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ABSTRACT

PUJA RATTAN. Isogeometric collocation method for elasticity problems containing
singularities. (Under the direction of DR. HAE-SOO OH)

Isogeometric analysis (IGA), introduced by Hughes, et al. [2,3], is a mathematical

approach that combines Finite Element analysis (FEA) in conjunction with engi-

neering design tools, such as CAD, which allows analysis, testing and redesign of

structural elements via the same data set. Prior to implementing a new material into

a manufacturing process, it is necessary to design the shape of the object and then

analyze the durability of the design. Generally NURBS basis functions are used to

design complex structures. Isogeometric analysis is effective in the design-analysis-

manufacture loop.

Babus̃ka and Oh [10] introduced mapping techniques called the Method of Auxiliary

Mapping (MAM) to handle singularities that occur in partial differential equations

(PDEs). However, this method is unable to follow the framework of IGA. Thus,

we are looking for another way to handle singularity in IGA using the Collocation

method.

In order to develop methodology for solving PDEs containing singularities, the

B-spline basis functions are first modified using partition unity functions. By using

these modified basis functions the neighborhood of singularity will be enriched so

that they can capture the singular behavior of the true solution. In this disserta-

tion, this method is tested to one-dimensional and two-dimensional problems. Also,

this method is more effective and economical than other existing methods in han-
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dling problems containing singularities because the Collocation method requires less

computation than the Galerkin method or any other existing methods.

Schwarz alternating method in the framework of IGA-Collocation is also introduced

in this dissertation. In this method, a domain is decomposed into two subdomains and

then the problem is solved by solving subproblems in each subdomain. The iterative

process starts with an initial guess and iterates until it arrives at a solution of desired

accuracy. This technique has been applied to one- and two-dimensional problems for

overlapping as well as non-overlapping subdomains. Elasticity problems containing

singularities are also solved using this method. Numerical results are presented and

compared with the results obtained by the IGA-Galerkin method.
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CHAPTER 1: INTRODUCTION

Isogeometric analysis (IGA) is a method that integrates both design and analysis;

engineers design models with the help of computer aided design (CAD) and the

analysis of the design is done using Finite Element (FE). To capture complicated

geometry accurately, generally NURBS basis functions are used along with the proper

choice of control points. In this dissertation, IGA-Collocation method is presented to

find numerical solution of partial differential equations containing singularities.

In Chapter 2, we review definitions and terminologies that are needed to understand

this dissertation. Readers are suggested to read books such as Rogers [8], Piegl and

Tiller [9] for more information. In section 2.2, three types of refinement methods are

explained through examples. Section 2.3 gives the definition of Sobolev space and

norm along with formula of norms which are used to do error analysis throughout

this dissertation.

In Chapter 3, the basic IGA-Galerkin and IGA-Collocation approximation methods

[25, 26] are presented and compared with an example. In section 3.2, several methods

for construction of Partition of Unity (PU) functions are presented and used to enrich

the region of singularity. Numerical results are shown in section 3.3. Also, the problem

with oscillating singularity is tested in this section.

In Chapter 4, modification of basis functions are introduced so that C0-continuous

functions can be made C1-continuous and then IGA-Collocation method can be used
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to find the numerical solution of elliptic boundary value problems. In section 4.2, this

method is extended to two dimensions. Section 4.3 presents a global basis number-

ing system which is used for assembling local stiffness matrices for two dimensional

problems. In section 4.4, this method is tested for one as well as two dimensional

problems.

In Chapter 5, the Schwarz alternating method in the framework of IGA-Collocation

[27] is introduced. In section 5.1, the Schwarz alternating method is presented whereas

in section 5.2, a parallel Schwarz method is presented. The results of numerical tests

are shown in section 5.3.

In Chapter 6, an alternating method in the framework of IGA-Collocation is ex-

tended to two nonoverlapping subdomains. In section 6.1, the alternating method

uses Dirichlet-Neumann boundary condition at the interface and in section 6.2 the

method uses Neumann-Neumann boundary condition at the interface.

In Chapter 7, the Schwarz alternating iterative technique is explained for elasticity

problems in the framework of IGA-Collocation. In section 7.1, a review of definitions

and terminologies used in linear elasticity is explained. In section 7.2, the Schwarz

alternating method is used to solve coupled elliptic equations using IGA-Collocation

approach by splitting the problem into two overlapping subdomains. In section 7.3,

this method is tested on non-singular as well as singular problems of elasticity.

Finally, concluding remarks and ongoing research are discussed in Chapter 8 of this

dissertation.



CHAPTER 2: PRELIMINARIES

2.1 B-Splines and NURBS

This section provides definitions and terminologies that are needed to understand

this dissertation. Readers are suggested to read books such as Rogers [8], Piegl and

Tiller [9] for details.

2.1.1 B-Splines

A knot vector U = {u1, u2, ...., um} is a non-decreasing sequence of real numbers

in the parameter space [0, 1], and the components ui for i = 1, 2, ...,m are called

knots. An open knot vector of order p+ 1 is a knot vector in which the first and

the last knots are repeated p + 1 times. The interior knots can be repeated at most

p times. For example,

u1 = ... = up+1︸ ︷︷ ︸
p+1

< up+2 ≤ ... ≤ um−p−1 < um−p = ... = um︸ ︷︷ ︸
p+1

.

There are many ways to define B-spline basis functions. Here it is defined by the

recurrence formula given by Cox-de Boor. The B-spline basis functions of order

k = p+ 1 corresponding to the knot vector U are piecewise polynomials of degree p,

which are defined recursively in the following way

Ni,1(u) =


1 if ui ≤ u < ui+1

0 otherwise

(1)
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Figure 1: B-Spline functions Ni,3(u), i = 1, 2, ..., 7 of order k = 3 for knot vector
U = {0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}

Ni,t(u) =
u− ui

ui+t−1 − ui
Ni,t−1(u) +

ui+t − u
ui+t − ui+1

Ni+1,t−1(u) (2)

where 1 ≤ i ≤ m − 1 and 2 ≤ t ≤ k. Fig. 1 shows B-spline basis functions

corresponding to knot vector

U = {0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}.

B-Spline functions possess the following important properties:

1. Ni,k(u) is non-negative for all i, k and u.

2. Each piecewise polynomial Ni,k(u) has local support on [ui, ui+k).

3. On any span [ui, ui+1), at most p + 1 basis functions of degree p are non-zero.

i.e. Ni−p,k(u), Ni−p+1,k(u), Ni−p+2,k(u), ..., and Ni,k(u).

4. The sum of all non-zero degree p basis functions on span [ui, ui+1) is 1.

5. B-Spline functions are linearly independent.
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6. N1,k(0) = Nm−1,k(1) = 1.

7. If the number of knots is m, then the number of B-spline basis functions of

order k is n = m− k.

8. Basis function Ni,k(u) is a composite curve of degree p polynomials with joining

points at knots in [ui, ui+p+1).

9. The basis function Ni,k(u) is Cp−k-continuous at a knot of multiplicity k, .

A B-spline curve is defined as follows:

C(u) =
m−k∑
i=1

Ni,k(u)Bi, (3)

where Bi are control points that make B-spline functions draw a desired curve. B-

Spline curve and control points corresponding to open knot vector,

U = {0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}

are shown in Fig. 2. B-spline functions corresponding to the open knot vector of

order k = n+ 1:

U = {0, 0, 0, ..., 0︸ ︷︷ ︸
n+1

, 1, 1, 1, ..., 1︸ ︷︷ ︸
n+1

}

are global polynomials, called Bézier polynomials. The B-spline curve obtained by

Bézier polynomials is called the Bézier Curve. B-Spline curve possesses the following

important properties:

1. A B-spline curve C(u) is a union of curve segments where each component is a

curve of degree p.
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Figure 2: (a) B-Spline curve and control points for open knot vector U =
{0, 0, 0, 0.25, 0.6, 0.8, 0.8, 1, 1, 1}. (b) B-Spline basis functions corresponding to the
B-Spline curve shown in (a)



7

2. A B-spline curve C(u) satisfies the convex hull property, which means that the

curve is contained in the convex hull of its control polyline. If u is in knot span

[ui, ui+1), then C(u) is in the convex hull of control points Bi−p, Bi−p+1, ..., Bi.

3. Changing the position of control point Bi only affects the curve C(u) on interval

[ui, ui+p+1).

4. A B-spline curve C(u) is Cp−k continuous at a knot of multiplicity k.

5. If the curve is in a plane (or space), then no straight line (or plane) can inter-

sect a B-spline curve more than it intersects the curve’s control polyline. This

property is called the variation diminishing property for B-spline curves.

6. B-spline curves also hold the affine invariance property, which means if an affine

transformation is applied to a B-spline curve, then the result can be constructed

from the affine images of its control points.

If there are knot vectors U = {u1, u2, u3, ...., um} and V = {v1, v2, v3, ...., vn} in u

and v-direction, respectively, then a B-Spline surface is defined by

S(u, v) =
m−k∑
i=1

n−k′∑
j=1

Ni,k(u)Mj,k′(v)Bi,j, (4)

where Ni,k(u) and Mj,k′(v) are B-Spline functions of degree p and degree q, respec-

tively, and Bi,j are control points that make a bidirectional control net as shown in

Fig. 3.
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Figure 3: B-Spline surface and control net

2.1.2 NURBS

A Non-Uniform Rational Basis Spline(NURBS) function for the set of weights

{wi : i = 1, ...,m− k} is defined by

Ri,k(u) =
Ni,k(u)wi
W (u)

, (5)

where

W (u) =
m−k∑
s=1

Ns,k(u)ws > 0.

The NURBS basis functions are piecewise rational functions which possess the fol-

lowing properties:

1. Ri,k(u) is non-negative for all i, k and u.

2. Each rational function Ri,k(u) has local support on [ui, ui+k).

3. On any span [ui, ui+1), at most p + 1 basis functions of degree p are non-zero,

if the weights are non-negative, i.e. Ri−p,k(u), Ri−p+1,k(u), Ri−p+2,k(u), ..., and
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Ri,k(u).

4. The sum of all non-zero degree p basis functions on span [ui, ui+1) is 1.

5. NURBS basis functions are linearly independent.

6. If the number of knots is m, then the number of degree p basis functions is

n = m− k.

7. NURBS basis function Ri,k(u) is a composite curve of degree p rational functions

with joining points at knots in [ui, ui+p+1).

8. At a knot of multiplicity k, basis function Ri,k(u) is Cp−k continuous.

9. If wi = c for all i, where c is a non-zero constant, then Ri,k(u) = Ni,k(u).

A NURBS curve for weights wi, i = 1, 2, ...,m − k, and control points Bi, i =

1, 2, ...,m− k, is :

C(u) =
m−k∑
i=1

Ri,k(u)Bi, (6)

as shown in Fig. 4.

NURBS curves possess the following important properties:

1. A NURBS curve C(u) is a union of curve segments where each component is a

rational curve of degree p.

2. A NURBS curve C(u) satisfies the convex hull property.

3. Changing the position of control point Bi only affects the NURBS curve C(u)

on interval [ui, ui+p+1).
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Figure 4: NURBS curve and control points

4. A NURBS curve C(u) is Cp−k continuous at a knot of multiplicity k.

5. NURBS curves also hold the variation diminishing property.

6. NURBS curves do not hold the affine invariance property but they do hold the

projective invariance property. If the projective transformation is applied to a

NURBS curve, then the result can be constructed from the projective images

of its control points.

If knot vectors U = {u1, u2, u3, ...., um} and V = {v1, v2, v3, ...., vn} are in their

respective u-direction and v-direction, then a NURBS surface corresponding to the

control points {Bi,j} and for the given set of weights {wi,j : i = 1, ...,m − k, j =
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1, ..., n− k′} is defined by

S(u, v) =
m−k∑
i=1

n−k′∑
j=1

Ni,k(u)Mj,k′(v)wi,jBi,j

W (u, v)
, (7)

where Ni,k(u) and Mj,k′(v) are NURBS basis functions of degree p and q, respectively.

2.2 Refinement

The B-spline basis can be enriched by three types of refinements: Knot insertion,

degree elevation or degree and continuity elevation as shown in Figs. 5, 6, and 7,

respectively. Knot insertion is equivalent to h-refinement in classical finite element

method(FEM) and degree elevation is equivalent to p-refinement in classical FEM.

Degree and continuity elevation does not exist in classical FEM.

2.2.1 Knot Insertion (h-refinement)

Knot insertion can be defined as, adding a new knot into the existing knot vector

without changing the shape of the curve. This new knot may or may not be equal to

an existing knot. If it is equal to an existing knot, then the multiplicity of that knot

is increased by one.

