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ABSTRACT

APARNA TATAVARTI. Image segmentation using markov random �eld. (Under
the direction of DR. ANDREW WILLIS)

This thesis describes an algorithm for e�cient segmentation of point cloud data into

local planar surface regions. This is a problem of generic interest to researchers in the

computer graphics, computer vision, arti�cial intelligence and robotics community

where it plays an important role in applications such as object recognition, mapping,

navigation and conversion from point clouds representations to 3D surface models.

Prior work on the subject is either computationally burdensome, precluding real time

applications such as robotic navigation and mapping, prone to error for noisy mea-

surements commonly found at long range or requires availability of co-registered color

imagery. The approach we describe consists of 3 steps: (1) detect a set of candidate

planar surfaces, (2) cluster the planar surfaces merging redundant plane models, and

(3) segment the point clouds by imposing a Markov Random Field (MRF) on the data

and planar models and computing the Maximum A-Posteriori (MAP) of the segmenta-

tion labels using Bayesian Belief Propagation (BBP). In contrast to prior work which

relies on color information for geometric segmentation, our implementation performs

detection, clustering and estimation using only geometric data. Novelty is found in

the fast clustering technique and new MRF clique potentials that are heretofore un-

explored in the literature. The clustering procedure removes redundant detections

of planes in the scene prior to segmentation using BBP optimization of the MRF to

improve performance. The MRF clique potentials dynamically change to encourage

distinct labels across depth discontinuities. These modi�cations provide improved

segmentations for geometry-only depth images while simultaneously controlling the

computational cost. Algorithm parameters are tunable to enable researchers to strike

a compromise between segmentation detail and computational performance. Exper-
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imental results apply the algorithm to depth images from the NYU depth dataset

which indicate that the algorithm can accurately extract large planar surfaces from

depth sensor data.
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CHAPTER 1: INTRODUCTION

Images provide richly detailed summaries of complex, dynamic environments. Scene

understanding is one of the most essential functionalities of human vision and also a

major goal of computer vision research. Using computer vision systems, we can de-

tect and recognize objects, track their motion, or infer three�dimensional (3D) scene

geometry. Due to the wide availability of digital cameras, these methods are used in

a huge range of applications, including human�computer interfaces, robot navigation,

medical diagnosis, visual e�ects, multimedia retrieval, and remote sensing.

While humans can perform complex tasks such as to recognizing and distinguishing

objects of di�erent size, color and shape from images with ease, doing the same task on

a robot is quite challenging. Robots use sensors to measure environment. Programs

estimate scene structures from these measurements. Factors such as illumination,

background, viewpoint, camera parameters, and camera location e�ects the image

formation process which makes the recognition task by the computers di�cult. Within

the image the task becomes quickly intractable for modern computers when there are

many objects present in the scene of interest. Hence, e�cient algorithms are needed to

perform complex tasks of object recognition from sensor data with greater accuracy.

Most robotic object recognition algorithms label image data to a collection of ob-

ject classes. An object model database contains a collection of object classes. The

algorithms recognize objects using the object model database. Feature based ap-

proaches extract features from images of objects and uses these features as attributes

to describe and recognize each object of interest. Common features for recognition

are edges, contours of the object, surfaces, and corners. This step seeks to reduce the

complexity of the object representation which reduces dimension of the search space
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while simultaneously preserving the most distinctive attributes needed for recognizing

the object. Searching feature space is less computationally complex. Each collection

of features must be compared with representative values that the feature assumes for

each object class to search for the correct label to assign for the observed feature

collection.

This thesis describes about a preprocessing technique (segmentation) which has

the ability to simplify, interpret and analyze information from images. The goal of

the thesis is to perform segmentation of point cloud data into local planar surface

regions. This is a problem of generic interest to researchers in the computer graph-

ics, computer vision, arti�cial intelligence and robotics community where it plays an

important role in applications such as object recognition, mapping, navigation and

conversion from point clouds representations to 3D surface models. Prior work on the

subject is either computationally burdensome, precluding real time applications such

as robotic navigation and mapping, prone to error for noisy measurements commonly

found at long range or requires availability of co- registered color imagery. The ap-

proach we describe consists of 3 steps: (1) detect a set of candidate planar surfaces,

(2) cluster the planar surfaces merging redundant plane models, and (3) segment the

point clouds by imposing a Markov Random Field (MRF) on the data and planar

models and computing the Maximum A-Posteriori (MAP) of the segmentation labels

using Bayesian Belief Propagation (BBP). In contrast to prior work which relies on

color information for geometric segmentation, our implementation performs detec-

tion, clustering and estimation using only geometric data. Novelty is found in the

fast clustering technique and new MRF clique potentials that are heretofore unex-

plored in the literature. The clustering procedure removes redundant detections of

planes in the scene prior to segmentation using BBP optimization of the MRF to

improve performance. The MRF clique potentials dynamically change to encourage

distinct labels across depth discontinuities. These modi�cations provide improved
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Figure 1.1: Object recognition system

segmentations for geometry-only depth images while simultaneously controlling the

computational cost.

The following section discusses the working of an object recognition system and

it's relation with our segmentation algorithm.

1.1 Object Recognition System

An object recognition system consists of the following components as discussed in

[4]:

� Model database

� Feature detector

� Hypothesizer

� Hypothesis veri�er

Figure 1.1 shows the block diagram of object recognition system. The goal of

object recognition system is to identify a group of pixels or a region in an image

that correspond to an object. A feature contains information that can be helpful in

identifying and classifying a group of pixels as an object. It also plays a key role in

distinguishing, describing and recognizing an object in relation to other objects. Size,

color, and shape are some commonly used features. The feature detector identi�es
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locations of features of the object in the image/scene of interest that help in form-

ing object hypotheses. Using the detected features, each object present in the scene

are assigned a likelihood value based on the objects present in the model database.

Initially, model database contains all the possible objects in the input image. After

feature detection step, the model database consists of only objects that match the

feature detection criteria. The veri�er then uses object models to verify the hypothe-

ses and re�nes the likelihood of objects. The system then selects the object with

the highest likelihood as the correct object. Many vision problems can be posed as

a labeling problem in which the solution to a problem is a set of labels assigned to

image pixels or features. In our project, the segmentation problem can be stated as

a labeling problem. In the case of an object recognition system we solve the labeling

problem by assigning a label to every object present in the image. Our project model

database consists of distinct planes having di�erent orientations. As any indoor scene

can be best represented with a set of planes, we assign a label (which is a plane) from

the model database to each surface data in a point cloud which is acquired by an

RGBD sensor. The following section discusses the various components in the object

recognition system.

1.1.1 Feature detection:

We assume that a region or a closed boundary corresponds to an entity that is

either an object or a part of an object. Feature detection using features based on

regions or boundaries in an image, have the higher chance of recognizing the object.

In our project, the features are the set of planes obtained after clustering process.

