
BOHMIAN MECHANICS APPLIED TO OPEN QUANTUM SYSTEMS

by

Ethan Keller

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Applied Physics

Charlotte

2024

Approved by:

Dr. Donald Jacobs

Dr. Greg Gbur

Dr. Xingjie Li



ii

©2024
Ethan Keller

ALL RIGHTS RESERVED



iii

ABSTRACT

ETHAN KELLER. Bohmian Mechanics Applied to Open Quantum Systems. (Under the
direction of DR. DONALD JACOBS)

This thesis advances our understanding of quantum phases and their interplay with parti-

cle trajectories in closed and open Bohmian systems, employing the innovative Quantum

Velocity Search Algorithm to reconstruct wave functions and perform bulk phase statistics.

Analysis of closed systems reveals significant insights into velocity distributions and posi-

tional velocity constraints. In closed systems, the analysis uncovered that modulating the

initial phase on the expansion coefficients for the energy eigenstates, as well as the number

of terms in the expansion, significantly influences positional velocity characteristics. The

number of terms restricts the maximum velocity that can be achieved. For example, 4 terms

produce 1 Å/fs at the center of the box compared to 300 Å/fs with 18 terms. Many different

sets of initial phase values can lead to the same velocity. Open systems are modeled by

dynamically changing the phase factors as a stochastic process to model the influence of

the environment. Examination of open systems highlights their disruptive effect on the

quantum behavior for a closed system, with the phase diffusion coefficient being linked to

rates of thermal energy transfer into and out of the system. The relationship between energy

rates and phase coefficients creates a maximal energy rate because angle deviations repeat

every 2𝜋. This research underscores the alternative perspectives between determinism in

chaotic systems compared to a probabilistic interpretation in quantum mechanics, setting a

foundation for future exploration of open quantum systems within the Bohmian framework.
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CHAPTER 1: INTRODUCTION

Bohmian mechanics is a deterministic formulation of quantum mechanics that was de-

veloped by physicist David Bohm in the 1950s as an alternative to the Copenhagen inter-

pretation of quantum mechanics. In the Copenhagen interpretation, evolution of a system is

based on statistical principles such as uncertainty and randomness and suffers from having

inconsistencies between the quantum and macroscopic realms involving observations. One

of the key features of Bohmian mechanics is that it provides a consistent explanation for

the quantum behavior of particles with a smooth transition to classical behavior, while also

agreeing with the predictions of the standard interpretation. For example, the theory cor-

rectly predicts the outcomes in Young’s double-slit experiment, in which a particle passes

through two slits and quantum mechanically interferes to produce a characteristic pattern.

[1]

Figure 1.1: Bohmian trajectories for Young’s double slit experiment which produce the
characteristic interference pattern centered at the midpoint of the two slits. Retrieved from
page 57 of [1].
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1.1 Characterizing Bohmian Mechanics

In Bohmian mechanics, particles are assumed to have definite positions at all times, even

when they are not being directly observed. These positions are related to the outcome of

a differential velocity field that is dependent on the wave function. The guiding equations

from Bohmian mechanics are defined by the following. [2]

d𝑄
d𝑡

=
®𝑗

|𝜓(®𝑟, 𝑡) |2
(1.1)

®𝑗 = ℏ

𝑚
ℑ(𝜓(®𝑟, 𝑡)∗∇𝜓(®𝑟, 𝑡)) (1.2)

• 𝑄 is the generalized position of a particle.

• ®𝑗 is the probability flux.

• ℏ is the reduced Planck constant.

• 𝑚 is the particle mass.

• ℑ represents only the imaginary part of the evaluated function.

• 𝜓(®𝑟, 𝑡)∗ represents the complex conjugate of the wave function.

• |𝜓(®𝑟, 𝑡) |2 represents the modulus squared of the wave function.

• ∇ is the vector differential operator, which represents the first derivative of the wave

function with respect to position.

1.2 Defining Open/Closed Quantum Systems

Open quantum systems are those in which an internal system interacts with an external

system. These interactions produce qualities which are vastly different from those of closed

systems, which are assumed to be independent of their environment. Characteristics of
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closed quantum systems include state coherence, conservation of probability, and unitary

evolution.[3] State coherence is characterized by definite phase relationships within the

wave function. This is directly related to the superposition principle of quantum mechanics,

which is responsible for phenomenon such as entanglement. Probability conservation

implies the traditional normalization scheme of the Born interpretation. This ensures that

the measured particle is found occupying some state within the total Hilbert space. Unitary

evolution means that the dynamics are strictly governed by the Schrödinger equation given

by Eq. 1.3. However, any measurement made on a quantum system within the Copenhagen

interpretation involves the wave function collapsing, which is a non-unitary process not

described the Schrödinger equation. Additionally, the introduction of measuring devices

into any system inherently makes them open. This is a major problem for the Copenhagen

interpretation that implies true closed systems can never be observed. [4]

𝑖ℏ
𝜕𝜓(®𝑟, 𝑡)

𝜕𝑡
= − ℏ2

2𝑚
∇2𝜓(®𝑟, 𝑡) +𝑉 (®𝑟, 𝑡)𝜓(®𝑟, 𝑡) (1.3)

• 𝜓(®𝑟, 𝑡) represents the wave function, which depends on position ®𝑟 and time 𝑡.

• 𝑖 is the imaginary unit.

• 𝜕
𝜕𝑡

represents the partial derivative with respect to time.

• ℏ2

2𝑚 is a constant term related to the kinetic energy of the particle.

• ∇2 is the Laplacian operator, which represents the second derivative of the wave

function with respect to position.

