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ABSTRACT

WILLIAM SCOTT RABURN. Characterizing the Topology of Partially Polarized
Vortex Beams. (Under the direction of DR. GREG GBUR)

Singularities defining the topology for the polarization state of nonuniformly polarized

electromagnetic beams have been a topic of both theoretical and practical interest,

including improvements to remote sensing and free-space optical communications, for

many years. However, atmospheric turbulence can distort the features of singularities

over long propagation distances, limiting their use in many cases. One solution being

considered is the reduction of spatial coherence of light, as partially coherent beams

have shown increased resistance to turbulence under a broad range of situations.

Work on coherence singularities of scalar fields supports this as well. However there

has been relatively little work done to explore singularities of the intersection of the

two phenomena of nonuniform partial coherence and nonuniformly polarized fields.

Namely the singularities in the unified representation of coherence and polarization

state, such as the cross spectral density matrix of nonuniformly partially polarized

wavefields.

In this dissertation, we use a simple model of partially polarized electromagnetic

vortex beams to highlight three different ways that one can define polarization sin-

gularities in scalar wavefields. One of those, projections of the cross spectral density

matrix defining the beam, has not previously been discussed. We then detail the

evolution of those novel partial polarization singularities and how the position and

number of singularities are affected by different levels of atmospheric turbulence. We

find that there are projections where the singularities persist on propagation, sug-

gesting their possible use in applications.

We lastly explore a potentially simpler way to express polarization and partial

polarization singularities as phase singularities. It was established by Green and
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Wolf in 1953 that an electromagnetic wave can be characterized by a complex scalar

potential, including its energy and momentum densities. In this paper, we show

that for electromagnetic beams this scalar potential can be used to fully describe the

beam’s topology. We further demonstrate that this scalar potential can be used to

characterize the topology of partially polarized vector beams as well.
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INTRODUCTION

This dissertation expands the field of singular optics to cover the topology of

nonuniformly partially polarized vortex fields. These are beams where the polar-

ization is nonuniform within the cross section and the degree of polarization varies as

well.

Singular optics is the field of research concerned with singularities in attributes of

fields used to describe electromagnetic waves, and the associated topology. For most

of the history of optics research the emphasis has been on where electro-magnetic field

has higher intensity, however after researchers began noting the topology of the fields

phase near where the intensity is zero more research was done in this direction creating

the subfield of singular optics. Singular optics as a field is the study discontinuities

in some aspect of any category of oscillating electromagnetic fields. This dissertation

explores singular optics in electromagnetic beams specifically. The simplest type of

singularity is in the phase when fields can be treated as scalars.

For electromagnetic fields whether the full vector description is used or it is treated

as a scalar, the electric field as an observable is real valued. Despite this the complex

field Ũ(r, t) is often used for convenience in place of

U(r, t) = Ũ(r, t) + Ũ∗(r, t) . (1)

where for monochromatic fields Ũ(r, t) = Ũ(r)e−iωt. The phase of a scalar field, or

component of a vector field, then becomes the argument of the complex field making

it much more tractable analytically and often for the monochromatic fields used in

this dissertation the complex value Ũ(r) will be used, without the tilde, in place of
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the real valued scalar or vector field. While many may consider this form merely a

mathematical convenience they are also the field values that follow from the complex

valued electromagnetic 4-potential used in quantum electrodynamics. This singularity

occurs at locations where the intensity is zero. For instance the a phase singularity

is present along the ẑ axis of any field

U(x, y, z) = (x± iy)mu(x, y, z) (2)

where m ≥ 0 is an integer and u is defined at the axis where U(0, 0, z) = 0 and

the intensity, U (r) ∗ U(r), is zero. At that point Arg(U) the phase is undefined

with the a value in the neighborhood of the point changing by an integer multiple

of 2π as the point is circled. These singularities and the space around it make up

what are called optical vortices due to how the phase dependence on the optical axis,

z, and time cause this phase change with the azimuthal angle to take the form of

rotating with respect to both in a manner reminiscent of a vortex. These vortices

and the singularities they surround have found application in fields like free-space

communication, optical tweezing, and imaging processing.

Singular optics includes the study of singularities in many other aspects of fields,

whose locations while associated the zeros of some variable are not necessarily at zeros

of intensity. Most singularities share the structure of a singular point in the cross

section of a beam around which the property that is undefined at the point changes

as the point is circled returning to the same or equivalent value due to the property

being a phase or physical angle. In those cases interesting ’new physics’ come with

introduction of integer valued topological charges, for phase, and indices for others to

describe the singularity. The total charge or index of the beam is conserved, leading

to the singularities acting similarly to pseudo-particles being created and destroyed

in opposite pairs or decaying from a singularity with a higher topological charge
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to multiple lower charge singularities, meaning there is new physics to explore with

every new type. There are still many types of singularities that either haven’t been

studied extensively or haven’t been defined at all and this dissertation will explore

these singularities.

The type of beams that have had their singularities and topology studied more

than any other, aside from scalar beams, are electromagnetic beams. These are beams

where the scalar approximation is no longer applicable and the state of polarization

is not uniform along a beam cross section. In these beams it is the orientation of the

polarization ellipse and handedness that can have singularities rather than the phase

since each of the two components of the field have their own independent phase.

Polarization singularities are more complex then phase singularities or even simply

in singularities in the angle of a real vector field as can be seen in figure 1 of the

polarization ellipse, a shape used to physically describe polarization, where there is

orientation, shape and handedness. Isolated points of circular polarization in the

cross section of a beam, called C-points, are singularities in the orientation of the

polarization ellipse, while isolated lines of linear polarization called L-lines are singu-

larities in the handedness of the polarization. Less typically a singularity in both can

exist and these are known as V-points. Like the phase singularities these polarization

singularities have found use in free-space communication among other applications.

This pattern of a change in the beam, in this case from uniformly polarized to

nonuniformly polarized causing the singularity types present to change, is common

pattern. A beam can also lack a phase singularity when the overall coherence of a

beam decreases. When even simply two monochromatic beams of close frequency

interact they produce a beat effect if the frequency bandwidth of a beam of light can

not be ignored the modes at different frequencies similarly add to each other with

seemingly random phase difference leading to the random value of the field. This

random fluctuation whether it is caused by randomness in the source medium or just
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Figure 1: Above is pictured a generic polarization ellipse. It shows the path that the
electric field E(r, t) would trace out over time if the tail of its vector is at the origin.
The orientation of the ellipse is defined by the angle Ψ between the major axis where
|E| = aM and the x axis.

the beam frequency width causes the zeros in intensity to be ’washed out’ by the

random fluctuations that come with decreased coherence. The study of singularities

of partially coherent vortices began more recently but is becoming well established.

Instead of singularities in the field itself, singularities exist in the phase of the cross

spectral density between two points. The phase singularities of this complex scalar

even just within a cross section of the beam are embedded in a four dimensional space

of the two points. This too has been suggested for use in free-space communication

since beams traveling through turbulent air will naturally lose some coherence.

Due to the relatively young age of singular optics there are many types of opti-

cal singularities that have yet to be fully explored or even defined. There are many

types of singularities in optics whose physics are only just beginning to be explored,

remain completely unexplored or even have yet to be identified. Some of these are

more complex beams such as higher moments or multi-frequency beams as well as

combinations of these characteristics with others such as partial coherence or nonuni-
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form polarization. Each of these can also be further complicated by different media

types that they could be propagating through. There are also other simple esoteric

characterizations of a beam whose singularities may be found.

This dissertation attempts to expand the breadth of singularity types studied by

defining novel singularities and creating a class of beams useful for exploring topologies

associated with partially coherent nonuniformly polarized beams. The singularities

explored represent in a way two ends of the spectrum of topological topics left to be

explored.

The first involves singularities of beams with the combined properties of two types

of beams for which singularities have already been studied by themselves, nonuniform

polarization and partial coherence. As both have relevance to the same application of

free space communication looking into a beam, with the advantages of both is desired.

The topology of both introduce complications, as compared to phase singularities

of coherent scalar fields, due to the matrix definition when considering nonuniform

polarization and the need for a function of two points for nonuniform coherence.

The cross-spectral density matrix used to describe such a beam therefore has a more

complex topology then either the polarization matrix or the scalar cross spectral

density.

The second description of the electromagnetic beam is unlike the first both of a

very simple structure a complex scalar that is a function of position and time. This

is the complex scalar potential that Green and Wolf defined, in 1953, that justifies

the use of scalar waves in optics through its construction dependent on polarization

of modes. Other than as a justification for using scalar wave descriptions in any case

if one is only concerned with energy and momentum, the idea though novel never

found much use on its own but may now find new use when applied to fields such as

singular optics that did not exist at the time the idea was first introduced. We find

that the phase singularities of the complex scalar potential have a meaning distinct
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from that of a simple scalar beam and the polarization of a vector beam. However

the time average of its square and other second order parameters fully reproduce the

topology of the full vector beam just as Green and Wolf originally showed that the

energy and momentum density could be found. Similarly the topology of partially

polarized beams can also be found by expanding those same parameters to two points.

Like the more robustly studied topologies of singular optics the topologies asso-

ciated with these novel singularity types will have interesting physics related to the

interaction of singularities both in propagation and as the character of the beam

changes. They also may prove useful for applications especially free-space communi-

cation.

The chapters of this dissertation consist of three papers that cover these topics.

The first chapter explores three types of singularities that exist for partially polarized

vortex beams, and introduces an appropriate class of beams to explore the form these

singularities take in a cross section of the beam and how they relate to the fully

polarized vector vortex beams. The second paper more fully describes the topology

of one those types of singularities, the vector field given from projections of the cross

spectral density matrix. This is done by analytically propagating our class of beam

through different levels of turbulence and in the process creating a more general class

of beams of partially polarized vortex beams as well.

Finally in the third paper we look at singularities of the complex scalar potential

introduced by Green and Wolfe in the case of beams. Despite its scalar nature we are

able to fully reproduce the topology of the polarization ellipse and this perspective

gives us new insights and in some cases brings simplification when modeling the beam.



CHAPTER 1: SINGULARITIES OF PARTIALLY POLARIZED VORTEX BEAMS

abstract

Singularities in the polarization state of nonuniform electromagnetic beams have

been a topic of both theoretical and practical interest for many years, as have sin-

gularities in the correlation functions of random scalar wavefields. However, there

has been relatively little work done to explore the intersection of these phenomena,

namely singularities in the polarization state of partially coherent wavefields. In this

paper, we use a simple model of a partially coherent electromagnetic vortex beam to

highlight three different ways that one can define polarization singularities in scalar

wavefields, one of which has been not previously been discussed.

1.1 Introduction

The study and application of singularities in wavefields has grown in recent years

into a vibrant and significant subfield of optics, known as singular optics [1, 2, 3]. The

most commonly discussed types of such singularities are phase singularities in scalar

waves, which typically manifest as lines of zero intensity in three-dimensional space.

Around these singularities the phase has a circulating or helical structure, which has

led to them being called optical vortices, here referred to as scalar optical vortices.

Such singularities have been applied to fields such as free-space optical communication

[4, 5], optical tweezing [6, 7] and image processing [8, 9].

To use a scalar wave description of light, the state of polarization is assumed to

be uniform. Research over the past twenty years has demonstrated, however, that

novel effects arise for optical beams that have spatially-varying polarization, known

as vector beams. For vector beams, singularities of phase are no longer typical, and
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instead the most common singularities are singularities of the state of polarization.

These come in two generic types: C-points (points of circular polarization where

the orientation of the polarization ellipse is undefined) and L-lines (lines of linear

polarization where the helicity of the polarization ellipse is undefined). Much work

has been done to elucidate the properties of polarization singularities, and beams with

such singularities have been shown to be useful in a number of applications, including

focusing [10, 11] and atmospheric propagation [12, 13].

But no light wave is truly monochromatic, and in recent years researchers have

delved into the behavior of wavefield singularities when the field is partially coherent.

For the scalar case, it has been shown that phase singularities evolve into singularities

of the two-point correlation function when the spatial coherence of a wavefield is

decreased [14, 15, 16]. There has now been a significant amount of research on

partially coherent scalar vortex beams [17, 18, 19, 20].

In contrast, there has been relatively little work done to investigate the nature of

polarization singularities in partially coherent vector vortex beams, and how they are

related to their fully coherent counterparts; exceptions include the papers of Felde et

al. [21], and Soskin and Polyanskii [22]. The vectorial nature of such beams, however,

presents more than one way to define singularities related to the state of polarization

In this paper, we highlight three ways of characterizing the singularities of a partially

coherent electromagnetic wavefield, one of which has previously gone unmentioned.

We introduce a simple model of a partially coherent electromagnetic beam possessing

a polarization singularity, and examine how that polarization singularity manifests

through the different ways of characterizing it.

We begin by reviewing needed definitions related to polarization singularities and

coherence, and then discuss the different ways of classifying singularities in partially

coherent electromagnetic waves. We then use our model to examine the relationships

between the different classifications, and their significance.
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1.2 Polarization singularities

In a coherent paraxial electromagnetic wave, the state of polarization is generally

elliptical, with the polarization ellipse described by its handedness, angle of orienta-

tion Ψ, and ellipticity (ratio of minor to major axis). The most commonly occurring,

or generic, singularities in the cross-section of such a beam are C-points and L-lines,

which correspond to points of circular polarization and lines of linear polarization,

respectively. C-points are singularities in the orientation of the polarization ellipse,

and L-lines are singularities in the handedness of the ellipse. We focus on C-points

and their non-generic cousins here, which are the most topologically interesting.

C-points may be readily found using the Jones vector of the electric field in a circular

polarization basis, which we write as |E⟩LR. Here “LR” refers to the left-hand circular

EL and right-hand circular ER complex components of the electric field, with vector

dependencies x̂ + iŷ and x̂ − iŷ, respectively. A point of pure circular polarization

will manifest anywhere that one of the complex components vanishes, e.g. EL = 0.

The phase θL of the component at this point is consequently undefined, making, for

example, a right-handed C-point a phase singularity of the scalar component EL of

the field.

C-points are characterized by the behavior of the orientation angle Ψ as one tra-

verses a closed loop around the singular point. This angle must vary continuously

with position, except at the C-point itself, and therefore can only change by multiples

of 180◦ around any closed loop. This change is referred to as the topological index n,

and may be formally defined by the following integral,

n =
1

2π

∮
dr · ∇Ψ(r). (1.1)

The topological index of different polarization singularities is additive: a loop taken

around multiple singularities will give an index equal to the sum of the indices of the
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Figure 1.1: Orientation of the major axis of the polarization ellipse for (left) a lemon
(n = 1/2) and (right) a star (n = −1/2), in the plane perpendicular to the optical
axis. The major axis is depicted two ways: with lines indicating the major axis
direction for selected positions and with a colormap to indicate the value of Ψ.

individual singularities. C-points in particular come in three generic types: lemons

with index n = +1/2, stars with index n = −1/2, and monstars with index n =

+1/2. The monstar is a less common transition singularity formed in creation and

annihilation events between singularities, so we focus on lemons and stars, which are

illustrated in Fig. 1.1. In this figure, we illustrate the orientation of the major axis

with line segments as well as colors representing the angles.

It is to be noted that the topological index can be readily found from the values of

the topological charges of the two components EL and ER of the electric field, as we

now show. The topological charge t is the net number of 2π changes the phase of the

component undergoes in a closed path around the singularity or singularities, and is

formally defined as

t =
1

2π

∮
dr · ∇θ(r), (1.2)

where θ is the phase of the particular component.

To determine the relation between the charges of the components and the index

of the singularity, we apply some intuition about the properties of the polarization
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ellipse. In the LR basis, the two vector components rotate in opposite directions with

angles that we label as ϕL(r, t), ϕR(r, t). The total field will point along the major

axis of the ellipse at a time t0 when these two angles correspond with the ellipse

orientation angle, or

Ψ(r) = ϕR(r, t0) = ϕL(r, t0). (1.3)

But these two rotation angles may be related to the complex phases θL,R(r) by the

relations

ϕL(r, t) = ωt− θL(r), ϕR(r, t) = θR(r)− ωt, (1.4)

where ω is the angular frequency of light. We may eliminate the time dependence t0

from these equations by summing ϕL(r, t) and ϕR(r, t); by further using Eq. (1.3), we

get the relation

Ψ(r) =
θR(r)− θL(r)

2
. (1.5)

If we substitute this expression into Eq. (1.1), we readily find that

1

2π

∮
dr · ∇Ψ(r) =

1

2

{
1

2π

∮
dr · ∇θR(r)−

1

2π

∮
dr · ∇θL(r)

}
. (1.6)

Using the definition of topological charge, we have

n =
1

2
(tR − tL) =

∆t

2
. (1.7)

In short, the topological index can be determined directly from the difference of the

enclosed topological charges of the left- and right-handed components; this result was

first determined by Angelsky et al. [23].

