
SYNTHESIZING CONTEXTUALLY RELEVANT TABULAR DATA USING
CONTEXT-AWARE CONDITIONAL TABULAR GAN AND TRANSFER

LEARNING

by

Hesam Fallahian

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2024

Approved by:

Dr. Mohsen Dorodchi

Dr. Kyle Kreth

Dr. Pu Wang

Dr. Christian Kuemmerle

ii

©2024
Hesam Fallahian

ALL RIGHTS RESERVED

iii

ABSTRACT

HESAM FALLAHIAN. Synthesizing Contextually Relevant Tabular Data Using
Context-Aware Conditional Tabular GAN and Transfer Learning. (Under the

direction of DR. MOHSEN DORODCHI)

The Context-Aware Conditional Tabular Generative Adversarial Network (CA - CT-

GAN) introduces an innovative architecture for the generation of synthetic tabular

data, distinguished by effectively incorporating context-specific elements into its gen-

erative process. This enables the production of synthetic datasets that not only accu-

rately reflect real-world distributions but are also tailored to specific contexts across

a variety of experimental domains, including laboratory, field, natural, and clinical

experiments, as well as survey research. In many cases, CA-CTGAN can generate

data suitable for research purposes, potentially reducing or eliminating the need for

certain real-world experiments. By utilizing Transfer Learning the model effectively

identifies and exploits complex semantic relationships within the data to ensure the

implementation of rigorous contextual requirements and maintains high semantic in-

tegrity. Furthermore, a novel auxiliary classifier is implemented, which includes entity

embedding and multi-class multi-label capabilities, enabling the creation of enhanced

datasets that strictly adhere to the specified contextual requirements. These con-

tributions position CA-CTGAN as a remarkably versatile and efficient tool across

multiple scientific disciplines. Its ability to generate high-quality, contextually rele-

vant synthetic data not only streamlines research processes and reduces associated

costs but also addresses ethical concerns in sensitive studies. Consequently, CA-

CTGAN emerges as an essential resource for researchers, facilitating more ethical,

cost-effective, and data-informed experimental design and decision-making.

iv

DEDICATION

To my precious daughter Diana, may this work inspire you to pursue your passions

with relentless determination. Remember that knowledge is powerful and anything

is possible with hard work and a little bit of magic. My heart is filled with pride for

the amazing woman you are becoming.

v

ACKNOWLEDGEMENTS

I extend my gratitude to my advisor, Dr. Mohsen Dorodchi, for his invaluable guid-

ance and unwavering support throughout this research. His insights and dedication

have been pivotal to my development and the completion of this work.

Special thanks are due to Dr. Kyle Kreth, whose expertise and detailed feedback

significantly shaped many aspects of this dissertation. His contributions were crucial

in refining my arguments and enhancing the overall quality of my study.

I am also thankful to my committee members, Dr. Pu Wang and Dr. Christian

Kuemmerle, for their constructive critiques and encouraging guidance, which have

been greatly appreciated.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 2

1.2. Experimental Domains 3

1.3. Research Questions 5

1.4. Objective and Contribution 6

1.5. Overview of the report 8

CHAPTER 2: BACKGROUND AND RELATED STUDIES 9

2.1. Background Knowledge 11

2.1.1. Generative Adversarial Networks (GANs) 11

2.1.2. Conditional Generative Adversarial Networks
(CGANs)

12

2.1.3. Autoencoders 13

2.1.4. Conteractive Autoencoder 16

2.1.5. Transfer Learning 18

2.2. Tabular Data Generation Challenges 19

2.2.1. Data type 19

2.2.2. Bounded continuous columns 20

2.2.3. Non-Gaussian Distribution 21

2.2.4. Semantic relationship 22

vii

2.3. Related Studies 23

2.3.1. Data Transformation 29

2.3.2. Distribution Matching 31

2.3.3. Conditional and Informed Generator 32

2.3.4. Comparative Analysis of GAN-Based Methods 37

2.3.5. Tabular GAN Evolution 38

2.3.6. GAN vs. Diffusion Model for Tabular Data Generation 39

CHAPTER 3: METHODOLOGY 42

3.1. Framework Overview 42

3.2. Data Transformation 43

3.2.1. Continuous Columns 44

3.2.2. Categorical Data 46

3.2.3. Mixed-mode Data 48

3.3. Design and Training process 48

3.3.1. Contractive Autoencoder 49

3.3.2. Generator 53

3.3.3. Discriminator 54

3.3.4. Auxiliary Classifier 57

3.3.5. Loss Function 57

3.3.6. Training Process 62

3.4. Contribution and Novelty 63

viii

CHAPTER 4: EXPERIMENTAL STUDIES 66

4.1. Datasets 66

4.1.1. Adult Income Dataset 66

4.1.2. Air Quality dataset 69

4.1.3. Apartment for Rent dataset 70

4.1.4. Bank Marketing dataset 72

4.1.5. Beijing PM2.5 dataset 75

4.1.6. Bike Sharing Dataset 76

4.1.7. Individual Household Electric Power Consumption
Dataset

77

4.1.8. Metro Interstate Traffic Volume Dataset 78

4.1.9. MetroPT-3 Dataset 80

4.2. Baselines and Experimental Setup 82

4.3. Evaluation Metrics 84

4.3.1. Data Coverage 85

4.3.2. Data Constraint 86

4.3.3. Data Similarity 87

4.3.4. Data Relationship 89

4.3.5. ML Detection 90

4.3.6. ML Efficiency 91

CHAPTER 5: RESULT AND ANALYSIS 93

5.1. Model Performance 93

5.1.1. Data Coverage 93

ix

5.1.2. Data Constraint 99

5.1.3. Data Similarity 102

5.1.4. Data Relationship 109

5.1.5. Machine Learning Performance 120

5.2. Comparative Study 122

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 132

REFERENCES 135

x

LIST OF TABLES

TABLE 2.1: Various Generative Models based on the type of learning. 10

TABLE 2.2: The data types that can be used in a tabular data table. 20

TABLE 2.3: Comparative overview of GAN-based vs. traditional methods
in tabular data generation.

37

TABLE 2.4: Different tabular GAN architecture and capability. 39

TABLE 4.1: Datasets shape 82

TABLE 5.1: Data Coverage score for Adult, Bank Marketing, and Metro
PT-3 datasets.

95

TABLE 5.2: Data Coverage score for Air Quality, Bike Sharing, and Metro
Interstate Traffic.

95

TABLE 5.3: Data Coverage score for Apartment Rent, Power Consump-
tion and Beijing PM datasets.

96

TABLE 5.4: Data Constraint metric: category and range adherence score
for Adult, Bank Marketing and Metro PT datasets.

100

TABLE 5.5: Data Constraint metric: category and range adherence score
for Air Quality, Bike Sharing and Metro Interstate Traffic datasets.

100

TABLE 5.6: Data Constraint metric: category and range adherence score
for Apartment Rent, Power Consumption and Beijing PM datasets.

101

TABLE 5.7: Similarity score of real and generated column for KS and
TVD statistic for Adult, Bank Marketing and Metro PT datasets.

103

TABLE 5.8: Similarity score of real and generated column for KS and
TVD statistic for Air Quality, Bike Sharing and Metro Interstate
Traffic datasets.

104

TABLE 5.9: Similarity score of real and generated column for KS and
TVD statistic for Apartment Rent, Power Consumption and Beijing
PM datasets.

105

TABLE 5.10: Shape similarity for discrete columns using Chi-squared test
for Adult, Bank Marketing and Metro PT.

107

xi

TABLE 5.11: Shape similarity for discrete columns using Chi-squared test
for Bike Sharing, Metro Traffic and Beijing PM.

107

TABLE 5.12: Statistical similarity between numerical columns of real data
and generated data using mean, median, and standard deviation for
Metro PT and Bike Sharing datasets.

108

TABLE 5.13: Statistical similarity between numerical columns of real data
and generated data using mean, median, and standard deviation for
Power Consumption, Beijing PM, and Adult datasets.

109

TABLE 5.14: Statistical similarity between numerical columns of real
data and generated data using mean, median, and standard devi-
ation for Metro Interstate Traffic, Bank Marketing, and Apartment
Rent datasets.

110

TABLE 5.15: Statistical similarity between numerical columns of real data
and generated data using mean, median, and standard deviation for
Air Quality dataset.

110

TABLE 5.16: ML Detection (Logistic Regression) and ML Efficiency (Ad-
aBoost) score for all datasets.

122

TABLE 5.17: A comparative analysis of CA-CTAGN and baseline meth-
ods was conducted on five datasets.

123

xii

LIST OF FIGURES

FIGURE 2.1: GANs process flow diagram. 12

FIGURE 2.2: Conditional GAN process flow diagram. 13

FIGURE 2.3: The network architecture for a normal autoencoder. 14

FIGURE 2.4: Visual representation of Conteractive Autoencoders. 18

FIGURE 2.5: Each soccer team in the table corresponds to a particular
location and has a specific capacity, foundation year, and year of
entry into MLS. (a) and (b) shows two examples of constraint-based
and rule-based sample rejection during the data synopsis generation
process.

23

FIGURE 2.6: medGAN architecture: Discriminator utilizes autoencoder
(which is learned by real data) to receive decoded random noise
variable

25

FIGURE 2.7: Pre-processing input data before feeding the discriminator
in PNR-GAN

26

FIGURE 2.8: Loss functions representation in table-GAN architecture. 27

FIGURE 2.9: Following vectorization of categorical columns, all vectors
will be initiated by 0, then jth category from ith column will be
selected, and the value of the corresponding element will be changed
to 1.

34

FIGURE 2.10: DATGAN process flow digram. 36

FIGURE 2.11: Tabular GAN-based generators evolution based on their
relationship. Yellow boxes are tabular generators, and green boxes
introduced for non-tabular data.

38

FIGURE 3.1: Components of CA-CTGAN. 44

FIGURE 3.2: Distribution over a mixed-type column. m1 and m4 repre-
sent the categorical part or null values of this column, whereas m2

and m3 represent modes for numeric parts. The numeric parts are
defined by Variational Gaussian Mixture (VGM) model. [1]

49

xiii

FIGURE 3.3: In the PacGAN model, the input layer is expanded by a
factor of the packing degree (Here m = 2). The connections to the
initial hidden layer are modified to ensure that the first two layers
maintain full connectivity, consistent with the original architecture
[2].

56

FIGURE 3.4: Detailed schematic representation of the CA-CTGAN train-
ing process and architecture.

64

FIGURE 4.1: Distribution and correlation of numerical values in the Adult
dataset

67

FIGURE 4.2: Frequency of different categories within each categorical
column in the Adult dataset

68

FIGURE 4.3: Frequency of different categories within each categorical
column in the Adult dataset

69

FIGURE 4.4: Distribution and correlation of numerical values in the Air
Quality dataset

70

FIGURE 4.5: Distribution and correlation of numerical values in the
Apartment dataset

71

FIGURE 4.6: Frequency of different categories within each categorical
column in the Apartment dataset

72

FIGURE 4.7: Distribution and correlation of numerical values in the Bank
Marketing dataset

73

FIGURE 4.8: Frequency of different categories within each categorical
column in the Bank Marketing dataset

74

FIGURE 4.9: Distribution and correlation of numerical values in the Bei-
jing PM2.5 datasets

76

FIGURE 4.10: Distribution and correlation of numerical values in the
Bike Sharing datasets

77

FIGURE 4.11: Distribution and correlation of numerical values in the
Household Electric Power Consumption datasets

78

FIGURE 4.12: Distribution and correlation of numerical values in the
Metro Interstate Traffic Volume datasets

79

xiv

FIGURE 4.13: Frequency of different categories of categorical columns in
the Metro Interstate Traffic Volume dataset

80

FIGURE 4.14: Distribution and correlation of numerical values in the
MetroPT-3 datasets

81

FIGURE 4.15: Distances are measured between 0 and 1, but the comple-
ment of this metric can also be considered. Therefore, a higher score
indicates higher quality according to 1-(KS statistic distance) [3].

87

FIGURE 5.1: Data distribution for Voltage column in Power Consumption
dataset.

94

FIGURE 5.2: Frequency of categories in native-country column in Adult
dataset and holiday column in Metro Interstate Traffic dataset.

96

FIGURE 5.3: Comparison of data category coverage for native-country
column in Adult and holiday column in Metro Interstate Traffic
dataset.

97

FIGURE 5.4: Data distribution and comparison of data category coverage
for capital-loss column in Adult dataset.

98

FIGURE 5.5: Range adherence for IWS column in Beijing PM dataset. 101

FIGURE 5.6: Range adherence for NOx(GT) column in Air Quality
dataset.

102

FIGURE 5.7: Column shape score for Metro PT dataset. 103

FIGURE 5.8: Column shape score for Air Quality dataset. 104

FIGURE 5.9: Column shape score for Bike Sharing dataset. 105

FIGURE 5.10: Column shape score for Beijing PM dataset. 106

FIGURE 5.11: Relationship between a pair of discrete and numerical
Columns in the Adult dataset.

112

FIGURE 5.12: Relationship between a pair of discrete columns in the
Adult dataset.

113

FIGURE 5.13: Relationship between a pair of continuous columns
(NOx/NO2 and PT08) in the Air Quality dataset.

114

xv

FIGURE 5.14: Relationship between a pair of continuous columns RH/T
and C6H6/CO in the Air Quality dataset.

115

FIGURE 5.15: Relationship between a pair of continuous (sure feet and
price) and a pair of discrete and continuous columns (square feet and
cityname) in the apartment dataset.

117

FIGURE 5.16: Relationship between a pair of discrete columns and target
label in the Bank Marketing dataset.

118

FIGURE 5.17: Relationship between a pair of continuous and discrete
columns and target label in the Beijing PM dataset.

119

FIGURE 5.18: Relationship between a pair of continuous and discrete
columns and a high-precision small number in Bike Sharing dataset.

120

FIGURE 5.19: Frequency distribution comparison for ’Education’ in
Adult Dataset. (a) CTAGN (b) CA-CTGAN.

124

FIGURE 5.20: Frequency distribution comparison for ’LPS’ in MetroPT
dataset. (a) CTAGN (b) CA-CTGAN

125

FIGURE 5.21: Heatmap of bedrooms vs. fee relationship in Apartment
dataset: A real and generated data comparison. (a) Real Data (b)
CTABGAN (c) CA-CTGAN

126

FIGURE 5.22: Comparative analysis of ’Price’ and ’Square Feet’ Rela-
tionship in Apartment Rent dataset using pair plot. (a) CTABGAN
(b) CA-CTGAN

127

FIGURE 5.23: Distribution analysis of ’previous’ column in Bank Mar-
keting dataset. (a) DATGAN (b) CA-CTGAN

128

FIGURE 5.24: Distribution analysis of ’Atemp’ in Bike Sharing dataset.
(a) DATGAN (b) CA-CTGAN

129

FIGURE 5.25: Heatmap visualization of ’LPS’ and ’COMP’ Relationship
in Metro PT dataset. (a) Real Data (b) CTABGAN (c) CA-CTGAN

130

FIGURE 5.26: Generator loss over the epochs for both training ap-
proaches (with and without CAE) - Adult dataset [4].

131

CHAPTER 1: INTRODUCTION

The rapid advancements in artificial intelligence and machine learning have signif-

icantly transformed numerous scientific domains, empowering researchers to address

complex problems and efficiently analyze vast volumes of data. However, acquir-

ing sufficient high-quality data for various research endeavors remains a significant

challenge. This challenge is evident across diverse experimental contexts such as

field experiments, which contend with unpredictable environmental variables; natu-

ral experiments, which require data that encapsulates spontaneous events; clinical

trials, demanding ethical rigor and precise simulations of patient responses; and sur-

vey research, needing to reflect a broad spectrum of human behaviors and opinions.

Moreover, in each of these settings, a deep contextual understanding is essential. The

intricate relationships between variables in domain-specific data are fundamental for

accurate analysis and interpretation of results. The diverse and complex nature of

these requirements underscores the necessity for innovative methods capable of syn-

thesizing contextually relevant and high-quality data across various experimental do-

mains.

In recent years, Generative Adversarial Networks (GANs) [5] have emerged as a pow-

erful tool for generating synthetic data, offering potential solutions to some of the

challenges faced in data acquisition for scientific research. The ability of GANs to

generate high-fidelity data has made them a popular choice for a wide range of appli-

cations, such as generating photorealistic images, synthesizing video sequences, and

generating natural language text [6]. However, traditional GANs may not fully cap-

ture the complex relationships between variables in tabular data and lack the capacity

to generate high-resolution data [6].

2

To address these limitations, this research introduces the Context-Aware Conditional

Tabular GAN (CA-CTGAN), a novel variant of GANs specifically designed to be

inherently versatile for application across a wide range of experimental domains.

Leveraging transfer learning and conditioning on context-specific elements like class

attributes using Conditional Generative Adversarial Networks (CGAN) [7], the pro-

posed CA-CTGAN framework aims to synthesize realistic and contextually relevant

experimental data, reducing the need for physical experiments while maintaining the

quality and fidelity of the generated data. This approach has the potential to acceler-

ate scientific discovery, providing a comprehensive, efficient, and ethically considerate

approach to enhance data analysis and decision-making systems.

1.1 Problem Statement

Despite the numerous benefits offered by machine learning techniques, a persis-

tent challenge faced by researchers across various scientific domains is the scarcity of

high-quality, contextually relevant data for experimental research. The process of gen-

erating such data is often time-consuming, resource-intensive, and cost-prohibitive.

Moreover, the complex relationships between variables in domain-specific tabular data

necessitate a deep understanding of the underlying structures and dependencies to

ensure the accurate analysis and interpretation of results.

While Generative Adversarial Networks (GANs) have shown promise in generating

synthetic data, there is a critical gap in their ability to generate high-quality tabular

data. This limitation presents a significant challenge in experimental settings, where

the synthesis of tabular data that accurately reflects complex real-world scenarios is

crucial for advancing scientific understanding and decision-making. Typical imple-

mentation of GANs may not adequately capture the intricate relationships between

variables in tabular data, and they often lack the ability to generate high-resolution

data conditioned on specific information.

Moreover, a critical challenge in the current implementation of GANs is the lack of

3

control over the generation process. For experimental research, it is imperative to

generate data that aligns with specific contextual elements. Moreover, these models

often lack the fine-grained control necessary to ensure that the generated data adheres

to these specific conditions, making them less effective for applications that require

precise and contextually adapted data synthesis.

On the other hand, transfer learning remains a largely underexplored area in GANs,

despite the potential to improve learning efficiency and effectiveness. Therefore, the

development of GAN architectures that can address these challenges by incorporating

transfer learning and contextual conditioning would significantly enhance the utility

of synthetic data in this field.

Addressing these intertwined challenges - the limited capability of GANs in generat-

ing context-specific tabular data, the need for improved control in the data generation

process, and the untapped potential of transfer learning within GAN frameworks - is

crucial. This research endeavors to bridge these gaps, aiming to expand the functional

scope of GANs and to enhance their precision and applicability in producing contex-

tually rich, controlled, and diverse synthetic tabular data. Such advancements are

essential in a wide array of scientific and experimental domains, where the demand

for accurate, context-aware synthetic data is continuously escalating.

1.2 Experimental Domains

The Context-Aware Tabular Conditional GAN (CA-CTGAN), with its advanced

capabilities, is poised to significantly benefit a wide array of experimental domains.

This section details the diverse types of experiments where CA-CTGAN can be ef-

fectively applied:

• Laboratory Experiments: In controlled laboratory settings, CA-CTGAN

can be instrumental in generating high-fidelity, synthetic tabular data that mim-

ics real experimental results. This is particularly valuable in scenarios where

actual experimentation may be too costly, time-consuming, or where there are

4

ethical considerations. CA-CTGAN ability to simulate data under controlled

conditions can greatly assist in hypothesis testing and experimental design.

• Field Experiments: Field experiments, often characterized by their dynamic

and unpredictable environments, stand to benefit from CA-CTGAN’s ability

to incorporate contextual variables such as location and environmental factors

into the data generation process. This capability allows for the creation of

realistic data sets that mirror the complexities and variabilities encountered in

field research, providing a robust tool for planning and analysis.

• Natural Experiments: In natural experiments, where researchers observe

the effects of naturally occurring variables, CA-CTGAN can synthesize data

that reflects these environmental and societal dynamics. This is particularly

useful for studies where control over experimental conditions is limited, allowing

researchers to explore various scenarios and their potential outcomes through

synthesized data.

• Clinical Trials: CA-CTGAN can revolutionize data generation in clinical trials

by producing synthetic patient data that simulates diverse treatment responses

and patient demographics. This not only aids in the design and planning of clin-

ical trials but also serves as a valuable tool in preliminary testing and hypothesis

validation, all while adhering to ethical standards by reducing the initial reliance

on human subjects.

• Survey Research: For survey research, CA-CTGAN ability to generate con-

textually rich data is invaluable. It can create synthetic responses that reflect

a wide spectrum of human behavior and opinions, helping researchers to pre-

test surveys, understand potential response patterns, and adjust methodologies

accordingly. This application is particularly beneficial in ensuring the represen-

tativeness and validity of survey instruments.

5

Each of these experimental domains presents unique challenges and requirements

for data quality and contextual relevance. CA-CTGAN’s adaptability and advanced

data synthesis capabilities make it an ideal tool to address these challenges, providing

researchers across various fields with a powerful means to enhance their experimental

design, analysis, and overall research efficacy.

1.3 Research Questions

The primary goal of this research is to develop a novel CA-CTGAN framework

(Context-Aware Conditional Tabular GAN) capable of generating high-resolution tab-

ular data for simulating laboratory experiments across diverse domains. To achieve

this, the following research questions will be addressed:

1. Integration of Contextual Awareness: How can the CA-CTGAN frame-

work be designed to integrate context-specific elements effectively into a GAN

architecture, thereby ensuring the generation of high-resolution synthetic data

that accurately mirrors the contextual nuances across a spectrum of experimen-

tal domains?

2. Complex Relationship Modeling: What advanced methodologies and trans-

fer learning techniques can be employed within CA-CTGAN’s generator to cap-

ture and replicate the intricate inter-variable relationships present in domain-

specific tabular data, and how do these methods contribute to the enhancement

of synthetic data quality and its applicability to real-world scenarios?

3. Control and Precision in Synthesis: In what ways does CA-CTGAN en-

able precise manipulation and control of the synthetic data generation process

through its auxiliary classifier and entity embedding techniques, and how does

this precision affect the semantic integrity, accuracy, and utility of the generated

datasets in adhering to specified context-specific requirements?

