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ABSTRACT 

 
 

SUBHASREE SRENEVAS.  Morphological Complexity and Organizational Disorder of Random 
Antireflective Structured Surfaces. (Under the direction of DR. MENELAOS K. POUTOUS) 

 
 

 Random antireflective surface nanostructures (rARSS) enhance transmission by reducing 

the electromagnetic impedance between optical indices across a boundary, serving as alternatives 

for traditional coating techniques. Understanding and quantifying the role of randomness of the 

surface nanostructures remain elusive, without a comprehensive model that can accurately predict 

the wideband spectral response of randomly nanostructured surfaces based on causal physical 

principles. Effective-medium approximations (EMA) emulate the randomly structured surface as 

a sequence of homogeneous film layers, failing to predict the critical (or cut-off) wavelength above 

which the enhancement effect is observed and below which bidirectional optical scatter is 

prominent. Analyzing near-field or far-field radiance due to wavefront propagation through 

randomly nanostructured surfaces requires high computational budgets, which are challenging for 

randomly distributed features with varying-scale boundary conditions. 

 Deterministic periodicity is considered a sufficient surface geometrical descriptor for regular (or 

long-range repetitive) nanostructured surfaces, whereas characterizing random surface features is 

based on first-order statistical evaluations or macroscopic averages, such as autocorrelation 

lengths, which introduce significant ambiguity in subwavelength scales.  What constitutes the 

"randomness" of rARSS, beyond standard surface topography measures, is subjective. 

Conventional optical surface structure characterization, disregards aspects of nanoscale 

morphological attributes, mainly spatial configuration or organization, due to resolution 

limitations of metrological instruments. The organizational aspect of nanostructured features can 
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significantly impact the macroscopic Fresnel reflectivity radiance, bidirectional scattering, and 

axial transmission enhancement (cooperative-interference effect).  

In this work, transverse granule population distributions and their corresponding granular 

organization at the nanoscale, is determined using a variation of the Granulometric image 

processing technique. Various rARSS surfaces were fabricated, resulting in unique surface 

modifications and spectral performance, as observed with respectively scanning electron 

microscope (SEM) micrographs and spectral photometry.  The approach to quantify randomness 

or complexity of the nanostructures, presented in this work, is based on Shannon’s entropy 

principles. Resolution limitations from conventional characterization techniques using non-

invasive confocal microscopy and spectroscopic ellipsometry is discussed. Statistical 

quantification of nano-structural randomness using Shannon’s entropy is proposed as a solution to 

characterize the unique degree of disorder on the surfaces.  A figure-of-merit is derived and 

computed from surface organization state variables, and it is proposed as a heuristic parameter to 

predict the transition from spectral scattering to the transmission enhancement region. This 

multivariate problem is addressed by accounting for the conditional probability dependence of 

granule populations as functions of granule dimensions and their corresponding proximity 

distributions, thereby laying the foundations for a surface microcanonical ensemble model, 

establishing a link between surface morphological descriptors and spectral variables.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Background on random antireflective surfaces  

As an electromagnetic wave propagates from one medium into another, it experiences an 

impedance mismatch at the media boundary. This change in optical refractive index is inevitable 

and drives several attributes of the interacting wavefront, including redirection and redistribution 

of electromagnetic energy. Directed-energy applications, astronomical telescope imaging systems 

and other such applications, where Fresnel reflection losses manifest as degradation in image 

quality and diffused (off-axis) scatter, are undesirable1.Therefore, designing optical systems to 

control the effective redistribution of energy is a primary goal. Fresnel coefficients, which can be 

computed from the boundary conditions for the interacting electromagnetic wave interaction with 

the media boundary, are used to determine the reflectivity or transmissivity between media based 

on the angle of incidence (AOI), the polarization, and the refractive index contrast of the media 

involved.  Conventionally, thin film antireflection (TFAR) coatings are employed to suppress 

Fresnel reflection. Several configurations, such as single-layer (SLAR), multi-layer (TFAR), and 

gradient-index (GRIN) thin films, are used based on the application at hand2,3. Thus, the choice of 

an optical index for the coating for SLAR is preferred to be close to the geometric mean of 

superstrate and substrate indices, such that destructive interference of π-phase shift is achieved 

between the reflected wavefront from the film layer interfaces on the substrate. Several 

applications ranging from consumer sector to specialized areas of research benefit from 

antireflective treatments. However, specific challenges arise with coating techniques, such as the 

availability of appropriate index, thermal and mechanical response materials, AOI dependence, 

polarization sensitivity, and wavelength dependence. Engineered surfaces with sub-wavelength 

structures (SWS) have been suggested as alternatives to TFAR or GRIN films, as they overcome 



2 
 

the above-mentioned challenges and boost axial transmission by coupling most of the light axially, 

hereby suppressing off-axis transmission scatter4–10.  

Antireflection is achieved by surface structuring that results in homogenous or inhomogeneous 

nanoscale topographies11,12. Homogenous media characterization, including Fresnel coefficients, 

have been widely reported. Inhomogeneous media characterization includes gradient-index 

materials, where the fill-factor drives gradual transition of the refractive index from superstrate to 

substrate values. Numerous other techniques of surface modification to achieve antireflection have 

been demonstrated in the past, including ordered nano-pillars and moth-eye structures 13–21, where 

longitudinal high aspect ratio structures moderate the rate of refractive index transition from 

ambient to substrate, thereby suppressing reflection and enhancing axial transmission. However, 

their performance can be limited due to fabrication challenges. Over the past few decades, random 

antireflective structured surfaces (rARSS) have demonstrated a significant enhancement in axial 

transmission over broad spectral ranges in the visible and infrared bands. 

1.2. Random antireflective structured surfaces  

Antireflective randomly structured surfaces are nearly isotropic, dense, and without apparent 

spatial periodicity or deterministic order.  rARSS have been implemented on several materials such 

as: fused silica (FS), zinc selenide (ZnSe), silicon (Si), germanium (Ge), gallium arsenide (GaAs), 

based on the spectral regions of interest22–24. rARSS is monolithically etched on to the substrate 

by a reactive ion etching process (RIE), thereby simplifying the choice of an appropriate material 

required by layered-coating techniques. Other properties of the rARSS include angle-of-incidence 

(AOI) independence, polarization insensitivity, and wide-angle transmission scatter reduction25–30.  

Because random antireflective structured surfaces are multifunctional, they have been successfully 

implemented in several areas, such as high-energy laser systems, photovoltaics, and conventional 
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optical components5. Causality of the optical response of rARSS has not been clearly established, 

although some approximate models are used to compute their wavelength-dependent effects. 

Importantly, no causal explanation has been determined to the role of randomness in enhancing 

axial spectral transmission. Existing physical models present limitations in explaining the resulting 

optical phenomenon. Lack of deterministic surface scale makes it especially challenging to model 

their geometrical dimensions, and thereby establish non-trivial analytical or numerical solutions.  

In principle, the optical radiance resulting from a wavefront passing through a structured surface 

may be calculated using rigorous coupled-wave analysis (RCWA) or finite difference (FDTD or 

FDFD) computations20,21,31–33. However, unless the numerical simulations are applied on SWG or 

periodic structures, they are a computationally tedious process, especially for random surfaces with 

varying-scale boundary conditions, as it requires extensive size arrays and fine-grid sampling33. 

Assumptions and simplifications are applied to predict the spectral transmittance and reflectance 

of a structured surface, depending on the application at hand. To date, there is no comprehensive 

model which predicts spectral response and explains all aspects of “randomly” structured surfaces 

based on physical arguments. This serves as the primary motivation to establish causality between 

surface organization properties and the induced spectral response.  

 

1.3.  Spectral transmission properties of random antireflective structured surfaces 

Typically, the measured spectral response of the rARS surfaces is as depicted in Figure 1. Two 

distinct spectral regions demarcated by a cut-off wavelength, λc, are observed. The region shaded 

in green, of wavelengths shorter than λc, is dominated by scattering, while in the region of 

wavelengths greater than λc, enhancement in axial transmission begins to dominate. This cut-off 

wavelength value cannot be predicted by existing stratified effective-medium approximation 
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surface models (EMA), and can be only numerically computed for quasi-SWG structures with a 

well-defined constant spatial period34. EMA reduces the rARSS surface to a homogenous medium, 

and can be used to compute interference-like effects from rARSS, but does not account for 

bidirectional scatter from heterogeneity on the surface as a consequence of surface roughness at 

any scale.  

The Harvey-Shack (HS) optical scatter analysis model, a linear-systems scatter approximation 

model, is used to establish the relationship between relevant optical surface roughness quantities 

and angular radiance from, or through, the rARSS35. The model computes specular reflection using 

the surface transfer function: 

                                        (1) 

where 𝜎ො௦ is the surface RMS roughness, 𝐶መ௦(𝑥ො, 𝑦ො) is the autocovariance of the surface heights, and 

𝑥ො, 𝑦ො are location coordinates normalized to the incident wavelength value. The constants A and B 

are directly derived from Fresnel's coefficients, and represent the specular and scatter components 

respectively, while, G(x,y) is a function of the RMS roughness and autocovariance.  However, due 

to the functionality of random antireflective structures, specular reflection is reduced from the 

expected Fresnel coefficient values (while transmission increases), which directly changes the 

values of both A and B in Equation 1. It's important to note that the primary focus of the Harvey-

Shack model is to explain the total-integrated-scatter (TIS), which represents the combined effect 

of scattering at off-axis angles, by use of the second term in Equation 1. 

        
2 2 ˆˆ ˆ ˆ4 ,

ˆ ˆ ˆ ˆ, ,S SC x y

SH x y e A B G x y
  
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The model provides computational predictions into how surface roughness influences light 

scattering and the resulting distribution of radiance away from the specular (or axial) direction, 

using the rms-surface roughness and surface autocorrelation statistical measurements. Hence, 

limitations from scatter models make it challenging to predict the spectral response for λ>λc, as 

shown in Figure 1.  

 
Figure 1:  Measured spectral transmission of a 1mm thick fused silica window (T123 - solid 

green line), the silica single surface spectral transmission computed from it (T12 -solid red 

line), and a measured response of a silica slab with one surface enhanced by rARSS (solid 

black line.) The scattering and transmission-enhancing spectral regions are indicated by the 

green- and red-shade respectively. The white circle indicates the cross-over wavelength (λc). 

The simulated EMA matching the rARSS transmission enhancement (dashed red line) is 

bound between the one-surface maximum and the two-surface minimum values. The scatter 

simulation cannot exceed the two-surface ceiling (dashed green line) and as a consequence 

underestimates the short wavelength response. 
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Flat fused silica substrates (UV-grade, Corning 7980), 1 mm thick, were used for the present study. 

One of their surfaces was processed to add rARSS, using varying RIE fabrication parameters. The 

sample surfaces were fabricated using a PlasmaTherm RIE7000, with the process control 

parameters (listed in Table 1 – Chapter 2, section 2.2). Transmission measurements of particular 

recipes consistently resulted in repeatable spectral performance, making the fabrication process 

highly deterministic for a set of fabrication conditions. Spectral transmittance of the rARSS flats 

was measured at normal incidence using the CARY spectrometer for wavelengths ranging from 

UV to NIR bands. In Figure 2, the transmission of polished fused silica flat is included for 

comparison. 

Single-surface transmission data is calculated using incoherent interactions between the surfaces 

of the slabs, highlighting the enhancement in axial transmission. Transmission through the 

structured surfaces is on an average enhanced by approximately 3.5% for a single surface of FS, 

hereby, making the surface almost transparent. The cut-off wavelength, λc for the rARSS samples 

is used in this study as a quantitative metric to rank them as per their optical performance. The 

limitations of the models discussed above is not transitional from the scattering to the transmission 

enhancement bands. Hence, understanding the role of the surface morphological aspects is 

fundamental to establishing causal relationships across the spectral bands. 
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1.4. Conventional metrology for mechanical surfaces  

Surface properties can be investigated by measuring their heights via non-contact or non-invasive 

techniques. The conventional height-characterization approach of these surfaces was first utilized. 

FS samples, labelled as MXXX, are commercially polished by different end-process grit size 

abrasive particles. For example, sample M120 is polished by an average grit size of 102 microns. 

These samples are presented here to compare the effectiveness of conventional surface 

metrological methods. Mechanical samples were measured using an Olympus LEXT5000 

confocal microscope, with a 50x objective. 

 

Figure 2: Transmission from silica slabs with one surface enhanced by rARSS. Single surface 

transmission obtained computationally from slab transmission measurements for: (a) samples 

A0, A1 and; (b) samples W1 through W5. In both subfigures a baseline polished fused silica 

surface (WP) is shown in black. Different cut-off wavelengths for each of the rARSS samples 

are observed. 
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Tilt and noise were removed but no filtering was performed on the measured height data. Statistical 

height parameters were calculated by the instrument’s software for the various samples acquired 

height distributions as shown in Figure 3. Specifically, correlation trends of RMS roughness (Sq) 

and autocorrelation lengths (Sal) agree with polished surface characteristics. Similarly, RMS 

gradient slope (Sdq) and developed interfacial ratio (Sdr%) have characteristic trends which represent 

the grit-grade in the polishing process.  Spatial frequency distributions illustrated in the power 

spectral density (PSD) plot shown in Figure 3(c), present a characteristic decaying nature as the 

spatial frequencies increase. The characterization parameters presented above are typically used 

for optical-quality polished surfaces, whose scales of roughness are within the measurement 

capability of the instrument. Often, conventional surface metrological approaches for height 

characterization are sufficient to correlate the polishing process with the resulting surface optical 

response and functionality associated with the surface. 

The comparison between height measurements of nanostructured structured surfaces and 

mechanical samples will be presented in chapter 2, highlighting the resolution limitations of 

confocal microscopy.  
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Investigation of the side-view of these random structures highlight dense-and-deep-packing of 

these filament-like nanostructures. To explain transmission enhancement via effective-medium-

approximation (EMA), ‘z’ heights aid in computation of an effective volume fill-factor, to 

eventually calculate a stratified gradient-optical index. Initial assessment to determine the heights 

of these structures was attempted using atomic force microscopy (AFM), but the dense packing of 

the structure hindered the AFM needle from penetrating to the bottom of the surface at each locale. 

Profilometric metrological instruments and their measurement utility depend on the bandwidth of 

spatial frequencies that are to be measured. In Chapter 2, the challenges or limitations of the rARS 

 
 

Figure 3: Conventional statistical parameters computed by commercial software from 

height measurements of polished surfaces obtained using confocal microscopy 
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surface measurements using confocal microscopy are presented. Since the EMA model can be used 

to explain the axial transmission enhancement for λ>λc, it is possible to characterize the surfaces 

via optical ellipsometry. Limitations and specific challenges of ellipsometry measurements on the 

structured surfaces is also presented in Chapter 2. Preference of non-contact, non-invasive methods 

make identification of an appropriate metrological tool to characterize the nanostructured surfaces 

a particularly challenging task. 

 

1.5. Transverse morphology of random antireflective structured surfaces 

Alternatively, transverse structural morphology is measured under ultra-high magnification using 

scanning electron microscopy (SEM), which images surface granularity (or porosity) down to tens 

of nanometers. The lateral dimensions of the features on the surface are of the order of a few 

nanometers, forming a random (or disordered) distribution of multi-sized features with no 

perceived periodicity. SEM micrographs and their detailed granulometric characterization is 

presented in Chapter 3. 

While SEM images may be used to characterize transverse morphology, ‘z’ heights from the 

topography cannot be accurately determined, which restricts our characterization approach to just 

transverse variables. By inspection of the SEM images, the transverse morphology of the seven 

samples used in this study is distinct, varying in the composition of silica islands and voids, as 

well as the range of feature sizes. Quantification and analysis of the spatial organization of 

randomly distributed nano-scale antireflective surfaces has not been reported. The primary 

objective of this dissertation is to develop a figure-of-merit from the randomness of the 

nanostructured surface features, which will allow to qualify them and eventually establish a causal 

relationship between the structures and the optical performance across spectral regions. 
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1.6. Measure of randomness using Shannon’s Entropy  

Existence or absence of symmetry can be leveraged in mathematical descriptions of physical 

interactions. The existing literature suggests that randomness in natural systems results in non-

uniform probability distributions of descriptive physical quantities36–41. Identifying the role of 

disorder may help analyze scattering interactions, or design robust photonic systems which benefit 

from light interacting with randomly-ordered materials11,12,42–47. Disordered media can exhibit 

properties such as Anderson localization48, which has been exploited in several applications in the 

last decades. Dogariu et al. have demonstrated coherent backscattering effects (CBS) from phase 

screens in media with finite volumes49–52. Vellekoop et al. have demonstrated adaptable enhanced 

transmission systems through disordered media with a priori knowledge of phase information from 

the surface53. 

To advance the analysis of disorder as a design tool, it is crucial to quantify randomness or surface 

complexity with respect to optical interactions. Complexity, can be loosely defined as a lack of 

symmetry54. Compared to deterministic systems, complex or disordered systems require more 

information to model their behavior. Alamino’s approach on quantifying complexity is based on 

quantifying randomness using Shannon’s entropy, which is used in this work55–57.  

 

Quantum mechanics acknowledges “uncertainty” and relies on a probabilistic approach to 

understand the deterministic universe. Thermodynamics, especially with statistical tools, has 

enabled us to extend the comprehension of the macro-ensemble entity (in our case, transmission) 

with measurable micro-entities (such as, lateral nanoscale-feature distributions, feature separations 
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etc.)58. Ising model is one such example of chain or multidimensional lattice where the microscopic 

magnetic moments of each site is used to model the magnetic properties of solids.  