• 𝑉 (®𝑟, 𝑡) represents the potential energy of the particle, which depends on position ®𝑟

and time 𝑡.

1.3 Characterizing Open Quantum Systems

The characteristics of open quantum systems include state decoherence, along with

energy, information, and probability fluctuations consistent with system exchanges. State
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decoherence is the phenomenon in which phase relationships of state superpositions become

unstable through non-unitary operator interactions. This causes quantum systems to exhibit

classical behavior due to the partial (or complete) cancellation of the interference term

within the superposition calculation. [5] Additionally, fluctuations in observables due to

the environment can produce scenarios in which energy, information, or probability are

no longer conserved quantities. This phenomenon is commonly referred to as quantum

dissipation within the literature. [6] These systems are the quantum analogs to classical

systems with irreversible energy loss and the associated Caldeira-Leggett model will be

discussed later.

1.4 Current Methods of Computing Open Quantum Systems

In the pursuit of understanding and manipulating practical quantum systems, the study

of open quantum systems has become increasingly vital. Open systems, interacting with

their environment, pose unique challenges and opportunities that demand sophisticated

computational approaches for accurate modeling. This section provides an overview of the

current methods employed for calculating the dynamics and properties of open quantum

systems.

1.4.1 Lindblad Model

A popular method for open quantum systems calculations is to use the Lindblad equation.

This equation describes the time dynamics of the density matrix, where the rate of change

of the density matrix is modified by state jump operators. This equation is Markovian in

nature, meaning that it assumes the system-environment interaction to be weak and to have

completely uncorrelated system-environment initial conditions. The Markovian condition

also imposes that the evolution of the state need not depend on previous states. [7]

¤𝜌 = − 𝑖

ℏ
[𝐻, 𝜌] +

∑︁
𝑖

𝛾𝑖

(
𝐿𝑖𝜌𝐿

†
𝑖
− 1

2

{
𝐿
†
𝑖
𝐿𝑖, 𝜌

})
(1.4)

• 𝜌 represents the system’s density matrix.
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• 𝐻 represents the system Hamiltonian, describing the unitary aspects of the dynamics.

• 𝛾𝑖 are a set of non-negative coefficients called damping rates.

• 𝐿𝑖 are a set of jump operators describing the dissipative part of the dynamics.

• {𝑎, 𝑏} = 𝑎𝑏 + 𝑏𝑎 is the anticommutator.

1.4.2 Nakajima-Zwanzig Model

Upon further generalization to open quantum systems of Non-Markovian nature produces

the Nakajima-Zwanzig equation. The characteristic feature of this model is it’s ability to

account for previous states, coining the term "quantum memory". It is important to note

that what these equations make up for in generality, end up losing greatly in calculability.

Solving this equation efficiently often requires many approximations to be employed due to

the increased storage demand of saving previous system states. [8][9]

𝜕𝑡𝜌S = PL𝜌S +
∫ 𝑡

0
𝑑𝑡′K(𝑡′)𝜌S(𝑡 − 𝑡′). (1.5)

• 𝜌S represents the system’s density matrix.

• P is the relevant projection operator, such that P + Q = I.

• L is a linear operator which always operates from the left on any dynamic variable.

• K(𝑡′) represents the memory kernel, describing the effect of the bath throughout the

time evolution of the system.

1.4.3 Caldeira-Leggett Model

Quantum analogs to classical systems with irreversible energy loss are known as dissipa-

tive quantum systems and are most commonly associated with the Caldeira-Leggett model.

The system-environment coupling is dependent on the type of microscopic system being

studied along with the bath. An important requirement is that the bath must have an infinite
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number of degrees of freedom to ensure that energy strictly flows out of the system. This

condition eliminates the possibility of Poincare recurrences which implies non-ergodicity

of the system. Many interesting problems have been studied under a specific realization

of this model called the dissipative two-level system. Examples include qubit-environment

interactions in quantum computing and quantum phase transitions in condensed matter

physics. [10]

𝐻 =
𝑃2

2𝑀
+𝑉 (𝑋) +

∑︁
𝑖

(
𝑝2
𝑖

2𝑚𝑖

+ 1
2
𝑚𝑖𝜔

2
𝑖 𝑞

2
𝑖

)
− 𝑋

∑︁
𝑖

𝐶𝑖𝑞𝑖 + 𝑋2
∑︁
𝑖

𝐶2
𝑖

2𝑚𝑖𝜔
2
𝑖

(1.6)

• The first term represents energy through momentum P and mass M.

• V(X) is the potential.

• The third term represents the bath as an infinite sum of harmonic oscillators.

• The fourth term describes the system-bath coupling.

• The last term is a counter which ensures homogeneous dissipation throughout space.

In this approach, one works directly with the wavefuction. However, the wavefunction

includes degrees of freedom from the bath making this approach impractical for numerical

work on large systems.

1.4.4 Stochastic Bohmian Mechanics Models for Open Quantum System

There are many models which leverage random noise terms to affect quantum system

dynamics. Bohm and Vigier [11] included a Wiener stochastic process directly to the

velocity from the Bohmian guiding equation.

d𝑣 = ∇(𝑉 +𝑄)d𝑡 + d𝑊 (𝑡) (1.7)

• d𝑣 represents a small incremental change in velocity.
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• V and Q are the classical potential and quantum potential respectively.

• d𝑊 (𝑡) is a random incremental Wiener process.

Another similar approach by Kostin [11] includes a random Gaussian force similar the

previous Wiener process but with an added friction term. This equation is consistent,

however it only adds incomplete information about a larger system without being fully

immersed as the requirement for open quantum systems.