It is to be noted that this result indicates that polarization singularities of topolog-

ical index n = ±1/2 can come in generic and non-generic forms. In the generic form,

one component has topological charge unity and the other has topological charge zero,
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resulting in a point of circular polarization, and the C-points are the types one expects

to see form naturally in random wavefields. However, any case where the topological

charges differ by an integer will result in a half-integer topological index, and will

have the form of a star or lemon. However, the intensity of the field will be zero at

the singularity, and not a point of circular polarization. We refer to these non-generic

lemons and stars as polarization vortices to distinguish them from C-points.

1.3 Partial coherence in scalar and vector fields

The discussion so far has focused on monochromatic fields. When studying fields

that are fluctuating in space and time, one must turn to a statistical description of

their behavior. For scalar fields, the preferred quantity of study is the cross-spectral

density; for vector fields, the preferred quantity is the cross-spectral density matrix.

In this section we briefly review relevant definitions related to these functions.

For a statistically stationary scalar field, the cross-spectral density W (r1, r2, ω) of

the field at two points r1 and r2 may be defined as

W (r1, r2, ω) = ⟨Ũ(r1, ω)U(r2, ω)⟩ω, (1.8)

where we use a tilde to represent the complex conjugate and ⟨· · · ⟩ω represents an

average over an ensemble of monochromatic fields {U(r, ω)}; as first demonstrated

by Wolf [24], this ensemble can be created for any partially coherent field. The cross-

spectral density is in general frequency dependent, but for quasi-monochromatic fields

of central frequency ω0 the overall behavior of the field can be well-represented by

the cross-spectral density evaluated at ω0; we will consider such cases for simplicity

and suppress the frequency dependence in later expressions.

The cross spectral density can be used to directly calculate two important ob-

servables of the field: the spectral density S(r) = W (r, r) and the spectral degree of

coherence µ(r1, r2), a normalized quantity that is equal to the visibility of interference
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fringes observed when measured with Young’s two-pinhole experiment,

µ(r1, r2) =
W (r1, r2)√
S(r1)S(r2)

. (1.9)

As also shown by Wolf [24], the cross-spectral density can always be written in a

modal representation called the coherent mode representation, of the form

W (r1, r2) =
∑
s

λsϕ̃s(r1)ϕs(r2). (1.10)

Here, λs ≥ 0 is an eigenvalue and ϕs(r) is an orthonormal eigenfunction of the cross-

spectral density, as determined from the relation

∫
S

W (r1, r2)ϕ̃s(r1)d2r1 = λsϕs(r2). (1.11)

The domain of integration depends on the geometry of the problem, but is typically

taken to be the source plane of a paraxial beam. The summation may be over one

or more indices, and may be finite or infinite; for a two-dimensional domain, it is

typically a double sum.

The coherent mode representation is a convenient way to illustrate that singulari-

ties of phase – associated with zeros of intensity – are not typical features of partially

coherent waves. As first noted in Ref. [14], in order for a zero of intensity to appear

at a given point, the real and imaginary parts of each mode must simultaneously

vanish at that point. If there are N modes, this involves satisfying 2N equations with

2 degrees of freedom in a cross-section of the partially coherent beam. This is an

overspecified problem unless N = 1, which is the fully coherent case. So phase singu-

larities associated with zeros of intensity are not commonly encountered in partially

coherent fields.

Phase singularities of two point correlation functions such as the cross-spectral
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density, however, are common. The cross-spectral density satisfies a pair of Helmholtz

equations, and by fixing one point, say r1 ≡ rP , the cross-spectral density is equivalent

to a monochromatic wave in the other variable, satisfying the Helmholtz equation,

[∇2
2 + k2]W (rP , r2) = 0, (1.12)

where k = ω/c and ∇2
2 is the Laplacian with respect to variable r2. Just as monochro-

matic fields will typically possess optical vortices, the cross-spectral density will typ-

ically possess coherence vortices. It is to be noted, however, that by fixing one point

of observation, we are only seeing a projection of the singularity, which exists in a

higher-dimensional r1, r2 space; studies of the structure of the complete singularity

have been done in both the source plane [16] and on propagation [25].

For convenience, we note that the cross-spectral density may be written using bra-

ket notation from quantum theory,

W (r1, r2, ω) =
∑
s

λs ⟨r2|s⟩ω ⟨s|r1⟩ω

= ⟨r2|λ |r1⟩ω ,
(1.13)

where ⟨r|s⟩ω = ϕs(r, ω) and λ is equivalent to the usual quantum density operator.

When studying paraxial electromagnetic beams, it is most efficient to decompose

them into two orthogonal polarization components â and b̂. Therefore there are

four different field correlations to consider, between 4 different scalar modes Ea(r1),

Ea(r2), Eb(r1), and Eb(r2). In order to deal with this increased complexity, the cross

spectral density matrix W is introduced,

W(r1, r2) = ⟨E†(r1)⊗ E(r2)⟩

= ⟨r2|λ|r1⟩ .
(1.14)
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A number of observables of the field may be calculated from this matrix, such as the

polarization matrix J̄(r) ≡ W(r, r) and the electromagnetic degree of coherence [26],

defined as

η(r1, r2) =
Tr(W(r1, r2))√

Tr(J̄(r1))Tr(J̄(r2))
, (1.15)

where Tr represents the trace of the matrix. In analogy with the scalar cross-spectral

density, W(r1, r2) can be written in a coherent mode representation.

W(r1, r2) =
∑
n

λnE†
n(r1)⊗ En(r2) (1.16)

or in terms of the density operator

W(r1, r2) = ⟨r2|λ |r1⟩

Wij(r1, r2) = ⟨r2, j|λ |r1, i⟩ ,
(1.17)

where now ⟨s|r1⟩ = Es(r1) represents a vector coherent mode of the field.

1.4 Singularities in partially coherent vector beams

In making a change from scalar beams to vector beams, the singularities of interest

change from optical vortices to polarization singularities. In making a change from

coherent scalar beams to partially coherent scalar beams, the singularities of interest

change from optical vortices to correlation vortices. We now come to the key ob-

servation of this article: in going from coherent vector beams to partially coherent

vector beams, we end up with more than one way of defining and characterizing the

singularities. In this section, we first discuss two known ways of characterizing them

and then introduce a third.

The first approach is perhaps the most straightforward: at any given point, i.e.

r1 = r2 ≡ r, we may always uniquely decompose the cross-spectral density into a

fully polarized part and a completely unpolarized part, as first illustrated by Stokes
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[27] and derived in modern form in Ref. [28]. The polarized part by itself will be a

continuous vector field, and will therefore possess C-points that can be characterized

as for a fully coherent field, which we refer to as coherent polarization singularities.

The decomposition may be written in the form

J̄(r) = W(r, r) = J̄pol(r, r) + J̄unpol(r, r). (1.18)

The polarized and unpolarized parts may be written as

J̄unpol(r, r) =

 A(r) 0

0 A(r)

 , (1.19)

J̄pol(r, r) =

 B(r) D(r)

D∗(r) C(r)

 , (1.20)

where

A(r) =
Tr(J̄)±

√
[Tr(J̄)]2 − 4Det(J̄)

2
, (1.21)

B(r) =
1

2
(JLL − JRR) +

1

2

√
[Tr(J̄)]2 − 4Det(J̄), (1.22)

C(r) =
1

2
(JRR − JLL) +

1

2

√
[Tr(J̄)]2 − 4Det(J̄), (1.23)

D(r) = JLR. (1.24)

We may view this characterization of the singularities of the field as looking purely

at their vector nature, by focusing on the “diagonal” (r1 = r2) elements of the cross-

spectral density. This decomposition was originally formulated in the xy polarization

basis, but has the same form in the LR basis.

Working in the LR basis has a particular advantage in studying singularities, how-

ever. Because a C-point is defined as a point where the field is circularly polarized,

JLR = 0 at every C-point. Furthermore, the coherent part of the field can be written
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as the direct product of a Jones vector with itself in the LR basis, with components

EL(r), ER(r), such that JLR(r) = E∗
L(r)ER(r). Since Eq. (1.5) shows that the orienta-

tion angle Ψ(r) is directly related to the phases of the LR field components through

2Ψ(r) = θR(r)− θL(r), the orientation angle of the ellipse for the coherent part of the

field can be derived directly from the phase of JLR(r).

It is to be noted that this decomposition cannot be applied globally to the whole

beam. As was shown by Wolf [29], it is not in general possible to separate a paraxial

vector beam into a polarized beam and unpolarized beam, each of which individually

satisfies the wave equation.

An alternative approach for studying the singularities of a vector cross-spectral

density is to focus on the analogy with the scalar case, and look for coherence singu-

larities in the directly observable part of the vector field. When performing Young’s

two-pinhole experiment with partially coherent electromagnetic waves, the visibility

of interference fringes is given by η(r1, r2), defined in Eq. (1.15). In analogy with

the scalar case, we may find eta singularities by fixing one observation point r1 = rP

and looking for singularities with respect to the second point r2, i.e. points where

η(rP , r2) = 0. As noted by Raghunathan, Schouten and Visser [30, 31], these singu-

larities behave like scalar coherence vortices, with a discrete topological charge. Eta

singularities have been relatively unexplored compared to other classes of singulari-

ties, though they have been observed in Mie scattering [32] and in the propagation of

partially coherent radially polarized beams [33]. Whereas the coherent polarization

singularities focused on the diagonal elements of the cross-spectral density matrix in

space (r1 = r2), this representation looks at the diagonal elements with respect to

polarization, in the form of the trace.

There is a third option, however, that may in a sense be considered a hybrid of the

two, or even a generalization. As in the scalar case, we look at the projection of the

cross-spectral density on a fixed reference point rP . Doing that here leaves us with a
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quantity that depends on a single spatial variable r2, but is still a 2× 2 matrix. We

now further contract the cross-spectral density matrix with a polarization state â as

well.

WPâ(r) = ⟨r|λ |rP⟩ |â⟩

= â · W(rP , r). (1.25)

The resultant quantity is a non-uniform complex vector field, which we expect to

possess polarization singularities; we refer to these as partially coherent polarization

singularities. Whereas the two previous classes of singularities essentially simplified

the cross-spectral density matrix by diagonalizing in either space or polarization and

projecting with respect to the other quantity, here we perform a projection with

respect to both space and polarization.

It is to be noted that the cross-spectral density matrix, and consequently the vector

â, are measured in the LR circular polarization basis. The resulting vector can be

written in terms of L and R components as

WPâ(r) =

[
aRWRR(r) + aLWLR(r), aRWRL(r) + aLWLL(r)

]
. (1.26)

Several questions arise upon seeing the variety of distinct types of singularities that

can appear in partially coherent vector beams. The first of these is: how are such

singularities related to the singularities of the field in the coherent limit, if at all? The

second question is: what is the significance of these different types of singularities?

In the next section, we introduce a simple model of a partially coherent vector beam

with controllable spatial coherence to answer these questions.
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1.5 Construction of model PC beams

To construct a model of a partially coherent beam with a built-in polarization

singularity, we will utilize the relationship (1.7) between topological index and topo-

logical charge in the LR polarization basis to first construct a coherent field possessing

polarization singularities. This field will then be used in a beam wander model to

produce the cross-spectral density matrix of a partially coherent non-uniformly po-

larized beam. The behavior of the beam’s singularities can then be analyzed as a

function of the spatial coherence.

To model the R and L components of the coherent beam, we will use Laguerre-

Gauss beams of radial order 0 and azimuthal order m; we write these modes as |m⟩.

We write the particular orders of each component as m = tR and m = tL.

Written in coordinates natural for vortex beams, r± = x ± iy, and using t = αm

where α = ±1, the field of a scalar component with singularity centered at c = (c+, c−)

is, in bra-ket notation,

⟨r|c, t⟩ = Cm(σ
2)(rα − cα)

me−|r−c|2/2σ2

eikz. (1.27)

The complex scalar constant σ2 = w2(0) + i z
k
; from this we can determine the beam

width w2(z) = 2|σ2(z)|/ cos(Φ(z)) and the Gouy phase, Φ = arg(σ2). The fields are

taken to be normalized; the normalization factors are included in

Cm(σ
2) =

1√
m!

(
cos(Φ)

σ2

)m/2+1

. (1.28)

Equation (1.27) describes the behavior of a scalar field at any propagation distance

z. An electromagnetic field built from the scalar modes |c, t⟩ may then be written as

|c,λ, t⟩ = λL |c, tL⟩ |L⟩+ λR |c, tR⟩ |R⟩ . (1.29)
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To summarize the notation: here ti represents the topological charge of the ith com-

ponent, where αi is its sign and mi is its magnitude.

Using this model, a coherent beam of n = 1/2, for example, could be constructed

with (tR, tL) = (m + 1,m) for any integer m. The λi in the model are complex

coefficients whose relative phase affects the orientation of the polarization singularity,

and whose magnitudes define how far from the polarization singularity an L-line will

manifest. However, the location of singularities in the cross spectral density matrix

will be affected by the particular choice made, so they will be taken to both be unity

for the remainder of this article.

The beam wander model is a construction of a partially coherent beam through

an ensemble of coherent beams with shifted central axes. This model was first used

in 2004 [14] to model a partially coherent scalar vortex beam, and may now be

considered a special case of a technique for designing genuine correlation functions

[34]. The transverse position of the central axis is defined by the central point c and

the probability density of the ensemble is given by ρ(c). For a scalar beam Φ(r− c),

the cross-spectral density has the form

W (rP , r) =

∫ ∞

−∞
d2cρ(c)Φ∗(rP − c)Φ(r − c). (1.30)

The probability density is usually taken to be of Gaussian form, which allows the

entire integral to be evaluated analytically.

To create a polarization vortex beam with a prescribed topological index, it is

convenient to use separate phase vortex solutions for the R and L components and

take advantage of the relationship of their topological charges to index n described in

Eq. (1.7). A scalar model of partially coherent Gaussian beams of arbitrary topologi-

cal charge was introduced by Stahl and Gbur [20], and can be used to apply the beam

wander model to the R and L components. To make partially coherent beams carry-
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ing lemons and stars, we will expand that model to the electromagnetic case and then

choose the azimuthal modes of the L and R components so that 1
2
(tR − tL) = ±1/2.

The result is the following expression for the cross-spectral density matrix,

W(rP , r) =

∫ ∞

−∞
d2c ρ(c) ⟨r|c, 1, t⟩ ⟨c, 1, t|rP⟩ , (1.31)

with probability density

ρ(c) =
1

πδ2
e−c

2/δ2 . (1.32)

Here δ represents the amount of wander the beam undergoes; δ = 0 represents the

coherent limit.

The diagonal terms for this have already been solved in [20], giving

Wii = WgQii

m∑
k=0

ℓ!

(
mi

ℓ

)2 (
H̃αi

Hαi

)mi−ℓ
. (1.33)

In this expression, Wg is a Gaussian term dependent on the widths of the mode and

the probability density function, Qij is a coefficient dependent on the topological

charges ti = αimi ,

Wg = exp

[
−∆2

4

(
2r2

σ2δ2
+

2r2P
σ̃2δ2

+
|r− rP |2

|σ|4

)]
Qij =

1

δ2
C̃iCj

(
|σ|2δ2

|σ|2 + cosΦ δ2

)mi/2+mj/2+1

=
∆2

δ2
C̃iCj∆

mi+mj ,

(1.34)

and Hi is a complex function that depends on the two coordinates r and rP of the

cross-spectral density,

Hi(rP , r) = ∆

(
1

δ2
+

1

2σ̃2

)
(x+ αiiy)−

∆

2σ̃2
(xP + αiiyP). (1.35)
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Furthermore, ∆ is a length parameter of the form,

∆2 = 2w2 + w4/δ2. (1.36)

It is to be noted that the function Wg possesses no zeros and therefore does not

affect the number of singularities or their positions for any of the singularity types

considered.