Similarly, determining appropriate optical interaction “states” from the structural morphology of 

random antireflective surfaces is crucial to develop foundations of modelling the optical 

performance of rARSS across wide spectral bandwidths. Instead of tracking precise state changes 

of a particular system, studying the state-ensemble behavior in a collection of systems is possible. 

The present work formalizes the concept of entropy as a measure of randomness on these 

engineered antireflective nanostructured surfaces. Nanoscale micrographs of rARSS samples are 

analyzed using Granulometry, as an image processing technique. Various surface organization 

descriptors are evaluated computationally in the following analysis. In Chapter 4, a statistical 

approach is presented to obtain quantitative metrics for numerous surface descriptive quantities 

from the surface.  

Some metrics obtained from surface transverse morphological organization present good ranking 

correlations with the cut-off wavelength of corresponding rARSS samples. Separations between 

nanoscale surface features is evaluated as the sum of the transverse separations on each granule 

dimension scale, and can lead to a diffractive model for rARSS. Surface morphological 

characterization of the rARSS consists of granule populations and their respective organization. 

Significance of each of the descriptor’s probability distributions and their conditional dependence 

is taken into account for a characterization of the surface. 

Eventually, with the use of variational principles, the intention is to extend this research to a 

generalized microcanonical model, where functional relationships between the associated surface 

state variables and spectral response variable is established.  
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Additionally, optical energy redistribution caused by the structured surfaces is briefly presented. 

Based on the fundamental principle of conservation of energy, in the absence of absorption, 

transmission and reflection through optical nanostructured surfaces and scatter in the transmission 

and reflection directions have to account for all energy in the incident and transmission media. 

Experimental complete angle scatter measurements (CASI) are briefly discussed in the conclusion 

section. Preliminary computational simulations of far-field intensity patterns from rARSS 

tentatively agree with experimental findings.   
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CHAPTER 2: SURFACE CHARACTERIZATION TECHNIQUES 

 

2.1.  Introduction 

 

Properties of a surface or interface that interacts with an optical wave are crucial to understand the 

response of the optical wave as it passes through the interface and into a medium. Therefore, 

understanding and quantifying surface information is important to alter functionalities of a system 

as well as to optimize its fabrication process.  

 In this chapter, various approaches to characterize surfaces are discussed, starting with 

conventional surface metrology techniques. Choosing an appropriate metrological tool is 

challenging, especially for rARSS type of nanostructured surfaces. In Section 2, confocal 

measurements of the rARSS surfaces are presented, along with the observations and inferences of 

the acquired height information. Several statistical parameters and tools such a power spectral 

density (PSD) using the acquired topographical information is presented. In section 2.3, the 

ellipsometric approach to characterize these surfaces is shown. Ellipsometry is a technique 

typically used to characterize the optical properties of surfaces, however, data presented in this 

section confirms the lack of a strong signal (or signal contrast) to classify these surfaces based on 

the optical response of the rARSS.  

 

2.2.   Conventional surface metrology methodology  

2.2.1.  Confocal optical profilometry    

In the Introduction, spectral transmittance of antireflective structured surface samples was shown. 

Over certain wavelength ranges, the samples seem to have nearly identical spectral behavior, 
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including transmission enhancement. Intuitively, the observed identical behavior of the surfaces 

could be explained as due to similar topological attributes. Surface characterization involves 

decomposing the surface into its constituent topological elements. Descriptors of the surface can 

include information about surface features, such as: shapes, mechanical dimensions, length-scale 

distributions such as spatial frequencies, along with heights parametrized by transverse locations 

z(x, y). One of the ways to measure surfaces is using a mechanical profilometer, which functions 

similar to a morphological filter, and provides a one-dimensional height data set: the height profile 

at a particular spatial location R(x, y). This profilometer setup consists of a stylus, which is then 

scanned across the surface at the desired location to measure feature variations. The traversal of 

the stylus tip over the topography is then translated to height information. For example, when it 

encounters a raised feature, just like the morphological filter, the tip also travels over it while 

maintaining a safe distance from it, determined from material-dependent Hertzian stress, and for a 

depressed feature it travels to the bottom of it resulting in height information59. This is one of the 

most commonly used tools when the surface is fairly deterministic, and a few measured profiles 

sets of data are enough to extract descriptive information. The radius of the stylus tip determines 

the resolution of profilometric measurements. In densely packed random surfaces, the tip's 

inability to probe all the way to the bottom of the surface prevented it from producing a signal 

which could be discernable.   

For the case of antireflective structured surfaces, a non-invasive or non-contact imaging technique 

is preferred. We initially used a scanning white light interferometer, also called coherence scanning 

interferometer (CSI), to measure the height distribution across the surfaces. The non-coherent light 

source that was used to image the surface operates in the range of 500 nm, the wavelength at which 

the antireflective structured surface samples are highly transparent. The transparency hindered our 
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measurements from extracting any meaningful information, as there was insufficient light reflected 

from the antireflective surface. Instead, we chose an areal optical profilometer, which helps acquire 

surface samples to a good accuracy level.  

The Olympus LEXT5000, is a reflection-type laser-scanning confocal microscope which allows 

acquisition of surface features, rendering a height map as a function of location (Z (x, y))60.  

Working principle of an imaging confocal microscope is depicted in the schematic in Figure 4.  

 

 

Confocal microscopes exhibit better vertical resolution because of improved depth-of-focus 

(DoF). A circular pinhole located at the image-forming point permits the focused beam to pass 

 

 

Figure 4: Schematic of a standard commercial confocal microscope. 
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through (eliminating the scattered light). A two-dimensional raster scan perpendicular to the 

optical axis is achieved using a combination of Galvano mirrors and microelectromechanical 

(MEMS) scanner. Confocal (slices of an image, for easier visualization) images are acquired at 

small height increments to create a complete three-dimensional topographical map within a 

specified vertical scan range. Total intensity is calculated by summing all of the intensity values 

at each pixel on the x-y spatial grid from all of the sliced images61. After calibrating the intensity 

values to height values, a comprehensive three-dimensional topographical height map is generated. 

One of the advantages of confocal microscopy is the high numerical aperture (NA), which implies 

that it has a high signal-to-noise discrimination, as well as the ability to image surfaces with larger 

slopes. The laser diode source operates at a wavelength of 405 nm, and has a maximum output of 

0.95 mW.  

 Microscope objectives (5x and 10x) are used to align the sample and to ensure the sample is in-

focus. The working distance (WD) is determined by the specifications listed for the various 

objectives. In-focus plane was obtained focusing on a cosmetic defect on the surface, which allows 

us to identify the high elevation of the surface to be measured. Once the surface is in-focus, it is 

important to set a scanning range ‘z’, over which the microscope will then obtain tomographic 

images. The data collected used an 100x, UV-corrected objective (MPLA100x LEXT, NA = 0.95), 

resulting in arial scans of 128 x 128 μm² for each sample data set.   

The resolution of the measured lateral features is restricted by the choice of parameters such as the 

illuminating wavelength and NA. The field-of-view (FOV) of these measured surfaces results in 

128 μm x 128 μm, from a detector grid of 1024 x 1024 pixels. In case of a higher resolution scan, 

a grid of 4096 x 4096 pixels can be acquired. For improved illustration, coarser-resolution images 

of the samples are shown in Figure 5, although discussed statistical analyses use a finer-resolution 
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dataset. The surface parameters computed by the instrument’s software conform with ISO 

standards (ISO 4287 ‐ Geometric products specifications (GPS), ISO 25178 ‐ Geometrical product 

specifications (GPS) ‐ Surface texture: Areal), definitions of the ISO standards are listed in 

Appendix A.  

 

 

Figure 5: Surface information acquired by the confocal microscope LEXT4000, with a 

detector grid of 1024 x 1024 pixels. (a) Isometric view of the surface heights (rendered in 

grayscale). (b) Top-down two-dimensional height map. (c) Profile R(x, y) of a single 

transverse scan, indicated in red on subplot (b).  
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Figure 5 shows the surface height information acquired from the instrument. The structures on the 

surface exhibit high-frequency roughness about the mean-plane, spanning a range in the 

longitudinal direction. Structures appear to be filament-like based on the cross-sectional profile. 

From the top-down view, granularity on the surface is perceived as salt-and-pepper noise as shown 

in Figure 6(b). The lateral resolution of the microscope is specified as 120 nm, which restricts the 

acquisition of structured surface’s spatial information.  

 

For qualitative comparison purposes, the height maps of the representative samples from the 

dataset are shown in Figure 6. Polished fused silica, shown in Figure 6(a) appears less grainy as 

opposed to the rest of the samples. The computed surface parameters from the height information 

also reveal a smaller RMS value in the roughness (as shown in Table 1). The images appear to be 

rougher than that of the fused silica, hence they are qualitatively classified as rougher. However, 

 
 

 

Figure 6: Two-dimensional height maps of representative samples, shown in gray scale that 

corresponds to height, where darker shades are below the surface mean value and whiter 

shades are above. (a) Polished fused silica, WP (b) Antireflective surface sample, A1 (c) W2 
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from the structured surface images shown, it is difficult to differentiate between samples based 

solely on their height map data. Histograms of the topographical height distributions for all 

antireflective structured surfaces measured are shown in Figure 7. The variance/standard deviation 

of the height distributions is lowest in the case of sample WP, which is polished with optical flat 

standards. By comparison, sample W5 which has the most spectral scatter (Figure 2), has the 

largest standard deviation in height distribution. The height range of A0 is approximately about 

0.3 microns, while the height range of sample W5 is about 0.6 microns. The variance in height 

distribution increases, as expected, for samples A0 through W5, confirming the presence of 

structuring/patterning, as well as, increasing surface roughness which causes off-normal scatter.  

 

 
 

 

Figure 7: Histograms of height distributions for all antireflective surfaces measured. The 

heights are shown as a deviation from the mean height value in each sample dataset (Table 

1) and the frequency distributions are normalized to the peak frequency in each sample 

dataset.  
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2.2.2.  Statistical surface parameters  

The height information was further processed to remove tilt (general acquisition errors) and form  

(sphere) due to the measurement conditions. The critical wavelength, λc, for all of the samples is 

less than or close to 405nm at which the instrument acquires the height information. Hence, it is 

important to note the contribution of surface scatter on the height measurement data. The angular 

scatter distribution maybe associated with a sphere, which prompts removal of sphere as a form 

error. No spatial frequency filters were used to compute the statistical roughness parameters. 

Table 1 shows the conventional surface metrology parameters computed by the confocal 

microscope from the measured height maps. The goal is to determine a surface parameter that 

correlates with the optical response, and relate to fabrication conditions.  

Table 1: ISO-25178 amplitude and spatial surface parameters and RIE fabrication 

process parameters for the rARSS samples used in this study. 

Label 

Surface Parameters RIE process parameters 

Sq 
(nm) 

Sz 
 (nm) 

Sal 
(nm) 

Power 
(W) 

Time 
(min) 

SF6 (sccm) 

WP 5 409 17813 - - - 

A0  6 362 17938 - - - 

A1 17 403 32672 500 45 35 

W1 51 1356 8172 600 45 35 

W2 73 1291 43406 535 60 42 

W3 48 1375 22484 550 60 50 

W4 61 1202 484 600 90 50 

W5 82 1872 17531 575 90 42 

WR 907 6748 914 - - - 
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In Table 1, selected height amplitude and spatial parameters are shown, and the lack of trend is 

evident. Ideally, the measured statistical roughness parameters describe the topography of the 

surfaces. Increased surface roughness (root mean squared roughness, Sq) for samples other than 

the optical quality polished fused silica wafer (WP), is an indicator of patterning. The surface 

autocorrelation length Sal, quantifies the self-similarity length or simply the distance over which 

the surface features have identical measure. The Sal of sample A1, which is reported to be 32,672 

nm is much greater than that of sample WP whose value is 17,813 nm. Comparison between the 

two above mentioned samples does not agree with the processed surface history, as the values 

imply that A1 is much smoother (or contains similar neighboring features) than an unprocessed 

polished fused silica surface. Additionally, trends in peak-valley roughness, Sz aligns with the 

height-ranges presented in height histograms in Figure 7. However, uncertainty with respect to the 

height perceived as the bottom of the structures exists.  

Accurate quantitative characterization of the surface roughness is important to relate the spectral 

functional properties of the surface, which in our case is antireflectivity or transparency, with the 

topological condition62.  

 

The spatial power spectral density (PSD) is commonly used to compare spatial frequency 

composition of surfaces, which allows us the quantification of prominent spatial frequencies and 

harmonics, if any. Information pertaining to structural directionality of surface features or isotropy 

can be obtained. The PSD can also be used to compute values of root-mean-square height, slope 

and curvature from measured surface data63. The PSD is the Fourier transform of the spatial 

autocorrelation of the surface. PSD is represented graphically as the intensity or power of a 
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particular spatial frequency, across the entire spectrum of spatial frequencies present in the 

measurement. It also enables us to group spatial frequencies by range of values, and identify scale 

contributions towards the observed physical or functional effect.  

 

If h(x,y) is the measured surface height information data set, the PSD computation for the surface 

proceeds as follows. The function h(x,y) is a dataset of discrete-value measurements hx,y, such that 

the height measured at each aerial site  Lx by Ly is presented in a rectangular matrix of Nx by Ny 

dimensions, with element ranges lx × ly, where lx = Nx/ Lx and ly = Ny/Ly.  

The Discrete Fourier Transform (DFT) is computed numerically using a fast Fourier transform 

algorithm (FFT). The DFT of h(x,y) can be written as:  

     ℎ෨௤ೣ,௤೤  = 𝑙௫𝑙௬ ∑ ℎ௫,௬ 𝑒
ି௜൫௤ೣ௫ା௤೤௬൯                                  ௫,௬ (1) 

 

The inverse-Fourier Transform (IFT) is:  

                      ℎ௫,௬  =
ଵ

௅ೣ௅೤
∑ ℎ෨௤ೣ,௤೤  𝑒

௜൫௤ೣ௫ା௤೤௬൯                                  (2)௤ೣ,௤೤
 

 Here: the range is specified for 𝑞௫,௬ = ൤−
ଶగ

௟ೣ
,

ଶగ

௟೤
 ൨  in steps of  Δ𝑞௫ =

ଶగ

௅ೣ
 . 

 

The two-dimensional PSD matrix is then defined as:  

𝐶௤ೣ,௤೤
ଶ஽ = √𝐴

ିଵ
ቚℎ෨௤ೣ,௤೤  ቚ

ଶ

                                                    (3)  

 

Here:   𝐴 = 𝐿௫𝐿௬. A maybe defined as 
ଵ

஺
 or as 

ଵ

√஺
, which changes the unit of PSD. 

 



24 
 

 The instrument in use, uses  𝐶௤ೣ,௤೤
ଶ஽  from equation 3 and has units of [m3]. C does not include the 

phase-information but only the square of the amplitude information.  In the spatial frequency 

domain, the reciprocal space product results in a spatial self-convolution and hence, it is the Fourier 

transform of the height autocorrelation function.   

The PSD does not depend on a particular surface areal size and can be used for comparisons 

between PSD measured over different areas, since they are normalized with respect to the 

rectangular sampled area. From Parseval’s theorem, other surface parameters such as RMS 

roughness, slope of the surface, etc. can be computed. Figure 8 shows the PSD for all samples used 

in this study. 

 
 

Figure 8: Computed power spectral density (PSD) of the polished fused silica (indicated in 

black) and the rARSS samples, displayed on a logarithmic scale. 
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The polished fused silica surface WP, shown in black in Figure 8, marks the lower bound of the 

computed spatial frequency distributions, and follows a characteristic decrease in values with 

increasing spatial frequencies. The minimally processed surface A0, has a similar spatial frequency 

PSD content to WP, except between 0.23 μm-0.96 μm range of frequencies over it has a higher 

magnitude. Presence of surface features, contributing to increased surface roughness is attributed 

to the deviation in spatial frequency content from WP. Typically, the PSD data sets of machined 

surfaces have a monotonically decreasing trend, where the shoulder indicates a signature or 

pattern. In periodic surface, the principal frequency followed by the harmonics, indicating the 

period of the measured surface can be detected on a PSD plot. For the samples of antireflective 

structured surfaces, between ~1 μm - 6.7 μm where the amplitude is nearly constant. This unique 

feature of the AR-structured surface PSD data could be of concern regarding the accuracy of the 

measurements. Is the height measurement process by the confocal microscope affected by the 

forward (transmission) scatter which is not picked up by the objective of the microscope? Is the 

resulting spatial frequency content indeed a unique response due to the observed antireflectivity 

properties of the surfaces?  