In order to insert a new knot t into the knot vector U = {u1, u2, u3, ...., um} with m

knots and n control points {P1, P2, ..., Pn} without changing the shape of the B-spline

curve C(u), then the new knot vector will be given by U = {u1 = u1, u2 = u2, ..., us =

t, ..., um+1 = um}. Suppose the new knot t lies in the knot span [us, us+1). The new

control points Qi will be given by

Qi = (1− ai)Pi−1 + aiPi, (8)
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(a) Initial B-Spline function

0 0.2 0.4 0.6 0.8 1
0

0.5
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4,3

N
3,3

N
1,3

(b) B-Spline function after knot insertion

Figure 5: (a) Initial B-Spline basis function with knot vector U = {0, 0, 0, 1, 1, 1}.
(b) B-Spline basis function after knot insertion with knot vector U =
{0, 0, 0,0.3,0.6, 1, 1, 1}
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where ai can be calculated from

ai =


1 if i ≤ s− p

t−ui
ui+p−ui for s− p+ 1 ≤ i ≤ s

0 if i ≥ s+ 1.

(9)

2.2.2 Degree Elevation (p-refinement)

This refinement increases the degree of a curve without changing the shape of

the curve. To keep the geometry and parametrization the same, the multiplicity

of each knot is also increased by 1, if the degree is elevated by 1. This process

preserves the discontinuities of various derivatives that are present in the original

curve. Additionally, this method allows for a given surface to elevate in degrees in

either the u-direction or the v- direction or both.

Assume a knot vector {u1 = ... = up+1 < up+2 ≤ ... ≤ um−p−1 < um−p = ... = um}

and n control points {P1, P2, ..., Pn}, in order to increase the degree of the curve by

1, without changing the shape of the B-spline curve C(u), the new knot vector will

be given by {u1 = ... = up+1 = up+2 < up+3 = up+4 ≤ ... ≤ u2m−3p−4 = u2m−3p−3 <

u2m−3p−2 = ... = u2m−2p−2} and the new control points Qi will be given by

Qi =


P1 if i = 1

(p+1−i)Pi+(i)Pi−1

p+1
for 2 ≤ i ≤ p+ 1

Pp+1 if i = p+ 2.

(10)



14

(a)Initial B-Spline function
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(b)B-Spline basis function after degree elevation

Figure 6: (a) Initial B-Spline function with knot vector U = {0, 0, 0, 1, 1, 1}.
(b) B-Spline basis function after degree elevation with knot vector U =
{0, 0, 0, 0, 0, 1, 1, 1, 1, 1}
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2.2.3 k-refinement

This refinement comprises of both elevating the degree and inserting a new knot,

without changing the shape of the curve. k-refinement has no equivalent refinement in

finite element analysis (FEA). To do this refinement, the degree of the curve and the

multiplicity of all intermediate knot values are increased so that the continuity of the

curve does not change at these specific knots. Once prior is completed a new knot is

inserted. These processes (Degree elevation and inserting knots) are not commutative

and therefore the order in which these refinements are applied will change the final

basis. Significant amounts of degrees of freedom can be saved by doing k-refinement.

Suppose the degree of initial knot vector U = {0, ..., 0︸ ︷︷ ︸
3

, 0.5, 1, ..., 1︸ ︷︷ ︸
3

} is to be in-

creased from p = 2 to p = 4 and also a new knot t = 0.6 is to be inserted. If first

degree elevation occurs, the knot vector becomes U = {0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 1, ..., 1︸ ︷︷ ︸
5

}.

Initially, the regularity of the curve at knot 0.5 was C2−1 which remains same C4−3

after degree elevation. Now inserting a new knot t = 0.6 gives knot vector U =

{0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 0.6, 1, ..., 1︸ ︷︷ ︸
5

} which makes a total of 9 basis functions.

In case the order of degree elevation and knot insertion is reversed, then after the

knot insertion of knot t = 0.6, the knot vector U = {0, ..., 0︸ ︷︷ ︸
3

, 0.5, 1, ..., 1︸ ︷︷ ︸
3

} changes

to U = {0, ..., 0︸ ︷︷ ︸
3

, 0.5, 0.6, 1, ..., 1︸ ︷︷ ︸
3

} and after degree elevation from 2 to 4 it becomes

U = {0, ..., 0︸ ︷︷ ︸
5

, 0.5, ..., 0.5︸ ︷︷ ︸
3

, 0.6, ..., 0.6︸ ︷︷ ︸
3

, 1, ..., 1︸ ︷︷ ︸
5

}. This new knot vector gives a total of 11

basis functions whereas the previous k-refinement gave only 9 basis functions. New

basis is completely different from the basis formed in the first case. Also, the first

case will have less degrees of freedom than the second case.
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(a)Initial B-Spline function
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(b)B-Spline basis function after degree elevation

Figure 7: (a) Initial B-Spline function with knot vector U = {0, 0, 0, 1, 1, 1}.
(b) B-Spline basis function after k-refinement with knot vector U =
{0, 0, 0, 0, 0, 0.3, 0.6, 1, 1, 1, 1, 1}
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2.3 Sobolev Space and Norm

In PDEs, solutions are calculated in Sobolev space. A Sobolev space is a vector

space of functions equipped with a norm that is a combination of Lp-norms of the

function itself and its derivatives up to a given order. The Sobolev space denoted

by W k,p(Ω), is the collection of u defined in Ω such that for every multi-index α =

(α1, ..., αd) with | α |=| α1, ..., αd |≤ k, the weak derivative Dαu exists and belongs to

Lp(Ω). On W k,p(Ω) we shall use the norm

‖ u ‖Wk,p(Ω)=

∑
|α|≤k

∫
Ω

|Dαu|pdx

 1
p

if 1 ≤ p <∞. (11)

For a real number p ≥ 1, the p-norm or Lp-norm of x is defined by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p . (12)

The L∞-norm (or maximum norm) is the limit of the Lp-norms for p −→ ∞. This

limit is equivalent to the following definition:

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|} . (13)

The L2-norm (or euclidean norm) is given by

‖x‖2 :=

( n∑
i=1

|xi|2
)1/2

. (14)

Hk,p(Ω) is defined by the completion of

{
u ∈ Ck(Ω)|‖ u ‖Wk,p(Ω) <∞

}
(15)
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with respect to the norm ‖·‖p, where Ck(Ω) is consisting of all functions u which,

together with all derivatives Dα(u) are continuous on Ω.

Hk,p(Ω) ⊂ W k,p(Ω) ⊂ Lp(Ω)

for all p. In particular, for 1 ≤ p <∞, we have Hk,p(Ω) = W k,p(Ω).

In particular, when p = 2, we denote it as

W k,2(Ω) = W k(Ω) = Hk(Ω).

Hk
0 (Ω) is the closure of C∞0 (Ω) in the space Hk(Ω), where C∞0 (Ω) is the collection of

infinitely differentiable functions with compact support in Ω.

2.3.1 Weak Solution in Sobolev Space

Let an integer k ≥ 0, Ω ⊂ Rd and α = (α1, ..., αd) for u ∈ Hk(Ω). The norm and

the semi-norm, respectively, are defined by

‖ u ‖k,(Ω)= (
∑
|α|≤k

∫
Ω
|Dαu|2dx)

1
2 ,

‖ u ‖k,∞,(Ω)= max|α|≤k{ess.sup | Dαu(x) |: x ∈ Ω},

| u |k,(Ω)= (
∑
|α|=k

∫
Ω
|Dαu|2dx)

1
2 ,

| u |k,∞,(Ω)= max|α|=k{ess.sup | Dαu(x) |: x ∈ Ω}.

(16)

Given an elliptic boundary value problem on a domain Ω with Dirichlet boundary

condition g(x, y) along the boundary ∂Ω, and let

W = {w ∈ H1(Ω) : w|∂Ω = g} and V = {w ∈ H1(Ω) : w|∂Ω = 0}. (17)
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The variational formulation of the Dirichlet boundary value problem can be written

as follows: Find u ∈ W such that

B(u, v) = L(v), for all v ∈ V (18)

where B is a continuous bilinear form that is V-elliptic [17] and L is a linear functional

on L2(Ω). The solution to (18) is called a weak solution which is equivalent to the

strong (classical) solution that corresponds to an elliptic PDE whenever u is smooth

enough. The energy norm of the trial function u is defined by

‖u‖eng =

[
1

2
B(u, u)

] 1
2

. (19)

Additionally, relative error in the energy norm(%) is calculated for some problems in

this dissertation wherever IGA-Galerkin method is used to find numerical solution of

the problem.

Since the NURBS basis functions do not satisfy the Kronecker delta property,

therefore the non-homogeneous Dirichlet boundary condition is approximated by the

least squares method as follows: gh ∈ Wh such that

∫
∂Ω

|g − gh|2dγ = minimum. (20)

Throughout this dissertation, the percentage relative error ‖u− u
h

u
‖ in the maximum

norm(L∞) as well as in the L2 norm is defined by:

‖u− uh‖∞,rel(%) =
‖u− uh‖∞
‖u‖∞

× 100, (21)
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and

‖u− uh‖L2,rel(%) =
‖u− uh‖L2

‖u‖L2

× 100 respectively. (22)



CHAPTER 3: ENRICHED IGA-COLLOCATION

3.1 Isogeometric Analysis (IGA)

This chapter presents basic Galerkin and Collocation approximation methods in

the framework of IGA for numerical solutions of PDEs. These methods are compared

with the help of an example.

3.1.1 IGA-Galerkin Method

Consider the following two-dimensional model problem
−∆u = f in Ω,

u = 0 on ∂Ω,

(23)

where f ∈ L2(Ω). Domain Ω is a bounded connected open subset of R2 whose

boundary ∂Ω is Lipschitz continuous.

Using Green’s theorem we obtain the variational form of the model problem (23)

as follows

∫∫
Ω

(∇u)T∇vdΩ =

∫∫
Ω

fvdΩ, for all v ∈ H1
0 (Ω). (24)

Suppose Vh is a finite dimensional subspace of H1
0 (Ω). Then the Galerkin approxi-

mation of (24) is to find uh ∈ Vh such that

∫∫
Ω

(∇uh)T∇vdΩ =

∫∫
Ω

fvdΩ, for all v ∈ Vh. (25)
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Suppose the collection {φ1, φ2, ..., φN} is a basis for Vh. Then for uh ∈ Vh we have

u(x, y) ≈ uh(x, y) =
N∑
i=1

ciφi(x, y), (26)

for some constants {c1, c2, ..., cN}. Substituting (26) into (25) we have the following

linear system for the unknown {c1, c2, ..., cN}:

N∑
j=1

cj

∫∫
Ω

(∇φi)T∇φjdΩ =

∫∫
Ω

fφidΩ, for i = 1, 2, ..., N. (27)

Let, 
∫∫

Ω
(∇φi)T∇φj = aij∫∫

Ω
fφi = bi,

(28)

then the corresponding matrix equation for the unknown {c1, c2, ..., cN} is

a11 a12 . . . a1N

a21 a22 . . . a2N

...
... . . .

...

aN1 aN2 . . . aNN





c1

c2

...

cN


=



b1

b2

...

bN


. (29)

By solving (29) we obtain Galerkin approximate solution of (23) given by (26). When

NURBS basis functions are used for Galerkin approximation, it is called IGA-

Galerkin method.

3.1.2 IGA-Collocation Method

Suppose the right hand function f(x, y) in (23) is continuous and pi = (xi, yi) is a

point in Ω ⊂ R2. For brevity, we write x = (x, y), xi = (xi, yi). If we use the Dirac δ
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function δ(x− xi) as a test function

∫∫
Ω

(−∆u)δ(x− xi) =

∫∫
Ω

fδ(x− xi). (30)

Then from the shifting property of the delta function we have,

(−∆u)(xi) = f(xi). (31)

Suppose the basis functions {φ1, φ2, ..., φN} are C1-continuous, then by properly choos-

ing N distinct points {p1, p2, ..., pN} in Ω, we obtain a system of linear equations:

−∆

(
N∑
i=1

ciφi

)
(pi) = f(pi) for i = 1, 2, ..., N, (32)

or,

−
N∑
i=1

ci(∆φi)(pi) = f(pi) for i = 1, 2, ..., N. (33)

By solving the system in (33), one can determine the unknown coefficients ci, i =

1, 2, ..., N. This method is called the Collocation approximation method.

The Collocation method using C1-continuous NURBS basis functions will be called

IGA-Collocation. Even though the Collocation method has many advantages over

the Galerkin method, the Collocation method has not been widely employed because

of the complexity of constructions of C1-basis functions.

However, since highly smooth basis functions are used in IGA for numerical solu-

tions of PDEs, the Collocation method starts to draw attention. The success of the

Collocation method depends on not only constructing C1-continuous basis functions,

but the proper choice of collocation points. Commonly used collocation points are
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Greville abscissae of the knot vectors and Gaussian quadrature points.

