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ABSTRACT 

 

 

KRISHNA KIRAN UPPALAPATI. An investigation into the torque density                

capabilities of flux-focusing magnetic gearboxes. 

(Under the direction of DR. JONATHAN Z. BIRD) 

 

 

Wind and many rotary based ocean energy conversion devices rely on a mechanical 

gearbox to increase their speed so as to match the requirements of the electromagnetic 

generator. However, mechanical gearboxes have a number of disadvantages such as the 

need for gear lubrication, no overload protection and the creation of acoustic noise. 

Frequently direct-drive generators are employed to overcome these issues, wherein the 

gearbox is removed and the shaft of the turbine is directly connected to the synchronous 

generator, either with an electrically excited or permanent magnet rotor. If the input 

speed to the generator is very low the torque must be very high in order to generate the 

necessary power. However, as the electrical loading of a synchronous generator is 

thermally limited, the size of the generator will become excessively large at high power 

levels.  

An alternative to these technologies is to consider replacing the mechanical gearbox 

with a magnetic gear. A magnetic gear can create speed change without any physical 

contact. It has inherent overload protection, and its non-contact operation offers the 

potential for high reliability. Despite significant progress, existing magnetic gear designs 

do not achieve torque densities that are competitive with mechanical gearboxes. 

This research has focused on designing a coaxial magnetic gear that can operate at a 

volumetric torque density that is comparable to a mechanical gearbox. A flux-focusing 

rotor topology also called spoke-type rotor magnet arrangement was adopted to improve 
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the air-gap magnetic flux density which in turn improves the torque transferred between 

the rotors. Finite element analysis was utilized to conduct a parameter sweep analysis of 

the different geometric parameters of the magnetic gear. A sub-scale magnetic gear with 

a diameter of 110 mm and a scaled-up magnetic gear with a diameter of 228 mm was 

designed, constructed and experimentally evaluated. The torque and torque density of 

sub-scale design was measured to be 115 Nm and 151.2 Nm/L respectively and that of 

the scaled-up model was measured to be 731 Nm and 239 Nm/L respectively.  

An iterative magnetomechanical analysis technique was developed to study the 

deflection of the magnetic gear steel rotor bars due to the magnetic forces coming from 

the inner and outer rotor permanent magnets. The accuracy of the technique was 

validated by using an experimental test-stand. It was shown that the deflection is an 

important issue to consider especially if the air-gaps are small. 

A 2-D analytical based model was derived for the flux-focusing coaxial magnetic 

gear by using the separation of variables method to solve the Laplace and Poisson 

equation in each region. After applying the applicable Dirchlet and Neumann boundary 

conditions a set of 16 equations with 16 unknown Fourier coefficients was obtained.  The 

16 unknowns were solved numerically by putting the equations in a matrix form. It was 

shown that the analytical based model immensely reduced the torque and field 

computational time when compared to using finite element analysis. However, the 

analytical model does not take into consideration the non-linear properties of the steel. 

The benefits of using the analytical model was demonstrated by conducting a radial 

scaling and gear-ratio analysis.  
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CHAPTER 1 : INTRODUCTION 

 

 

1.1. Motivation Equation Chapter (Next) Section 1 

The growing demand for energy across the world with ever increasing population 

and rapid industrialization is creating severe stress on the planet due to the depletion of 

natural resources like oil, natural gas and coal. The environmental effects like climate 

change due to carbon dioxide and green house gas emissions are threatening the bio-

diversity of the planet [1]. These factors are leading to an increase in the demand for 

clean and sustainable energy. Renewable energy sources are not only providing 

alternative sources for power generation but also may be the only option for achieving a 

sustainable energy supply in the future. 

Renewable energy sources like wind and marine hydrokinetic (MHK) energy are 

one of the fastest growing renewable energy technologies worldwide [2]. Typically in a 

wind turbine, power from the rotation of the wind turbine rotor is transferred to 

the generator through a main shaft, the mechanical gearbox and the generator. Such a 

configuration is shown in Figure 1-1. The mechanical gearbox is used to increase the 

speed from the input shaft to be able to generate power from the generator.  
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Figure 1-1: Typical wind turbine configuration [3] 

 

However the mechanical gearbox tends to create many issues in the wind turbine. 

For instance, the wind speed is generally not constant and therefore this can result in 

frequent changes in the load applied to the gearbox [4]. This can create a lot of stress on 

the gearbox teeth and can result in the failure of the mechanical gearbox [5]. The frequent 

failure of wind turbine mechanical gearbox has resulted in an increase in maintenance 

costs, thereby affecting the levelized cost of power generation [6-7]. A wind turbine 

gearbox is typically designed for a life-span of 20 years but the frequent failures of the 

gearbox have resulted in a reduction in the gearbox life span to around 12 years [8].  

In order to improve the reliability of wind turbines, direct-drive (DD) 

technology [9]  can be utilized, where the gearbox is removed and the shaft of the wind 

turbine is directly connected to the synchronous generator (SG) either electrically excited 

or with permanent magnets (PM). An example of a direct-drive wind turbine generator is 

shown in Figure 1-2 [10]. Since the input speed to the generator is very low the torque 

should be very high in order to generate the required power [11]. As traditional electric 

machines have a much lower torque density than mechanical gearboxes the DD generator 

must be relatively large in size. Also since the generator is directly connected to the input 
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shaft, the converter has to be designed for the full range of input speed and hence the 

power electronics will be relatively costly [12] .  

 
Figure 1-2: Direct-drive generator by Mtorres wind industries [10] 

 

 In MHK applications various wave energy converters (WEC), like oscillating 

water columns (OWC), overtopping converters, attenuators, point absorbers, axial-flow 

turbines are being used [13]. Figure 1-3 and Figure 1-4 illustrates some of the types of 

MHK converters that are being developed.  Most MHK converters generally use a 

mechanical or a hydraulic gearing system to increase their speed [14]. Such devices have 

efficiency issues and the use of a mechanical gearbox with its acoustic noise and 

lubrication requirements may not be a good choice for use in remote off-shore and 

undersea locations. 

 

(a) (b) 

Figure 1-3: (a)  Seagen, marine current turbine by Marine Current Turbines 

Limited [15], (b) oscillating water column by Oceanlinx [16] 
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Figure 1-4: AWS wave energy converter [17] 

 

An effective solution to reliably converting low speed motion from renewable 

energy devices into high speed rotation suitable for power generation is to consider 

utilizing a contactless magnetic gear (MG) mechanism. This is the scope of this research, 

where many of the issues created by the mechanical gearboxes are addressed. A MG 

offers many advantages over a mechanical gearing system. Its contactless mechanism can 

solve a lot of issues with mechanical gearboxes like wear and tear, vibrations, lubrication 

requirements and high maintenance costs. A MG also provides inherent overload 

protection due to the contactless mechanism of operation. This makes the MG potentially 

highly valuable for wind turbine applications. However, not much attention had been paid 

to investigating MG’s performance until the turn of the 21
st
 century. Some of the reasons 

for this are the relative complexity of the MG and the shortcomings of earlier PMs. With 

the discovery of new PM materials with high energy densities it has become possible to 

obtain higher torque densities [18]. 

1.2. Literature Review 

This section provides a survey of the various MG designs in the literature. The 

torque density and shear stress are calculated using the following equations. 

The volumetric torque density of a MG can be calculated using 

 
2d

o

T
T

r dπ
=  (1.1) 
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where T = peak torque, ro=outer radius and d = stack length. 

The torque density at the air-gap of a rotary machine can be calculated from 

 g

gd

g

T
T

r dπ 2
=  (1.2) 

where Tg = torque at the air-gap, rg=air-gap radius. 

Shear stress is defined as the force per unit area acting parallel to the plane of the 

surface. The shear stress, σs, is calculated from  

 
2

s

g

F

r d
σ

π
=  (1.3) 

where F is the air-gap force and rg is the air-gap radius 

When designing PM machines with high torque, the shear stress in the air-gaps of 

the rotors tends to increase quite a bit.  This can pose a significant risk of 

demagnetization to magnets [19]. 

Since the torque created within the air-gap is defined as Tg=Frg, the shear stress 

can be expressed as 

 
g

s

g

T

r d
σ

π 2
2

=  (1.4) 

Substituting (1.2) into (1.4) gives: 

 
gd

s

T
σ

2
=  (1.5) 

 Thus the air-gap torque density and air-gap shear stress are related. 

1.2.1. Mechanically Inspired MGs 

Although MG technology existed for a long time, not much attention was given to the 

research due to the low torque density achieved from PMs.  
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C. Armstrong [20] was the first to obtain a patent in this field in 1901. The 

electromagnetic spur gear proposed by C. Armstrong consisted of two parts, one part had 

a gear with electromagnets as the gear teeth and the other had steel poles. This design is 

shown in Figure 1-5. The electromagnets present on one of the gears were turned on 

based on their position on the other gear and torque was transmitted. 

 

Figure 1-5: An electromagnetic spur gear proposed by C. Armstrong [20] 

 

Although the gear had the advantage of contact-less torque transfer and noise-less  

operation, the amount of torque that could be transferred would be very low because at 

any given rotor position only 2 to 3 electromagnets transfer torque. As the electromagnets 

would need current go through them, this approach can result in a lot of losses and 

heating and would need lubrication and regular maintenance. 

      H. Faus [21] designed a permanent magnetic spur-type gear as shown in 

Figure 1-6 in 1941. The gear operated in the same manner as Armstrong’s 

electromagnetic spur gear. The electromagnets and steel poles are replaced by permanent 

magnets in this design. All the magnets are placed in the same direction on the two rotors. 

This results in repulsion forces between the two rotors and the torque is transmitted. This 

design doesn’t provide overload protection as the magnets can break when operating over 

maximum torque limit. Also the weak utilization of the PMs makes the design inefficient. 
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In 1993, S.Kikuchi [22] proposed the magnetic worm gear as shown in 

Figure 1-7. The magnetic worm gear was designed to have 1:33 gear ratio. Initial design 

had a very large air-gap and hence the maximum torque transferred as very low. In order 

to decrease the air-gap the worm gear is coupled with a wheel which increased the output 

torque by as much as 50%. Nevertheless the torque density capability would be 

significantly lower than its mechanical counterpart. 

 

Figure 1-6:  A magnetic spur gear proposed by Faus [21] 

 

 

Figure 1-7: A magnetic worm gear proposed by S.Kikuchi [22] 

  

 

In 1989 K. Tsurumoto [23-25] proposed the axial flux disk type spur MG as 

shown in Figure 1-8. Tsurumoto used samarium-cobalt as PM material. He attained a 
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gear ratio of 1:3 with a peak torque of 5.5 Nm. In [23] described a new design in which 

the PMs are directly mounted on the steel plate which improves the efficiency of the gear 

and increased the peak torque trnaferred by almost 300%.  

M. Okano [26] described a superconducting version of the worm gear. 

Superconducting MGs could greatly improve the maximum torque that can be transferred 

when compared to normal permanent MGs. Superconducting magnets need to be 

continuously cooled as they conduct large currents. This means they should be 

continuously refrigerated. This increases the size and cost of the gear system. Two 

different spur gear configurations were designed, constructed and experimentally verified 

by Okano. The calculated torque density for the superconducting spur MGs was 4 Nm/L 

[26] which is high for the given size of the MG system. 

  

 

 

 
Figure 1-8: A spur magnetic gear proposed by M.Okano [26] 

 

In 2008, Haung [27] proposed a magnetic planetary gear as shown in Figure 1-9.  

The gear arrangement had a sun gear, planet gears and a magnetic ring gear on back iron. 

The topology is analogous to a conventional mechanical planetary gear. The maximum 

torque transmitted depended on the number of planets surrounding the sun. As the 
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number of planets increased, the maximum torque that could be transmitted also 

increased. However, it was reported that increasing the number of planets would also 

increase the resulting cogging torque of the rotors. The simulated gearbox had a 

maximum torque density of 97.3 Nm/L but the measured torque density for the 

experimental setup was only 16 Nm/L.  

 

Figure 1-9: A magnetic planetary gear proposed by Huang [27] 

 

All the MG designs described above use mechanical gear topologies with the 

teeth replaced by electromagnets or PMs. The torque transferred and the efficiency of 

these designs is very low due to low utilization of magnets as only a few magnets are 

transmitting torque at any given moment.  

1.2.2. Coaxial MGs 

 In 1916 Neuland [28] proposed a unique MG as shown in Figure 1-10, which 

used three rotors to obtain an efficient torque transmitting mechanism.  The gear 

consisted of three rotors of which one was held stationary, a laminated steel toothed outer 
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rotor, a central section with stationary cores with magnetizing windings and an inner 

rotor with laminated steel tooth.  

 

 

Figure 1-10: A coaxial MG topology proposed by Neuland [28] 

 

The gear ratio is calculated by taking the number of steel tooth on the inner and 

outer rotors. The maximum torque that could be transmitted using this design would be 

much higher than the spur gear designs as almost all the magnets would aid in the transfer 

of torque between the rotors unlike the other designs. This greatly increases the torque 

density of the MG system.  However the torque was not comparable to its mechanical 

counterpart since only one set of magnetizing windings were used in the design and the 

field created by the windings would be thermally limited.  

      In 1967, Reese [29] proposed a MG similar to the one described by Neuland. 

However, the inner rotor contained electromagnets instead of steel teeth as shown in 

Figure 1-11. The middle rotor and the outer rotor had steel poles and in this case the outer 

rotor was held stationary. The inner rotor was the input rotor and the middle rotor was the 

output rotor. When the inner rotor with electromagnets was rotated, the middle rotor with 
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steel poles tends to rotate with the inner rotor. This occurs because the magnetic field 

coming from the inner rotor will try to travel through the steel poles rather than air and 

this makes the steel poles on the middle rotor to rotate to align itself in least reluctance 

path for the field to travel. The gear ratio is determined by the number of electromagnets 

on inner rotor and the steel teeth on the middle rotor. 

     Martin [30] designed a coaxial MG similar to the ones described in [28] and [29] . 

However, in this design the outer and inner rotors had PM’s. The number of magnets on 

the inner and outer rotor was different and is used to measure the gear ratio. This design 

approach is shown in Figure 1-12. The middle rotor modulated the magnetic field 

between the outer and the inner rotor. The length of the steel poles on the middle rotor 

was a key factor in determining the amount of torque transmitted between the rotors. The 

number of PMs on the inner and outer rotor and the number of steel poles on the middle 

rotor determined the resulting gear ratio of MG.  

 

 

Figure 1-11: A coaxial MG proposed by Reese [29] 



Figure 

 

In 1997, B. Ackerman

middle rotor had steel poles which were 

operation of this design was similar to 

steel pieces in the middle rotor made the construction easier and robust.

Ackerman obtained another patent

middle rotor and the PMs on the ou

Figure 

 
Figure 1-12: A coaxial MG proposed by Martin [30] 

Ackerman [31] obtained a patent for a coaxial MG

had steel poles which were connected as shown in Figure 

operation of this design was similar to the one proposed by Martin [30]. Connecting the 

steel pieces in the middle rotor made the construction easier and robust.

man obtained another patent [32] for MG design where the steel poles on the 

s on the outer rotor were interchanged. 

 

Figure 1-13: A coaxial MG proposed by Ackermann [31] 
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. In this case the 

Figure 1-13. The 

the one proposed by Martin [30]. Connecting the 

steel pieces in the middle rotor made the construction easier and robust. In 1999 

for MG design where the steel poles on the 
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In 2001, K. Atallah [33] was the first to numerically calculate that a MG could 

achieve a torque density that is greater than a direct drive motor. The operating principle 

of the proposed MG design was similar to the one proposed by Ackerman [31] as shown 

in Figure 1-14. In [33] Atallah used harmonic analysis and Fourier series to derive the 

equations for relationship between the number of PMs on the inner and outer rotors and 

the steel poles on the middle rotor. Atallah used rare magnets in his design and 

numerically calculated a volumetric torque density of about 100 Nm/L. In 2004 Atallah 

experimentally demonstrated the MG design [34] with a gear ratio of 5.75:1 and achieved 

a volumetric torque density of 72 Nm/L.  

   

 
Figure 1-14: A coaxial MG proposed by K. Atallah [33] 

 

P. Rasmussen [35] published a paper in 2003 on a coaxial MG that used an inner 

rotor spoke-type of magnet arrangement. This design is in Figure 1-15. The MG had a 

gear ratio of 1:5.5 and calculated a peak torque of 27 Nm. The design was constructed 

and tested. The measured torque was 16 Nm. This represents a torque density of 

54 Nm/L. The difference in the calculated and actual measured peak torque values was 

Permanent magnets Low speed rotor 

Stationary steel 

pole pieces 
 

High speed rotor 
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claimed to be due to the short axial length of the magnets and the 3D end effects. 

Rasmussen also compared the MG with conventional mechanical gears with the same 

gear ratio and maximum torque capabilities.  

 

 

Figure 1-15: A coaxial MG proposed by P. Rasmussen, [35] 

 

 
Figure 1-16: A coaxial MG proposed by Frank [36] 

 

In 2011, N. Frank [36-38]  studied an embedded magnet coaxial MG with a gear 

ratio of 5.5:1. This design is shown in Figure 1-16. The design presented in [36] by Frank 

had thin bridges connecting the steel poles in the middle rotor in order to improve the 

structural strength. The inner rotor had magnets embedded into the rotor to support the 
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magnets during operation. A torque density of 42 Nm/L was measured as opposed to 64 

Nm/L calculated using FEA.    

In 2014, Nakamura [39] designed a 10.33:1 coaxial MG  in which the efficiency 

of the design was claimed to be 99% when calculated through FEA at a constant input 

speed of 300 RPM. The design is shown in Figure 1-17. The paper provides a comparison 

of torque on the outer rotors for different pole combinations and showed that a fractional 

gear ratio is crucial to designing a MG. The design utilized damper windings to reduce 

the oscillations and the transient time. A torque density of 60 Nm/L was predicted for this 

design. 

 

Figure 1-17: A coaxial MG with damper windings proposed by Nakamura [39] 
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Figure 1-18: A coaxial MG with surface mounted inner rotor and buried outer rotor magnets by Liu [40] 

 

In 2009, X. Liu [40] designed a 1:7.33 gear ratio MG  with radially magnetized 

outer rotor buried magnets and surface mounted magnets on the inner rotor. This design 

is shown in Figure 1-18. The reason for using buried magnets was to give extra 

mechanical strength to the magnets and maintain the structural integrity of the outer rotor. 

The experimentally measured torque density was 53.3 Nm/L. 

In 2009, J. Linni [41]  compared the torque density and torque ripple performance 

of a radially magnetized MG and a Halbach rotor MG design. Both designs had a 1:4.25 

gear ratio. The Halbach rotor magnet design is shown in Figure 1-19. The Halbach 

arrangement of magnets helped to achieve a near-sinusoidal field in the air-gap as well as 

a strong field intensity. Jian measured a torque density of 108 Nm/L and 95 Nm/L for the 

Halbach and radially magnetized magnet designs respectively. 
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Figure 1-19: A MG with halbach arrangement of magnets proposed by Jian [41] 

 

1.2.3. Other MG Topologies 

In 2011, R. Holehouse [42] proposed a linear MG. The operating principle of the 

linear MG was same as that of a coaxial MG described before. Such a design is shown in 

Figure 1-20. The design had three rotors with PMs on the inner and outer rotors and steel 

poles on the middle rotor. It was shown that an active force density of up to 2 MN/L 

could be achieved [42]. It was shown that the higher force density values could be 

achieved if the output stroke was lower than the length of the high speed rotor. It was 

observed that the force capability of linear MG depends on the distance between the steel 

poles. A design with 1:3.25 gear ratio was constructed and experimentally verified. 
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Figure 1-20: A linear MG proposed by Atallah [42] 

 

 In 2006, Mezani [43] published a paper on an axial MG as shown in Figure 1-21. 

The operating principle of this design was same as the coaxial MGs described before. In 

this design the rotors are placed in axial direction rather than in radial direction. The three 

rotors are separated axially from each other by a small air-gap. It was described that the 

axial MG can provide higher torque densities than coaxial MGs as the length of the three 

rotors could be same in case of axial MGs. Mezani calculated a torque density in excess of 

70 Nm/L. More recently Acharya [44] proposed a flux focusing axial type MG, shown in 

Figure 1-22, it was calculated that an active region torque density of up to 289 Nm/L 

could be achieved. However such a design is difficult to construct due to the difficulty in 

maintaining a uniform axial air-gap. 
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Figure 1-21: An axial MG proposed by Mezani [43] 

  

 
Figure 1-22: Flux focusing axial MG proposed by Acharya [44] 

 

In 2010 J. Rens [45] proposed a harmonic MG as shown in Figure 1-23. The 

operating principle of a harmonic gear was producing a time varying air-gap between two 

rotors which have PMs installed on flexible cylinders. Outer rotor has a rigid stationary 

rotor with PMs and inner rotor has PMs installed on a flexible rotor. The time variation of 

the air-gap between the two rotors modulated the field produced by the magnets. Rens 
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derived equations using harmonic analysis to determine the gear ratio. A design with a 

gear ratio of 1:18 was designed which had a peak torque of 3756 Nm.  

 
Figure 1-23: Magnetic harmonic gear proposed by Rens [45] 

  

 
Figure 1-24: Magnetic harmonic gear without flexible rotor proposed by Rens [45] 

 

The harmonic gear design practical implementation was pretty complicated due to 

the need for a flexible PM inner rotor and a flexible coupling to couple with a load. Rens 

proposed a way to avoid flexible shaft by using a conventional PM rotor connected using 

a bearing at an eccentricity with the outer rotor as shown in Figure 1-24. This cycloidal 

MG version was far easier to construct than a flexible harmonic gear. However it still 

needs a flexible coupling to be able to connect to the load as the output rotor is rotating 

eccentrically. This problem however was avoided by constructing a dual stage MG where 

Low-speed 

rotor 

High-speed 

rotor 

Bearing 

Stator 
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the output from the flexible shaft is connected as input to another harmonic gear with a 

rigid output shaft. This dual stage setup was constructed and experimentally verified.  

The calculated and experimentally measured torque density for the single stage harmonic 

MG was 158.5 Nm/L and 150 Nm/L respectively. A dual stage design had a torque 

density of 75 Nm/L. Although higher torque densities are achieved with this design, the 

need for a dual-stage MG design to make it simpler is not desired. 

In 2008 F. Jorgensen [46] also published a paper demonstrating the capabilities of 

a cycloidal gearbox. The design is shown in Figure 1-25. Jorgensen experimentally tested 

a 1:21 gear ratio cycloidal gearbox with a torque density of 142 Nm/L. An optimized 

design was calculated to be able to reach 183 Nm/L. The cycloidal gearbox used 18 

bearings and thus it is mechanically complex to build and it also creates unsymmetrical 

radial forces which will reduce the bearing life of the gearbox. 

 
Figure 1-25: A cycloidal MG proposed by Jorgensen [46] 

 

In 2014 Davey [47] published a paper on an axial flux cycloidal MG with a gear 

ratio of 30:1. This design has two magnet rings with the rotor rotating on an eccentric 

axis as shown in Figure 1-26. The stationary magnets are built on either side of the rotor 
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to balance the strong attractive axial magnetic forces. This design needed an orbital 

bearing plate and orbital bearings to transfer the eccentric rotation. It also needed an 

embedded counterweight on the shaft. The radius of the stator piece is increased 

significantly so that it always over shadows the rotor magnets. This design doesn’t have 

the ferromagnetic pole pieces like other coaxial MG models. The disadvantage is that 

only one stator is available to generate output torque and strong double-taper bearings 

have to be used to prohibit flexure. 

 

 
Figure 1-26: Cycloidal MG proposed by Davey [47] 

 

1.2.4. Magnetically Geared Motors 

In 2007, Atallah [48-50] patented a design in which a MG was integrated into a 

brushless PM machine. Atallah called the design a pseudo direct drive machine and it is 

shown in Figure 1-27. It was concluded that this magnetically geared machine could 

achieve a peak torque density in excess of 60 Nm/L while operating with a power factor 

of 0.9 or higher. 
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Figure 1-27: Pseudo direct drive machine patented by Atallah [49] 

 

In 2009 Rasmussen [51] published a paper, on a motor integrated MG. In this 

design the stator windings interacted with the MG’s inner high speed rotor. This design is 

shown in Figure 1-28. The paper described a scaling analysis which was used to optimize 

the design to achieve higher torques and torque densities. In an improved design it was 

calculated that a peak torque density of 130 Nm/L could be achieved [51]. However in 

the final design some changes were made due to practical issues and the measured torque 

density was 97 Nm/L [52]. 

 

 

Figure 1-28: Motor integrated PM gear proposed by Rasmussen [51-52] 
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In 2007, Chau [53-55]  proposed integrating an inner rotor with an outer MG via a 

coupling rotor, such a design is shown in Figure 1-29 designed to be used in electrical 

vehicle applications. A MG had to be used to increase the torque of the motor as it was 

not enough to launch the vehicle. When the proposed MG was connected to the motor the 

torque improved to 103 Nm. The torque density of the design was 87 Nm/L. Atallah’s 

design differed from Rasmussen’s and Chau’s in that the outer stator winding interacted 

with the inner high speed MG rotor. 

  
Figure 1-29: A coaxial MG with DC motor proposed by Chau [54] 

 

  P. Padmanathan [56] proposed a continuously variable MG as shown in 

Figure 1-30 which had a flux-focusing inner rotor. The continuously variable MG 

enabled a constant output speed to be created from a variable input speed fed from the 

input shaft. This was achieved by replacing the outer rotor of the MG with a stator. The 

electrical frequency of the stator was varied as the input speed varied to give a constant 

output speed. 
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Figure 1-30: Continuously variable MG proposed by Padmanathan [56] 

 

1.2.5. Summary of MG Performance 

Figure 1-31 shows a summary of the volumetric torque densities of the 

experimentally verified MG designs published in the literature to-date.  

 
A

ct
iv

e 
v

o
lu

m
et

ri
c 

to
rq

u
e 

d
en

si
ty

 [
N

m
/L

] 

 
 MG outer radius [m][22, 51, 57-59] [60-61] 

Figure 1-31: Torque density comparison with experimental MG research 

 

A summary of the measured torque, torque density and shear stress on the inner 

and outer rotor is shown in Table 1-1 and their corresponding pole pair combinations are 

shown in Table 1-2. In Table 1-2, p1 is the number of pole-pairs on the inner rotor, p3 is 

the number of pole-pairs on the outer rotor and n2 is the number of steel poles on the 
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middle rotor. All of the prior-art designs evaluated held the middle rotor stationary and 

rotated the inner and outer rotors. An alternative design would be to rotate the inner and 

middle rotors while holding the outer rotor stationary. Table 1-2 also shows the predicted 

torque values if the designs were to hold the outer rotor stationary. If the outer rotor is 

held stationary and middle rotor is rotated the input torque increased. The reason for this 

has been explained in chapter 2.  

Table 1-1: Summary of prior art experimentally verified MG designs 

Author 

Calculated 

peak torque 

[Nm] 

Measured 

torque [Nm] 

Torque 

density 

[Nm/L] 

Outer 

diameter 

[m] 

Shear stress 

on inner 

rotor 

[kN/m
2
] 

Shear stress 

on outer 

rotor [kN/m
2
] 

Shah [59] 10.7 10.58 53.8 0.13 4.8 26.9

Atallah [34] 85.7 60 77.9 0.14 6.7 38.9

Rassmussen [51] 27 16 54.4 0.12 4.9 27.2

Frank [36] 16 12.3 41.8 0.12 3.8 20.9

L Brönn [58] 33 20 49 0.115 2.3 24.5

Liu  [40] 76.3 73 53.3 0.22 3.6 26.6

Jian [41] 159.2 155.8 108.2 0.214 12.7 54.1

Jian [41] 139.7 137.2 95.3 .0214 11.2 47.6

Niguchi [57] 5.20 4.87 31.4 0.09 6.2 15.7

Jing [60] 168.7 168.1 57.1 0.2 6.7 28.5

Rens [45] 122 115 150 0.14 0.2 75

Jorgensen [46] 44 33 141.9 0.13 1.7 70.9

Huang [27] 4.7 4.4 15.8 0.094 1.3 7.9

 

Table 1-2: Summary of experimentally verified coaxial MG designs when one of the rotors is fixed 

Author p1 p3 n2 Gear ratio 
Calculated torque  

when p3 fixed when n2 fixed 

Shah [59] 4 22 26 5.5 12.6 10.7

Atallah [34] 4 23 27 5.75 100.6 85.7

Rassmussen [51] 4 22 26 5.5 31.9 27

Frank [36] 4 22 26 5.5 18.9 16

L Brönn [58] 2 21 23 10.5 36.1 33

Liu [40] 3 22 25 7.33 86.7 76.3

Jian [41] 4 17 21 4.25 196.6 159.2

Jian [41] 4 17 21 4.25 172.5 139.7

Niguchi [57] 4 10 14 2.50 7.2 5.20

Jing [60] 4 17 21 4.25 208.3 168.7

 

The objective of this dissertation is to design a MG that can create a higher torque 

and greater volumetric torque density than prior designs published in the literature. The 
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intended applications for these designs are in low speed, high torque applications such as 

for wind and ocean energy generation.  