Isotropic surfaces, unlike anisotropic surfaces, exhibit direction-independent topographical 

characteristics across their areas64. Several physical quantities, such as refractive index and 

diffraction, can be related to a characteristic spatial periodicity, which in the case of anisotropic 

surfaces is a measurable surface effect. In isotropic surfaces, since there are no prominent surface 

features, statistical characterization of the surfaces is performed to identify if the statistical 

ensemble averages correlate with observed effects.  
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2.2.3.  Higher-order statistical surface parameters  

Apart from the first-order moments discussed above, presented here are some of the higher-order 

moments, whose definitions are presented in detail in Appendix A. Skewness, or Ssk depicts how 

skewed (or asymmetric) a distribution of values is about the mean-plane. Values equal to 0 indicate 

a balanced distribution about the mean-plane, while Ssk < 0 or Ssk > 0 indicate a “skewed” 

distribution lower than or greater than the mean-plane respectively. Kurtosis, or Sku depicts how 

tailed the roughness profile is, meaning heavy-tailed or light-tailed relative to a normal distribution 

comparison. For Sku = 3 the distribution of values is Gaussian, while Sku < 3 or Sku > 3 indicate a 

bias about the mean plane distribution or a spiked height distribution respectively. The root-mean-

square gradient Sdq is a surface gradient parameter obtained from a root mean square of the slopes 

of all points on the surface. This hybrid parameter is 0 for level surfaces and greater than 0 for any 

slope detected on the surface. Developed interfacial area ratio Sdr represents the percentage of the 

textured area on the surface of the planar definition area65. For a level surface, the values are 0, but 

for surfaces with any slope, Sdr will be greater than 0. If the surface has components whose slope 

is 45o, Sdr = 0.414. 

 
Table 2 reports the values of the higher-order parameters for all samples measured. The parameters 

computed for the optical quality polished fused silica substrate (WP) may be used as a reference 

to the step-index physical surface, which has Fresnel reflectivity according to the optical index 

difference between the material and the ambient. All the computed higher-order and hybrid 

parameters for WP confirm that the surface is flat, with minimal roughness. Structured sample A0 

can be similarly rationalized as a minimally perturbed surface. 
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Table 2: ISO-25178 surface texture higher-order moments and hybrid parameters for the rARSS 

samples used in this study 

  Ssk Sku Sdq Sdr (%) 

WP 
7.411 440.004 0.021 0.017 

A0 
0.22 11.676 0.03 0.044 

A1 
0.683 4.201 0.102 0.507 

W1 
0.654 5.609 0.399 7.086 

W2 
0.286 3.234 0.396 7.012 

W3 
-0.459 5.938 0.416 7.706 

W4 
0.584 4.409 0.541 12.635 

W5 
0.215 5.141 0.723 21.231 

 
 
For Ssk, a consistent rising or falling trend is expected for the samples starting from A1 to W5, 

which is lacking not just for skewness parameter but also for the rest of the samples. To emphasize, 

no range of value from the list of parameters may be used to explain a particular statistical height 

distribution to contribute to the observed effect. These parameters do not explain the physical 

phenomenon as in the case of the polished surface or other mechanical surfaces, which is briefly 

discussed in section 2.2.4.  

 

2.2.4. Comparative analysis of surface characterization using mechanical samples  
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A set of mechanical samples with certain machining conditions are introduced in Section 1.4, 

Chapter 1. Figure 3 demonstrates the accuracy with which the surface parameters represent the 

underlying surface attributes resulting from a specific set of machining conditions. Figure 9a 

illustrates the comparisons of the first-order statistical surface parameters between machined 

mechanical surfaces and random antireflective structured surfaces. Sq - Sal trends for the machined 

surfaces exhibit predictable trends indicating the precedence of the samples as per their machining 

characteristics. Sample WR, rough fused silica, has values of roughness close to that of the 

mechanical “rough” samples. Polished fused silica surface WP is two orders of magnitude lower 

 

 

Figure 9: Comparisons of surface parameters on measured height data between machined 

mechanical “rough” surfaces and random antireflective surfaces (a) Logarithmic Sq - Sal 

space, demonstrates predictable ranking of the mechanical samples and the lack of a trend 

in the random antireflective surfaces (b) Logarithmic hybrid parameters Sdr - Sdq space, 

highlights the orders of magnitude difference between mechanical surfaces and other 

enhancing random antireflective surfaces 

 



29 
 

in roughness compared to the mechanical samples. Random structured surface samples vary in 

their roughness magnitudes and their autocorrelation lengths with no predictable trend. While in 

the logarithmic space, the trendline for the mechanical samples obey a power law where, Sq = 

(0.0211) Sal1.331.  

In tribological applications, recently the utility of Sdr – Sdq relationship has been recently 

demonstrated to identify the functionality of surfaces based on their surface roughness 

information65. Figure 9b demonstrated the different trends identified for the mechanical and the 

rARSS samples. The mechanical samples present a linear relationship, such that   

Sdr = 23.842 Sdq + 2.2862. On the other hand, the rARSS samples exhibit a power-law trend, given 

by, Sdr = (41.889) Sdq
1.9479 . The hybrid parameter space, especially, effectively contrasts the 

dimensional differences in the measured parameters for the mechanical samples and rARSS.  

 

 2.2.5. Volume parameters and Bearing Area Curves  

 

Beyond the commonly measured and computed statistical surface parameters, volume parameters 

are also used for various applications, especially in fields like tribology where surface roughness 

has been related to various functionalities66. The Abbott Firestone curves or Bearing Area Curves 

(BAC) result from a computation using the surface height profile values, which aids in quantifying 

the surface area of the measured spatial region that contributes to various mechanical effects like 

wear. In another perspective, if the surface heights are plotted cumulatively, in an order descending 

from ambient space into the substrate, the areal material ratio is calculated as the cumulative 

surface area in 3-dimensions to the total material available. In the figure below, the BAC for WP 

is shown. The two vertical lines represent the limits or bounds of the material, above and below 
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which the peaks and voids are defined. By default, 10% and 80% is used as the bounding limits, 

though 14% and 86% can also be used (1/e2 values).  

 

 

The BAC has four distinct regions as highlighted in Figure 10, from which various parameters are 

computed. Vmp, Vmc, Vvc, Vvv represent the volumes of the peaks, material core, void core and valley 

voids respectively.  

 
 

Figure 10: BAC of polished fused silica, indicating all the four distinct regions- over which 

various volume parameters (Vmp, Vmc, Vvc, Vvv) are computed 
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Figure 11 shows the BAC of representative samples (BAC curves of all rARSS samples are listed 

in Appendix A). For sample WP, the BAC is flat, hence, indicative of its polished characteristics. 

As sample surface A1 has low variance in roughness range, the BAC is comparatively shallow. 

With increasing surface roughness, the cumulative distributions of BAC also vary accordingly, 

however, functional correspondence with surface attributes is not deducible.  

 

 
2.2.6. Metrological challenge 

Choice of a surface metrology tool is important; however, the characterization of surface height 

information is dependent on the instrument’s accuracy and measurement uncertainty67. 

 

 
Figure 11: Bearing Area Curves of polished fused silica (WP) and representative random 

structured surfaces (A1, W2, W5).  
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Uncertainty in the measured data may be related to axial scattering losses from the surface. All 

tools discussed above are effective in quantitative classification and functional qualification of 

mechanical samples whose scale of roughness is a few orders of magnitude larger than these 

surfaces.  

 

2.3. Variable Angle Spectroscopic Ellipsometry (VASE)  

 

2.3. 1. Reflection Ellipsometry   

Transmission enhancement can be predicted using effective medium approximation (EMA) as 

discussed in the Introduction. This allows us to work with the assumption that these structured 

surfaces may be treated as a gradient-index stratified sequential set of thin films. Conventionally, 

ellipsometry is used to non-invasively characterize the optical properties of thin films and bulk 

materials. It is commonly used by antireflection coating designers and manufacturers to fully 

characterize the response of the optical surface system68,69. Ellipsometry utilizes polarization 

change of the light wave propagating through the surface and resulting in reflection or 

transmission. It is sensitive to inter-facial features in layered films, preferably sparsely populated 

features. It results in parameters such as film thickness (t) and optical constants: refractive index 

and extinction coefficients (n, k)70,71.  

 Variable angle spectral ellipsometry (VASE) is performed to understand the surface response over 

a particular spectral range while varying the angle-of-incidence (AOI) and incident wavelength72.  
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The optical response of a surface is measured with respect to incident light for both polarization 

states. The wavelength affects certain optical properties, which change in response to the particular 

wavelength of interaction. When linearly polarized light is incident on a surface, the resulting 

reflected light is elliptically polarized. This change in polarization is dependent on the properties 

of the surface material. Hence, the polarization state of the reflected beam (which is related to the 

measured irradiance or intensity) allows the determination of the interface (surface) properties.  

The ellipsometer measures the amplitude ratios of the complex reflection coefficients as well as 

the phase difference. In reflection mode, the ratio of reflection components of p- and s-

polarizations, 𝜌, can be written as:  

𝜌 =
௥೛

௥ೞ
 = tan(𝜓)e୧୼                                             (4) 

Here: rp and rs are the complex p- and s-polarizations of the measured reflected wave component 

respectively. The ellipsometric ratio  𝜌, relates the amplitude and phase of the reflected light wave:  

                   tan 𝜓 = ቚ
௥೛

௥ೞ
ቚ                                                            (5) 

 
          Δ = 𝛿௣ − 𝛿௦                          (6) 

 

 
Figure 12: Basic setup for a simple ellipsometer. 
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The quantities ψ and ∆ account for the changes in the amplitude and phase of the electric field 

vector of the wave component parallel and perpendicular to the plane of incidence.  

The measurable quantities, however, Rp and Rs, the intensities of the reflected wave components 

are used to explain the ellipsometric ratio as a fractional entity.  

Brewsters angle or polarizing angle, φb is indicative of the angle at which the Rp component reaches 

zero, after which it monotonically increases.  

It is defined as: 

                                                                     tan 𝜙௕ =  
௡మ

௡భ
                      (7) 

 The principal angle, φp is the angle of incidence at which Δ indicates a phase shift between the 

two components to be 
గ

ଶ
. In cases of dielectrics, difference between φb and φp tend to be negligible, 

as the extinction coefficient κ is zero.   

The equations described above operate under the assumption that the film-substrate system is 

homogeneous and optically isotropic. In our case, the surface is isotropic, but the features are 

densely-packed and the asperities present themselves as inhomogeneity on the surface.   

During measurements, the polarization of the probing beam is specified as p, s, or unpolarized. In 

this case, tan ψ (ratio of p to s amplitudes) is used for the measurements shown below.  RPE or 

RAE is one of the common early SE configurations, which can typically identify the handedness 

of ∆ from 0o up to 180o. While the newer configurations such as the RCE (Rotating Compensator 

ellipsometer), allow accurate ∆ measurements from 0o - 360o, hence, a complete depolarization 

matrix may be computed using the data.  

 

The VASE ellipsometer has RAE (Rotating Analyzer ellipsometer) configuration.  The source is a 

halogen lamp, with spectral bandwidth ranging 200nm to 2000nm and two detectors (Si and GaAs, 



35 
 

based on wavelength range) are part of the setup. A Monochromator is used to separate or isolate 

a single wavelength of light. Grating spectrometer is used to provide spatial resolution of 1nm. 

The goniometer provides angular resolution of 0.01 degrees. Polarization State generator (PSG) 

and Polarization State Detector (PSD) enable a complete measurement procedure.  

 

Samples shown in Figure 13 are single-side polished fused silica surface (SSP), double-side 

polished fused silica substrate (DSP), minimally processed/etched on single-side fused silica 

surface (A0) and a single-side antireflective structured surface modified by RIE (W1). As 

anticipated, the tan ψ response for SSP and DSP are similar for the probing light beam. Fresnel 

coefficients predict the Brewster’s angle for fused silica to be close to 56o for 550 nm. Shift in the 

Brewster’s angle for A0 and W1, confirms the presence of surface modifications. The variation of 

tan ψ across the spectrum, presents a challenge associated with the use of this technique for high-

efficiency antireflective surfaces, or surfaces with low reflectivity in general. At larger 

wavelengths, for instance at 1000 nm, surfaces of SSP and DSP appear uniform to the probing 

wavelength, explaining the difference in intensity of four orders of magnitude compared to 400 

nm.   However, this effect is notably worse in A0 and W1, especially W1. 
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 The examples in the above picture were selected because of their clear contrast; yet, the other 

structured samples in this research exhibit comparable behavior. The Brewster's angle shift or 

difference may have been used as a measure to characterize the samples; however, the 

measurement intensity for sample W1 presents a constant signal across all measured angles and 

wavelengths. The patterned surfaces have a low specular reflectance, which results in a relatively 

poor signal-to-noise ratio (SNR). 

 

 
 

Figure 13: Logarithmic plots of tan ψ, highlighting their behaviors at Brewster's angle.  

Single-side polished fused silica and double-side polished fused silica measurements 

presented as a comparison with representative random structured surfaces, highlight 

the measurement challenges for antireflective samples. 
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 Figure 14 present the ψ and ∆ measurements, highlights the intensity differences of roughly three 

orders of magnitude detected for the polished compared to rARSS samples, especially near the 

400 nm wavelength. Similar trend is observed in the larger wavelengths, implying higher 

antireflectivity performance for a sample (transparency), impacts the SNR. This observation 

prompts careful determination of conditions for characterizing optical properties of the rARSS 

samples using ellipsometry.  Furthermore, cos ∆ indicates the phase shift in p and s polarization 

and indicates an optical phase transition from ~56o to ~55o at Brewster’s angle. This optical phase-

transition shown in Figure 14 for SSP and DSP is as expected, with discontinuous derivative at 

 
Figure 14: Reflection Ellipsometry measurements: AOI ellipsometric measurements of 

tan ψ and cos ∆ at 400 nm and 800 nm for single-side polished, double-side polished 

compared with representative samples A0 and W1. 
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Brewster’s angle. Surface A0 appears to be trending similarly, unlike the unprocessed samples, it 

has a softer transition, making it difficult to determine Brewster’s angle. The behavior of the W1 

at 800 nm indicates as though, light is unaffected by the material.  

Similar to the ψ data, ∆ data also fails to capture the optical response of the surfaces, with 

considerably low SNR.  

Due to the signal strength challenges in reflection ellipsometry, the surfaces were measured in 

transmission mode73. The equations are applicable for transmission, instead of the reflection 

 

 

Figure 15: Transmission Ellipsometry measurements: AOI ellipsometric measurements of 

tan ψ and cos ∆ at (a) 400 nm and (b) 1000 nm for all the random structured surface samples 

in this study 
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components, transmission field components are used. Brewsters’ angle is not identified by neither 

ψ nor ∆ data, like in the case of reflection mode.  

 

 

Measurements of the ellipsometric quantities ψ and ∆ are shown in Figure 15. In transmission 

mode, tan ψ is the ratio of amplitudes of transmitted p and s components of incident light. Figure 

15a demonstrates the following trends of the samples at 400 nm. WP has the highest tan ψ value, 

followed by A0. The rest of the samples from A1 to W5 are located below A0, but in no particular 

order. Similarly, for cos ∆, WP is the lowest, followed by A0, and the rest of the samples are 

situated above. Figure 15b presents the ellipsometric measurements at 1000 nm, indicating a 

qualitative grouping in the measured data as categories of A0-A1, W1- W3 and W4-W5. Similar 

to their categorical segregation in transmission spectrum data, category division in groups is 

observed in the measured transmission ellipsometric data. 

The measured data has a substantially low signal-to-noise ratio (SNR), which makes it impossible 

to extract any meaningful information, even if it is interesting to find a pattern that would allow us 

to construct a causal explanation for the optical response acquired from these structured surfaces. 

One should consider that the spot size of the ellipsometry probing beam is large, which limits the 

spatial resolution (making it challenging to measure thin films which are <10 nm since the 

distinction between substrate and superstrate is difficult). Surface roughness of any form, may 

result in light depolarization.  

Accuracy and sensitivity of the ellipsometric data is dependent on the surface homogeneity, and 

strongly influences the optical constants determined from this process.  
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 Efforts to identify correlation is shown in Figure 16.  

 

 In Figure 16, measured tan ψ values are calculated as a difference from the polished fused silica 

substrate, to further highlight the influence of structured surface optically. Similarly, the measured 

optical phase values are presented as a difference from polished the fused silica substrate value. 

Figure 16(a) depicts the two different planes in which the samples accurately occupy based on 

their transmission characteristics. Samples A (axial scatterers) and samples W (wide-angle 

scatterers) show distinct grouping, however, difference in signal magnitude is low enough to 

exercise caution to infer any causal reasoning. Although the samples W are grouped together, lack 

of a ranking is clearly evident at no particular wavelength. Figure 16(b) shows negligible phase 

difference perceived amongst the different samples. The inset shows magnified portion of the data 

with segregation similar to that of intensity. The difference in amplitudes is close and lack of strong 

 
Figure 16: Data processing on measured ellipsometric results (a) tangent of intensity as a 

difference from the polished blank fused silica substrate (b) cosine of the phase presented 

as a difference from the polished fused silica substrate.  
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signal hinders us from considering ellipsometry as a characterization tool for such structured 

surfaces.  

 

2.3.2. Modeling challenges with ellipsometry for the random structured surfaces.  

 

Ellipsometric analysis comes in two parts: measurement of the physical parameters and simulation 

of the optical surface to obtain the optical parameters via regression analysis.  