1.1.1.1 Global features

Global features usually are some characteristics of regions in images such as area,

perimeter, Fourier descriptors, and moments. Global features can be obtained either

for a region by considering all points within a region, or only for those points on the
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boundary of a region. The characteristics that represent global features can be all the

points, their locations, intensity and spatial relations [5]. The most important global

features are those extracted by dimension reduction approaches such as Principle

Component Analysis (PCA) [6], Independent Component Analysis (ICA) [7]. Global

features have the advantages of being able to capture the holistic information of

the object/image and usually being computationally e�cient, but they are weak for

representing objects with signi�cant background clutters, occlusions and intra-class

variations. The global features in our project are all the planes that share many

surface points.

1.1.1.2 Local features

Local features are powerful as the representation is invariant to image transfor-

mations and viewpoint changes while their locality ensures a degree of robustness

to occlusion, non uniform illumination and object deformations. Local features are

usually on the boundary of an object or represent a distinguishable small area of a

region. Curvature and related properties are commonly used as local features. The

curvature may be the curvature on a boundary or may be computed on a surface.

Local features can contain a speci�c shape of a small boundary segment or a surface

patch. Common local features are curvature, boundary segments, and corners. In

our project, the local features are the planes assigned to each surface point.

1.1.1.3 Relational features

Relational features are based on the relative positions of di�erent entities, either

regions, closed contours, or local features. These features usually include distance

between features and relative orientation measurements. These features are very

useful in de�ning composite objects using many regions or local features in images.

In most cases, the relative position of entities is what de�nes objects [4].
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1.1.2 Recognition methods

The next step in the process of object recognition is to apply recognition methods on

the detected features in an image. The common recognition methods are classi�cation

approach, matching and indexing. For our project, the recognition method groups all

the surface points that have similar depth values and classi�es the group to a plane.

1.1.2.1 Classi�cation

The basic idea in classi�cation is to identify all pixels that share group similar

characteristics such as intensity, texture , color and group them into classes.

Nearest neighbor classi�ers

Similar detected features are grouped into classes. To decide the class of the ob-

ject, we measure its similarity with each class by computing its distance from the

points representing each class in the feature space and assign it to the nearest class.

Bayesian approach

A Bayesian approach is e�cient in recognizing objects when there is a signi�cant

overlap in feature values of di�erent objects. The Bayesian approach uses probabilistic

knowledge about the features for objects and the frequency of the objects. Suppose

that we know that the probability of objects of class j is P (wj) [8], which is called

the prior term. Decisions about the class of an object are usually made based on

feature observations. Suppose that the probability P (x|wj) is given and is called the

likelihood term. Based on this knowledge, we can compute the posteriori probability

for the object. The a-posteriori probability is the probability P (wj|x) de�ned as a

product of likelihood and prior.

P (wj|x) =
P (x|wj)P (wj)

P (x)
(1.1)
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1.1.2.2 Matching

Classi�cation approaches use e�ective features and knowledge of the application.

In most of the applications priori knowledge of the features is not known before

hand to design a classi�er. Direct matching of the model to an unknown object can

be e�ective method. Matching is done between objects present in the scene of the

image and the object models available in the model database. Each model in the

database are �t to the objects present in the image. In our project, we decompose

the image into tiles. We �t all the surface data points in each tile with a plane that

best minimizes the �tting error. The �tting error is measured as the perpendicular

squared Euclidean distance between the measurements and the plane.

1.1.2.3 Feature indexing

The indexing technique is e�cient when the number of objects in the image is large.

In contrast, the matching approach is a sequential approach and requires to compare

the object in the image with the models. This sequential nature of the approach

makes it unsuitable with a large number of objects. Feature indexing approaches

use features of objects to structure the model database. When a feature from the

indexing set is detected in an image, this feature is used to reduce the search space.

More than one feature from the indexing set may be detected and used to reduce the

search space and in turn reduce the total time spent on object recognition.

1.1.3 Veri�cation methods

The veri�cation step in the object recognition task �nds how many times and where

a given object appears in the image of interest. In our project, the veri�cation step is

to re-validate each surface data point that lies on a plane by looking at the likelihood

of the surface data point associated with the plane.
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1.1.3.1 Template matching

A template is an image of an object in the model database. Template matching

detects the presence of given object in an image by placing the template at a location

in an image and comparing intensity values in the template with the corresponding

values in the image. A measure of dissimilarity between the intensity values of the

template and the corresponding values of the image is given by the sum of squared

errors di�erence. Let f(i, j) be the template and g(i, j) be the image, sum of squared

di�erence. A reasonable strategy for obtaining all locations and instances of the

template is to shift the template and use the match measure at every point in the

image [4]. Thus, for an m xn template, match measure M is given by

M [i, j] =
∑∑

g [k, l] f [i+ k, j + l] (1.2)

where k and l are the displacements with respect to the template of the image.



CHAPTER 2: Camera Calibration

The primary role of a camera is to produce a digital image of a captured real

world scene that can be stored on a computer. Recently developed RGBD sensors

have become popular for measuring both scene appearance and geometry. These

sensors provide high resolution visual data in a low cost (~$200USD) and compact

package. RGBD sensors combine a traditional color camera (RGB) with an infrared

depth sensor (D), and merge this data to produce HD color+range images at real-

time frame rates (~30 fps). Unlike traditional 2D cameras, RGBD sensors provide

depth measurements that directly impart a sense of scene geometry, without the use

of techniques such as stereoscopic reconstruction. These sensors have seen increased

use as research tools for many computer vision related problem. In our project, we

wish to extract information from depth images captured by RGBD sensors.

The volume of data produced by such sensors is quite large. As such, real-time

systems must carefully consider the computational cost of algorithms that process this

data. This is particularly important for time sensitive tasks such as visual odometry-

based navigation, which relies on incoming sensor data to navigate geometrically

complex scenes.

With more complex camera systems, errors resulting from misaligned lenses and

deformations in their structures can result in more complex distortions in the �nal

image. Hence, camera calibration is an important step in correcting the distortions

to achieve accurate representation of the real world scene in captured images. It's

objective is to determine a set of camera parameters that describe the mapping be-

tween 3-D surface points viewed by the camera and their projection into the sensed

2D image. The mathematical model that characterizes this process uses a collection
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Figure 2.1: Pinhole Camera Model [1]

of parameters that are subdivided into internal and external parameters of the camera

[9].

Intrinsic parameters de�ne the internal geometric and optical characteristics of the

camera. These parameters encompass focal length, image sensor format, and principal

point.

Extrinsic parameters which denote the coordinate system transformations from 3D

world coordinates to 3D camera coordinates. The extrinsic parameters de�ne the

position and orientation of the camera within an arbitrary de�ned 3D coordinate

system.