6

4. Implications for Research and Application: Considering CA-CTGAN’s

innovative approach to synthetic data generation, what are the broader impli-

cations for its application across diverse scientific fields, including experimental

research, and how might this framework transform future research methodolo-

gies, data analysis, and decision-making processes?

1.4 Objective and Contribution

The primary objective of this research is to develop the Context-Aware Tabular

Conditional GAN (CA-CTGAN), a novel framework for generating high-resolution,

realistic, and contextually relevant synthetic data. This data will effectively simulate

a wide range of experimental research scenarios, transcending traditional limitations.

Central to achieving this objective is the integration of context-specific elements.

This integration is pivotal for creating data rows that are both representative of real-

world distributions and tailored to specific experimental contexts, thereby affording

researchers greater control over the data generation process. Key Contributions of

this research can be divided into following items:

• Incorporation of Transfer Learning: A significant advancement in this

research is the application of transfer learning techniques to refine the ini-

tialization and training of CA-CTGAN. Utilizing a Contractive Autoencoder

(CAE) to discern semantic interrelations between columns in domain-specific

tabular data, the CAE learns a latent representation of the dataset. This pre-

trained CAE is then integrated into the generator’s architecture, replacing the

traditional reliance on random noise. This method brings a nuanced context

awareness to the generator, significantly improving its capability to produce

contextually accurate synthetic data.

• Auxiliary Classifier Network: Another major contribution is the introduc-

7

tion of an multi-class auxiliary Classifier network, supplemented by additional

loss functions in the GAN training process. This innovative approach not only

preserves the semantic integrity of the synthetic data but also facilitates precise

control over the data generation, ensuring accuracy and relevance for specific

conditions. The Classifier network, operating alongside the generator and dis-

criminator, evaluates the generated data, aligning conditioned and predicted

labels to enhance the generation process’s fidelity.

• Advanced GAN Techniques Integration: Further contributions include

adopting techniques from established GAN variants to address specific chal-

lenges in data generation. The integration of the PacGAN [2] approach ad-

dresses mode collapse issues, promoting a richer diversity in the generated

data. The application of the Wasserstein [8] loss function ensures stable and

robust training, leading to superior convergence and data quality. Additionally,

gradient-based optimization techniques are employed to refine the model’s per-

formance, ensuring a faithful and meaningful representation of the original data.

These techniques collectively position CA-CTGAN as a state-of-the-art tool in

synthetic data generation, tailored to the unique demands of our application

domain.

By developing and validating the effectiveness of CA-CTGAN in producing high-

quality synthetic data, this research makes a significant contribution to the fields of

artificial intelligence and machine learning. The potential impacts of this research

are far-reaching, poised to revolutionize experimental research in diverse fields by

accelerating scientific discovery, optimizing experimental design, and substantially

reducing the costs and resources associated with conducting physical experiments.

8

1.5 Overview of the report

This dissertation is organized into five chapters, providing a comprehensive outline

of the study and its various components. Chapter 2 summarizes the foundational

knowledge required to understand the proposed research. It covers the essential con-

cepts of GANs, Autoencoders, and Transfer Learning, as well as a review of related

studies in the field. The literature review serves to position the proposed CA-CTGAN

within the context of existing research and highlight its unique contributions. Chap-

ter 3 presents the architecture and design of the proposed CA-CTGAN, along with

a detailed description of the training process. Additionally, it highlights the novel

contributions of the proposed method, such as integrating Contractive Autoencoders

by Transfer Learning to generate contextually relevant and high-resolution synthetic

data for simulating laboratory experiments and integrating auxiliary Classifier net-

work. Chapter 4 presents an in-depth analysis of the data sources, experimental

setup, baseline methods, and evaluation metrics used to assess the performance of

the proposed CA-CTGAN against existing approaches. Chapter 5 details the re-

sults, demonstrating the method’s superior effectiveness in generating high-quality

synthetic data across various scientific domains. Through comparative analysis, this

chapter highlights CA-CTGAN’s advancements over traditional methods, showcasing

its potential to revolutionize synthetic data generation by producing more accurate,

contextually relevant datasets. Chapter 5 summarizes the key findings of the research

and discusses potential avenues for future work. This report offers a structured and

organized explanation of developing and evaluating the Context-Aware Conditional

Tabular GAN, ultimately contributing to the advancement of knowledge and tech-

nology in generating high-quality synthetic data for various scientific domains.

CHAPTER 2: BACKGROUND AND RELATED STUDIES

Generative models have emerged as a fundamental concept in the field of machine

learning, serving as the foundation for numerous studies and applications. These

models aim to capture the underlying structure and distribution of the data, allowing

for the generation of new samples that closely resemble the original data. By learning

the intrinsic patterns and dependencies within the data, generative models facilitate

a deeper understanding of complex datasets, ultimately enabling researchers to tackle

a wide range of tasks, from data synthesis and anomaly detection to feature learning

and unsupervised representation learning.

A generative model aims to model a joint probability distribution P (X, Y) where

X is the observed variable, and Y is the target variable so that new data can be

generated from the conditional probability P (X|Y = y) of this estimated distribution

that closely resembles the original data [9]. Therefore, generative models generate a

distribution that matches the original distribution of P (X|Y) in order to calculate

P (Y |X) using a classifier technique. [10] mentioned the following reasons for studying

generative models:

• Using generative models, it is possible to construct high-dimensional probability

distributions.

• It is possible to combine generative models with reinforcement learning.

• Semi-supervised learning can be performed reasonably well by generative mod-

els, especially GANs.

• Missing data can be imputed by generative models by generating intrinsically

realistic samples.

10

• Generative models can generate multi-modal outputs since an input may cor-

respond to a wide range of possible correct answers.

Over the years, various types of generative models have been proposed, each with

their unique strengths and limitations. Some of the most prominent models include

Variational Autoencoders (VAEs) [11], Restricted Boltzmann Machines (RBMs), and

Generative Adversarial Networks (GANs). Among these, GANs have gained signifi-

cant attention in recent years due to their ability to generate high-quality synthetic

data across a diverse range of domains. The table 2.1 categorizes all of the introduced

generative models based on different machine-learning approaches [12].

Table 2.1: Various Generative Models based on the type of learning.

Shallow Learning Deep Learning

Unsupervised

Gaussian Mixture Model

(GMM)

Boltzmann Machines (RBM,

DBM)

Hidden Markov Models

(HMM)

Deep Belief Network (DBN)

Latent Dirichlet Allocation

(LDA)

Self-supervised Variational Autoencoder

(VAE)

Semi-supervised Generative Adversarial Net-

work (GAN)

In comparison to GANs, VAEs have a few disadvantages. Since VAEs sample

directly from latent space, they oversimplify the objective task. Also, VAEs also

11

produce samples with significantly lower accuracy than GANs as a result of injected

noise and imprecise reconstruction. The GAN architecture has undergone numer-

ous enhancements in recent years as a result of the improvement in the architecture

among the research community over the past few years [13]. In this chapter, we will

delve deeper into the foundational concepts and techniques that underpin the pro-

posed research, including GANs, Autoencoders, and Transfer Learning. Additionally,

we will review relevant studies in the field to position the proposed Context-Aware

Tabular Conditional GAN (CA-CTGAN) within the context of existing research and

emphasize its unique contributions.

2.1 Background Knowledge

2.1.1 Generative Adversarial Networks (GANs)

GANs are characterized by two multilayer perceptron neural networks, the gener-

ator, and the discriminator. The generator is like a person who tries to make fake

money, and the discriminator is like the police who try to distinguish real money

from fake money. In this game, competition motivates both teams to improve their

procedures until the fake money is indistinguishable from the real one [5].

The generator neural network draws a random vector z from the latent space with the

distribution pz(z). The generator G(z; θg) then uses a parameter θg to map z from

the latent space to the data space. Therefore, pg(x) the probability density function

over the generated data is used by G(z) to generate xg. Then, the discriminator

neural network D(x; θd) receives randomly either xg the generated sample or xdata

the actual sample from the probability density function over the data space pdata(x).

The discriminator neural network D(x; θd) is a binary classification model in which

D(x) returns the probability that x is derived from real data. Therefore, the output

of this function is a single scalar that indicates if the passed sample is real or fake.

Figure 2.1 depicts the described process and GANs architecture. θg and θd are the

weights for the generator and discriminator that are learned through the optimization

12

procedure during training. The goal of the discriminator in training is to maximize

Generator

𝐺(𝑧, 𝜃𝑔)

Latent space
Noise Variable

𝑝𝑧(𝑧)

Generated
Distribution

𝑝𝑔(𝑥)

Real Data
Distribution

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑥𝑔

𝑥𝑑

Or
Discriminator
𝐷(𝑥, 𝜃𝑑)

Fake

Real

𝒛 Input noise
vector

𝑮(𝒛) with parameter 𝜽𝒈

Map 𝒛

to data space

Generate fake
sample

Draw a real
sample

Binary
Classification

𝑫(𝒙) with parameter 𝜽𝒅

𝓛(𝒙, 𝑮(𝒙))

Backpropagation (Generator)

Backpropagation (Discriminator)

Figure 2.1: GANs process flow diagram.

the probability that a given training example or generated sample has been assigned

the proper label, whereas the goal of the generator is to minimize the probability

that it has detected real data. Therefore, the objective function can be expressed as

a minimax value function, V (G,D), which is jointly dependent on the generator and

the discriminator, where:

min
G

max
D
V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

The discriminator performs binary classification, which gives a value of 1 to real

samples (x ∼ pdata(x)) and a value of 0 to generated samples (z ∼ pz(z)). Therefore,

in the optimal adversarial networks, pg converges to pdata, and the algorithm is stopped

at D(x) = 1/2 which means the global optimum occurs when pg = pdata [5].

2.1.2 Conditional Generative Adversarial Networks (CGANs)

The generating data in an unconditioned GAN is completely unmanageable in

multimodal distribution. [7] introduced a conditional version of GAN that can provide

generators with prior information so that they can control the generation process for

different modes. Achieving this objective requires conditioning the generator and

13

discriminator on some additional information, y, where y can be anything from class

labels to information on the distribution of data (modes). This can be done by

giving the discriminator and the generator Y as an extra input layer in the form of

a one-hot vector. In fact, the input noise pz(z) to the generator is not truly random

if the information y is added to it, and the discriminator does not only regulate

the similarity between real and generated data, but also the correlation between the

generated data and input information y. Therefore, the objective function in Eq. 2.1

can be rewritten as follows:

min
G

max
D
V (D,G) = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1−D(G(z|y)))] (2.2)

Figure 2.2 illustrates the structure of a CGAN and how to input information is applied

during the process. A majority of applications for conditional GAN were concerned

Generator

𝐺(𝑧, 𝜃𝑔)

Generated
Distribution

𝑝𝑔(𝑥|𝑦)

Real Data

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑥𝑔

𝑥𝑑

Or
Discriminator
𝐷(𝑥|𝑦, 𝜃𝑑)

Fake

Real

𝒛

Input noise
vector

𝑮(𝒛) with parameter 𝜽𝒈

Map 𝒛

to data space

Generate
fake sample

Draw a real
sample

Binary Classification

𝑫(𝒙) with parameter 𝜽𝒅

| | | | |

𝒚

Input prior knowledge
one-hot vector

| | | | | | | | | |
Input prior knowledge

one-hot vector

𝒚

𝒙

| | | | |

Figure 2.2: Conditional GAN process flow diagram.

with synthesizing images by giving the label for the image that should be generated.

Nonetheless, in the case of tabular data, this could be the shape of data on a multi-

modal distribution and can be used to inject information as prior knowledge to the

generator.

2.1.3 Autoencoders

The goal of autoencoders is to reduce the dimensionality of data and reconstruct

compressed data as closely as possible to its original input. Therefore, an autoen-

14

coder is an unsupervised neural network that learns how to identify the most efficient

encoder/decoder that retains the maximum amount of information during encoding

and incurs the least loss during decoding. There are three layers in autoencoders,

the input layer X, the latent space (bottleneck) Z, and the output layer X̂. The

inputs are encoded into feature-extracted representations in latent space Z, and the

output X̂ is generated following the decoding of vector Z. Figure 2.3 represents an

autoencoder architecture. An autoencoder’s objective is to reduce construction error

between real and reconstructed data. An L2 loss function is used to calculate the

loss, and then the error is backpropagated through the network, and the weights are

updated accordingly [12].

L = ‖ X − X̂ ‖
2

= ‖ X −G(Z) ‖2 = ‖ X −G(F (X)) ‖2 (2.3)

Where F (.) is the encoding function that encodes X into the latent space, and G(.)

is the decoding function that decodes X̂ from latent space Z. The autoencoder is

𝑋 ෠𝑋
Input

Decoder

𝑍

Latent Space

Output

Encoder

Compressed data
in lower dimension

𝐹(𝑋) 𝐺(𝑍)

Figure 2.3: The network architecture for a normal autoencoder.

simply taught to encode and decode with the minimum loss so that the decoder

cannot generate new data regardless of the method used to create the latent space.

15

Therefore, the objective function can be expressed as follows:

LAE =
∑
x∈Dn

L(x, g(f(x))) (2.4)

Autoencoders can be classified based on the type of architecture and the training

method used.

Based on architecture, autoencoders can be classified as follows:

• Convolutional Autoencoder: Uses convolutional layers in the encoder and

decoder to handle the spatial structure of the input data, typically used for

image data [14].

• Recurrent Autoencoder: Uses recurrent layers in the encoder and decoder

to handle the temporal structure of the input data, typically used for sequential

data [15].

• Variational Autoencoder: A probabilistic autoencoder that learns a dis-

tribution over the latent space instead of a fixed point. It is used for data

generation and dimensionality reduction [11].

• Denoising Autoencoder: Trained to remove noise from the input data, typ-

ically by adding noise to the input data and reconstructing the original input

[16].

• Adversarial Autoencoder: A generative model that uses adversarial training

to learn a distribution over the latent space that is similar to the true distri-

bution of the data. It is used for data generation and dimensionality reduction

[17].

• Contractive Autoencoder: Designed to learn a robust and invariant repre-

sentation of the input data by adding a regularization term to the loss function

16

that penalizes the sensitivity of the network’s output to small changes in the

input [18].

Based on the training method, autoencoders can be classified as follows:

• Supervised Autoencoder: The standard autoencoder that is trained using

labeled data.

• Unsupervised Autoencoder: Trained using unlabeled data.

• Semi-Supervised Autoencoder: Trained using a combination of labeled and

unlabeled data.

• Contrastive Autoencoder: Uses a contrastive loss function during training

to encourage similar inputs to be mapped close together in the latent space [19].

• Sparse Autoencoder: Trained to learn sparse representations of the input

data by adding a penalty for the number of active neurons in the latent space

[20].

• Deep Autoencoder: Autoencoders with multiple hidden layers in the encoder

and decoder, typically used for learning hierarchical representations of the input

data.

These different types of autoencoders have different strengths and weaknesses depend-

ing on the application. By understanding the different types of autoencoders and their

properties, researchers can choose the most suitable architecture and training method

for their specific problem.

2.1.4 Conteractive Autoencoder

In order to incorporate the contextual information of the dataset and provide a

better initialization of the generator, this research proposes utilizing a Contractive

Autoencoder (CAE) [18] and transferring a pre-trained model as an alternative to

17

relying on random noise for initializing the generator’s input. The CAE is a specific

type of autoencoder that is designed to capture the complex relationships and struc-

tures within the data by learning a latent representation in a more robust manner.

A Contractive Autoencoder consists of an encoder, which compresses the input data

into a lower-dimensional latent representation, and a decoder, which reconstructs the

original data from the latent representation. The primary difference between a stan-

dard autoencoder and a CAE lies in the training process. In a CAE, a contractive

penalty is added to the loss function, which encourages f(x) to be less sensitive to

small variations in the input data x. This penalty term is computed based on the

Frobenius norm of the Jacobian matrix Jf (x) of the encoder’s outputs with respect

to its inputs. This sensitivity penalty term is derived by summing the squares of all

partial derivatives of the features extracted from the input dimensions when input x

is mapped by encoding function f to hidden representation h as follows:

‖ Jf (x) ‖2
F=

∑
ij

(
∂hj(x)

∂xi

)2

(2.5)

By minimizing this penalty, the CAE learns to map similar inputs to similar latent

representations, making the model more robust and better equipped to capture the

semantic relationships between columns in domain-specific tabular data. Thus, the

objective of CAE is to minimize the following function:

LCAE =
∑
x∈Dn

L(x, g(f(x))) + λ ‖ Jf (x) ‖2 (2.6)

Where the strength of regularization is controlled by the positive hyperparameter λ.

As shown in Figure 2.4, the first term penalizes sensitivities to reconstructions, while

the second term penalizes how much of the movement of the Jacobian matrix comes

from x. This basically pushes the energies up in directions that are not required for

reconstruction.

18

Penalized direction

𝒚

Penalized & incentivized
direction

𝓛𝑪𝑨𝑬 = 𝑳 𝒙, ෝ𝒙 + 𝝀 ∥ 𝑱𝒇(𝒙) ∥
𝟐

Penalize insensitivity to
reconstruction directions

Penalize sensitivity to the
any direction

Figure 2.4: Visual representation of Conteractive Autoencoders.

2.1.5 Transfer Learning

Transfer Learning is a widely-used technique in the field of machine learning and

deep learning that leverages the knowledge gained from one task to improve the learn-

ing process in another, related task. The primary motivation behind transfer learning

is to utilize the existing knowledge to reduce the amount of training data, compu-

tational resources, and time required for learning new tasks, particularly when the

available data for the target task is limited or when the tasks share similar underlying

structures.

In the context of deep learning, transfer learning typically involves the reuse of pre-

trained neural network models that have been trained on large-scale datasets. These

pre-trained models serve as starting points for the target task, providing a set of

learned features or initial weights that can be fine-tuned or adapted to the new task.

This process often results in improved performance and faster convergence compared

to training the model from scratch.

There are several approaches to transfer learning, which can be broadly categorized

19

into two main types: feature extraction and fine-tuning. In feature extraction, the

pre-trained model is used as a fixed feature extractor, and its learned features are

fed into a model tailored to the target task. In fine-tuning, the pre-trained model’s

parameters are fine-tuned or updated using the target task’s data, allowing the model

to adapt to the specific nuances and characteristics of the new task [21].

Transfer learning has been successfully applied in various domains, such as com-

puter vision, natural language processing, and speech recognition, where large-scale

pre-trained models have demonstrated remarkable improvements in performance and

efficiency over training from scratch. Some notable examples of transfer learning ap-

plications include the use of pre-trained convolutional neural networks (CNNs) for

image classification and object detection tasks, as well as the adoption of pre-trained

transformer-based models, such as BERT and GPT, for a wide range of natural lan-

guage processing tasks [22].

In this research, transfer learning is employed to bring the context-awareness into the

generator of the proposed Context-Aware Conditional Tabular GAN (CA-CTGAN).

This approach not only leverages the learned semantic relationships between the

columns of the domain-specific tabular data but also improves the initialization and

training of the generator.

2.2 Tabular Data Generation Challenges

According to the data structure and data types of tabular data, the challenges as-

sociated with data generation can be categorized into the following significant groups

[23].

2.2.1 Data type

It is challenging to generate data that is representative of the entire data table

due to the difference in data types. For instance, different activation functions on

output are required for the generative models since relational database tables include

20

numerical, categorical, ordinal, and mixed data types. As an example of a mixed data

type, the financial database contains columns for loan debts, where a loan holder may

have no debt or debt with a positive value [1]. In data analysis, it can be defined as

categorical data using a step function, but in reality, it is continuous data. In this

regard, a data generator must be able to detect these types of data in order to avoid

adverse effects on the interpretation of the data. The several types of data used in

tabular data are broken down in Table 2.2. Mentioning that textual data types are

not the case of this study and are therefore ignored here.

Table 2.2: The data types that can be used in a tabular data table.

Data types

Numerical

Continuous Numeric intervals on the real number without fi-
nite set of values

Discrete Finite, countable set of integer number

Mixed Numeric, but considered as categorical based on
the different range

Categorical

Binary One-hot encoded

Textual One-hot encoding needed

Numeric Treats like textual and numbers are meaningless.

Ordinal Numeric Numeric categories with a clear ordering (like 1-5
rating)

2.2.2 Bounded continuous columns

Continuous Column Ci is bounded if there are two numbers a and b in which for all

x ∈ X a ≤ x ≤ b. tabular data generator presents a challenge with bounded contin-

uous columns because generating realistic data for these columns requires sampling

from a distribution that accurately represents the real data and ensuring that the

generated data falls within a specified range. For example, the spent value of a credit

card can range from zero to a predetermined amount and generating data from the

same distribution may result in generating data outside the bounded values, which

21

would not be meaningful or useful.

2.2.3 Non-Gaussian Distribution

When dealing with the non-Gaussian distributions that are common in real-world

datasets, the assumption of normality often fails in the field of tabular data gener-

ation. Such distributions may be multimodal, containing several peaks or modes,

which reflects the complexity of underlying data-generating processes. For instance,

the distribution of incomes in a socio-economic dataset could exhibit multiple modes,

corresponding to different socio-economic classes. Traditional synopsis generation

techniques may inadequately capture the multi-modes structure of such distributions,

leading to the missing of entire modes. This results in a generated synopsis that fails

to represent segments of the population within the original dataset [23].

Moreover, the presence of long-tailed distributions poses additional challenges [1].

These distributions are characterized by a proliferation of infrequent events, such

as a customer purchase history where a vast majority of customers make infrequent

purchases, while a minor fraction exhibits high purchase frequencies. Synthesizing

data from such a distribution requires not only capturing the frequent low-occurrence

events but also accurately representing the rare high-occurrence instances. The con-

ventional methods may struggle with this, often either over-representing the tail and

creating too many rare events or under-representing it, thus failing to capture the

true nature of the underlying data. This misrepresentation can skew the synopsis,

rendering it less effective for use in decision-making processes where an understanding

of rare events is critical.

2.2.3.1 Imbalance Categorical Column

In tabular data generation, the handling of imbalanced categorical columns presents

a significant challenge [23]. Categorical variables in real-world datasets frequently

show a skewed distribution in terms of the frequency of occurrence across categories.

22

The presence of such a disparity indicates that minority categories make only a small

contribution to the overall distribution of data, which may result in their under-

representation in the generated synopsis. The process of creating synopses is influ-

enced by a lack of representation of certain classes, resulting in a bias towards the

majority class due to its higher statistical likelihood. For instance, consider a cus-

tomer gender column in a retail database with a pronounced imbalance, where ’male’

customers vastly outnumber ’female’ customers. Generated data from this distribu-

tion might reflect this skew, resulting in a synthetic dataset dominated by ’male’

entries. However, this skew inaccurately portrays the significance of the ’female’

category, which, despite its smaller size, may carry substantial weight in consumer

behavior analysis.

