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ABSTRACT

SAYANTAN DATTA. Prioritized Robotic Exploration with Dynamic Deadlines.
(Under the direction of DR. SRINIVAS AKELLA)

Autonomous exploration using mobile robots, commonly referred to as robotic explo-

ration, entails simultaneously performing robot perception, localization, and motion

planning to explore an unknown environment. Most prior indoor robotic exploration

algorithms focus on exploring the entire environment. We consider exploration under

deadlines dynamically imposed either by the robot’s battery or by the environment.

Such time-sensitive robotic exploration is critical in dangerous environments as it

provides vital initial information about the geometric structure and layout of the en-

vironment for subsequent operations. For instance, firefighters can utilize an initial

map generated by this deadline constrained robotic exploration to rapidly navigate a

building on fire. In the presence of deadlines, the robots should identify the semanti-

cally significant regions of the environment (e.g., corridors) and prioritize those that

enable them to determine the environment’s geometric structure and return to the

starting position before the deadline.

This dissertation addresses the problem of autonomous exploration in indoor envi-

ronments with dynamic deadlines. The problem is NP-hard and requires exponential

time to solve optimally. Therefore, we present a short-horizon exploration algorithm,

the priority-based greedy exploration algorithm, and several long-horizon exploration

algorithms; these include adaptations of the orienteering problem and the profitable

tour problem for single-robot and multi-robot exploration of unknown environments

with dynamic deadlines. Furthermore, we present a test suite of environments and ex-

ploration metrics to benchmark the real-world efficiency of exploration algorithms in

office-like environments. Our single-robot experiments reveal that the priority-based

greedy exploration algorithm, which focuses on exploring semantic regions with higher
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connectivity, consistently outperforms the baseline cost-based greedy exploration al-

gorithm in terms of environment layout identification and exploration efficiency. The

priority-based greedy algorithm was found to be on par with the computationally ex-

pensive long-horizon exploration algorithms in terms of percent of the area explored

within the deadline. Long-horizon exploration algorithms on the other hand exhibit

consistent performance with low variance over repeated experiments. Moreover, the

multi-robot priority-based greedy exploration algorithm demonstrated better perfor-

mance compared to the multi-robot baseline exploration algorithm and performed

on par with the multi-robot long-horizon based exploration algorithm while being

computationally faster.
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CHAPTER 1: INTRODUCTION

Robotic exploration enables autonomous navigation in environments that are either

unsuitable or hazardous for human presence. This technology facilitates collaborative

exploration with human teams, augmenting their capabilities in various applications,

such as mapping perilous indoor settings and conducting search and rescue opera-

tions. Currently, most robotic exploration techniques [1, 2, 3, 4] predominantly aim

at complete exploration of the initially unknown environment as quickly as possible,

often neglecting the constraints imposed by the robot’s operational time limits or

environmental factors.

As mobile robots run on batteries, the battery life of the robots is limited. This

limitation specifically applies to unmanned aerial vehicles (UAVs), especially quad-

copters. For example, a DJI Phantom 4 has a battery lifespan of 25 minutes, while an

Unmanned Ground Vehicle (UGV) such as Turtlebot3 has a battery lifespan of about

2 hours. In practice, the operational time, the time during which the robot doesn’t

start flashing low battery sign, of the robots are much lower than the battery lifespan.

Environmental conditions can further reduce this operational time. Two illustrative

scenarios where environmental factors significantly influence the operational time are

presented:

• Building on fire: In this scenario, a robot equipped with LiDAR and sonar

sensors is deployed to navigate a burning building. The objective is to map

the building’s layout and provide it to firefighters before their entry. The robot

is assigned a deadline that considers both the urgency of the firefighters’ need

for the layout and the extent of damage the fire could inflict on the robot.

The robot must complete its exploration and return to the operator within this
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stipulated deadline.

• Radioactive environment: In the event of a radiation leak at a nuclear power

plant, human entry even with safety equipment becomes prohibitive. A robot is

then tasked with exploring the facility. Due to the thick walls impeding wireless

communication, the robot must return safely to the exit to relay its collected

data. As the robot navigates the nuclear plant, depending on the radiation

levels, the robot gets a limited time to explore the environment before the

radiation starts affecting the robots sensors and controls. The robot is required

to complete its exploration within this constrained deadline, adapting to any

unexpected changes of its deadline.

This dissertation introduces and discusses several methods by which a robotic sys-

tem can explore an environment within a dynamic deadline. The robotic system

is constrained by a limited time to explore the environment, necessitating a prior-

itized exploration of the environment to ensure that the most critical segments of

the environment’s layout are mapped before the deadline. The robotic system may

receive multiple updated deadlines, reflecting changes in environmental conditions or

the non-linear depletion of the robot’s battery.

We introduce several prioritized exploration algorithms for a single robot exploring

an indoor environment with a dynamic deadline. The first prioritized exploration

algorithm is a priority-based greedy algorithm that works in an iterative greedy fash-

ion. sdThe priority-based greedy algorithm selects the visiting the locally optimal

exploration target with a one step lookahead. An exploration target is a location in

the explored environment that the robot visits expecting to view an unexplored part

of the environment. We investigate alternative prioritized exploration algorithms in

an attempt to improve the priority-based greedy solution by modeling the problem

as an Orienteering problem, a Profitable Tour problem, a Minimum Latency Paths

problem, and a Profitable Tour problem with Minimum Latency paths. We find that
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the priority-based greedy solution provides us with competitive results with short

deadlines while being outperformed by other formulations for longer deadlines. We

compare the algorithms in simulation and real world experiments. We provide a

detailed discussion analyzing these results.

Furthermore, we extend our investigation to a multi-robot variant of the priori-

tized exploration problem. We introduce two exploration algorithms: a multi-robot

priority-based greedy algorithm and a multi-robot profitable tour problem based ex-

ploration algorithm. We develop a heuristic based on the team orienteering problem

to solve the multi-robot profitable tour problem based exploration algorithm. The

performance of these algorithms is compared through simulations, accompanied by a

discussion of the findings.

This dissertation presents the theory, algorithms, simulation and real-world exper-

iments of the prioritized exploration algorithms with dynamic deadlines. We develop

exploration metrics to assess the quality of our algorithms and statistical tests to

ascertain their significance. Chapter 2 introduces the single-robot prioritized explo-

ration problem with dynamic deadlines and presents greedy solutions to the problem.

Chapter 3 introduces optimization based algorithms for the single-robot prioritized

exploration problem. Finally, Chapter 4 introduces the multi-robot variant of the

prioritized exploration problem with dynamic deadlines and presents our approach

and solutions. The dissertation concludes in Chapter 5, where we summarize our

research contributions and discuss several directions for future work.



CHAPTER 2: PRIORITIZED INDOOR ROBOT EXPLORATION WITH

DYNAMIC DEADLINES

In robotic exploration, the robot starts exploring a initially unknown environment

to explore the environment till the exploration is complete or till other factors such

as robot battery and environmental constraints inhibit the robot from exploring any

further. The robot senses the environment with its sensors and represents the obsta-

cles and free regions as a map. It takes a decision to visit the next position at the

periphery of the obstacle free region and the unmapped region on the map. As the

robot is unaware of the remaining unexplored environment, it lacks foresight into what

structure and connectivity of environment it can expect while exploring. Therefore,

it takes a decision based on the current known map of the environment.

As the robot explores the environment, the environment or the robot’s battery im-

poses a deadline on the exploration time. The robot should come back to the starting

location of the exploration before the imposed deadline. If multiple deadlines are

sequentially imposed on the robot, the robot must explore according to the updated

deadline. The goal of the exploration is to determine the geometric structure of the

unknown environment as rapidly as possible and return to the home location. With

the imposed constraints, the robot should prioritize certain parts of the environment

to ensure it is able to determine the geometric structure before the deadline.

An iteration of the robotic exploration problem starts with the robot equipped

with sensors to observe the environment around it and simultaneous localization and

mapping algorithms to localize itself to the partially explored environment it is in.

The robot determines a set of frontier points. Each frontier point is a location to

travel to on the explored map from which the robot expects to view a portion of the
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unexplored region. The robot fixes on one particular frontier point to travel to based

the exploration algorithm. This specific frontier point is referred to as the target

point. This iteration of the robotic exploration ends when the robot navigates to the

chosen frontier point.

2.1 Problem Statement

A single robot explores an unknown environment and models the environment as

an exploration graph, G = (V,E). V is the set of explored vertices, where each

vertex v ∈ V represents a point in the exploration environment. E represents the

set of edges, where eij ∈ E is an edge that connects two vertices vi and vj. An edge

represents a collision free path between the two vertices. Each edge has a weight wij

which is the estimated time to traverse the path represented by the edge. The set of

vertices, V can be divided into two subsets, discovered vertices Vd and visited vertices

Vvis.

The robot selects a target vertex vt ∈ Vd to visit. On visiting the vertex, the

robot explores a part of the unknown environment. Once the map is updated, a

new exploration graph G is formulated based on the new explored environment.The

objective of the robot is to explore the graph G efficiently by identifying the layout

of the environment within a deadline tr0 imposed by the environment or the robot’s

battery. The deadline tr0 is imposed after a time period ta, when the robot explores

without a deadline. The value of ta is unknown to the robot. The robot is unaware of

the values of ta and tr0 at the start of the exploration. Neither does it know when the

deadline will be imposed nor what exploration time it would have when the deadline

is imposed. The timeline of robot exploration is illustrated in Figure 2.1.

2.2 Related work

Autonomous robotic exploration is an important and well-studied problem. A

widely used approach for robotic exploration is frontier-based exploration, which
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Robot 
starts

exploration

Robot
completes

exploration

Exploration without a deadline
t 

Exploration with a deadline
t

Time 0 t  + ta r0ta

a r0

Deadline t
imposed on

robot

r0

Figure 2.1: Timeline of robot exploration. The exploration starts at time 0, when it
explores unaware of a deadline. After ta timesteps, a deadline of tr0 is imposed on the
robot. The robot is aware of the current deadline tr0 . The total exploration time of the
robot is ta + tr0

greedily directs robots to regions likely to provide new information about the en-

vironment. Such approaches typically develop occupancy grid representations of en-

vironments using either a single robot [1] or multiple robots [5]. Decision theoretic

approaches for exploration consider the information gain of exploration actions and

robot pose uncertainty reduction of loop-closing actions [6]. See Thrun et al. [7] for

an overview of probabilistic mapping techniques that compute occupancy grids using

Simultaneous Localization and Mapping (SLAM) approaches.

Robotic exploration was modeled as graph construction by Dudek et al. [8] for a

robot that uses portable markers instead of distance and orientation sensors. An ex-

ploration and mapping strategy using a topological model based on a spatial semantic

hierarchy was developed by Kuipers and Byun [9]. Cowley et al. [10] advocate an

efficient exploration approach that uses both topological and metric data to identify

places with semantic significance for exploration. The idea was improved by Wang

et. al. [3] by using a topological map and semantic information from RGBD sensors

to improve indoor exploration. The technique uses semantic information from the en-

vironment to distinguish between rooms and corridors. Since their exploration algo-

rithm is directed towards rooms, the robot revisits corridors several times. This makes

it less suitable for exploration in environments with dynamic deadlines. Graph-based

exploration for subterranean environments was addressed in [11], where the authors

implement a two-stage local and global planner that enables the UAV to return to
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its starting location based on the current remaining flight time and information that

is available from the start of the exploration. Similar graph-based exploration in an

subterranean environment was also addressed by Bayer et. al. [12, 13]. However,

these approach does not consider dynamic deadlines.

Time-limited exploration has been investigated recently [14] using a reinforcement

learning based exploration method, and uses a fixed deadline at the start of ex-

ploration. Communication and energy constraints during exploration have been ad-

dressed by [15] for a multi-robot setup. Energy constraints serve as deadlines; however

the focus is on multi-robot coordination, and the robots do not return to their home

locations. Semantic information-based coordinated multi-robot exploration has been

introduced in [2]. Prior information, in the form of rough topometric graphs pro-

vided by a user [16], or predictions of unexplored regions of the environment based on

environment structure and a library of previously seen maps [17], has recently been

leveraged for more efficient exploration. Semantic information has also been used for

task adaptation [18]. Recent work uses deep reinforcement learning (DRL) to learn

exploration information over office blueprints [19]. DRL-based exploration [20, 19]

has not considered deadlines.

2.3 Greedy Algorithm for Prioritized Robotic Exploration

The greedy algorithm focuses on selecting a specific target vertex vt depending on

whichever vertex is the most rewarding at that time instant. It does so by following a

three stage exploration strategy which starts when the robot has a partially explored

map and needs to decide a particular location to visit, and ends when the robot has

visited the specific location. Figure 2.2 illustrates the three stage solution of the

exploration strategy. The first stage maps (Section 2.3.1) the environment using the

on-board sensors to create a occupancy map. This occupancy map is converted to a

skeleton graph. This skeleton graph is used as the exploration graph, where vertices

refer to a local region within the explored area. The second stage of the algorithm
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Figure 2.2: The three-stage exploration strategy developed for single agent prioritized
exploration with a dynamic deadline. The first stage converts the explored environment
into a graph representation. The second stage calculates priority of candidate locations
for the robot to visit. These potential locations are mapped as vertices in the exploration
graph. The third stage involves exploring the environment while prioritizing over vertices. It
uses two exploration algorithms to explore the environment before returning to the starting
location. The first exploration algorithm is used when the deadline is not imposed, while
the second is used when the deadline is imposed.

(Section 2.3.2) assigns priorities depending on the structure of the local region. For

example, corridors have higher priority than small rooms, as exploring corridors may

lead to discovering more rooms. Finally, in the third stage (Section 2.3.3), we have

two greedy algorithms, one that is used to explore when the robot does not have a

deadline, and second is used when the robot has a deadline imposed on it.

2.3.1 Stage I: Creating the Exploration Graph

For the graph environments, we assume that the robot discovers the vertices along

with their semantic information. The semantic information is the type of region the

vertex is in (e.g., corridor, room). We also assume that two vertices are connected
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by an edge if they have mutual line-of-sight visibility. These simplifying assumptions

allow greater focus on the exploration algorithms.

We next discuss creation of the exploration graphs for Gazebo environments. The

agent senses an initially unknown environment using its LiDAR sensor. By running

a SLAM algorithm on the robot odometry and LiDAR data, we create an occupancy

grid map [21] of the environment. Each cell of this occupancy grid shows the prob-

ability of it being occupied. This occupancy grid map is morphed into a skeleton

image [22]. This image is further transformed into a skeleton graph, which serves as

the exploration graph G. The vertices V in this skeleton graph indicate two types

of locations of interest in the environment. The first is a frontier region between

the explored and unexplored regions. The second is an intersection or branching of

possible paths that the robot can take, such as an intersection of two corridors or

a corridor and a room. An edge connects a pair of vertices if there is a collision-

free path between them. As the robot traverses the environment, the exploration

map is updated. A new skeleton graph is generated after the robot reaches the next

vertex during exploration. The steps of creating the skeleton graph is illustrated in

Figure 2.3.

Our exploration algorithm can also be used, with minimal modifications, with

other 2D and 3D environment representations such as topometric graphs [10] and

OctoMap [23].

Each vertex can represent the local environment and its associated semantic infor-

mation observed by the robot’s sensor at that position. The shape and size of the

available floor region are used to assign a label to a given vertex. For example, if

a vertex is in a region that is a narrow passageway or a passageway that leads to

different doors, the vertex is labeled as a “corridor”. Similarly, if a vertex is in a room

with small dimensions, such as a personal office or a closet, it is labeled as a “small

room”. On the other hand, if a vertex is in an area with large open spaces, it is labeled
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(a) Occupancy Map (b) Map with dilated obstacles

(c) Skeleton image (d) Exploration Graph

Figure 2.3: Stages of converting occupancy grid map to an exploration graph using skele-
tonization. (a) Shows the initial occupancy map generated during exploration. (b) shows
the map with dilated obstacles to ensure the robot doesn’t collide with obstacles. (c) shows
the skeletonized image of the dilated map. This ensures robot takes safe paths when fol-
lowing the skeleton image. (d) shows the skeleton graph which is used as a the exploration
graph G. Here each vertex is shown as a red circle and the edges are shown as green lines.
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as a “large room”.

