
MESHLESS BOUNDARY PARTICLE METHODS FOR BOUNDARY INTEGRAL
EQUATIONS AND MESHFREE PARTICLE METHODS FOR PLATES

by

Christopher Bard Davis

A dissertation submitted to the faculty of
the University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2011

Approved by:

Dr. Hae-Soo Oh

Dr. Michael Klibanov

Dr. Thomas R. Lucas

Dr. Scott Smith



ii

c©2011
Christopher Bard Davis

ALL RIGHTS RESERVED



iii

ABSTRACT

CHRISTOPHER BARD DAVIS. Meshless boundary particle methods for boundary
integral equations and meshfree particle methods for plates.

(Under the direction of DR. HAE-SOO OH)

For approximating the solution of partial differential equations (PDE), meshless

methods have been introduced to alleviate the difficulties arising in mesh generation

using the conventional Finite Element Method (FEM). Many meshless methods intro-

duced lack the Kronecker delta property making them inefficient in handling essential

boundary conditions. Oh et al. developed several meshfree shape functions that have

the Kronecker delta property. Boundary Element Methods (BEM) solve a boundary

integral equation (BIE) which is equivalent to the PDE, thus reducing the dimen-

sionality of the problem by one and the amount of computation when compared to

FEM.

In this dissertation, three meshless collocation based boundary element meth-

ods are introduced: meshfree reproducing polynomial boundary particle method

(RPBPM), patch-wise RPBPM, and patch-wise reproducing singularity particle method

(RSBPM). They are applied to the Laplace equation for convex and non-convex do-

mains in two and three dimensions for problems with and without domain singulari-

ties.

Electromagnetic wave propagation through photonic crystals is governed by Maxwell’s

equations in the frequency domain. Under certain conditions, it can be shown that

the wave propagation is also governed by Helmholtz equation. Patch-wise RPBPM is

applied to the two dimensional Helmholtz equation and used to model electromagnetic

wave propagation though lattices of photonic crystals.

For thin plate problems, using the Kirchoff hypothesis, the three dimensional

elasticity equations are reduced to a fourth order PDE for the vertical displacement.

Conventional FEM has difficulties in solving this because the basis functions are re-
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quired to have continuous partial derivatives. Suggestions are to use Hermite based

elements which are difficult to implement. Using a partition of unity, some special

shape functions are developed for thin plates with simple support or clamped bound-

ary conditions. This meshless method for thin plates is then tested and the results

are reported.
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CHAPTER 1: INTRODUCTION

Partial differential equations (PDE) can be used to model many different physical

phenomena such as stress inside a body, propagation of waves, and much more. They

are powerful tools in physics and engineering. Solving them analytically can be very

difficult or impossible; hence, finding reasonable approximate solutions is a practical

alternative.

When solving a PDE numerically, there are many methods to choose from such

as the Finite Element Method (FEM), the Boundary Element Method (BEM), and

much, much more. FEM uses a variational form of the PDE to find a weak solution

over some approximation space. BEM uses an equivalent boundary integral equation

(BIE) to find an approximate solution. Each method has its advantages and its

drawbacks. FEM requires a mesh throughout the domain to be constructed which is

an expensive and difficult task to do. BEM has the advantage that it only requires

a mesh to be constructed throughout the boundary of the domain, however BEM

also requires the use of a fundamental solution to the PDE which does not exist in

some cases. To help alleviate the difficulties arising from mesh generation, meshless

methods have been introduced.

Meshless methods have advantages over conventional FEM. However, these meth-

ods also have some difficulties such as inefficiency in handling essential boundary con-

ditions, large matrix condition numbers and so on. Recently, Oh et al. ([41],[42],[43],

[44],[45],[46],[47]) introduced various meshless methods that alleviate these difficul-

ties. Specifically, the following have been introduced:

1. Highly regular (piecewise polynomial) reproducing polynomial particle(RPP)

shape functions corresponding to uniformly spaced particles ([45]).
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2. Constructions of various piecewise polynomial partition of unity (PU) functions:

convolution PU functions, almost everywhere PU functions, and generalized

product PU functions ([41],[42],[44]).

3. Using these partitions of unity, patch-wise reproducing polynomial particle

shape functions are constructed that correspond to patch-wise uniformly (or

non-uniformly) spaced particles ([46]).

4. Reproducing singularity particle (RSP) shape functions that can effectively han-

dle elliptic boundary value problems containing singularities ([43],[47]).

It is important to note that almost all particle shape functions mentioned above

satisfy the Kronecker delta property. In this dissertation, using these shape functions,

two different reproducing polynomial boundary particle methods (RPBPM) and a

reproducing singularity boundary particle method (RSPBM) are proposed to solve

BIEs of elliptic problems with or without singularities.

1. Meshfree RPBPM that uses meshfree RPP shape functions.

2. Patch-wise RPBPM in which patch-wise RPP shape functions are assigned to

each particle on the boundary.

3. Patch-wise RSBPM that uses patch-wise RSP shape functions for BIE contain-

ing singularities.

Electromagnetic wave propagation through photonic crystals is governed by Max-

well’s equations in the frequency domain. In considering electromagnetic wave propa-

gation, we will consider transverse magnetic (TM) waves which means in the direction

of propagation of the wave there will be no magnetic field, i.e. only magnetic field

components which are perpendicular to the direction of propagation will be there.

We could similarly consider transverse electric (TE) waves, which are the same as

TM waves but with the roles of the electric field and the magnetic field swapped. It

can be shown that TM and TE wave propagation is governed by Helmholtz equation.

Patch-wise RPBPM is applied to the two dimensional Helmholtz equation and used
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to model electromagnetic (TM) wave propagation though various lattices of photonic

crystals.

Another application of RPP shape functions is the elasticity problem for a thin

plates. A large number of structural components in engineering can be classified

as plates. Typical examples in civil engineering structures are floor and foundation

slabs, lock-gates, thin retaining walls, bridge decks, and slab bridges. Plates are

indispensable in ship building, automobile, and aerospace industries. If a plate is

thin, by the Kirchoff hypothesis, the three dimensional elasticity equations for the

displacements (u, v, w) can be reduced to a scalar two dimensional fourth order elliptic

equation for w. Thus, the shape functions for FEM are required to have continuous

partial derivatives. ([8],[11]) suggest using the Argyris and Bell triangles, or the

Bogner-Fox-Schmit rectangle which are C1 continuous finite elements. These Hermite-

type finite elements are difficult to implement. We will show the effectiveness of the

RPP shape functions in the context of the classical plate theory governed by the

Kirchoff hypothesis.

After introducing definitions and terminologies in chapter 2, discussion about

derivation of the boundary integral equation and various boundary element methods

are introduced in chapter 3. Chapters 4 and 5 introduce meshless boundary element

methods for the two and three dimensional Laplace equation respectively. Chapter

6 demonstrates a variation of patch-wise RPBPM to Helmholtz equation. Chapter 7

introduces the RPPM for thin plates. Chapter 8 is the conclusions.



CHAPTER 2: PRELIMINARIES

Throughout this dissertation, α, β ∈ Zd are multi indices and x = (1x,2 x, . . . , dx),

xj = (1xj ,
2xj , . . . ,

dxj) denote points in R
d. However, without confusion, we also use

the conventional notation for the points in Rd or Zd as x = (x1, x2, . . . , xd) and α =

(α1, α2, . . . , αd). By α ≤ β, we mean α1 ≤ β1, ..., αd ≤ βd. We also use the following

notations: (x − xj)α := (1x − 1xj)
α1 ...(dx − dxj)

αd , |α| := α1 + α2 + · · · + αd. Let Ω

be a domain in R
d. For any nonnegative integer m, Cm(Ω) denotes the space of all

functions φ such that φ together with all their derivatives Dαφ of orders |α| ≤ m, are

continuous on Ω. The support of φ is defined by the following:

supp(φ) = {x ∈ Ω : φ(x) 6= 0}.

In the following, a function φ ∈ Cm(Ω) is said to be a Cm- function.

A family {Uk : k ∈ D} of open subsets of Rd is said to be a point finite open

covering of Ω ⊆ Rd if there is M such that any x ∈ Ω lies in at most M of the open

sets Uk and Ω ⊆
⋃

k Uk.

For a point finite open covering {Uk : k ∈ D} of a domain Ω, suppose there is a

family {ψk : k ∈ D} of Lipschitz functions on Ω satisfying the following conditions:

1. For k ∈ D, 0 ≤ ψk(x) ≤ 1, x ∈ Rd.

2. The support of ψk is contained in Uk, for each k ∈ D.

3.
∑

k∈D ψk(x) = 1 for each x ∈ Ω.

Then {ψk : k ∈ D} is called a partition of unity (PU) subordinate to the covering

{Uk : k ∈ Λ}. The covering sets {Uk} are called patches.

By almost everywhere partition of unity, we mean {ψk : k ∈ D} such that the

condition 3 of a partition of unity is not satisfied only at finitely many points (2D)
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or lines (3D) on a part of the boundary.

A weight function (or window function) is a non-negative continuous function

with compact support and is denoted by w(x). Consider the following conical window

function: For x ∈ R,

w(x) =











(1− x2)l, |x| ≤ 1,

0, |x| > 1,
(2.1)

where l is an integer. Then w(x) is a Cl−1-function. In Rd, the weight function w(x)

can be constructed from a one-dimensional weight function as w(x) =
∏d

i=1w(xi),

where x = (x1, . . . , xd).

Here, we use the normalized window function defined by

wl
δ(x) = Aw

(x

δ

)

, (2.2)

where A = [(2l + 1)!]/[22l+1(l!)2δ] ([16]) is the constant that makes
∫

R
wl

δ(x)dx = 1.

2.1 Meshfree Particle Shape Functions

Adopting the terminologies and notations of ([4],[29],[30],[31],[23]), we have the

following: For j = (j1, j2, . . . , jd) ∈ Zd, and the mesh size 0 < h ≤ 1, let

xhj = (j1h, . . . , jdh) = hj.

Then the points xhj are called uniformly distributed particles. Let φ be a continuous

function with compact support that contains the origin 0. Then the particle shape

functions associated to the uniformly distributed particles are defined by

φh
j (x) = φ(

x− jh
h

) = φ(
x1 − j1h

h
, . . . ,

xd − jdh
h

),

for j ∈ Zd and 0 < h ≤ 1. Then, these particle shape functions are translation

invariant in the sense that

xhi+j = xhi + xhj , φh
j (x− ih) = φh

i+j(x).

In this dissertation, we assume that the meshfree particle shape functions are
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translation invariant on the uniformly distributed particles, unless stated otherwise.

Moreover, using a partition of unity on a background mesh of Ω, particle shape func-

tions associated with non-uniformly distributed particles are constructed in chapters

4 and 5.

Without loss of generality, in the construction of meshfree particle shape func-

tions, we assume that h = 1 and hence φh
j (x) = φ(x − j). Let Λ be an index set

and Ω denote a bounded domain in Rd. Let {xj : j ∈ Λ} be a set of uniformly (or

non-uniformly) distributed points in Rd. These are what we call particles.

Let k be a nonnegative integer. Then the functions φj(x) corresponding to the

particles xj, j ∈ Λ, are called the Reproducing Kernel Particle (RKP) shape functions

with the reproducing property of order k (or simply, “of reproducing order k”) if and

only if it satisfies the following condition: for x ∈ Ω ⊂ Rd,
∑

j∈Λ

(xj)
αφj(x) = xα, and for 0 ≤ |α| ≤ k, |α| = α1 + · · ·+ αd, (2.3)

([4],[16],[22],[29]).

By applying a similar argument to ([4],[16]), one can show that (2.3) is equivalent

to
∑

j∈Λ

(x− xj)βφj(x) = δ0|β|, for 0 ≤ |β| ≤ k and x ∈ R
d. (2.4)

This characterization of meshfree shape functions has no direct relation with the

window functions. Using (2.4), Oh et al.([45]) constructed piecewise polynomial

meshfree particle shape functions that have the polynomial reproducing property.

These meshfree shape functions constructed without using window function are called

Reproducing Polynomial Particle(RPP) shape functions. One of the salient fea-

tures of RPP shape functions is that they satisfy the Kronecker delta property

([42],[44],[45],[46],[47])

We refer to [45] for various closed form RPP shape functions with high polynomial

reproducing order and high order of regularity. For example, 1-dimensional C0-RPP
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shape functions, φj(x), j ∈ Z, of reproducing order 3 can be constructed as follows:

Suppose the particles xj are the integer points and φj(x) = φ(x− j) for j ∈ Z. Then,

from (2.4), we have a system of functional equations,



















1 1 1 1

(x+ 1) x (x− 1) (x− 2)

(x+ 1)2 x2 (x− 1)2 (x− 2)2

(x+ 1)3 x3 (x− 1)3 (x− 2)3





































φ̂(x+ 1)

φ̂(x)

φ̂(x− 1)

φ̂(x− 2)



















=



















1

0

0

0



















for x ∈ (0, 1).

Now using the solutions of this system, we construct the basic RPP shape function

φ(x), from which other particle shape functions are obtained by translations, in the

following way:














































φ(x)|(−2,−1) = φ̂(x+ 1) shifted by + 1,

φ(x)|(−1,0) = φ̂(x+ 1) shifted by − 1,

φ(x)|(0,1) = φ̂(x),

φ(x)|(1,2) = φ̂(x− 2) shifted by − 2,

φ(x) = 0 for x /∈ [−2, 2].

Connecting these pieces together at −2,−1, 0, 1, 2, we have the following piecewise

polynomial C0-RPP shape function defined by

φ([−2,2];0;3)(x) =































































1
6
(x+ 1)(x+ 2)(x+ 3) x ∈ [−2,−1]

−1
2
(x− 1)(x+ 1)(x+ 2) x ∈ [−1, 0]

1
2
(x− 2)(x− 1)(x+ 1) x ∈ [0, 1]

−1
6
(x− 3)(x− 2)(x− 1) x ∈ [1, 2]

0 x 6∈ [−2, 2],

(2.5)

where the subscripts [−2, 2], 0, 3, respectively, stand for the support, the regularity,

and the order of reproducing polynomial property of φ([−2,2];0;3).
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By reducing the polynomial reproducing order, we can increase the order of reg-

ularity. For instance, from φ([−2,2];0;3)(x), we construct the C1-RPP shape function

φ([−2,2];1;2)(x)

φ([−2,2];1;2)(x) =































































1
2
(x+ 1)(x+ 2)2 x ∈ [−2,−1]

−1
2
(x+ 1)(3x2 + 2x− 2) x ∈ [−1, 0]

1
2
(x− 1)(3x2 − 2x− 2) x ∈ [0, 1]

−1
2
(x− 2)2(x− 1) x ∈ [1, 2]

0 x 6∈ [−2, 2]

(2.6)

We refer to [45] for the proof. Let us note that the higher dimensional piecewise

polynomial RPP shape functions constructed by solving the system (2.4) are actually

the same as the tensor product of 1-dimensional RPP shape functions.

2.2 One-Dimensional Partition of Unity Functions with Flat-Top

In this section, we briefly review one dimensional partition of unity with flat-

top. For details of this construction, we refer to ([44]), in which we showed that PU

functions with flat-top lead to a small matrix condition number.

We reserve the small real number δ, usually, 0.01 ≤ δ ≤ 0.1, for the width of non

flat-top part of the PU functions with flat-top.

For any positive integer n, Cn−1- piecewise polynomial basic PU functions are

constructed as follows: For integers n ≥ 1, we define a piecewise polynomial function

by

φ(pp)
gn (x) =























φL
gn(x) := (1 + x)ngn(x) if x ∈ [−1, 0]

φR
gn(x) := (1− x)ngn(−x) if x ∈ [0, 1]

0 if |x| ≥ 1,

(2.7)

where gn(x) = a
(n)
0 + a

(n)
1 (−x) + a

(n)
2 (−x)2 + · · ·+ a

(n)
n−1(−x)n−1 whose coefficients are
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inductively constructed by the following recursion formula:

a
(n)
k =































1, if k = 0
k
∑

j=0

a
(n−1)
j , if 0 < k ≤ n− 2,

2(a
(n)
n−2), if k = n− 1.

(2.8)

For example, from the recurrence relation (2.8), we have

g1(x) = 1; g2(x) = 1− 2x; g3(x) = 1− 3x+ 6x2.

Then, φ
(pp)
gn has the following properties whose proofs can be found in ([44]).

• φ(pp)
gn (x) + φ

(pp)
gn (x − 1) = 1 for all x ∈ [0, 1]. Hence, {φ(pp)

gn (x − j)|j ∈ Z} is a

partition of unity on R.

• φ(pp)
gn (x) is a Cn−1- function.

• The gradient of the scaled basic PU function is bounded as follows:

d

dx

[

φ(pp)
gn (

x

2δ
)
]

≤ C

δ
. (2.9)

Note that the constant C is ≤ 0.9 for n ≤ 3.

2.3 Generalized Two Dimensional Product Partition of Unity with Flat-Top

Using the basic PU function φ
(pp)
gn defined by (2.7), we construct a Cn−1- PU

function with flat-top whose support is [a− δ, b+ δ] with (a+ δ) < (b− δ) in a closed

form as follows:

ψ
(δ,n−1)
[a,b] (x) =



































φL
gn(

x−(a+δ)
2δ

) if x ∈ [a− δ, a+ δ]

1 if x ∈ [a + δ, b− δ]

φR
gn(

x−(b−δ)
2δ

) if x ∈ [b− δ, b+ δ]

0 if x /∈ [a− δ, b+ δ].

(2.10)

Here, in order to make a PU function have a flat-top, we assume δ ≤ (b − a)/3.

Let us note that ψ
(δ,n−1)
[a,b] (x) is actually the convolution, χ[a,b](x) ∗ wn−1

δ (x), of the

characteristic function χ[a,b] and the scaled window function wn−1
δ , defined by (2.2)
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Figure 2.1: Sketch of ΨR
x .

(Corollary 3.1 of [44]).

Since the two functions φR
gn, φ

L
gn, defined by (2.7), satisfy the following relation:

φR
gn(ξ) + φL

gn(ξ − 1) = 1, for ξ ∈ [0, 1], (2.11)

if ϕ : [−δ, δ]→ [0, 1] is defined by

ϕ(x) = (x+ δ)/(2δ),

then we have

φR
gn(ϕ(x)) + φL

gn(ϕ(x)− 1) = 1, for x ∈ [−δ, δ].