2.1 Pinhole Camera

A pinhole camera is the simplest, and the ideal camera model without a lens but

with a tiny aperture, a pinhole. When a light from a scene passes through the

aperture, projects an inverted image on the opposite side of the box, which is known

as the camera obscura e�ect. This process reduces the dimensions of the data taken

in by the camera from three to two (light from a 3D scene is stored on a 2D image).

In an ideal pinhole camera, a simple projection matrix is enough to represent the

scene on image plane.

Figure 2.1 depicts the pinhole camera model [1] . The camera is placed at the

origin O. A 2D point is denoted byP c (u, v),m = [u, v]T . A 3D point is denoted by
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P (X, Y, Z) , M = [X, Y, Z]T .

In the �gure 2.1, we want to estimate P c (u, v) from P (X, Y, Z) where f is the

focal length and translation of origin is de�ned by (tu, tv)

u =
fX

Z
+ tu (2.1)

v =
fY

Z
+ tv (2.2)

For a rectangle pixels with resolution mu and mv pixels/inch in u and v direction

respectively. Therefore, to measure Pc in pixels, its u and v coordinates should be

multiplied by mu and mv respectively

u = mu
fX

Z
+mutu

v = mv
fY

Z
+mvtv

This can be expressed as:


u

v

w

 =


muf 0 mutu

0 mvf mvtv

0 0 1




X

Y

Z

 (2.3)

K =


α γ u0

0 β v0

0 0 1

 (2.4)

K is called the camera intrinsic matrix, with u0, v0 the coordinates of the principal

point, α, β are the scale factors in image u and v axes, and γ the parameter describing
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the skew of the two image axes.

When the camera is oriented in an arbitrary fashion (not necessarily z perpendicu-

lar to the image plane), then we need a rotation and translation to make the camera

coordinate system coincide with the con�guration in Figure 2.1. The camera transla-

tion to origin of the (X, Y, Z) coordinate be given by T = (TX , TY , TZ). The rotation

applied to coincide the principal axis with Z axis be given by a 3 Ö 3 rotation matrix

R. Then the matrix formed by �rst applying the translation followed by the rotation

is given by the 3 Ö 4 matrix is shown in equation (2.5)

E = (R|RT ) (2.5)

whereE is the extrinsic parameter matrix.

A camera is modeled by the usual pinhole: the relationship between a 3D point

P = (X, Y, Z) and its image projection Pc

Pc = CP (2.6)

where C = KE

2.2 Experimental Procedure and Results

Calibration for the color camera of the Microsoft Kinect v2 was performed using

openCV [10]. A calibration board with an image of checkerboard pattern was used as

a calibration target. The positions of pattern corners with respect to the coordinate

system of the target are known. An RGB camera was positioned in front of the

board which captures and �nds the locations of the corners on the calibration board

(checkerboard pattern). For each image, a subset of the checkerboard pattern is

extracted by software. Equations for calculation of camera parameters were obtained

from extracted patterns. Obtained results are compared to default values. It is

observed that the obtained results and the default results are in good correlation.
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In our project, using the obtained calibration parameters we calculate the 3D

(X, Y ) values.

The distortion matrix D is

D =

 0 0

0 0



The computed intrinsic matrix K is

K =


567.837 0 319.5

0 567.837 239.5

0 0 1

 (2.7)

The projection matrix P is

P =


567.837 0 319.5 0

0 567.837 239.5 0

0 0 1 0



The (X, Y ) values are computed by the substituting the values of fx, fy, u0, v0,δx, δy

in the following equations. Measured 3D (X, Y, Z) positions of sensed surfaces can

be directly computed from the intrinsic RGBD camera parameters and the measured

depth image values. The Z coordinate is directly taken as the depth value and the

(X, Y ) coordinates are computed using the pinhole camera model. In a typical pinhole

camera model, 3D (X, Y, Z) points are projected to (x, y) image locations, e.g., for

the image columns the x image coordinate is x = fx
X
Z
+u0−δx. However, for a depth

image, this equation is re-organized to �back-project� the depth into the 3D scene

and recover the 3D (X, Y ) coordinates as shown by equation (2.8)
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X = (x+ δx − u0)Z/fx

Y = (y + δy − v0)Z/fy

Z = Z

(2.8)

where Z denotes the sensed depth at image position (x, y), (fx, fy) denotes the camera

focal length (in pixels), (u0, v0) denotes the pixel coordinate of the image center, i.e.,

the principal point, and (δx, δy) denote adjustments of the projected pixel coordinate

to correct for camera lens distortion [11].



CHAPTER 3: Image Segmentation

Robots and computers use devices such as RGBD sensors, cameras , 3D Laser scan-

ners, etc to capture the real-world scene of interest. Manipulating images obtained

from these sources is the next immediate step before applying methods to solve the

classical problems in computer vision such as object recognition, image restoration,

scene reconstruction etc. Segmentation is one of the commonly used image processing

technique which simpli�es the representation of a complex raw data into a form that

is more meaningful and easier to analyze by a computer.

Image segmentation is the process of assigning a label to every pixel in an im-

age such that pixels with the same label share certain characteristics such as color,

intensity, texture etc.

Figure 3.1 consists of an input color image and output image obtained after applying

segmentation algorithm on the given color image. The pixels in the given input color

image are classi�ed based on similar intensity values. The output segmented image

approximates the input image with 4 di�erent labels.

Figure 3.2 contains gray scale, depth and color images of the captured scene of

interest. The image segmentation algorithm groups all the pixels having similar depth

values and represents them with a di�erent plane. In this example, all pixels having

similar depth values are assigned to a label which is a plane. Reconstructing 3D indoor

environments, however, remains challenging due to the cluttered spaces, extensive

variability, and the real-time constraint. Furthermore, as an application point of

view, perceiving the geometry of surrounding structures is very important for indoor

environments. It is a valid assumption to consider, on the average, up to 95% of

indoor-environment structures consist of planar surfaces [12]. This thesis discusses
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(a) Input color image

(b) Segmented Image

Figure 3.1: Illustration of Image Segmentation with an example [2]
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(a) Grayscale Image (b) Depth image

(c) Color image (d) Segmented image

Figure 3.2: Illustration of planar segmentation with example [3]
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about working of an e�cient segmentation algorithm that segments indoor scenes

into planes.

The following section discusses di�erent segmentation methods.

3.1 Image Segmentation Methods

There are several methods that perform image segmentation, but the following are

the methods of our interest [13] -

� Clustering-based

� Region-growing methods

� Histogram-based methods

� Graph-based

3.1.1 Clustering-based segmentation

Clustering is a process of grouping the pixels in the image based on color, intensity

or texture. The K-means algorithm is an iterative technique that partitions the image

into K clusters. Initially, the algorithm assigns the labels randomly. The algorithm

seeks to minimize the distance between each pixel in the cluster and the cluster center.

The algorithm converges after several iterations upon �nding the minimum distance

between the cluster and the cluster center. The algorithm reassigns the labels in the

image, after convergence [14].

