
INVESTIGATING NOVICE PROGRAMMERS’ MENTAL MODELS

by

Syeda Fatema Mazumder

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2024

Approved by:

Dr. Manuel A. Pérez-Quiñones

Dr. Celine Latulipe

Dr. Heather Lipford

Dr. Debarati Basu

Dr. Alexia Galati

Dr. Erik Saule

ii

©2024
Syeda Fatema Mazumder
ALL RIGHTS RESERVED

iii

ABSTRACT

SYEDA FATEMA MAZUMDER. Investigating Novice Programmers’ Mental
Models. (Under the direction of DR. MANUEL A. PÉREZ-QUIÑONES)

Novice programmers are known for holding incomplete and inconsistent mental mod-

els. A mental model stores knowledge that reflects a person’s belief system, helps

determine actions, and facilitates learning. Mental model correctness and consistency

are two criteria that make a mental model useful. Though the literature on mental

models is rich with more than two decades of research, novice programmers’ mental

model is understudied in the CS education research community. Guided by the mental

model theories from psychology and cognitive science, I investigated novice program-

mers’ mental models of arrays before and after CS1 course instruction. Furthermore,

I explored the gap that might exist between students with varying levels of prior

programming experience. To that end, by following the theories of mental models, I

defined the mental models for Java arrays, including assertions of the array’s parts

and state changes. I further decomposed the array’s parts and state changes into four

sub-components each (parts: name, index, type, element ; state changes: declaration,

instantiation, assigning literals, assignment). To elicit the mental model assertions

of novice programmers from large CS1 classrooms, I adopted a multiple choice-based

questionnaire approach (the Mental Model Test of Arrays) covering each array’s com-

ponent. I collected responses from novice programmers as they entered a CS1 course

and transitioned into a CS2 course. I analyzed participants’ mental model assertions

based on their correctness and consistency. The results show that participants’ men-

tal model correctness and consistency improved after formal classroom instruction.

Moreover, even though improved, I found evidence that the mental model components

of state changes were less accurate and consistent to novice programmers than the

parts. In addition, participants with prior programming experience had significantly

iv

lower mental model correctness and consistency than those with prior programming

experience before classroom instruction on arrays. The mental model test of arrays

highlighted several novice programmers’ misconceptions. Over half of the participants

held at least one misconception before and after learning arrays in classrooms. Novice

programmers mostly held misconceptions about the array’s declaration (state change)

as incoming CS1 students and when transitioning into CS2. After classroom instruc-

tion, the number of students holding misconceptions about the parts components

decreased. However, for the state changes components, in most cases, the number

of students holding misconceptions remained almost the same even after classroom

instruction. I close my dissertation by summarizing the overall findings while inves-

tigating novice programmers’ mental models in their different learning trajectories.

Lastly, I discuss the implications of my research in designing instructional materials

for CS educators on possible solutions to mitigate the mental model gap of novice

programmers.

v

DEDICATION

I dedicate this work to my dear husband, Saquib Sarwar, for his relentless support,

sacrifices, energy, and time. I would also like to dedicate it to my mother, Farida

Yesmin, and two dear elder sisters in the Charlotte community, Hasina and Priyanka,

who stood by my family when I needed help the most.

vi

ACKNOWLEDGEMENTS

I begin with the utmost gratitude and praise for our Creator, the Al-Mighty, the

most merciful and compassionate. I am thankful to our beloved Prophet Muhammad

(peace be upon him) for showing the way of kindness and mercy that shaped my

morality.

My heartfelt gratitude to my dearest advisor, Dr. Manuel A. Pérez-Quiñones,

whose constructive feedback, insights, guidance, and support have made my doctoral

journey delightful and positive. He is an excellent human being who treats his students

no less than colleagues. His constant feedback and discussion drew many amazing

research ideas. Many doctoral students do not get the opportunity of one helpful

advisor; I experienced two. I consider myself very fortunate that I could start my

doctoral journey with Dr. Celine Latulipe as my advisor. I am grateful for her

compassion towards me and my family. I could always reach out to her whenever I

needed mental support. She trained me very well to begin my journey in academia.

I am thankful to Dr. Mary Lou Maher and Dr. Celine Latulipe, who considered me

an international graduate student, regardless of knowing I was three and half months

pregnant then. I am thankful for Dr. Maher’s support in giving me research and

teaching opportunities and guiding me in these opportunities.

I am thankful to my committee members for their insights and constructive feed-

back. I am deeply grateful to the faculty members who let me collect data in their

classrooms. I am thankful to all my mentors at UNC Charlotte for helping me strive.

My special thanks to Dr. Richard Lambert for helping me numerous times with the

statistical analysis and to Dr. Lisa Russell-Pinson for her support and guidance.

I express my gratitude to my undergraduate thesis advisor, Dr. Moinul Islam

Zaber. He introduced me to HCI and research. I am grateful to all my mentors from

my birth till now, as each one of them shaped my thinking and contributed to my

growth.

vii

I am thankful to my department and the graduate school at UNC Charlotte for

supporting me financially by offering assistantships, fellowships, and, most impor-

tantly, GASP. I am thankful to my HCI labmates, especially Madiha, Johanna, Jeba,

and Stephen.

My beloved husband Saquib, I want you to know that I saw your sacrifices and

your hard work to support me. You left your family and job and came here with

me to support me and our kids. I could never have achieved this dream without

your all forms of support. Sarina, my dearest daughter, you have been so supportive

of my study and work. I am thankful to you. Sabira, the little one, thank you for

strengthening me at the end of my doctoral journey. I am thankful to my parents

especially to my mother, Farida Yesmin, for helping me whenever I needed help. I

am grateful for her nourishment and the relentless time and energy she spent on my

growth. I am grateful to my parents-in-law for always encouraging and supporting

me. I am thankful to my maternal aunts, especially Aunt Taslima, for her emotional

coaching. I drew my strength to carry on my doctoral journey despite experiencing

the challenges of one pandemic, two pregnancies, and a genocide (Gaza) from my late

maternal grandmother, Amirun Nesa.

I am deeply grateful to the members of the Bangladeshi Student Organization for

their support, including car rides when we did not own a car, meal trains when my

kids were born, and constant guidance and support. You are our family in Charlotte.

I am thankful to our host family in Charlotte, the Dalton family, for helping us

understand the foreign culture and norms. I am grateful to the many Bangladeshi

families in Charlotte who supported me. My deepest gratitude towards our neighbor,

the Karim family. They treated us as their family and supported us with food,

guidance, and care when we needed them most. My family can never return your

debt. You are in our hearts and prayers.

viii

TABLE OF CONTENTS

LIST OF TABLES xvi

LIST OF FIGURES xxi

LIST OF ABBREVIATIONS xxviii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Scope and Motivation 2

1.2. My approach 4

1.3. Thesis Objectives 6

1.4. Definitions 7

1.5. Contributions 8

1.6. Overview of the Dissertation 8

CHAPTER 2: LITERATURE REVIEW 10

2.1. Mental Model 10

2.1.1. Mental Model of Arrays 11

2.1.2. Mental Model Consistency 12

2.1.3. Mental Model Correctness 13

2.1.4. Mental Model and Constructivism 13

2.1.5. Impact of Diagrams in Mental Models 17

2.1.6. Novice programmers’ mental model elicitation 18

2.2. Knowledge Assessment Instruments 21

2.2.1. Origin and Develoment 21

2.2.2. Validation 22

ix

2.3. Misconceptions 23

2.3.1. Studies of Misconceptions in Other Domains 24

2.3.2. Studies of Misconceptions in Introductory Program-
ming

26

2.3.3. Common misconceptions of CS1 students 28

CHAPTER 3: TEXTBOOK REPRESENTATION OF ARRAY’S PARTS
AND STATE CHANGES

30

3.1. Introduction 30

3.2. Mayer’s Decomposition of Parts and State Changes 31

3.3. Methodology 32

3.3.1. Defining Programming Concept’s Parts and State
Changes

32

3.3.2. Textbook Selection 34

3.3.3. Data Collection 35

3.4. Results 37

3.4.1. Variables 37

3.4.2. Arrays 38

3.4.3. Objects 40

3.5. Discussion 41

3.6. Limitations 43

3.7. Conclusion 44

CHAPTER 4: THE MENTAL MODEL TEST: AN INSTRUMENT TO
ELICIT MENTAL MODELS

45

4.1. Introduction 45

x

4.2. Definitions and Examples 46

4.3. Development of MMT-A 48

4.4. Collection of Mental Model Assertions 50

4.5. Measurement of Consistency 51

4.6. Measurement of Correctness 53

4.7. Classification of Mental Models 53

4.8. Measurement of a Mental Model 55

4.9. Identification of Misconceptions 55

4.10.Example: A Case Study 56

4.11.MMT-A is not a Concept Inventory 58

4.12.Deployment of MMT-A 59

4.13.Conclusion 61

CHAPTER 5: INCOMING NOVICE PROGRAMMERS’ MENTAL
MODELS

63

5.1. Introduction 63

5.2. Data Collection 64

5.3. Participants 64

5.4. Results 65

5.4.1. Mental Model Assertions 65

5.4.2. Mental Model Correctness 75

5.4.3. Mental Model Consistency 76

5.4.4. Mental Model Score: Combining Correctness & Con-
sistency

77

xi

5.4.5. Mental Model Score and Demographics 77

5.4.6. Mental Model Classification Frequency Distribution 79

5.5. Discussion 82

5.5.1. Incoming Novice Programmers’ Mental Models 82

5.5.2. Parts vs. State Changes 86

5.5.3. Students’ Demographics and Mental Models 87

5.6. Summary 89

CHAPTER 6: NOVICE PROGRAMMERS’ MENTAL MODELS AF-
TER INSTRUCTION

90

6.1. Introduction 90

6.2. Data Collection 91

6.3. Participants 91

6.4. Results 92

6.4.1. Mental Model Assertions 92

6.4.2. Mental Model Correctness 101

6.4.3. Mental Model Consistency 102

6.4.4. Mental Model Score: Combining Correctness & Con-
sistency

103

6.4.5. Mental Model Score and Demographics 104

6.4.6. Mental Model Classification Frequency Distribution 106

6.5. Discussion 109

6.5.1. Novice Programmers’ Mental Models after Learning
Arrays

109

6.5.2. Parts vs. State Changes 111

xii

6.5.3. Students’ Demographics and Mental Models 111

6.6. Summary 112

CHAPTER 7: NOVICE PROGRAMMERS’ MENTAL MODEL SHIFTS
FROM PRE- TO POST-INSTRUCTION

114

7.1. Introduction 114

7.2. Data Collection 114

7.3. Participants 115

7.4. Results 115

7.4.1. Mental Model Correctness 115

7.4.2. Mental Model Consistency 117

7.4.3. Mental Model Classification 119

7.4.4. Mental Model Score 124

7.4.5. Previous Programming Experience and Mental Models 125

7.5. Discussion 127

7.5.1. Mental model correctness and consistency change at
the end of the course

127

7.5.2. Parts vs. State Changes 131

7.5.3. Impact of Prior Programming Experience 132

7.6. Summary 132

CHAPTER 8: MISCONCEPTIONS IN NOVICE PROGRAMMERS’
MENTAL MODELS

134

8.1. Introduction 134

8.2. Methodology 135

xiii

8.3. Results 136

8.3.1. Misconceptions Before and After Classroom Insruction 136

8.3.2. Change in Misconception from Pre-test to Post-test 143

8.4. Discussion 146

8.4.1. Misconceptions Identified 146

8.4.2. Misconceptions: Parts and State Changes 148

8.5. Summary and Limitations 149

CHAPTER 9: EXPLORING VALIDITY AND RELIABILITY OF THE
MENTAL MODEL TEST

151

9.1. Introduction 151

9.2. Method 152

9.3. Results 154

9.3.1. Correlation with Course Scores 154

9.3.2. Spring 2021-Post-test Data-set 157

9.3.3. Rasch Analysis with Initial Dataset 158

9.3.4. Analysis with Full Dataset 164

9.4. Discussion 171

9.5. Conclusion 173

CHAPTER 10: EXPLORING MENTAL MODELS WITH THINK-
ALOUD

174

10.1.Introduction 174

10.2.Methodology 175

10.2.1. Participants 175

xiv

10.2.2. Task 175

10.2.3. Interview Protocol 176

10.2.4. Analysis 176

10.3.Results 176

10.3.1. Parts Components 178

10.3.2. State changes Components 180

10.3.3. Incorrect Assertions 192

10.3.4. Miscellaneous Findings 195

10.4.Discussion 196

10.4.1. Parts vs. State changes 196

10.4.2. Incorrect Assertions 197

10.4.3. Exploration of mental model consistency 199

10.4.4. Impact of Programming Exposure 199

10.4.5. Implications to the MMT-A 200

10.5.Summary 201

CHAPTER 11: DISCUSSION AND CONCLUSION 202

11.1.Overall Summary of Findings 202

11.2.Implications 204

11.3.Summary of Contributions 206

11.4.Limitations 207

11.5.Future Directions 208

11.6.Conclusion 210

xv

REFERENCES 211

APPENDIX A: THE MENTAL MODEL TEST OF ARRAYS (MMT-A) 235

APPENDIX B: EXPLANATIVE DIAGRAMS OF ARRAYS: A MODEL
AND A NOTIONAL MACHINE

236

APPENDIX C: MARKING SHEET FOR CONTRADICTORY ASSER-
TIONS

278

APPENDIX D: ITEM RESPONSE THEORY ANALYSIS 281

xvi

LIST OF TABLES

TABLE 3.1: Parts & State changes components of Primitive Variables. 36

TABLE 3.2: Parts & State changes components of Arrays. 36

TABLE 3.3: Parts & State changes of Objects. 39

TABLE 4.1: List of mental model concepts, concept types and the number
of questions in which they appear.

50

TABLE 4.2: A classification (ranking) of mental models based on correct-
ness and consistency.

55

TABLE 4.3: Participant X’s obtained (partial) mental model assertions
grouped with the corresponding concept, marked contradiction, con-
sistency status, and percentage of selecting the corresponding asser-
tion.

58

TABLE 4.4: Participant X’s (partial correctness and consistency status
along with mental model classification and ranks.

58

TABLE 4.5: Data Collection Timeline 59

TABLE 5.1: List of assertions for the part name. 66

TABLE 5.2: Frequency distribution of the selection of assertions for the
part name.

66

TABLE 5.3: List of assertions for the part index. 67

TABLE 5.4: Frequency distribution of the selection of assertions for the
part index.

