q. Huang, N. J. Mitra, and T. Funkhouser,
“Creating consistent scene graphs using a probabilistic grammar,” ACM Trans-
actions on Graphics (TOG), vol. 33, no. 6, pp. 1–12, 2014.

[35] I. Misra, R. Girdhar, and A. Joulin, “An end-to-end transformer model for 3d
object detection,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2906–2917, 2021.

[36] J. O. Woods and J. A. Christian, “Glidar: an opengl-based, real-time, and open
source 3d sensor simulator for testing computer vision algorithms,” Journal of
Imaging, vol. 2, no. 1, p. 5, 2016.

[37] J. De Vries, “Learn opengl,” Licensed under CC BY, vol. 4, 2015.

156

[38] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth
data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454,
2012.

[39] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 567–576, 2015.

[40] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,
“Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5828–
5839, 2017.

CHAPTER 5: CONCLUSION AND OUTLOOK

In conclusion, this dissertation has addressed critical challenges in the field of visual

SLAM, which is essential for enabling autonomous robots to navigate and operate

effectively in unstructured environments. Through a comprehensive exploration of

three key aspectsâenvironment simulation and sensor data processing, resource effi-

ciency, and 3D object representationânovel techniques and methodologies have been

developed to advance the state-of-the-art in visual SLAM systems.

The first part of this dissertation focused on simulating realistic environments and

enhancing sensor data processing for mapping applications. By developing a simula-

tion framework tailored for various operational contexts, algorithms could be refined

and evaluated more effectively. Additionally, the introduction of a photometric cor-

rection model for thermal sensors contributed to more robust SLAM systems capable

of processing diverse sensor data.

In the second part, the dissertation introduced a novel approach to address re-

source constraints in SLAM systems by leveraging planar semantic maps. This low-

bandwidth, computational-bounded SLAM solution offers promising implications for

real-world deployment, particularly in scenarios with limited computational resources

or bandwidth.

The third part proposed an advanced method for 3D shape generation, integrating

deep learning systems with shape grammars, to enhance the representation of com-

monplace objects within SLAM frameworks. This fusion approach not only improves

the accuracy of object representation but also enables closer collaboration between

humans and robots through more interpretable and human-in-the-loop models.

The contributions made in this dissertation collectively advance the capabilities of

158

visual SLAM systems, enabling agents to perceive, navigate, and interact with spatial

environments more effectively in the digital age. By generating and communicating

compressed map information within resource constraints, these advancements pave

the way for broader adoption and deployment of autonomous robots across various

domains.

Looking ahead, further research avenues emerge to build upon the foundation laid

in this dissertation. Continued exploration of advanced simulation techniques, refine-

ment of resource-efficient SLAM algorithms, and deeper integration of deep learning

with geometric models offer promising directions for future investigation. Addition-

ally, extending the applicability of SLAM systems to new domains and addressing

emerging challenges such as multi-agent collaboration and lifelong learning will be

crucial for advancing the field of robotics in the years to come.

In summary, this dissertation contributes significantly to the ongoing evolution

of visual SLAM technology, with implications spanning from fundamental research

to real-world deployment. By addressing key challenges and presenting innovative

solutions, it lays the groundwork for future advancements that will shape the future

of autonomous robotics.

