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ABSTRACT

JING XU. Estimation and Inference of Dynamic Intensity Models for Recurrent
Event Data with Applications to a Malaria Trial. (Under the direction of DR.

YANQING SUN)

Recurrent events are commonly encountered in medical and epidemiological studies.

It is often of interest what and how risk factors influence the occurrence of events.

While most existing work on recurrent events address both time-independent and

time-dependent effects, our challenges in analyzing a real-world vaccine trial data em-

phasize the importance of considering scenarios where these effects vary with specific

covariates. In this dissertation, we develop novel estimation and inference procedures

of two intensity models for recurrent event data. Both models allow for the simul-

taneous measurement of time-varying and covariate-varying effects, with covariates

potentially depend on event history.

In the first project, we consider a generalized class of semiparametric intensity

models. The models feature unspecific time-varying effects, while covariate-varying

and event history effects are modeled parametrically. The models offer much flex-

ibility through the choice of different link functions and parametric functions. Es-

timation procedures are investigated through local linear approximation and profile

log-likelihood method. A cross-validation bandwidth selection method is discussed.

Asymptotic properties of estimators are explored using martingale theory and em-

pirical processes. Two hypothesis tests based on the martingale residual have been

developed to assess the parametric functions of the covariate-varying effects. A Gaus-

sian multiplier method has been derived to approximate the underlying distribution

of test statistics.

In the second project, we propose a nonparametric intensity model with frailty

that captures unspecified time-varying and covariate-varying effects. Each individual

is associated with a frailty term following a Gamma distribution, which acts mul-
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tiplicatively on the intensity function. We develop maximum likelihood estimation

procedure using local linear approximation method with double kernels. The max-

imization is achieved through an EM algorithm. Variance estimators are obtained

using a weighted bootstrap procedure.

The simulation studies reveal the satisfactory performance of both models, which

have subsequently been employed to analyze the MAL-094 malaria vaccine efficacy

trial data. Our data applications demonstrate that these proposed models successfully

address the questions raised by the MAL-094 malaria vaccine efficacy trial data.
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CHAPTER 1: INTRODUCTION

Recurrent events refer to the events of interest that can occur repeatedly over

time. They are often observed in medical studies, such as hospital admissions, cancer

recurrences, infections of Covid-19, malaria and many others. It is typically of interest

to understand what and how the risk factors would influence the events. Evaluating

the effects of risk factors and analyzing how these effects may change over time help

us unravel the underlying mechanisms of the events.

This dissertation is motivated by the complex challenges posed by the MAL-094

malaria vaccine efficacy trial. Malaria is a life-threatening disease with diverse genetic

strains. It is transmitted through the bite of infected female Anopheles mosquitoes.

Malaria can cause flu-like symptoms, and sometimes even be life-threatening. Adults

and children can experience multiple malaria infections during their lifetime.

The MAL-094 trial is conducted by Glaxo SmithKline Biologicals (GSK) and PATH

Malaria Vaccine Initiative, testing the RTS,S/AS01E malaria vaccine. It took place in

Sub-Saharan Africa from 2017 to 2022, randomly divided approximately 1500 children

aged 5 to 17 months from two sites (Agogo in Ghana, and Siaya in Kenya) into five

arms, with each arm containing around 300 participants. Four arms received vaccine

versions administered at different doses and schedules and one arm served as control

group receiving placebo. Children’s vaccination and infection statuses have been

recorded.

The primary objectives of our work are to measure the effects of the RTS,S/AS01E

malaria vaccine. Our research questions focus on: (1) Whether and how the risks of

malaria infections vary over time? (2) How do previous events, such as prior infections

and/or vaccinations, correlate with subsequent infections? Additionally, how do the
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vaccine effects evolve over time following the most recent infection or vaccination?

Being able to answer these questions with mathematical models is an enormous

benefit to the malaria vaccine research and development. To most of our knowledge,

we can not find existing models that can perfectly addressing these questions. There

remains a need to explore new models. Subsequently, we undertake a literature review

and introduce conditional intensity models for recurrent event data.

The most two commonly used approaches to model recurrent events are marginal

methods and conditional methods. Both of them have been intensively studied, in-

cluding statistical modelings and inference procedures.

Marginal methods model the population average behaviors of the recurrent event,

focus on the overall effects and trends, rather than individual characteristics. Wei

et al. (1989) analyzed multivariate failure time data, they used Cox proportional haz-

ard models to model the marginal distribution of each failure time without imposing

any structure of dependence among the failure times for each individual. Pepe and

Cai (1993) proposed two rate functions to model the first infection and recurrent

infection separately, providing likelihood-based estimating equations. Lawless et al.

(1997) proposed a semiparametric procedures to model the mean or rate function for

recurrent events. The models involve a baseline mean or rate function which can be

arbitrary, multiplied by a parametrically specified function of covariates. Lin et al.

(2000) justified the inference procedure through empirical process theory and con-

structed confidence bands for the mean functions. Amorim et al. (2008) incorporated

B splines method in a rates model for recurrent events to estimate the time-dependent

coefficient. Sun et al. (2009) developed a marginal modeling approach on a multivari-

ate recurrent event model.

Rather than modeling the overall population behavior, conditional methods can

model the pattern based on event history. Conditional methods provide a flexible

framework by modeling the intensity function of counting process of events over time.
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For a given time t, let Ni(t) be the counting process, which registers the number of

events of subject i that have experienced up to, and including, time t. Let Fit be the

history of the events up to time t. Mathematically, it can be a σ-algebra generated by

the counting process Ni(t) and possible covariate processes. The intensity function

of counting process Ni(t) is defined as

λi(t) = lim
∆t→0

Pr(∆Ni(t) = 1|Fit−)

∆t
,

where ∆Ni(t) = Ni(t + ∆t−) − Ni(t
−) is the number of events in the time interval

[t, t+∆t]. By definition, we have E(dNi(t)|Fit−) = λi(t)dt. The intensity of a counting

process at time t is the instantaneous risk rate of an event occurrence at the time

point, given the event and covariate history.

A counting process is deemed to be of the Poisson type if, for non-overlapping time

intervals, the number of events within these intervals is statistically independent.

The recurrent event processes characterized by a constant intensity are referred to as

homogeneous Poisson processes, while those with time-dependent intensity functions

are termed inhomogeneous Poisson processes.

There are extensive work on modeling the intensity of the Poisson-type counting

process. Andersen and Gill (1982) studied the proportional intensity model for re-

current events:

λ(t) = λ0(t) exp {βTX(t)},

where X(t) is a vector of possibly time-dependent covariates, λ0(t) is an unspecified

baseline intensity function and β is a vector of unknown regression parameter.

Zeng and Lin (2006) proposed the following semiparametric transformation models

ΛZ(t) = G
{∫ t

0

Y ∗(s) expβ
TZ(s) dΛ(s)

}
,
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where Z(·) is a vector of possibly time-varying covariates, β is a vector of unknown

parameters, Y ∗(·) is the at risk indicator, Λ(·) is an unspecified increasing function.

The transformation function G(·) provides much flexibility of the models and the es-

timated regression parameters β and cumulative intensity functions Λ(·) are obtained

through non-parametric maximum likelihood method.

Gap time, also know as waiting time, refer to the time between two consecutive

events for a particular subject. It is of natural interest to incorporating the gap times

in the model to help us understand the intra-individual correlation. Prentice et al.

(1981) proposed two classes of stratified proportional intensity function, one model

incorporated the baseline intensity as a function of time since enrollment, while the

other model included the baseline function as a function of time since the most recent

event. Chang (2004) considered an accelerated failure time (AFT) model, which

assumed the individual specific frailty, the covariate effects and the random errors

acted additively on the logarithm of gap time. Other works related with gap time

include Oakes and Cui (1994), Pena et al. (2001), Strawderman (2005) and some

others.

Much of the existing literature on recurrent event data present certain limitations

for our analysis of malaria trial data. Their models either focus solely on constant

effects or time-varying effects and can not address our specific question: how does

the vaccine effect change over time since the most recent infection or vaccination?

Qi et al. (2017) studied a generalized class of semiparametric varying-coefficient

models for longitudinal data, which can model time-independent effects, time-varying

effects and covariate-varying effects. In the first project, we study a similar class of

models for the intensity of recurrent events. These models can be used to study effects

across two time scales: time-varying effects in calendar time and effects based on time

since a treatment exposure or event exposure. They are valuable for analyzing the

malaria vaccine trial data and understanding how infection risk depends on covariates
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and prior infections.

Frailty models, also called random effect models, are able to account for unob-

served heterogeneity in a population and induce dependence among the recurrent

event times within subjects by introducing a random variable in the model. Lawless

(1987) is an early work on the frailty models, it incorporated the random effects in

the intensity function λi(t) = λ0(t) exp{αi + X ′iβ}, where αi are independent and

identically distributed random variables. Gamma frailty is commonly used in frailty

models by its conjugate properties. Nileson et al. (1992) introduced Gamma frailty,

which act multiplicatively on the intensity function as follows:

λi(t) = ZiYi(t) exp{βTXi(t)}α(t), (1.1)

where the frailty variable Zi is drawn from a Gamma distribution, with unknown

parameter. Yi(t) is an observable non-negative predictable process, Xi(t) is a possibly

time-dependent covariates, β is a vector of unknown regression parameters and α(t)

is an unspecified function.

Klein (1992) specified the estimation procedures of Nelson’s model based on EM

algorithm. Murphy proved the consistency and asymptotic properties of the Gamma

frailty model without covariates in Murphy (1994) and Murphy (1995). Parner (1998)

extended the theories to the correlated Gamma frailty models with covariates.

Zeng and Lin (2007) incorporated random effect within a class of semiparametric

transformation models:

Λ(t|X,Z; b) = G
(∫ t

0

λ(s)eβ
TX(s)+bTZ(s)ds

)
,

where G(·) is a transformation function, X(s) and Z(s) are possibly time-dependent

covariates, λ(.) is an arbitrary positive function, β is a set of unknown parameters

and b is a set of random effects.
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In a separate work, Zeng et al. (2009) propose a different class of transformation

models that incorporates the Gamma frailty while also allowing the random effects

to take the value of 0. There are also some work of intensity models with frailty for

recurrent event data, includes Yu et al. (2013), Chen et al. (2013), Mazroui et al.

(2015) among others.

In the second project, we study a nonparametric dynamic intensity model that

incorporates frailty to account for unobserved heterogeneity. Our goal is to explore

the vaccine effects and examine how these effects vary across two time scales, after

taking the unobserved heterogeneity into consideration.

This dissertation presents the research of two projects. In Chapter 2, we investi-

gate a generalized class of semiparametric dynamic intensity models. Estimation and

hypothesis testing procedures are developed. Simulation studies are conducted to

evaluate the validity of the proposed procedures. We derive the asymptotic properties

of the estimators based on martingale theory and empirical processes. The methods

are applied to analyzing the MAL-094 malaria vaccine trial data. In Chapter 3, we

investigate a nonparametric dynamic intensity model with frailty. We provide estima-

tion procedure and obtain variance estimators using weighted bootstraps. Simulation

results demonstrate that the procedures perform well in finite samples. We also apply

the methods to the MAL-094 malaria vaccine trial data. Chapter 4 discusses some

concluding remarks and outlines future work.



CHAPTER 2: GENERALIZED SEMIPARAMETRIC INTENSITY MODELS FOR

RECURRENT EVENT DATA

2.1 Introduction

In this chapter, we introduce a generalized class of semiparametric intensity models.

The proposed models feature unspecific time-varying effects and constant effects,

while the effects that depend on time-varying covariates or event history are modeled

parametrically.

Semiparametric models present multiple advantages. First, they necessitate less

data for fitting compared to nonparametric models, making them particularly efficient

in situations where data is limited. Additionally, if we have some prior knowledge

about the parametric forms, it can help enhance our understanding of the data.

Section 2.2 details the models and the estimation procedures for unknown param-

eters, covering the computational algorithm and the selection of bandwidth. The

asymptotic properties of the estimators are derived in Section 2.3. In order to evalu-

ate whether the parametric functions are proper, two hypothesis tests are developed

in Section 2.4. Simulation studies in Section 2.5 show that the methods perform well

in finite samples under different link functions and different parametric functions.

We apply the methods on the MAL-094 malaria vaccine trial data. In Section 2.6.1,

we model the intensity as a function of Calendar time and time since the most recent

infection, to explore how the vaccine effects changes over these two time scales. In

Section 2.6.2, we model the intensity as a function of Calendar time and time since

the most recent vaccination, to explore how the vaccine effects change with the time

since the most recent vaccination.
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2.2 Model and Estimation

2.2.1 Model Descriptions

Consider a random sample of n subjects, τ is duration of study. Suppose for subject

i, Tij represents the occurrence time for jth event. If we denote ni as the total event

time for i subject during the study time, we have Ti1 < Ti2 < ... < Tini ≤ τ . Xi(t),

Zi(t), Wi(t) and Ui(t) serve as subject-specific covariates, all of which could be time-

dependent.

Counting process N∗i (t) =
∑ni

j=1 I(Tij ≤ t) is the number of events taken from ith

subject by time t. Denote ∆N∗i (t) = N∗i (t + ∆t−) − N∗i (t) as the number of events

occurring in the small time interval [t, t + ∆t). Modeling of recurrent events can be

based on the intensity function of N∗i (t). It is defined as λi(t) = lim∆t↓0 Pr(∆N∗i (t) =

1|F∗it−)/∆t, where F∗it− is the filtration generated by N∗i (t) and the history of covari-

ates for ith subject up to time t. By definition, we have E(dN∗i (t)|F∗it−) = λi(t)dt.

Therefore, λi(t)dt is the instantaneous probability of an event occurring in [t, t+ ∆t).

Let Ci be the non-informative censoring time for subject i. Let τi = min {τ, Ci},

events for subject i can only be observed before τi. Yi(t) = I(τi ≥ t) is the at-

risk process, indicates whether subject i is exposed to the event at time t. Ni(t) =

N∗i (t ∧ τi) is the observed counting process. Fit− is the filtration generated by the

observed event history, covariate processes and censoring for subject i. By definition,

we have E(dNi(t)|Fit−) = Yi(t)λi(t)dt. Censoring are non-informative in the sense of

E{dNi(t)|F∗it−} = E{dNi(t)|Fit−} = Yi(t)λi(t)dt.

We propose the following generalized semiparametric dynamic intensity models:

λi(t) = g−1{αT(t)Xi(t) + βTZi(t) + γT(Ui(t), θ)Wi(t)}, (2.1)

for 0 ≤ t ≤ τ .

In model 2.1, α(·) represents a p1 dimensional vector, with each element denoting
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an unspecified function. β is a p2 dimensional vector comprising unknown time-

independent parameters. Let U ∈ Rr be the range of r dimensional process Ui(t),

γ(u, θ) is a p3 dimensional vector of parametric functions defined on U for θ ∈ Θ,

where Θ is a q dimension compact set.

The known function g(·) offers a lot of modeling flexibility. The logarithm link

function yields a multiplicative intensity model, whereas choosing the identity link

results in an additive intensity model.