Using the latter equation gives two basic one-dimensional Cn−1 functions

ψR
0 (x) =























1 if x ≤ −δ

φR
gn(

x+δ)
2δ

) if x ∈ [−δ, δ]

0 if x ≥ δ,

(2.12)

1− ψR
0 (x) = ψL

0 (x) =























φL
gn(

x−δ
2δ

) if x ∈ [−δ, δ]

1 if x ≥ δ,

0 if x ≤ −δ.

(2.13)

such that

0 ≤ ψL
0 (x), ψ

R
0 (x) ≤ 1, ψR

0 (x) + ψL
0 (x) = 1, for all x ∈ R.
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Figure 2.2: Schematic diagram of basic PU functions, ΨR
x = Ψx=0 and ΨL

x = Ψ∗
x=0 in

two dimensions(Left).Schematic diagram of transformed PU functions about the line
L, ΨR and ΨL in two dimensions(Right).

To extend these PU functions (2.12) and (2.13) to basic two-dimensional Cn−1-PU

functions on R2, condiser the following. Suppose
←−→
P1P2 is a straight line connecting

two points P1(x1, y1) and P2(x2, y2) with x1 ≤ x2 such that y1 < y2 if x1 = x2.

Then the angle between the positive x-axis and
←−→
P1P2 is determined by the following

formula.











θ = tan−1(
y2 − y1
x2 − x1

), if x2 6= x1,

θ = π/2, if x2 = x1.

(2.14)

Let TP1P2 be an affine transformation on R2 that transforms the straight line
←−→
P1P2

onto the y-axis with T (P1) < T (P2) defined by

TP1P2(x, y) =







cos(π/2− θ) − sin(π/2− θ)

sin(π/2− θ) cos(π/2− θ)













x− x1
y − y1






= (x̂, ŷ) (2.15)

Then we define two PU functions by

ΨP1P2(x, y) = ψR
0 (x̂), Ψ⋆

P1P2
(x, y) = ψL

0 (x̂) = 1−ΨP1P2(x, y), (2.16)

that satisfy

Ψ⋆
P1P2

(x, y) + ΨP1P2(x, y) = 1, for all (x, y) ∈ R
2.
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Figure 2.3: Domain Ω is partitioned into eight patches Q1, . . . , Q8 and the flat-top
parts of corresponding product PU functions are denoted by Qflt

1 , . . . , Qflt
8 respec-

tively.

For example, if the line
←−→
P1P2 is the y-axis, then the two-dimensional Cn−1 functions

are

Ψx=0(x, y) = ψR
0 (x) and Ψ⋆

x=0(x, y) = ψL
0 (x), for all (x, y) ∈ R

2. (2.17)

In other words, two step-like-functions are the composition of the coordinate projec-

tion, (x, y) −→ x, and ψR
0 , ψ

L
0 , respectively. The graph of Ψx=0 (simply denoted by

ΨR
x ) is sketched in Figure 2.1. The schematic diagram for Ψx=0 and Ψ⋆

x=0 is shown in

Figure 2.2. That is,























Ψ⋆
x=0(x, y) = 1 if x ≥ δ

Ψ⋆
x=0(x, y) = 0 if x ≤ −δ

0 ≤ Ψ⋆
x=0(x, y) ≤ 1 if |x| ≤ δ

and























Ψx=0(x, y) = 0 if x ≥ δ

Ψx=0(x, y) = 1 if x ≤ −δ

0 ≤ Ψx=0(x, y) ≤ 1 if |x| ≤ δ.

(2.18)

2.4 Generalized Product Partition of Unity

Suppose the given domain Ω is partitioned into patches Qj , j = 1, . . . , n (back-

ground mesh) by lines and rays as shown in Figure 2.3. Then the closed form partition

of unity functions ΨP
j , j = 1, . . . , n with flat-top, called the generalized product parti-

tion of unity, are introduced in [48]. In the following, we briefly review the generalized

product partition of unity for those patches shown in Figure 2.3. Here δ is a small
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number, usually in [0.01, 0.1] that depends on the sizes of patches.

1. The triangular patch Q1 of Figure 2.3 is surrounded by lines L1, L2, L4. Using

(2.16), the step-like-basic PU functions of (2.17) on R2 are transformed onto

lines L1, L2, L4 :

ΨL1 , 1−ΨL1 := Ψ⋆
L1
; ΨL2 , 1−ΨL2 := Ψ⋆

L2
; ΨL4 , 1−ΨL4 := Ψ⋆

L4
.; (2.19)

to get three pairs of PU functions.

2. The flat-top part of each patch Qj that is outside the dotted lines is denoted

by Qflt
j on which only one of each pairs of basic PU functions is one.

3. Among the six PU functions in (2.19) related to lines enclosing Q1, those which

are one on Qflt
1 are Ψ⋆

L1
,ΨL2, and Ψ⋆

L4
. A closed form PU function corresponding

to the patch Q1 is the product of these basic PU functions, that is, ΨP
1 =

Ψ⋆
L1
·ΨL2 ·Ψ⋆

L4
.

4. Similarly, the closed form PU functions with wide flat-top corresponding to

patches Qj , j = 2, . . . , 8, respectively, are

ΨP
2 = Ψ⋆

L1
·Ψ⋆

L2
·Ψ⋆

L4
, ΨP

3 = ΨL1 ·Ψ⋆
L2
, ΨP

4 = ΨL1 ·ΨL2 ·Ψ⋆
L3
,

ΨP
5 = ΨL1 ·ΨL3 ·Ψ⋆

L4
, ΨP

6 = ΨL1 ·ΨL4 , ΨP
7 = Ψ⋆

L1
·ΨL2 ·ΨL4 ,

ΨP
8 = Ψ⋆

L2
·ΨL4.

such that

8
∑

j=1

ΨP
j (x, y) = 1, for all (x, y) ∈ Ω.

These functions with flat-top are called the generalized product PU functions

(we refer to [48] for the proof and the constructions for general cases).

If a patch Qj is a rectangle [a, b]× [c, d], then ΨP
j is the tensor product ψ

(δ,n−1)
[a,b] ×

ψ
(δ,n−1)
[c,d] , of one-dimensional functions defined by (2.10).



CHAPTER 3: BOUNDARY ELEMENT METHODS

3.1 Derivation of the Boundary Integral Equation for Laplace Equation

In this section, we will derive the boundary integral equation (BIE) used to

approximate the solution of the Laplace equation in a bounded domain Ω in R2 or

R3. Let u be the solution of Laplace’s equation

∆u = 0 in Ω ⊂ R
d (3.1)

where d = 2, 3. Let G(x, P ) the fundamental solution of the Laplace equation that

solves

−∆G(x, P ) = δ(x− P ). (3.2)

Here x = (x, y), P = (ξ, η), if d = 2 and x = (x, y, z), P = (ξ, η, ζ), if d = 3 and

δ(x− P ) is the Dirac delta function centered at P . By multiplying (3.1) by G(x, P )

and multiplying (3.2) by u(x), adding and then integrating over Ω with respect to x

we have:

∫

Ω

∆u(x)G(x, P )dx−
∫

Ω

∆G(x, P )u(x)dx =

∫

Ω

δ(x− P )u(x)dx.

Then, using Green’s second identity, and assuming that P ∈ Ω for Γ = ∂Ω we have

the following BIE:

u(P ) =

∫

Γ

∂u(x)

∂n
G(x, P )ds(x)−

∫

Γ

∂G(x, P )

∂n
u(x)ds(x) for P ∈ Ω. (3.3)

Now, by using the mean value theorem, we find the following BIE for any point

P ∈ Rd to be:

c(P )u(P ) +

∫

Γ

u(x)
∂G(x, P )

∂n
ds(x) =

∫

Γ

∂u(x)

∂n
G(x, P )ds(x). (3.4)

When d = 2 we have

G(x, P ) = − 1

2π
log r, r =

√

(ξ − x)2 + (η − y)2
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c(P ) =



































0 if P is outside Ω

1 if P ∈ Ω

1

2
if P ∈ Γ and Γ is smooth at P

α

2π
if P ∈ Γ and Γ is not smooth at P

(3.5)

where α is the internal angle of Ω at P . When d = 3 we have

G(x, P ) =
1

4πr
, r =

√

(ξ − x)2 + (η − y)2 + (ζ − z)2

c(P ) =



































0 if P is outside Ω

1 if P ∈ Ω

1

2
if P ∈ Γ and Γ is smooth at P

α

4π
if P ∈ Γ and Γ is not smooth at P

(3.6)

where α is the innner solid angle of Ω at P (refer to [17] for proof).

In (3.4), the unknowns are u and ∂u
∂n

on the boundary and u(P ) for P ∈ Rd. If P ∈

Ω, then (3.4) has no singular integral. However, if P ∈ ∂Ω and ∂Ω is smooth at P ,

then (3.4) becomes:

1

2
u(P ) +

∫

Γ

u(x)
∂G(x, P )

∂n
ds(x) =

∫

Γ

∂u(x)

∂n
G(x, P )ds(x) (3.7)

which contains a singular integral that diverges. For this integral, if d = 2 we use the

Cauchy principal value (CPV) formula to assign a finite definite value, if d = 3 we

use Haddamard finite part integral to assign a finite definite value.

Using (3.7), u|Γ and ∂u
∂n
|Γ can be determined. Together with these boundary

values, one can use (3.4) to get the value of u at all points in Ω (the solution of

Laplace’s equation). In other words, first, we solve for the boundary data (u and

its normal derivative along the boundary Γ). Then, the volume data can be found

through post processing.

Numerical methods to compute u|Γ and ∂u
∂n
|Γ are called boundary element meth-

ods (BEM) which obviously, have advantages over the finite element method whenever
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the fundamental solution could be found in a simple form. However, fundamental so-

lutions are not known except for some special differential equations, whereas the finite

element method does not have such restrictions.

To solve a BIE for the Laplace equation, there are essentially three categories of

Boundary Element Methods to choose from: the Nyström method, the Collocation

method, and the Galerkin method.

3.2 Nyström Method

The Nyström method, also known as the quadrature method, replaces the inte-

grations by a quadrature formula. This means that if we have a quadrature rule such

that
∫

Γ

f(x)ds(x) ≈
Nq
∑

k=1

wkf(xk),

where wk is the weight and xk is the abscissa k = 1, . . . , Nq. Then (3.7) would become

1

2
u(P ) +

Nq
∑

k=1

wku(xk)
∂G(xk, P )

∂n
=

Nq
∑

k=1

wk
∂u(xk)

∂n
G(xk, P ). (3.8)

One may obtain a linear system by letting P = xj where j = 1, . . . , Nq. A

benefit of using the Nyström method is that the entries of the coefficient matrices

only contain function evaluations of the fundamental solution. Compared with the

other two methods, this is much less computation for each entry. However, in practice,

large systems must be solved. The Nyström method heavily relies on the quadrature

formula and does not require any basis function. For this last reason, we do not use

the Nyström method since we cannot apply our meshfree basis functions.

We are concerned with the second and third options to solve BIE, which rely on

approximating the unknowns on the boundary by basis functions.
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3.3 Collocation Method

Suppose Ω is a polygonal (or polyhedral domain) with sides (or faces) Γ1, . . . ,ΓN .

That is

Γ =

N
⋃

j=1

Γj .

Then (3.7) becomes

1

2
u(P ) +

N
∑

j=1

∫

Γj

u(x)
∂G(x, P )

∂n
ds(x) =

N
∑

j=1

∫

Γj

∂u(x)

∂n
G(x, P )ds(x). (3.9)

To ease the notation let us introduce the layer potential integral operators. Let

Dju(P ) =

∫

Γj

u(x)
∂G(x, P )

∂n
ds(x) (3.10)

be the double layer potential on Γj . Let q(x) =
∂u(x)
∂n

and then define

Sjq(P ) =

∫

Γj

q(x)G(x, P )ds(x) (3.11)

as the single layer potential on Γj . Then (3.9) becomes

1

2
u(P ) +

N
∑

j=1

Dju(P ) =
N
∑

j=1

Sjq(P ). (3.12)

Let Pα, α = 1, . . . ,M , be chosen boundary particles and let Φα, α = 1, . . . ,M , be

approximation functions corresponding to these boundary particles such that

Γ ⊂
N
⋃

j=1

supp(Φj) and Φα(Pβ) = δβα. (3.13)

For each element Γj, suppose Pj1, . . . , Pjn(j)
are those nodes among Pα that lie on

Γj. Then u and
∂u

∂n
are approximated by

u|Γj
≈

n(j)
∑

k=1

Φjk(x)ujk , and (3.14)

q|Γj
≈

n(j)
∑

k=1

Φjk(x)qjk . (3.15)
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Where ujk and qjk are values of u and q at node Pjk on element Γj . From Eq. (3.13),

we have

u(Pα) =
N
∑

j=1

n(j)
∑

k=1

Φjk(Pα)ujk =
N
∑

j=1

n(j)
∑

k=1

δαjkujk = uα.

Substituting Eqns (3.14) and (3.15) into Eqn (3.4) we have

c(Pα)uα +
N
∑

j=1

n(j)
∑

k=1

ujkDjΦjk(Pα) =
N
∑

j=1

n(j)
∑

k=1

qjkSjΦjk(Pα). (3.16)

Let

aαjk = DjΦjk(Pα) and b
α
jk
= SjΦjk(Pα). (3.17)

Then (3.16) can be written as follows:

c(Pα)uα +
N
∑

j=1

n(j)
∑

k=1

ujka
α
jk
=

N
∑

j=1

n(j)
∑

k=1

qjkb
α
jk

(3.18)

which holds for each particle Pα. This is the linear system we will construct for solving

the second type of BEM, the collocation method.

Depending on the given boundary conditions on Γ, at each α, either uα or qα is

unknown. Equation (3.18) has M-unknowns and considering this for each particle

Pα, α = 1, . . . ,M , we have the M-equations for M-unknowns. The only problem left

is to calculate the coefficients aαjk and bαjk . Once these are calculated, and the system

is solved, u can be evaluated at any point in Ω using Eqn (3.4).

3.3.1 Calculating the Coefficients for d=2

In calculating the coefficients for d = 2, let us note the following: Suppose S is

the line segment on some part of Γ connecting P1 = (x1, y1) and P2 = (x2, y2). That

is, S =
←−→
P1P2 ⊂ Γ. The integrals for the coefficients aαjk , b

α
jk

are of the form

I(P ) =

∫

S

h(x)

|x− P |ds(x), or

Ilog(P ) =

∫

S

h(x) log |x− P |ds(x), where P ∈ Γ.
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When P ∈ S these integrals become singular and special techniques must be used

to evaluate them. For polygonal domains in R2, aαjk = 0 because

∂G(x, P )

∂n
|S = ∇G(x, P ) · n = 0. (3.19)

So the only singular integral to consider comes from bαjk which is of the form Ilog(P ).

To evaluate this, we split S at the point P so that S1 connects P1 to P and S2 connects

P to P2. Then

Ilog(P ) =

∫

S1

h(x) log |x− P |ds(x) +
∫

S2

h(x) log |x− P |ds(x).

Consider only the first integral, the second may be evaluated similarly. Here

x(t) = (P1 − P )t+ P where t ∈ [0, 1].

Then if we set L = |P1 − P | we have
∫

S1

h(x) log |x− P |ds(x) =

∫ 1

0

h((P1 − P )t+ P ) log |(P1 − P )t|Ldt

= L logL

∫ 1

0

h((P1 − P )t+ P )dt

+ L

∫ 1

0

h((P1 − P )t+ P ) log tdt.

The first integral may be computed by standard Gaussian quadrature rules, whereas

the second integral should be computed using Logarithmic Gaussian quadrature rules.

Without taking special care in the treatment of the singular integrals, the high accu-

racy of the numerical solution will be lost.

3.3.2 Calculating the Coefficients for d=3

In calculating the coefficients for d = 3, let us note the following: Suppose S is

polygonal patch on some part of Γ. The integrals for the coefficients aαjk , b
α
jk

are of

the form

In(P ) =

∫

S

h(x)

|x− P |nds(x), where n = 1, 2 and P ∈ Γ.

When P ∈ S these integrals become singular and special techniques must be used

to evaluate them, whereas if P /∈ S there is no singularity and standard Gaussian

quadrature may be used. For polyhedral domains in R3, aαjk = 0 because of Eqn.
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(3.19).

Again, the only singular integral to consider comes from bαjk which is of the form

I1(P ). To evaluate this integral we followed two different ideas. First, we used the

Duffy transform. The Duffy transform takes the unit triangle centered at the origin,

where it has a singularity, and maps it to the unit square moving the singularity to

one side of the square. This map weakens the singularity and improves the accuracy

of numerical integration. See Figure 3.1 and refer to [14].
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Figure 3.1: The Duffy transformation maps the unit triangle with singularity at origin
to unit square moving the singularity to one side with the map (x, y) = Φ(u, v) =
(u, uv).

To use this, we consider the position of P on S. If P is far enough away from

the boundary of S or exactly on the boundary, we may split S into triangles and

evaluate the integrals using the Duffy transform. If P is near the boundary of S,

performing this process can create distorted triangles. This can cause the Jacobian of

the transformation to become large and decrease the accuracy of integration. Because

of this, we create a quadrangle around P and decompose this into four triangles and

integrate the rest of the region using standard Gaussian Quadrature. See Figure 3.2.

The second idea is somewhat simpler. As before, we decompose S into several

different patches. This time we break S into a disc centered at P and quadrangles.

By this decomposition, the Jacobian from the transformation into the disc removes

the singularity in this region and regular Gaussian quadrature can be used. In the
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S S S

P

P

P

Figure 3.2: Cases for splitting S using the Duffy transform. P is away from the
boundary of S (Left). P is on the boundary of S (Middle). P is near the boundary
of S(Right).

quadrangles, the integral is not singular and Gaussian quadrature can also be used.

If P is on the boundary of S, we may use just a portion of the disc, in which, the

Jacobian will still weaken the singularity. If P is close to the boundary of S then we

create a quadrangle around P and proceed similarly. See Figure 3.3.