 The surface conditions are defined for this physical model, specified by the layer conditions: 

nominal thickness, nominal refractive index, which closely emulate the surface. A nominal model 

design is the oscillator model, which can have some material properties specified as a starting 

point. For instance, the Cauchy and Sellmeier dispersion models are commonly selected for most 

dielectric systems with low extinction coefficients. These nanostructured surfaces could be 

modelled two ways by the software. First, using a “rough” surface model, which is basically a 

Bruggeman EMA model. The roughness is characterized by the fill factor (f) defined for the 

heterogenous layer. This fill factor suggests the ratio of air-silica present in the layer. Varying 

optical behavior is driven by the underlying surface roughness. The choice of fill factor determines 

the accuracy with which these surfaces may be characterized using ellipsometry. The other 

numerical analysis approach that was used, is gradient-index modeling. Here different surface 

profiles (e.g. S curves/J curves, quintic profiles) are defined.  Using the Levenberg-Marquardt 

algorithm (maximum likelihood approach), the chosen parameters for the model are made to fit to 

an acceptable range.  Modeling is greatly dependent on the measured ellipsometric values and 

prior estimations for surface layers (such as thickness or roughness). Other non-destructive 

metrological procedures have limitations which does not allow to accurately estimate the 
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“perceived” thickness of each of these structured surfaces. Inability to determine the nominal 

thickness of these surfaces, added with the absence of the strong signals from measured 

ellipsometric data is a major roadblock to using ellipsometry for characterizing optical 

performance of the random antireflective structured surfaces.  
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CHAPTER 3: TOPOGRAPHICAL SURFACE CHARACTERIZATION 

 

3.1.  Introduction 

Statistical height information and height-based surface metrology parameters have not been 

successful in determining clear correlations with spectral transmission measurements for the AR-

structured surfaces. Additionally, no causal relationship could be obtained from the measured 

information between the conventional surface roughness quantifiers and the sample spectral 

transmission enhancement response. Surfaces with height statistics similar to the random 

antireflective structured surfaces, should not enhance optical transmission, instead they should just 

redistribute the angular distribution of transmitted and reflected radiance. The first-order and 

higher-order statistical quantifiers from surface height measurements fail to explain the optical 

response of these surfaces over the complete spectral regime, especially the transition between 

enhanced bidirectional scatter and enhanced axial transmission regions. Height statistics explain 

scattering aspects of the surface for shorter wavelengths; however, resolution limitations presented 

by the instrument prompts us to investigate the underlying morphological surface information. 

 

3.2.  Morphological surface characterization in the transverse plane. 

Top-down morphological information for these surfaces was obtained using a scanning electron 

microscope (SEM). A Raith150 SEM was used to image selected areas from all samples in this 

study. SEM is typically used to measure feature sizes from 50-100 nanometers to a few micrometer 

dimensions for various applications. Unlike optical microscopes, the electron beam acts as an 

illuminating source and measures the secondary scatter of electrons from the surface, resulting in 

a higher-resolution. From the de Broglie equation, 𝜆 =
௛ 

௠௩
 , where h is Planck’s constant, m is the 



44 
 

particle’s mass and v is the velocity of the particle, from which the operating wavelength is 

determined. If the momentum of photons and electrons are compared, the smaller mass of electrons 

improves the diffraction limit of the microscopy system. The electron beam is focused using a 

condenser lens followed by the objective lens. The stream of electrons then interacts with the 

material either inelastically (secondary electrons) or elastically (backscattered electrons) 

depending on the depth of the material it interacts with. Secondary electrons reveal the 

topographical information of the surface74. These surfaces were measured using magnification of 

30,000x resulting in a lateral resolution of about 3.7 nm for the acquired FOV.  The working 

distance (WD) was also varied in order to focus on the surface features and improve image 

contrast. Since the substrate material, and thus the optical surface, is non-conductive, charging was 

encountered during the acquisition of these surfaces.  

 

Charging is a consequence of the accumulation of localized electrons on non-conductive/insulating 

surfaces, and manifests itself as beam drift, bright stripes or spots, uneven brightness and 

sometimes as image distortion. Issues such as charging can be mitigated in several ways like low 

vacuum imaging, sputter coating with conductive material (such as gold, platinum, carbon, 

palladium), or low voltage imaging (lowering the accelerating voltage)75.  

One-inch by one-inch rARSS on fused silica optically flat substrates were first cleaned in the 

cleanroom. The samples were cleaned with acetone, followed by methanol, ethanol and isopropyl 

alcohol (IPA). In case of gold (Au)-precoated samples, Au was etched off using potassium Iodide 

(KI). If the samples have any adhesive residues from tapes used in previous trials of the SEM, 

NMP solvent was used. Using adhesive copper tapes, samples were carefully taped on sample 

holder, ensuring proper conductive pathways for effective imaging. To improve conductivity and 
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enhance contrast for imaging, the samples were coated with gold using a sputtering tool for 90 s, 

resulting in an approximately 3 nm thick porous film (determined from the deposition rate of 

sputtering tool). The tool’s aperture was brought into-focus and astigmatism was corrected for at 

a lower magnification, such as 5,000 or 10,000. To overcome any surface charging residual 

challenges, holes were drilled on the copper tape using a 2 mm drill bit. This tape was then placed 

either at the corners or center of the sample. This provided a conductive “pool” or region of interest 

(ROI), which assisted in the reduction of charging “noise” to image through the center of the drilled 

hole. This technique allowed considerable improvement in image acquisition.  

 

 

Figure 12 presents the top-down SEM image of rARSS sample A0. According to the fabrication 

process, sample A0 was fabricated with the same masking process as the rest of the samples, except 

that the process was interrupted very early in the etching cycle. The reactive-ion plasma was 

powered and the process was stopped within a few seconds from plasma stabilization. The goal 

 
 

Figure 17: (a) Top-down SEM micrograph of sample A0 (b) side-view of a random 

antireflective structured surface, indicating the dense-compact packing of the random structures 
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was to provide a slightly perturbed polished fused silica surface, for the investigation of the etching 

process impulse. The SEM generated image of A0 has small geometric features (holes in the 

surface) of various shapes and sizes.  SEM images do not represent height information in the same 

manner as an optical profilometer, however, qualitatively the contrast shown in the grayscale 

images indicate gradients in the height distributions. If the 8-bit grayscale map image is composed 

of intensity levels from 0-255, then the lowest value attributes to black and the highest value to 

white, with all other gray levels in between. The features composed of dark pixels are recessed and 

will be addressed as “voids”, and brighter features are elevated and will be called “islands”. The 

formation of islands and voids are a direct consequence of the surface plasma-mediated reactive-

ion etching fabrication process. Reactive ion etching (RIE) uses sulfur hexafluoride (SF6) to 

disassociate (etch) silicon atoms (Si+4) from the fused silica surface (SiO2) by reaction with 

fluorine ions (F-), and bond the oxygen (O) with sulfur (S), creating volatile compounds that are 

evacuated. The result is localized etching in areas that are not masked by an inert metal (Au), and 

thus the creation of pits. The observed pattern for A0 is verifying the early-stage void creation on 

the sample surface. The process conditions (discussed in the introduction) determine the 

texturing/patterning on the surface, in terms of the island and void feature distributions. Given the 

processing conditions for A0 the islands occupy the majority of the surface area with few small 

voids present, a direct result of the interruption in etching conditions.  
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Shown in the Figure 18 are SEM images for all fused silica rARSS samples investigated in this 

study. The RIE processing parameters are reported in Table 1. The side-view of the SEM images 

 
 

 

Figure 18:  Top-down SEM micrographs, analyzed at 30,000x, indicating the qualitative 

variations in morphological characteristics for each of the rARSS samples examined in this 

study. 
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demonstrates a columnar structure of these structured surfaces as shown on Figure 17b. These 

structures appear as dense, randomly truncated cones, with variable heights (depths) ranging from 

a few nanometers to the order of a micrometer. The distribution and dimensions of these geometric 

structures are not deterministic, meaning that the heights and widths of individual features and 

their mutual proximity are not isotropically controlled by the uniform etching reactive plasma, 

mainly due to the presence of the porous metal mask on the surface. The spatial arrangement of 

the features appears to be “randomized”.  

However, for a given set of masking and etching conditions, the process results in a repeatable 

spectral response. Even though individual surface features (islands and voids) and their 

distributions are randomized by the fabrication process, the surface ensemble gives highly 

repeatable and deterministic spectral response to an incident wavefront, leading to reliable recipe 

creation methodologies.   

The top-down SEM micrographs unequivocally demonstrate distinctive visual characteristics. 

Overall, the surface features are the physical consequence of the etching process. The surface is 

composed of fused silica islands, which are the residual material after the masked etching process, 

and voids which are areas where material was etched away. Variation in the observed porosity 

across the samples is a consequence of the different processing conditions with which these 

samples were masked. Qualitatively, the transverse features exhibit uniqueness not only in their 

distributions, dimensions (geometric lengths or sizes, aspect ratios), but also in the overall density 

of islands or voids and their spatial configuration. Evidently, the surface lacks periodicity (e.g., lay 

as in mechanical surfaces) over which the surface patterns repeat. In cases of organized/periodic 

optical surfaces such as gratings, information regarding the surface period is extracted using tools 

like Fourier transforms or PSD. From PSD data, information including principal periodic 
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frequency and their subsequent harmonics may be extracted. Unlike homogenous surfaces (e.g., 

polished silica substrate), the presence of these structured surfaces introduces heterogeneity to the 

optical interface, which influences the interaction with the incident electromagnetic radiation. 

Conventional scale “rough” surfaces introduce perturbations in the wavefront that are due to 

islands and voids larger than the incident wavelength, and often result in diffuse reflective or 

transmissive scatter.  

 The sub-wavelength scale roughness interaction with the incident light field and how it affects the 

spatial, temporal or polarization properties of the transmitted light wave is not clearly understood. 

To characterize the structured surface, the lateral features will be classified as islands or voids and 

categorized by their size using granulometry. Disordered media or complex organization media is 

studied extensively in applications such as turbulent atmospheric conditions, to comprehend the 

effects of disorder on the wave propagation76,77. The difference is that the changes imparted by 

turbulence are not static and have scales larger than the light wavelength. Anderson localization 

on the other hand may be used to explain the control of diffusive propagation of a wave in the 

transverse direction, however, this theory explains the localization or trapping of a wave in a 

disordered media, not efficient transmission through the media. In the Anderson localization case, 

although the theory may partly explain propagation which leads up to enhancement, it does not 

explain the reason for Fresnel-type reflection suppression nor enhanced axial propagation. 

Specifically, understanding the influence of the morphological organizational disorder on the 

modulation of the interacting wavefront at the interface is necessary.  
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3.3. Autocorrelation of transverse morphological micrographs   

As an initial step, the rARSS transverse autocorrelation is computed using the SEM micrographs, 

to identify possible unique spatial frequencies. Generally, for discretely sampled surfaces the 

autocorrelation is calculated from aerial SEM images, defining an image spatial spectrum as I(x,y). 

I(x,y) is a two-dimensional matrix of image-pixelated data, which contains intensity values for 

each pixel, and x and y indicate the transverse plane spatial coordinates.  

 

                                                 ACF(τ) =  
ଵ

ே
∑ 𝑥(τ). 𝑥(𝑛 + τ) ேିଵ

௡ୀ଴                                                               (1) 

 

 This mathematical operation is effective in identifying a unique surface “signature” or spatial 

periodicity, and especially local self-similarities in length scales78,79. In the context of surface 

analysis, the tool aids in classifying surfaces as isotropic or anisotropic, rating a surface on a 

normalized scale, depending on surface organization characteristics. The strongest autocorrelation 

signal value is always at the surface data-matrix center, and presence of any peak elsewhere is an 

indication of a self-similar structure. In cases of scale-isotropic surfaces, such as these 

antireflective surfaces, the self-similarity is not so evident. In cases of periodic structured surfaces, 

autocorrelation can successfully identify the period or the repeating frequency, as series of equally 

spaced values in the autocorrelation spectrum. In cases of fractal surfaces, self-similarity 

correlation length denotes long-range dependence (LRD) or surface memory.   

Spatial systems, S(x,y), are transverse maps of objects or events, with their positions identified by 

the transverse coordinates. They represent topological maps of spatial patterns, whose analysis is 

helpful in understanding the functionality of their organization. Statistical measures are defined 

for such spatial maps, but sometimes are insufficient to demonstrate the functionality of an 
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interaction of the map with an external impulse. Autocorrelation is calculated by multiplying each 

pixel of the original image with the pixel at the corresponding shifted position and summing up all 

products across the entire image. This process involves systematically shifting the image and 

performing pixel-wise multiplications, accumulating the results to construct the autocorrelation 

function. Repeating this procedure for various shifts provides a comprehensive understanding of 

how the image's content correlates with itself at different spatial displacements. The interpretation 

of the autocorrelation function involves analyzing the resulting matrix of values. Higher values in 

the autocorrelation matrix indicate areas of the image that exhibit strong similarity or repetitive 

patterns. This is particularly useful in image processing applications were identifying periodic 

structures or recognizing specific features with known spatial arrangements is crucial. While 

conceptually straightforward, this method can be computationally tedious and resource 

consuming, especially for large images. To address this, more efficient algorithms and techniques, 

such as the fast Fourier transform (FFT), are often employed. The FFT-based methods exploit the 

mathematical properties of the Fourier transform to significantly reduce the computational 

complexity, making autocorrelation calculations faster and more practical, particularly for large 

datasets.  

 

Figure 19 shows SEM image of rARSS sample W2, and the corresponding autocorrelation result. 

For periodic structures, such as a rectangular grid, the expected autocorrelation spectra would have 

triangular artefacts. In the case shown in Figure 19, the isotropic surface which is devoid of a 

repetitive spatial pattern, results in an autocorrelation without peaks, other than at the center due 

to the overlap of the entire pattern exactly with itself. 



52 
 

This is marked by the peaked center (the DC component), followed by a region of noticeable 

matches, and regions where surface feature matching slowly decreases. One of the quantifiers of 

this self-similarity analysis is the autocorrelation length. Autocorrelation length is defined in 

several ways (according to the literature), depending on the application. The length at which the 

signal drops to the 1/e value of the central peak, or the length over which the first minimum occurs 

after the central peak. For the following analysis the later approach was chosen. The length from 

the central peak to the first minimum is defined as the autocorrelation length.  

 

 

 
Figure 19: Example of autocorrelation computed on sample W2: result of normalized 

autocorrelation is shown in 3D plot, and the corresponding transverse cross-section is 

shown. Autocorrelation length is computed for sample W2 is 10 nm.   
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A trace across the x-direction of the autocorrelation function for all the rARSS samples are shown 

in Figure 20. Sample surface A0 has minimal features as seen from the SEM image (Figure 17), 

which is clearly indicated with its autocorrelation function (blue curve in Figure 20), indicating a 

nearly smooth surface. The 1D autocorrelation scalar lengths are reported in Table 3.  

 

 

 

Table 3: Autocorrelation lengths from transverse cross-section across the SEM images  

Sample A0 A1 W1 W2 W3 W4 W5 

AC lengths (nm) 30  44 48 56 63 78 78 

  

 
 

Figure 20: Autocorrelation lengths obtained from normalized autocorrelation results 

(dimensions: 1200 pixel x 2048 pixel) across transverse axes of the SEM image data for all 
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3.4.  Granulometric image analysis  

To quantify the island and void populations, a granulometry technique is used, which will be 

outlined in this section80.  

In imaging, mathematical morphology is a branch of analysis used to study geometric structures 

in an image. G. Matheron and J. Serra, proposed this nonlinear image processing analysis to 

categorize soil particle sizes in the geophysics field. It can be applied as an image processing tool 

for various applications, ranging from pattern inspection to pattern recognition. The foundation of 

this morphological processing method is based on set theory. Structuring elements (SE) are defined 

as a first step. SE are used as probing elements to identify whether or not a specific geometrical 

shape fits in image locations. The choice of SE depends on the application it is aimed to be used 

for. For this work, the SE are defined to be octagons of increasing diameters, since they are a close 

approximation to circular area features.  

Figure 21 illustrates various diameter sizes of SE. The choice of size depends on the dimensions 

of the image to be tested. Typically, the first SE is a single pixel, and the consequent SE are 

symmetrically built around the center pixel resulting in a diameter size of odd pixel number only.  
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The fundamental operation of element erosion marks the locations or translations of a structuring 

element, where it fits in an image. Simply, it identifies the regions in an image, which are of the 

dimensions of the SE. When B is translated by x, Bx is defined as 𝐵௫ = { 𝑏 + 𝑥 ∶ 𝑏 ∈ 𝐵}.  

 

If set A is defined as the binary image of a two-dimensional area, and set B is the SE, then erosion 

of set A by set B is operationally symbolized as:   𝐴 ⊖ 𝐵 = {𝑥 ∶ 𝐵௫ ⊂ 𝐴}, where Bx is a subset of 

A, indicating the ensemble of the specific SE occurrence in the image.  

 

Erosion consists of the loci of all the points that fit in the image. Apart from fitting, erosion can 

also be represented as intersection of translated images.  

 

 
Figure 21: Structuring elements used in this study. Octagons of increasing diameters ranging 

from 1 pixel to 43 pixels, used to probe an aerial image. 
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Erosion is demonstrated using a hex-packed circle array (test image) using octagonal SE. Outcome 

of the erosion process is dependent on the size of the SE, which leads to size segregated 

distribution.  

The inverse operation is called dilation, and is defined as the set complement of erosion.  

 
Figure 22: Example of erosion on a test image 
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This is equivalent to stamping the structuring element on each pixel of the image, unlike erosion 

where it is filtered out. An example of dilation is illustrated in Figure 23.  

 

Opening is another morphological operation, which is erosion followed by dilation, while closing 

is opening operation in reverse. Opening and closing operations can be used as filters to denoise 

images and to extract information from the surface topography. Hit-or-miss transform is a 

commonly used algorithm for object detection, but in this case opening operation is used to extract 

the objects.  

Apart from the morphological operations, certain classical image processing techniques such as 

connected-components approach for identifying clusters of pixels. These clusters of pixels are the 

different objects (collection of adjacent pixels of value 1) that are separated by a neighborhood 

relation and boundary relations. The (x, y) locations of these different clusters are marked. Based 

on pixel topology, two pixels are said to have 4-neighbors if the adjacent pixels are in their 

 
Figure 23: Example of dilation on a test image 
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horizontal and vertical axes. Additionally, they can be 8-neighbors if there are pixels in their 

diagonal nearest neighbor locations. This neighborhood defines their connectedness.  