Greville abscissae- The Greville abscissae ūi for the knot vector U = {u1, u2, u3, ...., um}

can be found by the formula

ūi =
ui+1 + ui+2 + ...+ ui+p

p
, 1 ≤ i ≤ m− k. (34)

For example, the Greville abscissae of a knot vector U = {0, 0, 0, 0.5, 1, 1, 1} are

ū1 = 0, ū2 =
1

4
, ū3 =

3

4
, ū4 = 1.

Gaussian quadrature points: In numerical analysis, the quadrature rule is an

approximation of the definite integral of a function, usually stated as a weighted sum

of function values at specified points within the domain of integration. For the domain

[−1, 1] the rule is stated as

1∫
−1

f(x)dx ≈
n∑
i=1

wif(xi) (35)

where wi =
2

(1− xi)2[P ′n(xi)]2
, are the weights for Gauss-Legendre quadrature and

xi is the i-th root of Legendre polynomial Pn(x), where by the Rodriquez formula,

Pn(x) is defined by

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (36)

These quadrature points are another choice for collocation points.

3.1.3 Comparison of IGA-Collocation with IGA-Galerkin Methods

In order to show the advantage of using IGA-Collocation over IGA-Galerkin, both

methods are applied to the same elliptic boundary value problem with singularity of
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type

rλψ(θ), where 0 < λ < 1, and ψ is a smooth function. (37)

The problem discussed here has a singularity of type r
1
2 on a cracked circular domain

of radius 1 and centered at origin.
−∆u = f in Ω = [(r, θ) : r < 1, 0 < θ < 2π]

u = 0 on ∂Ω

(38)

with the exact solution given by:

u(r, θ) =
√
r(1− r)

[
sin

(
θ

2

)
+ sin

(
3θ

2

)]
. (39)

Let F be a smooth mapping from the parameter space Ω̂ = [0, 1] × [0, 1] onto the

physical space Ω = [(r, θ) : r < 1, 0 < θ < 2π] with crack along the positive x-axis, as

shown in Fig. 8, is defined as follows:

F : Ω̂→ Ω and F (u, v) = (x(u, v), y(u, v)),

where

F (u, v) =


x(u, v) = v2 cos(2π(1− u))

y(u, v) = v2 sin(2π(1− u)).

(40)

This construction of mapping F generates singular functions. For IGA-Galerkin, the

basis functions should be at least C0-continuous but for IGA-Collocation they have

to be at least C1-continuous basis. Therefore we started with B-spline basis functions
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Figure 8: Mapping F maps Ω̂ = [0, 1]× [0, 1] onto physical space is Ω = [(r, θ) : r <
1, 0 < θ < 2π] with crack along the positive x-axis

corresponding to

U = {0, ..., 0︸ ︷︷ ︸
5

, 1
4
, 1

4
, 1

4
, 1

2
, 1

2
, 1

2
, 3

4
, 3

4
, 3

4
, 1, ..., 1︸ ︷︷ ︸

5

}

V = {0, ..., 0︸ ︷︷ ︸
4

, 1, ..., 1︸ ︷︷ ︸
4

}
(41)

in u-direction and v-direction, respectively. To improve the isogeometric analysis of

(38) in the angular direction we elevate the degree of B-spline functions with the fixed

mesh size h = 1
4

(the p-refinement). Relative errors in the maximum norm(%) for

both IGA-Collocation and IGA-Galerkin are depicted in Table 1 and Fig. 9 whereas

relative errors in the L2-norm(%) for both methods are displayed in Table 2 and Fig.

10.

Table 3 and Fig. 11 show computation time for numerical solution of (38)

obtained by IGA-Galerkin and IGA-Collocation methods. It is not difficult to see

that as the degrees of freedom increases, the time taken by IGA-Collocation method

increases linearly but for IGA-Galerkin method, the time increases almost exponen-

tially. Therefore, when comparing IGA-Collocation with IGA-Galerkin with respect
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Figure 9: Comparison of relative errors in the max-norm(%) for numerical solutions
obtained by IGA-Collocation and IGA-Galerkin methods for cracked singularity cir-
cular domain elliptic boundary value problem

Figure 10: Comparison of relative errors in the L2-norm(%) for numerical solutions
obtained by IGA-Collocation and IGA-Galerkin methods for cracked singularity cir-
cular domain elliptic boundary value problem
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Table 1: Comparison of relative errors in the max-norm(%) for numerical solutions
obtained by IGA-Collocation and IGA-Galerkin methods for cracked singularity cir-
cular domain elliptic boundary value problem. Here (pu, pv) are degrees of B-spline
functions

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 2.132E+00 1.756E-01
(5, 3) 32 2.916E-01 9.824E-03
(6, 3) 40 6.304E-02 1.062E-03
(7, 3) 48 5.360E-03 2.896E-05
(8, 3) 56 9.636E-04 4.976E-06
(9, 3) 64 5.731E-05 2.162E-07
(10, 3) 72 8.824E-06 1.319E-08

Table 2: Comparison of relative errors in the L2-norm(%) for numerical solutions
obtained by IGA-Collocation and IGA-Galerkin methods for cracked singularity cir-
cular domain elliptic boundary value problem. Here (pu, pv) are degrees of B-spline
functions

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 1.314E+00 1.353E-01
(5, 3) 32 1.986E-01 8.378E-03
(6, 3) 40 3.939E-02 8.915E-04
(7, 3) 48 3.513E-03 4.922E-0-5
(8, 3) 56 5.945E-04 3.863E-06
(9, 3) 64 3.677E-05 1.849E-07
(10, 3) 72 5.403E-06 1.147E-08

to the cost of forming the stiffness matrix and the load vector, the cost of direct

and iterative solvers, the degrees of freedom versus computing time, IGA-Collocation

method has the potential to increase the computational efficiency of isogeometric

analysis and to outperform IGA-Galerkin method, when a specified level of accuracy

is to be achieved with minimum computational cost[23]. IGA-Collocation method

provides huge time savings when considering large scale problems, even though the

accuracy of the solution is two orders of magnitude less than IGA-Galerkin.

In problem (38), if instead of mapping F given by (40), another mapping G is used,
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Table 3: Comparison of computation time (in seconds) for IGA-Galerkin and IGA-
Collocation methods for the crack singularity problem

(pu, pv) dof IGA-Colloaction IGA-Galerkin
(4, 3) 24 2.028 24.913
(5, 3) 32 3.042 49.561
(6, 3) 40 4.726 61.448
(7, 3) 48 7.456 142.833
(8, 3) 56 10.311 258.539
(9, 3) 64 12.947 335.385
(10, 3) 72 20.732 635.672

Figure 11: Comparison of computation time (in seconds) taken to obtain numerical
solutions of problem (38) by IGA-Collocation and IGA-Galerkin methods

which is defined as follows:

G : Ω̂→ Ω where G(u, v) =


x(u, v) = (v) cos(2π(1− u)),

y(u, v) = (v) sin(2π(1− u)),

(42)

then this construction of mapping G(u, v) will not generate singular functions. Prob-

lem (38) is solved with IGA-Collocation method in two different ways.

1. By using smooth mapping F which generates singular functions

1. By using mapping G which does not generate singular functions
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Figure 12: The true Solution given by (39)

Figure 13: Numerical solutions obtained by IGA-Collocation with mapping technique

Figure 14: Numerical solutions obtained by IGA-Collocation without mapping tech-
nique
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Figure 15: Absolute error obtained by IGA-Collocation with mapping technique

Figure 16: Absolute error obtained by IGA-Collocation without mapping technique
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Absolute error(%) for both methods are shown in Figs. 15 and 16. IGA-Collocation

with mapping techniques has absolute errors(%) upto 10−8 whereas without using

mapping techniques absolute error(%) increases to 0.15. Figs. 12, 13 and 14 shows

3D-plots of true solution and solutions obtained by IGA-Collocation with mapping

technique and IGA-Collocation without mapping technique.

3.2 Partition of Unity (PU) Functions

The following section will focus on Partition of Unity (PU) functions and their

constructions. There are several ways to construct PU functions but only few which

are applicable to implement in the framework of IGA-Collocation, are presented here.

For this purpose, let us first introduce the notations and definitions.

Support: Let Ω denotes a bounded domain in Rd. For m ≥ 0, Cm(Ω) denotes

the space of all functions φ with continuous derivatives upto order m. The support

of φ is defined by

supp φ = {x ∈ Ω : φ(x) 6= 0}.

Partition of Unity: For Λ be a finite index set, a family {Uk : k ∈ Λ} of open

subsets of Rd is said to be a point finite open covering of Ω ⊆ Rd if there is M such

that any x ∈ Ω lies in at most M of the open sets Uk and Ω ⊆
⋃
k Uk.

For a point finite open covering {Uk : k ∈ Λ} of a domain Ω, suppose there is a

family {ψk : k ∈ Λ} of Lipschitz functions on Ω satisfying the following conditions:

1.For k ∈ Λ, 0 ≤ ψk(x) ≤ 1, x ∈ Rd.

2. The supp(ψk) ⊆ Uk, for each k ∈ Λ.

3.
∑

k∈D ψk(x) = 1 for each x ∈ Ω.
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Then {ψk : k ∈ Λ} is called a partition of unity (PU) subordinate to the covering

{Uk : k ∈ Λ}. The covering sets Uk are called patches.

A window (or weight) function is a non-negative continuous function with

compact support and is denoted by ŵ(x). We consider the following conical window

function in this dissertation: For x ∈ R,

ŵ(x) =


(1− x2)l if | x |≤ 1,

0 if | x |> 1

(43)

where l is a positive integer. Then ŵ(x) is a Cl−1 function and it can be con-

structed from a one dimensional weight function as w(x) =
∏d

i=1 ŵ(xi), where x =

(x1, x2, ..., xd). Normalized window functions are defined by

ŵlδ(x) = Aŵ
(x
δ

)
(44)

where A =
(2l + 1)!

22l+1(l!)2δ
is a constant that gives

∫
R
ŵlδ(x)dx = 1.

1- Shepard PU shape functions:

Suppose window function is built at every particle xi for each patch wi, i =

1, 2, ..., N . Then the PU functions ϕi(x) associated with particle xi, i = 1, 2, ..., N

are defied by

ϕi(x) =
wi(x− xi)∑
k wk(x− xi)

, for all x ∈ R. (45)

2- One-dimensional non-flat top PU functions[6]:

This PU function is constructed by Cn−1 piecewise polynomial ϕn(x) for any
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integer n ≥ 1

ϕn(x) =


ϕLn(x) := (1 + x)ngn(x) if x ∈ [−1, 0]

ϕRn(x) := (1− x)ngn(−x) if x ∈ [0, 1]

0 otherwise

(46)

where gn(x) = a0,n + a1,n(−x) + a2,n(−x)2 + ...+ an−1,n(−x)n−1 is a polynomial

of degree n− 1. The coefficients ak,n’s are defined by

ak,n(x) =


1 if k = 0∑k

i=0 ai,n−1 if 0 < k ≤ n− 2

2an−2,n if k = n− 1.

(47)

Using recurrence formula (46), gn(x) is computed as follows:

g1(x) = 1

g2(x) = 1− 2x

g3(x) = 1− 3x+ 6x2

g4(x) = 1− 4x+ 10x2 − x3

g5(x) = 1− 5x+ 15x2 − 35x3 + 70x4

......

(48)

and so on. Since ϕn(x) depends on both (1 + x)n and gn(x) therefore ϕn(x) is

Cn−1-continuous. Fig. 17 shows one-dimensional non flat top PU function.

3- One-dimensional convolution flat-top PU functions[6]:

Suppose domain Ω = [a, b] is partitioned uniformly (or non-uniformly) such that

x1 = a− δ < a < x2 < ... < xn < b < xn+1 = b+ δ. (49)
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Figure 17: One-dimensional non-flat top PU function

Using non-flat PU functions we can construct PU functions with a flat top

whose support is [a− δ, b+ δ] with (a+ δ) < b− δ in the following way:

ψ
(δ,n−1)
[a,b] (x) =



ϕLn

(
x−(a+δ)

2δ

)
if x ∈ [a− δ, a+ δ]

1 if x ∈ [a+ δ, b− δ]

ϕRn

(
x−(b−δ)

2δ

)
if x ∈ [b− δ, b+ δ]

0 if x 6∈ [a− δ, b+ δ]

(50)

where ϕLn and ϕRn are defined by (46).

Here, in order to make a PU function to have a flat-top, we assume δ ≤ (b−a)
3

.

Actually, ψ
(δ,n−1)
[a,b] (x) is the convolution, χQk(x) ∗ wn−1

δ , of the characteristic

function χQk(x) and the scaled window function wn−1
δ , defined by (44). Let

Qk = [xk, xk+1] be an interval with | xk+1 − xk |≥ 3δ for k = 1, 2, ..., n. Then

the characteristic function χQk(x) is defined by

χQk(x) =


1 if x ∈ [xk, xk+1],

0 if x 6∈ [xk, xk+1].