Setting the first component of Xi(t) equal 1 provides us with the nonparametric

baseline function. Ui(t) can be related with the event or treatment history. For

example, the time since last vaccination can be written as Ui(t) = t − Vi(t), where

Vi(t) be the most recent vaccination time. In another example, Ui(t) = t − TiNi(t−)

stands for the time since the most recent event.

For the sake of clarity in representation, we denote η = (βT, θT)T, ζ(Ui(t), η) =

(βT, γT(Ui(t), θ))
T and Pi(t) = (Zi(t)

T,Wi(t)
T)T. The intensity function 2.1 can be

written as

λi(t) = g−1{αT(t)Xi(t) + ζT(Ui(t), η)Pi(t)}, (2.2)

for 0 ≤ t ≤ τ . The parameters to be estimated are α(·) and η.

2.2.2 Estimation Procedure

We consider profile approach and use local linear approximation in the estimation.

Assume α(·) is smooth enough on t ∈ [0, τ ] and its first and second derivatives α̇(t)

and α̈(t) exists. Denote Nt0 as a neighbourhood of t0. For t ∈ Nt0 , we have

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2).

The approximated intensity function for t in the neighborhood of t0 is:

λ∗i (t, α
∗, η|t0) = g−1{α∗T(t0)X∗i (t|t0) + ζT(Ui(t), η)Pi(t)}, (2.3)
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where α∗(t0) = (αT(t0), α̇T(t0))T and X∗i (t|t0) = (XT
i (t), XT

i (t)(t− t0))T.

By Cook and Lawless (2007), the likelihood function for the observed data can be

constructed as follows:

Lα(α, η) =
∏

0≤t≤τ

[{ n∏
i=1

{Yi(t)λi(t)}dNi(t)
}{

1−
n∑
i=1

Yi(t)λi(t)dt
}1−dNi.(t)]

=
{ ∏

0≤t≤τ

n∏
i=1

{Yi(t)λi(t)}dNi(t)
}

exp
{
−

n∑
i=1

∫ τ

0

Yi(t)λi(t)dt
}
,

where Ni.(t) =
∑n

i Ni(t).

Take logarithm, we obtain the log-likelihood function for observed data:

`α(α, η) =
n∑
i=1

∫ τ

0

{
log{Yi(t)λi(t)}dNi(t)− Yi(t)λi(t)dt

}
. (2.4)

For fixed η, apply local linear method (Cai and Sun (2003)) and plug in the ap-

proximated intensity function 2.3, the localized log-likelihood for α(·) at each t0 is:

`α(α∗; η, t0) =
∑n

i=1

∫ τ
0
Kh(t− t0)

{
log{Yi(t)λ∗i (t, α∗, η|t0)}dNi(t)

− Yi(t)λ∗i (t, α∗, η|t0)dt
}
, (2.5)

where Kh(.) = K(./h)/h, K(.) is a kernel function and h is the bandwidth parameter.

Take derivative of 2.5 with respect to α∗(t0), the score function for α∗(t0) for fixed

η can be written as:

Uα(α∗; η, t0) =
n∑
i=1

∫ τ

0

Kh(t− t0)X∗i (t|t0)
{ λ̇∗i (t, α∗, η|t0)

λ∗i (t, α
∗, η|t0)

dNi(t)

− Yi(t)λ̇∗i (t, α∗, η|t0)dt
}
. (2.6)

Set Uα(α∗; η, t0) = 0 and denote the solution as α̃∗(t0, η). Let α̃(t.η) be the first

p1 components of α̃∗(t, η). Let λ̃i(t, η) be the corresponding estimated intensity, i.e.,
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λ̃i(t, η) = g−1{α̃T(t, η)Xi(t) + ζT(Ui(t), η)Pi(t)}.

The profile log-likelihood function for η can be written as:

`η(η) =
∑n

i=1

∫ t2
t1

{
log{Yi(t)λ̃i(t, η)}dNi(t)− Yi(t)λ̃i(t, η)dt

}
, (2.7)

where [t1, t2] ⊂ (0, τ). Here we integrate over the interval [t1, t2] to avoid boundary

effects.

Taking derivative of 2.7 with respect to η, the profile maximum likelihood estimate

η̂ is obtained by solving the following estimating equation:

Uη(η) =
n∑
i=1

∫ t2

t1

{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}
×
{ ˙̃λi(t, η)

λ̃i(t, η)
dNi(t)− Yi(t) ˙̃λi(t, η)dt

}
= 0. (2.8)

In the estimation equation 2.8, ∂α̃(t.η)
∂η

are the first p1 rows of

∂α̃∗(t, η)

∂η
= −

{∂Uα(α∗; η, t)

∂α∗

}−1∂Uα(α∗; η, t)

∂η

∣∣∣∣∣
α∗=α̃∗(t,η)

. (2.9)

Equation 2.9 is derived through taking derivative of Uα(α̃∗(t, η); η, t) = 0 with respect

to η on both sides,

∂Uα(α̃∗(t, η); η, t)

∂α∗
∂α̃∗(t, η)

∂η
+
∂Uα(α̃∗(t, η); η, t)

∂η
= 0.

The estimate η̂ can be updated by solving the profile estimating equation 2.8 using

Newton-Raphson method. Subsequently, η̂ is plugged into α̃(t, η) to obtain α̂(t) =

α̃(t, η̂). Estimators α̂(t) and η̂ can be obtained by iteratively updating the estimates

of α̃∗(t, η) and η until convergence is achieved for both, thereby maximizing the

likelihood.
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2.2.3 Computational Algorithm

In this subsection, we summarize the computational algorithm to illustrate the

profile maximum likelihood estimation procedure as we outlined in Section 2.2.2.

1. Generate the grid points over t.

2. Set initial values α̂{0}(t) and η̂{0} for α̂(t) and η̂.

3. Let α̂{k−1}(t) and η̂{k−1} be the estimates of α(t) and η in (k − 1)th iteration.

At each grid point, plug η̂{k−1} into the localized score function (2.6), solve the

equation Uα(α∗; η{k−1}, t0) = 0 and get α̂∗{k}(t) = α̂∗{k}(t, η̂{k−1}). Take first p1

components as the estimation of α(t) in kth iteration and denote it as α̂{k}(t).

4. Replace α̃(t, η) with α̂{k}(t) in estimating equation (2.8), solve the equation

using Newton-Raphson method and get η̂{k}, which is the kth iteration estimate

of η.

5. Repeat Step 3 and Step 4, α̂{k}(t) and η̂{k} are updated at each iteration un-

til both of them converge, the estimates α̂(t) and η̂ are α̂{k}(t) and η̂{k} at

convergence.

2.2.4 Bandwidth Selection

The proposed estimation procedure integrates a local linear approximation ap-

proach, which involves the selection of kernel function and bandwidth. Choice of

kernel function has little impact on the model performance (Silverman (1986)). We

use the Epanechnikov kernel function K(x) = 3/4(1− x2)I{|x| ≤ 1}, which has been

showed many desirable properties (Epanechnikov (1969); Fan and Gijbels (1996)).

However, the selection of bandwidth can influence the estimation results. It is impor-

tant to select an appropriate bandwidth.

We employ Monte Carlo cross-validation (also referred to as "leave-group-out"

cross-validation) method using bootstraps to select bandwidth (Cai et al. (2023)).
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This method helps reduce the randomness associated with data splitting during cross-

validation.

Create a set of candidate bandwidths H. In jth bootstrap iteration, we do the

following procedures:

1. Randomly sample from the original dataset without replacement with a fixed

proportion to obtain a training dataset Dj
n. The subjects not selected into Dj

n

form the test dataset Dj
t .

2. For each h in H, using h to fit the model on training dataset Dj
n to obtain

estimates α̂(j,h)(t), β̂(j,h), θ̂(j,h). The estimated intensity function for subject i

takes as

λ̂
(j,h)
i (t) = g−1

{
α̂(j,h)T(t)Xi(t) + β̂(j,h)TZi(t) + γT(Ui(t), θ̂

(j,h))Wi(t)
}
.

3. The prediction accuracy for jth bootstrap using bandwidth h, denoted as

ACC(j)(h), is defined as

ACC(j)(h) =
∑
i∈Djt

∫ t2

t1

{
log[λ̂

(j,h)
i (t)]dN j

i (t)− Y (j)
i (t)λ̂

(j,h)
i (t)dt

}
,

where [t1, t2] ⊂ (0, τ). The prediction accuracy is the log-likelihood on test

dataset, a similar criterion was proposed by Tian et al. (2005) for survival data.

4. The recorded bandwidth in jth iteration h∗j is the one that maximizes the pre-

diction accuracy, i.e. h∗j = argmax
h

ACC(j)(h).

Repeat Step 1 to Step 4 B times, the optimal bandwidth, denoted as h∗opt, is

determined by the average of all the h∗j .
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2.3 Asymptotic Properties

In this section, we discuss the asymptotic properties of the estimators. We firstly

introduce some notations that would be used in the theorems.

Let η0 and α0(t) be the true value of η and α(t), denote the first and second deriva-

tives of α0(t) by α̇0(t) and α̈0(t). Let λi(t) = g−1{αT
0 (t)Xi(t)+ζT(Ui(t), η0)Pi(t)} and

λ̇i(t) = ġ−1{αT
0 (t)Xi(t)+ζT(Ui(t), η0, )Pi(t)}. Define e11(t) = E{−Yi(t) λ̇

2
i (t)

λi(t)
[Xi(t)]

⊗2}

and e12(t) = E{−Yi(t) λ̇
2
i (t)

λi(t)
Xi(t)P

T
i (t)(∂ζ(Ui(t),η0)

∂η
)}.

Let λ̂i(t) = g−1{α̂T(t)Xi(t) + ζT(Ui(t), η̂)Pi(t)} and ˆ̇λi(t) = ġ−1{α̂T(t)Xi(t) +

ζT(Ui(t), η̂)Pi(t)} and ˆ̈λi(t) = g̈−1{α̂T(t)Xi(t) + ζT(Ui(t), η̂)Pi(t)}. Let Ê11(t) =

1
n

∑n
i=1

∫ τ
0
Yi(s)Kh(s− t){−

ˆ̇
λ2i (s)

λ̂i(s)
}[Xi(s)]

⊗2ds and Ê12(t) = 1
n

∑n
i=1

∫ τ
0
Yi(s)Kh(s− t)

{−
ˆ̇
λ2i (s)

λ̂i(s)
}{Xi(s)P

T
i (s)(∂ζ(Ui(s),η̂)

∂η
)}ds.

Under Condition A given in Appendix, we have the following theorems for the

asymptotic properties of the estimators η̂ and α̂(t).

Theorem 1 Under Condition A, η P→ η0, and
√
n(η̂ − η0) converges in distribution

to a mean zero Gaussian random vector with covariance matrix A−1
η ΣηA

−1
η , with

Aη = E
[ ∫ t2

t1

λ̇i(t)
2

λi(t)

{(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t)

}⊗2

dt
]

and

Ση = E
[ ∫ t2

t1

λ̇i(t)

λi(t)

{(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t)

}
dMi(t)

]⊗2

where 0 < t1 < t2 < τ , ⊗ is the Kronecker product of vectors, for a vector a,

a⊗2 = aaT.



15

Aη can be estimated by

Âη = − 1

n

n∑
i=1

∫ t2

t1

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− Ê12(t)TÊ11(t)−1Xi(t)

}⊗2

×
{ ˆ̈λi(t)λ̂i(t)− [ˆ̇λi(t)]

2

[λ̂i(t)]2
dNi(t)− Yi(t)ˆ̈λi(t)dt

}
.

and Ση can be estimated by

Σ̂η =
1

n

n∑
i=1

[ ∫ t2

t1

ˆ̇λi(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− (Ê12(t))T(Ê11(t))−1Xi(t)

}
×
{
dNi(t)− Yi(t)λ̂i(t)dt

}]⊗2

.

Theorem 2 Under Condition A, α̂(t)
P→ α0(t), uniformly in t∈[t1, t2] ⊂ (0, τ), and

(nh)1/2(α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t))

D→ N(0,Σα(t))

where µ2 =
∫ 1

−1
t2K(t)dt and Σα(t) = e11(t)Σe(t)(e11(t))−1, with

Σe(t) = lim
n→∞

hE
{∫ τ

0

K2
h(s− t) λ̇

2(s)

λ(s)
[Xi(s)]

⊗2ds
}
.

The matrix Σα(t) can be consistently estimated by (Ê11(t))−1Σ̂e(t)(Ê11(t))−1, with

Σ̂e(t) =n−1h
n∑
i=1

[ ∫ τ

0

ˆ̇λi(s)

λ̂i(s)
Kh(s− t)Xi(s)

{
dNi(s)− Yi(s)λ̂i(s)

}
−Ê12(t)Â−1

η

∫ t2

t1

{(∂ζ(Ui(s), η̂)

∂η

)T
Pi(s)− (Ê12(s))T(Ê11(s))−1Xi(s)

}
×

ˆ̇λi(s)

λ̂i(s)

{
dNi(s)− Yi(s)λ̂i(s)

}]⊗2

.
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2.4 Testing the Covariate-Varying Effects

The parametric functions of the covariate-varying effects can be based on some

prior knowledge or understanding behind the process. Otherwise, we can start from

polynomials or linear combinations of basis functions. In this section, we provide two

hypothesis test procedures to test the adequacy of parametric form γ(Ui(t), θ).

To test H0 : γ(u) = γ(u, θ), θ ∈ Θ, we consider the following test process

R(u, η̂) =n−
1
2 (Ir ⊗ Â−1

η )
n∑
i=1

{∫ t2

t1

ˆ̇λi(t)

λ̂i(t)
I{Ui(t) ≤ u} ⊗ Ôi(t){dNi(t)− Yi(t)λ̂i(t)dt}

}
,

(2.10)

where

Ôi(t) =
(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− (Ê12(t))T(Ê11(t))−1Xi(t).

In 2.10, u ∈ Rr is a grid of Ui(t) and r is the dimension of Ui(t). Ir is the r×r identity

matrix, ⊗ is the Kronecker product of matrices. The test process is a weighted

martingale residual stratified by Ui(t).

Defined supremum type test statistics T1 = supu∈4 ‖R(u, η̂)‖, where ‖·‖ represent

the L2 norm in Rr and 4 is a set of grid points in U .

Let {u1, ...uK} be the grid points for Ui(t). Let

L(η̂) =



R(u2, η̂)−R(u1, η̂)

R(u3, η̂)−R(u2, η̂)

...

R(uK−1, η̂)−R(uK−2, η̂)

R(uK , η̂)−R(uK−1, η̂)


.
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Define quadratic type test statistic

T2 = LT(η̂){Ĉov(L(η̂), L(η̂))}−1L(η̂),

where Ĉov(L(η̂), L(η̂)) is the estimated covariance matrix of Cov(L(η̂), L(η̂)).