𝑖ℏ
𝜕𝜓(®𝑟, 𝑡)

𝜕𝑡
= − ℏ2

2𝑚
∇2𝜓(®𝑟, 𝑡) + (𝑉 (®𝑟, 𝑡) +𝑉𝑟 (®𝑟, 𝑡) +𝑉𝐷 (®𝑟, 𝑡) + 𝐺 (𝑡))𝜓(®𝑟, 𝑡) (1.8)

• This is similar to the traditional Schrodinger equation with three added terms.

• 𝑉𝑟 (®𝑟, 𝑡) is the random potential.

• 𝑉𝐷 (®𝑟, 𝑡) is the damping potential.

• 𝐺 (𝑡) is a time dependent function based on the average value of 𝑉𝐷 via integration

over the position variable.

The advantage of these approaches is that the noise term accounts for the environment

with little overhead in cost compared to solving the Bohmian equations of motion for

a closed system. However, this formalism is fundamentally inconsistent with quantum

mechanics. The calculated momentum (or velocity) should be through Eq.1.1. The random

force should influence the velocity, but the way to calculate velocity should fundamentally

be through Eq.1.1, which will no longer be valid when a stochastic force is present. This

suggest that the stochastic elements of the environment should be through the wavefunction.

This observation motivates another approach developed recently by Dr. Jacobs.
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1.4.5 Modified Schrodinger Equation Approach

A modified Schrodinger equation (MSE) has recently been proposed by Dr. Jacobs, and

its framework justifies the approach used here in adding stochastic noise. Since the MSE

has not been published yet, a conceptual basis is given, along with some steps describing

how the modified Schrodinger equation is developed. While the Schrodinger equation (SE)

has been instrumental in describing quantum phenomena, its incompleteness is evident in

its failure to model the dynamics of the measurement process.

Dr. Jacobs posits that the Schrodinger Equation (SE) can achieve completeness by link-

ing its latent variables (amplitudes and phases describing the quantum state) to classical

degrees of freedom (CDOF) representing environmental effects. This hypothesis introduces

a modified Schrodinger equation (MSE) explicitly modeling environmental influences, in-

cluding the measurement process. Preserving linearity as an extension of the SE, the MSE is

solvable through linear differential equations, accommodating non-unitary dynamics while

conserving probability. This approach adheres to the postulates of quantum mechanics,

producing random outcomes, and representing all observables as Hermitian operators like

the Hamiltonian. Notably, it avoids increasing the dimension of the quantum state through

direct tensor product representation, hence avoiding partial traces. The "collapse" of the

quantum state unfolds continuously, encompassing weak quantum measurements and the

Zeno effect as special cases of a context-dependent measurement process.

The incompleteness of the SE becomes evident when solving it for the simplest case

of a time-independent Hamiltonian, denoted by 𝐻𝑜. The formal solution is given as:

|𝜓(𝑡)⟩ = 𝑒−𝑖𝐻𝑡/ℏ |𝜓(0)⟩. Expanding the initial state vector in the energy basis yields:

|𝜓(𝑡)⟩ = ∑
𝑛 𝑅𝑛𝑒

−𝑖𝜙𝑛𝑒−𝑖𝐸𝑛𝑡/ℏ |𝑛⟩, where 𝐻𝑜 |𝑛⟩ = 𝐸𝑛 |𝑛⟩. This solution (for a system of linear

first order differential equations) is unique only if all 𝑅𝑛 and 𝜙𝑛 are specified. However, since

the quantum system is coupled to its environment (or the process that created its existence

at 𝑡 = 0), the influence of the environment will remain present at all times. Therefore, both

𝑅𝑛 and 𝜙𝑛 must be functions of time, unless the system is perfectly isolated after 𝑡 = 0+,
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which is when the SE works. For an open quantum system, we must modify the SE to allow

𝑅𝑛 and 𝜙𝑛 to depend on time, which creates a communication link between the quantum

system dynamics governed by 𝐻𝑜 and CDOF that control the time dependence of 𝑅𝑛 and 𝜙𝑛

in a context-dependent manner. Due to the completeness of the vector space spanned by the

energy basis, if we specify 𝑅𝑛 (𝑡) and 𝜙𝑛 (𝑡), then it is clear the linear superposition formula

given by |𝜓(𝑡)⟩ =
∑

𝑛 𝑅𝑛 (𝑡) 𝑒−𝑖𝜙𝑛 (𝑡)𝑒−𝑖𝐸𝑛𝑡/ℏ |𝑛⟩ is the proper description of the quantum

dynamics.

To obtain the MSE, the first step plugs this general form into the SE, and accounting

for the time dependence in 𝑅𝑛 (𝑡) and 𝜙𝑛 (𝑡), more terms are generated, and thus the SE

is not satisfied. The second step collects these extra terms, and after some math and

rearrangements, it is found that the Hamiltonian𝐻𝑜 must be modified to include a noise term,

which is called𝐻𝑛 (𝑡). This makes the Hamitonian time dependent, given as: 𝐻 = 𝐻𝑜+𝐻𝑛 (𝑡)

due to environmental influences. However, additional terms remain that cannot be absorbed

into the noise contribution. Collecting these terms, the third step represents them as the ket,

|𝜂(𝑡)⟩. Then the MSE is written as:

𝑖ℏ
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻 |𝜓⟩ + 𝑖ℏ |𝜂⟩ (1.9)