68

TABLE 5.5: List of assertions for the part type. 68

TABLE 5.6: Frequency distribution of the selection of assertions for the
part type.

69

TABLE 5.7: List of assertions of the part element. 70

TABLE 5.8: Frequency distribution of the selection of assertions for the
part element.

70

xvii

TABLE 5.9: List of assertions of the state change declaration. 71

TABLE 5.10: Frequency distribution of the selection of assertions for the
state change declaration.

72

TABLE 5.11: List of assertions for the state change instantiation. 72

TABLE 5.12: Frequency distribution of the selection of assertions for the
state change instantiation

72

TABLE 5.13: List of assertions for the state change assigning elements. 73

TABLE 5.14: Frequency distribution of the selection of assertions for the
state change assigning elements.

74

TABLE 5.15: List of assertions for the state change array assignment. 74

TABLE 5.16: Frequency distribution of the selection of assertions for the
state change array assignment

75

TABLE 5.17: Participant’s overall correctness and mental model score
with total scores for parts and state changes. The statistically sig-
nificant difference between the correctness score and mental model
score of arrays parts and state changes is shown in the last row.

75

TABLE 5.18: Participants’ correctness, consistency, and mental model
classification for each part and state changes.

76

TABLE 5.19: Participants’ correctness score and mental model score by
demographics.

78

TABLE 6.1: List of assertions for the part name. 92

TABLE 6.2: Frequency distribution of the selection of assertions for the
part name.

93

TABLE 6.3: List of assertions for the part index. 94

TABLE 6.4: Frequency distribution of the selection of assertions for the
part index.

94

TABLE 6.5: List of assertions for the part type. 95

xviii

TABLE 6.6: Frequency distribution of the selection of assertions for the
part type.

95

TABLE 6.7: List of assertions of the part element. 96

TABLE 6.8: Frequency distribution of the selection of assertions for the
part element.

96

TABLE 6.9: List of assertions of the state change declaration. 98

TABLE 6.10: Frequency distribution of the selection of assertions for the
state change declaration.

98

TABLE 6.11: List of assertions for the state change instantiation. 99

TABLE 6.12: Frequency distribution of the selection of assertions for the
state change instantiation

99

TABLE 6.13: List of assertions for the state change assigning elements. 99

TABLE 6.14: Frequency distribution of the selection of assertions for the
state change assigning elements.

100

TABLE 6.15: List of assertions for the state change array assignment. 100

TABLE 6.16: Frequency distribution of the selection of assertions for the
state change array assignment.

101

TABLE 6.17: Participant’s overall correctness and mental model score
with individual scores for parts and state changes. Participants’ cor-
rectness score and mental model score for the state changes is statis-
tically significantly lower than the parts (shown in the last row).

102

TABLE 6.18: Participants’ correctness, consistency, and mental model
classification for each part and state changes (N = 144). Here, II:
Inconsistent and Incorrect mental model, CI: Consistently Incorrect
mental model, IMI: Inconsistent and Mostly Incorrect mental model,
CMI: Consistent and Mostly Incorrect mental model, IMC: Inconsis-
tent and Mostly Correct mental model, CMC: Consistent and Mostly
Correct Mental Model, C: Correct mental model.

104

xix

TABLE 6.19: Participants’ correctness score and mental model score by
demographics. Participants’ correctness and mental model scores
were statistically significantly higher for those who are CS majors
(last two rows).

105

TABLE 7.1: Pre-test and Post-test Mean Correctness Score of the Com-
ponents of Arrays. (N = 66)

116

TABLE 7.2: Frequency distribution of participants from the pre-test and
the post-test across different correctness levels.

118

TABLE 7.3: Mental Model Consistency Scores per Component: Pre-test
and Post-test (N = 66).

118

TABLE 7.4: Crosstabulation showing the changes in participants’ fre-
quency of mental model consistency shift from pre-test to post-test
for each component.

120

TABLE 7.5: Frequencies of participants across positive, negative, neutral
mental model classification shift with the p value of Wilcoxon Signed-
rank test.

124

TABLE 7.6: Pre-test and Post-test Frequency Distribution across the
Mental Model Categories. (N = 66)

125

TABLE 7.7: Mental model correctness score, correctness score for parts,
state changes, mental model score, mental model score for parts, state
changes across different programming background from the pre-test
and the post-test.

128

TABLE 8.1: List of Misconceptions found in the study. Each misconcep-
tion is labeled with a unique identifier used as reference throughout
the dissertation. The last column shows the percentage of partici-
pants holding the misconception.

136

TABLE 9.1: Factor Laodings and Item-Total Correlations for each item
of the parts components.

165

TABLE 9.2: Factor Laodings and Item-Total Correlations for each item
for the state changes components.

166

xx

TABLE 9.3: Results of IRT analysis (N = 282) and Point Beserial Cor-
relation for each item in the MMT-A. The third column (% correct)
denotes the frequency of participants in the percentage who answered
the item correctly. Point Biserial coefficients marked with an asterisk
(*) denote statistically insignificant.

169

TABLE 10.1: Details of each participant’s (n = 10) programming ex-
posure, previous programming experience, and source where they
learned Java.

177

178table.10.2

TABLE 10.3: Themes Emerging from the question ‘what is null?’ 185

TABLE 10.4: Incorrect assertions found in the think-aloud semi-
structured interview data with participants (n = 10) separated by
the highest course completion.

194

TABLE C.1: Contradictory Assertions for name. Assertions belonging to
the same cell are contradictory.

278

TABLE C.2: Contradictory Assertions for index. Assertions belonging to
the same cell are contradictory.

278

TABLE C.3: Contradictory Assertions for type. Assertions belonging to
the same cell are contradictory.

279

TABLE C.4: Contradictory Assertions for element. Assertions belonging
to the same cell are contradictory.

279

TABLE C.5: Contradictory Assertions for declaration. Assertions belong-
ing to the same cell are contradictory.

279

TABLE C.6: Contradictory Assertions for instantiation. Assertions be-
longing to the same cell are contradictory.

279

TABLE C.7: Contradictory Assertions for assigning elements. Assertions
belonging to the same cell are contradictory.

280

TABLE C.8: Contradictory Assertions for assignment. Assertions belong-
ing to the same cell are contradictory.

280

xxi

LIST OF FIGURES

FIGURE 2.1: Many purpose of the mental models (diagram adapted and
revised from [1]).

16

FIGURE 3.1: Representative example of a diagram for arrays found in
some textbooks.

38

FIGURE 3.2: Representative example of a diagram for objects found in
some textbooks.

40

FIGURE 4.1: An example showing the mapping between each choice and
the corresponding assertion.

50

FIGURE 5.1: Frequency distribution (in percentage) of the categories
of the mental models. Here, II: Inconsistent and Incorrect mental
model, CI: Consistently Incorrect mental model, IMI: Inconsistent
and Mostly Incorrect mental model, CMI: Consistent and Mostly
Incorrect mental model, IMC: Inconsistent and Mostly Correct men-
tal model, CMC: Consistent and Mostly Correct Mental Model, C:
Correct mental model.

80

FIGURE 6.1: Frequency distribution (in percentage) of the categories
of the mental models. Here, II: Inconsistent and Incorrect mental
model, CI: Consistently Incorrect mental model, IMI: Inconsistent
and Mostly Incorrect mental model, CMI: Consistent and Mostly
Incorrect mental model, IMC: Inconsistent and Mostly Correct men-
tal model, CMC: Consistent and Mostly Correct Mental Model, C:
Correct mental model.

106

FIGURE 7.1: Mental model classification shift for the four part com-
ponents. Here, we have portrayed positive rank shifts (color blue),
negative rank shifts (color red), and neutral (color green). As an
example, 54 participants’ mental models were correct in the pre-test
(Pre_C), and 59 participants’ mental models were correct in the
post-test (Post_C) for name.

121

FIGURE 7.2: Mental model classification shift for the four state change
components. Here, we have portrayed positive rank shifts (color
blue), negative rank shifts (color red), and neutral (color green).

122

FIGURE 8.1: Frequency distribution of the participants holding at least
one misconception across the parts and state changes components
before and after classroom instruction.

140

xxii

FIGURE 8.2: Venn diagram showing 13 participants (14%) had miscon-
ceptions on only parts components, 25 (26.9%) on only state changes
components, and 15 (16.1%) on both the components. 40 (43%)
participants did not have any misconceptions.

141

FIGURE 8.3: Venn diagram showing 9 participants (6.25%) had miscon-
ceptions on only parts components, 55 (38.19%) on only state changes
components, and 9 (6.25%) on both the components. 71 (49.31%)
participants did not have any misconceptions.

141

FIGURE 8.4: Frequency distribution of the participants across the num-
ber of misconceptions (zero, one, two, or three).

142

FIGURE 8.5: Participants’ change in misconception from the pre-test to
the post-test. The changes are labeled as remained (misconceptions
present in the pre-test and remained in the post-test), gone (miscon-
ception present in the pre-test but diminished in the post-test), and
arose (misconception was not present in the pre-test but arose in the
post-test) (N = 66).

145

FIGURE 9.1: Scatterplot showing the correlation between participants’
Exam 3 score and the correctness score r = .475, N = 91, p <= 0.001.

155

FIGURE 9.2: Scatterplot showing the correlation between participants’
Exam 3 score and the mental model score (r = .480, N = 91, p <=
0.001).

155

FIGURE 9.3: Scatterplot showing the correlation between participants’
total CS1 score and the correctness score (r = .427, N = 91, p <=
0.001).

156

FIGURE 9.4: Scatterplot showing the correlation between participants’
total CS1 score and the mental model score (r = .481, N = 91, p <=
.001).

156

FIGURE 9.5: Scatterplot showing the correlation between participants’
Exam 3 score and the correctness score r = .422, N = 101, p < 0.001.

157

FIGURE 9.6: Scatterplot showing the correlation between participants’
Exam 3 score and the mental model score (r = .405, N = 101, p <
0.001).

158

xxiii

FIGURE 9.7: Scatterplot showing the correlation between participants’
total CS1 score and the correctness score (r = .468, N = 101, p <
0.001).

159

FIGURE 9.8: Scatterplot showing the correlation between participants’
total CS1 score and the mental model score (r = .446, N = 101, p <
.001).

160

FIGURE 9.9: Item-person map (Wright map) portraying person ability
distribution with the item difficulty distribution. The letters prefixed
to the item numbers denote: N - part: name, T - part: type, I - part:
index, E - part: element, D - state change: declaration, IN - state
change: instantiation, AE - state change: assigning elements, A -
state change: assignment.

162

FIGURE 9.10: (a) Question T2 and (b) its Item Characteristic Curve. 170

FIGURE 9.11: (a) Question A1 and (b) its Item Characteristic Curve. 170

FIGURE 9.12: (a) Question A5 and (b) Question A6 used in the Mental
Model Test appeared to be problematic in the item analysis.

171

FIGURE 10.1: Think-aloud question probe for part: name. The correct
answer is option (b).

179

FIGURE 10.2: Think-aloud question probe for part: index. The correct
answer is option (c).

179

FIGURE 10.3: Think-aloud question probe for part: elements. The cor-
rect answer is option (a).

180

FIGURE 10.4: Think-aloud question probes for state change: declaration.
The correct answer is option (d).

181

FIGURE 10.5: Think-aloud question probes for state change: declaration.
The correct answer is option (a).

182

FIGURE 10.6: Think-aloud question probes for state change: instantia-
tion. The correct answer is option (b).

187

FIGURE 10.7: Think-aloud question probes for state change: instantia-
tion. The correct answer is option (a).

187

xxiv

FIGURE 10.8: Think-aloud question probes for state change: assigning
elements. The correct answer is option (b).

190

FIGURE 10.9: Think-aloud question probes for state change: assignment.
The correct answer is option (d).

191

FIGURE 10.10: Think-aloud question probes for state change: assign-
ment. The correct answer is option (b).

191

FIGURE 10.11: Think-aloud question probes for state change: assign-
ment. The correct answer is option (b).

192

FIGURE B.1: The scope of the notional machine defined by ITiCSE work-
ing group [2].

238

FIGURE B.2: As the layer of abstraction gets thinner, the NM resembles
more of the conceptual model.

240

FIGURE B.3: Interaction between a notional machine, mental model, and
the programming behavior presented in [3].

242

FIGURE B.4: The interplay between the NM and the mental model
from [2].

242

FIGURE B.5: How human mind processes pictures, printed words, and
spoken words from Mayer’s CTML [4]

247

FIGURE B.6: From left to right: the system topology of a car’s brake
system and a bicycle pump from [5].

257

FIGURE B.7: Component behavior of a car’s brake system from [5]. 258

FIGURE B.8: Component behavior of a bicycle pump from [5] 258

FIGURE B.9: Four conditions of effective diagrams by Mayer et al. [5]. 260

FIGURE B.10: The system topology diagram of an array. 268

FIGURE B.11: The explanative diagram illustrating an array’s state after
declaration.

269

FIGURE B.12: Explanative diagrams showing the each state change after
instantiation.

271

xxv

FIGURE B.13: The explanative diagrams showing the before and after
state change of an array after assignment.

272

FIGURE B.14: The explanative diagrams of assigning a value to an ele-
ment.

272

FIGURE B.15: The dynamics of array assignment are portrayed with this
explanative diagram.

273

FIGURE D.1: Item Characteristic Curve for the item N1 included in the
array’s parts component- name.

281

FIGURE D.2: Item Characteristic Curve for the item N2 included in the
array’s parts component- name.

282

FIGURE D.3: Item Characteristic Curve for the item I1 included in the
array’s parts component- index.

282

FIGURE D.4: Item Characteristic Curve for the item I2 included in the
array’s parts component- index.

283

FIGURE D.5: Item Characteristic Curve for the item I3 included in the
array’s parts component- index.

283

FIGURE D.6: Item Characteristic Curve for the item I4 included in the
array’s parts component- index.

284

FIGURE D.7: Item Characteristic Curve for the item I5 included in the
array’s parts component- index.

284

FIGURE D.8: Item Characteristic Curve for the item T1 included in the
array’s parts component- type.

285

FIGURE D.9: Item Characteristic Curve for the item T2 included in the
array’s parts component- type.

285

FIGURE D.10: Item Characteristic Curve for the item E1 included in the
array’s parts component- elements.

286

FIGURE D.11: Item Characteristic Curve for the item E2 included in the
array’s parts component- elements.

286

FIGURE D.12: Item Characteristic Curve for the item E3 included in the
array’s parts component- elements.

287

xxvi

FIGURE D.13: Item Characteristic Curve for the item E4 included in the
array’s parts component- elements.