This approach is simpler than the Duffy transformation, however, some quadran-

gles will have a curved side; hence a blending type transformation ([54]) should be

used for Gaussian quadrature rules.

P

S S S

P

P

Figure 3.3: Cases for splitting S using the second method. P is away from the
boundary of S (Left). P is on the boundary of S (Middle). P is near the boundary
of S(Right).

The collocation method generates a full non-symmetric stiffness matrix which
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can be solved directly or iteratively. When the number of unknowns is large, it is

recommended to use an iterative solver such as GMRES.

3.4 Galerkin Method

For the Galerkin method, much of our assumptions stay the same as for the

collocation method, however we only present the case when d = 2. First, we will

once again consider boundary particles Pα ,α = 1, . . . ,M and the corresponding basis

functions Φα(x). As before, let

u|Γ ≈
M
∑

α=1

Φα(x)uα, and (3.20)

q|Γ ≈
M
∑

α=1

Φα(x)qα. (3.21)

Multiplying (3.4) by Φβ,β = 1, . . . ,M , and integrating over Γ with respect to P , we

see

N
∑

j=1

uα

∫

Γ(P )

c(P )Φα(P )Φβ(P )ds(P ) +
N
∑

j=1

uα

∫

Γ(P )

DjΦα(P )Φβ(P )ds(P )

=
N
∑

j=1

qα

∫

Γ(P )

SjΦα(P )Φβ(P )ds(P ).

Which can be rewritten as

(A +B)u = Cq,

where

Aαβ =

∫

Γ(P )

c(P )Φα(P )Φβ(P )ds(P ),

Bαβ =

∫

Γ(P )

∫

Γ(x)

∂G(x, P )

∂n
Φα(x)Φβ(P )ds(x)ds(P ), and

Cαβ =

∫

Γ(P )

∫

Γ(x)

G(x, P )Φα(x)Φβ(P )ds(x)ds(P ).

Entries of the coefficient matrix A contain no singular integrals, however entries of B

and C do. Hence, integrals for the entries of the coefficient matrices B and C must

be carefully analyzed.
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Entries of the coefficient matrix B contain singular integrals of the type
1

r
, but

since there is an extra integration being performed, it is only a weak singularity.

Consider the two basis functions Φα(x) and Φβ(P ). We have three cases.

1. If supp(Φα)
⋂

supp(Φβ) = 0, there is no singularity and standard Gaussian

quadrature may be used.

2. If supp(Φα) ⊂ Γi and supp(Φβ) ⊂ Γi, i = 1, . . . ,M, then Bαβ = 0 since

∇G(x, P ) · n = 0.

3. From the two cases above, the only way for Bαβ to contain a singularity is for

the supports of each basis function to intersect, but not be on the same side of

the boundary. This occurs only at the vertices of Ω.

To handle this singularity we consider the segment L1 = (P1, P2) = supp(Φα)

and the segment L2 = (P2, P3) = supp(Φβ) so that L1

⋂

L2 = {P2}. Then we set

x(t) = (P1 − P2)t + P2 and P (s) = (P3 − P2)s + P2 where s, t ∈ [0, 1]. With this, we

see the following:

Bαβ =

∫

Γ(P )

∫

Γ(x)

∂G(x, P )

∂n
Φα(x)Φβ(P )ds(x)ds(P )

=

∫ 1

0

∫ 1

0

−((P1 − P2)t− (P3 − P2)s) · n
2π|(P1 − P2)t− (P3 − P2)s|2

Φα(x(t))Φβ(P (s))|L1||L2|dsdt

where the singular point is now at the origin in the parameter space. We now split

the square into triangles and use the Duffy transform to evaluate this integral.

The coefficient matrix C contains singular integrals of the type log r. We follow

the same logic we did for B. This time, whenever supp(Φα)
⋂

supp(Φβ) 6= 0 there is

a singularity. For this case, we use the Duffy transform with logarithmic quadrature

to handle the integration.

Once A,B, and C are calculated, the linear system can then be solved. For the

Dirichlet problem, the stiffness matrix is symmetric and one can use a symmetric

linear solver. Once the system is solved, u can be evaluated inside Ω using Eqn (3.16)

as with the collocation method.



CHAPTER 4: MESHLESS BEM IN TWO DIMENSIONS

In this section, we introduce three collocation based meshless BEM called Re-

producing Polynomial Boundary Particle Methods (RPBPM) which yield numerical

solutions of BIEs in two dimensions. We also demonstrate that these proposed meth-

ods are superior to the boundary node method ([38]) when the true solution is a

polynomial. It should be noted, even though these methods are developed with the

collocation method in mind, the basis functions and node placement holds exactly

the same for the Galerkin method, as will be seen in a Numerical example.

4.1 Meshfree RPBPM

Suppose Ω ⊂ R2 is a convex polygonal domain as shown in Figure 4.1 in which

particles are edge-wise uniformly spaced. That is, the width between two adjacent

particles on different edges are allowed to be different.

Plant uniformly spaced particles on each edge so that no particles are vertices

of the polygonal domain Ω. Determine the number of particles so that the width h

between two adjacent particles becomes small enough for the required accuracy to

be obtained. Pick a basic RPP shape function φ([−K,K];0;2K−1)(x) whose support is

[−K,K] among those listed in ([45]). For each edge Γj , set up a parametrization

ϕj from an interval [−K,K] into an extended edge Γ̂j so that the integer points

in [−K,K] are mapped onto equally spaced nodes on Γ̂j , as shown in Figure 4.1.

Construct particle shape functions corresponding to each particle Pjk along Γ̂j by a

translation of φ([−K,K];0;2K−1) ◦ ϕj . For example, suppose h is the width of uniformly

spaced particles in Figure 4.2. Then, for each k = 1, 2, . . . , 12, the RPP shape function

corresponding to the particle xk is
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Γ

ϕ

−2 −1 0 1 2

Figure 4.1: Diagram of meshfree particles planted on edges of polygonal domain Ω
and basic RPP shape functions φ([−2,2];0;3)(x) with RPP order 3.

φxk
(x) = φ([−K,K];0;2K−1)(

x− xk
h

). (4.1)

Then, in order to keep the reproducing order for all points in Γj, 2K particles

should be outside of the edge Γj. For those nodes shown in Figure 4.2, no boundary

conditions are available; hence the boundary data on the external particles can be

extrapolated by least squares method and the property of reproducing polynomials

as described below.

Without loss of generality, we may assume that K = 2, and Pik = Pi1 + h(k − 1)

for each k = 1, . . . , Ni. Then the four particles Pi1, Pi2, Pi(Ni−1), PiNi
go outside the

ith edge as shown in Figure 4.2. Suppose the Dirichlet boundary condition is imposed

along the edge Γi. Then for the approximation u|Γi
≈
∑Ni

k=1 uikψik(x), the amplitudes

uik are known for k = 3, 4, . . . , Ni − 2.

We want to extrapolate the boundary conditions ui1, ui2, ui(Ni−1), uiNi
correspond-

ing to the four external (active) particles by the least squares method. For example,

ui2 minimizes E(ui2) defined by,
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Figure 4.2: Diagram of particles on line segment Γj .

Figure 4.3: Schematic Diagram of Partition of Unity functions ψi, i = 1, 2, 3, 4.

E(ui2) =

∫ x(Pi4)

x(Pi3)

[

5
∑

k=2

uikφik(x)− u(x)
]2

dx

In other words,

ui2 =

∫ x(Pi4)

x(Pi3)

[u(x)−
5
∑

k=3

uikφik(x)]φi2dx/[

∫ x(Pi4)

x(Pi3)

φi2(x)dx] (4.2)

where ui2 = 0 if the denominator vanishes, and x(Pi3) is the coordinate of particle Pi3

in a parametrization of edge Γi. Similarly, the boundary condition ui1 corresponding

to the external node Pi1 minimizes

E(ui1) =

∫ x(Pi3)

x(Pi2)

[

4
∑

k=1

uikφik(x)− u(x, y)
]2

dx

As mentioned earlier, in order to obtain highly accurate numerical solutions,

special care must be used when evaluating the coefficient matrices.

In order to use particle shape functions with high order reproducing polynomial

property defined by (2.5), we placed edge-wise uniformly spaced particles along the

boundary. This uniformly spaced particle method uses no mesh at all. However, it
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Figure 4.4: Schematic Diagram of particle placement for patch-wise RPBPM.

has a domain restriction and some active particles go outside the domain as shown

in Figure 4.1.

These difficulties can be fixed by introducing background meshes as shown in

Figures 4.3 and 4.4. Using partition of unity shape functions with flat-top, one

can construct the particle shape functions corresponding to particles with arbitrary

spacing, as will be seen in the coming sections where the support of each PU function

is the corresponding background mesh and each particle shape functions also have

the Kronecker delta property and the reproducing polynomial property.

4.2 Patch-wise RPBPM

In order to avoid extrapolating the boundary values corresponding to those nodes

that are outside of the boundary, we construct patch-wise RPP shape functions that

correspond to patch-wise uniformly (or non-uniformly) spaced particles.

Suppose ∂Ω = ∪nk=1Γk is union of the edges of a polygonal domain Ω.

Suppose Γk = [x0, x1]∪ [x1, x2]∪ [x2, x3]∪ [x3, x4] as shown in Figure 4.3 and x0, x4

are vertex nodes of the polygonal domain. For example, Γ1 = Q11 ∪ Q12 ∪ Q13; Γ2 =

Q21 ∪Q22; Γ3 = Q31 ∪Q32 ∪Q33; Γ4 = Q41 ∪Q42, in Figure 4.4. Let us choose a small

number δ with 0.01 ≤ δ < min{0.1, (xj − xj−1)/3, j = 1, 2, 3, 4}. If χ[xj−1,xj ] is the

characteristic function of an interval [xj−1, xj] defined by
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χ[xj−1,xj ](x) =











1 : x ∈ [xj−1, xj ]

0 : otherwise

then for x ∈ Γk,

χ[x0−δ,x1](x) + χ(x1,x2](x) + χ(x2,x3](x) + χ(x3,x4+δ](x) = 1;

hence, the convolutions of these functions with window function wl
δ(x), ψ1 = χ[x0−δ,x1]∗

wl
δ, ψ2 = χ(x1,x2] ∗wl

δ, ψ3 = χ(x2,x3] ∗wl
δ, ψ4 = χ(x3,x4+δ] ∗wl

δ shown in Figure 4.3,

become a partition of unity subordinate to the patches

[x0 − 2δ, x1 + δ], [x1 − δ, x2 + δ], [x2 − δ, x3 + δ], [x3 − δ, x4 + 2δ].

Specifically, with (2.10), these PU functions with flat-top can be written as

ψ1(x) = ψ
(δ,n−1)
[x1−δ,x1]

(x), ψ2(x) = ψ
(δ,n−1)
[x1,x2]

(x), ψ3(x) = ψ
(δ,n−1)
[x2,x3]

(x), ψ4(x) = ψ
(δ,n−1)
[x3,x4+δ](x).

Let {x11, x12, . . . , x1K1}, {x21, x22, . . . , x2K2}, {x31, x32, . . . , x3K3}, and

{x41, x42, . . . , x4K4}, be distinct particles planted (not necessary uniformly spaced) in

the intervals [x0 + δ, x1 + δ], [x1 − δ, x2 + δ], [x2 − δ, x3 + δ], and [x3 − δ, x4 − δ],

respectively. We assume that all (K1 +K2 +K3 +K4)-particles are distinct.

Recall that the Chebyshev polynomial Tn(x) of degree n ≥ 1 has n simple roots

in [−1, 1] at xk = cos((2k − 1)π/2n), for each k = 1, 2, . . . , n. It is known that these

zeros are an optimal choice for nodes for the Lagrange interpolating polynomial.

Thus, we suggest to use the shifted xk = cos((2k−1)π/2n) into appropriate intervals

for particles xk,j, j = 1, . . . , Kk, k = 1, 2, 3, 4. However, for this work we simply use

equally spaced nodes in the reference domain for Lagrange polynomials.

For j = 1, . . . , K1, let L1j(x) be the j-th Lagrange interpolating polynomial of

degree (K1 − 1) corresponding to particles x11, x12, . . . , x1K1 . Then these functions

have the reproducing polynomial property of order (K1 − 1). Similarly, we construct

the Lagrange interpolating polynomials Lij(x) for j = 1, . . . , Ki and i = 2, 3, 4

Using
∑4

i=1 ψi(x) = 1, we prove the following theorem.
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Theorem 4.1. On [x0, x4], the functions ψi(x)Lij(x) for j = 1, . . . , Ki and i =

1, . . . , 4 are Cl−1 piecewise polynomial RPP shape functions with reproducing order k,

where

k = min{K1 − 1, K2 − 1, K3 − 1, K4 − 1}.

Then, on the boundary Γj , u and
∂u

∂n
are approximated by

u|Γi
≈

4
∑

k=1

Kk
∑

l=1

ψk(x)Lkl(x)uikl (4.3)

q|Γi
=
∂u

∂n
|Γi
≈

4
∑

k=1

Kk
∑

l=1

ψk(x)Lkl(x)qikl. (4.4)

Similarly, for each i = 1, . . . , n, we construct highly smooth patch-wise RPP

shape functions corresponding to particles planted on patches of edge Γi as shown in

Figure 4.4.

4.3 Patch-wise RSBPM

Here, we introduce a patch-wise reproducing singularity boundary particle method

(RSPBM). Suppose an isotropic non-convex polygonal domain Ω has a corner point

at which the internal angle is π/α, where α is a real number with 0 < α < 1. An el-

liptic equation on Ω contains a singularity of type rαf(θ). The number α is called the

intensity of a singularity. To deal with elliptic problems containing singularities, Oh

et al. ([47]) constructed Reproducing Singularity Particle(RSP) shape functions that

reproduce polynomials as well as singular functions that resemble the singularities.

In this section, we are concerned with BEM for elliptic equations containing

corner singularities or jump boundary data singularity (Motz problem). Since we

consider problems on polygonal domains, we may assume that f(θ) is constant, and

hence the singularity along edges is of type rα with 0 < α < 1.

Let us note that α = 1/2 for the crack and the jump boundary data (Motz

Problem) singularities.
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Define T : [0, b] −→ [0, bα] to be a singular mapping defined by ξ = T (x) = xα.

Let 0 < ξ0 < ξ1 < · · · < ξ2N ≤ bα be particles in [0, bα]. If Lj(ξ) is the

j-th Lagrange interpolating polynomial associated with above 2N + 1 nodes, then

Lj(ξ), j = 0, 1, . . . , 2N, have the polynomial reproducing property with reproducing

order 2N . That is,

2N
∑

j=0

ξkjLj(ξ) = ξk, for 0 ≤ k ≤ 2N. (4.5)

Using the arguments in ([47]), one can easily prove the following: For j = 0, 1, . . . , 2N ,

let Φ∗
j (x) = Lj(T (x)) and xj = T−1(ξj). Then

1. Φ∗
j (xi) = δji (Kronecker delta property).

2. If α = 1/2 then meshfree particle shape functions: Φ∗
j , j = 0, 1, . . . , 2N, generate

the polynomials

1, x, x2, . . . , xN

and the singular functions

x1/2+k, k = 0, 1, 2, . . . , (N − 1).

We now modify the basic PU function (2.10) as follows:

ψ0(x) =























1 if x ∈ (0, b− δ]

φR
gn(

x−(b−δ)
2δ

) if x ∈ [b− δ, b+ δ]

0 if x /∈ (0, b+ δ],

(4.6)

which is a one-dimensional version of the almost everywhere partition of unity intro-

duced in ([42]). A schematic diagram for ψ0(x) is shown in Figure 4.5. Note that

ψ0(x) is undefined at (0, 0), the singularity point.

Now RSP shape functions to deal with singularity of type rα are defined as follows:

Φj(x) = ψ0(x)× Φ∗
j(x), j = 0, 1, . . . , 2N. (4.7)
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4.4 Numerical Examples

An application of a meshless method to BEM, the boundary node method, in

which Moving Least Squares (MLS) method was applied to construct nodal approx-

imation functions, was introduced in ([25],[38], and reference cited there). However,

these meshless approximation functions constructed by MLS do not satisfy the Kro-

necker delta property and hence this meshless boundary node method(BNM) fail to

capture the traction (Neumann) boundary values when there are jump discontinuities.

However, in this section, we demonstrate that our methods exactly capture the

traction boundary values even when the traction functions have large jump discon-

tinuities at the corners whenever the true solutions are polynomials. Moreover, our

methods also correctly approximate the true solution and its derivatives at the interior

points near boundary.

In the following examples, we consider polynomial solutions of the Laplace equa-

tion.

Example 4.4.1. Let z = x + iy. Consider Laplace’s equation ∆u = 0 on Ω = [0, 4]×

[0, 4] whose true solutions are polynomials and boundary conditions are as follows:

(I: Dirichlet problem) The true solution is u(x, y) = Im
(

z2

2

)

= xy. Displacement

(Dirichlet) boundary conditions are prescribed from the true solution along the entire

boundary. Exact Dirichlet boundary values are continuous along the entire boundary,

whereas the exact traction boundary values have jump discontinuities, [∂u
∂n
] = 4, at

the corner points (4, 0) and (0, 4).

(II: Mixed problem 1) The exact solution is u(x, y) = Re(z2) = x2−y2. Mixed bound-

ary conditions are prescribed from the true solution on the boundary as follows:

∂u

∂n
= 0 on the lines x = 0 and y = 0

u = Re(z2) on the lines x = 4 and y = 4

The traction boundary values q have the large jump discontinuities, [∂u
∂n
] = 16, at the
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corner points (4, 0) and (0, 4).

Examples (I) and (II), respectively, are examples 5 and 6 of ([38]).

(III: Mixed problem 2) The true solution is u(x, y) = Re(z4) = x4 − 6x2y2 + y4. The

boundary conditions are similar to (II). Traction boundary values q have even larger

jump discontinuities, [∂u
∂n
] = 256, at the corner points (4, 0) and (0, 4).