3.1.2 Region-growing methods

Region-growing methods rely mainly on the assumption that the neighboring pixels

within one region have similar values. The common procedure is to compare one pixel

with its neighbors. If a similarity criterion is satis�ed, the pixel can be set to belong

to the cluster as one or more of its neighbors [15]. The methods to classify a pixel to

a region are discussed below.
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Seeded region growing method

The segmentation is performed based on considering a set of seeds as input along

with the image. The regions are iteratively grown by comparing the pixel's intensity

value with the seed. The di�erence between a pixel's intensity value and the region's

mean, δ is used as a measure of similarity. The pixel with the smallest di�erence

measured in this way is assigned to the respective region. This process continues

until all pixels are assigned to a region. The segmentation results by this approach

are highly dependent on choosing the right set of seeds as input. Poor selection of

seeds can result in noisy segmented images.

Unseeded region growing method

It is a modi�ed algorithm that does not require explicit seeds. Initially a single

region A1 is chosen. The region size grows after every iteration similar to seeded region

growing method. Let Ai be the region after ith iteration. If the di�erence between a

pixel's intensity value and the region's mean, δ is less than prede�ned threshold T ,

the pixel is added to the current region. If not, then the pixel is considered di�erent

from all current regions Ai and a new region is created with this pixel.

Split and merge

It is based on a quadtree partition of an image. It is sometimes called quadtree

segmentation. This method starts at the root of the tree that represents the whole

image. The image is split into four child regions if the pixels in the image are non-

uniform (splitting process). Again, each non-uniform region is sub-divided into four

child regions. The splitting process stops once all the child regions are uniform.

Later, all the uniform child regions are merged as several connected components (the

merging process). This process continues recursively until no further splits or merges

are possible.
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3.1.3 Histogram based method

In this technique, a histogram is computed from all of the pixels in the image, and

the peaks and valleys in the histogram are used to locate the clusters in the image.

Color or intensity can be used as the measure. A re�nement of this technique is to

recursively apply the histogram-seeking method to clusters in the image in order to

divide them into smaller clusters. This operation is repeated with smaller and smaller

clusters until no more clusters are formed. The histogram can also be applied on a

per-pixel basis where the resulting information is used to determine the most frequent

color for the pixel location [16] [17].

3.1.4 Graph-based segmentation

Graphical models provide a simple way to formulate and solve complex problem

statements. These models are powerful tools in analyzing and estimating the rela-

tionship between the known and the unknown quantities. A graph comprises of a set

of nodes (also called vertices) and a set of links (also known as edges ) connecting

the nodes. Each node represents a random variable (or group of random variables),

and the links express probabilistic relationships between these variables. The graph

then captures the way in which the joint distribution over all of the random variables

can be decomposed into a product of factors each depending only on a subset of the

variables [18].

Types of Graphical models:

� Directed graphical models

� Undirected graphical models

The following section discusses in detail about the di�erent types of graphical models.
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Figure 3.3: A directed graphical model representing the joint probability distribution
over three variables a, b, and c

3.1.4.1 Directed graphical models

The links of the graph have a particular directionality which are useful for express-

ing causal relationships between random variables. Bayesian networks is an example

of directed graphical model.

Bayesian networks

Figure 3.3 is a directed graphical model where a, b and c be three random variables

having a causal relation [18] . The links in the graph indicate the causal relationship

between the random variables. Node a has no incoming links, information at node b

depends on node a and information at node c depends on both nodes a, b.

The joint distribution over a, b and c is given by

p(a, b, c) = p(c|a, b)p(b|a)p(a) (3.1)

Joint distribution over K variables is given by p(x1, ....xk) where x is a random

variable. By repeated application of the product rule of probability, this joint distri-

bution can be written as a product of conditional distributions, one for each of the

variables
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p(x1, ..., xK) = p(xK |x1, ....xK−1)...p(x2|x1)p(x1) (3.2)

3.1.4.1 Undirected graphical models

The undirected graphical model has a set of nodes each of which corresponds to a

variable or group of variables, as well as a set of links which are undirected (do not

carry arrows) each of which connects a pair of nodes. Markov Random Fields is an

example of undirected graphical model. The next chapter discusses about Markov

Random Field for images.



CHAPTER 4: Markov Random Field for Images

Bayes networks or, more generally, Markov Random Field (MRF) models, are

probabilistic graphical models known for their ability to provide robust and accurate

solutions to generic image segmentation problems[19]. MRF are undirected graphical

models that can encode spatial dependencies.

A discrete Markov Random Field gives relation between unknown quantities and

known quantities. In our project, we use Markov Random Field model to estimate

the best label from L set of labels for every surface point.

MRF is de�ned as a graph G = (V,E) where V is the set of vertices and E is the

set of edges. For images we construct a Markov Random Field by associating with

each pixel (i, j) with a vertex (i, j)εV and a random variable Xi,j, which can take

values in the label set L. The sample space XN is the set of all N-dimensional vectors

X = {Xi,j|(i, j)εV } (4.1)

Figure 4.1: An example of an undirected graph in which every path from any node
in set A to any node in set B passes through at least one node in set C
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with components lying in L and the cardinality of that space is equal to

XN = |L|N (4.2)

Also, the edges E of the underlying graph G represent probabilistic dependencies

between random variables. A Markov Random Field thus de�nes a probability dis-

tribution, which assigns to each vector X in the sample space a probability mass

p(X). However, not all distributions are allowed by a Markov Random Field. A valid

distribution p(X) should respect the probabilistic dependencies implied by the graph

edges. More speci�cally, the following de�nition holds [20]:

1. The random variables X = {Xij}(i,j)εV are said to form a Markov Random

Field with graph G, according to �gure 4.1, if whenever the sets A and B are

separated in the graph G by a set C then the random variables XA,XB are

conditionally independent given the variables XC

p(XA, XB|XC) = p(XA|XC)p(XB|XC) (4.3)

In the above de�nition A, B, C represent arbitrary subsets of nodes in V while

the notation XA denotes all random variables corresponding to nodes included

in the set A. The set of nodes C separates the sets A and B, if for any path in the

graph G starting from A and ending in B, that path necessarily passes through

at least one node belonging to C. This de�nition of a Markov Random Field is

actually a generalization of one dimensional Markov Processes. From the above

de�nition it can be understood that the past and the future observations are

conditionally independent given the present observations. Based on the above

de�nition, we also see that the role of the graph G is to act as a kind of �lter

for the allowed distributions: only those distributions which manage to pass all

the conditional independence tests implied by the graph G make up the family
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Figure 4.2: A siteX ij in a 4-connected MRF lattice is shown (black) and the neighbors
of the site, N ij, are also shown (gray). The Markov property states that the distribu-
tion on X ij is only a function of those random variables that are in the neighborhood
N ij.

of MRF distributions.

