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ABSTRACT

WAI-LUN LAM. New Version of Optimal Stopping Problem. (Under the direction
of DR. STANISLAV MOLCHANOV)

This dissertation contains several new results concerning Moser-type optimal stop-

ping problems. In the simplest case we consider sequence of independent uniformly

distributed points X1, X2, · · · , Xn on the compact Riemannian manifoldM and give

algorithm for the calculation of Sn = max
τ≤n

E[G(Xτ )] where G is a smooth function on

M and τ is a random optimal stopping time. Description of the optimal τ depends

on the structure of G near points of maximum. For different assumptions on this

structure we calculate asymptotics of Sn.
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CHAPTER 1: INTRODUCTION

The Moser problem is a classic problem of optimal stopping theory. This branch

of probability and decision theory focuses on determining the optimal strategy for

making decisions in a sequential manner. The Moser problem, named after Leo Moser

who proposed it in 1956, presents a captivating scenario where an individual must

decide when to stop a sequential process in order to maximize the expected reward.

In Moser problem, the decision-maker is confronted with a sequence of options,

each associated with a certain reward or penalty. The challenge lies in determining

the optimal stopping rule - the point in the sequence at which the decision-maker

should halt the process to attain the maximum expected reward. This problem is

characterized by its simplicity in formulation but complexity in finding an optimal

solution, making it an intriguing problem in the realm of decision theory.

Moser problem helps exploring the underlying principles of optimal stopping, seek-

ing general strategies and insights that can be applied to a broader class of problems.

It serves as a valuable case study, contributing to our understanding of decision-

making under uncertainty and offering practical applications in diverse fields, includ-

ing finance, operations research, and artificial intelligence. Analyzing the Moser prob-

lem provides a glimpse into the intricate balance between exploration and exploita-

tion, shedding light on the delicate trade-offs inherent in sequential decision-making

processes.
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1.1 Motivation for Moser problem

Let’s formulate the Moser problem. Suppose a gambler possesses n opportunities

to randomly draw a number from the interval [0, 1]. After each draw, the gambler

examines the number drawn. If the number is rejected, the gambler has the option to

draw again from the remaining n− 1 chances. This process repeats until the gambler

decides to stop drawing, at which point he/she receives the value of the last drawn

number. The question is how should the gambler achieve the maximum mean value

in this game?

To translate this problem to a mathematical setting. Let X1, · · · , Xn be i.i.d.

random variables uniformly distributed on [0, 1] and τ be the stopping times for this

sequence such that ∀k ≥ 1, {τ = k} ∈ Fk = σ(X1, · · · , Xk). We are interested in the

maximum expected reward

Sn = max
τ≤n

E[Xτ ].

By using the Bellman’s principle one can find the recursive relation


Sn+1 = 1+S2

n

2
, n ≥ 1

S1 = 1
2
.

Then by applying the standard formulas for the asymptotics of the iterations xn+1 =

g(xn) with appropriate conditions on g(x), one can prove that

Sn = 1− 1

n
+ o(

1

n
).

See details in [1], [2].

More general problem for i.i.d. random variables (not necessarily uniformly dis-

tributed but supported on the finite interval, say [0, L]) with continuous positive
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density f(x) on [0, 1] has the similar form. One can find

Sn = max
τ≤n

E[Xτ ], {τ = k} ∈ σ(X1, · · · , Xk)

Again the Bellman’s principle gives the recursive formula


Sn+1 = H(Sn), S1 = E[X1]

H(x) =
∫ L
x
zf(z)dz + x

∫ x
0
f(z)dz.

It can be proved that as n→∞, the sequence Sn monotonically increases towards L,

i.e. Sn ↑ L, n→∞. Moreover, under some regularity condition on f(x) near x = L,

one can find asymptotics of Sn, n→∞. Simplest regularity condition

f(x) ∼ c(L− x)αL
(

1

L− x

)
, x ↑ L

where α > −1 and L(z) is slowly varying function if z → +∞.

Furthermore, the first publication addressing the Moser problem with unbounded

random variables is attributed to Karlin [3]. Let X1, · · · , Xn are i.i.d. exp(1) random

variables, i.e. P{X1 > x} = e−x. Then


Sn+1 = Sn + e−Sn

Sn = lnn+ 1
n

+ o( 1
n
), n→∞.

See details in appendix A. From this point on, when addressing the Moser problem in

the context of non-uniform probability distributions, we will refer to it as the Moser-

type problem. The term "Moser problem" will be reserved for scenarios involving

uniformly distributed random variables on [0, 1].

In the subsequent chapters, we’ll study the scenarios involving random variables

X1, · · · , Xn characterized by distributions with an unknown parameter and involve
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an atom. Subsequently, we explore scenarios concerning the maximum expected value

within an open set of a compact Riemannian manifold with a special function.



CHAPTER 2: MOSER-TYPE PROBLEMS

2.1 Non-stationary Moser-type problem

New results in this area of Moser-type problem concern the situation of the reward

function G : M→ R occurs on an open set of a compact Riemannian manifoldM.

A nonnegative integer-valued random variable τ is called a stopping time if the event

{τ = k} ∈ Fk = σ(X1, · · · , Xk). Our interest lies in solving the optimal stopping

problem defined as:

max
τ≤n

E[G(Xτ )]

Here the maximum is taken over all stopping times τ that are less than or equal to

n. For simplicity we focus on optimizing over stopping times of the form:

τ = min{1 ≤ i ≤ n : G(Xi) ≥ hi}

where 1 > h1 > h2 > · · · > hn > 0 are the predetermined thresholds. In this case

the goal is to find the optimal choice of hi’s. This optimization problem is sometimes

denoted as:

Sn = max
{hi}

E[G(Xτ )].
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Consider the simplest example whenM = [0, 1]. Suppose that X1, · · · , Xn are i.i.d.

random variables uniformly distributed on interval [0, 1] and let G : [0, 1]→ [0, 1] be

G(x) =


x

1−ε , 0 ≤ x < 1− ε

1 , 1− ε ≤ x ≤ 1

(2.1)

where 0 < ε << 1. Since such a function resembles a plateau, let’s just call this

the plateau reward function. It worth to note that the plateau function is more

general than a linear function. Notice that if we set ε = 0, the problem will be

reduced back to the classical Moser problem. Let’s fix some threshold for each step

1 > h1 ≥ h2 ≥ · · · ≥ hn > 0 and let

Y1 = G(X1), · · · , Yn = G(Xn)

be i.i.d. random variables distributed on [0, 1]. The probability distribution of Y is

P{Y ≤ y} =


y(1− ε) , 0 ≤ y < 1

1 , y = 1

and the corresponding probability density is

f(y) =


1− ε , 0 ≤ y < 1

εδ(y − 1).

where δ(·) is the delta function.
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Lemma 2.1. Let X1, · · · , Xn be i.i.d. random variables uniformly distributed on

the interval [0, 1]. Let G : [0, 1]→ [0, 1] such that

G(x) =


x

1−ε , 0 ≤ x < 1− ε

1 , 1− ε ≤ x ≤ 1

where 0 < ε << 1. Let Y1 = G(X1), · · · , Yn = G(Xn) be i.i.d. random variables

distributed on [0, 1]. Let τ̃ = min{t : Yt = 1}, then τ̃ is geometric distributed, i.e.

P{τ̃ = k} = (1− ε)k−1ε, k ≥ 1.

Proof. Let 0 < ε << 1 and fix k ≥ 1, then

P{τ̃ = k} = P{Y1 < 1, Y2 < 1, · · · , Yk = 1}

= P{Y1 < 1}P{Y2 < 1} · · ·P{Yk = 1}

= (1− ε)k−1ε.

Lemma 2.1 suggests that the mean time of hitting the plateau 1 is of order 1
ε
. This

gives us a sense of time when the random variable will hit the plateau.

Now let’s turn our attention to the calculation of the maximum expectation, i.e,

Sn = max
τ≤n

E[Yn], with the plateau function in (2.1). By the law of total expectation

of Y , we have

Sn = max
τ≤n

(
E[Yn|Yn ≥ hn]P{Yn ≥ hn}+ E[Yn|Yn < hn]P{Yn < hn}

)
= max

τ≤n

(∫ 1

hn

y (1− ε+ εδ(y − 1)) dy + Sn−1hn(1− ε)
)

= max
τ≤n

((
1− h2

n

2

)
(1− ε) + ε · 1 + Sn−1hn(1− ε)

)
.

(2.2)
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Then take the derivative of above equation with respect to hn and set zero implies

hn = Sn−1.

Replace all the hn in equation (2.2) to be Sn−1, we have

Sn = (1− ε)
(

1 + S2
n−1

2

)
+ ε

Now rewrite the recursive relation as a function

g(x) = (1− ε)
(

1 + x2

2

)
+ ε.