(51)

Since
∑n

k=1 χQk(x) = 1, for all x ∈ Ω except for the nodal points, therefore∑n
k=1 ψ

(δ,n−1)
k (x) = 1 for all x ∈ Ω. Fig. 18 shows one-dimensional convolution
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Figure 18: One-dimensional flat top PU function

flat-top PU function.

4- Flat-top PU functions using B-Splines:

To construct C1-continuous PU functions with flat-top using degree 3

B-spline functions Ni,4(x), i = 1, . . . , 12 corresponding to knot vector

{
0, .., 0︸ ︷︷ ︸

4

, a− δ, a− δ︸ ︷︷ ︸
2

, a+ δ, a+ δ︸ ︷︷ ︸
2

, b− δ, b− δ︸ ︷︷ ︸
2

, b+ δ, b+ δ︸ ︷︷ ︸
2

, 1, .., 1︸ ︷︷ ︸
4

}
.

The non-flat top on the left side is constructed by,

φLg2

(
x− (a+ δ)

2δ

)
= N5,4(x) +N6,4(x) for x ∈ [a− δ, a+ δ].

The non-flat top on the right side is constructed by,

φRg2

(
x− (b− δ)

2δ

)
= N7,4(x) +N8,4(x) for x ∈ [b− δ, b+ δ].

The flat portion of PU function is constructed by

N5,4(x) +N6,4(x) +N7,4(x) +N8,4(x) = 1 for x ∈ [a+ δ, b− δ].

Similarly, to construct C2 PU functions with flat-top using degree 5 B-spline
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functions Ni,6(x), i = 1, . . . , 18, corresponding to knot vectors

{
0, .., 0︸ ︷︷ ︸

6

, a− δ, .., a− δ︸ ︷︷ ︸
3

, a+ δ, .., a+ δ︸ ︷︷ ︸
3

, b− δ, .., b− δ︸ ︷︷ ︸
3

, b+ δ, .., b+ δ︸ ︷︷ ︸
3

, 1, .., 1︸ ︷︷ ︸
6

}
The non-flat top on the left side is constructed by,

φLg3

(
x− (a+ δ)

2δ

)
= N7,6(x) +N8,6(x) +N9,6(x) for x ∈ [a− δ, a+ δ].

The non-flat top on the right side is constructed by,

φRg3

(
x− (b− δ)

2δ

)
= N10,6(x) +N11,6(x) +N12,6 for x ∈ [b− δ, b+ δ].

The flat portion of PU function is constructed by

N7,6(x)+N8,6(x)+N9,6(x)+N10,6(x)+N11,6(x)+N12,6(x) = 1 for x ∈ [a+δ, b−δ].

Similarly, we construct general Cn−1 PU functions with flat-top using degree

2n-1 B-spline functions Ni,2n(x), i = 1, . . . , 6n, corresponding to knot vectors

{
0...0︸︷︷︸

2n

, a− δ...a− δ︸ ︷︷ ︸
n

, a+ δ...a+ δ︸ ︷︷ ︸
n

, b− δ...b− δ︸ ︷︷ ︸
n

, b+ δ...b+ δ︸ ︷︷ ︸
n

, 1...1︸︷︷︸
2n

}
as follows:

ψ
(δ,n−1)
[a,b] (x) =



∑n
k=1N2n+k,2n(x) if x ∈ [a− δ, a+ δ],∑2n
k=1N2n+k,2n(x) = 1 if x ∈ [a+ δ, b− δ],∑n
k=1N3n+k,2n(x) if x ∈ [b− δ, b+ δ],

0 if x /∈ [a− δ, b+ δ].

(52)

For example: To construct C1-continuous PU functions with flat-top using
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degree 3 B-spline functions Ni,4(x), i = 1, . . . , 12 corresponding to knot vector

U = {0, ..., 0︸ ︷︷ ︸
4

, 0.35, 0.35, 0.4, 0.4, 0.6, 0.6, 0.65, 0.65, 1, ..., 1︸ ︷︷ ︸
4

}

This knot vector will have twelve cubic B-Spline functions in the u−direction

with the following support:

Supp(N1,4(u)) = [0, 0.35], Supp(N2,4(u)) = [0, 0.35],

Supp(N3,4(u)) = [0, 0.4], Supp(N4,4(u)) = [0, 0.4],

Supp(N5,4(u)) = [0.35, 0.6], Supp(N6,4(u)) = [0.35, 0.6],

Supp(N7,4(u)) = [0.4, 0.65], Supp(N8,4(u)) = [0.4, 0.65],

Supp(N9,4(u)) = [0.6, 1], Supp(N10,4(u)) = [0.6, 1],

Supp(N11,4(u)) = [0.65, 1], Supp(N12,4(u)) = [0.65, 1]

We will construct φi(u) function using the middle section of the B-Spline fucn-

tions

φi(u) = N5,4(u) +N6,4(u) +N7,4(u) +N8,4(u) = 1 if x ∈ [0.4, 0.6]. (53)

Hence,

φi(u) =



N5,4(u) +N6,4(u) if x ∈ [0.35, 0.4),

1 if x ∈ [0.4, 0.6],

N7,4(u) +N8,4(u) if x ∈ (0.6, 0.65],

0 otherwise.

(54)

For two dimensional flat top PU function, let us consider knot vector V =
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{0, ..., 0︸ ︷︷ ︸
4

, 0.2, 0.2, 0.3, 0.3, 1, ..., 1︸ ︷︷ ︸
4

}. There will be eight cubic B-Spline functions

in the v−direction with the following support:

Supp(M1,4(u)) = [0, 0.2], Supp(M2,4(u)) = [0, 0.2],

Supp(M3,4(u)) = [0, 0.3], Supp(M4,4(u)) = [0, 0.3],

Supp(M5,4(u)) = [0.2, 1], Supp(M6,4(u)) = [0.2, 1],

Supp(M7,4(u)) = [0.3, 1], Supp(M8,4(u)) = [0.3, 1].

We will construct φj(v) function using the first section of B-Spline functions as

follows:

φj(v) = M1,4(v) +M2,4(v) +M3,4(v) +M4,4(v) = 1 if x ∈ [0, 0.2]. (55)

Hence,

φj(v) =


1 if x ∈ [0, 0.2],

M3,4(v) +M4,4(v) if x ∈ (0.2, 0.3),

0 if x ∈ [0.3, 1].

(56)

We can construct two-dimensional flat top PU function by taking tensor product

of φi(u) and φj(v) functions as follows:

ψi,j(u, v) = φi(u)× φj(v) =
8∑
i=5

4∑
j=1

Ni,4(u)Mj,4(v). (57)

It’s not difficult to see that ψi,j(u, v) is a unit function on the rectangle [0.4, 0.6]×

[0, 0.2] .



40

3.3 Numerical Results

To show the effectiveness of the Partition of Unity IGA (PU-IGA) Collocation

method it is tested to a second order boundary value problem (BVP) that has a

singular solution.

3.3.1 Problem with Monotone Singularity of Type xλ

Consider a model second order boundary value problem with singularity,
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(58)

with the exact solution:

u(x) = x1.7(x− 1). (59)

Consider knot vector

U = {0, 0, 0, 0.45, 0.5, 0.55, 1, 1, 1}

for construction of C1-continuous PU functions with flat top. This knot vector will

generate six quadratic B-Spline functions with the following supports:

Supp(N1,3(u)) = [0, 0.45], Supp(N2,3(u)) = [0, 0.5],

Supp(N3,3(u)) = [0, 0.55], Supp(N4,3(u)) = [0.45, 1],

Supp(N5,3(u)) = [0.5, 1], Supp(N6,3(u)) = [0.55, 1].
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Let φ1(u) and φ2(u) be C2-continuous PU functions constructed with the following

B-spline functions:

φL1 (u) =


1 if x ∈ [0, 0.45),

N1,3(u) +N2,3(u) +N3,3(u) if x ∈ [0.45, 0.55),

0 x ∈ [0.55, 1],

(60)

and,

φR2 (u) =


0 if x ∈ [0, 0.45),

N4,3(u) +N5,3(u) +N6,3(u) if x ∈ [0.45, 0.55),

1 x ∈ [0.55, 1].

(61)

These φ1(u) and φ2(u) are flat top PU-functions with non flat-tops on [0.45, 0.55].

Let

Bk(ξ) =

(
n

k

)
(1− ξ)n−kξk, k = 0, 1, 2, ...n

be Bernstein polynomials(Bézier functions) of degree n. Let T1 : [0, 1] −→ [0, 0.55]

and T2 : [0, 1] −→ [0.45, 1] be bijective linear mappings. Construct C2-continuous

basis functions on [0, 0.55] and [0.45, 1] as follows:

V1 = {Bk(T
−1
1 (x))× φ1(x)|k = 1, 2, ..., n1} (62)

V2 = {Bk(T
−1
2 (x))× φ2(x)|k = 1, 2, ..., n2}. (63)

Define an approximation space V on [0, 1] by

V = span(V1 ∪ V2),
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Table 4: The relative errors in the maximum norm in percentage for numerical solu-
tions of one dimensional problem containing singularity obtained by enriched IGA-
Collocation

Degree of 1st segment Degree of 2nd segment IGA-Collocation
p = 6 p = 3 5.10E-2
p = 6 p = 6 7.93E-3
p = 10 p = 7 1.46E-3

where V1 and V2 are approximation subspaces on [0, 0.55] and [0.45, 1], respectively.

Divide domain [0, 1] into two subdomains [0, 0.55] and [0.45, 1]. Multiply each basis

function in sudomain [0, 0.55] by φ1(u) and multiply each basis function in sudomain

[0.45, 1] by φ2(u). Then the problem is solved using IGA-Collocation method for

various combinations of degrees of basis functions in each subdomain. Relative errors

in the maximum norm in percentage with respect to various combinations of p-degree

in each segment are shown in Table 4.

3.3.2 An Elliptic Equation with Smooth Solution

Consider a second order boundary value problem containing no singularity.
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(64)

with the exact solution:

u(x) = x2(x− 1) (65)

This elliptic boundary value problem containing a regular solution is solved in the

same way the problem containing a weak singularity is solved. Relative errors in the

maximum norm in percentage with respect to various combinations of p-degree are

shown in Table 5.
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Table 5: The relative errors in the maximum norm in percentage for numerical solu-
tions of one dimensional non-singular problem obtained by enriched IGA-Collocation

Degree of 1st segment Degree of 2nd segment IGA-Collocation
p = 6 p = 3 2.01E-15
p = 6 p = 6 8.43E-16
p = 10 p = 7 1.59E-15

3.3.3 Problem with Oscillating Singularity

This test problem is on the domain [0,1]
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(66)

with the exact solution:

u(x) = x0.65 sin(0.1 log x). (67)

To solve this problem, domain [0,1] is divided into two overlapping subdomains [0,

0.55] and [0.45, 1]. An enrichment function x0.65 sin(0.1 log x) is introduced in the

singularity part to capture singularity. Define approximation space V in the following

way:

Vs1 = {x0.65 sin(0.1 log x)× φL(x)} ∪ V1,

V = span(Vs1 ∪ V2).

Relative errors in the maximum-norm(%) of the problem with oscillating singularity

obtained by IGA-Collocation using enriched functions in V are displayed in Table 6

and Fig. 19.
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Table 6: The relative errors in the maximum norm in percentage of numerical solu-
tions of one dimensional second order equation with oscillating singularity obtained
by IGA-Collocation

Degree of 1st segment Degree of 2nd segment DOF IGA-Collocation
p = 5 p = 6 29 2.49E-07
p = 5 p = 7 30 9.63E-09
p = 5 p = 8 31 9.91E-10
p = 5 p = 9 32 1.91E-10
p = 5 p = 10 33 7.69E-12

Figure 19: Relative errors in the max-norm(%) for oscillating singularity problem
using IGA-Collocation method



CHAPTER 4: MODIFICATION OF BASIS FUNCTIONS

The basis functions used for the Collocation method should be C1-continuous, that

means their derivatives should be continuous. If an elliptic boundary value problem

is solved by the collocation method of an element-wise approach like in finite element

method(FEM), then the basis functions must be modified at the patch to make them

C1-continuous.

4.1 Modification of Bézier Polynomials in One-dimension

Suppose a physical domain is divided into several patches and assembles B-spline

functions constructed on each patch in a patchwise manner. Then the derivatives

of assembled B-spline functions could be discontinuous along the patch boundaries.

To remove discontinuities of these derivatives of B-spline basis functions along these

patch boundaries some modifications are necessary [18]. These modified B-spline

functions are linearly independent and their first derivatives are zero at the first and

the last knots, except for the second function and for the second last function.