2. The Markov property states that the probability distribution of a site given

values for the all other elements of the �eld is equivalent to the probability

distribution obtained given only the values of those variables in the neighbor-

hood of the site; expressed mathematically in equation 4.4 [21]. As shown in

�gure 4.2, Nij denotes the set of random variables that are members of the

4-connected neighborhood of Xij.

p(Xij|X −Xij) = p(Xij|Xnm ∈ Nij) (4.4)

The factorization rule for undirected graphs that will correspond to the conditional

independence test is de�ned by expressing the joint distribution p(X) as a product

of functions de�ned over sets of variables that are local to the graph. If we consider

two nodes X i and Xj that are not connected by a link, then these variables must

be conditionally independent given all other nodes in the graph. This follows from

the fact that there is no direct path between the two nodes, and all other paths pass

through nodes that are observed, and hence those paths are blocked. This conditional
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independence property can be expressed as

p(Xi, Xj|X/{i,j}) = p(Xi|X/ij)p(Xj|X/ij) (4.5)

where X/ij denotes the set X of all variables with X i and Xj removed. The factor-

ization of the joint distribution must therefore be such that X i and Xj do not appear

in the same factor in order for the conditional independence property to hold for all

possible distributions belonging to the graph.

The distribution of entire �eld of variables, X = {∪ijXij}, represents all possible

segmentations of the data and is expressed as shown in equation (4.6)

p(X) =
1

Z
e−U(X) (4.6)

where Z denotes the partition function that ensures the probability integrates to 1

and U(X) is referred to as the energy function for the �eld.

The energy function U(X) generally consists of two parts:

(1) a data likelihood term, D(Z(i, j)|Xij = l), and

(2) a smoothness prior, V (Xij|Xnm ∈ Nij).

The data likelihood term �nds out and assigns a label with low data cost value.

Smoothness prior term enforces smooth labeling among connected nodes.

The smoothness prior term assigns the adjacent labels that are similar to low data

cost and a higher value to the adjacent labels that are di�erent.

Three di�erent ways of assigning smoothness cost to the labels as discussed in [22]

-

Potts model

If the di�erence between the labels is zero, the smoothness cost is given a value of

zero. If the adjacent labels have a di�erent value, then the smoothness cost is given

a value λ. Figure 4.3 shows the graph plotted between the smoothness cost term of
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neighboring nodes Xi, Xj and corresponding labels li, lj assigned to nodes.

V (Xij = li|Xnm = lj) =


λ if li 6= lj

0 if li = lj

(4.7)

Figure 4.3: Potts model

Truncated Linear Model

The cost function V is based on the magnitude of the di�erence between two labels.

The cost increases linearly based on the distance between the labels li, lj up to some

level. In order to allow for large discontinuities in the labeling the cost function stops

growing after the di�erence becomes large. c is the rate of increase in the cost, and d

controls when the cost stops increasing. Figure 4.4 depicts behavior of equation 4.8.

V (Xij = li|Xnm = lj) = min(c|li − lj|, d) (4.8)
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Figure 4.4: Truncated Linear Model

Truncated Quadratic model

The cost grows proportionally to (li − lj)2 up to some level and then becomes a

constant thereafter. Figure 4.5 depicts behavior of equation 4.9.

V (Xij = li|Xnm = lj) = min(c((li − lj)2 , d) (4.9)

Figure 4.5: Truncated Quadratic Model

Figure 4.6 graphically depicts these relations and makes clear that measured data

at each grid location impacts individual sites (in gray) while stochastic relationships

between site labels are shown on the lattice (in white). The gray nodes are the

observed variables and the white nodes are the latent variables. The links between

each node represents dependency. For example, the center white node is connected
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to 4 latent nodes and one observed node. Hence, calculating the value of the center

white node depends only on these 5 nodes that exist in the neighborhood.

Figure 4.6: Energy in a MRF consists of two stochastic dependencies (shown as
edges): (1) those that exist between the site labels and measured data (shown in
gray) and (2) those existing between the site and neighboring site on the grid lattice
(shown in white).

4.1 Optimization algorithms for Markov Random Field

An optimization problem is one that involves �nding the extremum of a quantity or

function. Optimization in an MRF problem involves �nding the maximum of the joint

probability over the graph, usually with some of the variables given by some observed

data. MRF segmentation models seek to �nd the collection of label values that

maximize p(X). However, since p(X) is an exponential distribution, the maximizer

of p(X) also minimizes the energy function U(X). The optimization algorithms focus

on �nding a global minimum of the energy function U(X) [23].

List of optimization algorithms as discussed in [24] :

� Iterated Conditional Modes (ICM)

� Graph cuts

� Loopy Bayesian belief propagation

� Tree-reweighted message passing
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Each of these methods are discussed in the following subsections.

4.1.1 Iterated Conditional Modes (ICM)

ICM algorithm estimates the labels of each pixel by minimizing the energy value

given the current values for all variables in its neighborhood. At the end of an

iteration, the new values for each variable become the current values, and the next

iteration begins.The algorithm iterates over each node in the graph till convergence.

4.1.2 Graph cuts

The two most popular graph cuts algorithms are

Swap move algorithm

For a pair of labels α, β, a swap move takes some subset of the pixels currently given

the label α and assigns them the label β, and vice-versa. The swap move algorithm

�nds a local minimum such that there is no swap move, for any pair of labels α, β

that will produce a lower energy labeling.

Expansion move algorithm

In expansion move algorithm, for a label α the algorithm increases the set of pixels

that are given this label. The expansion move algorithm �nds a local minimum such

that no expansion move, for any label α, yields a labeling with lower energy.

These algorithms rapidly compute a local minimum by trying to minimize the

energy.

4.1.3 Loopy Bayesian belief propagation

Belief propagation is an iterative algorithm, which works by continuously propa-

gating local messages between the nodes of the MRF graph. At every iteration, each

node sends messages to all of its neighboring nodes, while it also accepts messages

from these nodes. This process repeats until all messages stabilize, i.e. they do not

change any more. It tries to �nd a MAP estimate by iteratively solving a �nite set

of equations until a �xed point is obtained [25][26].
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Figure 4.7: Message passing diagram in graph. The blue node A is the observed node
, the pink node B,C,D,x1,x2 are the hidden nodes.

Figure 4.7 depicts the message passing for a given site [22]. The message from node

x1 is passed to node x2 , only after node x1 receives messages from the adjacent nodes

A,B,C,D. Each message is a vector of dimension given by the number of possible

labels, l. Let mt
x1→x2 be the message that node x1 sends to a neighboring node x2 at

iteration t. When using negative log probabilities all entries in m0
x1→x2 are initialized

to zero, and at each iteration new messages are computed in the following way [27],

mt
x1→x2 (lj) = min

(
V (li − lj) +Dx1 (li) +

∑
mt−1
s→x1 (li)

)
(4.10)

where sεN(x1)|x2 denotes the neighbors of x1 other than x2. After T iterations a

belief vector is computed for each node by equation 4.11.

bx2 (lj) = Dx2 (lj) +
∑

mT
x1→x2 (lj) (4.11)

Finally, the label l1j that minimizes bx2 (lj) individually at each node is selected.