We have implemented a geometry-based classification of corridors, small rooms,

and large rooms. For every vertex, we extract a local map, a 3 m × 3 m window of

the occupancy grid map centered on the vertex. This local map provides geometrical

information on the obstacles and free space of the region around the vertex. We

employ a geometry-based approach to identify the location and orientation of the ob-

stacles in the local map. The vertices are classified based on the number of obstacles,

and the distance and orientation of the obstacles relative to one another.

2.3.2 Stage II: Vertex Prioritization

We introduce two exploration algorithms, Priority-based exploration algorithm,

abbreviated as P-Greedy and Cost-based exploration algorithm, abbreviated as C-

Greedy. Both agents explore an unknown indoor environment, and if time permits,

return to the home location. However, they order their visits to discovered vertices

differently.

The Priority-based greedy exploration algorithm assigns a level of priority for each

type of discovered vertex region. The priority depends on the connectivity of the type

of environment the vertex is physically present in. Assuming that corridors connect

different parts of a building, they are assigned a higher priority over rooms. Similarly

as a large room can connect to other rooms, large rooms are assigned a higher priority

over small rooms. The exploration algorithm greedily chooses to visit the vertex vi

with the highest priority, breaking ties by selecting the lower cost vertex. The goal of

this algorithm is to rapidly compute the building layout by prioritizing the exploration

of corridors over other regions.

Alternatively, the Cost-based greedy exploration strategy explored the nearest ver-

tex first. The algorithm greedily chooses the vertex with the minimum path cost.

This algorithm is modeled on Yamauchi’s exploration algorithm [1]. The algorithm

considers that all vertices have the same priority.
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Algorithm 1: Prioritized Exploration with a Dynamic Deadline
Input: starting vertex: v0; deadline: tr ← unknown
Result: Explored graph G

1 G← ∅ ; // initialize exploration graph
2 Vd ← ∅ ; // discovered and unvisited vertices
3 Vvis ← {v0} ; // visited vertices
4 Add (v0, E(v0)) to G ; // E(vi) is set of edges incident on vertex i
5 vc ← v0 ; // current vertex
6 vh ← v0 ; // home vertex
7 Vn ← NG(vc) ; // all vertices adjacent to vc
8 Vd ← Vd ∪ Vn;
9 while Vd 6= ∅ do

10 tr ← Query_Deadline() ; // Check deadline
11 if tr is unknown then
12 vt ← NextVertexWODeadline(Vd, vc);
13 else if tr is 0 then
14 return G
15 else
16 vt ← NextVertexWDeadline(Vd, vc, vh, tr);
17 Move agent to vt through graph G;
18 Vd ← Vd \ vt; vc ← vt; Vvis ← Vvis ∪ vc ;
19 Add (vc, Vn, E(vc)) to G;
20 Vn ← NG(vc) \ Vvis; // exclude visited vertices
21 Vd ← Vd ∪ Vn ; // update discovered vertices
22 if tr is unknown then
23 Move agent to vh through G;
24 return G;

2.3.3 Stage III: Prioritized Exploration Algorithm

The input to the prioritized exploration algorithm (Algorithm 1) is the starting

position v0 of the robot, also called the home vertex vh. The output is the explored

graph G under the constraint that the robot should return to the home position by

the end of exploration. The deadline as shown in the algorithm is queried from a

function Query_Deadline(). The variable tr is used to keep track of the shrinking

deadline as the robot explores the environment. Note that the known initial value of

tr is tr0 .

When the deadline is unknown, the exploration algorithm employs the function

NextVertexWODeadline to calculate the next vertex, vt, that the robot should visit
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Algorithm 2: NextVertexWODeadline: Vertex selection without deadline
Input: Vd, vc
Result: Next vertex to visit

1 vt ← initialize from Vd;
2 for vd in Vd do
3 if p(vd) > p(vt) then
4 vt ← vd;
5 if p(vd) = p(vt) then
6 costcd ← wcd; costct ← wct;
7 if costcd < costct then vt ← vd;
8 return vt;

without a deadline. Conversely, when the deadline is known, the algorithm utilizes the

function NextVertexWDeadline for this calculation. Each of these functions returns

a target vertex vt for the robot to visit. Upon visiting the target vertex, vt is added

the set of visited vertices Vvis and subtracted from the set of discovered vertices Vd.

Subsequently, the robot’s view from vt, i.e., the adjacent vertices of vt, is added to

the list of discovered vertices Vd. Both the vertices Vvis and Vd, along with the edges

incident to these vertices, are added into the exploration graph G. At each iteration,

the robot selects a vertex from Vd for its visit. The environment is considered to be

complete explored when there are no more discovered vertices to visit, that is, when

|Vd| = 0.

2.3.3.1 Exploration without a Deadline

When exploring without a deadline, the agent performs a greedy selection of the

vertex with the highest priority from the set of discovered vertices Vd as shown in

Function NextVertexWODeadline (see Algorithm 2). If there are multiple vertices

with the highest priority, the agent chooses the one with the lowest cost. The cost is

the estimated time to traverse the shortest path between the current vertex vc and

the candidate target vertex. If there are multiple such vertices which has the same

priority and the same cost, a vertex is randomly chosen among equally good vertex

options. The output of this function is the target vertex vt the robot should head to.
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2.3.3.2 Exploration with a Deadline

Algorithm 3: NextVertexWDeadline: Vertex selection with deadline
Input: Vd, vc, vh, tr
Result: Vertex to visit next

1 costch ← wch;
2 if costch < tr then // Return home is possible
3 Veligible ← ∅;
4 for vd in Vd do
5 costcd ← wcd; costdh ← wdh;
6 if (costcd + costdh) < tr then
7 add vd to Veligible;
8 if Veligible is ∅ then return vh;
9 vt ← argmax

vd∈Veligible

p(vd), tiebreakers: costcd, costdh;

10 return vt
11 else // Return home not possible
12 Veligible ← ∅;
13 for vd in Vd do
14 costcd ← wcd;
15 if costcd < tr then
16 add vd to Veligible;
17 if Veligible is ∅ then
18 return vc
19 vt ← argmax

vd∈Veligible

p(vd), tiebreakers: costcd, costdh;

20 return vt

When the deadline is known to the robot during exploration, it computes whether

the deadline provides enough time for it to return to the home vertex. If the time

limit tr is adequate, the robot checks if the time limit allows it to explore additional

vertices in Vd before returning to the home vertex vh. It identifies a subset Veligible

of Vd that consists of the vertices the robot would be able to visit and still return

home within the deadline. The robot selects the vertex with the highest priority in

this subset Veligible. If there are several such vertices with equal priority, the robot

chooses to visit the vertex with the lowest path costs costcd and costdh; costcd is the

path cost to travel from the current vertex vc to vertex vd ∈ Veligble, and costdh is the
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(a) (b) (c)

Figure 2.4: Three indoor graph environments showing different corridor layouts used in
our exploration algorithm simulations. The respective graph environments are overlaid on
them. Light green represents small rooms, dark green represents large rooms, and pink
represents corridors. (a) Straight Corridor ends in a large room, with rooms on either side.
(b) Looped Corridor wraps around a large room, connecting multiple rooms on its periphery.
(c) Branched Corridor splits into two, connecting large and small rooms. The environments
are shown to scale.
path cost to travel from vd to the home vertex vh. If the time is inadequate for the

robot to reach the home vertex, the robot continues exploring the environment until

the deadline so it can communicate the explored map back to its base. This behavior

can be modified to instead make the robot return as close as possible to the home

location. The costdh is used as a tiebreaker when return is not possible, so the robot

can come closer to the home location. See the pseudocode in Algorithm 3.

2.4 Experiments

2.4.1 Simulation Environment Setup

Typically indoor environments employ corridors to connect multiple rooms and

other corridors in a building. A corridor is an architectural element that functionally

leads to rooms, or that loops back to itself while connecting to rooms, or that branches

off to several corridors, which in turn connect to rooms. Rooms can be categorized

into large rooms which connect to further small rooms. Large rooms are usually

atriums, halls, or galleries. Small rooms are usually small individual offices or closets.

Usually, in a large indoor environment, we find a combination of all three building

structures.
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2.4.1.1 Graph Environments

These simulated environments, represented as graphs, are based on the three types

of corridor layouts (Figure 2.4). Figure 2.4(a) shows an environment with a straight

line corridor ending in a large room while connecting small rooms on either side.

Figure 2.4(b) shows an environment where a corridor wraps around a large room

while connecting to several rooms on its outer periphery. Figure 2.4(c) shows an

environment with a corridor that branches into two separate corridors. Each of these

separated corridors has large and small rooms connected to them. As large rooms

can provide connectivity to other building structures, this layout has the large room

on the right connecting to several smaller rooms.

2.4.1.2 Gazebo Environments

A set of three environments (Figure 2.5) similar to the graph environments has been

created in Gazebo [24]. These environments are explored using a simulated Turtlebot3

robot equipped with a single scan 360◦ LiDAR with a range of 6 meters, matching the

Slamtec RPLiDAR A1M8 sensor. The robot starts from a specified location. We use

the GMapping SLAM algorithm [25] to create an occupancy grid map from the sensor

data. This occupancy grid map is converted to G as discussed in Section 2.3.1. A

new skeleton graph is created after the robot reaches the target vertex while exploring

the map. This adds a few challenges: First, the graph needs to be recomputed every

time the map is updated as some of the frontier vertices may cease to exist once the

environment is explored further past the current frontier. Second, a list of visited

vertices Vvis cannot be maintained as previously existing vertices may not exist later

on during the exploration. As the robot follows the edges of the skeleton graph, the

edges and vertices should be at a safe distance from the obstacles to avoid collisions.

Third, the SLAM algorithm ignores LiDAR sensor values of infinity that are reported

when there are no obstacles within the sensor range in a region. Such regions are not
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(a) (b)

(c)

(d) (e) (f)

Figure 2.5: Three 3D Gazebo environments with different corridor layouts used in simulat-
ing our exploration algorithm. (a) Straight Corridor Gazebo environment in 3D, (b) Looped
Corridor Gazebo environment, (c) Branched Corridor Gazebo enironment. (d, e, f) Occu-
pancy grid maps of the environments, where yellow lines represent edges and black points
represent vertices. (d) Straight Corridor environment. (e) Looped Corridor environment.
(f) Branched Corridor environment.

mapped.

We address these challenges with the following steps: We update the graph once

the robot reaches the target vertex, instead of every time the map is updated by

the SLAM algorithm. We maintain the locations that the robot has visited as a

substitute for the set of visited vertices. If there are new vertices that are created

within a threshold distance from the stored locations, we ensure that the vertices are

not a part of Vd. To ensure collision-free edges between vertices, we make a binary
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map of the occupancy grid, with the unoccupied space marked with a different value

than the rest of the map. This unoccupied space is eroded by the robot’s width. This

eroded map is then converted to a skeleton graph. This ensures that the edges of the

skeleton graph are at a safe distance from the obstacles.

2.4.2 Real-world experiments

Real-world experiments introduce a set of additional challenges. Simultaneous Lo-

calization and Mapping (SLAM) is more challenging as robot motion introduces errors

that alter the map while the robot explores the environment. During experiments, we

observed that the robots could not successfully navigate to goal positions by following

the edges of the exploration graph, as the map underwent significant updates dur-

ing the robot’s movement. Additionally, reflective surfaces such as glass, varnished

wooden doors, and reflective metal surfaces contribute to mapping inaccuracies. The

mobile robot’s wheel design was also critical in the choice of deciding the mobile robot

to use. We found that the Turtlebot3 Waffle Pi robot was highly susceptible to wheel

odometry noise due to its smaller and slippery wheels.

To accomodate these practical challenges, we use the move_base package from the

ROS Navigation stack to navigate the robot from the current to the goal position. The

move base package utilizes the Dynamic Window Approach (DWA) [26] to calculate

a trajectory from the current position to the goal position. We found the ROS

Navigation tuning parameters from [27] to be very helpful to tune the move_base

parameters. Due to the wheel slipping of the Turtlebot3 Waffle Pi, we used the

AgileX Limo Robot.

The robot (see Figure 2.6) was connected to the laptop computer using an existing

Wi-Fi network with several access points. While the robot maintained an active

connection with the laptop during the exploration process, the connection bandwidth

would drop as the robot moved from one place to another. In practice, using a direct

Wi-Fi connection between the robot and the laptop would generate a connection with
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Figure 2.6: AgileX LIMO robot with camera mounted on top.

higher reliability.

2.4.3 Metrics

The performance of the exploration algorithms is measured using the extent of the

explored environment. We compare our Priority-based greedy exploration algorithm

to the Cost-based greedy exploration algorithm. The Cost-based exploration algo-

rithm is motivated by a baseline greedy exploration algorithm [1]. As the agents are

informed of the deadline at time instant ta, we compare the performance of the agents

at time ta + tr0 .

For the graph environments, explored regions of the map are represented by the

set of explored vertices V , where V = (Vd ∪ Vvis). The performance metric for the

graph environments is |V |, the number of explored vertices.

Since the number of vertices may change during exploration for the Gazebo envi-

ronments, the performance metric used is the percentage of floor area explored. Here



20

(a) Exploration by Priority-based exploration algorithm.

(b) Exploration by Cost-based exploration algorithm.

Figure 2.7: Exploration of the Looped Corridor graph environment. Each row shows
snapshots of exploration at time steps 0, 6, 12, and 25. The deadline tr0 of 10 time steps
was provided at a ta of 15 time steps. Each edge cost is 2 time steps. The red circle denotes
the current position of the robot and the trail of circles show the visited vertices. (a) Priority
based exploration strategy, which prioritizes corridors over large rooms and small rooms. (b)
Cost-based exploration strategy, which gives equal priority to all vertices.

the exploration time includes the computation time, and the times ta and tr0 are

measured in seconds.

2.5 Results

2.5.1 Graph Environments

The Priority-based exploration algorithm and Cost-based exploration algorithm

are evaluated on three graph environments (Figure 2.4) in Figures 2.8, 2.9, and 2.10.

We present a few detailed results in Tables 2.1, 2.2, and 2.3. For these experiments,

we provided the agents with the deadline tr0 at the start of exploration. So ta is

zero. The deadline tr0 has been set to three different values: a large deadline, an

intermediate deadline, and a short deadline represented by the values 500, 60, and

30 respectively. Since Cost-based Greedy(C-Greedy) randomly chooses between two

vertices of the same cost, the values in the tables are averaged over 100 simulations

for each deadline.
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Figure 2.8: Comparison between the Priority-based Greedy and the Cost-based Greedy
algorithm in the Straight Corridor graph environment. Each value on the x-axis shows
an independent experiment with a specified exploration time. The y-axis value shows the
percentage of the total environment explored. The curve shows the mean performance of
each algorithm. The shaded region shows the standard deviation of thirty independent
experiments.

A comparison of exploration by Priorty-based greedy exploration algorithm (P-

Greedy) and Cost-based greedy exploration algorithm (C-Greedy) in the looped cor-

ridor graph environment is shown in Figure 2.7. It shows a trail of explored vertices

as an agent explores the environment of Figure 2.4(b).

For all three environments, in the case of a large deadline tr0 = 250, we observe that

both agents have explored the entire graph environment. For an intermediate dead-

line of tr0 = 60, P-Greedy explores a higher percentage of all vertices than C-Greedy.

Since P-Greedy prioritizes corridors over other regions, its corridor exploration per-

centage is higher than for C-Greedy in all the environments. For the Straight Corridor

environment, C-Greedy explores a higher percentage of small rooms than P-Greedy

while P-Greedy explores a higher percentage of the large room than C-Greedy. For

the short deadline of tr0 = 30, P-Greedy explores a higher portion of the environment

than C-Greedy for all three graph environments. As small rooms and large rooms are

adjacent to the corridor, P-Greedy eventually explores a higher percentage of these
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Figure 2.9: Comparison between the Priority-based Greedy and the Cost-based Greedy
algorithm in the Looped Corridor graph environment.

Table 2.1: Exploration results for the graph straight corridor environment.

tr0 Agent Corridor Large Small All
Room Room Vertices

250 P-Greedy 100.0% 100.0% 100.0% 100.0%
C-Greedy 100.0% 100.0% 100.0% 100.0%

60 P-Greedy 100.0% 100.0% 61.4% 76.8%
C-Greedy 99.3% 22.6% 73.0% 64.4%

30 P-Greedy 100.0% 66.8% 50.0% 61.7%
C-Greedy 75.2% 0.3% 43.5% 37.4%

sections while visiting the corridor vertices.