By the fix point theorem, g(x) = x gives the solution x = 1. Since g′(1) < 1, g is

contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn = (1− ε)
(

1 + (1− hn−1)2

2

)
+ ε

implies

hn = (1− ε)hn−1 − (1− ε)
h2
n−1

2
. (2.3)

In the classical Moser problem, one may apply the Pólya and Szëgo theorem (see

details in [4] problem 174 on p.38) to equation (2.3) to get the asymptotic solution

of hn. Since in this case the coefficient of hn−1 is 1− ε, we cannot directly apply this

theorem on equation (2.3). Let’s analyze equation (2.3) with the following two cases:
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Case 1. To estimate hn from above, let εn >> 1. From (2.3), since

hn ≤ (1− ε)hn−1

implies

hn ≤ (1− ε)n ≤ e−εn.

Then

Sn = 1− hn

≥ 1− (1− ε)n

≥ 1− e−εn.

Case 2. To estimate hn from below, let εn << 1. Since

hn ≥ hn−1 −
h2
n−1

2

By the classical Moser problem, we have

hn <
2

n
.

Then

Sn ≥ 1− 2

n
.

The above calculation indicates that there is a phase transition region between the

two cases.

Lemma 2.2. Let X1, · · · , Xn be i.i.d. uniformly distributed random variables on

the interval [0,1]. Without loss of generality, let the maximum value of the smooth



10

function G be 1. Furthermore, let G : [0, 1] → [0, 1] such that G(x) ∼ 1 − c(1 − x)β

where c > 0, β > 0 and

Y1 = G(X1), · · · , Yn = G(Xn)

be i.i.d. random variables. Then the maximum expectation is

Sn ∼ 1 +
A

nβ

where A is a constant depends on c and β.

Proof. The probability distribution of Y is

P{Y ≥ y} = P{G(X) ≥ y}

= P{1− c(1−X)β ≥ y}

= P

{
X ≥ 1−

(
1− y
c

)1/β
}

= 1−

(
1−

(
1− y
c

)1/β
)

=

(
1− y
c

)1/β

The probability density is

f(y) =
d

dy
P{Y ≤ y}

=
d

dy

(
1−

(
1− y
c

)1/β
)

=
1

cβ

(
1− y
c

) 1
β
−1
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One can calculate the maximum expectation with change of variables.

Sn = max
τ≤n

(∫ 1

hn

yf(y)dy + Sn−1P{Y ≤ hn}
)

= max
τ≤n

(∫ 1

hn

y

cβ

(
1− y
c

) 1
β
−1

dy + Sn−1

(
1−

(
1− hn
c

)1/β
))

= max
τ≤n

(
1

c
1
β

(
(1− hn)

1
β − (1− hn)

1
β

+1

1 + β

)
+ Sn−1

(
1−

(
1− hn
c

)1/β
))

(2.4)

then take derivative of above equation and set zero implies

hn = Sn−1.

Now substitute this back to equation (2.4), we have

Sn =
1

c
1
β

(
(1− Sn−1)

1
β − (1− Sn−1)

1
β

+1

1 + β

)
+ Sn−1

(
1−

(
1− Sn−1

c

)1/β
)
.

Now rewrite the recursive relation as a function

g(x) =
1

c
1
β

(
(1− x)

1
β − (1− x)

1
β

+1

1 + β

)
+ x

(
1−

(
1− x
c

)1/β
)

by fixed point theorem, g(x) = x gives the solution x = 1.

Since g′(1) = 1, g is contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =
1

c
1
β

(
(1− (1− hn−1))

1
β − (1− (1− hn−1))

1
β

+1

1 + β

)

+ (1− hn−1)

(
1−

(
1− (1− hn−1)

c

)1/β
)
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implies

hn = hn−1 −
βc−

1
β

1 + β
h

1+ 1
β

n−1

Now let k = 1 + 1
β
and a = βc

− 1
β

1+β
. Then by the Pólya and Szëgo theorem,

nβhn →

(
βc−

1
β

1 + β
· 1

β

)− 1
1/β

.

That is

hn → c

(
1 + β

n

)β

as n→∞. Then the maximum expectation becomes

Sn ∼ 1 + c

(
1 + β

n

)β

when n is large.

2.2 Probability distribution with incomplete information

When the distribution of the random variables has an unknown parameter, one can

apply statistical method such as maximum likelihood estimation to estimate it. The

maximum likelihood method provides us a way to develop the sense of stopping in

the game.

Let X1, · · · , Xn be i.i.d. uniform random variables on interval [0, a] where a is an

unknown positive constant. Since the player does not have any information at all

when the game starts, then he/she should always observe X1. To establish the sense

of stopping, the maximum likelihood estimation can be applied on unknown a. Let
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1 ≤ m ≤ n, then the log-likelihood function can be written as

L(a|X1, · · · , Xm) =
m∏
i=1

f(xi|a) =
1

am
.

Then the log-likelihood becomes

logL(a|X1, · · · , Xm) = −m log a.

Then the derivative of the log-likelihood function is

d

da
logL(a|X1, · · · , Xm) = −m

a
.

Since the derivative is a monotone decreasing function, the estimated parameter is

âm = max(X1, · · · , Xm).

Let M̂m = m
m−1

âm. Since E
[
M̂m

]
= E

[
m
m−1

âm
]

= a = Mm, an unbiased estimator of

the maximum is

M̂m =
m

m− 1
âm.

The concept of employing the maximum likelihood method prompts us to iteratively

refine the unbiased estimation of parameter a at each step of the process. This

iterative approach allows for continual improvement in the accuracy of our estimation

as more data is collected, resulting in a more robust and reliable estimation of the

parameter a over time. However, it worth to note that a fundamental trade-off arises

between augmenting the dataset to refine the estimate and allocating resources for

optimal stopping. This dilemma gives rise to the multi-armed bandit problem.
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Let’s calculate the estimated distribution of X. For each step m,

P{X ≤ x} =
x

âm

and the corresponding density is

f(x) =
1

âm
1(0 ≤ x ≤ âm).

Then the maximum expectation becomes

Sn = max
τ≤n

(
E[Xn|Xn ≥ hn]P{Xn ≥ hn}+ E[Xn|Xn < hn]P{Xn < hn}

)
= max

τ≤n

(∫ ân

hn

x

ân
dx+

hn
ân
Sn−1

)
= max

τ≤n

(
â2
n − h2

n

2ân
+
hn
ân
Sn−1

)
.

(2.4)

Take the derivative of the above equation with respect to hn and set zero implies

−hn
ân

+
Sn−1

ân
= 0

implies

hn = Sn−1.

Substitute this result back to (2.4), then

Sn =
â2
n + S2

n−1

2ân
.

Now rewrite the recursive relation as a function

g(x) =
â2
n + x2

2ân
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by fixed point theorem, g(x) = x gives

x =
â2
n + x2

2ân

and the solution is

x = ân.

Since g′(ân) ≤ 1, g is contractive and g(Sn)→ ân as n→∞. Let

hn = ân − g(Sn)

implies

ân − hn =
â2
n + (ân − hn−1)2

2ân

implies

hn = hn−1 −
h2
n−1

2ân
.

Now let k = 2 and a = 1
2ân

. Then by Pólya and Szëgo theorem,

nhn → 2ân as n→∞

implies he following asymptotic relationship when n is large

Sn ∼ ân

(
1− 2

n

)

that is Sn → â∞ as n→∞.



16

2.3 Probability distribution with an atom

The inclusion of atoms in probability distributions within decision-making theory

traces back to the mid-20th century, with seminal contributions from mathematicians

such as Leonard J. Savage [5], [6]. His work laid the groundwork for understanding

decision-making under uncertainty, highlighting the importance of considering rare

events or extreme outcomes in probabilistic models to better reflect real-world sce-

narios.

Here we discuss about one simple scenario with distribution with an atom. Consider

X1, · · · , Xn are i.i.d. random variables with density contains an atom of unknown

mass π0 such that

f(x) =


π0δ(x− a

2
)

1− π0 , x ∈ [0, a
2
) ∪ (a

2
, a]

where a is an unknown constant. In this case, since the location of the atom is

unknown, large sample size is the key to reveal the location of the atom.

Suppose this game is repeated one million times with mass of atom π0 = 1
2
, then

(1− 1
2
)106 is the probability that the outcome does not hit the atom. This probability

is extremely small. In contrast, the probability of getting the atom is extremely high.

The outcomes will occur within a
2
±
√

106(1
2
)(1− 1

2
) which is a narrow region. It

means that if the player see an exact outcome occurs twice or repeatedly, he/she can

be sure that is the atom and the time for the atom appears repeatedly is called the

collision time.