 

The SEM acquired images of the rARSS are grayscale tone, which means the pixels represent 

topographical information using 255 relative intensity levels, with the zeroth (0) as the lowest level 

represented by black and white as gray level 255. While this grayscale rendering of the SEM image 

corresponds to relative brightness and is useful in quantifying the asperities, in order to quantify 

the identifiable island and void populations the image has to be converted to binary level. A 

threshold intensity is identified from the cross-section of a grayscale SEM image. At a particular 

intensity level, the total normalized areal occupation of islands and voids must result in value close 

to 1. This reasoning allows identification of a threshold level, at which a binary image is obtained. 

A binary image is composed of two elements: foreground represented by the value 1, and 

background represented by the value 0. This discrete information is represented as a matrix of 600 

x 1024-pixel dimensions, which is the size of SEM image.  

 

Figure 24 shows the intensity levels present in the grayscale SEM images, in a color image using 

MATLAB. Island and void populations are characterized one step at a time. Shown in panel (a) is 

the grayscale island image. On the right is the image obtained at a threshold intensity level. 

Determining the right threshold or slice is a crucial step before obtaining the binary images of the 

samples. When dealing with voids, the image is tone-reversed, meaning that the highs are treated 

as lows and vice-versa. Similar process of sliced image is obtained for processing void maps. 

 Binary images are then used for classification of the various granule feature dimensions.  
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Traditionally, the granulometric process results in topological distributions of size-scaled granules 

present in an image as a function of their areal occupancy.  

Enlisted are the steps taken for determination of area covered by each granule size on the image:  

Starting from the lowest sized SE (1 pixel) the image is probed and evaluated for all locations at 

which SE (1 pixel) fits by erosion. Next larger size, SE (2 pixels) is used to obtain the areal 

occupancy of that granule present in the image. The difference of areal occupation between SE (2 

pixels) and SE (1 pixels) is marked as the φislands (granule size = 2 pixels)  

 

 
Figure 24: SEM image processed in MATLAB resulting in island and void segregated images 

of W3 along with their corresponding images at threshold intensity levels. (a) Island 

segregated map at threshold level. (b) Void segregated map at threshold intensity level 
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Using SE of all sizes, the above procedures are repeated until the biggest granule size is counted. 

The distributions of the items are assessed in terms of their areal occupancy once they have been 

recognized at each granule level, and this evaluation is then further normalized to the total image 

area.   

 

The histograms of representative samples are shown in Figure 25 demonstrating unique granule 

populations normalized to the area of the image.  

The figure shows the distributions of the various sized granules present on the image:  

𝜙௧௢௧௔௟ =  𝜙௜௦௟௔௡ௗ௦ +  𝜙௩௢௜ௗ௦ ≈ 1  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 25: Distributed histograms obtained from granulometry. Demonstrates the granule 

populations of islands and voids based on their sizes. This reports the normalized areal 

occupancy of the granules in the surface. 
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AR structured surface A0 contains few perforations (or voids) according to the SEM images in 

Figure 17. The corresponding A0 distributed histogram in Figure 25 appropriately represents a 

physical surface with few voids in between many large islands filling most of the surface. The 

island granules are distributed according to a Gaussian-like profile across their sizes, with the most 

frequently occurring granule size shown as a peak at 89 nm, representing 12% of the surface 

coverage. Similarly, for ARSS sample A1island and void populations peak at granule sizes of 44 

nm and 30 nm respectively and are densely packed with a 15% surface area coverage for each. 

The quantitative characterization validates the visual observation of the surface, which to the eye 

appears to be composed equally of voids and islands. The A1 histogram distribution is generally 

skewed, with a Gaussian profile that shows predominant granules smaller than the peak size. There 

are many different island populations in Sample W1, extending up to 185 nm. Islands and voids 

are distributed similarly in Samples W2 and W3. Sample W4 displays a distinct reversal of the 

dominant population, with bigger void granule sizes and a peak void granule size of 68 nm. Sample 

W5 has the largest peak feature granules compared to all samples, measuring 74 nm for the peak 

island granule, and 60 nm for the peak void. The transmission spectra of samples W4 and W5 

shown in Figure 2 exhibit a high scattering bandwidth, which might be attributed to their bigger 

island size and voids. However, morphological distributions on sample A0, prompts us to further 

examine the density of islands and voids.  
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The cumulative histograms in Figure 26 display the cumulative distribution of granule sizes on 

sample surfaces. The population density of granules increases until it reaches its maximum value, 

that represents the total area occupied by the species (island or void). The rate of granule population 

growth is indicated by the slopes of the rising curves. A steeper increase suggests a larger density 

of granules within that specific size range. It is crucial to observe the variation in population 

density within the sample dataset. Sample A0 exhibits an 85:15 ratio of island and void coverage 

density, whereas samples A1, W1, and W3 have a 60:40 ratio of island and void density. Sample 

W4 exhibits a clear 40:60 ratio. This measure could help elucidate transmission enhancement-

related phenomena observed from these surfaces. Density can be treated as the fill-factor parameter 

in the EMA model, which indicates the proportion of space occupied by constituent elements in 

Figure 26: Cumulative population histograms demonstrating densities of islands and voids on 

the ARSS samples. 
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composite materials, and thus determines the effective index of the surface structured layer. The 

density ratios don’t correspond with the observed transmission enhancement trend shown in Figure 

2.  

 

Scattering from these ARS-surfaces is influenced by the heights of the structures and their size 

distributions. While granule distributions and densities provide valuable insights into the surface 

morphologies, information about the organization of the granules on the sample surface is a crucial 

aspect overlooked in the analysis so far. Comprehensive morphological characterization requires 

an understanding of not only the size and distribution of granules but also their organization and 

spatial arrangement. The organization of granules influences how incident light interacts with the 

surface and is redirected or scattered, as described by diffractive principles. 

 

  3.5. Modified granulometry algorithm for random surface granule segregation  

Modifications to the general granulometry counting process were implemented to efficiently 

segregate the multi-scale SEM image of transverse surface features, into separate images with each 

image containing granules of a specifically selected size. This adjustment was necessary to 

facilitate a thorough investigation of the organization of granules as a function of their sizes and 

presence on the surface. The modified granulometry surface processing flowchart is shown in 

Figure 27. 
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The SEM images shown in Figure 18 have gray-level ranges between 0 and 255 (8-level bitmaps), 

representing the secondary electron scatter intensity. A binary tone image is obtained by 

thresholding at a desired gray-scale intensity level of the SEM micrograph. Thresholding results 

in a two-dimensional map with two granule families: islands and voids of all sizes present. The 

algorithm flowchart shown in Figure 27 is followed for both granule species, to ensure complete 

surface characterization. The largest granule in the sample image (Iisland or Ivoid) is identified and 

subsequently extracted from the binarized image, using the morphological operator known as 

opening (ref to Figure 22 and Figure 23). After identifying and isolating the region-of-interest 

(ROI) in a systematic extraction procedure, a unique image (Iisland-gmax or Ivoid-gmax) is generated, 

indicating the spatial coordinates (x, y) of the identified granule centers. The test image is now 

calculated as the difference of extracted image and the original image (Iisland - Iisland-gmax). This 

 
Figure 27: Modified granulometry algorithm to characterize ARSS samples. 
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approach enhances accuracy in the counting process by minimizing the likelihood of overcounting 

granules. 

Illustration of the extraction stepping process is shown with an example in Figure 28.  

 

Images categorized by size are shown after operation 1 (marked by arrow 1). A master matrix 

registers the number of granules and their spatial coordinates on each granule map. Extraction 

 
Figure 28: SEM micrograph of A1 (top left) is binarized at a threshold intensity value 

(operation I). Sequential image processes are shown as numbered arrows. Operation 1 marks 

the extraction of granules in order of decreasing diameters, and Operation 2 marks the 

subtraction from the processed image from the original. 
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procedure results in noisy images when the smallest granule diameter sizes of 3 pixels and 2 pixels 

are reached. Denoising is carried out at a granule diameter size of 5 by eroding groupings that are 

smaller than 3 pixels, which are the result of granule edges that are subtraction residuals. Figure 

29 highlights residual pixel effects, illustrating the extraction process akin to a cookie-cutter 

approach.  Hence, granules of diameter sizes of less than 2 pixels are not considered in the 

classification process. This allows us to develop a reliable image analysis approach that eliminates 

any ambiguity related to overcounting (common in traditional granulometry) and deals with the 

procedures to reduce noise and artifacts throughout the extraction process.  

 
Figure 29: Extraction artifacts from modified granulometry process. (a) Image obtained after 

extraction from previous granule iteration. (b) Next granule is extracted (here, diameter of 

granule is 9 pixels) (c) prominent "shadow" noise post extraction 
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At the end of the extraction process, size-segregated granule maps are generated, where objects on 

each map correspond to a particular granule diameter only. These maps represent the spatial 

distribution of granules within the image, segmented and categorized based on their respective 

sizes. A distribution of counts based on granule sizes is acquired. The distributions are normalized 

based on the total count of islands and voids present on each specific sample surface. The 

normalized count distributions are scaled by their corresponding granule area to achieve a  

normalized population distribution on the surface. This population distribution agrees with the 

histograms displayed in figure 25. 

 

 
 

Figure 30: Comparison of granule distributions using (a) conventional granulometry (b) 

modified granulometry. Distributions of representative samples A0, A1 and W5 are displayed. 
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A limited sample comparison between conventional granulometry and modified granulometry 

process is shown in Figure 30. Normalized population distributions of all the samples are 

illustrated in Appendix B. ARSS sample A1 has the same normalized areal population in both 

granulometry processes. Similarly, the surface area distributions of the other samples in the study, 

were accurately classified by both techniques, showing either identical or comparable results. Peak 

island and void granules occur at the same granule size scale for sample A1 along with identical 

total areal occupation indicated by the densities shown in Figure 31. As the control sample in this 

experiment, sample A0 was made using a processing procedure that only briefly exposed the 

surface to the etching plasma, causing voids to start forming and ridge lines to appear on the surface 

that eventually led to islands of varying sizes. The variation in the ridge-lines is crucial in defining 

A0, prompting us to approach the study with more flexibility than the other samples. The granules 

distribution across the surface from both the analysis methods don’t result in identical distribution, 

yet the total area covered by both islands and voids results in the same density values, as depicted 

in the density graphs below.  

 

Figure 31 examines the density distribution of islands and voids. Except for sample W5, the density 

ratios were the same between the two analysis methods. Visual examination verifies that islands 

cover a larger proportion of the surface compared to the percentage determined by the initial 

granulometry method. By segregating the transverse granule morphology, lateral granule 

distributions and material-void presence density were identified, allowing for a quantitative 

classification of these surfaces. The statistical descriptors of the island-void granule distributions 

and densities were analyzed, but no direct association was observed between granule distributions 
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(e.g. peak granule) or density ratios and optical response (such as cut-off wavelength or 

transmission enhancement bandwidth).  

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Comparison of island-void density using (a) conventional granulometry (b) 

modified granulometry. Distributions of representative samples A0, A1 and W5 are displayed.   
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CHAPTER 4: SURFACE FEATURE ORGANIZATION CHARACTERIZATION 

METHODOLOGY 

 

4.1.  Introduction 

In Chapter 2, various surface feature characterization techniques were reviewed, highlighting their 

constraints and consequent uncertainties in measurement. Addressing these limitations is outlined 

in Chapter 3, where the foundations of transverse morphological characterization is introduced. 

Fundamentals of the organizational entropy method are examined and suggested in Chapter 4. 

Alamino's average symmetry inspired the work on using entropy as a complexity measure. 

However, the modifications made to the previous method are expanded in Chapter 4. Complexity 

data can be used as a measure of surface order characteristics, showing a disordered response over 

different spatial scales, akin to Bode plots in control systems or modulation transfer function in 

optical systems. Identifying the disorder contribution from each scale in a multi-scale system, as 

shown in this work, is beneficial for developing a correlative analysis between surface feature 

organization and the resulting optical spectral response.  

 

4.2 Conceptual background on surface statistical complexity  

A random surface can be defined mathematically as a set of points that describe a surface geometry 

without any distinct periodicity or pattern81. If a random surface is created using a stochastic 

process, such as a random walk, the resulting relations between the points are inherently 

unpredictable in terms of length and direction. Recent research in this discipline indicates that the 

convergence of random processes to canonical forms is related. Over time, a random walk 
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converges to Brownian motion. Networks or spatial distributions can be described as short-range-

order (SRO) or long-range order (LRO), based on the length of the repeating patterns within. 

Mandelbrot established the basis of this apparent structure as fractals, complex surfaces having a 

fundamental unit that repeats in a specific manner82–84. Random surfaces may not always be well 

represented by basic statistical measures, like mean or variance of measured data, particularly 

when one seeks a functional relationship between the surface and an effect, i.e. identifiable 

causality85. One method of studying and characterizing these surfaces involves the application of 

basic statistics and event probability theory. Nevertheless, conventional statistical methods may 

not always be effective in establishing a correlation between the functionality and the features and 

attributes of the surface, relating to this study. 

It is generally possible to model and replicate the behavior of deterministic surfaces using 

descriptors or quantitative dimensional measures, allowing for the investigation of related 

interactions. Obtaining analytical solutions for random surfaces can be computationally arduous 

and laborious. The cusp between order and disorder in a complex system plays a crucial role in 

determining many physical qualities associated with a surface or process. This aspect is often 

neglected when attention is solely on either order or disorder measures.  

Engineered surfaces exhibit constructed (deterministic) feature dimensions as a result of the 

fabrication process. The dimensions of features are determined by design conditions and 

fabrication restrictions, considering causality between dimensional scales and desired outcomes of 

interactions. The characteristics of surface features, such as their sizes, numbers, and spatial 

relationships to each-other, influence the interaction with the incident electromagnetic wave. The 

observed result is a direct consequence of that interaction. Micro- and nano-structured surfaces 
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exhibit distinct interactions with electromagnetic waves of specific wavelengths, affecting both 

the qualitative and quantitative observation of outcomes.  

Nanometrology provides statistical numerical methods to analyze the surface properties of 

nanostructured surfaces. Characterizing a surface with uncorrelated features is complicated due to 

difficulties in expressing the surface data with analytical closed-form mathematical expressions. 

Deterministic surfaces can be characterized by certain properties (such as strict periodicity, feature 

aspect ratios and large range feature density) and recreated in subsequent fabrication processes 

based on the available “character” information. Numerous methods have been utilized to 

investigate the optical response of periodically structured surfaces and sub-wavelength structures 

(SWS). Literature reports various types of features including rectangular nanopillars, cones, 

frustums, and cylinders have been investigated86–88. Surface models resulting from an effective 

refractive index of surface features is featureless, as it describes finite thickness surface layers with 

uniform averaged densities in the perpendicular direction to the surface (along the z-axis), not 

structural details in the xy-plane direction. Common z-layer profiles include S-type, U-type, and 

quintic depth dependencies 89. Simulating these profiles fails to elucidate the behavior of structured 

surfaces, especially relating to the angular redistribution of radiation in the forward (transmission) 

and reverse (reflection) directions. Examining the surface stratified effective index profile 

oversimplifies the structure to a degree that extracting further information is not possible. 

Quantifying a degree of randomness on the surface could identify the physical causes of reflective-

suppression properties from nanostructured surfaces. Shannon's entropy is a quantitative method 

used to describe random variables and measure the level of uncertainty (or disorder) in a system.  

Uncertainty is fundamental to Boltzmann and Gibbs statistical physics. System attributes can 

display symmetry and remain unchanged on average under specific modifications, as seen in 
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dynamical systems. Statistical symmetry is the attribute of a system in its entirety, regardless the 

specific localized characteristics of its individual components39. The average symmetry is used to 

assess the complexity of a system, particularly in relation to its deviation from symmetry. The 

system can be represented as a crystal lattice or a sequence of letters, which in this context refers 

to surface nanoscale features.  

Complexity metrics can be categorized into two main groups: R-complexities and S-complexities, 

which include statistical complexity and algorithmic complexity. Items with higher 

unpredictability are determined by R-complexities, while items that fall between order and 

disorder can be described by S-complexities90. There is a basic link to Shannon's entropy for both 

complexity measurements. The interpretation of complexity might vary depending on the context 

between a system and an interaction, and several definitions may be applied to describe the system 

in question. Therefore, establishing a reliable quantitative measure of complexity is not objective. 

Complexity is linked to symmetry due to the level of information needed to duplicate the system 

under study.  

 Complexity in the context of a randomly structured surface, is characterized as the departure from 

symmetry. The Kolmogorov complexity technique helps to identify patterns within a given 

sequence91. It pertains to data compression, specifically to the minimum amount of data required 

to duplicate the original data. Kolmogorov complexity is incomputable due to the absence of a 

function capable of determining the randomness of a sequence. Shannon's entropy is both 

computable and relevant for the present study92.  

Simple surface morphology systems display a higher degree of order and spatial symmetry, while 

a complex system is characterized by heterogeneously dispersed features throughout the surface39. 

The optical surfaces of interest are considered "static," indicating that once they are formed, they 
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will maintain their characteristics indefinitely. Probability of granule occupations for a particular 

scale variable (granule diameter), pg(d) (discussed in Chapter 3) are conditional probabilities, or 

non-separable joint-probability distributions, implying that occupancy of a particular location on 

the surface is dependent on the occupation of the same site by any other granule. Granule 

separations within each granule group could be understood as inter-dependent “microstates”, 

discussed in the sections below. The role of granule separation distribution functions and the 

corresponding occupancy probabilities are investigated and discussed in detail in the following 

sections.  