Note that 𝑅𝑛 (𝑡) =
√︁
𝑃𝑛 (𝑡), where 𝑃𝑛 (𝑡) is the probability for the quantum system to be

in energy state 𝑛. The role that |𝜂(𝑡)⟩ plays is to relate ¤𝑅𝑛 to 𝑅𝑛. It is remarkable that

the quantum system dynamics is determined once ¤𝑅𝑛 is related to 𝑅𝑛 through a constituent

equation that defines the quantum state evolution modulator given by |𝜂⟩. There is flexibility

in how to construct a constituent equation. For simplicity (and considerable generality),

a master equation (ME) can be used such that ¤𝑃𝑛 (𝑡) =
∑

𝑘 Γ𝑛𝑘 𝑃𝑘 (𝑡) and ¤𝑅𝑛 = 1
2

¤𝑃𝑛 (𝑡)
𝑅𝑛 (𝑡) .

where Γ𝑛𝑘 are elements of a rate matrix, Γ. Notice that the ME defines a system of linear

differential equations (SLDE), and these couple to the original SLDE describing unitary

dynamics (from the SE). In short, two SLDE are coupled without increasing the dimension

of the quantum state. For the case that 𝐻𝑛 (𝑡) commutes with itself and 𝐻𝑜 ∀𝑡, the MSE can
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be solved exactly, presenting no more difficulty than the original SE.

In this thesis, the noise term, 𝐻𝑛 (𝑡) is assumed to commute with itself ∀𝑡 and with 𝐻𝑜.

A Weiner process is applied directly to the phase angle 𝜙𝑛. In this thesis, only the Weiner

noise model for 𝜙𝑛 (𝑡) is modeled, which is sufficient to demonstrate the effects of an open

system. Using a more accurate model will not change the results qualitatively.

1.5 Stationary States of Open Quantum Systems

In the literature, certain open quantum systems have been shown to have stationary

states coinciding to their closed system counterparts. The derivation surrounding these

findings make use of classically open and dissipative systems, in which regular or strange

attractors are present. Attractors are subsets of the phase space of dynamical systems.

The classification of regular or strange depends on the characteristics of the attractor being

studied. Examples include the nonlinear oscillator associated with regular attractors and

Lorenz evolution associated with strange attractors. The quantization process involves

converting continuous functions of classical mechanics into discrete functions acted on via

operators. Utilizing the Lindblad formalism to model the Brownian motion of a quantum

harmonic oscillator reveals that the evolution of certain open quantum systems can lead to

a unique stationary state that is approached from all initial conditions. [12] [13]

1.6 System of Interest: Particle in a Box

The study of a particle in a box represents a quintessential problem in quantum mechanics,

serving as a cornerstone in understanding the behavior of spatially confined particles,

modelled using an infinite potential well. While the traditional treatment of a particle in a

box assumes an isolated system, this study extends the reach of this problem by introducing

coupling to an environment. The aim is to describe the interplay between the confined

particle and its surrounding environment through quantum trajectories. This study not

only broadens our understanding of the foundational principles of quantum mechanics

through the Bohmian framework, but also holds relevance in diverse fields, from quantum
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information science to condensed matter physics. [14] Through the lens of open quantum

systems, the boundaries of the particle in a box problem evolves into a dynamic landscape,

offering insights into the balance between coherence and decoherence in quantum systems.

Standard eigenfunctions and eigenenergies of the particle in a box are used as a baseline for

this study and are defined as the following:

𝜓𝑛 =

√︂
2
𝐿

sin
𝑛𝜋𝑥

𝐿
(1.10)

𝐸𝑛 =
𝑛2ℎ2

8𝑚𝐿2 (1.11)

• L is the length of the box.

• n is the quantum number, representing discrete quantum levels.

• h is Planck’s constant.

• m is particle mass.
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1.6.1 Objectives of Study

1. Create a baseline study for the Bohmian mechanics of closed particle in a box systems

through the observation of particle initial conditions and trajectories. The following

characteristic will be surveyed:

• Phase effects on initial conditions

• Positional constraints of the velocity field

• Lyapunov exponents of phase space trajectories

2. Explore open particle in a box systems by utilizing a diffusive perturbation model

where the following characteristics will be investigated:

• Phase angle diffusion rate

• Lyapunov exponents of open systems

3. Compare and contrast scaling relationships and system dynamics to identify key

differences between system types.

• Characterize energy profiles of selected diffusion terms

• Investigate open versus closed Lyapunov exponents

4. Relate findings to practical applications within the quantum realm.



CHAPTER 2: METHODOLOGY

This section outlines the methodology used to explore open quantum systems within

the Bohmian framework. The approach involves modeling the deterministic trajectories of

particles influenced by a quantum potential, challenging traditional interpretations. The

focus is on capturing interactions, including decoherence and energy exchange, between a

quantum system and its environment through diffusive perturbations. By employing this

methodology, we aim to unravel the fundamental dynamics of open quantum systems and

contribute to the ongoing discussion about determinism in the quantum realm.

2.1 Diffusive Processes as Open Quantum System Perturbations

If it is acknowledged that the system is not closed, there must be a surrounding envi-

ronment. In order to avoid the problem of thermodynamic processes dominating quantum

effects, it is assumed that the system and environment are in a state of thermal equilibrium

and thus energy may fluctuate between the system and bath. This imposes that the internal

energy is not conserved, and it may flow into or out of the system from the environment.

Assume the wave function takes the general form of a superposition:

Ψ(𝑥, 𝑡) =
∑︁
𝑛

𝑅𝑛𝑒
−𝑖𝜙𝑛𝑒−𝑖𝐸𝑛𝑡/ℏ𝜓𝑛 (𝑥) (2.1)

• Ψ(𝑥, 𝑡) represents the total wave function over all superimposed states.

• 𝑅𝑛 represents the magnitude of the expansion coefficient, related to superposition

weightings. In closed systems 𝑅𝑛 is a constant. Although 𝑅𝑛 (𝑡) can represent a

stochastic process in an open system, for this work 𝑅𝑛 is a constant for closed and

open systems determined in the same way.
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• 𝜙𝑛 represents the initial phase angle for the expansion term in a closed system. For

an open system, 𝜙 is a time dependent stochastic variable to model decoherence from

the environment.