287

FIGURE D.14: Item Characteristic Curve for the item E5 included in the
array’s parts component- elements.

288

FIGURE D.15: Item Characteristic Curve for the item D1 included in the
array’s state changes component- declaration.

288

FIGURE D.16: Item Characteristic Curve for the item D2 included in the
array’s state changes component- declaration.

289

FIGURE D.17: Item Characteristic Curve for the item In1 included in
the array’s state changes component- instantiation.

289

FIGURE D.18: Item Characteristic Curve for the item In2 included in
the array’s state changes component- instantiation.

290

FIGURE D.19: Item Characteristic Curve for the item In3 included in
the array’s state changes component- instantiation.

290

FIGURE D.20: Item Characteristic Curve for the item In4 included in
the array’s state changes component- instantiation.

291

FIGURE D.21: Item Characteristic Curve for the item AE1 included in
the array’s state changes component- assigning elements.

291

FIGURE D.22: Item Characteristic Curve for the item AE2 included in
the array’s state changes component- assigning elements.

292

FIGURE D.23: Item Characteristic Curve for the item AE3 included in
the array’s state changes component- assigning elements.

292

FIGURE D.24: Item Characteristic Curve for the item AE4 included in
the array’s state changes component- assigning elements.

293

FIGURE D.25: Item Characteristic Curve for the item AE5 included in
the array’s state changes component- assigning elements.

293

FIGURE D.26: Item Characteristic Curve for the item AE6 included in
the array’s state changes component- assigning elements.

294

FIGURE D.27: Item Characteristic Curve for the item A1 included in the
array’s state changes component- assignment.

294

xxvii

FIGURE D.28: Item Characteristic Curve for the item A2 included in the
array’s state changes component- assignment.

295

FIGURE D.29: Item Characteristic Curve for the item A3 included in the
array’s state changes component- assignment.

295

FIGURE D.30: Item Characteristic Curve for the item A4 included in the
array’s state changes component- assignment.

296

FIGURE D.31: Item Characteristic Curve for the item A5 included in the
array’s state changes component- assignment.

296

FIGURE D.32: Item Characteristic Curve for the item A6 included in the
array’s state changes component- assignment.

297

xxviii

LIST OF ABBREVIATIONS

CS1 Introductory Programming Course.

CS2 Basic Data Structure Course.

ITSC: 1212 Introduction to Computer Science I (CS1) course at College of Comput-

ing and Informatics

ITSC: 1213 Introduction to Computer Science II (CS1) course at College of Comput-

ing and Informatics

ITSC: 2214 Data Structure and Algorithm (CS2) course at College of Computing

and Informatics

MMT-A Mental Model Test of Arrays.

CI Concept Inventory.

CS Computer Science.

SD Standard Deviation.

CHAPTER 1: INTRODUCTION

Among the many functions of mental models, some key functionalities include

storing knowledge, governing actions, predicting outcomes, mirroring belief systems,

and performing troubleshooting. Hence, mental models are utilized in every step to-

wards processing new information, interacting with a system, and making a decision.

Learning occurs when we can shift our mental model towards being more accurate

and consistent in alignment with reality. The literature claims novice learners’ men-

tal models hold inaccurate and inconsistent beliefs [6]. Novice programmers tend

to bring their own assumptions to problems [7, 8]. According to the mental model

theories [9, 10] and constructivism [11, 12], learners utilize their existing knowledge

to make sense of the new information. Students enter into CS1 courses with a wide

variety of backgrounds, making it hard to assess how students are processing the new

information and thus revising their mental models. As learners’ mental models mirror

their learning, it is crucial to understand them in order to maneuver them. One thing

many researchers agree on is that once misinformation becomes fixed in a mental

model, new information contradicting the mental model loses its acceptance [13–16].

As a consequence, instructors trying to convey the correct information may suffer

one of the educationally nonproductive fates- “ignored, rejected, disbelieved, deemed

irrelevant to the current issue, held for consideration at a later time, reinterpreted

in light of the student’s current theories, or accepted with only minor changes in the

student’s concept” [14, p.45]. Consequently, a novice programmer trying to debug an

error in the program does not realize the bug (i.e., error) is actually in their men-

tal models. The importance of mental models raises the need to investigate novice

programmers’ mental models.

2

1.1 Problem Scope and Motivation

Investigating novice programmers’ mental models needs a lens from the theory of

the mental model’s origin- psychology and cognitive science. In between the eighty

years since the inception of mental models, researchers used ad hoc definitions of men-

tal models [10]. Consequently, most Computer Science (CS) education researchers

used their own vague, often intuitive definitions and approaches to investigate mental

models. Even so, there have been very few works investigating novice programmers’

mental models [17,18], and none investigating novice programmers’ mental models of

arrays. Most common mental model elicitation approaches include time-consuming

qualitative techniques such as cognitive interview, observation of task, and draw-

ing [10]. CS1 classrooms being large in size makes the applicability of these research

techniques unfeasible. My research aims to address these challenges.

Moreover, the research findings of novice programmers’ misconceptions assert that

in CS1 courses, students struggle most in understanding reference variables. The

programming concept- arrays in Java is manipulated with reference variables and is

often taught at an interesting point in the intro curriculum. It often follows the intro

to control structures and logic but comes before more advanced topics. Arrays are

essential for studying the implementation of linear data structures, sorting algorithms,

basic linear search, binary search, and hashing functions. All of these topics are

typically beyond CS1 (or at least near the end) and part of the follow-up course- CS2.

Mastery of arrays, both parts and state changes, is required to transition between

these two sets of topics successfully. Arrays- inherently a data structure consists of

its structure (parts) and behavior (state changes). Moreover, arrays contain enough

dynamic behavior (e.g., assignments, memory allocation) that understanding arrays

involves understanding some of these more difficult aspects typical of dynamic state

changes- a threshold concept in CS education.

In CS education, a program’s dynamic state changes is considered a threshold

3

concept [19–22]. State changes are also referred to in the literature as program dy-

namics [19], states [20], program behavior [23], or program-memory interaction [24].

Threshold concepts are characterized as the most troublesome and transformative [21].

They are transformative as comprehending a threshold concept enables a learner to

view and describe a concept in a new way and may alter their perception, which

cannot be unlearnt.

State changes are dynamic and invisible although crucial to learn [25, 26]. State

changes are difficult to understand as the mechanism is hidden from the perceptual

view [19, 20]. The textual representation of a program has little or no connection

to the state change it provokes [25, 27]. Mapping syntax properties to concrete state

changes creates obstacles not only for novices but also for advanced programmers [25].

We have seen a plethora of misconceptions related to programs state changes, in-

cluding simple assignments [17, 28], object declaration, and instantiation [7]. Being

a troublesome concept, novice programmers are known for holding incorrect or in-

complete mental models of state changes [17, 29]. Emphasizing the need to study

programming concepts’ state changes, Krishnamurthi et. al [30, p.384] stated, “com-

parative studies between stateful and non-stateful features are one of the most signif-

icant understudied topics in computing education”.

In the end, understanding novice programmers’ mental model of arrays is criti-

cal. It is more critical to understand their mental model of arrays state changes in

comparison to the parts so that we can identify their point of struggle and address

them.

In this dissertation, I aim to elicit novice programmers’ mental models of arrays

with the lens of mental model theories. In addition, I aim to decompose novice

programmer’s mental model of arrays into its parts and state changes and provide

the result of a comparative study between novice programmers’ mental models of

parts and state changes.

4

1.2 My approach

To elicit novice programmers’ mental models of arrays, we need a definition of

mental model which must be grounded in the theories of mental models and applicable

to a programming concept. From the theories and many definitions of mental models,

I found two directions of definition suitable for my study.

From a device understanding perspective, many scholars proposed that the mental

model is a cognitive representation of a device’s components: its parts and behavior

(state changes) [31–33]. This translates into programming by Sorva’s following state-

ment, “it is widely accepted that programming requires having access to some sort of

‘mental model’ of the system” [34, p. 8-9].

From a language acquisition and inference generation perspective, psychologist

Johnson-Laird [35] stated that a mental model is a model in which learners validate

a set of assertions.

From the above definitions of mental models, I conclude that mental models of a

programming concept have a system like parts and state changes components. Each

component has a set of assertions. In this context, an assertion is a single idea or

proposition ingrained in a person’s mind. To evaluate mental models, I utilize two

criteria of mental models- correctness and consistency. De Kleer and Brown [36] in

their book ‘Mental Models’ claimed that for a mental model to be useful, it must be:

1) consistent, 2) correct1, and 3) robust. A mental model is consistent when it is free

of internal contradictions. A mental model is correct when it is faithful to the device

it is modeling. Finally, a mental model is robust when it can be used to troubleshoot

problems (debugging in computing). Since evaluating novice programmers’ mental

model robustness requires a different approach, my work considered the evaluation of

the mental models based on correctness and consistency.
1De Kleer and Brown [37] used the term correspondence instead of correct. In this dissertation,

I use the term ‘correctness’ to imply ‘correspondence.’

5

By analyzing the contents of 15 commonly used CS1 textbooks (mentioned in Chap-

ter 3), I decomposed the programming concept arrays into its parts and state changes

components. I identified the parts of an array as its name, type, index, and elements.

I finalized the state changes components to be declaration, instantiation, assigning

elements, and assignment. I listed and obtained the sets of factual assertions for

the components from Java’s syntax and semantics. For instance, a factual assertion

regarding array’s part component index is indexing begins with 0 ; a factual asser-

tion regarding array’s state changes component instantiation is after instantiation,

memory is allocated to store elements in the array.

To manifest the definition into a research method to extract novice programmers’

mental models and evaluate their mental models based on correctness and consis-

tency, I needed an approach applicable to the large CS1 classrooms. Carefully con-

structed multiple-choice-based questionnaires can extract the same information about

conceptual knowledge as short answers or open-response questions, with significant

advantages in test administration and scoring [38]. Hence, I adopted a multiple-

choice-based questionnaire (MCQ) approach and developed the Mental Modet Test

of Arrays (MMT-A). I generated questions for each component of parts and state

changes. The correct choice is mapped to the factual assertion. I derived incorrect

assertions from the literature on misconceptions and teaching practices. I crafted

the distractors of MCQ, which are mapped to the incorrect assertions. To analyze

the consistency of novice programmers’ mental models, I placed the corresponding

options for the assertions multiple times in the . To understand the incoming novice

programmers’ mental models and their mental model transition after the CS1 course,

I elicited novice programmers’ mental model assertions before and after classroom

instruction on arrays. Based on the correctness and consistency of novice program-

mers’ mental model assertion, I scored their mental model and presented comparative

results based on part and state changes components (details are in Chapter 4). More-

6

over, their mental model assertion revealed their misconceptions. In this dissertation,

I recorded their misconceptions before and after classroom instruction.

1.3 Thesis Objectives

Grounded on the theories of mental models, with the instrument the Mental Model

Test (MMT-A), my thesis aims to investigate novice programmers’ mental models.

The thesis aims to present novice programmers’ mental model assertions and evalua-

tion of these assertions based on correctness and consistency. I elicited their mental

model assertions before and after the classroom instruction on arrays to gain an in-

depth description of their mental models. Therefore, the remainder of this dissertation

attends to the following research questions.

The research questions tied to the incoming CS1 students’ mental models are:

RQ1. What are the characteristics of incoming novice programmers’ mental models?

RQ2. How are the incoming novice programmers’ initial mental models of the array’s

parts components in comparison with the state changes components?

RQ3. What impact do prior programming experience and demographics have on the

mental model of the participants in our study before classroom instruction?

The research questions tied to the CS1 students’ mental models as they transition

into CS2 are:

RQ4. What are the characteristics of novice programmers’ mental models after they

have learned arrays?

RQ5. How are the novice programmers’ mental models of the array’s parts compo-

nents in comparison with the state changes components after they have learned

arrays?

RQ6. What impact do prior programming experience and demographics have on the

mental model of the participants after they have learned arrays?

7

Moreover, a Pretest-Posttest study design allowed me to understand how novice pro-

grammers mental models change after formal classroom instruction of arrays. The

corresponding research question is as follows:

RQ7. How do the correctness and consistency of novice programmers’ mental models

of arrays change after (pre-test vs. post-test) classroom instruction?

Next, I describe the several definitions that are tightly coupled in this dissertation and

then summarize the research contributions and key ideas presented in each chapter.

1.4 Definitions

Several terms in this dissertation need to be highlighted and organized. I am

reiterating the definitions here to define their scope and make their use consistent.

Some terms have multiple definitions and are inconsistently used in the literature.

Therefore, the precise definitions that I will follow throughout this dissertation are

mentioned here.

Novice Programmers: In this dissertation, novice programmers refer to the students

who are enrolled in a Java-based CS1 course and have little knowledge of Java’s

programming syntax and semantics.

Mental Model: I perceive the mental models of a programming concept as they

contain a set of assertions for each part (of the structure) and state changes.

Here, an assertion is a single belief or notion in a human’s mind.

Mental Model Correctness: I refer to correctness as an attribute of a mental model

that shows how closely the mental model aligns with the real world.

Mental Model Consistency: I refer to consistency as an attribute of mental models

that indicates if internal contradiction exists among the assertions. A consistent

mental model contains no contradictory assertion.

8

1.5 Contributions

With this dissertation, I make the following contributions to the CS education

domain:

• Integration of proper definitions to elicit, evaluate, and categorize novice pro-

grammers’ mental models based on the mental model theories.

• Decomposition of programming concept arrays into parts and state changes.

• Multiple-choice-questionnaire-based instrument to capture novice programmers’

mental models of arrays.

• Portrayal of novice programmers’ mental models of arrays before and after class-

room instruction based on mental model assertions.

• Comparative study between novice programmers’ mental models of parts and

state changes.

• Inventory of novice programmers’ misconceptions related to arrays.

1.6 Overview of the Dissertation

Below, I outline a summary of each chapter.

Chapter 2 : I discuss the relevant literature on mental models from the survey of in-

terdisciplinary domains- psychology, cognitive science, and CS education. I also

discuss the literature adopting MCQ-based instruments to assess knowledge and

the difference between their work and mine. Lastly, I describe related research

on learners’ misconceptions, including CS1 education and other disciplines.

Chapter 3 : This chapter presents the content analysis of commonly used CS1 text-

books where I decomposed the concept of arrays in parts and state changes.

9

Chapter 4 : In this chapter, I elaborate on the details of the methodological ap-

proach to design and develop MMT-A. I describe my approach to classify mental

models based on correctness and consistency. I also describe how I measured

and scored mental models.