If the mass of an atom is very small, then the effect is negligible and the situation

reduces back to the previous examples.
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2.4 Stationary Moser-type problem

In Moser problem, the optimal strategy depends on the time interval, that is the

number of the random variables in the sequence X1, · · · , Xn. One can consider a

similar model with stationary strategy. That means one can consider fixing a single

threshold h for the game instead of having a sequence of thresholds.

Let’s illustrate the stationary Moser problem in more details. Consider for each

step t = 1, · · · , n, a judge of the game will flip a coin. Let 0 << δ < 1. With

probability δ, the judge would give a "green light" for the player to continue the

game. With probability 1− δ the judge would end the game and the player receives

zero reward. Let’s fix a level h, the player would cash in if Xi ≥ h, otherwise he/she

would continue the game. Then, by the law of total expectation, the expected reward

in each step is

S(δ, h) = (1− δ) · 0 + δ ·
[ ∫ ∞

h

xf(x)dx+ F (h) · S(δ, h)

]

where F (h) = P{X ≤ h}, then it implies

S(δ, h) =
δ
∫∞
h
xf(x)dx

1− δF (h)

To maximize the expectation in each step over the level h, it is necessary to take the

derivative of S(δ, h) with respect to h and set it equals zero. Then the optimal level

h is

hopt =
δ

(1− δ)

∫ ∞
hopt

(1− F (x))dx (2.5)

and the maximum expectation is

S(δ) =
δ
∫∞
hopt

xf(x)dx

1− δF (hopt)
. (2.6)
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This computation provides a straightforward formula for determining both the op-

timal threshold and the maximum expectation of the game, showcasing its inherent

elegance.

Example 2.1. Let X1, · · · , Xn be i.i.d. exponential random variables with mean

1. Then by equation (2.5), the optimal level is

hopt =
δe−hopt

1− δ

That is

hopt = ln
1

1− δ
− ln ln

1

1− δ
+ o(1)

and since hopt is large, by equation (2.6)

S(δ) =
δhopte

−hopt

1− δ(1− e−hopt)

=
h2

opt(1− δ)
1− δ + (1− δ)hopt

=
h2

opt

1 + hopt

= hopt

(
1

1 + 1
hopt

)

= hopt

(
1− 1

hopt
+

1

h2
opt

+ · · ·
)

= hopt + o(1).

That is

S(δ) ∼ hopt.
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Example 2.2. Let X1, · · · , Xn be i.i.d. uniform random variables on [0,1]. Then

by equation (2.5), the optimal level is

hopt =
δ

1− δ

(
(1− hopt)2

2

)

That is

hopt =
1

δ
+

√
1

δ2
− 1

∼ 2

δ

and the maximum expectation is

S(δ) =
δ(1− h2

opt)

2(1− δhopt)

∼ hopt −
1

hopt
.



CHAPTER 3: TECHNICAL TOOLS OF RIEMANNIAN GEOMETRY

On a compact Riemannian manifold, there is no global coordinate system. That

means there is no one single coordinate system can cover the entire manifold. For

example, consider a sphere, S2, in a three-dimensional Euclidean space. The cartesian

coordinate system cannot cover the equator while the polar coordinate system cannot

cover the north and south poles. In other words, singularities appear on every coor-

dinate system on close surfaces. To over come this problem, multiple local coordinate

systems may be used to cover the manifold. These covers with coordinate systems

on top of them are called maps or charts. When more than one map are employed to

cover the manifold, there will be some overlapping regions and the maps are required

to be agreed on the same region that they cover.

3.1 Introduction to Riemannian geometry

LetM be a 2-dimensional compact Riemannian manifold and ϕ be a map (chart)

from an open set U ⊂ R2 toM. Consider a curve r(t) = (x1(t), x2(t)), t ∈ [a, b] on U

and let γ(t) = ϕ(x1(t), x2(t)), t ∈ [a, b] be a curve onM. Then the magnitude of the

velocity of a particle moving along the curve γ is

|V (t)| = |γ ′(t)| =
√

(ϕ′ ·ϕ′)(t) =
√

(ϕx1x1 +ϕx2x2)) · (ϕx1x1 +ϕx2x2))(t)

=
√

(ϕx1 ·ϕx1)(x′1)2 + 2(ϕx1 ·ϕx2)x′1x′2 + (ϕx2 ·ϕx2)(x′2)2(t)

Note that |V (t)| > 0, the reason for this is to ensure the curve is smooth at all points.

Now let E(xx, x2) = ϕx1 ·ϕx1 , F (xx, x2) = ϕx1 ·ϕx2 , G(xx, x2) = ϕx2 ·ϕx2 , we define
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the first quadratic form ofM as

ds2 = Edx2
1 + 2Fdx1dx2 + Fdx2

2

and the arc length of the curve γ is

L(γ(t0)) =

∫ t0

a

|V (t)|dt =

∫ t0

a

ds

dt
dt =

∫ t0

a

√
E(x′1)2 + 2F (x′1x

′
2) +G(x′2)2(t)dt

To establish a measure for area on the surface of the compact Riemannian manifold

M, we first fix a point, ϕ(x1, x2) , then take the derivative of ϕ with respect to x1

and x2 to obtain the bases for the tangent plane at the point ϕ(x1, x2), that is ,

ϕx1dx1 and ϕx2dx2 . Then by the parallelogram law, the infinitesimal area on M can

be written as

dA(x1, x2) = |(ϕx1dx1)× (ϕx2dx2)| = |ϕx1 ×ϕx2 |dx1dx2 =
√
|ϕx1 ×ϕx2|2dx1dx2

=
√

(ϕx1 ×ϕx2) · (ϕx1 ×ϕx2)dx1dx2 =

√√√√√√det

ϕx1 ·ϕx1 ϕx1 ·ϕx2

ϕx1 ·ϕx2 ϕx2 ·ϕx2

(x1, x2)dx1dx2

So the surface area is

A =

∫
U

√
EG− F 2dx1dx2.

From the above calculation, let us generalize the compact Riemannian manifold for-

mally. Let (M, g) be a compact Riemannian manifold where g is a positive-definite



22

inner product, i.e.

g =

E(x1, x2) F (x1, x2)

F (x1, x2) G(x1, x2)

 =

ϕx1 ·ϕx1 ϕx1 ·ϕx2

ϕx1 ·ϕx2 ϕx2 ·ϕx2


Let ϕ be a map from U ⊂ R2 to M. Suppose the curve γ(t) ⊂ M, t ∈ [a, b] and

|V (t)| > 0. Then the local coordinate x = (x1, x2), the Riemannian manifold is

equipped with

(i) The first quadratic form:

ds2 = gij(x
i, xj)dxidxj

(ii) Arc Length:

L(t) =

∫ t

a

√
gij(xi, xj)dxidxjdu

by minimizing the arc length function, we obtain the geodesic on the Riemannian

manifold.

(iii) Area (Measure):

A =

∫ ∫
U

√
EG− F 2dx1dx2 and µ(dx) =

√
det g dx

(iv) Laplace-Beltrami Operator:

∆f = lim
δ→0

∫
Uδ(x)

f(u)µ(du)− f(x)

δ2
=

1√
det g

∂

∂xi

(√
det g(gij)

∂

∂xj

)

Now let us look at some examples.
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3.2 Riemannian metric and Laplacian on a sphere

Consider M ⊂ R3 which is a sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1}. The

parametric equations are


x(θ, φ) = sin θ cosφ

y(θ, φ) = sin θ sinφ

z(θ, φ) = cos θ

where θ ∈ [0, π], φ ∈ [0, 2π).

Let γ(t) = ϕ(θ(t), φ(t)) = (sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)). Then

ϕθ = (cos θ cosφ, cos θ sinφ,− sin θ)

ϕφ = (− sin θ sinφ, sin θ cosφ, 0)

and

E(θ, φ) = ϕθ ·ϕθ = 1

F (θ, φ) = ϕθ ·ϕφ = 0

G(θ, φ) = ϕφ ·ϕφ = sin2 θ
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then

g =

1 0

0 sin2 θ

 and g−1 =

1 0

0 1
sin2 θ


which implies that the first quadratic form is

ds2 = dθ2 + sin2 θdφ2

and the arc length is

L(t) =

∫ t

0

√(
dθ

du

)2

+ sin2 θ

(
dφ

du

)2

du

especially on the meredian, i.e. dφ2 = 0, the arc length becomes

L(t) =

∫ θ0

0

dθ = θ0

and the area measure is

µ(d(θ, φ)) = sin θdθdφ

A =

∫ φ0

0

∫ θ0

0

sin θdθdφ = φ0(1− cos θ0)

and the laplacian on a sphere is

∆ =
1√

det g

∂

∂x1

(√
det g(g11)

∂

∂x1

)
+

1√
det g

∂

∂x1

(√
det g(g12)

∂

∂x2

)

+
1√

det g

∂

∂x2

(√
det g(g21)

∂

∂x1

)
+

1√
det g

∂

∂x2

(√
det g(g22)

∂

∂x2

)
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=
1

sin θ

[
∂

∂θ

(
sinθ

∂

∂θ

)
+

∂

∂φ

(
1

sin θ

∂

∂φ

)]

=
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
.