• 𝐸𝑛 represents the energy level for the 𝑛-th non-degenerate state given by: 𝐸𝑛 =
ℏ2𝜋2𝑛2

2𝑚𝐿2 .

• 𝜓𝑛 (𝑥) represents the energy eigenfunction.

The wavefunction is dynamically altered from the solution to the time-dependent Schrö-

dinger equation due to the effects of the environment on the system when it is open.

These dynamical effects occur through stochastic processes that govern the 𝑅𝑛 and 𝜙𝑛 time

dependence. In general, two separate diffusive processes will take place. The magnitude of

the expansion coefficients 𝑅𝑛 fluctuates due to energy exchange with the environment under

constant temperature conditions. In principle work can be done on the system through this

mechanism because 𝑅2
𝑛 represents the probability of measuring the system with energy 𝐸𝑛.

While the 𝑅𝑛 are characterized by the partition function, they will fluctuate from those ideal

values, impacting the weighting within the superposition and thus the probability of the

system to have a certain energy.

Similarly, the phase angle given by 𝜙𝑛 fluctuates. This change is more subtle, since it

relates to a latent variable that cannot be directly measurable, although is critical for out-

comes based on superposition. Although both the magnitude and phase can be randomized,

this study solely considers phase randomization. This implies that, on average, energy

is conserved. Fluctuations in kinetic energy (due to velocity changes) result from phase

fluctuations, but phase fluctuations do not alter the average total energy. Therefore, for the

systems modeled here, energy fluctuations in kinetic energy are, on average, compensated

by the quantum potential. This allows us to compare closed and open systems that differ

only by subtle differences in the phase angle, which is a latent variable in the theory of

quantum mechanics.
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2.1.1 Magnitude and Number of Expansion Coefficients

The magnitude of the expansion coefficient for the 𝑛-th energy level is determined as

𝑅𝑛 =
√
𝑝𝑛, where 𝑝𝑛 = exp(−𝐸𝑛/𝑘𝐵𝑇)/𝑍 and 𝑍 =

∑𝑛max
𝑛 exp(−𝐸𝑛/𝑘𝐵𝑇). The number of

terms 𝑛max is adjusted to ensure that the truncation error (resulting from omitting terms

with 𝑛 > 𝑛max) remains below 0.001%. This approximation transforms an infinite sum over

all quantum numbers into a numerically solvable problem. Note that 𝑛max increases with

particle mass, box size (𝐿), or temperature. Based on these limits and expectations of how

physical systems respond, and noting the correspondence principle, adding more terms in the

expansion is expected to shift the quantum system being modeled towards classical behavior,

where quantum effects are less significant. Thus, 𝑛max plays an important role in describing

dynamics while preserving physical relevance, especially considering temperatures below

room temperature (≈300K). The number of phase terms used in the expansion for the

wavefunction, will be explored in this work.

2.2 Numerical Scheme for Particle Trajectories

The method behind simulating the quantum trajectories involves a collection of multi-

stage MATLAB scripts. The first stage takes user inputs and stores information relevant

to the properties of the system to be studied. The second stage is the propagation of

the equations of motion. Inputs are passed through a function that creates and evaluates

the particle-in-a-box wave functions and necessary derivatives. The expansion across the

number of available quantum states is truncated to make calculations accurate on feasible

timescales. Analytical formulation of the velocity field through Bohmian mechanics is

used in conjunction with the Runge-Kutta integrator at fourth and sixth orders to propagate

motion over the entire timescale. In addition to this, stability checks are taken to ensure

dynamics are accurately represented. Numerical derivatives of the position are taken to

study the quantum potential characteristics of the systems. The third stage involves the

storage of the relevant data associated with the system including position, velocity, and
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quantum potential profiles. Due to computation time and a large number of simulations, the

program was adapted for parallel computation to work within the UNC Charlotte research

computing cluster to create a high-throughput pipeline. However, a large number of results

were also obtained on a commodity desktop computer.

2.3 Quantum Velocity Search Algorithm

The Quantum Velocity Search Algorithm, code named v2phiFinder, is a novel search

algorithm that takes a target position and velocity, and outputs the associated set of phases

needed to achieve that velocity (within a user controlled tolerance) at that position. This

search algorithm functions by iteratively producing a set of new velocities and grow-

ing/shrinking the search size depending upon successes/failures. A success is classified

as any velocity that is closer in absolute value to the search velocity than the previous

best value. After optimizing the number of samples per iteration, tolerance range, and

growth/decay constants, almost any velocity can be found at any position when enough

phase terms are available for combination (see Chapter 3.1 for more details). Once the

phase values are stored from the algorithm, it is possible to recombine them into their

respective wave functions to form probability densities or calculate bulk phase statistics.

2.4 Calculating Standard Deviation of Phase Sets

A common measure throughout this thesis is standard deviation. However, with the

traditional method of numerical computation, order of sets is not important, as is the case

for velocity. However, it was quickly observed through clever usage of the Quantum Velocity

Search Algorithm, that particular input conditions led to very similar wave functions, and

thus had very similar sets of phases as is the case in Figure 3.4. However, when calculating

standard deviations of phase sets using the standard treatment, it did not produce the

expected values. After careful examination it was found that correct method involved

taking the standard deviation along a column, each corresponding to an individual energy

eigenfunction, and then taking a final average. Below is an example calculation for a system
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with three phase terms per set.

Table 2.1: Table detailing a sample standard deviation calculation for phase sets.