Ĉov(L(η̂), L(η̂)) has (K − 1) × (K − 1) blocks, for 1 ≤ q, s ≤ K − 1, the (q, s) th

block equals

cov[R(uq+1, η̂)−R(uq, η̂), R(us+1, η̂)−R(us, η̂)]

=cov[R(uq+1, η̂), R(us+1, η̂)]− cov[R(uq+1, η̂), R(us, η̂)]

− cov[R(uq, η̂), R(us+1, η̂)] + cov[R(uq, η̂), R(us, η̂)]. (2.11)

The estimation of cov[R(ul, η̂), R(um, η̂)], 1 ≤ l,m ≤ K will be given later in 2.17.

T2 has a chi-square distribution, but the distribution of T1 is unknown and compli-

cated, we consider using Gaussian multiplier method to approximate its distribution

(Lin et al. (1993)). The outline of this procedure is given as follows.

By first order approximation, we have

R(u, η̂) = R(u, η0) +
∂R(u, η0)

∂η
(η̂ − η0) + op(1), (2.12)

where

R(u, η0) =n−
1
2 (Ir ⊗ A−1

η )
n∑
i=1

{∫ t2

t1

λ̇i(t)

λi(t)
I{Ui(t) ≤ u} ⊗Oi(t)[dNi(t)− Yi(t)λi(t)dt]

}
+ op(1), (2.13)
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with

Oi(t) =
(∂ζ(Ui(t), η)

∂η

)T
Pi(t)− (e12(t))T(e11(t))−1Xi(t).

As shown in Appendix A.1, we have

n
1
2 (η̂ − η0) = A−1

η n−
1
2

n∑
i=1

{∫ t2

t1

λ̇i(t)

λi(t)
Oi(t){dNi(t)− Yi(t)λi(t)dt}

}
+ op(1). (2.14)

It can be shown that

n−
1
2
∂R(u, η0)

∂η

p→ −(Ir ⊗ A−1
η )Au, (2.15)

where

Au =E
[ ∫ t2

t1

{
I{Ui(t) ≤ u} ⊗Oi(t)

}
Oi(t)

T
{ λ̈i(t)λi(t)− λ̇2

i (t)

λ2
i (t)

dNi(t)− Yi(t)λ̈i(t)dt
}]
.

Combining equation 2.12,2.14 and 2.15, we have

R(u, η̂) = n−
1
2

n∑
i=1

Di(u) + op(1)

where

Di(u) = (Ir ⊗ A−1
η )

∫ t2

t1

λ̇i(t)

λi(t)

{
I{Ui(t) ≤ u} ⊗Oi(t)− AuA−1

η Oi(t)
}

×
{
dNi(t)− Yi(t)λi(t)dt

}
.

It follows by the theorems of empirical process, R(u, η̂) converges weakly to a mean

zero Gaussian process R(u), for u ∈ U .
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Denote

D̂i(u) = (Ir ⊗ Â−1
η )

∫ t2

t1

ˆ̇λi(t)

λ̂i(t)

{
I{Ui(t) ≤ u} ⊗ Ôi(t)− ÂuÂ−1

η Ôi(t)
}

×
{
dNi(t)− Yi(t)λ̂i(t)dt

}
.

Let φ1, ... ,φn be n independent standard normal random variables. Define the

Gaussian multiplier process

R∗(u) = n−1/2

n∑
i=1

D̂i(u)φi. (2.16)

Given the observed data, the distribution of R(u) can be approximated by the

construction of R∗(u)(Lin et al. (1993)). The critical values of T1 and T2 can be

obtained using Gaussian multiplier approach. Hold the observed data sequence fixed

and generate, say 500, sets of {φ1, ... ,φn} to get 500 realizations of R∗(u). The

critical value of T1 can be determined by the percentile of the empirical distribution

of T ∗1 = supu∈4 ‖R∗(u)‖.

Based on the construction of R∗(u), for 1 ≤ l ≤ m <= K, Cov(R(ul, η̂), R(um, η̂))

can be estimated by

Ĉov(R(ul, η̂), R(um, η̂)) =Cov(R∗(ul), R
∗(um)|D)

=Cov
(
n−1/2

n∑
i=1

D̂i(ul)φi, n
−1/2

n∑
j=1

D̂j(um)φj

∣∣∣D)
=

1

n

n∑
i=1

n∑
j=1

D̂i(ul)D̂
T
j (um)Cov(φi, φj)

=
1

n

n∑
i=1

D̂i(ul)D̂
T
i (um)Cov(φi, φi)

=
1

n

n∑
i=1

D̂i(ul)D̂
T
i (um). (2.17)
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Define

L∗(η̂) =



R∗(u2)−R∗(u1)

R∗(u3)−R∗(u2)

...

R∗(uK−1)−R∗(uK−2)

R∗(uK)−R∗(uK−1)


,

and

T ∗2 = L∗(η̂)T{ĉov(L(η̂), L(η̂))}−1L∗(η̂).

The critical value of T2 can be determined by the percentile of the empirical distri-

bution of T ∗2 .

Test statistic T2 has an asymptotic chi-square distribution with degrees of freedom

(K − 1)× dim(η), where dim(η) represents the dimension of η. The critical value of

T2 can also be determined from the chi-square distribution.

2.5 Simulation Studies

In this section, we conduct simulations to evaluate the performance of the estima-

tors in finite samples. Simulation are conducted under two distinct link functions: the

logarithm link function and the identity link function. Under the logarithm link func-

tion, we further examine the performance of estimators in three different scenarios,

which are showed in section 2.5.1.

We use the following abbreviations in all the simulation studies hereafter. Bias

= estimate- true value. SSE stands for the sample standard error of the estimates.

ESE stands for the sample mean of the estimated standard errors. CP represents the

95% empirical coverage probability. In all simulations, we use Epanechnikov kernel

function K(x) = 3/4(1− x2)I{|x| ≤ 1}.
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2.5.1 Simulation Studies with Logarithm Link Function

Using the logarithm link function g(x) = log(x) results in a multiplicative intensity

function. Consider the models with following intensity function

λi(t) = exp{α0(t) + α1(t)Xi + βZi + γ(Ui(t), θ)Wi(t)}, (2.18)

for 0 ≤ t ≤ τ in three different scenarios.

Scenario 1. γ(Ui(t), θ) is a linear function of Ui(t), with the following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8).

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2).

• Ui(t) = t − TiNi(t−), Wi(t) = I(Ni(t
−) > 0) indicates whether there is an event

occurred just before time t.

• γ(Ui(t), θ) = θ0 + θ1Ui(t); with θ0 = 0.5 and θ1 = 0.5.

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.7 events are observed per subject during the study time. The integral

interval [t1, t2] in equation 2.8 is taken as [0.5h, τ − 0.5h], where h is the bandwidth.

Table 2.1 presents the estimation results for sample sizes of n = 400, 600, 800, with

different bandwidth h = 0.2, 0.3, 0.4. Figure 2.1 shows the estimation results for α0(t)

and α1(t). Table 2.2 presents the sizes under null model M0 : γ(u) = 0.5 + 0.5u, and

the powers under alternative models M11 : γ(u) = 1.5 − 0.4 sin(5u), M12 : γ(u) =

1.5− 0.5 sin(5u) and M21 : γ(u) = 1.5− u+ 0.3u2 and M22 : γ(u) = 1.5− u+ 0.4u2.
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Table 2.1: Bias, SEE, ESE and CP for estimators of β, θ0, θ1 under model 2.18 in
Scenario 1 for sample size n = 400, 600 and 800, using bandwidth h = 0.2, 0.3 and
0.4. The results are based on 500 simulations.

β = 0.1 θ0 = 0.5 θ1 = 0.5

n Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.2

400 0.003 0.159 0.164 0.950 0.003 0.086 0.088 0.954 -0.003 0.064 0.065 0.950

600 -0.002 0.128 0.133 0.956 0.006 0.076 0.072 0.940 -0.006 0.056 0.053 0.936

800 -0.005 0.109 0.115 0.962 -0.001 0.062 0.062 0.948 -0.008 0.043 0.045 0.966

h=0.3

400 -0.009 0.161 0.165 0.946 -0.001 0.087 0.089 0.958 -0.004 0.065 0.065 0.956

600 -0.011 0.130 0.135 0.958 0.003 0.076 0.073 0.934 -0.006 0.057 0.053 0.934

800 -0.014 0.111 0.117 0.958 -0.003 0.063 0.063 0.954 -0.009 0.044 0.046 0.952

h=0.4

400 -0.019 0.161 0.167 0.950 -0.002 0.089 0.090 0.956 -0.004 0.065 0.066 0.964

600 -0.018 0.134 0.136 0.950 0.001 0.076 0.073 0.944 -0.006 0.057 0.054 0.932

800 -0.019 0.111 0.118 0.958 -0.005 0.063 0.063 0.960 -0.009 0.045 0.047 0.958
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Figure 2.1: Bias, SEE, ESE and CP for estimators of α0(t) and α1(t) under model
2.18 in Scenario 1 using bandwidth h = 0.4. The dotted, dashed and solid lines
represent sample size n = 400, 600 and 800, respectively. The results are based on
500 simulations.
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Table 2.2: Observed sizes and powers of test T1, T2g and T2c under model 2.18 in
Scenario 1 for sample size n = 400, 600 and 800, using bandwidth h = 0.3 and 0.4. T1

is the supremum type test. T2g and T2c are chi-square type tests. T2g is the test based
on test statistic T2 and the critical value is based on Gaussian multiplier distribution.
T2c is the test based on test statistic T2 and the critical value is based on chi-square
distribution. Each entry is based on 500 simulations with 500 Gaussian multiplier
samples.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.3 0.054 0.074 0.062 0.050 0.052 0.054 0.050 0.046 0.046

0.4 0.052 0.076 0.064 0.044 0.050 0.050 0.052 0.048 0.046

M11 0.3 0.234 0.850 0.830 0.518 0.960 0.964 0.800 0.998 0.998

0.4 0.270 0.836 0.834 0.534 0.958 0.960 0.792 0.998 0.998

M12 0.3 0.530 0.974 0.970 0.850 1.000 1.000 0.990 1.000 1.000

0.4 0.532 0.968 0.964 0.878 1.000 1.000 0.982 1.000 1.000

M21 0.3 0.810 0.368 0.366 0.946 0.544 0.546 0.988 0.770 0.774

0.4 0.804 0.372 0.370 0.954 0.544 0.550 0.984 0.758 0.764

M22 0.3 0.964 0.718 0.702 0.998 0.936 0.936 1.000 0.996 0.996

0.4 0.958 0.704 0.704 0.996 0.928 0.926 1.000 0.996 0.992

Scenario 2. γ(Ui(t), θ) is multidimensional, we consider model 2.18 under the

following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8).

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2).

• Ui(t) = t− TiNi(t−); Wi(t) = (W1i(t),W2i(t))
T with W1i(t) = I(Ni(t

−) > 0) and

W2i(t) = I(Ni(t
−) > 0)Bi, where Bi ∼ Ber(0.5).

• γ(Ui(t), θ) = (γ1(Ui(t), θ1), γ2(Ui(t), θ2))T; γ1(Ui(t), θ1) = θ10 + θ11Ui(t) and

γ2(Ui(t), θ2) = θ20 + θ21Ui(t) with θ10 = θ11 = 0.3, θ20 = θ21 = 0.2.

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.5 events are observed per subject during the study time. The integral

interval [t1, t2] in equation 2.8 is taken as [0.5h, τ − 0.5h], where h is the bandwidth.
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Table 2.3 presents the estimation results for sample sizes of n = 400, 600, 800 with

bandwidth h = 0.4 and 0.5. Figure 2.2 shows the estimation results for α0(t) and

α1(t). Table 2.4 presents the sizes under null models M0: γ1(u, θ1) = θ10 + θ11u and

γ2(u, θ2) = θ20 + θ21u, with θ10 = θ11 = 0.3 and θ20 = θ21 = 0.2.

Table 2.3: Bias, SEE, ESE and CP for estimators of β, θ10, θ11, θ20 and θ21 under
model 2.18 in Scenario 2 for sample size n = 400, 600 and 800, using bandwidth
h = 0.4 and 0.5. The results are based on 500 simulations.

n = 400 n = 600 n = 800

Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.4

β -0.010 0.166 0.175 0.960 -0.008 0.142 0.144 0.950 -0.008 0.114 0.124 0.962

θ10 -0.006 0.122 0.118 0.948 -0.001 0.095 0.097 0.946 0.003 0.083 0.084 0.948

θ11 0.000 0.090 0.092 0.948 -0.002 0.077 0.075 0.948 -0.006 0.064 0.065 0.944

θ20 -0.004 0.131 0.129 0.950 0.002 0.106 0.105 0.956 0.001 0.088 0.092 0.956

θ21 0.012 0.126 0.124 0.950 0.000 0.103 0.101 0.950 0.000 0.084 0.088 0.946

h=0.5

β -0.016 0.171 0.177 0.950 -0.014 0.143 0.145 0.954 -0.012 0.116 0.126 0.964

θ10 -0.008 0.124 0.120 0.944 -0.003 0.095 0.098 0.950 0.003 0.084 0.085 0.948

θ11 0.000 0.093 0.093 0.948 -0.002 0.078 0.076 0.948 -0.007 0.065 0.066 0.952

θ20 -0.003 0.132 0.131 0.954 0.002 0.107 0.106 0.960 0.000 0.089 0.093 0.958

θ21 0.011 0.128 0.127 0.950 0.001 0.105 0.103 0.952 0.001 0.086 0.089 0.950
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Figure 2.2: Bias, SEE, ESE and CP for estimators of α0(t) and α1(t) under model
2.18 in Scenario 2 using bandwidth h = 0.5. The dotted, dashed and solid lines
represent sample size n = 400, 600 and 800, respectively. The results are based on
500 simulations.
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Table 2.4: Observed sizes of test T1, T2g and T2c under model 2.18 in Scenario 2
for sample size n = 400, 600 and 800, using bandwidth h=0.4 and 0.5. T1 is the
supremum type test. T2g and T2c are chi-square type tests. T2g is the test based on
test statistic T2 and the critical value is based on Gaussian multiplier distribution.
T2c is the test based on test statistic T2 and the critical value is based on chi-square
distribution. Each entry is based on 500 simulations with 500 Gaussian multiplier
samples.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.4 0.060 0.084 0.082 0.056 0.062 0.060 0.058 0.050 0.050

0.5 0.062 0.098 0.096 0.062 0.062 0.044 0.044 0.066 0.068

Scenario 3. Covariate Ui(t) has multiple dimensions and γ(Ui(t), θ) is a nonlinear

function of Ui(t), we consider model 2.18 under following settings:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8).

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2).

• Ui(t) = (U1i(t), U2i(t)), U1i(t) = t − TiNi(t−), U2i(t) = log(Ni(t
−) + 1). Wi(t) =

I(Ni(t
−) > 0) indicates whether there is an event occurred just before time t.

• γ(Ui(t), θ) = log(θ0 + θ1U1i(t))
2 + θ2U2i(t); with θ0 = 0.8, θ1 = 0.5, θ2 = 0.5.