2.2.4 Semantic relationship

Tabular data often includes complex semantic relationships that are not easily

understood through standard statistical analysis [24]. These relationships can exist

between categorical and numerical columns alike and are crucial for maintaining the

integrity and usefulness of the generated data. Identifying and encoding such rela-

tionships is a challenge due to the heterogeneity of domain-specific constraints and

the complex nature of the inter-column dependencies which may not be amenable to

simple rule-based generalizations. For instance, semantic relationships may determine

that certain numerical values possess validity solely when paired with specific cate-

gorical entries, imposing a constraint-based association. Alternatively, a rule-based

linkage could suggest a probabilistic co-occurrence pattern between different fields in

the data. Hence, it is imperative for a comprehensive process of generating synopses

to include mechanisms that can deduce these complex relationships, which can be

multi-faceted and deeply embedded within the structure of the data. A failure to do

so not only compromises the authenticity of the synthesized data but also limits the

operational relevance of the synopsis, as it could lead to the generation of implausi-

23

ble or inconsistent records that do not adhere to the real-world rules and constraints

governing the dataset. Figure 2.5 represents two examples of generated samples from

a table that the model should reject semantically. To generate a representative data,

the city must be properly associated with the state, and the joined column cannot

precede the founded column.

Team City State Capacity Founded Joined

Charlotte FC Charlotte North Carolina 38,000 2019 2022

Los Angeles FC Los Angeles California 22,000 2014 2018

Team City State

Charlotte FC Los Angeles North Carolina

(a) Constraint-based rejected samples

Team Founded Joined

Los Angeles FC 2018 2014

(b) Rule-based rejected samples

Figure 2.5: Each soccer team in the table corresponds to a particular location and
has a specific capacity, foundation year, and year of entry into MLS. (a) and (b)
shows two examples of constraint-based and rule-based sample rejection during the
data synopsis generation process.

2.3 Related Studies

Generative Adversarial Networks (GANs) were initially introduced in the field

of computer vision, where they are predominantly used for processing image data

through Convolutional Neural Networks (CNNs). Nevertheless, GANs have also

demonstrated their capability to generate tabular data. This section aims to present

an overview and categorization of various GAN-based methods specifically designed

for tabular data generation, followed by a detailed analysis of the most promising

state-of-the-art variants in order to identify how these GAN adaptations address the

challenges associated with tabular data. Most existing GAN-based solutions for tab-

ular data generation have been developed with the primary objective of adhering to

data privacy regulations and preventing data leakage during data sharing or synthetic

data generation for imputation and augmentation. However, when generating labo-

ratory experiment data, the focus shifts towards producing realistic data that closely

24

resembles real observations rather than merely generating synthetic data that adheres

to privacy constraints. The challenges of generating tabular data using GANs have

been tackled in a limited number of publications since 2017.

The purpose of this section is to introduce the most promising GAN variants for

tabular data generation and provide a classification of these proposed solutions based

on the specific challenges they address in generating tabular data. This analysis will

aid in identifying the key advancements in the field and guide the development of

the proposed Context-Aware Tabular Conditional GAN (CA-TCGAN) for simulating

laboratory experiments.

Choi et al. [25] proposed the medical Generative Adversarial Network (medGAN) to

generate realistic synthetic patient records based on real data as inputs to protect pa-

tient confidentiality to a significant extent. The medGAN generates high-dimensional,

multi-label discrete variables by combining an autoencoder with a feedforward net-

work, batch normalization and shortcut connections. With an autoencoder, flow

gradients are able to end-to-end fine-tune the system from discriminator to decoder

for discrete patient records. The medGAN architecture uses MSE loss for numerical

columns and Cross-Entropy loss for binary columns, and ReLU activation function

for both encoder and decoder networks. The medGAN uses the pre-trained autoen-

coder to generate distributed representations of patient records rather than directly

generating patient records. In addition, it provides a simple and efficient method of

dealing with mode collapse when generating discrete outputs using minibatch aver-

aging. Figure 2.6 shows medGAN architecture and defines the autoencoder role in

training process.

The generator cannot generate discrete data because it must be differentiable. Mot-

tini et al. [26] proposed a method for generating realistic synthetic Passenger Name

Records (PNRs) using Cramer GANs, categorical feature embedding, and a Cross-Net

architecture for the handling of this issue (categorical or numerical with null values).

25

Generator

𝐺(𝑧, 𝜃𝑔)

Generated
Distribution
𝑝𝑔(𝑥|𝑦)

Real Data

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑥𝑔

𝑥𝑑

Or

Discriminator
𝐷(𝑥|𝑦, 𝜃𝑑)

FakeReal

𝑮(𝒛) with parameter 𝜽𝒈

Map 𝒛

to data space

Generate
fake sample

Draw a real
sample

Binary Classification

𝑫(𝒙) with parameter 𝜽𝒅

𝒙
En
co
d
er

D
eco

d
er

Latent space
Noise Variable

𝑝𝑧(𝑧)

𝒛 Input noise
vector Autoencoder

Figure 2.6: medGAN architecture: Discriminator utilizes autoencoder (which is
learned by real data) to receive decoded random noise variable

As opposed to simply embedding the most probable category, they used the weighted

average of the embedded representation of each discrete category. The embedding

layer is shared by the generator and discriminator, resulting in a fully differentiable

process as a result of this continuous relaxation. For handling null values, they are

substituted with a new category in categorical columns. However, continuous columns

fill null values with a random value from the same column and then a new binary

column is inserted with 1 for filled rows and 0 otherwise. These additional binary

columns are encoded like category columns. It should be noted that in this archi-

tecture, both the generator and discriminator consist of fully connected layers and

cross-layers. Also, except for the last layer (Sigmoid), all layers of the generator use

leaky ReLU activations for numerical features and Softmax for categorical features.

However, discriminator uses leaky ReLU activations in all but the last layer (linear).

Neither batch normalization nor dropout is used in this architecture like Wasserstein

and Cramer GANs [27]. Data pre-possessing in this algorithm is depicted in Figure

26

2.7. As indicated, discrete values will be embedded using the embedding matrix,

Flatten

Discrete Columns

𝐷1 = [𝑑11, …, 𝑑1𝑛1]

𝐷2 = [𝑑21, …, 𝑑2𝑛2]

𝐷𝑁 = [𝑑𝑁1, …, 𝑑2𝑁𝑛𝑁]

Flatten

Flatten

𝐶𝑁 = [𝐶1, …, 𝐶2𝑁]

Concatenate

Continuous Columns

Matrix Embedding

Figure 2.7: Pre-processing input data before feeding the discriminator in PNR-GAN

followed by the concatenation of them with continuous columns of input data.

Table-GAN is a method proposed by Park et al. [28] that uses GANs to create

fake tables that are statistically similar to the original tables but are resistant to

re-identification attacks and can be shared without exposing private information.

Table-GAN supports both discrete and continuous columns and is based on Deep

Convolutional GANs (DCGANs) [29]. Besides the generator and discriminator with

multilayer convolutional and deconvolutional layers, the table-GAN architecture also

includes a classifier neural network with the same architecture as the discriminator.

However, it is trained using ground-truth labels from the original table to increase

the semantic integrity of the generated records. Information loss and classification

loss are two additional types of loss that are introduced during the backpropagation

process. The purpose of these functions is to maintain a balance between privacy and

usability while ensuring the semantic integrity of the real and generated data. The

information loss compares the mean and standard deviation of real and generated

27

data to measure the discrepancy between them and determine whether they have

statistically the same features from the perspective of the discriminator or not, and

the classification loss measures the difference between how a record is labeled and

how the classifier predicts it should be labeled. Figure 2.8 is a representation of the

Generator

𝐺(𝑧)
Discriminator

𝐷(𝑥)

𝒙, 𝒛 Original Loss

Classifier

𝐶(𝑦)

Real Data

𝑝𝑑𝑎𝑡𝑎(𝑥)
𝒚, ෝ𝒚

Information Loss

Classification Loss

ℒ𝑜𝑟𝑖𝑔(𝑥, 𝐺 𝑧)

ℒ𝑖𝑛𝑓𝑜(𝑥, 𝐺 𝑧)

ℒ𝑐𝑙𝑎𝑠𝑠(𝑦, 𝑦 ̂)

Figure 2.8: Loss functions representation in table-GAN architecture.

loss functions in the table-GAN architecture.

Xu and Veeramachaneni [23] developed TGAN, which is a synthetic tabular data

generator for data augmentation that can take into account mixed data types (con-

tinuous and categorical). TGAN generates tabular data, column by column, using a

Long-Short Term Memory (LSTM) network with attention. The LSTM will gener-

ate each continuous column from the input noise in two steps. First, it generates a

probability that the column comes from mode m, and then normalizes the column

value based on this probability. TGAN penalizes GAN’s original loss function by

adding two KL-divergence terms between generated and real data for continuous and

categorical columns separately. Therefore, generator will be optimized as follow:

LG = −Ez∼N (0,1)[log(D(G(z)))] +
Nc∑
i=1

KL(u′i, ui) +

Nd∑
i=1

KL(d′i, di) (2.7)

Where u′i and ui are probability distribution over continuous column ci for generated

and real data, respectively, d′i and di are probability over categorical column di using

28

softmax function for generated and real data respectively, Nc is number continuous

columns, and Nd is number of categorical columns. Xu et al. [30] also proposed a

conditional version of TGAN, named CTGAN, for addressing data imbalance and

multimodal distribution problems by designing a conditional generator with training

by sampling strategy to validate the generator output by estimating the distance be-

tween the conditional distribution over generated and real data.

Zhao et al. [1] introduced CTAB-GAN with the ability to encode the mixed data

type and skewed distribution of input data table. CTAB-GAN utilizes conditional

generator, information and classification loss functions derived from table-GAN, as

well as CNNs for both generator and discriminator functions. Since CNNs are effec-

tive at capturing the relationship between pixels within an image, therefore they can

be employed in enhancing the semantic integrity of created data. However, in order

to prepare data tables for feeding CNN, rows are transformed into the nearest square

d× d matrix, where d = Ceil(
√
Nc +Nd), Nc and Nd are number of continuous and

categorical columns respectively in a row of the data table, and then, the extra cells

values (d× d− (Nc +Nd)) are padded with zeros.

It is difficult for GANs to control the generation process of data-driven systems; there-

fore, integrating prior knowledge about data relationships and constraints can assist

the generator in generating synopses that are realistic and meaningful. In order to

implement this, DATGAN [31] incorporates expert knowledge into GANs generator

by matching the generator structure to the underlying data structure using a Di-

rected Acyclic Graph (DAG). Using a DAG, the nodes represent the columns of a

data table, while the directed links between them allow the generator to determine

the relationship between variables so that one column’s generation influences another.

It means if two variables have no common ancestors, they will not be correlated in

the generated dataset. In relational databases, there is no particular order in which

columns appear in data tables. Nevertheless, the DAG enables data tables to have a

29

specific column order based on their semantic relationship.

Generation challenges can be classified into three categories based on their pro-

posed solutions: Data Transformation, which addresses data type issues; Distribu-

tion Matching, which addresses ranges and distributions of data; and Conditional

and Informed Generator, which addresses imbalance classes, semantic relationships

[6].

2.3.1 Data Transformation

Mode normalization is capable of detecting modes of data by assigning samples

to different modes and then normalizing each sample based on the corresponding

mode estimator [32]. To deal with multimodal distribution for continuous columns,

mode-specific normalization is introduced in TGAN [23]. Using this algorithm, first,

the number of continuous columns’ modes is calculated using Gaussian kernel density

estimation. Then, Gaussian Mixture Model (GMM) can be employed to efficiently

sample values from a distribution with multiple modes by clustering the values of

continuous columns (Ci). In other words, the weighted sum of the Gaussian dis-

tributions over Ci can represent the multimodal distribution over it. A normalized

probability distribution over m Gaussian distributions can then be used to represent

each continuous column so that each column can be clustered into m fixed Gaussian

distributions. As a result, if there are less than m modes in one column, then the

probability of that mode is high, and for the rest, it is close to zero. However, in CT-

GAN [30], first, a Variational Gaussian Mixture model (VGM) should be applied to

each continuous column (Ci) in order to fit a Gaussian mixture and find the number

of modes (m). Then, a one-hot vector (βi,j) indicates to which mode a given value

belongs, and a scalar (αi,j) serves as the value itself within that mode. For the learned

Gaussian mixture for column Ci with m modes, the following equation is given:

PCi
(cij) =

m∑
k=1

wkN (cij;µk, σk) (2.8)

30

where ci,j : value of jth row from ith column, µk and σk : the mean and standard

deviation of Gaussian distribution for kth mode, and wk is the weight of kth mode.

For each value, the probability density ρ of kth mode is:

ρk = wkN (cij;µk, σk) (2.9)

Therefore, each value can be normalized according to the mode with highest proba-

bility. As an example, the values of α and β related to column ci,j in kth mode will

be:

αi,j =
ci,j − µk
δσk

, β = [0, 0, . . . , 1︸︷︷︸
kth element

, . . . , 0, 0]. (2.10)

where δ is a parameter specified by the modeller.

For categorical columns D, the situation is different; TGAN [23] stated to convert

these columns (dij) to a representation using one-hot encoding with added noise

(Uniform(0, γ), γ is an arbitrary number). To achieve this, after creating the one-

hot vector, noise will be added to each element, and the resulting representation will

be renormalized. Therefore, each data row can be represented by a concatenation of

continuous and categorical columns as follows:

rowj = α1,j ⊕ β1,j ⊕ ...⊕ αNc,j ⊕ βNc,j ⊕ d1,j ⊕ ...⊕ dNd,j (2.11)

where di,j is one-hot representation of a categorical column, Nc is number of contin-

uous columns and Nd is number of categorical columns Di.

As previously discussed, columns can be considered mixed if they contain both cat-

egorical and continuous values or continuous values with null values. The encoding

process for continuous and categorical columns in CTAB-GAN [1] is exactly the same

as CTGAN [30] by defining α and β. However, in mixed-type columns, the encoder is

defined so that each column is considered a concatenation of value-mode pairs, where

31

the categorical part of values takes zero for α and is treated as continuous.

2.3.2 Distribution Matching

In order to generate synopses with the same distribution as the underlying distri-

bution, the training algorithm should penalize the generator. Information loss [28]

helps generator to generate synopses statistically closer to the real one. It utilizes the

statistical characteristics Lmean (first-order statistics, Eq. 2.12) and Lsd (second-order

statistics Eq. 2.13) of the extracted features prior to the classifier in the discriminator

to penalize the generator for the discrepancy between real and generated data. This

makes sense because the extracted features are used to determine the binary decision

of the discriminator.

Lmean =‖ E[fx]x∼pdata(x) − E[fG(z)]z∼pz(z) ‖2 (2.12)

Lsd =‖ SD[fx]x∼pdata(x) − SD[fG(z)]z∼pz(z) ‖2 (2.13)

Where f represents features, E[f] is the average and SD[f] is the standard deviation

of features over all rows in the data table. The Euclidean norm is used to measure

the discrepancy between two terms. As we discussed before, table-GAN [28] was

developed to protect confidential data privacy when it is shared with the public. As

a result, it should be possible to control the similarity of generated data with real

data during the generating process. To this end, information loss for the generator is

demonstrated as follows:

LGinfo = max(0,Lmean − δmean) + max(0,Lsd − δsd) (2.14)

Where δ is a threshold indicating a quality degradation of generated data and max(.)

represents the hinge-loss that is zero until δ is reached. However, in AQP, it is not

necessary to meet this threshold in order to generate realistic data synopses.

32

DATGAN [31] uses the improved version of the Wasserstein loss function in WGAN

[8] in addition to the Vanilla GAN loss function with gradient penalty [33] and also

add the KL-divergence as an extra term to the original loss function. Both of these

terms aim to minimize the difference between the probability distributions of real and

generated data. WGAN employs an alternative method of training the generator to

better approximate real data distribution. This approach replaces the discriminator

model with a critic that scores the degree to which a data sample is real or fake rather

than using the discriminator as a classifier. Therefore, WGAN considers discriminator

output as a scalar score instead of a probability, and Wasserstein loss ensures a greater

difference between the scores for real and generated data. As a result, it can prevent

vanishing gradients in the generator models. However, the WGAN’s primary problem

is that it must clip the weights of the critic in order to enforce the Lipschitz constraint.

This issue can be addressed by adding a gradient penalty to the critic. Eq. 2.15 shows

the Wasserstein objective function, and Eq. 2.16 shows the same with a penalty on

the gradient norm for random samples x̂ ∼ px̂.

min
G

max
D
V (D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[D(G(z))] (2.15)

LW = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)] + λ Ex̂∼px̂ [||∇x̂D(x̂)||2 − 1)2] (2.16)

where λ is a parameter defined by the modeler and x̂ sampled from G(z) and x.

2.3.3 Conditional and Informed Generator

Imbalances in categorical columns can cause inaccuracies when generating synopses

and may result in the generator not being trained to match the distribution of the

real data. In CTGAN [30], the conditional generator is introduced (using training-

by-sampling) as a solution to this problem. To this aim, the generated value can be

interpreted as a conditional distribution of rows given the value of an imbalanced cat-

33

egorical column. Therefore, the original distribution can be reconstructed as follows:

Pg(row|Di = k) = P (row|Di = k) => P (row) =
∑
k∈Di

Pg(row|Di = k)P (Di = k)

(2.17)

where k is a value in ith categorical cloumns Di. For the implementation of this solu-

tion, a conditional vector consisting of a mask vector that represents the address of

the table value (column and corresponding row value) is required. This conditional

vector does not guarantee the feed-forward pass obtains the correct value based on the

mask vectorM ; instead, the suggested approach penalizes the conditional generator’s

loss by averaging the cross-entropy between the generated M̂i and the expected con-

ditional vectorMi over all instances of the batch. The generator loss can be expressed

as follows:

LG = E[H(Mi, M̂i)] (2.18)

Where H(.) is cross-entropy between two values. As a result, the generator learns

to replicate the masked value in the generated row during training. The conditional

vector for a data table with N categorical columns is the direct sum of all mask

vectors (M) across each column Di, where for each value ci,j :

Mi =

 1 if jthvalue

0 the rest

 , cond = M1 ⊕ . . .⊕MN (2.19)

In fact, generator loss allows the generator to learn to produce the same classes as

the given conditions. Mask vectors (Mi) are initialized with 0 for each categorical

column (Di) during the conditional generator procedure. Then, a column is chosen

at random, and the Probability Mass Function (PMF) is applied to the column’s

range of categories. According to PMF, one category is then picked, and its value

in the corresponding mask vector is changed to 1. Finally, the conditional vector is

34

formed, and the generator is able to generate a synthetic row for the given categorical

column. Figure 2.9 represents a mask vector generation process for a data table

with Nd categorical columns when generator is conditioned for jth category of ith

categorical column.

It has been discussed previously that columns in a table may have a meaningful

𝐷1, 𝐷2, …, 𝐷𝑁𝑑

𝑑11, 𝑑12, …

𝑫𝟏

𝑑𝑁1, 𝑑𝑁2, …

𝑫𝑵𝒅

𝒎𝒂𝒔𝒌 vector 𝒋𝒕𝒉 Category in 𝒊𝒕𝒉 Categorical Colum

0,… , 0 0,… , 1, … , 0 0,… , 0
𝒅𝒊𝟏 𝒅𝒊𝒋 𝒅𝒊𝒌

. . .

.

Figure 2.9: Following vectorization of categorical columns, all vectors will be initi-
ated by 0, then jth category from ith column will be selected, and the value of the
corresponding element will be changed to 1.

relationship with one another. CTAB-GAN [1] utilizes a classifier neural network

using auxiliary classifier GAN (AC-GAN) [34] that is a conditional GAN type that

requires the discriminator to predict the class label c ∼ pc of generated data as well as

the realness classifier. In AC-GAN, the generator generates a new sample using noise

z and a class label c, while the discriminator provides both a probability distribution

over sources P (S|X) and a probability distribution over class labels P (C|X). The

objective function contains the following terms:

LS = Ex∼pdata(x)[logP (S = real)] + Ex∼pz(z)[logP (S = fake)] (2.20)

LC = Ex∼pdata(x)[logP (C = creal)] + Ex∼pz(z)[logP (C = cfake)] (2.21)

35

Where LS is likelihood of predicting the correct source, LC is likelihood of predicting

the correct class, and c is a class label. Discriminator is trained to maximize LC +LS

and generator is trained to maximize LC − LS. These objective functions allow

the training procedure to generate data according to a specific type of data, while

the discriminator must predict the class label of the generated data and determine

whether or not it is real. As a result of this, the classifier loss (Eq. 2.22) will be

added to the generator in CTAB-GAN to increase the semantic integrity of generated

records and penalizes generator where the combination of columns in a data row is

semantically incorrect.

LGclass = Ez∼pz(z)[|l(G(z))− C(fe(G(z)))|] (2.22)

where l(.) returns the target label and fe(.) returns the input features of a given row.

As mentioned before, DATGAN [31] uses DAG to control the generation process

based on semantic relationships and correlations between columns. According to the

constructed DAG, each column and its sequence are represented by Long Short Term

Memory (LSTM) cells. Therefore, by providing the generator with prior knowledge,

DAG decreases the GAN’s capacity to overfit noise in the training process and en-

ables the GAN to produce more accurate data by using these noises more efficiently.

Inputs and outputs of LSTM cells should be modified in accordance with the GAN

architecture. Inputs can be expressed as follows:

it = at ⊕ ft−1 ⊕ zt (2.23)

where zt is a tensor of Gaussian noise, which is the concatenation of the noise from

the source nodes at each node of the DAG. ft−1 is the transformed output of pre-

vious tensor (ht−1). For the purposes of determining which previous cell outputs

are relevant to a node input, at represents a weighted average of all ancestor LSTM

36

outputs. Therefore, at and the zt are defined based on all ancestors of the current

node. Data input into DATGAN architecture (generated and real data) should be

encoded into [-1,1] or [0,1] using techniques described in the "Data Transformation"

section. Additionally, for categorical columns, generators produce probability over

each class, making it easy for a discriminator to differentiate between real and cre-

ated values. Therefore, DATGAN recommends using one-sided label smoothing for

the default loss. It means the categorical 0,1 vectors are introduced with additive

uniform noise and then rescaled to [0,1] bound vectors. Figure 2.10 illustrates the

DATGAN process flow diagram, including the data transformer and label smooth-

ing. In this algorithm, DAG is generated manually; therefore, semantic relationships

Encoding

Label
Smoothing

Discriminator

𝑥

LSTM

𝑎𝑡

𝑓𝑡−1

𝑧𝑡

⨁ 𝑖𝑡

ℎ𝑡

Transformer𝑓𝑡

Real dataLSTM output

Figure 2.10: DATGAN process flow digram.

between variables should be injected as expert knowledge and cannot be detected by

the model. However, tabular data cannot be considered sequential since the order of

columns in a data table is generally random. Therefore, a DAG is used to create a

specific sequence of columns.