1.3. Problem Statement  

It can be seen from the literature review that although much research has been 

conducted in the last decade on MG designs, none of the devices to date have been shown 

to create torque densities that are sufficiently high to enable them to efficiently replace 

mechanical gearboxes. This research will try to address this shortcoming. Initially a 

suitable topology will be chosen for the design. A model will be designed and studied 

using finite element analysis (FEA) to obtain the maximum performance and then a 

prototype will be built to verify the results. 

1.4. Thesis Layout 

Chapter 1: Introduction 

A literature review of the existing MG technology is presented. The problems 

with the current designs are discussed and the need for improvements are specified. 

Chapter 2: Coaxial magnetic gears 

The theory of a coaxial MG system is explained in detail in this chapter. The 

working principle is explained with derived equations. The design specifications are laid 

out for the design. 

Chapter 3: Sub-scale flux focusing magnetic gear design 

The electromagnetic design and scaling analysis of a sub-scale MG with a 

diameter of 110 mm is presented. The construction of the prototype is presented and the 

calculated results are experimentally verified.  
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Chapter 4: Scaled-up flux focusing magnetic gear design 

The electromagnetic design and scaling analysis of the scaled-up MG with an 

outer diameter of 228 mm is presented. The construction of the prototype is presented 

and the experimental results are verified. 

Chapter 5: Analytical modeling of the flux focusing magnetic gear 

An analytical model is developed for the flux-focusing MG using the magnetic 

vector potential. The method of separation of variables is used to solve the Laplace and 

Poisson governing equations in each region. The torque and field results are compared 

with ideal (µr=100,000) and non-linear FEA results.  

Chapter 6: Scaling analysis of flux focusing magnetic gear 

The analytical model developed in chapter 5 is used to conduct a scaling analysis. 

The flux focusing magnetic gear is analyzed for different sizes of MG with different pole-

pair combinations. 

Chapter 7: Conclusions and future scope 

This chapter provides a summary of this research and suggestions are made for future 

research in this area. 

 

 



 

 

 

 

 

 
 

CHAPTER 2 : COAXIAL MAGNETIC GEARS 

 

 

2.1. IntroductionEquation  Chapter (Next) Sect ion 1 

In this chapter the principle of operation of a coaxial MG is discussed. The 

equations governing the design are discussed. Also the concept of a flux focusing 

magnetic gear (FFMG) is introduced. The finite element analysis used for designing and 

optimizing the models is described. 

2.2. MG Principle of Operation 

A MG as shown in Figure 2-1 typically consists of three rotors, an inner rotor 

with p1 pole pairs, an outer rotor with p3 pole pairs and a middle rotor consisting of n2 

number of pole-pairs.  

 

Figure 2-1: Magnetic gear with pole-pairs
1 4p = ,

2 17n =  steel poles and 
3 13p = pole-pairs. 

 

 

Rotor 1:
p1 pole-pairs

Rotor 2:
n2 steel poles

Rotor 3:
p3 pole-pairs
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The middle rotor henceforth called a cage rotor consists of ferromagnetic steel 

pole pieces which modulate the magnetic fields produced by the inner and outer rotor. 

The steel pieces on the cage rotor create space harmonics in the air-gaps between the 

inner and outer rotors. The magnetic fields created by the inner and outer rotors interact 

via the pole pieces and transfer torque. The working principle of a typical MG is 

explained using Figure 2-2. For clarity the design is represented as a linear model. 

 

Figure 2-2: Typical MG modified into linear model 

 

In this example, the model has 10 pole-pairs, p3, on the outer rotor, 4 pole-pairs, 

p1, on the inner rotor and 14 steel poles, n2, on the cage rotor. The magnetic field created 

due to the inner rotor has a dominant 4
th

 harmonic due to the 4 pole-pairs. This field is 

modulated by the 14 steel poles on the cage rotor and this results in a field with a 

dominant 10
th

 harmonic being created. This field interacts with the 10
th

 harmonic of the 

outer rotor field which has 10 pole- pairs and consequently transfers torque. 

The inner rotor with p1 pole pairs, outer rotor with p3 pole pairs and cage rotor 

with n2 pole pieces are assumed to be rotating at ω1, ω3 and ω2 rad/s respectively.  

Outer rotor, P3 = 10 pole pairs 

Steel poles, n2 = 14 

Inner rotor, P1 = 4 pole pairs 
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The flux density distribution at a radial distance r produced by the inner rotor 

when the cage rotor and outer rotor are absent can be represented as a function of radial 

distance r and angle θ and can be written as [33, 56] 

 
, , ,..,

( )cos[ ( ) ]( , )ri rm

m

b r mp θ ω t mp θB r θ 1 1 1 0

1 3 5

∞

=

− += ∑  (2.1) 

where 0θ
 
is the initial angle of the inner rotor and ( )rmb r is the Fourier coefficient for the 

radial component of the flux density. 

When the steel poles of the cage rotor are included, the field from the inner rotor 

will be distributed along the steel pieces as they provide the better medium for the field to 

flow. The modulation function of the cage rotor bars can be represented in the Fourier 

form as  

 ( , ) ( )+ ( )cos[ ( )]r rj

j

λ r θ λ r λ r jn θ ω t0 2 2

1

±∞

=±

= −∑  (2.2) 

Where λr0 and λrj are the Fourier coefficients for the modulating functions. 

The resultant field in the outer rotor air-gap can be obtained by multiplying 

equation (2.1) and (2.2)  

 ( , ) ( , ) ( , )ro riB r θ B r θ λ r θ=  (2.3) 

which can then be re-written as  

, ,

, ,

( , ) ( ) ( )cos[ ( ) ]

                     ( ) ( )cos[ ( ) ]cos[ ( )]

ro r rm

m

rj rm

m j
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0 1 1 1 0
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1 1 1 0 2 2

1 3 5 1

∞

=
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∑
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 (2.4) 

Using the trigonometric function given in (2.5)
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 equation (2.4) can further be expanded and rearranged to 
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Similarly the tangential component created by the inner rotor can be expressed as 

 
, , ,..,

( , ) ( )sin[ ( ) ]θi θm

m

B r θ b r mp θ ω t mp θ1 1 1 0

1 3 5

∞

=

= − +∑  (2.7) 

 where ( )θmb r
 
is the Fourier coefficient for the tangential component of the flux density. 

The modulation function for tangential component of the flux density can be 

written similar to equation (2.3) as 

( , ) ( ) ( )sin[ ( )]r θj

j

λ r θ λ r λ r jn θ ω t0 2 2

1

±∞

=±

= + −∑
                   

 (2.8) 

The resultant tangential field in the outer air gap after modulation can be obtained by 

multiplying equations (2.8) and (2.9) and this gives 
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 (2.9) 



33 

In order for the torque to be created the radial field harmonic component from the outer 

rotor must match the harmonic component created by the modulated inner rotor field. 

This will occur if [33, 56] 

 where 

, 1 2| |

    1,3,5,...,

      0, 1, 2, ,...,

m jp mp jn

m

j

= +

= ∞

= ± ± ± ±∞

 (2.10) 

and the angular rotational speed of the flux density harmonics is given by   

 1 2
, 1 2

1 2 1 2
m j

mp jn
ω ω ω

mp jn mp jn
= +

+ +
 (2.11) 

The velocity of the space harmonic in the outer air-gap is a combination of angular 

velocities of the harmonics from the inner and cage rotor. It can be seen from 

equation (2.11) that j=0 is not a valid choice as this will result in there being no inner and 

outer rotor speed change.  It has been shown in [33, 56] that the highest asynchronous 

space harmonics can be obtained when 1m =  and 1j = − . This means that in order to 

attain the highest torque density the number of pole pairs on the outer rotor should be 

equal to  

3 2 1p n p= −  (2.12) 

The relation between the angular velocities of the three rotors can now be written as 

 
1 2

1,1 1 2
1 2 1 2

p n
ω ω ω

p n p n
= −

− −
 (2.13) 

1,1ω  is the speed on rotor 3 (ω3=ω1,1). The inner rotor has the least number of pole-pairs 

(as shown in Figure 2-1). Rearranging (2.13) one can therefore write 

2 3
1 2 3

2 3 2 3

n p
ω ω ω

n p n p
= −
− −

                     (2.14) 
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Assuming that there are no losses the torque relation between rotors can be derived 

from the conservation of power flow and is given by 

 1 1 2 2 3 3 0+ + =ω ω ωT T T  (2.15) 

where 1T , 2T , 3T  are the torques on the inner rotor, cage rotor and outer rotor 

respectively. 

When the cage rotor is held stationary, i.e. ω2=0, the speed ratio is given by  

 

3
1 3

2 3

−
=

−
ω ω

p

n p
 (2.16) 

Now substituting (2.16) into (2.15) gives the relation between the inner rotor and 

cage rotor torque as  
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Similarly when the outer rotor is stationary, ω3=0, (2.14) reduces to 

 
2

1 2
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n p
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−
 (2.18)  

Substituting (2.18) into (2.14) gives the torque relationship between the outer and 

inner rotors  
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T T
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−
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By combining (2.15) and (2.19) the torque relationship between the cage rotor and outer 

rotor is 

 
2

2 3

3

n
T T

p
= −  (2.20) 
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Equation (2.19) shows that if n2>p3 then the torque on the cage rotor will be greater than 

on the outer rotor and will be the other way round if n2<p3. It appears that no authors have 

investigated designs which have p3>n2. 

The relation between the torques on the three rotors is 

 1 2 3 0T T T+ + =  (2.21) 

This relationship can be confirmed by substituting (2.16) and (2.18) into (2.20), this gives 

 32
1 1 1

2 3 2 3

0
pn

T T T
n p n p

   
− + =   

− −   
 (2.22) 

Further rearranging the left side of (2.21) becomes zero. 

 

  

2.3. Flux Focusing Approach   

The MG models designed in the literature have mostly used surface mounted 

magnets for torque transmission. The air-gap flux density in a ferrite magnet rotor can be 

substantially increased by arranging the magnets in a flux focusing arrangement also 

called a spoke-type [62-65]  and axial flux concentration [66] arrangement. A Spoke type 

rotor magnet arrangement gives a natural flux concentration capability because two 

circumferentially magnetized PMs buried between the steel cores as shown in Figure 2-3 

contribute to the air-gap flux for each rotor pole. The flux concentration of magnets onto 

the steel can be seen in Figure 2-4. This flux concentration capability allows the air-gap 

magnetic flux density to be higher than the flux density of each PM that contributes to the 

air-gap magnetic flux density. This results in higher specific torque output than normal 

rotors.  

With this type of arrangement the PMs are less likely to become demagnetized 

[63]. Although the spoke-type arrangement of magnets has many advantages, the 
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technology is not used worldwide significantly. One disadvantage of this type of 

arrangement is the complicated construction required to reduce or eliminate the PM flux 

leakage from the radially inward portions of the PMs as shown in Figure 2-5. Another 

disadvantage is the complicated construction required to retain the PMs and the pole 

pieces in the rotor during normal operation.  

Ignoring fringing the theoretical peak flux focusing capability of a spoke type 

rotor with rectangular magnets is related by [67] .  

12
=

π
gm

m

B P

B
 (2.23) 

where Bm is the flux density within the magnet and Bgm is the specified magnet air-gap 

flux density. Equation (2.23) can be derived by considering the relationship between the 

magnet length and steel pole arc length. 

The steel pole arc length, ls, of the inner rotor, as shown in Figure 2-3, is defined as 

 1 1

1

2 2

2

−
=

π o m
s

r Pl
l

P
 (2.24) 

where ro1 is the outer radius of the inner rotor, P1 is the number of pole-pairs and lm is the 

length of the rectangular magnet. The length of the inner rotor magnet is defined as 

 1 1 1= −o iL r r  (2.25) 

where ri1 is the inner radius of the inner rotor. 

Ignoring leakage through the inner rotor arc, the flux across the outer arc length ls 

is equal to the flux produced by the two adjacent magnets across length wm. This can then 

be written as 
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The maximum width wm of the magnet occurs when the magnets just touch at the 

nonmagnetic core inner radius ri1 such that 

 1
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P l
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Thus the length of the inner rotor magnet L1 can be written as 

 1
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Substituting equation (2.28) into (2.26) we get 
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By rearranging the terms and simplifying we get equation (2.23). 

 Therefore, in order to take advantage of the flux focusing the rotor should have more 

than 2 pole pairs.  

  
Figure 2-3: Flux focusing arrangement of magnets 

Inner rotor P1, pole pairs 

Cage rotor n2, steel poles 

Outer rotor P3 pole pairs 

wm 

lm 
ls 
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Figure 2-4: Magnetic flux concentrating on the steel  

 

 
Figure 2-5: Flux leakage on the shaft of inner rotor  

 

 

 

Flux leakage 



39 

2.4. Finite Element Analysis 

FEA is used for simulating the performance of the MG designs. FEA simulations 

have been run using the JMAG software package. It is used for 2-D and 3-D 

electromagnetic transient and static analysis. FEA involves dividing the geometry into 

elements called mesh. The field inside each element is represented by a polynomial and 

the set of equations for unknown coefficients are solved in order to obtain the final 

solution. In this thesis the design and analysis of the FFMG is accomplished by using the 

2-D transient electromagnetic analysis module and the magnetostatic module of JMAG. 

The deflection analysis is performed using the 3-D electromagnetic and structural 

analysis modules of JMAG.  Figure 2-6 shows the FFMG design using JMAG and 

Figure 2-7 shows the corresponding vector potential, radial and absolute values of the 

flux density as well as the mesh plot. It can be seen that the mesh elements are relatively 

fine. The size and the number of elements will determine the accuracy of the results. The 

greater the number of elements the better will be the accuracy. However, increasing the 

number of elements also increases the computation time and also the size of the result 

file. 

 
Figure 2-6: 2D model of FFMG using JMAG 
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|B|                       Br  

 Figure 2-7: Mosaic plot, a) magnetic vector potential field lines, b) radial flux density Br, c) flux 

density magnitude |B|, d) finite element analysis mesh plot  

 

2-D transient electromagnetic analysis can output the results like magnetic fields, 

forces and electromagnetic torque on the rotors along with the eddy current and hystersis 

losses. Initially 2-D transient analysis is run by rotating one rotor. This will give the 

position of the rotor relative to other rotors which results in the transfer of the maximum 

torque between rotors. Once this position is determined the geometry is fixed in this 

position and magnetostatic analysis can be run instead of transient analysis. This will 

greatly reduce the computing time and size of the result file. For magnetomechanical                         

analysis the 3 -D magnetostatic analysis is used and these results are used as the input to 

the 3-D structural analysis. 



 

 

 

 

 

 
 

CHAPTER 3 : SUB-SCALE FLUX FOXUSING MAGNETIC GEAR DESIGN 

 

 

3.1. IntroductionEquation Chapter (Next) Section 1 

In this chapter the design, construction and experimental evaluation of a sub-scale 

coaxial FFMG is presented. Experimental and analysis results for the following three 

different designs will be presented.  

I. Design with ferrite magnets on the inner and outer rotor 

II. Design with NdFeB magnets on the inner rotor and ferrite magnets on the outer 

rotor 

III. Design with NdFeB magnets on the inner and outer rotor 

In Section 3.2 the design and topology of the MG is presented. In section 3.3 the 

parametric sweep analysis of the design is presented. Section 3.4 presents the deflection 

analysis of the cage rotor bars due to the radial magnetic forces created by inner and outer 

rotor, section 3.5 presents the final design after optimization and section 3.6 presents the 

experimental construction and results.  

3.2. MG Design  

The initial design parameters for the sub-scale FFMG are shown in Figure 3-1. The 

inner rotor with p1=4 pole-pairs was initially designed using an existing Pacific Scientific 

F46 spoke-type rotor as shown in Figure 3-2. The FFMG cage rotor with n2=17 iron 

segments and the outer rotor with p3=13 pole-pairs were constructed around this rotor. 

However, in the final design the Pacific Scientific rotor was not used and a new rotor was 
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designed with the same dimensions but with shorter stack length. The reason for doing 

this is explained in section 3.4.  

 
Figure 3-1: Magnet gear using surface PMs. p1=4 pole-pairs, n2=17 

steel poles and p3=13 pole-pairs on outer rotor. 

  

Table 3-1: Initial MG parameters 

 Description Value Units 

Inner rotor 

Pole pairs, p1 4  

Inner radius, ri1 13 mm 

Outer radius, ro1 33 mm 

Steel pole span, θs1 π/8 rad. 

Airgap, g  0.5 mm 

Cage rotor 

 

Steel poles, n2 17 - 

Inner radius, ri2 33.5 mm 

Outer radius, ro2 46.5 mm 

Steel pole span, θs2 π/15 rad. 

Outer 

cylinder  

Pole pairs, p3 13 - 

Inner radius , ri3 47 mm 

Outer radius, ro3 59 mm 

Steel pole span, θs3 π/26 rad. 

Airgap, g 0.5 mm 

Material 
Magnet, TDK FB3G 0.46

 
T 

Steel resistivity 5.7x10
-7

 Ω-m 
 Stack length, d 152.4 mm 

 

Magnets 

Steel teeth 

Steel poles on 

cage rotor 
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Figure 3-2: Pacific Scientific F46 flux focusing rotor used as inner rotor 

 

         As can be seen from Figure 3-1, the magnets are arranged in a spoke-type 

arrangement embedded between the steel teeth.  The air-gap flux density in a magnet 

rotor can be significantly improved by arranging the magnets in such a flux focusing 

arrangement also called a flux concentration arrangement as discussed in the previous 

chapter.  Table 3-1 shows the initial MG parameters. An air-gap of g=0.5mm has been 

chosen between each rotor.  

The relation between the angular velocities between the three rotors is 

 
3 2

1 3 2

3 2 2 3

p n

p n n p
ω = ω + ω

− −
 (2.15) 

In order to achieve the highest torque, the outer rotor is held stationary,ω3=0. Since

3 2 1p n p− = , equation (2.15) becomes 

 2
1 2 12 2

1

n
G

p
ω = ω = ω  (3.1) 

With p1=4 pole pairs and n2=17 steel poles a gear ratio of 4.25:1 is obtained. This gear 

ratio combination was chosen because Gouda’s analysis [68] indicated that a maximum 

torque density is obtained when the gear ratio is between 3 and 5.  
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When designing the MG the torque ripple in the FFMG must also be considered. The 

torque ripple can be minimized by considering the cogging factor due to the PMs. The 

cogging factor is defined by [69] 

 
1 2

1 2

2

(2 , )
f

p n
C

LCM p n
=  (3.2) 

where LCM=lowest common multiple. 

The pole combinations have been chosen so that all the conditions are satisfied. The 

cogging factor 
fC =1 is obtained for the chosen pole combinations. 

3.3. Parameter Optimization Analysis 

 In order to improve the performance of the FFMG, parametric optimization of the 

outer and cage rotor bars is performed by varying the radii and widths. The flux 

concentration between the rotors can be defined in terms of the ratio of the inner and 

outer radii of the three rotors. A parameter sweep analysis is performed to improve this 

flux concentration ratio. 

3.3.1. Inner Rotor Flux Concentration Ratio 

The flux focusing is achieved by changing the flux flowing through the width of 

the steel pole relative to the length of the magnets. Defining 

1 1 1o iL r r= −  (3.3) 

1 1 1=s o sW r θ  (3.4) 

where  ri1 = inner rotor radius, ro1 = outer rotor radius and θs1 = steel pole span. Ignoring 

fringing and assuming that all the flux is flowing into the cage rotor poles, the magnet 

and air-gap flux relationship must be 

 
1 1 1 12=g s m mB W d B L d  (3.5) 
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where Bg1 = flux density from the inner rotor  steel pole. Bm1 = inner rotor magnet flux 

density, d = stack length. Therefore, a flux concentration ratio can be defined as  

 1 1
1

1 1 1

2
1

g i
φ

m s o

B r
C

B θ r

 
= = − 

 
 (3.6) 

Using the values given in Table 3-1 the flux concentration ratio for the inner rotor is  

1
Cϕ

 = 3.09. 

3.3.2. Outer Rotor Magnet Width, W3 Optimization 

As shown in Chapter 2 the dominant harmonic of the field is responsible for 

transferring maximum torque between rotors. Hence the maximization of the 13
th

 radial 

flux density harmonic component is key to achieving maximum outer rotor torque 

transmission capability.  Therefore, the outer rotor magnet width, W3, cage rotor pole 

span, θs2 and outer cylinder length were all varied and the 13
th

 harmonic and torque 

values were studied.  It was determined that the choice of the optimal magnet width was 

not changed by varying the pole span or outer cylinder length.  For instance, Figure 3-3 

shows that the peak 13
th

 harmonic for different cage rotor span values is always at 

W3=7mm.  Similarly the peak torque value for different outer cylinder lengths, L3, is 

always at W3=7mm as shown in Figure 3-4.  Consequently the magnet widths W3 was 

chosen to be 7mm.  This gives an outer rotor steel span θs3 of π/26= π/(2p3) radians. 
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Figure 3-3: 13

th
 harmonic component of radial flux density in the air-gap

adjacent to outer rotor for varying widths of outer rotor magnets, W3 and 

steel poles span θs2 
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Figure 3-4: Torque comparison for two different outer cylinder magnet thicknesses, L3 

 

3.3.3. Outer Cylinder Magnet Length, L3 Optimization 

For the outer cylinder the flux is concentrated inwards. Defining  

 3 3 3o iL r r= −  (3.7) 

 3 3 3s i s
W r θ=  (3.8) 

Then the magnet and air-gap flux are related by 

 3 3 3 32g s mB W d B L d=  (3.9) 
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where Bg3 = flux density from the outer cylinder steel pole and Bm3 = outer cylinder 

magnet flux density. The outer cylinder flux concentration ratio is then  

 3 3
3

3 3 3

2
1

g o

m s i

B r
C

B r
ϕ

θ

 
= = − 

 
 (3.10) 

With θs3= π/(2p3) radians and ri3=47mm held fixed.  The outer cylinder radius ro3 was 

varied from ro3=55 to 65 mm. The other parameters determined from the previous 

analysis are kept constant. The resultant torque and torque density values as a function of 

the Cφ3 is shown in Figure 3-5. Based on this analysis Cφ3=5.28 gives the highest torque 

density. This corresponds to an outer radius ro3=62mm.  
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Figure 3-5: Torque, torque density and torque ripple comparison for 

varying flux concentration ratio, Cφ3 

 

3.3.4. Steel Rotor Cage length, L2, Optimization  

With W3=7mm and L3.=15mm held constant the radial length of the cage rotor 

steel poles, L2 was varied. The torque, torque density and torque ripple as a function of L2 

is shown in Figure 3-6.  
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The change in this length consequently also changed the outer cylinder 

dimensions; this resulted in the torque density decreasing with increasing L2. Based on 

this analysis the radial length of the steel poles was chosen to be L2=6mm. 
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Figure 3-6: Torque, torque density and torque ripple comparison 

when the cage rotor steel thickness L2 is varied. 
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3.3.5. Cage Rotor Steel Pole Width Span, θs2, Optimization 

The ratio of the cage rotor steel pole span, θs2, with respect to the outer cylinder 

steel pole span, θs3, is defined as 

 2
23

3

s
s

s

W
θ

θ
=  (3.11) 

θs2 was varied while θs3 was held constant at π/26 radians, the variation of this angular 

span with respect to torque and torque density is shown Figure 3-7.  The other parameters 

W3=7mm, L3=15mm and L2=6mm obtained from the previous analysis were fixed.  The 

analysis shows that the peak torque occurs when Ws23=2.02. This corresponds to an 

angular span, θs2=π/p3. The final parameters after optimization are shown in Table 3-2 

and the final flux concentration ratios are shown in Table 3-3.  

Table 3-2: Fixed geometric parameters and material properties 

 Description Value Units 

Inner rotor 

Pole pairs, p1 4 - 

Inner radius, ri1 13 mm 

Outer radius, ro1 33 mm 

Steel pole span, θs1 π/8 rad. 

Airgap, g 0.5 mm 

Cage rotor 

Steel poles, n2 17 - 

Inner radius, ri2 33.5 mm 

Outer radius, ro2 39.5 mm 

Steel pole span, θs2 π/p3 rad. 

Outer 

cylinder 

Pole pairs, p3 13 - 

Inner radius , ri3 40 mm 

Outer radius, ro3 55 mm 

Steel pole span, θs3 π/26 rad. 

Airgap, g 0.5 mm 

Material 

Ferrite magnet, Hitachi 

NMF12F 
0.46

 
T 

Magnet, NdFeB, N40H, Br 1.25 T 

416 steel resistivity 0.570 µΩ-m 

1018 steel resistivity 0.159 µΩ-m 

Active region stack length, d 76.2 mm 
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 Outer cylinder steel pole span, Ws23  

Figure 3-7: Torque ripple comparison for varying outer cylinder steel 

pole span values 

 

Table 3-3: Key design parameters 

Flux concentration 

ratio 

Cφ3 5.28 

Cφ1 3.08 

Angular span ratio Ws23
 

2.02 
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Figure 3-8 shows the final torque obtained when using ferrite magnets with 

residual flux density, Br=0.38T. A maximum torque of 73 Nm is predicted giving an 

active region torque density of 50.4 Nm/L.  Similarly, Figure 3-9 gives the corresponding 

torque values for Br=0.46 T ferrite magnets.  

Table 3-4 summarizes the torque and torque density values for different ferrite 

magnets with and without a magnetic steel inner shaft. It can be seen that a torque of 

95.5Nm can be achieved by using the Hitachi NMF ferrite magnets with a corresponding 

remnant flux density value of 0.46 T. This corresponds to a torque density of 65.5Nm/L
 

when using the Hitachi magnets. When a magnetic steel shaft is introduced on the inner 

rotor it is observed that the external field is significantly reduced due to the field leakage 

through the shaft. When these inner rotor changes are incorporated the predicted torque 

significantly decreases. 
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Figure 3-8: Torque when using ferrite magnets with Br=0.38T. 
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Figure 3-9: Torque when using ferrite magnets with Br=0.46T 
 

Table 3-4: Torque and torque density values 

for various ferrite magnets 

 

Outer 

cylinder 

magnet, Br  

 

Inner rotor 

magnet, Br [T] Shaft 

Diameter 

Torque 

[Nm] 

Torque 

Density 

[Nm/L] 

0.38 0.38 1in 58.5 40.5 

0.43 0.31 1in 49 33.5 

0.43 0.31 24mm 54.6 38 

0.43 0.31 22mm 57.5 39.8 

0.43 0.31 20mm 59 40.5 

0.43 0.43 1in 75.6 52 

0.43 0.43 No shaft 92.5 64 

0.46 0.46 No shaft 95.5 65.5 

 

3.4. Magnetomechanical Analysis 

When a magnetically conducting plate such as a steel plate is placed near a 

stationary magnetic source, magnetic forces are created between the magnetic plates.  

When these forces are sufficiently high or the magnetic plate is sufficiently thin the plate 

will deflect. The forces can become so high that the plate can break. Moon and Pao [70-

71]  were the first to study the deflection of a cantilevered beam experimentally and 

analytically. In most electrical machines the elastic deformation due to these magnetic 

forces is negligibly small [69, 72] although it does play a role in creating vibration and 

acoustic noise [73-74] 
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Due to the small air-gaps and high forces created by the FFMG’s inner and outer 

rotors, the cage rotor bars can significantly deflect. The deflection of the cage rotor steel 

poles will close the air-gap between the magnetic rotor and the steel bars leading to an 

increase in the magnetic force and consequently further deflection is seen on the steel 

poles. Therefore, the magnetic force and steel pole deflection is highly coupled and the 

deflection varies along the axial length of the steel poles.  