𝑛 𝜙𝐸1 𝜙𝐸2 𝜙𝐸3

Set 1 18.4 2.2 -5.1
Set 2 16.7 4.3 -4.8
Set 3 17.1 1.5 -6.3
Set 4 19.2 2.7 -3.4

𝜎𝑎𝑣𝑔 = 1.18 1.16 1.19 1.19



CHAPTER 3: RESULTS

Exploratory results are presented for quantum trajectories calculated by Bohmian me-

chanics in both closed and open quantum systems, involving a single particle in a one-

dimensional setting. This study marks the first application of the open system model using

phase modulation as a stochastic process. Despite its simplicity, this model captures the

environmental impact on particle dynamics, offering insights into the dynamic interplay

between confined particles and their surroundings.

3.1 Closed Systems

With coherence maintained though unitary evolution, closed system results will be shown

first as a baseline to make comparisons upon. Since Bohmian mechanics is deterministic

in an isolated system, all variation in trajectories derive from differences in the initial

conditions. The subsequent dynamics are set for the entirety of the simulation. With this

in mind, it is worth pointing out that in classical mechanics, if the initial position and

velocity is specified, along with all forces, the trajectories are determined fully. Since the

quantum potential creates a quantum force, it is immediately noticed that the specification

of the entire wavefunction at 𝑡 = 0 is part of the initial condition in Bohmian mechanics.

This means, the latent variables representing magnitude and phases associated with all the

components in the initial quantum state is expected to lead to different trajectories. In the

set up used here, the magnitudes of the expansion in energy eigenstates are determined by

the the Boltzmann weights, as described above. Only the initial phases are being randomly

generated.
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3.1.1 Single Point Evaluation

The purpose of this section is to highlight the velocity profile across a series of observa-

tions at a singular irrational position 𝑎𝑥/
√

2. The reason why a irrational point was selected

is because an effort was made not to fall on a position where one of the eigenstate functions

had a node at that point. This concern appears not important provided the initial point is

not 𝑎𝑥/2 and if the number of expansion terms is large. In this case, for an electron and

box length of 100 Å, the results shown here are typical. For each observation, the set of

phases within the superposition of states are randomized in a controlled manner according

to the standard deviation 𝜎𝜙 of a Gaussian distribution centered at zero. Each set of phases

corresponds to a different probability distribution and velocity field, thus it is possible to

observe the deviation in mean and standard deviation in the velocity measurements as 𝜎𝜙

is varied.

The four panel graphic in Fig 3.1 highlights 𝜎𝜙 increasing in tenfold increments. At first,

the velocity profile is localized to the region surrounding this particular zero phase velocity

value (0.199Å/fs). However, as𝜎𝜙 is increased further, the mean velocity value shifts to zero

and the standard deviation saturates at a value of roughly 2. As the phase values become

more randomized about 2𝜋, it is possible for the velocity to have positive or negative values

due to the larger variation in initial conditions. The result of mean shifting is in agreement

with the classical limit, as any classical particle may have an initial condition moving one

direction (small 𝜎𝜙 representing low sampling), but will eventually change directions after

contacting the wall (large 𝜎𝜙 representing higher sampling).

In order to understand the nature of these distributions, another set of observations was

made to calculate the standard deviation and kurtosis of the associated velocity initial

conditions as a function of sample number. The reasoning behind this was to test for

saturation in either value to give a relative understanding of which statistical moments have

bounds. The standard deviation is related to the second statistical moment, while kurtosis

is related to the fourth statistical moment.
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Figure 3.1: Frequency count of velocities generated as initial conditions with 𝜎𝜙 increasing
in tenfold increments. Red represents negative velocity values, blue represents positive.
The standard deviation of velocity is given in the top right of each graph.

The average value for standard deviation levels off as a function of samples, while

mean kurtosis continues to increase exponentially. Thus, it can be concluded that the

second moment of the velocity distribution exists as some bounded number, while the

fourth moment does not. This allows for the elimination of many traditional types of

distributions including that of Gaussian or Laplacian nature and helps in characterizing

that the distribution is highly heavy-tailed, which is also evident based on the presence of

extreme values in the data sets.

3.1.2 Linear Evaluation

The purpose of this section is to highlight velocity and phase profiles across a series

of observations in a linear set of positions across the length of the box. This systematic
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Figure 3.2: The mean of standard deviations as a function of log10 of samples (left) shows
each mean value with a small square box and vertical error bars. The mean of log10 of
kurtosis as a function of log10 of samples (right) shows each mean value with a small square
box and vertical error bars.

sweep over positions will reveal a relationship between the standard deviation in phase and

its effect upon velocity. This relationship will allow for the creation of phase diffusion

coefficients with physical ties which can be used in the open system analysis later.

In order to start this analysis, box size and velocity must be studied for any effects on

phase. The initial interest in this study arose from data suggesting that for a box size of

100Å, that only certain velocities could be found by the quantum velocity search algorithm

when the position was near the center point 𝑎𝑥/2. Thus, two more box sizes were observed

and it was found that similar results existed to a larger degree in the 50Å case, but not

observed at all in the case of 200Å. The apparent failure of the algorithm can be seen as

the dark blue areas in each graph of Fig. 3.3, highlighting that the center of the box is a

problematic point once the search velocity is increased. Actually, it is not the algorithm that

fails, but rather, the center of the box appears to represent a pathological point. However,

as more terms in the expansion over energy eigenstates is considered, the maximum speed

increases. More terms can be generated by increasing temperature, increasing mass or

increasing the linear dimensions of the box. All three trends tend to bring us from the
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Figure 3.3: Surface plots highlighting position and velocity as inputs for the search algorithm
which outputs phases for box sizes of 50Å (left) and 100Å (right). The standard deviation
of each set of phases are represented as colors along the grid. The color bar is a legend
showing the range of values and the corresponding colors.

quantum to classical regime.