The meaning of belief bx2 (lj) is that it expresses how likely node x2 thinks that

label lj should be assigned to x2. This will depend on two things:

� node x2 must consider the observed data at that node

� node x2 must also consider the advice given by all of its neighbors about label
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lj, which is given by the sum term
∑
mt−1
s→x1 (lj)

Based on the above observations, once all beliefs have been computed, each node is

then assigned the label having the maximum belief:

l1j = argmax (bx2 (lj))x2 (4.12)

Beliefs approximate the max-marginals i.e. each belief lj approximates the max-

imum conditional probability that can be obtained given the fact that node x2 has

been already assigned the label lj.

4.1.4 Tree-reweighted message passing

Tree-reweighted message passing is a message-passing algorithm similar, on the

surface, to the loopy belief propagation. Let mt
x1→x2be the message that pixel x1

sends to its neighbor x2 at iteration t. The message update rule is:

mt
x1→x2 (lj) = min

(
cx1x2 {Dx1(li)}+

∑
mt−1
s→x1 (li)−m

t−1
x2→x1 (li) + V (li, lj)

)
(4.13)

The coe�cients cx1x2 are determined in the following way. First, a set of trees

from the neighborhood graph (a 2D grid in our case) is chosen so that each edge is

in at least one tree. A probability distribution p over the set of trees is then chosen.

Finally, cx1x2 is set to px1x2/px1 , i.e. the probability that a tree chosen randomly

under p contains edge (x1, x2) given that it contains x1. Note that if cx1x2 were set

to 1, then the update rule would be identical to that of standard belief propagation.

An interesting feature of the TRW algorithm is that for any messages it is possible

to compute a lower bound on the energy. The original TRW algorithm does not

necessarily converge, and does not guarantee that the lower bound always increases

with time. An improved version of TRW is called sequential TRW, or TRW-S. In
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this version, the lower bound estimate is guaranteed not to decrease, which results in

certain convergence properties. In TRW-S we �rst select an arbitrary pixel ordering

function Sx1 . The messages are updated in order of increasing Sx1 and at the next

iteration in the reverse order. Trees are constrained to be chains that are monotonic

with respect to Sx1 .



CHAPTER 5: Methodology

The advent of low-cost real-time depth sensors has attracted multiple studies in

3D perception and reconstruction for a wide range of applications including robotics,

health-care, and surveillance. Reconstructing 3D indoor environments, however, re-

mains challenging due to the cluttered spaces, extensive variability, and the real-time

constraint. Furthermore, as an application point of view, perceiving the geometry

of surrounding structures is very important for indoor environments. It is a valid

assumption to consider, on the average, up to 95% of indoor-environment structures

consist of planar surfaces [12].

This thesis describes an approach to e�ciently partition a dense collection of 3D

surface measurements from an RGBD sensor into regions that are locally approx-

imated by a single plane. This problem is generally referred to as the geometric

segmentation problem. Solutions to this problem play an important role in the cre-

ation of autonomous intelligent systems where these algorithms endows systems, e.g.,

robotic agents, with the ability to simplify and interpret the geometric scene struc-

ture. Applications of these algorithms are often found in object recognition systems

[28][29], navigation systems [30][31], and mapping systems [32]. Other applications

are found in approaches that simplify point cloud measurements into 3D polygonal

models [33][34]. Our application of interest is the use of these algorithms within mo-

bile robots. Here, point cloud data may originate from a pair of stereo cameras , a

laser range sensor, or from a depth sensor [10][28]. Current versions of all these sens-

ing systems produce 3D point cloud data at rates that outpace the ability of current

state-of-the-art algorithms to segment these data into planar regions.

There are three steps to our approach for planar segmentation of point cloud data
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Figure 5.1: Block diagram of the segmentation algorithm

Figure 5.2: Outline of segmentation algorithm with an example

and �gure 5.1: gives the outline of segmentation algorithm and �gure 5.2 shows the

working of algorithm with an example.

1. Detect a set of planes in the scene by �tting planar models to measured 3D

point cloud data and storing those having low �t-error.

2. Merge similar planes based on their coe�cients to generate a smaller set of L

planes.

3. For each measured point, restrict the label set to a small subset of all candidate

planes, L(x,y) ⊂ L, by selecting only those planes detected in the vicinity of the

point.

4. Perform constrained BBP estimation of the segment labels using the restricted

candidate labels for each pixel.

Performance improvements are provided by the merge process of step (2) and the

constraint-based estimation of step (4). The following sections detail each step of the

algorithm outlined above.
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Figure 5.3: A tiling of an RGBD image is shown as a collection of blocks superim-
posed over the image. The image pixel intensities is proportional to depth from the
image plane and the green boxes denote tiles. Within each tile we �t a plane to the
sensed (X, Y, Z) surface data to detect planar segments that exist in the scene. Our
segmentation associates each measured point to one of the planes detected within the
tiles.

5.1 Planar Surface Detection

Detection of planar surfaces is accomplished by decomposing the measured 3D

points space into cubical regions and subsequently �tting planes to the data within

these regions. In practice, the size of the cubical regions will need to be adjusted

to the scale of the object being analyzed. For many sensors, e.g., stereo reconstruc-

tion, LiDAR and RGBD camera, measurements are an explicit function of the sensor

location. This greatly simpli�es the decomposition by tiling the �eld-of-view of the

measurement device to partition the data [35] [36] [37]. Our experiments use an

RGBD sensor and tile the measured depth image as shown in Figure 5.3.

Within each tile, we use the standard least-squares method to estimate the unknown

plane parameters that determine the plane that minimizes the �tting error which is

taken as perpendicular squared Euclidean distance between the measurements and

the unknown plane. The implicit formulation seeks to minimize the square of the

perpendicular distance between the measured data points and the estimated planar

model, i.e.,
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ε(a, b, c, d) = min
a,b,c,d

N∑
i=1

‖aXi + bYi + cZi + d‖2

We re-write this objective function as a quadratic matrix-vector product by de�ning

the vector α = [ a b c d ]t as the vector of planar coe�cients and the matrix M

as the matrix of planar monomials formed from the 3D (X, Y, Z) surface data having

ith row Mi = [ Xi Yi Zi 1 ] [38]. Using this notation, the optimization function

becomes:

ε(α) = min
α
αtMtMα

As noted in several publications [39] the minimizer is known to be α̂, the eigenvector

associated with the smallest eigenvalue of the matrixMtM (also known as the scatter

matrix). In general, MtM is a symmetric matrix and, for the monomials Mi =

[ Xi Yi Zi 1 ], the elements of this matrix are

MtM =
N∑
i=1



X2
i XiYi XiZi Xi

XiYi Y 2
i YiZi Yi

XiZi YiZi Z2
i Zi

Xi Yi Zi 1


(5.1)

The squared Euclidean error between the measured 3D data and the �t plane is

obtained by normalizing the coe�cients such that the coe�cients a, b, c form a vector

of unit length. Let η =
√
a2 + b2 + c2 denote this normalization constant and we can

then write the sum of squared Euclidean errors between the tile points and the �t

surface as ε( α̂
η
) =

√
λ11
η

.