The off-diagonal components of the cross spectral density matrix may be solved in

a similar manner, by evaluating the integral,

Wij(r′, r) =
C̃iCj
πδ2

∫ ∞

−∞
d2xc(r̃

′
αi
− c̃αi

)mi(rαj
− cαj

)mj

× e−|r′−c|2/2σ̃2

e−|r−c|2/2σ2

e−c
2/δ2 .

(1.37)

Following a procedure analogous to that of Ref. [20], we employ the substitution

ρ = rc −∆2(rp/σ̃
2 + r/σ2)/2, together with binomial expansions of the vortex terms

to get the following expression for the off-diagonal elements of W,

Wij =
WgQij

π∆2

mi∑
k=0

mj∑
l=0

mi

k


mj

l

H̃mi−k
i H

mj−l
j

×
∫ ∞

0

dρ2
( ρ
∆

)k+l
e−

ρ2

∆2

∫ 2π

0

dϕ ei(αj l−αik)ϕ.

(1.38)

The integral over ϕ is equal to 2πδαj l−αik, applying this and a straightforward

Gaussian integral compresses our result to the form,

Wij=WgQij

mmin∑
ℓ=0

δ
αjℓ
αiℓ

ℓ!

(
mi

ℓ

)(
mj

ℓ

)
H̃mi−ℓ
αi

Hmj−ℓ
αj

=WgPij(r+, r−),

(1.39)

where Pij is a polynomial factorable into r+ and r− terms and mmin is the minimum



23

of {mi,mj}. Using this formula, we can write the cross-spectral vectors, defined in

Eq. (1.25), and electromagnetic degree of coherence, defined in Eq. (1.15), in terms

of the nonzero Wg and the polynomials Pij in the form

η =
Wg(PRR + PLL)√
Tr [J(rP)]Tr [J(r)]

. (1.40)

WPâ= Wg[ aRPRR+aLPLR aRPRL+aLPLL ] (1.41)

Because our expression for the cross-spectral density matrix is analytic, we can

directly determine the number of phase singularities each component must possess.

Referring to Eq. (1.39) for Pij, we see that the largest powers of the polynomial are

of the forms (x − αiiy)
mi and (x + αjiy)

mj , resulting in mi and mj distinct roots,

respectively. We may therefore expect that there will be mi first-order singularities

of charge −αi, and mj first-order singularities of charge +αj.

We may use this observation to determine the singular behavior of the beam for

each type of singularity discussed. For coherent polarization singularities, the net

topological index, given by Eq. (1.7), will be determined by the zeros of WLR, or

n = (−αLmL + αRmR)/2. (1.42)

The topological index of the coherent part of the beam will therefore remain constant,

regardless of the state of coherence.

For eta singularities, we combine Wii and Wjj. The first term will be a polynomial

of order mi in both +αi and −αi, and the second term will be a polynomial of order

mj in both +αj and −αj. Let us consider the case where both αi > 0 and αj > 0, for

simplicity. Because the order of a sum of polynomials is the maximum of the orders

of the individual polynomials, we find that the number of positive singularities N+
η
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and negative singularities N−
η is given by

N+
η = N−

η = max(mR,mL). (1.43)

The net topological charge will always be zero, though the number of positive and

negative charges will depend on the order of the components. For example, a lemon

made from tR = 3 and tL = 2 would have 3 pairs of t = 1 and t = −1 phase vortices.

A similar calculation may be done to determine the number and type of singularities

in WPâ. We again restrict ourselves to the case where αi > 0 and αj > 0. In this

case, the left component of the vector will have max(mR,mL) negative charges and

mL positive charges in general, while the right component of the vector will have mR

positive charges and max(mR,mL) negative charges. The total number of lemons and

stars may then be calculated by:

Nlemons = positive R+negative L = mR +max(mR,mL), (1.44)

Nstars = negative R+positive L = mL +max(mR,mL). (1.45)

This assumes that none of the zeros coincide, which is the typical scenario. It is to be

noted that the number may change in the special case when the projection vector â

is taken to be a pure circular polarization state. By making an appropriate selection

of â, not only the positions of the polarization singularities but their total number

may therefore be manipulated.

1.6 Singularities in model beams

We may now apply our model to investigate and confirm the behavior of the three

classes of singularities for partially coherent electromagnetic beams and their rela-

tionships to the underlying singularity of the coherent beam. In all examples, we

take w0 = 0.5 cm.
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Figure 1.2: Behavior of a coherent polarization singularity as the spatial coherence is
decreased, with (a) δ = 0.1 cm, (b) δ = 0.5 cm, (c) δ = 3 cm.

We first consider the case of coherent polarization singularities, characterized by

points where JLR(r) = 0, where we take tR = 1, tL = 0, resulting in a generic lemon.

Figure 1.2 shows the behavior of the polarization singularity as the spatial coherence

is decreased.

It can be seen that the singularity is unchanged in position or even in phase struc-

ture as δ is varied. This result is also true for a non-generic lemon, with tR = 3

and tL = 2 (not shown). We may explain this result as arising from the rotational

symmetry of all constituent parts of the field: the left and right components of the

field, as well as the probability distribution ρ(c), are all symmetric about their central

axes. Therefore, there is nothing in the model that provides a direction to break sym-

metry and allow the position of the polarization singularity to change. This result is

noteworthy as it suggests that the coherent polarization singularities maintain their

original structure when a beam is randomized under quite general circumstances,

and indicates that the topological index will remain unchanged on randomization, as

predicted by Eq. (1.42).

The situation for eta singularities, where η(rP , r) = 0, is significantly different. In

Fig. 1.3, there is no eta singularity at the origin in the coherent limit, whereas there

is a polarization singularity at that position. This discrepancy arises because eta

singularities are associated with a zero of Tr[W(r1, r2)], which typically evolves into

a zero of intensity in the coherent limit. A generic C-point has a non-zero intensity,
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Figure 1.3: Behavior of an eta singularity as the spatial coherence is decreased, with
(a) δ = 0.1 cm, (b) δ = 0.5 cm, (c) δ = 3 cm. Here tR = 1, tL = 0 and the observation
point is taken at r1 = (0.35, 0.35) cm. Dashed lines have been included to show the
position of the coordinate system origin.

so this polarization singularity is not directly reflected in the behavior of the eta

singularities.

It can be seen that, as the spatial coherence is decreased, a second eta singularity of

opposite charge approaches from the point at infinity along the line of r1, resulting in

a field with a net topological charge of zero near the origin. This is the same behavior

seen for correlation singularities in scalar fields [14].

For a non-generic polarization vortex, the eta singularity behavior connects more

closely to the underlying polarization singularity, as seen in Fig. 1.4. In the coherent

limit, the polarization singularity is also a point of zero intensity due to the overlap

of zeros of the L and R components of the field. Therefore this corresponds to an eta

singularity at the origin, and that eta singularity is preserved as the spatial coherence

is decreased.

In Fig. 1.3, we end up with a single plus-minus pair as coherence is decreased,

whereas in Fig. 1.4 we end up with three pairs. These results are consistent with the

predictions of Eq. (1.43).

We finally consider the behavior of partially coherent polarization singularities

where WPâ(r) = 0, where the behavior of such singularities strongly depend on the

choice of projection â. We may naturally decompose the behavior into the case where

â is parallel to the polarized part of the field at the observation point rP and the case
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Figure 1.4: Behavior of an eta singularity as the spatial coherence is decreased, with
(a) δ = 0.1 cm, (b) δ = 0.5 cm, (c) δ = 3 cm. Here tR = 2, tL = 1 and the observation
point is taken at rP = (0.35, 0.35) cm. Dashed lines have been included to show the
position of the coordinate system origin.

where â is perpendicular to this polarized part. Figure 1.5 shows the parallel case; we

can see that, in the coherent limit, this projection accurately reproduces the lemon

behavior at the origin.

The situation is different for the perpendicular case, as shown in Fig. 1.6. The net

topological index stays equal to that of the coherent limit, but there are additional

singularities present for this case, even as we approach full coherence.

According to Eq. (1.45), we expect to see two lemons and one star in general in

the projection as the coherence is decreased, and this is true in both Figs. 1.5 and

1.6. To further confirm that our calculation in Eq. (1.45) is correct, we consider the

higher-order polarization vortex case with tR = 2, tL = 1 in Fig. 1.7. Now we predict

4 lemons and 3 stars, which can be seen in Fig. 1.7(c) and (d). It is to be recalled,

Figure 1.5: Behavior of a partially coherent polarization singularity as the spatial
coherence is decreased, with (a) δ = 0.1 cm, (b) δ = 0.5 cm, (c) δ = 3 cm. Here
tR = 1, tL = 0 and the observation point is taken at rP = (0.35, 0.35) cm. The unit
vector â is taken parallel to the polarized part of the field at rP .
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Figure 1.6: Behavior of a partially coherent polarization singularity as the spatial
coherence is decreased, with (a) δ = 0.1 cm, (b) δ = 0.5 cm, (c) δ = 3 cm. Here
tR = 1, tL = 0 and the observation point is taken at r1 = (0.35, 0.35) cm. The unit
vector â is taken perpendicular to the polarized part of the field at rP .

however, that the number of zeros depends on the projection vector â; in our case,

we find that annihilation events happen in Fig. 1.7(e), resulting in fewer singularities

in the low coherence limit.

1.7 Conclusion

Although there is a simple relationship between coherent optical vortices and corre-

lation singularities when looking at scalar wavefields, there are multiple ways to define

singularities of a partially coherent vector field. In this article we have discussed three

different methods for defining partially coherent vector singularities, and introduced

a simple model of a partially coherent vector field to compare them.

Our model demonstrates that, in each case, the singularities that exist in a co-

herent vector field do evolve into singularities of the cross-spectral density matrix,

though each of the partially coherent projections have different relationships to their

coherent counterparts. It is to be noted that each of these projections will have their

own relevance to experimental observations. The coherent polarization singularities

will be reflected in the Stokes parameters of the partially coherent field, whereas

the eta singularities and partially coherent polarization singularities will appear in

Young’s two-pinhole interference experiments, where the fields from two different

spatial points are interfered. Furthermore, because the first two methods involve a

diagonalized projection of the cross-spectral density matrix in space or polarization,
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Figure 1.7: Behavior of a partially coherent polarization singularity as the spatial
coherence is decreased, with (a),(d) δ = 0.1 cm, (b),(e) δ = 0.5 cm, (c),(f) δ = 3 cm.
Here tR = 2, tL = 1 and the observation point is taken at r1 = (0.35, 0.35) cm. The
unit vector â is taken parallel to the polarized part of the field at rP in (a), (b), (c)
and perpendicular in (d), (e), (f).

partially coherent polarization singularities cannot be derived from measurements of

either of these, and vice-versa. They represent distinct manifestations of singularities

in the partially coherent vector case.

It is of interest to note that there is an analogy here to a discussion that arose

several years ago, relating to the proper definition of the degree of coherence when

dealing with electromagnetic fields. In addition to the aforementioned definition

using eta [26], which is determined by the visibility of interference fringes, Tervo et

al. [35] simultaneously introduced a definition that stresses the statistical correlations

between field components. A third definition was introduced by Réfrégier and Goudail

[36] that stresses invariant properties of the field. It appears that the appropriate

choice of degree of coherence depends on the interests of the experimenter, and we

expect the same is true for the multiple possible definitions of singularities in partially

coherent electromagnetic fields.
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This article focuses on several definitions of electromagnetic singularities. Like the

scalar case [16], however, all these definitions are projections of the true partially

coherent electromagnetic singularities which exist in a higher-dimensional space, and

which is not easily visualized. Future work will involve trying to determine the nature

of such singularities, and it is hoped that the recognition of the various projections

will aid in this investigation.

From a practical perspective, we note that there has been much attention paid in

recent years to the use of optical vortices in free-space optical communication, which

potentially have several advantages over traditional communication schemes [4, 5].

With this in mind, it would seem that beams possessing vector singularities will be a

natural next step in research, especially considering that vector beams possess some

advantages over scalar beams on propagating in atmospheric turbulence [12]. An

understanding of how polarization singularities evolve when the spatial coherence of

beams is reduced will be essential for such research, and we hope that this paper is a

step in that direction.
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CHAPTER 2: EVOLUTION OF THE POLARIZATION SINGULARITIES IN

PARTIALLY COHERENT BEAMS ON PROPAGATION THROUGH

TURBULENCE

abstract

In recent years, topological singularities of wavefields have been considered as struc-

tures that can improve a variety of optical technologies, including remote sensing and

free-space optical communications. However, atmospheric turbulence can distort the

features of singularities over long propagation distances, limiting their use in many

cases. One solution being considered is the reduction of spatial coherence of light, as

partially coherent beams have shown increased resistance to turbulence under a broad

range of situations. In this paper, we look at the evolution of polarization singularities

that arise in a particular projection of a partially coherent vector beam, and how the

position and number of singularities are affected by atmospheric turbulence. We find

that there are projections where the singularities persist on propagation, suggesting

their possible use in applications.

2.1 Introduction

In recent years, significant effort has focused on the science and applications of

wavefield singularities, becoming a subfield of optics in its own right known as singular

optics [3, 2, 37]. The most familiar form of such singularities are optical vortices in

scalar fields, which are lines of zero intensity in three-dimensional space around which

the field has a circulating or helical phase [38, 39]. These vortices are topological

structures of the wavefield, and for monochromatic waves the phase always increases

or decreases by an integer multiple of 2π; this multiple is called the topological charge,
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t, of the vortex.

Entire classes of beams can be constructed with optical vortices on their central

axis; the most notable of these are the Laguerre-Gauss beams, where the azimuthal

order l of the Laguerre-Gauss mode represents the topological charge of the beam

[40]. Because vortices are discrete features of a wavefield that are robust under small

perturbations, vortex beams have been considered as a means to increase the stability

and data transmission rate in free-space optical communications. One way this can

be done is by using different Laguerre-Gauss modes, which can be multiplexed and

demultiplexed optically, as independent data channels [41, 5]; the individual modes

will be distorted by atmospheric turbulence, however, resulting in modal crosstalk

[42]. An alternative is to use different vortex orders as an “alphabet” to replace

binary data information; it has been shown that vortices can travel long distances

in turbulence without distortion [43]; however, one must measure the phase of the

wavefield at the detector to extract the vortex information.

Vortices are the natural singularities in beams with a uniform state of polarization.

However vector beams, which have a nonuniform state of polarization in their cross-

section, instead possess singularities in the structure of the polarization ellipse, and

the typical type of singularities in this case are points where the polarization is circular

and the ellipse orientation is undefined [44]. A discrete topological index can be

associated with polarization singularities that takes on half-integer values, and these

singularities are also robust under perturbations of the field. These properties suggest

that polarization singularities could also be used as an alternative carrier of data in

free-space optical communications, with additional robustness due to the nonuniform

polarization; it has been shown that certain classes of nonuniformly polarized beams

have reduced intensity fluctuations in turbulence [12].

Another way to reduce the intensity fluctuations of beams in turbulence is to make

the beams partially coherent [45]. A beam with reduced spatial coherence is in a sense
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“pre-randomized” and will have fewer self-interference effects, reducing scintillations.

Optical vortices do not typically appear in such beams, but vortices can appear in

the two-point correlation function of a partially coherent beam, and these vortices

are also robust [46].

When a vector field is also partially coherent, even richer possibilities for wavefield

singularities appear. Recently, we demonstrated that one can envision three different

and largely independent types of singularities in vector partially coherent fields [47].

The first of these are polarization singularities in the fully polarized part of the field;

the second are scalar singularities in the degree of coherence of the field. The third

type are projections of the correlation matrix of the field onto a single polarization

state and observation point, which results in a set of polarization singularities in the

resulting vector field. This third class of singularities, like its partially coherent scalar

and coherent vector counterparts, might prove useful in transmitting data through

free-space.

In this paper, we look theoretically at atmospheric propagation of a class of partially

coherent vector beams carrying singularities. We look at the evolution of the projected

polarization singularities on propagation and their dependence on the source and

turbulence parameters.

2.2 Characterizing partially coherent vector beams and their singularities

A partially coherent field is randomly fluctuating in space and time, usually at

a rate too fast for a detector to measure. Optical coherence theory is therefore

typically concerned with averages of field quantities over an ensemble of realizations

that, assuming ergodicity, is equivalent to a long time average. For scalar fields, the

observable properties of the field are characterized by a two-point correlation function,

the cross-spectral density, that is defined as

W (p, q, ω) = ⟨U∗(p, ω)U(q, ω)⟩ω , (2.1)
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where p and q represent the position vectors of two points within the field and

the brackets ⟨⟩ω represent an average over an ensemble of a monochromatic field

realizations U(p, ω), as first introduced by Wolf [48]. In most applications, fields

are quasi-monochromatic and can be well-described by their central frequency ω; we

assume this to be the case moving forward and suppress expression of ω.