37

Table 2.3: Comparative overview of GAN-based vs. traditional methods in tabular
data generation.

Aspect GAN-Based Methods Traditional Methods

Data Complexity Excelling in high-
dimensional, complex
data.

Suited for simpler, lower-
dimensional data.

Realism Generates highly realistic
and detailed data.

Less capable in produc-
ing realistic data.

Computational Load Higher, but necessary for
complex model training.

Lower, but may compro-
mise data complexity.

Ease of Use Complex, but offers su-
perior results for skilled
users.

Simpler, but limited in
advanced capabilities.

Versatility Highly versatile in various
domains and data types.

Limited versatility and
application scope.

Control Over Data Advanced techniques al-
low increased control.

More direct control, but
at the expense of data
quality.

Adaptability Adapts well to new and
evolving data patterns.

Less adaptive to chang-
ing data environments.

Innovation Potential Continually evolving with
cutting-edge research.

Lacks the rapid innova-
tion seen in GAN-based
methods.

Data Augmentation Superior in generating
novel data variations.

Basic augmentation ca-
pabilities.

Privacy Preservation Can be tailored for
privacy-preserving data
generation.

Often lacks sophisticated
privacy-preserving mech-
anisms.

2.3.4 Comparative Analysis of GAN-Based Methods

Table 2.3 presents a comparative analysis between GAN-based methods and tra-

ditional methods in synthetic data generation. It highlights GAN’s superiority in

handling complex, high-dimensional data and producing highly realistic outputs [35].

The table also emphasizes the versatility and adaptability of GAN-based methods

38

in various domains, showcasing their innovation potential and advanced capabilities

in data augmentation and privacy preservation [36]. Conversely, traditional methods

are noted for their simplicity and direct control over data, but they fall short in terms

of complexity, realism, and adaptability.

2.3.5 Tabular GAN Evolution

GAN
2014

medGAN
2017

Cramer GAN
2017

PNR-GAN
2018

DCGAN
2016

table-GAN
2018

CTAB-GAN
2021

TGAN
2018

CGAN
2014

DATGAN
2022

CTGAN
2019

LSTM

CNN

AC-GAN
2017

Tabular

Non-Tabular

Figure 2.11: Tabular GAN-based generators evolution based on their relationship.
Yellow boxes are tabular generators, and green boxes introduced for non-tabular
data.

GAN has made significant progress in recent years, which has led to the devel-

opment of novel variants that improve on previously introduced versions that had

promising results prior to their introduction. Table 2.4 provides a summary of the

variants of GAN that have been discussed in this paper. Also, figure 2.11 shows tabu-

lar GAN evolution, along with the year that they were introduced and their ancestors.

As shown in this figure, table-GAN and CTAB-GAN utilize convolutional layers as

part of their generator, however, CTAB-GAN makes use of a conditional version of

generator built on CGAN and AC-GAN. CTGAN also utilizes the conditional version

of GAN. With conditioned generators, realistic data can be generated based on the

39

constraints on the data table. On the other hand, TGAN and DATGAN use LSTM

for memorizing the data relationships and correlations. Indeed, both conditional gen-

erators and LSTMs attempt to generate data based on a prior knowledge about the

relationship between columns in a data table.

Table 2.4: Different tabular GAN architecture and capability.

Variant Capability Generator Discriminator Extra Loss Functions Additional Networks

medGAN
Generate high-dimensional
discrete columns

Avoid mode collapse

FNN FCN
MSE

Cross-
entropy

Autoencoder

PNR-GAN
Generate discrete columns

Handling null values
cross-layer FCN cross-layer FCN Cramer

loss

table-GAN Increase semantic Integrity CNN CNN
Information loss

Classification loss
Classifier
(MLP)

TGAN
Learn multimodal distribu-
tion.

Generate mixed type variables.

LSTM FCN Cross-
entropy

CTGAN

Learn non-Gaussian and mul-
timodal distribution.

Address imbalance discrete
column issue.

FCN FCN Wasserstein
loss with
gradient
penalty

CTAB-GAN

Generate discrete and mixed-
type column

Address imbalance discrete
column issue.

Learn long-tail distribution

CNN CNN

Cross-entropy

Information loss

Classification loss

Classifier
(MLP)

DATGAN

Increase seman-
tic Integrity

Increase repre-
sentativity of
imbalance class

LSTM FCN Wasserstein
loss with
gradient
penalty

DAG

FNN: Feed Forward Neural Network

FCN: Fully Connected Neural Network

CNN: Convolutional Neural Network

MLP: Multi-Layer Perceptron

LSTM: Long Short-Term Memory

2.3.6 GAN vs. Diffusion Model for Tabular Data Generation

In the domain of synthetic data generation, particularly for tabular data, Gen-

erative Adversarial Networks (GANs) have demonstrated substantial efficacy. They

adeptly handle complex relationships and heterogeneous data types, including nu-

40

merical, categorical, and ordinal variables. Studies reveal that GANs, through their

adversarial training mechanism, can model intricate distributions and dependencies

typical of tabular data. This capability significantly outperforms diffusion models,

which often struggle with categorical and sparse data. This struggle stems from dif-

fusion models’ inherent design, which is better suited for continuous data modalities

[37].

Diffusion models employ a process where each categorical feature is handled by a

separate forward diffusion process. In this setup, noise components for all features

are sampled independently. Moreover, diffusion tabular generators use multinomial

diffusion to model categorical and binary features, and Gaussian diffusion for numer-

ical ones [38]. This approach tends to ignore the correlations between categorical and

numerical variables, potentially leading to synthesized data that does not accurately

reflect the deterministic relationships found in the original data. As a result, diffusion

models may fail to learn or even approximate these crucial relationships.

In essence, diffusion models operate by systematically degrading the training data

through the successive addition of Gaussian noise, and then attempt to reconstruct

the data by reversing this noising process. Specifically, a diffusion model is a latent

variable model that employs a fixed Markov chain to map to the latent space. This

describes the process of generating data points by simulating random walks from an

initial state through a series of diffusion steps. In scenarios involving multimodal

distributions, the random walk process may have to traverse through different modes

of the distribution, a task that can pose significant challenges in accurately capturing

the data’s complex structure.

Conversely, GANs do not require the extensive dataset density nor complex prepro-

cessing to handle issues like tabular data sparsity and high dimensionality, constraints

that are less critical for GANs. Also, GANs are adaptable to various data densities

and types without significant additional conditioning. Their application in tabu-

41

lar data synthesis has been successfully demonstrated across numerous benchmarks

where they consistently generate higher fidelity data compared to diffusion models,

which may still be experimenting with basic adaptations for tabular specifics [39].

Therefore, for synthetic data generation of tabular formats, GANs present a more ro-

bust and efficient solution than current diffusion model frameworks, confirming their

superiority in handling the complex and varied demands of tabular data synthesis.

CHAPTER 3: METHODOLOGY

The CA-CTGAN architecture generates synthetic data that is representative of

real-world data, with multiple types of data and additional contextual information.

A detailed explanation of the proposed method and its structure is provided in this

section.

3.1 Framework Overview

In this section, we introduce the Context-Aware Tabular Conditional GAN (CA-

CTGAN) and underscore the methodology’s novelty and its potential impact on the

field of synthetic data generation. Building upon the CTGAN foundation, CA-

TCGAN leverages a multifaceted approach to enhance synthetic data quality and

controllability. We can break down the elements and operational path of the CA-

CTGAN framework into the following items.

• Contractive Autoencoder: Initially, the raw data undergoes a transforma-

tion process to normalize and prepare it for input into the framework. The

transformed data is then fed into a Contractive Autoencoder (CAE) to provide

a semantically rich latent space and accelerates GAN training. Upon training

the CAE, the model is saved, and using transfer learning, the latent space of this

pretrained model is utilized to generate noise for the GAN generator. This ap-

proach diverges from traditional methods that employ a standard multivariate

normal distribution (MVN) for noise, offering a more meaningful noise vector

that reflects the semantic relationships between columns in the data.

• Generator and Discriminator: Following the noise generation, a fully con-

nected generator commences the production of realistic synthetic data. This

43

data, alongside real data, is forwarded to both a discriminator, here referred to

as a critic, and a classifier. The distinction between a critic and a traditional

discriminator in GANs lies in the nature of their output and operational prin-

ciple. While a discriminator classifies inputs into real or fake, a critic provides

a continuous score that measures the authenticity of the input data, offering a

more nuanced understanding and facilitating the generation of higher-quality

synthetic data.

• Classifier: The classifier is trained on the generated data to predict class

labels or other context-specific elements. This predictive capability enables

the classifier to guide the generator towards producing data that is not only

realistic but also contextually appropriate. The real data serves as a benchmark

for evaluating the synthetic data’s quality, with the classifier’s loss being used

to jointly train both the classifier and the generator. This feedback loop ensures

that the generator’s output continuously improves in quality and relevance.

The subsequent subsections, we will dissect each component of the CA-CTGAN

framework in detail. This includes a deep dive into the workings of the Contrac-

tive Autoencoder, the generator-critic architecture, and the classifier’s role in refining

synthetic data generation. The overall interaction between CA-CTGAN framework

components is shown in Figure 3.1.

3.2 Data Transformation

The Data Transformation process is a crucial initial step in preparing data for the

CA-CTGAN framework, ensuring that the input is optimally formatted for processing

by the network and it involves encoding continuous and categorical variables. The

employed transformation techniques address the challenges inherent in dealing with

real-world data, such as null values, long-tail distributions, multimodal distributions,

and imbalanced categorical features.

44

Generator

Discriminator
(Critic)

Generated sample

Real data

Classifier

𝒑𝟎
𝒑𝟏
…

𝒑𝒎

"𝒙𝟏 … "𝒙𝒏

𝒙𝟏 … 𝒙𝒏

𝑫(𝒛)

Pretrained CAE

Pack of 10

Pr
ob

ab
ili

ty
 o

f b
ei

ng

Re
al

/F
ak

e
fo

r e
ac

h
sa

m
pl

e

Encoder

Decoder

| | | |

𝒁

𝒑𝟎
𝒑𝟏
…

𝒑𝒏

Pr
ob

ab
ili

ty
 o

f p
re

di
ct

ed

la
be

ls

𝒍𝟏 … 𝒍𝒎
Labels

(conditions)

Figure 3.1: Components of CA-CTGAN.

3.2.1 Continuous Columns

For Continuous Columns, we employ Mode-specific Normalization [30] technique.

Traditional normalization methods often assume a Gaussian distribution, which does

not hold for many real-world datasets. Mode-specific Normalization, however, is

specifically designed to manage non-Gaussian and multimodal distributions effec-

tively.

This technique processes each column independently. Each value is represented by

a one-hot vector identifying the mode and a scalar expressing the value within that

mode. To achieve this end, we use Variational Gaussian Mixture (VGM) [40] which is

a mixture of Gaussian distributions, where the model parameters are estimated based

on variational inference. Variational inference is an optimization-based approach that

approximates the true posterior distribution of the latent variables with a simpler dis-

tribution. Here, we describe encoding a multimodal distribution using a VGM step

by step.

Mode Specification: Given data X = x1, x2, ..., xN , where xi represents the ith

data point, and assuming that the data is generated from K Gaussian distributions,

45

a Gaussian Mixture Model can be specified as:

K∑
k=1

πkN(x|µk,Σk) (3.1)

where πk is the mixing coefficient (prior probability) for the kth Gaussian component,

N(.) is the Gaussian distribution with mean µk and covariance matrix Σk, and K is

the number of components (modes).

The latent variable zi denotes the assignment of the ith data point xi to a specific

Gaussian component. It is a K-dimensional binary random variable which means one

element related to the k is equal to 1 and the rest are 0. The prior distribution over

zi is given by a categorical distribution:

p(zi) = Categorical(zi|π) (3.2)

where π = π1, ..., πK is a vector of mixing coefficients.

Variational Inference: The goal of variational inference is to approximate the true

posterior distribution p(z|X) with a simpler distribution q(z). In the case of VGM,

we choose a factorized distribution for q(z) as:

q(z) =
∏
i

qi(zi) (3.3)

where qi(zi) = Categorical(zi|φi) and φi = φi1, ..., φiK is a vector of variational

parameters corresponding to data point i.

Evidence Lower BOund (ELBO): To estimate the parameters of the VGM (µk,

Σk, πk) and the variational parameters (φi), we maximize the Evidence Lower BOund

(ELBO), which is a lower bound on the log-likelihood of the data. The ELBO can be

expressed as:

L(X, θ, φ) =
∑
i

Eq[log p(xi, zi|θ)]− Eq[log qi(zi)] (3.4)

46

where θ = µk,Σk, πk denotes the set of all model parameters.

Coordinate Ascent Variational Inference (CAVI): To maximize the ELBO, we

can use the Coordinate Ascent Variational Inference (CAVI) algorithm, which itera-

tively updates the variational parameters φi and the model parameters θ. Algorithm 1

depicts the CAVI updates. By following this procedure, we can encode a multimodal

Algorithm 1 Coordinate Ascent Variational Inference for VGM
1: while not converged do
2: for each data point i do
3: Update φik ∝ exp(Eq[log p(xi, zi = k|θ)])
4: Normalize φi such that

∑
k φik = 1

5: end for
6: for each component k do
7: Nk =

∑
i φik

8: µk = 1
Nk

∑
i φikxi

9: Σk = 1
Nk

∑
i φik(xi − µk)(xi − µk)T

10: πk = Nk

N

11: end for
12: end while

distribution using a Variational Gaussian Mixture model. The estimated parameters

µk, Σk, and πk can then be used to generate new samples for a specific mode.

In contrast to GMM, Variational Gaussian Mixture is more computationally demand-

ing, but it is less likely to get stuck local optima and provides a measure of uncertainty

in parameter estimates.

3.2.2 Categorical Data

A one-hot encoding is used to encode categorical data before feeding the Generator,

and an integer encoding is used to encode ordinal data that maintains their inherent

order. As opposed to one-hot encoding, which treats all categories independently,

this approach maintains the ordinal relationship between them.

For feeding auxiliary classifier network, we use Entity Embedding [41] which is a

technique that converts categorical variables into continuous representations by em-

47

bedding them in a continuous vector space. This approach is inspired by word embed-

dings [42] used in natural language processing, where words are mapped to vectors of

continuous values, capturing semantic relationships between them. Entity embedding

can be applied to categorical variables in a similar fashion, enabling the preservation

of the relationships between categories while transforming them into a more suitable

format for deep learning models.

To implement entity embedding, we can follow these steps:

Determine the size of the embedding vector (k): The size of the embedding

vector is a hyperparameter that needs to be chosen based on the problem domain

and the size of the categorical variable. A common heuristic is to choose k as the

minimum of 50 and (number of unique categories+ 1)/2.

Create an embedding layer: For each categorical variable, create an embedding

layer in a neural network. The input to this layer is the integer-encoded version of the

categorical variable, where each category is assigned a unique integer. The output of

the embedding layer is a k-dimensional continuous vector representing the embedded

category.

Train the neural network: While training the neural network, the categorical

variables are fed into their respective embedding layers. The embedding layers learn

to map the categorical variables to continuous representations by minimizing cross-

entropy loss function.

Embedding matrix E of size (n, k) can be formulated as E = [e1, e2, ..., en] where n

represents the number of unique categories and ei is the k-dimensional continuous

vector representation of category i. During the training process, the categorical vari-

able xi is transformed into a continuous representation using the embedding matrix

E.

By employing entity embedding, the categorical variables are transformed into con-

tinuous representations that can be effectively utilized in deep learning models. The

48

learned embeddings can capture the relationships between categories, leading to im-

proved model performance and more meaningful generated data. However, Extracting

the original categorical values from the embedded continuous representations is not

straightforward, as the mapping is not one-to-one and the embeddings are learned

in a continuous vector space. The goal of embedding is to capture the semantic

relationships between categories, and during the learning process, these continuous

representations are optimized to serve the main task, such as regression or classifi-

cation. Therefore, we use embedding to train the Classifier network which will be

presented in the next section.

3.2.3 Mixed-mode Data

In the section 2.3.1, we discussed the challenges of encoding mixed-type data, which

consists of both categorical and continuous values or continuous values with missing

entries. To address this issue, we employ the Mixed-Type Encoder introduced in

the CTABGAN [1]. Mixture-type values are encoded as concatenated value-mode

pairs, and continuous values are encoded using VGM (section 3.2.1). A mode indi-

cator vector is used to encode the categorical component without normalization. As

a result, mixed-type data is adequately represented, allowing for efficient processing

and integration in the context of GAN-based data generation. Figure 3.2 shows the

distribution over an arbitrary mixed-type column, with two modes for continuous

(m2,m3) and two categorical parts (m1,m4) and illustrates how this algorithm trans-

forms one row of mixed-mode data. Therefore the representation of a row become

the concatenation of continuous and discrete columns (Eq. 2.10).

3.3 Design and Training process

As we mentioned before in section 3.1, the proposed CA-CTGAN architecture

comprises four primary components: Contractive Autoencoder (CAE), Generative,

Discriminator (Critic) and Classifier. We use CAE in Transfer Learning process and

49

𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝟒

𝜷𝟏 = 𝟏, 𝟎, 𝟎, 𝟎
𝜶𝟏 = 𝟎

𝜷𝟒 = 𝟎, 𝟎, 𝟎, 𝟏
𝜶𝟒 = 𝟎

Categorical or
null values

Categorical or
null values

Numerical values modes

𝜷𝟐 = 𝟎, 𝟏, 𝟎, 𝟎

𝜶𝟐 =
𝒄𝟐 − 𝝁𝟐
𝜹 × 𝝈𝟐

𝜷𝟑 = 𝟎, 𝟎, 𝟏, 𝟎

𝜶𝟑 =
𝒄𝟐 − 𝝁𝟑
𝜹 × 𝝈𝟑

Figure 3.2: Distribution over a mixed-type column. m1 andm4 represent the categori-
cal part or null values of this column, whereasm2 andm3 represent modes for numeric
parts. The numeric parts are defined by Variational Gaussian Mixture (VGM) model.
[1]

it acts as noise generator for generator and the output of generator along with the

real data is used as input for discriminator and classifier. This section provides an

in-depth exploration of the design and architecture of each model.

3.3.1 Contractive Autoencoder

After data preprocessing, CAE is trained to learn an efficient and meaningful rep-

resentation of the input data. The encoder comprises two linear layers, transitioning

the input transformed data from its original dimensionality to a hidden representa-

tion, and subsequently to a lower-dimensional latent space. Mirroring the encoding

process, the decoder reconstructs the data from the latent space back to its original

dimensionality which is matched with generator input. This is achieved through two

50

linear transformations, which progressively upsample the latent representation to the

hidden state and then back to the input space. The sigmoid activation function is

employed at each stage of both encoder and decoder to ensure the output values are

appropriately scaled.

During each iteration of the training process, a batch of input data is fed into the

CAE, and the output of the network is compared to the input data to compute the

reconstruction loss. Also, the contractive loss, which encourages the model to learn

a stable and invariant representation of the input data, is calculated by taking the

Frobenius norm of the Jacobian of the encoder with respect to the input data (Eq.

2.5). This is achieved through automatic differentiation techniques. The reconstruc-

tion error, typically measured by the Mean Squared Error (MSE) between the input

and its reconstruction. This process ensures that the most relevant features of the

data are captured in a lower-dimensional space. However, when augmenting this ob-

jective with the Kullback-Leibler (KL) divergence loss [11], the model is encouraged

not only to accurately reconstruct the input data but also to regularize the latent

space representations. The KL divergence is a measure of how one probability distri-

bution diverges from a second, expected probability distribution. This regularization

effect helps in mitigating overfitting by preventing the model from learning to simply

memorize the training data. The incorporation of KL divergence is especially perti-

nent for variational autoencoders (VAEs) [11], where it is a critical component that

differentiates them from standard autoencoders. However, in the context of enhanc-

ing a traditional autoencoder for tabular data, the KL divergence loss can similarly

impose a probabilistic structure on the latent space, leading to more meaningful and

generalizable representations. Hence, the reconstruction loss can be represented as

follows:

LMSE =
1

N

N∑
i=1

(ŷi − yi)2 (3.5)

51

LKLD = DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
(3.6)

L = LMSE + β × LKLD (3.7)

Where β is a hyperparameter that balances the contribution of the KL divergence

loss relative to the MSE loss. The total loss is the sum of the reconstruction loss and

the contractive loss, weighted by a hyperparameter lambda that controls the trade-off

between the two. Using backpropagation (Eq. 2.6), the gradients of the total loss with

respect to the network parameters are computed, and the parameters are updated

using the Adam optimizer. After the CAE model is satisfactorily trained, it can be

employed to directly generate the input noise for the Generator in the CA-CTGAN.

The input and output layer sizes of the CAE are designed to match the transformed

data size, ensuring seamless integration within the generator. This alignment allows

the CAE to directly process the transformed data, facilitating an efficient and effective

noise generation process. This utilization of the pre-trained CAE allows the generator

to benefit from the captured interdependencies between the columns in the data,

providing a more meaningful starting point. As a result, this strategy contributes to

a reduction in the convergence time for the CA-CTGAN and leads to an improvement

in the quality of the generated data. Algorithm 2 shows the training process of CAE.

In order to generate an input noise vector for the Generator using the pre-trained

CAE, we follow a systematic approach that leverages the characteristics of the CAE

architecture. The following steps outline the process for generating a sample from

the latent space using the CAE:

1. Transfer the pre-trained CAE: Firstly, we transfer the weights of the pre-

trained CAE, which has already captured the intricate relationships between

the columns in the data.

2. Sample from the latent space: To generate a sample from the latent space,

52

Algorithm 2 Training Contractive Autoencoder
Input: Training data, X ← concat(X, labels) with batch size B
Output: Trained model, CAE ← Weights of trained model

Initialize the Contractive Autoencoder model with randomly generated weights
for n training iterations do

for each batch of data Xbatch in training data X, with batch size B do
for each data sample x in batch Xbatch do

Pass input data x through the Contractive Autoencoder to obtain recon-
structed data x′ and encoded representation z

Compute the reconstruction loss Lrecon and the contractive loss Lcont
end for
Compute the average reconstruction loss L̄recon and average contractive loss

L̄cont for the batch
Calculate the gradients of the average total loss L̄ = L̄recon + L̄cont with

respect to the model parameters using backpropagation
Update the model parameters using Adam optimizer

end for
end for
return CAE

we randomly sample a vector from a Multivariate Normal Distribution (MVN).