The phase randomization algorithm produces the intended velocity (within a specified

tolerance) at any designated position (if within the allowable range of velocities). It is found

that there is a significant degeneracy in wavefunctions that results in identical classical

initial conditions. This degeneracy is characterized by the standard deviation in the phases.

Once these phases are determined to set the initial conditions, the initial probability density

from the wave function can be determined. This is done to qualitatively observe how the

shape of the probability density changes as the initial speed of the particle is increased.

As the search velocity is increased, it is observed that there is an overall convergence

in the probability densities compared to low search velocities. This fact points to the

conclusion that integer divisions of the box length and their range of searchable velocities

heavily coincide to the relative number of phase terms that the algorithm is able to target.

This explains why the non-searchable region became larger when the box size decreased,

due to the number of phase terms decreasing as well. The inverse of the previous statement

also explains why when the box size was increased to 200 Å, that the non-searchable region
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Figure 3.4: Sets of 5 probability densities generated from initial conditions with box size
of 100Å and search velocities of 0.5Å/fs (left) and 5Å/fs (right).

vanished due to the increase in phase terms as seen in Fig. 3.5.

Figure 3.5: Surface plot highlighting position and velocity as inputs for the search algorithm
which outputs phases for a box size of 200Å. The standard deviation of each set of phases
are represented as colors along the grid. The color bar is a legend showing the range of
values and the corresponding colors.
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3.2 Open Systems

The characterization of closed systems in section 3.1 was a preliminary step for under-

standing the system parameters used in this open system study. Leveraging the knowledge

of positional constraints and the connection with phase terms, this study will be conducted

with a box length of 200Å. The goal of this section is to make a series of qualitative and

quantitative comparisons across multiple phase diffusion coefficients, which will be related

to the thermal energy of the system.

3.2.1 Phase to Energy Relationship

In order to relate the diffusion coefficient of phases to energy exchange in the system,

the standard deviation in velocity must be tied to the standard deviation in phases. Once

this relationship is solidified, an effective kinetic energy 1
2𝑚𝜎2

𝑣 can be associated with a

saturation value located at the median standard deviation in velocity 𝜎𝑣𝑀 . Finally, the

effective kinetic energy rate can related to the thermal energy 𝑘𝑏𝑇 of the system and used

to estimate the needed coefficient to produce that amount of energy change per picosecond.

Figure 3.6: Average standard deviation of velocity as a function of standard deviation of
phases (solid blue). A linear fit (black dashed line) with a slope of 2Å/(fs rad) is fitted to the
initial portion (approximately 0.55 rad) until saturation is met, represented by the median
value of 1.134Å/fs (red dashed line).
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The data in Figure 3.6 is averaged from a linear spacing across the 200Å box, for a

series of randomized sets of phases controlled by 𝜎𝜙, leading to over 110 million samples

included. The median value is used a saturation point in scaling, representing the point of

maximal phase influence. The large spikes in this graph are an intrinsic effect of the system

due to the heavy tails of the velocity distribution as stated earlier. The velocities from the

linear fit in Figure 3.6 are transformed into energies via 1
2𝑚𝜎2

𝑣 . This relationship is most

easily viewed as a log-log plot when working in tenfold increments of the system thermal

energy (about 0.026 eV) as seen in Figure 3.7. The x value of intercepts between the blue

dashed lines with the linear black line can be used to give the required spreading in phase

corresponding to that many units of system thermal energy, ranging from 10−3 to 10.

Figure 3.7: Log-Log plot of Energy Rate as a function of standard deviation of phase (solid
black). The horizontal dashed lines represent tenfold increments of the system thermal
energy. The solid red line represents the energy associated with the saturation velocity of
1.134Å/fs.

3.2.2 Trajectory Analysis

A total of five cases will be presented in this trajectory analysis with phase diffusion

rates corresponding to 10−3 through 101 thermal energy units. The analysis will consist

of lyapunov exponent calculations and a qualitative counting of orbit changes. All of

the following comparisons will be made with the closed system equivalent as a baseline.
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Additionally, to produce lyapunov exponents, a spread size of 10−10 is used to generate each

initial condition set of position and velocity. These sets of initial conditions are then used

as inputs for the quantum velocity search algorithm to produce the starting wave function

for each trajectory. The following formula is used as the basis for calculating lyapunov

exponents in this analysis.

𝜆 = lim
𝑡→∞

lim
|𝛿Z0 |→0

1
𝑡

ln
|𝛿Z(𝑡) |
|𝛿Z0 |

(3.1)

• 𝜆 represents the lyapunov exponent.

• |𝛿Z(𝑡) | represents the absolute change over any two trajectories.

• |𝛿Z0 | represents the initial separation between trajectories.

• The limit that |𝛿Z0 | → 0 ensures validity of the linear approximation. [15]

• Positive lyapunov exponents typically correspond to chaotic systems.

Figure 3.8: Position as a function of time for ten closed system trajectories with a spread in
initial conditions of 10−10 for position and velocity.
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The closed system trajectories in Figure 3.8 are well beyond the time of transient behavior

and are shown in their steady state orbits. Of the ten trajectories overlaid, some have orbits

spanning the length of the box, and others are strictly positioned to one side or the other. The

lyapunov exponent calculation for this specific case gives an average value of approximately

23, pointing to the conclusion that these trajectories are part of a system with the presence

of chaotic attractors.

Figure 3.9: Maximal lyapunov exponent across nine trajectories of a closed system. The
horizontal dashed line represents the average value which is approximately 23.