We are most interested in highly directional beam-like fields, for which the polariza-

tion vector lies in a plane perpendicular to the direction of propagation. If the state

of polarization is nonuniform and varies within the beam’s cross-section, possibly in

a random manner, the beam must be characterized by a cross-spectral density matrix

defined as [49]

W(p, q) = ⟨E†(p)⊗E(q)⟩

=

⟨E∗
1(p)E1(q)⟩ ⟨E∗

1(p)E2(q)⟩

⟨E∗
2(p)E1(q)⟩ ⟨E∗

2(p)E2(q)⟩

 ,
(2.2)

where E(p) represents the transverse electric field at point p, Ei(p) represents the ith

transverse component, with i = 1, 2 and ⊗ represents the outer product of vectors.

The cross spectral density matrix includes the case p = q = r, which provides the

relative correlations between field components at a single point; these correlations

characterize the state of polarization. More details of the properties of the cross-

spectral density matrix can be found in Wolf [28].

In a partially coherent scalar beam, the singularities are pairs of points in the beam

cross-section where the cross-spectral density vanishes and the phase of the cross-

spectral density is therefore undefined. In a coherent vector beam, the singularities are

points where the orientation of the polarization ellipse, characterized by the azimuthal

angle Ψ of the major axis of the ellipse, is undefined. This is typically in the form of

an isolated point of circular polarization or a “C-point,” but also includes higher-order

singularities where the field intensity is zero, often called “V-points” [50].
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For the cross spectral density matrix of partially coherent vector beams, there are

in fact multiple types of vector field singularities that can be characterized. In our

earlier work [47], we outlined three ways to define singularities in W(p, q). The

most straightforward of these methods is to look at the singularities of the polarized

part of the field, derived from W(r, r). This case manifests singularities that are

essentially the same as those of a fully coherent polarized beam, and therefore this

case provides little novelty. The second method is to look at scalar singularities of

the electromagnetic degree of coherence η(p, q), defined as

η(p, q) ≡ Tr[W (p, q)]√
Tr[W (p,p)]Tr[W (q, q)]

, (2.3)

where Tr indicates the trace of the matrix. This method results in singularities that

do not appear to be directly connected with the polarization singularities of the field.

The most promising method of defining singularities in W(p, q) is to project the

matrix onto a fixed point p and polarization state a, where a is a generally complex

unit vector. This projection can be written formally as

W a,p(q) ≡ a ·W (p, q), with p fixed. (2.4)

This projection itself behaves as an ordinary vector beam, and we may define a po-

larization ellipse for this beam with orientation Ψ(q); this vector beam can therefore

possess its own polarization singularities. Formally, we should refer to these as po-

larization singularities of a projection of a vector partially coherent beam, but going

forward we will simply refer to them as polarization singularities. These projected

polarization singularities are the only ones we will concern ourselves with in this

paper.

The projected vector field can be thought of as a cross-section of the singularities

of the full cross-spectral density matrix in the higher dimensional space that defines
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W (p, q). This space is defined by allowing both p and q to vary in the cross-section of

the beam, and is effectively a four-dimensional space. The singularities that appear

at isolated points q for fixed values of p will become surfaces when p is allowed

to vary as well, suggesting the singularities form two-dimensional surfaces in our

four-dimensional space. Similar singular surfaces have been investigated for scalar

wavefields [51] and are well-defined but hard to visualize. The difficulties associated

with this are only exasperated by allowing the coordinates of the projected a on the

Poincaré sphere to vary as well, adding two more dimensions to the space and the

manifold describing the singularities. The projection of Eq. (2.4), in contrast, has

well-defined polarization singularities with half-integer values of topological index,

and these singularities are expected to be somewhat robust under perturbations such

as turbulence.

If we consider the complete propagated field instead of its behavior in a trans-

verse plane, the cross-spectral density matrix W (p, q) becomes an effectively six-

dimensional space, as p and q are now three-dimensional spatial vectors. However,

we almost always study the cross-spectral density matrix in a single transverse cross-

section, so we are only considering an effectively five-dimensional space. In this case,

with p fixed, our singular points become singular lines.

Even if we construct a cross-spectral density matrix from an ensemble of vector

beams with a pure polarization singularity on the optical axis, we anticipate additional

singularities may be present in our projections due to the effects of partial coherence.

On propagation in free space, the field will become increasingly coherent in accordance

with the van Cittert-Zernike theorem (see, for example, [28]). It is expected that the

additional singularities will therefore disappear or have some measure of viability

approach zero as the propagation distance increases. For a beam propagating in

the atmosphere, however, turbulence is a source of coherence loss for the beam, and

part of our objective will be to see how these competing processes of increasing and



37

decreasing coherence affect the singularities of the beam.

2.3 Model of partially polarized vector vortex beam

We are interested in a model of a partially polarized vector vortex beam that in

its coherent limit corresponds to a vector vortex beam with a specified topological

index. The most common model used is of Gaussian Schell-model type, one form of

which can be written as

W (p, q) ≡ E†(p)⊗E(q) exp[−R2/σ2
µ ], (2.5)

where E(p) is a coherent vector vortex beam and the Gaussian function represents

the spatial degree of coherence between different points in space, with R = q − p,

and σµ is the correlation length of the beam. Gaussian Schell-model beams are well-

known to lose their singularities on propagation, even in free space, making them

less than ideal for atmospheric applications. They also a topology for the projection

of W in the defined cross section which is indistinguishable from the polarization

singularities of the coherent beam E used to define it and so includes none of the

novelty of partially coherent polarized beams we are studying.

We instead use a so-called beam wander model for a partially coherent singular

beam, in which the cross-spectral density is constructed out of an ensemble of identical

coherent vector vortex beams with shifted center axes. In the scalar case, entire

classes of beam wander model beams have been constructed out of every azimuthal

order Laguerre-Gauss beam [52] and every radial order Laguerre-Gauss beam [53],

and in the latter case it was shown that the singularities of such beams become more

prominent and deterministic as they propagate in free space.

We may construct a vector vortex beam of arbitrary topological index from scalar

vortex beams with orthogonal circular polarization states. If we construct a beam

from a left circularly polarized beam of topological charge tL and a right circularly
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polarized beam of topological charge tR, it has been shown [23] that the topological

index n of the resulting polarization singularity has the value

n = 1
2
(tR − tL). (2.6)

It is to be noted that this expression implies that we can make different choices of tR

and tL that will result in the same n and will result in the same overall topological

structure of Ψ. C-points arise when either tR = 0 or tL = 0; if both are non-zero we

get a V-point.

For our scalar vortex beams Φi(r), with i = L,R, we take the familiar Laguerre-

Gauss beams of radial order zero and azimuthal order ti = ±imi, where mi = |ti|.

Here the symbol ±i represents the sign of the ith component, which may be taken to

be positive or negative; ∓i is ±i multiplied by −1. These may be written in compact

form as

Φi(r) = Ai
σ2
o

σ2
√
mi!

(
σor±i

σ2

)mi

exp
[
− r2

2σ2

]
, (2.7)

where Ai is the overall amplitude and r± = x ± iy. We have introduced a complex

parameter σ2 with dimension of area and constant real part σ2
o ; this accounts for

the Gaussian beam properties such as beam width w, wavefront curvature F and the

Gouy phase ΦG. Because we will construct our partially coherent beams out of shifted

copies of these scalar beams, the overall topological index of the polarized part of the

beam will remain unchanged regardless of the state of coherence.

In the beam wander model, the cross spectral density matrix may be constructed

from a weighted incoherent sum of identical vector beams with shifted centers c, of

the form

W(p, q) =

∫
d2c λ(c)Φ†(p− c)⊗Φ(q − c), (2.8)
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where

λ(c) = (πσ2
λ )

-1exp[−c2/σ2
λ ] (2.9)

is the probability density of the ensemble of transverse c-values, σλ is the variance

of the distribution, and Φ(q − c) is one of the vector beams constructed from the

scalar components of Eq. (2.7). This construction was originally called the “beam

wander model” because the random axial position of the ensemble members is a

rough approximation of the beam wander experienced by coherent beams propagating

through atmospheric turbulence; the beams are now also called Rankine vortex beams

because of the Rankine vortex nature of their orbital angular momentum [54, 55]. As

the wander of the beam is increased, the spatial coherence of the beam decreases.

For notational simplicity, we introduce a parameter γα as an inverse squared width,

with γα = σ-2
α , where the subscript α can refer to a number of different defined widths.

In this notation, σα always has dimension of length and γα, if complex, may be written

γα = γ′α+ iγ
′′
α. Hence the Laguerre-Gauss mode of Eq. (2.7) can be written compactly

as

Φi(r) = Ciγ
mi+1rmi

±i
exp(−γr2/2), (2.10)

where Ci is a constant of units mmiN/C and γ is in reference to the beam width σ.

We also take γλ = σ-2
λ .

We may now evaluate the integral of Eq. (2.8), which can be done analytically

because of the choice of a Gaussian for the probability density of Eq. (2.9) and

Laguerre-Gauss modes for the members of the ensemble. The method follows the

same approach of our previous paper [47], and we may write the i, jth component of
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the cross-spectral density matrix as

Wij(p, q) = AWW
(s)
ij (p, q)e−

1
2
γ∗1p

2−1
2
γ1q

2−1
4
γ2R

2

, (2.11)

W
(s)
ij (p, q) = C∗

i Cj

m∑
ℓ=0

cijℓγ
ℓ
sP

mi−ℓ
i Q

mj−ℓ
j , (2.12)

Qi(p, q) = γ1q±i
+ 1

2
γ2R±i

, (2.13)

Pi(p, q) = Q†
i = γ∗1p∓i

− 1
2
γ2R∓i

, (2.14)

where again R = q − p, † represents the Hermitian conjugate with respect to the

coordinates p and q, and the coefficient cijℓ = ℓ!(mi
ℓ )(

mj

ℓ ). In the summation, the the

upper limit m is lowest common degree of polynomial between i and j and so is the

minimum of mi and mj when the two charges have the same sign and is 0 when they

do not; The γα parameters for our model have the forms,

γ1 = γ
γλ

γλ + γ′
, (2.15)

γs =
|γ|2

γλ + γ′
, (2.16)

γ2 = γs . (2.17)

In the coherent limit, i.e. γ
λ
→ ∞, γ1 → γ and γs → 0, only the l = 0 term of the

sum survives and the cross-spectral density matrix factorizes into the product of two

coherent Laguerre-Gauss modes of the form of Eq. (2.7).

If we consider J(r) ≡ W(r, r), only γ1 and γs appear with γ1 giving the waist and

Gouy phase while γs indicates coupling of the original beam modes into lower-order

modes through a reduction of spatial coherence.

We have separated out the term W
(s)
ij (p, q) in the cross-spectral density matrix

because the complex exponentials are the same across all components and possess no

zeros, which means that they do not add any topological features to the beam. The
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topology of W can therefore be analyzed by studying the topology of W
(s) alone. If

we now consider the projection of the matrix defined by Eq. (2.4), we may write

W
(s)

a =

[
aRW

(s)

RR + aLW
(s)

LR aRW
(s)

RL + aLW
(s)

LL

]
= |a2RC2

R|
M∑
ℓ=0

ℓ! γℓ2
[
(]
(
M
ℓ

)
PM−ℓ
∓ + βaβ

∗
C

(
m
ℓ

)
Pm−ℓ
∓

] [(
M
ℓ

)
QM−ℓ

± βC
(
m
ℓ

)
Qm−ℓ

±

]
,

(2.18)

where the topology is only dependent on the complex ratios βa = aL/aR and βC =

CL/CR. This projection will have singular points in Ψ where either W (s)
a R or W (s)

a L

are zero.

The number of zeros for a polynomial of one complex variable is the degree of the

polynomial; for most cases under consideration the number of zeros is equal to the sum

of zeros of q+ and q−. In the case of ±i1 = ±j1 = ±1, the right circular component is

a polynomial of mR degrees in q± and mmax = max(mR,mL) degrees in q∓. For the

case of ti = mi this implies that the right circular component will introduce up to mR

C-points with topological index of n = 1/2 (“lemons”) and max(mR,mL) C-points

with topological index of n = −1/2 (“stars”), with left circular polarization at the

singularities. The zeros of the left circular component indicate there will be up to mL

stars and max(mR,mLδ
±j1
±i1

) lemons with right circular polarization. The index of the

total beam is therefore

n = ±
[
1
2
(mR +mmax)− 1

2
(mL +mmax)

]
= 1

2
(tR − tL), (2.19)

which is the desired topological index of the beam.

However, there are

Ns = mR +mL + 2max(mR,mL) (2.20)

total singular points in this case rather than one singular point at the optical axis
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as is the case for a coherent and Gaussian Schell beam. Putting in reasonable values

for the parameters γo, γλ and C showed that our analysis correctly determines the

number and types of singularities that exist for the cases t = (1 0) and t = (2 1),

where t = (tR tL), in the cross-section of the beam in the source plane.

However, there are cases where the number of singularities is not equal to the

polynomial degrees in this way. For example, when γ1 is complex, the number of

singularities can be reduced by multiples of two. Because a complex γ1 is equivalent

to free space propagation of the beam, we will address these cases in Section 2.5.

Let us analyze the case of t = (1 0), chosen because of its simplicity and because

its singularity is a familiar C-point. Our example, when projected onto the state a,

gives

W
(s)

a = aR|C2
R|

( (
P∓ + βaβ

∗
C

) [
Q± βC

]
+

[
γs 0

] )
, (2.21)

and the zeros of its vector components correspond to the partially coherent polariza-

tion singularities. Let us consider how the position of the singularities depends on

the choice of projection, in particular the major axis angle of the projection and the

ratio βa.

The zero in the left circular component is located at

q± = p± +
γ1
γ2
p± +

2

γ2
|βCβa|e2Ψa−2Ψ0 (2.22)

where the major axis of the coherent mode used in the beam wander model is ΨΦ =

ϕ/2 + Ψ0. If we consider a constant |βa| and vary ΨΦ, we see that this singularity is

located on a circle and all positions on the circle are covered as the major axis goes

through all possible orientations.

The two zeros of the right circular component do not have clean analytical solutions

but setting W
(s)

a R = 0 defines the real and imaginary parts as circles, the intersection

of which are the singularities. The positions of the three singularities present, as a
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Figure 2.1: The position of the polarization singularities as the projection vector a is
changed. In (a), the singularity is projected onto a state where only the orientation,
Ψa, of the polarization used in the projection is varied while the eccentricity is set so
that |βaβC | = 0.5 cm-1. The color of each point along the line of singularity indicates
the angle Ψa for which the singularity is located at the point shown. In (b), the
singularity is projected onto a state with a constant major axis Ψa = 0 with |βaβC |
varied. All γi are measured in cm-2 and we project onto p = (0.5 0) cm.

function of the major axis angle, are shown in Fig. 2.1(a).

In general, a change in Ψa causes rotation of the position of the singular points

near the axis while increases in |βaβC | move those points away from the beam center.

The one exception for this example beam occurs when for βaβ∗
C is real and negative,

meaning Ψa is perpendicular to the polarized part of the beam at p = pxx̂, when

the magnitude is such that W
(s)

a is real everywhere. In that projection a degenerate

singularity in the form of a circle replaces a pair of singular points. Similarly, for

higher order beams there will be regions in the space of a is where the projection will

possess extra pairs of singularities. However, for these models the number of singular

lines in the space (qx, qy, |a|) stays the same.

In free-space propagation, the topological index of the beam will be generally con-

served, but the number of singularities is not a constant of the beam: singular points

may overlap and become a single point of different index or they may annihilate each

other completely if they have equal and opposite indices. They also will change loca-

tion as z increases, possibly moving towards or away from the optical axis, increasing
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or decreasing their visibility at the detector. What changes occur, and when, can only

be answered if we extend our model of W to W(p, q, z). We incorporate a discussion

of free space propagation in our discussion of turbulence propagation, as free space is

the limiting case of extremely weak turbulence.