For each tile, our plane detection algorithm stores the (x, y) position of the tile, the

normalized parameters of the �t plane, α̂
η
, and the error observed between the plane

and the data, ε( α̂
η
). This generates an image of planar �ts that, like the image data,
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is organized on a grid.

5.2 Merging Planes

The next step for our algorithm is to merge estimates of the same plane. This step

serves to reduce the number of potential classes that must be considered during the

segmentation problem. Standard implementation of BBP algorithms must compute

the probability of each candidate classes at each individual pixel. Speci�cally, the

cost of a single iteration of BBP for an N ×M image having L candidate labels is

O(NML2) [27]. By merging the list of candidate planes we reduce potential over-

segmentation of points lying on a same plane, i.e., having multiple instances of the

same plane class, while simultaneously reducing the computational cost of the BBP

algorithm.

Our merge procedure is a quick algorithm based on a clustering method that uses

orthogonal projections of the plane coe�cient data into 1-dimensional subspaces [40].

In our application, we cluster planes by projecting the coe�cients of the plane models

onto each of the 4 plane-parameter axes, i.e., the a, b, c, d−axes. In each case, we

merge plane models that are adjacent on the given axis and satisfy the relation shown

in equation (5.2).

ε(αi, αj) = 1− (aiaj + bibj + cicj) + β |di − dj| < υ (5.2)

where υ denotes a similarity threshold and the plane pair (αi, αj) will be merged

when ε(αi, αj) < υ. When two similar plane models are merged we discard the

coe�cients of the plane having larger �t error, ε( α̂
η
), and assign the data associated

with the discarded plane to reference the remaining plane model.

5.3 Markov Random Field (MRF)

The �nal step of our algorithm segments the measurement data to one of the classes

from the set of L planes remaining after the merging procedure. This is accomplished
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by writing the segmentation as a MRF and then searching for the MAP estimate of

the labels for each pixel.

In practice, the MRF energy is computed as the sum of the site energies. Hence

the MRF is determined by de�ning the energy for site Xij as shown in equation (5.3)

and then the total �eld energy is obtained by summing this energy across all sites

[41].

Our site energy function seeks to assign labels to by striking a balance between

the error in the planar �t for each measured surface point, D(Z(i, j)|Xij = l) and

preserving uniformity, i.e., smoothness in the assigned labels, V (Xij|Xnm ∈ Nij).

U(Xij) =
∑
l∈LD(Z(i, j)|Xij = li) + ...∑

(nm)∈Nij
V (Xij = li|Xnm = lj)

(5.3)

Segmentation results rely heavily on the form of the data likelihood energy,D(Z(i, j)|Xij =

l), and the label smoothness energy, V (Xij = li|Xnm = lj).

Our proposed data likelihood energy uses a truncated cost function given in equa-

tion (5.4).

D(Z(i, j)|Xij = l) = λmin (|alX + blY + clZ + d| , τ) (5.4)

The likelihood energy function encodes the stochastic relationship between mea-

sured depth Z(i, j) and the unknown label value, l. Equation (5.4) states that the

cost of associating the depth measurement Z(i, j) to the plane having label, l, and

plane coe�cients αl = {al, bl, cl, dl}. Note that this cost is proportional to the perpen-

dicular Euclidean distance between the measured (X, Y, Z) point and plane αl. The

likelihood energy function includes two free parameters λ and τ . The λ parameter

controls the relative weight of the terms D(Z(i, j)|Xij = l) and V (Xij|Xnm = xnm)

in the total site energy U(Xij). The τ parameter is used to restrict the range of the

data energy cost which has been found to improve the robustness of MRF estimation
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procedures and denotes the maximum allowable cost between any given label and a

measurement. Limiting the cost in this way reduces the sensitivity of the segmenta-

tion result to outliers in the measurement data.

Our proposed smoothness energy di�ers from typical smoothness constraints which

typically rely only on the value of the labels. For example, the Potts model [23]

imposes a cost penalty when the label for a given site is di�erent than it's neighbor

and zero cost otherwise as shown in equation (5.5).

V (Xij = li|Xnm = lj) =


γ if li 6= lj

0 if li = lj

(5.5)

Since optimization seeks to minimize the cost function, this energy term �smooths�

the label assignments by encouraging neighboring locations to share the same label

values generating piecewise constant label regions. The cost/penalty, γ, for assigning

distinct labels to neighboring MRF sites, i.e., pixel locations, is also referred to as a

�discontinuity� cost.

In contrast to typical practice, our smoothness cost is composed of two parts: (1) a

cost penalizing distinct neighboring label values (similar to equation (5.5)) and (2) a

data likelihood term which serves to modulate the cost by how well the planar model

predicts the observed depth di�erence.

For (1) we use the same plane dissimilarity metric previously applied for clustering

as shown in equation (5.5).

ε(αi, αj) = 1− (aiaj + bibj + cicj) + β |di − dj| (5.6)

Equation (5.2) which has value 0 when li = lj (equivalently αi = αj) and will eval-

uate to a value of at least υ for all other label pairs li 6= lj due to the clustering stage

of §5.2. Note that these costs will increase for label pairs having large dissimilarity
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and is not constant.

For (2) we use the likelihood of the measured depth di�erence given the label

value, i.e., plane model. Theoretically, we could make use of the plane coe�cients

to determine how well the depth di�erence is predicted by the plane coe�cients.

Consider two neighboring depth measurements Z1 and Z2. Hypothesized to lie on

the plane aX + bY + cZ + d = 0. If this hypothesis is true, the predicted value

of the depth at Z2 will be Ẑ2 = Z1 + c(Z2 − Z1). This can be converted to a cost

function D(Z1, Z2|c) =
∣∣∣Z2 − Ẑ2

∣∣∣ = |Z2 − Z1 − c(Z2 − Z1)| = |(1− c)(Z2 − Z1)| that

adds cost when the observed the depth di�erence is di�erent from that predicted by

hypothesized plane model having coe�cient c. In practice, we discard the term in c

and use the cost D(Z1, Z2) = |Z2 − Z1| which approximates the theoretical analysis.

The hybrid smoothness energy term resulting from parts (1) and (2) are combined

into a single smoothness energy function as shown in equation (5.7) and 5.8.