Chapter 5 : I present the study to elicit incoming novice programmers’ mental

models of arrays. This chapter discusses the findings based on research questions

RQ1, RQ2, and RQ3.

Chapter 6 : I present the study that elicits and analyzes novice programmers’ men-

tal models of arrays after classroom instruction when they transition into a CS2

course. In this chapter, I answer the research questions RQ4, RQ5, and RQ6.

Chapter 7 : I present a quasi-experimental design study to perceive novice pro-

grammers’ mental model shift after classroom instruction. In this chapter, I

present the result of the paired pre-test and post-test, which answers RQ7.

Chapter 8 : In this chapter, I present the misconceptions found in novice program-

mers’ mental models before and after classroom instruction.

Chapter 9 : In this chapter, I explored the validity and reliability arguments with

the data collected from the MMT-A with several statistical procedures.

Chapter 10 : I present the details and findings of a semi-structured think-aloud

interview study with a subset questionnaire from the MMT-A to support the

quantitative data recorded with the MMT-A.

Chapter 11 : I summarize the findings from each study. Based on these findings, I

discuss their implications and conclude with future research directions.

CHAPTER 2: LITERATURE REVIEW

This thesis builds on three areas of research: (1) the literature of mental models

to learn their application in the domain of a programming concept, (2) multiple-choice

based knowledge assessment instruments to understand and leverage their devel-

opment and validation process, and (3) existing studies on learners misconceptions

to learn common programming misconceptions and to understand the techniques to

identify them. In the following, I review the related work in each area.

2.1 Mental Model

Around the early 1940s, Craik [39] termed mental models as the small-scale internal

models of the external world. From a cognitive scientist’s point of view, Norman [6]

posited that people form internal models while interacting with their surroundings.

The internal model empowers them with the predictive and explanatory power to un-

derstand the interactions. From the system dynamics domain, psychologists Doyale

and Ford [40] defined a mental model as an enduring and accessible yet limited in-

ternal conceptual representation whose structure is similar to the perceived structure

of the system. Jones et al. [41] followed the same view in their synthesis of the inter-

disciplinary literature on mental models. From a device understanding perspective,

many researchers agree that a mental model is a cognitive representation of a system’s

internal representation, i.e., its component parts and their behaviors [31–33].

From a language acquisition and inference generation perspective, psychologist

Johnson-Laird [35] stated that a mental model is a model in which learners vali-

date a set of assertions. In this context, an assertion is a single idea or proposition

ingrained in a person’s mind.

11

De Kleer and Brown [36] in their book ‘Mental Models’ claimed that for a mental

model to be useful, it must be: 1) consistent, 2) correct1, and 3) robust. Consistency

means the model is free of internal contradictions. A mental model is considered

corresponding or correct when it is faithful to the device it is modeling. Lastly, a

learner’s mental model is robust when it can be used to successfully troubleshoot

problems. In the domain of programming, troubleshooting a program is referred to

as debugging. My work explores the first two criteria: consistency and correctness

in the mental model of novice programmers. Since investigating a programmer’s

debugging behavior requires a different approach than investigating consistency and

correctness, I leave this as a future work.

2.1.1 Mental Model of Arrays

Lonati et al. [27] envision a program as a coexisting concrete physical object and an

abstract entity. A program is a concrete physical object when we code and run it in a

computing device. Also, a program is an abstract entity when we want to make sense

of its behavior by envisaging a world of abstractions that somehow come alive in our

minds. Arrays in programming have a system-like parts and state changes. When I am

considering mental models of arrays, similar to a concrete physical system-like entity,

the mental model of arrays carries the representation of its internal representation

(i.e., parts and state changes). Also, as the parts and state changes of an array are

abstract entities in a programmer’s mind, a mental model of arrays can also be seen

from Johnson-Laird’s [35] definition of a mental model from an abstract language

acquisition perspective.

By utilizing the definitions of mental models from two perspectives (concrete:

system-like and abstract: language and inference generation), I conclude that men-

tal models of a programming concept have a system like parts and state changes

components where each component has a set of assertions.
1De Keer and Brown [36] used the term correspondence to imply correctness.

12

2.1.2 Mental Model Consistency

As stated by De Kleer and Brown [36], a mental model is consistent when it is

free of internal contradiction. Furthermore, they implied that there should be one

model for each component. Mental model consistency is also referred to as cognitive

consistency [42]. One of the most important aspects of mental model inconsistency is

that it serves as a cue for potential errors in one’s belief system [43]. Identifying errors

in a belief system is important as they can undermine context-appropriate behavior.

Furthermore, an inconsistent belief system signals that the current belief system needs

to be revised for context-appropriate action [42]. De Kleer and Brown [36] restricted

themselves to define consistency rigorously. Later, Johnson-Laird [35] provided a

definition of cognitive consistency with examples so that collectively, it made it clear

how to measure it. According to him, mental model inconsistency is found when one

assertion contradicts another. To exemplify this claim, Johnson-Laird [35] laid out

three assertions in the context of Chernobyl nuclear power plant:

• The reactor is not dangerous if and only if it is intact.

• If it is intact then all its graphite is inside it.

• The reactor is not dangerous and some of its graphite is not inside it.

Based on the first two assertions, the last assertion is inconsistent since they are

contradictory. These three assertions cannot be true at the same time. Based on this

argument, a mental model is consistent once it is determined that there are no two

assertions that contradict each other. The mental model is deemed as inconsistent

if such proof cannot be found. Thus, to prove the contradiction between assertions,

Johnson-Laird [35] proposes to choose any assertions in the set and prove its negation

from the remaining assertions. If a negation can be found, then the assertions are

inconsistent. In Section 4.5, I describe how I measured the consistency of novice

13

programmers’ mental models of arrays based on Johnson Laird’s [35] theory and

approach.

2.1.3 Mental Model Correctness

While consistency is based on the analysis of contradictions among assertions, it

fails to capture the accuracy of the mental model. A consistent mental model can be

totally inaccurate, having assertions that do not contradict each other (i.e., they are

consistent) but are wrong or inaccurate.

This leads us to correctness, another important criterion of useful mental models

as defined by De Kleer and Brown [36]. A mental model is correct when it is accurate

regarding how the device works. For our work, a correct mental model of arrays

contains assertions that are valid in the Java language. This takes into consideration

both syntactical and semantic properties.

2.1.4 Mental Model and Constructivism

The notion of constructivism first occurred in Piaget’s [11] mind when he was ob-

serving molluscs’ adaptation to their new habitats. Inspired by this event, Piaget [11]

perceived the learning experience as an ever-evolving adaptation process where new

knowledge modifies and re-organizes in relation to the learners’ own ever-evolving

structure of thinking. This learning experience was termed as constructivism [11].

Constructivism claims that knowledge is constructed by combining the experiential

world with existing cognitive structures, and it evolves over time [11].

Constructivism has been widely used in science [44] and mathematics education

[45]. Ben-Ari [46] was the pioneer in introducing constructivism in CS education.

According to constructivism, learners build up new knowledge on existing similar

models they are retaining [11]. Understanding that learners do not start from nothing,

teachers are well advised to treat each individual’s learning experience differently. The

implications are then two-fold. First, it implies an explicit recognition of the learner as

14

someone possessing rich previous knowledge. Second, it implies a utilization of that

rich existing knowledge to build new knowledge structure and further meaningful

understandings [12].

Ben-Ari [47], from a constructivist perspective, emphasized the value of empirical

research to determine the initial mental model of students. Hence, according to

Ben-Ari [47], a teacher cannot disregard the students’ existing knowledge. Most

importantly, their initial mental model can serve as a guide to design instruction.

2.1.4.1 Purpose of Mental Model

The purpose of mental models makes it clear why it is crucial to study programmers’

mental models. Below, I summarize the purposes of mental models.

Predicting outcomes: The primary purpose of the mental model is to create a

mental simulation in mind to predict outcomes. Kleer and Brown [36], while con-

structing a mental model of a mechanistic device, explained that one of the purposes

of a mental model is to envision. This envisioning process enables humans to predict

future outcomes by inferring from current states and prior events. In the same vein,

Rasmussen [48] from the domain of manual control identified the purpose of a mental

model to predict future events. He referred to a mental model as an internal experi-

ment that runs and produces results to predict. Veldhuyzen and Stassen [49], while

reviewing the mental model on the concepts of manual control theory, highlighted the

purpose is to estimate the “state variables” of the system that are hidden, the actions

that will lead to the desired result. Norman [6] posited that one of the core functions

of the mental model is to empower users to predict different outcomes of different

interactions with the target system.

Performing troubleshooting: Another essential purpose of the mental model

is to allow individuals to troubleshoot. Troubleshooters have to deploy their under-

standing of the device or system functioning to determine the fault. By acquiring a

complete, robust mental model, they can successfully determine the fault and fix it.

15

A troubleshooter’s mental model of the device contains components and functions of

the components of the device. This mental model allows them to determine which

faulty component is causing malfunctions. Kleer and Brown [37] explained this pur-

pose with an appropriate example. Consider an operator of a malfunctioning nuclear

power plant. A troubleshooter can not go inside the power plant and look for the

error. What he can do is he can use his mental model of the reactor’s functioning to

conjecture and test what the fault is. Veldhuyzen and Stassen [49] refer to this action

of troubleshooting as an understanding of unexpected phenomena that occur as a task

progresses. Wickens [50] termed the mental model as a source of expectation. By

running a mental model in the human mind’s eye, an individual expects an outcome

of interaction and determines when the outcome of that interaction occurs faulty or

unexpected [50].

Determining actions: Mental model allows appropriate actions to achieve a task.

While interacting with a system, mental model simulation appropriately maps an

action and its resultant state changes. It provides the basis for creating a cause-and-

effect model. People take actions to cause the change to produce desired outcomes

[48,49].

According to Norman [6], the mental model is a key part of our belief system.

People act according to their belief system no matter how right or wrong the action

is.

Storing knowledge: Within cognitive science, M. D. Williams et al. [51] claim

that the purpose of a mental model is to serve as a mnemonic devices for remembering

relations and events. From a mechanistic point of view, the mental model caches or

stores the results of projection while problem-solving [37]. The implicit knowledge

which is hard to articulate is stored within the mental model.

Creating a surrogate model: Theories of the mental model of a device informs

us that the mental model acts as a simplified surrogate model [52]. A surrogate model

16

of a device follows the same working mechanism of the device but a less detailed one.

Thus, it creates a connection between the states of a mental model and the states

observed in the device [6].

Mirroring the belief system: Don Norman [6] proposed that a person’s mental

model is a mirror of a person’s belief system. People act based on their belief systems.

The mental models once formed act as the belief system. A person believes whatever

their mental model dictates.

Facilitating Learning: De Kleer and Brown [36], in terms of understanding a

new machine, speculated three kinds of learning that a mental model could facilitate.

First, the mental model establishes a connection between the structure of the device

and its functions which provides a coherent understanding of the device. Second, it

makes the structure-function connection more robust by making implicit assumptions

explicit.

Figure 2.1 summarizes the purpose of a mental model in terms of a system.

Figure 2.1: Many purpose of the mental models (diagram adapted and revised
from [1]).

17

2.1.5 Impact of Diagrams in Mental Models

To fully grasp an abstract concept from a text involves building a mental model of

the concept [32,36,53,54]. Current theories of mental models suggest that an effective

teaching model is created when the model consists of visual representations of how

a system looks and how it functions under various changes [32, 55–58]. According

to dual coding theory extended to multimedia theory, people learn more deeply from

texts with diagrams than text alone [4, 59].

Diagrams act as a powerful tool to aid the learners as they process, represent,

organize, transform, and store information [60]. I know from previous studies that

when students interact with appropriate visual representations depicted in textbooks,

their competence in the relevant topic increases [61–63]. These benefits of diagrams

have led to a significant number of studies that measured diagrams’ effectiveness in

improving students’ understanding of the text in various textbooks [64]. In addi-

tion, diagrams can also serve as a memory aid since there is evidence that students

memorize information in a text explained with diagrams more easily [60].

Mayer and Gallini [5] conducted three experiments providing participants with

texts explaining three scientific devices. The group that was aided with illustrations

explaining major parts and state changes (explanative illustrations) was able to recall

the information more than the group using just text.

Butcher [65] conducted similar experiments to investigate learning outcomes and

the influence of diagrams on novices’ comprehension process. He found that diagrams,

whether detailed or simple, supported mental model development, inference gener-

ation, and reduced comprehension errors. He concluded that visual representations

appear to be most effective when they are designed to support the cognitive processes

necessary for deep comprehension.

18

2.1.6 Novice programmers’ mental model elicitation

In the literature, common methods to elicit mental models include verbal elici-

tation (e.g., interview [66–68], think-aloud protocol [69], teach-back protocol [70]),

graphical elicitation (e.g., concept mapping [71], pathfinder [72]), hybrid (e.g., photo

ethnography [73]), and multiple-choice questionnaires [74]. Most of those methods

are time-consuming. As CS enrollment continues to increase in size, I wanted to use

a method that could be feasible for classroom use. Thus, I adopted the use of a

multiple-choice questionnaire in my work, purely for practical reasons.

Inspired by psychometric tests, in 2006, Dehnadi [18] devised an instrument with

12 multiple-choice questions to investigate novice programmers’ mental models for

primitive variable assignment. Dehnadi [18] considered each choice a mental model,

with some of these choices being correct responses and others being distractors. The

MCQs’ distractors were placed based on the common misconceptions that can persist

in a novice programmer’s mental model. Distractors representing the same miscon-

ceptions were placed in multiple questions to see if a participant used the same mental

model throughout the test. Dehnadi administered his test at the beginning of the

semester before any classroom instructions to investigate if participants’ initial knowl-

edge state impacted their success. From participants’ responses, Dehnadi analyzed

the consistency of novice programmers’ mental models. Dehnadi labeled his subjects’

mental models consistent when subjects “used the same assignment model for all, or

almost all, of the questions” [18, p.70]. When his subjects used different assignment

models or unrecognizable models in different questions, he labeled them as inconsis-

tent. Dehnadi [18] measured consistency in four levels C0, C1, C2, and C3. Level C0

demonstrates the highest rate of consistency, while sliding toward level C3 indicates

a lower rate and a poorer sign of consistency. He found a significant effect of consis-

tency on programming students’ success in the course. This effect is retained even

when the data is divided by previous programming experience.