This sampled vector should have the same dimensionality as the latent space.

3. Utilize the decoder: The sampled vector from the latent space is then fed

into the decoder part of the CAE. The decoder reconstructs a new data point

in the original data space based on the latent representation.

Incorporating a Contractive Autoencoder (CAE) and adjusting the weight of the con-

tractive loss, alongside MVN for sampling, have significantly improved the diversity

and quality of data reconstruction from the latent space. This improvement can be

attributed to the enhanced regularization and the sophisticated noise injection mech-

anism, which together foster a more robust and generalizable model.

The implementation of a Contractive Autoencoder (CAE) with a relatively high hy-

perparameter λ (0.3) for the contractive loss represents a strategic enhancement to

the autoencoding framework, primarily aimed at augmenting the model’s ability to

53

generate diverse and high-fidelity reconstructions from latent representations. The

contractive loss effectively imposes a constraint on the sensitivity of the learned rep-

resentations to small variations in the input data. By intensifying the weight of this

contractive term, the model is encouraged to learn a latent space that is more in-

variant to minor perturbations in the input data. This regularization technique not

only aids in mitigating overfitting by discouraging the memorization of training data

but also promotes a smoother and more continuous latent space. Consequently, when

noise is injected into this well-regularized latent space, the decoder can interpolate

more effectively, leading to the generation of a richer diversity of plausible data points

that maintain fidelity to the underlying data distribution. Furthermore, the adoption

of a Multivariate Normal Distribution (MVN) for noise generation is a critical fac-

tor that synergizes with the CAE’s enhanced latent space to improve reconstruction

diversity. The choice of MVN allows for the injection of noise that is statistically

coherent with the assumptions underpinning many natural data distributions. This

compatibility ensures that the explorations conducted in the latent space via noise

injection are meaningful and aligned with the geometry of the data manifold encoded

by the autoencoder.

3.3.2 Generator

A significant challenge in the generator architecture is the inherent imbalance

present within categorical columns of tabular data. With deterministic transfor-

mations, even mapping a matched distribution of real data in traning process, fail to

address this imbalance effectively. Such approaches can lead to underrepresentation

of minority categories during training, resulting in a generator that poorly approxi-

mates the real data distribution. This problem is analogous to the class imbalance

issue encountered in discriminative modeling but is further complicated by the multi-

column nature of tabular data and the necessity to maintain the integrity of the real

data distribution. To overcome these challenges, the CA-CTGAN framework adopted

54

conditional generator [30] that aims to evenly sample across all categories of discrete

attributes during training, thereby ensuring a balanced representation of the data.

This generator is designed to learn the conditional distribution of data given specific

attribute values, allowing for the reconstruction of the original, unaltered data distri-

bution during evaluation (eq. 2.17).

The integration of a conditional generator within the GAN architecture necessitates

addressing several key issues:

1. Condition Representation: It’s crucial to develop a method for representing the

condition (i.e., the specific value from a discrete attribute) and preparing the

generator’s input to include this condition.

2. Condition Preservation: Ensuring that the generated data preserves the speci-

fied condition is essential. This requires the generator to accurately embed the

condition within the generated samples.

3. Learning the Real Data Conditional Distribution: The conditional generator

must effectively learn the real data’s conditional distribution. This capability

is critical for the generator to not only balance the representation of categories

during training but also to accurately reconstruct the original data distribution.

The generator is a feed-forward neural network and employs Leaky ReLU activa-

tion functions in their hidden layers. This activation function mitigates the issue of

dying ReLU in the generator network, resulting in faster convergence and improved

performance [43].

3.3.3 Discriminator

The discriminator, referred to as the critic. The primary function of the critic is

to estimate the divergence between the conditional distribution of the generated data

Pg(row|condition) and the conditional distribution of the real data P(row|condition).

55

This evaluation is critical for guiding the generator towards producing data that

closely approximates the real data distribution under various conditional constraints.

The effectiveness of the critic’s assessment hinges on the appropriate sampling of the

condition vector and the real training data. The condition vector, which represents

specific attribute values for which data is generated, must be sampled in a manner

that ensures a comprehensive exploration of the attribute space, including both com-

mon and rare categories. This balanced exploration is vital for the critic to accurately

estimate the divergence across the entire distribution of attribute values, rather than

focusing disproportionately on more frequent categories.

To achieve this balanced exploration, the CA-CTGAN framework employs a training-

by-sampling strategy [30] where the condition vector and training data are sampled

according to the log-frequency of each category. This approach mitigates the bias

towards overrepresented categories by elevating the importance of rarer categories,

ensuring that the model develops an even understanding of all possible values within

discrete columns. By sampling condition vectors and training data based on category

log-frequency, the framework promotes an equitable representation of the data’s di-

versity.

The discriminator network takes in packs (m samples) of both real and fake data

samples based on PacGan methodology [2]. Mode collapse, or the lack of divergence

between the generated samples from the trained generator, is one of the major chal-

lenges associated with training Generative Adversarial Networks (GANs). Different

approaches have been proposed, like minibatch discriminators, two-sample tests, mo-

ment matching, and inverse mappings of generators. The PacGAN framework is

introduced to tackle this problem [2]. The key idea behind PacGAN is to modify

the discriminator to process a pack of data samples instead of a single sample. Thus,

instead of using a discriminator D(x) to map one row to a label, it uses an augmented

discriminator D(x1, x2, ..., xm) to map m samples, both from real data and from the

56

generator. This helps to capture the inter-sample relationships and discourage the

generator from focusing on generating a single mode in the data distribution.

To do so, we concatenate m samples along a new dimension and modify the subse-

quent layers to process the concatenated samples, and ensure that the input labels

are also adjusted accordingly to match the pack of samples. Figure 3.3 represents

how PacGAN augments the input layer by m = 2 packs. The grid-patterned nodes

show input nodes for the second sample.

The discriminator comprises packed samples that are represented as (x1, x2, ..., xm),

Figure 3.3: In the PacGAN model, the input layer is expanded by a factor of the
packing degree (Herem = 2). The connections to the initial hidden layer are modified
to ensure that the first two layers maintain full connectivity, consistent with the
original architecture [2].

either for real data or generated data. The set of m independent samples originating

from each class are regarded as a unified, high-dimensional feature (x1, x2, ..., xm).

Therefore, the discriminator acquires the ability to classify a set of m samples that

have been packed together. The process of packing the samples is believed to assist

the discriminator in detecting mode collapse, as the absence of diversity is less likely

in a group of samples as opposed to an individual sample.

57

3.3.4 Auxiliary Classifier

In parallel to the discriminator, the classifier network predicts the labels (context-

specific elements) of each generated row, enabling the assessment of the semantic

integrity of the generated records. Classifier’s function goes beyond just creating

data to evaluating if the created rows maintain the contextual subtleties of the origi-

nal dataset.

A standout feature in classifier networks is the incorporation of Entity Embedding

techniques [41] for encoding categorical columns. Entity Embeddings offer a dense,

low-dimensional, and meaningful representation of categorical variables, transcend-

ing the limitations of traditional one-hot encoding by capturing and preserving the

relational intricacies among categories. This technique not only reduces the dimen-

sionality of the input space but also enhances the model’s ability to learn complex

patterns and relationships among categorical variables, which are often prevalent in

tabular datasets. By integrating the embeddings with numerical inputs, the model

creates a unified representation that is fed through a series of linear layers and nor-

malization steps, enhancing the learning process through added layers of abstraction

and complexity reduction.

The architecture of classifier embodies a sequence of linear layers, batch normal-

ization, and dropout, orchestrated to refine the feature representation progressively,

culminating in the prediction of labels. This label prediction is critical for assessing

the semantic integrity of the generated rows, ensuring that the data can be generated

for specific consition.

3.3.5 Loss Function

The complexity of GAN training stems from the simultaneous optimization of two

models, the generator and the discriminator, that are in a constant competition with

58

each other. This leads to a delicate balance between the two models, where a minor

imbalance can result in the failure of the optimization process [6]. In addition to

mode collapse, one of the challenges in GAN training is the vanishing gradient prob-

lem, which occurs when the discriminator becomes too powerful in differentiating

between real and fake data. In this scenario, the loss function reaches zero, resulting

in no gradient for updating the generator during learning iterations. Conversely, if

the discriminator performs poorly, the generator may not receive accurate feedback,

leading to a suboptimal representation of the target distribution in the generated

samples [44]. In order to tackle the aforementioned concerns and produce realistic

samples that can effectively replicate the samples in desired labels, we propose the

utilization of the following Loss functions.

Original Loss: The original loss functions for the generator and discriminator (Eq.

2.2) are adapted to accommodate the use of PacGAN in the discriminator. For the

discriminator, as we disscussed in section 3.3.3 the objective is to correctly classify

each packed sample as either real or generated. The loss function is formulated as a

binary cross-entropy loss applied to the bundled samples. The discriminator loss, LD,

is defined as the sum of the losses for correctly classifying real data and generated

data:

LDOrig = Ex[log(D(x1, ..., xm|y))] + Ez[log(1−D(G(z1, ..., zm|y)))] (3.8)

The generator’s loss function LG is defined using binary cross-entropy. The generator

aims to deceive the discriminator into classifying generated data as real:

LGOrig = −Ez[log(D(G(z1, ..., zm|y)))] (3.9)

where the generator tries to maximize the probability of the discriminator misclassi-

fying the generated samples as real data.

Similarity Loss: The Wasserstein distance, utilized as a critical component in train-

59

ing the discriminator (referred to as a critic in the context of WGANs, to emphasize

its evaluative rather than binary classificatory role), ensures that the discriminator

accurately assesses how closely the generated data approximates the distribution of

real data. Recognized for its effectiveness in measuring the discrepancy between two

probability distributions, the Wasserstein distance significantly enhances the stability

and quality of training in GANs. By incorporating the Wasserstein distance, along

with a gradient penalty, into the critic’s loss function, the critic is better equipped

to guide the generator toward producing data that more closely mirrors the real data

distribution. The generator, aiming to minimize the critic’s evaluation of its outputs,

is indirectly influenced by the Wasserstein distance to generate higher-quality data.

As mentioned before, unlike traditional GANs where the discriminator operates on a

binary output, the critic in WGANs (Eq. 3.10) provides a continuous value that more

precisely estimates the Earth Mover’s distance, or the minimum cost of transporting

mass to transform the generated data distribution into the real data distribution.

This can be conceptualized as the infimum (greatest lower bound) of transportation

costs, making the critic’s role pivotal in refining the generator’s outputs through a

more nuanced and effective training process.

W(pdata, pg) = inf
γ∼Π(pdata,pg)

E(x,y)∼γ[‖ x− y ‖] (3.10)

Where Π(pdata, pg) is all possible joint probability distributions between pdata and

pg, x is the starting point in data distribution and y is the destination in generated

distribution. However, the calculation of the Wasserstein distance using Eq. 3.10

requires evaluating all possible joint distributions of samples from two distributions,

which is intractable due to the large number of possible distributions. To address

this issue, the [8] in WGANs proposed to use the Kantorovich-Rubinstein duality

to compute an upper bound on the Wasserstein distance. The dual form of the

60

Wasserstein distance is given by:

LDWGAN = sup
‖f‖L≤1

Ex∼pg [f(x)]− Ex∼pdata [f(x)] (3.11)

where f(x) is Lipschitz continuous functions from the sample space to the real num-

bers, and the supremum is taken over all functions f . This approach offers a practical

means of approximating the Wasserstein distance between two distributions. By op-

timizing the functions f , the model effectively estimates the Wasserstein distance

between the real and generated data distributions. This estimation is then utilized

to train the discriminator, or critic, ensuring it can accurately assess the discrepancy

between real and generated distributions. The generator, in turn, is trained to mini-

mize the critic’s evaluations, indirectly guided by the Wasserstein distance to improve

the quality of its output. The incorporation of the Wasserstein distance and gradient

penalty in the critic’s loss function plays a pivotal role in stabilizing the training pro-

cess and enhancing the fidelity of the generated data, without directly applying the

Wasserstein loss as a training criterion for the generator.

However, enforcing the 1-Lipschitz condition is not straightforward. Initially, weight

clipping was used to enforce this condition, but it was found to lead to optimization

issues and poor quality of generated samples. This led to the introduction of Gradi-

ent Penalty (GP) as a method to enforce the 1-Lipschitz condition more gently and

effectively [33].

The Gradient Penalty adds an additional term to the loss function that penalizes the

model if the gradient norm moves away from 1. This is done by sampling points along

the straight line between pairs of real and generated data points and ensuring that

the gradients of the critic’s output with respect to these points have a norm of 1. The

Gradient Penalty term is formulated as:

61

GP = λ(‖∇x̂f(x̂)‖2 − 1)2 (3.12)

Where x̂ represents the sampled points, λ is a penalty coefficient, and ∇x̂f(x̂) is the

gradient of the critic’s output with respect to x̂. This term is added to the original

Wasserstein Loss, leading to the final objective:

LDWGAN = sup
‖f‖L≤1

Ex∼pg [f(x)]− Ex∼pdata [g(y)] +GP (3.13)

The generator’s goal, on the other hand, is to produce data that minimizes the critic’s

ability to distinguish between real and generated samples. In the context of WGAN-

GP, the generator is trained to minimize the following loss function:

LGWGAN = −Ex∼pg [f(x)] (3.14)

This means the generator aims to maximize the critic’s score for its generated sam-

ples.

Classification Loss: During the Classifier training process, two distinct loss func-

tions are employed to measure the discrepancy between the conditioned labels y and

predicted labels ŷ. The first loss function LCclass quantifies the divergence between the

conditioned labels and the predicted labels obtained from the original data using the

Classifier. This loss function evaluates the Classifier’s ability to correctly classify the

labels of real data samples.

LCclass = Ex∼pdata [|y − C(x)|] (3.15)

where y is the ground truth label and C(.) returns the predicted labels for real data

by classifier.

The second loss function LGclass measures the discrepancy between the conditioned

62

labels and the predicted labels derived from the generated data using the Classifier.

This loss function assesses the semantic integrity of the generated data samples by

comparing the input labels used to generate the data with the predicted labels as-

signed by the Classifier. By minimizing both loss functions, the Classifier effectively

learns to distinguish between the original and generated data while preserving the

contextual relationships between input features and corresponding labels.

LGclass = Ex∼pg [|y − C(G(z))|] (3.16)

where y is the ground truth label, C(G(z)) represents the predicted labels for gener-

ated data by classifier.

3.3.6 Training Process

During the training process of the proposed methodology, each epoch is carried

out by processing the data in minibatches and components of the model are trained

using specific loss functions to optimize their performance. The Discriminator is

trained using LDorig + LDwgan, which is adapted to incorporate the PacGAN [2] and

WGANGP [8]. This enables the Discriminator to efficiently distinguish between real

and generated data samples while addressing potential issues of mode collapse. The

Classifier network is trained using LCclass, which measures the discrepancy between the

conditioned labels and the predicted labels obtained from the original data. This loss

function helps the Classifier to accurately predict context-element labels associated

with the input data, ensuring the semantic integrity of the generated synthetic records.

The Generator is trained using LGorig + LGwgan + LGclass. The Class Loss measures the

discrepancy between the conditioned labels and the predicted labels derived from the

generated data.

By employing these specific loss functions during the training process, the proposed

methodology ensures the effective generation of contextually relevant and semantically

63

meaningful synthetic data. Algorithm 3 shows the training process of CA-CTGAN

and the figure 3.4 represents the training flow in CA-CTGAN architecture.

Algorithm 3 Training CA-CTGAN
Input: Training data, X ← concat(features, labels) with batch size B
Output: Trained Generator, G← Generator of Trained Conditional GAN

Initialize Generator G, Discriminator D, and Classifier C
Preprocess the data, apply feature encoding
Initialize the input layer of generator with the transferred pre-trained Contractive
Autoencoder
for n training epochs do

for each batch of data Xbatch in training data X do
Sample Xbatch of real data and their corresponding Labels
Pack samples for Discriminator using PacGAN
Update D using LDorig for packed real and fake data
Update C using LCclass for real data
Generate minibatch of fake data and their corresponding labels using G
Update G using LGorig + LGwass + LGclass for fake data

end for
Average the losses over the batch
Calculate the gradients of the losses with respect to the model parameters using

backpropagation
Update the model parameters using Adam optimizer

end for
return Trained Model

Figure 3.1 represents the overall CA-CTGAN architecture, comprising the genera-

tor, discriminator, and classifier networks, effectively generates contextually relevant

synthetic data that respects the semantic relationships between input features and

corresponding spatial or temporal labels. By incorporating PACGAN, the framework

addresses the mode collapse issue, making it a versatile solution for synthetic data

generation.

3.4 Contribution and Novelty

In this section, we highlight the key contributions and innovative aspects of the

proposed CA-CTGAN framework. These aspects showcase the significance of the re-

search and the potential to advance synthetic data generation across various domains.

64

Generator

𝐺(𝑧, 𝜃𝑔)

Generated
Distribution

𝑝𝑔(𝑥)

Real Data
Distribution

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑥𝑔

𝑥𝑑

Discriminator
𝐷(𝑥, 𝜃𝑑)

𝑫𝒆𝒄𝒐𝒅𝒆(𝒛)

𝑮(𝒛) with parameter 𝜽𝒈

Map 𝒛

fake
sample

real
sample

P
ack o

f 1
0

𝑫(𝒙) with parameter 𝜽𝒅| | | | |

Context-Specific
Element

𝒚

| | | | |

Transfer Model

𝒑𝟎

𝒑𝟏

…

𝒑𝒎

Classifier
𝐶 𝑥, 𝜃𝑐

𝒑𝟎

𝒑𝟏

…

𝒑𝒏

𝒚PacGAN

𝓛𝒄𝒍𝒂𝒔𝒔
𝑮 (መ𝒍, 𝒍𝒈)

𝓛𝒄𝒍𝒂𝒔𝒔
𝑪 (መ𝒍, 𝒍𝒅)

𝓛𝒐𝒓𝒊𝒈
𝑫 (𝒙, 𝑮(𝒙))

𝓛𝒐𝒓𝒊𝒈
𝑮 (𝒙, 𝑮(𝒙))

Contractive Autoencoder

Decoder

| | | | |

𝒛

𝓛𝑾𝑮𝑨𝑵
𝑫,𝑮 (𝑪𝒓(𝑮(𝒙))

Figure 3.4: Detailed schematic representation of the CA-CTGAN training process
and architecture.

The major contributions and novelties are as follows:

• Development of a novel Context-Aware Conditional Tabular GAN (CA-CTGAN)

architecture that effectively synthesizes high-resolution tabular data while con-

sidering the contextual information for diverse experimental domains.

• Development of a new tabular data generation framework (CA-CTGAN) using

conditional GAN that allows the framework to generate data specifically tailored

with targeted synthetic data.

• Integration of Transfer Learning in the CA-CTGAN framework, enabling the

generator to capture complex relationships between columns in the data while

generating synthetic data.

65

• Development of an auxiliary multi-class Classifier network with entity embed-

ding for controlling the generation process, enabling CA-CTGAN to produce

data points at desired context-specific elements.

• Showcasing the potential applications of the CA-CTGAN approach across di-

verse fields, including including laboratory, field, natural, and clinical experi-

ments, thereby contributing to the advancement of knowledge and technology

in these domains.

This innovative application of the GAN-based tabular data generation not only main-

tains the semantic integrity of the generated data but also increases the applicability

of the CA-CTGAN approach across a wide range of scientific fields and enhances the

quality of the synthetic data to provide a strong foundation for further research and

development in the area of synthetic data generation.

CHAPTER 4: EXPERIMENTAL STUDIES

This chapter provides a detailed overview of the datasets employed within this

dissertation and outlines the experimental setup used for developing and evaluating

the synthetic tabular data generation framework. The datasets are characterized in

terms of their origin, size, features , and the presence of context-specific labels. Ad-

ditionally, the chapter describes the hardware and software specifications, parameter

settings, and evaluation metrics used throughout the experiments.

4.1 Datasets

We utilized nine real world datasets throughout the experiments and a detailed

characterization of the each dataset is presented in the following section.

4.1.1 Adult Income Dataset

The Adult dataset [45] is a real-world dataset derived from the 1994 US Census.

It contains approximately 48,842 instances with a mix of numerical and categorical

features. The dataset is commonly used as a benchmark for classification tasks focused

on predicting income level (above or below $50K annually). For effective utilization,

the Adult dataset frequently requires preprocessing to handle missing values and

encode categorical variables. Figures 4.1, 4.2 and 4.3 illustrate an analysis of the

distribution of values in the dataset. For categorical features, violin plots highlight

the relative frequency of different categories within each variable. Pair plot offers

insights into the distribution of each numerical features as well as correlation between

columns.

67

Figure 4.1: Distribution and correlation of numerical values in the Adult dataset

68

Figure 4.2: Frequency of different categories within each categorical column in the
Adult dataset

69

Figure 4.3: Frequency of different categories within each categorical column in the
Adult dataset

4.1.2 Air Quality dataset

The Air Quality dataset [46], contains data collected from an air quality chemical

multisensor device deployed in a polluted area within an Italian city. The dataset

encompasses hourly measurements recorded over a one-year period, from March 2004

to February 2005. It includes sensor responses alongside ground-truth concentrations

for various air pollutants, including carbon monoxide (CO), non-methane hydrocar-

bons, benzene, total nitrogen oxides (NOx), and nitrogen dioxide (NO2). This dataset

provides valuable insights into air quality monitoring and pollution assessment using

chemical sensor devices. Figure 4.4 shows a study of the distribution of numerical

values in the dataset.

70

Figure 4.4: Distribution and correlation of numerical values in the Air Quality dataset

4.1.3 Apartment for Rent dataset

The Apartment for Rent Classified dataset [47], offers a collection of classified ad-

vertisements for rental apartments in the United States. It encompasses information

for 10,000 distinct apartments, characterized by some features. These features in-

clude details typically found in rental listings, such as the number of bedrooms and

bathrooms, along with the monthly rental price. This dataset presents valuable op-

portunities for applying machine learning techniques like classification, regression,

71

and clustering to analyze rental market trends and gain insights into factors influ-

encing rental pricing. Figures 4.5 and 4.6 show an analysis of the distribution of a

number of columns in the datasets.