To summarize, P-Greedy’s prioritization of corridor vertices has allowed it to dis-

cover more vertices, thereby increasing the overall exploration percentage.

2.5.2 Gazebo Environments

Exploration algorithms P-Greedy and C-Greedy were evaluated, based on the per-

centage of explored floor area, on the three Gazebo environments shown in Figure 2.5.

The deadline tr0 to return to the home location is provided to the robot after ta sec-

onds. If the deadline is provided at the start, ta = 0, else ta > 0.

For our experiments, we have three sets of values for ta and tr0 . The values ta = 0
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Figure 2.10: Comparison between the Priority-based Greedy and the Cost-based Greedy
algorithm in the Branched Corridor graph environment.

Table 2.2: Exploration results for the graph looped corridor environment.

tr0 Agent Corridor Large Small All
Room Room Vertices

250 P-Greedy 100.0% 100.0% 90.0% 94.4%
C-Greedy 100.0% 100.0% 90.0% 94.4%

60 P-Greedy 100.0% 100.0% 65.0% 80.6%
C-Greedy 93.8% 99.0% 59.3% 75.2%

30 P-Greedy 83.3% 85.8% 40.0% 59.5%
C-Greedy 63.1% 71.5% 28.5% 44.8%

and tr0 = 500 signify a short exploration time provided at the start of the exploration.

The other two cases ta = 500, tr0 = 500 and ta = 500, tr0 = 1000 correspond

to intermediate and long exploration times. The exploration results for the three

environments, averaged over three simulations for each exploration time, are presented

in Tables 2.4, 2.5, and 2.6.

For the straight corridor environment (Figure 2.5(b)), with the longest exploration

time, ta = 500, tr0 = 1000, both P-Greedy and C-Greedy almost completely explore

the environment. P-Greedy explores a higher percentage of the large room that

lies at the end of the corridor while C-Greedy explores a higher percentage of small
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Table 2.3: Exploration results for the graph branched corridor environment.

tr0 Agent Corridor Large Small All
Room Room Vertices

250 P-Greedy 100.0% 100.0% 100.0% 100.0%
C-Greedy 100.0% 100.0% 100.0% 100.0%

60 P-Greedy 100.0% 75.0% 75.0% 82.8%
C-Greedy 72.6% 62.1% 46.6% 58.8%

30 P-Greedy 64.3% 32.3% 36.8% 44.2%
C-Greedy 51.6% 32.1% 21.8% 33.8%

Table 2.4: Exploration in the Gazebo straight corridor environment

ta tr0 Agent Corridor Large Small TotalRoom Room

500 1000 P-Greedy 99.8% 98.7% 96.7% 98.1%
C-Greedy 99.6% 77.2% 98.6% 88.7%

500 500 P-Greedy 100.0% 24.1% 96.6% 63.0%
C-Greedy 97.7% 6.1% 96.5% 54.3%

0 500 P-Greedy 85.3% 0.0% 65.8% 37.7%
C-Greedy 84.7% 0.0% 62.5% 36.3%

rooms. For the intermediate exploration time, ta = 500, tr0 = 500, P-Greedy explores

a higher percentage of the large room, while C-Greedy explores the smaller rooms

before returning to the home location. On average, P-Greedy has explored 24%

of the large room, while C-Greedy has explored 6% of the large room. When the

exploration time is short, ta = 0, tr0 = 500, P-Greedy explores 38% of the total

environment while C-Greedy explores 36% of the total environment. For this case,

for every graph update, the nearest frontier vertex to the robot is coincidentally the

vertex with the highest priority. So P-Greedy and C-Greedy visit almost the same

set of locations during exploration. That the area of the corridor explored by both

P-Greedy and C-Greedy is equal (85% of the corridors) quantifies this observation.

The looped corridor environment of Figure 2.5(c) is much smaller than the other

two environments. For exploration with the longest exploration time, ta = 500,

tr0 = 1000, both P-Greedy and C-Greedy have explored the entire environment.
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Table 2.5: Exploration in the Gazebo looped corridor environment

ta tr0 Agent Corridor Large Small TotalRoom Room

500 1000 P-Greedy 100.0% 99.7% 97.6% 98.7%
C-Greedy 100.0% 99.3% 97.8% 98.9%

500 500 P-Greedy 100.0% 99.2% 96.1% 97.9%
C-Greedy 100.0% 99.6% 96.8% 98.3%

0 500 P-Greedy 89.0% 99.6% 76.0% 83.5%
C-Greedy 85.6% 99.5% 57.7% 72.6%

With an intermediate exploration time of ta = 500, tr0 = 500, both exploration

agents explore almost all of the unknown environment. When the exploration time

is short, ta = 0, tr0 = 500, P-Greedy explores more of the corridor and of the total

environment (83.5%) compared to C-Greedy’s total exploration of 72.6%.

Table 2.6: Exploration in the Gazebo branched corridor environment

ta tr0 Agent Corridor Large Small TotalRoom Room

500 1000 P-Greedy 80.3% 66.7% 64.8% 68.6%
C-Greedy 77.5% 54.7% 62.6% 61.4%

500 500 P-Greedy 68.2% 54.6% 48.5% 54.3%
C-Greedy 55.6% 54.8% 21.5% 36.8%

0 500 P-Greedy 50.4% 19.7% 21.5% 27.4%
C-Greedy 43.3% 18.7% 14.2% 21.6%

The branched corridor environment of Figure 2.5(d) is much larger than the other

two environments. Hence, both P-Greedy and C-Greedy could not explore the en-

tire environment even with the longest exploration time, ta = 500, tr0 = 1000. The

performance difference between P-Greedy and C-Greedy is the lowest for this case

because the cost of returning back home limits the exploration in the second branch

for both agents. When ta = 500, tr0 = 500, the difference is more pronounced as

P-Greedy explores one complete branch of the corridor and a part of the other corri-

dor, while C-Greedy explores significantly less. However, for the shortest exploration

time, ta = 0, tr0 = 500, P-Greedy completely explores one of the two branches of

the corridor, while C-Greedy’s bias towards the closest vertex limits the extent of its
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Figure 2.11: Branched Corridor with obstacles. A Gazebo environment showing a
Branched Corridor exploration environment with several obstacles.

exploration.

Results on Gazebo environment with obstacles: Our Gazebo experiments

were initially conducted in environments devoid of obstacles typically found in indoor

structures, such as office buildings. To address this limitation, we created a modified

version of the branched corridor environment, incorporating obstacles like furniture

and other static objects, as depicted in Figure 2.11. We name this environment,

“Branched Corridor with obstacles”. Given that our priority allocation relies on a

geometry-based method, the presence of these obstacles introduced occlusions in the

environment, thereby posing a challenging classification problem. In this scenario, the

classifications were incorrect several times, especially when a obstacles would throw

off the estimate of the room size.

Table 2.7: Exploration result in the Occluded Branched Corridor

ta tr0 Agent Corridor Large Small TotalRoom Room

500 1000 P-Greedy 80.0% 69.1% 44.1% 57.8%
C-Greedy 72.9% 63.2% 41.7% 53.6%

500 500 P-Greedy 71.9% 60.0% 30.6% 46.5%
C-Greedy 72.2% 57.6% 25.7% 43.4%

0 500 P-Greedy 57.9% 35.4% 12.9% 27.9%
C-Greedy 52.2% 33.7% 2.3% 20.5%
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Table 2.7 presents the results in the Gazebo environment, Branched Corridor with

Obstacles. In this environment, we observe that P-Greedy consistently outperforms

C-Greedy across all three deadlines. However, the presence of obstacles results in

a reduced overall explored area for both P-Greedy and C-Greedy compared to the

Branched Corridor environment without obstacles. During these experiments, we

noted that both P-Greedy and C-Greedy occasionally collided with the obstacles.

This occurred because the LiDAR sensor scans the environment at a height slightly

above that of the obstacles, leading it to report these areas as free in the occupancy

grid map. Employing a different LiDAR sensor with multiple scan lines, such as the

Velodyne VLP-16, or a 3D depth camera like the Microsoft Kinect or Intel RealSense

stereo camera, could mitigate this issue.

We observe that the explored percentage for P-Greedy is consistently higher than

or equal to that for C-Greedy. By visiting the corridors first, P-Greedy often explored

the neighboring regions of small and large rooms. The performance on the Gazebo

environments is not as high as on the graph environments due to the additional

challenges discussed earlier. We observed that the robots spend time to travel back

to the skeleton graph, instead of traveling directly to a target vertex. Even though

this impacts the exploration performance, it ensures collision-free paths. Additionally,

changes in the locations of obstacle boundaries in the occupancy map from the SLAM

algorithm affect the accuracy of priority classification of the environment regions.

2.5.3 Real-world Experiments

In the real-world experiments conducted with the AgileX LIMO robot, we set

three exploration deadlines: 200, 300, and 400 seconds. These time constraints were

imposed at the start of each exploration experiment. During these tests, the robot

consistently managed to return to its starting location within the deadline. The

results for these three deadlines are illustrated in Figure 2.12.

The robot utilized the Priority-based Greedy algorithm to explore the environ-
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ment. We conducted two independent trials for each deadline, with the algorithm

demonstrating consistent performance. Notably, the computation times were longer

in the real-world experiments compared to simulations. This increase was partly due

to the infrequent map updates, occurring every two seconds despite the GMapping

SLAM [25] setting, which was configured to update the map at 5Hz. The slower

computation performance of the robot likely contributed to this delay. The limited

compute capability on the robot led us to divide computation between the robot and

a laptop connected on the WiFi network. We ran the SLAM algorithm and DWA

Planner [26] on the robot and the path planning algorithm on a laptop, thereby in-

troducing further delays due to network latency. The physical maps generated during

these experiments were also notably noisier than those in simulated Gazebo environ-

ments, likely due to surface reflections from materials like metal, glass, and varnished

wooden doors.

The speed and extent of robot exploration was noticeably reduced in the real-

world scenarios compared to the Gazebo simulations, largely because of the increased

computation time as the robot awaited map updates. Challenges in localization and

mapping accuracy were particularly pronounced in featureless corridors, where the

lack of distinct landmarks significantly limited the SLAM algorithm’s capability to

accurately map the environment. To enhance the results, we could consider several

improvements: employing a more diverse array of sensors beyond the single-scan

LiDAR, performing computations directly on the robot’s onboard computer to reduce

network delays, and adopting a SLAM algorithm better suited for fast-moving robots

in indoor settings. These adjustments could potentially mitigate the issues observed

and improve the efficiency and reliability of the robotic exploration.

2.6 Contributions

In this chapter, we have developed a technique using skeleton graphs to build an

exploration graph from the occupancy grid map created from the SLAM algorithm.
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(a) Deadline tr0 = 200 at t = 0 (b) Deadline tr0 = 200 at t = 200

(c) Deadline tr0 = 300 at t = 0 (d) Deadline tr0 = 300 at t = 400

(e) Deadline tr0 = 400 at t = 0 (f) Deadline tr0 = 400 at t = 400

Figure 2.12: Exploration results on the AgileX LIMO robot using the Priority-based greedy
algorithm with different deadlines. Each row shows a different experiment, where a deadline
has been imposed on the robot at the start of the exploration. The darker gray cells denote
the unmapped area, the lighter gray cells denote the mapped and obstacle-free area, and the
black cells denote the obstacles. The red cells are LiDAR scans. The robot explores larger
areas of the map with larger deadlines. Each time, the robot comes back to the starting
position by the deadline.

This approach enables us to use graph-based exploration algorithms for addressing the

prioritized robot exploration problem. Subsequently, we developed a short-horizon

Priority-based Greedy exploration algorithm. This algorithm is designed to explore

the initially unknown environment and ensure the robot returns to the home vertex

within a dynamically imposed deadline.

2.6.1 Future Work

There are several directions for improvement of the graph exploration algorithm. In

our experiments, building structures were classified and assigned user-specified vertex

priorities based on local occupancy grid maps. Moving beyond a geometry-based
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Figure 2.13: This figure shows the limitation of the greedy algorithm. The position of
the robot is shown by the vertex marked ‘r’. The vertices are circles, the white circles
are discovered vertices yet to be visited by the exploration algorithm and gray circles are
visited vertices. All the discovered vertices are classified as ‘Corridor’ vertices. The greedy
algorithm chooses to visit the closest corridor vertex (Vertex 3) followed by the Vertex 4.
However, as more corridor vertices (5,6, and 7) are present on the left, the robot should have
visited Vertex 4 first for an optimal route. This shows the need of algorithms better than
the greedy algorithm.

classification, we could employ computer vision techniques and neural network-based

classifications to achieve a more robust semantic classification of regions. Additionally,

it would be beneficial to dynamically adjust priority values based on the connectivity

of each region.

The Priority-based Greedy algorithm as shown in this chapter is a short-horizon

exploration algorithm as it plans with a single step lookahead, which may not produce

an optimal solution. For example, in Figure 2.13, we observe that the Priority-based

Greedy algorithm makes the robot choose a suboptimal choice guiding the robot to

a single corridor vertex on the right (Vertex 3) instead of the cluster of corridor

vertices (Vertices 4, 5, 6, and 8) to the left. This limitation can be mitigated by

developing a long-horizon exploration algorithm. Such algorithms can consider the

sequence of vertices visited by the robot to maximize the number of vertices visited

while considering the priority of the vertices. To address these challenges, Chapter 4

explores mixed integer linear programming approaches for the prioritized exploration

problem with dynamic deadlines.
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2.7 Conclusion

In this chapter, we introduced a Priority-based greedy exploration algorithm tai-

lored for indoor environments, subject to the constraint of dynamic deadlines. The

objective was to rapidly determine the geometric structure and connectivity of the

environment. The exploration environment was represented as a graph, with the map

and robot position serving as inputs to the algorithm. Our algorithm prescribes a

prioritized order for exploring discovered vertices to maximize the exploration of the

graph. Additionally, it ensures that, given adequate time, the robot can return to its

home location upon completion of the exploration. We have evaluated our algorithm

in simulation environments in Gazebo and real-world experiments to demonstrate its

significant improvement over non-prioritized exploration approaches.

Our findings indicate a marked improvement in performance, particularly under

short deadlines, both in the graph-based environments and the Gazebo simulations,

when employing the Priority-based Greedy exploration algorithm.



CHAPTER 3: MILP FORMULATION FOR PRIORITIZED INDOOR ROBOT

EXPLORATION WITH DYNAMIC DEADLINES

3.1 Introduction

The prioritized exploration problem, as introduced in Chapter 2, is a variant of the

exploration problem where the robot must explore an initially unknown environment

to compute its layout (i.e., connectivity) maximally while returning to the home

location within a deadline. In Chapter 2, we introduced a priority-based greedy

solution that attempts to solve the prioritized exploration problem by creating a

path that visits high priority regions while ensuring the robot returns to the home

location within the deadline, with an assumption that high priority regions provide

better views of the unknown environment.

To explore the environment quickly and efficiently, the robot should ideally visit

each target location at most once. In practice, with limited knowledge of the envi-

ronment, the robot should minimize revisiting locations that it has already visited.

This connects our problem to the Hamiltonian Path Problem and node routing prob-

lems such as the Traveling Salesperson Problem (TSP). These well known problems

have been used to model coverage problems where each vertex needs to be visited

only once [28, 29]. This chapter considers the following question: Would formulat-

ing the prioritized exploration problem as the Orienteering Problem (OP), Profitable

Tour Problem (PTP), or Minimum Latency Paths (MLP) problem, or Profitable

Tour Problem with Minimum Latency Paths (PTP-MLP) improve exploration per-

formance?

The OP, PTP, MLP problem, and PTP-MLP are NP-complete problems [30] and

require time exponential in the number of vertices to solve optimally. In this chapter,
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when needed we reduce the number of candidate vertices to a feasible size so the

prioritized exploration problem can be solved rapidly.

The chapter discusses the relevant literature in Section 3.2, and describes adapta-

tion of the Orienteering Problem, Profitable Tour Problem, Minimum Latency Path

Problem and Profitable Tour Problem with Minimum Latency Paths for the pri-

oritized exploration problem in Section 3.4. Results of simulation experiments are

presented in Section 3.5, followed by a discussion of the behavior of the exploration

algorithms in Section 3.7.