3.3 Riemannian metric and Laplacian on a torus

ConsiderM⊂ R3 which is a torus T 2 = S1 × S1. The parametric equations are


x(θ, φ) = (R + r cos θ) cosφ

y(θ, φ) = (R + r cos θ) sinφ

z(θ, φ) = r sin θ

where θ, φ ∈ [0, 2π) and R is the distance from the middle of the torus to the middle

of the tube and r is the radius of circle of the tube.

Let γ(t) = ϕ(θ(t), φ(t)) = ((R+r cos θ(t)) cosφ(t), (R+r cos θ(t)) sinφ(t), rsinθ(t)).

Then

ϕθ = (−r cosφ sin θ,−r sinφ sin θ, r cos θ)

ϕφ = (−(R + r cos θ) sinφ, (R + r cos θ) cosφ, 0)

and

E(θ, φ) = ϕθ ·ϕθ = r2
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F (θ, φ) = ϕθ ·ϕφ = 0

G(θ, φ) = ϕφ ·ϕφ = (R + r cos θ)2

then

g =

r2 0

0 (R + r cos θ)2

 and g−1 =

 1
r2

0

0 1
(R+r cos θ)2


which implies that the first quadratic form is

ds2 = r2dθ2 + (R + r cos θ)2dφ2

and the arc length is

L(t) =

∫ t

0

√
r2

(
dθ

du

)2

+ (R + r cos θ)2

(
dφ

du

)2

du

especially on the meredian, i.e. dφ2 = 0, the arc length becomes

L(t) =

∫ θ0

0

rdθ = rθ0

and the area measure is

µ(d(θ, φ)) =
√
r2(R + r cos θ)2dθdφ

A =

∫ φ0

0

∫ θ0

0

(rR + r2 cos θ)dθdφ = rRθ0φ0 + r2φ0 sin θ0
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and the laplacian on a torus is

∆ =
1√

det g

∂

∂x1

(√
det g(g11)

∂

∂x1

)
+

1√
det g

∂

∂x1

(√
det g(g12)

∂

∂x2

)

+
1√

det g

∂

∂x2

(√
det g(g21)

∂

∂x1

)
+

1√
det g

∂

∂x2

(√
det g(g22)

∂

∂x2

)

=
1

r(R + cos θ)

[
∂

∂θ

(
1

r3(R + cos θ)

∂

∂θ

)
+

∂

∂φ

(
1

r(R + cos θ)3

∂

∂φ

)]

=
1

r(R + cos θ)

∂

∂θ

(
1

r3(R + cos θ)

∂

∂θ

)
+

1

r(R + cos θ)4

∂2

∂φ2
.



CHAPTER 4: PROBABILITY DISTRIBUTION AND CRITICAL POINTS ON

COMPACT RIEMANNIAN MANIFOLDS

4.1 Single maximum point on the surface of a sphere

Now we’ll formulate a different version of the Moser-type problem. Let M be a

compact Riemannian manifold with the metric ds2 = gij(x)dxidxj defined on the

system of maps X : R2 →M coveringM and dσ =
√

det gij(x)dx be the differential

of the Lebesgue measure onM. One can select the metric tensor gij(x) in such a way

that
∫
M
dσ =

∫
M

√
det g(x)dx = 1.

Let X1, · · · , Xn be the points on the compact Riemannian manifoldM with uni-

form distribution measure dσ and G(X) :M→ R be the function of C2 class onM

such that

Y1 = G(X1), · · · , Yn = G(Xn)

are the scalar i.i.d. random variables. Our goal is to find Sn = max
τ≤n

E[G(Xτ )] =

max
τ≤n

E[Yτ ]. To do this, one needs to find the distribution function of Yi with P{Yi ≥

y} = m({Xi ∈ M : G(Xi) ≥ y}), i = 1, · · · , n. For large n the asymptotics of Sn

depends on the structure of top extrema of G(·). Literatures relate to this can be

found in [7], [8].

If Y1, · · · , Yn are i.i.d. random variables uniformly distributed on [0,1], the problem

reduces back to the classical Moser problem. Otherwise, we need to consider the

structure near the critical point of the reward function G on the compact Riemannian

manifold.

Without loss of generality, suppose there exists only one global non-degenerated

maximum point X∗ on the entire manifold M = S2 and G(X) ∈ C2(M) such that
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Figure 4.1: This figure illustrates a single maximum point (red point) of G, i.e. X∗, on
the surface of a sphere. The arrow indicates the threshold level and the blue regions
is a set projection of the threshold level on the manifold and xy-plane.

G(X∗) = 1, that is G(X) < 1, ∀ X 6= X∗. Then there exists an appropriate

coordinate system near X∗ such that

G(X) = 1 +
1

2

d∑
i=1

λi(X
i −X i

∗)
2 + o((X −X∗)2),

d = dimM, λi =
∂2G
∂X i2

(X∗) < 0.

See details in [9].

Since the result of the maximum expectation, Sn, is an asymptotic result, when

n→∞, meaning when we wait long enough eventually there is high chance that one

of the random variables will hit the maximum or get very close to the maximum. So

let’s assume for a second that ε > 0 and the threshold level to be hn = 1 − ε, ∀n.

When hn is extremely close to the maximum value 1, the area of the projected set

of the threshold level of G onto the manifold can be approximated by the one onto

the xy-plane. We can regard the tail probability, P{Y > y}, as the measure of the
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projection of the function G onto the xy-plane instead of the manifold. See figure 4.1.

Then one can calculate the tail probability distribution of Y as follow.

P{Y > y} = m{X : G(X) > y}

≈ m

{
X :

d∑
i=1

|λi|(X i −X i
∗)

2 < 2(1− y)

}

= m

{
X :

d∑
i=1

(X i −X i
∗)

2

2(1−y)
|λi|

< 1

}

=
2π

d
2

dΓ(d
2
)

d∏
i=1

√
2(1− y)

1
2√

|λi|

=
2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− y)
d
2 .

We used here the formula for the volume of d-dimensional ellipsoid.

Then the corresponding probability density is

f(y) =
d

dy
P{Y ≤ y} =

(2π)
d
2

Γ(d
2
)
√
|λ1| · · · |λd|

(1− y)
d
2
−1.

Now let X1, · · · , Xn be a sequence of independent random points onM. Let the

height of the maximum point to be G(X∗) = 1 and fix a threshold. If Yi ≥ hi, one

would stop, otherwise he would continue the game if Yi < hi. Then the maximum

expectation in each step is
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Sn = max
τ≤n

(
E[Yn|Yn ≥ hn]P{Yn ≥ hn}+ E[Yn|Yn < hn]P{Yn < hn}

)
= max

τ≤n

(∫ 1

hn

yf(y)dy + Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))
= max

τ≤n

(
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

∫ 1

hn

y(1− y)
d
2
−1dy

+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))
= max

τ≤n

(
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

∫ 1

hn

[1− (1− y)](1− y)
d
2
−1dy

+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))
= max

τ≤n

(
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

(∫ 1

hn

(1− y)
d
2
−1dy −

∫ 1

hn

(1− hn)
d
2dy

)
+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))

= max
τ≤n

(
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

[
−(1− y)d/2

d
2

+
(1− y)

d
2

+1

d
2

+ 1

]1

hn

+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))

= max
τ≤n

(
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

[
(1− hn)d/2

d
2

− (1− hn)
d
2

+1

d
2

+ 1

]

+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2

))
.