19

Later, in 2007, Linxio Ma [17] extended Dehnadi’s approach and instrument to

measure the consistency of novice programmers’ mental models for primitive and ref-

erence variable assignment. Ma’s research goal was integrating an easier and less

time-consuming mental model elicitation method into the classrooms. Ma defined a

consistent mental model as “it ‘always’ has to match with the actual model” [17, p.35].

However, when Ma [17] measured the consistency of primitive variable assignment,

he marked his participant’s response as consistent if they used a consistent model to

answer ten or more questions (out of 12 questions). Along with consistency, Ma [17]

also measured correctness, something that Dehnadi [18] did not measure. Ma [17]

formed three categories of mental models 1) consistently appropriate, 2) consistently

inappropriate, and 3) inconsistent. Ma administered his test at the end of the course.

Though his operational timeline differed from Dehandi’s, both experiments showed

the significance of consistency in a novice programmer’s mental model. Ma found that

the consistently appropriate group performed significantly better in CS1 final exam

than the consistently inappropriate and inconsistent group. While the consistently in-

appropriate group performed worse than the inconsistent group for primitive variable

assignment in the final exam, no statistical difference was found between those groups

for reference variable assignment. Surprisingly, Ma [17] found only 17% of the par-

ticipants holding viable mental models even after classroom instructions for reference

variable assignment. This crucial topic is one of the basics of object-oriented pro-

gramming, yet often difficult to understand for students. Later, Ma used his test as a

pre-test and post-test to see the changes in the mental model after using his program

visualization tool. Ma remarked that the pre-existing mental models could guide the

instructors to design learning materials that could change the inappropriate mental

models held by most students. Ma [17], reflecting on his findings, remarked that this

poor result might be induced due to the traditional teaching approach, which does not

consider students’ pre-existing knowledge. The advocates of constructivism [46] state

20

that the design of learning materials must consider a student’s pre-existing concepts

and ideas.

Using Dehnadi’s instrument, Radermacher et al. [75] evaluated students’ pair pro-

gramming performances based on their mental model consistency in a CS1 course.

The authors found that students holding a consistent mental model from the very

beginning performed better in paired programming tasks and individual exams [75].

Moreover, Ramalingam et al. [76] found that having developed a good mental model

increased the feelings of self-efficacy of novice programmers. From their findings,

they stated that previous experience, self-efficacy, and mental models contributed to

students’ performance in a CS1 course. The authors concluded that students’ mental

model development should remain a pedagogical goal in introductory programming

courses.

Recently, Julie et al. [77] proposed an approach for developing a concept inventory

that identifies mental models. A concept inventory is a validated, reliable, stan-

dardized multiple-choice-based questionnaire to assess students’ knowledge of a set of

concepts [77–80]. They focused on creating a concept inventory for variables, if state-

ments, and functions. They included Dehanadi’s [74] questionnaire in their concept

inventory of variables. Their research article did not include results and validation of

their instrument [77].

Inspired by Dehnadi and Ma’s work, I have built an MCQ-based instrument to elicit

CS1 students’ mental models for arrays. Similar to their work, I placed common

programming misconceptions as a distractor of each question (more details are in

Chapter 4). However, there are several important differences between our instruments

and theirs. First, they mapped each option of their MCQ to a mental model, whereas

I believe that each distractor is mapped to an assertion. Following mental model

theories, I call the set of assertions of parts and state changes components a mental

model.

21

2.2 Knowledge Assessment Instruments

2.2.1 Origin and Develoment

Validated, standardized knowledge assessment instruments came into the prac-

tice of educational research from the earlier work of the physicists Ibrahim Abou

Halloun and David Hestenes [81]. In physics education, prior work suggested that

beliefs played a crucial role in introductory physics. With the motivation of assessing

students’ initial knowledge, Halloun and Hestenes [81] designed, developed, and vali-

dated an instrument for assessing the knowledge state of beginning physics students.

They claimed their instrument could be used as a placement test, an instrument to

evaluate instructions, and a diagnostic test to identify and classify misconceptions.

They used their multiple choice-based instruments as pretests to assess introductory

physics students’ initial knowledge state.

To assess introductory physics students’ initial knowledge state, Halloun, and

Hestenes [81] identified the basic mechanics concepts, which are essential prerequi-

sites for introductory physics courses. They designed the test to assess the students’

qualitative conceptions of motion and identify common misconceptions noted by pre-

vious investigators. First, they created an early version of the test. It was a written

test. They administered various versions of the test over a period of three years to

more than 1,000 students in college-level intro physics courses. From the students’

written answers, they identified the common misconceptions and used them as dis-

tractors in the multiple-choice version. By doing this, they created an easily graded

test to identify common misconceptions. The authors claimed that the students’ test

score on this test is a measure of their qualitative understanding of mechanics. They

also claimed that the test is a theoretically sound measure as the test is concerned

exclusively with a systematic assessment of basic concepts. Using this instrument,

the authors found that students’ initial knowledge greatly affects their performance

in introductory physics courses.

22

Hestenes et al. [82] later developed the Force Concept Inventory (FCI). The FCI

was designed to improve the physics diagnostic tool from the author’s earlier work.

The FCI has the advantage of supplying a more systematic and complete profile of the

various misconceptions. The authors again interviewed students about the questions

students had missed on the inventory. While analyzing each item, they labeled some

discriminators as weak. From their results, they identified major misconceptions

about the concept of force. They also emphasized the importance of a well-designed

and tested instrument to detect misconceptions early on.

Computing has few valid assessments for pedagogical or research purposes [83]. Tew

and Guzdial [84] created the first assessment instrument for introductory computer

science concepts (FCS1) that is applicable across various current pedagogies and pro-

gramming languages. First, they defined the test specification - what is the test mea-

suring (conceptual content, format of the questions, scoring procedure). Then, they

identified common introductory programming concepts by analyzing CS1 textbooks

and specified the contents to design the instrument. They developed a multiple-choice

questionnaire instrument. Next, the instrument was reviewed by a panel of experts to

provide content validity evidence. After finalizing the instrument, Tew [83] conducted

empirical studies to establish validity and reliability.

The widespread use of FCS1 reached a point of saturation [85]. Parker and Guz-

dial [86] developed the same procedure to create the Second Computer Science I

(SCS1) concept in need of a similar but new assessment instrument inventory. Later,

Xie et al. [87] performed a more sophisticated statistical analysis to validate the con-

tents of FCS1 and SCS1.

2.2.2 Validation

The validation process ensures that the instrument measures what it aims to do [88].

Through a validation process, we can iteratively build an argument to justify the ap-

plicability of an instrument. The evidence from the validation process can help us

23

understand if our questionnaire is too easy or too difficult for a population [89].

They can also identify if the surface features of questions are confounding the score.

The results of the validation process are most effective at differentiating high and

low-performing students [87]. The process can facilitate further refinement of spe-

cific questions and also the set of questions included in the test as a whole if found

problematic.

According to Tew and Guzdial [84], there are two classes of evidence to claim va-

lidity: 1) content-related evidence and 2) construct-related evidence. Content-related

evidence ensures the test measures all relevant parts of the subject it aims to mea-

sure. For example, if a test measures students’ knowledge of elementary mathematics,

the test should cover all relevant topics taught in elementary mathematics and avoid

additional and irrelevant topics. Construct-related evidence ascertains that the items

in the questionnaire are indeed measuring the intended constructs. It accumulates

the evidence to support the interpretation of what a measure reflects [90–93]. For

example, the results obtained from an instrument to probe elementary mathematics

knowledge should correlate with the student’s academic performance in the elemen-

tary mathematics exams. For validating the contents of their instrument FCS1, Tew,

and Guzdial [84] asked a panel of experts to review their text specifications. Tew [83]

also administered textbook content analysis for defining the contents of the assess-

ment tool FCS1.

2.3 Misconceptions

Here, I review how educational researchers in other disciplines identified miscon-

ceptions. Then, I mention literature that presented studies to identify CS1 students’

misconceptions. Lastly, I summarize common programming misconceptions among

CS1 students found in the literature.

24

2.3.1 Studies of Misconceptions in Other Domains

Across many domains of educational science, researchers emphasize the identifica-

tion of students’ misconceptions early on. Gurel et al. [94] and Guzzetti et al. [95],

in their literature review, identified numerous studies that identify students’ miscon-

ceptions at the beginning of a course across multiple domains.

diSessa [96] defined misconceptions as ‘false, persistent beliefs’ which contradict

reality. Taylor and Kowalski [79] termed a misconception ‘inaccurate prior knowl-

edge’. Studying students’ misconceptions remains a pedagogical goal across various

disciplines (e.g., in psychology [79,97], in physics [98], in biology [99], in computer sci-

ence [29]). It is fundamental work, as research has shown that strongly held incorrect

beliefs are harder to change [100] once they become fixed in a mental model, strength-

ening the misconceptions [101]. Researchers across various domains have agreed that

acquiring knowledge of students’ misconceptions early on in the course is crucial as

they can be addressed through instruction [29,96,102]. Below, I describe some of the

relevant studies that elicited misconceptions early on in introductory courses across

multiple disciplines.

In psychology education research, Vaughan developed a true/false (T/F) test to

determine introductory psychology students’ misconceptions, known as the Test of

Common Beliefs. Vaughan [97] administered the test to the introductory psychol-

ogy class students on the first day of class. The test consisted of 80 statements

representing ten conceptual contents. Incorrect statements marked as true by the

students were determined to be misconceptions for each student. The author found

a wide variety of misconceptions in students in the introductory psychology course.

Later, Taylor and Kowalski [101] followed the same approach as Vaughan, namely a

T/F test. In addition to determining the misconceptions of introductory psychology

students, Taylor and Kowalski [101] also evaluated the strengths and the sources of

the misconceptions. The authors developed 36 true/false questionnaire items adopt-

25

ing misconceptions from Vaughan’s test, course contents, instructor’s manuals, and

common psychological myths. With each item statement, the authors asked their

participants to rate their confidence in their response and asked how they learned

about the information to measure the strength and source of the misconceptions.

They administered the test at the beginning and at the end of the introductory psy-

chology course. They found that introductory psychology classes reduced the number

of misconceptions, as expected. They suggested instructors be mindful of the naive

beliefs students bring to class. Later, Taylor and Kowalski [103,104] found that refu-

tational lectures and text that activate a misconception and immediately counter it

with correct information significantly changed students’ beliefs. Other educational

researchers in the psychology domain also used (T/F) questionnaire to identify mis-

conceptions [105].

In biological education research, Boyes and Stanisstreet [99] used a questionnaire

to identify incoming freshmen students’ misconceptions about the energy sources of

living organisms. The questionnaire included statements about real and possible

energy sources for plants and animals. For each statement, the students were asked

to respond with a level of confidence that the statement was true. They reported and

discussed the commonly persisting misconceptions and remarked that misconceptions

might be developing in the students from their high school biology courses.

In physics education, researchers [98] believe that the intuitive beliefs of students

before taking the first course impact the sources of difficulties students experience in

physics. Therefore, numerous studies (e.g., [106, 107]) have been conducted to learn

about physics students’ misconceptions before formal instruction. The studies often

involved a multiple-choice questionnaire to identify misconceptions. For example,

Eryilmaz [98] used the Force Misconception Test to investigate students’ miscon-

ceptions of force and motion. Halloun and Hestenes [82] surveyed college students

enrolled in physics courses with their multiple choice mechanics diagnostic test, later

26

developed as Force Concept Inventory (FCI). In FCI, the most common misconcep-

tions found in students’ written answers from earlier studies were used as distractors

of the multiple choice test.

Researchers in chemistry education also acknowledged the importance of identifying

misconceptions before starting a formal course [108]. According to them, if students

encounter new information that contradicts their initial conception, they might ignore,

reject, or disbelieve the new information. Mulford and Robinson [108] developed a

22 multiple choice questionnaire-based chemistry concept inventory by 1) developing

a content list covered by a first-semester college chemistry course and 2) placing

distractors based on existing literature on introductory chemistry misconceptions.

The authors then presented the frequency of participants selecting a distractor before

and at the end of the semester.

Sadler et al. [102] researched 589 schools to determine the influence of teachers’

knowledge on students’ misconceptions about physical science. To collect data nation-

wide, they used a multiple choice-based questionnaire where the common students’

misconceptions were placed as distractors. Sadler [109] remarked that when the items

are written to include common misconceptions as distractors, the questionnaire serves

well in diagnosing misconceptions. Sadler et al. [102] found that teachers who know

their students’ most common misconceptions are more effective than teachers who do

not know.

2.3.2 Studies of Misconceptions in Introductory Programming

In the Computer Science education domain, there have been fewer studies of mis-

conceptions in mental models when compared to other science education domains.

Nevertheless, CS educators value the importance of finding programming miscon-

ceptions [7, 8, 29, 110]. According to Sorva [29], when programming misconceptions

persist, students may struggle to appreciate further instruction and learn from it if

the instructor does not utilize misconception-sensitive teaching. Kurvinen et al. [111]

27

remarked that finding the most relevant programming misconceptions would help

teachers and lecturers address the main obstacles faced by the students. On this

note, Sorva [29] also suggested knowing how the students commonly view the pro-

gramming concepts and utilizing tests to assess students’ prior knowledge. Keeping in

mind the need for knowledge about students’ programming misconceptions, Chiodini

et al. [112] created an inventory of programming misconceptions.

Though CS educators value the importance of learning novice programmers’ mis-

conceptions, few researchers define a misconception accurately [112]. According to

a literature review [110], some studies considered syntax error misconceptions, and

some presented language-independent misconceptions. Chiodini et al. [112] provided

an actionable definition of a programming misconception. According to them,

“A programming language misconception is a statement that can be dis-

proved by reasoning entirely based on the syntax and/or semantics of a

programming language”. [112, p.381]

They emphasized that misconceptions must be tied to a programming language; oth-

erwise, one often cannot conclude that certain assertions are wrong. I also believe

that a programming misconception should be language-specific.

Chiodini et al. [112] provided a list of papers studying programming misconcep-

tions from the year 1983 to 2021. None of the studies mentioned identified program-

ming misconceptions before classroom instruction. Caceffo et al. [113] used an open-

response test to identify CS1 students’ misconceptions at the end of the semester.

Swidan et al. [8] identified school students’ misconceptions of Scratch. They used

Sorva’s [114] list of Java misconceptions and created a multiple choice-based question-

naire with the applicable misconceptions as distractors. They recorded each wrong

response of their participant as a misconception.

As shown in this section, researchers have used quantitative methods to identify

misconceptions. Other researchers have also used qualitative approaches (e.g., think-

28

aloud, interviews, drawing, videotape, observation) [7, 28, 115, 116] to identify mis-

conceptions. Because I envision our work being used in intro courses with large

enrollments, I have adopted a quantitative approach to make it easy to administer.