Figure 4.5: Distribution and correlation of numerical values in the Apartment dataset

72

Figure 4.6: Frequency of different categories within each categorical column in the
Apartment dataset

4.1.4 Bank Marketing dataset

The Bank Marketing dataset [48], provides information related to marketing cam-

paigns conducted by a Portuguese bank to promote term deposits. It encompasses

data for over 4,500 bank clients, including demographic details, contact information,

and details regarding the marketing campaign they were part of. Most importantly,

the dataset indicates whether each client subscribed to a term deposit or not, making

it valuable for analyzing the effectiveness of marketing campaigns and identifying fac-

tors that influence customer decisions. As shown in figures 4.7 and 4.8, the datasets’

distribution of values has been analyzed.

73

Figure 4.7: Distribution and correlation of numerical values in the Bank Marketing
dataset

74

Figure 4.8: Frequency of different categories within each categorical column in the
Bank Marketing dataset

75

4.1.5 Beijing PM2.5 dataset

The Beijing PM2.5 dataset [49] offers hourly measurements of PM2.5 concentra-

tion levels in Beijing, China, alongside corresponding meteorological data. The PM2.5

concentration data was collected by the US Embassy in Beijing, while the meteoro-

logical data originates from Beijing Capital International Airport. The dataset spans

a five-year period, ranging from January 1st, 2010 to December 31st, 2014. In addi-

tion to PM2.5 concentrations, it encompasses various meteorological features like dew

point, temperature, pressure, wind direction, and wind speed. This dataset provides

valuable resources for researchers studying air quality, environmental science, and the

impact of weather conditions on pollution levels. The analysis of the datasets’ value

distributions is shown in 4.9.

76

Figure 4.9: Distribution and correlation of numerical values in the Beijing PM2.5
datasets

4.1.6 Bike Sharing Dataset

The Bike Sharing dataset [50] offers a dataset containing information about bike

rentals from the Capital bikeshare system, spanning the period from 2011 to 2012.

This dataset encompasses various factors influencing ridership, including weather con-

ditions and seasonality. It presents valuable resources for researchers studying traffic

patterns, environmental concerns, and the health benefits associated with cycling.

Figure 4.10 show a study of the distribution of numerical columns in the dataset.

77

Figure 4.10: Distribution and correlation of numerical values in the Bike Sharing
datasets

4.1.7 Individual Household Electric Power Consumption Dataset

The Individual Household Electric Power Consumption dataset [51] contains de-

tailed measurements of electric power consumption within a single household. Col-

lected over a period of almost four years with a one-minute sampling rate, the dataset

includes various electrical quantities and timestamps. Additionally, it provides sub-

metering values, offering insights into the power usage of specific appliances or areas

within the house. Researchers can use this dataset for tasks like energy load fore-

78

casting, anomaly detection, and analyzing energy consumption patterns. As shown

in figure 4.11, the datasets’ distribution of values has been analyzed.

Figure 4.11: Distribution and correlation of numerical values in the Household Electric
Power Consumption datasets

4.1.8 Metro Interstate Traffic Volume Dataset

The Metro Interstate Traffic Volume dataset [52] is a collection of hourly traffic

volume data specifically for westbound I-94 in Minneapolis, Minnesota. It encom-

passes data ranging from 2012 to 2018, and includes additional features like weather

conditions and holidays. It offers valuable resources for researchers studying traffic

79

flow, congestion prediction, and the impact of weather and holidays on traffic pat-

terns. As shown in figures 4.12 and 4.13, the datasets’ distribution of values has been

analyzed.

Figure 4.12: Distribution and correlation of numerical values in the Metro Interstate
Traffic Volume datasets

80

Figure 4.13: Frequency of different categories of categorical columns in the Metro
Interstate Traffic Volume dataset

4.1.9 MetroPT-3 Dataset

The MetroPT-3 dataset [53] contains measurements collected from a compressor’s

Air Production Unit (APU) onboard a metro train. Data includes readings from var-

ious sensors monitoring pressure, temperature, motor current, and air intake valves.

This dataset provides information in an operational context and is designed primarily

for predictive maintenance. It can be used by researchers to develop machine learning

models that can detect early signs of degradation or malfunction within metro train

systems, thereby facilitating proactive maintenance strategies. Figure 4.14 shows a

study of the distribution of values in the dataset.

81

Figure 4.14: Distribution and correlation of numerical values in the MetroPT-3
datasets

Following preprocessing and necessary data cleaning procedures, the resulting datasets

shapes are presented in Table 4.1.

82

Table 4.1: Datasets shape

Dataset Rows Categorical Numerical Context-specific

Household Power Consumption 2,049,280 2 7 2

MetroPT-3 1,516,948 10 7 2

Apartment for Rent 99,004 4 3 2

Metro Interstate Traffic 48,204 5 5 2

Beijing PM 41,757 5 7 2

Bank Marketing 41,188 12 3 1

Adult 32,561 8 6 1

Bike Sharing 17,379 6 7 2

Air Quality 9,357 0 13 2

Overall, the distinct patterns observed in the datasets underscore the importance of

being aware of the context of the data when generating synthetic data using the CA-

CTGAN model. By capturing and reproducing these patterns, the CA-CtGAN model

can generate context-aware, high-quality synthetic data that accurately represents the

complexities and intricacies of real datasets.

4.2 Baselines and Experimental Setup

In this study, our evaluation of CA-CTGAN’s performance involves a comparison

with three leading GAN-based models for generating tabular data: CTGAN [30],

DATGAN [31], and CTAB-GAN [1]. Our choice to select these baseline is strategi-

cally informed by a nuanced understanding of the existing landscape in GAN-based

tabular data generation, as detailed in the introduction and related work sections

of this dissertation. These models are primarily designed with an emphasis on data

privacy, implementing mechanisms to prevent the generation of data that directly mir-

rors real-world scenarios. This approach inherently includes parameters that allow for

the adjustment of privacy levels to avoid producing data too closely resembling the

83

original datasets. In contrast, CA-CTGAN diverges significantly in its foundational

premise and application. Unlike these baselines, CA-CTGAN prioritizes the genera-

tion of synthetic data that closely aligns with real-world conditions. This distinction

is critical for our objectives; we aim to simulate real experiments as accurately as

possible, especially under conditions not present in the original data, to unearth in-

sights into scenarios that remain unexplored. Therefore, while the baseline models

offer flexibility in managing privacy concerns through adjustable parameters, our ap-

proach involves minimizing these privacy constraints to enable a direct comparison.

To ensure a fair and consistent comparison, we employed the official implementations

of these models, as provided by their original authors. Our experimental setup was

powered by a machine equipped with 64 GB of memory, dual 16 GB GeForce RTX

A4000 GPUs, and an Intel Xeon W-2255 CPU (3.0 GHz x 20 cores). We adhered

to the recommended hyperparameters specified by each model’s creators to optimize

performance and maintain consistency across tests.

For the Contractive Autoencoder (CAE), critical for our CA-CTGAN framework, we

allocated 10% of each dataset for training. This approach was designed to ensure a

balanced representation of categories, particularly for datasets with categorical vari-

ables, by utilizing a log-frequency-based sampling method. This technique aims to

minimize skewness in the representation of categories within each categorical column.

Algorithm 4 shows the steps we implemented for log-frequency-based sampling. The

remainder of the data was used for training the models. For evaluation, we generated

5000 rows from each dataset from scratch, and compared the synthetic datasets with

the real ones using the metrics detailed in the subsequent section. This testing phase

included scenarios designed to assess controlled generation capabilities, highlighting

the context-based generation potential of CA-CTGAN. Unlike baseline models that

may face challenges due to their sample rejection mechanisms potentially lowering

the likelihood of generating data that meets specific conditions CA-CTGAN aims to

84

Algorithm 4 Log-Frequency Based Sampling of Categorical Data
1: Input: Dataset D with categories C = {c1, c2, . . . , cN} and their frequencies
F = {f1, f2, . . . , fN}

2: Output: Sampled dataset S using log-frequency weights
3: procedure LogFrequencySampling(D,F)
4: Initialize an empty list L for log-transformed frequencies
5: Initialize an empty list W for weights of categories
6: for each category frequency fi in F do
7: Compute log-transformed frequency li = log(fi + 1)
8: Append li to L
9: end for
10: Compute total log-transformed frequency Ltotal =

∑N
i=1 L[i]

11: for each li in L do
12: Compute weight wi = li

Ltotal

13: Append wi to W
14: end for
15: Sample from D using weights W to create sampled dataset S
16: return S
17: end procedure

overcome these limitations, providing more consistent results under targeted condi-

tions.

By comparing CA-CTGAN with established baseline models across selected datasets,

this study demonstrates CA-CTGAN’s superior ability to generate realistic and con-

textually relevant synthetic data. This underscores its potential to effectively replace

actual experiments in a variety of domains, marking a significant advancement in the

field of synthetic data generation.

4.3 Evaluation Metrics

In generative models, evaluation methods cannot be generalized to other contexts;

instead, they must be evaluated explicitly based on their application. In Genera-

tive Models optimization, Gaussian distributions are fitted to a mixture of Gaussian

distributions by minimizing distance measures such as Maximum mean discrepancy

(MMD) [54] and Jensen-Shannon divergence (JSD). Minimizing MMD or JSD results

in the omission of some modes in a multimodal distribution. In addition, maximizing

85

average log-likelihood or minimizing KL-divergence can assign large probabilities to

non-data regions. In image synthesizing applications, three common criteria are used

to evaluate generative models: log-likelihood, Parzen window estimates, and visual

fidelity of samples [55]. However, the evaluation of results for tabular data with com-

plex data types and distribution would be quite different.

In order to measure accuracy, a generated data should first demonstrate that it is a

good representation of real data. The SDMetrics Python library [3] introduces a set

of metrics to measure the quality and privacy of synthetic data. However, considering

data privacy is not the goal of this study and may reduce the quality of the data.

These metrics are summarized and reformed to make them suitable for evaluating the

generated data. In order to achieve this objective, the comparison of two real and

generated datasets can be divided into the following categories:

4.3.1 Data Coverage

For discrete columns Di, we must determine whether all categories in the real data

are represented in the generated. To accomplish this goal, a score is calculated by

dividing the number of unique categories in the generated data by the number of

unique categories in the corresponding column of the actual data as follows:

coverageDi =

(
NDg

NDdata

)
i

. (4.1)

where i is the column index, NDg is the number of unique categories in the generated

data, and NDdata
is the number of unique categories in the real data. When a column

is scored 1, all of the unique categories in the actual data are present in the generated

data, while a score of 0 indicates that no unique categories are present in the generated

data. In the case of continuous columns, the coverage metric is used to measure

whether a generated column covers the whole range of values that can be found in

86

the real column. The coverage score for continuous columns is calculated as follows:

coverageCi = 1−
[
max

(
min(Cg)−min(Cdata)

max(Cdata)−min(Cdata)
, 0

)
+ max

(
max(Cdata)−max(Cg)

max(Cdata)−min(Cdata)
, 0

)]
.

(4.2)

where Cg is the generated value and Cdata is the real value of column Ci. The goal of

this metric is to determine how closely the min and max of the generated values match

the actual min and max values. It is possible for Equation (4.2) to become negative

if the range covered by the generated data is inadequate, and in such a situation, it

returns a score of 0 since this is the lowest possible result.

4.3.2 Data Constraint

In order to measure how a continuous column adheres to a boundary of real data,

boundary adherence is introduced. The frequency of generated values within the

minimum and maximum ranges of the real column values is calculated using this

metric.

adherenceCi =
N(min<xi<max)

Ni

. (4.3)

where Ni is the number of records in column Ci. A column with a score of 1 indicates

all values adhere to the boundaries of real data, while a column with a score of 0

indicates that no values fall between the minimum and maximum and 1 indicates

that values fall between the minimum and maximum of the real data.

For discrete columns, we measure how well the generated data stays true to the

original categories, ensuring no fabrication of new categories. The process involves

extracting the real column’s unique category set Cr, then determining the count of

synthetic data points s belonging to Cr. The final score represents the proportion of

conforming synthetic data points to the total synthetic dataset as follows:

adherenceDi =
|s, s ∈ Cr|
|s|

(4.4)

87

CF
D

Max distance = 0.08

Figure 4.15: Distances are measured between 0 and 1, but the complement of this
metric can also be considered. Therefore, a higher score indicates higher quality
according to 1-(KS statistic distance) [3].

4.3.3 Data Similarity

The Synthetic Data Metrics (SDMetrics) library [3] introduces several metrics for

measuring data similarity. In order to calculate the similarity between real and gen-

erated marginal distributions, two types of metrics are available: the Kolmogorov–

Smirnov (KS) statistic for continuous columns and the Total Variation Distance

(TVD) for discrete columns. Based on the KS statistic, we can determine how much

the empirical distribution function of the generated data differs from the Cumulative

Distribution Function (CDF) of the real data. This means that in this case, the

KS statistic represents the maximum difference between the two generated and real

CDFs, as illustrated in Figure 4.15. The KS statistic can be calculated using the

following expression:

KSdata,g = sup
x
|F1,data(x)− F2,g(x)| . (4.5)

88

where F1,data and F2,g are the cumulative distribution functions of the real and gen-

erated data, respectively, and sup is the supremum function.

Based on TVD, we can measures the maximum difference between the corresponding

probabilities of each category across the generated and real column. In order to calcu-

late the TVD statistic, we first computes the frequency of each category value in the

real and generated columns and express them as probabilities. Once the frequencies

are calculated, the TVD statistic compares the difference in probabilities using the

following formula:

TV Ddata,g = 1− δ(X,G) = 1− 1

2

∑
x∈Ddata

|Xx,g −Gx,g|. (4.6)

where x and g refer to all possible categories in discrete column D, and X and G

represent the frequencies for those categories for real and generated data, respectively.

The similarity score is considered the complement of a TV D, so a higher score indi-

cates a higher level of quality.

In addition, it is possible to measure the statistical similarity between a column of real

data and a column of generated data using mean, median, and standard deviation

using the following formula:

similarity = max

(
1− |f(x)− f(g)|
|max(x)−min(x)|

, 0

)
. (4.7)

where an arithmetic mean, median, or standard deviation is defined as f , and it

returns a score between 0 and 1, where a high value represents a high degree of

similarity.

In evaluation metrics, the similarity between real and synthetic discrete columns is

also examined using the Chi-squared test. This statistical test serves as a rigorous

method for comparing category frequencies by first normalizing the data from both

real and generated datasets. By executing the Chi-squared test, we assess the null

89

hypothesis which states that the synthetic data and real data both originate from

the same distribution. The core of this test lies in its output, the p-value, which

acts as a measure of similarity: a higher p-value (approaching 1) suggests negligible

differences between the synthetic and real datasets, thus supporting the hypothesis

of common distributional origins. Conversely, a lower p-value (tending towards 0)

signals significant discrepancies, leading to the rejection of the null hypothesis.

4.3.4 Data Relationship

For measuring the semantic relationship and correlation between columns within

a dataset, the contingency can be applied to discrete columns using crosstabulation

(also known as a contingency table). This score is a matrix representation of the

multivariate frequency distribution of variables. First, two contingency tables should

be created over the categories present in each column in order to compare a discrete

column in the real data with the corresponding column in the generated data. Indeed,

the created tables summarize the proportion of rows in real and generated data that

have each combination of categories. After that, the total variation distance is used

to calculate the difference between the contingency tables. In this case, the distance

would be between 0 and 1, so subtracting 1 from the score would indicate a high

degree of similarity. Below is a formula that summarizes the process.

contingencyx,g = 1− 1

2

∑
x∈Ddata

∑
g∈Dg

|Xx,g −Gx,g|. (4.8)

where x and g refer to all possible categories in discrete column D, and X and G

represent the frequencies for those categories for real and generated data, respectively.

A score of 1 indicates the best contingency between real and generated data, and a

score of 0 indicates the worst contingency. Also, a correlation similarity test can be

applied to continuous columns by measuring the correlation between two numerical

columns and computing the similarity between the real and generated data using

90

Pearson’s and Spearman’s rank coefficients. Initially, a correlation coefficient should

be calculated between two continuous columns in the real data and their correspond-

ing columns in the generated data. Then, after normalizing two correlation values,

the following equation returns a similarity score.

correlationx,g = 1− |Xx,g −Gx,g|
2

. (4.9)

where x and g refer to all values in continuous column C, and X and G represent the

distributions for real and generated data, respectively. In this score, the correlation

between the columns is bounded between −1 and 1, with −1 representing the most

negative correlation and 1 representing the most positive correlation between the real

and generated columns.

4.3.5 ML Detection

This metric measures the difficulty of differentiating between real and generated

data. By employing a machine learning classification model such as Logistic Regres-

sion and SVM, the model can better predict the nature of each row in the dataset.

The final score, based on the average ROC AUC score, provides an indication of the

model’s performance in distinguishing between real and generated data. The score

ranges between 0 and 1, where 1 indicates that the machine learning model cannot

differentiate between real and generated data. If the model cannot reliably distin-

guish synthetic data from real data, this suggests that the synthetic data accurately

captures the essential statistical properties and behaviors of the real dataset. High

realism is crucial for ensuring that synthetic data can serve as a stand-in for real data

in sensitive or inaccessible scenarios.

Also, one of the primary applications of synthetic data is to augment or replace real

datasets in training machine learning models, particularly when data collection is

limited or privacy concerns preclude the use of real data. The ML Detection metric

91

Algorithm 5 Algorithm for ML Detection
Input: Real data, Generated data
Output: Final score of ML model
procedure ML Detection()

Augment data by combining all rows of real and synthetic data into a single
table with an additional column to indicate whether each row is real or synthetic

for i← 1 to Number of Cross-Validation Folds do
Split the augmented data into training and validation sets
Create ML classification model with specified parameters
Train the model on the training set to predict the extra column added in

Step 1
Validate the model on the validation set
Calculate ROC AUC score for this fold

end for
Calculate the average ROC AUC score across all the cross-validation folds
return Final score: 1− (max(ROCAUC, 0.5)× 2− 1)

end procedure

provides a quantifiable measure of whether synthetic data can be used interchange-

ably with real data without degrading the performance of machine learning models.

The procedure of this metric is shown in algorithm 5.

4.3.6 ML Efficiency

ML Efficiency determine the utility of synthetic data in training machine learning

models for predictive analytics. The metric varies depending on the algorithm used for

computation and the nature of the prediction task (binary or multiclass classification)

[3].

We employ several algorithms, each offering unique strengths and perspectives on

the predictive capabilities of the synthetic data and finally we chose the AdaBoost

Classifier. To this aim, model is trained exclusively on synthetic data, generating a

model calibrated to predict the outcomes of a target variable.

The procedure for this metric is methodical: the selected machine learning algorithm

is first trained on the synthetic dataset to develop a predictive model. This model

92

is then tasked with making predictions on a real dataset, which serves as the testing

ground to validate the model’s accuracy. The performance of the model is quantified

using Accuracy and F1 score.

This ML Efficacy metric is crucial, as it provides direct insights into the practical

applicability of synthetic data in predictive modeling, reflecting the CA-CTGAN

model’s potential to serve as a surrogate for real data in the training of reliable

machine learning models.

CHAPTER 5: RESULT AND ANALYSIS

In this chapter, we delve into the outcomes of our experiments, starting with the

performance results from CA-CTGAN models, which have been trained across 11

datasets and assessed using introduced evaluation metrics in section 4.3.6 . Following

this initial presentation, we engage in a detailed comparative analysis, positioning

the CA-CTGAN model against a selection of established baseline models across the

datasets. The following sections detail the findings for each dataset, offering insights

into the strengths and potential limitations of CA-CTGAN in the context of synthetic

tabular data generation.

Throughout this analytical journey, we have embarked on an extensive exploration,

evaluating all columns within the datasets and generating a comprehensive suite of

reports and visualizations. Due to the breadth and depth of this evaluation, it is

impractical to incorporate the entirety of these visual and analytical outputs within

this single chapter. Therefore, we will highlight the most critical findings and take-

aways based on the experiments conducted. Readers interested in a more detailed

examination are encouraged to explore the official source code [56].

5.1 Model Performance

5.1.1 Data Coverage

In our analysis for evaluating the Data Coverage (section 4.3.1), the CA-CTGAN

model demonstrated exceptional performance, achieving near-perfect scores for most

columns like Voltage column in Power Consumption dataset as shown in figure 5.1.

Category Coverage score for discrete columns and Range Coverage score for continu-

ous columns are represented in tables 5.1, 5.2 and 5.3. These metric measures whether

94

a synthetic column covers all the possible categories and full range of values that are

present in a real column respectively.

Figure 5.1: Data distribution for Voltage column in Power Consumption dataset.

The Data Coverage metric’s performance is inherently influenced by the underlying

distribution of the dataset, including the diversity of categories in discrete columns

and the presence of outliers in continuous columns. Our findings underscore that

while CA-CTGAN exhibits exceptional capability in generating synthetic data that

covers the breadth of categories and valu es found in real-world datasets, its efficacy

can vary based on specific data characteristics.

In columns with a broad yet imbalanced distribution of categories, such as ’country’

in adult dataset and ’holiday’ in Metro Interstate Traffic dataset (Figure 5.2), the

model demonstrates high data coverage, effectively replicating minority categories

with significant accuracy as shown in Figure 5.3.

95

Table 5.1: Data Coverage score for Adult, Bank Marketing, and Metro PT-3 datasets.

Adult Bank Marketing Metro PT-3
Column Score Column Score Column Score

workclass 1.00 job 1.00 COMP 1.00
education 1.00 marital 1.00 DV_eletric 1.00
marital-status 1.00 education 1.00 Towers 1.00
occupation 0.93 default 1.00 MPG 1.00
relationship 1.00 housing 1.00 LPS 1.00
race 1.00 loan 1.00 Pressure_switch 1.00
sex 1.00 contact 1.00 Oil_level 1.00
native-country 0.90 month 1.00 Caudal_impulses 1.00
income 1.00 day_of_week 1.00 TP2 0.99
age 1.00 campaign 0.50 TP3 0.36
fnlwgt 0.68 poutcome 1.00 H1 0.99
education-num 1.00 y 1.00 DV_pressure 0.74
capital-gain 0.56 age 0.95 Reservoirs 0.87
capital-loss 0.54 duration 0.78 Oil_temperature 0.78
hours-per-week 0.93 previous 0.83 Motor_current 0.67

Table 5.2: Data Coverage score for Air Quality, Bike Sharing, and Metro Interstate
Traffic.

Air Quality Bike Sharing Metro InterstateTraffic
Column Score Column Score Column Score

CO(GT) 0.98 holiday 1.00 holiday 0.92
PT08.S1(CO) 0.84 weekday 1.00 weather_main 1.00
NMHC(GT) 0.76 workingday 1.00 weather_description 1.00
C6H6(GT) 0.93 weathersit 1.00 temp 0.80
PT08.S2(NMHC) 0.80 temp 1.00 clouds_all 0.95
NOx(GT) 0.86 atemp 0.89 traffic_volume 1.00
PT08.S3(NOx) 0.90 hum 0.94
NO2(GT) 0.97 windspeed 0.73
PT08.S4(NO2) 0.98 casual 0.85
PT08.S5(O3) 0.74 registered 0.98
T 0.79 cnt 0.99
RH 0.93
AH 0.92

96

Table 5.3: Data Coverage score for Apartment Rent, Power Consumption and Beijing
PM datasets.