3.2 Related Work

The problem of robotic exploration has been studied from multiple perspectives.

The work described in this chapter builds on previous work on robot exploration,

mapping techniques, and path planning.

Cost-based frontier exploration techniques that have been used for single-robot ex-

ploration [1] and multi-robot exploration [5] have laid the groundwork for robotic ex-

ploration. Next-best-view [31] approaches such as receding horizon next-best-view [32]

have also been used for 3D mapping of environments. Robotic exploration has been

modeled as different problems such as target searching, mapping, and coverage in

unknown or partially observed environments [33, 34, 35, 36, 29].

Another approach for robot exploration is Active SLAM, a variant of the Simul-

taneous Localization and Mapping problem (SLAM). Active SLAM is the task of

actively planning robot paths while simultaneously building a map and localizing

within it [37, 36, 38]. Such techniques generate a consistent map that is essential for

3D inspection tasks, sometimes at the cost of slower exploration.

The task of robot exploration can be viewed as a variant of the Traveling Sales-

person Problem (TSP) as the robot must compute a Hamiltonian path to visit the

possible frontier locations to explore the map. Similarly, the Team Orienteering Prob-

lem and Orienteering Problem with Neighborhoods, variants of the prize-collecting
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TSP with budget constraints, have been used to address the multi-robot exploration

problem [39, 40].

Prior work has focused on exploration with goals such as finding a specific target,

or consistent mapping at the cost of slower exploration. Most approaches consider

the exploration to be complete when either the entire environment is mapped or the

target is found in the unknown location. The prioritized exploration problem that

we previously addressed [41] considers partial exploration of the environment, within

a changing deadline. Single-robot exploration exploration using a mix of greedy and

orienteering problem formulation has been addressed by ??. A similar exploration

problem is addressed by using a Multi-Robot Team Orienteering formulation in [39],

where the environment is explored using heterogeneous robots with different energy

limits. We are not aware of a single-robot exploration approach that addresses the

prioritized exploration problem using the Profitable Tour Problem formulations.

3.3 Background

3.3.1 Orienteering Problem

The Orienteering Problem (OP) [42, 43, 44] belongs to the class of Traveling Sales-

person Problems with profits, where it is not necessary to visit all vertices. The

orienteering problem, derived from the sport of orienteering as discussed by Chao et

al. [42], involves navigating through a natural terrain with a map and compass. Com-

petitors aim to maximize their score by visiting as many control points as possible

within a time constraint, requiring strategic selection of a subset of these points. The

winner is determined by the highest total score achieved.

The input to the OP is a complete graph, a time budget, a start and an end

vertex. Each graph vertex has an associated positive prize pi. The goal of OP is to

determine a path from the start to end vertex within the time budget, while selecting

vertices to visit to maximize the total collected prize. The travel time between any

two vertices is assumed to be non-zero. OP is suited to address problems where the
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time budget is limited compared to the time required to visit all vertices. When the

time budget exceeds the time to visit all the vertices, the path generated by solving

the OP formulation might not provide the shortest path to visit the vertices.

The Profitable Tour Problem also belongs to the class of TSPs with profits. To

address the cost of the path, the Profitable Tour Problem (PTP) [45, 46] seeks to

maximize the net profit, the total prize collected along the path minus the path cost.

This formulation provides the shortest path when the time budget exceeds the time

required to visit all the vertices.

The Minimum Latency Path(MLP) Problem [47] is a combinatorial optimization

problem that aims to visit all vertices in a graph and minimizes the delivery time to

each vertex. MLP Problem asks for a sequence to visit each of the vertices in a graph

so that the total delivery time to all customers is minimized. This is different from

Traveling Salesperson Problem (TSP) where the goal is to minimize the route cost

of the salesperson. MLP Problem has been typically used in operations research, for

customer centric routing problems or emergency logistics [48, 49, 50].

The Profitable Tour Problem with Minimum Latency Paths (PTP-MLP) is novel

formulation and is a variant of the Profitable Tour Problem that maximizes the net

profit, the total discounted prize collected along the path minus the cumulative de-

livery cost to vertices it visited. Here we consider a discounted value of the prizes

of each vertex depending on the position of the vertex in the sequence of vertices

the robot visits. Such discounting encourages the robot to visit high-prize vertices

towards the start of the path.

The next section discusses modeling the prioritized robot exploration problem using

the orienteering problem, profitable tour problem, minimum latency path problem,

and profitable tour problem with minimum latency path formulations.
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3.4 Problem Formulation

A single robot explores an unknown environment, senses and maps the area, and

models the graph as an exploration graph G = (V,E). We model this graph G as

a complete graph of N vertices. Here, each vertex i ∈ V has a prize pi associated

with it that represents its priority. The set of vertices V is divided into two subsets:

Vd, the set of discovered vertices, and Vvis, the set of vertices visited by the robot.

The discovered vertices are the set of vertices near the frontier of the explored region

that has not been visited by the robot. E is the set of edges in G, where each edge

(i, j) ∈ E represents a collision-free path between i and j, and has a time cost tij.

Both the prizes pi and the time tij are non-negative values. A limited time budget of

tmax is available to visit the vertices.

We hope to improve on the greedy method shown in Chapter 2 by introducing

an orienteering problem formulation to the exploration problem. The exploration

procedure may have a more efficient solution than the greedy formulation, thereby

allowing the robot to explore a larger portion of the environment before returning to

the home location. The objective of the exploration is to maximize the explored area

and identify the connectivity of the indoor environment. It does so by creating an

optimal path that visits high priority regions while ensuring the robot returns to the

starting location within the deadline.

The orienteering problem creates an optimal path consisting of several discovered

vertices. The robot marks the first vertex in the list of vertices in the path as the

target vertex vt and visits it. The target vertex vt is marked as a visited vertex. Upon

visiting the target vertex vt, the robot can map a portion of the previously unexplored

environment. The exploration graph is recomputed and the robot calculates the next

sequence of vertices to visit. The formulation of the orienteering problem is introduced

in Section 3.4.1.
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3.4.1 Orienteering Problem Formulation

The objective of the orienteering problem [44, 43] is to generate a path that max-

imizes the total prize collected along it on the exploration graph. A path is defined

as the sequence of vertices that the robot takes from the start to the end vertex.

If the start and end vertex is the same vertex, then the path is called a tour. The

prize at each vertex pi is based on the priority of the vertex. For our formulation, we

have set the corridor vertices to have the highest prize, followed by large rooms and

finally small rooms. We do so in an attempt to relate the prize to the connectivity

of each building structure. Corridors being highly connected portions of the environ-

ment, should provide us with the greatest information about connectivity and large

rooms can be connected to smaller portions of the environment and provide lower

information about connectivity. Small rooms are usually connected to fewer parts of

the environment, providing very low connectivity. To adapt the orienteering problem

to the exploration problem, the robot considers visiting a subset of the discovered

vertices. The first discovered vertex the robot visits in the computed path from the

orienteering problem is the target vertex. Once the robot visits a target vertex, a new

path is computed accommodating the newly discovered vertices from the previously

unexplored region. The binary variable yi ∈ {0, 1} determines if a particular vertex

i is visited. The objective function is shown in Equation 3.1, where s is the start

vertex and h is the home vertex. The binary variable yi is 1 if vertex i is visited and

0 otherwise.

Maximize
N∑
i=1
i 6=s,h

pi yi (3.1)

yi ∈ {0, 1}, pi ≥ 0
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The exploration graph is represented as a weighted adjacency matrix M . As the

orienteering problem formulation requires a fully connected graph, an all-pairs short-

est path algorithm [51] is used to create a fully connected distance matrix Mc. As

the robot needs to visit only the discovered vertices, we create distance matrix Mcd,

from Mc, to include only s, h and the discovered vertices. The number of vertices

in Mcd is N . At the start of exploration, the robot starts exploring the initially un-

known environment from the home vertex h, then we use the orienteering problem

formulation to create a tour that starts and ends at vertex h. After the first step of

exploration, when the robot is not at vertex h, the current vertex of the robot serves

as the starting vertex s of the formulation and the end vertex is the home vertex h.

The robot’s exploration is constrained by the total time constraint expressed in

Equation 3.2, where ci.j is the time estimate to traverse edge ei,j from vertex i to

vertex j. The binary variable xi,j ∈ {0, 1} is 1 when the path contains the edge ei,j

and 0 otherwise.

N∑
i=1
i 6=h

N∑
j=1
j 6=i,s

ci,j xi,j ≤ tr (3.2)

xi,j ∈ {0, 1}, tr ≥ 0, ci,j > 0

Equations 3.3.1 – 3.3.3 present the set of inbound constraints. The robot is ex-

pected to return to the home vertex h at the end of the exploration. Hence the

inbound constraint, Equation 3.3.1 imposes the constraint that exactly one inbound

edge should exist in the robot path that brings the robot to the home vertex. The

inbound constraint for the starting vertex s, Equation 3.3.2) of the path is set to 0

to ensure that there are no edges inbound to the starting vertex. In case the starting
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vertex is the home vertex, this constraint is not imposed.

N∑
i=1
i 6=h

xi,h = 1 (3.3.1)

N∑
i=1
i 6=s

xi,s = 0 s 6= h (3.3.2)

N∑
i=1
i 6=j

xi,j = yj j ∈ {1 . . . N}, j 6= {s, h} (3.3.3)

Equations 3.4.1 – 3.4.2 present the outbound constraints. Equation 3.4.1 shows

the outbound constraint for the starting vertex. As the path must begin from the

starting vertex, the outbound constraint is set to 1. The outbound constraint of the

home vertex (see Equation 3.4.2) is set to 0 if the home vertex is different from the

starting vertex. For all other vertices, the outbound vertex is set to 1 only if the

vertex is a part of the path.

N∑
i=1
i 6=s

xs,i = 1 (3.4.1)

N∑
i=1
i 6=h

xh,i = 0 h 6= s (3.4.2)

N∑
i=1
i 6=j

xj,i = yj j ∈ {1 . . . N}, j 6= {s, h} (3.4.3)

Equation 3.5.1 presents the subtour elimination constraints based on the Miller

Tucker Zemlin (MTZ) formulation [52]. It introduces a variable ui ∈ R for each
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vertex i to store the order in which the vertices are visited.

ui − uj + 1 ≤ (N − 1)(1− xij) ∀i, j = 2, . . . , N (3.5.1)

2 ≤ ui ≤ N ∀i = 2, . . . , N

ui ∈ R

As the orienteering problem formulation seeks to maximize the collected prize

within a given time budget or deadline constraint, it does not prioritize minimizing

the cost of the path. In scenarios where the time budget exceeds the time required

to visit all vertices, the orienteering problem tends to yield paths with higher costs.

This issue is particularly prevalent during the initial stages of exploration when the

robot’s known map is small relative to the time budget. As a result, the orienteering

problem formulation is suboptimal for smaller environments and larger time budgets.

For example, consider the complete graph in Figure 3.1, where the robot starts an

orienteering tour from the Home vertex and ends its path at the Home vertex with

a time budget of 50 time steps. The generated path visits the vertices: Home, B, A,

Home with a path cost of 50 and a total prize collected of 10100. If the time budget

is increased to 100 time steps, the generated path visits the vertices: Home, B, C, A,

Home’ with a path cost of 66 and a total prize collected of 11100. This path with a

time budget of 100 time steps is not the shortest path to visit these vertices.

To address this issue and obtain the shortest prize path, we formulate a variant of

the orienteering problem called the profitable tour problem.

3.4.2 Profitable Tour Formulation

The Profitable Tour Problem (PTP) [45, 46] is a variant of OP. Its objective is to

maximize the difference between the total collected prize and the cost incurred. For

the single-robot indoor exploration problem, the PTP objective function is the scaled
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(a) Complete graph

(b) Orienteering Problem (tr = 50) (c) Orienteering Problem (tr = 100)

(d) Profitable Tour Problem (tr = 50) (c) Profitable Tour Problem (tr = 100)

Figure 3.1: (a) illustrates an example of a complete graph. Consider that the robot is in
the home position and it has three vertices to visit: A, B, and C with prizes 100,10000, and
1000 respectively. The edge costs are written in blue along each edge. (b) illustrates the
path generated by the orienteering problem formulation with 50 time steps, (c) illustrates the
path generated by the orienteering problem formulation with 100 time steps, (d) illustrates
the path generated by the profitable tour problem formulation with 50 time steps, and (e)
illustrates the path generated by the profitable tour problem formulation with 50 time steps.
The path is shown as a sequence of red arrows.
sum of prizes over all the visited vertices minus the total cost (Equation 3.6), where

m is a multiplier that scales the vertex prizes. The PTP formulation has the same

constraints as the OP, including the deadline constraint.
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Maximize m
N∑
i=1
i 6=s,h

pi yi −
N∑
i=1
i 6=h

N∑
j=1
j 6=i,s

ci,j xi,j (3.6)

xi,j ∈ {0, 1}

yi ∈ {0, 1}

where, m is a multiplier that scales the profit of all the vertices. We have used two

values for m: 10 and 100.

The constraints to the above objective function is the same as the constraints for

the orienteering problem. The time budget constraint is the same as in Equation 3.2,

inbound constraints as shown in Equation 3.3.1 – 3.3.3, outbound constraints as

shown in Equation 3.4.1 – 3.4.3, and subtour elimination constraints as shown in

Equation 3.5.1.

The profitable tour problem formulation generates paths similar to those of the

orienteering problem (OP) when the deadline is smaller than the time required to

visit all vertices, as illustrated in Figure 3.1(d). Furthermore, the profitable tour

problem formulation successfully computes the shortest path to visit the vertices,

even when the deadline exceeds the time needed to visit all vertices. For example, in

Figure 3.1(e), the solution to the profitable tour problem with a deadline of 100 steps

results in a path with a cost of 63, whereas the orienteering problem formulation,

shown in Figure 3.1(c), yields a path cost of 66.

Greedy Swap The path generated from the PTP and OP formulations is not

formulated to make the first vertex in the path as a high-priority vertex such as a

corridor. Instead it focuses on maximizing the total prize collected. However, in the

problem of robot exploration, the robot visits the first vertex in the path created and

updates the map. The existing path is generally not useful with the updated map,
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(a) (b)

Figure 3.2: A straight corridor environment with the red circle showing the position of the
robot. The numbers shows the index of the vertices. Consider the prize of vertices 8, 17,
and 24 are 10, 10000, and 10 respectively. The cost of each edge is 2. (a) shows the possible
solution path of [8, 17, 24, 16] created by the OP and PTP solver. As the robot will visit
the first vertex of the path and recalculate the results, it would lead to a slower exploration.
(b) shows the path [17, 8, 24, 16] after a greedy swap, where if a vertex has a higher prize,
it will be moved up the list provided there is no increase in total path cost.

and a new path is recomputed accounting for the newly discovered vertices adjacent to

the vertex visited. This means there exists situations, where the robot path contains

a high priority vertex in the tour but it is not the first vertex, and it might be possible

to have another path starting from the same vertex, where the same vertices are a

part of the path, but the first vertex is a high priority vertex. One such situation is

illustrated in Figure 3.2. In the figure, we observe that the path generated by the

PTP solver is [8, 17, 24, 16]. The solution path visits all the discovered vertices in a

shortest path. However, this path is not ideal as the robot visits vertex 8 as the first

vertex, exploring the small room. Whereas, if the robot visited the corridor vertex 17,

it could have spent the limited exploration time exploring the corridor which could

have led to identifying a higher number of discovered vertices.

The procedure of greedy swap scans through the path generated by the solver,

identifies vertices a set of vertices that have the same cost to visit from the current

vertex of the robot. It swaps a vertex from this set with the first vertex of the path if

two conditions are met. First, the swapped vertex has a higher priority, second, the

resultant path is the same cost.
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3.4.3 Minimum Latency Path

Minimum Latency Path(MLP) [53] Problem, also known as the Traveling Deliv-

eryperson Problem (TDP) [47] or Cumulative Traveling Salesperson Problem [54]

aims to minimize the average duration the robot takes to visit a vertex. Given a pre-

defined start and goal vertex, the problem asks for an optimal sequence of vertices

to be traversed in a path from the start to goal vertex. The objective is to minimize

the cumulative path cost to all vertices. The cumulative path cost is analogous to

“service time" at which a certain vertex is visited by the robot. Here “service time"

refers to the walltime at which a vertex is visited by the robot. We consider that the

robot doesn’t require any additional time to “service" a vertex, however just visiting

the vertices is enough to consider the vertex serviced.