Take the derivative with respect to hn and set zero implies

(2π)
d
2

Γ(d
2
)
√
|λ1| · · · |λd|

(1− hn)
d
2
−1 [−1 + (1− hn)− Sn−1] = 0

implies

hn = Sn−1.
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This gives

Sn =
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

[
(1− Sn−1)d/2

d
2

− (1− Sn−1)
d
2

+1

d
2

+ 1

]

+ Sn−1

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− Sn−1)
d
2

)

Now rewrite the recursive relation as a function

g(x) =
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

[
(1− x)d/2

d
2

− (1− x)
d
2

+1

d
2

+ 1

]

+ x

(
1− 2( d

2
+1)π

d
2

dΓ(d
2
)
√
|λ1| · · · |λd|

(1− x)
d
2

)

=
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

(1− x)d/2

[
2

d
− (1− x)

d
2

+ 1
− 2

d
x

]
+ x

by fixed point theorem, set g(x) = x gives

(1− x)d/2

[
2

d
− (1− x)

d
2

+ 1
− 2

d
x

]
= 0

by solving this equation, the solution is x = 1. Since g′(1) ≤ 1, g is contractive and

g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =
(2π)

d
2

Γ(d
2
)
√
|λ1| · · · |λd|

(1− (1− hn−1))d/2

[
2

d
− (1− (1− hn−1))

d
2

+ 1
− 2

d
(1− hn−1)

]

+ (1− hn−1)
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implies

hn = − (2π)
d
2

Γ(d
2
)
√
|λ1| · · · |λd|

h
d/2
n−1

[
2

d
− hn−1

d
2

+ 1
− 2

d
(1− hn−1)

]
+ hn−1

= − (2π)
d
2

Γ(d
2
)
√
|λ1| · · · |λd|

[
2

d(d
2

+ 1)

]
h
d
2

+1

n−1 + hn−1

Now let k = d
2

+1 and a = 2
d
2+1π

d
2

d( d
2

+1)Γ( d
2

)
√
|λ1|···|λd|

. Then by the Pólya and Szëgo theorem,

n
2
dhn →

[
2
d
2

+1π
d
2

d(d
2

+ 1)Γ(d
2
)
√
|λ1| · · · |λd|

d

2

]− 2
d

That is,

hn →

[
(2π)

d
2n

(d
2

+ 1)Γ(d
2
)
√
|λ1| · · · |λd|

]− 2
d

Therefore,

Sn → 1−

[
(2π)

d
2n

(d
2

+ 1)Γ(d
2
)
√
|λ1| · · · |λd|

]− 2
d

as n→∞.

In general, the asymptotic depends on the classification of the critical points on the

Riemannian manifolds or on Rd due to locality problems. This example only shows

the case of smooth non-degenerated critical point.

One can also expand the function G(X) to a more general form. Let G(X) =

1−
d∑
i=1

|λi|X2pi
i be a smooth function with a non-degenerate critical point where pi ∈

N. Let’s apply change of variable Xi = (1−y)
1

2pi

λ
1

2pi
i

ti and dXi = (1−y)
1

2pi

λ
1

2pi
i

dti, then the
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probability distribution of Y is

P{Y > y} = m {X : G(X) > y}

= m

{
X : 1−

d∑
i=1

|λi|X2pi
i > y

}

= m

{
X :

d∑
i=1

|λi|X2pi
i < 1− y

}

= m

X :
d∑
i=1

(
|λi|

1
2piXi

(1− y)
1

2pi

)2pi

< 1


= 2dm

X :
d∑
i=1

(
|λi|

1
2pi |Xi|

(1− y)
1

2pi

)2pi

< 1


= 2d

∫
· · ·
∫
Rd

1

X :
d∑
i=1

(
|λi|

1
2pi |Xi|

(1− y)
1

2pi

)2pi

< 1

dx1 · · · dxd

= 2d
∫
· · ·
∫
Rd

1

{
t :

d∑
i=1

|ti|2pi < 1

}
(1− y)

1
2p1

|λ1|
1

2p1

· · · (1− y)
1

2pd

|λd|
1

2pd

dt1 · · · dtd

=
2d

Γ(d+ 1)

d∏
i=1

(
1− y
|λi|

) 1
2pi

.

Due to the symmetry of the shape, the constant 2d appeared in the middle of

calculation helps simplify the calculation by focusing on the first octant. Also it

worths to note that the above integral is the so-called Dirichlet integral. See [10].

Then the probability density is

f(y) =
d

dy
P{Y < y}

=
d

dy

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− y
|λi|

) 1
2pi

)

= − 2d

Γ(d+ 1)

d

dy
exp

(
d∑
i=1

1

2pi
log

(
1− y
|λi|

))
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= − 2d

Γ(d+ 1)

(
d∑
i=1

1

2pi

d

dy
log

(
1− y
|λi|

))
exp

(
d∑
i=1

1

2pi
log

(
1− y
|λi|

))

= − 2d

Γ(d+ 1)

1

y − 1

(
d∑
i=1

1

2pi

)
exp

(
d∑
i=1

1

2pi
log

(
1− y
|λi|

))

=
2d

(1− y)Γ(d+ 1)

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1− y
|λi|

) 1
2pi

.

Now let X1, · · · , Xn be a sequence of independent random points onM. Let the

height of the maximum point to be G(X∗) = 1. If Yi ≥ hi, one would stop, otherwise

he would continue the game if Yi < hi. Then the maximum expectation in each step

is

Sn = max
τ≤n

(
E[Yn|Yn ≥ hn]P{Yn ≥ hn}+ E[Yn|Yn < hn]P{Yn < hn}

)
= max

τ≤n

(∫ 1

hn

yf(y)dy + Sn−1

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− hn
|λi|

) 1
2pi

))

= max
τ≤n

(∫ 1

hn

2d(
d∑
i=1

1
2pi

)y

(1− y)Γ(d+ 1)

d∏
i=1

(
1− y
|λi|

) 1
2pi

dy

+ Sn−1

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− hn
|λi|

) 1
2pi

))

= max
τ≤n

(( d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

×


[

(1− y)
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

]1

hn

−

[
(1− y)

∑d
i=1

1
2pi∑d

i=1
1

2pi

]1

hn


+ Sn−1

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− hn
|λi|

) 1
2pi

))

= max
τ≤n

(( d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

{
(1− hn)

∑d
i=1

1
2pi∑d

i=1
1

2pi

− (1− hn)
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

}

+ Sn−1

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− hn
|λi|

) 1
2pi

))
.

(4.1)
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Now take the derivative with respect to hn and set zero, that is

2d

Γ(d+ 1)

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1

|λi|

) 1
2pi
{
−(1− hn)

∑d
i=1

1
2pi
−1

+ (1− hn)
∑d
i=1

1
2pi

}
+ Sn−1

2d

Γ(d+ 1)

(
d∑
i=1

1

2pi(1− hn)

)
exp

(
d∑
i=1

1

2pi
log

(
1− hn
|λi|

))
= 0

− hn(1− hn)
∑d
i=1

1
2pi
−1

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1

|λi|

) 1
2pi

+
Sn−1

1− hn

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1− hn
|λi|

) 1
2pi

= 0

Solve the above equation, we have

hn = Sn−1

Substitute this back to (4.1),

Sn =

(
d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

{
(1− Sn−1)

∑d
i=1

1
2pi∑d

i=1
1

2pi

− (1− Sn−1)
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

}

+ Sn−1

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− Sn−1

|λi|

) 1
2pi

)

Now rewrite the recursive relation as a function

g(x) =

(
d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

{
(1− x)

∑d
i=1

1
2pi∑d

i=1
1

2pi

− (1− x)
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

}

+ x

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− x
|λi|

) 1
2pi

)
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by the fixed point theorem, g(x) = x gives

x =

(
d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

{
(1− x)

∑d
i=1

1
2pi∑d

i=1
1

2pi

− (1− x)
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

}

+ x

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− x
|λi|

) 1
2pi

)

Solving this equation, we obtain

x = 1

Since g′(1) ≤ 1, g is contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =

(
d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

×

{
(1− (1− hn−1))

∑d
i=1

1
2pi∑d

i=1
1

2pi

− (1− (1− hn−1))
1+

∑d
i=1

1
2pi

1 +
∑d

i=1
1

2pi

}

+ (1− hn−1)

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
1− (1− hn−1)

|λi|

) 1
2pi

)

1− hn =

(
d∑
i=1

1

2pi

)
2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|

) 1
2pi

h
∑d
i=1

1
2pi

n−1∑d
i=1

1
2pi

−
h

1+
∑d
i=1

1
2pi

n−1

1 +
∑d

i=1
1

2pi


+ (1− hn−1)

(
1− 2d

Γ(d+ 1)

d∏
i=1

(
hn−1

|λi|

) 1
2pi

)
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hn−1 − hn +
2d

Γ(d+ 1)

d∏
i=1

(
hn−1

|λi|

) 1
2pi

− 2d

Γ(d+ 1)
hn−1

d∏
i=1

(
hn−1

|λi|

) 1
2pi

=

2d

Γ(d+ 1)

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1

|λi|

) 1
2pi

h
∑d
i=1

1
2pi

n−1∑d
i=1

1
2pi

−
h

1+
∑d
i=1

1
2pi

n−1

1 +
∑d

i=1
1

2pi



hn = hn−1 +
2d

Γ(d+ 1)

d∏
i=1

(
hn−1

|λi|

) 1
2pi

− 2d

Γ(d+ 1)
hn−1

d∏
i=1

(
hn−1

|λi|

) 1
2pi

− 2d

Γ(d+ 1)