In order to study the cage rotor steel pole deflection the magnetic forces were first 

calculated using JMAG 3-D nonlinear FEA with constant uniform air-gap along the axial 

length. The computed radial and tangential forces along the axial length on each FEA 

element were then imported into the JMAG 3-D mechanical FEA package to compute the 

resulting deflection values when the ends of the steel poles were held fixed. The new 

deflected steel pole position along the axial length was then again used to compute 

magnetic force on the cage bars and so on. This iterative process was continued until no 

further significant deflection of the bars was observed. Figure 3-10 summarizes the 

iterative procedure. 

 
Figure 3-10: Iterative magnetomechanical deflection analysis procedure for the cage rotor bars 

 

3.4.1. Deflection Analysis when using Pacific Scientific F46 rotor 

The deflection of the cage rotor steel pole when using the Pacific Scientific F46 

flux focusing rotor was verified following the procedure presented above. In order to 
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experimentally verify the deflection values obtained through FEA an experimental 

measurement of the deflection along the axial length of a single steel pole placed above 

the Pacific Scientific rotor was undertaken using an MDL400 TESA-Hite gauge (accurate 

to 0.00254mm) as shown in Figure 3-11 and Figure 3-12. An air-gap of 0.77 mm was 

used in this analysis.  

Table 3-5 shows the properties of the steel used in the assembly. The 416 grade 

magnetic stainless steel was chosen to be used on the cage rotor as it has higher resistivity 

relative to the 1018 steel and therefore the induced eddy currents will be lower.   

 
Figure 3-11: Pacific Scientific F46 rotor with a single cage bar. An air-gap of 0.77 mm was 

used 

 

 
Table 3-5: Steel properties 

 
Description Value Units 

Material 

Properties 

1018 grade 

steel 

Steel resistivity  1.59x10
-7

 Ωm 

Poisson’s ratio 0.3 - 

Density 7.85  g/cm
3
 

Young’s modulus 210000  Mpa 

Material 

Properties 

416 grade 

steel 

Steel resistivity  5.7x10
-7

 Ωm 

Poisson’s ratio 0.29 - 

Density 7.75  g/cm
3
 

Young’s modulus 200000  MPa 
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Figure 3-13: Deflection analysis of single cage rotor bar due to the 
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Figure 3-14: Net deflection amount as a function of FEA iteration at axial position 

z=3.5inches for a single cage rotor bar.  The deflection results sho

amount from an initial air
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Figure 3-15: Air-gap reduction of a single cage rotor bar along its axial length due 

to the inner rotor magnetic force. 
 

 

The deflection on the bar was studied by using the 3-D model shown in 

Figure 3-13. The calculated deflection as a function of iteration is shown in Figure 3-14. 

It can be seen that the iterations converge after 6 iterations and a maximum deflection of 

0.24 mm is obtained.  Figure 3-15 shows the measured and calculated air-gap reduction 

due to the deflection along the axial length of the cage rotor bar. It can be seen that there 

is a very close agreement between the calculated and experimental results.  The 

experimental and calculated values are provided in Table 3-6. 

 

Table 3-6: Deflection experimental and calculated data 

Axial position 

(inches) 

FEA deflection 

[mm] 

FEA air-gap 

change [mm] 

Experimental 

deflection 

[mm] 

Experimental air-

gap change[mm] 

0 -0.009 0.761 -0.0120 0.7580 

0.5 -0.089 0.681 -0.0982 0.6718 

1 -0.137 0.633 -0.1256 0.6444 

1.5 -0.195 0.575 -0.1861 0.5839 

2 -0.213 0.557 -0.2011 0.5689 

2.5 -0.222 0.548 -0.2115 0.5585 

3 -0.225 0.545 -0.2126 0.5574 

3.5 -0.213 0.557 -0.2341 0.5359 

4 -0.199 0.571 -0.2114 0.5586 

4.5 -0.181 0.589 -0.1947 0.5753 

5 -0.186 0.584 -0.1764 0.5936 

5.5 -0.166 0.604 -0.1412 0.6288 

6 -0.071 0.699 -0.0920 0.6780 

6.5 -0.009 0.761 -0.00393 0.76607 
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3.4.2. Magnetomechanical Analysis for a 6 Inch Axial length FFMG 

The assembly of the FFMG is shown in the Figure 3-16. The air-gap between 

each rotor is 0.5 mm as previously mentioned. Figure 3-17 shows the calculated radial 

deflection of the cage rotor bars due to the inner and outer rotor magnets. It can be seen 

that the maximum deflection of 0.34 mm is predicted in the radial direction. Figure 3-18 

shows the deflection of the cage rotor bars in the theta direction. A deflection of 0.1 mm 

is predicted in this direction. Figure 3-19 shows the iterative procedure followed for 

calculating the deflection. It can be seen that the iterations converge after four iterations 

and a maximum deflection of 0.34 mm is observed. 

This level of deflection indicates that the deflection of the bars in a MG must be 

carefully designed in order to mitigate bending. With an initial air-gap of 0.5 mm it is not 

feasible to construct FFMG with such bending of the cage rotor bars. Hence based on this 

analysis the stack of the design has been reduced from 6 inches to 3 inches. This reduced 

the deflection of the cage rotor significantly as will be shown in the following section.  

 
Figure 3-16: Assembly of MG with Pacific Scientific rotor as inner rotor 
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Figure 3-17: Radial deflection of the cage rotor bars due to the inner and outer rotor magnets 

 

  
Figure 3-18: Deflection of the cage rotor bars in the theta direction due to the inner and 

outer rotor magnets 
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Figure 3-19: Maximum radial deflection of the cage rotor bars for the model for 

four iterations 
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3.4.3. Magnetomechanical analysis for 3 inch FFMG with ferrite magnets 

Magnetomechanical analysis was performed on the FFMG with a 3 inch active 

stack length with ferrite magnets. Figure 3-20 shows the complete assembly of the 3 inch 

active stack length FFMG. The deflection in the radial direction and theta direction are 

shown in Figure 3-21 and Figure 3-22 respectively. 

 

 
Figure 3-20: Sub-scale FFMG assembly with a 3 inch active stack length 

 

A maximum deflection of 0.0178 mm is predicted as shown in Figure 3-23. The 

deflection values converge after 4 iterations.  

 



Figure 3-21: Radial deflection of 

 

Figure 3-22: Deflection of cage rotor bars in 
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Figure 3-23: Maximum radial deflection of 
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3.4.4. Magnetomechanical analysis for 3 inch model with NdFeB magnets 

Magnetomechanical analysis is performed on the FFMG with a 3 inch active stack 

length with NdFeB magnets and Br = 1.25 T. The ferrite magnets from the previous 

design are replaced with NdFeB magnets without otherwise changing the design. The 

deflection in the radial direction and azimuthal direction are shown in Figure 3-24 and 

Figure 3-25 respectively. 

 
 

Deflection [mm] 

Figure 3-24: Radial deflection of cage rotor bars with NdFeB magnets on inner and outer rotors 

 

 
 

Deflection [mm] 

Figure 3-25: Deflection of cage rotor bars in the azimuthal direction with NdFeB magnets on inner and 

outer rotors 
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A maximum deflection of 0.044 mm is predicted as shown in Figure 3-26. The deflection 

values converge after 3 iterations.  
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Figure 3-26: Maximum radial deflection of cage rotor bars for model without inner rotor 

for four iterations 

 

It can be concluded from the analysis that the deflection for the 3 inch model with 

ferrite and NdFeB magnets is low and therefore will not pose any difficulties in 

construction. 

3.5. Final Design 

The final FFMG design is shown in Figure 3-27. In order to minimize cost the 

magnets are made rectangular in cross section.  Also in order to retain the magnets in 

place and prevent them from moving out radially the inner and outer rotor steel teeth are 

provided with extensions that retain the magnets in place and give mechanical support to 

the design as shown in Figure 3-28.  
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Figure 3-27: Final FFMG after optimization 

 

 

Figure 3-28: Final FFMG with steel teeth extrusion  

 

Table 3-7 shows the material properties for the different steel grades. Grade 416 

steel has been chosen for the cage rotor bars and 1018 grade steel is used for the inner 

and outer rotor cores.   
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Table 3-7: Material properties for different steel grades 

 416 grade 
430 

grade 
1018 grade 

M270-35A 

silicon 

steel 

SMC 

Steel resistivity 

(µΩm) 
0.51 0.6 0.16 520 150

Density (g/cm
3
) 7.75 7.82 7.85 7.65 7.1

Tensile strength 

(MPa) 
515 483 634 565 124

 

3.6. FFMG with Ferrite Magnets 

The FFMG design with ferrite magnets was analyzed using FEA and the calculated 

torque and efficiency was experimentally verified. Figure 3-29 shows the predicted 

torque on the three rotors. A peak torque of 41 Nm on the cage rotor is predicted for this 

design. The torque is sinusoidal because only the inner rotor is rotated and all other rotors 

are held stationary. Figure 3-30 through Figure 3-33 shows the radial flux density curves 

in the inner and outer air-gaps of the FFMG. The figures clearly show the dominant 4
th

 

and 13
th

 harmonics in the inner and outer air-gaps respectively. 
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Figure 3-29: Predicted torque when using ferrite magnets

and when only inner rotor is rotating. 
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Figure 3-30: Radial flux density, Br, in the outer rotor airgap adjacent to outer 

cylinder  
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Figure 3-31: Spatial frequency analysis of radial flux density, Br, in the outer 

rotor airgap adjacent to outer cylinder  
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Figure 3-32: Radial flux density, Br, in the inner rotor airgap adjacent to the

inner rotor 
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Figure 3-33: Spatial frequency analysis of the radial flux density, Br, in the 

inner rotor airgap adjacent to the inner rotor 

 

Figure 3-34(a) shows the inner rotor assembly with ferrite magnets. Figure 3-34(b) shows 

the assembly of the inner and cage rotor. Figure 3-35 shows the complete assembly of the 

FFMG with the outer rotor included and the mounting end plates. The outer rotor is held 

stationary where as the cage rotor is connected to the input shaft and inner rotor is 

connected to output shaft. Figure 3-36 shows the experimental setup on the test bed.  
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Figure 3-34: FFMG assembly (a) inner rotor, (b) cage rotor 
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Figure 3-36: MG setup on the testbed 

 

The experimental torque is measured on the cage and inner rotors. The torque 

obtained is shown in Figure 3-37. A maximum slip torque of 25Nm on the low-speed 

rotor was obtained. This value is only 58% of the torque predicted using FEA, it results in 

an active torque density of just 33 Nm/L. In order to understand the reason for the lower 

measured torque. The radial magnetic field created by the inner rotor and outer rotor 

when surrounded by air was measured. The results are shown in Figure 3-38 and Figure 

3-40. The dominant harmonics that transmit torque within the inner and outer rotor air-

gaps are the 4
th

 and 13
th

 harmonics respectively. These harmonic terms were extracted 

and plotted separately as shown in Figure 3-39 and Figure 3-41. It can be observed that 

the dominant harmonic fields obtained experimentally for the inner and outer rotors are 

18 % and 24% lower than the FEA predictions. This lower field value has resulted in the 

experimental torque being significantly lower than expected.  

In order to determine the cause of the discrepancy between the calculated and 

measured values a field comparison for a single inner rotor ferrite magnet was conducted. 

The resulting field comparison along one length of the magnet is shown in Figure 3-44 

and Figure 3-45, the magnet dimensions are shown in Figure 3-43.  It can be noted that a 

significant discrepancy exists. The discrepancy was close to 13%.   
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Figure 3-37: Experimentally measured torque on the inner and cage 

rotor under pole slipping condition 
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Figure 3-38: Radial magnetic flux density comparison 0.5 mm above the 

ferrite magnet inner rotor 
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Figure 3-39: 4
th

 harmonic comparison 0.5 mm above the ferrite magnet 

inner rotor 
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Figure 3-40: Radial flux density comparison 0.5 mm above the ferrite 

magnet outer rotor (when inner and cage rotor are absent) 
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Figure 3-41: 13
th

 harmonic comparison 0.5 mm above the ferrite magnet 

outer rotor when only the outer rotor is present 
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Figure 3-42: Torque ripple for the ferrite magnet MG 
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Figure 3-43: Inner rotor ferrite magnet dimensions 

 

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

, 
B

x
 , 

[T
] 

 
 Length along x-axis [mm] 

Figure 3-44: Comparison of x-component of magnetic flux 

density along the x-axis of magnet with 0.375” length with 

0.46 T magnet. 
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Figure 3-45: Comparison of x- component of magnetic flux density 

along the y-axis of magnet with 0.75” length with 0.46 T magnet. 

 

When the magnet Br field value was reduced down to obtain a match and then 

used in the FFMG FEA model a close agreement between the experimental and 

0 1 2 3 4 5 6 7 8 9 9.5
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.02

0.04

0.06

0.08

0.1

0.12

Experimental 

FEA 

Experimental 

FEA 

9.525 mm 

19.05               

mm 

38.1 mm 

x 

y 

z 



72 

calculated value was obtained. This confirmed that the ferrite magnets supplied did not 

meet the quoted specifications. Figure 3-46 and Figure 3-47 show the field comparison 

for the magnet with a residual magnet flux density of Br = 0.413 T. The comparison of 

radial field and the corresponding dominant harmonic on the inner and outer rotor when 

using the new magnet field value are shown in Figure 3-48 through Figure 3-51. The 

torque obtained when using this magnet is compared with the experimental design and 

can be seen in Figure 3-52. A very close agreement is obtained with the new magnet 

design. 
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Figure 3-46: Comparison of x-component of magnetic flux density along 

the x-axis of magnet with 0.375” length with 0.413 T magnets. 
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Figure 3-47: Comparison of x- component of magnetic flux density 

along the y-axis of magnet with 0.75” length with 0.413 T magnet. 
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Figure 3-48: Radial flux density comparison in the inner rotor air-

gap with just the inner rotor  
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Figure 3-49: 4
th

 harmonic comparison 0.5 mm above the ferrite magnet 

inner rotor 
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Figure 3-50: Radial flux density comparison on the outer rotor with 

ferrite magnets at a radius of r=56.5 mm. 
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Figure 3-51: 13
th

 harmonic comparison of radial flux density on the outer rotor

at a radius of r=56.5 mm. 
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Figure 3-52: Torque comparison for ferrite MG with reduced 

magnet properties  

 

The measured torque ripple is shown in Figure 3-42. A torque ripple of 0.7 Nm is 

obtained on the high speed rotor. This is 2.8% of the peak torque obtained which is 

25 Nm.   

The efficiency of the FFMG at various speeds is defined by 
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where T1 and 1ω  are the torque and angular speed of the inner rotor and T2 and 2ω  are the 

torque and angular speed of the cage rotor. 
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The efficiency comparison for the FFMG between the measured and FEA 

analysis is shown in Figure 3-53. An efficiency of 98.5% is obtained at the designed 

speed of 20RPM. The efficiency goes down rapidly as speed increases and this is 

predominately due to the induced eddy current losses in the cage rotor bars.  This 

indicates that this design could only be used for the first stage of a MG. 
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Figure 3-53: Comparison of efficiency of FFMG with 

ferrite magnets at various speeds. 

 

3.7. Hybrid Magnet MG  

A FFMG model with the same dimensions as the ferrite FFMG, but with NdFeB 

magnets inserted into the inner rotor, was also modeled and experimentally tested.  

Figure 3-54 shows the predicted torque on the three rotors for this hybrid FFMG. 
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Figure 3-54: Predicted torque for the hybrid FFMG 

design where NdFeB magnets are in the inner rotor 

and ferrite magnets are in the outer rotor 
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This hybrid magnet MG’s predicted peak torque is 61 Nm. Figure 3-55 shows the field 

comparison for the high-speed rotor in air and corresponding dominant harmonic in 

Figure 3-56. It is can be seen that the experimental and FEA values are very close. 

Figure 3-57 shows the experimental torque measured during pole slippage.  A peak 

torque of 48 Nm was achieved which is only 78% of the predicted 61 Nm torque.  This 

represents a measured torque density of 66.3 Nm/L while the predicted was 84.9 Nm/L. 

This discrepancy is again attributed to the Hitachi NMF-12F ferrite magnets having lower 

magnetic properties than expected. The efficiency for this hybrid magnet designed is 

shown in Figure 3-58. At the design speed of 20 RPM the measured efficiency is 97.7%.  
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Figure 3-55: Radial flux density comparison in the inner rotor air-gap with just 

the inner rotor present 
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Figure 3-56: The 4
th

 harmonic comparison of the radial flux density in the 

inner rotor air-gap with just the inner rotor present.   
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Figure 3-57: Measured torque for the hybrid FFMG design where NdFeB 

magnets are in the inner rotor and ferrite magnets are in the outer rotor 
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Figure 3-58: Comparison of efficiency for the hybrid FFMG at 

various speeds. 
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torque when using the NdFeB magnets. The calculated peak torque on the cage rotor is 

115.7 Nm. This gives a volumetric torque density of 154.2 Nm/L. The radial flux densities 
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Figure 3-59: Predicted torque when using NdFeB 

magnets 
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Figure 3-60: Radial flux density, Br, in the outer rotor air-gap adjacent to outer 

cylinder at r=39.75 mm.  
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Figure 3-61: Spatial frequency analysis of radial flux density, Br, in the outer 

rotor airgap adjacent to outer rotor  
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Figure 3-62: Radial flux density, Br, in the inner rotor airgap adjacent to inner 

cylinder and corresponding spatial frequency analysis at r=33.25 mm. 
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Figure 3-63: Spatial frequency analysis of radial flux density, Br, in the inner 

rotor airgap adjacent to inner rotor 

 

The predicted peak torque for this model is 115.7 Nm while the measured peak 

torque before pole slippage was determined to be 113.5 Nm. This represents a discrepancy 

of just 1.9%.   This results in an active region torque density of 151.2 Nm/L. The radial 

flux density at a distance of 0.25 mm away from inner rotor when the inner rotor is 

surrounded by air, was measured experimentally and compared with FEA to validate the 

magnetic strength of the magnets. Figure 3-64 shows the comparison between the fields 

and it can be seen that a very close match was obtained between the two fields. 
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Figure 3-67 shows the efficiency at different speed and load conditions. An efficiency of 

97.4% is obtained at the speed of 20 RPM.  It should be noted that the torque ripple shown 

in Figure 3-66 was measured using a helical beam coupling on both sides of the FFMG, 

however the torque ripple shown in Figure 3-67 was measured with a helical beam 

coupling on the low-speed side and a flexible spider coupling on the high-speed side of the 

FFMG. It was determined that the spider coupling introduced more oscillatory torque 

ripple than the flexible coupling and this is one of the reasons for the somewhat lower 

torque ripple measured for the NdFeB design. A performance summary for the three 

different FFMG constructed is provided in Table 3-8 and Table 3-9. 

R
ad

ia
l 

fl
u

x
 d

en
si

ty
 [

T
] 

 

 Mechanical angle [degrees] 

Figure 3-64: Radial flux density comparison in the inner rotor air-

gap with just the inner rotor and NdFeB magnets 
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Figure 3-65: Torque on the cage and inner rotor of experimental 

setup with NdFeB magnets on both the rotors for various loads 
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Figure 3-66: Experimental torque ripple on the cage rotor for MG model with 

NdFeB magnets at maximum load 
 

Figure 3-67 shows the efficiency measured at various loads at different input 

speeds for FFMG with NdFeB magnets. The efficiency decreases as the load and speed 

increases. An efficiency of 97.4% is obtained at a design speed of 20 RPM at maximum 

load just before the FFMG pole slips. 
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Figure 3-67: Efficiency of the FFMG at various speeds 

measured at peak load condition (just before pole slipping). 

 

Table 3-8: Calculated and measured 

torque values 

Type 
Torque [Nm] 

Calculated  Measured 

Ferrite  42 25 

Hybrid  61 48 

NdFeB  115.7 113.5 
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Table 3-9: Summary of experimental 

performance metrics 

Type 

Torque density 

[Nm/L] 

Mass density 

[Nm/kg] 

Torque-per-

kg 

of magnet 

[Nm/kg] 
Active 

region 

Full 

assembly 

Active 

region 

Full 

assembly 

Ferrite 33 (56) 30.5 4.5 3.7 14.6 

Hybrid 66.3 (81) 58.6 8 6.7 24.2 

NdFeB 
151.2 

(154) 
138.5 17.4 14.8 44.6 

 

Table 3-10: Air-gap magnetic shear stress 

and torque density 

Design Air-gap 

Radius 

[mm] 

Torque 

[Nm] 

Torque 

Density 

[Nm/L] 

Shear Stress 

[kN/m
2
] 

Sub-scale 
Outer 39.75 86.8 229.5 114.7 

Inner 33.25 26.7 100.9 50.4 

 

3.9. Demagnetization Analysis  

The magnets used in the design see a rotating magnetic field from the air-gap 

crossing the magnets at the corners, in the direction opposite to that of their orientation. 

This results in the magnetic material undergoing cyclic demagnetization around the tips. 

In order to investigate this phenomenon with angular rotor position two points within the 

magnet were selected, as shown in Figure 3-68. Point 2 is far from the air-gap and 

therefore does not see any local demagnetization.  A demagnetization ratio was defined 

such that:  

 
Demagnetization ratio (%) = 2

1

B
100 1

B

 
−  

             

                           (3.13) 

Where B1 is the residual magnetic flux density of the specified step and B2 is the 

residual magnetic flux density of the step that is displayed. Using this ratio a 

demagnetization surface plot was made at one rotor position as shown Figure 3-69. The 

local demagnetization around the corners of the ferrite magnets is clearly evident. 

Figure 3-70 shows the demagnetization path taken for the field at point 1 and point 2. 
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Figure 3-68: Demagnetization analysis at two points on the 

outer rotor magnets 

 

 

 
Figure 3-69: Demagnetization ratio of the magnets 
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Figure 3-70: Demagnetization path at point 1 and point2 on the 

magnet as a function of rotor position. 

 

It can be clearly seen from Figure 3-70 at point 1, the flux density once demagnetized 

follows a new path which is very different from the original path. The demagnetization of 

magnets on the tips can therefore have some effect on the output torque. However this 

effect is very localized. 
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CHAPTER 4 : SCALED-UP FLUX FOCUSING MAGNETIC GEAR DESIGN 

 

 

4.1. IntroductionEquation Chapter (Next) Section 1 

In this chapter the design, construction and experimental evaluation of a scaled-up 

coaxial FFMG is presented. In Section 4.2 the design and topology of the scaled-up 

FFMG is presented. In section 4.3 a judicious parameter sweep of the design is presented. 

Section 4.4 gives the harmonic analysis of the design and comparison with the sub-scale 

FFMG. Section 4.5 presents the deflection analysis of the cage rotor bars due to the 

magnetic forces from the inner and outer rotor, and Section 4.6 gives the experimental 

construction and results.  

4.2. Magnetic gear design  

The scaled-up FFMG is designed by doubling the number of poles and outer radius 

used by the sub-scale FFMG presented in chapter 3. The design has p3=26 pole pairs on 

the outer rotor, p1=8 pole pairs on the inner rotor and n2=34 steel poles on the cage rotor. 

As all the poles are doubled the gear ratio for this design is 4.25:1, the same as the sub-

scale design. The primary intention for designing the scaled-up FFMG is to investigate 

the possibility of achieving a higher volumetric torque density.  The scaled-up FFMG 

design under investigation before optimization is shown in Figure 4-1(a) and the material 

properties and fixed geometric parameters are given in  

Table 4-1, Table 4-2 and defined in Figure 4-1(b).   
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(a) 

Figure 4-1: (a) Scaled-up FFMG MG using initial geometric values with 

p1=8 pole-pairs on the inner high speed rotor, n2=34 steel poles on the low-

speed rotor and p3=26 pole-pairs on the outer stationary rotor.  

 

4.3. Parameter Sweep Analysis 

It is assumed that the magnet and steel pole-spans are equal on the high-speed and 

stationary rotor such that θ1s=θ1m=360
o
/(4p1) and θ3s=θ3m=360

o
/(4p3). In addition, the 

outer radius of the stationary rotor and inner radius of the high-speed rotor are held fixed 

at ro3=110 mm and ri1=25 mm.  As the objective of the parameter sweep is to maximize 

the volumetric torque density the inner rotor radius was kept small. The cage rotor bar 

span was initially held fixed at θs2 = 180
o
/p3 ≈ 7

o
 and the torque was calculated when 

varying the outer radius of the high-speed rotor, ro1, and the length and width of the cage 

rotor bars, l2 and θs2. 
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Table 4-1: Fixed geometric parameters and material properties 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Pole pairs, p1 8 - 

Steel pole span, θs1 π/16 radians 

Air-gap, g  0.5 mm 

Cage rotor Steel poles, n2 34 - 

Outer rotor 

(stationary) 

Pole pairs, p3 26 - 

Inner radius, ri3 77 mm 

Outer radius, ro3 110 mm 

Steel pole span, θs3 π/52 radians 

Air-gap, g 0.5 mm 

Material 

Ferrite magnet, Hitachi 

NMF12F 
0.46

 
T 

NdFeB magnet, N40H, Br 1.25T T 

 416 steel resistivity (cage rotor) 57.0 µΩ-cm 

1018 steel resistivity 

(inner/outer rotor) 
15.9 µΩ-cm 

Active region stack length, d 75 mm 

 

Table 4-2: Geometric parameters varied 

 Description Value  Unit 

Inner rotor 

(high speed) 

Inner radius, ri1 25 mm 

Outer radius, ro1 66 mm 

Cage rotor 
Cage bar  length, l2  10 mm 

Pole span, θs2 7 degrees 

 

 
Figure 4-2: The geometric parameters. 

 

The cage bar length is defined as l2 = ro2 - ri2. The resulting torque density plot is 

shown in Figure 4-3 for the case when ferrite magnets are used. It can be noted that the 

torque density is always maximum when the cage bar length is l2 = 5 mm. At l2 = 5 mm 

and ro1 = 90 mm the peak torque density when using ferrite magnets is calculated to be 

ri1

ro1

ri3

ro3

ri2

ro2
θm1 θs1

θs3 θm3

θs2l2
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92.2 Nm/L.  Figure 4-4 shows that θs2=7
o
 gives the highest torque density and is not 

affected by changes in high-speed outer rotor radius values.  

 

Figure 4-3: Volumetric torque density for changes in the cage rotor bar 

length, l2 and high-speed outer rotor radius, ro1, when using ferrite 

magnets  (θs2=7
o
) 

 

 

Figure 4-4: Volumetric torque density for cage rotor bar span, θs2, and 

high-speed outer rotor radius, ro1, when using ferrite magnets (l2=5mm) 
 

 

The same parameter sweep analysis was conducted when using NdFeB magnets. 

Figure 4-5 and Figure 4-6 show the torque density values when the parameters ro1, l2, and 

θs2 are varied. Surprisingly the peak torque density using NdFeB magnets occurred at the 

same geometric values as when using ferrite magnets, namely l2=5 mm, ro1 = 90 mm, 

θs2=7
o
. The peak torque density was calculated to be 266.9 Nm/L. The final geometric 

parameters after the optimization are shown in Table 4-3.   
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Figure 4-5: Volumetric torque density for changes in the cage rotor bar 

length, l2 and high-speed outer rotor radius, ro1, when using NdFeB 

magnets  (θs2=7
o
) 

 

 

Figure 4-6: Volumetric torque density for cage rotor bar spans, θs2, and 

high-speed outer rotor radius, ro1, when using NdFeB magnets (l2=5mm) 
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radius to ro3 = 114 mm. The final model after making these adjustments is shown in 

Figure 4-7. Figure 4-8 shows the surface plot for the radial flux density of the design 

where the distribution of the field across the three rotors is shown. It can be seen that 
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one rotor is rotating (pole slipping) for both ferrite and NdFeB designs is shown in 

Figure 4-9 and Figure 4-10. A peak torque of 282.6 Nm and 750 Nm respectively was 

obtained. This results in a volumetric torque density of 92.3 Nm/L and 244.5 Nm/L for 

the ferrite and NdFeB magnet designs respectively.  