From our numerical tests of the above three examples, we observe the following:

1. Meshfree RPP shape functions and patch-wise RPP shape functions with re-

producing order k, respectively, are able to interpolate polynomials of degree

k exactly. Hence, our methods can get the exact boundary values as shown in

Table 4.1 (for Dirichlet problem), Tables 4.2 and 4.3 (for mixed problem 1),

and Table 4.4 (for mixed problem 2) even when the boundary data have a large

jump.

2. However, Figures 8 an 9 of ([38]) show that the computed traction boundary

values are quite different from the true traction boundary values (the maximum

difference ≥ 0.5 for problem I and the maximum difference ≥ 2 for problem

II ) when moving least squares approximation functions are used at boundary

nodes.

3. If the Degree of Freedom (DOF) in meshfree RPP decreases, then the space be-

tween uniformly spaced particles increases. Thus, the boundary extrapolations

(4.2) for particles outside of the boundary could be less accurate.

4. Since our methods are able to calculate the boundary values exactly, via post

processing, our methods can accurately calculate the solutions and their deriva-

tives inside and near the boundary of the domain as seen in Table 4.3.

5. Examples 5 and 6 of ([38]) state that their meshless boundary node method

is unable to handle those problems whose traction boundary data have jumps

at corners. Moreover, it is worse when the traction data have larger jump

discontinuities. However, Table 4.4 shows that our method yields the exact
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Table 4.1: Absolute error in maximum norm of the computed traction boundary
values q̃ of case (I) of Example 4.4.1. The true traction boundary values q have jump
discontinuities [∂u

∂n
] = 4, at the corner points (4, 0) and (0, 4).

Methods RPP order DOF ‖q − q̃‖∞,Γ

Meshfree RPP 3 48 1.345E-12
Patch-wise RPP 2 24 1.408E-13

MLS (Fig. 8 of [38]) 64 larger than 0.5

Table 4.2: Absolute errors of computed traction boundary data q̃ in maximum norm
and computed Dirichlet data ũ of case (II) of Example 4.4.1. The true traction
boundary values have jump discontinuities [∂u

∂n
] = 16, at the corner points (4, 0) and

(0, 4).

Methods RPP order DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ

Meshfree RPP 3 48 8.171E-14 4.832E-13
Patch-wise RPP 2 24 1.865E-14 6.573E-14

MLS(Fig. 9 of [38]) 2 128 larger than 2.0

boundary values even when the traction jumps are as big as [q] = 256 at the

corner points.

6. Since in case (III) of Example 4.4.1, u|Γ is a polynomial of degree 4, the RPP

shape functions of reproducing order 2 can not exactly interpolate neither u

nor q as shown in Table 4.4. However, the RPP shape functions of reproducing

order 4 generate xk, k = 0, 1, 2, 3, 4, hence, they can exactly capture the true

boundary values as shown in Table 4.4.

Thus far, we have shown that our methods are able to get the exact boundary

values when the true solutions are harmonic polynomials. In the following exam-

ple, we test the performance of patch-wise RPBPM when the true solution is not a

polynomial, but a smooth function (Example 1 of [25]).

Example 4.4.2. Consider Laplace’s equation ∆u = 0 on a square Ω = [−1, 1] ×

[−1, 1] with essential boundary condition prescribed from the exact solution u(x, y) =

sin(x2 − y2) exp(2xy) on all boundary.
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Table 4.3: Absolute errors of the computed solutions of case (II) of Example 4.4.1
at interior points along the line y = 4 − x connecting corner points (0, 4) and (4, 0)
where q has jump discontinuities [∂u

∂n
] = 16. u and ũ, respectively, represent the true

and the computed solutions at (x, 4 − x). ux and uxx are the first and the second
derivative of u, respectively.

(x, y) |u− ũ| |ux − ũx| |uxx − ũxx|
(0.01, 3.99) 2.309E-14 7.572E-13 1.215E-8
(0.10, 3.90) 1.066E-14 2.178E-11 3.702E-8
(0.20, 3.80) 1.243E-14 9.323E-13 9.161E-9
(0.30, 3.70) 0.000E-14 1.637E-11 6.826E-9
(0.70, 3.30) 3.553E-15 2.899E-13 1.497E-9
(1.00, 3.00) 3.553E-15 6.438E-12 1.497E-8
(2.00, 2,00) 1.178E-15 2.273E-12 2.092E-9
(2.50, 1.50) 3.553E-15 7.443E-12 8.158E-9
(3.00, 1.00) 1.776E-15 2.274E-13 1.005E-8
(3.20, 0.80) 3.553E-15 6.400E-12 2.056E-9
(3.30, 0.70) 8.882E-15 4.723E-12 1.393E-8
(3.70, 0.30) 3.553E-15 2.183E-11 3.832E-8
(3.80, 0.20) 3.553E-15 3.604E-12 1.271E-8
(3.90, 0.10) 1.776E-15 9.297E-12 1.271E-8
(3.99, 0.01) 2.487E-14 9.981E-12 3.273E-9

Table 4.4: Absolute error of the computed boundary values of case (III) of Example
4.4.1 in maximum norm. The true traction q has large jump discontinuities [∂u

∂n
] = 256,

at the corner points (4, 0) and (0, 4).

Methods RPP order DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ

Patch-wise RPP 2 24 4.763E+00 2.256E+00
Patch-wise RPP 4 40 3.411E-13 8.242E-14
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From this example, we observe the following:

1. Even though the boundary values obtained by patch-wise RPP shape functions

are the same as the true boundary values at particles, the interpolation function

by the RPP shape functions can not be the same as the true boundary values.

Therefore, unlike the previous examples, our method can not exactly get the

true boundary values.

2. However, the results in Table 4.5 show that our method yields a good approxi-

mation at various inside points of the domain. The computed solutions, its first

and second derivatives are evaluated in Table 4.5. From Table 4.5, one can see

that our method also gives good results at points near the boundary.

3. Since RPP shape functions for our method satisfy the Kronecker delta prop-

erty, our method gives highly accurate computed solutions when the polynomial

reproducing order is high (see, Table 4.5).

4. It is known that p-FEM yields better results than h-FEM at the same number

of degree of freedom ([54]) when the true solution is smooth. Similarly, the

combination of RPP shape functions of high reproducing order and a small

number of patches (the counterpart of p-FEM) yields better results than the

combination of RPP shape function of lower reproducing order and a large

number of patches (the counterpart of h-FEM) in general.

Now we compare the use of the collocation method compared with the Galerkin

method. The difference in the Galerkin method and the collocation method is es-

sentially the way we solve for u|Γ and q|Γ. To find u ∈ Ω, we use the same integral

equation. Therefore, it is sufficient to compare the approximated boundary values

from each method.

Example 4.4.3. Consider Laplace’s equation ∆u = 0 on a square Ω = [0, 4] ×

[0, 4] with Dirichlet boundary condition prescribed from the exact solution u(x, y) =

Im
(

z4

4

)

= (x2 − y2)(xy) on the entire boundary.
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Table 4.5: Computed solutions ũ, the true solution u, relative errors in percentage
((|(u − ũ)/u| × 100), of Example 4.4.2 at various points inside of the domain Ω. k
stands for the reproducing order of the RPP shape functions.

(x, y) type k = 4 k = 6 k = 8 True Solution
(DOF=40) (DOF=56) (DOF=72)

(0, 0.2) u -0.0400311545 -0.0399886387 -0.0399893059 -0.0399893341
0.105% 0.002% 0.00007%

(0, 0.2) u,x -0.0159970648 -0.0159957370 -0.0159957363 -0.0159957336
0.008% 0.00002% 0.000016%

(0, 0.2) u,xx 1.9927184902 1.9909074389 1.9930723738 1.9920019198
0.0359% 0.0549% 0.0537%

(0.4,−0.8) u -0.2436170604 -0.2434902708 -0.2434925565 -0.2434926608
0.051% 0.0009% 0.00004%

(0.4,−0.8) u,y 0.5532595636 0.5535387893 0.5535351872 0.5535349960
0.049% 0.00068% 0.00003%

(0.4,−0.8) u,yy 0.7343015084 0.7278899705 0.7302491944 0.7294211024
0.669% 0.209% 0.114%

(0.99, 0) u 0.8335154579 0.8304450311 0.8305458079 0.8305530685
0.357% 0.013% 0.0009%

(0.999, 0) u 0.8432689647 0.8402652512 0.8403801738 0.8403892399
0.343% 0.015% 0.001%

(0.9999, 0) u 0.8439439846 0.8409555723 0.8410720063 0.8413629129
0.307% 0.048% 0.035%
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From this example, we observe the following:

1. For this example, we use two PU functions with flat-tops on each side of Γ and

test for RPP orders 2, 3 and 4.

2. The same basis functions are being used and we are solving a Dirichlet prob-

lem. Therefore, ‖u − ũ‖∞,Γ will be the same for the Galerkin method and the

collocation method. Hence, we compare ‖q − q̃‖∞,Γ for each method.

3. The true solution is a degree 4 polynomial. However, evaluated on each side of

the domain, u|Γ and q|Γ are at most a degree 3 polynomial. For this reason,

we expect basis functions of RPP order 3 or greater to be able to capture the

solution. Any basis function of lower RPP order will not be able to capture

the solution. From the table, we see what we expect. We notice that when the

RPP order is 2, both methods produce poor results and the Galerkin method is

worse. If we increase the number of particles on each side, thus increasing the

degrees of freedom, the accuracy will increase, but still will not be satisfactory.

For RPP order 3 and 4, we see that the Galerkin method slightly outperforms

the collocation method in terms of accuracy.

4. When integrating the fundamental solution or its derivative when the source

point is near the region of integration, numerical accuracy deteriorates. These

near singularities occur when calculating the entries of the coefficient matrices

in the collocation method. To retain high accuracy, more integration points

must be used. By construction, the Galerkin method does not encounter near

singularities in the computation of the coefficient matrices. So, in computing the

coefficient matrices, the Galerkin method requires less computation to evaluate

a Boundary integral. However, when evaluating u at points inside Ω, near

singularities still can occur and an increase in the number of integration points

is needed to get the accuracy desired.

5. Even though the Galerkin method produces a symmetric stiffness matrix for the
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Dirichlet problem, the amount of computation required to form this matrix is

huge. For each entry, a double boundary integral must be calculated, whereas

for the collocation method only a single boundary integral is calculated. Since

the accuracy is about the same, and the computation is less, we only proceed

with the collocation method for the rest of the examples.

Table 4.6: Absolute errors of computed traction boundary data q̃ in maximum norm
for the Galerkin method (G) and the collocation method (C) and computed Dirichlet
data ũ for both in Example 4.4.3.

RPP order DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ (G) ‖q − q̃‖∞,Γ (C)
2 24 3.0775E+00 12.0195E+00 1.9594E+00
3 32 2.6645E-14 4.3343E-13 1.1866E-12
4 40 2.7089E-14 1.1369E-12 1.8261E-12

Remark. In the Examples of this section, the normal derivatives (q) have no jumps

inside any edges. In the case where q has a jump at a point inside an edge, that point

should be treated as a vertex, as we will do in the next section to deal with BIEs

containing singularities.

An elliptic problem on the L-shaped domain (Figure 4.5) has a singularity of

type r2/3f(θ) at the re-entrant corner point (0, 0).

Example 4.4.4. (Laplace’s equation on the L-shaped domain) Consider △u = 0 on

Ω = [−1, 1]× [0, 1] ∪ [−1, 0]× [0,−1] with displacement (Dirichlet) boundary condi-

tion prescribed from the exact solution r2/3 sin(2θ/3) along all boundary. The exact

solution has a corner singularity at (0, 0) of intensity 2/3.

We construct RSP shape functions to deal with the corner singularity of type

r2/3.

1. Label the six edges of Ω as follows (Figure 4.5): Γ1,Γ2,Γ3,Γ4,Γ5,Γ6, respec-

tively, that are the line segments on y = 0, x = 1, y = 1, x = −1, y = −1, x = 0.
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Dividing the edge Γ1 into two patches (0, b) and (b, 1), we define PU functions

on the edge Γ1 as follows:

ψ0(x) =























1 if x ∈ (0, b− δ]

φR
gn(

x−(b−δ)
2δ

) if x ∈ [b− δ, b+ δ]

0 if x /∈ (0, b+ δ],

(4.8)

ψ1(x) =























φL
gn(

x−(b+δ)
2δ

) if x ∈ [b− δ, b+ δ]

1 if x ∈ [b+ δ, 1]

0 if x /∈ [b− δ, 1],

(4.9)

Then ψ0(x) + ψ1(x) = 1, for all x ∈ Γ1.

2. Suppose we choose N = 3 in (4.5) and δ = 0.01. Let L0j(ξ), j = 0, 1, . . . , 6, be

the Lagrange interpolating polynomials associated to the nodes:

0 < ξ00 < ξ01 < ξ02 < ξ03 < ξ04 < ξ05 < ξ06 = (b+ δ)1/3.

Let L1j(ξ), j = 0, 1, . . . , 6, be the Lagrange interpolating polynomials associated

to the nodes:

(b− δ)1/3 = ξ10 < ξ11 < ξ12 < ξ13 < ξ14 < ξ15 < ξ16 = 0.99 < 1.

For each k = 0, 1, and each j = 0, 1, . . . , , define RSP shape functions to deal

with the corner singularity of intensity 2/3 by

Φkj(x) = ψk(x) · Lkj(x
1/3).

Then, for an approximation of boundary functions on Γ1, we use

u|Γ1 =
1
∑

k=0

6
∑

j=0

ukjΦkj(x) and (4.10)

q|Γ1 =

1
∑

k=0

6
∑

j=0

qkjΦkj(x)/(x
1/3). (4.11)

Note that L0j(x
1/3), j = 0, 1, . . . , 6, generates

1, x1/3, x2/3, x, x4/3, x5/3, x2

and L0j(x
1/3)/(x1/3), j = 0, 1, . . . , 6, generates

x−1/3, 1, x1/3, x2/3, x, x4/3, x5/3.
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Figure 4.5: Diagram of the L-shaped domain with corner singularity(Top). Schematic
diagram of two PU functions ψ0, ψ1 and 14 singular particles corresponding to RSP
shape functions(Bottom).

Table 4.7: Errors in maximum norm of Laplace’s equation on the L-shaped domain
with Dirichlet boundary conditions prescribed by the true solution u = r2/3 sin(2θ/3).

k DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ ‖u− ũ‖∞,Ω

4 60 RSBPM 3.766E-5 3.001E-3 1.291E-5
RPBPM 4.031E-5 1.118E-0 1.140E-2

6 84 RSBPM 1.663E-6 2.983E-3 8.040E-6
RPBPM 1.530E-6 0.848E-0 7.206E-3

These two sets of functions are able to approximate r2/3 sin(2θ/3) and its deriva-

tive, respectively. Similarly, RSP shape functions are constructed to approx-

imate the boundary functions along Γ6. Let us note that the vertices (0, 0),

(1, 0), (0,−1) should not be particles for RSP shape functions.

3. We use RPP shape functions for an approximation of boundary functions on the

edges Γk, k = 2, 3, 4, 5. Similarly, vertices (1, 1), (−1, 1), (−1,−1), (0,−1) should

not be particles for RPP shape functions on Γ2,Γ3,Γ4,Γ5.

4. The error of the computed traction q̃ and the error of the computed solution ũ in

maximum norm on entire domain are shown in Table 4.7. Table 4.7 shows that

the solutions obtained by using mapping techniques (RSBPM) are far better

than those obtained by RPBPM that does not use mapping techniques.



41

Figure 4.6: The rectangular domain for the Motz problem.

Consider the Motz problem that contains a jump boundary data singularity of

type O(r1/2) at (0, 0). For numerical solutions of this problem, many computational

techniques are suggested in the literature. Especially, we refer to ([1],[33]) which is

closely related to this work.

Example 4.4.5. (Motz problem) Consider △u = 0 on a rectangular domain Ω =

[−1, 1]× [0, 1] with mixed boundary conditions prescribed as follows:

u = 0 on Γ6, u = 500 on Γ2

∂u

∂n
= 0 on Γ1 ∪

5
⋃

i=3

Γi,

where Γ1 = [0, 1] × {0},Γ2 = {1} × [0, 1],Γ3 = [0, 1] × {1},Γ4 = [−1, 0] × {1},Γ5 =

{−1} × [0, 1],Γ6 = [−1, 0] × {0}, as shown in Figure 4.6. Then, the asymptotic

expansion of the true solution in a polar coordinates centered at (0, 0) is of the form

u(r, θ) =
∞
∑

k=1

Akr
2k−1

2 cos
(

(2k − 1)
θ

2

)

. (4.12)

We construct the RSP shape functions to approximate singular boundary func-

tions on Γ1 and Γ6 and the RPP shape functions to approximate smooth boundary

functions on Γ2,Γ3,Γ4 and Γ5.

1. For example, we choose N = 3 in (4.5), δ = 0.05 and b = 0.25. Let L0j(ξ), j =

0, 1, . . . , 6, be the Lagrange interpolating polynomials associated to the nodes:

0 < ξ00 < ξ01 < ξ02 < ξ03 < ξ04 < ξ05 < ξ06 = (b+ δ)1/2.
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where ξ06 − ξ05 > (2δ)1/2. Let L1j(ξ), j = 0, 1, . . . , 6, be the Lagrange interpo-

lating polynomials associated to the nodes:

(b− δ)1/2 = ξ10 < ξ11 < ξ12 < ξ13 < ξ14 < ξ15 < ξ16 = 0.99 < 1,

where ξ11 − ξ10 > (2δ)1/2.

Suppose ψ0 and ψ1 are PU functions defined by (4.8) and (4.9), respectively.

For each k = 0, 1, and each j = 0, 1, . . . , 6, we define singular approximation

functions by

Φkj(x) = ψk(x) · Lkj(x
1/2).

Then, for an approximation of boundary functions on Γ1, we use

u|Γ1 =

1
∑

k=0

6
∑

j=0

ukjΦkj(x) (4.13)

q|Γ1 =

1
∑

k=0

6
∑

j=0

qkj
[

Φkj(x)/
√
x
]

. (4.14)

2. Then, L0j(
√
x), j = 0, 1, . . . , 6 and L1j(

√
x), j = 0, 1, . . . , 6 are RSP shape func-

tions corresponding to nodes (ξ0j)
2, j = 0, 1, . . . , 6 and (ξ1j)

2, j = 0, 1, . . . , 6,

respectively, which reproduce

1, x, x2, x3, x1/2, x3/2, x5/2, (4.15)

over the interval (0, 1].