V (Xij = li|Xnm = lj) = max (|Z(i, j)− Z(m,n)| , ε(αi, αj)) (5.7)

V (Xij = li|Xnm = lj) =


ε(αi, αj) if li 6= lj

|Z(i, j)− Z(m,n)| if li = lj

(5.8)

Where ε(αi, αj) is the plane dissimilarity metric of equation (5.6) for the plane pair

(αi, αj) having labels (li, lj) and |Z(i, j)− Z(m,n)| is the absolute depth di�erence

for the neighboring pixels. Introduction of this term improves segmentation as labels

assignments that span large depth discontinuities do not incur the standard label

smoothness penalties as is typical to a Potts model and other prior work on geometric

segmentation [35].
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5.4 MRF Energy Optimization via BBP

Our optimization of the MRF energy uses the Bayesian Belief Propagation (BBP)

algorithm to �nd the MAP estimate of the segmentation label values. Computational

cost is reduced by using the max-sum algorithm and passing messages using the

�checkerboard� message passing scheme as described in [27], which takes advantage

of regularity of the image grid to formulate the loopy BBP message passing as a two-

step message passing process on a bipartite graph. This alternative message passing

scheme decreases both the runtime and memory requirements by a factor of two when

compared to traditional BBP message passing schemes. After a number of iterations

of message passing, the maximum a posteriori label assignment is evaluated [42][43].

As mentioned in [27], several important classical computer vision problems can

be formulated with simple smoothness energy functions which often include a single

term that depends only on the di�erence between label values, i.e., V (Xij = li|Xnm =

lj, Xnm ∈ Nij) = |li − lj|. This criteria is the key attribute that allows the computa-

tional complexity of an iteration of the BBP algorithm to be reduced from O(NML2)

to O(NML), where NM denotes the number of MRF sites/pixels in the image and

L denotes the number of segmentation labels. It is important to note that this result

also holds for more general MRF label smoothness functions. Speci�cally, a su�cient

condition for this performance boost requires only that the smoothness energy func-

tion, V (Xij = li|Xnm = lj, Xnm ∈ Nij), increases as a monotonic linear or quadratic

function of the label di�erence [44].

Hence, for our algorithm or, more generally, any BBP-based optimization to bene�t

from the computational gains of standard methods as described in [27] a re-ordering of

the labelset must be found that satis�es this monotonicity constraint. Unfortunately,

it does not appear that, in general, such an arrangement exists for an arbitrarily

large set of plane models using the cost metric of equation (5.7). As such, our BBP

algorithm computational complexity remains O(NML2) and requires two passes over
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the labelset to compute BBP messages rather than one. Despite this fact, our merge

procedure (�5.2) aggressively clusters planes to generate a small number of candidate

plane models. Hence, the constant L is typically small in our implementation which

controls the relative impact of the computational complexity. Exploitation of this

attribute to improve computational e�ciency is a topic of future research.



CHAPTER 6: RESULTS

Our experiments use depth data from the Microsoft Kinect sensor provided by the

NYU RGBD Dataset which include depth images from multiple indoor scenes. The

RGBD sensor has a full-frame resolution of 640x480 pixels and a maximum depth

range of ~6m. The standard BBP optimization algorithm and our modi�cations to

this algorithm as described in 5 were implemented as MATLAB programs. Figures

6.1,6.2 6.3, and show the results of the planar segmentation algorithm on multiple

indoor scenes including a kitchen area, bedroom, and hallway. Parameters used to

generate these segmentations include a blocksize 40x40 px, β = 0.4, υ = 0.15, and

5 iterations of belief propagation with λ = 0.2, τ = 0.5. For these �gures, the

�rst column shows a color image of the scene, the middle column shows the registered

depth image, and the last column shows the colored segmentation labels superimposed

on the depth image.

(a) Color image of kitchen (b) Depth image of kitchen (c) Segmented result

Figure 6.1: Planar segmentation algorithm applied to a kitchen area. Regions of sim-
ilar color have been classi�ed as coplanar. The algorithm performs well, segmenting
the image into the planar surfaces such as walls, �oors, and cabinetry.

Figure 6.1 shows the segmentation of a kitchen area. The algorithm performed

well, separating large scale features such as walls, �oor, and cabinetry. The algorithm

picked up even the small surface patches below and above the oven. Parameters such
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(a) Color Image of hallway (b) Depth image of hallway (c) Segmented result

Figure 6.2: Planar segmentation algorithm applied to a portion of a bedroom. Large
scale features such as walls and the �oor are well segmented.

(a) Color image of bedroom (b) Depth image of hallway (c) Segmented result

Figure 6.3: Planar segmentation algorithm applied a hallway scene. The data be-
longing the walls, �oors, door, and cupboard in the scene are relatively well classi�ed.

as the blocksize and planar merge threshold can be adjusted to better target planar

surfaces of various sizes. Figure 6.2 shows the segmentation of hallway. The segmen-

tation algorithm approximated the image of hallway well with a total of 5 di�erent

planes. The larger surfaces such as walls, �oor, and the cabinet were well identi�ed

and labeled as separate planes. Figure 6.3 shows the segmentation of bedroom. The

algorithm segmented large scale planar features such as the walls, cupboard, door

and �oor particularly well, smaller planar surfaces such as the chair were missed due

to the choice in block size. Reliable segmentation and extraction of these large scale

planar features is of interest for many vision related problems.

Table 6.1 shows the time taken in milliseconds by each of the input depth image to

generate the segmented result by applying our algorithm. The algorithm when run

on several set of images took an average of 0.3 seconds to perform segmentation on

a given depth image. It can be concluded that the segmentation algorithm is nearly
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Table 6.1: Time taken in milliseconds for each image

Input Image Time (msec)
Kitchen image(Figure 6.1) 372
Hallway image(Figure 6.2) 352
Bedroom image(Figure6.3) 358

real-time.



CHAPTER 7: Conclusion

The thesis discusses about a novel algorithm to segment point cloud data into

local planar regions. This is a problem of generic interest to researchers in the com-

puter graphics, computer vision, arti�cial intelligence and robotics community where

it plays an important role in applications such as object recognition, mapping, nav-

igation and conversion from point clouds representations to 3D surface models. In

contrast to prior work, this algorithm uses planar models, a Markov Random Field

and e�cient Bayesian Belief Propagation to segment geometry-only depth images.

The fast clustering technique applied removes redundant plane detections prior to

optimization to improve performance. A new MRF smoothness energy function dy-

namically changes to encourage distinct labels across depth discontinuities. These

modi�cations provide improved segmentations for geometry-only depth images while

simultaneously controlling the computational cost. We focus on extraction of large

scale planes from the measured scene data and detail how our segmentation pro-

cess e�ciently achieves this goal. Our algorithm includes parameters that robotics

researchers might employ to strike a compromise between segmentation detail and

performance. Experimental results apply the algorithm to the NYU depth dataset

and indicate that the algorithm can accurately segment a variety of planar surfaces

from depth sensor data.
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