• β = 0.1, α0(t) = −0.5− 0.5 log (1 + t), α1(t) = −0.5 sin(1 + 0.4t).

Averagely, 2.6 events are observed per subject during the study time. The integral

interval [t1, t2] in equation 2.8 is taken as [h, τ−h], where h is the bandwidth. Table 2.5

present the estimation results for β, θ0, θ1 and θ2 for sample sizes of n = 400, 600, 800

with different bandwidths. Figure 2.3 presents the estimation results for α0(t) and

α1(t).
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Figure 2.3: Bias, SEE, ESE and CP for estimators of α0(t) and α1(t) under model
2.18 in Scenario 3 using bandwidth h = 0.4. The dotted, dashed and solid lines
represent sample size n = 400, 600 and 800, respectively. The results are based on
500 simulations.
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2.5.2 Simulation Studies with Identity Link Function

In this subsection, we conduct a simulation study using the identity link function

g(x) = x, which leads to an additive intensity model. We generated data from the

following model:

λi(t) = α0(t) + α1(t)Xi + βZi + γ(Ui(t), θ)Wi(t) (2.19)

for 0 ≤ t ≤ τ . Covariates and parameters are set as follows:

• τ = 4, subjects are censored up to a censoring time Ci ∼ U(3, 8).

• Xi is a uniform random variable on [-1, 1], Zi is generated from truncated

Normal distribution (0, 1, 0.5, 0.2).

• Ui(t) = t − TiNi(t−), Wi(t) = I(Ni(t
−) > 0) indicates whether there is an event

occurred just before time t.

• γ(Ui(t), θ) = θ0 + θ1Ui(t); with θ0 = 0.2, θ1 = 0.2.

• β = 0.1, α0(t) = 0.6− 0.2 log (1 + t), α1(t) = 0.2 sin(t).

Averagely, 2.5 events are observed per subject during the study time. The integral

interval [t1, t2] in equation 2.8 is taken as [0.5h, τ − 0.5h], where h is the bandwidth.

Table 2.6 presents the estimation results for β, θ0 and θ1 for sample sizes of n =

400, 600, 800 with bandwidth h = 0.7, 0.8, 0.9. Figure 2.4 presents the estimation

results for α0(t) and α1(t). Table 2.7 presents the sizes under null model M0 : γ(u) =

0.2 + 0.2u, and the powers under alternative models M11 : γ(u) = 1.0 − 0.5 sin(5u),

M12 : γ(u) = 1.0 − 0.6 sin(5u), M21 : γ(u) = 1.0 − u + 0.5u2 and M22 : γ(u) =

1.0− u+ 0.6u2.
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Table 2.6: Bias, SEE, ESE and CP for estimators of β, θ0, θ1 under model 2.19 for
sample size n = 400, 600 and 800, using bandwidth h = 0.7, 0.8 and 0.9. The results
are based on 500 simulations.

β = 0.1 θ0 = 0.2 θ1 = 0.2

n Bias SEE ESE CP Bias SEE ESE CP Bias SEE ESE CP

h=0.7

400 0.007 0.118 0.109 0.904 0.002 0.060 0.056 0.938 0.002 0.056 0.055 0.948

600 0.005 0.096 0.090 0.926 0.005 0.046 0.046 0.952 -0.004 0.045 0.045 0.934

800 0.003 0.080 0.078 0.942 0.003 0.040 0.040 0.942 -0.005 0.041 0.039 0.928

h=0.8

400 0.003 0.127 0.110 0.908 0.003 0.066 0.057 0.932 -0.003 0.058 0.056 0.938

600 0.004 0.098 0.091 0.934 0.005 0.047 0.047 0.942 -0.004 0.046 0.046 0.930

800 0.001 0.083 0.079 0.932 0.003 0.040 0.041 0.950 -0.005 0.042 0.040 0.926

h=0.9

400 -0.004 0.149 0.111 0.900 0.003 0.067 0.058 0.932 -0.002 0.059 0.057 0.934

600 0.001 0.099 0.093 0.936 0.005 0.048 0.048 0.946 -0.005 0.047 0.047 0.938

800 0.000 0.087 0.081 0.930 0.003 0.040 0.041 0.954 -0.005 0.043 0.040 0.922
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Figure 2.4: Bias, SEE, ESE and CP for estimators of α0(t) and α1(t) under model
2.19 using bandwidth h = 0.9. The dotted, dashed and solid lines represent sample
size n = 400, 600 and 800, respectively. The results are based on 500 simulations.
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Table 2.7: Observed sizes and powers of test T1, T2g and T2c under model 2.19 for
sample size n = 400, 600 and 800, using bandwidth h = 0.8 and 0.9. T1 is supremum
type test. T2g and T2c are chi-square type tests. T2g is the test based on test statistic
T2 and the critical value is based on Gaussian multiplier distribution. T2c is the test
based on test statistic T2 and the critical value is based on chi-square distribution.
Each entry is based on 500 simulations with 500 Gaussian multiplier samples.

n=400 n=600 n=800

Model h T1 T2g T2c T1 T2g T2c T1 T2g T2c

M0 0.8 0.052 0.060 0.060 0.042 0.040 0.036 0.038 0.044 0.046

0.9 0.082 0.062 0.060 0.052 0.040 0.040 0.052 0.050 0.048

M11 0.8 0.604 0.650 0.658 0.798 0.916 0.912 0.918 0.980 0.978

0.9 0.604 0.650 0.640 0.788 0.914 0.904 0.920 0.970 0.970

M12 0.8 0.820 0.842 0.840 0.966 0.988 0.988 0.988 1.000 1.000

0.9 0.806 0.826 0.826 0.952 0.984 0.984 0.990 0.998 0.998

M21 0.8 0.472 0.600 0.590 0.790 0.876 0.882 0.972 0.970 0.974

0.9 0.482 0.586 0.578 0.760 0.886 0.878 0.956 0.964 0.962

M22 0.8 0.642 0.698 0.694 0.902 0.948 0.948 0.998 0.992 0.994

0.9 0.642 0.702 0.694 0.882 0.942 0.940 0.988 0.990 0.992

The simulation results in this section demonstrate that our estimation and testing

procedures perform well under both logarithmic and identity link functions. We

observe that all biases are close to 0, and the coverage percentages are nearly aligned

with the nominal value of 95%. Referring to Table 2.2 and Table 2.7, it’s evident that

the sizes of all three tests T1, T2g and T2c are closely aligned with the significance level

of 0.05. As anticipated, the powers of the tests increase with sample size. Overall,

these results confirm the good performance of the tests we developed.
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2.6 Data Application

In this section, we apply the proposed models to analyze the MAL-094 malaria

vaccine trial. In this trial, approximately 1500 children aged 5 to 17 months from two

sites (Agogo in Ghana and Siaya in Kenya) were randomly divided into five arms.

Four arms received the RTS,S/AS01E vaccine with different doses and schedules, and

one arm serve as a control arm, receiving the placebo. For all participants, there are

records at scheduled and unscheduled visits for whether they get malaria infections

detected molecularly.

For each participant, visits occurring after three consecutive missed scheduled visits

with no intervening unscheduled visits in-between are defined as censored. We analyze

20 months follow-up data from the MAL-094 trial. In the data analysis, the four

RTS,S/AS01E vaccine arms are combined as the treatment group, while the placebo

arm is regarded as the control group.

Before censoring, a total of 3325 molecularly detected malaria infections (referred

to as "infections" hereafter) are observed among 1464 participants. Out of the par-

ticipants, 975 have experienced at least one infection, with the highest number of

infections recorded being 25.

The available covariates in the data includes site, hemoglogbin and age at enroll-

ment. There are 740 participants in Agogo and 724 participants in Siaya. Figure 2.5

displays histograms of the hemoglobin and age.
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Figure 2.5: Histograms of hemoglobin and age for all participants.

Define Tij as the jth infection time we observed for subject i. Denote ni as the

total event number for ith subject before the end of study or censoring, whichever

comes first. We have Ti1 < Ti2 < ... < Tini . Define Ni(t) =
∑ni

j=1 I(Tij ≤ t) as

the observed number of events taken from ith subject by time t. Denote ∆Ni(t) =

Ni(t + ∆t−) − Ni(t) as the number of events occurring in the small time interval

[t, t+ ∆t). The malaria infections can be modeled by the intensity function of Ni(t).

To investigate how the risk of malaria infection varies over time and understand

the factors influencing this risk, we model the intensity function of malaria infections

using covariates such as hemoglobin levels, age, and site. To explore the vaccine

effects, we also include the treatment group indicator as a covariate in the model to

determine the specific impact of the vaccines on malaria infection risk.

To explore the influence of previous infections and vaccinations on subsequent in-

fections, we derive a covariate for each individual representing the time since their

most recent infection or vaccination. This allows us to examine how the effects of

malaria vaccines change over these time scales. In Section 2.6.1, we model the in-
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tensity of malaria infections using two time scales: calendar time and time since the

most recent infection. In Section 2.6.2, we model the intensity of malaria infections

using two time scales: calendar time and time since the most recent vaccination. In

both models, we initially consider linear forms for the covariate-varying effects due to

the simplicity. Tests are conducted to confirm the acceptability of these linear forms

at the end of each subsection.

2.6.1 Modeling Intensity as a Function of Calendar Time and Time Since the

Most Recent Infection
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(a) Histogram of gap times between two consecutive infections for control group
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Figure 2.6: Histograms of gap times between consecutive infections for control and
treatment group in the 20 months follow-up data.

Figure 2.6 is the histogram of gap times between consecutive infections for control

group and treatment group.
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To assess the effects of the RTS,S/AS01E vaccine in two time scales, as well as

get the effects of other risk factors, we consider the following multiplicative dynamic

intensity model

λi(t) = exp
{
α0(t) + α1(t)Vacci + α2(t)Agogoi + α3(t)Agei(year) + βHemoi

+γ0(t− TiNi(t−), θ)I(Ni(t
−) > 0) + γ1(t− TiNi(t−), θ)I(Ni(t

−) > 0)V acci

}
, (2.20)

for 0 ≤ t ≤ 20.

In model 2.20, α0(t), α1(t), α2(t) and α3(t) are time-varying unspecified functions.

Assume γ0(u, θ) = θ0 + θ1u and γ1(u, θ̃) = θ2 + θ3u, with unknown parameters θ0,

θ1, θ2 and θ3. Vacci is the treatment group indicator (Vacci= 1 if assigned to one of

the four RTS,S/AS01E vaccine arms, 0 if assigned to the control arm). Agogoi is the

study site indicator (1= Agogo, 0 = Siaya). Agei is the age in years at enrollment

and Hemoi is the standardized hemoglobin for ith subject.

We use Epanechnikov kernel function K(x) = 3/4(1−x2)I{|x| ≤ 1} in the estima-

tion and apply the Monte Carlo cross-validation method as described in Section 2.2.4

to select the optimal bandwidth. 100 repetitions of bootstrap cross-validation yield

an optimal bandwidth of 1.35 months. Figure 2.7 displays the averaged accuracy

per individual on the test dataset, with proportionK−1
K

of individuals are sampled as

training dataset when K = 3 and K = 5.

Table 2.8 presents the estimation results of parametric parameters β, θ0, θ1, θ2 and

θ3, including their estimates, estimated standard errors and p values under the null

hypotheses H01 : β = 0, H02 : θ0 = 0, H03 : θ1 = 0, H04 : θ2 = 0 and H05 : θ3 = 0.

At 0.05 significance level, we can see that β̂ and θ̂0 are significant and θ̂3 is at the

boundary. The hemoglobin level is negatively associated with the risk of malaria

infections, meaning that a higher level of hemoglobin corresponds to a lower infection

risk. Following prior infections, the risk of subsequent infection increases for the



38

control group (γ̂0(u, θ) > 0), and this increment in risk appears to remain relatively

consistent over time. However, for participants in the treatment group, the risk

becomes lower than those in the control group after about 3 months since last infection

( γ̂1(u, θ) < 0).
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Figure 2.7: Average accuracy v.s. bandwidths when K=3 and K=5 under model
2.20.

Table 2.8: Estimates of parameters, their standard errors and p values under model
2.20, using bandwidth h = 1.35.

β θ0 θ1 θ2 θ3

EST -0.148 0.814 -0.034 0.128 -0.039

ESE 0.024 0.112 0.018 0.131 0.020

p-value � 0.001 � 0.001 0.059 0.329 0.051
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Figure 2.8: Estimation results of time-varying effects of covariates under model 2.20.
The solid lines represent the point estimates, while the dashed lines signify the 95%
pointwise confidence intervals.
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Figure 2.8 presents the estimates and 95% pointwise confidence intervals of α0(t),

α1(t), α2(t) and α3(t). From the figure, we find that the baseline intensity increases

with time. The risk of infections among participants residing in Agogo is lower com-

pared to those residing in Siaya, and this difference becomes increasingly pronounced

over time. The positive estimate of α3(t) suggests that older children have higher risk

of infections.

In treatment group, participants consistently exhibit a lower infection risk against

the first infections compared to those in the control group. The risk of reinfections

becomes lower than those of control group after three months since the most recent

infection.

To assess the level of protection against infections, we define vaccine efficacy as the

percentage reduction in intensity among vaccinated individuals compared to those in

the control group.

Under model 2.20, the vaccine efficacy at time t is defined as

VE(t) =1− λi(t|Vacci = 1)

λi(t|Vacci = 0)

=1− exp
{
α1(t) + γ1(t− TiNi(t−), θ)I(Ni(t

−) > 0)
}
.

When there are no prior infections, we have the vaccine efficacy against the first

infection is represented by VE(t) = 1− exp{α1(t)}. When prior infections exist, i.e.

I(Ni(t
−) > 0) = 1, the vaccine efficacy for subsequent infections, including the second

and beyond, is given by VE(t) = 1− exp{α1(t) + γ1(t− TiNi(t−), θ)}.
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Figure 2.9 (a) shows the estimated vaccine efficacy against the first infections, the

shaded area represents 95% confidence interval. The standard deviation is calculated

by delta method, which equals exp{α1(t)}ESE(α1(t)), where ESE(α1(t)) is the esti-

mated standard error of α1(t). From the plot, we can tell that the vaccine efficacy

against first infections is approximately 40-50% within the first 5 months, declines to

about 30% thereafter.

Figure 2.9 (b) shows the estimated vaccine efficacy against reinfections. This is a

heat map, deeper color represents higher vaccine efficacy. It appears that the vaccine

efficacy against reinfections is strongest within the first five months, ranging from 40-

50%. Subsequently, the efficacy declines to around 10% at approximately 7 months

after enrollment and then varies between 10% and 40%. This variability may be

influenced by the timing of vaccinations, as illustrated in Figure 2.10.
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Figure 2.9: Estimated vaccine efficacy against the first infection (a) and
re-infection (b) under model 2.20.
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Figure 2.10: The frequency of vaccinations in treatment group over time since enroll-
ment.