Moreover, for each k = 0, 1, the set of functions {Lkj(
√
x)/
√
x : j = 0, 1, . . . , 6}

generate

x−1/2, x1/2, x3/2, x5/2, 1, x, x2. (4.16)

u|Γ1 ≈ O(x1/2) and q|Γ1 ≈ O(x−1/2). Thus, comparing (4.15) with (4.16), one

can see that the particle shape functions, [Φkj(x)/
√
x] , k = 0, 1; j = 0, 1, . . . , 6,

can be used for the approximations of both u|Γ1 and q|Γ1 instead of (4.13) and

(4.14).

3. Noting that for x ∈ Γ6 = (−1, 0), 0 < −x and hence RSP shape functions

for particles on Γ6 are constructed as follows: For each k = 0, 1, and each
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j = 0, 1, . . . , 6, let

Φ̃kj(x) = ψk(−x) · Lkj((−x)1/2). (4.17)

Then, for an approximation of boundary functions on Γ6, we use

u|Γ6 =

1
∑

k=0

6
∑

j=0

ũkjΦ̃kj(x) (4.18)

q|Γ6 =

1
∑

k=0

6
∑

j=0

q̃kjψk(−x) ·
[

Lkj(
√

(−x))/
√

(−x)
]

. (4.19)

The vertices (0, 0), (−1, 0), (0, 1) should not be particles for neither RSP nor

RPP shape functions.

4. We use RPP shape functions for an approximation of boundary functions on

the edges Γk, k = 2, 3, 4, 5. Similarly, vertices (1, 0), (1, 1), (−1, 1), (−1, 0) should

not be particles for RPP shape functions on Γ2,Γ3,Γ4,Γ5. That is, for particles

on the edges that do not contain singularity, we assign RPP shape functions.

A true solution of the Motz problem exists and is given in ([51]). However, for

the calculation of errors in Tables 4.8 and 4.9, we assume that the computed true

solution u is the sum of first 50 terms in (4.12) and the true normal derivative, q, is

the sum of the first 50 terms in













∂u
∂x

∂u
∂y













=
1

2

N
∑

k=1

Ak(2k − 1)r(2k−3)/2













cos[(2k − 3)θ/2]

− sin[(2k − 3)θ/2]













, (4.20)

with coefficients being used from Table 12 in ([40]). The coefficients in ([40]) approx-

imate the boundary values better than those provided in ([26]), which were known to

be the most accurate approximations of the coefficients.

Table 4.8 shows the maximum errors of q and u along the boundary. Table 4.9

shows the maximum errors of the computed solution ũ in the whole domain. Tables

4.8 and 4.9 show that RSBPM effectively handles BIEs with a jump boundary data

singularity. For comparing purposes, parts of Table A.II of [33] are reproduced in
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Table 4.9. The maximum error ‖u − ũ‖∞,Ω of the computed solutions obtained by

RSBPM are compared with those results (Table A.II of [33]) obtained by the p-FEM

coupled with Method of Auxiliary Mapping (MAM), developed by Babuška-Oh ([39]).

Moreover, from Table A.1 of [33], we observe the following results:

• ‖u − ũ‖∞,Ω = 3.52 at DOF= 525, 825 using ELLPACK (second-order finite

difference)

• ‖u − ũ‖∞,Ω = 0.13 at DOF= 6, 390 using PLTMG6 (FEM code with adaptive

mesh generation, linear elements)

• ‖u− ũ‖∞,Ω = 6.12E−4 at DOF= 15, 303 using FESOP (locally developed FEM

code using isoparametric quadratic elements)

These maximum errors in h-FEM and those errors in p-FEM with MAM of Table

4.9 show the effectiveness of MAM in the framework of the conventional FEM. It also

implies that the conventional BEM may not be able to yield reasonable approxima-

tions when a BIE contains singularities. Therefore, we can claim that our method

(RSBPM) to deal with singularity problems arising in BIEs is on a right track.

From Table 4.9, one can see that the accuracy of the proposed method seems to

be less than that of p-FEM with MAM as the RPP order increases. This is because

the shape functions become numerically unstable due to their oscillatory nature. In

this example, particles were placed by convenience. Optimally placing the particles

(including some particles which may go outside of the support of the PU functions)

could improve the numerical solution to be of comparable acuracy with the MAM.

Several boundary element approaches dealing with singularities have been sug-

gested in the literature. For example, like our method, the BEM is augmented with

singular approximation functions in ([49],[58],[59]).
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Table 4.8: Errors in maximum norm of q and u along the boundary of the Motz
problem various RPP orders.

k DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ

2 48 RSBPM 1.289E-0 3.996E-0
3 64 RSBPM 3.329E-2 1.553E-0
4 80 RSBPM 2.585E-3 2.688E-1
5 96 RSBPM 4.502E-4 5.557E-2
6 112 RSBPM 1.218E-4 6.317E-3
7 128 RSBPM 4.821E-5 1.555E-3
8 144 RSBPM 6.979E-6 2.876E-4
9 160 RSBPM 3.614E-6 1.563E-4
10 176 RSBPM 8.759E-7 3.645E-5

Table 4.9: Errors in maximum norm inside Ω for Motz problem various RPP or-
ders. Patch-wise RSBPM is compared with the results of p-FEM using a mapping
technique.

RSBPM p-FEM with MAM
RPP order k DOF ‖u− ũ‖∞,Ω p-degree DOF ‖u− ũ‖∞,Ω

2 48 5.514E-1 2 143 8.62E-1
3 64 2.325E-2 3 247 8.10E-2
4 80 2.535E-3 4 399 1.05E-2
5 96 4.930E-4 5 599 7.56E-4
6 112 3.983E-5 6 847 8.42E-5
7 128 1.916E-5 7 1143 8.83E-6
8 144 3.444E-6 8 1487 1.00E-6
9 160 2.574E-6 9 1879 1.11E-7
10 176 6.651E-7 10 2319 2.22E-8



CHAPTER 5: MESHLESS BEM IN THREE DIMENSIONS

In this chapter, patch-wise RPBPM and RSBPM introduced previously are ex-

tended to the three dimensional Laplace equation. Once introduced, numerical ex-

amples will be presented.

5.1 Patch-wise RPBPM

We follow the same logic for the two dimensional case. Suppose ∂Ω =
⋃n

k=1 Fk is

the union of the faces of a polyhedral domain Ω. Partition each face Fk into the dis-

joint union of quadrangular (and if necessary triangular) patches Qkj , j = 1, . . . , N(k).

On each patch, construct a partition of unity, Ψkj(x) using the generalized product

partition of unity method described in section 2.3. For quadrangular patch Qkj ,

construct a map from a reference rectangle R̂ into supp(Ψkj )

ϕkj : R̂→ supp(Ψkj)

such that points in R̂ are mapped at least δ distance away from the boundary of Fk.

Plant particles ξ̂kjl and construct the Lagrange interpolation polynomials, L̂kjl
, l =

1, . . . ,M(kj) in the reference domain. Physical particles and interploation functions

are xkjl = ϕkj(ξ̂kjl ) and Lkjl
= L̂kjl

◦ ϕ−1
kj
, l = 1, . . . ,M(kj) respectively, as shown in

Figure 5.1. Basis functions are the product of the partition of unity and the Lagrange

polynomials

Φkjl
(x) = Ψkj(x)× Lkjl

(x).

Upon construction of these basis functions, we follow the method described in the

previous chapter.



47

Q Q

Q

��

��
��
��
��

����
����

�� �
�
�
�
��

�
�
�
�

������

��
��
��
��

�
�
�
�
��������

�
�
�
�

��

�
�
�
�

R

ϕ

F

k1

Q

δ

k3

k

k
4

k2k1

Figure 5.1: Partition of Fk into 4 quadrangular patches Qk1 , . . . , Qk4 and particle
placement on Qk1 . The mapping ϕk1 maps from R̂ to Qk1 . The shaded region is
support of the partition of unity function Ψk1 , corresponding to the patch Qk1 .

5.2 Patch-wise RSBPM

As before, follow the theory of the d = 2 case. That is, construct basis functions

in the neighborhood of the singularity that resemble the singularity and use patch-

wise RPBPM everywhere else. Suppose Ω is a polyhedral domain. Consider solutions

to the Laplace equation on Ω of the form

u(x, y, z) = usmooth(x, y, z) + using(x, y, z)

where usmooth(x, y, z) is a smooth function and using(x, y, z) contains an edge singu-

larity of the type

using(r, θ, z) = rα sin(αθ)f(z)

where (r, θ, z) are the cylindrical coordinates centered at the origin, f(z) is a smooth

function, and 0 < α < 1. Without loss of generality, consider the case where the

singularity is located along the line r = 0.

To deal with this singularity, partition ∂Ω into polygons such that ∂Ω =
⋃n

k=1 Fk.

In partitioning ∂Ω special care is taken so that the edge singularity intersects only
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the edges or vertices of any Fk. That is the singularity only appears on an edge or a

vertex of a given Fk as seen in Figure 5.2. Essentially, the edge singularity is treated

as an artificial boundary.

F

F
F

F
F

F

F F

F

8

9

5

2
6

1

7

3

4

Figure 5.2: Partition of ∂Ω into

9
⋃

k=1

Fk with edge singularity in bold. For k = 1, 2, 8, 9,

the singularity appears on a vertex of Fk. For k = 4, 5, the singularity appears on an
edge of Fk. For k = 3, 6, 7, the singularity does not appear on Fk.

When the singularity intersects Fk at a vertex, i.e. k = 1, 2, 8, 9 in Figure 5.2,

use the singular map

Ttop(r̂, θ̂) =

(

r̂
1
α ,
θ̂

α

)

, 0 < α < 1.

Consider F2 which is a rectangle on the top face of Figure 5.2. In order to con-

struct RPP shape functions of RPP order k, consider N particles P̂j , j = 1, . . . , N =

(k + 1)(k + 2)/2, that are inside the sector

{(r̂, θ̂) : 0 < r̂ < w; 0 < θ̂ <
πα

2
},

in the (ξ, η) coordinate system where w is the width of the patch in the phys-

ical domain. Let φ̂j(ξ, η), j = 1, . . . , N, be RPP shape functions of RPP order k

corresponding to these particles. That is,
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N
∑

j=1

f(P̂j)φ̂j(ξ, η) = f(ξ, η) (5.1)

for any monomial f(ξ, η) = ξα1ηα2 , where 0 ≤ α1 + α2 ≤ k. Let Pj = Ttop(P̂j),

φj(x, y) = φ̂j(T
−1
top (x, y)), for j = 1, . . . , N. Then by Theorem 4.1 of [47], when α =

1
2
, φj , j = 1, . . . , N, satisfy the Kronecker delta property at Pj , j = 1, . . . , N, and

generate the following singular functions and polynomials:

rα+l sin(αθ + l), rα+l cos(αθ + l), l = 0, . . . , [kα] (5.2)

xα1yα2 , 0 ≤ (α1 + α2) ≤ [kα], α1 ≥ 0, α2 ≥ 0, (α1, α2) ∈ Z
2. (5.3)

where [kα] is the largest integer ≤ kα. See Figure 5.3.

x
Ttop

η

ξ

π/4
y

Figure 5.3: Schematic Diagram for construction of RSP shape functions on top and
bottom faces to deal with the edge singularity.

When the singularity intersects Fk along an edge, i.e. k = 4, 5 in Figure 5.2, use

the singular map

Tside(r̂, ẑ) = (r̂
1
α , ẑ).

Consider F5 which is a rectangle on the front face of Figure 5.2. Here, it is

desirable to construct approximation functions that resemble the singularity in us ≈

O(rα) and
∂us
∂n
≈ O(rα−1). Partition F5 into 4 quadrangular patches as seen in Figure

5.4. The two patches intersecting the singularity, Q1 and Q3, use the singular mape

Tside to construct RSP shape functions.
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QQ

Q Q

F

1 2

43

5

Figure 5.4: Partition of F5 into 4 patches Q1, . . . , Q4. Q1 and Q3 require the use of
RSP shape functions. Q2 and Q4 use RPP shape functions. The edge singularity is
located along the left edge

Consider N = (k + 1)2 particles in the (ξ, η) domain P̂j, j = 1, . . . , N and let

φ̂j(ξ, η), j = 1. . . . , N be the RPP shape functions of order k corresponding to these

particles.

Let Pj = Tside(P̂j), φj(x, z) = φ̂j(T
−1
side(x, z)), j = 1, . . . , N. By Theorem 4.1 of [47],

when α = 1
2
, φj , j = 1, . . . , N, satisfy the Kronecker delta property at Pj , j = 1, . . . , N,

and generate the following singular functions and polynomials:

xα+lzα2 , 0 ≤ l + α2 ≤ [kα] (5.4)

xα1zα2 , 0 ≤ α1 + α2 ≤ [kα] (5.5)

where [kα] is the largest integer≤ kα. Use these shape functions for using. To construct

shape functions for
∂using
∂n

use
φj(x, z)

x
. For α = 1

2
, these will generate the following

singular functions and polynomials:

xα+l−1zα2 , 0 ≤ l + α2 ≤ [kα] (5.6)

xα1−1zα2 , 0 ≤ α1 + α2 ≤ [kα] (5.7)

On all other Fk use patch-wise RPBP shape functions and proceed as described

earlier.
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5.3 Numerical Examples

In this section, the three-dimensional extension of RPBPM is applied to the 3-

dimensional Laplace equation.

Example 5.3.1. Consider the 3-dimensional Laplace equation on a cube Ω = [0, 1]3

when the true solutions are

u1(r, θ, z) = zr4 sin 4θ; u2(r, θ, z) = zr2 sin 2θ; u3(r, θ, z) = z
√
r sin θ/2,

and Dirichlet boundary conditions are imposed along ∂Ω by their true solutions. Then

u1 and u2 are polynomials, and u3 has an edge singularity along the z-axis.

Patch-wise RPBPM yields the results in Tables 5.1 and 5.2. In order to see the

effect of adaptive particle distribution in handling the edge singularity, consider two

particle distributions on the boundary: uniform distribution by dividing each face into

four patches and adaptive particle distribution with adaptive partitions as shown in

Figure 5.5.

Figure 5.5: Schematic Diagram for graded boundary patches to deal with the edge
singularity.

Application of 3-dimensional RPBPM to these problems gives the following:

1. Like the 2-dimensional counterpart, the traction of u1(x, y, z) and u2(x, y, z)

have jumps between the faces z = 0 and y = 1 (z = 0 and x = 1). Since

the true solutions are polynomials, RPBPM almost exactly captures the true

traction in Tables 5.1 and 5.2. From the results in the 3rd and the 4th columns
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Table 5.1: Absolute errors of computed tractions in maximum norm. q and q̃ are
the true and the computed tractions, respectively. Each face is partitioned into four
patches.

‖q − q̃‖Γ,∞
Rpp order DOF zr4 sin 4θ zr2 sin 2θ z

√
r sin θ/2

2 216 0.240E+00 2.127E-13 0.818E+00
3 384 1.101E-12 5.107E-13 0.695E+00
4 600 7.475E-12 4.177E-12 0.522E+00

of Tables 5.1 and 5.2, one can see that the accuracy is slightly decreased, as the

RPP order of approximation functions is increased because the instability of

evaluations of higher degree polynomials. Notice that the local approximation

functions of our methods are global polynomials truncated by partition of unity

functions with flat-top to have compact support.

2. u3(x, y, z) contains an edge singularity. Applications of RPBPM to these prob-

lems do not yield any reasonable numerical solutions (the 5th columns of Tables

5.1 and 5.2). Adaptive particle distribution along the edge singularity give a

small improvement (Table 5.2). However, massive adaptive particle distribu-

tions would not give a big improvement either because the gradients of par-

tition of unity functions would be greatly increased on the patches near the

singularity in such small patches. Therefore, as it was demonstrated with the

two-dimensional examples, RSBPM is one of the best methods to deal with

boundary integral equations containing singularities.

The results obtained by 3-dimensional RSBPM (described above) applied to

Laplace’s equation containing the edge singularity is given in Table 5.3. Compar-

ing the errors in the 5th column of Table 5.2 (RPBPM with densely distributed

particles along the singular edge) with those errors in the third column of Table 5.3

(3-dimensional RSBPM with RSP shape functions), one can see that RSBPM yields

much more accurate results with lower degrees of freedom.
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Table 5.2: Absolute errors of computed tractions in maximum norm. q and q̃ are the
true and the computed tractions, respectively. Particles are densely planted along
the singular edge as shown Figure 5.5.

‖q − q̃‖Γ,∞
Rpp order DOF zr4 sin 4θ zr2 sin 2θ z

√
r sin θ/2

2 342 0.216E+00 2.975E-12 0.626E+00
3 608 9.741E-12 5.026E-12 0.532E+00
4 950 2.402E-11 1.915E-11 0.344E+00

Table 5.3: Absolute Errors of computed tractions by RSBPM in maximum norm. q
and q̃ are the true and the computed tractions, respectively. u and ũ are the true
displacement and the interpolated displacement when the particles are interpolation
points.

True solution is u(x, y, z) = z
√
r sin(θ/2)

RPP order DOF ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 210 9.383E-03 1.869E-03
3 372 8.951E-03 6.862E-04
4 580 2.881E-03 1.913E-04
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Example 5.3.2. Consider the Laplace equation on the cube [0, 1]3 whose true solution

is

u(x, y, z) = zrα sinαθ + x2 − y2 + z.

Here α = 1
2
, r =

√

x2 + y2, θ = arctan
(y

x

)

, and Dirichlet boundary conditions are

imposed along ∂Ω.

Here u is the sum of a singular function that has an edge singularity along the

z-axis and a smooth function. The same background mesh was used as in the previous

example splitting each face of the cube into four patches using RPBPM and RSBPM

with RPP order 2,3 and 4. RPBPM does not produce accurate results due to the

singular function. For RSBPM, notice that RPP order 2 and 3 cannot capture the

solution. This is because the map Tside decreases the RPP order by half which disables

RPP order 2 and 3 from generating 2nd degree polynomials. Therefore, with α = 1
2
,

RPP order 4 can reproduce second degree polynomials and provides the best results

for this example.