Modeling the prioritized robot exploration problem as a Minimum Latency

Path(MLP) problem allows the identification of the shortest cumulative path cost

to visit all frontier vertices. This approach allows the robot to prioritize traveling

to a larger cluster of high-priority vertices rather than focusing on the closest high-

priority vertex. An illustrative example is shown in Figure 3.3. In this example, ob-

serve that the Priority-based Greedy algorithm chooses to visit vertex 3 first, followed

by the other vertices, as vertex 3 is closest to the robot. In contrast, the minimum

latency path visits the left side of the corridor to maintain the lowest cumulative

path cost to all vertices, consequently allowing the robot to keep the cumulative cost

at (15 + (15 + 5) + (15 + 5 + 6) + (15 + 5 + 6 + 25) = 112). By minimizing the

cumulative cost, the average time to visit all frontier vertices is reduced. In this case,

the average cost to visit each frontier vertex is (112/4 = 28). Alternatively, if the

goal was to minimize the total cost of the path, the path would have been to visit the

vertices in order: (2, 3, 5, 6, 7). In this case, the cumulative cost would have been

9+ (9+ 24)+ (9+ 24+ 5)+ (9+ 24+ 6) = 119, making the average cost to visit each

frontier vertex (119/4 = 29.75). Our hypothesis for employing the minimum latency
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(a) Weighted Graph

(b) Priority-based Greedy Path

(c) Minimum Latency Path

Figure 3.3: Comparison of Priority-based Greedy and Minimum Latency Path for an
example scenario with several corridor vertex in a graph. (a) Shows the weighted graph
with distance along each edges. Vertex 2 is the current position of the robot, the white
vertices are discovered vertices, while the gray vertex 1 is a visited vertex. (b) Shows the
path generated by the Priority-based greedy problem. Notice that the robot visits the
closest vertex first and does not have a overhead to visit other vertices. (c) Shows the path
generated by the Traveling Deliveryperson problem. Notice here that the robot tries to visit
the cluster of corridor vertices on the left of the graph before visiting the vertex on the right.

path problem formulation is as follows: since visiting each frontier vertex provides

an equal likelihood for the robot to explore a portion of the unknown environment,

a dynamic deadline would favor a formulation with a lower average cost per fron-

tier vertex, thereby increasing the probability of visiting a larger number of frontier
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Figure 3.4: Graphical representation of the multi-level network. Each level corresponds
to a value of k. Each edge is represented by a binary variable y

(k)
ij . Highlighted edge shows

y
(1)
5 4 as it starts from level 1 and is from vertex 5 to vertex 4.

vertices.

The MLP problem calculates the sequence of vertices the robot visits in a path.

To calculate the sequence of vertices, considering vertex 0 as the first vertex of the

path, a multi-level network can be constructed (see Figure 3.4), in which each level is

a repetition of the same graph. Repeating the graph we can assign binary variables

for each edge at every level. The level denotes the vertex sequence in the path. Each

level allows for one vertex to be selected, and once a vertex is selected, it cannot be

reselected in subsequent levels. This allows the robot to create a path to visit all

of the vertices. The number of levels determine the lookahead of the path planning.

The mathematical formulation is discussed below.

To calculate the sequence of vertices, considering vertex 0 as the first vertex of the

path, we can formulate the mixed integer linear program with the objective function

to minimize the cumulative path cost to each vertices visited along the path. The

objective function can be written as Equation 3.7, where y
(k)
ij is a binary variable

which is 1 if vertices i and j are connected in the kth step of the sequence of vertices
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in the resultant path.

min n
n∑

i=1

c0ix
(1)
i +

n−1∑
k=1

n∑
i=1

n∑
j=1
j 6=i

(n− k)cijy
(k)
ij (3.7)

where,

• cij is the edge cost of the edge from vertex i to j

• k is the level

• y
(k)
ij ∈ {0, 1} is 1 if the edge from i to j is active in between levels k and k + 1,

0 otherwise.

• x
(k)
i ∈ {0, 1} is 1 if a vertex i ∈ V is visited at level k.

The constraints are:

• All levels needs to be occupied, but no more than two nodes can occupy a level

n∑
k=1

x
(k)
i = 1 (i = 1, 2, . . . , n) (3.8)

• Guarantee that each level is occupied by a single node.

n∑
i=1

x
(k)
i = 1 (k = 1, 2, . . . , n) (3.9)

• Ensure that one arc leaves from level k

n∑
j=1
j 6=i

y
(k)
ij = x

(k)
i (i = 1, 2, . . . , n; k = 1, 2, . . . , n− 1) (3.10)
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• Impose that at level k + 1 only one arc can arrive at a time

n∑
j=1
j 6=i

y
(k)
ji = x

(k+1)
i (i = 1, 2, . . . , n; k = 1, 2, . . . , n− 1) (3.11)

• Establish that x(k)
i are binary numbers

x
(k)
i ∈ {0, 1} (i = 1, . . . , n; k = 1, 2, . . . , n) (3.12)

• Establish that y(k)ij are binary numbers

y
(k)
ij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , n; i 6= j; k = 1, 2, . . . , n) (3.13)

The formulation of minimum latency path problem does not consider the node

prizes into account. To consider node prizes, we formulate a variant of the minimum

latency path Problem and the profitable tour problem as discussed below.

3.4.4 Profitable Tour Problem with Minimum Latency Path

To account for the prizes of the vertices and to consider the minimum latency path,

we formulate the prioritized exploration problem in another formulation, Profitable

Tour Problem with Minimum Latency Path (PTP-MLP). Here, the objective of PTP-

MLP formulation is to maximize the difference between the prizes collected by visiting

vertices and cumulative cost while exploring vertices. The cumulative costs ensure

that the average path cost to each vertex is minimized. In this formulation we also

use discounted prizes to ensure that high priority vertices are visited earlier in the

path.

The objective function for the PTP-MLP formulation is defined in Equation 3.14,

where m is the multiplier and p
(k)
i is the prize at vertex i at level k. The variables

x
(k)
i and y

(k)
ij are binary. The constraints are slightly different from the constraints in
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Minimum Latency Path Problem.

max m
n∑

k=1

n∑
i=1

p
(k)
i x

(k)
i −

n
n∑

i=1

c0ix
(1)
i +

n−1∑
k=1

n∑
i=1

n∑
j=1
j 6=i

(n− k)cijy
(k)
ij

 (3.14)

x
(k)
i ∈ {0, 1} (i = 1, . . . , n; k = 1, 2, . . . , n)

y
(k)
ij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , n; i 6= j; k = 1, 2, . . . , n)

The objective function is constrained by the total time constraint, Equation 3.15.

The formulation considers that not all levels needs to be occupied, but no more than

one nodes can occupy a level, as shown in Equation 3.16.

n∑
i=1

c0ix
(1)
i +

n−1∑
k=1

n∑
i=1

n∑
j=1
j 6=i

cijy
(k)
ij < B (3.15)

n∑
k=1

x
(k)
i ≤ 1 (i = 1, 2, . . . , n) (3.16)

The Equation 3.17 ensures that at most one arc leaves from level k to k + 1. This

prevents allows for the path to remain in budget and stop at a vertex.

n∑
j=1
j 6=i

y
(k)
ij ≤ x

(k)
i (i = 1, 2, . . . , n; k = 1, 2, . . . , n− 1) (3.17)

Similarly, Equation 3.18 ensures that there is at most one edge from each level k.

n∑
i=1

x
(k)
i ≤ 1 (k = 1, 2, . . . , n) (3.18)

Equation 3.19 imposes that at each level k + 1, only one arc can arrive at a time.

n∑
j=1
j 6=i

y
(k)
ji = x

(k+1)
i (i = 1, 2, . . . , n; k = 1, 2, . . . , n− 1) (3.19)
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(a) Large Home (b) Research Lab

(c) Office

Figure 3.5: Graph environments for testing exploration algorithms with small rooms (light
green), large rooms (dark green), and corridors (pink). The first row consists of two envi-
ronments with different connectivity: (a) Large Home, which has no corridors, and (b)
Research Lab, which has two looped corridors. The third row illustrates the (c) Office en-
vironment, which is the largest. The black vertex shows the starting vertex for exploration.
All environments are drawn to scale.

3.5 Experiments

In this section, we present the simulation experiments conducted to evaluate the

performance of the exploration algorithms. The experiments were carried out in two

distinct types of environments: graph-based environments, and 3D environments in

Gazebo.

The graph-based environments were employed to assess the efficiency of the ex-

ploration algorithms in isolation from the complexities of mapping, localization, and

robot navigation. These environments provide a simplified representation of the explo-
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ration space, allowing for a more focused evaluation of the algorithmic performance.

We use a total of six simulated environments. Three of these are elementary graph

environments from Chapter 2. There are three more environments which are a combi-

nation of the elementary layouts shown in Figure 3.5. The Large Home (Figure 3.5(a))

has no corridors and consists of a large room with small rooms connected to it. The

Research Lab (Figure 3.5(b)) has two looped corridors, and Office (Figure 3.5(c)),

the largest environment, has multiple corridors with multiple intersections.

To complement the graph-based experiments, we conducted experiments in 3D en-

vironments using the Gazebo simulation platform. These experiments offer a more

realistic setting for robot exploration, enabling the assessment of the algorithms in en-

vironments that closely mimic real-world scenarios. The repeatability of the Gazebo

experiments ensures the reliability of the results obtained. A set of three environ-

ments, Straight Corridor, Looped Corridor, and Branched Corridor from [41] has been

used to simulate real-world exploration (Figure 2.5). We replicate the experimental

setup from Section 2.4.1.2), employing the three graph environments illustrated in

Figure 2.5. Utilizing the Gazebo simulator [24], these environments are navigated by

a simulated TurtleBot3 robot. The robot is equipped with a single scan 360◦ LiDAR,

with a range of 6 meters, which simulates the Slamtec RPLiDAR A1M8 sensor. This

setup allows for a consistent evaluation of the exploration algorithms across different

environments.

The GMapping SLAM algorithm [25] is used to create an occupancy grid map from

the sensor and odometry data. This occupancy grid map is converted to the skeleton

graph as mentioned in Section 2.4.1.2. We convert the map to a skeleton graph. The

exploration graph G is represented by this skeleton graph. We determine each vertex

as a frontier vertex if it is possible to view the frontier cells from that particular

vertex. We calculate this by ray tracing a 360◦ LiDAR from the vertex position. If

the rays coincide with a frontier cell, the cell views a part of the frontier. If more than
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five percent of the rays from vertex coincide with frontier cells, the vertex is marked

as a discovered vertex.

As the optimization based algorithms have worst-case exponential computational

complexity, to make sure the algorithm runs in a sub-second runtime, once the number

of discovered vertices in the exploration graph exceeds 15, the vertices are clustered

using the k-medoids algorithm [55] into 10 clusters to ensure fast optimization solve

times. The prize of a vertex cluster is the average prize of each vertex in the cluster.

3.5.1 Metrics

The performance of the exploration algorithms is evaluated using the percentage

of the environment explored. For the graph environments, we compare the perfor-

mance of the (1) Priority-based greedy exploration (P-Greedy) algorithm from [41],

(2) Cost-based greedy (C-Greedy) algorithm, the baseline exploration algorithm moti-

vated by [1], (3) OP-based exploration algorithm (OPE), (4) PTP-based exploration

algorithm (PTPE), (5) MLP-based exploration algorithm (MLPE), and (6) PTP-

MLP based exploration algorithm (PTP-MLPE). The P-Greedy algorithm visits the

highest priority vertex that is feasible given the deadline. It prioritizes in the order

of corridors, large rooms, and small rooms. The C-Greedy algorithm visits the clos-

est vertex that is feasible given the deadline, regardless of the priority of the vertex.

Furthermore, we report the computation time for the exploration algorithms. For the

Gazebo environments, we compare the P-Greedy, OPE, and PTPE algorithms. We

test the Gazebo environments with a limited set of exploration algorithms due to the

large computation time of MLPE and PTP-MLPE algorithms.

For the graph environments, explored regions of the map are represented by the set

of explored vertices V , where V = (Vd ∪ Vvis). The performance metric for the graph

environments is the percentage of explored vertices in the complete environment. The

performance metric for the Gazebo environments is the percentage of the total area

explored.
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In the Gazebo environments, exploration time is measured in seconds and includes

computation time and the time taken for robots to move in the environment. In all

experiments, the robots are informed of a deadline at the start of exploration.

3.6 Results

We compare the performance of the algorithms OPE, PTPE, MLPE, and PTP-

MLPE to the priority-based greedy exploration algorithm (P-Greedy) [41]. For the

OPE and PTPE, the prizes of the vertices in corridors, large rooms, and small rooms

are set to 10000, 100, and 1, respectively.

The algorithms (P-Greedy, C-Greedy, OPE, and PTPE with multiplier m = 10)

have been tested on the six graph environments shown in Figure 2.4 and 3.5. The

prioritized exploration problem requires two parts of exploration as shown in to Fig-

ure 2.1: exploration without deadline and exploration with deadline. The orienteering

problem formulation and the profitable tour formulation requires a deadline for the

formulation. Both the OP formulation and PTP formulation uses the priority-based

greedy algorithm as shown in Chapter 2 for exploration without deadline. We compare

the percentage of the environment explored by the different exploration algorithms

within a deadline. The experiments were run on an Intel Core i7 9800X with 64 GB

of RAM, using the Python (v3.6.8) wrapper of Gurobi Optimizer (v9.5.1).

Additionally, we evaluate the computation time for various exploration algorithms

across the six distinct graph environments shown in Figure 2.4 and 3.5. Computation

time is defined as the total duration required to complete all computational steps in-

volved in the exploration process. These results are illustrated in Figures 3.9 and 3.10.

Notably, the greedy algorithm exhibits significantly lower computation times com-

pared to those of the optimization-based exploration algorithms. Among the algo-

rithms assessed, the Priority-based Greedy (P-Greedy) algorithm demonstrates the

most efficient performance, yielding the shortest computation times relative to the

percentage of the graph explored. Conversely, the PTP-MLPE and the MLPE algo-
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(a) Straight Corridor

(b) Looped Corridor

(c) Branched Corridor

Figure 3.6: Plots comparing the performance of the P-Greedy, C-Greedy, OPE, and PTPE,
Minimum Latency Path based exploration (MLPE) and Profitable Tour Problem with Min-
imum Latency Paths based exploration (PTP-MLPE) prioritized exploration algorithms for
the graph environments of Figure 2.4. The vertical axis shows the average percentage of
explored vertices over thirty independent exploration trials for each deadline. The hori-
zontal axis shows the deadlines. The shaded region shows the standard deviation of thirty
independent experiments.

rithm has the highest computation time in most of the exploration algorithms. Due to

their large computation time, these algorithms are deemed unsuitable for deployment



55

(a) Large Home

(b) Research Lab

(c) Office

Figure 3.7: Plots comparing the performance of the P-Greedy, C-Greedy, OPE, and PTPE,
Minimum Latency Path based exploration (MLPE) and Profitable Tour Problem with Min-
imum Latency Paths based exploration (PTP-MLPE) prioritized exploration algorithms for
the graph environments of Figure 2.4. The vertical axis shows the average percentage of
explored vertices over thirty independent exploration trials for each deadline. The horizontal
axis shows the deadlines. Note that the Office environment requires a larger time to explore
due to its larger size. Within this deadline, the robot starts from the home location, explores
the environment, and returns to the home location.
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(a)

(b)

Figure 3.8: Impact of clustering on prioritized exploration of the Research Lab graph
environment. The horizontal axis shows the deadlines. The plots show performance of
the (a) OPE and (b) PTPE exploration algorithms without clustering (orange) and with
clustering (green).

in Gazebo exploration scenarios.

To keep Gurobi’s solve time under one second for the large graph environments, we

clustered the discovered vertices into 10 clusters when the number of vertices exceeded

15. Clustering the vertices in the exploration environment reduces performance, as

shown in Figure 3.8. For PTPE and OPE, the difference in the percentage of explored

vertices with and without clustering is significant when the number of discovered

vertices is greater than 2–3 times the number of clusters.