Table 2.9 shows the test statistics and p values under null hypothesesH0: γ0(u, θ) =

θ0 + θ1u and γ1(u, θ̃) = θ2 + θ3u. At 0.05 significance level, we draw the same

conclusions from both the supremum and chi-square tests. The linearity hypotheses

for γ0(u, θ) and γ1(u, θ̃) are found to hold.

Figure 2.11 plots the test process and the Gaussian multiplier processes. The red

lines depict the test process R(u, η̂), while the gray lines represent 500 realizations

of Gaussian multiplier processes R∗(u). Observing the plots, we notice that the test

processes for all parameters fall within the gray regions. This suggests no evidence

of departure from the null hypotheses, which is consistent with the p values given in

Table 2.9.
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Table 2.9: Test statistics and p values under model 2.20. T1 is supremum type test.
T2g and T2c are chi-square type tests. The critical value of T2g is based on Gaussian
multiplier distribution and the critical value of T2c is based on chi-square distribution.
The results are based on 500 Gaussian multiplier samples.

T1 T2g T2c

Test statistic 2.391 27.002 27.002

p value 0.852 0.126 0.135
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Figure 2.11: Test process R(u, η̂) and 500 realizations of the Gaussian multiplier
processes R∗(u) under model 2.20. The plots in (a) to (e) correspond to parameters
β, θ0, θ1, θ2 and θ3, respectively.

2.6.2 Modeling Intensity as a Function of Calendar Time and Time Since the

Most Recent Vaccination

In this subsection, we model the vaccine effects parametrically and aim to investi-

gate how these effects fluctuate over time since the most recent vaccination. Figure
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2.12 shows the histogram of the gap times since last vaccination when infections occur,

distinguishing between control and treatment group.
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Figure 2.12: Histograms of gap times for infections from last vaccination for control
and treatment group in the 20 months follow-up data.

Besides the definitions of infection times and counting process of infections, we

also need to define the vaccination times. Define T Vik as the kth vaccination time for

subject i. Denote vi as the total vaccine doses for subject i before the end of study

or censoring, whichever comes first. We have T Vi1 < T Vi2 < ... < T Vivi . The counting

process of vaccination is defined as Vi(t) =
∑vi

k=1 I(T Vik ≤ t).
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We model the intensity function of infections with two time scales as follows:

λi(t) = exp
{
α0(t) + α1(t)Agogoi + α2(t)Agei(year) + βHemoi

+ γ(t− T ViVi(t−), θ)I(Vi(t
−) > 0)Vacci

}
, (2.21)

for 0 ≤ t ≤ 20(months).

In model 2.21, α0(t), α1(t), and α2(t) are all unspecified functions that vary with

calendar time t. γ(u, θ) = θ0 + θ1u, with unknown parameters θ0 and θ1. Vacci is

the treatment group indicator (Vacci= 1 if assigned to one of the four RTS,S/AS01E

vaccine arms, 0 if assigned to the control arm). Agogoi is the study site indicator (1=

Agogo, 0 = Siaya). Agei represents the age in years at enrollment, and Hemoi is the

standardized hemoglobin level for the ith subject.

We use Epanechnikov kernel function K(x) = 3/4(1 − x2)I{|x| ≤ 1} in the esti-

mation and apply the Monte Carlo cross-validation method as described in Section

2.2.4 to select the optimal bandwidth. 100 repetitions of bootstrap yields an optimal

bandwidth 1.42 months. Figure 2.13 displays the averaged accuracy per individual on

the test dataset, with K−1
K

proportion of individuals are sampled as training dataset

when K = 3 and K = 5.

Table 2.10 presents the estimation results of parametric parameters β, θ0 and θ1,

including their estimates, estimated standard errors and p values under the null hy-

potheses H01 : β = 0, H02 : θ0 = 0 and H03 : θ1 = 0. At 0.05 significance level, the p

values suggest us to conclude that hemoglobin and the vaccine effects are statistically

significant. Hemoglobin level is negatively associated with the risk of infections. A

higher level of hemoglobin corresponds to a lower malaria infection risk. The indi-

viduals in treatment group have lower infection risk than those in the control group

(θ̂0 < 0), but the effects slightly diminish over time since the most recent vaccination

(θ̂1 > 0).
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Figure 2.13: Average accuracy v.s. bandwidths when K=3 and K=5 under model
2.21.

Table 2.10: Estimates of parameters, their standard errors and p values under model
2.21, using bandwith h = 1.42.

β θ0 θ1

EST -0.195 -0.639 0.024

ESE 0.030 0.078 0.007

p value � 0.001 � 0.001 � 0.001
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Figure 2.14: Estimation results of time-varying effects of covariates under model 2.21.
The solid lines represent the point estimates, while the dashed lines signify the 95%
pointwise confidence intervals.
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From Figure 2.14, we draw similar conclusions as those in Section 2.6.1. Firstly, as

time progresses, the baseline risk of infections increases. When comparing participants

from the two study sites, we observe that the risk of infections is lower in Agogo.

Additionally, older children are at a higher risk of infections.

The vaccine efficacy at time t can be defined as

VE(t) = 1− λi(t|Vacci = 1)

λi(t|Vacci = 0)

= 1− exp
{
γ(t− T ViVi(t−))I(Vi(t

−) > 0)
}
.

Figure 2.15 shows the estimated vaccine efficacy, the shaded area represents 95%

confidence interval. The standard deviation is calculated by delta method, which

equals

exp{γ(t− T ViVi(t−))I(Vi(t
−) > 0)}ESE(γ(t− T ViVi(t−))),

where ESE(γ(t − T ViVi(t−))) is the estimated standard error of γ(t − T ViVi(t−)). From

Figure 2.15, we can tell the vaccine efficacy decreases with the time since the most

recent vaccination, approximately from 40% to 20%.
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Figure 2.15: Estimated vaccine efficacy over time since last vaccination under model
2.21. The solid line represents the point estimate, while the shaded area signifies the
95% pointwise confidence interval.

Table 2.11 shows the test statistics and p values under null hypothesesH0: γ(u, θ) =

θ0 + θ1u. At 0.05 significance level, both supremum and chi-square tests indicate

acceptance of the linear hypothesis of γ(u, θ). Figure 2.16 are plots of test process

and Gaussian multiplier processes. The red lines depict the test process R(u, η̂)

while the gray lines represent 500 realizations of Gaussian multiplier process R∗(u).

Observing the plots, we notice that the test processes for all parameters fall within

the gray regions. This suggests no departure from the null hypothesis.
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Table 2.11: Test statistics and p values under model 2.21. T1 is supremum type test.
T2g and T2c are chi-square type tests. The critical value of T2g value is based on
Gaussian multiplier distribution and the critical value of T2c is based on chi-square
distribution. The results are based on 500 Gaussian multiplier samples.

T1 T2g T2c

Test Statistic 2.128 29.965 29.965

p value 0.158 0.188 0.186
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Figure 2.16: Test process R(u, η̂) and 500 realizations of Gaussian multiplier process
R∗(u) under model 2.21. The plots in (a) to (c) correspond to the parameters β, θ0

and θ1, respectively.

2.7 Summary

In this chapter, we proposed a generalized class of semiparametric intensity mod-

els for recurrent event data. These models offer significant flexibility through var-

ious choices of link functions and parametric functions of covariate-varying effects.
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Maximum log-likelihood estimation procedures were investigated through local lin-

ear approximation and profile likelihood method. Simulation results showed that the

estimation procedure performs well under different scenarios. Asymptotic properties

of the estimators were derived, including the consistency and asymptotic normal-

ity. Hypothesis test procedures were developed to test the parametric forms of the

covariate-varying effects (γ(u, θ)). We derived an Gaussian multiplier procedure to

approximate the critical values of the test statistics. The simulations showed that

this method works well with the observed sizes of the tests close to their nominal

level 0.05.

We applied these methods to the 20 months follow-up MAL-094 vaccine trial data.

Based on the results from the two models discussed in Section 2.6, we observed that

site, age and hemoglobin have significant influence on the risk of infections. Specif-

ically, participants in Agogo exhibited a significantly lower infection risk compared

to those in Siaya. Additionally, older children were found to have a relatively higher

risk of infections. Notably, we discovered a negative correlation between hemoglobin

levels and infection risk, participants with higher hemoglobin levels tended to have a

lower risk of infections.

From Section 2.6.1, we can tell that following prior infections, the risk of subsequent

infection increased for both control and treatment groups. However, for participants

in the treatment group, the increment in risk was lower than that observed in the

control group after approximately 3 months since the most recent infection.

The vaccine efficacy against the first infections was about 40-50% at the first 5

months and decreased to about 30% after 5 months. The analysis also showed that

the vaccine efficacy against reinfections varied between 10-40%. The pattern of fluc-

tuation in vaccine efficacy seemed to be associated with the timing of vaccine boosters

(see Figure 2.10). Hypothesis testing results showed that the parametric forms γ0(u, θ)

and γ1(u, θ̃) used in the analysis were adequate.
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From Section 2.6.2, it was observed that the vaccine efficacy against infections

decreased with time since the most recent vaccination, declining from approximately

40% to 20%. Hypothesis test was also conducted and showed that the parametric

form γ(u, θ) used in the analysis was adequate as well.



CHAPTER 3: NONPARAMETRIC DYNAMIC INTENSITY MODELS WITH

FRAILTY FOR RECURRENT EVENT DATA

3.1 Introduction

While the frailty model 1.1 proposed by Nileson et al. (1992) does not accommo-

date time-varying effects, it provides a foundational framework that can be extended

to more specialized models tailored to address specific research questions. In this

chapter, we build upon this idea by incorporating the frailty into a nonparametric

dynamic intensity model for analyzing recurrent event data. This model assesses

both time-varying and covariate-varying effects using unspecified functions. Frailty

is incorporated multiplicatively into the intensity function to account for unobserved

heterogeneity within the population.

In Section 3.2, we introduce the model and develop a maximum likelihood esti-

mation procedure that utilizes local linear approximation through a double kernel

approach. We employ an EM algorithm to maximize the likelihood. Additionally, in

Section 3.2.4, we discuss an adaptive algorithm designed to address potential identi-

fiability issues under specific settings. In Section 3.3, a weighted bootstrap method

is presented for estimating the variance of the estimators. In Section 3.4, we validate

the estimation procedure through finite sample simulations across various scenarios.

In Section 3.5, the proposed frailty intensity model is applied to the MAL-094 malaria

vaccine trial data.
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3.2 Model and Estimation

3.2.1 Model Descriptions

Suppose there is a random sample of n subjects. τ is duration of study time. Denote

ni as the total number of events for subject i. The event time Tij, i = 1, 2, . . . , n,

j = 1, 2, . . . , ni, represents the j th event time for subject i. We have Ti1 < Ti2 < ... <

Tini ≤ τ . Xi(t), Zi(t) and Ui(t) are possible time-dependent covariates for subject i,

and Ui(t) could be derived from event history.

Let counting process N∗i (t) =
∑ni

j=1 I(Ti,j ≤ t) be the number of events taken from

ith subject by time t, where I(·) is the indicator function. ∆N∗i (t) = N∗i (t+ ∆t−)−

N∗i (t) denotes the number of events occurring in the time interval [t, t+∆t). Let F∗it−

be the filtration generated by N∗i (t) and all covariates history up to time t for subject

i, the intensity of counting process N∗i (t) is defined as λfi (t) = lim∆t↓0 Pr(∆N∗i (t) =

1|F∗it−)/∆t. By definition, we have E(dN∗i (t)|F∗it−) = λfi (t)dt.

Let Ci be the censoring time. Define τi = min {τ, Ci} as the end of follow-up

time or censoring time whichever comes first. The events for subject i can only be

observed before τi. Yi(t) = I(τi ≥ t) is the at-risk process. For subject i, Ni(t) =

N∗i (t ∧ τi) is the counting process for observed events. Let Fit− = F∗it− ∨ Ci be the

filtration generated by the observed event history, covariate processes and censoring

for subject i. The censoring is assumed to be non-informative in the sense that

E(dNi(t)|Fit−) = E(dNi(t)|F∗it−) = Yi(t)λ
f
i (t)dt. The observed data consists of D ={

Ni(t), Yi(t), Xi(t), Zi(t), Ui(t), t ∈ [0, τi]
}
, (i = 1, ..., n).

The nonparametric dynamic intensity model incorporating frailty is proposed as:

λfi (t) = ξi exp{αT(t)Xi(t) + γT(Ui(t))Zi(t)}, (3.1)

for 0 ≤ t ≤ τ , where α(·) and γ(·) are p1 and p2 dimensional vectors of unspecified

functions.
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The frailty term ξi, also known as a random effect, is independent with both the

subjects’ covariates and stochastic processes. The ξi are independent and identically

distributed, following Gamma(θ, θ). The probability density function for ξi is given

by

f(ξ) =
θθξθ−1e−θξ

Γ(θ)
,

for ξ > 0, θ > 0, where Γ(θ) is the Gamma function.

Constraining the two parameters of the Gamma distribution to be identical ensures

scaling such that the resulting distribution has a mean of 1 and a variance of 1
θ
,

which helps avoid identifiability issues. The identifiability problem arises from the

fact that multiplying ξi by a constant and dividing the entire exponential term by

the same constant keeps ξi following a Gamma distribution, albeit with a new scale

parameter(Nileson et al. (1992)).

The frailty term ξi seeks to model unobserved heterogeneity among the subjects

and induce the dependence structure among recurrent events within subjects. When

ξi is greater than 1, it indicates that the subject is more likely to experience an event.

Conversely, when ξi is less than 1, it signifies that the subject is less likely to have an

event.

The possibly time-dependent covariate Ui(t) offer flexibility in capturing the tem-

poral patterns on an additional time scale. Ui(t) could be derived from event or

treatment history, allowing the intensity function to vary based on this history. As

an illustration, consider setting Ui(t) = t−TiNi(t−) and Zi(t) = I(Ni(t
−) > 0). The co-

variate Ui(t) represents the time since most recent event. The indicator I(Ni(t
−) > 0)

is essential because the gap time Ui(t) is only meaningful once the subject has ex-

perienced at least one event. In another example, by defining Ui(t) = t − Vi(t) and

Zi(t) = I(t > Vi(t)), where Vi(t) represents the time of vaccination or intervention,
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model 3.1 captures changes in intensity following the vaccination or intervention.

3.2.2 Nonparametric Maximum Likelihood Estimation

For ease of representation, we denote

λi(t) = exp{αT(t)Xi(t) + γT(Ui(t))Zi(t)}, (3.2)

then the intensity function 3.1 can be written as

λfi (t) = ξiλi(t) = ξi exp{αT(t)Xi(t) + γT(Ui(t))Zi(t)}.

By Cook and Lawless (2007), for given ξi, the likelihood function takes the form

Ln(α(·), γ(·), θ) =
∏

0≤t≤τ

[{ n∏
i=1

{Yi(t)ξiλi(t)}dNi(t)
}{
{1−

n∑
i

Yi(t)ξiλi(t)dt}1−dNi·(t)
}]

=
{ ∏

0≤t≤τ

n∏
i=1

{Yi(t)ξiλi(t)}dNi(t)
}

exp
{
−

n∑
i=1

ξi

∫ τ

0
Yi(t)λi(t)dt

}
,

where Ni.(t) =
∑n

i Ni(t).