2.4 Propagation of the model

Atmospheric turbulence is modeled as random variations of the index of refrac-

tion n(r, t) in space and time, treated statistically with an ensemble of turbulence

realizations that are effectively static on the time scale of beam propagation. The vari-

ations of refractive index induce random phase fluctuations on any beam propagating

through them, and the general result is a loss of beam coherence. The statistical

properties of the atmosphere are modeled by a spatial frequency power spectrum; in

this paper we use a Gaussian power spectrum for the sake of analytic tractability.

Such a power spectrum is a fair approximation for many turbulent conditions, and

we are more concerned with the effects of a random medium on the beam topology

than how a specific turbulence model affects the propagation.

In free space, the paraxial propagation of a beam can be modeled using Rayleigh-

Sommerfeld diffraction, in the form

E(r, z) =
φd
2π
eikz

∫ ∫
d2r′E(r′, 0) exp

(
−1

2
φd|r − r′|2

)
, (2.23)

where φd ≡ −ik/z. We may use Eq. (2.2) to write the components of the cross-spectral

density matrix as

Wij(p, q, z) =
φ2
d

4π2

∫
d2p′

∫
d2q′Wij(p

′, q′, 0)

× exp
(
i1
2
φd(|q − q′|2 − |p− p′|2)

)
.

(2.24)

The effect of turbulence is incorporated into this model using the extended Huygens-

Fresnel principle [56], in which the field is assumed to acquire a random complex phase
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ψ(p,p′) during propagation from the source point p′ to the detector point p, i.e.

Wij(p, q, z) =
φ2
d

4π2

∫
d2p′

∫
d2q′Wij(p

′, q′, 0)

× exp
(
i1
2
φd(|q − q′|2 − |p− p′|2)

)
× ⟨exp(ψ∗(p,p′) + ψ(q, q′))⟩ .

(2.25)

For a Gaussian power spectrum, the complex phase term can be approximated as a

quadratic exponential,

⟨exp(ψ∗(p,p′) + ψ(q, q′))⟩ = exp
[
−1

4
γn(R

2 +R ·R′ +R′2)
]
, (2.26)

where R = q − p, R′ = q′ − p′ and γn = 4
3
(.55C2

nk
2z)6/5 [57]. Using this quadratic

approximation allows us to develop an analytic model for atmospheric propagation

of our beams.

It is to be noted that the effects of turbulence and diffraction on the propagated

beam are distinct. Turbulence randomizes the phase of the beam, decreasing the

spatial correlations on propagation; diffraction introduces a deterministic phase on

propagation.

The integration of Eq. (2.25) is lengthy but may be done analytically. We choose

to evaluate it in terms of the variables R, R′, ρ = 1
2
(q + p) and ρ′ = 1

2
(q′ + p′), i.e.

Wij(R,ρ, z) =
φ2
dAW
4π2

∫
d2R′

∫
d2ρ′AWW

(s)
ij (R,ρ, 0)

× exp(−γρ′ρ′2 − 1
4
γR′R′2 + iφ0ρ

′·R′)

× exp (iφd(ρ− ρ′) · (R−R′))

× exp(−1
4
γn(R

2 +R ·R′ +R′2)),

(2.27)

where γρ′ = γ′1′ , φ0 = γ′′1′ and γR′ = γ′1′ + γ2′ , where γα′ are the values before propaga-

tion.
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In this way, the result for the propagated cross-spectral density is given as

Wij = AWW
(s)
ij e

−γρρ2−
1
4
γ
R
R2+iφzρ·R, (2.28)

W
(s)
ij = C∗

i Cj

m∑
ℓ=0

cijℓγ
ℓ
sP

mi−ℓ
i Q

mj−ℓ
j , (2.29)

Qi = γ1(z)q±i
+ 1

2
γ2(z)R±i

, (2.30)

Pi = Q†
i = γ∗1(z)p∓i

− 1
2
γ∗2(z)R∓i

, (2.31)

but with new definitions of the γα parameters.

These results should be compared with Eqs. (2.11)-(2.14); we are able to write

the cross-spectral density matrix on propagation in free space or in turbulence in the

same form as the cross-spectral density in the source plane. The parameters of the

propagated model are

γ1(z) = − iφd
γv
Γ
, (2.32)

γ2(z) =

[
(φd+φ0)

φd
γρ′

− 1
2
γn + iφd

]
γv
Γ

− iγ1′
φd
γρ′
, (2.33)

γs = γs′ +
|γ21′ |
γρ′

− |γv|2

Γ
, (2.34)

where

Γ = γR′ + γn + (φd + φ0)
2/γρ′ (2.35)

and

γv = γ1′ + γ2′ + iγ1′(φd+φ0)/γρ′ . (2.36)

The last parameter γs is a sum of terms arrived at by reducing a binomial expansion

after each integration. The above parameters can be used for quite general cases,

including propagation through multiple distinct layers of turbulence, but for our initial
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model with γ1′ = γρ′ − iφ0 and γs′ = γ2′ = γR − γρ′ the parameters simplify to

γ1 = γ1′
γd

Γ
− iφd

γo
Γ
, (2.37)

γs = γ2′
γd

Γ
+ γo

γn
Γ
, (2.38)

γ2 =γs − iγ1
3γn
2φd

, (2.39)

(2.40)

where γd = φ2
d/γρ′ while γo = γ2′ + |γ21′|/γ′1′ . Just as in the initial cross section, γ1 and

γs still describe a beam spreading in the same way as a simple beam wander, with

σ2
λ = σ2

λ′ +
γn
φ2
d

, (2.41)

but now γ2 is a complex parameter reflecting tilt of the beam that leads to the beam

wander.

Unlike in the model of the beam cross section the Gaussian parameters (with the

exception of γρ) do not follow as simply from γ1 and γ2, with γρ = γ′1 but now

φz = −γ′′1 − γ′′2 instead of just −γ′′1 and more than the other parameters γR = γ′1 +

γs+3φd(φd+φ0)γn/(γ
′
1Γ)+

3
4
γ2n/Γ no longer fits the mold of our beam wander model.

However these relatively small corrections to these Gaussian parameters do not affect

the topology determined by the three polynomial γ parameters with which we are

concerned.

2.5 Topological changes with propagation

We are now interested in analyzing the behavior of the singularities of W
(s)

a on

propagation through turbulence. So far, we have considered singularities as points in

a transverse plane, with the propagation distance z as a parameter of the problem. We

may also consider the full evolution of the singularities in three-dimensional space, in

which case the singularities are lines that can potentially branch or combine together.
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We will focus on this case, where we are looking at the topological structures in

three-dimensional space and how those structures depend on various parameters of

the system.

It is to be noted that W
(s)

a is itself a projection of the full cross-spectral density

matrix, and the full matrix will have singularities on a higher-dimensional manifold.

Our choice of a and p dictates the projection, and the behavior of the singularities

will depend on those choices.

2.5.1 Stable projections

In our model, we find that the polarization singularities are stable for larger values

of |p|, with no significant topological changes (creation or annihilation on propaga-

tion), whereas at smaller |p| the number of singular points within a cross section is

not conserved with z. When Ns is stable, the singular points rotate and move as the

values of the γ parameters change the locations of the zeros of Eq. (2.18); an example

is shown in Fig. 2.2.

This general observation might suggest that we should choose an observation point

extremely far from the beam axis. In practice, however, the position of the obser-

vation point is limited to lie within the finite size of the detector aperture, so some

creation/annihilation events are expected. These events, however, happen in pairs of

equal and opposite index, so the net topological index will typically be unchanged.

Even if singularities do not annihilate, they may wander out of the detector aperture

and be effectively lost. Nevertheless we will see that, even with these possibilities,

projections of beams with stable topology within a field of view can be found that

are similar to that in Fig. 2.2 when there is a balance of the tendency to gain spatial

coherence with propagation and lose spatial coherence due to turbulence.

On propagation, the number of singularities in the cross-section of the projection

changes through creation or annihilation of pairs of singularities with opposite indices,

typically lemons (n = 1/2) with stars (n = −1/2), and as noted singularities can
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Figure 2.2: Example of a stable trajectory of singularities on propagation. The
blue lines represent right-handed circular polarization and the orange line represents
left-handed circular polarization. This beam is propagated with turbulence strength
C2
n = 10-14 m-2/3. The beam uses t = (1 0), C = (0.01 − 1) and γ1′ = γ2′ = 0.5 cm-2.

This is projected onto p = (1 0) cm and a polarization with the major axis 3 times
the minor axis and oriented at 30◦.

effectively ‘disappear’ by moving far from the optical axis or ‘appear’ by moving

closer to it from a distant transverse point. An illustration of these effects is shown in

Fig. 2.3. As seen in the figure and in other examples we have tested, this appearance

and disappearance of singularities also happens in pairs so that these decreases or

increases can only affect the topological index of the beam when the singularities are

near the aperture boundary, which occurs only over a small range of z values.

Figure 2.3 also shows that multiple creation and annihilation events can arise in

the propagation of the beam through turbulence. In the three-dimensional view

(qx, qy, z), the pairs of singularities that are created or annihilated are seen as a

single line connected in a ’∪’ or ’∩’ shape. Blue is used to illustrate right-hand

circular polarization and orange illustrates left-hand circular polarization. Strikingly,

in Fig. 2.3, we see that the topological index remains unchanged on propagation

but the handedness of the center singularity flips from right-handed to left-handed.

The evolution of the top panel of the figure can be described as follows. We begin
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Figure 2.3: Flattened trajectories of polarization singularities along propagation.
These lines are three dimensional curves flattened along ŷ, not a cross-section. The
blue lines represent right-handed circular polarization and the orange lines represent
left-handed circular polarization. The top has t = (1 0) and the bottom has t = (2 1)
while both have reference point p = (0.2 0) cm, γ1′ = (1 + i) cm-2, γ2′ = 0, and
C2
n = 8× 10-15 m-2/3.

with a lemon singularity n = 1/2 that has right-handed circular polarization, and

then at approximately 500 m a pair of singularities appears from infinity of opposite

handedness and equal and opposite topological index. At roughly 1500 m, the original

right-handed lemon annihilates with a right-handed star, leaving behind a left-handed

lemon in its place.

These changes in the topology within the field of view along propagation depend

not only on the turbulence and initial beam parameters but also on the projection

itself; some of these projections can, with a wide enough field of view, be very stable

in not just the total topological index, but also the number of singularities.

In the examples considered, the overall topological structure of the beams (namely,

the number of singularities and their topological index, though not their handedness)

asymptotically approaches a state very close to the original state in the source plane.

This is strikingly reminiscent of the behavior of the degree of polarization of elec-

tromagnetic beams on propagation in turbulence, where the degree of polarization

increases in free space but returns asymptotically to its original value in turbulence
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Figure 2.4: The radial position of the polarization singularities as a function of px
for several values of the ellipse eccentricity βa. Again, the blue lines represent right-
handed circular polarization and the orange lines represent left-handed circular polar-
ization. For these examples, p = (px 0) at Ψa = 30◦ and the eccentricity is determined
by βa. The beam has t = (1 0), γ1′ = γ2′ = 0.5 cm-2 and C2

n = 10-14 m-2/3. For this
beam and turbulence state, each a projected onto has a region of px for which the
singularities are within a few cm of the optical axis.

[58]. This suggests that the number and/or topological index of partially coherent

polarization singularities could be used as information carriers in free-space optical

communication systems. However, in many cases these singularities end up migrating

away from the optical axis and may lie outside the detector aperture. One way to

correct for this is to adjust the projection so that, at the desired propagation distance,

the singularities are pushed to within the aperture. An example of this is shown in

Fig. 2.4. The radial distance of the singularities of a beam are plotted as a function

of px for several values of the projection ellipse eccentricity βa.

It can be seen that the positions of the singularities are strongly affected by the

projection choice. A slight change in projection could therefore turn a non-viable

information carrying system into a viable one.

2.5.2 Initial coherence interplay with turbulence effects

The propagation of partially coherent fields in turbulence is strongly influenced by

two competing factors: the increase of spatial coherence of light on propagation in

free space, i.e. the van Cittert-Zernike theorem, and the decrease of spatial coherence

due to the random medium. This suggests that the initial state of coherence, i.e. the
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coherence area (inverse of the γi parameters) of the beam, plays a significant role

in its eventual far field properties, including its topological structure. In the near

to intermediate regions of propagation, the relative strengths of van Cittert-Zernike

increase of coherence and of turbulence decoherence determine if the singularities of

the beam move towards or away from the beam center.

We can demonstrate these observations by looking at extreme cases. The first case

is when the field is mostly coherent and the turbulence is effectively nonexistent, with

|γ1| ≪ γs. For larger values of |p|, the additional pair of singularities move off towards

infinity on propagation, leaving a pure singularity near the beam core, as illustrated in

Fig. 2.5(a). The second case is that of |γ1| ≫ γs with nonzero γn. For such a beam,

the additional pair of polarization singularities that are present in addition to the

center singularity move closer to the beam center on propagation, making them visible

within the detector aperture and changing the total number of singularities measured

(though not their net topological index). This is demonstrated in Fig. 2.5(b). In the

even more extreme case of initially coherent beams the singularities also approach the

center when losing coherence through turbulence resulting in topology similar to our

cross sectional model with partial coherence.

The behavior of a beam’s topology in the far field, where γn terms dominate, is

much more stable. For zero turbulence γn is always zero and so propagation under

those conditions leads to a far field where the topology of Wap approaches that

of a coherent beam with a singularity pair moving toward infinity. For very weak

turbulence, this is for practical purposes still the case since the range of z values for

which γn dominates can be thousands of kilometers. However, when

z11/5 ≫ k-7/5[C2
n]

−6/5 , (2.42)

the polynomial parts of the projection, Eqs. (2.30) and (2.31), become dependent on
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Figure 2.5: Partially coherent polarization singularities of the same beam and pro-
jection propagating through a) weak turbulence and b) strong turbulence. The beam
has t = (1 0), γ1′ = 1 cm-2 and γ2′ = 0.5 cm-2. The projection is onto |βa| = 0.5 at 0◦
and p = (1, 0) cm. Again, the blue lines represent right-handed circular polarization
and the orange lines represent left-handed circular polarization.

R alone. This results in all singularities, even those which went far outside of the

field of view or were annihilated, returning towards the center of the beam.

The total number of singularities is therefore not conserved over long propagation

distances in turbulence, even if the topological index is conserved. However, the total

number of singularities can remain stable over a significant distance, depending on

the initial state of coherence and the turbulence strength.

2.5.3 Projections Topology As cross Section of Topology in (p, q, z)

As we have seen, when W is projected onto both position p and polarization a

it produces a vector field in a three-dimensional space, Wap(qx, qy, z), where the

singularities are typically lines. The topological index n of a particular singularity

line is determined by determining the change of the ellipse orientation around a

counterclockwise closed path encircling the line. Lines that connect in annihilation

or creation events on propagation will have oppositely signed indices if the index sign

is defined assuming the +z direction is used to define the counterclockwise direction

for any closed path.

The singularities of Wap(qx, qy, z), however, themselves represent a projection of a
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higher-dimensional singular manifold that itself is potentially more stable than any

individual projection. We may consider less restrictive projections, for example by

considering the behavior of Wvect(a,p, q, z) = a · W(p, q, z), where a is no longer a

constant unit vector, or Waϕ(p, q, z), where the angle of p is fixed but the azimuthal

angle is not.

In this section, we get a glimpse of the higher-dimensional singularity structure by

considering a collection of projections for a case when Ns is not stable on propagation

due to creation and annihilation events.

We have already noted that projections for smaller |p| and smaller βa can be un-

stable, with Ns not constant along the propagation direction. In such a case the

singularities tend to stay closer to the beam center, allowing the initial singulari-

ties to annihilate each other on propagation and for new singularities to be created

after further propagation. The range of projections where this type of volatility in

Ns occurs varies with the beam structure itself, increasing as the phase difference

ϕCR
− ϕCL

between the components of the beam increases. Such a volatile region of

projections can occur for all values of turbulence strength C2
n, and even in the absence

of turbulence, though higher values will cause changes of Ns through annihilation and

creation to occur over smaller ranges of z.