Apartment Rent Power Consumption Beijing PM
Column Score Column Score Column Score

bedrooms 0.80 Global_active_power 0.93 cbwd 1.00
fee 1.00 Global_reactive_power 0.84 pm2.5 0.66
cityname 0.79 Voltage 0.78 DEWP 0.91
state 0.94 Global_intensity 0.89 TEMP 0.89
bathrooms 0.86 Sub_metering_1 0.67 PRES 0.96
price 0.79 Sub_metering_2 0.72 Iws 0.78
square_feet 0.84 Sub_metering_3 0.95

Figure 5.2: Frequency of categories in native-country column in Adult dataset and
holiday column in Metro Interstate Traffic dataset.

97

Figure 5.3: Comparison of data category coverage for native-country column in Adult
and holiday column in Metro Interstate Traffic dataset.

Despite the fact that the ’capital-loss’ column in the adult dataset displayed a

significantly lower score of 0.54 in the presence of significant outliers, generated data

perfectly captured both the skewness and the secondary mode the data distribution

(Figure 5.4).

98

Figure 5.4: Data distribution and comparison of data category coverage for capital-
loss column in Adult dataset.

This exact replication of the column distribution, including the less visible mode

on the right, shows how well the model understands and can reproduce complex data

distributions. The ability to mirror such detailed aspects of the original dataset high-

lights CA-CTGAN’s advanced generative capabilities, ensuring that even the subtler

features within a dataset are not overlooked but are instead faithfully represented in

the synthetic output.

99

However, the failure to reflect the significant outliers highlights a restriction in which

the produced data, although falling within the overall range, occasionally overlooks

extreme outlier values, a phenomenon often resulting from errors in real-world datasets.

This variation highlights a critical insight: the Data Coverage metric is modulated

by the nature of the dataset itself, particularly the distribution of data and the ex-

tremity of its values. Such details show the importance of considering dataset-specific

characteristics when evaluating generative models’ ability to produce comprehensive

and accurate synthetic datasets.

5.1.2 Data Constraint

Within our analysis, the Data Constraint Metric plays a pivotal role in quantify-

ing the fidelity of generated data relative to original datasets, specifically focusing

on boundary adherence for continuous columns and category adherence for discrete

columns. Our comprehensive evaluation across nine datasets reveals remarkable ad-

herence scores for nearly all discrete columns and the majority of continuous columns

as shown in tables 5.4, 5.5 and 5.6. This results underscore the CA-CTGAN model’s

capability to closely mimic the original data structures.

In figure 5.5 the ’IWS’ column from the Beijing PM dataset serves as an exemplary

case for continuous columns, achieving a score of 0.92. This high score reflects the

model’s proficiency in encompassing the range of this skewed distribution, affirming

its capacity to generate data that not only adheres to the real data’s boundaries but

also reflects its underlying distributional characteristics.

100

Table 5.4: Data Constraint metric: category and range adherence score for Adult,
Bank Marketing and Metro PT datasets.

Adult Bank Marketing Metro PT
Column Score Column Score Column Score

age 0.998 age 1.000 TP2 1.000
workclass 1.000 job 1.000 TP3 1.000
fnlwgt 0.999 marital 1.000 H1 0.980
education 1.000 education 1.000 DV_pressure 0.999
education-num 1.000 default 1.000 Reservoirs 0.998
marital-status 1.000 housing 1.000 Oil_temperature 1.000
occupation 1.000 loan 1.000 Motor_current 1.000
relationship 1.000 contact 1.000 COMP 1.000
race 1.000 day_of_week 1.000 DV_eletric 1.000
sex 1.000 duration 0.996 Towers 1.000
capital-gain 0.841 campaign 1.000 MPG 1.000
capital-loss 0.896 previous 1.000 LPS 1.000
hours-per-week 1.000 poutcome 1.000 Pressure_switch 1.000
native-country 1.000 y 1.000 Oil_level 1.000
income 1.000 Caudal_impulses 1.000

Table 5.5: Data Constraint metric: category and range adherence score for Air Qual-
ity, Bike Sharing and Metro Interstate Traffic datasets.

Air Quality Bike Sharing Metro Traffic
Column Score Column Score Column Score

CO(GT) 0.849 holiday 1.000 holiday 1.000
PT08.S1(CO) 1.000 weekday 1.000 temp 1.000
NMHC(GT) 0.909 workingday 1.000 rain_1h 0.851
C6H6(GT) 1.000 weathersit 1.000 snow_1h 0.686
PT08.S2(NMHC) 1.000 temp 1.000 clouds_all 1.000
NOx(GT) 0.876 atemp 1.000 weather_main 1.000
PT08.S3(NOx) 1.000 hum 0.984 weather_description 1.000
NO2(GT) 0.890 windspeed 0.863 traffic_volume 1.000
PT08.S4(NO2) 1.000 casual 0.948
PT08.S5(O3) 1.000 registered 0.966
T 1.000 cnt 0.976
RH 1.000
AH 0.999

101

Table 5.6: Data Constraint metric: category and range adherence score for Apartment
Rent, Power Consumption and Beijing PM datasets.

Apartment Rent Power Consumption Beijing PM
Column Score Column Score Column Score

bathrooms 0.718 Global_active_power 0.997 pm2.5 1.000
bedrooms 1.000 Global_reactive_power 0.833 DEWP 1.000
fee 1.000 Voltage 1.000 TEMP 1.000
price 1.000 Global_intensity 0.998 PRES 1.000
square_feet 1.000 Sub_metering_1 0.345 cbwd 1.000
cityname 1.000 Sub_metering_2 0.863 Iws 0.923
state 1.000 Sub_metering_3 0.744

Figure 5.5: Range adherence for IWS column in Beijing PM dataset.

On the other hand, in figure 5.6 the ’NOx(GT)’ column within the Air Quality

dataset achieved a score of 0.87. Despite slight deviations from the range, the model

successfully captured the column’s bi-modal distribution, illustrating the nuanced un-

derstanding CA-CTGAN possesses in replicating complex data distributions.

102

Figure 5.6: Range adherence for NOx(GT) column in Air Quality dataset.

These findings illuminate the strengths of the CA-CTGAN model in maintaining

the range of original data and high fidelity to the original data’s structural and distri-

butional properties. Through percise adherence to both the discrete and continuous

aspects of the datasets, CA-CTGAN demonstrates its effectiveness as a tool for gener-

ating synthetic data that retains the essential qualities of its real-world counterparts.

5.1.3 Data Similarity

To quantitatively evaluate the degree of similarity between the marginal distribu-

tions of real and generated data, our methodology incorporates two robust metrics:

the Kolmogorov-Smirnov (KS) statistic for continuous columns and the Total Varia-

tion Distance (TVD) for discrete columns (Section 4.3.6).

Our analysis, as detailed in Tables 5.7, 5.8, and 5.9, along with visual representations

in Figures 5.7 to 5.9, demonstrates notably strong conformity between the real and

synthetic distributions across both discrete and continuous variables.

103

Table 5.7: Similarity score of real and generated column for KS and TVD statistic
for Adult, Bank Marketing and Metro PT datasets.

Adult Bank Marketing Metro PT
Column Metric Score Column Score Column Metric Score

age KS 0.952 age KS 0.887 TP2 KS 0.760
workclass TV 0.932 job TV 0.840 TP3 KS 0.937
fnlwgt KS 0.882 marital TV 0.908 H1 KS 0.842
education TV 0.933 education TV 0.905 DV_pressure KS 0.758
education-num KS 0.950 default TV 0.921 Reservoirs KS 0.939
marital-status TV 0.903 housing TV 0.908 Oil_temperature KS 0.921
occupation TV 0.877 loan TV 0.987 Motor_current KS 0.801
relationship TV 0.903 contact TV 0.958 COMP TV 0.819
race TV 0.969 day_of_week TV 0.865 DV_eletric TV 0.851
sex TV 0.926 duration KS 0.850 Towers TV 0.895
capital-gain KS 0.720 campaign TV 0.884 MPG TV 0.814
capital-loss KS 0.705 previous KS 0.954 LPS TV 0.954
hrs-per-week KS 0.933 poutcome TV 0.929 Pressure_switch TV 0.954
native-country TV 0.906 y TV 0.947 Oil_level TV 0.949
income TV 0.965 Caudal_impulses TV 0.937

Figure 5.7: Column shape score for Metro PT dataset.

104

Table 5.8: Similarity score of real and generated column for KS and TVD statistic
for Air Quality, Bike Sharing and Metro Interstate Traffic datasets.

Air Quality Bike Sharing Metro Traffic
Column Metric Score Column Metric Score Column Metric Score

CO(GT) KS 0.849 holiday TV 0.966 holiday TV 0.993
PT08.S1(CO) KS 0.912 weekday TV 0.889 temp KS 0.954
NMHC(GT) KS 0.689 workingday TV 0.947 clouds_all KS 0.926
C6H6(GT) KS 0.906 weathersit TV 0.963 weather_main TV 0.900
NMHC KS 0.923 temp KS 0.950 weather_des TV 0.821
NOx(GT) KS 0.876 atemp KS 0.948 traffic_volume KS 0.869
PT08.S3(NOx) KS 0.898 hum KS 0.886
NO2(GT) KS 0.890 windspeed KS 0.863
NO2 KS 0.923 casual KS 0.948
O3 KS 0.958 registered KS 0.960
T KS 0.950 cnt KS 0.972
RH KS 0.872
AH KS 0.829

Figure 5.8: Column shape score for Air Quality dataset.

This success is attributed to the precision of the CA-CTGAN model in approxi-

mating the underlying distributional characteristics of the original data.

105

Table 5.9: Similarity score of real and generated column for KS and TVD statistic
for Apartment Rent, Power Consumption and Beijing PM datasets.

Apartment Rent Power Consumption Beijing PM
Column Metric Score Column Metric Score Column Metric Score

bathrooms KS 0.716 G_active_power KS 0.981 pm2.5 KS 0.882
bedrooms TV 0.911 G_reactive_power KS 0.833 DEWP KS 0.963
fee TV 0.792 Voltage KS 0.972 TEMP KS 0.961
price KS 0.952 Global_intensity KS 0.953 PRES KS 0.904
square_feet KS 0.945 Sub_metering_1 KS 0.645 cbwd TV 0.916
cityname TV 0.846 Sub_metering_2 KS 0.736 Iws KS 0.839
state TV 0.942 Sub_metering_3 KS 0.844 Is KS 0.991

Ir KS 0.975

Figure 5.9: Column shape score for Bike Sharing dataset.

The Chi-squared test represents a critical component of our methodology for assess-

ing the fidelity of synthetic data within discrete columns. This statistical test stands

out for its rigorous approach to comparing the frequency of categories across real and

generated datasets. The results presented in tables 5.10 and 5.11 demonstrate the

106

Figure 5.10: Column shape score for Beijing PM dataset.

107

Table 5.10: Shape similarity for discrete columns using Chi-squared test for Adult,
Bank Marketing and Metro PT.

Adult Bank Marketing Metro PT
Column Score Column Score Column Score

workclass 1 job 1 COMP 0.825
education 1 marital 0.988 DV_eletric 0.885
marital-status 1 education 1 Towers 0.898
occupation 1 default 0.973 MPG 0.818
relationship 1 housing 0.982 LPS 0.631
race 1 loan 0.999 Pressure_switch 0.814
sex 0.875 contact 0.931 Oil_level 0.924
native-country 1 day_of_week 0.999 Caudal_impulses 0.796
income 0.935 campaign 1

poutcome 0.977
y 0.868

Table 5.11: Shape similarity for discrete columns using Chi-squared test for Bike
Sharing, Metro Traffic and Beijing PM.

Bike Sharing Metro Traffic Apartment Rent Beijing PM
Column Score Column Score Column Score Column Score

holiday 0.839 holiday 1 bedrooms 1 cbwd 0.998
weekday 1 weather_main 1 cityname 1
workingday 0.909 weather_desc 1 state 1
weathersit 0.717

utilization of the Chi-squared metric on columns that are suitable for analysis, specif-

ically columns that do not contain any null values. The Chi-squared test, through its

nuanced measure of category frequency alignment, offers compelling evidence of the

model’s capability to replicate the intricate categorical landscapes of original datasets

accurately. This precision ensures that the synthetic data maintains the essential sta-

tistical relationships inherent in the real data, affirming its utility for a wide array of

analytical applications.

Another fundamental approach to evaluate the similarity between real and synthetic

datasets for continuous columns involves statistical analysis using central tendency

and variability metrics including mean, median, and standard deviation. These mea-

sures provide insights into the central point around which the data values cluster,

108

Table 5.12: Statistical similarity between numerical columns of real data and gen-
erated data using mean, median, and standard deviation for Metro PT and Bike
Sharing datasets.

Metro PT Bike Sharing
Column Score Metric Column Score Metric

TP2
0.891 mean

temp
0.995 mean

1.000 median 0.991 median
0.933 std 0.998 std

TP3
0.994 mean

atemp
1.000 mean

0.991 median 0.982 median
0.993 std 0.998 std

H1
0.864 mean

hum
0.989 mean

0.975 median 1.000 median
0.915 std 0.979 std

DV_pressure
0.993 mean

windspeed
0.988 mean

1.000 median 0.966 median
0.988 std 0.994 std

Reservoirs
0.993 mean

casual
0.988 mean

0.993 median 0.992 median
0.991 std 0.985 std

Oil_temperature
0.985 mean

registered
0.997 mean

0.981 median 0.986 median
0.990 std 0.976 std

Motor_current
0.925 mean

cnt
0.989 mean

0.605 median 0.994 median
0.980 std 0.980 std

as well as the spread of the data points. Tables 5.12, 5.13, 5.14 and 5.15 serve as a

comprehensive reference for these statistical metrics, laying out the comparison across

all continuous columns within the datasets studied.

By aligning the mean values of the synthetic data with those of the real data, we as-

sess the model’s ability to generate data with an equivalent average value. Similarly,

by comparing the median, we can determine the model’s accuracy in capturing the

midpoint of the data distribution, which is particularly informative for skewed dis-

tributions. Lastly, the standard deviation comparison reveals how closely the model

replicates the range and dispersion of the real data values.

An alignment of these statistical metrics between the real and generated datasets is

109

Table 5.13: Statistical similarity between numerical columns of real data and gen-
erated data using mean, median, and standard deviation for Power Consumption,
Beijing PM, and Adult datasets.

Power Consumption Beijing PM Adult
Column Score Metric Column Score Metric Column Score Metric

G_active_pow
0.998 mean

pm2.5
0.992 mean

age
0.981 mean

0.999 median 0.975 median 0.986 median
0.995 std 0.998 std 0.988 std

G_reactive_pow
1.000 mean

DEWP
0.999 mean

fnlwgt
0.989 mean

0.995 median 0.985 median 0.988 median
0.997 std 0.991 std 0.999 std

Voltage
0.994 mean

TEMP
1.000 mean

education-num
0.996 mean

0.995 median 0.995 median 1.000 median
0.996 std 0.998 std 0.976 std

Global_intensity
0.999 mean

PRES
0.993 mean

capital-gain
0.997 mean

0.997 median 0.981 median 1.000 median
0.998 std 0.988 std 0.950 std

Sub_metering_1
0.999 mean

Iws
0.993 mean

capital-loss
0.968 mean

1.000 median 0.996 median 1.000 median
0.998 std 0.986 std 0.952 std

Sub_metering_2
1.000 mean

Is
0.998 mean

hours-week
0.999 mean

1.000 median 1.000 median 1.000 median
0.993 std 0.971 std 0.989 std

Sub_metering_3
0.995 mean

Ir
0.996 mean

1.000 median 1.000 median
0.999 std 0.977 std

indicative of the model’s capacity to replicate the overall distribution as well as the

specific characteristics of the data distribution.

These results substantiate the efficacy of the CA-CTGAN model in producing

synthetic data that retains the statistical essence of its real counterparts.

Through the application of similarity metrics, we affirm the model’s capacity to repli-

cate the intricate distributional properties of diverse datasets, thereby ensuring that

the generated data can serve as a reliable surrogate for the original data in various

analytical contexts.

5.1.4 Data Relationship

In assessing the CA-CTGAN model’s capability to preserve the semantic relation-

ships and correlations between columns within a dataset, we employed two pivotal

metrics: contingency for discrete columns and correlation similarity for continuous

110

Table 5.14: Statistical similarity between numerical columns of real data and gener-
ated data using mean, median, and standard deviation for Metro Interstate Traffic,
Bank Marketing, and Apartment Rent datasets.

Metro Traffic Bank Marketing Apartment Rent
Column Score Metric Column Score Metric Column Score Metric

temp
0.998 mean

age
0.992 mean

bathrooms
0.999 mean

0.995 median 0.975 median 1.000 median
0.997 std 0.991 std 0.999 std

rain_1h
1.000 mean

duration
0.991 mean

price
0.998 mean

1.000 median 0.991 median 0.999 median
0.996 std 0.995 std 0.998 std

snow_1h
1.000 mean

previous
0.994 mean

square_feet
0.996 mean

1.000 median 1.000 median 0.998 median
0.984 std 0.999 std 0.994 std

clouds_all
0.991 mean
0.760 median
0.980 std

traffic_volume
0.949 mean
0.888 median
0.987 std

Table 5.15: Statistical similarity between numerical columns of real data and gener-
ated data using mean, median, and standard deviation for Air Quality dataset.

Air Quality
Column Score Metric Column Score Metric Column Score Metric

CO(GT)
0.978 mean

NOx(GT)
0.988 mean

O3
0.997 mean

1.000 median 0.992 median 0.999 median
0.982 std 0.989 std 0.969 std

CO
0.996 mean

NOx
0.962 mean

T
0.966 mean

0.981 median 0.992 median 0.995 median
0.938 std 0.998 std 0.861 std

NMHC(GT)
0.985 mean

NO2(GT)
0.983 mean

RH
0.955 mean

0.999 median 0.985 median 0.982 median
0.975 std 0.994 std 0.876 std

C6H6(GT)
0.968 mean

NO2
0.979 mean

AH
0.961 mean

0.994 median 0.980 median 0.999 median
0.874 std 0.966 std 0.809 std

NMHC
0.981 mean
0.991 median
0.967 std

111

columns. Leveraging these methodologies, our analysis reveals that the CA-CTGAN

model adeptly generates semantically related samples that not only faithfully main-

tain the statistical relationships between columns but also adhere to the intricate

semantic relationship between columns. This section will present detailed results

accompanied by visualizations to elucidate the extent to which our model achieves

semantic congruence between the generated and real datasets, highlighting its efficacy

in capturing and reproducing the complex, multidimensional structure of real-world

data. Through this evaluation, we demonstrate CA-CTGAN’s unparalleled ability

to generate synthetic data that preserves the essential semantic fabric of the original

datasets, thereby affirming its potential as a transformative tool in the realm of data

synthesis.

Figure 5.11 illustrates the intricate relationship between pairs of discrete and numer-

ical columns, providing compelling evidence of the CA-CTGAN model’s capability.

A notable example of this is observed in the age and relationship columns. Here, the

model successfully identifies and reflects the semantic linkage that typically associates

the ’own-child’ category with a younger age range, showcasing its understanding of

the data’s underlying patterns. Similarly, in examining the relationship between work

class and education level, the model reveals a distinct pattern where individuals cate-

gorized as ’without pay’ or ’never worked’ are associated with lower education levels.

Furthermore, Figure 5.12 illustrates the contingency between two distinct columns

and the intended label of the dataset, which is perfectly aligned with the actual data.

Figures 5.13 and 5.14 depict the comparison between real and synthetic data dis-

tributions for the numerical columns in the Air Quality dataset. The scatter plot

showcases the model’s proficiency in replicating the distribution and relationship in-

herent between these two variables. It is particularly noteworthy that the model

capably echoes the central trend and the majority of the data range present in the

real dataset. Despite this fidelity, the plot also highlights a challenge faced by the

112

Figure 5.11: Relationship between a pair of discrete and numerical Columns in the
Adult dataset.

113

Figure 5.12: Relationship between a pair of discrete columns in the Adult dataset.

114

Figure 5.13: Relationship between a pair of continuous columns (NOx/NO2 and
PT08) in the Air Quality dataset.

115

Figure 5.14: Relationship between a pair of continuous columns RH/T and C6H6/CO
in the Air Quality dataset.

model: capturing the relationship of strong outliers. These outliers are visually rep-

resented as points that stray from the dense cluster of data. While the main body of

the synthetic data aligns well with the real data, indicating a robust replication of the

distribution, the synthetic data points do not extend to the extreme values occupied

by the real outliers.

In Figure 5.15, the Apartment Rent dataset serves as another case study for the

CA-CTGAN model’s handling of intricate relationships involving categorical and nu-

merical columns. The ’city’ column, with its extensive range of categories, is portrayed

116

alongside a numerical attribute, allowing us to observe how well the model maintains

the semantic linkages between location and associated numerical values.

The plot reveals that the CA-CTGAN model effectively captures the relational dy-

namics between the ’city’ categorical variable and corresponding numerical columns.

Also, the relationship between ’Square feet’ and ’Price’, two numerical columns is

delineated, testing the model’s awareness of subtleties like how smaller apartments

can command higher prices depending on the city. Nevertheless, we observe that the

model exhibits restraint in generating data points in areas of the distribution where

small apartments have disproportionately high prices. Given that such instances were

scarce within the real dataset, the model identifies them as outliers and consequently

does not reproduce these in the synthetic dataset.

The CA-CTGAN model introduces a powerful feature of generating data condi-

tioned on specific context elements, showcased in Figures 5.16 and 5.17. Figure 5.16

illuminates the relationship between the ’contact’ column and the target label ’y’

within the Bank Marketing dataset. The visualization encapsulates how the model

preserves the contextual relevance between the method of contact and the outcome of

the marketing campaign, which is a pivotal aspect for analyses focused on marketing

efficiency and strategy optimization. The synthetic data not only upholds the distri-

bution patterns found within the real data but also respects the underlying semantic

linkage between the communication method and the customer’s response.

In Figure 5.17, the model’s performance is further exemplified through its handling of

the ’Temp’ continuous column and the ’cbwd’ categorical column in relation to ’Day’

and ’Month’, which serve as contextual targets for data generation in this dataset.