Table 4-3: Final geometric sweep parameters 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Pole pairs, p1 8 - 

Steel pole span, θs1 π/16 radians 

Air-gap, g  0.5 mm 

Cage rotor Steel poles, n2 34 - 

Outer rotor 

(stationary) 

Pole pairs, p3 26 - 

Inner radius, ri3 99 mm 

Outer radius, ro3 114 mm 

Steel pole span, θs3 π/52 radians 

Air-gap, g 0.5 mm 

Material 

Ferrite magnet, Hitachi 

NMF12F 
0.46

 
T 

NdFeB magnet, N40H, Br 1.25T T 

 416 steel resistivity (cage rotor) 57.0 µΩ-cm 

1018 steel resistivity 

(inner/outer rotor) 
15.9 µΩ-cm 

Active region stack length, d 75 mm 

 

Table 4-4: Final geometric sweep parameters 

 Description Value  Unit 

Inner rotor 

(high speed) 

Inner radius, ri1 26 mm 

Outer radius, ro1 92 mm 

Cage rotor 
Cage bar  length, l2  5 mm 

Pole span, θs2 7 degrees 
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Figure 4-7: Final design for the scaled-up FFMG 

 

 

 
Radial flux desnity [T] 

Figure 4-8: Surface plot of the radial flux density for the final design 
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Table 4-5: Key design parameters 

Flux concentration 

ratio 

Cφ3 7.35 

Cφ1 4.38 

Angular span ratio Ws23
 

2.02 

Angular span 

[radians] 

θs1 π/(2p1) 

θs2 π/p3 

θs3 π/(2p3) 
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Figure 4-9: Torque on the three rotors when slipping when using 

ferrite magnets with an active region stack length of 75mm 
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Figure 4-10: Torque on the three rotors when slipping when 

using NdFeB magnets, with an active region stack length of 

75mm 

 

The FEA calculated efficiency at various input speeds from 10 to 100 RPM with 

ferrite and NdFeB magnets is shown in Figure 4-11. An efficiency of 98.0% with ferrite 

magnets and 97.5% with NdFeB magnets was predicted at the 20 RPM input design 

speed. The calculated efficiency reduces significantly as speed increases due to the 

increased eddy current loss in the solid steel bars.   
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Figure 4-11: Calculated efficiency of the scaled-up FFMG 

with ferrite and NdFeB magnets 

 

This design thus obtained was constructed and experimentally verified. However, 

it should be noted that this design is not a completely optimized design. For instance, 

Figure 4-12 shows the variation of torque due to variation of high speed rotor inner 

radius, ri1. Figure 4-13 shows the variation of the volumetric and mass torque density of 

the scaled-up MG design and Figure 4-14 shows the variation of torque density-per-kg-

of-magnets with variation in ri1.  It can be indicated from these figures that for this design 

there is a trade-off between the active region mass torque density and volumetric torque 

density. Figure 4-13 shows that selecting ri1=25mm was not ideal as there would be no 

difference if ri1=49mm was used. When the inner radius is increased beyond ri1=49mm, 

the mass torque density increases but at the cost of a reduced volumetric torque density. 

If the mechanical assembly structure can be designed to be low mass, the mass torque 

density capability of this type of FFMG could therefore be substantial. 
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Figure 4-12: Torque variation when the inner radius of the high 

speed rotor is varied  
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Figure 4-13: Active region torque density variation when the inner 

radius of the inner rotor is varied 
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Figure 4-14: Active region torque density per kg of magnets, variation 

when the inner radius of the high speed rotor is varied  

 

4.4. Harmonic Analysis 

As seen in the previous chapter the dominant harmonics within the rotor air-gap play 

the primary torque transferring role between the rotors. In the scaled-up design the inner 

and outer rotor’s dominant harmonics are the 8
th

 and 26
th

 while in the sub-scale 

design the 4
th

 and 13
th

 harmonics are dominant. Figure 4-15 through Figure 4-18 shows 

the calculated radial flux densities in the inner and outer air-gaps and their 

corresponding spatial harmonics for the scaled-up FFMG. It can be noticed that there is 

a significant increase in the harmonics between the sub-scale and scaled-up model 

resulting in the higher torques in the scaled-up model.  
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Figure 4-15: Radial flux density, Br, in the inner rotor air-gap 

adjacent to inner cylinder when using NdFeB magnets 
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Figure 4-16: Spatial frequency analysis of radial flux density, Br, in the 

inner rotor airgap adjacent to inner cylinder when using NdFeB magnets 
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Figure 4-17: Radial flux density, Br, in the outer rotor air-gap adjacent to 

outer cylinder when using NdFeB magnets 
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Figure 4-18: Spatial frequency analysis of radial flux density, Br, in the 

outer rotor air-gap adjacent to outer cylinder when using NdFeB 

magnets 

 

Figure 4-19 and Figure 4-20 compare the magnitudes of the radial, Br, and 

azimuthal, Bθ, flux density dominant harmonics for the scaled-up and sub-scale designs 

within the inner and outer air-gaps respectively. It can be observed that for the scaled-up 

design the Br harmonic in the inner and outer air-gap is increased by 32% and 24% 

respectively. While the dominant Bθ harmonic in the inner and outer air-gap is increased 

by 36% and 37% respectively.  
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Figure 4-19: Comparison between the dominant harmonics for the 

radial flux density, Br,  for the sub-scale  and scaled-up FFMG 
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Figure 4-20: Comparison between the dominant harmonics for the 

azimuthal flux density, Bθ, for the sub-scale  and scaled-up FFMG 

 

4.5. Deflection Analysis 

As presented in the previous chapter the large magnetic forces created by the inner 

and outer rotor magnets result in the deflection of the thin central cage rotor bars. The 

deflection will result in a reduction of the air-gap between the rotors and will affect the 

torque transmitted. The deflection of the cage rotor bars for the scaled-up model using the 

same iterative approach was determined. The radial and tangential deflection of the cage 

bars is shown in Figure 4-21 and Figure 4-23.  The maximum radial and tangential 

deflection for the scaled-up FFMG with a 75 mm axial length was only 0.044 mm and 

0.01 mm respectively when using NdFeB magnets. Figure 4-22 shows that the iteration 

converges after 5 iterations with a deflection of 0.044 mm.  As the designed air-gap is 

0.5 mm this amount of deflection was deemed acceptable. 
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Figure 4-22: Iterations showing converging for radial deflection of cage rotor 

bars 
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Figure 4-21: Peak cage bar radial deflection for a 75mm stack length when both the inner 

and outer rotors are present and are assumed to be held fixed. 
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4.6. Experimental Validation 

The mechanical assembly exploded view for the scaled-up FFMG when using 

NdFeB magnets is shown in Figure 4-24. Figure 4-25 through Figure 4-27 show the 

assembly of inner rotor, cage rotor and outer rotors. It can be seen in Figure 4-25 that a 

small layer of Kevlar thread was glued around the inner rotor in order to retain the 

magnets in their place. The fully assembled FFMG on the dynamometer test-stand is 

shown in Figure 4-28.  

 

Figure 4-24: Exploded view of the mechanical assembly 

Inner rotor 

Cage rotor 

Stationary outer rotor 

       
deflection [mm] 

Figure 4-23: Peak cage bar tangential deflection for a 75mm stack length when 

both the inner and outer rotors are present and are assumed to be held fixed. 
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Figure 4-25: Assembly of inner rotor 

 

 
Figure 4-26: Assembly of cage rotor and inner rotor 

 

 
Figure 4-27: Completely assembled FFMG with all the three rotors 
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Figure 4-28: Complete test bench setup 

 

A comparison of the radial flux density, Br, created by the inner rotor when 

surrounded by air is shown in Figure 4-29 while Figure 4-30 shows the extracted 

dominant 8
th

 harmonic comparison for the inner rotor field. The experimental value was 

observed to be within 5% of the value obtained by using FEA.  

Figure 4-31 and Figure 4-32 show the measured torque and torque ripple on the cage 

rotor when 15% of peak torque is applied. This is the minimum torque that is needed in 

order to start the MG rotating continuously. The average torque is 110.5 Nm with a 

torque ripple of 1.5 Nm (1.4% of the measured torque).  

Figure 4-33 shows the measured torque under different load conditions at the 20 RPM 

design speed. A maximum torque of 731 Nm was measured beyond which the rotor 

slipped poles. This measured torque is 2.5 % (19 Nm) lower than the FEA calculated 

value of 750 Nm. This gives an active region volumetric torque density of 238.7 Nm/L. 

The corresponding torque ripple on the low-speed cage and high-speed inner rotor is 

shown in Figure 4-34. A torque ripple of 2 Nm on the inner rotor and 1.6 Nm on cage 

rotor was measured at the peak torque condition. 
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Figure 4-29: Experimental and FEA comparison of radial 

flux density at r=90.25mm created by the inner rotor when 

surrounded by air. 

 

R
ad

ia
l 

fl
u

x
 d

en
si

ty
 [

T
] 

 
 Mechanical angle [degrees] 

Figure 4-30: Comparison of the 8
th

 harmonic of the radial 

flux density , Br, of the inner rotor field 
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Figure 4-31: Experimental torque on the cage rotor under 15% load 
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Figure 4-32: Experimental torque ripple on the cage rotor under 15% 

load 
 

 

Figure 4-35 shows the measured FFMG efficiency at different load and speed 

conditions. It can be observed that the efficiency comes down as the load and speed 

increase. An efficiency of 96.5% was measured at the 20 RPM full load design speed.  

Figure 4-36 shows a comparison between the FEA calculated and measured 

efficiency at the maximum load condition, a relatively good match was achieved.  The 

main discrepancy in the results is believed to be due to the FEA model not accounting for 

the bearing and the friction losses. 
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Figure 4-33: Experimental measured torque on the low speed and high 

speed rotors under various load conditions 
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Figure 4-34: Experimental measured torque ripple on the low speed 

and high speed rotors 
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Figure 4-35: Measured efficiency for  different input 

speeds at different load conditions 
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Figure 4-36: Comparison of measured and predicted 

efficiency for different input speeds at maximum load 
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Figure 4-37. Maximum torque density is calculated for the change in the l2 and ro1. With 

the new values of l2 and ro1, the inner radius of the inner rotor ri1, is again varied till a 

maximum torque density is obtained. This procedure is continued until there is no further 

change in the torque density.  

Figure 4-38 shows the change in volumetric torque density due to changes in the  

cage rotor steel pole length l2, and the high speed rotor outer radius, ro1, when using 

ferrite magnets and the inner radius ri1=49mm. A maximum torque density is obtained 

when l2 = 7mm and ro1 = 88 mm. Figure 4-39 shows the change in torque density when 

the angular span of cage rotor bars, θs2 and ro1 are varied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-37: Procedure for further optimizing the MG design 
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Figure 4-38: Volumetric torque density for changes in the cage rotor bar 

length, l2 and high-speed outer rotor radius, ro1, when using ferrite 

magnets  (θs2=7
o
) and ri1=49mm 

 

 

Figure 4-39: Volumetric torque density for cage rotor bar span, θs2, and 

high-speed outer rotor radius, ro1, when using ferrite magnets (l2=7mm) 

and ri1=49mm 

 

 

Figure 4-40: Volumetric torque density for changes in the cage rotor bar 

length, l2 and high-speed outer rotor radius, ro1, when using NdFeB magnets 

 (θs2=7
o
) and ri1=49mm 

74
78

82
86

90

3 5 7 9 11 13 15

60

70

80

90

100

4
5

6
7

8
9

10

70
74

78
82

86
90

94
40

50

60

70

80

90

100

747678808284
868890

3
5

7
9

11
13

15

150
170
190
210
230
250
270
290

High speed rotor outer 

radius, ro1 [mm] 

Cage rotor bar 

length, l2 [mm] 

T
o

rq
u

e 
d

en
si

ty
 

[N
m

/L
] 

High speed rotor outer 

radius, ro1 [mm] 

Cage rotor bar 

length, l2 [mm] 

T
o

rq
u

e 
d

en
si

ty
 

[N
m

/L
] 

T
o

rq
u

e 
d

en
si

ty
 

[N
m

/L
] 

Cage rotor bar 

span, θs2 [Degrees] 
High speed rotor outer 

radius, ro1 [mm] 



108 

 

It is observed that there is no change in the angular span of the cage rotor bars even 

when other parameters are changed. A maximum torque is obtained at an angular span of 

7
o
. Similarly, Figure 4-40 and Figure 4-41 shows the corresponding volumetric torque 

densities changes when using NdFeB magnets. The peak torque density occurs at the 

same geometric values. With the new parameters obtained i.e. l2=7mm, θs2=7
o
 and 

ro1=88mm, the high speed rotor inner radius, ri1, is changed again.  

 

Figure 4-41: Volumetric torque density for cage rotor bar spans, θs2, and 

high-speed outer rotor radius, ro1, when using NdFeB magnets (l2=7mm) 

and ri1=49mm 
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Figure 4-42: Active region torque density variation when the inner 

radius of the high speed rotor is varied and ri1=49mm 
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Figure 4-42 shows the variation in the volumetric and mass torque densities and 

Figure 4-43 shows the torque density per kg of magnets when changing in the inner 

radius of the high speed rotor. It can be seen that the peak volumetric torque density 

occurs at ri1=49mm. After including the lips for retaining magnets on the inner and outer 

rotors the peak torques calculated when using ferrite and NdFeB magnets were 292.6 Nm 

and 761.2 Nm. This corresponds to a torque density of 95.5 Nm/L and 248.6 Nm/L 

respectively. The final design after the parametric sweep is shown in Figure 4-44, 

Table 4-6 and Table 4-7. 
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Figure 4-43: Active region torque density per kg of magnets, 

variation when the inner radius of the high speed rotor is varied 

and ri1=49mm 
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Figure 4-44: Improved design of  scaled-up FFMG 

 

 

Table 4-6: Final geometric sweep parameters of improved scaled-up FFMG 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Pole pairs, p1 8 - 

Steel pole span, θs1 π/16 radians 

Air-gap, g  0.5 mm 

Cage rotor Steel poles, n2 34 - 

Outer rotor 

(stationary) 

Pole pairs, p3 26 - 

Inner radius, ri3 77 mm 

Outer radius, ro3 110 mm 

Steel pole span, θs3 π/52 radians 

Air-gap, g 0.5 mm 

Material 

Ferrite magnet, Hitachi 

NMF12F 
0.46

 
T 

NdFeB magnet, N40H, Br 1.25T T 

 416 steel resistivity (cage rotor) 57.0 µΩ-cm 

1018 steel resistivity 

(inner/outer rotor) 
15.9 µΩ-cm 

Active region stack length, d 75 mm 

 

 

Table 4-7: Final geometric sweep parameters of improved scaled-up FFMG 

 Description Value  Unit 

Inner rotor 

(high speed) 

Inner radius, ri1 49 mm 

Outer radius, ro1 88 mm 

Cage rotor 
Cage bar  length, l2  7 mm 

Pole span, θs2 7 degrees 
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Table 4-8 and Table 4-9 summarize the active region and full assembly volumetric, mass 

torque density and shear stress values. It can be noted that the full assembly and active 

region volumetric torque density values are relatively close, however the active region 

and measured mass torque density values are significantly different. This is mainly due to 

the fact that the measured mass included the shafts and additional assembly fixtures some 

of which do not change the volumetric size. These parts were not significantly optimized. 

Figure 4-45 shows the comparison of the volumetric torque density values for FFMG 

designs constructed and experimentally verified in prior research (2003-2014) and this 

research. The active volumetric torque densities achieved in this research are significantly 

higher than any other design in the literature.  Table 4-10 summarizes the flux 

concentration ratios of the sub-scale, scaled-up and improved scaled-up designs. 

Table 4-8: Active region torque and torque density values 

 Scaled-up design Sub-scale design 

 FEA Experimental FEA Experimental 

Magnet type Ferrite NdFeB NdFeB Ferrite NdFeB Ferrite NdFeB Units 

Torque 282.6 750.0 731.0 41 115.7 25 113.5 Nm 

Volumetric torque 

density 
92.3 244.5 238.7 56 154 33 151.2 Nm/L 

Mass torque density 16.6 36.2 35.2 7.4 17.7 4.5 17.4 Nm/kg 

Torque-per-

kilogram of magnet 
51.2 90.1 87.8 23.9 45.5 14.6 44.6 Nm/kg 

Shear stress on 

inner rotor 
34.65 92 89.6 17.9 50.5 10.9 50.4 kN/m

2
 

Shear stress on 

outer rotor 
100 265.5 258.7 41.4 116.9 25.3 114.7 kN/m

2
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Table 4-9: Full assembly torque density values 

 FEA Experimental 

Magnet type Ferrite NdFeB NdFeB Units 

Volumetric torque density 82 214.9 209.4 Nm/L 

Mass torque density - - 15.77 Nm/kg 
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Figure 4-45: Torque density comparison with experimental MG research 

 

Table 4-10: Summary of flux concentration ratios for sub-scale and scaled up designs 

Description
 Sub-scale 

design 

Scaled-up 

design 

Improved scaled-

up design 

Flux 

concentration 

ratio 

Cφ3 5.28 4.83 4.83 

Cφ1 3.08 7.3 4.51 

Angular span 

ratio 
Ws23

 
2.02 2.02 2.02 

Angular span 

[radians] 

θs1 π/(2p1) π/(2p1) π/(2p1) 

θs2 π/p3 π/p3 π/p3 

θs3 π/(2p3) π/(2p3) π/(2p3) 
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CHAPTER 5 : ANALYTICAL MODELING OF THE FLUX - FOCUSING 

MAGNETIC GEAR 

 

5.1. IntroductionEquation Chapter (Next) Section 5 

The FFMG designs presented in the previous chapters have been obtained after the 

judicious parameter sweep of various parameters. As the parameters are coupled there is 

still a lot of scope for further optimization of the parameters to obtain optimum 

performance from the designs. Further, the scaling of the FFMG is necessary in order to 

obtain higher torque densities and power transfer capabilities with low torque ripple. 

Although numerical methods like FEA are an effective tool for optimizing the designs, 

the computational time and memory required for complete optimization are very high, 

especially for large diameter designs. FEA designs have the advantage of taking into 

account the actual geometry and also the non-linear characteristics of the steel parts. 

However, they don’t provide the designer with as much physical insight into the 

modeling of the design. 

An alternative method for optimization is to develop an analytical model based on 

some simplified assumptions such as simplified boundary conditions and the ideal 

characterization of the steel parts. These simplifications can greatly reduce the 

computational time and aid in the design of an optimized FFMG.  

Many analytical methods for field prediction in the air-gaps of PM machines have 

been developed in the literature [60, 75-80]. In most of the designs Maxwell’s equations 

are solved by using the separation of variables method in the low permeability regions by 
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applying boundary conditions on the interface of these regions. Many of the analytic 

methods described in the literature focus on the determination of the cogging torque in 

PM motors that have a radial field topology [81-86]. The analytical modeling of the MG 

is complicated by the presence of the modulating steel poles in the cage rotor. This field 

modulation phenomenon is similar to the slotting effects in PM machines.  

A number of analytical models for MGs with surface mounted magnets have 

previously been presented in the literature. For instance Jian [87] developed an analytical 

model by solving Maxwell’s equations by using the magnetic scalar potential. The 

magnetic field excited in the two air-gaps was separately calculated. The final magnetic 

field obtained was a superposition of the fields excited by the individual rotors. Penzkofer 

[88] developed an analytical model for MG equipped with Halbach magnets. Lubin 

developed a comparable analytical model for determining the field distribution in a MG 

with surface mounted PMs for a radial [89-90] and an axial-field MG [91]. In Lubin’s 

analysis the Laplace and Poisson’s equations were solved in each region and the solution 

was obtained by using the applicable boundary and interface conditions.   

In 2012 Belguerras [92] developed an analytical model for a flux concentration PM 

machine with a single rotor.  

This research takes a similar approach to that adopted in [90] and  [92] for developing 

the analytical model for the FFMG. The method proposed in these papers is adopted and 

improved upon to attain an accurate field prediction in the air-gaps of the FFMG. 

The problem description and assumptions made during the derivation of the FFMG 

analytic model are given in section 5.2. The governing equations for each region are 

defined in section 5.3. The boundary conditions are defined in section 5.4. The derivation 
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of the solution considering homogenous boundary conditions is presented in section 5.5. 

The modified solutions when considering the non-homogenous boundary conditions is 

presented in section 5.6. The Fourier coefficient derivation is presented in section 5.7 and 

the analytical field and force calculations are validated in section 5.8. 

5.2. Problem Description 

The schematic representation of the FFMG studied is shown in Figure 5-1. The 

geometric parameters of the model are given as  

• R1 and R2 are the inner and outer radii of the inner rotor respectively 

• R3 and R4 are the inner and outer radii of the cage rotor respectively 

• R5 and R6 are the inner and outer radii of the outer rotor respectively 

The model is divided into 5 regions. For clarity the FFMG schematic is represented as 

a linear model, as shown in Figure 5-2.  

 
Figure 5-1: Schematic of a FFMG 
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R4 
R5 

R6 
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Figure 5-2: Linear schematic of the FFMG with regions and boundary conditions 

 

The following basic assumptions are adopted in the formulation of the analytical model 

• The relative permeability of the steel cores of the two rotors are infinite 

• The relative permeability of the steel poles of the cage rotor is infinite 

• The PMs have the same permeability as air which is equal to one. 

• End effects along the z-axis direction are neglected  

• Magnets are assumed to be azimuthally magnetized 

The 2-D analytical model is developed by using the magnetic vector potential 

formulation in polar coordinates. As shown in Figure 5-2 the FFMG is sub-divided into 

five regions. The inner and outer air-gap continuous regions are represented by ΩII
 and 

ΩIV
 respectively. The inner and outer rotor magnet piecewise regions are represented by 

ΩI
 and ΩV

 respectively. The cage rotor’s non-magnetic piecewise region is given by ΩIII
. 

The field solution will involve determining the governing equations in the continuous and 
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piecewise regions and then by utilizing the Fourier series the fields within the piecewise 

and continuous regions will be connected together at the boundary interfaces. 

5.3. Governing Equations 

The magnetic flux density B  in regions ΩI
 and ΩV

 is equal to the externally applied 

magnetic field intensity H and magnetization vector M by [93] 

0 0µ µ µ= +rB H M  (5.1) 

where µr is the relative permeability and M is the residual magnetization vector. In this 

analysis it is assumed that within ΩI
 and ΩV

, there is no applied source field H and thus 

(5.1) becomes 

0µ=B M  (5.2) 

In the air regions within regions ΩII
, ΩIII

 and ΩIV
: 

0µ=B H (5.3) 

The governing Maxwell’s equations in the non-conducting region are defined as [93] 

  0∇⋅ =B   (5.4) 

0∇ × =B  (5.5) 

In terms of the magnetic vector potential A the magnetic flux density can be represented 

as 

= ∇×B A  (5.6) 

Now applying the cross product on both sides of (5.6) we get 

( )∇× =∇× ∇×B A  (5.7) 

substituting the vector identity defined by  

      
( ) ( ) 2∇× ∇× = ∇ ∇⋅ −∇A A A       (5.8) 
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into (5.7) gives 

 ( ) 2∇× = ∇ ∇⋅ −∇B A A  (5.9) 

The Coulomb gauge law is given by  

0∇⋅ =A  (5.10) 

substituting (5.5) and (5.10) into (5.9) results in Laplace’s equation as  

2 0∇ =A  (5.11) 

Equation (5.11) forms the governing partial differential equation in the region ΩII
, ΩIII

 

and ΩIV
. 

Similarly, the governing partial differential equation for the PM region ΩI
 and ΩV 

is obtained by substituting (5.2) into (5.9) and utilizing (5.10). This gives 

2µ ∇× = −∇o M A  (5.12) 

The partial differential equations are solved using the separation of variables 

method and the Sturm-Liouville method in cylindrical coordinates [94].   

The general solution for each region is represented by using Laplace and 

Poisson’s equations in terms of the magnetic vector potential. The fields within each of 

the air regions between the cage rotor steel poles represented by ΩIII
, must be determined.  

In this 2-D model only the Az field component of A is needed. This is because the 

magnetic vector potential and magnetic flux density are related by (5.6). When only the 

Az term is present we have 

                                                 

             

1
       

0        0        
z

r

r r θ z

A

∧ ∧ ∧

∂ ∂ ∂
= ∇× =

∂ ∂ ∂

r θ z

B A
              

                      (5.13) 
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Evaluating (5.13) gives  

                                                 

1
= × = z z

A A

θ r r

∧ ∧∂ ∂
∇ −

∂ ∂
B A r θ

              
 (5.14) 

From (5.14) we get 

                                                 

1
= z

r

A
B

θ r

∂

∂               
 (5.15) 

                                                 
= - z

θ

A
B

r

∂

∂                
 (5.16) 

For clarity in the following sections the subscript z will be dropped. 

The governing Laplacian equation in the region ΩIII 
for the cage rotor air regions is 

 

2 III III 2 III

3 42 2 2

1 1
0,   for  and i i i

i i c

A A A
R r R

r r r r

∂ ∂ ∂
+ + = ≤ ≤ + ≤ ≤

∂ ∂ ∂
θ θ θ β

θ   
            (5.17) 

  where 
III

iA  is the magnetic potential in the i
th

 air-gap slot between the steel poles, θi is the 

angular position of the i
th

 slot and βc is the angular span length between two respective 

steel poles. Figure 5-3 provides a simplified view of a cage rotor and each of the air 

regions are consecutively labeled. 

The angular position of the i
th

 air-gap slot between steel poles is defined as 

                                       0 2

2

2
,  for 1

2

c
i

i
i n

n
= − + ≤ ≤

βπ
θ θ                            (5.18) 

where θ0 is the initial angular position of the cage rotor and n2 is the number of steel 

poles. 
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Figure 5-3: Cage rotor steel poles in ΩIII 

shown for θ0 =βc/2 

 

The governing equation to be solved in the inner rotor air-gap represented by 

region ΩII
 has the same form as that derived for region ΩIII

. It is given by 

 

2 2

2 32 2 2

1 1
0, for

A A A
R r R

r r r r

∂ ∂ ∂
+ + = ≤ ≤

∂ ∂ ∂
  

θ

II II II

               
(5.19) 

and similarly the field in the outer air-gap region, ΩIV
 is  

 

2 2

4 52 2 2

1 1
0, for

A A A
R r R

r r r r

∂ ∂ ∂
+ + = ≤ ≤

∂ ∂ ∂
  

θ

IV IV IV

              
 (5.20) 

The inner rotor represented by region ΩI
 consists of 2p1 magnets where p1 is the 

number of inner rotor pole-pairs. The initial angular position of the magnet is assumed to 

be θj and the angular span of magnets is assumed to be βh as shown in Figure 5-4. 

R3 

R4 

βc 

θi= θ1 

i=1 

i=2 
i=3 

i=n2 

i=n2-1 

Steel poles µ ∞  
 

Air θi= θ2 

θ0 
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Figure 5-4: Inner rotor, ΩI 

with θj=θ1 and θj= θ2 shown when θ0 =βh/2 

 

The angular position of the j
th

 magnet is defined as 

 1

1

,  for 1 2
2

h
j h

j
j p

p
= − + ≤ ≤

βπ
θ θ  (5.21) 

The governing equation within region ΩI
 is obtained from (5.12) and is given by 

 

2 2

2 2 2

1 1j j jA A A

r r r r

∂ ∂ ∂
+ + = − ∇×

∂ ∂ ∂
Mµ

θ

I I I

o

                   
 (5.22) 

where jA
I
 is the magnetic potential of the j

th
 magnet of the inner rotor. The magnets are 

assumed to be azimuthally magnetized and the j
th

 magnet M is defined as

 

µ ∞  
 

θj= θ1 
βh j=1 

j=2 
j=3 

θh 

θj= θ2 
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(-1) j m

o

B

µ

∧

=M θθθθ  (5.23) 

where Bm is the residual magnetic flux density. The curl of the magnetization vector M is 

given by 

 

                        

1 1
                  ( 1)

r θ

0     (-1)        0  

j m

o

j m

o

r

B

r z r µ

B
r

µ

∧ ∧ ∧

∧∂ ∂ ∂
∇ × = = −

∂ ∂ ∂

r θ z

M z  (5.24) 

Substituting (5.24) into (5.22) we get 

               

2 I I 2 I

1 22 2 2

1 1
( 1) , for  and 

j j j j m
j j h

A A A B
R r R

r r r r r

∂ ∂ ∂
+ + = − − ≤ ≤ ≤ ≤ +

∂ ∂ ∂
θ θ θ β

θ
 (5.25) 

The outer rotor represented by region, ΩV
 consists of 2p3 magnets where p3 is the 

number of pole pairs. The initial angular position of the magnet is assumed to be θk and 

the angular span of magnets is assumed to be βl as shown in Figure 5-5. The angular 

position of the k
th

 magnet is defined as 

 3

3

  for 1 2
2

l
k l

k
k p

p
= − + ≤ ≤

βπ
θ θ  (5.26) 

The Laplace equation governing the field in the outer rotor magnets has the same form as 

that derived in (5.25). It is given by  

        

2 V V 2 V

5 62 2 2

1 1
-(-1) , for  and kk k k m

k k l

A A A B
R r R

r r r r r

∂ ∂ ∂
+ + = ≤ ≤ ≤ ≤ +

∂ ∂ ∂
θ θ θ β

θ
 (5.27) 
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Figure 5-5: Outer rotor, ΩV 

with θk=θ1 and θk= θ2 shown when θ0 =βl/2 

 

5.4. Boundary Conditions 

The boundary conditions on the inner, cage and outer rotor of the MG are 

presented in the following three sections. 