(
d∑
i=1

1

2pi

)
d∏
i=1

(
1

|λi|

) 1
2pi

(
h

∑d
i=1

1
2pi

n−1

){
1∑d

i=1
1

2pi

− hn−1

1 +
∑d

i=1
1

2pi

}

hn = hn−1 +
2d

Γ(d+ 1)

d∏
i=1

(
hn−1

|λi|

) 1
2pi

− 2d

Γ(d+ 1)
hn−1

d∏
i=1

(
hn−1

|λi|

) 1
2pi

− 2d

Γ(d+ 1)

d∏
i=1

(
1

|λi|
)

1
2pi

(
h

∑d
i=1

1
2pi

n−1

)
+

2d

Γ(d+ 1)

d∑
i=1

1
2pi

1 +
∑d

i=1
1

2pi

d∏
i=1

(
1

|λi|

) 1
2pi

(
h

1+
∑d
i=1

1
2pi

n−1

)

hn = hn−1 +
2d

Γ(d+ 1)


d∑
i=1

1
2pi

1 +
∑d

i=1
1

2pi

− 1


d∏
i=1

(
1

|λi|

) 1
2pi

(
h

1+
∑d
i=1

1
2pi

n−1

)

hn = hn−1 −

(
2d

Γ(d+ 1)(1 +
∑d

i=1
1

2pi
)

d∏
i=1

(
1

|λi|

) 1
2pi

)
h

1+
∑d
i=1

1
2pi

n−1 .

Now let k = 1 +
d∑
i=1

1
2pi

and a = 2d

Γ(d+1)(1+
∑d
i=1

1
2pi

)

∏d
i=1

(
1
|λi|

) 1
2pi . Then by the Pólya

and Szëgo theorem,
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n

1
d∑
i=1

1
2pi hn →

 2d

Γ(d+ 1)

d∑
i=1

1
2pi

1 +
∑d

i=1
1

2pi

d∏
i=1

(
1

|λi|

) 1
2pi


− 1

d∑
i=1

1
2pi

That is,

hn →

 2dn

Γ(d+ 1)

d∑
i=1

1
2pi

1 +
∑d

i=1
1

2pi

d∏
i=1

(
1

|λi|

) 1
2pi


− 1

d∑
i=1

1
2pi

Therefore,

Sn → 1−

 2dn

Γ(d+ 1)

d∑
i=1

1
2pi

1 +
∑d

i=1
1

2pi

d∏
i=1

(
1

|λi|

) 1
2pi


− 1

d∑
i=1

1
2pi

as n → ∞. Note that if pi = 1,∀i, then the above formula reduces to the previous

example.
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4.2 Maximum along a parallel on the surface of a sphere

Suppose the maximum of a smooth function G is not just sitting at one point of

a sphere but along a parallel, i.e. θ = θ∗, of a sphere. One can choose the Euler

angles coordinate system, (θ, ϕ), such that the smooth function G :M→ R near the

maximum along the parallel can be defined as

G(θ, ϕ) ∼ 1 +
K(ϕ)

2
(θ − θ∗)2

where K(ϕ) < 0 is the second derivative of G at the maximum points on the parallel,

θ ∈ [0, π] is the angle along the meridian and ϕ ∈ [0, 2π) is the angle along the

parallel. K(ϕ) is also a quantity describing the curvature of the maximum in the

direction orthogonal to the parallel. Without loss of generality, let G(θ∗, ϕ) = 1 be

the maximum value along the parallel θ = θ∗ for all ϕ ∈ [0, 2π). See figure 4.2.

Furthermore, let

Y1 = G(θ1, ϕ1), · · · , Yn = G(θn, ϕn)

be i.i.d. random variables on [0, 1].

Let’s calculate the probability distribution of Y . Let the path γ = {(θ, ϕ) : θ = θ∗}

be the parallel. Then

P{Y > y} = m {(θ, ϕ) : G(θ, ϕ) > y}

= m

{
(θ, ϕ) : 1− |K(ϕ)|

2
(θ − θ∗)2 > y

}
= m

{
(θ, ϕ) :

|K(ϕ)|
2(1− y)

(θ − θ∗)2 < 1

}
= 2
√

2(1− y)

∫ 2π

0

|K(ϕ)|−1dϕ

and the probability density of Y is
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Figure 4.2: This figure illustrates the maxima along the parallel (red curve), θ = θ∗,
form a volcano shape on the surface of a sphere. The projection of the threshold level
of this volcano shape will form a band wrap around the red curve on the surface of
the sphere.

f(y) =
d

dy

(
1− 2

√
2(1− y)

∫ 2π

0

|K(ϕ)|−1dϕ

)
=

√
2

1− y

∫ 2π

0

|K(ϕ)|−1dϕ

The maximum expectation can be calculated as

Sn = max
τ≤n

(
E[Yn|Yn ≥ hn]P{Yn ≥ hn}+ E[Yn|Yn < hn]P{Yn < hn}

)
= max

τ≤n

(∫ 1

hn

yf(y)dy + Sn−1

(
1− 2

√
2(1− hn)

∫ 2π

0

|K(ϕ)|−1dϕ

))
= max

τ≤n

(∫ 1

hn

y

√
2

1− y

∫ 2π

0

|K(ϕ)|−1dϕdy

+ Sn−1

(
1− 2

√
2(1− hn)

∫ 2π

0

|K(ϕ)|−1dϕ

))
= max

τ≤n

(√
2
√

1− hn(2hn + 4)

3

∫ 2π

0

|K(ϕ)|−1dϕ

+ Sn−1

(
1− 2

√
2(1− hn)

∫ 2π

0

|K(ϕ)|−1dϕ

))

(4.2)
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Now take the derivative of above equation with respect to hn and set zero, that is

√
2

3

∫ 2π

0

|K(ϕ)|−1dϕ

(
2
√

1− hn −
1

2
(1− hn)−

1
2 (2hn + 4)

)
− 2
√

2Sn−1(−1

2
(1− hn)−

1
2 )

∫ 2π

0

|K(ϕ)|−1dϕ = 0

implies

√
2(1− hn)−

1
2

∫ 2π

0

|K(ϕ)|−1dϕ

[
2

3
(1− hn)− 1

3
(hn + 2) + Sn−1

]
= 0

implies

hn = Sn−1

Substitute back to (4.2), then

Sn =

√
2
√

1− Sn−1(2Sn−1 + 4)

3

∫ 2π

0

|K(ϕ)|−1dϕ

+ Sn−1

(
1− 2

√
2(1− Sn−1)

∫ 2π

0

|K(ϕ)|−1dϕ

)

Now rewrite the recursive relation as a function

g(x) =

√
2
√

1− x(2x+ 4)

3

∫ 2π

0

|K(ϕ)|−1dϕ+ x

(
1− 2

√
2(1− x)

∫ 2π

0

|K(ϕ)|−1dϕ

)

Set g(x) = x and solve the equation, we have

x =

√
2
√

1− x(2x+ 4)

3

∫ 2π

0

|K(ϕ)|−1dϕ+ x− 2x
√

2(1− x)

∫ 2π

0

|K(ϕ)|−1dϕ

2
√

2

∫ 2π

0

|K(ϕ)|−1dϕ

(
x+ 2

3
− x
)

= 0

implies

x = 1
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Since g′(1) ≤ 1, g is contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =

√
2
√

1− (1− hn−1)(2(1− hn−1) + 4)

3

∫ 2π

0

|K(ϕ)|−1dϕ

+ (1− hn−1)

(
1− 2

√
2(1− (1− hn−1))

∫ 2π

0

|K(ϕ)|−1dϕ

)

implies

hn = hn−1 −

(
4
√

2

3

∫ 2π

0

|K(ϕ)|−1dϕ

)
h

3
2
n−1

Now let k = 3
2
and a = 4

√
2

3

∫ 2π

0
|K(ϕ)|−1dϕ. Then by the Pólya and Szëgo theorem,

n2hn →

(
2
√

2

3

∫ 2π

0

|K(ϕ)|−1dϕ

)−2

implies

hn →
1[(

2
√

2
3

∫ 2π

0
|K(ϕ)|−1dϕ

)
n
]2

Therefore,

Sn → 1− 1[(
2
√

2
3

∫ 2π

0
|K(ϕ)|−1dϕ

)
n
]2

as n→∞.

4.3 Maximum along a path on higher dimensional surface of a sphere.

Suppose the maximum of a smooth function G is sitting on a path γ on the surface

of a (d + 1)-dimensional sphere, let it be M with dimension d. Then the Euler

angles coordinate system becomes (φ1, · · · , φd) onM, such that the smooth function

G :M→ R near the maximum along the path can be defined as
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Figure 4.3: This illustration depicts the projection of the threshold level of the maxi-
mum of a function G along a curve γ (the red line) onto a higher-dimensional surface.
The projected region is no longer a two dimensional band, but a higher dimensional
snake shape.