4.3 Transverse intergranular distance characterization  

The granulometry counting process was modified in order to further investigate the surface 

organization using each granule size-group map. The granule center-to-center unique distance 

separations were identified, and their frequency of occurrence was counted for each granule 

diameter grouping, respectively as: rm(dg) and Fg(rm).   

The first stage in computing the intergranular separation distances is converting the granule spatial 

occupancy maps to point maps. A granule occupancy map consisting of granule groupings with 

diameter dimension dg is represented by a matrix of grouped pixels that form islands or voids with 

diameters of w-pixels, as the one shown in Figure 24. The occupancy map is degraded to a point 

map using an erosive structural element with a diameter of (w-1). Eroding the occupancy map 

reduces the boundaries of the items within the map, isolating the pixels that indicate the granule 

geometric center placements. The result is a delta-map, with the granule positions identified by 

their central pixel (or centroid). This facilitates the calculation of Euclidean distances between the 

randomly placed locations of granules. The objective is to determine all potential distinct m-

separations connecting neighbor granules by evaluating their mutual Euclidean distances. 
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The SEM digital images, shown on Figure 18, have dimensions of 600 x 1024 pixels and are 

interpreted as two-dimensional Cartesian maps. Each point on a reduced Delta-map with a value 

of 1 indicates the presence of a granule center from a particular segregated group of granule 

diameters. To illustrate, we examine two points in the Delta-map, A and B, with respective 

coordinates (x1, y1) and (x2, y2). Connectivity in a digital image refers to the distance between 

pixels.  

Euclidean distance is the predominant distance metric between points in a map, represented by 

equation 1 below:  

                                          𝐷ா௨௖௟௜ௗ = ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ                    (1)  

 

The Euclidean distance is commonly employed because of its simplicity and efficacy in 

representing spatial relationships between points in a two-dimensional Cartesian map. Distinct 

intervals between points are established by ensuring that the distance between two specific points 

is calculated only once. Iterative procedure of calculating distinct distances between all the points 

is implemented using a MATLAB routine.  
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Figure 32 shows a random distribution point pattern composed of 4 points (m = 4). Starting with 

point 1, distances are calculated between point 1 and the other three points in the map (1→2, 1→3, 

1→4), which count to m – 1 in number. For point 2, the unique distances are calculated between 

points 2→3 and 2→4 (m – 2 in number), and for point 3, the unique distance between point 3→4 

is calculated. This process generates (m-1), (m-2), (m-3) unique distances for m-points.  

 

To find the total number of unique Euclidian distances between m-points (𝑆௠), the sum of the 

arithmetic sequence results in equation 2:  

 

                                                    𝑆௠ =
௠ିଵ

ଶ
(𝑚)                             (2)  

 

 
 

Figure 32: Demonstration of unique scalar separations in a 4-point pattern. Shown in red are 

the unique distances from point 1, in yellow are the unique distances from 2, and in orange 

are the unique distances from point 3. The last point (4) has no unique distances to its 

neighbors. 

1

3

2

4
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Here, m is the total number of points in the random distribution point map.  

Alternatively, unique distances can be calculated from the autocorrelation of the delta-maps as 

well. Autocorrelation of the delta-maps highlights granule clustering or spatial separation 

characteristics. The first column of subfigures in Figure 33 illustrates example configurations and 

the subsequent unique distance calculations from autocorrelations of the delta-maps. 

Configurations of organizational order are shown in Figure 33(a) and (b), defined for three-point 

maps. An organizational disordered configuration of five points is shown in Figure 33(c) for 

comparison. Post-erosion delta-maps are shown in the middle column of Figure 33 (points are 

indicated by red arrows) and their corresponding autocorrelation pattern results are shown in the 

third column. The autocorrelation map is further analyzed to extract useful information regarding 

the spatial distribution. The autocorrelation was computed via serial multiplication of the point 

maps as discussed in Chapter 3. The peak value of the autocorrelation calculation gives the total 

number of separations present in the map. Since the image is sheared across itself, it results in an 

autocorrelation size which is two-times the area of the original image.  Consequently, the resulting 

autocorrelation map is symmetric about particular planes-of-symmetry. Unique neighbor-pixel 

distances are computed from the center of the autocorrelation map, where the maximum value of 

the autocorrelation data resides. The total number of distances from the autocorrelation calculation 

includes all the distances from both symmetry planes. This results in an even number of frequency 

counts for each distance. To ensure unique distance counting, half of the count frequency for 

corresponding distance vectors was considered. In Figure 33(a) an ordered arrangement of three 

equally spaced points in one dimension is shown, resulting in three total possible separation 

distances between their centroids. 
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Figure 33: Utility of autocorrelation in object detection and distance estimation (a) ordered 1-D 

three-point map (b) ordered 2D three -point map, (c) ordered 2D four -point map and (c) random 

distribution map of five -points. 
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From this configuration the number of points in the spatial arrangement, and the secondary peaks 

indicate the frequency of are two distances of unit length (i.e. one granule diameter) and one 

distance of twice the unit length (two granules’ diameters). The autocorrelation map peaks confirm 

that there are one-unit length distances which occur twice in the Delta-map and one distance of 

two-unit length which occurs once.  

Figure 33(b) has three equally spaced granules in two-dimensions, resulting in an autocorrelation 

peak of 3. In one-dimensional configurations, the secondary autocorrelation peaks indicate the 

total frequency of distances in the configuration, while in a two-dimensional configuration, the 

secondary peaks in each dimension denote their corresponding frequencies of separations. In this 

case, all the secondary peaks are of value 1, located in their corresponding spatial dimensions. 

Although the distances from each of these secondary peaks to the primary peak result in the same 

distance value as shown in Figure 34.  

An ordered four -point distribution depicted in Figure 33(c), where the occurrence of spatial 

distances along x-axis and y-axis are shown by the secondary peaks whose value is 2 in the x (and 

y) direction. Figure 33(d) shows a disordered distribution configuration of granules and is depicted 

in the corresponding autocorrelation map. Primary peak is of value 5, indicating the presence of 5 

granules and secondary peaks contain the value of the distances. Other than the peak value of each 

autocorrelation map, the subsequent peak values mark the frequency of degenerate separation 

values detected in the dataset. The spatial pixel locations (w, v) of the delta-maps are marked, and 

separations between those spatial locations and that of the main autocorrelation peak are 

calculated. All possible combinations of unique distances for all example configurations of Figure 

33 are displayed in Figure 34.  
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These distances are further grouped as a family of separations for each individual granule-diameter 

grouping and is referred to as a surface structure factor: Fg(rm).  It is qualitatively observed that at 

each individual granule-diameter group different levels of disorder exist, requiring a more concise 

quantification of “randomness”. 

 

 
 

Figure 34: Autocorrelation outcomes for the example configurations shown in Figure 33, 

demonstrating all possible unique separations between granule centroids. 
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Scalar separations (Euclidean distances) calculated between existing granules on each segregated 

granule map of ARSS sample A1 are shown in Figure 35(a). The highest frequency distribution is 

obtained from granule-diameter size of 15 nm. The segregated granule map of size 15 nm was 

composed of the greatest number of granules amongst all A1-granule maps; hence the number of 

 
 

Figure 35: Separation distribution across all existing granule sizes of sample A1 (a) Frequency 

of separations, Fg(rm) across all existing granule diameters (nm dimension denoted legend) (b) 

logarithmic-scale of frequency highlights the decrease in separations for larger sized granules 

(c) three-dimensional separation distribution functions, normalized to the maximum frequency 

at each granule level (d) Overlaid separation distributions from part (c), indicating consistent 

Rayleigh distribution on all granules. 



82 
 

counted existing separations is also greater. The frequency distributions show almost 4 orders-of-

magnitude of decline in amplitudes as the granule size increases, which is further highlighted in 

the semi-log plot in Figure 35(b). This represents the surface physically, since the number of larger 

size granules occupying the surface is fewer in number and so are existing separations between 

them. For ease of visualization, a 3D plot of these statistical distributions of the normalized 

frequency distance-distributions as a function of their granule sizes are shown in Figure 35(c). 

 On each segregated granule map, the frequency distribution is normalized with respect to the 

highest frequency occurring on that size-scale only. This indicates the decline in frequency 

distributions with an increase in granule size. Figure 35(d) shows the overlaid 2D view of Figure 

35(c).  Scalar separation curves of all the other samples in this study are included in Appendix B.  

The binning size of the distance histograms in Figure 35 plays a crucial role in the interpretation 

of the granule distributions and their representation of surface topography.  Size of the bins were 

chosen based on the granule diameter values dg, meaning that if the frequency distributions are 

reported for a particular granule diameter, the smallest possible distance is the diameter of the 

granule that defines the segregated map. For example, if a particular granule diameter value was 

dg = 15 nm, given the unique separation distances are measured center-to-center on the delta-map, 

the smallest possible distance that exists between the granules on the surface is: rm = 15 nm. The 

bin size is then chosen to be 15 nm, this also minimizes artefacts from fine-binning counts. The 

largest distance recorded on any SEM map is the diagonal of the image size, which is close to 4.2 

micrometers in real space.  
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Maximum areal occupancy (or peak) granule dimensions from the transverse feature distributions 

for all the rARSS samples reported in Chapter 3 did not correspond to any ranking with respect to 

the optical response of the surface. The peak-value on each granule-diameter distribution 

histogram (Figure 25) indicates the maximum weighted-area in the SEM image occupied by the 

granule, and it is reasonable to assume that the corresponding segregated granule map plays a 

significant role in the observed optical scattering effects. 

 

Figure 36:  Comparison of frequency distribution of separations for peak granules 

corresponding to all rARSS samples in this study: (a,b) Linear frequency distribution plot of 

islands and voids, (c,d) logarithmic plots of separation-frequency plots 
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Figure 36 illustrates the separation distance frequency histogram Fg(rm) for the peak-value (largest 

present population) island (a) and void (b) granules from the segregated granule SEM images for 

each ARSS sample. The trend observed in this histogram is of particular interest, since the order 

of the distributions in the island data set is in accordance with the ranking of the rARSS samples 

at 300 nm wavelength in the spectral transmission measurements (refer Figure 2). Sample A1 

(short wavelength scatterer) has a compact nano-structure with a lot of smaller-sized granules 

tightly packed together (as shown in Figure 18), leading to a dense distribution. Mid-wavelength 

range scatterers, such as ARSS sample W1, lie in between the axial and long wavelength scatterers 

(samples W4 and W5), as shown in Figure 2. The transverse granule population histogram (Figure 

25) of samples W4 and W5 conforms to a Gaussian-like granule distribution outline compared to 

sample A1, which is skewed towards the smaller diameter granule population. A similar ranking 

trend is observed with the distribution of voids, and it should be noted that the peak value from the 

granule population of voids is different than the peak value of the island granule population. This 

motivates us to introduce an approach that considers the probability of granule diameter value 

presence (surface occupation), which is discussed in the following section.   

To enhance the visibility of the separation-distributions between samples W4 and W5, the granule 

separation distance distribution is presented in a log-scale in Figure 36 (c and d). Figure 36(c) 

shows a comparative ranking of these structured surfaces as per their measured transmission at 

300 nm wavelength. We note that there are at least two orders-of-magnitude variation in the 

frequency distribution between the sample with short wavelength scatter (A1) and long wavelength 



85 
 

scatterers W4 and W5. However, a causal explanation for the observed optical response based on 

their transverse distributions is unclear from the observations to this point.  

The separation-distributions, referred to as separation probability distribution function (SDF), are 

observed to consistently follow a Rayleigh distribution curve for all granule dimensional groupings 

on the surfaces93. The Rayleigh distribution for non-negative random variables is an expected 

descriptor for a set of discrete distances within a random point pattern, bounded in an areal 

rectangle (or square)94,95. For the peak-valued granules (or the most represented granule in the 

granule populations per sample) of islands and voids, Raleigh distribution curves were fitted to the 

Figure 37: Rayleigh distribution fitting parameters are shown for peak granules of islands 

(a) and voids (b). Regional segregation of the samples as per their optical response in UV 

region is observed in fitting coefficient-space. 
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separation frequency histograms to identify fitting parameters. If the transverse distances were 

treated as a 2D random-walk distribution, the total number of steps after a ‘long time’ results in a 

Raleigh distribution96.  

The probability density function of a Rayleigh distribution is defined by:  

𝑦 =
௔మ

௕మ 
𝑥𝑒

షೣమ

మ್మ        (3) 

Here, 𝑎ଶ and 𝑏ଶ are coefficients within 95% confidence bounds.  

Figure 37 shows the fitted curve for the separation distributions on peak granules of islands and 

voids. Figure 37(c) depicts the fit-parameter space for all the rARSS samples.  

Table 4: Rayleigh fit parameters for separation frequency distributions of all the rARSS samples 

evaluated, for the corresponding peak granule from the granule populations of all islands and 

voids. 

 

 

 

 

 

 

 

 

Sample 

Islands Voids 

𝑎ଶ b 𝑎ଶ b 

A0 1709.65 1264.298 3577.24 1346.01 

A1 3781.54 1308.85 6657.14 1303.44 

W1 2790.27 1343.31 4136.55 1306.12 

W2 1965.37 1341.803 3909.27 1295.72 

W3 1453.74 1321.918 1638.48 1344.24 

W4 1138.04 1286.288 1145.14 1319.11 

W5 1070.19 1369.071 1120.56 1314.58 
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Table 4 shows the fit parameters of the separation frequency distributions on corresponding the 

peak granule of the granule populations of all islands and void of all the rARSS samples.  

The ratio of coefficients a/b for islands and voids is compared in Figure 37(c). Three distinct 

regions can be identified. ARSS samples A1 and W1 are ranked in accordance to the cut-off 

wavelengths discussed in the Introduction. Long-wavelength scatterers W4 and W5 are in the 

leftmost region of the graph and the mid-wavelength scatterers are in the central region of the 

range a/b values. The regions correspond to their optical performance or ranking with respect to 

λc in the UV spectral band. Although this metric serves as a ranking qualifier for the rARSS 

samples, it does not allow us to predict their spectral behavior over the entire spectral bandwidth. 

The role of the peak granule within populations needs to be investigated. This further motivates us 

to extend the utility of granule separation statistics to link surface morphological parameters to 

spectral quantifiers of performance, such as the cut-off wavelength (λc), which marks the onset of 

transmission enhancement and marks the upper spectral limit for scattering models.  

 

4.4.  Shannon’s entropy and morphological complexity evaluation  

Entropy is the quantitative interpretation of disorder in the relevant distribution of a system over 

its permissible microcanonical system states or microstates97. In thermodynamics, entropy reaches 

a maximum for a system in a state of equilibrium. For the system of randomly structured 

antireflective surfaces under consideration, the possible distances, or separations rm within the 

populations of equal species (granule diameter populations dg), serve as the permissible occupation 

microstates, and entropy can be evaluated for these distributions within the areal limits of the 

bounded SEM images. The granule separations rm(dg) (Euclidian scalar distances) have statistically 
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distributed populations as well, and the resulting separation disorder is categorized as a statistical 

disorder, rather than a geometric disorder. In essence, the entropy of the system captures the 

statistical variations in the distribution of distances or separations, providing a measure of the 

overall disorder in the system's arrangement (i.e., disorder quantifies “randomness” in the 

nanostructure granule transverse distributions)98. 

The statistical arrangement is denoted by the frequency counts of the separations obtained for each 

identified granule diameter grouping Fg(rm), which requires further normalization to all possible 

separations numbering a total of M. This normalization with respect to the sum of all present 

separation frequencies yields fg(rm), which is the PDF of the granule-separation occurrence for the 

partial granule population pg(dg). Importantly, this function represents a statistical joint distribution 

of inter-dependent “separation states”, specifically: the probability of separation for either islands 

or voids for a corresponding granule-diameter scale:  

 

 
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1
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                      (4) 

The distribution of "separation states" can quantify the measure of disorder or complexity. The 

complexity of the separation state distributions, Cg, is defined as the partial disorder associated 

with the existing granule separation states, for a single granule population of either islands or voids. 

Cg is calculated using Shannon’s entropy equation (Eq. 5), which is a measure of the complexity 

of distances for every granule for all possible island and void granules observed on each rARSS 

sample: 
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For ordered systems, the entropy approaches a value of zero. Thus, for an ordered surface, the 

choice of separations is limited and in accordance with some deterministic design specifications, 

thereby restricting variations. However, in the case of the antireflective random surfaces, this 

multidimensional problem is analyzed one size-scale at a time, which is achieved with the 

segregated granule maps. With a few simple examples of configurations, “as-is” complexity 

without proper normalization M, is illustrated in Figure 38 to highlight the characterization of 

disordered or random configurations within same species granule populations.  