5.4.1. Inner Rotor Boundary Conditions 

The Neumann boundary conditions for a single j
th

 magnet and iron segment in the 

inner rotor, ΩI
, is shown in Figure 5-6. The PMs are assumed to be azimuthally 

magnetized and therefore the boundary conditions of the PMs on the inner rotor are 
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I

0

j

jA

θ
θ

∂
=

∂
 (5.29) 

The vector potential continuity equations on the outer and inner radii are 

 
I II

2 2 12( ) ( ), for , on j j j hA R , A R ,= ≤ ≤ + Γθ θ θ θ θ β  (5.30) 

 

I

1 1
( ) 0 , on 

j
A R , = Γθ  (5.31) 

 

Figure 5-6: Inner rotor region, ΩI
 

  

The continuity of the tangential magnetic field at the outer radius, R2, of the inner rotor is 

given by   

 

2

II

12S( ) , on 

r=R

A
θ

r

∂
= Γ

∂
 (5.32) 

where 
2

I

( 1) , for  
S( )

0                            , elsewhere

j j

m j j h

r R

A

r
B

θ
θ θ θ β

=

∂

∂


+ − ≤ ≤ +

= 



 (5.33) 

S(θ) is a piecewise function. The use of the piecewise function, S(θ),  enables the 

continuous function A
II
(r,θ) to be connected to the discontinuous function 

I

jA  at the 

R1 R2 

I

0
j

θ +β
j h

A

θ

∂
=
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0
j

θ
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A

θ

∂
=
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I

1( ) 0A R ,θ =  

S(θ) µ→∞ 

12Γ  

βh 
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boundary interface. The field due to the magnet is assumed to be present at the boundary 

interface and therefore (5.33) includes Bm at the Γ12 boundary interface.  

5.4.2. Cage Rotor Boundary Conditions 

The boundary conditions for a single cage rotor steel pole in region ΩIII
, is shown 

in Figure 5-7. 

The radial component of the magnetic field is assumed to be zero on the left and right 

angular sides of the steel pole, therefore:  

      

III

0

i

i

=θ

A

θ
θ

∂
=

∂
 (5.34) 

   

III

0

i c

iA

θ θ β
θ

= +

∂
=

∂
 (5.35) 

Also at r=R3 and r=R4 the continuity boundary conditions are: 

                                III IV

4 4 34( , ) ( , ) , for  , on i i i cA R A R θ= ≤ ≤ + Γθ θ θ θ β    (5.36) 

                                             

III II

3 3 23( , ) ( , ), for , on  i i i cA R A R= ≤ ≤ + Γθ θ θ θ θ β

 

(5.37) 

The continuity of the tangential component of the magnetic field at radius 3
r R=

is given by   

 

3

II

23F( ) , on i

r=R

A

r
θ

∂
= Γ

∂
 (5.38) 

where F(θ) is a piecewise function given by: 

 
3

III

, for  
F( )

0            ,     elsewhere

i
i i c

r=R

A

r
θ θ θ β

θ

∂
≤ ≤ +
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


 (5.39) 
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Figure 5-7: Single i
th

 slot of cage rotor steel pole in ΩIII  
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leads to                              
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 (5.40) 

where  H(θ) is the piecewise function given by:  
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 (5.41) 

5.4.3. Outer Rotor Boundary Conditions 

The Neumann boundary conditions for a single magnet and iron segment in the 

outer rotor, ΩV
, is shown in Figure 5-8. The boundary conditions are: 
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V

0

k l

k

θ +β

A

θ

∂
=

∂
 (5.42) 

                                                                       

V

0

k

kA

θ
θ

∂
=

∂
 (5.43)             

The magnetic vector potential continuity equation at r=R5 is 

 V IV

5 5 45
( , ) ( , ) , for  , on 

k k k l
A R θ A R θ= ≤ ≤ + Γθ θ θ β  (5.44) 

       

V

6 5( , ) 0 , on 
k

A R θ = Γ                  (5.45) 

 

5

IV

45L( ) , on 

r=R

A

r
θ

∂
= Γ

∂
 (5.46) 

where   
5

V

1  , for  
L( )

0                            , elsewhere

k

m k k l

r R

A

r
B

θ
( )

=

∂

∂


+ − ≤ ≤ +

= 



θ θ θ β
               (5.47) 

 
 

Figure 5-8: Outer rotor region, ΩV
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5.5. General Solutions when Accounting for Homogeneous Boundary Conditions 

In this section the general solution for each region is derived when accounting of 

the homogeneous boundary conditions. The solution derivation of air regions ΩII
, ΩIV

, 

ΩIII
 and magnet regions ΩI 

and ΩV 
are discussed in the following two sections. 

5.5.1. General Solution in the Air Regions, ΩII
, ΩIII

 and ΩIV
 

The Laplace equation to be solved in the air-gap regions is given by equations 

(5.17), (5.19) and (5.20). By using the method of separation of variables we can obtain 

the solution of the partial differential equations. For the inner rotor air-gap region ΩII 
we 

can define: 

II II II( , ) ( ) ( )A r rθ ρ φ θ=  (5.48) 

Substituting (5.48) into (5.19) we get 

 

2 II II 2 II
II II II

2 2 2

( ) 1 ( ) 1 ( )
( ) ( ) ( ) 0

∂ ∂ ∂
+ + =

∂ ∂ ∂

ρ ρ φ θ
φ θ φ θ ρ

θ

r r
r

r r r r
 (5.49) 

Rearranging the terms in (5.49) we get 

 

2 II II 2 II
2

2 2

II II

( ) 1 ( ) ( )
( )

( ) ( )

r r
r

r r r

r

ρ ρ φ θ

θ
ρ φ θ

∂ ∂ ∂
+ −

∂ ∂ ∂=  (5.50) 

The left hand side of the equation depends only on r and the right hand side 

depends only on θ and both are independent of each other. Hence both sides of the 

equation have to be constants to be equal. Assuming that constant to be 2λ  we obtain the 

two ordinary differential equations (ODE’s) shown in (5.51) and (5.52) which can then 

be easily solved. 

 

2 II
2 II

2

( )
( ) 0

d

d

φ θ
λ φ θ

θ
+ =  (5.51) 
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2 II II

2 2 II

2

( ) ( )
( ) 0

d r d r
r r r

dr dr
+ − =

ρ ρ
λ ρ  (5.52) 

Solving the differential equations will help us determine the value of the 

separation constant λ  which will satisfy the new boundary conditions. Using Strum-

Liouville method of solving the differential equations and solving (5.51) we get the 

general form as   

II II II( ) cos( ) sin( )C D= +λ λ λφ θ λθ λθ     (5.53) 

where II
Cλ  and II

Dλ  are constants that need to be determined. 

Equation (5.52) is Cauchy-Euler’s equation [95] and can be solved to get a 

constant coefficient equation. Considering  

                      ( )r r= δρ                                            (5.54) 

where δ is a constant. 

Then substituting (5.54) into (5.52) gives 

                                        
2 2 1 2( 1) 0r r rr r− −+− − =δ δ δδ δ δ λ        

 (5.55) 

Canceling out the radial variable (5.55) becomes 

 

2 2 0− =δ λ  (5.56) 

Equation (5.56) is called the Cauchy-Euler characteristic equation. Thus we have  

 

= ±δ λ  (5.57) 

equation (5.54) can then be written as 

II II II( )r A r B r
−= +λ λ

λ λ λρ  (5.58) 

where 
II

Aλ and 
II

Bλ  are unknown constants. Substituting (5.58) and (5.53) into (5.48) we get 

          
( )( )II II II II II( , ) cos( ) sin( )A r A r B r C Dλ λ

λ λ λ λθ λθ λθ−= + +                                       (5.59) 

Since the angular boundary conditions must be periodic such that 
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II II( ,0) ( ,2 )A r A r π=

 

                                      (5.60) 

we require that λ=n, where n is an integer in the region ΩII
. Equation (5.59) can then be 

expressed as a Fourier series as 

                 ( )( )II II II II II

1

( , ) cos( ) sin( )n n

n n n n

n

A r A r B r C n D nθ θ θ
∞

−

=

= + +∑                         (5.61) 

For n=0 however, λ=0 and therefore (5.52) reduces to 

II

0 0r
r r

ρ ∂∂
= 

∂ ∂ 
 (5.62) 

Integrating both sides of (5.62) gives 

II

II0

0r B
r

ρ∂
=

∂
 (5.63) 

where 
II

0
B is a constant. Rearranging and integrating again (5.63) gives 

II

II II II0

0 0 0( ) ln( )
B

r dr A B r
r

ρ = = +∫  (5.64) 

The general solution is the superposition of all λ values. Therefore for all λ ≥ 0 the 

solution to (5.19) is then [94] 

          
( )( )II II II II II II II

0 0

1

( , ) ln( ) cos( ) sin( )
n n

n n n n

n

A r A B r A r B r C n D nθ θ θ
∞

−

=

= + + + +∑         (5.65) 

The total flux, Φ, through a closed surface must be zero. By integrating (5.4) on 

both sides one obtains 

                                                              

2

0 0

0

d

= d =

π

Φ ⋅∫ ∫B S            (5.66) 

where d is the axial length of MG and: 

 

   

ˆd = rd dzrθS             (5.67) 
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Therefore 

                                                          .
r

d B rd dzB S = θ                                     (5.68) 

Assuming no field travels along the z-axis and utilizing (5.15) equation (5.66) can 

be written as: 

                  

2 II

0

0
A

= d d =

π

θ
θ

∂
Φ

∂∫
           (5.69) 

where d is the axial length of the MGG. 

Substituting (5.65) into (5.69) we get 

 

( )( )
2

II II II II II II

0 0

10

ln( ) cos( ) sin( ) 0n n

n n n n

n

= d A B r A r B r C n D n d =

π

θ θ θ
θ

∞
−

=

∂  
Φ + + + + ∂  

∑∫   (5.70) 

Evaluating (5.70) we get

      

         
( ) ( )

2

II II II II II II

0 0

0

1
sin( ) cos( ) ln( ) 0n n

n n n nA r B r C n D n + A B r =
n

− 
Φ = + − +  

π

θ θ          

(5.71) 

One can see that for (5.71) to be zero the constant terms must be 

                                                           

II II

0 0 0A B= =                                            (5.72) 

Substituting (5.72) into (5.65) gives: 

                               
( )( )II II II II II

1

( , ) cos( ) sin( )
n n

n n n n

n

A r A r B r C n D nθ θ θ
∞

−

=

= + +∑           (5.73) 

The general solution of (5.20) in the outer air-gap region ΩIV
 is similarly derived 

and is given by 

                         

   
( )( )IV IV IV IV IV

1

( , ) cos( ) sin( )
n n

n n n n

n

A r A r B r C n D nθ θ θ
∞

−

=

= + +∑           (5.74) 
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The index n will be used to denote the harmonic field term within the inner and 

outer air-gap regions. 

The general solution of (5.17) for the i
th

 cage rotor air-gap in region ΩIII
 has the 

same form as (5.59) and is given by 

               

( )( )III III III III III( , ) cos( ) sin( )
i

A r A r B r C D−= + +λ λ
λ λ λ λθ λθ λθ

                

(5.75) 

However, the azimuthal boundary conditions given by (5.34) and (5.35) must also 

be accounted for. Substituting (5.75) into (5.34) we get 

( )( )
III

III III III III0 sin( ) cos( )

i

i
i i

A
A r B r C D

−

=

∂
= = + − +

∂

λ λ
λ λ λ λ

θ θ

λ λθ λ λθ
θ

              

(5.76) 

and substituting (5.75) into (5.35) we get 

( )( )
III

III III III III0 sin( ( )) cos( ( ))

i c

i
i c i c

A
A r B r C D

−

= +

∂
= = + − + + +

∂

λ λ
λ λ λ λ

θ θ β

λ λ θ β λ λ θ β
θ

    

(5.77) 

Equation (5.76) and (5.77) can result in a non-trivial solution only if  

III 0Dλ =                          (5.78) 

and 

c
ukλ =                          (5.79) 

where u is an integer and c

c

k
π

β
=     

  The corresponding solutions for the Eigenvalues given by λ are called 

Eigenfunctions.  

Substituting (5.78) and (5.79) into (5.75) the general solution for u ≥ 0 will be: 

 
( )III III III III III

0, 0, , ,

1

( , ) ln( ) cos( ( ))c cuk uk

i i i u i u i c i

u

A r A B r A r B r ukθ θ θ
∞

−

=

= + + + −∑                         (5.80) 
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where in (5.80) the u=0 term has been added. Since the net flux in each individual i
th 

air 

space does not have to be zero. The index u and not n will be used to denote harmonic 

terms within the cage rotor air-gap region as well as magnet regions. Different spatial 

harmonic index names need to be used within the continuous and piecewise regions.  

5.5.2. General Solution in the Inner and Outer Magnet Regions, ΩI 
and ΩV

 

The general solution for the j
th

 inner rotor magnet in region ΩI
 is obtained by 

solving (5.25). Equation (5.25) is a non-homogeneous Poisson equation. The general 

solution is obtained by calculating the superposition of the complementary solution, 

I ( , )c

jA r θ  and a particular solution, 
I ( , )p

jA r θ   such that:  

I I I( , ) ( , ) ( , )c p

j j jA r A r A rθ θ θ= +                                     (5.81) 

The complementary equation is determining by solving (5.25) with the right side 

equal to zero such that 

     

2 Ic Ic 2 Ic

1 22 2 2

1 1
0, for  and 

j j j

j j h

A A A
R r R

r r r r

∂ ∂ ∂
+ + = ≤ ≤ ≤ ≤ +

∂ ∂ ∂
θ θ θ β

θ          
              (5.82) 

The complementary solution to (5.82) is obtained in the same way as for the cage 

rotor region ΩIII
. The homogeneous boundary conditions given in (5.28) and (5.29) are 

applied and the solution is obtained as 

I I I I I

0, 0, , ,

1

( , ) ln( ) cos( ( ))h h

u u

c c c c c

j j j u j u j j

u h

u
A r A B r A r B r

π π

β β π
θ θ θ

β

−∞

=

 
= + + + − 

 
 

∑            (5.83) 

where 
I

0,

c

jA ,
I

0,

c

jB , 
I

,

c

u jA  and 
I

,

c

u jB are unknowns for the j
th

 magnet and need to be 

determined. 

The particular solution is obtained by solving (5.25) with all boundary conditions 

taken as zero [96]. The boundary condition (5.30) is modified as 



134 

I

2( ) 0
j

A R ,θ =
                                                              

(5.84) 

The field at r=R1 is already assumed to be zero (by (5.31)). 

The right hand side of (5.25) is independent of θ and is only a function of r. 

Therefore, the 
Ip

jA field should not change with angular position. Equation (5.25) can 

then be modified into an ODE as 

                                      

2 I I

1 22

1
( 1) , for  

p p

j j j m
d A dA B

R r R
dr r dr r

+ = − − ≤ ≤
 

(5.85) 

Solving (5.85) gives the particular solution as                

                                                
I

1 2( 1) ln( ) p j

j mA r B C C r= − − + +
 

(5.86)                                     

where C1 and C2 are arbitrary constants. 

Equation (5.86) must satisfy the boundary conditions given in (5.28), (5.29) and 

(5.84), the coefficients C1 and C2 in (5.86) then must be zero. Hence (5.86) reduces to 

                                          

I ( , ) ( 1)p j

j mA r r Bθ = − −                                                 (5.87) 

The general solution is thus obtained by substituting (5.83) and (5.87) into (5.81) 

I I I I I

0, 0, , ,

1

( , ) ln( ) ( 1) cos( ( ))h h

u u

j

j j j m u j u j j

u h

u
A r A B r r B A r B r

π π

β β π
θ θ θ

β

−∞

=

 
= + − − + + − 

 
 

∑         (5.88) 

But, since from equation (5.31) 
I

1( ) 0A R ,θ =  equation (5.88) must satisfy: 

 

I I I

1 0, 0, 1 1

I I

, 1 , 1

1

( , ) 0 ln( ) ( 1)

cos( ( ))h h

j

j j j m

u u

u j u j j

u h

A R A B R R B

u
A R B R

π π

β β

θ

π
θ θ

β

−∞

=

= = + − −

 
+ + − 

 
 

∑                                
   (5.89) 

Therefore, 

I I

0, 0, 1 1ln( ) ( 1) j

j j mA B R R B= − + −                                        (5.90) 
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and 

I I

, 1 , 1
0h h

u u

u j u j
A R B R

π π

β β

−

+ =                                              (5.91) 

Rearranging (5.91) and eliminating 
I

,u jB  we get: 

2I I

, , 1
huk

u j u jB A R= −                                              (5.92) 

where kh is defined as 

                                            
h

h

k
π

β
=                                                    (5.93) 

Substituting (5.90)  and (5.92) into (5.88) and rearranging we get

 

I I

0, 1

1

I 1
, 1

1 1

( , ) ln ( )( 1)

cos( ( ))

h h

h

j

j j m

uk uk

uk

u j h j

u

r
A r B R r B

R

Rr
A R uk

R r

θ

θ θ
∞

=

 
= + − − 

 

     + − −       
∑                                  

       (5.94) 

The general solution for the field in the outer rotor magnet region ΩV
 is obtained 

in an analogous way as for ΩI
. Utilizing the boundary conditions (5.42), (5.43) and (5.45) 

the solution of (5.27) for the k
th 

magnet in the outer rotor is 

         

V V

0, 6

6

V 6
, 6

1 6

( , ) ln ( )( 1)

cos( ( ))

l l

l

k

k k m

uk uk

uk

u k l k

u

r
A r B R r B

R

Rr
A R uk

R r

θ

θ θ
∞

=

 
= + − − 

 

     + − −       
∑                      

                        (5.95) 

where 

                             
l

l

k
π

β
=                                                   (5.96) 
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5.6. General Solutions Considering the Radial Boundary Conditions 

The general solutions derived in section 5.5 do not take into account the radial 

field boundary conditions between each region. In this section the derived general 

solutions are re-written to account for the radial boundary conditions. The field equation 

unknowns are expressed in terms of Fourier series terms so as to enable the continuous 

field distribution in the region ΩII
 and ΩIV

 to be connected to the discontinuous field 

solution with regions ΩI
, ΩIII

 and ΩV
. The general solution obtained in section 5.5 for 

each region is summarized below. 

            

I I I

0, 1 ,

1

( , ) ( ) ( )( 1) ( )cos( ( ))
j

j j m u j h j

u

A r r R r B r ukθ ρ ρ θ θ
∞

=

= − − − + −∑                      (5.97) 

where  

                              

I I

0, 0,

1

( ) lnj j

r
r B

R
ρ

 
=  

 
                                                           (5.98) 

                    

I 1

, 1

1

I

,
( )

h h

h

uk uk

uk

u ju j

r R
A R

R r
rρ −

    
=        

                                                  (5.99) 

 
( )II II II II

1

( , ) ( ) cos( ) sin( )
n n n

n

A r r C n D nθ ρ θ θ
∞

=

= +∑                                               (5.100) 

where 

                                 
II II II
( )

n n

n n n
r A r B rρ −= +                                                                (5.101)                                         

                         

III III III

0, ,

1

( , ) ( ) ( , )cos( ( ))
i i u i c i

u

A r r r ukθ ρ ρ θ θ θ
∞

=

= + −∑                               (5.102) 

where 

                                                 
III III III

0, 0, 0,
( ) ln( )

i i i
r A B rρ = +                      (5.103) 
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III III III

, , ,
( ) c cuk uk

u i u i u i
r A r B rρ −= +                                     (5.104) 

 
( )IV IV IV IV

1

( , ) ( ) cos( ) sin( )
n n n

n

A r r C n D nθ ρ θ θ
∞

=

= +∑
 

    (5.105) 

where 

                                                 
IV IV IV

( )
n n

n n n
r A r B rρ −= +                                 (5.106) 

              

V V V

0, 6 ,

1

( , ) ( ) ( )( 1) ( )cos( ( ))
k

k k m u k l k

u

A r r R r B r uk
∞

=

= − − − + −∑θ ρ ρ θ θ

    

             (5.107) 

where  

                                    

V V

0, 0,

6

( ) lnk k

r
r B

R
ρ

 
=  

 
                                                   (5.108) 

                                
V V 6
, , 6

6

( )

l l

l

uk uk
uk

u k u k

Rr
r A R

R r

     = −       

ρ                                (5.109) 

In (5.97) - (5.109) there is a total of 16 unknowns. Therefore to solve for the 16 

unknowns we must utilize 16 boundary conditions. But we have only 8 boundary 

conditions given by (5.30), (5.32), (5.36), (5.37), (5.38), (5.40), (5.44) and (5.46). 

However, by expressing the boundary conditions in terms of the Fourier series we can 

obtain 16 boundary conditions.  

5.6.1. Cage Rotor, Region ΩIII
 

In this section the solution (5.102) is modified so as to account for the continuity 

conditions given in (5.36) and (5.37). This is achieved by using a Fourier series 

expansion along θi and θi+βc.  
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The principle of superposition [97] is used to connect the radial boundary 

conditions at r=R3 and r=R4. We consider the field superposition of the two boundary 

condition cases as illustrated in Figure 5-9. 

For case (a), the boundary conditions are  

 
III

4( , ) 0iA R =θ                                            (5.110) 

                          

III II

3 3( , ) ( , ), for i i i cA R A R= ≤ ≤ +θ θ θ θ θ β                            (5.37)                

For case (b), the boundary conditions are 

 

III IV

4 4( , ) ( , ) , for  i k k lA R A R θ= ≤ ≤ +θ θ θ θ β                  (5.36) 

 
III

3( , ) 0iA R =θ                                            (5.111) 

Therefore using superposition we have 

                                            
III IIIa IIIb( , ) ( , ) ( , )i i iA r A r A r= +θ θ θ                                     (5.112) 

where the superscript ‘a’ and ‘b’ are used to denote the field solution for the two 

boundary condition cases. 

 

 

                      
Figure 5-9: Superposition principle used to applying the two boundary conditions 

 

The Fourier coefficients in (5.102) must satisfy the boundary conditions for 

case (a) and case (b). The equations that satisfy the two cases will be derived in the next 

two sections. It should be noted that the left side of (5.36) and (5.37) are written using  

= + 

A
III

(R4,θ)=A
IV

(R4,θ) 

A
III

(R3,θ) =A
II
(R3,θ) 

A
III

(R4,θ) = A
IV

(R4,θ) 

A
III

(R3,θ) = 0 

A
III

(R4,θ) = 0 

A
III

(R3,θ) = A
II
(R3,θ) 
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III
iA  that is only valid within each i

th
 cage rotor air space, but the  right side is written with 

A
II 

which is valid for any angle. In order to connect the unknowns in each region the 

unknown in III
iA  must be written in terms of a Fourier series with respect to A

II
. 

5.6.1.1. Case (a) 

In order to satisfy boundary condition (5.110) the Fourier coefficients (5.103) and 

(5.104) must be
 

                                                   
III

0,i 4( ) 0Rρ =                                                   (5.113) 

                                                             
III

, 4( ) 0u i Rρ =                                                   (5.114) 

Given condition (5.113) we can solve (5.103) to give 

                                                     
III III

0, 0, 4ln( )i iA B R= −                                               (5.115) 

By substituting (5.115) back into (5.103) we can eliminate 
III

0,iA  to get 

                                         

III III

0, 0,

4

( ) lni i

r
r B

R
ρ

 
=  

 
                                          (5.116) 

Substituting (5.116) into (5.102) the solution for that satisfies boundary condition (5.113) 

is then: 

                              

IIIa III III

0, ,

14

( , ) ln ( ) cos( ( ))i i u i c i

u

r
A r B r uk

R
θ ρ θ θ

∞

=

 
= + − 

 
∑                     (5.117) 

Given boundary condition (5.114) we can solve (5.104) to get 

                                                

III III 4
, ,

4

c

c

uk

u i u i uk

R
A B

R

−

= −                                                         (5.118) 

Substituting (5.118) into (5.104) and evaluating we have  
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III III

, ,

4 4

( ) ,   =1,2,3........

c cuk uk

u i u i

r r
r c u

R R
ρ

−    
 = −        

                            (5.119) 

where III III

, , 4
cuk

u i u i
c B R

−=  is a constant. Substituting (5.119) into (5.117) we have: 

  

IIIa III III

0, ,

14 4 4

( , ) ln cos( ( ))

c cuk uk

i i u i c i

u

r r r
A r B c uk

R R R
θ θ θ

−
∞

=

      
 = + − −            

∑                    (5.120) 

Equation (5.120) now satisfies the first boundary condition for case (a). In order 

to satisfy the second boundary condition for case (a) we must substituting (5.120) into the 

boundary condition (5.37). This gives: 

III III3 3 3
0, ,

14 4 4

II

3

ln cos( ( ))

                                                         ( , ), for 

c cuk uk

i u i c i

u

i i c

R R R
B c uk

R R R

A R

−
∞

=

      
 + − −            

= ≤ ≤ +

∑ θ θ

θ θ θ θ β

                   (5.121) 

The left hand side is a Fourier series and from the definition of a Fourier series we can 

redefine Ai
IIIa

(R3,θ) as: 

IIIa III III

3 0, ,

1

( , ) cos( ( )) , for i i u i c i i i c

u

A R a a uk
∞

=

= + − ≤ ≤ +∑θ θ θ θ θ θ β                     (5.122) 

where in order to satisfy (5.121) the Fourier coefficients must be: 

          

III II

0, 3

1
( , )

i c

i

i

c

a A R d

θ β

θ

θ θ
β

+

= ∫                                       (5.123) 

    

III II

, 3

2
( , ) cos( ( ))  , 1, 2......

i c

i

u i c i

c

a A R uk d u

θ β

θ

θ θ θ θ
β

+

= − =∫                               (5.124) 

Comparing the left side of  (5.121) with (5.122) we can see that (5.121) is 

satisfied when: 
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III

0,III

0,

3

4

ln

i

i

a
B

R

R

=
 
 
 

                                         (5.125) 

                                             

III

,III

,

3 3

4 4

 

c c

u i

u i u u

a
c

R R

R R

π π

β β
−

=

   
−   

   

                                            (5.126) 

By substituting (5.125) and (5.126) into (5.120) we get 

44

4IIIa III III

0, ,

14 3 4

3 4 3

ln

( , ) cos( ( ))

ln

c c

cc

uk uk

i i u i c iukuk
u

RrR

R rr
A r a a uk

R R R

R R R

θ θ θ
∞

=

       −          = + −      −           

∑          (5.127) 

In (5.127) the unknowns are now written in a form that satisfies the field solution 

of A
II
(r,θ) at r=R3. 

5.6.1.2. Case (b)  

In order to satisfy boundary condition (5.111) the Fourier coefficients (5.103) and (5.104) 

must be
 

                                              
III

0, 3( ) 0
i

Rρ =
      

                                                  (5.128) 

                                                       
III

, 3( , ) 0
n i

Rρ θ =                                                       (5.129) 

The general solution for this case is obtained in an analogous way to case (a) and 

the final result is obtained as 

33

3IIIb III III

0, ,

14 3 4

3 4 3

ln

( , ) cos( ( ))

ln

c c

cc

uk uk

i i u i c iukuk
u

RrR

R rr
A r b b uk

R R R

R R R

θ θ θ
∞

=

       −          = − − −      −           

∑        (5.130) 

where  
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III IV

0, 4

1
( , )

i c

i

i

c

b A R d

θ β

θ

θ θ
β

+

= ∫
               

                                        (5.131) 

  

( )III IV

, 4

2
( , ) cos ( )

i c

i

u i c i

c

b A R uk d

θ β

θ

θ θ θ θ
β

+

= −∫                                      (5.132) 

Now substituting (5.130) and (5.127) into (5.112) we get 

34

III III III

0, 0,

4 4

3 3

34

34III III

, ,

3 34 4

4 3 4 3

lnln

( , )

ln ln

cc cc

c cc c

i i i

ukuk ukuk

u i u iuk ukuk uk

RR

rr
A r a b

R R

R R

RrRr

R rR r
a b

R RR R

R R R R

θ

  
   
   = −
   
   
   

       −−       
       + −
       − −      

      

1

cos( ( ))
c i

u

uk θ θ
∞

=




−




∑

         (5.133) 

Defining: 

                 

( , )

z z

z

a b
U a b

b a

   
= +   
   

                              (5.134) 

                  

( , )

z z

z

a b
V a b

b a

   
= −   
   

                            (5.135) 

allows (5.133) to be written more succinctly as 

34

III III III
0, 0,

4 4

3 3

4 3III III
, ,

1 3 4 3 4

lnln

( , )

ln ln

( , ) ( , )
cos( ( ))

( , ) ( , )

c c

c c

i i i

uk uk

u i u i c i

u uk uk

RR

rr
A r a b

R R

R R

V r R V r R
a b uk

V R R V R R

θ

θ θ
∞

=

  
   
   = −
   
   
   

 
+ − − 

 
 

∑                  

         (5.136) 

5.6.2. Inner Rotor, Region ΩI
 

The boundary conditions that apply for region ΩI
 are given by (5.30) and (5.31). 