The performances of the P-Greedy, OPE, and PTPE algorithms on the three

Gazebo environments of Figure 2.5 are compared in Tables 3.1, 3.2, and 3.3. For most

deadline instances, the performances of all three algorithms are very close. For a few

instances with performance differences, the causes can be identified. For example,

the significant difference between P-Greedy and the optimization based algorithms
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(a) Large Home

(b) Research Lab

(c) Office

Figure 3.9: Semi-log plots comparing the compute time of the P-Greedy, C-Greedy, OPE,
and PTPE, Minimum Latency Path based exploration (MLPE) and Profitable Tour Prob-
lem with Minimum Latency Paths based exploration (PTP-MLPE) prioritized exploration
algorithms for the graph environments of Figure 2.4. The vertical axis shows the average
percentage of explored vertices over thirty independent exploration trials for each deadline.
The horizontal axis shows the total computation time to explore the environment.

for the 1500 s deadline on the Straight Corridor environment stems from the skeleton

graph having multiple vertices along the direction from the robot’s position to the
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(a) Large Home

(b) Research Lab

(c) Office

Figure 3.10: Semi-log plots comparing the compute time of the P-Greedy, C-Greedy, OPE,
and PTPE, Minimum Latency Path based exploration (MLPE) and Profitable Tour Prob-
lem with Minimum Latency Paths based exploration (PTP-MLPE) prioritized exploration
algorithms for the graph environments of Figure 2.4. The vertical axis shows the average
percentage of explored vertices over thirty independent exploration trials for each deadline.
The horizontal axis shows the total computation time to explore the environment.

frontier. See Section 3.7.2 for details.
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Table 3.1: Exploration results for the Straight Corridor Gazebo environment as shown in
Figure 2.5(a). P-Greedy is the prioritized-greedy algorithm, OPE is the OP-based explo-
ration algorithm, and the PTPE is the PTP-based exploration algorithm with multiplier m
= 10.

Deadline
(in secs.) Algorithm Corridor Large

Room
Small
Room Total

1500
P-Greedy 99.3% 43.7% 97.0% 72.3%

OPE 99.9% 63.9% 98.4% 82.5%
PTPE 99.8% 80.0% 97.9% 89.8%

1000
P-Greedy 99.6% 16.3% 96.4% 59.2%

OPE 99.4% 24.2% 97.4% 63.4%
PTPE 99.8% 28.5% 97.1% 65.3%

500
P-Greedy 79.6% 0.0% 78.5% 41.8%

OPE 80.3% 0.0% 52.6% 31.9%
PTPE 79.3% 0.0% 51.7% 31.4%

3.7 Discussion

The OPE and PTPE algorithms create paths to visit the set of vertices that max-

imize their objectives while ensuring the robot satisfies the deadline. In both formu-

lations, there is no guarantee that the first vertex in the path will be a high priority

vertex. As the path is recomputed after the robot visits a discovered vertex, the

new path may again have the same limitation. The P-Greedy algorithm, in contrast,

chooses the highest priority vertex that is closest to the robot’s current position as

the target vertex, provided the robot can explore the vertex and return home within

the deadline. Given this fundamental difference between the P-Greedy algorithm — a

short horizon exploration algorithm and the non-greedy PTPE and OPE algorithms

— long horizon exploration algorithms, this section discusses our observations from

executing these exploration algorithms on different types of environments.

3.7.1 Exploration in the Graph Environments

The P-Greedy algorithm has the best performance for most deadline instances, as

shown in Figures 3.6 and 3.7. PTPE is second in performance in the Straight Corridor,
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Table 3.2: Exploration results for the Looped Corridor Gazebo environment as shown in
Figure 2.5(b). P-Greedy is the prioritized-greedy algorithm, OPE is the OP-based explo-
ration algorithm, and the PTPE is the PTP-based exploration algorithm with multiplier m
= 10.

Deadline
(in secs.) Algorithm Corridor Large

Room
Small
Room Total

1500
P-Greedy 99.9% 99.7% 98.4% 99.1%

OPE 100% 99.7% 99.1% 99.6%
PTPE 100% 99.7% 94.6% 97.2%

1000
P-Greedy 100% 99.9% 97.2% 98.0%

OPE 100% 99.7% 90.0% 94.9%
PTPE 100% 99.5% 96.2% 98.0%

500
P-Greedy 80.3% 97.9% 51.9% 68.3%

OPE 87.4% 98.8% 50.6% 69.5%
PTPE 79.9% 97.7% 49.3% 66.0%

Looped Corridor and Research Lab environments. For a few deadline instances, PTPE

outperforms P-Greedy on the Looped Corridor and Research Lab environments. In

the Branched Corridor environment, P-Greedy significantly outperforms the other

algorithms. Both P-Greedy and PTPE initially explore one of the two available

corridors. Once the corridor is visited, P-Greedy chooses to visit the other corridor,

while PTPE explores the room vertices adjacent to the explored corridor instead of

visiting the other corridor, hurting its performance. In the Large Home environment,

OPE performs better than PTPE for smaller deadline instances.

3.7.2 Exploration in the Gazebo Environments

The Gazebo environments use skeleton graphs. A skeleton graph updated after the

robot reaches a target vertex may not have a vertex at the current robot position. As a

result, the robot spends a few seconds orienting and moving to the new skeleton graph,

impacting the exploration time. Furthermore, a shortest path along the skeleton

graph might not be the shortest path between two points on the map. As shown in

Figure 3.11, the skeleton graph may generate multiple vertices between the robot’s
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Table 3.3: Exploration results for the Branched Corridor Gazebo environment as shown
in Figure 2.5(b). P-Greedy is the prioritized-greedy algorithm, OPE is the OP-based explo-
ration algorithm, and the PTPE is the PTP-based exploration algorithm with multiplier m
= 10.

Deadline
(in secs.) Algorithm Corridor Large

Room
Small
Room Total

1500
P-Greedy 76.3% 63.2% 57.3% 64.0%

OPE 76.6% 77.7% 50.3% 65.3%
PTPE 75.0% 60.7% 57.1% 62.8%

1000
P-Greedy 66.8% 54.7% 49.2% 55.5%

OPE 66.1% 57.0% 36.9% 50.5%
PTPE 71.5% 49.9% 47.6% 59.8%

500
P-Greedy 50.2% 24.2% 23.9% 30.9%

OPE 55.1% 32.8% 22.4% 34.1%
PTPE 55.1% 28.6% 27.9% 35.3%

current position and the frontier of the explored map. The P-Greedy algorithm visits

the highest priority vertex that is closest to the robot, while OPE and PTPE may

visit a different target vertex, farther away from the robot’s current position. This

results in frequent skeleton graph updates for the P-Greedy algorithm, and each time,

the robot spends a few seconds repositioning itself in the new skeleton graph, thereby

affecting the P-Greedy exploration performance.

3.7.3 Limitations of Online Methods

The exploration problem can be categorized as an online problem [56] as the robot

sequentially receives information from the initially unknown environment. As the

exploration environment is partially observed by the robot, optimal solutions for the

partially known environments might not be optimal over the entire environment. We

notice that each exploration algorithm performs differently for a given environment.

As the structure of corridors and rooms determine the performance of the algorithm,

we can consider the environment as an oblivious adversary [57]. However, if an ad-

versary is aware of the exploration algorithm’s priorities for visiting different building
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Figure 3.11: Robot exploring the Straight Corridor Gazebo environment, moving
along an edge of the skeleton graph. Skeleton graphs in Gazebo environments gen-
erate multiple vertices along the direction from the robot’s current position to the
exploration frontier. Here the vertices (7, 9, 8) are along the corridor. The skeleton
graph shown here will be updated using the updated map after the robot reaches the
target vertex. The frontier is the boundary between the light gray and dark gray
regions of the map.

structures, it can devise an environment in which the algorithm would perform poorly.

Although no particular exploration algorithm is a clear winner in all types of environ-

ments, we observe that the priority-based greedy algorithm performs competitively

in almost all environments.

3.8 Contributions

In this chapter, we formulated an exploration problem as an Orienteering problem,

Profitable Tour problem, Minimum Latency Path problem, and Profitable Tour prob-

lem with minimum latency path. These formulations enable a lookahead in planning,

allowing for decision-making beyond just the next step.

3.9 Conclusion

This chapter considered the prioritized exploration problem, whose objective is to

compute the geometric layout of an initially unknown environment by rapidly explor-

ing it and returning to the home location within a deadline. We formulated it as an

Orienteering Problem and as a Profitable Tour Problem. In the graph environments,

we found that a priority-based greedy exploration algorithm performs on par or better
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than the optimization based algorithms in most instances. In the Gazebo environ-

ments, all three exploration algorithms perform very similarly. While no algorithm

emerged a clear winner across all exploration environments, the priority-based greedy

algorithm performed quite competitively despite its low computational overhead.

We plan to investigate two directions in our future work. The first is further testing

of the prioritized exploration algorithms in Gazebo and real-world environments to

better understand their performance. This includes tests over a large set of deadlines

and environments, and using a separate path planner to compute efficient collision-

free trajectories for faster robot exploration. The second direction is to obtain the

values of the vertex priorities based on the semantic information they provide about

the building structure.



CHAPTER 4: MULTI-ROBOT PRIORITIZED INDOOR EXPLORATION WITH

DYNAMIC DEADLINES

In the past decade, mobile robots have observed a steep decrease in prices, as

robots have been made more commonplace. However, mobile robots have limitations

of limited battery life, sensing, computation, and communication capabilities. These

limitations restrict the capabilities of an individual robot to solve a large problem.

This leads to a growing need for algorithms and planning to make multiple mobile

robots cooperatively coordinate together to achieve a single large task [58].

Exploration with deadlines is useful in time-critical and dangerous environments

when the computed environment layout can provide essential information for subse-

quent robotic or manned operations. It can also be used to identify hazardous regions

of an environment. When the robots have insufficient time to explore the entire en-

vironment, a single-robot prioritized exploration algorithm as shown in Chapters 2

and 3 can explore highly connected areas of the environment to obtain the layout of

the environment.

In this chapter, we improve on single-robot exploration by using multi-robot coor-

dination to explore an initially unknown indoor environment. In order to increase the

amount of explored area within the dynamic deadline imposed by the environment

or the robots, we can use multiple robots to explore the environment. As each robot

is equipped with a set of sensors to sense and map the environment, using multi-

ple robots mean that multiple robots can observe the unexplored area concurrently,

leading to larger fraction of the environment being explored within a limited time.

Multiple robots offer higher reliability as a subset of the functional robots can com-

plete the exploration even if a few robots are deemed unusable. Robots are deemed
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unusable when they run out of battery, are trapped due to moving obstacles, or are

just malfunctioning. When using multiple robots, it is also possible to use robots of

different types. This makes it more suitable for exploration of complex environments,

where one type of robot may be unsuitable to explore the complete environment

within a limited time.

Most single and multi-robot exploration algorithms focus on exploring the com-

plete environment instead of rapidly exploring the unknown environment to identify

its layout. Since using multiple robots would allow for more extensive exploration

when given a short deadline, this chapter is motivated by deadline driven multi-robot

exploration, a topic that has received a limited amount of research attention.

Our research contributions are: (1) We introduce a multi-robot deadline-driven

priority-based exploration algorithm; (2) We present a multi-robot algorithm for the

Profitable Tour Problem based on a Team Orienteering Problem approximation al-

gorithm; (3) We introduce preemptive exploration in our prioritized exploration al-

gorithms, making the robot exploration more efficient.

The chapter discusses the background on multi-robot systems in Section 4.1, rel-

evant literature in Section 4.2 and describes the multi-robot priority-based greedy

algorithm and adaptation of the multi-robot Profitable Tour Problem in Section 4.3.

Results of simulation experiments along with a discussion of the behavior of the ex-

ploration algorithms are presented in Section 4.4.

4.1 Background

Multi-robot systems (MRS) has several applications using mobile robots. MRS

has been used for coverage problems to coordinate a fleet of drones by Bartolleni et.

al. [59] for outdoor inspection of several points and by Saurav et. al. [60] for outdoor

inspection of lines. MRS has been used for search and rescue problems [61, 62],

formation control [63, 64].

A Multi-robot System (MRS) is defined as a robotic solution or technique that in-
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Create local map from sensor data

Merge occupancy grid maps to create a 
global occupancy grid map

Identify locations to visit

Multi-robot path planning to visit target 
points

Multi-robot coordination

Figure 4.1: Steps of most multi-agent exploration algorithms using a centralized controller.
Notice that the algorithms do not direct the robots to home location after the exploration
is complete.
volves multiple robots to solve a task in a cooperative way. MRS was first used in the

problem of robot exploration by Rekletis [65], to specifically address the problem of

exploring large environments. Rekletis used individual robot sensor data and tracked

robot position from other robots to sweep the unknown area in parallel line trajec-

tories. This was later significantly improved by Stachniss [66] to include techniques

such as semantic place labels to improve exploration, and actively close loops during

exploration to make the explored map more robust to mapping errors.

4.1.1 Multi-robot exploration

The steps of Multi-robot exploration can be divided into five steps as shown in

Figure 4.1. Here we discuss about each of the steps and the related work associated

with them.

Create local map from sensor data: Individual robots use simultaneous lo-

calization and mapping (SLAM) algorithms such as extended Kalman filter [7] to

create a map of the environment surrounding the robot. This map is represented as
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an occupancy grid map [21], coverage maps [67] or sparse maps such as quadtrees and

octrees [68]. These maps are discrete and are updated using a probabilistic update

of the mapping algorithm.

Merge occupancy grid map to create a global map: By merging multiple

local maps into a global map, the robots can be localized with respect to each other,

and the robot exploration can be coordinated accurately. However, merging local

maps into a single global map has additional challenges. As robots explore through

an environment, odometry errors accumulate in the local map of the robots. These

odometry errors mean the individual local maps do not exactly align one over the

other. To address such a challenge, the robots must visit a common part of the

environment, mark it as a landmark, as use it to align the local map correctly to one

another. Existing techniques to merge individual maps from each robot utilize laser

scans [69], pose matches [70], landmarks [71], and indoor features such as doors and

corridor junctions [72].

Identify locations to visit: The set of robots identify a possible set of locations to

visit to explore the map further. Ideally the set of locations would be at the periphery

of explored and unexplored parts of the map, also known as frontier regions.

Multi-robot coordination: The goal of multi-robot coordination is to optimally

subdivide the task to the participating robots, such that a robot does not remain idle

or redo a previously completed task. Multi-robot coordination can be considered

as the problem of multi-agent task allocation. Such task assignments may be done

either through a centralized server or distributed through individual robots. The

different types of coordination is illustrated in Figure 4.2. Existing techniques include

greedy algorithms [5], decision theoretic algorithms [73, 74, 75, 2], segmentation-based

algorithms [76, 77, 10, 78], and auction algorithms [79, 80, 81, 82].
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(a) (b) (c)

Figure 4.2: Coordination among agents in a general multi agent scenario. (a) Centralized
control, where each individual agent is connected to the central controller (large circle in
center). (b) Decentralized control, which is characterized by multiple compute units (circles
with thicker border), that communicate with one another. Each compute unit acts as a local
leader and coordinates the robots in its group. (c) Distributed control, which is characterized
by local interaction between neighbors.

Multi-robot path planning Path planning of multiple robots [83] include colli-

sion avoidance with obstacles as well as other robots. The problem of path plan-

ning in static environment is a well studied problem. There are techniques such

as planning in c-space, graph search techniques such as Dijkstra’s algorithm [84],

roadmap methods such as visibility graph, voronoi graph, and cell decomposition.

Non-deterministic methods such as sampling methods such as Rapidly-exploring Ran-

dom Trees(RRT) [85] and Probability Roadmap [86]. However, all of the methods

work with static obstacles. To work with dynamic environments to avoid other moving

robots, the robots should follow real-time motion planning. A few such techniques are

Extended RRT (ERRT) [87], Artificial potential functions (APF) [88], graph search

algorithm such as D* Algorithm [89, 90], Real-time Adaptive Motion Planning [91, 92],

and even machine learning techniques [93].