Integrate over ξi, the observed data likelihood is given by

n∏
i=1

[ ∫ ∞
0

{ ∏
0≤t≤τ

{Yi(t)ξiλi(t)}dNi(t)
}

exp
{
− ξi

∫ τ

0

Yi(t)λi(t)dt
}
f(ξi)dξi

]
=

n∏
i=1

[{ ∏
0≤t≤τ

{Yi(t)λi(t)}dNi(t)
} θθ

Γ(θ)

∫ ∞
0

ξ
θ+Ni(τ)−1
i

exp
{
− ξi{θ +

∫ τ

0

Yi(t)λi(t)dt}
}
dξi

]
=

n∏
i=1

[{ ∏
0≤t≤τ

{Yi(t)λi(t)}dNi(t)
} θθ

Γ(θ)

Γ{θ +Ni(τ)}
{θ +

∫ τ
0
Yi(t)λi(t)dt}θ+Ni(τ)

]
.
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Take logarithm, the log-likelihood function for observed data is obtained by

log l◦n(α(·), γ(·), θ) =
n∑
i=1

[ ∫ τ

0

log {Yi(t)λi(t)}dNi(t) + θ log θ − log Γ(θ)

+ log Γ{θ +Ni(τ)} − {θ +Ni(τ)} log
{
θ +

∫ τ

0

Yi(t)λi(t)dt
}]
.

We use local linear approximation method to estimate the nonparametric estimators

α(·) and γ(·)( Heng (2019)). Assume that Xi(t) and Zi(t) do not have common

covariates, and assume α(t) and γ(u) are smooth enough and their first and second

derivatives exist. We do Taylor expansions for α(t) and γ(u) at Nt0 and Nu0, the

neighbourhoods of t0 and u0, getting

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2)

and

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

Denote λf∗i (t, ϑ∗|t0, u0) as the approximated frailty included intensity function lo-

calized at (t0, u0), we have

λf∗i (t, ϑ∗|t0, u0) = ξi exp{ϑ∗T (t0, u0)X̃i
∗
(t|t0, u0)}, (3.3)

where

ϑ∗(t0, u0) = (αT(t0), α̇T(t0), γT(u0), γ̇T(u0))T,
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and

X̃i
∗
(t|t0, u0) = (XT

i (t), XT
i (t)(t− t0), ZT

i (t), ZT
i (t)(Ui(t)− u0))T.

Define

λ∗i (t, ϑ
∗|t0, u0) = exp{ϑ∗T (t0, u0)X̃∗i (t|t0, u0)},

the approximated intensity function 3.3 can be written as

λf∗i (t, ϑ∗|t0, u0) = ξiλ
∗
i (t, ϑ

∗|t0, u0).

We employ the Expectation-Maximization (EM) algorithm to obtain maximum

likelihood estimators. In this process, ξi is treated as a latent variable. During the E-

step, we calculate the conditional expectation of ξi, and in the M-step, we maximize

the conditional expectation of the complete log-likelihood. This iterative method

enables us to estimate model parameters α(·), γ(·), and θ, the parameter governing

the frailty term.

E-Step. Following Nileson et al. (1992), we can show that, conditional on ob-

served data, ξi is conditional Gamma distributed and follows Gamma(θ +Ni(τ), θ +∫ τ
0
Yi(t)λi(t)dt), where λi(t) takes the form 3.2.

Denote E(ξi|D) and E(log ξi|D) as the conditional expectations of ξi and log ξi,

respectively, given the observed data. We can express them in closed forms as follows:

E(ξi|D) =
θ +Ni(τ)

θ +
∫ τ

0
Yi(t)λi(t, α(t), γ(Ui(t)))dt

(3.4)
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and

E(log ξi|D) =
Γ′(θ +Ni(τ))

Γ(θ +Ni(τ))
− log

{
θ +

∫ τ

0

Yi(t)λi(t, α(t), γ(Ui(t)))dt
}
. (3.5)

The estimated conditional expectations Ê(ξi|D) and Ê(log ξi|D) can be obtained by

replacing α(t), γ(Ui(t)) and θ by the estimates at the previous iteration.

M-step. We maximize the conditional expectation of localized complete log-

likelihood with respect to D:

E[l(ϑ∗, θ|t0, u0)] =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[{
Ê(log ξi|D)

+ log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]

+
n∑
i=1

Ê{log f(ξi)|D}, (3.6)

where Kh(.) = K1(./h)/h, Kb(.) = K2(./b)/b, K1(.), K2(.) are kernel functions, h and

b are bandwidth parameters.

Maximizing 3.6 can be conducted by maximizing the following two parts,

E[lc∗1 (ϑ∗|t0, u0)|D] =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[{
Ê(log ξi|D)

+ log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]

(3.7)

and

E[l2(θ)|D] =
n∑
i

Ê(log f(ξi)|D)

= nθ log θ − n log Γ(θ) + (θ − 1)
n∑
i=1

Ê(log ξi|D)− θ
n∑
i=1

Ê(ξi|D). (3.8)

The estimated conditional expectations Ê(ξi|D) and Ê(log ξi|D) can be calculated in
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E-step based on the observed data and estimates at previous iteration.

Take derivative of E[lc∗1 (ϑ∗|t0, u0)|D] with respect to ϑ∗, we get the local score

function of ϑ∗(t0, u0),

U(ϑ∗|t0, u0) =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)X̃∗i (t|t0, u0)

×
{
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
}
. (3.9)

Set U(ϑ∗|t0, u0) = 0, the bivariate estimate ϑ̂∗(t0, u0) can be obtained through Newton-

Rapson method.

Let α̂(t0, u0) be the first p1 elements and γ̂(t0, u0) be the 2p1 +1 to 2p1 +p2 elements

of ϑ̂∗(t0, u0), aggregate them along each direction to get α̂(t0) and γ̂(u0):

α̂(t0) = n−1

n∑
1=1

α̂(t0, Ui(t0)), (3.10)

and

γ̂(u0) = n−1
u0

∑
tu0∈Vu0

γ̂(tu0 , u0), (3.11)

where Vu0 =
⋃n
i=1 U

−1
i (u0), U−1

i (u0) = {t : Ui(t) = u0}, and nu0 = |Vu0| is the

cardinality of Vu0 .

Take derivative of E[l2(θ)|D] with respect to θ and set it to zero, getting

log(θ)− Γ′(θ)

Γ(θ)
+

1

n

n∑
i=1

Ê(log ξi|D)− 1

n

n∑
i=1

Ê(ξi|D) + 1 = 0, (3.12)

θ can be updated by solving equation 3.12.

This process alternates between the E-step and the M-step until convergence is

reached, yielding estimates α̂(t), γ̂(u) and θ̂.
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3.2.3 Computational Algorithm

In this section, we elaborate on the algorithm for the estimation procedure:

1. Generate the grid points over t and u.

2. Set initial values α̂{0}(t), γ̂{0}(u) and θ̂{0}.

3. Let α̂{k−1}(t), γ̂{k−1}(u) and θ̂{k−1} be the estimates of α(t), γ(u) and θ in (k−

1)th iteration. At kth iteration, update the conditional expectation Ê{k}(ξi|D)

and Ê{k}(log ξi|D), by plugging α̂{k−1}(t), γ̂{k−1}(u) and θ̂{k−1} in equation 3.4

and 3.5. More specifically,

Ê{k}(ξi) =
θ̂{k−1} +Ni(τ)

θ̂{k−1} +
∫ τ

0
Yi(t)λi{t, α̂{k−1}(t), γ̂{k−1}(Ui(t))}dt

,

and

Ê{k}(log ξi) =
Γ′(θ̂{k−1} +Ni(τ))

Γ(θ̂{k−1} +Ni(τ))
− log

{
θ̂{k−1}

+

∫ τ

0

Yi(t)λi{t, α̂{k−1}(t), γ̂{k−1}(Ui(t))}dt
}
.

where

λi{t, α̂{k−1}(t), γ̂{k−1}(Ui(t))} = exp{α̂{k−1}T(t)Xi(t) + γ̂{k−1}T(Ui(t))Zi(t)}.

4. Update α̂{k}(t), γ̂{k}(u) by solving U(ϑ∗|t0, u0) = 0, where U(ϑ∗|t0, u0) takes the

form of 3.9 with Ê(ξi|D) replaced by Ê{k}(ξi|D). Then we take corresponding

components and aggregate through equation 3.10 and 3.11. Update θ̂{k} by

solving equation 3.12 with Ê(ξi|D) and Ê(log ξi|D) replaced by Ê{k}(ξi|D) and

Ê{k}(log ξi|D).

5. Repeat Step 3 and Step 4 iteratively until converge, the resulting estimates α̂(t),
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γ̂(u) and θ̂ are α̂{k}(t), γ̂{k}(u) and θ̂{k} at convergence.

3.2.4 An Adaptive Estimation Algorithm

In previous algorithm, we have an implicit assumption Xi(t) 6= Zi(t). However,

if certain covariates are shared between Xi(t) and Zi(t), α(t) and γ(u) may not

be distinguishable in a local area of using the local linear estimation method. For

example, we consider model λfi (t) = ξi exp{α(t) + γ(Ui(t))I(Ni(t
−) > 0)}, which is

model 3.1 withXi(t) = 1, Ui(t) = t−tiNi(t−) and Zi(t) = I(Ni(t
−) > 0). If we consider

a neighborhood that all subjects have experienced events, i.e. P (Ni(t
−) > 0) = 1 for

t ∈ Nh(t0)) = (t0 − h, t0 + h), α(t) and γ(u) will have the identifiable problems.

In this scenario, we develop an adaptive estimation algorithm. At an early time

stage, there must have some subjects that have not experienced events yet. We find

a maximum of this time point t∗, to ensure when t ∈ Nh(t∗) = (t∗ − h, t∗ + h),

0 < P (Ni(t
−) = 0) < 1 and P (Ui(t) ∈ Nb(u0)) > 0, where Nb(u0)) = (u0 − b, u0 + b)

is one bandwidth neighborhood of u0. For (t0, u0) ∈ ∆ = {0 ≤ u ≤ t ≤ t∗}, where

t∗ ≤ h+ b, α(t0) and γ(u0) can be locally identified since X̃∗i (t|t0, u0) is full rank now.

For later times t > t∗, we use integration method to estimate α(t), and then estimate

γ(u) separately.

The overall estimation procedure follows a similar outline as sketched in Section

3.2.3, with the primary difference occurring when we update α̂(t) and γ̂(u) in M-step

of each iteration. Instead of solving equation 3.9 using double kernel method, we need

the following procedure to estimate α(t) and γ(u) separately.

1. For (t0, u0) ∈ ∆ = {0 ≤ u ≤ t ≤ t∗}, where t∗ ≤ h+b, we can estimate ϑ∗(t0, u0)

by solving U(ϑ∗|t0, u0) = 0 as we described in equation 3.9. Then do aggregation

by α̂(t0) = n−1
∑n

i=1 α̂(t0, Ui(t0)) and ˆ̇α(t0) = n−1
∑n

i=1
ˆ̇α(t0, Ui(t0)) to get α̂(t0)

and ˆ̇α(t0).

2. Suppose α̂(tl0) and ˆ̇α(tl0) are the last points we can estimate by Step 1. Consider
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the recursive formula α̂(tl+1) = α̂(tl) + ∆t ˆ̇α(tl), it hep us to get α̂(tl0+1) =

α̂(tl0) + ∆t ˆ̇α(tl0). For l = l0 + 1, l0 + 2, and so on, the recursive formula is used

to estimate α(tl+1) with the current estimate α̂(tl) and by estimating α̇(t) at

the grid points tl using the following profile procedure with the plugged-in α̂(tl).

3. For t0 = tl and u0 be one of the grid points in U , we firstly separate α(t0) from

ϑ∗(t0, u0) in notations. Let ϑ∗(t0, u0) = (αT(t0), ϑ∗∗T(t0, u0))T where ϑ∗∗(t0, u0) =

(α̇T(t0), γT(u0), γ̇T(u0))T. Let X̃i
∗
(t|t0, u0) = (XT

i (t), X̃i
∗∗T(t|t0, u0))T, where

X̃i
∗∗

(t|t0, u0) = (XT
i (t)(t − t0), ZT

i (t), ZT
i (t)(Ui(t) − u0))T. Denote λ∗∗i (t) =

exp{αT(t0)Xi(t) + ϑ∗∗T(t0, u0)X̃i
∗∗

(t|t0, u0)}.

The conditional complete log-likelihood that contains α(t0) and ϑ∗∗(t0, u0) can

be expressed as

E[lc∗1 (α, ϑ∗∗|t0, u0)|D] =
n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[{
Ê(log ξi|D)

+ log{Yi(t)λ∗∗i (t, α, ϑ∗∗|t0, u0)}
}
dNi(t)

− Yi(t)Ê(ξi|D)λ∗∗i (t, α, ϑ∗∗|t0, u0)dt
]
. (3.13)

Plug α̂(t0) for α(t0) in L1(α, ϑ∗∗|t0, u0), we maximize the likelihood with respect

to ϑ∗∗(t0, u0) and get ϑ̂∗∗(t0, u0) = (ˆ̇αT(t0), γ̂T(u0), ˆ̇γT(u0))T for all grid points

u0. Aggregate them and get ˆ̇α(t0) = n−1
∑n

i=1
ˆ̇α(t0, Ui(t0)). Then, obtain γ̂(u0)

by aggregating all γ̂T(t0, u0) through equation 3.11.

4. Repeat Step 2 and Step 3 one point after another until estimate all the points.

3.3 Variance Estimator

In this session, we employed the weighted bootstrap procedure (Ma and R.Kosorok

(2005)) to get the variance estimators for α̂(t), γ̂(u) and θ̂. The basic idea is to

assign independent and identically distributed (i.i.d.) positive random weights to

each observation. We then obtain weighted estimators from this bootstrap sample.
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By repeating this process multiple times, we consider the variance estimators to be

the sample variance of all the weighted estimators.

Let {ω1, ω2, ...ωn} be n independent realizations of random variable Ω, which follows

exponential distribution with mean 1. The weights {ω1, ω2, ...ωn} are independent

with the observed data D.

We aim to get the weighted bootstrap estimators through maximizing the weighted

log-likelihood of the observed data

log l◦ωn (α(·), γ(·), θ) =
n∑
i=1

ωi

[ ∫ τ

0

log(Yi(t)λi(t))dNi(t) + θ log θ − log Γ(θ)

+ log Γ{θ +Ni(τ)} − {θ +Ni(τ)} log
{
θ +

∫ τ

0

Yi(t)λi(t)dt
}]
.