They are rewritten below: 
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I II

2 2( ) ( ), for 
j j j h

A R , A R ,= ≤ ≤ +θ θ θ θ θ β  (5.30) 

        
I

1 1
( ) 0 , on 

j
A R ,θ = Γ

              
(5.31) 

 Figure 5-10 shows the boundary conditions that need to be satisfied. 

 

 
Figure 5-10: Boundary conditions on the inner rotor for region Ω1 

 

From (5.94) we have: 

I I

0, 1

1

I 1
, 1

1 1

( , ) ln ( )( 1)

cos( ( ))

h h

h

j

j j m

uk uk

uk

u j h j

u

r
A r B R r B

R

Rr
A R uk

R r

θ

θ θ
∞

=

 
= + − − 

 

     + − −       
∑                       

             (5.94) 

Substituting (5.94) into the boundary condition (5.30) we get after rearranging
  

 

2 2 1
0, , 1

11 1 2

II

2 1 2

ln  cos( ( ))

                                              ( , )-( )( 1) , for 

h h

h

uk uk

ukI I

j u j h j

u

j

m j j h

R R R
B A R uk

R R R

A R R R B  

∞

=

      
 + − −            

= − − ≤ ≤ +

∑ θ θ

θ θ θ θ β

    (5.137)

       
 

The left hand side is a Fourier series and from the definition of the Fourier series 

[97] we can redefine Aj
I
(R2,θ) as:  

I I I

2 1 2 0, ,

1

( , ) ( )( 1) cos( ( )) , for 
j

j m j u j h j j j h

u

A R R R B a a ukθ θ θ θ θ θ β
∞

=

− − − = + − ≤ ≤ +∑   (5.138) 

where the Fourier coefficients are: 

A
I
(R2,θ)=A

II
(R2,θ) 

A
I
(R1,θ) =0 
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I II

0, 2 1 2

1
[( )(-1) ( , )]

j h

j

j

j m

h

a R R B A R d

θ β

θ

θ θ
β

+

= −∫ +                       (5.139)

      

I II

, 2 1 2

2
[( )(-1) ( , ))cos( ( )]

j h

j

j

u j m h j

h

a R R B A R uk d

θ β

θ

θ θ θ θ
β

+

= − −∫ +

                    

(5.140)  

    

Comparing the left side of (5.137) with (5.138) we can see that: 

           

I

0,I

0,

2

1

ln

j

j

a
B

R

R

=
 
 
 

                                                (5.141) 

I

,I

, 1

2 2

1 1

h

h h

u juk

u j uk uk

a
A R

R R

R R

−
=
   

−   
   

                                            

(5.142)   

Substituting (5.141) and (5.142) into (5.94) we obtain 

1I I

0, 1

2

1

1

1I

,

1
2 1

1 2

ln

( , ) ( )( 1)

ln

cos( ( ))

h h

h h

j

j j m

uk uk

u j h juk uk
u

r

R
A r a R r B

R

R

Rr

R r
a uk

R R

R R

                         
∞

=

 
 
 = + − −
 
 
 

   
−   
  + −

   
−   

   

∑

θ

θ θ

              

(5.143) 

Using the notation shown in (5.134) and (5.135) equation (5.143) can be simplified to 

11I I I

0, 1 ,

1 1 22

1

ln
( , )

( , ) ( )( 1) cos( ( ))
( , )

ln

h

h

ukj

j j m u j h j

u uk

r

V r RR
A r a R r B a uk

V R RR

R

∞

=

 
 
 = + − − + −
 
 
 

∑θ θ θ     (5.144) 
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5.6.3. Outer Rotor, Region ΩV
  

The solution in the outer rotor region is given in equation (5.107).  The applicable 

Dirichlet boundary conditions are given by (5.44) and (5.45). They are rewritten as: 

 

V IV

5 5
( , ) ( , ) , for  

k k k l
A R θ A R θ= ≤ ≤ +θ θ θ β  (5.44) 

                           

V

6
( , ) 0

k
A R θ =                            (5.45) 

The boundary conditions are shown in Figure 5-11. 

 

 

 
Figure 5-11: Boundary conditions on outer rotor 

 

A similar approach is taken for the derivation of the field within the magnets of 

the outer rotor as was undertaken in section 5.6.2 for the inner rotor. After significant 

manipulation the following field solution is obtained.
 

( )

6

V V

0, 6

6

5

6

6V

,

1
5 6

6 5

ln

( , ) ( 1)

ln

cos( ( ))

l l

l l

k

k k m

uk uk

u k l kuk uk
u

R

r
A r a R r B

R

R

Rr

R r
a uk

R R

R R

                   
∞

=

 
 
 = + − −
 
 
 

   
−   
  + −

   
−   

   

∑

θ

θ θ

               

  (5.145) 

where 

A
V
(R6,θ)=0 

A
V
(R5,θ) = A

IV
(R5,θ) 
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   ( )( )V IV

0, 6 5 5

1
(-1) ( , )

k l

l

k

k m

l

a R R B A R d

θ β

θ

θ θ
β

+

= −∫ +                                 (5.146)

          

 

       

( )( )V IV

, 6 5 5

2
(-1) ( , ) cos( ( ))

k l

k

k

u k m l k

l

a R R B A R uk d

θ β

θ

θ θ θ θ
β

+

= − −∫ +

                     

(5.147)

                              

Using the notations shown in (5.134) and (5.135) equation (5.145) can be simplified to 

( )

6

6V V V

0, 6 ,

1 5 66

5

ln
( , )

( , ) ( 1) cos( ( ))
( , )

ln

l

l

ukk

k k m u k l k

u uk

R

V r Rr
A r a R r B a uk

V R RR

R

θ θ θ
∞

=

 
    = + − − + −      
 

∑     (5.148) 

5.6.4. Inner Air-gap, Region ΩII
 

The solution given in (5.100) is 

                      
( )II II II II

1

( , ) ( ) cos( ) sin( )n n n

n

A r r C n D nθ ρ θ θ
∞

=

= +∑                                     (5.100) 

where 
II( )n rρ is given by (5.101). Equation (5.100) can be rewritten as 

                              

II II II

1

( , ) ( ) ( )
n n

n

A r rθ ρ φ θ
∞

=

=∑                                                             (5.149) 

where 

                           

 

II II II( ) cos( ) sin( )n n nC n D n= +φ θ θ θ                                                    (5.150) 

In this region the periodic Neumann boundary conditions are used to obtain the 

solution. The Neumann rather than the Dirchlet boundary conditions are used as the 

Neumann boundary conditions includes the presence of the magnet terms. The boundary 

conditions are given by (5.32) and (5.38).  

The principle of superposition is again used to connect the radial boundary 

conditions at r=R2 and r=R3. This is illustrated in Figure 5-12. We use the superposition 

of two boundary condition cases. For case (a), the boundary conditions are  
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2

II

S( ) 

r=R

A
θ

r

∂
=

∂
 (5.32) 

                                                                  

 

3

II

0

r=R

A

r

∂
=

∂
                                             (5.151) 

For case (b), the boundary conditions are 

                                                            

 

2

II

0

r=R

A

r

∂
=

∂
                                                    (5.152)

  

                                                            

3

II

F( )

r=R

A

r

∂
=

∂
θ                                                (5.38)            

Therefore, using superposition 

 
II IIa IIb( , ) ( , ) ( , )A r A r A rθ θ θ= +                               (5.153) 

The superscript ‘a’ and ‘b’ are used to denote the field solution for the two boundary 

condition cases as shown in Figure 5-12. 

                            

 

 

 

                      
                                                                               case (a)                                              case (b) 

Figure 5-12: Superposition principle used to applying the two boundary conditions 
 

 

= + 

3

II

F( )

r=R

A

r

∂
=

∂
θ  

2

II

S( ) 

r= R

A
θ

r

∂
=

∂

II

3

II

r= R

A

r

∂

∂
 = 0 

2

II

S( ) 

r= R

A
θ

r

∂
=

∂

II
2

II

0 

r=R

A

r

∂
=

∂

II

3

II

F( )

r=R

A

r

∂
=

∂
θ  
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5.6.4.1. Case (a)  

The boundary conditions given are periodic with a period 2π. Hence we have 

                                     

II II
(0) (2 )φ φ π=

 

                                        (5.154) 

In order to satisfy (5.151) we must have [97]: 

                                     

II

3( )
0nd R

dr

ρ
=

 

                                        (5.155) 

Substituting (5.101) into (5.155) we get 

 
II 1 II 1

3 3 0n n

n nnA R nB R
− − −− =           (5.156) 

Rearranging (5.156) we get 

 

1
II II 3

1

3

n

n n n

R
B A

R

−

− −
=           (5.157) 

Substituting (5.157) into (5.100) and solving we get 

IIa II II3 3

1 13 3

( , ) cos( ) sin( )

n nn n

n n

n n

R Rr r
A r h n v n

R r R r
θ θ θ

∞ ∞

= =

            = + + +                  
∑ ∑   (5.158) 

where 
II II II

3

n

n n nh A R C=    and 
II II II

3

n

n n nv A R D=  are constants. Now substituting (5.158) into the 

Neumann boundary condition given by (5.32) we get after rearranging: 

II 32

1 2 3 2

II 32

1 2 3 2

S( ) cos( )

sin( )

n n

n

n

n n

n

n

RRn
h n

R R R

RRn
v n

R R R
                                            

∞

=

∞

=

    
 = −       

    
 + −       

∑

∑

θ θ

θ

        (5.159) 

The right hand side is a Fourier series and from the definition of the Fourier series  we 

can rewrite (5.159) as: 

II II

1 1

S( ) cos( ) sin( )
n n

n n

a n c n
∞ ∞

= =

= +∑ ∑θ θ θ                (5.160) 
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The Fourier coefficients must satisfy: 

                                          

2

II

12

0

1
S( ) cos( )  at Γna n d

π

θ θ θ
π

= ∫  ,                                 (5.161) 

                                                 

2

II

12

0

1
S( ) sin( )  at Γnc n d

π

θ θ θ
π

= ∫  ,             (5.162) 

Comparing  (5.160) with the right side of (5.159) we can note that: 

 

II
II 2

32

3 2

n
n n n

aR
h

n RR

R R

=
   

−   
  

            (5.163) 

 

II
II 2

32

3 2

n
n n n

cR
v

n RR

R R

=
   

−   
  

            (5.164) 

Substituting (5.163) and (5.164) back into (5.158) we get 

               

3

3IIa II 2

1
32

3 2

3

3II 2

1
32

3 2

( , ) cos( )

sin( )

n n

n n n
n

n n

n n n
n

Rr

R rR
A r a n

n RR

R R

Rr

R rR
c n

n RR

R R

                                   

∞

=

∞

=

   
+   
  =

   
−   
  

   
+   
  +

   
−   
  

∑

∑

θ θ

θ

    (5.165) 

Using the notion given in (5.134) and (5.135)  the final solution is obtained as 

II II II3 32 2

12 3 2 3

( , ) ( , )
( , ) cos( ) sin( )

( , ) ( , )

a n n

n n

nn n

U r R U r RR R
A r a n c n

n V R R n V R R
θ θ θ

∞

=

   
= +   

   
∑            (5.166) 
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5.6.4.2. Case (b) 

For case (b) the same procedure as followed in case (a) is used and the solution is 

obtained as 

II II II3 2 3 2

13 2 3 2

( , ) ( , )
( , ) cos( ) sin( )

( , ) ( , )

b n n

n n

nn n

R U r R R U r R
A r b n d n

n V R R n V R R
θ θ θ

∞

=

   
= +   

   
∑            (5.167) 

where  

 

2

II

23

0

1
F( ) cos( )  , at nb n d

π

θ θ θ
π

= Γ∫                             (5.168) 

 

2

II

23

0

1
F( )sin( )  , at nd n d

π

θ θ θ
π

= Γ∫                             (5.169) 

F(θ) is defined by equation (5.39). 

Finally substituting (5.166) and (5.167) into (5.153) we get 

II II II3 3 22

1 2 3 3 2

II II3 3 22

1 2 3 3 2

( , ) ( , )
( , ) cos( )

( , ) ( , )

( , ) ( , )
                 sin( )

( , ) ( , )

n n

n n

n n n

n n
n n

n n n

U r R R U r RR
A r a b n

n V R R n V R R

U r R R U r RR
c d n
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∑

∑

           (5.170) 

5.6.5. Outer Air-gap, Region ΩIV
 

Following the same procedure as shown for the inner air gap region ΩII
 in 

section 5.6.4, we obtain the solution by using the Neumann boundary conditions given in 

equation (5.40) and (5.46) as 

IV IV IV5 5 44

1 4 5 5 4

IV IV5 5 44

1 4 5 5 4

( , ) ( , )
( , ) cos( )

( , ) ( , )

( , ) ( , )
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U r R R U r RR
c d n
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θ θ
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    
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    

    
+ +     

    

∑

∑                  

           (5.171) 

where 
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2

IV

34

0

1
H( ) cos( )  , at na n d

π

θ θ θ
π

= Γ∫                   (5.172) 

                                                

2

IV

45

0

1
L( ) cos( )  , at nb n d

π

θ θ θ
π

= Γ∫
 

 (5.173) 

                                                 

2

IV

34

0

1
H( ) sin( )  , at nc n d

π

θ θ θ
π

= Γ∫
    

 (5.174) 

                                                 

2

IV

45

0

1
L( ) sin( )  , at nd n d

π

θ θ θ
π

= Γ∫  (5.175) 

5.6.6. Summary of the General Solutions 

Inner rotor region, ΩI
 

11I I I

0, 1 ,

1 1 22

1
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( , )

( , ) ( )( 1) cos( ( ))
( , )
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h

h

ukj

j j m u j h j
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θ θ θ
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    = − − − + −      
 

∑      (5.144) 

Inner air-gap region, ΩII
   

II II II3 3 22

1 2 3 3 2

II II3 3 22

1 2 3 3 2
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∑

∑

                           (5.170)

Cage rotor region, ΩIII
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         (5.136)
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Outer air-gap region, ΩIV

                                                

 

IV IV IV5 5 44

1 4 5 5 4

IV IV5 5 44

1 4 5 5 4
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( , ) ( , )
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∑

∑                 

           (5.171) 

Outer rotor region, ΩV
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θ θ θ
∞
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 

∑     (5.148)     

5.7. Fourier Coefficient Expressions 

In order to determine the Fourier coefficients obtained at each region the 

following integral forms will be used 

                     

( , , , ) cos( ) cos( ( ))
u

f n u n d
τ

τ

θ β

τ

θ

π
τ β θ θ θ θ

β

+

= −∫  (5.176) 

                     

( , , , ) sin( ) cos( ( ))
u

g n u n d
τ

τ

θ β

τ

θ

π
τ β θ θ θ θ

β

+

= −∫  (5.177) 

                                

( , , ) cos( )r n n d
τ

τ

θ β

θ

τ β θ θ
+

= ∫   (5.178) 

                                

( , , ) sin( )s n n d
τ

τ

θ β

θ

τ β θ θ
+

= ∫   (5.179) 

where n is the harmonic number in the inner and outer rotor air-gap and u is the harmonic 

number in the cage rotor air-gaps and magnets. Here τ is replaced with i for cage rotor, j 

for inner rotor and k for inner and outer rotors respectively and β is replaced with βc for 

the cage rotor, βh for the inner rotor and βl for the outer rotor. 

Evaluating (5.176) we get 
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( )2

2 2 2 2

( 1) sin ( ) sin( )
              ,  for 

( , , , )
1

cos( ) (sin (2 ) sin( ))  , for 
2 2

un n n
u n
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f n u
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τ τ τ

β β θ θ
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π β
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θ β θ θ π β
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− − + −
 ≠
 −

= 
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+ + − =   

 (5.180) 

Evaluating (5.177) we get 

( )2

2 2 2 2

( 1) cos ( ) cos( )
                  ,  for 

( , , , )
1

sin( ) (cos (2 ) cos( ))  , for 
2 2

kn n n
u n

u n
g n u

n n n u n
k

τ τ

τ τ τ

β β θ θ
π β

π β
τ β

β
θ β θ θ π β

π

 − + −
 ≠
 −

= 
 

− + − =   

 (5.181) 

Evaluating (5.178) we get 

                        
( )

1
( , , ) sin( ) sin( )r n n n n

n
τ ττ β θ β θ= + −  (5.182) 

Evaluating (5.179) 

                    
( )

1
( , , ) cos( ) cos( )s n n n n

n
τ ττ β θ β θ= − + +  (5.183) 

5.7.1. Fourier Coefficients for the Inner Air-gap, Region ΩII 
 

The Fourier coefficients for the inner air-gap region are given by (5.161), (5.162), 

(5.168) and (5.169). Development of these equations will give linear equations which can 

be easily solved to obtain the coefficients. 

 The integral equations defined in (5.161) and (5.162) can be written as a 

summation of field values between θj to θj+βh with the summation from j= 1 to 2p1. This 

gives: 

                                    

12p
II
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1

1
S( ) cos( )  at Γ

j h

j

n

j

a n d

θ β
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θ θ θ
π
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=

= ∑ ∫  ,                        (5.184) 

 

12p
II
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1

1
S( )sin( ) , at Γ

j h

j

n

j

c n d

θ β

θ

θ θ θ
π

+

=

= ∑ ∫           (5.185) 
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Substituting S(θ), defined in (5.33), into (5.184) we obtain: 

 

1

2

I2
II

1

1
( 1) cos( )

j h

j

p
j j

n m

j
r R

A
a B n d

r

θ β
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π
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=
=

 ∂
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∑ ∫                  (5.186) 

I

j
A  is defined in (5.144) and the derivative of (5.144) at r=R2 is obtained as: 

2

I

1 20, I

,

12 2 2 1 2
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∂
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∂
∑

   

             (5.187) 

Substituting  (5.187)  into (5.186) we get 

1
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1 20,II I

,

1 12 2 2 1 2
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+
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 
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∑ ∑∫     (5.188)  

Utilizing (5.178) and (5.176), equation (5.188) can be modified as 

1 1
I2 2

1 20,II I

,

1 1 12 2 2 1 2
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( , , ) ( , , , )

ln( ) ( , )
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p p
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π π

∞

= = =

= +∑ ∑∑       (5.189) 

The solution of (5.185) is similar to (5.188) except that the cosine term is replaced with a 

sine term. The solution of (5.185) can thus be written as 
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1 20,II I

,
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( , , ) ( , , , )
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where s(n, j, βh) and g(n, u, j, βh) are defined in (5.179) and (5.177) respectively. 

Substituting F(θ) as defined in (5.39)  into (5.168) we get 

 

2

3

III
II

1

1
cos( )

i c

i

n

i

n

i
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θ θ
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∂
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∂
∑ ∫  (5.191) 

III

iA  is defined in (5.136) and the derivative of (5.136) at r=R3 is obtained as: 
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III IIIIII
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Substituting (5.192) into (5.191) we get 
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 (5.193) 

Further by utilizing (5.178) and (5.176) equation (5.193) can be simplified as: 
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 (5.194) 

The derivation process used to solve (5.169) is similar to that used to solve(5.191). By 

substituting F(θ) defined in (5.39) into (5.169) and evaluating one obtains: 
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 (5.195) 

where s(n, i, βc) and g(n, u, i, βc) are defined in (5.179) and (5.177) respectively. 

5.7.2. Fourier Coefficients for Outer Air-gap, Region ΩIV 
 

The Fourier coefficients for the outer air-gap region are given by equations 

(5.172) through (5.175). Development of these equations will give linear equations which 

can be easily solved to obtain the coefficients. The Fourier coefficients in the air-gaps 

need to be connected to the piecewise Fourier coefficients in the magnet and cage rotor 
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air regions. Therefore, (5.172) can be expressed as a summation of integral terms over 

each cage rotor air region and we can write: 
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= Γ∑ ∫                   (5.196) 

Similarly by substituting  (5.41) into (5.174) equation (5.174) can be written as: 
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Substituting H(θ), defined in (5.41) into (5.196)  the equation becomes 
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         (5.198) 

Substituting (5.136) into (5.198) and solving the equation we get 
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(5.199) 

By using (5.178) and (5.176) Equation (5.199) can further be reduced to  
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 (5.200) 

The solution of (5.197) is similar to (5.200) except that the cosine term is replaced with a 

sine term. The solution of (5.197) can thus be written as 
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where s(n, i, βc) and g(n, u, i, βc) are defined in (5.179) and (5.177) respectively. 

Substituting L(θ) as defined in (5.47) into (5.173) and writing as a piecewise integral we 

get 

              

3

5

2 V
IV

45

1

1
( 1) cos( ) , at 

k l

k

p

kk

n m

k r R

A
b B n d

r

θ β

θ

θ θ
π

+

= =

 ∂
 = + − Γ
 ∂
 

∑ ∫           (5.202) 

Similarly by substituting L(θ) as defined in (5.47) into (5.175) we get 
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V

kA is given by (5.148) and the derivative of (5.148) is obtained as 
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Substituting (5.204) into (5.202) we get 
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Utilizing (5.178) and (5.176) equation (5.205) can be written as: 
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The solution of (5.203) is similar to (5.205) except that the cosine terms are replaced with 

sine terms. The solution of (5.203) can thus be written as: 
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where s(n, k, βl) and g(n, u, k, βl) are defined in (5.179) and (5.177) respectively. 

5.7.3. Fourier Coefficients for the Inner Rotor, Region ΩI 
 

The Fourier coefficients for the inner rotor region are given in equations (5.139) 

and (5.140). Development of these equations will give linear equations which can be 

solved to obtain the coefficients. 

Substituting   r=R2 into (5.170) we get          
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θ θ

θ

∞

=

∞

=

    
= +     

    

    
+ +     

    

∑

∑

           (5.208) 

Substituting (5.208) into (5.139) and evaluating we get 

I II II2 3 3
0, 2 1 2

1 2 3 3 2

II II2 3 3
2

2 3 3 2

( , ) 21 1
( )( 1) ( , , )

( , ) ( , )

( , ) 21 1
                           + ( ,

( , ) ( , )

j n

j m n n h

nh n n

n
n n

h n n

U R R R
a R R B a R b r n j

n V R R V R R

U R R R
c R d s n j

n V R R V R R

β
β

β

∞

=

    
= − − + +     

    

    
+     

    

∑

1

, )h

n

β
∞

=

∑

  (5.209) 

Similarly substituting  (5.208) into (5.140) and evaluating we get 

I II II2 3 32
,

1 2 3 3 2

II II2 3 32

1 2 3 3 2

( , )2 2
( , , , )

( , ) ( , )

( , )2 2
                    + ( , , , )

( , ) ( , )

n

u j n n h

nh n n

n
n n h

nh n n

U R R RR
a a b f n u j

n V R R n V R R

U R R RR
c d g n u j

n V R R n V R R

β
β

β
β

∞

=

∞

=

    
= +     

    

    
+     

    

∑

∑

                (5.210) 

5.7.4. Fourier Coefficients for the Outer Rotor, Region ΩV 
 

The Fourier coefficients for outer rotor region are given in (5.146) and (5.147). 

Substituting r=R5 into (5.171) we get 
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IV IV IV 5 5 44
5

1 4 5 5 4

IV IV 5 5 44

1 4 5 5 4

( , )2
( , ) cos( )

( , ) ( , )

( , )2
sin( )

( , ) ( , )

n

n n

n n n

n
n n

n n n

R U R RR
A R a b n

n V R R n V R R

R U R RR
c d n

n V R R n V R R

θ θ

θ

∞

=

∞

=

    
= +     

    

    
+ +     

    

∑

∑

         (5.211) 

Substituting (5.211) into (5.146) and evaluating we get 

( )V IV IV 5 5 44
0, 6 5

1 4 5 5 4

IV IV 5 5 44

4 5 5 4

( , )1 2
( 1) ( , , )

( , ) ( , )

( , )1 2
                                (

( , ) ( , )

k n

k m n n l

nl n n

n
n n

l n n

R U R RR
a R R B a b r n k

n V R R n V R R

R U R RR
c d s

n V R R n V R R

β
β

β

∞

=

    
= − − + +     

    

    
+ +     

    

∑

1

, , )l

n

n k β
∞

=

∑

  (5.212) 

Similarly substituting (5.211) into (5.147) and evaluating we get 

       

V IV IV 5 5 44
,

1 4 5 5 4

IV IV 5 5 44

1 4 5 5 4

( , )2 2
( , , , )

( , ) ( , )

( , )2 2
                      ( , , , )

( , ) ( , )

n

u k n n l

nl n n

n
n n l

nl n n

R U R RR
a a b f n u k

n V R R n V R R

R U R RR
c d g n u k

n V R R n V R R

β
β

β
β

∞

=

∞

=

    
= +     

    

    
+ +     

    

∑

∑

              (5.213) 

5.7.5. Fourier Coefficients for the Cage Rotor, ΩIII 
 

The Fourier coefficients for the cage rotor are given in (5.123), (5.124), (5.131) and 

(5.132). Substituting r=R3 into (5.170) gives 

II II II 3 3 22
3

1 2 3 3 2

II II 3 3 22

1 2 3 3 2

( , )2
( , ) cos( )

( , ) ( , )

( , )2
sin( )

( , ) ( , )

n

n n

n n n

n
n n

n n n

R U R RR
A R a b n

n V R R n V R R

R U R RR
c d n

n V R R n V R R

θ θ

θ

∞

=

∞

=

    
= +     

    

    
+ +     

    

∑

∑

           (5.214) 

Substituting (5.214) into (5.123) gives 

 

III II II 3 22
0, 3

1 2 3 3 2

II II 3 22
3

1 2 3 3 2

( , )21
( , , )

( , ) ( , )

( , )21
              ( , , )

( , ) ( , )

n

i n n c

n c n n

n
n n c

n c n n

U R RR
a a b R r n i

n V R R V R R

U R RR
c d R s n i

n V R R V R R

β
β

β
β

∞

=

∞

=

 
= + 

 

 
+ + 

 

∑

∑
                            (5.215) 
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Similarly substituting (5.214)  into (5.124) and evaluating we get 

III II II 3 22
, 3

1 2 3 3 2

II II 3 22
3

1 2 3 3 2

( , )22
( , , , )

( , ) ( , )

( , )22
              ( , , , )

( , ) ( , )

n

u i n n c

n c n n

n
n n c

n c n n

U R RR
a a b R f n u i

n V R R V R R

U R RR
c d R g n u i

n V R R V R R

β
β

β
β

∞

=

∞

=

 
= + 

 

 
+ + 

 

∑

∑
                      (5.216) 

Substituting r=R4 into (5.171) we get 

IV IV IV4 5 54
4

1 4 5 5 4

IV IV4 5 54

1 4 5 5 4

( , ) 2
( , ) cos( )

( , ) ( , )

( , ) 2
sin( )

( , ) ( , )

n

n n

n n n

n
n n

n n n

U R R RR
A R a b n

n V R R n V R R

U R R RR
c d n

n V R R n V R R

θ θ

θ

∞

=

∞

=

    
= +     

    

    
+ +     

    

∑

∑

           (5.217) 

Substituting (5.217) into (5.131) and evaluating we get 

III IV IV4 5 5
0, 4

1 4 5 5 4

IV IV4 5 5
4

1 4 5 5 4

( , ) 21
( , , )

( , ) ( , )

( , ) 21
              ( , , )

( , ) ( , )

n

i n n c

n c n n

n
n n c

n c n n

U R R R
b a R b r n i

n V R R V R R

U R R R
c R d s n i

n V R R V R R

β
β

β
β

∞

=

∞

=

 
= + 

 

 
+ + 

 

∑

∑
                          (5.218) 

Similarly substituting (5.217) into (5.132) and evaluating we get 

III IV IV4 5 5
, 4

1 4 5 5 4

IV IV4 5 5
4

1 4 5 5 4

( , ) 22
( , , , )

( , ) ( , )

( , ) 22
              ( , , , )

( , ) ( , )

n

u i n n c

n c n n

n
n n c

n c n n

U R R R
b a R b f n u i

n V R R V R R

U R R R
c R d g n u i

n V R R V R R

β
β

β
β

∞

=

∞

=

 
= + 

 

 
+ + 

 

∑

∑
                      (5.219) 

Equations (5.189), (5.190), (5.194), (5.195), (5.200), (5.201), (5.206), (5.207), (5.209), 

(5.210), (5.212), (5.213), (5.215), (5.216), (5.218) and (5.219) are a set of 16 linear 

equations which can be solved to calculate the 16 unknown coefficients for n=1,2….N 

and u=1,2…..U where N and U equal total number of harmonics that are considered in 

the summation and n2 is the number of cage rotor steel poles. The matrix defined as given 

in equation (5.220) is used to calculate the coefficient values. 