The visual representation demonstrates that the CA-CTGAN model successfully mir-

rors the real data’s patterns, capturing the temperature’s variation with categorical

weather directions across different times. Notably, the generated data adheres to re-

alistic and contextually bound value ranges, neither exceeding nor falling short of the

117

Figure 5.15: Relationship between a pair of continuous (sure feet and price) and a
pair of discrete and continuous columns (square feet and cityname) in the apartment
dataset.

118

Figure 5.16: Relationship between a pair of discrete columns and target label in the
Bank Marketing dataset.

expected limits.

The CA-CTGAN model’s adeptness extends to the nuanced realm of handling high-

precision numerical data types, including decimal and float values, even down to very

small magnitudes. Figure 5.18 shows this capability, presenting a compelling visu-

alization of the model’s proficiency in maintaining meaningful relationships between

columns with small decimal numbers and other numerical columns. This proficiency

is of particular importance in fields where precision is critical, such as financial mod-

eling, scientific computation, and engineering analyses. In these domains, even minor

119

Figure 5.17: Relationship between a pair of continuous and discrete columns and
target label in the Beijing PM dataset.

120

Figure 5.18: Relationship between a pair of continuous and discrete columns and a
high-precision small number in Bike Sharing dataset.

discrepancies in decimal points can lead to significantly different outcomes. The abil-

ity of CA-CTGAN to accurately generate data with high decimal precision ensures

that the synthetic data is not only statistically representative but also practically

applicable in scenarios where precision cannot be compromised.

5.1.5 Machine Learning Performance

Table 5.16 encapsulates the performance of two distinct but interrelated metrics

(ML Detection and ML Efficiency) which provide a holistic view of our synthetic data

121

utility in machine learning contexts.

ML Detection serves as a measure of the indistinguishability between real and syn-

thetic data. To measure this, we employ a machine learning classifier, specifically,

Logistic Regression. This classifier is tasked with identifying whether each row of data

is real or synthetic. The classifier’s effectiveness at this task is quantified using the

Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) score. The

effectiveness of this differentiation is quantified using the average ROC AUC score,

with a score closer to 1 indicating that the classifier is unable to distinguish between

the two, thus suggesting a higher level of realism in the synthetic data.

This outcome implies that the synthetic data closely resembles the real data, effec-

tively ’deceiving’ the classifier into making errors or being uncertain in its classification

tasks. Thus, a higher score here denotes a greater degree of realism in the synthetic

data, as it mirrors the real data well enough to confuse the classification model.

This metric is pivotal as it directly assesses the indistinguishability of the synthetic

data from the real data, which is a primary goal in the creation of synthetic datasets.

The results of this metric, presented in our tables, provide a clear indication of how

similar the generated data is to the original datasets, underscoring the effectiveness

of our synthetic data generation methods.

Conversely, ML Efficiency focuses on the synthetic data efficacy in predictive tasks.

Specifically, it evaluates the performance of a synthetic dataset when used to train a

machine learning model, with the AdaBoost classifier being employed for this metric.

The table records both Accuracy and F1-Score, which collectively reflect the trained

model’s precision and robustness when making predictions on a real dataset.

The scores in the table reflect a satisfactory balance between both metrics for all

datasets considered.

Therefore, the ML Detection scores suggest that the synthetic data produced by

CA-CTGAN is closely aligned with real data to the extent that it poses a challenge

122

Table 5.16: ML Detection (Logistic Regression) and ML Efficiency (AdaBoost) score
for all datasets.

Dataset Detection Score Accuracy F1
Adult 0.752 0.897 0.702
Bank Marketing 0.634 0.791 0.621
Metro PT 0.859 0.862 0.67
Air Quality 0.599 0.732 0.452
Bike Sharing 0.901 0.856 0.736
Metro Traffic 0.718 0.799 0.549
Apartment Rent 0.723 0.766 0.576
Power Consumption 0.906 0.883 0.623
Beijing PM 0.859 0.816 0.686

for machine learning models to differentiate. On the other hand, the ML Efficiency

metrics, as evidenced by Accuracy and F1-Scores, demonstrate that synthetic data

maintains a high level of practicality, enabling machine learning models to achieve

reasonable performance on real-world tasks. Together, these metrics attest to the

quality and applicability of the synthetic data generated by the CA-CTGAN model.

5.2 Comparative Study

In this section we present an empirical analysis that benchmarks the performance

of the Context-Aware Conditional Tabular Generative Adversarial Network (CA-

CTGAN) against three established GAN-based models for synthetic tabular data

generation: CTGAN, DATGAN, and CTAB-GAN. This comparison utilizes an array

of metrics explained in section 4.3.6, each providing a unique lens through which to

assess the capabilities of the generative models.

To facilitate a fair and comprehensive comparison, we have calculated the average

scores across all columns within our datasets. This approach accounts for potential

limitations exhibited by some models, particularly when handling data types with

high precision, such as float or tiny values, as well as their varying capacities to man-

age null values. By employing the average score method, we can avoid the potential

bias that may result from individual columns, which could unevenly impact the over-

123

Table 5.17: A comparative analysis of CA-CTAGN and baseline methods was con-
ducted on five datasets.

Dataset Model Coverage Adherence KS/TVD Statistic Contingency

Adult

CTGAN 0.860 0.979 0.888 0.989 0.822
CTABGAN 0.872 0.959 0.864 0.991 0.852
DATGAN 0.826 0.946 0.850 0.975 0.797

CA-CTGAN 0.903 0.982 0.898 0.987 0.860

Bank Marketing

CTGAN 0.954 0.963 0.907 0.993 0.833
CTABGAN 0.864 0.968 0.885 0.995 0.830
DATGAN 0.790 0.892 0.810 0.960 0.763

CA-CTGAN 0.938 1.000 0.910 0.992 0.857

Metro PT

CTGAN 0.858 0.975 0.887 0.955 0.778
CTABGAN 0.859 0.966 0.855 0.971 0.742
DATGAN 0.669 0.752 0.871 0.931 0.427

CA-CTGAN 0.894 0.998 0.876 0.971 0.825

Bike Sharing

CTGAN 0.872 0.965 0.862 0.990 0.818
CTABGAN 0.856 0.954 0.850 0.973 0.817
DATGAN 0.888 0.954 0.885 0.968 0.705

CA-CTGAN 0.943 0.976 0.936 0.989 0.898

Apartment Rent

CTGAN 0.861 0.956 0.874 0.953 0.791
CTABGAN 0.778 0.954 0.817 0.972 0.734
DATGAN 0.636 0.879 0.775 0.915 0.690

CA-CTGAN 0.860 0.960 0.885 0.958 0.775

all evaluation due to these constraints.

Table 5.17 offer a side-by-side comparison, making it evident that CA-CTGAN not

only outperforms other methods, but also significantly surpasses then in performance.

This improvement is consistently observed across all metrics, confirming that the en-

hancements integrated into CA-CTGAN effectively address the shortcomings encoun-

tered in CTGAN and other peer models.

The results indicate that the CA-CTGAN framework, which is specifically designed

to be aware of the context, demonstrates a notable capability to generate data that is

statistically consistent with the original data and maintains its contextual integrity.

This characteristic confers a significant advantage over the alternative models.

Figure 5.19 and 5.20 showcase the distribution frequencies of real and generated data

for the ’education’ column in the Adult dataset and ’LPS’ column in the MetroPT

dataset, respectively. In (a) CTGAN tends to overrepresent minor categories, di-

verging from the true data distribution seen in the Adult dataset. Conversely, (b)

124

Figure 5.19: Frequency distribution comparison for ’Education’ in Adult Dataset. (a)
CTAGN (b) CA-CTGAN.

illustrates CA-CTGAN’s ability to generate a distribution that closely mirrors the

actual frequency of categories, confirming its enhanced capability for realistic data

synthesis.

Figure 5.21 presents a heatmap comparison illustrating the relationship between the

number of bedrooms and ’fee’ in the Apartment dataset. The real data heatmap in

(a) is set against those generated by CTABGAN and CA-CTGAN in (b) and (c),

respectively. CA-CTGAN not only replicates the distribution patterns but also re-

tains the contextual nuances of the dataset, demonstrating its superior performance

125

Figure 5.20: Frequency distribution comparison for ’LPS’ in MetroPT dataset. (a)
CTAGN (b) CA-CTGAN

126

Figure 5.21: Heatmap of bedrooms vs. fee relationship in Apartment dataset: A real
and generated data comparison. (a) Real Data (b) CTABGAN (c) CA-CTGAN

in context-aware data generation.

In Figure 5.22, the relationship between ’price’ and ’square_feet’ in the Apartment

Rent dataset is examined through heatmaps of CTABGAN and CA-CTGAN against

the real dataset. While both models capture the correlation between the columns,

CA-CTGAN in (b) offers a more expansive coverage of the distribution range, show-

casing its robustness in modeling a more nuanced and realistic dataset.

The proficiency of CA-CTGAN in capturing complex data distributions is further

highlighted in Figures 5.23 and 5.24. Comparing the ’previous’ column in the Bank

Marketing dataset and ’atemp’ column in the Bike Sharing dataset, CA-CTGAN in

(b) accurately reflects the multimodal distribution of the real data. DATGAN, in (a),

however, struggles with mode representation, particularly in skewed distributions, un-

derlining the advanced capabilities of CA-CTGAN in data generation tasks.

Figure 5.25 offers a heatmap analysis of the ’LPS’ and ’COMP’ columns in the

Metro PT dataset. Both CTABGAN and CA-CTGAN heatmaps are compared to dis-

cern the model’s capacity to preserve data relationships. CA-CTGAN in (c) demon-

strates a discernible advantage, more effectively capturing minor category relation-

ships, thereby reinforcing its aptitude for detailed and contextually aware synthetic

127

Figure 5.22: Comparative analysis of ’Price’ and ’Square Feet’ Relationship in Apart-
ment Rent dataset using pair plot. (a) CTABGAN (b) CA-CTGAN

128

Figure 5.23: Distribution analysis of ’previous’ column in Bank Marketing dataset.
(a) DATGAN (b) CA-CTGAN

129

Figure 5.24: Distribution analysis of ’Atemp’ in Bike Sharing dataset. (a) DATGAN
(b) CA-CTGAN

130

data generation.

Figure 5.25: Heatmap visualization of ’LPS’ and ’COMP’ Relationship in Metro PT
dataset. (a) Real Data (b) CTABGAN (c) CA-CTGAN

In addition, we introduce an approach integrating a pre-trained Contractive Au-

toencoder (CAE) for generating semantically-consistent noise. Conducting experi-

ments on datasets highlights how the noise quality in CA-CTGAN is essential for

enhancing the data it generates and stabilizing and speeding up convergence [4].

GANs often face a challenge known as the non-convergence problem during training

[57]. This issue arises when the generator and discriminator networks fail to reach a

stable equilibrium, leading to oscillations in training dynamics.

131

Figure 5.26: Generator loss over the epochs for both training approaches (with and
without CAE) - Adult dataset [4].

In such cases, the generator might produce nonsensical outputs or fail to capture

the diversity of the training data [57]. Addressing non-convergence requires careful

tuning of hyperparameters, novel training strategies, or modifications to the GAN ar-

chitecture. Figure 5.26 offers a compelling view of the comparative convergence rates

of the CTAGN model integrated with CAE and the CTGAN base model. Notably, the

integrated model showcases a faster convergence, reaching a stabilized performance

near the 150th epoch. In contrast, the CTGAN demands more than double the num-

ber of epochs (close to 350) to attain a similar performance level, and also, the trend

lines indicate a lengthier journey to stabilization. This accelerated convergence of the

CA-CTGAN underscores the effectiveness of introducing noise generated by CAE in

the GAN training process.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

The Context-Aware Conditional Tabular Generative Adversarial Network (CA-

CTGAN) is a notable breakthrough in the field of synthetic data creation. CA-

CTGAN is specifically designed to overcome the constraints associated with con-

ventional approaches. It distinguishes itself by integrating context-specificity, hence

enabling the generation of datasets that are customized to suit various experimental

environments. This study has shown that CA-CTGAN is highly effective in creating

synthetic datasets that accurately replicate the complex features of real-world data

and strictly adhere to certain research contexts.

The challenge of generating realistic synthetic data that accurately reflects the intri-

cacies of experimental data has been a persistent challenge. Existing methods often

lack flexibility or result in synthetic datasets failing to capture specific requirements

or subtle details present in real-world data. CA-CTGAN directly addresses this issue

through its multifaceted approach, which includes transfer learning, an innovative

auxiliary classifier, and entity embedding techniques, resulting in a contextually inte-

grated framework that allows for precise control throughout the generative process.

The meticulous evaluation of CA-CTGAN reveals a series of impressive results, so-

lidifying its superior capabilities. The framework achieved exceptional data coverage,

indicating exceptional reproduction of even subtle distributional patterns within the

original dataset. CA-CTGAN’s strong performance on Kolmogorov-Smirnov, Total

Variation Distance, Chi-squared tests, and standard statistical measures highlights

its ability to replicate complex underlying distributions.

In terms of preserving semantic relationships, results demonstrate CA-CTGAN’s suc-

cess in maintaining strong statistical correlations and semantic relationships across

133

columns in the synthetic data. This ensures the synthetic samples retain the contex-

tual essence of the real data. Furthermore, in the context of indistinguishability and

ML Efficiency, the model produced synthetic data closely resembling genuine data,

proving challenging to discern by machine learning detection methods. Moreover, the

synthetic datasets trained robust ML models effectively, mirroring real-world predic-

tive performance. This showcases the potential for CA-CTGAN to be used across

research pipelines.

In addition, CA-CTGAN consistently demonstrated superior performance compared

to established GAN-based methods (CTGAN, DATGAN, CTAB-GAN). This under-

scores its significant contribution to the field of synthetic data generation.

Significance & Implications:

The implications of this research are far-reaching and transformative. CA-CTGAN

can streamline experimental design and reduce costs. The potential ability to de-

crease or even replace some real-world experiments with synthetic data without com-

promising the validity of results has profound implications on resources, time, and the

feasibility of studies. In fields such as healthcare, where data privacy is paramount,

CA-CTGAN enables researchers to work with realistic synthetic data, mitigating eth-

ical challenges that arise when using sensitive patient information. Moreover, across

numerous domains, having access to contextually accurate synthetic data can enhance

data analysis capabilities and foster more informed decision-making processes.

Limitations and Future Directions:

Acknowledging limitations is a hallmark of rigorous research. CA-CTGAN, while

exceptionally capable, does have certain aspects to address in future development,

including:

• Outlier Handling: Although extreme outliers are frequently observed as a

consequence of errors in real-world datasets, it is important to improve their

handling in order to accurately represent the entire distribution, including those

134

values.

• Classifier Refinement: Exploring alternative classifier architectures could

potentially boost performance and efficiency.

• Semantic Control via LLMs: The integration of Large Language Models

could further enhance nuanced semantic and contextual representation in the

generated data.

• Time-series Support: Expanding the CA-CTGAN architecture to handle

time-series data, opening up broad applications in dynamic process analysis

and modeling.

In conclusion, the CA-CTGAN framework presents a pivotal step towards data de-

mocratization and the advancement of rigorous, ethical, and cost-effective research

methodologies. Its ability to generate high-fidelity, contextually nuanced synthetic

data marks a significant contribution to scientific fields. As the research around CA-

CTGAN continues to evolve, it has the potential to redefine the way experiments are

conducted, unlocking new possibilities and accelerating the pace of discovery.

135

REFERENCES

[1] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen, “Ctab-gan: Effective table data
synthesizing,” in Asian Conference on Machine Learning, pp. 97–112, PMLR,
2021.

[2] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “Pacgan: The power of two samples
in generative adversarial networks,” Advances in neural information processing
systems, vol. 31, 2018.

[3] DataCebo, Inc., Synthetic Data Metrics, 9 2022. v0.7.0.

[4] H. Fallahian, M. Dorodchi, and K. Kreth, “Beyond noise: Incorporating pre-
trained contractive autoencoders for enhanced gan-based tabular data creation,”
in 2024 7th International Conference on Information and Computer Technologies
(ICICT), p. to appear, 2024.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[6] M. Fallahian, M. Dorodchi, and K. Kreth, “Gan-based tabular data generator
for constructing synopsis in approximate query processing: Challenges and solu-
tions,” Machine Learning and Knowledge Extraction, vol. 6, no. 1, pp. 171–198,
2024.

[7] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
preprint arXiv:1411.1784, 2014.

[8] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial
networks,” in International conference on machine learning, pp. 214–223, PMLR,
2017.

[9] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshminarayanan,
“Do deep generative models know what they don’t know?,” in International Con-
ference on Learning Representations, 2018.

[10] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv
preprint arXiv:1701.00160, 2016.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[12] G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray, “A compre-
hensive survey and analysis of generative models in machine learning,” Computer
Science Review, vol. 38, p. 100285, 2020.

136

[13] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in computer
vision: A survey and taxonomy,” ACM Computing Surveys (CSUR), vol. 54,
no. 2, pp. 1–38, 2021.

[14] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional
auto-encoders for hierarchical feature extraction,” in Artificial Neural Networks
and Machine Learning–ICANN 2011: 21st International Conference on Artificial
Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21,
pp. 52–59, Springer, 2011.

[15] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen,
“Deep autoencoding gaussian mixture model for unsupervised anomaly detec-
tion,” in International conference on learning representations, 2018.

[16] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders,” in Proceedings of the 25th
international conference on Machine learning, pp. 1096–1103, 2008.

[17] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial au-
toencoders,” arXiv preprint arXiv:1511.05644, 2015.

[18] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-
encoders: Explicit invariance during feature extraction,” in Proceedings of the
28th international conference on international conference on machine learning,
pp. 833–840, 2011.

[19] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive
predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[20] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19, 2011.

[21] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[22] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text classifica-
tion?,” in Chinese Computational Linguistics: 18th China National Conference,
CCL 2019, Kunming, China, October 18–20, 2019, Proceedings 18, pp. 194–206,
Springer, 2019.

[23] L. Xu and K. Veeramachaneni, “Synthesizing tabular data using generative ad-
versarial networks,” arXiv preprint arXiv:1811.11264, 2018.

[24] U. Khurana and S. Galhotra, “Semantic annotation for tabular data,” arXiv
preprint arXiv:2012.08594, 2020.

[25] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Generating
multi-label discrete patient records using generative adversarial networks,” in
Machine learning for healthcare conference, pp. 286–305, PMLR, 2017.

137

[26] A. Mottini, A. Lheritier, and R. Acuna-Agost, “Airline passenger name
record generation using generative adversarial networks,” arXiv preprint
arXiv:1807.06657, 2018.

[27] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan,
S. Hoyer, and R. Munos, “The cramer distance as a solution to biased wasserstein
gradients,” arXiv preprint arXiv:1705.10743, 2017.

[28] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, “Data
synthesis based on generative adversarial networks,” Proceedings of the VLDB
Endowment, vol. 11, no. 10, pp. 1071–1083, 2018.

[29] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[30] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling
tabular data using conditional gan,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[31] G. Lederrey, T. Hillel, and M. Bierlaire, “Datgan: Integrating expert knowledge
into deep learning for synthetic tabular data,” arXiv preprint arXiv:2203.03489,
2022.

[32] L. Deecke, I. Murray, and H. Bilen, “Mode normalization,” in International Con-
ference on Learning Representations, 2018.

[33] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Im-
proved training of wasserstein gans,” Advances in neural information processing
systems, vol. 30, 2017.

[34] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary
classifier gans,” in International conference on machine learning, pp. 2642–2651,
PMLR, 2017.

[35] J. Fonseca and F. Bacao, “Tabular and latent space synthetic data generation: a
literature review,” Journal of Big Data, vol. 10, no. 1, p. 115, 2023.

[36] A. Pathare, R. Mangrulkar, K. Suvarna, A. Parekh, G. Thakur, and A. Gawade,
“Comparison of tabular synthetic data generation techniques using propensity
and cluster log metric,” International Journal of Information Management Data
Insights, vol. 3, no. 2, p. 100177, 2023.

[37] Ã. Figueira and B. Vaz, “Survey on synthetic data generation, evaluation meth-
ods and gans,” Mathematics, 2022.

[38] A. Kotelnikov, D. Baranchuk, I. Rubachev, and A. Babenko, “Tabddpm: Mod-
elling tabular data with diffusion models,” in International Conference on Ma-
chine Learning, pp. 17564–17579, PMLR, 2023.

138

[39] P. Marecha and L. Ye, “Generation and evaluation of tabular data in different
domains using gans,” Asian Journal of Research in Computer Science, 2023.

[40] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning,
vol. 4. Springer, 2006.

[41] C. Guo and F. Berkhahn, “Entity embeddings of categorical variables,” arXiv
preprint arXiv:1604.06737, 2016.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[43] J. Heaton, “Ian goodfellow, yoshua bengio, and aaron courville: Deep learn-
ing: The mit press, 2016, 800 pp, isbn: 0262035618,” Genetic Programming and
Evolvable Machines, vol. 19, no. 1-2, pp. 305–307, 2018.

[44] L. Weng, “From gan to wgan,” arXiv preprint arXiv:1904.08994, 2019.

[45] B. Becker and R. Kohavi, “Adult.” UCI Machine Learning Repository, 1996.
DOI: https://doi.org/10.24432/C5XW20.

[46] S. Vito, “Air Quality.” UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C59K5F.

[47] “Apartment for Rent Classified.” UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5X623.

[48] R. P. Moro S. and C. P., “Bank Marketing.” UCI Machine Learning Repository,
2012. DOI: https://doi.org/10.24432/C5K306.

[49] S. Chen, “Beijing PM2.5 Data.” UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5JS49.

[50] H. Fanaee-T, “Bike Sharing Dataset.” UCI Machine Learning Repository, 2013.
DOI: https://doi.org/10.24432/C5W894.

[51] G. Hebrail and A. Berard, “Individual household electric power
consumption.” UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C58K54.

[52] J. Hogue, “Metro Interstate Traffic Volume.” UCI Machine Learning Repository,
2019. DOI: https://doi.org/10.24432/C5X60B.

[53] R. R. Davari Narjes, Veloso Bruno and G. Joao, “MetroPT-3 Dataset.” UCI
Machine Learning Repository, 2023. DOI: https://doi.org/10.24432/C5VW3R.

[54] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A kernel
method for the two-sample-problem,” Advances in neural information processing
systems, vol. 19, 2006.

139

[55] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of generative
models,” in International Conference on Learning Representations (ICLR 2016),
pp. 1–10, 2016.

[56] H. Fallahian, “Context aware conditional tabular gan.” https://github.com/
samfallahian/ContextAwareTabular-CGAN, 2024.

[57] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” 2017.