In Fig. 2.6, we illustrate the evolution of the projection Waϕ(p, q, z) in three-

dimensional space as the value of p = |p| is changed. For small values of p, the

singularities completely annihilate for a significant propagation distance and even-

tually a new pair is created. As p increases, the propagation region over which the

singularities are absent grows smaller, and eventually we reach a critical p value for

which no annihilation occurs at all. This demonstrates that the singular manifold was

never truly absent from our cross-spectral density matrix, only that we missed it with

our particular choice of projection. These results suggest that the higher-dimensional

singular manifold is more stable than any of its individual projections. Just as we saw
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Figure 2.6: The partially polarized singularities of the propagated beams are shown
in lines of blue, where the beam has right handed circular polarization and orange
where the beam has left circular polarization. These lines are three dimensional curves
flattened in ŷ of q rather than a cross section. The beam has t = (1 0), γ1′ = γ2′ = 1
cm-2 and C2

n = 10-14 m-2/3projected onto a such that βaβC = −5 m-1

in Fig. 2.4 that singularities can be constrained to a particular field of view through

an appropriate choice of projection, we see that creation and annihilation events can

also be suppressed with an appropriate projection.

The higher-dimensional singularity may itself serve as a means to convey infor-

mation in free space optical communication, though it will require more significant

analysis and study, as there is no obvious way to define a topological index n or a

total number of singularities Ns for the singular structure of the full cross-spectral

density matrix.

2.6 Conclusion

In our previous work, we used a beam wander model to study the types of polar-

ization singularities that can arise in a partially coherent vector field in the source

plane and investigated how those singularities depend on source coherence [47]. In

this paper, we have expanded this beam wander model of W to include propagation

of the cross-spectral density matrix both in free space and in atmospheric turbulence,

with a particular interest in the evolution of polarization singularities on propagation.

We focused on those singularities that arise from projecting W onto a single fixed



56

observation point and polarization state, which results in polarization singularities

that are mathematically similar to polarization singularities in a coherent vector field.

The net topological index of these beams takes on a discrete half-integer value, as

in the coherent case, and suggests that these singularities might be used as robust

information carriers in free space optical communications. In general, there is no

guarantee that the topological index and the number Ns of polarization singularities

will be conserved for a single projection, but we have shown that the stability of these

quantities can be improved by an appropriate modification of the projected state.

In this paper, we focused on vector beam propagation through a single region

of homogeneous turbulence. However, we have shown that W can be written in

the same general mathematical form in the source plane and in the detector plane;

see Eqs. (2.11)-(2.14) and (2.28)-(2.31). Therefore, propagation through multiple

turbulence layers with different statistics could be modeled by multiple propagation

steps and the appropriate changes in the inverse γ widths.

The combination of vector beam singularities with partial coherence involves sig-

nificant mathematical and theoretical complexity, but it provides another avenue to

create new methods of free space communication.
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CHAPTER 3: A SCALAR POTENTIAL FOR REPRESENTING THE

TOPOLOGY OF ELECTROMAGNETIC BEAMS

abstract

It was established by Green and Wolf in 1953 that an electromagnetic wave can

be characterized by a complex scalar potential, including its energy and momentum

densities. In this paper, we show that for electromagnetic beams this scalar potential

can be used to fully describe the beam’s topology. We further demonstrate that this

scalar potential can be used to characterize a partially coherent vector beam, and

introduce a set of scalar Stokes-like parameters for this purpose.

3.1 Introduction

In 1953, Green and Wolf published the paper “A scalar representation of electro-

magnetic fields,” which demonstrated that any electromagnetic wave propagating in

free space can be represented exactly by a complex scalar wavefield [59]. Their pa-

per, which is widely regarded as a classic of diffraction theory [60], serves as a broad

justification for using scalar waves in electromagnetic theory, and also demonstrates

how an energy and momentum density can be defined for such a scalar wave. Wolf

followed up this work with a second paper in 1959, which showed how the scalar

representation can be employed to introduce a new model of energy transport [61].

Fruitful ideas in physics are often worth revisiting, especially when other devel-

opments have the potential to put the ideas in a new context. In this case, the

Green-Wolf scalar representation takes on new interest since the recognition that

wavefields can possess topological singularities, leading to the extensive field known

as singular optics [3, 2, 37]. The first exploration of such singularities was done by Nye
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and Berry, and they studied phase singularities of scalar wavefields, where the typical

form is a line of zero intensity in three-dimensional space around which the phase

has a circulating or helical structure, now known as an optical vortex [38]. Nearly a

decade later, Nye [44] characterized the singularities of monochromatic paraxial elec-

tromagnetic waves, finding that the typical singularities in three-dimensional space

are C-lines (lines of circular polarization with undefined polarization ellipse orien-

tation), and L-surfaces (surfaces of linear polarization where the handedness of the

field is undefined). Nye and Hajnal later showed that one can also define “true” C-

lines and L-lines for non-paraxial electromagnetic waves [62]. An additional class of

non-typical singularities are locations where the intensity of the electromagnetic field

vanishes and the polarization ellipse orientation is also undefined; in a plane, these

are referred to as V-points [50].

The singularities of complex scalar fields and vector fields are topologically distinct.

In a transverse plane, scalar singularities are points of zero intensity with a phase that

has a topological charge of integer value. In contrast, the singularities of a vector

field in a transverse plane have a half-integer topological index associated with them

and the field does not have to be zero at the singularity point. The existence of a

direct mathematical relationship between scalar and vector fields introduced by Green

and Wolf naturally raises the question: what are the singularities of the Green-Wolf

complex scalar field and how do those singularities relate to the underlying vector

field?

In this paper, we attempt to answer these questions, and demonstrate that the

Green-Wolf complex scalar representation provides a natural and unified method

for talking about a variety of wavefield singularities in paraxial fields. We present

examples to highlight our conclusions.
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3.2 The Green-Wolf scalar representation

We begin by introducing the Green-Wolf scalar representation, using some modifi-

cations that make it easier to apply to wavefield singularities.

In a region free of charges and currents, the electric field E(r, t) and the magnetic

field B(r, t) may both be derived from the vector potential A(r, t), which satisfies the

free-space wave equation and may be taken to satisfy the divergence condition

∇ ·A(r, t) = 0, (3.1)

which represents the Coulomb gauge of electromagnetics. Let us work in Cartesian

(x, y, z) space and assume that the field is propagating into the positive ẑ space; then

it is straightforward to show that the vector potential may be written in the form

A(r, t) =

∫
kz>0

[a(k) cos(k · r− kct) + b(k) sin(k · r− kct)] d3k, (3.2)

where k represents the vector spatial frequency, kz is the zth component of k, and c

represents the vacuum speed of light. The integral is over the positive half-space of

k. The representation of Eq. (3.2) is the decomposition of the vector potential into

real vector plane waves of different frequencies and propagation directions. It is to

be noted that this representation does not include evanescent waves and therefore is

only valid for free-propagating waves.

From the gauge condition (3.1), each plane wave must be transverse, i.e. a · k = 0

and b · k = 0. Green and Wolf satisfy this condition by introducing a pair of unit

vectors l1 and l2,

l1(k) =
n× k

|n× k|
, (3.3)

l2(k) =
k× l1
|k× l1|

, (3.4)
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where n is a fixed unit vector such as x̂, ŷ or ẑ. The vectors a(k) and b(k) are then

decomposed in terms of these unit vectors,

a = a1l1 + a2l2, (3.5)

b = b2l1 + b2l2. (3.6)

Green and Wolf immediately generated a complex scalar field V (r, t) associated

with this vector potential by creating the complex combinations

α = a1 + ia2, (3.7)

β = b1 + ib2, (3.8)

such that

V (r, t) =

∫
kz>0

[α(k) cos(k · r− kct) + β(k) sin(k · r− kct)] d3k. (3.9)

They observed that the vector potential can always be retrieved at any point from

the corresponding complex scalar field by mapping the complex components into

their corresponding vector components. Furthermore, the electromagnetic momentum

density g(r, t) can be determined from the scalar potential by the expression,

g(r, t) = −ϵ0
2

[
∂V ∗

∂t
∇V +

∂V

∂t
∇V ∗

]
, (3.10)

with the asterisk denoting the complex conjugate.

In optics, it is more common to work with the electric field, which is simply related

to the vector potential by the expression

E(r, t) = − ∂

∂t
A(r, t). (3.11)
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We may then define a pair of new vectors

c(k) = kb(k), (3.12)

d(k) = −ka(k), (3.13)

and with these vectors the electric field has the form

E(r, t) =

∫
kz>0

[c(k) cos(k · r− kct) + d(k) sin(k · r− kct)] d3k. (3.14)

A complex scalar representation E(r, t) of the electric field is then introduced by

the expressions

c(k) = c1 + ic2, (3.15)

d(k) = d1 + id2, (3.16)

such that

E(r, t) =

∫
kz>0

[c(k) cos(k · r− kct) + d(k) sin(k · r− kct)] d3k. (3.17)

For a monochromatic field, the polarization ellipse of the electric field and the

corresponding vector ellipse of the vector potential will have a very simple relation,

and A can be used in place of E, and we will do so when it is convenient. For a

general time-dependent field, however, Eq. (3.11) indicates that the fields will not be

equivalent.

3.3 Monochromatic beams and their singularities

We are interested in seeing how the topology of singularities in the real vector field

are related to the singularities in the complex scalar field.

Let us restrict ourselves to the simplest case: monochromatic paraxial fields, i.e.
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beams. In such a case, the fields may be taken to lie fully in the x − y plane to a

good approximation, with negligible z-components. There are two natural choices for

the basis vectors l1 and l2 in this case: the first is to take l1 = x̂, which results in

l2 = ŷ. It is to be noted that it is also possible to choose n in Eqs. (3.3) and (3.4) as

ẑ, in which case the set of vectors l1 and l2 (keeping only transverse components) are

azimuthally-variant and possess a singularity at the origin themselves,

l1 = − sinϕx̂+ cosϕŷ, (3.18)

l2 = − cosϕx̂− sinϕŷ. (3.19)

We will stick to the fixed x̂, ŷ basis for simplicity, but this freedom of basis choice

is noteworthy: although the gauge of A is fixed, we retain some freedom in defining

our fields and potentials through the basis.

In our fixed transverse basis, the total vector field takes on a particularly simple

form, as each component can be integrated separately, so that

E(r, t) = C(r, t) +D(r, t), (3.20)

with

C(r, t) =

∫
kz>0

[c1(k)x̂+ c2(k)ŷ] cos(k · r− kct)d2k, (3.21)

D(r, t) =

∫
kz>0

[d1(k)x̂+ d2(k)ŷ] sin(k · r− kct)d2k. (3.22)

Because we are working with monochromatic fields, it is to be noted that |k| = k0 is

now a constant and the integral is only over the direction of k. To further study the

properties of these fields, we express the sine and cosine functions in complex form in
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the usual way. We may then write

C(r, t) =
1

2

∫
kz>0

[c1(k)x̂+ c2(k)ŷ] [exp[i∆] + exp[−i∆]] d2k, (3.23)

D(r, t) = − i

2

∫
kz>0

[d1(k)x̂+ d2(k)ŷ] [exp[i∆]− exp[−i∆]] d2k, (3.24)

where we have written ∆ = k · r − k0ct for brevity. We may then write the electric

field in terms of two integrals,

E(r, t) =
1

2

∫
kz>0

[c1x̂+ c2ŷ − id1x̂− id2ŷ] exp[i∆]d2k

+
1

2

∫
kz>0

[c1x̂+ c2ŷ + id1x̂+ id2ŷ] exp[−i∆]d2k. (3.25)

We may define the propagated form of each component of the field as

c̃i(r) ≡
∫
kz>0

ci(k) exp[ik · r]d2k, (3.26)

with i = 1, 2 and a similar definition for d̃i. We may then write an expression for the

real-valued electric field in the form,

E(r, t) = Re
{[
c̃1x̂+ c̃2ŷ − id̃1x̂− id̃2ŷ

]
exp[−iωt]

}
, (3.27)

where ω = k0c and we have suppressed the obvious spatial argument of the compo-

nents for brevity.

We now focus only on the positive frequency component, i.e. exp[−iωt] with ω > 0,

and label the field of this component as Ep. We now rewrite it in terms of the circular

polarization basis,

ê± =
x̂± iŷ√

2
, (3.28)

where a ‘+’ sign represents left-handed circular polarization. With some effort we
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arrive at the result

Ep(r, t) =
1

2
√
2

{[
c̃1 − ic̃2 − i(d̃1 − id̃2)

]
ê+

+
[
c̃1 + ic̃2 − i(d̃1 + id̃2)

]
ê−

}
exp[−iωt]. (3.29)

Turning to the singularities of the vector field, we now see that C-points arise in

two distinct circumstances. There will be a left-handed C-point if

c̃1 + ic̃2 − i(d̃1 + id̃2) = 0, (3.30)

and a right-handed C-point if

c̃1 − ic̃2 − i(d̃1 − id̃2) = 0. (3.31)

Let us turn to the complex scalar field to see how the singularities compare. Starting

from Eq. (3.17), we can follow the same process used to derive Eq. (3.27). We then

find that we may write

E(r, t) =
1

2

{
c̃1 + ic̃2 − i(d̃1 + id̃2)

}
exp[−iωt]

+
1

2

{
c̃1 − ic̃2 − i(d̃1 − id̃2)

}∗
exp[iωt]. (3.32)

In complex scalar form, the field may be written as two complex monochromatic fields,

one with frequency +ω and one with frequency −ω. On comparison with Eqs. (3.30)

and (3.31), we find that zeros of the positive frequency component are the locations of

right-hand C-points and zeros of the negative frequency component are the locations

of left-hand C-points.

It is important to note that the positive and negative frequency components of the

scalar field are no longer complex conjugates of each other and now represent the
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different circular components of the field. The two vector components of the field

have transformed into different temporal frequencies in the scalar representation.

These results are striking because the topology of scalar singularities, i.e. optical

vortices, is distinct from the topology of vector singularities such as C-points. Optical

vortices are dislocations in a complex scalar field whose generic forms have integer

valued topological charge, t = ±1, while C-points are disclinations in a real vector field

whose generic forms have half-integer valued topological index, n = ±1/2. Despite

these differences, the scalar representation shows that the topologies of the two classes

of fields can be directly related.

To better understand the nature of the singularities, let us simplify our expressions

to the forms,

Ep(r, t) = [U+(r)ê+ + U−(r)ê−] exp[−iωt], (3.33)

and

E(r, t) = U−(r) exp[−iωt] + U∗
+(r) exp[iωt], (3.34)

where U+(r) and U−(r) represent the complex fields associated with the left-hand

circular and right-hand circular components of the electric field, respectively.

Let us assume that there is a local singularity near the origin in a transverse x− y

plane, such that

Uα(r) ≈ (x+ βiy), (3.35)

where α = ±1, β = ±1. (The singularity can of course be positioned away from the

origin without changing the results which follow.) It has been shown [37, Section

7.5] that the singularity will be a star if αβ = +1 and a lemon if αβ = −1. We can

therefore introduce both types of C-points into left-handed or right-handed circular

polarization by an appropriate choice of vortex sign.

One interesting consequence of these observations is that it is a straightforward

process to construct a paraxial electromagnetic wave with polarization singularities
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Figure 3.1: This figure shows how the phase of V (2)
+ (r) represented by the colors on

the diagram from -π to π correspond with double the physical angle of the major axis
in the polarization ellipse describing the field at that point.

of any desired type and location by constructing a pair of complex scalar paraxial

waves with corresponding vortices and conjugate time dependence.

3.4 Physical properties of the complex scalar

We have seen that, for paraxial electromagnetic beams, the complex scalar po-

tential provides an alternative representation for the singularities of the vector field.

However, the scalar potential provides even more information about the state of the

vector field, including the complete properties of the polarization ellipse, as we now

show.