2.3.3 Common misconceptions of CS1 students

In a study, Sorva [28] found a student believing that an assignment statement of

primitives (e.g., number2 = number where both variables are of a primitive type) to be

equivalent to an assignment of reference variables. A misconception that a primitive

variable can hold multiple values at a time was reported by various studies. Students

were also found to believe that values swap when one primitive variable is assigned

to another (inverted assignment). Novice programmers tend to have a misconception

that primitive variables do not have a default value. Moreover, some students believe

that the natural language semantics of variable names (e.g., a variable named books)

affects the value of a variable it can store.

The misconceptions of the primitive variable assignment also exist when a literal or

another variable is assigned to an array’s index as an element. In addition, confusion

regarding the array’s indexing [7, 111, 117], especially the start and ending index, is

common among CS1 students. Moreover, novice programmers tend to think an array

of elements are untyped [112].

In Java, arrays are manipulated with reference variables. Hence, misconceptions

regarding reference variables are also tied to it. Sorva [28] and Ma [17] found that

a reference variable does not hold a reference but a set of object properties instead.

Moreover, Holland et al. [118] found that some students believe once a variable ref-

erences an object, it will always refer to it. Regarding a reference variable or object

declaration, Kaczmarczyk et al. [7], and Sorva [119] found that novice programmers

tend to believe memory is allocated for objects after declaration. Whereas novices

thought no memory is allocated for an object when the object is instantiated [7]. One

more misconception that novice programmers commonly hold is reference variable

29

assignment copies objects [120].

In my work, I utilized these existing common misconceptions to create questions to

probe if these misconceptions exist in CS1 students’ mental models before classroom

instruction of arrays.

In the next chapter, I present a study that analyzed the diagrams of commonly used

CS1 textbooks. In the process of analysis, I identified the parts and state changes

components of arrays.

CHAPTER 3: TEXTBOOK REPRESENTATION OF ARRAY’S PARTS AND

STATE CHANGES

This chapter presents the results of a study that has been published in the Proceed-

ings of the 2020 ACM Conference on Innovation and Technology in Computer Sci-

ence Education (ITiCSE), 2020, in Trondheim, Norway. Full citation can be found

here [121].

3.1 Introduction

Textbooks, whether they are online or traditional, are the most reliable source of

knowledge a student seeks [122,123]. Students consider the information in textbooks

as reliable and trustworthy. Since textbooks have been the main didactic tool in many

educational systems worldwide [124], their analysis could provide valuable information

about a factor affecting students’ construction of knowledge. In recent years, textbook

analysis has been done in Computer Science to assess the quality of programming

examples and to understand how thoroughly important programming concepts are

covered [125–127]. As diagrams impact a mental model more than the text [65], I

investigated textbook diagrams to understand novices’ mental models in terms of

what parts and state changes are shown with diagrams. In the initial stage of study,

I analyzed the textbook diagrams of three programming concepts: variables, arrays,

and objects.

Theories of mental models [32, 55–57] have led Mayer and Gallini [5] to pinpoint

two features of diagrams1 that help learners build runnable mental models - parts and

state changes2. Here, parts refers to the major components of the scientific concept
1I am using “diagrams” as a more common alternative to the term “illustrations”, which is the

term used by Mayer and Gallini
2Mayer and Gallini [5] used the term Parts to refer to major parts and State changes to refer to

31

or device. And state changes represents each major state of the components and the

changes of the states. My research aims to explore what parts and state changes are

provided in the diagrams of introductory programming textbooks for variables, arrays,

and objects. I surveyed 15 commonly used introductory computer science (CS1) Java

textbooks and analyzed diagrams of these fundamental programming concepts. In

this paper, I summarize my findings based on the following questions:

RQ What major parts and state changes are shown in the textbook diagrams and

how?

3.2 Mayer’s Decomposition of Parts and State Changes

Mayer and Gallini [5] propose two types of decomposition of a concept, when

portrayed with diagrams, could help learners build a mental model of a scientific

device or concept: parts and state changes. By parts Mayer and Gallini [5, p. 715]

refer to each major component within the structure of a system. This is exemplified

in the work undertaken by Mayer and Gallini as the major parts of a braking system

include the tube, wheel cylinder, smaller piston, brake drum, and brake shoe. In

addition to portraying the parts, Mayer and Gallini [5] believed the portrayal of each

major state that each component can be in and the corresponding state changes also

influences the mental model.

In the context of a braking system, the major state changes were exemplified in the

paper as “before braking” and “after braking” states for each of the major components

such as the tube, smaller pistons, brake shoes, and wheel. They also emphasized on

the portrayal of the relational state change, such as how the state change of the brake

shoe causes changes in the wheel and other components.

The presence of these two features makes the diagrams explanative. By conduct-

ing three experiments Mayer and Gallini [5] concluded that explanative diagrams

improve mental models.

major state changes

32

Though Mayer and Gallini tested this framework for spatial, mechanical, and sci-

entific systems, I found this framework suitable to analyze how variables, arrays, and

objects are depicted in terms of their parts and state changes because programming

is a scientific process which entails a systematic structure. Similar to a system, the

components of a programming concept interact with one another in a defined way

specified by the programming language’s semantics.

3.3 Methodology

3.3.1 Defining Programming Concept’s Parts and State Changes

The first step in my analysis was to define the parts and state changes for the three

concepts I studied: variables, arrays, and objects. I then investigated how the parts

and state changes are portrayed in the diagrams found in popular CS Introductory

textbooks. This section provides my proposed definition of parts and state changes

for my three studied programming concepts.

3.3.1.1 The Parts

For a primitive variable, I considered the parts to be the name, the value stored,

the memory location of the variable, possibly the amount of memory occupied by the

variable (size), and the corresponding code that defines/uses the variable.

For an array, I considered the parts to be the name of the array, the reference

(pointer) to the array elements, the elements that form the array, the indices of the

individual slots, the memory location of the array, and the corresponding code that

creates/uses the array.

For an object, the parts were the name of the object, the reference (pointer) to the

object, the fields of the object, the methods, the memory location of the object, and

the corresponding code that creates/uses the object.

33

3.3.1.2 The State Changes

For defining the major state changes, I created a list of states that a variable, array,

and object can have.

Variables

In my proposed framework, the state changes for variables includes the following

states:

Declaration: Declaration is the state of a variable when you declare it with a given

type (e.g., int number;). When a declaration statement is processed at run-

time, memory for that variable is allocated, and the default values are set.

Initialization: I counted as initialization the step when a variable is initialized to

a value other than the default value, and it happens as part of the variable

creation/declaration:

int number = 5;.

Assignment: I considered an assignment any time when the variable value is changed

using an assignment (=) operator (e.g., number = 7;) after declaration.

Arrays

In my framework, the State changes for arrays includes the following steps:

Declaration: When I declare an array, for example

double[] itemPrice; a reference variable is created with a default value of

null.

Instantiation: I am referring to the instantiation state when allocating an array

with a statement such as:

itemprice = new double[10];

This statement allocates sequential blocks of memory, assigns default values to

them, and stores the reference to the block in the variable (e.g. itemprice).

34

Assigning values: This state shows the change in elements when an element is

assigned new values, for example:

itemprice[7] = 12.7;.

Objects

In my framework, the State changes for objects includes the following steps:

Declaration: The creation of an object begins with declaring the object’s reference

variable, such as:

Clock myClock; where Clock is a class. At runtime, this statement creates a

reference variable myClock with a default value of null.

Instantiation: When an object is instantiated using new :

myclock = new Clock(); memory is allocated for that object and the reference

variable myClock now points to the new object. This object’s fields will get

initialized with default values or with other computed values depending on the

class constructor.

Field Assignment: This state captures the object’s fields being changed through

some assignment operation, by calling a setter method, or as a side effect of

another method call.

Assignment: This state represents a reference variable change to point to another

object, such as

myClock = yourClock;

3.3.2 Textbook Selection

With the framework presented above, I set out to analyze diagrams in introductory

textbooks. To obtain a representative sample of commonly used introductory Java

textbooks, I used surveys of educators and looked at best-selling lists. I posted a sur-

vey on the SIGCSE members mailing list on 31st July 2019 and a poll in Facebook’s

35

CS Education discussion forum group. I also looked at Amazon’s and Barnes & No-

ble’s best-seller programming textbook lists [128, 129]. I filtered these lists, selecting

textbooks for novices with no prior programming experience. From these sources,

I selected books that appeared in multiple lists (e.g., mentioned in the survey and

appearing in a best-seller list) and highly recommended books (e.g., multiple votes

in one of the polls or high on one of the best-selling lists). In addition, I wanted to

include an electronic textbook, as those are becoming more popular.

To avoid interpreting my analysis as a vote in favor of a particular textbook or

even as an evaluation of the quality of the textbook, I have given a random identifier

to each book (e.g., B1, B2, etc.) and used that identifier to refer to the book in

the paper. All 15 books used are cited in the references [130–144] but there is no

relationship between the identifier used in the paper and the textbook.

3.3.3 Data Collection

For each textbook, I examined the chapters where each concept (e.g., variable of

primitive type, array, and object) was introduced. If the textbook did not have a

designated chapter for a concept, I examined the section where the concept was first

defined.

For each of the concepts, I recorded whether a textbook provided a diagram or not.

If the textbook provided a diagram for the concept, then to capture the parts com-

ponents, I focused on the first diagram provided in the textbook, typically when the

concept was introduced. I tallied each of the parts components if the book presented

the parts in their diagram.

For analyzing the state changes, I examined all the diagrams in the chapter, not

just the first one. I looked for the depiction of states and an explanation of state

changes for each concept. Furthermore, I looked to see if the diagrams included the

code that produced the state change.

The results are shown in Tables 3.1, 3.2, and 3.3 and discussed in the next section.

36

Ta
bl
e
3.
1:

P
ar
ts

&
St
at
e
ch
an

ge
s
co
m
po

ne
nt
s
of

P
ri
m
it
iv
e
V
ar
ia
bl
es
.

P
ar
ts

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

B
11

B
12

B
13

B
14

B
15

N
am

e
X

X
X

X
X

X
X

X
X

X
X

X
V
al
ue

X
X

X
X

X
X

X
X

X
X

X
X

M
em

or
y

X
X

X
Lo

ca
ti
on

Si
ze

X
X

C
od

e
X

X
X

X
X

X
X

X
X

X
X

X

S
ta
te

ch
an

ge
s

D
ec
la
ra
ti
on

X
X

X
X

X
In
it
ia
liz
at
io
n

X
X

X
X

X
A
ss
ig
nm

en
t

X
X

X
X

X
X

Ta
bl
e
3.
2:

P
ar
ts

&
St
at
e
ch
an

ge
s
co
m
po

ne
nt
s
of

A
rr
ay
s.

P
ar
ts

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

B
11

B
12

B
13

B
14

B
15

N
am

e
X

X
X

X
X

X
X

X
X

X
X

X
R
ef
er
en
ce

X
X

X
X

X
X

X
X

X
E
le
m
en
ts

X
X

X
X

X
X

X
X

X
X

X
X

In
di
ce
s

X
X

X
X

X
X

X
X

X
X

X
X

X
M
em

or
y
lo
ca
ti
on

X
C
od

e
X

X
X

X
X

X
X

X
X

X
X

X

S
ta
te

ch
an

ge
s

D
ec
la
ra
ti
on

X
In
st
an

ti
at
io
n

X
X

X
X

X
X

X
A
ss
ig
ni
ng

va
lu
es

X
X

X
X

X
X

X

37

3.4 Results

3.4.1 Variables

Twelve (12) of the fifteen (15) textbooks illustrated primitive variables. Variables

were usually represented as a rectangular box with a value in it and the variable name

on the left side. B7 presented sequential boxes as memory slots and put values on the

side to demonstrate how many memory slots are occupied by the variable. B9 also

included sequential memory location with values in it.

3.4.1.1 Parts

According to my framework, the components of variables that could be depicted

included variable name, value, memory location, and size. All 12 books labeled

variable name and value in their diagrams (see Table 3.1). Only B7 and B9 presented

variables with memory location as slots of sequential boxes. B10 presented a memory

address at the left of the variable box, depicting the variable name on top. B7 also

annotated the size of the variable in the diagrams, as well as B11.

3.4.1.2 State changes

Table 3.1 lists the program states a variable can have and shows which books

had illustrations of which program states. The books are checked off if they contain

illustrated states after explaining the execution of the equivalent code. Eight out of 12

books explained and portrayed some states of a variable. The remaining four books

either had code annotation and diagrams or just diagrams with no explanation of the

states. I describe the descriptions of the program states and books that portray them

below:

Declaration: Only 5 out of 15 books (B1, B3, B9, B6, B10) presented this state in

their introductory chapters. Four of them show the box empty, which inaccu-

rately suggests that there are no default values assigned. Only B10 presented 0

as a default value of an int variable.

38

Initialization: The same five books contained illustrations of the state change of a

variable after initialization by showing the execution of equivalent code. Other

books did not contain illustrations of the initialization state.

Assignment: Along with declaration and initialization, B1, B3, and B9 also showed

changes in the diagrams when an initial value was changed to a different value.

B2, B4, and B7 did not present previous states and only showed the variable

state after an assignment. The remaining nine books did not provide any illus-

tration of this state. B1, B3, and B9 also provided an illustration of the change

after executing a statement that caused a change on a variable.

3.4.2 Arrays

Thirteen textbooks visually represented an array as a horizontal set of boxes or

slots, along with indices. Some books included a small reference box pointing to the

long horizontal rectangle. Figure 3.1 shows a representative example of the diagrams

found in the textbooks.

Figure 3.1: Representative example of a diagram for arrays found in some textbooks.

3.4.2.1 Parts

Twelve textbooks showed indices in their diagrams (see Table 3.2). Eight textbooks

provided a detailed diagram showing names, references, elements, and indices in their

diagrams. B12 did not illustrate elements and memory locations but provided the

other three components. Only B9 visually represented memory blocks of an array

along with names, elements, and indices. Only B7 visually represented an array

39

without any corresponding code; the rest of the books provided equivalent code to

explain their diagram.

3.4.2.2 State changes

Only seven textbooks explained some of the following program states after code

execution with diagrams; the remaining eight books either did not provide any dia-

grams, or they provided only the Parts (see Table 3.2):

Declaration: Only B11 illustrates this state. Though B11 portrayed this important

state, it showed no default value for the reference variable.