Table 5.4: Results of Example 5.3.2 by using patch-wise RPBPM.

RPP order DOF ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 216 0.798E+00 3.861E-02
3 384 0.674E+00 2.707E-02
4 600 0.504E+00 1.995E-02

Table 5.5: Results of Example 5.3.2 by using patch-wise RSBPM.

RPP order DOF ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 210 0.711E+00 7.777E-02
3 372 0.251E+00 1.747E-02
4 580 3.884E-03 1.913E-04

Example 5.3.3. Consider the Laplace equation on the three dimensional L-shaped

domain, depicted in Figure 5.6, whose true solution is



55

u(r, θ, z) = zrα sinαθ, where α =
2

3
,

and Dirichlet boundary conditions are imposed along ∂Ω. Then u has an edge singu-

larity along the z-axis.

For this example, the top (z = 1) and the bottom (z = 0) were split into three

square faces each, along with the other faces for a total of 12 faces, as shown in Figure

5.6. The faces where (x = −1) and (y = −1) were partitioned into 8 patches, the

other faces were partitioned into 4 patches. The accuracy of RPBPM and RSBPM

are compared with respect to using RPP order 2, 3 and 4. Notice that RSPBM

outperforms RPBPM in this instance.

x

y

z

1

1

1

Figure 5.6: L-shaped domain for Example 5.3.3.

Table 5.6: Results of Example 5.3.3 by using patch-wise RPBPM.

RPP order k Num. of particles ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 504 0.300 1.809E-02
3 896 0.234 1.002E-02
4 1400 0.154 6.666E-03

Example 5.3.4. Consider the Laplace equation on [−1, 1]× [−1, 1]× [0, 1] with a crack

face on the xz-axis where x ≥ 0, as seen in Figure 5.7. The true solution is
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Table 5.7: Results of Example 5.3.3 by using patch-wise RSBPM.

RPP order k Num. of particles ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 485 7.005E-02 2.166E-03
3 860 1.052E-02 5.362E-04
4 1340 4.248E-03 1.318E-04

u(r, θ, z) = zrα sinαθ, where α =
1

2

and Dirichlet boundary conditions are imposed along ∂Ω. Then u has an edge singu-

larity along the z-axis.

For a cracked domain, in general, u may have a jump discontinuity along the

positive x-axis. Thus, using the BIE for this domain will not be able to produce a

solution. For this reason, split Ω along the plane y = 0 into Ω1 and Ω2 and treat

them as separate domains, as shown infigure 5.8. Let u1(x) be the solution inside

Ω1 and u2(x) be the solution in Ω2 and divide ∂Ω1 and ∂Ω2 into eight squares and

one rectangle each, the same way as was done in Figure 5.2. Compute the coefficient

matrices for each sub-domain. On the interface, assume the interface condition:

u1|interface = u2|interface,
∂u1
∂n
|interface =

∂u2
∂n
|interface.

Dirichlet boundary conditions were imposed everywhere on each sub-domain, except

for the interface where the above two interface conditions were used. Then, the linear

system was solved for
∂u1
∂n

and
∂u2
∂n

. Each square face was divided into 4 patches and

the rectangles were divided into 8 patches. The results are presented using RSBPM

and RPBPM with RPP order 2, 3 and 4.
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Figure 5.7: Cracked domain for Example 5.3.4. The shaded area is the location of
the crack.

Ω

Ω2

1
y

1

1
x

1

z

Figure 5.8: Cracked domain for Example 5.3.4. The darker shaded area is the location
of the interface between Ω1 and Ω2.

Table 5.8: Results of Example 5.3.4 by using patch-wise RPBPM.

RPP order k Num. of particles ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 720 0.702E+00 4.716E-02
3 1280 0.573E+00 4.127E-02
4 2000 0.383E+00 3.464E-02

Table 5.9: Results of Example 5.3.4 by using patch-wise RSBPM.

RPP order k Num. of particles ‖q − q̃‖Γ,∞ ‖u− ũ‖Γ,∞ (interpolation error)
2 696 1.971E-02 2.902E-03
3 1232 1.091E-02 8.051E-04
4 1920 5.301E-03 1.913E-04



CHAPTER 6: HELMHOLTZ EQUATION IN TWO DIMENSIONS

We will now move to another type of elliptic equation in R2, Helmholtz equa-

tion. Helmholtz equation is sometimes called the reduced wave equation because

it is the governing equation for time harmonic wave equations. We will investigate

the numerical solution of Helmholtz equation with regards to polygonal and circular

domains.

Let Ω be a bounded domain with boundary Γ assumed to be piecewise smooth.

For wave number k, Helmholtz equation is the following:

∆u(x) + k2u(x) = 0 in Ω. (6.1)

The fundamental solution, Gk(x, P ) =
i
4
H

(1)
0 (k|x−P |), of Helmholtz equation satisfies

∆Gk(x, P ) + k2Gk(x, P ) = −δ(x− P ). (6.2)

Where H
(1)
0 (z) is the Hankel function of order zero of the first kind.

H(1)
n (z) = Jn(z) + iYn(z)

Where Jn(z) and Yn(z) are the Bessel functions of the first and second kinds respec-

tively. For integer n, Jn(z) has the power series representation

Jn(z) =

∞
∑

m=0

(−1)m
m!(m+ n)!

(z

2

)2m+n

and contains no singularities. For integer n, Yn(z) has the power series representation

Yn(z) =
2

π
Jn(z)

(

ln
z

2
+ γ
)

− 1

π

n−1
∑

m=0

(n−m− 1)!

m!

(z

2

)2m−n

+
1

π

∞
∑

m=1

(−1)m−1 (Hm +Hm+n)

m!(m+ n)!

(z

2

)2m+n

,

where γ = 0.57721 is the Euler-Mascheroni constant and Hn =
n
∑

m=1

1

m
is a harmonic

number. Notice that Yn has a logarithmic singularity at the origin causing H
(1)
n to
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have a logarithmic singularity at the origin. It will be useful to extract this logarithmic

singularity away from everything else by using this formula

Yn(z) =
2

π
Jn(z) ln z + f(z). (6.3)

Here, f(z) represents everything else not multiplied by the logarithm.

This is the same kind of singularity that the fundamental solution of Laplace’s

equation contains. Now, note that u(x) and Gk(x, P ) satisfy the same BIE as the

Laplace equation:

c(P )u(P ) =

∫

Γ

∂u(x)

∂n
Gk(x, P )ds(x)−

∫

Γ

∂Gk(x, P )

∂n
u(x)ds(x),

where

c(P ) =



































0 if P /∈ Ω

1 if P ∈ Ω

1
2

if P ∈ Γ and Γ is smooth at P

α
2π

if P ∈ Γ and Γ is not smooth at P

and n is the outward unit normal vector.

Now we will suppose we have a parameterization of the boundary x(t) where

t ∈ [a, b]. Set r(t, s) = |x(t) − x(s)| where x(s) = P . Denote f̃(t) = f(x(t)) and set

q(x) = ∂u
∂n
(x). Then we can see the fundamental solution in parameter space as

G̃k(t, s) =
i

4
H

(1)
0 (kr(t, s))

and its normal derivative

∂G̃k

∂n
(t, s) = −ik

4
H

(1)
1 (kr(t, s))

∂r(t, s)

∂n
.

Let us now define the layer potential integral operators, the single layer potential

Sq(P ) :=

∫

Γ

Gk(x, P )q(x)ds(x) =

∫ b

a

G̃k(t, s)q̃(t)|x′(t)|dt

and the double layer potential



60

Du(P ) :=

∫

Γ

∂Gk(x, P )

∂n
u(x)ds(x) =

∫ b

a

∂G̃k

∂n
(t, s)ũ(x)|x′(t)|dt.

For ease of notation and calculation we will introduce a splitting of the kernels into

singular and nonsingular parts for specific domains. Now, the BIE can be written in

a much more compact form

c(P )u(P ) +Du(P ) = Sq(P ).

We will be approximating the solution of this BIE using a collocation method. We will

discretize u and q to approximate the solution of the BIE of Helmholtz equation under

various circumstances. So consider the particles yi corresponding to the particle basis

functions φi(x) introduced in chapter 4, for i = 1, . . . ,DOF.We will then approximate

u(x) ≈
DOF
∑

i=1

uiφi(x) and q(x) ≈
DOF
∑

i=1

qiφi(x). Most of the time we are concerned with

complex valued solutions so in this case ui and qi ∈ C. Then, the discrete BIE is

DOF
∑

i=1

(c(P )φi(P ) +Dφi(P ))ui =
DOF
∑

i=1

Sφi(P )qi.

Next, we will look at how we can accurately compute the double and single layer

potentials for polygonal and circular domains.

6.1 Polygonal Domains

Consider a polygon Ω with boundary Γ = ∪nk=1Γk where Γk = (xk−xk−1)t+xk−1

where t ∈ [0, 1] and xk are the n vertices of the polygon Ω. Denote Lk = |xk − xk−1|.

We wish to use patch-wise RPP shape functions to approximate the solution of the

BIE of Helmholtz equation. Construction of particles and their corresponding particle

shape functions are similar to those for the Laplace equation. The only thing that

differs is the computation of the integrals.
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6.1.1 Single Layer Potential

Now, lets examine the computation of the single layer potential. Consider the

approximation function f(x) where supp(f) ⊂ Γj and the particle P ∈ Γ. Using the

parameterization of Γj we have the following:

Sf(P ) =

∫

Γj

Gk(x, P )f(x)ds(x)

=

∫ 1

0

i

4
H

(1)
0 (k|x(t)− P |)f̃(t)Ljdt.

If P /∈ supp(f), then there is no singularity and we may use the standard Gaussian

quadrature to compute this integral. If P ∈ supp(f), using the parameterization of

Γj and setting P = x(s), we partition the integration region as follows

Sf(P ) =

∫ 1

0

i

4
H

(1)
0 (kr(t, s))f̃(t)Ljdt

=

∫ s

0

i

4
H

(1)
0 (kr(t, s))f̃(t)Ljdt+

∫ 1

s

i

4
H

(1)
0 (kr(t, s))f̃(t)Ljdt

:= I1(s) + I2(s).

Now each integral has a singularity at one endpoint of the interval. Just consider the

first integral I1(s), the second will follow the same logic. On this interval, we will

change variables u = s−t
s

and then we may write

r(t, s) = |x(t)− x(s)| = |Ljt + xj−1 − (Ljs+ xj−1)| = Lj |t− s| = Ljsu.

Then the integral becomes

I1(s) =

∫ 1

0

i

4
H

(1)
0 (kLjsu)f̃(s(1− u))Ljsdu.

Notice that the singularity is now at the point u = 0. Now we will split the kernel of

the integral into singular and nonsingular parts. We want to exploit the fact that Y0

has a logarithmic singularity. By (6.3), we write the kernel

K(u, s) =
iLjs

4
H

(1)
0 (kLjsu) = K1(u, s) lnu+K2(u, s),

where
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K1(u, s) = −Ljs

2π
J0(Ljksu),

K2(u, s) = K(u, s)−K1(u, s) lnu.

K1(u, s) and K2(u, s) are analytic and it just remains to see what happens when

u = 0. From the power series form of Y0(z) we see K2(u, s) has the form

K2(u, s) =

(

iLjs

4
− Ljs

2π

(

γ + ln
Ljks

2

))

J0(Ljksu)

+
2

π

∞
∑

m=1

(−1)m−1Hm

m!2

(

Ljksu

2

)2m

.

Now, we can easily see that

K1(0, s) = −Ljs

2π
,

K2(0, s) =
Ljs

4

(

i− 2

π

(

γ + ln
kLjs

2

))

.

If we let g(u) = f̃(s(1− u)), then

I1(s) =

∫ 1

0

K(u, s)g(u)du

=

∫ 1

0

K1(u, s)g(u) lnudu+

∫ 1

0

K2(u, s)g(u)du

≈
Nlg
∑

k=1

K1(Uk, s)g(Uk)Wk +

Ng
∑

k=1

K2(uk, s)g(uk)wk,

where Ng and Nlg are the number of Gaussian quadrature and logarithmic quadrature

points respectively, uk and Uk are the Gaussian quadrature and logarithmic Gaussian

quadrature points respectively, and wk and Wk are the weights for Gaussian quadra-

ture and logarithmic Gaussian quadrature points respectively. We may compute I2(s)

in a similar way and after that, we can compute the single layer potential.

Using this, for boundary patricles Pj and patch-wise RPP shape functions φk,

we will compute the matrix S = [(Sj,k)] that approximates the single layer potential

where j, k = 1, . . . ,DOF and
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Sj,k = Sφk (Pj) .

6.1.2 Double Layer Potential

Consider the approximation function f(x) where supp(f) ⊂ Γj and the particle

P ∈ Γi. Using the parameterization of Γj we see the following:

Df(P ) =

∫

Γj

∂Gk

∂n
(x, P )f(x)ds(x)

=

∫ 1

0

−ik
4
H

(1)
1 (k|x(t)− P |)∂|x(t)− P |

∂n
f̃(t)Ljdt.

There are only two cases to consider. If j 6= i, then there is no singularity since

P is not on Γj and the integration may be computed using the standard Gaussian

quadrature. If j = i, Df(P ) = 0 since ∂|x−P |
∂n

= 0 when the field and source point

are on the same segment. Using this, for boundary patricles Pj and patch-wise RPP

shape functions φk, we will compute the matrix D = [(Dj,k)] that approximates the

double layer potential where j, k = 1, . . . ,DOF and

Dj,k = Dφk (Pj) .

For the both the single and double layer potentials in the polygonal domain, it

should be noted that when the source point and field point are close to each other

but not on the same boundary, the integral becomes almost singular and the accu-

racy of numerical integration decreases. To overcome this, we have tried increasing

the number of integration points and subdividing the integration interval. Both are

effective, but computationally inefficient.

6.2 Circular Domains

Immediately, we run into some problems with the circular domain. First, the

boundary is now curved and no longer piecewise linear. This leads to a different

type of logarithmic singularity that the logarithmic Gaussian quadrature rule cannot
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handle so well. This also leads to having to deal with a singularity in the double layer

potential. Another problem has to do with the approximation of periodic functions

with RPP basis functions.

6.2.1 Particle Shape Functions

The meshfree particle shape functions introduced thus far usually generate poly-

nomials in the reference domain i.e. the parameter space. Therefore, on a circle

with radius R centered at the origin, we may parameterize it in the usual fashion

x(t) = (R cos t, R sin t) for t ∈ [0, 2π]. Then, these basis functions would generate

polynomials in t, that is 1, t, t2, . . . , tN . For any function f(x, y), on the boundary of

the circle, the function is f(R cos t, R sin t). We need to have basis functions that are

better suited to approximate trigonometric functions.

Meshfree shape functions can approximate triginometric functions but must use

a high RPP order. From ([12]), it was shown that

φ∞(x) = lim
K→∞

φ[−K,K],0,2K−1(x) =
sin(πx)

πx
. (6.4)

Using (6.4) and complex variables,

ΨN(x) =
sin πx cot πx

N

N

was developed. ΨN(x) can be considered a meshfree trigonometric shape function.

To use this basis function, we will place equally spaced nodes in [0, 2π) such that

h = 2π
N

and tj = jh where j = 0, . . . , N − 1. Then we define

ψj(t) = ΨN

(

t

h
− j
)

, j = 0, . . . , N − 1.

It should be noted that this function is identical to the Lagrange basis for trigono-

metric interpolation with equally spaced nodes. These functions have the desired

Kronecker delta property and have the ability to approximate trigonometric func-

tions on the circle. However, they no longer have compact support.

For this parameterization of the circle, for any point x = (R cos t, R sin t) = c(t)
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on the boundary of the circle and P = (Q cos s,Q sin s) inside the circle we may write

|x− P | =
√

R2 +Q2 − 2RQ cos(t− s)

and since the normal direction is in the radial direction we may write

∂|x − P |
∂n

=
∂|x − P |
∂R

=
R −Q cos(t− s)
|x− P | .

As P moves to the boundary we may simplify these expressions and write

r(t, s) = 2R

∣

∣

∣

∣

sin

(

t− s
2

)
∣

∣

∣

∣

∂r(t, s)

∂n
=

∣

∣

∣

∣

sin

(

t− s
2

)
∣

∣

∣

∣

.

Since these approximation functions are no longer polynomials but trig functions,

it is more useful to use the trapezoidal integration scheme verses Gaussian quadra-

ture. Another nice thing about having periodic basis functions on a circular domain

is that the matrices discretizing the single and double layer potentials become cir-

culant, meaning we only need to compute one row of each, which will save a lot of

computational expense. Following the same idea as in ([19]), we will examine the

layer potentials.

6.2.2 Single Layer Potential

For the circle of radius R, and boundary node P = c
(

2πs
N

)

, let the kernel of the

operator be defined as

L(t, s) :=
iR

4
H

(1)
0 (kr(t, s)).

For the approximation function f(x), the single layer potential takes the form

Sf(P ) =

∫ 2π

0

L(t, s)f̃(t)dt.

We wish to decompose the kernel into singular and nonsingular parts. Knowing the

structure of the logarithmic singularity which comes from the bessel function of the

second kind and (6.3), we set



66

L(t, s) := L1(t, s) ln

(

4 sin2

(

t− s
2

))

+ L2(t, s),

where

L1(t, s) := − R
4π
J0(kr(t, s)),

L2(t, s) := L(t, s)− L1(t, s) ln

(

4 sin2

(

t− s
2

))

.

L1(t, s) and L2(t, s) are actually analytic, but we need to check what values they have

when t = s in particular, L2(t, s). Using the power series expansion of Y0(z) we see

that L2(t, s) has the form

L2(t, s) =
R

2

(

i

2
+

1

π

(

ln

(

2

Rk

)

− γ
))

J0(kr(t, s))

− R
2π

∞
∑

m=1

(−1)m−1Hm

m!2

(

kr(t, s)

2

)2m

.

From this formula and above, one can see that as t approaches s:

L1(s, s) = − R
4π
,

L2(s, s) =
R

2

(

i

2
+

1

π

(

ln

(

2

Rk

)

− γ
))

.