We work in this case with the scalar representation of the vector potential, having

noted that it is directly related to the representation of the electric field for paraxial

monochromatic beams. We may then write the scalar representation as

V (r, t) = V−(r)e
−iωt + V ∗

+(r)e
iωt, (3.36)

where V−(r) and V+(r) represent the potentials associated with right-handed and

left-handed circular polarization, respectively. Let us write each of these potentials
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in terms of an amplitude vj(r) and phase ϕj(r), with j = +,−; we then have

V (r, t) = v−(r)e
i[ϕ−(r)−ωt] + v+(r)e

−i[ϕ+−ωt]. (3.37)

Let us factor out a phase term,

η(r) ≡ [(]ϕ−(r)− ϕ+(r)]/2, (3.38)

and introduce a second phase term

ψ(r, t) ≡ −ϕ+(r) + ϕ−(r)

2
+ ωt. (3.39)

With some simple manipulations, Eq. (3.37) takes on the form

V (r, t) = eiη(r)
{
v−(r)e

−iψ(r,t) + v+(r)e
iψ(r,t)

}
. (3.40)

This can be written in terms of cosines and sines as

V (r, t) = eiη(r) {vM(r) cos[ψ(r, t)] + ivm(r) sin[ψ(r, t)]} , (3.41)

where we have introduced

vM(r) ≡ v+(r) + v−(r), (3.42)

vm(r) ≡ v+(r)− v−(r). (3.43)

Equation (3.41) represents a complex field that traces out an ellipse in the complex

plane in time, and it is the complex form of the polarization ellipse. All of the

parameters of the polarization ellipse can be extracted from this complex expression,

and in fact can be done more readily than can be done using the vector field. The
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quantities vM(r) and vm(r) represent the major and minor axes of the ellipse, and

the sign of vm(r) determines the handedness of the ellipse. The quantity η(r) gives

the orientation of the polarization ellipse, while ψ(r, t) gives the current position of

the vector field relative to the major axis. The electric field is readily shown to be at

located at the same point along the polarization ellipse as the potential at a different

time t′ where ψ(r, t′) = ψ(r, t) + pi/2.

The special cases of linear and circular polarization, which also represent singu-

larities of the vector field, are easy to determine in this representation. Circular

polarization arises when vM = ±vm, and linear polarization arises when vm = 0.

These same polarization states may also be represented using v+ and v−. Circular

polarization is the case where either v+ = 0 or v− = 0, and linear polarization arises

when v+ = v−.

3.5 Stokes-like parameters for describing singularities

Because our complex scalar field is explicitly time dependent, it is convenient to in-

stead express its singularities in terms of time-averaged second-order field parameters.

These parameters are directly analogous to the Stokes parameters S0, S1, S2, S3 for

vector fields, and allow us to isolate singular points from directly observable properties

of the field.

Let us introduce three parameters V (2)
0 (r), V (2)

+ (r), and V (2)
3 (r) as

V
(2)
0 (r) = ⟨V ∗(r, t)V (r, t)⟩ (3.44)

V
(2)
+ (r) = ⟨V (r, t)V (r, t)⟩ (3.45)

V
(2)
3 (r) = ⟨V ∗(r, t) i

ω
∂tV (r, t)⟩, (3.46)

where ⟨. . .⟩ represents the time average. For monochromatic fields, this can be an

average over a single cycle or a long time average. We will see that the zeros of these

three parameters represent V-points, C-points, and L-lines, respectively.
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Let us start with V (2)
+ (r). On substitution from Eqs. (3.40) or (3.41) into Eq. (3.44)

and taking the time average, we have

V
(2)
+ (r) = 2e2iη(r)v−(r)v+(r) = e2iη(r)

v2M(r)− v2m(r)

2
. (3.47)

This function vanishes when either v+ = 0 or v− = 0, or equivalently when vM = vm.

These represent points of circular polarization, C-points, and the complex function

V
(2)
+ (r) is analogous to the complex Stokes vector S1 + iS2, which vanishes at points

of circular polarization.

Turning to V (2)
3 (r), it is straightforward to show that it takes on the form

V
(2)
3 (r) = v2−(r)− v2+(r) = −vm(r)vM(r). (3.48)

This parameter will vanish when vm(r) = 0; it therefore characterizes the location of

L-lines, which are singularities of the handedness of the polarization ellipse. (Recall

that the handedness is given by the sign of vm, which is undefined when vm = 0.)

This choice of V (2)
3 (r) was made because V−(r) exp[−iωt] and V+(r) exp[iωt] are eigen-

functions of the operator i
ω
∂t, with eigenvalues of −1 and +1. The quantity V (2)

3 (r)

is therefore analogous to the Stokes parameter S3, which vanishes when the field is

linearly polarized.

Finally, considering V (2)
0 (r), we have

V
(2)
0 (r) = v2+(r) + v2−(r) =

v2M(r) + v2m(r)

2
. (3.49)

This parameter clearly represents the total intensity of the beam at point r, and this

scalar quantity is thus equivalent to the Stokes parameter S0(r) of the vector field.

Zeros of intensity in a vector field are not typical, but when they occur it is usually at

a point in the transverse plane; these are V-points and therefore V (2)
0 (r) is a parameter
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that isolates the V-points of the field. Such points are also points of undetermined

handedness and ellipse orientation, so V-points also satisfy V (2)
3 (r) = V

(2)
+ (r) = 0.

3.6 Extension to partially polarized vector beams

In his second paper on the scalar potential [61], Wolf noted that his potential

could be used to model unpolarized beams, therefore extending his method to beams

that possess a degree of randomness to them. Much more recently, Wolf merged the

theories of coherence and polarization into a single unified formalism [49, 28], and

it is of interest to see whether the scalar potential can be extended to beams with

general coherence and polarization properties.

We work in the space-frequency domain of electromagnetic fields, in which case the

second-order coherence and polarization properties of a beam can be represented by

a cross-spectral density tensor W(r1, r2, ω), whose components are defined as

Wij(r1, r2, ω) = ⟨E∗
i (r1, ω)Ej(r2, ω)⟩ω , (3.50)

where i, j = x, y and ⟨. . .⟩ω represents an average over an ensemble of monochromatic

fields at frequency ω [24]. This tensor characterizes the correlations between different

polarization components at two points in space. We may also define the cross-spectral

density tensor in terms of circular polarization components, i, j = +,−. We will work

at a single frequency for the rest of this discussion and suppress further explicit use

of ω as an argument.

At a glance, it may seem unlikely that we can fully characterize coherence and

polarization with a scalar representation, because our tensor relies on calculating an

outer product of vector components, where no such outer product exists for com-

plex fields. Motivated by the previous section of this paper, however, we note that

W(r1, r2, ω) may also be fully described by generalized Stokes parameters, introduced
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by Korotkova and Wolf [63]. In a circular basis, these parameters have the form,

S0(r1, r2) = W++(r1, r2) +W−−(r1, r2), (3.51)

S+(r1, r2) = 2W−+(r1, r2), (3.52)

S3(r1, r2) = W++(r1, r2)−W−−(r1, r2), (3.53)

and we have used S+ = S1 + iS2.

Now let us compare these expressions with our Stokes-like scalar parameters of

Section 3.5. We apply the definitions of those Stokes-like parameters and, because

our fields are not monochromatic, take both a time average and an ensemble average.

Using Eq. (3.36) to define V (r, t), we end up with the expressions,

k2V
(2)
0 (r1, r2) = k2⟨⟨V ∗(r1, t)V (r2, t)⟩⟩ (3.54)

= W++(r2, r1) +W−−(r1, r2), (3.55)

k2V
(2)
+ (r1, r2) = k2⟨⟨V (r1, t)V (r2, t)⟩⟩ (3.56)

= W+−(r1, r2) +W+−(r2, r1), (3.57)

k2V
(2)
3 (r1, r2) = k2⟨⟨V ∗(r1, t) iω∂tV (r2, t)⟩⟩ (3.58)

= W−−(r1, r2)−W++(r2, r1). (3.59)

We can see that these parameters do not exactly match their vector counterparts,

due to the reordering of the arguments of the coefficients. (The factors of k2 come

from Eqs. (3.12) and (3.13) relating the potentials to the fields.) However, we may

use the Hermitian property of the cross-spectral density tensor, i.e.

Wij(r1, r2) = W ∗
ji(r2, r1), (3.60)
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to rewrite terms. We find that the Stokes parameters S0 and S3 may be written as

S0(r1, r2) = k2Re
[
V

(2)
0 (r1, r2)

]
+ ik2Im

[
V

(2)
3 (r1, r2)

]
, (3.61)

S3(r1, r2) = −k2Re
[
V

(2)
3 (r1, r2)

]
+ ik2Im

[
V

(2)
0 (r1, r2)

]
. (3.62)

To do something similar for S+, we need to introduce an additional parameter V (2)
− ,

defined as

V
(2)
− (r1, r2) = ⟨⟨V (r1, t)

i
ω
∂tV (r2, t)⟩⟩. (3.63)

In terms of elements of the cross-spectral density tensor, it may be written as

k2V
(2)
− (r1, r2) = W+−(r1, r2)−W+−(r2, r1). (3.64)

We may then write the Stokes parameter S+ as

S+(r1, r2) = k2
[
V

(2)
+ (r1, r2) + V

(2)
− (r1, r2)

]
. (3.65)

We therefore see that the entire state of coherence of the beam at frequency ω is

characterized by a single complex correlation potential. The ability to do so comes

from separating the orthogonal polarization components into complex fields of positive

and negative frequencies, as Eq. (3.34) indicates. The singularities and corresponding

topological structure of the partially coherent field can therefore be analyzed using

the scalar potential. The singularities of a partially coherent vector beam come in a

number of varieties, and we refer to our previous work [47] for a detailed discussion

of the possibilities. We note, however, that the simplest class of singularities, known

as eta singularities [64], can be written in terms of the generalized Stokes parameter

S0,

η(r1, r2) =
S0(r1, r2)√

S0(r1, r1)S0(r2, r2)
, (3.66)
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and can therefore also be written in terms of our generalized Stokes-like parameters

V
(2)
0 and V (2)

3 .

3.7 Dynamic topology of V along L lines

Returning to the coherent case, we note that the complex scalar V (r, t) also has a

phase and therefore has its own topology and topological defects that are distinct from

the polarization singularities discussed previously. The topology of these singularities

is, however, dynamic, evolving over time, due to the explicit non-separable time

dependence of the scalar potential of Eq. (3.36).

Let us briefly consider the nature of these singularities. In a transverse plane, the

singularities of a single complex field are typically points; if we add time as a variable,

then the singularities will trace out lines as time evolves. Because the field is periodic

in time with frequency ω, we expect that these lines will be closed paths or will extend

out to infinity (i.e. a closed path that passes through the point at infinity). Looking

at Eq. (3.41), which expresses the complex fields in terms of major and minor axes

of the polarization ellipse, we can see that the scalar field can only be zero at points

where vm(r) = 0; we therefore expect that the singularities will follow the trajectory

of the L-lines of the polarization ellipse.

As a simple example, we consider a monochromatic full Poincaré beam, which

possesses all states of polarization in its cross-section [65]. A simple example, in the

waist plane z = 0, has a complex electric field vector of the form,

E(r) = E0e
−ρ2/w2

0 [ê+ + (x+ iy)ê−] , (3.67)

where ρ2 = x2 + y2, w0 is the width of the beam, and E0 is taken real for simplicity.

This beam will be linearly polarized at points where the amplitudes of ê+ and ê− are

equal, i.e. ρ = 1.
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The corresponding complex potential is of the form,

kV (r, t) = E0e
−ρ2/w2

0
[
eiωt + (x+ iy)e−iωt

]
. (3.68)

If we separate out the real and imaginary parts of this potential and require them to

be equal to zero, we find the conditions

−(x+ 1) cos(ωt) = y sin(ωt), (3.69)

y cos(ωt) = (x− 1) sin(ωt). (3.70)

If we eliminate time from the equations, we get an equation for the path of the

singularity,

x2 + y2 = 1, (3.71)

which is simply the circle of linear polarization ρ = 1.

At any snapshot in time one can see the phase singularity has the same topo-

logical charge even though other features change as the singular point in phase, or

equivalently the direction of the vector field.

A less trivial example,

V− = V0

(
r

w0

)|t−|

eit−ϕ

V+ = V0

(
r

w0

)|t+|

eit+ϕ ,

(3.72)

where t± can be considered the topological charge of the corresponding component,

leads to different numbers of these dynamic singularities as well as, if neither charge is

zero, stationary singularities due to vM and vm being zero at the origin. Though The

stationary points are points of singularity in the orientation of the polarization η(r)

that also correspond to points of linear polarization( These are only by coincidence
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elsewhere called V-points). The more typical C-points are as we have mentioned not

singularities in V . Since the dynamic singularities in V occur for the spots along the

L-line, vm = 0, where 1
2
(t− + t+)ϕ− ωt = mπ for any integer m there will be

Ndyn = t− + t+ (3.73)

of these dynamic singularities.

3.8 Conclusions

The scalar potential of Green and Wolf has long been used to justify the description

of vector electromagnetic fields by complex scalar fields. With the advent of singular

optics, it was of interest to see how the topological defects of vector fields translate

into the scalar potential. We have shown that the complex scalar potential allows us

to characterize the full behavior of a paraxial monochromatic electromagnetic field

and all of its topological defects, and shows how the dislocations of a scalar field may

be related to the disclinations of a vector field. Furthermore, we have demonstrated

that this scalar representation can even be used for characterizing a partially coherent

electromagnetic beam frequency by frequency, including a full derivation of the Stokes

parameters.

There are some intuitive advantages to using the scalar representation. The prop-

erties of the polarization ellipse, for example, can be easily found from the complex

representation as shown in Eq. (3.41), whereas the formulas for these properties in

the context of the vector field are significantly less insightful.

We have also seen that the scalar field possesses its own topological features that

are directly related to the polarization singularities of the vector field. These time-

dependent scalar singularities are reminiscent of, but distinct from, the relativistically

invariant Riemann-Silberstein vortices [66] introduced in 2003 and that are connected

with a hypothetical photon wave function [67]; it is our hope that the singularities of
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the scalar potential will also provoke thoughtful debate.

We note that the bulk of our discussions have focused on paraxial monochromatic

fields, even though it has already been shown that the scalar potential can be used for

more general cases. It is an open and interesting question whether the singularities of

the complex scalar potential have a definite relationship to the vector electromagnetic

singularities in this more general case.

Funding

Air Force Office of Scientific Research [United States] (FA9550-21-1-0171); Office

of Naval Research, MURI (N00014-20-1-2558).

Disclosures

The authors declare no conflicts of interest.



Conclusions

We are motivated to explore the topologies of beams with a combination of nonuni-

formly polarized and nonuniform coherence between points within a cross section, as

it is a natural extension of polarization and coherence singularities and because both

show promise as free space carriers that are robust over propagation through tur-

bulence. As such we looked into the extension of vector vortex beams as Partially

polarized vortex beams, finding that they allow for the existence of more intricate

topologies than corresponding monochromatic nonuniformly polarized beams or of

coherence of the individual components that make them up, in the form of additional

singular points.

These partial polarization singularities could be of use in increasing its bandwidth

if used as a free space data-carrier in addition to the advantages already motivating

the use of partially coherent and nonuniformly polarized vortices. These additional

singular points only exist for the topology of field properties that depend on two

points, when the cross spectral density of a point with itself is observed, W (r, r, ω) =

J(r, ω), there are no additional singularities compared to the coherent case. The extra

singularities is the result of using a model where the dependence on the distance

between two points, R = q − p, is not limited to the Gaussian parameters. The

Gaussian Schell model is expressed W (p, q) = E∗
p(p) ⊗ Eq(q) exp[−γµR2], where

E(r) is coherent, and therefore hides the more typical topology within the original

cross section.

Our model, created with a Gaussian beam wander, accomplished this giving ex-

tra partially polarized singular point for the projection of the cross spectral density

matrix onto a point and polarization. The topology for the phase of the electromag-
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netic degree of coherence also has extra singularities but as this number is simply

double the singularities in the polarization at a single point this is not a useful in

multiplexing the data signal. The total number of partially polarized singularities

gives two independent values the number of lemons and starts in equation 1.45. From

the standpoint of observation it could be easier to measure directly the number of

singularities, Nsing = Nlemons +NStars along with the topological index for the entire

beam, ntotal = 1
2
(Nlemons −NStars).

We further find in chapter two that with appropriate choice of projections the

’extra’ two point partial polarization singularities, the number of singularities up to

the periphery of the beam center is conserved. Though under certain projections the

singularities are annihilated only to be created at a much farther distance or move

far from the beam center while approaching an opposite index singularity, these can

be avoided if the parameters of the vortex beams and turbulence level are known

to someone setting up communication with these singularities as the data-carrier.

Although we did not write much about the projections onto or in the neighborhood

of a point and a polarization orthogonal to the polarized part at that point, which

can have more singular points or even singular lines, and did not analyze the effect of

propagation on them, knowledge of the beam parameters also allows these projections

to be easily avoided so that each input of positively charges (t+, t−) corresponds to

only one pair of Nsings − nbeam = 4max(m+,m−).