G(φ1, · · · , φd) ∼ 1 +
d∑
i=2

λi(φ
1)(φi − φi∗)2

where λi(φ1) < 0, i = 2, · · · , d are the terms contain the second derivatives of G on the

directions orthogonal to γ, φ1 is the angle measures the deviation of the tangent vector

at each point of γ from γ and φi ∈ [0, 2π),∀i = 2, · · · , d are the angles orthogonal

to γ. Without loss of generality, let G(φ1, φ2
∗ · · · , φd∗) = 1 to be the maximum value

along γ for all φ1. Let

Y1 = G(φ1
1, · · · , φd1), · · · , Yn = G(φ1

n, · · · , φdn)

be i.i.d. random variables on the manifoldM. Let’s calculate the probability distri-

bution of Y .

P{Y > y} = m
{

(φ1, · · · , φd) : G(φ1, · · · , φd) > y
}

= m

{
(φ1, · · · , φd) : 1−

d∑
i=2

|λi(φ1)|(φi − φi∗)2 > y

}

= m

{
(φ1, · · · , φd) :

d∑
i=2

|λi(φ1)|
1− y

(φi − φi∗)2 < 1

}

= m

(φ1, · · · , φd) :
d∑
i=2

(φi − φi∗)2(√
1−y
|λi(φ1)|

)2 < 1


=

2π
d−1
2 (1− y)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1
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where L(γ) is the length of γ. The probability density is

f(y) =
d

dy

(
1− 2π

d−1
2 (1− y)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)

=
π
d−1
2 (1− y)

d−3
2

Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

The maximum expectation can be calculated as

Sn = max
τ≤n

(
E[Yn|Yn ≥ hn]P{Yn ≥ hn}+ E[Yn|Yn < hn]P{Yn < hn}

)
= max

τ≤n

(∫ 1

hn

yf(y)dy + Sn−1

(
1− 2π

d−1
2 (1− hn)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

))

= max
τ≤n

(∫ 1

hn

π
d−1
2 y(1− y)

d−3
2

Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1dy

+ Sn−1

(
1− 2π

d−1
2 (1− hn)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

))

= max
τ≤n

(
π
d−1
2

Γ(d−1
2

)

(
2

d− 1
(1− hn)

d−1
2 − 2

d+ 1
(1− hn)

d+1
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ Sn−1

(
1− 2π

d−1
2 (1− hn)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

))
(4.3)

Now take the derivative of above equation with respect to hn and set zero, that is

π
d−1
2

Γ(d−1
2

)

(
(1− hn)

d−1
2 − (1− hn)

d−3
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ Sn−1

(
π
d−1
2

Γ(d−1
2

)
(1− hn)

d−3
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

implies

(1− hn)
d−1
2 − (1− hn)

d−3
2 + Sn−1(1− hn)

d−3
2 = 0
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implies

hn = Sn−1

Substitute back to (4.3),

Sn =
π
d−1
2

Γ(d−1
2

)

(
2

d− 1
(1− Sn−1)

d−1
2 − 2

d+ 1
(1− Sn−1)

d+1
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ Sn−1

(
1− 2π

d−1
2 (1− Sn−1)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)

Now rewrite the recursive relation as a function

g(x) =
π
d−1
2

Γ(d−1
2

)

(
2

d− 1
(1− x)

d−1
2 − 2

d+ 1
(1− x)

d+1
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ x

(
1− 2π

d−1
2 (1− x)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)

Set g(x) = x and solve the equation, we have

x =
π
d−1
2

Γ(d−1
2

)

(
2

d− 1
(1− x)

d−1
2 − 2

d+ 1
(1− x)

d+1
2

)∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ x

(
1− 2π

d−1
2 (1− x)

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)

implies

π
d−1
2

Γ(d−1
2

)

(
(1− x)

d−1
2

(
4

(d+ 1)(d− 1)

))∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1 = 0

implies

x = 1
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Since g′(1) ≤ 1, g is contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =
π
d−1
2

Γ(d−1
2

)

(
2

d− 1
(1− (1− hn−1))

d−1
2 − 2

d+ 1
(1− (1− hn−1))

d+1
2

)
×
∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

+ (1− hn−1)

(
1− 2π

d−1
2 (1− (1− hn−1))

d−1
2

(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)

implies

hn = hn−1 −

(
4dπ

d−1
2

(d+ 1)(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)
h
d+1
2

n−1

Now let k = d+1
2

and a = 4dπ
d−1
2

(d+1)(d−1)Γ( d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1. Then by the Pólya

and Szëgo theorem,

n
2
d−1hn →

[
d− 1

2

4dπ
d−1
2

(d+ 1)(d− 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

]− 2
d−1

That is,

hn →

[(
2dπ

d−1
2

(d+ 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)
n

]− 2
d−1

Therefore,

Sn → 1−

[(
2dπ

d−1
2

(d+ 1)Γ(d−1
2

)

∫ L(γ)

0

d∏
i=2

|λi(φ1)|−1dφ1

)
n

]− 2
d−1

as n→∞.
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4.4 Minkowski-type formula near extreme values of a function on compact

Riemannian manifold

In this section, we will explore the connection between the Minikowski-type formula

and the Laplace method, then explore it’s similarity with the Moser-type problem on

compact Riemannian manifolds.

Minkowski formula plays a crucial role in understanding the behavior of geomet-

ric quantities near extreme values on Riemannian manifolds. Minkowski formula

provides a means of calculating the volume or surface area of a convex set and its ε-

neighborhood. The formula expresses these geometric quantities in terms of integrals

involving the curvature of the boundary of the set. By examining the behavior of

volume or area measures as they approach maximum or minimum points, Minkowski

formula provides insight into the local geometry and curvature of the manifold.

Let’s introduce the Minkowski formula. Consider a convex set D0 with a smooth

boundary surface ∂D of class C2. In this scenario, the fundamental quadratic forms

Q1(du, dv) and Q2(du, dv) are well-defined. Define the set Dε = {x ∈ R3 : d(x,D0) ≤

ε} as the ε-neighborhood of D0. Then, we have the following expression for the volume

V ol(Dε):

V ol(Dε) = V ol(D0) + εAr(∂D) + ε2H1(∂D0) + ε3K1(∂D0)

where

H1(∂D0) =

∫
∂D0

H(σ)dσ

K1(∂D0) =

∫
∂D0

K(σ)dσ.

Here, V ol(·) is the volume of the region, Ar(·) is the area of the region, H(σ) =

K1+K2

2
(σ), and K(σ) = K1K2(σ). Moreover, K1(σ) and K2(σ) denote the principal

curvatures of ∂D0 at the point σ ∈ ∂D0, while H(σ) and K(σ) signify the mean and

Gaussian curvature at σ ∈ ∂D0 respectively.
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Figure 4.4: This figure shows the non-degenerated global maximum along a meridian
(the red curve) on the surface of a sphere.

Let’s now turn our attention to the Laplace method. Laplace method is a technique

for obtaining the asymptotic behavior of integrals in which the large parameter t→

∞, appears in the exponent of a function ζ(s) = ets. Let γ = {(θ, ϕ) : ϕ = ϕ∗, θ ∈

[0, π]} be a meridian on the surface of a unit sphere (see Figure 4.4) and let G :

M → R be a smooth function near its maximum points. Suppose the maximum

value G(θ, ϕ∗) = 1 for all θ ∈ [0, π] on the meridian, such that

G(θ, ϕ) ∼ 1−K(θ)(ϕ− ϕ∗)2 (4.4)

where 0 < c0 < K(θ) < c1 < ∞, and c0 and c1 are constants. Here, θ ∈ [0, π] and

ϕ ∈ [0, 2π]. Notice that (4.4) is actually the Minkowski formula with only the second

order term. Then there exists a neighborhood Uδ, 0 < δ << 1 around ϕ = ϕ∗, then

when t→∞
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I(t) =

∫
Uδ
etG(x)µ(dx)

∼ et
∫ π

0

(∫ δ

−δ
e−t(ϕ−ϕ∗(θ))2K(θ)dϕ

)
dθ

=
et
√
π√
t

∫ π

0

K(θ)−
1
2dθ.

where µ is the measure of Riemannian manifold.

It’s intriguing to observe that the computational intricacies involved in solving opti-

mal stopping problems bear a striking resemblance to the methodological intricacies

encountered when calculating integrals using the Laplace method for asymptotics.

This similarity shows the deep connection between decision theory and mathemati-

cal analysis, shedding light on the underlying symmetries and connections between

seemingly disparate fields of study.