4.1.2 Challenges

While MRE is more useful for handling larger environments than single robot

systems, it brings its own set of challenges. These challenges are as follows:
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Multi-robot coordination: The goal of multi-robot exploration is to achieve a

functional autonomy with the least amount of time spent in overhead control, and

optimally subdivide the task to the participating robots, such that a robot does not

redo a pre-completed task. Algorithmically, multi-robot exploration can be consid-

ered as a task of optimally allocating specific regions to be explored by each robot.

This can be expressed as the problem of dividing or partitioning the set of robots

into non-overlapping sub-teams to perform the given tasks. It is mathematically

equivalent to the well-known NP-hard problem of set-partitioning in combinatorial

optimization [94]. Such task assignments may be done either through a centralized

server or distributed through individual robots. Additionally, this step must also be

done within a reasonable amount of time such that the robots do not stall during

exploration.

Network and communication limitations: Wireless networks used to com-

municate with robots have limited bandwidth. Due to this, robots may not share their

entire sensor information over the network. Each robot is required to pre-process their

sensor information into a map.

For our problem, we assume that the robots can communicate among one another

to send position and map information. Based on the prioritized exploration approach

discussed in Chapter 2, we also know how to identify the location of frontier locations

that lead to further exploration in the environment. We also should ensure that

our proposed algorithm executes within a reasonable amount of time so that the

exploration is not stalled due to long computation time.

4.2 Related Work

The problem of robot exploration has been studied from multiple perspectives.

The work described in this chapter builds on previous work on robot exploration,

trajectory planning and mapping techniques.

Early work in multi-robot exploration was performed by Rekleitis [65] and Ya-
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mauchi [5].The goal of efficient multi-robot exploration has been to direct the

robot to non-overlapping areas of the exploration environment. It has been

implemented through decision theoretic approaches developed based on visibility

graphs [73, 74], environment segmentation [76], and next-best view based path plan-

ning approaches [95, 96]. The first multi-robot exploration algorithm which utilized

semantic information of the environment was introduced by Stachniss [2]. A signif-

icant part of multi-robot exploration has focused on handling distributed robot ex-

ploration where it is expected that robots may not share a network to communicate

with one another [97, 75, 81, 17, 64]. However, only a few techniques have considered

exploration with battery constraints [15, 17]. Recent heterogeneous multi-robot ex-

ploration has been shown to collaborate for long periods of time switching between

central coordination and distributed coordination depending on network availabil-

ity [98]. Prioritized robot exploration with mission constraints have been discussed

by [99], where the goal has been to utilize adaptive sensor coverage for time bound

exploration.

The task of multi-robot exploration can be viewed as a variant of the Multiple Trav-

eling Salesperson Problem (MTSP) [100] as each robot must compute a Hamiltonian

path to visit the frontier locations to explore the map. Similarly, the Team Orienteer-

ing Problem (TOP) and Orienteering Problem with Neighborhoods, variants of the

prize-collecting TSP with budget constraints, have been used to address the multi-

robot exploration problem [39, 40]. However the Generalized TOP technique [39]

has fixed rewards for exploring every unknown location, making it unsuitable for

prioritized exploration.

The multi-robot exploration problem has been studied in the context of collabora-

tion among robots and task scheduling [101]. While preemptive task scheduling has

been used in multi-robot task allocation for warehouse logistics [102], it has not been

investigated in the context of robot exploration.
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The previous techniques have focused on exploration with the goals of exploring

the complete environment or exploring under communication constraints. The single-

robot prioritized exploration problem that we have addressed in Chapters 2 and 3

considers partial exploration of the environment within a changing deadline to explore

the environment.

4.2.1 Limitations of existing work

The focus of the existing literature on multi-robot exploration has geared towards

the faster exploration of the environment.

• Most methods do not consider deadlines from the robot or the environment.

• The current methods do not consider identifying the layout of environment as

the objective of prioritized exploration.

• Most multi-robot exploration techniques do not consider return to home as a

part of the exploration process.

4.3 Problem Formulation

A team of robots, represented by the set K, explores an unknown environment,

senses and maps the area, and models the map as an exploration graph, G = (V,E).

V is the set of explored vertices, where each vertex v ∈ V represents a physical

location in the exploration environment. Each vertex is labeled based on the building

structure it is located in, such as ‘Corridor’, ‘Large Room’, and ‘Small Room’. Each

vertex is assigned a non-negative prize pi that represents its priority. The priority

is defined by the building structure the vertex is located in. The set of vertices V

is divided into two subsets Vd, a set of discovered vertices and Vvis, a set of visited

vertices. Discovered vertices are based in physical locations explored by the robot

but that have not been visited yet. Discovered vertices are located at the frontier of

explored and unexplored areas. If a robot visits a vertex vi ∈ Vd, it expects to observe
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a part of the unknown environment. E is the set of edges, where eij ∈ E is an edge

that connects two vertices vi and vj. An edge represents a collision free path between

the two vertices. Each edge has a non-negative weight wij which is the estimated time

to traverse the path represented by the edge. The robots start exploring the initially

unknown environment with or without an imposed deadline tr. As the robots explore,

a deadline tr is imposed on the robots. The robots should return to the home vertex

vh, from where it starts exploration, by the deadline tr. The deadline tr may change

during exploration based on robot battery life or environmental parameters.

The exploration algorithm assigns a target vertex vkt to the kth robot, where k =

1, 2, . . . , |K|. The exploration map is updated based on the sensor data from each

robot k en route to vkt . The exploration graph is updated as soon as the robot reaches

vkt . Once vertex vkt is visited, the set of discovered vertices is updated as Vd = Vd \ vkt

and the set of visited vertices is updated as Vvis = Vvis ∪ vkt .

With multiple robots exploring the environment, it is possible that the robots take

different amounts of time to reach their assigned target vertices. If a robot reaches

its target vertex earlier than the other robots, the exploration algorithm has three

options: (1) the robot waits till the other robots have reached their target vertices;

(2) all other robots preemptively stop moving to their assigned target vertices, the

target vertices are recomputed, and then exploration continues; or (3) the robot that

reaches early is assigned its next target vertex. In both the first and second options,

all robots are simultaneously assigned target vertices. The third option does not

utilize the updated map, and robots en route to their target vertices do not utilize

the updated exploration graph G before reaching their target vertices.

We present two multi-robot exploration algorithms, a priority-based greedy explo-

ration formulation and a multi-robot Profitable Tour Problem based formulation.
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4.3.1 Priority-based Greedy Formulation

The objective of the Priority-based Greedy (P-Greedy) algorithm is to greedily

assign the highest priority nearby vertex to each robot. This algorithm is a multi-

robot extension of the single-robot priority-based greedy algorithm presented in our

previous work [41]. In the single-robot priority-based greedy exploration, a single

robot was assigned the vertex with the highest priority in the graph. If there were

multiple such vertices, the algorithm used the path cost from the current vertex of

the robot to the the target vertex as the first tie-breaker and the path cost from the

target vertex to the home vertex the second tie-breaker. The second tie-breaker was

applicable only when a deadline was imposed during the exploration. The multi-robot

extension of the single robot priority-based greedy exploration algorithm considers the

all robots and discovered vertices to identify which robot is best greedily assigned to

a certain target vertex.

The multi-robot priority-based greedy algorithm loops through all discovered ver-

tices and all unassigned robots to create a list of feasible assignment combinations.

These assignment combinations are used to create a max heap with a custom heapify

function which maximizes over the priority of the target vertices. This heapify func-

tion uses the time estimate costck,d to travel from the robot’s current vertex vkc to the

discovered vertex vd as a tie-breaker, where a smaller value of the costck,d is preferred.

When a deadline is imposed on the robots, the priority function uses the time estimate

from the potential target vertex vd to home vh as an additional tie-breaker, where

a smaller value of costd,h is preferred. If tie-breakers cannot differentiate between

equally good vertex choices, a vertex is chosen randomly. Once a discovered vertex

is assigned to a robot k, the vertex is marked as the target vertex vkt of robot k. The

priority of this target vertex vkt is reduced to ε, where ε is an infinitesimally small

number close to zero. This encourages subsequent robots to not visit the same target

vertex. A new heap is created without the assigned robot and using the updated pri-
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Algorithm 4: Multi-robot priority-based greedy algorithm
Input: starting vertices: vk0 , k ∈ K; deadline: tr ← unknown or ∈ R+

Result: Explored graph G
1 Vd ← ∅ ; // discovered and unvisited vertices
2 Vvis ← {vk0}, k ∈ K ; // visited vertices
3 Add (vk0 , E(vk0)) to G ; // E(vi) is set of edges incident on vertex i
4 vh, v

k
c ← vk0∀k ∈ K;

5 for robot k in K do
6 V k

n ← NG(v
k
c ) ; // vertices adjacent to vkc

7 Vd ← Vd ∪ V k
n ; // update discovered vertices

8 while Vd 6= ∅ do
9 tr ← Query_Deadline() ; // check deadline

10 if tr is unknown then
11 Vt ← NextVertexWODeadline(Vd, Vc);
12 else if tr is 0 then
13 return G
14 else
15 Vt ← NextVertexWDeadline(Vd, Vc, vh, tr);
16 Vn ← NG(Vc), Vn ← Vn \ Vvis, Vd ← Vd ∪ Vn ;
17 Move K agents to Vt through graph G;
18 if Preemption then
19 Move robots till first robot k reaches vkt ;
20 Vc ← current robot vertices;
21 Vvis ← Vvis ∪ Vc, Vd ← Vd \ Vvis;
22 Add (Vc, Vn, E(Vc)) to G;
23 else
24 Vd ← Vd \ Vt; Vc ← Vt; Vvis ← Vvis ∪ Vc ;
25 Add (Vc, Vn, E(Vc)) to G;
26 if tr is unknown then
27 Move agent to vh through G;
28 return G;

ority of the target vertex vkt to assign the next robot to a target vertex. This process

continues till all robots k ∈ K are assigned a target vertex vkt . Algorithm 4 shows

the multi-robot priority-based greedy algorithm. The algorithm uses two functions:

to assign the target vertices without a deadline, shown in Algorithm 5, and in the

presence of a deadline, as shown in Algorithm 6.

Once each of the robots is assigned a vertex, the robots traverse the graph G till

one of the robots k ∈ K arrives at its target vertex vkt . The exploration can be

stopped preemptively as soon as this occurs, or each robot can wait at its target
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Algorithm 5: NextVertexWODeadline: Vertex assignment without deadline
Input: Vd, Vc

Result: Next set of vertices to visit
1 an ← 0, Vt ← empty array of size |K|;
2 while an < |K| do
3 Vlist ← ∅;
4 for vd in Vd do
5 for k in K do
6 costck,d ← dist(vkc , vd);
7 add vkd to Vlist

8 vkt ← argmax
vkd∈Vlist

pkd, tiebreakers: costck,d;

9 an ← an + 1, K ← K \ k ; // remove robot from set
10 pkt ← ε, Vt[k]= vkt ;
11 return Vt;

vertex till all robots arrive at their assigned target vertices. Preemptive exploration

requires additional computation as robots are frequently stopped due to preemption

and require new target vertex assignments to be computed on an updated graph G.

In exploration with “Wait”, the robots sit idle at the target vertex without exploring

the environment. We compare both the variants to identify which one works better

for the priority-based greedy solution.

The priority-based greedy algorithm makes the assignment based on the best single

vertex it can visit in a one-step look ahead. The greedy algorithm is suitable for robot

exploration as we have little information about the initially unknown environment.

However, in our single robot prioritized exploration, we have found that non-greedy

techniques such as Profitable Tour Problem based exploration can be competitive.

4.3.2 Multi-robot Profitable Tour Problem

The multi-robot Profitable Tour Problem (MR-PTP) is a multi-robot variant of

the Profitable Tour Problem. It is a combinatorial optimization problem where the

goal is to generate paths that maximize the sum of the profits of the robots from

vertex s to vertex t in a graph G, where s and t can be different vertices. A robot’s

profit is the sum of the prizes collected along its path within the deadline tr less its

path cost. The problem can also be stated as a variation of the Team Orienteering
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Algorithm 6: NextVertexWDeadline: Vertex assignment with deadline
Input: Vd, Vc, vh, tr
Result: Next set of vertices to visit

1 an ← 0, Vt ← empty array of size |K|;
2 while an < |K| do
3 Vlist ← ∅;
4 for vd in Vd do
5 for k in K do
6 if costck,d + costd,h > tr then
7 continue
8 costck,d ← dist(vkc , vd);
9 add vkd to Vlist

10 vkt ← argmax
vkd∈Vlist

pkd, tiebreakers: costck,d, costd,h;

11 an ← an + 1, K ← K \ k ; // remove robot from set
12 pkt ← ε, Vt[k]= vkt ;
13 return Vt;

Algorithm 7: Explore_PTP: Approximation algorithm for multi-robot Profitable
Tour Problem
Input: G, Vc, vh, tr, K
Result: Set of paths P

1 P = {} ; // initialize set of paths
2 k ← 0 ; // number of paths calculated
3 while k < |K| do
4 Pk ← RG_PTP(vkc , vh, Vd, tr, {vkc , vh}, 4);
5 G← Update_Prizes(G, Pk), P ← P ∪ Pk, k ← k + 1;
6 return P;

Problem [103, 104] which has been used in robot coverage problems [105, 106] and

exploration problems [107]. As a solution to MR-PTP calculates a path Pk for each

robot k ∈ K, we term it as multi-step lookahead. We expect the robots would

have longer than a one-step look ahead of the greedy algorithm and would plan the

trajectories efficiently given the limited knowledge of the environment.

In the Team Orienteering Problem (TOP), we assume that we have a complete

graph G = {V,E}, where V = {0, . . . , n}. Each vertex vi ∈ V has a non-negative

prize pi. The objective of the Team Orienteering Problem is the sum of all prizes

collected by the robots from their tour in the graph [103]. The objective is constrained

by the time budget or deadline within which the robots have to return to the home
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Algorithm 8: RG_PTP: Recursive greedy approximation algorithm for the single-
robot Profitable Tour Problem
Input: vc, vh, Vd, tr, R, iter
Result: A path P

1 if cost(vc, vh) > tr then return Infeasible;
2 P = (vc, vh) ; // initialize path
3 if iter == 0 then return P ;
4 obj = m.Path_prize(P )− Path_cost(P );
5 for vd in Vd do
6 for 1 ≤ B1 ≤ tr do
7 P1 = RG_PTP(vc, vd, Vd, B1, R ∪ vd, iter − 1);
8 if P1 == Infeasible then continue;
9 P2 = RG_PTP(vd, vh, Vd, tr −B1, R ∪ P1, iter − 1);

10 if P2 == Infeasible then continue;
11 Pnew = Concatenate (P1, P2);
12 objnew = m.Path_prize(Pnew)− Path_cost(Pnew);
13 if objnew > obj then obj = objnew, P = Pnew ;
14 return P ;

position. The Multi-Robot Profitable Tour Problem (MR-PTP) is a variant of the

team orienteering problem. Its objective is to maximize, across all robots, the sum of

the differences between the prizes collected along each robot’s path and the cost of

that path, all within the deadline tr.

MR-PTP is an NP-hard problem [94], with optimal solutions requiring exponential

time. For a single robot case, PTP was usable for exploration problems if the number

of vertices in the graph was reduced to 15 vertices [108]. To use the MR-PTP for ex-

ploration, we have adapted the approximation for the Generalized Team Orienteering

Problem by Xu et. al. [109].

Algorithm 7 shows the approximation algorithm for the multi-robot PTP problem.

In this algorithm, we initialize a set of empty paths P for all of the robots. The input

to the algorithm is the exploration graph G, the current positions of the K robots Vc,

the home vertex vh, and the deadline tr by which the robots needs to return home.

The algorithm iterates over each of the robots and calculates a path for the robot

with the approximate single-robot PTP algorithm shown in Algorithm 8. The path

of each robot k starts at its current vertex vkc and ends at the home vertex vh, and
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Algorithm 9: Update_Prizes Update prizes of graph vertices
Input: G, P
Result: G

1 for 0 ≤ i ≤ |P | do
2 vi ← ith vertex in path P ;
3 Prize(vi) = |(1− 2−(i−1))|Prize(vi);
4 Return graph G;

must be completed within the deadline tr. Once a path Pk for robot k has been

determined, the prizes of the vertices in the path Pk are discounted to encourage the

subsequent robots to visit other vertices rather than the visiting the same vertices in

Pk. The vertex prize update function is shown in Algorithm 9.