Now that the closed system has been characterized, the analysis on the open system

trajectories can be compared. The trajectories in Figure 3.10 can be seen with no repeating

orbits, whereas the closed system in Figure 3.8 had only stable orbits. Additionally, the case

representing an energy rate of 10−3 thermal units (3.10 Left) has a trajectory profile closely

matching that of the closed system, with the addition of instability of orbits. However,

the case representing 10 thermal units of energy exchange per picosecond is much more

random, showing little no orbital behavior (3.10 Right).

In Figure 3.11 it is observed that as the orbits decrease stability as the energy exchange

constant is increased. The left panel shows a case of 10−3 units of thermal energy per
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Figure 3.10: Ten open system trajectories for energy rates of 10−3 (left) and 10 (right) in
units of thermal energy per picosecond.

picosecond, with only 4 regions. The right panel shows a case of 10−1 units of thermal

energy per picosecond with 8 distinct regions. Therefore, the average time per region

decreased by half when the energy exchange rate was increased by a hundred times. This

halving effect persists in higher energy systems, leaving room for little orbital detection,

thus making the trajectories seem mostly random. Another interesting feature of Figure 3.11

(left) is a intermediate orbital between the third and fourth regions, highlighting the ability

for phase perturbations to give way to smooth transitions under the correct conditions.

In Figure 3.12 (right), it is observed that the average value from all open system runs

decreased as a function of the energy exchange rate, and is below the average produced by the

closed system (approximately 23). One can argue that these diffusive phase perturbations

are causing a disruption to the strength of the phase-space attractors. This is also observed

by qualitatively comparing the trajectories in Figures 3.8 (closed) to 3.10 (open).

Observation of the general form for maximal lyapunov exponent in Equation 3.1 shows

the presence of a natural logarithm. When comparing the average values of both open

and closed systems, it is clear that the closed system directly corresponds to the spread
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Figure 3.11: Two sample trajectories with energy exchanges of 10−3 (left) and 10−1 (right)
units of thermal energy per picosecond. The vertical orange lines represent breaking points
in orbital behavior.

size of 10−10, defined earlier as the initial allowed deviation for both position and velocity.

However, the open systems align with spread values ranging from 10−9.5 to 10−8.25. For

this specific set of initial conditions, opening the system corresponds to same effect as

increasing the initial spread of initial conditions by 100.5 to 101.75, depending on the energy

exchange rate used, for both position and velocity in the lyapunov analysis.

Analyzing the velocity distribution across the open system trajectories revealed that the

standard deviation in velocity decreased as a function of diffusion rate. However, the

decreasing trend saturated at an exchange rate of 1 unit of thermal energy. A decrease in

standard deviation over the entire set of trajectories supports the previous statements about

the open system disruption of orbits, due to the largest contributions coming from that of

stable orbits across the entire length of the box. This conclusion is supported by the data

from 3.10 which clearly shows the disturbance of cross box orbits as the thermal exchange

rate is increased. Additionally, the kurtosis saw an increase from Figure ∼ 102 (closed)

to ∼ 104 through 106 (open) depending on the diffusion rate. Overall, these relationships

show that the velocity distributions become sharper with wider tails as the diffusion rate is

increased. However, this does not point to the conclusion that open system dynamics are
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Figure 3.12: Maximal lyapunov exponent across nine trajectories of an open system for
each of the five energy rates from 10−3 through 10 thermal energy units, each corresponding
to a different color (left). Average lyapunov exponent for each energy rate (right).

more classical appearing than their closed counterparts.
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Figure 3.13: Absolute value of the natural log of x, with x ranging from 10−10 to 10−8 and
plotted on a log10 axis for ease of viewing. Horizontal black lines represent each energy
exchange rate and their respective average lyapunov exponent value.

Figure 3.14: Standard deviation in velocity as a function of diffusion coefficient in 𝑘𝐵𝑇

units (left). Log10 of Kurtosis in velocity as a function of diffusion coefficient in 𝑘𝐵𝑇 units
(right). Each of the 5 diffusion constants had 10 trajectories and all run velocities were
concatenated in order to perform these bulk statistics.



CHAPTER 4: CONCLUSION

In conclusion, this thesis has directly advanced the understanding of quantum phases

and the relationship they share with particle trajectories in both closed and open Bohmian

systems. Creation of the Quantum Velocity Search Algorithm, an inverse search method

that can output sets of quantum phases (allowing for wave function reconstruction) given

position and velocity information, was instrumental in the results produced in this thesis.

Meticulous analysis of closed systems led to a variety of results, the most important of

which are the velocity distribution characteristics and positional velocity constraints. The

total number of phase terms had a drastic effect on the distribution of velocity constraints,

as sets of 4 phases could only produce speeds of 1Å/fs at the center of the box, while

sets of 18 could produce speeds even up to a tenth of the speed of light (300Å/fs). The

open system analysis heavily relied on information gathered from the closed system and

allowed for the scale of phase diffusion coefficients to be tied to thermal energy units of

the system. Qualitative comparisons were made across closed and open systems, along

with quantitative measures such as maximal lyapunov exponents. All of which point to the

conclusion that open systems heavily disrupt closed quantum behavior. The point of scaling

saturation for the phase diffusion coefficient is directly associated to the fact that phases are

bound to the unit circle and values above or below [0, 2𝜋] simply repeat. This fact means

that the energy produced through phase perturbations has a maximal rate around 1 unit of

system thermal energy per picosecond. Overall, this thesis paves the way for future analysis

on open quantum systems using the Bohmian framework and acts to further blur the lines

between determinism and indeterminism in the quantum world.
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