Instantiation: This state was visually represented by seven books. While most of

them have shown the appropriate default value of the elements after instantia-

tion, B5 and B6 used blanks in the slots of the elements. The other eight books

did not provide any visual explanation of this state.

Assigning values: All of the seven textbooks that portrayed instantiation also il-

lustrated how an array looks after assigning values to particular slots.

Table 3.3: Parts & State changes of Objects.

Parts B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
Name X X X X X X X X X X X X
Reference X X X X X X X X
Fields X X X X X X X X X X X X
Methods X X X
Memory X X
location
Code X X X X X X X X X X

State
changes
Decalaration X X X
Instantiation X X X X X X X X
Field X X X X X X
assignment
Assignment X X X X

40

3.4.3 Objects

I found diagrams of objects in 12 of the 15 books. Objects were visually represented

with boxes that contained fields and methods and a reference pointing to the box

(see Figure 3.2). B15 and B9 depicted objects differently, using vertical slots of

memory with the reference variable stored in one of the memory slots pointing to

the address block where the fields were stored. B6 portrayed objects as Universal

Markup Language (UML) diagrams with subclasses and fields with values within the

class diagrams.

Figure 3.2: Representative example of a diagram for objects found in some textbooks.

3.4.3.1 Parts

All of the 12 books depicting objects showed the name and fields of an object

in their diagrams (see Table 3.3) except B10, which left out the fields. The object

reference was also depicted in all of them except B6 and B9. B1, B3, and B11 were

the only books showing all major components of an object: name, reference, fields,

and methods. Only B9 and B15 illustrated memory locations as part of an object.

Two books did not provide any corresponding code for their diagrams.

3.4.3.2 State changes

Nine of 15 books explained some states of an object with code and diagrams.

Declaration: This state was visually represented by only three books (see Table 3.3).

41

Where B13 and B9 showed null as the default value, B15 showed a question mark

(?) in the reference.

Instantiation: Only eight textbooks illustrated this state. Other than B2 and B3,

all 8 visualized the object state when it is instantiated with default values. B8

showed the instantiation both with a default value and other values by calling a

constructor. B3 instantiated the object by initializing fields with other values.

While B8 and B9 provided appropriate field-specific default values, B13 did not

provide any default value, B10 displayed blanks in the fields, and B15 showed

question marks (?).

Initialization: Four textbooks visually represented this state. B5 and B10 portrayed

the change in fields by initializing them. B15 and B9 initialized fields with set

methods.

Field assignment: Six books illustrated changes in fields after an assignment oper-

ation on fields, either by method call, constructor, or direct assignment.

Object Assignment: Four textbooks portrayed this change by showing the refer-

ence of one object now pointing to another object after the assignment. The

other 11 books did not portray this state change.

3.5 Discussion

Variables: Most textbooks presented variables by depicting the name, value, and

code associated with the variable. Few, however, showed how variables are related

to memory (location and size). Only three of the textbooks had four of the five

components from the parts of variables. For the state changes, only three textbooks

showed all states.

Arrays: Array coverage is more uniform across all the textbooks analyzed. Twelve

of the fifteen books cover at least four components from the parts. The depiction of

42

state changes for arrays is also pretty uniform, but only about half of the books show

at least two of three states.

Objects: Object coverage is much more sparse than the other two concepts. I

postulate that this might be because of the nature of the introductory textbooks;

object behavior is an advanced topic and thus less covered than variables and arrays.

This variability of the parts depiction shows inconsistency among the books. For

example, diagrams from some books presented references to arrays, but others left

them out. This type of inconsistency and wide representations in the visual repre-

sentations of programming concepts has also been found in pedagogical animation or

debugging tools [145].

Overall, my analysis showed more coverage of the parts than the state changes.

Also, most textbooks that showed a default state after creating a variable used a

question mark (?) or blank as the default value. The Java language has clearly defined

default values for each data type, and these depictions are, therefore, misleading.

This kind of misrepresentation can contribute to one of the common misconceptions

regarding variables: variables of primitive type have no default value [7].

Though most of the textbooks provided diagrams of these concepts, in terms of

Mayer and Gallini’s definition, not a single textbook portrayed an explanative diagram

showing all of the major components of parts and state changes for variables, arrays,

and objects. Based on Mayer et al.’s work, it appears that textbooks are missing an

opportunity to help students build a runnable mental model of these basic concepts.

Authors can utilize textbooks as a tool to help students become more autonomous in

trying to understand programming rather than rely on other sources (e.g., lectures

and tutorials) by incorporating explanative diagrams. As one-to-one guidance is

becoming less available in CS1 courses because of high enrollment, textbooks, program

visualization tools, and debuggers can provide quality content to improve students’

learning and decrease the shortcomings of classrooms.

43

3.6 Limitations

The implications of my work face the following limitations. First, my sample of

books may not be representative of textbooks most frequently used in CS1. The

Amazon and Barnes & Nobles bestseller lists of Java textbooks only indicate how

many people bought these books, not whether they were used in a CS1 class. Also, I

could not obtain some of the newest editions of books and considered older editions

in my analysis. I limited my study to only Java textbooks in this research because

diagrams can vary with language semantics. For now, I defined the parts and state

changes in terms of Java semantics.

Another limitation is that Mayer et al.’s work entailed spatial and often mechanical

systems. The concepts explained in the diagrams of my study are abstract concepts.

How do you depict data type? How do you depict memory locations? How do you

show state changes for a system with no moving parts? These questions can be

answered via graphical rendering that might not be obvious to the students, thus

possibly obfuscating the diagrams themselves.

Finally, the context and purpose of where the diagrams are used also must be

considered when evaluating their effectiveness. For example, the first time an array is

shown in a textbook, it might have all the details proposed in my work. But later in

a textbook, as arrays are used to explain other concepts (e.g., sorting), the diagram

might focus on other concepts. The array, in those examples, might be one part of

a larger example. In those cases, the diagram can be drawn in a simplified manner,

abstracting out some of the details. Similarly, the memory address of the variables

might not be normally depicted in the books in my study but might be essential in

books that cover system architecture, for example.

44

3.7 Conclusion

In this chapter, I proposed a framework of parts and state changes to analyze

diagrams in introductory computer science textbooks based on Mayer’s framework

for explanative diagrams. I found this framework suitable to analyze how variables,

arrays, and objects are depicted in 15 introductory programming textbooks.

My work has certain implications and suggestions for diagrams. In Appendix B, I

describe the development of explanative diagrams of arrays covering all the parts of

my proposed framework. The particular graphical properties used (position, color,

shade, etc.) can differ in other renderings of this diagram, but the parts and state

changes components must be depicted to meet my framework (and Mayer et al.’s

definition of explanative diagrams).

My analysis found a wide variability in how these concepts are depicted in the

textbooks. This suggests that the diagrams for variables, arrays, and objects shown

in many CS1 textbooks fall short of meeting the conditions for an explanative diagram.

The shortcomings of diagrams motivated me to understand the shortcomings of novice

programmers’ mental models. Therefore, for my doctoral work, I aimed to investigate

novice programmers’ mental models based on the breakdown of array’s parts and state

changes mentioned in this chapter. With this intent, I adopted a questionnaire-based

approach to elicit and analyze novice programmers’ mental models. The next chapter

presents my approach to develop the questionnaire.

CHAPTER 4: THE MENTAL MODEL TEST: AN INSTRUMENT TO ELICIT

MENTAL MODELS

4.1 Introduction

In the previous chapter, I described my study to find the shortcomings of text-

book diagrams depicting fundamental CS1 concepts: primitive variables, arrays, and

objects. In our College of Computing and Informatics at UNC Charlotte, the CS1

course is offered in a combination of these two courses: ITSC 1212: Introduction to

Computer Science I and ITSC 1213: Introduction to Computer Science II. At the time

of my data collection, arrays were taught at the end of our CS1 course ITSC 1212:

Introduction to Computer Science I using the programming language Java. Students

start the following course, ITSC: 1213, by reviewing arrays. Therefore, understanding

arrays is crucial in assessing whether students can advance into a CS2 course. More-

over, arrays have certain characteristics that are in common with primitive variables

and objects. Arrays are manipulated with reference variables similar to an object.

Assigning values to an array’s element works the same way as a primitive variables

assignment. Therefore, the understanding of students’ mental models of arrays might

help us to perceive their mental models of primitive variables and objects.

My approach to eliciting novice programmers’ mental models adopts a multiple-

choice questionnaire to ensure two criteria of mental models: correctness and consis-

tency. In this chapter, I describe the development and deployment of my questionnaire-

based approach to elicit mental models: the Mental Model Test of Arrays (MMT-A).

46

4.2 Definitions and Examples

This section reiterates the definitions of related terms that I use to develop the

MMT-A. Though the definitions are stated in previous sections, here, I am highlight-

ing them to clarify their scope with examples:

Mental Model: As mentioned in Section 2.1.1, I am implementing one combined

mental model definition from two sources. While forming the mental models, I am

using the definition that a mental model is a set of assertions [35]. I will represent

novice programmers’ mental models with assertions in their minds. These assertions

were elicited based on the array’s parts and their behavior (state changes) [31, 37,

146, 147]. In summary, I aim to elicit novice programmers’ assertions of the array’s

each part and state changes components.

For example, let’s consider the mental model of the moon. I have a series of

assertions on the moon’s structure and states.

Factual assertions of the moon’s structure (parts):

1. The moon’s shape is an oblate spheroid.

2. The moon’s color is grey.

3. The primary composition of the moon’s surface is rocks and dust.

Factual assertions of the moon’s state changes:

1. The moon reflects the sun’s light.

2. The moon orbits around the Earth.

3. The moon is visible at night.

These assertions are a subset of correct factual assertions that will form the accurate

mental model of the moon. MCQ questions have the following components: 1) a

47

question stem, 2) a correct answer, and 3) distractors [148]. A possible MCQ question

to elicit a learner’s mental model of the moon’s parts can be:

Question Stem: What is the primary composition of the Moon’s surface?

Answer(X) and Distractors:

a) Iron.

b) Silicon.

c) Helium.

d) Rock and dust. (X)

Here, the correct answer (option d) was generated from the correct assertion the

primary composition of the moon’s surface is rocks and dust.. The distractors are

generated from plausible misconceptions and thus are incorrect assertions, such as

the primary composition of the moon’s surface is iron.

Similar multiple-choice questions can be developed for eliciting learners’ mental

model assertion related to the moon’s state changes. An exemplar question can be:

Question Stem: Why does the moon appear to shine?

Answer(X) and Distractors:

a) The moon produces its own light.

b) It reflects sunlight. (X)

c) It reflects the earth’s light.

d) It absorbs sunlight and releases it at night.

Here, the common misconceptions regarding the moon’s source of light are placed

as the distractors.

Correctness: A mental model is correct when it is faithful to the behavior of

the actual device [37]. Correctness will ensure which portions of students’ mental

models are correct and which are incorrect. For example, accurate answers to all of

the questions regarding the moon will prove correct mental models for the moon.

48

Consistency: A mental model is consistent when there is no internal contra-

diction [37]. To clarify, a mental model is consistent where the assertions do not

contradict each other. Two assertions contradict each other when they can not be

true at the same time [35]. In his approach to proving contradiction, Laird [35] took

an approach of negating the assertions. As stated earlier, a mental model is a collec-

tion of assertions. In my context, the set of assertions is within the components of a

system’s parts and state changes. According to Laird [35], to determine the contra-

diction, we need to choose any assertion in the set. Afterwards, we try to prove its

negation from the remaining assertions in the set. If a negation is found, then the set

of assertions is inconsistent.

For example, I have two assertions about the moon’s shape: 1) the moon is a circle,

2) the moon is a square. From the assertion the moon is a square, I can derive its

negation that the moon is not a circle. Since I found a negation by following Laird’s

approach to determine inconsistency, these two assertions can not be true at the

same time; thus, they are contradictory. If a mental model includes no contradictory

assertions, then the mental model is deemed consistent. The opposite will be deemed

as inconsistent.

I utilized these definitions and approaches to elicit novice programmers’ mental

models of arrays.

4.3 Development of MMT-A

As stated above, I am eliciting the mental model as a set of assertions for each

component. From the textbook content analysis (mentioned in Chapter 3), I derived

array’s parts components to be name, type, index, and elements. The state changes

components include declaration, instantiation, assigning elements, and assignment.

I listed the correct factual assertions of each component. For example, the correct

assertions of a state change declaration are:

1. After declaration, an array reference variable is created.

49

2. After declaration, the default value of the array reference variable is set to null.

Then, I began to list incorrect assertions. I utilized the literature on misconcep-

tions [7,17,28,119,149–152,152–155] and my teaching experience to enumerate incor-

rect assertions. I generated some incorrect assertions by inferring from the misconcep-

tion of other related concepts. For example, Kaczmarczyk et al. [7] reported finding

that students believed memory is allocated for Objects that have been declared but

not instantiated. Since an array declaration is the same as an object declaration, I

utilized this misconception as an incorrect assertion.

After enumerating the correct and incorrect assertions for each concept, I developed

the questionnaire where these assertions would be placed as options. Here, I placed

the correct assertions as keys and incorrect assertions as distractors. I used only

four choices per question, following current pedagogical conventions. Each distractor

maps to an incorrect assertion, as shown in Figure 4.1. In some cases, a distractor

is mapped to multiple assertions based on the context. Most of the wrong assertions

were placed as distractors in multiple questions to measure the consistency of the

mental model. For example, the wrong assertion that ‘indexing starts with 1’ is placed

in eight questions as a distractor. Students holding a misconception about the array

‘indexing starts with 1’ will have multiple opportunities to select this distractor in

several questions. This helps us to identify the misconceptions in a student’s mental

model. Not every component has equal sets of incorrect assertions and questions

(shown in Table 4.1), as some components (e.g., name or type) have fewer documented

misconceptions than others.

Additionally, to retain construct validity, I only aimed to develop questions that

elicit the mental models of arrays. Thus, I avoided incorporating other concepts (e.g.,

nested loop) into the questionnaire.

50

Figure 4.1: An example showing the mapping between each choice and the corre-
sponding assertion.

Table 4.1: List of mental model concepts, concept types and the number of questions
in which they appear.

Concept Type Concept Name Num. of Questions

Part Name 2
Part Index 5
Part Type 2
Part Element 5
State Change Declaration 6
State Change Instantiation 4
State Change Assigning Elements 6
State Change Array assignment 6
Total 36

4.4 Collection of Mental Model Assertions

I mapped each participant’s multiple-choice selection (response) to an assertion,

as shown in Figure 4.1. For example, if a participant selects option (d) (scores[1]),

the participant’s recorded assertion for this question is ‘MI4: Array index starts at

1’. Thus, for each participant, I collected the selected assertions for all of the 36

questions of the MMT-A.