By theorem 2.1 of [18], for 2 ≤ k ≤ n − 1 the first function N1,n+1(u) and the last

function Nn+1,n+1(u) can be altered as shown in Table 7 and these alterations are

called Nodal Alterations. The alterations to the second function N2,n+1(u) and to

the second last function Nn,n+1(u) are called Side Alterations.

Applying this modifications to Bézier functions of degree 5 and taking s = 2, we
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Table 7: Original and modified B-Spline basis functions

Index of B-spline function Original function Modified function
First function N1,k(u) N1,s(u)(1 + sx)
Second function N2,k(u) −N2,k(u)J(φ)
Preceding to last function Nm−k−1,k(u) Nm−k−1,k(u)J(φ)
Last function Nm−k,k(u) Nm−k,s(u)(1 + s− sx)

can get the following modified Bézier functions.

N1,6(u) = (1− u)2(1 + 2u),

N2,6(u) = −5u(1− u)4 |J(ϕk(u))| ,

N3,6(u) = 10u2(1− u)3,

N4,6(u) = 10u3(1− u)2,

N5,6(u) = 5u4(1− u) |J(ϕk(u))| ,

N6,6(u) = u2(3− 2u),

(68)

where ϕk(u) is a linear patch mapping from the reference domain Ω = [0, 1] to the

physical subdomain Ωk = [xk, xk+1] and J(ϕk(u)) is the Jacobian of ϕk(u). The

mapping ϕk(u) : Ω→ Ωk is defined by

ϕk(u) = (xk+1 − xk)u+ xk. (69)

4.2 Two-dimensional Extension of Modification

These modifications can be extended to two dimensional cases also. Consider mesh

sizes hi = xi+1 − xi and kj = yj+1 − yj of [a, b] and [c, d], respectively. A two

dimensional linear patch mapping ϕi,j(u, v) : Ω→ Ωi,j is defined by

ϕi,j(u, v) = {hiu+ xi, kjv + yj} (70)
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Like the one dimensional case, we modify Bézier polynomials Ni,k(u) and Mj,k′(v)

to get sets of modified Bézier basis functions in both u and v directions. Tensor

product of these modified functions will give the reference shape functions for two

dimensions. If we denote altered Bézier polynomials by Ñi,k(u) and M̃j,k′(v) and

take degree 4 polynomials in both directions, then the tensor product will give us 25

reference shape functions.

Nodal Alterations:


Ñ1,5(u)× M̃1,5(v) Ñ1,5(u)× M̃5,5(v),

Ñ5,5(u)× M̃1,5(v) Ñ5,5(u)× M̃5,5(v).

(71)

Side Alterations:



Ñ1,5(u)× M̃2,5(v) Ñ1,5(u)×M3,5(v) Ñ1,5(u)×M4,5(v),

Ñ2,5(u)× M̃1,5(v) N3,5(u)× M̃1,5(v) N4,5(u)× M̃1,5(v),

Ñ5,5(u)× M̃2,5(v) Ñ5,5(u)×M3,5(v) Ñ5,5(u)×M4,5(v),

Ñ2,5(u)× M̃5,5(v) N3,5(u)× M̃5,5(v) N4,5(u)× M̃5,5(v).

(72)

Internal Alterations:


Ñ2,5(u)× M̃2,5(v) Ñ2,5(u)×M3,5(v) Ñ2,5(u)×M4,5(v),

N3,5(u)× M̃2,5(v) N3,5(u)×M3,5(v) N3,5(u)×M4,5(v),

N4,5(u)× M̃2,5(v) N4,5(u)×M3,5(v) N4,5(u)×M4,5(v).

(73)

4.3 Global Basis Numbering Used for Assembling Local Stiffness Matrices

When the modified Bézier polynomials of degree 4 are applied to an elliptic PDE

on a rectangular domain consisting of nine rectangular patches, the numbering of

global basis functions that are constructed by push-forwards of the 25 modified Bézier

polynomials onto nine patches are as follows [18]:
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13© 97 96 95 14© 95 109 108 15© 108 117 116 16©

98 103 104 105 94 105 112 113 107 113 120 121 115

99 100 101 102 93 102 110 111 106 111 118 119 114

69 74 75 76 65 76 83 84 78 84 91 92 86

9© 68 67 66 10© 66 80 79 11© 79 88 87 12©

69 74 75 76 65 76 83 84 78 84 91 92 86

70 71 72 73 64 73 81 82 77 82 89 90 85

26 35 36 37 22 37 49 50 42 50 62 63 55

5© 25 24 23 6© 23 44 43 7© 43 57 56 8©

26 35 36 37 22 37 49 50 42 50 62 63 55

27 32 33 34 21 34 47 48 41 48 60 61 54

28 29 30 31 20 31 45 46 40 46 58 59 53

1© 17 18 19 2© 19 38 39 3© 39 51 52 4©

(74)

Here k© represents the nodal basis function corresponding to the kth node.

Local numbering for the 25 shape functions listed in (71), (72), (73), is as follows:

4© 13 12 11 3©

14 23 24 25 10

15 20 21 22 9

16 17 18 19 8

1© 5 6 7 2©

(75)

Here the shape functions listed in (71), (72), (73), respectively, are assigned the
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following local numbers:

(Nodal)

 4 3

1 2

 , (Side)



14 15 16

11 12 13

8 9 10

5 6 7


, (Internal)


23 24 25

20 21 22

17 18 19

 .

4.4 Numerical Results

In this section, the numerical results of several one and two dimensional prob-

lems are presented, where the B-spline basis functions are modified to make them

continuous at the patch boundaries.

4.4.1 One-dimensional Non-singular Problem

The first test problem is the Poisson equation on the domain [0,1]
−u′′(x) = f for x ∈ (0, 1),

u(0) = u(1) = 0,

(76)

with the exact solution:

u(x) = x2(x− 1). (77)

This problem is numerically solved by using IGA-Collocation method. The basis

functions corresponding to the following knot vector U = {0, ..., 0︸ ︷︷ ︸
7

, 1, ..., 1︸ ︷︷ ︸
7

} are Bézier

functions of degree 6. The physical domain [0,1] is first divided into 4 unequal size of

mesh

[0, 1] =

[
0,

1

8

]
∪
[

1

8
,
1

2

]
∪
[

1

2
,
7

8

]
∪
[

7

8
, 1

]
.
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Table 8: Comparison of relative errors in the maximum norm in percentage for one
dimensional problem (76) by using FEM-Galerkin and FEM-Collocation methods

Degree FEM-Galerkin FEM-Collocation
p = 6 9.36E-16 1.87E-15
p = 7 9.36E-16 5.24E-15
p = 8 1.49E-15 1.87E-15
p = 9 9.36E-16 4.21E-15
p = 10 1.12E-15 8.43E-16

Then the basis functions are modified at 1
8
, 1

2
and 7

8
to make them C1-continuous

at these boundaries. Collocation points are chosen as Gauss quadrature points.

The relative errors in the max-norm(%) for the FEM-Collocation and the FEM-

Galerkin methods for different degrees of basis functions are shown in Table 8. Both

methods yield the solution of accuracy 10−15, which is almost true solution. Note

that increasing degree of Bézier polynomials will not make much difference so we can

use less degrees of freedom(DOF) to get the same result.

4.4.2 One-dimensional Problem with Monotone Singularity of type xλ

Consider the one-dimensional poisson equation,
−u′′(x) = f for x ∈ (0, 1)

u(0) = u(1) = 0

(78)

that has the exact solution with weak singularity:

u(x) = x1.7(x− 1). (79)

Like non singular problems, in this problem the physical domain [0,1] is also par-

titioned into four patches with unequal sizes and the basis functions are modified

at these patch boundaries. The relative errors in the max-norm(%) for the FEM-
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Table 9: Comparison of IGA-Galerkin and IGA-Collocation method for one dimen-
sional singular problem

Degree DOF FEM-Galerkin FEM-Collocation
p = 6 22 4.28E-05 3.32E-04

p = 7 26 2.49E-05 2.20E-04

p = 8 30 1.56E-05 1.24E-04

p = 9 34 1.05E-05 6.33E-05

p = 10 38 7.41E-06 4.21E-05

Collocation and the FEM-Galerkin methods for different degrees of basis functions

are shown in Table 9. Both methods seem to have slow rate of convergence for the

problem containing a weak singularity.

4.4.3 Two-dimensional Problem with No Singularity

Consider the two-dimensional Poisson equation on the domain Ω =
[
0, 3

2

]
×
[
0, 3

2

]
,

−∆u = f in Ω,

u = 0 on ∂Ω,

(80)

with the exact solution:

u(x, y) = x2y2

(
x− 3

2

)(
y − 3

2

)
. (81)

To solve this 2-D problem, the physical domain
[
0, 3

2

]
×
[
0, 3

2

]
is partitioned into

3 equal sized patches in both directions resulting in a grid of 9 squares. The B-

spline functions are modified in both u and v directions. We use p = 4 for numerical

solutions of this problem. There are a total of 25 altered basis functions in each grid.

The local stiffness matrix for each grid is created. Then the numbering technique

mentioned in the previous section is followed to create the global stiffness matrix. In

the FEM-Collocation method everything is calculated in the reference domain. Use
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change of variables method to compute higher order derivatives in the following way:

Consider a mapping Φ : Ω̂→ Ω from the reference space to the physical space.

f̂ = f ◦ Φ, where f(u, v) = (x, y).

By the chain rule,

∂f̂

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

∂f̂

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

We have,

(∇xyf) ◦ Φ = J(Φ)−1∇uv(f ◦ Φ), (82)

where J11 =
∂x

∂u
; J12 =

∂y

∂u
; J21 =

∂x

∂v
; J22 =

∂y

∂v
. For second derivative,

(∇xyfx) ◦ Φ = J(Φ)−1∇uv(fx ◦ Φ), (∇xyfy) ◦ Φ = J(Φ)−1∇uv(fy ◦ Φ). (83)

Therefore,

fxx ◦ Φ = J(Φ)−1∂((J11)−1f̂u + (J12)−1f̂v)

∂u
,

fxy ◦ Φ = J(Φ)−1∂((J11)−1f̂u + (J12)−1f̂v)

∂v
,

fyx ◦ Φ = J(Φ)−1∂((J21)−1f̂u + (J22)−1f̂v)

∂u
,

fyy ◦ Φ = J(Φ)−1∂((J21)−1f̂u + (J22)−1f̂v)

∂v
.

Since the inverse mapping Φ−1 : Ω→ Ω̂

f = f̂ ◦ Φ−1,
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Table 10: Comparison of FEM-Galerkin and FEM-Collocation for a two dimensional
problem with no singularity

Method degree ‖u− uh‖∞,rel(%) ‖u− uh‖L2,rel(%) ‖u− uh‖eng,rel(%)

IGA-Galerkin p = 4 1.44E-15 6.06E-14 1.74E-06
IGA-Collocation p = 4 5.76E-13 1.21E-12 N/A

(∂xxf) ◦ Φ = (J11)−1 ∂

∂u

{
(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂

}
+ (J12)−1 ∂

∂v

{
(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂

}
,

(∂yyf) ◦ Φ = (J21)−1 ∂

∂u

{
(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂

}
+ (J22)−1 ∂

∂v

{
(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂

}
,

(∂xyf) ◦ Φ = (J21)−1 ∂

∂u

{
(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂

}
+ (J22)−1 ∂

∂v

{
(J11)−1 ∂

∂u
f̂ + (J12)−1 ∂

∂v
f̂

}
,

(∂yxf) ◦ Φ = (J11)−1 ∂

∂u

{
(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂

}
+ (J12)−1 ∂

∂v

{
(J21)−1 ∂

∂u
f̂ + (J22)−1 ∂

∂v
f̂

}
,

∆xyf ◦ Φ = ∆xy(f̂ ◦ Φ−1) ◦ Φ = (∂xxf) ◦ Φ + (∂yyf) ◦ Φ.

The model two-dimensional problem is solved by both the FEM-Galerkin and the

FEM-Collocation methods. The relative errors in the maximum norm(%) and L2-

norm(%) for both methods are displayed in Table 10.
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Figure 20: Relative errors in the max-norm(%) of numerical solutions obtained by
IGA-Collocation for Problem (84)

4.4.4 Two-dimensional Problem with Singularity

Consider the Poisson equation on the semi-circular domain of radius 1/2 and cen-

tered at origin. 
−∆u = f in Ω

u = 0 on ∂Ω

(84)

that has the exact solution:

u(r, θ) =
√
r

(
1

2
− r
)

sin θ. (85)

To map the reference domain onto the physical domain, smooth non-NURBS map-

ping F : Ω̂→ Ω is used where

F (u, v) =


x(u, v) = (v2)

2
cos(π(1− u))

y(u, v) = (v2)
2

sin(π(1− u)).