(3.14)

To maximize 3.14, we continue to use the EM algorithm. In the E-step, we update

the conditional expectations Ê(ξi|D) and Ê(log ξi|D) according to 3.4 and 3.5. These

updates involve replacing α(t), γ(Ui(t)), and θ with the weighted estimates from

the previous iteration. In M-step, we maximize the weighted version of conditional

localized complete log-likelihood

E[lω(ϑ∗, θ|t0, u0)|D] = E[lω1 (ϑ∗|t0, u0)|D] + E[lω2 (θ)|D],

where

E[lω1 (ϑ∗|t0, u0)|D] =
n∑
i=1

ωi

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[{
Ê(log ξi|D)

+ log{Yi(t)λ∗i (t, ϑ∗|t0, u0)}
}
dNi(t)− Yi(t)Ê(ξi|D)λ∗i (t, ϑ

∗|t0, u0)dt
]
,
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and

E[lω2 (θ)|D] =
n∑
i=1

ωiθ log θ −
n∑
i=1

ωi log Γ(θ) + (θ − 1)
n∑
i=1

ωiÊ(log ξi|D)

− θ
n∑
i=1

ωiÊ(ξi|D).

The estimation procedures follow the same approach as outlined in Section 3.2.2, but

in a weighted version. Iterate between E-step and M-step until converge to obtain

the weighted estimators. Suppose we undertake 100 repetitions of this weighted boot-

strap, resulting in 100 weighted estimators. The sample variance of these weighted

estimators serves as the estimated variance of α̂(t), γ̂(u), and θ̂.

3.4 Simulation Studies

In this section, we perform simulations to demonstrate the effectiveness of the

proposed methods. Section 3.4.1 focuses on the double kernel estimation method,

and Section 3.4.2 delves into the adaptive method. We use Epanechnikov kernel

function K(x) = 3/4(1 − x2)I{|x| ≤ 1}. All the variance estimators are obtained

through 100 repetitions of weighted bootstrap that we illustrated in Section 3.3.

In the simulation studies in this section, we employ the following abbreviations.

Bias = estimate- true value. SSE stands for the sample standard error of the es-

timates. ESE stands for the sample mean of the estimated standard errors. CP

represents the 95% empirical coverage probability.

3.4.1 Simulation Studies Using Double Kernel Algorithm

Generate data from following models:

λfi (t) = ξi exp{α0(t) + α1(t)Xi + γ(Ui(t))I(Ni(t
−) > 0)Wi}, (3.15)

for t ∈ [0, τ ].
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• τ = 4, For each subject i, we generate censoring time Ci ∼ U(3, 8), the study

time for subject i is the minimum of Ci and τ .

• Xi ∼ Ber(0.5), Wi ∼ U(0, 1), Ui(t) = t− TiNi(t−).

• α0(t) = 1− log (1 + 0.2 log (1 + t)), α1(t) = −0.5 + 0.1t and γ(u) = − 0.3
1+u

.

• ξi ∼ Gamma(θ, θ).

Under these settings, the average number of events per subject is approximately

7. A smaller θ in the Gamma distribution implies greater variability in the ξi. In

this subsection, we simulate three scenarios: θ = 1, θ = 2, and θ = 5. Table 3.1

summarizes the estimation results for θ under these scenarios. Figures 3.1, 3.2, and

3.3 illustrate the estimation results for α0(t), α1(t), and γ(u) when θ = 1, θ = 2, and

θ = 5, respectively.

Table 3.1: Bias, ESE, SEE and CP for estimator of θ under model 3.15 when θ = 1, 2,
and 5 for sample size n = 800, 1000 and 1200. Bandwidths are taken as h = b = 0.9,
h = b = 0.5 and h = b = 0.3 for θ = 1, θ = 2, and θ = 5, respectively. The results
are based on 500 simulations. The estimated standard error in each simulation is
obtained via 100 weighted bootstrap samples.

θ n Bias SEE ESE CP

1 800 0.005 0.067 0.072 0.968

1000 0.008 0.063 0.064 0.940

1200 0.008 0.057 0.058 0.956

2 800 0.001 0.223 0.225 0.962

1000 0.003 0.204 0.200 0.948

1200 0.011 0.165 0.178 0.964

5 800 -0.192 1.106 1.105 0.946

1000 -0.111 0.968 1.007 0.952

1200 -0.142 0.901 0.930 0.950
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Figure 3.1: Bias, SEE, ESE and CP for estimators of α0(t), α1(t) and γ(u) under
model 3.15 when θ = 1, using bandwidths h = b = 0.9. The dotted, dashed and
solid lines represent sample size n = 800, 1000 and 1200, respectively. The results
are based on 500 simulations. The estimated standard errors in each simulation are
obtained via 100 weighted bootstrap samples.
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Figure 3.2: Bias, SEE, ESE and CP for estimators of α0(t), α1(t) and γ(u) under
model 3.15 when θ = 2, using bandwidths h = b = 0.5. The dotted, dashed and
solid lines represent sample size n = 800, 1000 and 1200, respectively. The results
are based on 500 simulations. The estimated standard errors in each simulation are
obtained via 100 weighted bootstrap samples.
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Figure 3.3: Bias, SEE, ESE and CP for estimators of α0(t), α1(t) and γ(u) under
model 3.15 when θ = 5, using bandwidths h = b = 0.3. The dotted, dashed and
solid lines represent sample size n = 800, 1000 and 1200, respectively. The results
are based on 500 simulations. The estimated standard errors in each simulation are
obtained via 100 weighted bootstrap samples.
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We now want to compare the estimation results using different bandwidths for fixed

parameter θ and sample size n. Table 3.2 presents the estimation results for θ when

θ = 2 and n = 800. Figure 3.4 displays the estimation results for α0(t), α1(t), and

γ(u) when θ = 2 and n = 800. We observe that all three pairs of bandwidths perform

well. The pair with larger bandwidths (h = b = 0.5) exhibits smaller biases, sample,

and estimated standard errors for all the estimators of θ, α0(t), α1(t), and γ(u). In

practical applications, it is not necessary for h and b to be the same.

Table 3.2: Bias, ESE, SEE and CP for estimator of θ under model 3.15 when θ = 2
and n = 800, using bandwidths h = b = 0.3, h = b = 0.4 and h = b = 0.5. The
results are based on 500 simulations. The estimated standard error in each simulation
is obtained via 100 weighted bootstrap samples.

[h, b] Bias SEE ESE CP

[0.3, 0.3] -0.108 0.395 0.370 0.940

[0.4, 0.4] -0.034 0.279 0.280 0.942

[0.5, 0.5] 0.001 0.225 0.223 0.962
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Figure 3.4: Bias, ESE, SEE and CP for estimators of α0(t), α1(t) and γ(u) under
model 3.15 when θ = 2 and n = 800. The dotted, dashed and solid lines represent
bandwidths h = b = 0.3, h = b = 0.4 and h = b = 0.5, respectively. The results
are based on 500 simulations. The estimated standard errors in each simulation are
obtained via 100 weighted bootstrap samples.
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3.4.2 Simulations Studies Using Adaptive Algorithm

In this section, we conduct simulations using adaptive algorithm described in Sec-

tion 3.2.4.

We generate data from the following intensity model

λfi (t) = ξi exp{α0(t) + γ(Ui(t))I(Ni(t
− > 0)}, (3.16)

for t ∈ [0, τ ].

• τ = 4. For each subject i, we generate censoring time Ci ∼ U(3, 8), the study

time is the minimum of Ci and τ .

• Ui(t) = t− TiNi(t−).

• α0(t) = 2− log (1 + 0.2 log (1 + t)) and γ(u) = − 1−u
exp((1−u)2)

.

• ξi ∼ Gamma(θ, θ) with θ = 2.

The average number of events under these settings is approximately 17. As dis-

cussed in Section 3.2.4, when all events have been experienced, identifying α(t) and

γ(u) in specific local regions can be challenging. It is necessary to employ the adap-

tive algorithm for parameter estimations. Variance estimators are obtained from 100

repetitions of weighted bootstrap, as detailed in Section 3.3. Table 3.3 shows the

estimation results for θ and Figure 3.5 shows the estimation results for α0(t) and

γ(u).
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Table 3.3: Bias, ESE, SEE and CP for estimator of θ under model 3.16 when θ = 2
for sample size n = 800, 1000, and 1200, using bandwidths h = b = 0.3. The results
are based on 500 simulations. The estimated standard error in each simulation is
obtained via 100 weighted bootstrap samples.

n Bias SEE ESE CP

800 -0.035 0.162 0.167 0.944

1000 -0.039 0.148 0.148 0.932

1200 -0.037 0.135 0.136 0.942
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Figure 3.5: Bias, ESE, SEE and CP for the estimators of α0(t) and γ(u) under model
3.16 when θ = 2, using bandwidths h = b = 0.3. The dotted, dashed and solid lines
represent sample size n = 800, 1000 and 1200, respectively. The results are based on
500 simulations. The estimated standard errors in each simulation are obtained via
100 weighted bootstrap samples.

3.5 Data Application

In this section, we apply the proposed nonparametric frailty model to analyze

the MAL-094 malaria vaccine trial data. Censoring is defined as follows: for each

participant, visits occurring after three consecutive missed scheduled visits with no

intervening unscheduled visits are considered censored. Over the 32 months follow-up

time, 4633 malaria infections are observed among 1461 participants before censoring.

Among these participants, 1065 of them have experienced at least one infection, with
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the participant having the highest number of infections having had 34 infections.
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Figure 3.6: Histograms of gap times between consecutive infections for control and
treatment groups in the 32 months follow-up data.

We define the observed infection times and counting process of the malaria infec-

tions. Define Tij as the jth infection time we observed for subject i. Denote ni as

the total event number experienced by subject i before the end of study or censor-

ing, whichever comes first. We have Ti1 < Ti2 < ... < Tini . The counting process

Ni(t) =
∑ni

j=1 I(Tij ≤ t) registers the observed number of infections taken from ith

subject by time t. Denote ∆Ni(t) = Ni(t + ∆t−) − Ni(t) as the number of events

occurring in the small time interval [t, t+ ∆t).

The risk of malaria infections is modeled by the intensity function Ni(t). We

combine the four vaccine arms into treatment group, treating the placebo arm as the
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control group. The vaccine effect is then evaluated between the control group and the

treatment group. We incorporate covariates such as site, age and hemoglobin level

into the model.

To assess the effect of the RTS,S/AS01E vaccine across two time scales, we derive a

covariate for each participant from their event history, specifying the time since their

most recent infection.

For each participant, we introduce a frailty term to represents the unobserved

heterogeneity over the study period. A frailty term larger than 1 indicates that the

participant is more likely to get infected, while a frailty term smaller than 1 indicates

that the participant is less likely to get infected. These frailty terms capture individual

differences in susceptibility to malaria infections that are not explained by observed

covariates.

The intensity function of malaria infections is modeled as follows:

λi(t) =ξi exp
{
α0(t) + α1(t)Vacci + α2(t)Agogoi + α3(t)Agei + α4(t)Hemoi

+ γ0(t− TiNi(t−))I(Ni(t
−) > 0) + γ1(t− TiNi(t−))I(Ni(t

−) > 0)Vacci
}
,

(3.17)

for 0 ≤ t ≤ 32(months).

In model 3.17, α0(t), α1(t), α2(t), α3(t), α4(t), γ0(u) and γ1(u) are unspecified

functions. The variable ξi follows Gamma(θ, θ) with unknown parameter θ. Vacci is

the treatment group indicator (Vacci= 1 if assigned to one of the four RTS,S/AS01E

vaccine arms, 0 if assigned to the control arm). Agogoi is the study site indicator

(1= Agogo, 0 = Siaya) and Agei is the age in years at enrollment. Hemoi is the

standardized hemoglobin level. The model is fitted on u ∈ [0, 8.33], where is the 90th

percentile of the gap times between consecutive infections.

Figure 3.7 presents the estimation results of the nonparametric parameters. We
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observe a slight increasing trend in the baseline risk over time. The risk in the

treatment group is lower than that in the control group. Participants living in Agogo

exhibit a lower risk compared to those in Siaya. Additionally, older children tend

to have a higher infection risk. The ones with higher hemoglobin level tends to

experience lower risk.

Furthermore, following prior infections, the risk of subsequent infections increases

as indicated by γ̂0(u) > 0. However, the increment in risk for participants in the treat-

ment group is lower than that for participants in the control group, demonstrated by

γ̂1(u) < 0. In conclusion, participants in the treatment group show a lower infection

risk both for initial infections and subsequent reinfections compared to the control

group.

The estimate of θ is 3.128, with an estimated standard error obtained from 100

weighted bootstrap samples of 0.556. Test whether the variance of the frailty term

equals 0, i.e. H0 : 1
θ

= 0. The p value is less than 10−3, suggests there are meaningful

associations among participants.

For each participant, we have the conditional expectation E(ξi) at convergence.

This allow us to incorporate heterogeneity when predicting the infection intensity for

a particular individual. With all the covariates considered, E(ξi) > 1 indicates that

the individual is more susceptible to malaria infections, while E(ξi) < 1 indicates

that the individual is relatively less likely to get infected.
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Figure 3.7: Estimation results of time-varying effects of covariates under model 3.17
using h = 32 months and b = 8.33 months. The solid lines represent the point
estimates, while the dashed lines signify the 95% pointwise confidence intervals. The
estimated standard errors are obtained via 100 weighted bootstrap samples.

3.6 Summary

In this chapter, we proposed a nonparametric intensity model with frailty for re-

current event data. The frailty follows a Gamma distribution with an unknown

parameter. It acts multiplicatively on the intensity and measures the unobserved

heterogeneity among individuals. We developed a maximum likelihood estimation

procedure to estimate the effects of covariates in two time-scales using local linear
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approximation method with double kernels. In E step, we estimated the posterior

expectation of the Gamma frailty. In M step, we maximized the conditional complete

log-likelihood using double kernels and aggregations. Variance estimators were ob-

tained using a weighted bootstrap procedure. Simulation studies demonstrated the

satisfactory performance of the proposed methods.

We applied the methods to the MAL-094 malaria vaccine trial data. Our analysis

revealed that site, age and hemoglobin level have influence on the risk of malaria

infections. Specifically, participants in Agogo exhibited lower infection risk compared

to those in Siaya. Older children were observed to have a relatively higher risk of

infections. Furthermore, the ones with higher hemoglobin levels are less likely to

become infected.

Figure 3.7 (b) illustrated the risk of the first infections among participants in the

treatment group was lower than that of control group. Additionally, Figure 3.7 (b)

and (g) showed that the risk of reinfections was further decreased in the treatment

group.



CHAPTER 4: CONCLUSION

In conclusion, we investigated two dynamic intensity models for recurrent event

data. These proposed models provide frameworks for studying how event intensity

evolves over time and how the occurrence of a prior event influences the likelihood of

a future event. Extensive simulations demonstrated their validities.

In Chapter 2, we developed a generalized class of semiparametric intensity models.

Through the choice of link function, the proposed models encompass a wide range of

models such as the multiplicative intensity model and the additive intensity model.

Maximum likelihood estimation procedure was investigated through local linear ap-

proximation and profile likelihood method. Asymptotic properties of the estimators

have been derived. We developed hypothesis testing procedures to test the parametric

forms of the covariate-varying effects. Additionally, we derived a Gaussian multiplier

method to approximate the critical values of the test statistics.