161 

AB M=  (5.220)                                                         

        where M  and B  are given by  

1

1

2

2

2

2

3

3

I

0, 2 ,1

I

, 2 . ,1

II

,1

II

,1

II

,1

II

,1

III

0, ,1

III

0, ,1

III

, . ,1

III

, . ,1

IV

,1

IV

,1

IV

,1

IV

,1

V

0, 2 ,1

V

, 2 . ,1

 

j
p

u j p U

n
N

n
N

n N

n
N

i
n

i n

u i
n U

u i
n U

n
N

n
N

n
N

n
N

k
p

u k p U

a

a

a

b

c

d

a

b

B
a

b

a

b

c

d

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 





= 
















 

( )

( )

1

1

2

2

2

2

3

3

2 1 2 ,1

2 . ,1

,1

,1

,1

,1

,1

,1

. ,1

. ,1

,1

,1

,1

,1

6 5 2 ,1

2 . ,1

( 1)

0

0

0

0

0

0

0
                      

0

0

0

0

0

0

( 1)

0

j

m
p

p U

N

N

N

N

n

n

n U

n U

N

N

N

N

k

m
p

p U

R R B

M

R R B

 − − −
 
 
 
 
 
 
 
 
 
 

  
  
  
  = 
 
 
 
 
 
 
 
 
 
 
 − − − 
 
  


















                        (5.221) 

The source terms in matrix  M are from (5.209) and (5.212). The subscripts after 

the bar in the elements of matrix M and B represents the size of the matrix. For example, 

1

I

0, 2p ,1ja is a matrix with 2p1 rows and 1 column and the elements of the matrix are written 

as 
1

1

I

0,1

I

0,2I

0, 2 ,1

I

0,2

 
j

p

p

a

a
a

a

 
 
 =
 
 
  

�
. 
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For clarity the matrix A is represented as 

 
1 2 3

4 5 6

7 8 9

A A A

A A A A

A A A

 
 =  
  

                                                 (5.222) 

where  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

1 1

1 1

1 2 3 4

2 ,2 2 ,2 . 2 , 2 , 2 , 2 ,

5 6 7 8

2 . ,2 2 . ,2 . 2 . , 2 . , 2 . , 2 . ,

9 10

,2 ,2 . , , , ,

1

,2 ,2 . , , , ,

15 16

,2 ,2 . , ,

-I 0 M M M M

0 -I M M M M

M M -I 0 0 0

0 0 0 -I 0 0

M M 0 0

p p p p U p N p N p N p N

p U p p U p U p U N p U N p U N p U N

N p N p U N N N N N N N N

N p N p U N N N N N N N N

N p N p U N N N N

A =

1 1

, ,

,2 ,2 . , , , ,

-I 0

0 0 0 0 0 -I

N N N N

N p N p U N N N N N N N N

 
 
 
 
 
 
 
 
 
  

            (5.223) 

1 2 1 2 1 2 1 2 1 1

1 2 1 2 1 2 1 2 1 1

2 2 2 2

2 2 2 2

2 2 2 2

2 , 2 , 2 , . 2 , . 2 , 2 ,

2 . , 2 . , 2 . , . 2 . , . 2 . , 2 . ,

, , , . , . , ,

2 11 12 13 14

, , , . , . , ,

, , , . , .

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-M M M -M 0 0

0 0 0 0

p n p n p n U p n U p N p N

p U n p U n p U n U p U n U p U N p U N

N n N n N n U N n U N N N N

N n N n N n U N n U N N N N

N n N n N n U N n

A =

2 2 2 2

, ,

17 18 19 20

, , , . , . , ,

0 0

-M M M -M 0 0

U N N N N

N n N n N n U N n U N N N N

 
 
 
 
 
 
 
 
 
  

                         (5.224) 

1 1 1 3 1 3

1 1 1 3 1 3

3 3

3 3

3 3

3 3

2 , 2 , 2 ,2 2 ,2 .

2 . , 2 . , 2 . ,2 2 . ,2 .

, , ,2 ,2 .

3

, , ,2 ,2 .

, , ,2 ,2 .

, , ,2 ,2 .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

p N p N p p p p U

p U N p U N p U p p U p U

N N N N N p N p U

N N N N N p N p U

N N N N N p N p U

N N N N N p N p U

A

 
 
 
 
 =
 
 
 
 
  

                                (5.225) 

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

2 1 2 1 2 2 2 2

1 1

21 22 23 24

,2 ,2 . , , , ,

,2 ,2 . , , , ,

29 30 31 32

. ,2 . ,2 . . , . , . , . ,

4

. ,2 . ,2 . . , . , . , . ,

,2 ,2 .

0 0 M M M M

0 0 0 0 0 0

0 0 M M M M

0 0 0 0 0 0

0 0

n p n p U n N n N n N n N

n p n p U n N n N n N n N

n U p n U p U n U N n U N n U N n U N

n U p n U p U n U N n U N n U N n U N

N p N p

A =

1 1

, , , ,

,2 ,2 . , , , ,

0 0 0 0

0 0 0 0 0 0

U N N N N N N N N

N p N p U N N N N N N N N

 
 
 
 
 
 
 
 
 
  

                         (5.226) 
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2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2

, , , . , . , ,

25 26

, , , . , . , ,

. , . , . , . . , . . , . ,

5 33 34

. , . , . , . . , . . , . ,

37

,

-I 0 0 0 0 0

0 -I 0 0 M M

0 0 -I 0 0 0

0 0 0 -I M M

-M M

n n n n n n U n n U n N n N

n n n n n n U n n U n N n N

n U n n U n n U n U n U n U n U N n U N

n U n n U n n U n U n U n U n U N n U N

N n

A =

2 2 2

2 2 2 2

38 39 40

, , . , . , ,

, , , . , . , ,

M -M -I 0

0 0 0 0 0 -I

N n N n U N n U N N N N

N n N n N n U N n U N N N N

 
 
 
 
 
 
 
 
 
  

         (5.227) 

2 2 2 3 2 3

2 2 2 3 2 3

2 2 2 3 2 3

2 2 2 3 2 3

3 3

3 3

, , ,2 ,2 .

27 28

, , ,2 ,2 .

. , . , . ,2 . ,2 .

6 35 36

. , . , . ,2 . ,2 .

, , ,2 ,2 .

41 42

, , ,2 ,2 .

0 0 0 0

M M 0 0

0 0 0 0

M M 0 0

0 0 0 0

0 0 -M M

n N n N n p n p U

n N n N n p n p U

n U N n U N n U p n U p U

n U N n U N n U p n U p U

N N N N N p N p U

N N N N N p N p U

A

 
 
 
 
 =
 
 
 

 




                        (5.228) 

1 1

1 1

3 1 3 1 3 3 3 3

3 1 3 1 3 3 3 3

,2 ,2 . , , , ,

,2 ,2 . , , , ,

7

2 ,2 2 ,2 . 2 , 2 , 2 , 2 ,

2 . ,2 2 . ,2 . 2 . , 2 . , 2 . , 2 . ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N p N p U N N N N N N N N

N p N p U N N N N N N N N

p p p p U p N p N p N p N

p U p p U p U p U N p U N p U N p U N

A

 
 
 

=  
 
 
 

                         (5.229) 

2 2 2 2

2 2 2 2

3 2 3 2 3 2 3 2 3 3

3 2 3 2 3 2 3 2 3 3

43 44 45 46

, , , . , . , ,

, , , . , . , ,

8 49 50

2 , 2 , 2 , . 2 , . 2 , 2 ,

53 54

2 . , 2 . , 2 . , . 2 . , . 2 . , 2 . ,

-M M M -M 0 0

0 0 0 0 0 0

0 0 0 0 M M

0 0 0 0 M M

N n N n N n U N n U N N N N

N n N n N n U N n U N N N N

p n p n p n U p n U p N p N

p U n p U n p U n U p U n U p U N p U N

A

 
 
 

=  
 
 
                    

 (5.230) 

3 3

3 3

3 3 3 3 3 3

3 3 3 3 3 3

, , ,2 ,2 .

47 48

, , ,2 ,2 .

9 51 52

2 , 2 , 2 ,2 2 ,2 .

55 56

2 . , 2 . , 2 . ,2 2 . ,2 .

-I 0 0 0

0 -I -M M

M M -I 0

M M 0 -I

N N N N N p N p U

N N N N N p N p U

p N p N p p p p U

p U N p U N p U p p U p U

A

 
 
 

=  
 
 
 

                        (5.231) 

The elements of the matrix are defined below. IN,N  is an identity matrix with N rows and 

N columns. For example 
2,2

1 0
I

0 1

 
=  
 

 

. The subscripts define the size of the element in 
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the matrix, where the first subscript denotes row length and second subscript column 

length. For example 11 12 13

2,3

21 22 23

M
M M M

M M M

 
=  
 

 

The superscripts define the number of the matrix. There are a total of 56 matrices in A . 

                        
1

1 2 32

2 ,

2 3

( , )
M ( , , )

( , )

n

p N h

h n

U R RR
r n j

n V R R
β

β
=

 
 
 

                                 (5.232) 

                      

1

2 3

2 ,

3 2

2
M ( , , )

( , )
p N h

h n

R
r n j

n V R R
β

β
=

 
 
 

                                  (5.233) 

                       
1

3 2 32

2 ,

2 3

( , )
M ( , , )

( , )

n

p N h

h n

U R RR
s n j

n V R R
β

β
=

 
 
 

                                  (5.234) 

                              

1

4 3

2 ,

3 2

2
M ( , , )

( , )
p N h

h n

R
s n j

n V R R
β

β
=

 
 
 

                                    (5.235) 

                     
1

5 2 32

2 . ,

2 3

( , )
M ( , , , )

( , )

n

p U N h

h n

U R RR
f n u j

n V R R
β

β
=

 
 
 

                            (5.236) 

                       
1

6 3

2 . ,

3 2

2
M ( , , , )

( , )
p U N h

h n

R
f n u j

n V R R
β

β
=

 
 
 

                             (5.237) 

                      

1

7 2 32

2 . ,

2 3

( , )2
M ( , , , )

( , )

n

p U N h

h n

U R RR
g n u j

n V R R
β

β
=

 
 
 

                           (5.238) 

                       
1

8 3

2 . ,

3 2

2 2
M ( , , , )

( , )
p U N h

h n

R
g n u j

n V R R
β

β
=

 
 
 

                           (5.239) 

               
1

9

,2

2 2

1
M ( , , )

ln( )
N p hr n j

R R
β

π
=                                      (5.240) 

                         
1

1 210

,2 .

2 1 2

( , )
M ( , , , )

( , )

h

h

ukh
N p U h

uk

U R Ruk
f n u j

R V R R
β

π
=                           (5.241) 
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2

11

,

3 3

1
M ( , , )

ln( )
N n cr n i

R R
β

π

−
=                                       (5.242) 

                          
2

12

,

3 4

1
M ( , , )

ln( )
N n cr n i

R R
β

π
=

                                       

(5.243)

 

                              
2

3 413

, .

3 3 4

( , )
M ( , , , )

( , )

c

c

ukc
N n U c

uk

U R Ruk
f n u i

R V R R
β=

                              

(5.244)

 

                     
2

3 414

, .

3 3 4

( , )
M ( , , , )

( , )

c

c

ukc
N n U c

uk

U R Ruk
f n u i

R V R R
β

−
=

                              

(5.245)

 

                              
1

15

,2

2 2

1
M ( , , )

ln( )
N p hs n j

R R
β

π
=

                                            

(5.246)

 

                    
1

1 216

,2 .

2 1 2

( , )
M ( , , , )

( , )

h

h

ukh
N p U h

uk

U R Ruk
g n u j

R V R R
β

π
=

                               

(5.247)

 

     
2

17

,

3 3

1
M ( , , )

ln( )
N n cs n i

R R
β

π

−
=

                                              

(5.248)

 

                                
2

18

,

3 4

1
M ( , , )

ln( )
N n cs n i

R R
β

π
=

                                              

(5.249)

 

                       
2

3 419

, .

3 3 4

( , )
M ( , , , )

( , )

c

c

ukc
N n U c

uk

U R Ruk
g n u i

R V R R
β=

                               

(5.250)

 

                       
2

3 420

, .

3 3 4

( , )
M ( , , , )

( , )

c

c

ukc
N n U c

uk

U R Ruk
g n u i

R V R R
β

−
=

                               

(5.251)

 

                               
2

21 2
,

2 3

2
M ( , , )

( , )
n N c

c n

R
r n i

n V R R
β

β
=

                                      

(5.252)

 

                                 
2

22 3 3 2
,

3 2

( , )
M ( , , )

( , )

n
n N c

c n

R U R R
r n i

n V R R
β

β
=

                                     

(5.253)

 

                                
2

23 2
,

2 3

2
M ( , , )

( , )
n N c

c n

R
s n i

n V R R
β

β
=

                                     

(5.254)
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2

24 3 3 2
,

3 2

( , )
M ( , , )

( , )

n
n N c

c n

R U R R
s n i

n V R R
β

β
=

                                     

(5.255)

 

                              
2

25 4 54
,

4 5

( , )
M ( , , )

( , )

n
n N c

c n

U R RR
r n i

n V R R
β

β
=                                    (5.256) 

                                 
2

26 5
,

5 4

2
M ( , , )

( , )
n N c

c n

R
r n i

n V R R
β

β
=                                      (5.257) 

                                 
2

27 4 54
,

4 5

( , )
M ( , , )

( , )

n
n N c

c n

U R RR
s n i

n V R R
β

β
=                                   (5.258) 

                                 
2

28 5
,

5 4

2
M ( , , )

( , )
n N c

c n

R
s n i

n V R R
β

β
=                                   (5.259) 

                             
2

29 2
. ,

2 3

2 2
M ( , , , )

( , )
n U N c

c n

R
f n u i

n V R R
β

β
=                               (5.260) 

                             
2

30 3 3 2
. ,

3 2

2 ( , )
M ( , , , )

( , )

n
n U N c

c n

R U R R
f n u i

n V R R
β

β
=                               (5.261) 

                                
2

31 2
. ,

2 3

2 2
M ( , , , )

( , )
n U N c

c n

R
g n u i

n V R R
β

β
=                           (5.262) 

                                
2

32 3 3 2
. ,

3 2

2 ( , )
M ( , , , )

( , )

n
n U N c

c n

R U R R
g n u i

n V R R
β

β
=                           (5.263) 

                                
2

33 4 54
. ,

4 5

( , )2
M ( , , , )

( , )

n
n U N c

c n

U R RR
f n u i

n V R R
β

β
=                           (5.264) 

                                 
2

34 5
. ,

5 4

2 2
M ( , , , )

( , )
n U N c

c n

R
f n u i

n V R R
β

β
=                           (5.265) 

                                
2

35 4 54
. ,

4 5

( , )2
M ( , , , )

( , )

n
n U N c

c n

U R RR
g n u i

n V R R
β

β
=                           (5.266) 

                                 
2

36 5
. ,

5 4

2 2
M ( , , , )

( , )
n U N c

c n

R
g n u i

n V R R
β

β
=                           (5.267) 

                                     
2

37

,

4 4

1
M ( , , )

ln( )
N n cr n i

R R
β

π
=                                   (5.268) 
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2

38

,

4 3

1
M ( , , )

ln( )
N n cr n i

R R
β

π
=                                   (5.269) 

                          
2

39

, .

4 3 4

2
M ( , , , )

( , )
c

c
N n U c

uk

uk
f n u i

R V R R
β=                          (5.270) 

                          
2

40

, .

4 3 4

2
M ( , , , )

( , )
c

c
N n U c

uk

uk
f n u i

R V R R
β=                          (5.271) 

                                      
3

41

,2

5 5

1
M ( , , )

ln( )
N p lr n k

R R
β

π
=                                          (5.272) 

                               

3

42

,2 .

5 5 6

2
M ( , , , )

( , )
c

l

N p U l

uk

uk
f n u k

R V R R
β

π
=                                     (5.273) 

                                       
2

43

,

4 4

1
M ( , , )

ln( )
N n cs n i

R R
β

π
=                                           (5.274) 

                                       
2

44

,

4 3

1
M ( , , )

ln( )
N n cs n i

R R
β

π
=                                          (5.275) 

                              
2

45

, .

4 3 4

2
M ( , , , )

( , )
c

c
N n U c

uk

uk
g n u i

R V R R
β=                            (5.276) 

                              
2

46

, .

4 3 4

2
M ( , , , )

( , )
c

c
N n U c

uk

uk
g n u i

R V R R
β=                            (5.277) 

                                          
3

47

,2

5 5

1
M ( , , )

ln( )
N p ls n k

R R
β

π
=                                      (5.278) 

         

3

48
,2 .

5 5 6

2
M ( , , , )

( , )
c

l
N p U l

uk

uk
g n u k

R V R R
β

π
=                               (5.279) 

                           

3

49 4
2 ,

4 5

2
M ( , , )

( , )
p N l

l n

R
r n k

n V R R
β

β
=                               (5.280) 

                            

3

50 5 5 4
2 ,

5 4

( , )
M ( , , )

( , )

n

p N l

l n

R U R R
r n k

n V R R
β

β
=                                (5.281) 

                                     

3

51 4
2 ,

4 5

2
M ( , , )

( , )
p N l

l n

R
s n k

n V R R
β

β
=                               (5.282) 
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3

52 5 5 4
2 ,

5 4

( , )
M ( , , )

( , )

n

p N l

l n

R U R R
s n k

n V R R
β

β
=                               (5.283) 

                              

3

53 4
2 . ,

4 5

2 2
M ( , , , )

( , )
p U N l

l n

R
f n u k

n V R R
β

β
=                          (5.284) 

                               

3

54 5 5 4
2 . ,

5 4

2 ( , )
M ( , , , )

( , )

n

p U N l

l n

R U R R
f n u k

n V R R
β

β
=                        (5.285) 

                                      

3

55 4
2 . ,

4 5

2 2
M ( , , , )

( , )
p U N l

l n

R
g n u k

n V R R
β

β
=                         (5.286) 

                                  

3

56 5 5 4
2 . ,

5 4

2 ( , )
M ( , , , )

( , )

n

p U N l

l n

R U R R
g n u k

n V R R
β

β
=                       (5.287) 

5.7.6. Flux Density Equation in the Inner Rotor Air-gap, Region ΩII
 

The magnetic flux density distribution in the inner air-gap can be determined from the 

magnetic vector potential by using  (5.15) and (5.16). In region ΩII
 we get: 

II
II 1
( , )r

A
B r

r
θ

θ

∂
=

∂
 (5.288) 

II
II ( , )

A
B r

r
θ θ

∂
= −

∂
 (5.289) 

Substituting (5.170) into (5.288) the radial magnetic flux density component is then given 

by 

3 2

3 2II II II 32

1
3 32 2

3 2 2 3

3

3II II 32

32

3 2

( , ) sin( )

n nn n

r n nn nn n
n

n n

n nn n

Rr Rr

R r R rRR
B r a b n

r rR RR R

R R R R

Rr

R r RR
c d

r rRR

R R

θ θ
∞

=

        + +      
       = − + 

       − −       
       

   
+   
  + +

   
−   
  

∑

2

2

1
3 2

2 3

cos( )

n n

nn
n

Rr

R r
n

R R

R R

θ
∞

=

     +   
   

 
   −    

    

∑

(5.290) 
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While substituting (5.170) into (5.289) gives the tangential component of magnetic flux 

density as: 

3 2

3 2II II II 32

1
3 32 2

3 2 2 3

3

3II II 32

32

3 2

( , ) cos( )

n nn n

n nn nn n
n

n n

n nn n

Rr Rr

R r R rRR
B r a b n

r rR RR R

R R R R

Rr

R r RR
c d

r RR

R R

θ θ θ
∞

=

        − −      
       = − + 

       − −       
       

   
−   
  + − +

   
−   
  

∑

2

2

1
3 2

2 3

sin( )

n n

nn
n

Rr

R r
n

r R R

R R

θ
∞

=

     −   
   

 
   −    

    

∑

(5.291) 

5.7.7. Flux Density Equation in the Outer Rotor Air-gap, Region ΩIV
 

The magnetic flux density distribution in the outer air-gap can be determined from 

the magnetic vector potential by 

IV
IV 1

( , )r

A
B r

r
θ

θ

∂
=

∂
 (5.292) 

                                                    

IV
IV ( , )

A
B r

r
θ θ

∂
= −

∂
                                      (5.293) 

Substituting (5.171) into (5.292) gives the radial component of magnetic flux density as: 

5 4

5 4IV IV IV 54

1
5 54 4

5 4 4 5

5

5IV IV 54

54

5 4

( , ) sin( )

n nn n

r n nn nn n
n

n n

n nn n

Rr Rr

R r R rRR
B r a b n

r rR RR R

R R R R

Rr

R r RR
c d

r rRR

R R

θ θ
∞

=

        + +      
       = − + 

       − −       
       

   
+   
  + +

   
−   
  

∑

4

4

1
5 4

4 5

cos( )

n n

nn
n

Rr

R r
n

R R

R R

θ
∞

=

     +   
   

 
   −    

    

∑

(5.294) 
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While substituting (5.171) into (5.293) gives the tangential component of magnetic flux 

density as: 

5 4

5 4IV IV IV 54

1
5 54 4

5 4 4 5

5

5IV IV 54

54

5 4

( , ) cos( )

n nn n

n nn nn n
n

n n

n nn n

Rr Rr

R r R rRR
B r a b n

r rR RR R

R R R R

Rr

R r RR
c d

r RR

R R

θ θ θ
∞

=

        − −      
       = − + 

       − −       
       

   
−   
  + − +

   
−   
  

∑

4

4

1
5 4

4 5

sin( )

n n

nn
n

Rr

R r
n

r R R

R R

θ
∞

=

     −   
   

 
   −    

    

∑

(5.295) 

5.7.8. Electromagnetic Torque 

The electromagnetic torque is obtained using the Maxwell’s stress tensor equation. The 

magnetic fields calculated in (5.290), (5.291), (5.294) and (5.295) are used to calculate 

the torque. A circle at radius r=Re in the inner air-gap is taken as the path for calculating 

torque and the torque equation is expressed as 

                                               

22
IV IV

0

( , ) ( , )e
e r e e

o

dR
T B R B R d

π

θθ θ θ
µ

= ∫
      

            (5.296) 

where d is the axial length of the MG. 

Similarly the torque in the outer air-gap is computed from 

                                               

22
IV IV

0

( , ) ( , )e
e r e e

o

dR
T B R B R d

π

θθ θ θ
µ

= ∫
      

            (5.297) 

5.8. Model Validation 

In order to validate the developed analytical model, the flux density values in the 

inner and outer rotor air-gap for the scaled-up FFMG are compared. A FEA study for the 

scaled-up design with ideal steel properties was performed in order to compare with the 
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analytical model. The ideal FEA model was simulated by using µr=100,000 in the steel 

regions. This approximated the ideal condition in which µr tends to ∞. The non-linear 

FEA model used the non-linear BH steel properties shown in Figure 5.13.  
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Figure 5-13: BH curves of steel used in non-linear FEA 
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Figure 5-14: Comparison of the radial flux densities in the inner 

air-gap with the  analytical, ideal and non-linear FEA models 

 

Figure 5-14 shows the comparison of the radial flux density in the inner rotor air-

gap between the FEA ideal and non-linear models and the analytical model. It can be 

seen that the FEA linear and analytical models are very close thereby validating the 

accuracy of the analytical model. Figure 5-15 shows the dominant harmonic comparison 

of the inner air-gap field. The dominant harmonic is the 8
th
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rotor pole-pairs. The accuracy of the analytic model can be verified by noting the close 

dominant harmonic values for the ideal FEA and analytical model. 
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Figure 5-15: Comparison of the the 8
th

 harmonic of the radial flux 

density in the inner air-gap with the analytical, FEA ideal and non-

linear models 
 

Figure 5-16 shows the comparison of the azimuthal flux density in the inner rotor 

air-gap and  shows the corresponding dominant harmonic comparison. Again close 

agreement is achieved between the ideal FEA and analytical model. 
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Figure 5-16: Comparison of the azimuthal flux densities in the inner air-gap 

with the analytical, FEA ideal and non-linear models 
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Figure 5-17: Comparison of the 8
th

 harmonic of the azimuthal 

flux density in the inner air-gap with the analytical, FEA ideal 

and non-linear models 

 

Figure 5-18 and Figure 5-19 shows the comparison of the radial flux density and 

the corresponding dominant harmonic in the outer air-gap between the three models.  
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Figure 5-18: Comparison of the radial flux densities in the outer air-

gap with the  analytical, FEA ideal and non-linear models 
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Figure 5-19: Comparison of the 26
th

 harmonic of radial flux density in 

the outer air-gap with the analytical, FEA ideal and non-linear models 

 

Figure 5-20 and Figure 5-21 shows the comparison of the azimuthal flux density 

and their corresponding dominant harmonics in the outer rotor air-gap. 
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Figure 5-20: Comparison of the azimuthal flux densities in the outer air-

gap with the analytical, FEA ideal and non-linear models 
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Figure 5-21: Comparison of the 26
th

 harmonic of the azimuthal flux 

density in the outer air-gap with the analytical, FEA ideal and non-linear 

models 

 

The analytical model field prediction is very accurate and close to the ideal FEA 

model. However when compared to the non-linear FEA model the values are higher by 

around 16%  due to the ideal model not accounting for the saturation within the steel. 
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Figure 5-22: Comparison of torque on the cage rotor for analytical, FEA 

ideal and non-linear models 
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Figure 5-22 shows the torque comparison on the cage rotor between the three 

models. The torque calculated by the non-linear FEA model was 761 Nm which 

corresponds to a torque density of 266.9 Nm/L. With the ideal FEA model the calculated 

torque was 884 Nm which gives a torque density of 310 Nm/L. The torque obtained 

through the analytical model was 879 Nm which gives a torque density of 308.3 Nm/L. 

 The computational time taken for ideal FEA model was 75 minutes where as the 

analytical model took 3 minutes and 10 seconds to complete the analysis. It is observed 

that the computational time can be significantly reduced by using the analytical model. 

Although the results vary significantly between the ideal and non-linear models the 

analytical model can be used for scaling and parametric sweep of the FFMG designs as it 

significantly reduces the computational time and resources required. The analytic model 

is particularly useful for conducting scaling analysis. 

5.8.1. Parametric Sweep Validation 

In order to see if a parametric sweep analysis using the analytic based model 

follows the same trend as the non-linear FEA model, in this section the same parametric 

sweep analysis performed for the scaled-up design is repeated with analytical model.  

Figure 5-23 shows the variation of volumetric torque density when the cage rotor 

steel pole length l2, was varied along with the high speed rotor outer radius ro1. A 

maximum volumetric torque density 304 Nm/L is obtained when the cage bar length of 

5.5 mm which is 0.5 mm more than the non-linear FEA model. Figure 5-24 shows the 

variation of the cage rotor steel pole span θs2. It can be seen that maximum torque density 

is obtained always when θs2=7
o
. This is consistent with the non-linear FEA model.   
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Figure 5-23: Volumetric torque density for changes in the cage rotor bar length, 

l2 and high-speed outer rotor radius, ro1, when using NdFeB magnets  (θs2=7
o
) 

 

 

Figure 5-24: Volumetric torque density for cage rotor bar spans, θs2, and 

high-speed outer rotor radius, ro1, when using NdFeB magnets (l2=5.5mm) 

 

Figure 5-25 shows the variation of the volumetric and mass torque densities as the 

inner radius of inner rotor is varied. It is observed that at an inner radius of ri1=50 mm 

maximum torque density is obtained. With the new inner radius ri1 of 50 mm, the analysis 

is repeated till a maximum torque density is obtained. Figure 5-26 shows the variation of 

torque density with changes in cage rotor steel pole length l2 and outer radius of inner 

rotor ro1. It is observed that a peak torque density is obtained when the length of the cage 

rotor bar length is 7.5 mm. This value is 0.5 mm more than the non-linear FEA model. 
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Figure 5-27 shows that there is no change in the width of the cage rotor bars with changes 

in length. The final torque after the parametric sweep is 879 Nm which corresponds to a 

volumetric torque density of 287 Nm/L.   
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Figure 5-25: Active region torque density variation when the inner 

radius of the high speed rotor is varied  

 

 
Figure 5-26: Volumetric torque density for changes in the cage rotor bar length, l2 and 

high-speed outer rotor radius, ro1, when using NdFeB magnets  (θs2=7
o
) and ri1=50 mm 
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parameters are very close to each other. The only difference being that the cage rotor bar 

length l2 and inner radius of the inner rotor ri1. Figure 5-28 shows the percentage 

difference between the volumetric torque densities calculated using the analytical model 

and the FEA model. A maximum difference of 20.5% and a minimum difference of 17% 

was observed between the analytical and FEA models. 