(86)
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Table 11: Relative errors(%) of numerical solutions obtained by applying IGA-
Collocation method to two-dimensional Poisson equation on a semicircular domain
with singularity

(pu, pv) ‖u− uh‖∞,rel(%) ‖u− uh‖L2,rel(%)

(6,3) 3.63E-05 3.08E-05
(7,3) 6.02E-06 4.26E-06
(8,3) 2.88E-08 1.75E-08
(9,3) 3.54E-09 2.45E-09
(10,3) 1.45E-11 8.64E-12
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Figure 21: Relative errors in the L2-norm(%) of numerical solutions obtained by the
IGA-Collocation for Problem (84)

The degree of the Bézier functions in v direction is fixed to 3 whereas the degree in

u direction is elevated. Modified Bézier polynomials are used as basis functions. The

relative errors in the max-norm(%) and in the L2-norm(%) are depicted in Table 11.

Figs. 20 and 21 graph the columns of Table 11.



CHAPTER 5: SCHWARZ ALTERNATING METHOD IN THE FRAMEWORK
OF IGA-COLLOCATION

The Schwarz alternating method was introduced by H. A. Schwarz[19] in 1870.

A modification of this method is known as the parallel Schwarz method. In the

Schwarz alternating method, the domain is divided into two overlapping subdomains

and the iterative procedure starts by taking one initial guess for the boundary of first

subproblem. This method involves solving the boundary value problem on each of the

two subdomains in turn, taking always the last values of the approximated solution

as the next boundary condition for artificial boundaries crested by this subdivision.

It is important to note that in the Schwarz alternating method, the solution of the

first problem is required before the second problem can be solved. In the parallel

Schwarz method, the domain is divided into two overlapping subdomains and the

iterative procedure starts by taking initial guesses on each subdomain. In this case

the subproblem can be solved independently in each subdomain.

5.1 Schwarz Alternating Method

The classical Schwarz alternating method in the framework of IGA-Collocation is

explained in this section. Consider the Poisson problem
−∆u = f in Ω,

u = 0 on ∂Ω,

(87)
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Figure 22: Overlapping subdomains with artificial boundaries

on a bounded Lipschitz region Ω with homogeneous boundary condition on boundary

∂Ω. The physical domain Ω is divided into two subdomains Ω1 and Ω2 with artificial

boundaries Γ1 and Γ2, respectively, as shown in Fig. 22. Define φi(x, y) and φj(x, y)

basis functions for subdomains Ω1 and Ω2, respectively. Assume,

u1(x, y) ≈ uh(x, y) =
N∑
i=1

ciφi(x, y), (88)

u2(x, y) ≈ vh(x, y) =
M∑
j=1

cjφj(x, y). (89)

In IGA-Collocation method, φi(x, y) and φj(x, y) are NURBS basis functions.

This subdivision provides two subproblems to solve using IGA-Collocation method[22].
−∆un+1

1 = f for Ω1

un+1
1 = 0 on ∂Ω1 \ Γ1

un+1
1 = un2 on Γ1

(90)
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−∆un+1

2 = f for Ω2

un+1
2 = 0 on ∂Ω2 \ Γ2

un+1
2 = un+1

1 on Γ2

(91)

where n denotes the number of iterations. To start the iterative process, subproblem(90)

is first solved for n = 0 with some initial guess u0
2 = g(x, y) on the artificial boundary

Γ1. Then the subproblem (91) is solved by using the solution obtained in subproblem

(90) for the artificial boundary Γ2.

Problem(87) is solved by iterating steps (90) and (91) while updating un+1
1 (x, y) and

un+1
2 (x, y) with the most updated values of u2(x, y) and u1(x, y), respectively, at the

artificial boundaries Γ1 and Γ2. The iterations are performed until certain convergence

conditions are met. The least squares method is used to determine unknowns ci’s and

cj’s along the artificial boundaries Γ1 and Γ2.

5.2 The Parallel Schwarz Method

Pierre-Louis Lions [20] proposed the parallel Schwarz method by doing small but

essential modification in the Schwarz alternating method which made the problem

perfect for parallel computing. Lions modified subproblems (90)-(91) in the following

way: 
−∆un+1

1 = f for Ω1

un+1
1 = 0 on ∂Ω1 \ Γ1

un+1
1 = un2 on Γ1

(92)
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−∆un+1

2 = f for Ω2

un+1
2 = 0 on ∂Ω2 \ Γ2

un+1
2 = un1 on Γ2

(93)

To start this parallel process, subproblems (92)-(93) are solved together for n = 0

step with two initial guesses u0
2 = g(x, y) and u0

1 = h(x, y) on the artificial boundaries

Γ1 and Γ2, respectively. In this method, both subproblems are solved simultaneously

at each step. To get solution at (n + 1)th step solutions of both subproblems are

required at n-th step.

5.3 One-dimensional Problems

Several problems are tested in one-dimensional cases, to see the efficiency of the

iterative method using IGA-Collocation. Performance tests are conducted using the

Schwarz alternating method with respect to the following three combinations:

[I] IGA-Galerkin on Ω1 and IGA-Galerkin on Ω2

[II] IGA-Galerkin on Ω1 and IGA-Collocation on Ω2

[III] IGA-Collocation on Ω1 and IGA-Collocation on Ω2

5.3.1 One-dimensional Problems Whose Solutions are Smooth

Consider the one dimensional Poisson equation
−u′′(x) = f in Ω

u(x) = 0 on ∂Ω

(94)
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Table 12: Various overlapping sizes, number of iterations, ratio of relative errors and
slope of line of convergence for problem(94)

Overlapping Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Iterations 51 26 17 13 10 8 6 5 3

(err2/err1) 0.66 0.44 0.29 0.17 0.11 0.05 0.03 0.01 0.002

λ ≈ log (err2/err1)

N2 −N1

-0.42 -0.82 -1.24 -1.77 -2.21 -2.99 -3.51 -4.61 -6.21

with a smooth solution:

u(x) = x2 − x3 (95)

Problem (94) is solved with respect to various sizes of the overlapping subdomains

with an initial guess 0 on the artificial boundary Γ1. Relative errors in the maximum

norm(%) versus the sizes of overlapping subdomains are depicted in Fig. 23. Table

12 shows that the larger the overlapping subdomains are, the less the number of

iterations are.

The location of artificial boundaries does not matter for the rate of convergence

when the solution is smooth. If the size of the overlapping region is increased, then

the solution acquired in the first step is very close to the true solution, which requires

fewer iterations, and thus resulting in a smaller convergence rate as shown in Table 12.

Since relative errors versus the number of iterations on a semi-log scale are straight

lines for various sizes of overlapping subdomains, we expect the following lemma:

Theorem- Let N be the number of iterations in the alternating method and ‖err‖∞

be the relative errors in the maximum norm. Then we expect

‖err‖∞ ≤ eλN , (96)
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Figure 23: Relative error in the maximum norm(%) of numerical solutions of second
order equation with smooth solution u(x) = x2 − x3

where λ is the rate of convergence.

Therefore,

log ‖Err1‖∞ ≤ λN1,

log ‖Err2‖∞ ≤ λN2,

log ‖Err2

Err1

‖∞ ≈ λ(N2 −N1)

λ ≈
log ‖Err2

Err1

‖∞

(N2 −N1)

where N is the number of iterations. If the ratio of relative errors from Table 12 is

plotted against the sizes of overlapping subdomains on xy-axis, then the convergence

profile makes a quartic curve which is shown in Fig. 24 and is given by:

y = ax4 + bx3 + cx2 + dx+ e (97)
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Figure 24: Ratio of relative errors in the maximum norm(%) versus sizes of overlap-
ping subdomains for problem (94)

where

a = 1.63353,

b = −4.87451,

c = 6.05185,

d = −3.78608,

e = 0.990304.

Problem(94) is solved with respect to the following three combinations:

[I] IGA-Galerkin on Ω1 and IGA-Galerkin on Ω2

[II] IGA-Galerkin on Ω1 and IGA-Collocation on Ω2

[III] IGA-Collocation on Ω1 and IGA-Collocation on Ω2
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Table 13: CPU time comparison for IGA-Galerkin and IGA-Galerkin, IGA-Galerkin
and IGA-Collocation and IGA-Collocation and IGA-Collocation iterative methods

Iterative Method CPU time(in seconds)
IGA-Galerkin and IGA-Galerkin 15.864

IGA-Galerkin and IGA-Collocation 7.175

IGA-Collocation and IGA-Collocation 0.6069

Consider the B-spline basis functions corresponding to following open knot vector,

U = {0, ..., 0︸ ︷︷ ︸
10

, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, ..., 1︸ ︷︷ ︸
10

}.

Now the domain [0, 1] is subdivided into two overlapping subdomains [0, 0.6] and

[0.4, 1]. All three combinations yield the same results and require a count of 26 itera-

tions to reach a solution of accuracy equal to 10−08 but the computing time for IGA-

Collocation and IGA-Collocation combination is substantially less compared with the

other two combinations. In other words, IGA-Collocation and IGA-Collocation com-

bination is the most cost efficient method. Computing time for all three combinations

is listed in Table 13.

5.3.2 One-dimensional Problem with Monotone Singularity

Consider the following second order elliptic equation:
−u′′(x) = f for x ∈ (0, 1),

u(0) = u(1) = 0,

(98)

with the exact solution

u(x) = xα − x, (99)
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Table 14: Comparing relative errors in the maximum norm(%) for numercial solutions
of Poisson equation, when true soltuion is u(x) = xα − x, with the intensity of
singularity α = 0.65

p-degree DOF without mapping with mapping
p = 5 21 0.085 0.003

p = 6 25 0.041 0.0009

p = 7 29 0.014 0.0007

p = 8 33 0.006 0.00056

p = 9 37 0.004 0.00054

p = 10 41 0.003 0.000064

containing a monotone singularity with intensity α = 0.65. To solve this problem,

domain [0,1] is subdivided into overlapping subdomains Ω1 = [0, 3
5
] and Ω2 = [2

5
, 1]

with artificial boundaries Γ1 = 3
5

and Γ2 = 2
5
. To apply the Schwarz alternating

method, the initial guess on the artificial boundary Γ1 is chosen to be 0. IGA-

Galerkin method is used to solve subproblem (90) whereas IGA-Collocation method

is used to solve subproblem (91). Subproblem(90) is solved in two different ways:

1- With using mapping techniques to solve subproblem(90) on subdomain Ω1

2- Without using mapping techniques to solve subproblem(90) on subdomain Ω1

For Ω1, the subdomain of Ω which contains the singularity of u, the auxiliary map-

ping[16] ϕβ : Ω̂1 −→ Ω1 is defined by:

ϕβ(ξ) = (ξ)β, (100)

where ξ denotes the coordinate of the points in the transformed domain Ω̂1. Here β is

called the mapping size of the auxiliary mapping. In this problem for u(x) = xα−x,

where α = 0.65. u ◦ ϕβ = (ξ)αβ is much smoother than xα. In particular, if β = 1/α,

then u◦ϕβ is smooth. Integrals in bilinear form are computed as discussed in remark-
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Figure 25: Relative error in the maximum norm(%) of numerical solutions of one-
dimensional second order equation with nonregular solution u(x) = xα− x, when the
intensity of singularity is α = 0.65

2.1 of [16]. Table 14 and Fig. 25 show relative errors in the maximum norm(%)

with respect to these two methods. The degree of the B-spline basis functions in

subdomain Ω2 is kept fixed while degree of the B-spline basis functions in subdomain

Ω1 is elevated.

5.4 Two-dimensional Problems

The Schwarz alternating method in the framework of IGA-Collocation is tested to

two-dimensional problems in rectangular and circular domains. Performance of the

method is checked for problems with both nonsingular and singular solutions.
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Figure 26: Rectangular subdomains Ω1 = [0, b]× [0, 3
2
] and Ω2 = [a, 1]× [0, 3

2
]

5.4.1 The Poisson Equation on a Rectangular Domain

Model problem is an elliptic boundary value problem on the rectangle Ω =
[
0, 3

2

]
×[

0, 3
2

]

−∆u = f for Ω

u = 0 on ∂Ω

(101)

with the exact solution:

u(x, y) = x2y2

(
x− 3

2

)(
y − 3

2

)
. (102)

Domain Ω =
[
0, 3

2

]
×
[
0, 3

2

]
is divided into two overlapping subdomains Ω1 and Ω2 as

shown in Fig. 26, with two artificial boundaries Γ1 and Γ2 such that Ω = Ω1∪Ω2 where

Ω1 = [0,Γ1] × [0, 3
2
] and Ω2 = [Γ2,

3
2
] × [0, 3

2
]. Here, Γ2 = a and Γ1 = b. Mappings

F1 and F2 are smooth linear mappings which map the reference space Ω̂ onto the

physical spaces Ω1 and Ω2, respectively and are further defined in the following way:
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F1 : Ω̂→ Ω1 and F1(u, v) = (x(u, v), y(u, v)) such that,

F1(u, v) =


x(u, v) = bu

y(u, v) = 3
2
v.