In Chapter 3, we proposed a nonparametric frailty intensity model, which can

measure the time-varying and covariate-varying effects after taking the unobserved

heterogeneity into consideration. Maximum likelihood Estimation procedure was pro-

vided using local linear approximation method with double kernels. Maximization

was achieved through an EM algorithm. Variance estimators were obtained using a

weighted bootstrap procedure.

Both of the models were applied to the MAL-094 malaria vaccine trial data. It

was found that site, hemoglobin and age have influence on the risk of malaria infec-

tions. Following prior infections, the risk of subsequent infections increased, but the

increment in risk for participants in the treatment group was smaller than those in

the control group. In conclusion, we observe the vaccine effects against both first
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infections and reinfections.

The applications have demonstrated that the proposed models have effectively al-

lowed us to tackle the inquiries within the MAL-094 malaria vaccine trial data. Addi-

tionally, these models could have potential utility in other medical studies involving

recurrent events, especially in situations requiring the modeling of treatment effects

across two time scales.

In the future, I plan to develop R packages for both models. Furthermore, I intend

to integrate the frailty framework into the semiparametric models we discussed in

Chapter 2 and establish hypothesis testing procedures to examine the Gamma frailty.
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APPENDIX A: PROOF OF THEOREMS IN CHAPTER 2

In this section, we approve Theorem 1 and Theorem 2 in Chapter 2. The following

regularity conditions are assumed through proving.

Condition A.

(1) Censoring times are non-informative for the model in the sense of

E{dNi(t)|Xi(t), Zi(t), Ui(t), Ci ≥ t} = E{dNi(t)|Xi(t), Zi(t), Ui(t)}.

(2) The inverse function of the link function g−1(·) is twice differentiable.

(3) The covariate processes Xi(t), Zi(t), Ui(t) and the intensity function λi(t), 0 ≤

t ≤ τ , are left-continuous, bounded and their total variations are bounded by a

constant.

(4) The kernel function K(·) is symmetric with compact support on [−1, 1] and

Lipschitz continuous. When bandwidth h→ 0; nh2 →∞ and nh5 is bounded.

(5) α0(t), e11(t) and e12(t) are twice differentiable on t ∈ [0, τ ], (e11(t))−1 is bounded

over 0 ≤ t ≤ τ .

(6) The matrices Aη and Ση are positive definite.

(7) The density fU(t, u) is twice continuously differentiable with respect to u and

satisfies inft∈[0,τ ],u∈U fU(t, u) > 0.
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A.1 Proof of Theorem 2.1

We consider the left side of profile estimating equation 2.8,

1

n
Uη(η)

=
1

n

n∑
i=1

∫ t2

t1

{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}{ ˙̃
λi(t, η)

λ̃i(t, η)
dNi(t)− Yi(t) ˙̃

λi(t, η)dt
}

=
1

n

n∑
i=1

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{(∂α̃(t, η)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η)

∂η

)T
Pi(t)

}{
dNi(t)− Yi(t)λ̃i(t, η)dt

}
P→E

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{(∂ζ(Ui(t), η)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

}
×
{
dNi(t)− Yi(t)λ̃i(t, η)dt

}
=E

∫ t2

t1

˙̃
λi(t, η)

λ̃i(t, η)

{(∂ζ(Ui(t), η)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

}
×
{
λi(t)dt− Yi(t)λ̃i(t, η)dt

}
=u(η).

Consider the derivative of Uη(η) with respect to η at η0, we have

− 1

n

∂Uη(η)

∂η

∣∣∣∣
η=η0

=− 1

n

n∑
i=1

∫ t2

t1

[(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

]⊗2

×
{ ¨̃λi(t, η0)λ̃i(t, η0)− [ ˙̃λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)− Yi(t)¨̃λi(t, η0)dt

}
− 1

n

n∑
i=1

∫ t2

t1

[(∂2α̃(t, η0)

∂η2

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η2

)T
Pi(t)

]
×
{ ˙̃λi(t, η0)

λ̃i(t, η0)
dNi(t)− Yi(t) ˙̃λi(t, η0)dt

}
.
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The second term converges to zero as n goes to infinity, and the first term

− 1

n

n∑
i=1

∫ t2

t1

[(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

]⊗2

×
{ ¨̃
λi(t, η0)λ̃i(t, η0)− [

˙̃
λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)− Yi(t)¨̃

λi(t, η0)dt
}

P→ −E
∫ t2

t1

[(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

]⊗2

×
{ ¨̃
λi(t, η0)λ̃i(t, η0)− [

˙̃
λi(t, η0)]2

[λ̃i(t, η0)]2
dNi(t)− Yi(t)¨̃

λi(t, η0)dt
}

= E

∫ t2

t1

Yi(t)
λ̇i(t)

2

λi(t)

[(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t, Ui(t))

Te11(t, Ui(t))
−1Xi(t)

]⊗2
dt

≡ Aη. (A.1)

Since Aη is positive definite, η0 is the unique root of u(η) = 0 in a neighborhood of

η0. By theorem 5.9 of Vaart (1998), we have

η̂
P→ η0.

For asymptotic normality of η̂, we start with Taylor expansion,

Uη(η̂) = Uη(η0) +
∂Uη(η)

∂η

∣∣∣∣
η=η0

(η̂ − η0) +Op(||η̂ − η0||2).

We know Uη(η̂) = 0, so we have

√
n(η̂ − η0) = −

(
1

n

∂Uη(η)

∂η

∣∣∣∣
η=η0

)−1
1√
n
Uη(η0). (A.2)
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Consider

1√
n
Uη(η0) =

1√
n

n∑
i=1

∫ t2

t1

{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(η0, Ui(t))

∂η

)T
Pi(t)

}
×
{ ˙̃
λi(t, η0)

λ̃i(t, η0)
dNi(t)− Yi(t) ˙̃

λi(t, η0)dt
}

=
1√
n

n∑
i=1

∫ t2

t1

{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
×

˙̃
λi(t, η0)

λ̃i(t, η0)

{
dNi(t)− Yi(t)g−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}dt

+ Yi(t)g
−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}dt− Yi(t)g−1{α̃(t, η0)Xi(t)

+ ζ(Ui(t), η0)TPi(t)}dt
}
. (A.3)

By Lemma 1 in Lin et al. (2001), the last two terms equal

1√
n

n∑
i=1

∫ t2

t1

Yi(t)ġ
−1{αT

0 (t)Xi(t) + ζT(Ui(t), η0)Pi(t)}[αT
0 (t)− α̃T(t, η0)]Xi(t)

×
{(∂α̃(t, η0)

∂η

)T
Xi(t) +

(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
dt = op(1).

So we have

1√
n
Uη(η0) =

1√
n

n∑
i=1

∫ t2

t1

˙̃λi(t, η0)

λ̃i(t, η0)

{(∂α̃(t, η0)

∂η

)T
Xi(t)

+
(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)

}
dMi(t) + op(1)

=
1√
n

n∑
i=1

∫ t2

t1

˙̃λi(t, η0)

λ̃i(t, η0)

{(∂ζ(η0, Ui(t))

∂η

)T
Pi(t)

− (e12(t))T(e11(t))−1Xi(t)
}
dMi(t) + op(1). (A.4)

By martingale central limit theorem, 1√
n
Uη(η0) ∼ N(0,Ση), where

Ση = E
[ ∫ t2

t1

λ̇i(t, η0)

λi(t, η0)

{(∂ζ(Ui(t), η0)

∂η

)T
Pi(t)− e12(t)T(e11(t))−1Xi(t)

}
dMi(t)

]⊗2

.
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By slustky theorem and combine with − 1
n

∂Uη(η)

∂η

∣∣∣∣
η=η0

P→ Aη, we have

√
n(η̂ − η0)

p→ N(0, A−1
η ΣηA

−1
η ).

The covariance matrix Ση can be estimated by

Σ̂η =
1

n

n∑
i=1

[ ∫ t2

t1

ˆ̇λi(t)

λ̂i(t)

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− Ê12(t)TÊ11(t)−1Xi(t)

}
×
{
dNi(t)− Yi(t)λ̂i(t)dt

}]⊗2

,

Aη can be estimated by

Âη = − 1

n

n∑
i=1

∫ t2

t1

{(∂ζ(Ui(t), η̂)

∂η

)T
Pi(t)− Ê12(t)TÊ11(t)−1Xi(t)

}⊗2

×
{ ˆ̈λi(t)λ̂i(t)− [ˆ̇λi(t)]

2

[λ̂i(t)]2
dNi(t)− Yi(t)ˆ̈λi(t)dt

}
.

A.2 Proof of Theorem 2.2

Now, we derive the asymptotic property for α̂(t) = α̃(t, η̂),

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(nh)1/2[α̃(t, η̂)− α̃(t, η0) + α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0
T(t)]. (A.5)

By the mean value theorem,

(nh)1/2[α̃(t, η̂)− α̃(t, η0)] = (nh)1/2∂α̃(t, ηm)

∂η
(η̂ − η0). (A.6)

where ηm is on the segment between η0 and η̂, and ∂α̃(t,ηm)
∂η

P→ −e−1
11 (t)e12(t). So

combining equation A.2 with equation A.5 and A.6, we can continue writing the first
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two terms of equation A.5 as

(nh)1/2[α̃(t, η̂)− α̃(t, η0)] = (nh)1/2∂α̃(t, ηm)

∂η
(η̂ − η0)

= h1/2e−1
11 (t)e12(t)A−1

η0

1√
n
Uη(η0) + op(h1/2)

= h1/2e−1
11 (t)e12(t)A−1

η0

1√
n

n∑
i=1

∫ t2

t1

˙̃
λi(s, η0)

λ̃i(s, η0)

×
{(∂ζ(Ui(s)), η0

∂η

)T
Pi(s)− (e12(s))T(e11(s))−1Xi(s)

}
dMi(s)

+ op(h1/2). (A.7)

Then, we consider the last three terms of A.5, for given t, we know α̃(t, η0) is the

first p1 elements of α̃∗(t, η0), which is solved from equation 2.6 when η = η0.

From equation 2.6,

Uα∗(α∗, η0, t) =
n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗, η0|t)

λ∗i (s, α
∗, η0|t)

Kh(s− t)X∗i (s|t)

×
{
dNi(s)− Yi(s)λ∗i (s, α∗, η0|t)ds

}
.

By Taylor expansion, we have

Uα∗(α̃∗(t, η0), η0, t) = Uα∗(α∗0(t), η0, t) +
∂Uα∗

∂α∗

∣∣∣∣
α∗=α∗

0(t)

(
α̃∗(t, η0)− α∗0(t)

)
,

where α0
∗(t) = (α0(t), α̇0(t))T. Since Uα∗(α̃∗(t, η0), η0, t) = 0, we have

α̃∗(t, η0)− α∗0(t) = −

(
∂Uα∗

∂α∗

∣∣∣∣
α∗=α∗

0(t)

)−1

Uα∗(α∗0(t), η0, t).
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Since α̃(t, η0)− α0(t) is the first p1 components of α̃∗(t, η0)− α∗0(t), we have

α̃(t, η0)− α0(t) =− (ne11(t))−1

n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗
0(s), η0|t)

λ∗i (s, α
∗
0(s), η0|t)

Xi(s)Kh(s− t)

×
{
dNi(s)− Yi(s)λ∗i (s, α∗0(s), η0|t)ds

}
=− (ne11(t))−1

n∑
i=1

∫ τ

0

λ̇∗i (s, α
∗
0(s), η0|t)

λ∗i (s, α
∗
0(s), η0|t)

Xi(s)Kh(s− t)

×
{
dNi(s)− Yi(s)λi(s)ds+ Yi(s)λi(s)ds− Yi(s)λ∗i (s, α∗0(s), η0|t)ds

}
.

Note that

λi(s) = g−1{α0(s)Xi(s) + ζ(η0, Ui(s))Pi(s)},

and

λ∗i (s, α
∗
0(s), η0|t) = g−1{α∗0(t)X∗i (s|t) + ζ(η0, Ui(s))},

the last two terms can be written as

λi(s)− λ∗i (s, α∗0(s), η0|t)

=ġ−1{α∗T0 (t)X∗i (s|t) + ζT(η0, Ui(s))Pi(s)}(α0(s)Xi(s)− α∗0(t)X∗i (s|t))

=ġ−1{α∗T0 (t)X∗i (s|t) + ζT(η0, Ui(s))Pi(s)}[
1

2
α̈0(t)(s− t)2Xi(s)]

=λ̇i(s, α
∗
0(s), η0|t)[

1

2
α̈0(t)(s− t)2Xi(s)].

By the definition of e11(t),

−n−1

n∑
i=1

∫ τ

0

Kh(s− t)
λ̇i(s, α

∗
0(s), η0|t)2

λi(s, α∗0(s), η0|t)
Xi(s)

⊗2ds
P→ e11(t).
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Let dMi(s) = dNi(s)− Yi(s)λi(s)ds, we have

(nh)1/2[α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0(t)]

=− n−1/2h1/2e11(t)−1

n∑
i=1

∫ τ

0

λ̇∗(s, α∗0(s), η0|t)
λ∗(s, α∗0(s), η0|t)

Xi(s)Kh(s− t)dMi(s), (A.8)

where µ2 =
∫ 1

−1
t2K(t)dt.

Combine equation A.7 and A.8,

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(nh)1/2[α̃(t, η̂)− α̃(t, η0) + α̃(t, η0)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

=(n−1h)1/2e−1
11 (t)

[
e12(t)A−1

η0

n∑
i=1

∫ t2

t1

˙̃λi(s, η0)

λ̃i(s, η0)

{(∂ζ(Ui(s), η0)

∂η

)T
Pi(s)

− (e12(s))T(e11(s))−1Xi(s)
}
dMi(s)−

n∑
i=1

∫ τ

0

λ̇∗(s, α∗0, η0|t)
λ∗(s, α∗0, η0|t)

Xi(s)Kh(s− t)dMi(s)

]
.

By CLT for martingale, we have

(nh)1/2[α̂(t)− α0(t)− 1

2
µ2h

2α̈0
T(t)]

D→ N(0,Σα),

where Σα = e11(t)Σe(t)(e11(t))−1, with

Σe(t) = lim
n→∞

hE
{∫ τ

0

K2
h(s− t) λ̇

2(s)

λ(s)
[Xi(s)]

⊗2ds
}
.

Σα(t) can be estimated byÊ11(t)−1Σ̂e(t)Ê11(t)−1, with

Σ̂e(t) = n−1h

n∑
i=1

[ ∫ τ

0
Kh(s− t)

ˆ̇
λi(s)

λ̂i(s)
Xi(s)

{
dNi(s)− Yi(s)λ̂i(s)

}
− Ê12(t)Â−1

η

×
∫ t2

t1

ˆ̇
λi(s)

λ̂i(s)

{(∂ζ(Ui(s), η̂)

∂η

)T
Pi(s)− Ê12(s)TÊ11(s)−1Xi(s)

}{
dNi(s)− Yi(s)λ̂i(s)

}]⊗2
.
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