Figure 38 illustrates the diversity in complexity among the different designs. Panels 1 to 5 depict 

a 3-point motif. Panels 1 and 2 show ordered 1-D horizontal and vertical configurations with a 

complexity rating of Cg = 0.2122. The equilateral triangle in panel 3 indicates null complexity (Cg 

= 0) due to the granule system’s high symmetry. A single distance value is adequate to reproduce 

the distributed granule system, hence decreasing uncertainty in spatial order. An alternate method 

to analyze the system involves utilizing total disorder or entropy. With minimum disorder in the 

system, entropy is zero. Panel 4 and 5 exhibit disordered granule distributions with greater values 

 
Figure 38: Panels 1-10 demonstrate various spatial configurations and their corresponding 

Shannon’s entropy value or complexity 
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of Cg, suggesting an increase in the heterogeneity of discrete separation factors. The three-granule 

distribution achieves maximum complexity in the disordered orientations, highlighting the 

influence of the total number of points composing a pattern. The highest variation possible in a 

three-granule distribution is three different valued separations, which contributes to the maximum 

entropy in any of the possible disordered configurations. Similar patterns of complexity variation 

may be observed in Figure 38, panels 6 and 7 for a 4-granule design. The introduction of disorder 

leads to an increase in complexity, which is seen in the corresponding complexity values. Figure 

38, panel 8 shows the lowest level of complexity in a system of 5-granules, with lower levels of 

complexity even with increased number of granules. Panel 10 displays a higher level of complexity 

for the observed disordered granule distribution. It is important to understand the influence of the 

number of granules or objects in a system, as well as compare entropy across different subsystems 

built of multi-scale granule distributions.  

Equation 5 computes the degree of disorder in the distribution of granule separations within a 

particular granule diameter population, providing insights into the intricacy of the granule 

arrangement and its impact on the overall disorder of the system. Entropy, an extensive variable, 

is introduced in the thermodynamic formulation abstractly as a part of the variational function. 

Statistical mechanics aims to provide physical interpretations of entropy. Postulate III, from 

Callen’s states that entropy (S) of a composite system is additive over the consequent subsystems 

(𝛼) within the global system:  

   𝑆 = ∑ 𝑆(𝛼)ఈ                        (6) 

 

In an inhomogeneous or heterogenous system, such as the antireflective structured surfaces here, 

we may consider the global ensemble (system) to be composed of sub-systems categorized by their 
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granule diameter populations. Entropy for each subsystem is a function of the extensive parameters 

relating to the subsystem alone.  

Partial complexity, Cg aids in quantifying the organizational aspect of individual granule diameter 

populations pg(dg). Distribution of configurational entropy or partial complexity Cg as a function 

of their granule dimensions is shown in Figure 39. Implications of the normalization constant M 

will be discussed following, highlighting the interpretation of our results which depend on the 

value of M.  

In Figure 39(a), the highest count of present microstates among all granules serves as the 

normalization constant (N). Interpretation of the complexity is discussed in 93,99. Here partial 

complexity Cg remains at comparable values for each granule population member until a critical 

granule diameter (gc at dg = 96 nm) is reached, after which the partial complexity values gradually 

decline. This suggests that disordered organization is present for granule groupings up to the 

critical granule gc, influenced by their large population numbers. Figure 39(a) illustrates the partial 

disorder associated with the granule diameter distribution histograms Cg (right vertical scale), 

corresponding to each granule diameter dg from the distribution. The partial disorders are 

calculated by determining the Shannon entropic value for the various possible separations within 



92 
 

each granule, normalized to the total number of present granule separation microstates (N). In 

contrast, the rationale for choosing the second approach's normalization constant is rooted in the 

total possible states in a surface area, assuming it were an ordered or organized system, and 

whether the states are occupied or not. For example, a single-pixel diameter granule has 600 x 

1024 possible occupation sites on the surface, resulting in 614,400 locations. The total unique 

combinations of distances obtained from the above number is SN = 1.89 (1011), including both 

occupied and unoccupied states. Here, M varies for different granule diameters, accounting for the 

total possible combinations of separations, unlike the original case, where N was uniform across 

all occupying granules because it enumerated the total number of present states. Normalizing the 

partial complexity distribution with their respective normalization constants results in a unique 

complexity distribution, as illustrated in Figure 39(b). In summary, normalization of the partial 

complexity (Eq. 5) by the total number of possible states per granule diameter M, whether they are 

occupied or unoccupied, converts the partial complexity to a surface organizational Entropy value.   

Figure 39: (Right scale, bullets) Partial complexity distribution Cg overlaid with normalized 

granule population distributions pg (left scale, bars) of rARSS sample W5 (a) Normalized to the 

number of separation microstates present (N), and (b) Normalized to the total possible number of 

separation microstates per granule (M) 
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Figure 40 shows the complete surface characterization for all samples. The granule population 

 
Figure 40: Transverse surface characterization of all rARSS samples illustrating their unique 

surface characteristics. Partial complexity (shown in bullets) is distinct for each of these samples, 

which is influenced by their unique transverse feature occupancies for islands (blue) and voids (red) 
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probabilities along with the partial complexity or partial disorder distributions are shown.  

 

 

The critical granule (gc) is understood as the granule with the highest value of Cg in the complexity 

distributions, beyond which the partial complexity declines. The range of granule diameters over 

which partial complexity Cg increases to a maximum can be referred to as entropy optimum length 

(EOL). It is important to note that EOL varies for islands and voids across all samples, reported in 

Table 6.  Computation of EOL via configurational entropy has been explored by Andraud100–102, in 

the context of single-sized random (or complex) distributions of particles in a system, by counting 

the particles in a configurational space. The configurational space is varied by a rectangular 

bounded system with increasing dimensions, and the distribution of counts are recorded at each 

configurational space. Although investigation of the frequency of states composing a system is key 

to both our and Andraud’s approach, our study focuses on the granule transverse separations. EOL 

could particularly highlight the compact characteristics observed in these diverse surface 

 
Figure 41: Entropy Optimum Length (EOL) computed on the partial complexity distribution 

of islands and voids.   
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morphologies. Complexity dynamics are unique to each rARSS sample, with the granule scale (dg) 

at which the partial complexity reaches its peak being significant. The complexity curves 

demonstrated in this context exhibit a parabolic nature, akin to complex systems, where the 

inflection point is often associated with a phase-transition.  The phase-transition observed in these 

complexity distributions may be suggestive of the role of surface spatial organization on the 

granular network, and consequently on the optical response of the surface, like phase-transition 

diagrams derived from pressure-temperature response of micro structured poly-crystalline 

materials.  

Table 5: EOL computed from the partial complexity distributions for the rARSS samples for 

islands and voids. 

 A0 A1 W1 W2 W3 W4 W5 

Island 107 63 77 92 70 77 107 

Void 37 50 50 50 77 100 63 

  

From a system ensemble perspective, organization of the individual diameter granules determine 

the global organization on the entire surface. C is defined as the global (ensemble) surface disorder 

for all possible granule populations and their probable separations, weighted by their respective 

granule occupancy density pg. The total surface complexity is then the sum over all products of 

present granules on a specific surface (G in number) by their partial complexity values: 

 
1

G

g g g
g

p d


C C
     (7) 
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The partial complexity plots shown in Figure 40 have a unique distribution with respect to their 

cut-off value and slope of the decreasing complexity segments. The total complexity C evaluated 

on the surface is expected to link the surface organization to some aspect of the spectral response. 

However, ensemble C may not impart a physical interpretation of the surface, because the intricate 

surface information is lost from summing the weighted partial complexity by the probability of the 

granule populations, an operation akin to global averaging.  

This realization necessitates another approach to treat the surface as induced phase perturbations, 

which is discussed in the section 4.5. 

  

4.5. Optical transverse phase contribution to scatter 

Optical wavefront propagation through ordered optical surfaces can be correlated and 

deterministic. A phase (or amplitude) grating is a functional example. Investigation of transverse 

spatial organization of the phases φxy on a random surface, along with longitudinal phases φz, is 

equally important. To elucidate the influence of a random distribution of phases on the interacting 

wavefront, the randomly structured surfaces can be interpreted as follows.   

Consider an optical system which consists of two distinct volume sections, composed of refractive 

indices n1 and n3, while the wavelength-scale-thick surface separating them has an effective index 

of n2. The granularity on the separating “thick” surface is depicted by a transmitting phase-screen, 

with a finite effective layer of index n2. Refractive index n2 is defined by transverse spatial structure 

variations (granules), and heights of the constituent phases composing the phase screen which may 

be locally non-uniform in thickness. The random nature of the surface granules and their respective 

separations distribution are roughly averaged as a piecewise 3D-profile function across the spatial 
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coordinates. Incoming wavefront experiences distortion because of the “localized” phases 

introduced by the phase-screen. Far-field propagation of these wavefronts is analyzed using 

diffraction and interference principles (details discussed in introduction). The rARSS is a set of 

limited size phase apertures that are spaced out in the transverse plane (x,y) and along the 

longitudinal direction h(x,y).  

The total (cumulative) optical phase perturbation from the transversely distributed structures will 

depend on the weighted net optical-path excursion. The net optical path Rg(dg) for each granule 

can be computed as the sum of the granule separation distances, which is further multiplied by the 

existence probability of each granule to yield a weighted net optical-path contribution: 

 
 

Figure 41: Weighted Rg (bar, in values of thousands) are in correlation with weighted 

complexity (bullets) distributions of dominant population groups: islands- A1, W3 and W5, 

voids- A0. 
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                                              𝑅௚൫𝑑௚൯ =  𝑝௚൫𝑑௚൯ ∑ 𝑟௠൫𝑑௚൯ெ 
௠ୀଵ                                                   (8) 

Here, M is the total number of permissible separation states occurring on each surface.  

The physical parameter Rg(dg) shown in Figure 42, as a function of granule diameter, indicates 

which granule will introduce a substantial transverse optical path to the overall phase excursion of 

the transmitted and reflected wavefront. It is important to note that sample A0 is a minimally 

processed sample and most of the surface area is polished fused silica, with the introduction of few 

voids. Determination of a reference height level to obtain a phase-difference is relative and 

influenced by the dominance of islands or voids. In the case of sample A0, voids are considered to 

be the relevant features, as they should dominate surface induced scatter. Islands are deemed 

relevant for the rest of the structured surface samples. 

Certain represented granule diameters dg has identifiable population peak contributions for each 

sample tested. The granule presence-weighted partial complexity product (pgCg) is shown in Figure 

42 indicating a potential disorder metric for the corresponding granule diameter. The partial 

complexities show a single peak value for each data set, an indication that there is a 

phenomenological segregation of transverse optical phase contributions above and below the 

largest granule diameter present. A trend relating the weighted Rg and corresponding complexity 

(weighted by the probabilities of present granules pg(dg)) is observed. The peak granule diameters 

of these distributions are 30 nm, 44 nm, 60 nm, and 90 nm respectively for representative samples 

A0, A1, W3 and W5. This trend aligns with the increasing trends of their cut-off wavelengths λc, 

suggesting a causal relationship. The granule transverse separation physical quantity, Rg(dg), is the 

product of the existence probability of granule classes (pg(dg)) and the net separation quantity for 

each class rm(dg). This is representative of a “lumped” separation, or distance, calculated on the 

multiple granule network for a particular granule size. 
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Periodic surfaces are summarized by their deterministic period, whereas random surfaces are 

classified based on macroscopic averages such as autocorrelation lengths, with considerable 

ambiguity. The Rg(dg) surface quantity can be used to predict the cut-off wavelength λc, which 

defines the limits of the broadband spectral transmission enhancement range. λc trends may be 

determined by the degree of disorder on the surface as shown by Rg.  In this work, Rg is proposed 

as a heuristic parameter to predict this transition from scattering to the transmission enhancement. 

Disorder may be obtained from several configurations; hence, disorder quantities alone are not 

enough to explain all aspects of the surface. The correlated microstate variables indicate the 

coexistence of “strongly” disordered states along with “weakly” disordered states.  

 

 
Figure 42: Demonstration of parameters obtained from transverse feature characterization 

(a) R-separation exhibits linear correlation with their corresponding cut-off wavelengths, 

λc (b) total R-separation and total complexity relationships between these samples exhibit 

a complexity space segregation. 
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A linear regression analysis, by fitting a straight line (m = 19.729, c = 6.68 x 104) confirms a 

correlation between total R-separation parameter and λc, as demonstrated in Figure 43. A0 is an 

exception in this analysis. The two parameters obtained from transverse feature segregation as well 

as accounting for the granule population densities show an interesting trend with respect to their 

distribution in the R-separation – Complexity space. Short wavelength scatterer A1 exhibits the 

lowest value of complexity but the highest total R, mid-wavelength scatterers (W1, W2 and W3) 

have similar values of R, however, present a greater complexity value than A1. Comparatively, 

long-wavelength scatterers (W4 and W5) have higher values of complexity but lower values of R. 

Understanding of correlative variables, possibly can enhance the quantification and 

characterization of these surfaces.  

 

4.6. Complexity Imbalance of transverse morphology   

Determining the role of granule populations of islands or voids on the optical effects is crucial. 

Several efforts, including the maximum occupying granule from the population distributions 

(referred to as peak-granule) and relevant representative populations (discussed in section 4.5.), to 

identify the influence of the occupying granules on the surface have been presented. In this section, 

differential population statistics are introduced, which highlight statistical differences or 

imbalance in the organization of islands and voids.  

 

The granule population differential density for each granule diameter group is computed using 

equation 9:  

         (9) 
𝛥𝑝௚ =  𝑝௚൫𝑑௚൯ − 𝑝௚൫𝑑௚൯ 
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Here, 𝑝௚൫𝑑௚൯ is the probability of presence of island granules for granule diameters denoted by  

𝑑௚, ranging from 1 to the largest granule diameter occurring on a specified surface. 𝛥𝑝௚ measures 

the sparsity (𝛥𝑝௚ < 0), balance (𝛥𝑝௚ ≈ 0), or compactness (𝛥𝑝௚ > 0) of silica granules on the 

surface for the granules present.  

Corresponding differential partial organizational complexity is computed using equation 10. 𝛥𝐶௚ 

may be interpreted as a surface partial complexity imbalance, characterizing the disorder of a 

granule group pair (silica, air) with respect to all others. 

 

     (10) 

The mathematical expression for structural parameter sought is a ratio over the sums across all 

granules (G), shown in equation 11:  

         𝐷 =  
∑ ௗ೒௱௣೒௱஼೒

ಸ
೒సభ

∑ ௱௣೒௱஼೒
ಸ
೒సభ

 (11) 

where the denominator is the total weighted differential complexity of the surface, composed of 

the sum of all partial differential complexities weighted by the differential probability of existing 

granules and, the numerator is the contribution of each granule size (dg) within each group. The 

quantity D is interpreted as the principal granule diameter of the total complexity distribution 

imbalance (PCID), and it can be compared with λc. For the samples shown in Figure 44, the 

corresponding D and λc are: [59,73,72,100] nm and [272,349,350,425] nm. A least-squares linear 

fit of these values yields the relation: λc = 3.52 D + 82, with an R2 = 0.94.  

 

𝛥𝐶௚ =  𝐶௚൫𝑑௚൯ − 𝐶௚൫𝑑௚൯ 
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The PCID appears to be linearly related to λc, allowing for comparative estimates of λc through 

measured surface complexity parameters. The analysis presented can be used to improve 

broadband spectral transmission computations for randomly nano-structured surfaces, as it gives 

an estimate of the cross-over wavelength, below which rARSS transmission enhancement is 

overwhelmed by scatter. 

Although, this statistical analysis needs to be extended to a larger dataset to establish an accurate 

and robust relationship between the surface “separation state” variables and spectral variables.  

 

 
 

Figure 43: Granule population differential densities 𝛥𝑝௚ (left scales−black bars) and granule 

partial complexity differentials 𝛥𝐶௚ (right scales−white bullets) for the corresponding rARSS 

surfaces.  
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CHAPTER 5: CONCLUSION 
 

Challenges in identification of an appropriate metrological tool persists. Conventional surface 

metrological approach is adequate to characterize a set of mechanical samples. However, the 

resolution of the instrument limits accurate surface height measurements. Besides, in confocal 

microscopy, reflected scatter from the randomly structured surfaces may have an impact on the 

angular irradiance distribution along the optical axis, resulting in high uncertainty in the acquired 

topography.  Alternatively, the transmission ellipsometric measurements of the rARSS samples 

are not distinct enough to allow characterization. Current models rely on height measurements, 

particularly RMS roughness and autocovariance of heights, which do not exhibit satisfactory 

agreement with the measurements. As a result, alternative methods of characterization are required. 

 

For a complete surface structural description, it is crucial to identify both the granular composition 

and the multi-scale spatial organization of the surface topographical features. Analyzing the 

interaction of the incident light wavefront and surface granule sizes necessitates the study of 

granule organization on the surface. It is essential to identify clusters, or patterns, of organization 

on the surface and characterize granule organization within different diameter sizes, as they will 

cause light scattering out of the axial direction. Since the surface is composed of multiple sizes, it 

is crucial to consider the joint-probability of granule occupation and organization across all 

granules of different sizes on the surface. 

Ordered surfaces have fewer characterization challenges due to their inherent symmetry and 

possible periodicity, which allows for direct analysis and quantification of scattering (diffraction) 

effects. In contrast, non-deterministic and random distributions present unique obstacles, 

particularly in the absence of well-defined figure-of-merit for degrees of randomness. While 
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standard statistical quantification methods for random surfaces are available in the literature, a 

comprehensive measure and definition for randomness is absent. Traditional statistical analysis 

can capture aspects of randomness, such as variance and distribution density, but they may not 

provide a holistic understanding of the organization or lack thereof in non-deterministic surfaces 

and their functionality. 

Organization is expressed as a probability density function of separations between all granules on 

size-segregated granule maps. These endeavors aim to establish quantitative measures that go 

beyond traditional statistical approaches, allowing for a more detailed assessment of surface 

organization and randomness. Ultimately, the overarching goal is to bridge the gaps in 

understanding the role of randomness in axial transmission enhancement. Achieving this objective 

requires a comprehensive exploration of how randomness influences the axial transmission 

enhancement through the presence of particular granule populations. 