For integration, we will use the trapezoidal rule. That is for any periodic function

f(t)

∫ 2π

0

f(t)dt ≈ π

n

2n−1
∑

j=0

f(tj),

where tj =
πj
n
, and j = 0, 1, . . . , 2n − 1. To handle the singularity, we employ a the

quadrature rule found in ([19]):

∫ 2π

0

f(t) ln

(

4 sin2

(

t− s
2

))

dt ≈
2n−1
∑

j=0

R
(n)
j (s)f(tj) where 0 ≤ s ≤ 2π,

where
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R
(n)
j (s) = −2π

n

n−1
∑

m=1

1

m
cosm(s− tj)−

π

n2
cosn(s− tj) where j = 0, 1, . . . , 2n− 1.

Using all of these tools, we can compute the single layer potential.

Sf(P ) =

∫ 2π

0

L(t, s)f̃(t)dt

=

∫ 2π

0

L1(t, s) ln

(

4 sin2

(

t− s
2

))

f̃(t)dt+

∫ 2π

0

L2(t, s)f̃(t)dt

≈
2n−1
∑

j=0

(

R
(n)
j (s)L1(tj , s) +

π

n
L2(tj , s)

)

f(tj).

Now, for boundary particles Pj and meshfree shape functions ψk, we will compute

the matrix S = [Sj,k] that approximates the single layer potential where j, k =

0, 1, . . . , N − 1 and

Sj,k = Sψk(Pj).

Since S is a circulant matrix, only the first row corresponding to Pj = 0 needs to be

computed. This relation gives

S =

























S0,0 S0,1 . . . S0,N−2 S0,N−1

S0,N−1 S0,0 . . . S0,N−3 S0,N−2

. . .

. . .

S0,1 S0,2 . . . S0,N−1 S0,0

























.

6.2.3 Double Layer Potential

For the circle of radius R, and boundary node P = c
(

2πs
N

)

, let the kernel of the

double layer potential operator be defined as

K(t, s) := −ikR
4
H

(1)
1 (kr(t, s))

∂r(t, s)

∂n
.

For the approximation function f(x), the double layer potential takes the form
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Df(P ) =

∫ 2π

0

K(t, s)f̃(t)dt.

We wish to decompose the kernel into singular and nonsingular parts. Knowing the

structure of the logarithmic singularity which comes from from the bessel function of

the second kind and (6.3), we set

K(t, s) := K1(t, s) ln

(

4 sin2

(

t− s
2

))

+K2(t, s)

where

K1(t, s) :=
kR

4π
J1(kr(t, s))

∂r(t, s)

∂n

K2(t, s) := K(t, s)−K1(t, s) ln

(

4 sin2

(

t− s
2

))

K1(t, s) and K2(t, s) are actually analytic, but we need to check what values they

have when t = s in particular, K2(s, s). Clearly K1(s, s) = 0 and since

lim
z→0

zH
(1)
1 (z) =

2

iπ

we deduce that

K2(s, s) = − 1

4π
.

For integration, we will use the trapezoidal rule following the same steps as for the

single layer potential. Using all of these tools, we can compute the double layer

potential.

Df(P ) =

∫ 2π

0

K(t, s)f̃(t)dt

=

∫ 2π

0

K1(t, s) ln

(

4 sin2

(

t− s
2

))

f̃(t)dt+

∫ 2π

0

K2(t, s)f̃(t)dt

≈
2n−1
∑

j=0

(

R
(n)
j (s)K1(tj , s) +

π

n
K2(tj, s)

)

f(tj)

For boundary particles Pj and meshfree shape functions ψk, we will compute the ma-
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trix D = [Dj,k] that approximates the single layer potential where j, k = 0, 1, . . . , N−1

and

Dj,k = Dψk(Pj).

Since D is a circulant matrix, only the first row corresponding to Pj = 0 needs to be

computed. This relation gives

D =

























D0,0 D0,1 . . . D0,N−2 D0,N−1

D0,N−1 D0,0 . . . D0,N−3 D0,N−2

. . .

. . .

D0,1 D0,2 . . . D0,N−1 D0,0

























.

6.3 Photonic crystals

A photonic crystal is a low-loss periodic dielectric medium that can be used for

optical control and manipulation. People design and construct photonic crystals with

photonic band gaps which prevent propagation of waves with certain frequencies.

In order for a photonic crystal to have a photonic band gap, the crystal should be

designed with some periodicity creating a lattice type of structure([18]). We will now

consider the propagation of electromagnetic waves through a two dimensional lattice

of photonic crystals in which the direction of propagation is in the xy-plane. Consider

a lattice of photonic crystal cylinders and a plane wave propagating in the direction

(1, 0), see Figure 6.1.

Certain frequencies of light will be blocked from passing through this lattice. If

some rods are removed, defects in the lattice are created and the waves will begin

to propagate where the rods were removed. People use this idea to create photonic

nanodevices such as waveguides. Mathematically, we may consider each cylinder a

domain Ωi and the space outside the cylinders Ωext = (∪Ωi)
c.

The governing equations of electromagnetic scattering by photonic crystals in the

frequency domain are the time harmonic Maxwell’s equations
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Ψ

Ω

Ω ext

i

Figure 6.1: Sketch of a plane wave, Ψ, and a photonic crystal lattice.

∇× E(x) =
iω

c
H(x) (6.5)

∇×H(x) = −iω
c
ε(x)E(x) (6.6)

∇ · E = 0 (6.7)

∇ ·H = 0 (6.8)

where E is the electric field, H is the magnetic field, c is the speed of light in a

vacuum, ε is the dielectric permittivity. For transverse magnetic (TM) waves one

can deduce that E = (0, 0, Ez) and H = (Hx, Hy, 0), and for transverse electric (TE)

waves one can deduce that E = (Ex, Ey, 0) and H = (0, 0, Hz). For both of these

cases, Maxwell’s equations reduce to Helmholtz equation

∆u+ εk2u = 0

where k = ω
c
.

In Ωext the total wave uext satisfies the Helmholtz equation with the wave number

kext. Here, the total wave is as follows:

uext = uinc + usc, (6.9)

where uinc is the incident wave and usc is the scattered wave respectively, each of

which also satisfies Helmholtz equation with kext. The scattered wave also satisfies

the Sommerfield radiation condition
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lim
r→∞

√
usc

(

∂usc
∂n
− ikusc

)

= 0

which guarantees the scattered wave is outgoing.

In Ωi the total wave ui satisfies the Helmholtz equation with wave number ki.

On the interface between the cylinders Ωi and the exterior we have the following

boundary conditions.

uext = ui and

∂uext
∂n

= ν−1∂u
i

∂n

i = 1, . . . ,ND. Where ν = 1 for TM waves and ν = εint
εext

for TE waves. Now let us

develop the BIEs for lattices of photonic crystals.

6.3.1 Exterior Field

In what follows, we let u= [u1, u2, . . . , uDOF]
T where uj = u(Pj) is the value

of u at boundary node Pj . Outside of the cylinders we have the boundary integral

equation for u = uext

c(P )u(P )−
∫

∂Ωext

∂Gk

∂n
(x, P )u(x)ds(x) +

∫

∂Ωext

∂u

∂n
(x)Gk(x, P )ds(x) = 0,

where the signs on the single and double layer potentials have changed due to the

fact that we are in an unbounded domain and we are using the convention that the

normals are pointing outward. ∂Ωext = ∪∂Ωi which means we can expand the BIE

into

c(P )u(P )−
ND
∑

i=1

∫

∂Ωi

∂Gk

∂n
(x, P )u(x)ds(x) +

ND
∑

i=1

∫

∂Ωi

∂u

∂n
(x)Gk(x, P )ds(x) = 0.

Let q = ∂u
∂n

and then move back to the integral operator notation and set

Diu(P ) =

∫

Ωi

∂Gk

∂n
(x, P )u(x)ds(x) and

Siq(P ) =

∫

Ωi

Gk(x, P )
∂u

∂n
(x)ds(x),
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so that the BIE is now

c(P )u(P )−
ND
∑

i=1

Diu(P ) +

ND
∑

i=1

Siq(P ) = 0.

Let u(x) =

ND
∑

j=1

DOF
∑

k=1

φjk(x)ujk and q(x) =

ND
∑

j=1

DOF
∑

k=1

φjk(x)qjk and let P = ylm be

the particles, where l = 1, . . . ,ND ,m = 1, . . . ,DOF. Upon plugging this in we use

the fact that the particle shape functions φjk(x) satisfy the Kronecker delta property,

each shape function is only defined on one circle, and since the nodes are on the

boundary, c(P ) = 1
2
and hence we have the following:

1

2

ND
∑

i=1

DOF
∑

k=1

δ(lm)(ik)uik −
ND
∑

i=1

DOF
∑

k=1

Diφik(ylm)uik +

ND
∑

i=1

DOF
∑

k=1

Siφik(ylm)qik = 0.

We can now represent the BIE as a (ND × ND) block matrix equation with blocks of

(DOF× DOF) as follows:

(

1

2
I −Dext

)

u+ Sextq = 0, (6.10)

where the blocks are

Dext(a, b) = [Dbφbm(yan)] and Sext(a, b) = [Sbφbm(yan)],

where a, b = 1, . . . ,ND and m,n = 1, . . . ,DOF.

Note that when a = b, these integrations are singular and hence the operator splitting

techniques mentioned above should be followed. Also note, one can also exploit the

symmetries of the lattice and save computational cost by doing so.

6.3.2 Interior Field

For the interior field we have the following BIE for u = ui in each cylinder

c(P )u(P ) +

∫

∂Ωi

∂Gk

∂n
(x, P )u(x)ds(x)−

∫

∂Ωi

∂u

∂n
(x)Gk(x, P )ds(x) = 0,

where i = 1, . . . ,ND. In operator form, this becomes

c(P )u(P ) +Diu(P )− Siq(P ) = 0, for i = 1, . . . , ND.
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With the same assumptions for the exterior field, this becomes a block diagonal matrix

equation

(

1

2
I +Dint

)

u− Sintq = 0 (6.11)

where

Dint(a, b) =











Daφam(yan) if a = b

0 if a 6= b

Sint(a, b) =











Saφam(yan) if a = b

0 if a 6= b

and a, b = 1, . . . ,ND and m,n = 1, . . . ,DOF. Note that these integrations are also

singular and the operator splitting techniques mentioned above should be applied.

6.3.3 Interface

For the exterior field we have a matrix equation for uext and for the interior field

we have a matrix equation for ui, i = 1, . . . , ND, we need to combine the two by the

interface conditions. For uinc and usc defined by (6.9), note that since we assume uinc

satisfies Helmholtz equation outside of Ωi, (6.10) is also valid for usc. That is,
(

1

2
I −Dext

)

usc + Sextqsc = 0. (6.12)

Next, from the interface conditions, we see for i = 1, . . . , ND

ui = uinc + usc on Γi.

Using this, we may rewrite (6.11) in terms of usc and the known field uinc. That is,
(

1

2
I +Dint

)

usc − Sintqsc = −
(

1

2
I +Dint

)

uinc + Sintqinc. (6.13)

Combining (6.12) and (6.13), we have an equation that we may solve for the scattered

field
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











(

1
2
I −Dext

)

Sext

(

1
2
I +Dint

)

−Sint

























usc

qsc













=













0

−
(

1
2
I +Dint

)

uinc + Sintqinc













(6.14)

The matrix of this linear system is full and non-symmetric. One may use a direct

or iterative solver to solve this system. When solving for a large number of unknowns

it is advised to use an iterative solver because of the speed. Upon solving, and finding

usc and qsc one may use the integral equations derived for the exterior and interior

to find the value of the total wave everywhere.

6.4 Numerical Examples

We wish to test our methods for photonic crystal lattices, with and without

defects. First we must test the accuracy of our proposed method to solve Helmholtz

equation.

Example 6.4.1. Let Ω be the circle of radius r0 = 1
2
µm centered at the origin.

Dielectric permittivities are ε = 4 inside the circle and ε = 1 outside the circle.

Suppose we have an incident wave uinc(x) = ei(2πx). We want to find uext = uinc + usc

of (6.9) and uint by solving the following scattering problem

∆uext + (2π)2uext = 0 outside Ω,

∆uint + 4(2π)2uint = 0 inside Ω,

uext = uint on Γ,

∂uext
∂n

= ∂uint

∂n
on Γ,

lim
r→∞

√
usc

(

∂usc
∂n
− ikusc

)

= 0.

This represents the scattering of a plane wave by a photonic crystal made up of a

single rod. We test our method on this problem using N = 4, 8, 16, 32 particle shape

functions.
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An analytic solution exists for the TM mode from ([9, 10]), we compare our

approximate solution with this true solution.

Ez(r, θ) = eiω
+∞
∑

n=−∞

Ctot
n Jn(kintr)e

inθ where r ≤ r0,

Ez(r, θ) = eiω
+∞
∑

n=−∞

(

i−nJn(kextr) + Cscat
n H(2)

n (kextr)
)

einθ where r > r0,

and the coefficients are defined as

Ctot
n = i−n

kext
µext

J ′
n(kextr0)H

(2)
n (kextr0)− kext

µext
H

′(2)
n (kextr0)Jn(kextr0)

kint
µint

J ′
n(kintr0)H

(2)
n (kextr0)− kext

µext
H

′(2)
n (kextr0)Jn(kintr0)

,

and

Cscat
n = i−n

kext
µext

J ′
n(kextr0)Jn(kintr0)− kint

µint
J ′
n(kintr0)Jn(kextr0)

kint
µint

J ′
n(kintr0)H

(2)
n (kextr0)− kext

µext
H

′(2)
n (kextr0)Jn(kintr0)

,

where (r, θ) are the polar coordinates centered at the origin and r0 is the radius of

the cylinder. We will now compare our method to this exact solution.
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(a) Exact solution
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(b) N=32

Figure 6.2: Contour plot of Ez in computational domain [-1 µm,1 µm] × [-1 µm,1
µm] for a cylinder with r=0.5 µm with k = 2π and ε = 4.

From Figures 6.2 and 6.3, we see that our numerical solution converges to the

true solution. We also note that compared to ([10]), to obtain an accurate numerical
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(a) N=4
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(b) N=8
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(c) N=16
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(d) N=32

Figure 6.3: Plot of Ez along x-axis from [-1 µm, 1 µm] for a cylinder with r=0.5 µm
with k = 2π and ε = 4. True solution is dashed line and the approximate solution is
solid. N is the number of shape functions used to approximate the solution.

solution, we require less degrees of freedom. From the figures, it appears that using

N = 32 with this method out performs using 80 quadrature points with the Nyström

method.

Next, we will test the accuracy of these meshless shape functions on polygonal

domains. First, we wish to check the accuracy of this method applied to Helmholtz

equation when the true solution is a polynomial solution. We do this by solving the

inhomogeneous Helmholtz equation with Dirichlet boundary conditions.



77

∆u(x) + k2u(x) = f(x) in Ω (6.15)

u(x) = g(x) on Γ. (6.16)

To solve the inhomogeneous Helmholtz equation using BEM, one must use a different

BIE. This comes from the fact that we have a nonzero load function. The BIE

corresponding to the inhomogeneous Helmholtz equation is

c(P )u(P ) =

∫

Ω

f(x)Gk(x, P )dx+

∫

Γ

∂u(x)

∂n
Gk(x, P )ds(x)−

∫

Γ

∂Gk(x, P )

∂n
u(x)ds(x).

One may notice, this BIE contains a weakly singular domain integral. To approx-

imate the domain integral, we used the Duffy transform with logarithmic Gaussian

quadrature.

Example 6.4.2. Consider the inhomogeneous Helmholtz equation (6.15) in Ω = [0, 1]2

with k = 2 whose true solution is u(x) = z4 where z = x+ iy. We solve this problem

by using the collocation method with use of particle shape functions with RPP order

2, 3, and 4 respectively.

Table 6.1: Errors in maximum norm of the real parts of q and u on Γ and error in
maximum norm of the real part of u in Ω for RPP orders 2, 3, and 4 for Example
6.4.2.

p DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ ‖u− ũ‖∞,Ω

2 24 1.941E-02 3.535E-02 4.726E-03
3 32 1.792E-03 3.546E-03 4.883E-04
4 40 5.329E-15 1.643E-13 2.072E-13

The true solution is a fourth order polynomial. As Table 6.1 shows, RPP order

2 and 3 do not show reasonable results eventhough our method with RPP order 4

almost exactly captures the true solution.

Example 6.4.3. We apply our method to Helmholtz equation when the true solution
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is not a polynomial.

∆u(x) + k2u(x) = 0 in Ω = [−0.5, 0.5]2 (6.17)

u(x) = g(x) on Γ. (6.18)

We let the true solution take the form of a plane wave u(x) = ei(kx) with k = 2

and impose the Dirichlet condition everywhere on the boundary. We use two flat-top

partition of unity functions on each side of the boundary. We test patch-wise RPBPM

with RPP order 2, 4, 6, and 8.

Table 6.2: Errors in maximum norm of the real parts of q and u on Γ and error in
maximum norm of the real part of u in Ω for RPP orders 2, 4, 6, and 8 for Example
6.4.3.

p DOF ‖u− ũ‖∞,Γ ‖q − q̃‖∞,Γ ‖u− ũ‖∞,Ω

2 24 4.265E-03 7.426E-03 1.165E-03
4 40 5.414E-05 2.358E-04 1.017E-05
6 56 3.138E-07 2.057E-06 7.294E-08
8 72 1.050E-09 7.318E-09 2.491E-10

From Table 6.2 we notice as the RPP order increases, so does the accuracy of our

solution.

We will look at the use of our method for the simulation of electromagnetic

scattering by lattices of photonic crystals.

First, we will consider a square lattice of circular cylinders. We show the contour

plots of the full lattice, the lattice with a line defect, and with two point defects.

For this lattice, each rod has diameter of 1 µm and is spaced 2 µm in both x and y

directions and has permittivity constant ε = 9. The wavelength of the incident wave

uinc is λ = 1 µm and we used N = 20 particle shape functions for each rod. From

Figure 6.4a, we see for the full lattice, the incoming wave is almost completely blocked

from the lattice by the band gap. We also notice for the line defect, we have a good

amount of transmission of the wave through the empty row, as shown in Figure 6.4b.