The multidimensional singularity, for which the projection is just a cross section,

was also explored more fully particularly the example with t = (1 0). This was

done not only by exploring the three dimensional projection that leaves just (q, z) as

variable coordinates, but also exploring the position of the singularities over changing

projection values while holding z constant. With changes in Ψa, where a is the

polarization projected onto, the singularities change position along a loop at the

cross section of our model with the two left handed circularly polarized C-points
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moving closer together with orientations perpendicular to the polarization ellipse of

the polarized beam, Jpol(p), at the coordinate projected onto. The singularities were

found to move movement towards and away from the beam center as the shape of

that polarization ellipse changes as measured by |βa| with the exact function and its

minimums determined by the projected position used.

We also discussed how for certain projections the number of singularities can change

with propagation through pair annihilation and then creation. When looking at the

higher dimensional singularity that the projection is a cross section of we showed that

this corresponds to projections that didn’t contain the singularities that still existed.

This indicates that although the physical meaning of the part of the beam coherent

with the field at the projection gives the singularity clear meaning the projection may

not be ideal for visualization of the higher dimensional singularity or for observation

without more knowledge about which values of p and a make the projection the

most visible. One avenue of follow up research that is inspired by this is studying

projections onto ρ = 1
2
(p + q) instead p not being able to be limited to only small

magnitudes where only one singularity exists as seen in figure 2.4 and the symme-

try of the polynomials will allow for a much more stable number of singularities on

propagation, and may be more easily observable as well.

While we have concluded that these singularities are persistent over long distances

we have not analyzed the feasibility of measuring or setting up an apparatus to switch

the topological charges of the circular components both at a high enough frequency

to use it as a data carrier. Making a signal requires only the dynamic switching of

the topological charges while the elements that structure the coherence of the beam

do not necessarily need to be adjustable. For application as a data-carrier the optical

elements establishing partial coherence do not have to be variable only those causing

variation in the topological index n and m = min(m+,m−), or t+ and t−. This

variability could eventually be provided by tunable polarization vortex microlasers,
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a developing technology, but for the application of free space communication where

miniaturization isn’t necessary a multitude of setups with two separate adaptive spiral

phase plates allows for the production of such a signal. Methodologies for measuring

the components of W have been devised as early as 2003 [68] and has been realized

experimentally [69, 70].

Many of our observations rely to some degree on the class of beams we use to

model specific combination of topological indexes. While for the case of the beam

cross section the beams initial coherence can be fine tuned through the setup at the

source, the propagation through turbulence will create a beam wander like topology

just as our more general propagated model with parameters chosen to give coherent

or Schell models generated a topology similar to our initial beam wander model on

propagation. The model therefore seems very useful for representing the more complex

beam while staying in a form that lends itself to analytical analysis.

Finally our utilization of the Green Wolf scalar potential V showed that the topo-

logical features of nonuniform polarization in beams could be instead treated as the

topology of phase of a complex scalar field. Though the phase that gives the topol-

ogy of polarization orientation is not directly from V , when constructed for a beam

in the manner described it gives the direction of the electric field in x, y, t) whose

singularities can be thought of as lines in space time or dynamic singularities moving

along the L-lines along time. The L-lines themselves along with c points and other

singularities in Ψ are completely defined by the single scalar potential function, but

are found by calculating 2nd order parameters of V .

One drawback of this method is the inability to factor a monochromatic field into

spatial and temporal parts by using the complex electric field instead of the real

electric field. Other than that lack, the simplification that comes from the scalar field

can be advantageous for computation and intuition about the beam. The line between

phases of the waveform and the angle describing the orientation of the waveform’s
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polarization ellipse is blurred more than for the vector representation.

It may prove to continue to be useful as it did for representing partially polarized

vortex beams as partially coherent complex scalar potential and expanding our param-

eters to a more general two point statistic for topology in other non-monochromatic

beam types.



REFERENCES

[1] G. J. Gbur, Singular Optics. CRC Press, 2017.

[2] M. Dennis, K. O’Holleran, and M. Padgett, “Singular optics: Optical vortices
and polarization singularities,” in Progress in Optics (E. Wolf, ed.), vol. 53,
(Amsterdam), p. 293, Elsevier, 2009.

[3] M. Soskin and M. Vasnetsov, “Singular optics,” in Progress in Optics (E. Wolf,
ed.), vol. 42, (Amsterdam), p. 219, Elsevier, 2001.

[4] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and
S. Franke-Arnold, “Free-space information transfer using light beams carrying
orbital angular momentum,” Opt. Exp., vol. 12, pp. 5448–5456, 2004.

[5] J. Wang, J.-Y. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue,
S. Dolinar, M. Tur, and A. Willner, “Terabit free-space data transmission employ-
ing orbital angular momentum multiplexing,” Nature Photonics, vol. 6, pp. 488–
496, 2012.

[6] K. Gahagan and G. S. Jr., “Optical vortex trapping of particles,” Opt. Lett.,
vol. 21, pp. 827–829, 1996.

[7] N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of
spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.,
vol. 22, pp. 52–54, 1997.

[8] J. Davis, D. McNamara, D. Cottrell, and J. Campos, “Image processing with the
radial Hilbert transform: theory and experiments,” Opt. Lett., vol. 25, pp. 99–
101, 2000.

[9] S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast
imaging in microscopy,” Opt. Exp., vol. 13, pp. 689–694, 2005.

[10] K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical
vector beams,” Opt. Exp., vol. 7, pp. 77–87, 2000.

[11] R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light
beam,” Phys. Rev. Lett., vol. 91, p. 233901, 2003.

[12] Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized
beams in atmospheric turbulence,” Opt. Lett., vol. 34, pp. 2261–2263, 2009.



83

[13] F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, “Experimental study of the scin-
tillation index of a radially polarized beam with controllable spatial coherence,”
Appl. Phys. Lett., vol. 103, p. 091102, 2013.

[14] G. Gbur, T. Visser, and E. Wolf, “’Hidden’ singularities in partially coherent
fields,” J. Opt. A, vol. 6, pp. S239–S242, 2004.

[15] G. Gbur and T. Visser, “Phase singularities and coherence vortices in linear
optical systems,” Opt. Commun., vol. 259, pp. 428–435, 2006.

[16] G. Gbur and J. G.A. Swartzlander, “Complete transverse representation of a
correlation singularity of a partially coherent field,” J. Opt. Soc. Am. B, vol. 25,
pp. 1422–1429, 2008.

[17] I. Maleev, D. Palacios, A. Marathay, and G. Swartzlander, Jr., “Spatial corre-
lation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B, vol. 21,
pp. 1895–1900, 2004.

[18] W. Wang, Z. Duan, S. Hanson, Y. Miyamoto, and M. Takeda, “Experimental
study of coherence vortices: local properties of phase singularities in a spatial
coherence function,” Phys. Rev. Lett., vol. 96, p. 073902, 2006.

[19] Y. Yang, M. Chen, M. Mazilu, A. Mourka, Y.-D. Liu, and K. Dholakia, “Effect of
the radial and azimuthal mode indices of a partially coherent vortex field upon
a spatial correlation singularity,” New J. Phys., vol. 15, p. 113053, 2013.

[20] C. Stahl and G. Gbur, “Partially coherent vortex beams of arbitrary order,” J.
Opt. Soc. Am. A, vol. 34, pp. 1793–1799, 2017.

[21] C. Felde, A. Chernyshov, G. Bogatyryova, P. Polyanskii, and M. Soskin, “Polar-
ization singularities in partially coherent combined beams,” JETP Lett., vol. 88,
p. 418, 2008.

[22] M. Soskin and P. Polyanskii, “New polarization singularities of partially coherent
light beams,” Proc. SPIE, vol. 7613, p. 76130G, 2010.

[23] O. Angelsky, A. Mokhun, I. Mokhun, and M. Soskin, “The relationship between
topological characteristics of component vortices and polarization singularities,”
Opt. Commun., vol. 207, pp. 57 – 65, 2002.

[24] E. Wolf, “New theory of partial coherence in the space-frequency domain. part
1: spectra and cross-spectra of steady-state sources,” J. Opt. Soc. Am., vol. 72,
pp. 343–351, 1982.

[25] C. Stahl and G. Gbur, “Complete representation of a correlation singularity in a
partially coherent beam,” Opt. Lett., vol. 39, pp. 5985–5988, 2014.

[26] E. Wolf, “Unified theory of coherence and polarization of random electromagnetic
beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003.



84

[27] G. Stokes, “On the composition and resolution of streams of polarized light from
different sources,” Trans. Camb. Phil. Soc., vol. 9, pp. 399–416, 1852.

[28] E. Wolf, Introduction to the Theory of Coherence and Polarization of Light.
Cambridge: Cambridge University Press, 2007.

[29] E. Wolf, “Can a light beam be considered to be the sum of a completely polarized
and a completely unpolarized beam?,” Opt. Lett., vol. 33, pp. 642–644, 2008.

[30] S. Raghunathan, H. Schouten, and T. Visser, “Correlation singularities in par-
tially coherent electromagnetic beams,” Opt. Lett., vol. 37, pp. 4179–4181, 2012.

[31] S. Raghunathan, H. Schouten, and T. Visser, “Topological reactions of correlation
functions in partially coherent electromagnetic beams,” J. Opt. Soc. Am. A,
vol. 30, pp. 582–588, 2013.

[32] M. Marasinghe, M. Premaratne, D. Paganin, and M. Alonso, “Coherence vor-
tices in Mie scattered nonparaxial partially coherent beams,” Opt. Exp., vol. 20,
pp. 2858–2875, 2012.

[33] Y. Zhang, Y. Cui, F. Wang, and Y. Cai, “Correlation singularities in a par-
tially coherent electromagnetic beam with initially radial polarization,” Opt.
Exp., vol. 23, pp. 11483–11492, 2015.

[34] F. Gori and M. Santarsiero, “Devising genuine spatial correlation functions,” Opt.
Lett., vol. 32, pp. 3531–3533, 2007.

[35] J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic
fields,” Opt. Exp., vol. 11, pp. 1137–1143, 2003.

[36] P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized
light,” Opt. Exp., vol. 13, pp. 6051–6060, 2005.

[37] G. Gbur, Singular Optics. Boca Raton: CRC Press, 2016.

[38] J. Nye and M. Berry, “Dislocations in wave trains,” Proc. Roy. Soc. A, vol. 336,
pp. 165–190, 1974.

[39] V. Bazhenov, M. Vasnetsov, and M. Soskin, “Laser beams with screw dislocations
in their wavefronts,” JETP Lett., vol. 52, pp. 429–431, 1990.

[40] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital
angular momentum of light and the transformation of laguerre-gaussian laser
modes,” Phys. Rev. A, vol. 45, pp. 8185–8189, Jun 1992.

[41] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett,
and S. Franke-Arnold, “Free-space information transfer using light beams car-
rying orbital angular momentum,” Opt. Express, vol. 12, pp. 5448–5456, Nov
2004.



85

[42] M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J.
Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence
on optical communications using orbital angular momentum for encoding,” Opt.
Express, vol. 20, pp. 13195–13200, Jun 2012.

[43] G. Gbur and R. Tyson, “Vortex beam propagation through atmospheric turbu-
lence and topological charge conservation,” J. Opt. Soc. Am. A, vol. 25, pp. 225–
230, 2008.

[44] J. Nye, “Lines of circular polarization in electromagnetic wave fields,” Proc. Roy.
Soc. Lond. A, vol. 389, pp. 279–290, 1983.

[45] G. Gbur, “Partially coherent beam propagation in atmospheric turbulence [in-
vited],” J. Opt. Soc. Am. A, vol. 31, pp. 2038–2045, Sep 2014.

[46] G. Gbur and T. D. Visser, “Phase singularities and coherence vortices in linear
optical systems,” Optics Communications, vol. 259, no. 2, pp. 428–435, 2006.

[47] W. S. Raburn and G. Gbur, “Singularities of partially polarized vortex beams,”
Frontiers in Physics, vol. 8, 2020.

[48] E. Wolf, “New theory of partial coherence in the space–frequency domain. part
i: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am., vol. 72,
pp. 343–351, Mar 1982.

[49] E. Wolf, “Unified theory of coherence and polarization of random electromagnetic
beams,” Physics Letters A, vol. 312, no. 5, pp. 263–267, 2003.

[50] Ruchi, S. K. Pal, and P. Senthilkumaran, “Generation of v-point polarization
singularity lattices,” Opt. Express, vol. 25, pp. 19326–19331, Aug 2017.

[51] G. Gbur and J. Grover A. Swartzlander, “Complete transverse representation
of a correlation singularity of a partially coherent field,” J. Opt. Soc. Am. B,
vol. 25, pp. 1422–1429, Sep 2008.

[52] C. S. D. Stahl and G. Gbur, “Partially coherent vortex beams of arbitrary order,”
J. Opt. Soc. Am. A, vol. 34, pp. 1793–1799, Oct 2017.

[53] Y. Zhang, Y. Cai, and G. Gbur, “Partially coherent vortex beams of arbitrary ra-
dial order and a van cittert–zernike theorem for vortices,” Phys. Rev. A, vol. 101,
p. 043812, Apr 2020.

[54] G. A. Swartzlander and R. I. Hernandez-Aranda, “Optical rankine vortex and
anomalous circulation of light,” Phys. Rev. Lett., vol. 99, p. 163901, Oct 2007.

[55] G. Gbur, “Partially coherent vortex beams,” in Complex Light and Optical Forces
XII (E. J. Galvez, D. L. Andrews, and J. Glückstad, eds.), vol. 10549, p. 1054903,
International Society for Optics and Photonics, SPIE, 2018.



86

[56] R. F. Lutomirski and H. T. Yura, “Propagation of a finite optical beam in an
inhomogeneous medium,” Appl. Opt., vol. 10, pp. 1652–1658, Jul 1971.

[57] H. T. Yura, “Mutual coherence function of a finite cross section optical beam
propagating in a turbulent medium,” Appl. Opt., vol. 11, pp. 1399–1406, Jun
1972.

[58] M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, “Polarization changes in
partially coherent electromagnetic beams propagating through turbulent atmo-
sphere,” Waves in Random Media, vol. 14, p. 513, jun 2004.

[59] H. S. Green and E. Wolf, “A scalar representation of electromagnetic fields,”
Proceedings of the Physical Society. Section A, vol. 66, pp. 1129–1137, dec 1953.

[60] K. Oughstun, ed., Selected papers on Scalar Wave Diffraction, vol. 51 of SPIE
Milestone Series, (Bellingham, Washington), SPIE Optical Engineering Press,
1992.

[61] E. Wolf, “A scalar representation of electromagnetic fields: II,” Proceedings of
the Physical Society, vol. 74, pp. 269–280, sep 1959.

[62] J. Nye and J. Hajnal, “The wave structure of monochromatic electromagnetic
radiation,” Proc. Roy. Soc. Lond. A, vol. 409, pp. 21–36, 1987.

[63] O. Korotkova and E. Wolf, “Generalized stokes parameters of random electro-
magnetic beams,” Opt. Lett., vol. 30, pp. 198–200, Jan 2005.

[64] S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation singularities
in partially coherent electromagnetic beams,” Opt. Lett., vol. 37, pp. 4179–4181,
Oct 2012.

[65] A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full poincaré beams,” Opt.
Express, vol. 18, pp. 10777–10785, May 2010.

[66] I. Bialynicki-Birula and Z. Bialynicka-Birula, “Vortex lines of the electromagnetic
field,” Phys. Rev. A, vol. 67, p. 062114, Jun 2003.

[67] I. Bialynicki-Birula, “On the wave function of the photon,” Acta Phys. Pol. A,
vol. 86, pp. 97–116, 1994.

[68] H. Roychowdhury and E. Wolf, “Determination of the electric cross-spectral
density matrix of a random electromagnetic beam,” Optics Communications,
vol. 226, no. 1, pp. 57–60, 2003.

[69] B. Kanseri, S. Rath, and H. C. Kandpal, “Determination of the amplitude and
the phase of the elements of electric cross-spectral density matrix by spectral
measurements,” Optics Communications, vol. 282, no. 15, pp. 3059–3062, 2009.



87

[70] Z. Dong, Z. Huang, Y. Chen, F. Wang, and Y. Cai, “Measuring complex cor-
relation matrix of partially coherent vector light via a generalized hanbury
brown&#x2013;twiss experiment,” Opt. Express, vol. 28, pp. 20634–20644, Jul
2020.