CHAPTER 5: MARKOV CHAIN ON COMPACT RIEMANNIAN MANIFOLDS

In this chapter, we will explore the basic principles of Markov chains operating on

compact Riemannian manifolds. In this formulation of the Markov stopping time,

applicable to discrete-time chains and extending to diffusion processes, the phase

space can be arbitrary. We would like to study the stationary optimal stopping

problem (i.e. not to fix number of the steps).

Let M be a compact Riemannian manifold, partitioned into two distinct regions

M1 and M2. That is M = M1 ∪M2, M1 ∩M2 = ∅. Let W0,W1,W2, · · · be a

Markov chain with two states {1, 2} such that the transition matrix is

P =

p1 q1

q2 p2


where p1 is the probability continues staying on state 1, q1 is the probability to jump

from state 1 to state 2, p2 is the probability continue staying on state 2, q2 is the

probability to jump from state 2 to state 1.

Let X0, X1, X2, · · · and Y0, Y1, Y2, · · · be two sequences of i.i.d. uniformly dis-

tributed random variables on M1 and M2 respectively. Let Z0, Z1, Z2, · · · be a

Markov chain onM given by

Zi =


Xi , Wi = 1

Yi , Wi = 2

i = 1, 2 · · · . The stationary distribution of W0 (i.e. the solution of equation πP = π)
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has the form

π1 =
q2

q1 + q2

, π2 =
q1

q1 + q2

for W0 = 1 and W0 = 2 respectively. We will take this as the initial distribution of

W0.

Let us introduce a small killing probability ε > 0, on each step the Markov chain

will cease with probability ε, yielding a reward of 0. Conversely, with probability

1− ε, the Markov chain proceeds to the next step. At each point Zt ∈M1, a decision

is made to transition. Specifically, with probability p1, the chain remains uniformly

distributed onM1, while with complementary probability q1, it transitions uniformly

to M2. A similar scenario unfolds for Zt ∈ M2. Here, with probability p2, the

chain transitions uniformly within M2, and with probability q2, it moves back to

M1, again following a uniform distribution. This framework provides a probabilistic

interpretation of our Markov chain operating onM.

Now let the reward function G :M→ R be

G(z) =


h1 , z ∈ ∆1 ⊂M1

h2 , z ∈ ∆2 ⊂M2

0 , otherwise.

Let δ1 = µ(∆1)
µ(M)

and δ2 = µ(∆2)
µ(M)

where µ(·) is the Riemannian measure and 0 <

µ(M) < ∞. We will consider h1 > h2 and δ1 < δ2, where δ1 and δ2 represent small

parameters that will be compared with the killing probability ε. Figure 5.1 illustrates

this scenario on the simplest compact Riemannian manifold [0, 1]. Our objective is

to determine the maximum expectation

S = max
τ≥0

E[G(Zτ )].
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Figure 5.1: This figure illustrates an example of the reward function G on the parti-
tioned manifoldsM1,M2 ofM = [0, 1].

Now set

S = π1S1 + π2S2

where S1 represents the optimal value if the Markov chain starts from a point Zt ∈

M1, and S2 represents the optimal value starting from an initial point Zt ∈M2. At

some moment t ≥ 0, if Zt ∈ ∆1, i.e., G(Zt) = h1, then the decision-maker must stop.

If Zt ∈ (M1 \∆1)∪ (M2 \∆2), the decision-maker can continue. Finally, if Zt ∈ ∆2,

i.e., G(Zt) = h2, the chain will stop with probability α and proceed to the next step

with probability 1 − α. The parameter α is the only variable in the optimization

problem. We compute S = S(α) and then find max
0≤α≤1

S(α) = S∗ (the optimum).

For the functions S1(α), S2(α) which are the optimal results for a fixed α and initial

points fromM1 andM2 respectively, we have the usual Bellman’s equations:


S1 = (1− ε)δ1h1 + (1− ε)(1− δ1)(p1S1 + q1S2)

S2 = (1− ε)δ2h2α + [(1− ε)δ2(1− α) + (1− ε)(1− δ2)] · (p2S2 + q2S1)

By solving this linear system, which is inherently non-linear with respect to the pa-

rameter α, and employing asymptotic analysis of the solution and its optimization,
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we aim to determine the solution. Due to the computational complexity of the cal-

culations, we will focus on formulating several qualitative results instead:

Since the chain stops at each step with probability ε > 0, that is, the total time of

a game has order 1
ε
.

a) If 1
ε
>> 1

δ1
then the decision-maker has to wait for the first visit of ∆1.

b) If 1
δ1
<< 1

ε
and 1

δ2
<< 1

ε
, then the decision-maker must stop on ∆2.

c) If 1
ε

= 1
δ1
>> 1

δ2
, then the decision-maker selects an α such that 1

δ1
= 1

αδ2
.
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APPENDIX A: MOSER-TYPE PROBLEMS

A.1 Example of Moser-type problem with unbounded random variables

Let X1, · · · , Xn ∼ exp(1) be i.i.d. random variables, i.e. f(x) = e−x1x>0(x). Let

ϕ(x) = x such that Sn = max
τ≤n

E[Xτ ] ↑ ∞ .

Proof. By the law of total expectation,

Sn =

∫ ∞
Sn−1

xe−xdx+ Sn−1 ·
∫ Sn−1

0

e−xdx

= (Sn−1 + 1)e−Sn−1 + Sn−1(1− e−Sn−1)

= Sn−1e
−Sn−1 + e−Sn−1 + Sn−1 − Sn−1e

−Sn−1

= Sn−1 + e−Sn−1 .

That is Sn = Sn−1 + e−Sn−1 . Now let Sn = lnn+ δn where δn is a small error. Then

Sn+1 = Sn + e−Sn

= (lnn+ δn) + e− lnn−δn

= (lnn+ δn) +
1

n
e−δn

= lnn+ δn +
1

n
(1− δn

n
)

= lnn+
1

n
+ δn(1− 1

n
)

∼ lnn+ ln(1 +
1

n
)

= ln(n+ 1).

That is Sn+1 ∼ ln(n+ 1). It implies

Sn ∼ ln(n)

Sn →∞ as n→∞.
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A.2 Example of Moser-type problem with Beta Distribution

Let X1, · · · , Xn ∼ i.i.d. beta distribution with parameters α, β > 0

f(x) =
xα−1(1− x)β−1

B(α, β)

where

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
.

One can calculate the maximum expectation by change of variables as follow.

Sn =

∫ 1

Sn−1

x · x
α−1(1− x)β−1

B(α, β)
dx+ Sn−1 ·

∫ Sn−1

0

xα−1(1− x)β−1

B(α, β)
dx

=

∫ 1

Sn−1

(x− Sn−1 + Sn−1) · x
α−1(1− x)β−1

B(α, β)
dx+ Sn−1 ·

∫ Sn−1

0

xα−1(1− x)β−1

B(α, β)
dx

=

∫ 1

Sn−1

(x− Sn−1) · x
α−1(1− x)β−1

B(α, β)
dx+ Sn−1

=

∫ 1

Sn−1

[(1− Sn−1)− (1− x)] · x
α−1(1− x)β−1

B(α, β)
dx+ Sn−1

∼ 1

B(α, β)

[
(1− Sn−1)

∫ 1

Sn−1

(1− x)β−1dx−
∫ 1

Sn−1

(1− x)βdx

]
+ Sn−1

=
1

B(α, β)

{
(1− Sn−1)

[
−(1− x)β

β

]1

Sn−1

+

[
(1− x)β+1

β + 1

]1

Sn−1

}
+ Sn−1

=
(1− Sn−1)β+1

β(β + 1)B(α, β)
+ Sn−1.

We have the fifth step since near x = 1, the term (1 − x)β−1 dominates the other

terms, so we can approximate xα−1(1 − x)β−1 by (1 − x)β−1. Now let the recursive

relation to be the function g(x) as

g(x) =
(1− x)β+1

β(β + 1)B(α, β)
+ x
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then by the fix point theorem g(x) = x gives

x = 1.

Since g′(1) < 1, g is contractive and g(Sn)→ 1 as n→∞. Let

hn = 1− g(Sn)

implies

1− hn =
(1− (1− hn−1))β+1

β(β + 1)B(α, β)
+ (1− hn−1)

implies

hn = hn−1 −
hβ+1
n−1

β(β + 1)B(α, β)
.

Now let k = β + 1 and a = 1
β(β+1)B(α,β)

. Then by the Pólya and Szëgo theorem,

n
1
βhn →

[
1

(β + 1)B(α, β)

]− 1
β

.

That is,

hn →
[

n

(β + 1)B(α, β)

]− 1
β

.

Therefore,

Sn → 1−
[

n

(β + 1)B(α, β)

]− 1
β

as n→∞.