(103)

F2 : Ω̂→ Ω2 and F2(u, v) = (x(u, v), y(u, v)) is defined by

F2(u, v) =


x(u, v) = (1.5− a)u+ a

y(u, v) = 3
2
v.

(104)

The following subproblem is first solved using IGA-Collocation method in the sub-

domain Ω1 with an initial guess u0
2(x, y) = 0 on the artificial boundary Γ1 and zero

boundary condition on the boundary Ω1 \ Γ1
−∆un+1

1 = f for Ω1

un+1
1 (x, y) = 0 on ∂Ω1 \ Γ1

un+1
1 (x, y) = un2 (x, y) on Γ1

(105)

and then the following subproblem in subdomain Ω2 is solved. This iterative process

is terminated when it reaches either a count of 50 iterations or the solution of desired

accuracy of ‖ err ‖∞≤ 10−12 is obtained, whichever comes first.
−∆un+1

2 = f for Ω2

un+1
2 (x, y) = 0 on ∂Ω2 \ Γ2

un+1
2 (x, y) = un+1

1 (x, y) on Γ2

(106)

This problem is tested for various overlapping sizes. Like in the one-dimension case,

the number of iterations required to get the solution of accuracy ‖ err ‖∞≤ 10−12 is

dependent upon the size of the overlapping region but not on the location of artificial
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Figure 27: Relative error in the maximum norm(%) for Problem(101) with true so-
lution u(x) = x2y2(x− 3

2
)(y − 3

2
)

Table 15: Size of overlapping region and the number of iterations required to get a
solution of accuracy 10−12

Overlapping Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Iterations 50 33 18 14 13 9 9 8 7

boundaries. Relative errors in the maximum norm in (%) for different overlapping

sizes are shown in Table 15 and Fig. 27.

5.4.2 Two-dimensional Elliptic Equations Containing Singularities

The problem discussed here has a crack singularity of type r1/2 on a circular domain

of radius 2 and centered at origin. This circular domain is decomposed into a circle

Ω1 = [(r, θ) : r < r1, 0 < θ < 2π] and a annulus Ω2 = [(r, θ) : r2 < r < 2, 0 < θ < 2π]

as shown in Fig. 28. Consider the following Poisson equation:
−∆u = f in Ω

u = 0 on ∂Ω

(107)
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Figure 28: Circular subdomain Ω1 = [(r, θ) : r ≤ 1, 0 < θ < 2π] and annular
subdomain Ω2 = [(r, θ) : 0.5 ≤ r ≤ 2, 0 < θ < 2π]

with the exact solution:

u(r, θ) =
√
r(1− r)

[
sin

(
θ

2

)
+ sin

(
3θ

2

)]
. (108)

Smooth mapping F1 maps the reference domain Ω̂ onto the physical subdomain Ω1,

F1 : Ω̂ = [0, 1]× [0, 1] −→ Ω1 = {(x, y) : 0 ≤ x2 + y2 ≤ r2
1},

F1(u, v) =


x(u, v) = r1v

2 cos(2π(1− u))

y(u, v) = r1v
2 sin(2π(1− u)).

(109)

Mapping F2 maps the reference domain Ω̂ onto the physical subdomain Ω2,

F2 : Ω̂ = [0, 1]× [0, 1] −→ Ω2 = {(x, y) : r2
2 ≤ x2 + y2 ≤ 2},
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F2(u, v) =


x(u, v) = r2(1− v) cos(2π(1− u)) + 2v cos(2π(1− u))

y(u, v) = r2(1− v) sin(2π(1− u)) + 2v sin(2π(1− u)).

(110)

where r1 is the radius of singular subdomain and r2 is the radius of inner circle of

annulus. Accuracy of the solution depends on the choice of r1 and r2. Since this is the

problem with crack singularity of type r
1
2 , the initial guess is chosen u0

2 =
√
r sin(θ/2)

along the artificial boundary Γ1 of subdomain Ω1 to solve the following subproblem,
−∆un+1

1 = f in Ω1

un+1
1 = un2 on Γ1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω.

(111)

Once the solution for this subproblem is found, then the below problem is solved in

subdomain Ω2. 
−∆un+1

2 = f in Ω2

un+1
2 = un+1

1 on Γ2

un+1
2 = 0 ∂Ω2 ∩ ∂Ω.

(112)

In the non-singular case, the number of iterations required to reach the solution of

desired accuracy is dependent upon the values of radius r2 and r1 as well as the size

of the overlapping domain. If r1, the radius of circular subdomain with singularity, is

very small, then it takes more iterations to converge. Relative errors in the maximum

norm (%) are displayed in Fig. 29.
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Figure 29: Relative errors in the maximum norm(%) for various overlapping sizes
for crack singularity problem on a circular domain whose true solution is given by

u(r, θ) =
√
r(1− r)

[
sin

(
θ

2

)
+ sin

(
3θ

2

)]



CHAPTER 6: ALTERNATING METHOD FOR TWO NON-OVERLAPPING
SUBDOMAINS

The previous chapter explained using the Schwarz alternating method in the frame-

work of IGA-Collocation when the domain is subdivided into two overlapping subdo-

mains. This chapter will focus on how to impose the same method when the domain

is subdivided into two non-overlapping subdomains. In non-overlapping methods, the

subdomains intersect only on their interface.

Consider the Poisson problem
−∆u = f in Ω,

u = 0 on ∂Ω,

(113)

on a bounded Lipschitz region Ω with homogeneous boundary condition on boundary

∂Ω. Domain Ω is divided into two non-overlapping subdomains Ω1 and Ω2 with com-

mon internal boundary Γ. Like in the overlapping subdomain problem, this problem

will also be solved by solving two subproblems. These subproblems can be solved

in two different ways by imposing two different boundary conditions on the interface

[21]:

1. The Dirichlet-Neumann method

2. The Neumann-Neumann method
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6.1 The Dirichlet-Neumann Method

In this method for given initial guess λ0, problem(113) will be split into the following

two subproblems. For each k ≥ 0:
−∆uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

uk+1
1 = λk on Γ.

(114)

and 
−∆uk+1

2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂uk+1
2

∂n
=
∂uk+1

1

∂n
on Γ.

(115)

with

λk+1 := θuk+1
2|Γ + (1− θ)λk, (116)

where θ, 0 ≤ θ ≤ 1 is a positive accelerated parameter.

A similar alternating procedure can be obtained if the subproblems are changed in

the following manner: 
−∆uk+1

1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

uk+1
1 = uk2 on Γ.

(117)
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and 
−∆uk+1

2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

∂uk+1
2

∂n
= µk on Γ.

(118)

with

µk+1 := θ
∂uk+1

1

∂n
+ (1− θ)µk. (119)

6.2 The Neumann-Neumann Method

In this case, for eack k ≥ 0 we need to solve:
−∆uk+1

i = f in Ωi,

uk+1
i = 0 on ∂Ωi ∩ ∂Ω,

uk+1
i = λk on Γ,

(120)

and then solve 
−∆vk+1

i = 0 in Ωi,

vk+1
i = 0 on ∂Ωi ∩ ∂Ω,

∂vk+1
i

∂n
=
∂uk+1

1

∂n
− ∂uk+1

2

∂n
on Γ,

(121)

for i = 1, 2, with

λk+1 := λk − θ
{
a1v

k+1
1|Γ − a2v

k+1
2|Γ

}
. (122)

As before, θ is a positive accelerated parameter, a1 and a2 are two positive averaging

coefficients, where λ0 is the initial guess.
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6.3 Numerical Examples

For numerical computations, examples in this section are solved by splitting rect-

angular domain into two non-overlapping subdomains in two different ways:

• Division by a vertical interface

• Division by a slanted interface

as shown in Fig. 30. This dissertation focuses on obtaining solution of the prob-

lems by solving Dirichlet-Neumann subproblems(114)-(115) in two non-overlapping

subdomains.

6.3.1 Vertical Interface in a Rectangular Domain

Consider a two-dimensional elliptic boundary value problem with a vertical subdi-

vision of domain Ω = [−1, 1]× [0, 1]
−∆u = f for Ω

u = 0 on ∂Ω

(123)

with the exact solution:

u(x, y) = ex(1− x2)(y − y2). (124)

To solve problem (123), the domain Ω = [−1, 1] × [0, 1] is divided into two non-

overlapping subdomains Ω1 = [−1, 0] × [0, 1] and Ω2 = [0, 1] × [0, 1] with common

interface at Γ = a. For this vertical subdivision, two linear mappings, F1 and F2

are used to map the parameter domain onto subdomains Ω1 and Ω2 with common

internal boundary Γ at a = 0. F1 : Ω̂→ Ω1 and F1(u, v) = (x(u, v), y(u, v)) is defined
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Figure 30: (a) Division by a vertical interface (b) Division by a slanted interface

by

F1(u, v) =


x(u, v) = (a+ 1)u− 1

y(u, v) = v.

(125)

F2 : Ω̂→ Ω2 and F2(u, v) = (x(u, v), y(u, v)) is defined by

F2(u, v) =


x(u, v) = (1− a)u+ a

y(u, v) = v.

(126)

In order to solve problem(123), subproblems(114) and (115) are solved by assuming

an initial guess λ0 = 0.5. For the subdomain Ω2, separate equations are needed

for those collocation points that lie on the interface Γ. No additional equations are

needed for collocation points that lie on the homogeneous boundary. For points pi

that lie inside the domain, the following equation is used:

(−∆u)(pi) = f(pi). (127)

For points that lie on Neumann boundary subdomain Ω2, the following equation is



77

Table 16: Comparison of relative error in the maximum norm in(%) for nonoverlap-
ping domain problem for different θ values

Iteration θ = 0.4 θ = 0.5 θ = 0.6
1 3.192E+01 1.94E+00 3.192E+01

2 6.38E+00 1.32E-01 6.38E+00

3 1.27E+00 8.20E-03 1.27E+00

4 2.55E-01 5.09E-04 2.55E-01

5 5.11E-02 3.16E-05 5.11E-02

6 1.02E-02 1.96E-06 1.02E-02

7 2.04E-03 1.22E-07 2.04E-03

8 4.09E-04 7.52E-09 6.60E-04

9 8.17E-05 4.93E-10 2.14E-04

10 1.63E-05 5.26E-11 6.52E-05

11 3.27E-06 - 1.92E-05

12 6.54E-07 - 5.54E-06

13 1.31E-07 - 1.57E-06

14 2.61E-08 - 4.43E-07

15 5.23E-09 - 1.24E-07

16 1.05E-09 - 3.44E-08

17 2.25E-10 - 9.55E-09

18 8.62E-11 - 2.61E-09

19 - - 7.51E-10

20 - - 1.80E-10

21 - - 8.98E-11

used:

∂uk+1
2

∂n
(pi) =

∂uk+1
1

∂n
(pi). (128)

The non-overlapping alternating method is tested with respect to various relaxation

parameters θ. The relative errors in the maximum norm(%) for these parameters are

shown in Table 16 and Fig. 31. It required only 10 iterations for θ = 0.5 where as for

θ = 0.4 and for θ = 0.6 it required more number of iterations to converge. Therefore

the optimal value of θ is considered to be θ = 0.5 for this problem with subdivision

at x = 0.
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Figure 31: Relative erros in the maximum norm(%) for various values of parameter
θ when domain is divided into two nonoverlapping subdomains

6.3.2 Slanted Interface in a Rectangular Domain

The following problem is tested with a slanted subdivision at the interface on the

domain Ω = [−1, 1]× [0, 1] 
−∆u = f for Ω

u = 0 on ∂Ω

(129)

with the exact solution:

u(x, y) = x3(1− x2)(y − y2). (130)

For this subdivision nonlinear mappings F1 and F2 are used to map the reference

domain Ω̂ = [0, 1]× [0, 1] to the physical subdomains Ω1 and Ω2, respectively.

F1(u, v) = (0, 0)L1(u, v) +

(
1

2
, 0

)
L2(u, v) +

(
−1

2
, 1

)
L3(u, v) + (0, 1)L4(u, v)(131)

F2(u, v) =

(
1

2
, 0

)
L1(u, v) + (1, 0)L2(u, v) + (1, 1)L3(u, v) +

(
−1

2
, 1

)
L4(u, v)(132)
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Figure 32: Relative error in the maximum norm(%) for problem with slanted nonover-
lapping subdomains

where,

L1(u, v) = (1− u)(1− v), L2(u, v) = u(1− v),

L3(u, v) = uv, L4(u, v) = (1− u)v.