The parameter R-separation discussed in section 4.5, presents good correlation with the λc for all 

the random antireflective surfaces investigated in this work.  Optical analogue of R-separation may 

be explained as follows:  Consider, a simple binary grating model shown in Figure 45. Two 

geometrical parameters: h (x, y) which is the height and ∆, which is the period, is sufficient to 

model the performance of a periodic (or quasi-periodic) array of gratings.  

 

 

 
Figure 44: Schematic of a deterministic binary grating  

  

h(x, y)

∆



105 
 

Total phase-shift from the pattern on the gratings can be defined by equation 1:  

𝜙௧௢௧௔௟ = 𝜙௭ + 𝜙௫௬    (1) 

𝜙௭ =
ଶగ

ఒ
 ൫𝑛௘௙௙൯ℎ(𝑥, 𝑦)    (2) 

Equation 2 denotes the longitudinal phase, where, 𝜙௭ is longitudinal phase, derived from the 

heights of the gratings, and aids in explaining interference phenomenon. 𝑛௘௙௙ is the effective 

refractive index of the material, especially in the case of a gradient-index media, the value is 

determined from the fill-factor. 𝜙௧௢௧௔௟ depends on both the longitudinal and transverse components 

of phase. In the case of periodic gratings, values of heights and period is deterministic and 

predictable. If ∆ << λ, the gratings may be referred to as sub-wavelength gratings. In such a 

scenario, all the transmitting intensity is coupled to the 0th order, while the higher-orders are 

evanescent. This effect is primarily driven by the period ∆.  

While, in the case of random structured surfaces, both 𝜙௭ and 𝜙௫௬ are determined from their 

statistical measurements. Peak-Valley parameter, Sz is a statistical metric calculated from the areal 

topographic measurements using confocal microscopy. This parameter could be used as a 

statistical height parameter for longitudinal phase. On the other hand, diffractive effects from the 

transverse component maybe correlated with the statistical parameter, R-separation that was 

evaluated from all possible separations measured on the surface.  Foundations of this descriptive 

model is still in its preliminary stage, and future work should include more intra-site and inter-site 

correlative analysis.  

 

Moreover, if the island and voids are regarded as phase objects that occupy the surface. The 

perturbation of the interacting wavefront relies on the statistical properties of the islands and voids 

in both their transverse and longitudinal distributions. The challenge of determining the impact of 
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granule occupation probability densities and their structure on the observed optical response is 

nontrivial.  

The far-field diffraction pattern is computationally obtained using the maximum represented (or 

peak) size-segregated granule map. Phase-shifted image is created by assigning 𝑒
೔ഝ

మ  values to 

islands and the conjugate, ( 𝑒
ష೔

మ  ) to the voids. Sum of the phase-shifts results in a phase-shifted 

image as shown in Figure 46a. Phase values are assigned from the computed Sz values (Table 2) 

for each sample. FFT of the phase-shifted granule map results in Fraunhofer diffraction pattern.  

 
Figure 45: Far-field diffraction pattern simulations (d) comparison with experimental CASI 

measurements (c). (a) Phase-shifted map for a representative sample W5. Islands granules 

(shown in yellow) and void granules (in blue) (b) Corresponding Fraunhofer diffraction pattern.  
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Figure 46 demonstrates good agreement between the CASI measurements and MATLAB 

simulations, especially in the ranking or sequence of intensity values for each of these samples.   

 

A morphological complexity-based figure-of-merit, PCID, computed from complexity imbalance 

investigation has strong correlation with the cut-off wavelengths. PCID may be interpreted as the 

center-of-gravity of granules contributing to the overall perturbation.  

 

Future work involves investigation of a larger dataset of random antireflective samples to establish 

a microcanonical model linking surface variables with the spectral variables.  
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APPENDIX A  

 

I. DEFINITIONS OF STATISTICAL SURFACE PARAMETERS  

 

Surface texture is quantified using 1-D profilometric measurements or areal topographic 

measurements. The spatial frequency content may be categorized into three main types: form, 

waviness, roughness. The cut-off wavelengths (defined in ISO standards) for determining each of 

these frequency regions vary based on the application. Filtering or post-processing of measured 

topographical data also depends on the type of application. Quality analysis or functional 

correlation is determined using the measured surface topographical information.  

ISO25178 defines statistical areal parameters with symbol S. The parameters used in Chapter 2 

are discussed in the following section:  

The measured height data is denoted by Z(x, y). Size of Z(x,y) depends on the size of the detector 

grid, which is denoted by A. Values of A is commonly defined as 1024 x 1024 pixels. In this case, 

the dataset was collected for 4096 x 4096-pixel grid.  

 

1. Amplitude parameters:  

(i)  Root-Mean-Squared (RMS) Roughness or Sq, is a commonly used amplitude 

parameter to evaluate the standard deviation of heights from a mean height plane. 

Equation 1 evaluates Sq over the measurement area A.  

 

                                                     𝑆௤ =  ට
ଵ

஺
∬ 𝑍ଶ(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦                                                  (1)  
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(ii) Peak-Valley Roughness or Sz is the sum of maximum height and maximum depth 

over the entire measurement area A, as shown in equation 2.  

 

                                    𝑆௭ = max൫𝑍(𝑥, 𝑦)൯ + min൫𝑍(𝑥, 𝑦)൯                                         (2)  

 

2. Spatial Autocorrelation, or Sal is a spatial parameter, which is often used to evaluate 

periodicity or pattern from periodic or ordered surfaces. Sal is computed using equation 3. 

 

             𝑓஺஼ி(𝑡௫ᇲ , 𝑡௫) =  
∬ ௓(௫,௬)௓(௫ି௧ೣ,௬ି௧೤) ௗ௫ ௗ௬

∬ ௓(௫,௬)௓(௫,௬) ௗ௫ ௗ௬
        (3) 

 

 

3. Hybrid parameters:  

(i) RMS slope or Sdq is a surface gradient parameter obtained from a root mean square 

of the slopes of all points on the measured area A, denoted by equation 4. This 

hybrid parameter is 0 for level surfaces and greater than 0 for any slope detected on 

the surface.  

𝑆ௗ௤ = ቈට
ଵ

஺
∬ ൤ቀ

డ௓(௫,௬)

డ௫
ቁ

ଶ

+ ቀ
డ௓(௫,௬)

డ௬
ቁ

ଶ

൨ 𝑑𝑥 𝑑𝑦቉                         (4) 

 

(ii) Developed interfacial area ratio or Sdr (also referred as Sdr%) represents the 

percentage of the textured area on the surface of the planar definition area. For a 

level surface, the values are 0, but for surfaces with any slope, Sdr will be greater 
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than 0. If the surface has components whose slope is 45o, Sdr = 0.414. Equation 5 

represents the computation of Sdr as a deviation from surface whose slope is 1.  

 

              𝑆ௗ௥ =
ଵ

஺
ቈට

ଵ

஺
∬ ൬൤1 + ቀ

డ௓(௫,௬)

డ௫
ቁ

ଶ

+  ቀ
డ௓(௫,௬)

డ௬
ቁ

ଶ

൨ − 1 ൰ 𝑑𝑥 𝑑𝑦 ቉          (5) 

 

 

4. Higher-order Height parameters:  

(i). Skewness or Ssk  depicts how skewed (or asymmetric) a distribution of values is about 

the mean-plane. Values equal to 0 indicate a balanced distribution about the mean-plane, 

while Ssk < 0 or Ssk > 0 indicate a “skewed” distribution lower than or greater than the 

mean-plane respectively. Third-order height distribution over measurement area A is used 

to compute Ssk as shown in equation 6.  

 

𝑆௦௞ =
ଵ

ௌ
೜య
 [

ଵ

஺
∬ 𝑍ଷ(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦]                                         (6) 

 

(ii).  Kurtosis, or Sku depicts how tailed the roughness profile is, meaning heavy-tailed or 

light-tailed relative to a normal distribution comparison. For Sku = 3 the distribution of 

values is Gaussian, while Sku < 3 or Sku > 3 indicate a bias about the mean plane distribution 

or a spiked height distribution respectively. Fourth-order height distribution over 

measurement area A is used to compute Sku as shown in equation 7. 

 

𝑆௞௨ =
ଵ

ௌ
೜ర
 [

ଵ

஺
∬ 𝑍ସ(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦]                                  (7)  



116 
 

 

Applications related to wear, friction, tribology, and other functionality may be determined from 

the surface topographical characteristics using the statistical surface parameters discussed above.  

Optical functionality, specifically antireflection explored in this work aimed to utilize measured 

surface height information for correlation.  

 

II. Bearing Area Curves   
 
 

The Abbott Firestone curves or Bearing Area Curves (BAC) result from a computation using the 

surface height profile values, which aids in quantifying the surface area of the measured spatial 

region that contributes to various mechanical effects like wear.  In another perspective, if the 

surface heights are plotted cumulatively, in an order descending from ambient space into the 

substrate, the areal material ratio is calculated as the cumulative surface area in 3-dimensions to 

the total material available. Figure A.1 demonstrates the BAC distributions of all the rARSS 

samples in this study.  
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Polished fused silica sample WP has an almost flat curve, confirming a low variance of height 

distribution. Minimally processed sample A0, is slightly higher than WP. Height histograms 

discussed in Chapter 2 present an increase in variance of height distributions from samples A1 to 

W5. Similar increasing trend is observed in the BAC distribution.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure A.1: Bearing Area Curve distribuƟon of polished fused silica (WP) and the seven rARSS 

samples invesƟgated in this study.  
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APPENDIX B 
 
 
 

I. Distributed Histograms – Areal granule population distributions and density 

distributions  

 

 

Figure B.1 displays the population histograms of the island and void populations for all the random 

antireflective structured surfaces. Sample A0 has a fewer number of voids, as shown in the SEM 

micrographs, which is correctly depicted by the distributed histograms. SEM pictures of sample 

W1 and W5 reveal the existence of significantly large islands. The distributed histograms provide 

evidence of the existence of bigger islands in samples W1 and W5. This agreement is uniform 

across all the samples, thereby providing a precise categorization of the granules.  

 

Figure B.1: Distributed Histograms represenƟng the disƟnct normalized areal distribuƟon of 

granules of islands (blue bars) and voids (red bars) of all the random anƟreflecƟve samples.  
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The cumulative areal distributions of islands and voids for all the rARSS samples are shown in 

Figure B.2. Density distribution ratio (island: void) is in good agreement with the measured SEM 

images.  

 

II. Modified Granulometry – Scale-segregated granule maps  

 
Granulometric image analysis was modified to overcome overcounting issues and primarily to 

obtain segregated images grouped by a size (or scale).  Examples of island and void segregation 

of sample A1 and W4 is shown in Figures B.3 and B.4 respectively.  

 
 
 
 
 
 

 
 
Figure B.2: CumulaƟve normalized areal distribuƟons of the islands (blue) and voids (red)  
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Sample A1 was processed using the following conditions.  
 Islands:  
Maximum granule size, t = 31. Threshold intensity level, slice = 30. Image intensity, h = 128.  
Voids:  
Maximum granule size, t = 23. Threshold intensity level, slice = 80. Image intensity, h = 128.  
 

 
 

 
 

Figure B.3: Sample A1 Islands size-segregated maps. 
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Histograms of normalized occupation probability density distribution of islands and voids of 

sample A1 is illustrated in Figure B.6.  

Sample W4 was processed using the following conditions.  
 Islands:  
Maximum granule size, t = 41. Threshold intensity level, slice = 50. Image intensity, h = 128.  
Voids:  
Maximum granule size, t = 41. Threshold intensity level, slice = 80. Image intensity, h = 128.  

 
 

Figure B.4: Sample A1 Voids size-segregated maps. 
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Figure B.5: Sample W4 Voids size-segregated maps. 
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Histograms of normalized occupation probability density distribution of islands and voids of 

sample W4 is illustrated in Figure B.7.  

 

Figure B.6: Sample W4 Voids size-segregated maps. 
 
 
 



124 
 

III. Occupation Distribution – probability density function (PDF) and density distributions  

 
 
 
The normalized granule occupation probability density distributions show good agreement with 

the original granulometric characterization of the samples. The corresponding density distributions 

are shown in Figure B.8.  

 
 
 
 
 
 

 

 
Figure B.7: Normalized granule occupaƟon probability density distribuƟon (as a funcƟon 

granule diameters) of polished fused silica (WP) and the seven rARSS samples invesƟgated 

in this study.  
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Figure B.8: CumulaƟve normalized areal distribuƟons of the islands (blue) and voids (red) 
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APPENDIX C 

 
 

I. MATLAB script to calculate distances between all the objects in the image  
 

function [sortedDistances] = computesDisFromAC(AC) 
maxIndx = find(AC(:,:) == max(max((AC(:,:))))); %AC = autocorrelation of image  
 
if length(maxIndx) == 1 
     
    [xmax,ymax] = outsXYindices(AC,maxIndx); 
     
    for i = 1: max(max(AC)) 
        countz{i} = find(AC(:,:) == i); 
        temp = 0; 
         
        if  length(countz(i)) > 0 
            temp = cell2mat(countz(i)); 
            if length(temp) >0 
                val = AC(temp(1)); 
                 
                counter = 1; 
                for j = 1:length(temp) 
                    [xtemp,ytemp] = outsXYindices(AC,temp(j)); 
                       %Euclidean distance 
 
                    Dis(counter) = sqrt((xtemp - xmax)^2 + (ytemp - ymax)^2);  
                    counter = counter+val; 
                end 
                Dist{i} = Dis; 
            end 
             
        end 
        Dis = 0; 
    end 
    temp = 0; 
     
    for i = 1:length(Dist) 
        temp = cell2mat(Dist(i)); 
        val = max(AC(countz{i})); 
        for k = 1:val:length(temp) 
            temp(1,k+1:k+val-1) = temp(k); 
        end 
        UniqueDis{i} = sort(temp); 
    end 
     countPos = 1; 
            for i = 1:length(UniqueDis) 
                for j = 1:length(UniqueDis{i}) 
                    temp = UniqueDis{i}; 
                    AllDis(countPos) = temp(j); 
                    temp = 0; 
                    countPos = countPos +1; 
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                end 
            end 
 
            sortedDistances = sort(AllDis); 
            sortedDistances(sortedDistances==0) = []; 
end 
end 
 

II. MATLAB script to calculate Shannon’s entropy for distances  
 
 

function [AC, SortedDis, AComplex,r] = corrandComplexV3(noMatch,deltamap) 
CounterMatrix = 0; 
 
AC = xcorr2(deltamap,deltamap); 
 
SortedDis = computesDisFromAC(AC); 
 
SortedDis = round(SortedDis);   
    r = 0; 
    if length(SortedDis) >1  
    counter = 1; 
    index = 1; 
    for i = 1:length(SortedDis)-1 
       
        if i == 1 
            CounterMatrix(index,1) = SortedDis(i); 
            CounterMatrix(index,2) = counter; 
            counter = counter + 1; 
            if SortedDis(i+1) == SortedDis(i) 
                CounterMatrix(index,2) = counter; 
                counter = counter+1; 
            else 
                counter = 1; 
                index = index +1; 
                CounterMatrix(index,1) = SortedDis(i+1); 
                CounterMatrix(index,2) = counter; 
                counter = counter +1; 
            end 
        end 
        if i >1 
            if SortedDis(i+1) == SortedDis(i) 
                CounterMatrix(index,2) = counter; 
                counter = counter+1; 
            else 
                counter = 1; 
                index = index +1; 
                CounterMatrix(index,1) = SortedDis(i+1); 
                CounterMatrix(index,2) = counter; 
                counter = counter +1; 
            end 
             
        end 
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    end 
    [r,c] = size(CounterMatrix); 
     
 
    NormCounterMatrix = CounterMatrix; 
    %Normalized Mass Values 
    sumMass = sum(CounterMatrix(:,2)); 
    for i = 1:r 
        NormCounterMatrix(i,2) = CounterMatrix(i,2)/sumMass; 
    end 
    % 
    %         %Complexity Calc 
    % 
    for i = 1:r 
        NormCounterMatrix(i,3) = log(NormCounterMatrix(i,2)); 
        NormCounterMatrix(i,4) = NormCounterMatrix(i,2)*NormCounterMatrix(i,3); 
    end 
     
    AComplex = -sum(NormCounterMatrix(:,4)); 
     
    nn = floor(sqrt(length(SortedDis))); 
    else  
        if length(SortedDis) == 0 
            CounterMatrix = 0; 
            AComplex = 0; 
        else 
             
            CounterMatrix(1,1) = SortedDis(1); 
            CounterMatrix(1,2) = 2; 
            [r,c] = size(CounterMatrix); 
     
    NormCounterMatrix = CounterMatrix; 
    %Normalized Mass Values 
    sumMass = sum(CounterMatrix(:,2)); 
    for i = 1:r 
        NormCounterMatrix(i,2) = CounterMatrix(i,2)/sumMass; 
    end 
    % 
    %         %Complexity Calc 
    % 
    for i = 1:r 
        NormCounterMatrix(i,3) = log(NormCounterMatrix(i,2)); 
        NormCounterMatrix(i,4) = NormCounterMatrix(i,2)*NormCounterMatrix(i,3); 
    end 
     
    AComplex = -sum(NormCounterMatrix(:,4)); 
        end 
    end  
 
 
        AC(:,:,:,1) = AC;  
end 
         
 