For the lattice with two point defects, Figure 6.4c, we see that the wave effectively
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gets trapped in the two cavities.
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(b) Full lattice with line defect (72 rods).
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(c) Full lattice with two point defects (79 rods).

Figure 6.4: Square lattice of circular cylinders.

Second, we consider a hexagonal lattice of circular cylinders. We show the contour

plots of the full lattice, the lattice with a line defect, and with several point defects

mimicing a line defect. For this lattice, each rod has diameter of 1 µm and is spaced

2 µm in both x direction and each row is spaced 2 µm in both x direction and

permittivity constant ε = 9. The wavelength of the incident wave uinc is λ = π µm

and we used N = 20 particle shape functions for each rod. From Figure 6.5a, we see

for the full lattice, the incoming wave is almost completely blocked from the lattice

by the band gap. From Figure 6.5b, we also notice for the line defect, we have a good
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amount of transmission of the wave through the empty row. Notice for the row of

several point defects, the wave is transmitted through the lattice as if there were a

damped line defect as seen in Figure 6.5c.
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(b) Full lattice with line defect (52 rods).
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(c) Full lattice with several point defects (56
rods).

Figure 6.5: Hexagonal lattice of circular cylinders.

Finally, we will consider a square lattice of square cylinders. We show the contour

plots of the full lattice and the lattice with a line defect. Here, each square has width

1 µm and is spaced 2 µm in both x and y directions from each other. The wavelength

of the incident wave uinc is λ = 1 µm and the permittivity constant ε = 9 and we used

DOF = 24 basis functions for each square. Due to the lack of analytic solution, we do
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not know how accurate these solutions are. We know there are singularities at each

corner of the square, thus using RSP shape functions could improve the solution.
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(a) Full lattice (49 rods).
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(b) Full lattice with line defect (42 rods).

Figure 6.6: Square lattice of square cylinders.

It should be noted, when we wish to evaluate the field at a point near the bound-

ary, the integrals become nearly singular and accuracy at that point will deteriorate,

to alleviate that difficulty we place more integration points there or refine the mesh.

It is not efficient, but it increases the accuracy. Work is now being done for better

ways to handle this difficulty.



CHAPTER 7: MESHLESS METHODS FOR THIN PLATES

7.1 Variational Form of the Classical Plate Theory

In this section, we derive the variational form to be used for the classical plate

theory. Let Ω be a bounded domain in R2 with piecewise smooth boundary, which

represents the mid-plane of a plate, which we assume to be of thickness d (d <<

diam(Ω))(see, Figure 7.1). We represent the 3-dimensional plate as Ω̂ = {(x, y, z) ∈

R3|(x, y) ∈ Ω, |z| < d/2}.

d

z

t

y

nx

Ω

α

Figure 7.1: 3-dimensional plate Ω̂ and 2-dimensional mid-plane Ω.

The classical (Kirchhoff) plate theory is one in which the displacement field is

based on the Kirchhoff hypothesis: (1) Straight lines perpendicular to the middle

surface before deformation remain straight after deformation; (2) The transverse nor-

mals do not experience elongation (i.e. they are inextensible); (3) The transverse
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normals such that they remain perpendicular to the middle surface after deformation

([50],[54],[55]). From this hypothesis, ǫzz = 0 and the transverse shear strains are

zero: ǫxz = ǫyz = 0. Suppose (u, v, w) denote the total displacement of a point along

the xyz-coordinate system and (u0, v0, w0) denote the values of u, v and w at the point

(x, y, 0). Then these conditions imply

u(x, y, z) = u0 − z
∂w

∂x
, v(x, y, z) = v0 − z

∂w

∂y
, w(x, y, z) = w0. (7.1)

Substituting the displacement functions of (7.1) into the virtual work formulation, we

have ([54],[55])

B(w, v) = F(v), for w, v ∈ H2(Ω), (7.2)

where

B(w, v) = D

∫∫

Ω















∂2w

∂x2
∂2w

∂y2

∂2w

∂x∂y















T












1 ν 0

ν 1 0

0 0 2(1− ν)



























∂2v

∂x2
∂2v

∂y2

∂2v

∂x∂y















dxdy, (7.3)

F(v) =

∫∫

Ω

p(x, y)vdxdy +

∫

Γ

Mn
∂v

∂n
dt−

∫

Γ

(

Qn +
∂Mnt

∂t

)

vdt (7.4)

where ν and E are the Poisson’s ratio and the Young’s modulus of an isotropic elastic

material, respectively, and

D =
Ed3

12(1− ν2) , p =
∂Qx

∂x
+
∂Qy

∂y
,

Mx = D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

,My = D

(

ν
∂2w

∂x2
+
∂2w

∂y2

)

,

Mxy = D(1− ν) ∂
2w

∂x∂y
= −Myx,

Qx = D

(

∂3w

∂x3
+

∂3w

∂x∂y2

)

, Qy = D

(

∂3w

∂y3
+

∂3w

∂x2∂y

)

, Qn = Qx cosα +Qy sinα,

Mn = [Mx,My,Mxy −Myx][cos
2 α, sin2 α, sinα cosα]T ,

Mnt = [−Mx +My,Mxy][sinα cosα, (cos2 α− sin2 α)]T .

Here α is the angle between the x-axis and the normal axis of the normal-tangential

coordinate system as shown in Figure 7.1. The conventional boundary conditions in
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Table 7.1: Boundary conditions in classical plate theory.

Type of support Essential (Geometric) B.C. Natural (Force) B.C.
clamped w = 0, ∂w/∂n = 0 None

simple Support w = 0 Mn = 0
free None Mn =Mnt = Qn = 0

symmetry ∂w/∂n = 0 Qn + ∂Mnt/∂t = 0
antisymmetry w = 0 Mn = 0

the classical theory of plate are listed in Table 7.1.

Let VRPP be an approximation space constructed by use of the generalized par-

tition of unity functions ΨP
l and the reference shape functions φ̂k to be constructed

in the next section. That is,

VRPP = span{ΨP
l · [φ̂k ◦ T−1

l ] : l = 1, 2, . . . , N ; k = 1, 2, . . . , Nl}, (7.5)

where Ω is partitioned into the N numbers of patches Q1, . . . , QN and Tl is the patch

mapping from a reference patch into ωδ
l , the support of the generalized product PU

function ΨP
l , which is associated with the physical patch Ql. The approximation

space VRPP has the following properties: (1) high regularity of each member; (2) the

Kronecker delta property at almost all particles; (3) reproducing polynomial property

of high order on the patches with no intersections with clamped boundaries.

The proposed meshfree particle method for the plate problems is the Galerkin

method with use of VRPP as follows: Find w ∈ VRPP such that

B(w, v) = F(v), for all v ∈ VRPP . (7.6)

7.2 Particle Shape Functions with Kronecker Delta Property to Deal With Essential

Boundary Conditions

It is necessary to construct different shape functions for different boundary con-

ditions, as can be noted from the table above. In this section, we will construct shape

functions to deal with simply supported and clamped boundary conditions. Let T̂

and R̂, respectively, denote the reference triangle with vertices (0, 0), (1, 0), (0, 1), and
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the reference rectangle [0, 1]× [0, 1].

7.2.1 Shape Functions for Imposing Simply Supported Boundary Conditions

Without loss of generality, we consider the construction of patch-wise smooth

RPP shape functions with compact support that have the polynomial reproducing

order 3. Higher orders can be constructed similarly.

The barycentric coordinates of T̂ are L1(ξ, η) = 1 − ξ − η; L2(ξ, η) = ξ; and

L3(ξ, η) = η. The following ten functions are the Lagrange interpolation shape func-

tions of RPP order 3 that correspond to three vertices, six lateral nodes, and one

interior node, respectively:

φ̂1 = L1(3L1 − 1)(3L1 − 2)/2; φ̂2 = L2(3L2 − 1)(3L2 − 2)/2;

φ̂3 = L3(3L3 − 1)(3L3 − 2)/2; φ̂4 = (9/2)L1L2(3L1 − 1);

φ̂5 = (9/2)L1L3(3L1 − 1); φ̂6 = (9/2)L2L1(3L2 − 1); φ̂7 = (9/2)L2L3(3L2 − 1);

φ̂8 = (9/2)L3L1(3L3 − 1); φ̂9 = (9/2)L3L2(3L3 − 1); φ̂10 = 27L1L2L3. (7.7)

In what follows, the k-th Lagrange interpolating polynomial of degree n − 1 as-

sociated with n-distinct nodes ξ1, . . . , ξn is denoted by Ln,k(ξ) =
∏n

i=1,i 6=k
ξ−ξi
ξk−ξi

. Let

L4,j(ξ), j = 1, 2, 3, 4, be the Lagrange interpolation polynomials of order 3 corre-

sponding to nodes 0, 1/3, 2/3, 1, respectively. On R̂ we have 16 RPP shape functions

of order 3:

φ̂k(ξ, η) = L4,i(ξ) · L4,j(η), k = 4(i− 1) + j, 1 ≤ i, j ≤ 4, (7.8)

The RPP shape functions defined by (7.7) and (7.8) can now be mapped to the

physical domain Ω to make smooth local approximation functions on triangular or

quadrangular patches in Ω. For example, let Tl : R̂→ Ql be a smooth patch mapping

and ΨP
l (x, y) be the generalized product PU corresponding to Ql. Then

ΨP
l (x, y) · φ̂k(T

−1
l (x, y)), k = 1, . . . , 16

are smooth functions with compact support ωl = supp(ΨP
l ) ⊇ Ql. To handle the sim-

ple support boundary condition, shape functions that are not 0 on ∂Ω are discarded
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and not used in the approximation space VRPP . All functions in VRPP satisfy this

boundary condition.

7.2.2 Shape Functions for Imposing Clamped Boundary Conditions

We will present the construction of shape functions on R̂. We now consider a

nth order modified Lagrange polynomial Mn+1,k(ξ) = ξLn+1,k(ξ), k = 1, . . . , n + 1 on

[0, 1]. Here, we notice that Mn+1,k(0) = 0 for k = 1, . . . , n + 1 and M ′
n+1,k(0) = 0 for

k = 2, . . . , n+ 1. Now, the reference shape functions are

1φ̂k(ξ, η) =Mn+1,i(ξ)Ln+1,j(η)

for quadrangular patches with one clamped side where k = (n + 1)(i − 1) + j, i =

2, . . . , n+ 1, and j = 1, . . . , n + 1 and

2φ̂k(ξ, η) =Mn+1,i(ξ)Mn+1,j(η)

for quadrangular patches with two clamped sides where k = (n + 1)(i − 1) + j,

i = 2, . . . , n+ 1, and j = 2, . . . , n+ 1.

For example, let Tl : R̂ → Ql be a smooth patch mapping from the reference

square to a quadrangular patch with one clamped side such that Tl maps ξ = 0 to the

clamped side of Ql. Here we will use the order 3 reference shape functions 1φ̂k(ξ, η)

where k = 1, . . . , 12. Let ΨP
l (x, y) be the C1-generalized product PU corresponding

to Ql.

ΨP
l (x, y) ·1 φ̂k(T

−1
l (x, y)), k = 1, . . . , 12

are C1-functions with compact support ωl = supp(ΨP
l ) ⊇ Ql. In order to satisfy

the clamped boundary condition, shape functions are not 0 on ∂Ω are excluded from

the approximation space VRPP , so that all functions in VRPP satisfy the clamped

boundary condition.

For T̂ , shape functions are constructed similarly by modifying the Lagrange in-

terpolation polynomials by multiplying by ξ. However, special care must be taken so

that the triangular patch only has one boundary intersecting with ∂Ω.
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7.3 Numerical Examples

Here, we use φR
g2
(x+δ

2δ
) in Eqn.(2.12) with δ = 0.05 for the construction of gener-

alized product PU functions whose first order derivatives are continuous.

Example 7.3.1. With material constants ν = 0.3, E = 109 N/m2, a = 0.6m, d =

0.001m, p = 100.0N (These material constants are the same as those in [27]). We

test the proposed meshfree particle methods to the following cases:

A: Clamped rectangular plate with point load at the center(Table 7.2)

B: Clamped rectangular plate with uniform load(Table 7.3)

C: Simply supported rectangular plate with point load at the center(Table 7.4)

D: Simply supported rectangular plate with uniform load(Table 7.5)

δ
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Q Q
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flt
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2

flt

1

flt

Figure 7.2: Rectangular plate and partition into four patches. Qflt
j is the flat-top

part of supp(ΦP
j ). Here, δ = 0.05.

In Tables 7.2,7.3,7.4, and 7.5,

• β =
ωmaxD

Pa2
, where P is load, wmax is the vertical displacement at the center

point, a and b are the two side lengths of a rectangular plate shown Figure 7.2.

• the results in the rows “βRPP 4“ and “βRPP 6“ are those obtained by our method

with use of particle shape functions of RPP order 4 and RPP order 6, respec-

tively. The results in the row “βLiu“ are those in ([28],[27]) and the results in

the row ”βTimoshenko” are the analytic solutions in ([56]).

From these tests, we observe the following

1. Tables 7.2 and 7.4 show that even though our method use much smaller number

of particles (144 in βRPP 6 and 256 in βLiu), our method yields better results than
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the moving least squares (MLS) method employed in ([28]). Actually, the results

in the row “βRPP 4” that use 36 particles are similar to those number in “βLiu”

that use 256(16× 16) uniformly spaced particles.

2. Implementing RPP shape functions satisfying clamped BC and constructing

generalized product PU functions for the proposed meshfree particle method is

simple.

3. Tables 7.3 and 7.5 show that in the case of uniform load, the results in the row

“βRPP 4“ show that our method using 36 particles for clamped BC (64 particles

for simply supported BC) yields already enough accuracy.

4. The numerical solutions for the plate with uniform load is slightly better than

those for the plate with point load. That is because analytic solutions of plates

with point load have a mild singularity (of type r2 log r) at the center point.
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Table 7.2: Values of β for various ratios of b/a corresponding to a point load of P at
the origin for a clamped plate.

b/a DOF 1.0 1.2 1.4 1.6 1.8 2.0
βRPP 4 36 0.00553 0.00637 0.00679 0.00696 0.00700 0.00697
βRPP 6 100 0.00559 0.00645 0.00689 0.00709 0.00716 0.00719
βLiu 256 0.00552 0.00637 0.00680 0.00698 0.00703 0.00704

βTimoshenko ∞ 0.00560 0.00647 0.00691 0.00712 0.00720 0.00722

Table 7.3: Values of β for different ratios of b/a corresponding to a uniform load of
P for a clamped plate.

b/a DOF 1.0 1.2 1.4 1.6 1.8 2.0
βRPP 4 36 0.00126 0.00172 0.00205 0.00227 0.00240 0.00247
βRPP 6 100 0.00127 0.00172 0.00207 0.00230 0.00245 0.00253

βTimoshenko ∞ 0.00126 0.00172 0.00207 0.00230 0.00245 0.00254

Table 7.4: Values of β for different ratios of b/a corresponding to a point load of P
at the origin for a simply supported plate.

b/a DOF 1.0 1.2 1.4 1.6 1.8 2.0
βRPP 4 64 0.01154 0.01348 0.01478 0.01559 0.01607 0.01633
βRPP 6 144 0.01157 0.01353 0.01483 0.01567 0.01618 0.01648
βLiu 256 0.01157 0.01344 0.01476 0.01556 0.01603 0.01632

βTimoshenko ∞ 0.01160 0.01353 0.01484 0.01570 0.01620 0.01651

Table 7.5: Values of β for different ratios of b/a corresponding to a uniform load of
P for a simply supported plate.

b/a DOF 1.0 1.2 1.4 1.6 1.8 2.0
βRPP 4 64 0.00406 0.00565 0.00708 0.00830 0.00930 0.01010
βRPP 6 144 0.00406 0.00565 0.00708 0.00831 0.00932 0.01013

βTimoshenko ∞ 0.00406 0.00564 0.00705 0.00830 0.00931 0.01013



CHAPTER 8: CONCLUSIONS

For numerical solutions of BIEs, three meshless BEMs were introduced: meshfree

reproducing polynomial boundary particle method (RPBPM), patch-wise reproduc-

ing polynomial boundary particle method, and patch-wise reproducing singularity

boundary particle method(RSBPM). The first two methods are for BIEs without

singularities and the third is for BIEs with singularities.

We tested all of these methods with the Laplace equation in two dimensions.

Even though the domain for each test problem is a square, these methods will work

in the same way for a general polygonal domain. Through a numerical example, we

noted that the collocation method is more practical than the Galerkin method for

patch-wise RPBPM.

We extended patch-wise RPBPM and RSPBM to the three dimensional Laplace

equation with and without singularities. Our results show that patch-wise RSBPM is

one of the most effective methods to deal with three dimensional singularity problems.

Patch-wise RSBPM is virtually the one-dimensional counterpart of the Method

of Auxiliary Method(MAM) in p-FEM. It has been proven that the p-FEM together

with MAM is effective in dealing with singularity problems. However, MAM fails

when it is coupled with h-FEM in which piecewise linear approximation functions are

employed. Similarly, the reproducing singularity boundary particle method is more

effective when the mapping technique is coupled with RPP shape functions with high

reproducing order.

We tested patch-wise RPBPM on the Helmholtz equation and obtained similar

results as that of the Laplace equation. Using the trapezoidal rule and different

shape functions, we extended our method to circular domains. We noticed that
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using the collocation method with particle shape functions for circular domains gives

an accurate approximate solution to Helmholtz equation with less degrees of freedom

than the Nyström method.We also have seen that our method works well for modeling

wave propagation through photonic crystals.

For thin plate problems, the shape functions constructed to satisfy the simply

supported and clamped boundary conditions respectively, were introduced. The use

of these combined with the generalized product PU function and RPP shape functions

yields promising results as demonstrated in chapter 7.

In closing, meshfree particle methods are a powerful tool in the numerical solution

of PDE.

For other PDEs such as the elasticity equations and the biharmonic equation,

the fundamental solutions are known and hence our methods are applicable to several

areas of science and engineering. In the future, patch-wise RPBPM and RSBPM will

be applied to solve practical science and engineering problems. Extension of these

methods to general curved domains is also planed.
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