(133)

Like the vertical division problem, this problem is solved by solving subproblems(114)

and (115) in the framework of IGA-Collocation and by assuming initial guess λ0 =

0.5. The non-overlapping alternating method with slanted subdivision is tested with

respect to various relaxation parameters θ. The results are shown in Fig. 32. Like in

the vertical division case, θ = 0.5 is the optimal value and it took 44 iterations to get

the solution with accuracy 10−11.



CHAPTER 7: ALTERNATING METHOD IN IGA COLLOCATION FOR
ELASTICITY PROBLEMS

In Chapter 5, an alternating method in the framework of IGA-Collocation is pre-

sented for one and two dimensional elliptic boundary value problems. In this chapter,

this method is extended to linear elasticity, where coupled elliptic equations are in-

volved in order to solve the problem.

7.1 Preliminaries

This section presents the notations, terminologies and definitions related to lin-

ear elasticity. For any displacement vector {u} = {u1(x, y), u2(x, y)}T , the stress

field is defined by {σ} = {σx, σy, τxy}T and the strain field is defined by {ε} =

{εx, εy, γxy}T .σx and σy are normal stress and τxy is shear stress. Similarly, εx and εy

are normal strain and γxy is shear strain. The relation between strain-displacement

and stress-strain is given by

{ε} = [D]{u}, {σ} = [E]{ε}, (134)

where [D] is the differential operator matrix and [E] is the material stiffness matrix

given by 3 × 3 symmetric positive definite matrix of material constants. Matrix [D]
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is given by

[D] =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

 . (135)

Generally there are two types of problems that are involved in linear elasticity,

plain stress and plain strain. Plane stress is defined to be a state of stress in which

normal stress σz and shear stresses τxz and τyz are assumed to be zero. Plane strain

is defined to be a state of strain in which normal strain εz and shear strains γxz and

γyz are assumed to be zero.

Materials that have identical values for properties in all directions are called Isotropic

materials. These materials have two components, Young’s modulus(E) and Poisson’s

ration(ν). The range of Poisson’s ratio is 0 ≤ ν ≤ 0.5. The material stiffness matrix

[E] for an isotropic elastic body is as follows:

[E] =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 for plane stress, (136)

[E] =


ζ + 2µ ζ 0

ζ ζ + 2µ 0

0 0 µ

 for plane strain, (137)
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where

µ =
E

2(1 + ν)
, ζ =

νE

(1 + ν)(1− 2ν)
(138)

The equilibrium equation of elasticity is

[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω, (139)

where {f} = {f1(x, y), f2(x, y)}T is the vector of internal sources representing the

body force per unit area. This equilibrium equation can be written in terms of

displacement in the following way,

{σ} = [E]{ε},

{σ} = [E][D]{u},

{σ} =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


u1(x, y)

u2(x, y)

 .

The Navier equations for plane stress are

E

1− ν2

[
∂2u1

∂x2
+

(1 + ν)

2

∂2u2

∂x∂y
+

(1− ν)

2

∂2u1

∂y2

]
+ f1(x, y) = 0 (140)

E

1− ν2

[
(1− ν)

2

∂2u2

∂y2
+

(1 + ν)

2

∂2u1

∂x∂y
+
∂2u2

∂y2

]
+ f2(x, y) = 0. (141)

Similarly, the Navier equations for plane strain are

(ζ + 2µ)
∂2u1

∂x2
+ (ζ + µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2
+ f1(x, y) = 0 (142)
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µ
∂2u2

∂y2
+ (ζ + µ)

∂2u1

∂x∂y
+ (ζ + 2µ)

∂2u2

∂y2
+ f2(x, y) = 0. (143)

Three dimensional elasticity problems are complex to solve, thus different methods

are used to reduce the dimension in different ways such as planar, axisymmetric, shell,

plate beam and bar models. When assuming uz = 0, σz = τyz = τzx = 0 in plane

stress and in the case of plane strain εz = γyz = γzx = 0.

7.2 Alternating Method for Elasticity Problems

To solve Navier’s equation either in the plane stress or in the plane strain case,

the components of the displacement vector are written in terms of basis functions,

φi(x, y), i = 1, ..., N,

{u(x, y)} =


u1(x, y) =

∑N
i=1 ciφi(x, y),

u2(x, y) =
∑N

i=1 ci+Nφi(x, y)

(144)

where ci(i = 1, 2, ..., 2N) are called the amplitudes of the basis functions and φi(x, y) =

(Nr(u) ×Ms(v)) ◦ G−1, is the tensor product of B-spline basis functions Nr(u) and

Ms(v) in the u- and v-direction, respectively and G : [0, 1]×[0, 1] −→ Ω is a geometric

map. Collocation points pi = G(ui, vi) are chosen using the tensor-product of Greville

abscissae defined in chapter 3. Collocation equations for (139) are given by

[D]T{σ}(pi) + {f}(pi) = 0, for collocation points pi, i = 1, 2, ..., N. (145)

Thus dividing a domain into two overlapping subdomains and solving (145) in each

subdomain and continuously updating the solutions at interior boundaries like it is

done in chapter 5, will yield the solution of the elasticity problem.
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7.3 Numerical Examples

This alternating method is tested for both singular and nonsingular problems in

two dimensions. The non-singular problem is tested on a rectangular domain whereas

the singular problem is tested on a wedge shaped domain with singularity of intensity

λ = 0.5. Plane stress Navier’s equations are used for nonsingular case and plane

strain Navier’s equations are used for singular case.

7.3.1 Non-singular Two-dimensional Problem on Rectangular Domain

This problem is tested on domain Ω = [0, 1] × [0, 1] and the isotropic material is

assumed to have material constant E = 1000 and ν = 0.3.
[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y)εΩ

u1(x, y) = 0, u2(x, y) = 0, on ∂Ω.

(146)

with manufactured exact solution:

{u(x, y)} =


u1(x, y) = x(1− x)y3(1− y),

u2(x, y) = y(1− y)x3(1− x).

(147)

The alternating process started with 9 basis functions of degree 5 in u-direction and

4 basis functions of degree 3 in v-direction which gave us a total of 36 basis functions

by taking their tensor products. For collocation points, Greville absciaase are used in

both directions which gives a total of 36 collocation points by tensor product. Since

there are two components in the Navier’s equation so a total of 2(36) = 72 collocation

points are needed to solve the problem. Therefore these 36 points are used for both

components. The size of the stiffness matrix is 72× 72.
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Figure 33: Relative error in the maximum norm in(%) for different overlapping do-
main sizes for nonsingular elasticity problem

The alternating scheme is repeated for two different overlapping domains with

various sizes of overlapping regions. Like in one elliptic boundary value problem,

the number of iterations required is dependent upon the size of the overlapping area.

Fig. 33 shows that if overlapping area is larger, then it will require less number of

iterations.

7.3.2 Two-dimensional Singular Problem on Wedge Shaped Domain

Consider a two dimensional coupled elliptic boundary value problem for a wedge

shaped domain Ω(±α) = {(r, θ) : r < 2,−α ≤ θ ≤ α}, 0 ≤ α ≤ 90◦ for plane

strain case, where α is the wedge angle and the body force is neglected here. The

isotropic material is assumed to have material constant E = 1000 and ν = 0.3. For

the numerical example, we choose the wedge angle to be α = 60◦, then the resulting
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Figure 34: Wedge domain shape for elasticity problem containing singularities

singularity becomes as strong as the crack singularity.

[D]T{σ}(x, y) + {f}(x, y) = 0, (x, y) ∈ Ω(±α), (148)

with the exact solution in the form:

{u(x, y)} =


u1(x, y) = ur cos θ − uθ sin θ,

u2(x, y) = ur cos θ + uθ sin θ,

(149)

where

ur(r, θ) = rλ

2G
{−(λ+ 1)f(θ)}

uθ(r, θ) = rλ

2G
{−f ′(θ)},

(150)

and f(θ) = sin(λ+1)θ, λ = 90◦

α
−1. A non-homogeneous Dirichlet boundary condi-

tion is imposed along the entire boundary except at the origin where zero boundary

condition is imposed for the displacement vector. Domain Ω(+α) is divided into two

subdomains Ω
(+α)
1 and Ω

(+α)
2 as shown in Fig. 34. Smooth mapping F1 maps the
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Table 17: Number of iterations required to get solution of accuracy 10−7 for fixed
value of r1 with various overlapping domain sizes for elasticity problem containing
singularities

Overlap Size r1 r2 Number of iterations
0.6 1.0 0.4 8

0.5 1.0 0.5 10

0.4 1.0 0.6 13

0.3 1.0 0.7 19

0.2 1.0 0.8 30

reference domain Ω onto the physical subdomain Ω
(+α)
1 ,

F1 : Ω̂ = [0, 1]× [0, 1] −→ Ω
(+α)
1 = {(x, y) : 0 ≤ x2 + y2 ≤ r2

1, y ≥ 0, α = 60◦}

F1(u, v) =


x(u, v) = r1v

2 cos
(παu

180◦

)
y(u, v) = r1v

2 sin
(παu

180◦

)
.

(151)

Mapping F2 maps the reference domain Ω onto the physical subdomain Ω
(+α)
2 ,

F2 : Ω̂ = [0, 1]× [0, 1] −→ Ω
(+α)
2 = {(x, y) : r2

2 ≤ x2 + y2 ≤ 2, y ≥ 0, α = 60◦}

F2(u, v) =


x(u, v) = r2(1− v) cos

(παu
180◦

)
+ 2v cos

(παu
180◦

)
y(u, v) = r2(1− v) sin

(παu
180◦

)
+ 2v sin

(παu
180◦

) (152)

where r1 is the radius of singular subdomain and r2 is the radius of inner circle of

regular subdomain. The accuracy of the solution depends on the choice of r1 and r2.

Since this is the problem with singularity of type r
1
2 , without loss of generality the

initial guess can be chosen u1(r, θ) =
√
r sin( θ

2
) and u2(r, θ) =

√
r cos( θ

2
) along the

artificial boundary Γ1 of subdomain Ω1
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Figure 35: Relative error in the maximum norm in(%) for various overlapping sizes
for elasticity problem containing singularities

It is not difficult to show that

∂2u1

∂x2
= −λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (153)

∂2u1

∂xy
= −λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ, (154)

∂2u1

∂y2
= +

λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (155)

∂2u2

∂x2
= −λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ, (156)

∂2u2

∂xy
= −λ(1 + λ)(λ− 1)

2G
rλ−2 sin(λ− 2)θ, (157)

∂2u2

∂y2
= +

λ(1 + λ)(λ− 1)

2G
rλ−2 cos(λ− 2)θ (158)

which satisfies equation(142) if body force vector {f} = 0. The problem is solved

for various sizes of the overlapping domain. The stopping criteria is chosen as 30

iterations or the solution of accuracy 10−7, whichever comes first. Fig. 35 and Table

17 show that more number of iterations are required for smaller overlapping regions.

If the overlapping size is fixed, then number of iterations required is dependent upon
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Table 18: Number of iterations required to get solution of accuracy 10−7 for fixed
overlapping domain size(0.5) with various values of r1 and r2 for elasticity problem
containing singularities

Overlap Size r1 r2 Number of iterations
0.5 0.8 0.3 8

0.5 0.9 0.4 9

0.5 1.0 0.5 10

0.5 1.1 0.6 11

0.5 1.2 0.7 12

Figure 36: Relative error in the maximum norm in(%) for fixed overlapping domain
size with various values of r1 and r2 for elasticity problem containing singularities

values of r1 and r2. Fig. 36 and Table 18 show relative errors in the maximum norm in

percentage for various values of r1 and r2. This also shows that if the radius r2 of the

inner circle is very small, then the effect of singularity goes into regular subdomain

also and then the solution does not improve after certain number of iterations.



CHAPTER 8: CONCLUDING REMARKS AND ONGOING RESEARCH

In IGA-Collocation method, both modified B-spline basis functions and enrichment

by Partition of Unity functions, obtained almost true solutions for problems with reg-

ular and singular solutions. In future research work, these methods will be extended

to solve elliptic PDEs on non-convex domains like L-shaped, cracked domains and

polygonal domains.

Similarly, the Schwarz alternating method in the framework of IGA-Collocation will

also be extended to solve elliptic PDEs on non-convex domains. So far this method

was applied in elasticity for plane stress and plane strain cases. Future research will

test shell and plate problems as well.

Even though the problems that were tested in this dissertation contained only one

singularity, we expect that the method can easily be applied to problems with multiple

singularities. The Schwarz alternating IGA-Collocation method can be extended to

deal with oscillating singularities of the type rλ cos(ε log r), 0 < λ, ε < 1.

Direct solvers were used to solve problems with the Schwarz alternating method in

the frame work of IGA-Collocation. In the future, iterative solvers will also be tested.

We will also extend IGA-Collocation approach to the general domain decomposition

method.
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