 

 

Figure 5-27: Volumetric torque density for cage rotor bar spans, θs2, and high-

speed outer rotor radius, ro1, when using NdFeB magnets (l2=7mm) and ri1=50 mm 

 

 

Figure 5-28: The percentage difference in torque density between  the analytical 

and non-linear FEA calculations  for cage rotor bar spans, θs2, and high-speed 

outer rotor radius, ro1, when using NdFeB magnets (l2=7mm) and ri1=50 mm 
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Table 5-1: Final geometric sweep parameters 

after optimization 

 Description 
Non-linear 

FEA  

Analytical 

model 

Unit 

Inner rotor 

(high 

speed) 

Pole pairs, p1 8 8 - 

Steel pole span, θs1 π/16 π/16 radians 

Air-gap, g  0.5 0.5 mm 

Inner radius, ri1 49 50  

Outer radius, ro1 88 87.5  

Cage rotor 

Steel poles, n2 34 34 - 

Cage bar  length, l2  7 7.5 mm 

Pole span, θs2 7 7 degrees 

Outer rotor 

(stationary) 

Pole pairs, p3 26 26 - 

Inner radius, ri3 96 96 mm 

Outer radius, ro3 110 110 mm 

Steel pole span, θs3 π/52 π/52 radians 

Air-gap, g 0.5 0.5 mm 

Material 
Ferrite magnet, Hitachi NMF12F 0.46

 
0.46

 
T 

NdFeB magnet, N40H, Br 1.25 1.25 T 

 416 steel resistivity (cage rotor) 57.0 57.0 µΩ-cm 

1018 steel resistivity (inner/outer rotor) 15.9 15.9 µΩ-cm 

Active region stack length, d 75 75 mm 

 

It is inferred from the parametric sweep that though the analytical model predicts 

a higher torque density value when compared to the non-linear FEA calculated values, it 

follows a similar trend during parametric analysis as the non-linear FEA model. Hence, it 

can be concluded that the analytical model can be useful for conducting initial parametric 

sweep for scaling up FFMG models. 

The comparison of the computational time for the analytical model and ideal FEA 

is shown in Table 5-2. The computational time for the analytical model is very low 

compared to the FEA analysis and hence is a very useful tool for scaling and initial 

parametric sweep of FFMG. 

Table 5-2: Computational time comparison 

for FEA and analytical models 

 Time (sec) 

Ideal FEA 4520 

Analytical model 190 

 



 

 

 

 

 

 
 

CHAPTER 6 : SCALING ANALYSIS OF FLUX FOCUSING MAGNETIC GEAR 

 

6.1. Introduction 

This chapter provides the scaling analysis of a FFMG. The analytical model 

developed in chapter 5 is used for scaling of the FFMG. The performance of FFMG at 

various outer diameters [OD] will be analyzed and the effects of changing the pole-pairs 

on the inner and outer rotors will be analyzed.  

6.2. Scaling analysis 

The scaling analysis of the MG is accomplished by varying the outer diameter of 

the MG along with the number of PM pole-pairs on the inner and outer rotors. In this 

analysis the OD of 230 mm, 300 mm, 350 mm and 400 mm are taken into consideration. 

The inner rotor pole-pairs, p1, are first varied from 2 to 16 for a given OD and outer rotor 

pole-pairs. This procedure is continued for different outer rotor pole-pairs, p3. The 

number of steel poles on the cage rotor is obtained as n2=p1+p3. The parameters used for 

this analysis with OD=230 mm are shown in Figure 6-1 and Figure 6-2 show the 

variation of the volumetric mass torque density with the variation of inner and outer rotor 

pole-pairs for an OD of 230 mm. A combination of outer rotor pole-pairs of p3=25 and 

inner rotor pole-pairs of p1=8 gives a maximum volumetric and mass torque density at 

this diameter. The maximum value of mass torque density occurs at the same point as the 

volumetric torque density as the radii of all the rotors have been kept constant. It should 
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be noted that the peak mass torque density could occur at a different location if the radial 

parametric sweep was performed.  

The parameters given in Table 6-1 are taken as reference for the other OD’s. The 

radii of the rotors for other OD’s are taken in such a way that the ratio of inner and outer 

radii of each rotor in the FFMG remains constant for all the OD’s. The ratio constants 

used in the analysis are given in Table 6-2. The parameters for all the OD’s are given in 

Table 6-3 through Table 6-5. 
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Figure 6-1: Comparison of volumetric torque density of FFMG  for different 

inner and outer pole-pair combinations with an OD of 230 mm 

 
Table 6-1: Geometric parameters for OD=230 mm 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Inner radius, ri1 49 mm 

Outer radius, ro1 88 mm 

Cage rotor 
Inner radius, ri2 88.5 mm 

Outer radius, ro2 95.5 mm 

Outer rotor 
Inner radius, ri3 96 mm 

Outer radius, ro3 115 mm 

Material 

NdFeB magnet, N40H, density 7600 kg/m
3
 

416 steel density (cage rotor) 7750 kg/m
3
 

1018 steel resistivity 

(inner/outer rotor) 
7850 kg/m

3
 

Active region stack length, d 75 mm 
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Table 6-2: Ratio constants used for scaling analysis 

 Description Value  

Inner rotor ro1/ri1 1.8 

Cage rotor ro2/ri2 1.08 

Outer rotor ro3/ri3 1.2 
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Figure 6-2: Comparison of mass torque density of FFMG  for different 

inner and outer pole-pair combinations with an OD of 230 mm 
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Figure 6-3: Comparison of volumetric torque density of FFMG  for 

different inner and outer pole-pair combinations with an OD of 300 mm 
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Figure 6-4: Comparison of mass torque density of FFMG  for different 

inner and outer pole-pair combinations with an OD of 300 mm 

 

 

Table 6-3: Geometric parameters for OD=300 mm 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Inner radius, ri1 64 mm 

Outer radius, ro1 115 mm 

Cage rotor 
Inner radius, ri2 115.5 mm 

Outer radius, ro2 124.5 mm 

Outer rotor 
Inner radius, ri3 125 mm 

Outer radius, ro3 150 mm 

Material 

NdFeB magnet, N40H, density 7600 kg/m
3
 

416 steel density (cage rotor) 7750 kg/m
3
 

1018 steel resistivity 

(inner/outer rotor) 
7850 kg/m

3
 

Active region stack length, d 75 mm 

 

 

A similar analysis for an OD = 300 mm, 350 mm and 400 mm is shown in 

Figure 6-3, Figure 6-5 and Figure 6-7 respectively. It is observed for an OD of 300 mm 

that the maximum volumetric torque density occurs at p3= 33 and p1=10. For an OD=350 

mm the maximum torque density is obtained at p3= 39 and p1=12. Similarly for an 

OD=400 mm the maximum torque density is obtained at p3= 41 and p1=12. The 

volumetric torque density increases as the OD is increased. Also, the number of magnets 

on the inner and outer magnets plays a significant role in determining the maximum 

volumetric density.  As we increase the number of magnets on the two rotors the 
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volumetric torque density increased. But, after a certain point the magnets became too 

thin and therefore the volumetric torque density decreased. The magnets may also 

experience demagnetization if the size of the magnets becomes thinner; however this is 

not considered in the analytical model. An optimum number of pole-pair combinations 

exist for a different OD resulting in a different optimum gear ratio for each OD. 
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Figure 6-5: Comparison of volumetric torque density of FFMG  for different 

inner and outer pole-pair combinations with an OD of 350 mm 

 

M
as

s 
to

rq
u

e 
d

en
si

ty
 [

N
m

/k
g

] 

 

Figure 6-6: Comparison of mass torque density of FFMG  for different inner 

and outer pole-pair combinations with an OD of 350 mm 
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Figure 6-7: Comparison of volumetric torque density of FFMG  for different 

inner and outer pole-pair combinations with an OD of 400 mm 

 

Table 6-4: Geometric parameters for OD=350 mm 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Inner radius 75 mm 

Outer radius 134 mm 

Cage rotor 
Inner radius 134.5 mm 

Outer radius 145.5 mm 

Outer rotor 
Inner radius, ri3 146 mm 

Outer radius, ro3 175 mm 

Material 

NdFeB magnet, N40H, density 7600 kg/m
3
 

416 steel density (cage rotor) 7750 kg/m
3
 

1018 steel resistivity 

(inner/outer rotor) 
7850 kg/m

3
 

Active region stack length, d 75 mm 
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Figure 6-8: Comparison of mass torque density of FFMG  for different inner and 

outer pole-pair combinations with an OD of 400 mm 

 

0 2 4 6 8 10 12 14 16 18 20

10
1418

22
2630

3438
42

4650
100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20

10
14

1822
26

3034
38

4246
50

100
125
150
175
200
225
250
275
300
325

Inner rotor pole-pairs, p1 Outer rotor pole-pairs, 

p3 

Inner rotor pole-pairs, p1 
Outer rotor pole-pairs, 

p3 



187 

Table 6-5: Geometric parameters for OD=400 mm 

 Description Value  Unit 

Inner rotor 

(high 

speed) 

Inner radius, ri1 85 mm 

Outer radius, ro1 153.5 mm 

Cage rotor 
Inner radius, ri2 154 mm 

Outer radius, ro2 166.5 mm 

Outer rotor 
Inner radius, ri3 167 mm 

Outer radius, ro3 200 mm 

Material 

NdFeB magnet, N40H, density 7600 kg/m
3
 

416 steel density (cage rotor) 7750 kg/m
3
 

1018 steel resistivity 

(inner/outer rotor) 
7850 kg/m

3
 

Active region stack length, d 75 mm 

 

Figure 6-9 shows the variation of the volumetric torque density with the variation 

of the gear ratio for each OD. The different pole-pairs on the inner and outer rotor give 

rise to a large combination of gear ratios. The volumetric torque density for all 

combinations of gear ratios for each OD is shown in Figure 6-9 through Figure 6-12. It 

can be observed that the maximum torque density for all the four outer ODs occurs 

between the gear ratio of 4 and 4.5. A summary of the peak volumetric and mass torque 

density values for different OD values is shown in Table 6-5. 
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 Gear ratio 

Figure 6-9: Comparison of the volumetric torque density of FFMG 

at different gear ratios and 400 mm OD 
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 Gear ratio 

Figure 6-10: Comparison of the volumetric torque density of the 

FFMG at different gear ratios and 350 mm OD 
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 Gear ratio 

Figure 6-11: Comparison of the volumetric torque density of the 

FFMG at different gear ratios and 300 mm OD 
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 Gear ratio 

Figure 6-12: Comparison of the volumetric torque density of the 

FFMG at different gear ratios and 230 mm OD 
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Table 6-6: Summary of scaling of the FFMG using the analytic model 

OD (mm) Outer rotor 

pole-pairs, p3 

Inner rotor 

pole-pairs, p1 

Gear ratio Volumetric 

torque-density 

(Nm/L) 

Mass torque-

density 

(Nm/kg) 

230 25 8 4.125 302 220 

300 33 10 4.3 340 245 

350 39 12 4.25 394 276 

400 42 12 4.41 435 310 

 

This analysis can be continued for any radii of the OD and the appropriate number 

of pole-pairs on the inner and outer rotors can be easily determined. The scaling of this 

magnitude would take huge amount of time and memory if it was performed using FEA. 

The analytical model is hence a very valuable tool for conducting a scaling analysis. 

Once an appropriate design is developed using the analytical model, FEA can be 

performed to take the non-linear properties of the steel into account. Table 6-7 through 

Table 6-12 show look-up tables for the volumetric torque density values at each pole-pair 

combination and the corresponding gear ratio. 
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Table 6-8: Summary of gear ratios for different inner and outer rotor magnet pole-pair combinations for 

OD=230 and 300 mm 

  Inner rotor pole-pairs, p1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

O
u

te
r 

ro
to

r 
p

o
le

-p
ai

rs
, 

p
3
 

10 6.0 4.3 3.5 3.0 2.7 2.4 2.3 2.1  -  -  -  -  -  -  - 

11 6.5 4.7 3.8 3.2 2.8 2.6 2.4 2.2 2.1  -  -  -  -  -  - 

12 7.0 5.0 4.0 3.4 3.0 2.7 2.5 2.3 2.2 2.1  -  -  -  -  - 

13 7.5 5.3 4.3 3.6 3.2 2.9 2.6 2.4 2.3 2.2 2.1  -  -  -  - 

14 8.0 5.7 4.5 3.8 3.3 3.0 2.8 2.6 2.4 2.3 2.2 2.1  -  - - 

15 8.5 6.0 4.8 4.0 3.5 3.1 2.9 2.7 2.5 2.4 2.3 2.2 2.1 -  - 

16 9.0 6.3 5.0 4.2 3.7 3.3 3.0 2.8 2.6 2.5 2.3 2.2 2.1 2.1  - 

17 9.5 6.7 5.3 4.4 3.8 3.4 3.1 2.9 2.7 2.5 2.4 2.3 2.2 2.1 2.1 

18 10.0 7.0 5.5 4.6 4.0 3.6 3.3 3.0 2.8 2.6 2.5 2.4 2.3 2.2 2.1 

19 10.5 7.3 5.8 4.8 4.2 3.7 3.4 3.1 2.9 2.7 2.6 2.5 2.4 2.3 2.2 

20 11.0 7.7 6.0 5.0 4.3 3.9 3.5 3.2 3.0 2.8 2.7 2.5 2.4 2.3 2.3 

21 11.5 8.0 6.3 5.2 4.5 4.0 3.6 3.3 3.1 2.9 2.8 2.6 2.5 2.4 2.3 

22 12.0 8.3 6.5 5.4 4.7 4.1 3.8 3.4 3.2 3.0 2.8 2.7 2.6 2.5 2.4 

23 12.5 8.7 6.8 5.6 4.8 4.3 3.9 3.6 3.3 3.1 2.9 2.8 2.6 2.5 2.4 

24 13.0 9.0 7.0 5.8 5.0 4.4 4.0 3.7 3.4 3.2 3.0 2.8 2.7 2.6 2.5 

25 13.5 9.3 7.3 6.0 5.2 4.6 4.1 3.8 3.5 3.3 3.1 2.9 2.8 2.7 2.6 

26 14.0 9.7 7.5 6.2 5.3 4.7 4.3 3.9 3.6 3.4 3.2 3.0 2.9 2.7 2.6 

27 14.5 10.0 7.8 6.4 5.5 4.9 4.4 4.0 3.7 3.5 3.3 3.1 2.9 2.8 2.7 

28 15.0 10.3 8.0 6.6 5.7 5.0 4.5 4.1 3.8 3.5 3.3 3.2 3.0 2.9 2.8 

29 15.5 10.7 8.3 6.8 5.8 5.1 4.6 4.2 3.9 3.6 3.4 3.2 3.1 2.9 2.8 

30 16.0 11.0 8.5 7.0 6.0 5.3 4.8 4.3 4.0 3.7 3.5 3.3 3.1 3.0 2.9 

31 16.5 11.3 8.8 7.2 6.2 5.4 4.9 4.4 4.1 3.8 3.6 3.4 3.2 3.1 2.9 

32 17.0 11.7 9.0 7.4 6.3 5.6 5.0 4.6 4.2 3.9 3.7 3.5 3.3 3.1 3.0 

33 17.5 12.0 9.3 7.6 6.5 5.7 5.1 4.7 4.3 4.0 3.8 3.5 3.4 3.2 3.1 

34 18.0 12.3 9.5 7.8 6.7 5.9 5.3 4.8 4.4 4.1 3.8 3.6 3.4 3.3 3.1 

35 18.5 12.7 9.8 8.0 6.8 6.0 5.4 4.9 4.5 4.2 3.9 3.7 3.5 3.3 3.2 

36 19.0 13.0 10.0 8.2 7.0 6.1 5.5 5.0 4.6 4.3 4.0 3.8 3.6 3.4 3.3 

37 19.5 13.3 10.3 8.4 7.2 6.3 5.6 5.1 4.7 4.4 4.1 3.8 3.6 3.5 3.3 

38 20.0 13.7 10.5 8.6 7.3 6.4 5.8 5.2 4.8 4.5 4.2 3.9 3.7 3.5 3.4 

39 20.5 14.0 10.8 8.8 7.5 6.6 5.9 5.3 4.9 4.5 4.3 4.0 3.8 3.6 3.4 

40 21.0 14.3 11.0 9.0 7.7 6.7 6.0 5.4 5.0 4.6 4.3 4.1 3.9 3.7 3.5 
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Table 6-12: Summary of gear ratios for different inner and outer rotor magnet pole-pair combinations for 

OD=350 and 400 mm 
 Inner rotor pole-pairs, p1 

 
 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
O

u
te

r 
ro

to
r 

p
o

le
-p

ai
rs

, 
p

3
 

10 6.00 4.33 3.50 3.00 2.67 2.43 2.25 2.11 - - - - - - - 

11 6.50 4.67 3.75 3.20 2.83 2.57 2.38 2.22 2.10 - - - - - - 

12 7.00 5.00 4.00 3.40 3.00 2.71 2.50 2.33 2.20 2.09 - - - - - 

13 7.50 5.33 4.25 3.60 3.17 2.86 2.63 2.44 2.30 2.18 2.08 - - - - 

14 8.00 5.67 4.50 3.80 3.33 3.00 2.75 2.56 2.40 2.27 2.17 2.08 - - - 

15 8.50 6.00 4.75 4.00 3.50 3.14 2.88 2.67 2.50 2.36 2.25 2.15 2.07 - - 

16 9.00 6.33 5.00 4.20 3.67 3.29 3.00 2.78 2.60 2.45 2.33 2.23 2.14 2.07 - 

17 9.50 6.67 5.25 4.40 3.83 3.43 3.13 2.89 2.70 2.55 2.42 2.31 2.21 2.13 2.06 

18 10.00 7.00 5.50 4.60 4.00 3.57 3.25 3.00 2.80 2.64 2.50 2.38 2.29 2.20 2.13 

19 10.50 7.33 5.75 4.80 4.17 3.71 3.38 3.11 2.90 2.73 2.58 2.46 2.36 2.27 2.19 

20 11.00 7.67 6.00 5.00 4.33 3.86 3.50 3.22 3.00 2.82 2.67 2.54 2.43 2.33 2.25 

21 11.50 8.00 6.25 5.20 4.50 4.00 3.63 3.33 3.10 2.91 2.75 2.62 2.50 2.40 2.31 

22 12.00 8.33 6.50 5.40 4.67 4.14 3.75 3.44 3.20 3.00 2.83 2.69 2.57 2.47 2.38 

23 12.50 8.67 6.75 5.60 4.83 4.29 3.88 3.56 3.30 3.09 2.92 2.77 2.64 2.53 2.44 

24 13.00 9.00 7.00 5.80 5.00 4.43 4.00 3.67 3.40 3.18 3.00 2.85 2.71 2.60 2.50 

25 13.50 9.33 7.25 6.00 5.17 4.57 4.13 3.78 3.50 3.27 3.08 2.92 2.79 2.67 2.56 

26 14.00 9.67 7.50 6.20 5.33 4.71 4.25 3.89 3.60 3.36 3.17 3.00 2.86 2.73 2.63 

27 14.50 10.00 7.75 6.40 5.50 4.86 4.38 4.00 3.70 3.45 3.25 3.08 2.93 2.80 2.69 

28 15.00 10.33 8.00 6.60 5.67 5.00 4.50 4.11 3.80 3.55 3.33 3.15 3.00 2.87 2.75 

29 15.50 10.67 8.25 6.80 5.83 5.14 4.63 4.22 3.90 3.64 3.42 3.23 3.07 2.93 2.81 

30 16.00 11.00 8.50 7.00 6.00 5.29 4.75 4.33 4.00 3.73 3.50 3.31 3.14 3.00 2.88 

31 16.50 11.33 8.75 7.20 6.17 5.43 4.88 4.44 4.10 3.82 3.58 3.38 3.21 3.07 2.94 

32 17.00 11.67 9.00 7.40 6.33 5.57 5.00 4.56 4.20 3.91 3.67 3.46 3.29 3.13 3.00 

33 17.50 12.00 9.25 7.60 6.50 5.71 5.13 4.67 4.30 4.00 3.75 3.54 3.36 3.20 3.06 

34 18.00 12.33 9.50 7.80 6.67 5.86 5.25 4.78 4.40 4.09 3.83 3.62 3.43 3.27 3.13 

35 18.50 12.67 9.75 8.00 6.83 6.00 5.38 4.89 4.50 4.18 3.92 3.69 3.50 3.33 3.19 

36 19.00 13.0010.00 8.20 7.00 6.14 5.50 5.00 4.60 4.27 4.00 3.77 3.57 3.40 3.25 

37 19.50 13.3310.25 8.40 7.17 6.29 5.63 5.11 4.70 4.36 4.08 3.85 3.64 3.47 3.31 

38 20.00 13.6710.50 8.60 7.33 6.43 5.75 5.22 4.80 4.45 4.17 3.92 3.71 3.53 3.38 

39 20.50 14.0010.75 8.80 7.50 6.57 5.88 5.33 4.90 4.55 4.25 4.00 3.79 3.60 3.44 

40 21.00 14.3311.00 9.00 7.67 6.71 6.00 5.44 5.00 4.64 4.33 4.08 3.86 3.67 3.50 

41 21.50 14.6711.25 9.20 7.83 6.86 6.13 5.56 5.10 4.73 4.42 4.15 3.93 3.73 3.56 

42 22.00 15.0011.50 9.40 8.00 7.00 6.25 5.67 5.20 4.82 4.50 4.23 4.00 3.80 3.63 

43 22.50 15.3311.75 9.60 8.17 7.14 6.38 5.78 5.30 4.91 4.58 4.31 4.07 3.87 3.69 

44 23.00 15.6712.00 9.80 8.33 7.29 6.50 5.89 5.40 5.00 4.67 4.38 4.14 3.93 3.75 

45 23.50 16.0012.2510.00 8.50 7.43 6.63 6.00 5.50 5.09 4.75 4.46 4.21 4.00 3.81 

46 24.00 16.3312.5010.20 8.67 7.57 6.75 6.11 5.60 5.18 4.83 4.54 4.29 4.07 3.88 

47 24.50 16.6712.7510.40 8.83 7.71 6.88 6.22 5.70 5.27 4.92 4.62 4.36 4.13 3.94 

48 25.00 17.0013.0010.60 9.00 7.86 7.00 6.33 5.80 5.36 5.00 4.69 4.43 4.20 4.00 

49 25.50 17.3313.2510.80 9.17 8.00 7.13 6.44 5.90 5.45 5.08 4.77 4.50 4.27 4.06 

50 26.00 17.6713.5011.00 9.33 8.14 7.25 6.56 6.00 5.55 5.17 4.85 4.57 4.33 4.13 

 

 

 

 



 

 

 

 

 

 
 

CHAPTER 7 : CONCLUSIONS AND FUTURE SCOPE 

 

7.1. Conclusions 

The operating principle of a MG has been analyzed in detail. The field 

distribution in the air-gaps of the FFMG have been derived and analyzed to study the 

effects of the spatial harmonics and modulation effect of the cage rotor steel poles. A 

Flux-focusing rotor design approach was adopted wherein the magnets in the inner and 

outer rotors are arranged in a flux-concentrating position also called spoke-type 

arrangement. This gives a natural flux concentration capability because two 

circumferentially magnetized PMs are buried between the steel cores. 

The software package JMAG was used to conduct the 2-D and 3-D static and 

transient FEA models. Design, construction and experimental evaluation of a sub-scale 

coaxial FFMG with an outer diameter of 110 mm was performed when using ferrite and 

NdFeB magnets. The magnetic forces on the cage rotor steel poles resulting from the 

magnets on the inner and outer rotors has a bending effect on the steel poles of the cage 

rotor. To study this deflection an iterative magnetomechanical analysis technique was 

proposed that used the structural analysis component of the JMAG software. The power 

losses resulting from the induced eddy-currents was studied using transient FEA and the 

efficiencies were calculated at various speeds. These calculations were experimentally 

verified. It was shown that when using ferrite magnets, the magnets would experience 

cyclic demagnetization due to the rotating magnetic fields. This effect was studied using 
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FEA. It was however observed that the demagnetization was limited to the corners of the 

magnets nearest to the air-gap. 

A scaled-up FFMG with a diameter of 228 mm was designed, constructed and 

tested. The size of the sub-scale FFMG was doubled along with the number of pole-pairs 

on the inner and outer rotor in order to study how the torque density values would vary as 

the diameter of the FFMG increased. Analysis analogous to the sub-scale model was 

performed to study the deflection of the cage rotor steel poles, the power loss, efficiency 

and torque ripple at various loads and speeds was measured. 

An analytical FFMG model was developed using the magnetic vector potential. 

The separation of variables method was utilized. The applicable Laplace and Poisson’s 

equations were solved in each region by using the applicable boundary and interface 

conditions. The results of the analytical model were then compared with ideal and non-

linear FEA models. The results obtained were very close to the ideal FEA model. 

However, the computational time for the analytical model was very low compared to the 

FEA model. It is demonstrated that the derived analytic based model is a valuable tool for 

the initial parameter selection and scaling analysis of the FFMG.  

7.1.1. Key Research Achievements 

The key achievements of this research are: 

• The design, construction and experimental evaluation of a sub-scale FFMG with an 

active volumetric torque density of 151.4 Nm/L. Three sub-scale designs with 

ferrite, NdFeB and a combination of ferrite and NdFeB magnets were constructed 

and verified.  
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• A magnetomechanical analysis technique was developed that was used to study the 

deflection effects of the cage rotor steel poles due to the magnetic forces created by 

the inner and outer rotor magnets. 

• A scaled-up FFMG was designed, constructed and experimentally evaluated. A 

design with ferrite and NdFeB magnets was studied. The NdFeB magnet FFMG 

design was experimentally demonstrated to operate with an active volumetric torque 

density of 238.7 Nm/L.  A summary of the sub-scale and scaled-up FFMG 

performance metrics is given in Table 7-1. 

• An accurate analytical based model using a Fourier harmonic approach was 

developed for the FFMG. The models calculated values were shown to be in 

agreement with the ideal FEA model results and will be a useful tool for scaling and 

initial parameter variation analysis of the FFMG. 

                                    Table 7-1:  Summary of experimental performance metrics 

 Type 
Torque 

[Nm] 

Volume 

torque-

density 

[Nm/L] 

 

Mass torque 

density 

[Nm/kg] 

Torque-per-

kg 

of magnet 

[Nm/kg] 

Sub-scale 

design 

Ferrite 25 33  4.5 14.6 

Hybrid 48 66.3  8 24.2 

NdFeB 113.5 151.2  17.4 44.6 

Scaled up 

design 

Ferrite 

(FEA) 
282.6 92.3 16.6 51.2 

NdFeB 731 238.7 35.2 87.8 

 

7.2. Recommendations for Future Work 

             Although MG research has picked up over the last decade, more research has to 

be conducted before MGs can be adopted by industry. Some recommendations for further 

research are: 
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• Thermal analysis has to be conducted in order to study the effect of the increasing 

temperatures on the magnets due to continuous operation. Although there is no 

current flowing in the rotors, the losses created by the induced eddy currents will 

result in the FFMG heating up and this could result in the demagnetization of the 

magnets. 

• Multi-stage MGs have to be studied in order to achieve a higher gear-ratio while 

maintaining a high torque density. 

• Control systems need to be developed to prevent the rotors from slipping when over-

loaded, and if slippage occurs, the control technique must be robust so as to enable 

the MG to recover from the pole slippage condition. 
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