Algorithm 8 is a recursive greedy approximation algorithm for the single-robot

Profitable Tour Problem. The algorithm is a variant of the approximation algorithm

for the single vehicle orienteering problem shown by Chekuri and Pal [110] and Singh

et. al. [111]. The input to this algorithm is the current vertex of the robot vc, the

home vertex vh, the set of discovered vertices Vd, the deadline tr, a set of vertices R

to not consider in the path P , initialized to {vc, vh}, and the number of iterations

iter. The algorithm returns Infeasible if the path cost from vc to vh is greater than

the deadline. The variable iter denotes maximum allowed recursion depth of the

algorithm. We have used iter = 4, as values greater than that negatively impacted

the runtime of the solution. The objective of the Profitable Tour Problem is the total

path prize, scaled by a multiplier m, less the total path cost. We use a fixed value

of 100 for m to ensure that all vertices are visited if within the deadline. We use a

larger value of m than for the single robot exploration to maintain a higher value of

prizes even with multiple robots. The algorithm loops through the set of discovered

vertices Vd and creates splits B1 of the available deadline tr. Since choosing a linear

set of splits B1 ∈ {0, 1, 2, . . . , tr−1, tr} leads to a large amount of computation effort,

we have instead used exponential splits B1 ∈ {21, 22, 23, . . . , 2log2 tr}. When using

MR-PTP as an exploration algorithm, once the set of paths P is calculated, the first

vertex of each path Pk ∈ P is assigned as the target vertex vkt for robot k.
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4.4 Experiments

Simulation experiments were conducted on a suite of six simulated environments,

which were abstracted as graphs and are depicted in Figures 2.4 and 3.5. These graph

environments were used to evaluate the performance of the algorithms without the

mapping, localization, and robot navigation components influencing the evaluation.

In these experiments, vertex priorities are pre-assigned and do not require additional

computational overhead. The experiments were run on an Intel Core i7 9800X with

64 GB of RAM, using the Python (v3.6.8) wrapper of Gurobi Optimizer (v9.5.1).

Further, additional experiments were executed the Gazebo Simulator to assess the

practical behavior of the Priority-based Greedy algorithm in a real-time simulated

environment. This test involved two robots navigating a Branched Corridor envi-

ronment, illustrated in Figure 2.5(c). This setup was designed to demonstrate the

algorithm’s performance along with noise from SLAM and navigation.

4.4.1 Metrics

The performance of the exploration algorithms in the graph environments is evalu-

ated using the percentage of the environment explored as an indicator of the connec-

tivity of the environment. For these graph environments, we compare the performance

of (1) Multi-robot priority-based greedy algorithm (P-Greedy), (2) Multi-robot PTP

based exploration algorithm (MR-PTP), and (3) Multi-robot cost-based greedy al-

gorithm (C-Greedy) motivated by [5]. The C-Greedy algorithm aims to explore the

environment without considering priority values of the vertices and selects vertices

based on the path cost. Similar to the P-Greedy algorithm, once a robot is assigned

a target vertex, the priority of the vertex is changed to ε encouraging subsequent

robots to explore other vertices. The explored regions of the map are represented by

the set of explored vertices V ∈ G, where V = (Vd ∪Vvis). The performance metric is

the percentage of explored vertices in the complete environment for a given deadline.
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Table 4.1: C-Greedy is cost-based greedy algorithm, P-Greedy is the priority-based greedy
algorithm, and MR-PTP is Multi-Robot Profitable Tour Problem.

Deadline (tr)
(time steps)

Algorithm
(K = 2) Corridor Large

Room
Small
Room Total

20
C-Greedy 41.4% 48.8% 17.7% 30.5%
MR-PTP 63.6% 50.0% 30.0% 45.0%
P-Greedy 56.8% 41.2% 28.3% 40.5%

40
C-Greedy 72.7% 75.0% 40.0% 56.7%
MR-PTP 86.4% 87.5% 60.0% 73.3%
P-Greedy 99.1% 100.0% 62.7% 81.0%

80
C-Greedy 98.2% 100.0% 80.0% 89.3%
MR-PTP 100.0% 100.0% 80.0% 90.0%
P-Greedy 100.0% 100.0% 78.7% 89.3%

4.4.2 Results and Insights

We have compared the results from all six environments as line graphs in Fig-

ures 4.3 and 4.4. Here, the X-axis plots the different deadlines within which which

the environment is explored, and the Y-axis is the percentage of the environment ex-

plored, averaged over ten trials. The shaded region around a line shows the standard

deviation of the trials. All ten trials have the same start location.

The MR-PTP exploration algorithm generates paths for each robot to maximize

the objective while ensuring the last vertex in the path is the home vertex and the

path cost is smaller than the deadline. Similar to single-robot PTP paths [108], a

path from MR-PTP does not guarantee that the first vertex the robot visits will be a

high priority vertex. This impacts the performance of MR-PTP significantly and in

most cases, it is outperformed by the P-Greedy algorithm.

The P-Greedy algorithm, in contrast, chooses the highest priority vertex that is

closest to each robot’s current position as the robot’s target vertex, provided the

robot can explore the vertex and return home within the deadline. The P-Greedy al-

gorithm has the best performance for most deadline instances, as shown in Figures 4.3

and 4.4. The only instances where P-Greedy is outperformed by other algorithms by
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(a) Straight corridor
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(c) Branched corridor

Figure 4.3: Plots comparing the exploration performance of a team of two robots using
three exploration algorithms, P-Greedy, MR-PTP, and C-Greedy for the graph environments
of Figure 2.4. The vertical axis shows the average percentage of explored vertices over ten
independent runs for each deadline. The shaded regions show the standard deviation of the
samples. The horizontal axis shows the deadlines.

a small margin is for deadlines where over 80 percent of the environment is explored.

A few such examples are in the Research Lab environment with exploration time
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(e) Research Lab
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(f) Office

Figure 4.4: Plots comparing the exploration performance of a team of two robots using
three exploration algorithms, P-Greedy, MR-PTP, and C-Greedy for the graph environments
of Figure 3.5. The vertical axis shows the average percentage of explored vertices over ten
independent runs for each deadline. The shaded regions show the standard deviation of
the samples. The horizontal axis shows the deadlines. Note that the Office environment
shows lower exploration as it requires a larger time to explore due to its larger size. The
Looped Corridor and Research Lab have vertices not accessible by any exploration algorithm,
keeping their percent explored to less than 100%.
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of 110 timesteps or in the Looped Corridor environment with exploration time of

50 timesteps. A consistently strong performance for smaller deadlines makes the

P-Greedy algorithm a suitable candidate for deadline driven exploration where the

deadline is dynamic.

From Figures 4.3 and 4.4, we observe that P-Greedy with preemption always per-

forms better than P-Greedy with wait. We also observe the same behavior with

C-Greedy, where C-Greedy with preemption consistently outperforms C-Greedy with

wait. Waiting for the other robots without exploring the environment negatively

affects the exploration performance.

Table 4.1 compares the performance of the C-Greedy, MR-PTP, and P-Greedy

algorithms on the Research Lab environment. The table shows the percentage of the

total environment explored and the percentage explored for each building structure:

Corridor, Large Room, and Small Room, for three deadlines. Notice that MR-PTP

has the best performance at the shortest deadline of tr = 20; however P-Greedy

outperforms all other algorithms at tr = 40, while exploring almost the entire corridor.

Figure 4.5 compares the performance of exploration with 1 to 5 robots in the Office

environment. We choose this environment as it is the largest and clearly shows the

differences when using different numbers of robots. With a larger number of robots,

K = 5, observe that C-Greedy and P-Greedy perform similarly for a small deadline

(tr < 40). In such a case, for each step of the exploration, once a high priority vertex

is assigned to a robot, the other robots choose low priority vertices. This makes the

robots visit vertices with lower connectivity frequently, affecting the performance.

When the deadline is about 100 time steps, we notice that P-Greedy performs much

better than C-Greedy. By this deadline, each of the robots has identified a corridor

for itself, making the P-Greedy exploration more efficient. For a long deadline (e.g.,

tr > 170), only a few sparsely distributed low priority vertices remain towards the end

of the exploration; the robots require more time to visit them, casing the performance
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(a) Cost-based greedy

(b) Multi-Robot Profitable Tour Problem

(c) Priority-based greedy

Figure 4.5: Performance comparison of using one to five robots in the Office environ-
ment. All algorithm performances improve as the number of robots increases. The
cost-based greedy algorithm shows the highest performance benefit with an increasing
number of robots.
of P-Greedy to taper off.

Multi-robot Gazebo experiments: In the Branched Corridor Gazebo environ-

ment (Figure 2.5(c)), experiments were conducted using two Turtlebot3 Burger



85

Figure 4.6: Branched Corridor environment with two turtlebot3 robots. The blue lines
show the LiDAR simulation of each of the robots. The saturated blue lines show the LiDAR
sensor data that has been used for mapping and the other blue lines show the LiDAR rays
that do not reach an obstacle.

(a) (b) (c)

Figure 4.7: Exploration of the Branched Corridor Gazebo environment by two Turtlebot3
robots using the Priority-based Greedy algorithm. The three figures show the map generated
by two robots at different timestamps of exploration. (a) shows the map at the start of
exploration. (b) shows the map at 500 seconds, and (c) shows the map at 1000 seconds.
Note that the robots could not complete the exploration in the top right corner due to the
deadline imposed on them.

robots [112], as illustrated in Figure 4.6. These robots have a deadline of 500 seconds

imposed after 500 seconds of exploration, making the total exploration time 1000

seconds. The robots follow the Priority-based Greedy algorithm with preemption.

Equipped with a LiDAR with a range of 6 meters, the robots map the environment

individually using the GMapping SLAM algorithm [25]. To consolidate the map data

calculated by each robot, a multi-robot map merging technique [113, 114] was uti-

lized, integrating each robot’s map into a single occupancy grid map. The robots use

the ROS Navigation package based on Dynamic Window Approach (DWA) [26] to

navigate around obstacles and around each other.

We illustrate the progress of exploration by showing the merged map at differ-
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Table 4.2: Exploration results for the Branched Corridor Gazebo environment as shown in
Figure 4.6 with two robots. P-Greedy is the prioritized-greedy algorithm, MR-PTP is the
multi-robot PTP-based exploration algorithm with multiplier m = 100.

Deadline
(in secs.) Algorithm Corridor Large

Room
Small
Room Total

500 P-Greedy [K=2] 84.0% 67.9% 40.6% 56.5%
MR-PTP [K=2] 67.6% 59.2% 27.2% 43.6%

100 P-Greedy [K=2] 95.1% 100.0% 55.4% 75.2%
MR-PTP [K=2] 91.2% 93.5% 53.1% 71.0%

ent instants during the exploration in the Figure 4.7. Notice that the robot picks

two independent corridors exploring different parts of the environment as shown in

Figure 4.7(b). The robots can complete the exploration and return back to the

starting location before deadline. Here, the robots could explore 78% of the whole

environment.

In this Gazebo simulation, we compared the performance of the short-horizon

Priority-based Greedy (P-Greedy) algorithm against the long-horizon Multi-Robot

Path Planning (MR-PTP) algorithm. For these simulation experiments, the dead-

line was imposed at the start of exploration. The results are presented in Table 4.2.

Observe that the short-horizon P-Greedy algorithm consistently outperforms the long-

horizon MR-PTP algorithm across all deadlines. Furthermore, the P-Greedy algo-

rithm was more effective in explore high connectivity areas such as corridors and large

rooms, compared to the MR-PTP.

4.5 Contributions

In this chapter, we presented two formulations for the multi-robot prioritized

exploration problem: as a short-horizon Priority-based Greedy algorithm and as a

long-horizon multi-robot Profitable Tour Problem. Building on an approximation

algorithm for the Team Orienteering Problem, we developed a heuristic solution for
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the multi-robot Profitable Tour Problem.

4.6 Conclusion

This chapter presents multi-robot exploration algorithms for the problem of pri-

oritized exploration with dynamic deadlines. The goal is to rapidly determine the

geometric structure and connectivity of the environment by a team of robots. The

indoor environment is modeled as a graph, and the robots determine the next target

vertex to visit. We have compared three multi-robot exploration algorithms: cost-

based greedy, priority-based greedy, and the multi-robot Profitable Tour Problem

based algorithm. In all, we preemptively stop the exploration as soon as one of the

robots reaches its target vertex. To keep the computation time low, our multi-robot

Profitable Tour Problem based exploration algorithm is an adaptation of a multi-

robot Orienteering approximation algorithm [109]. We observe a significant speedup

in exploration when using multiple robots instead of a single robot, demonstrating

that a multi-robot implementation of our algorithm is effective in exploring unknown

environments.

We have identified several directions for future work. First, make the P-Greedy

algorithm more efficient. Second, implement the algorithms on a team of physical

robots, which requires developing robust solutions for map merging. Third, use neural

network based classifiers to semantically classify physical locations by their building

structures (e.g., corridor).



CHAPTER 5: CONCLUSION

This dissertation addresses the prioritized exploration problem for both single-robot

and multi-robot systems, with the objective of rapidly computing the geometric layout

of an initially unknown environment. The exploration algorithms introduced in this

dissertation enable efficient exploration and ensure the robots can return to the home

location within a specified deadline.

For the single-robot prioritized exploration problem, we developed the short-

horizon Priority-based Greedy algorithm and explored long-horizon exploration al-

gorithms based on the Orienteering Problem, Profitable Tour Problem, Minimum

Latency Paths Problem, and Profitable Tour Problem with Minimum Latency Paths

(Chapter 2 and Chapter 3). The Priority-based Greedy algorithm is a one-step looka-

head algorithm that identifies the highest priority vertex closest to the robot and

directs the robot towards it. Modeling the single-robot prioritized exploration prob-

lem as an Orienteering Problem or Profitable Tour Problem allows for a multi-step

lookahead. Since both these formulations consider the total prize collected over the

collected path, they can cause the robot to visit less connected vertices earlier in

the computed path. This leads to reduced exploration performance. The Minimum

Latency Paths Problem and Profitable Tour Problem with Minimum Latency Paths

formulations allow for a certain number of lookahead steps. The priority of a vertex

is determined by the building structure in which it is located. The Priority-based

Greedy algorithm moves the robot to the closest highest-priority vertices, making

this algorithm particularly effective in short deadlines and outperforming other prior-

itized exploration algorithms most of the time. Additionally, it operates much faster

than other algorithms, with computation time being several orders of magnitude
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faster. However, the performance of the Priority-based Greedy algorithm exhibits

high variability. While it provides rapid exploration, for more consistent performance

guarantees, opting for long-horizon prioritized exploration algorithms may prove ad-

vantageous. We determine that for the single-robot prioritized exploration problem,

the priority-based greedy algorithm is the most effective in most instances.

For the multi-robot prioritized exploration problem, we formulated it as the

Multi-robot Priority-based Greedy Problem and Multi-robot Profitable Tour Prob-

lem (Chapter 4). To keep the computation time low, our multi-robot Profitable Tour

Problem based exploration algorithm is an adaptation of a team orienteering approx-

imation algorithm [109]. We observe a significant speedup in exploration when using

multiple robots instead of a single robot, establishing that a multi-robot implemen-

tation of our algorithm is effective in exploring unknown environments. In the graph

environments, we found that a Priority-based Greedy exploration algorithm performs

on par or better than the optimization based algorithms in most instances. In the

Gazebo environments, we found that the Priority-based Greedy algorithm outper-

formed the multi-robot Profitable Tour Problem based exploration algorithm.

There are several directions for future work that we have identified. First, it is

essential to conduct additional testing of the prioritized exploration algorithms in

real-world environments to gain a deeper understanding of their performance. This

includes testing across a broader range of environments. Second, addressing compu-

tation and network delays in real-world experiments so that the robot can calculate

quicker map updates than the current SLAM algorithm. Third, the implemented

multi-robot exploration technique does not account for dynamic obstacles; imple-

menting control barrier functions could enhance safety by preventing robot-robot

collisions. Fourth, deriving the values of vertex priorities based on the semantic

information provided by the building structures could enable context-dependent pri-

oritization of the vertices. Finally, developing new metrics for prioritized exploration
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that focus on the layout and connectivity of the explored area to evaluate exploration

performance would provide a more nuanced assessment of exploration efficiency.
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