As each assertion could appear multiple times, I counted:

51

• How many participants always selected an assertion. The frequency distribution

of the counts will allow me to hypothesize about the correctness and consistency

of novice programmers’ mental models. The majority of the participants always

selecting the correct assertion can inform us that most students are learning.

On the contrary, if the majority of the participants always select the wrong

assertion, it can indicate that a misconception persists among the group of

students.

• How many participants sometimes selected an assertion. This measure can give

us an estimation of uncertainty in their mental models. If a participant selected

an assertion only once while having multiple opportunities, this could indicate

the uncertainty of their mental models and, in some cases, inconsistency.

• How many participants never selected an assertion. The frequency distribution

of the counts will allow me to hypothesize which assertion is not present in the

participants’ mental models. For example, if the majority of the participants

never selected a wrong assertion, this can indicate they don’t have that incorrect

assertion in their mental models.

I collected the three frequency counts for each assertion from the data to investigate

novice programmers’ mental models. In chapter 5, I report the selection frequency

for each assertion before a classroom instruction of arrays. In chapter 6, I report the

selection frequency for each assertion after a classroom instruction of arrays. The

frequencies show what assertions are present in their mental models. In my work,

the selection of assertions will allow me to measure and analyze the characteristics of

their mental models.

4.5 Measurement of Consistency

The first step to measure the consistency of a mental model is to aggregate partic-

ipants’ assertions for each component of the parts and state changes. According to

52

Laird’s definition of consistency [35], a mental model is defined as consistent when

the assertions residing in the mental model do not contradict each other; that is,

there are no two assertions can not be true at the same time. By following this defi-

nition, I determined the contradiction among a set of assertions. First, I grouped the

assertions based on the components. For example, all the assertions related to the

array’s part component index are considered as a set of assertions of index. Then, I

determined which assertions are contradictory to each other.

For example, let us consider the incorrect assertion that ‘array indexing begins with

1’. If I follow the definition of consistency, I will conclude that it contradicts with

‘indexing starts with 0’. The two assertions ‘indexing starts with 0’ and ‘indexing

starts with 1’ cannot be true at the same time. Therefore, I mark these assertions as

contradictory assertions.

By following Laird’s [35] definition, I devised steps to determine if two assertions

can not be true at the same time. The steps are:

Step 1: Group the assertions based on the parts and state changes components.

Step 2: Take one assertion from the n assertions in the set.

Step 3: Take another assertion from the n-1 assertions in the set.

Step 4: Logically compare the two assertions with each other.

If they can not be true at the same time, mark them as contradictory.

Otherwise, take another assertion from the set.

Step 5: Follow step 4 as long as all the comparisons are not done.

Step 6: Repeat Steps 2, 3, and 4 until all of the assertions in the set are compared

with each other.

I listed the contradictory assertions for all parts and state changes components in

a marking sheet (see Appendix C).

53

After collecting each participant’s assertions mapped from their choices, I grouped

the sets of assertions based on parts and state changes components. For example, a

participant’s assertions related to index are grouped together. Then, I utilized my

marking sheet to determine if there was a contradiction in the set of the participants’

assertions. If I find a contradiction, I label the participant’s mental model of index

inconsistent, otherwise consistent. I follow a similar approach to label a participant’s

mental model consistency for each part or state changes components.

4.6 Measurement of Correctness

Measuring correctness is the same as measuring the accuracy of the answers. If a

participant chooses a correct answer, it reflects the correctness of the participant’s

mental model. The test had pre-determined correct answers, and I graded partici-

pants’ responses against the correct answers. I gave the participants a score of 1 for

a correct answer and a 0 for an incorrect answer. The question was not scored if a

student did not answer a question (left the question blank). The correctness score was

the number of questions answered correctly as a percentage of all questions answered.

4.7 Classification of Mental Models

In this section, I describe an integrated model to classify mental models based on

consistency and correctness. A mental model can be labeled as consistent and incon-

sistent based on consistency. Correctness can include 1) incorrect, 2) mostly correct,

3) mostly incorrect, and 4) correct. Based on both consistency and correctness, I

classify a participant’s mental model into one of 7 categories (see Table 4.2):

• Inconsistent and Incorrect (II): When a participant’s response contains no cor-

rect answer, I labeled the mental model as incorrect. Additionally, if some of

the participant’s incorrect assertions contradict each other, the mental model

will be labeled as inconsistent and incorrect.

• Consistent and Incorrect (CI): When a participant’s response contains no cor-

54

rect answer, and the incorrect assertions do not contradict each other, then

labeled the mental model as consistent and incorrect.

• Inconsistent and Mostly Incorrect (IMI): I refer as mostly incorrect a mental

model that has more wrong answers than right answers. I also label it as ‘mostly

incorrect‘ if there are the same number of right and wrong answers. If there is

evidence of contradiction in the assertions and it is mostly incorrect, then the

mental model is labeled IMI.

• Consistent and Mostly Incorrect (CMI): I term a mental model as CMI when

a mostly incorrect mental model (see previous bullet) showed no evidence of

contradictions among assertions.

• Inconsistent and Mostly Correct (IMC): I label a mental model as mostly correct

when a participant’s responses contain more right answers than wrong answers.

A participant’s mental model is thus labeled IMC when there is evidence of

contradiction in the assertions.

• Consistent and Mostly Correct (CMC): A participant’s mental model is labeled

consistent and mostly correct if the responses have more right answers than

wrong and there is no evidence of contradictions in the assertions.

• Correct (C): I categorize a participant’s mental model as correct when all the

responses are correct. When the answers are 100% correct, there can not be

any inconsistency. Therefore, a correct mental model will always be consistent.

I label this category as simply correct (C).

A correct mental model will have a mental model rank 6 (see Table 4.2). As the

correctness and consistency decrease, the rank will become lower, with the lowest

ranking being incorrect and inconsistent. I use this classification of mental models to

label and rank mental models for each component of parts and state changes.

55

Table 4.2: A classification (ranking) of mental models based on correctness and con-
sistency.

Consistency Inconsistent Consistent Inconsistent Consistent Inconsistent Consistent Consistent
Correctness Incorrect Mostly Incorrect Mostly Correct Correct
Abbreviation II CI IMI CMI IMC CMC C
Ranking 0 1 2 3 4 5 6

4.8 Measurement of a Mental Model

I use the mental model classification presented in the previous section and shown

in Table 4.2 to rank each participant’s mental models of the parts and state changes

components. Here, the highest mental model score a participant can achieve is 48,

ranking 6 for all the eight components of parts and state changes and the lowest to

be 0; incorrect and inconsistent mental model for all eight components. For example,

consider a participant with a consistent and mostly correct (CMC) mental model

(rank: 5) for the part index and type, a mostly incorrect inconsistent mental model

(rank: 2) for the state changes declaration, instantiation, and assignment, and mostly

incorrect consistent mental model (rank: 3) for the part name, element, and state

changes assigning elements. Then, I calculated the participant’s total mental model

score as (5+5+2+2+2+3+3+3) = 25.

4.9 Identification of Misconceptions

As discussed before, I placed several assertions in multiple questions as options so

that participants had multiple opportunities to select these incorrect assertions. A

participant choosing an incorrect assertion all the time when it was available resulted

in that assertion being labeled as a misconception. I identified which assertions were

marked as a misconception and how many participants were found to hold the miscon-

ception. In Chapter 8, I present the misconceptions identified in novice programmers’

mental models before classroom instruction and after. I also describe the change in

misconception after having classroom instruction.

56

4.10 Example: A Case Study

In this section, I present a case study demonstrating how I analyzed a single par-

ticipant’s mental model. I refer to this case as participant X.

First, I mapped participant X ’s responses to the corresponding pre-defined asser-

tions (as shown in Figure 4.1). Then, I grouped the assertions based on the parts

and state changes components. As each assertion is presented more than once, a

participant can choose an assertion multiple times. Table 4.3 lists participant X ’s

chosen assertions and the percentage of selection of that particular assertion. Next,

I analyzed the contradiction between assertions with the marking sheet, which lists

the contradictory assertions to measure the consistency of the mental model based

on the method described in Section 4.5.

For the part name, I found only one assertion in the mental model: ‘MN2: Array

type (e.g., int[]) is the name of the array’. This assertion was presented twice in the

MMT-A, and participant X selected the option corresponding to this assertion both

times. Since I found no contradictory assertions regarding the component name, I

marked the mental model for name as consistent.

I computed the correct answers for measuring correctness, as mentioned in Sec-

tion 4.6. For the part name, participant X answered all the questions wrong. There-

fore, I assigned the correctness score as 0 (reported in Table 4.4).

Afterward, based on consistency and correctness, I classified and ranked the mental

model of array’s name. As I found the mental model to be consistent and incorrect,

I classified the mental model of the array’s name to be consistent and incorrect (CI)

(as per Section 4.2). Thus, the mental model rank for the array’s part name was 1.

I performed a similar analysis for the part index. I obtained four assertions from

participant X ’s response (listed in Table 4.3). Assertions MI1.1, MI3, and MI4 are in

the group of contradictory assertions that were pre-determined in the marking sheet.

Thus, I marked them as contradictory assertions. Similarly, I marked assertions MI3

57

and MI5 to be contradictory. Based on my approach to determine mental model

consistency (see Section 4.5), I determined participant X ’s mental model of the index

to be inconsistent.

Then, I investigated the correctness score of participant X for the concept in-

dex. Table 4.4 depicts that participant X answered all the questions related to index

incorrectly. Therefore, I determined the correspondence score of index to be 0. As

participant X answered all the questions regarding index wrong and the mental model

is inconsistent, I classified the mental model of the index to be inconsistent and in-

correct with rank 0 (reported in Table 4.4).

I conducted a similar analysis with all the rest of the assertions and answers ob-

tained from participant X ’s response. Lastly, I added the mental model ranks of each

component and calculated a total mental model score. I calculated participant X’s

mental model score to be 16 (out of 48).

Following the above-mentioned approach, I computed the mental model score of

our entire data set. These results allow us to understand the mental model of the

entire data set, which can also be analyzed with different demographics. The detailed

results are presented in the later chapters.

Besides mental model consistency, correctness, and classification, mental model

assertions from the responses also allow me to identify misconceptions. I labeled an

incorrect assertion as a misconception when that assertion appeared in more than one

question in the MMT-A, and when at least one student chose the assertion 100% of

the time.

Based on my definition of misconception (see Section 4.9), Table 4.3 shows par-

ticipant X has selected one assertion related to the concept name 100% of the times

while it was presented twice in the MMT-A. Therefore, I marked the assertion ‘MN2:

Array type (e.g., int[]) is the name of the array’ as a misconception of participant X.

58

Table 4.3: Participant X’s obtained (partial) mental model assertions grouped with
the corresponding concept, marked contradiction, consistency status, and percentage
of selecting the corresponding assertion.

Concepts Assertions obtained
from participant X

Contradictory to
each other Consistency Percentage %

(Selected/Presented)

Name MN2: Array type (e.g. int[])
is the name of the array. (incorrect) Consistent 100%

Index

MI1.1: Indexing starts with 0.
(correct) xx

Inconsistent

11.11%

MI3: There is no indexing.
(incorrect) xx yy 50%

MI4: Indexing starts at 1.
(incorrect) xx 87.50%

MI5 Indexing ends with n.
(incorrect) yy 75%

Table 4.4: Participant X’s (partial correctness and consistency status along with
mental model classification and ranks.

Concepts Number of
questions

Number of
correct answers

Correctness
score Consistency* Mental model

classification
Mental model
rank (0-6)

Name 2 0 0 Consistent Consistent and
Incorrect (CI) 1

Index 5 0 0 Inconsistent Inconsistent and
Incorrect (II) 0

...
Total - - - - - 16

Note: Asterisks(*) refer that mental model consistency was obtained from Table 4.3.

4.11 MMT-A is not a Concept Inventory

The approach to developing MMT-A has some similarities with the development

approach of a conception inventory (CI) (details of CI are described in Section 2.2).

The similarities are as follows: 1) CI is a multiple-choice-based questionnaire similar

to MMT-A, 2) CIs place common misconceptions as distractors similar to MMT-A.

However, our purpose and aim to develop MMT-A differentiates it from a CI. The

purpose of MMT-A is to elicit learners’ mental models and is developed utilizing the

definitions from the theories of mental models. CIs intend to assess knowledge, not

mental models. The second key difference is that MMT-A is developed by decompos-

ing a programming concept- arrays into parts and state changes. The development

of a CI does not follow this approach. Thus, I claim MMT-A as an approach to

59

Table 4.5: Data Collection Timeline

Dataset Semester Course Timeline Number of
Participants

Spring 2021-Pre-test Spring 2021 ITSC: 1212 Before instruction 113
Spring 2021-Post-test Spring 2021 ITSC: 1212 After instruction 101
Spring 2023-Post-Instruction Spring 2023 ITSC: 1212 After instruction 85
Fall 2023-Qualitative Fall 2023 ITSC: 1212 After instruction 10

ITSC: 1213
ITSC: 2214

elicit mental models. Even though, it has some similarities with a CI, I do not claim

MMT-A to be a concept inventory.

4.12 Deployment of MMT-A

I administered MMT-A to collect data from novice programmers in various time-

lines (see Table 4.5). The study was approved by the Institutional Review Board

(IRB) (IRB Protocol 21-0067). Below, I summarize the timeline of the data collec-

tion:

Spring 2021-Pre-test: At first, I administered MMT-A to collect students’ re-

sponses in Spring 2021 in the course ITSC 1212: Introduction to Computer Science

I at UNC Charlotte. The course ITSC 1212 is the first course in the Computer Sci-

ence major at the University of North Carolina at Charlotte and introduces the Java

programming language to the students. The course curriculum followed a traditional

CS1 course with labs and activities following a Media Computation approach [143].

I collected data in the Spring 2021 semester. Four instructors taught all 21 sections

of the course. Due to the COVID-19 global pandemic, all sections were taught online

and synchronously. The author of this dissertation was neither an instructor nor a

TA of the course.

The CS1 course follows a common curriculum that is centrally coordinated. The

course contents, textbook, and course materials were identical for all sections. Because

I was interested in the mental model of novice programmers before they get instruction

60

in arrays and to explore whether prior experience made a difference or not, I collected

data with the MMT-A BEFORE they had instruction on arrays in the course. I

collected data during the 6th week of a 14-week semester after the course covered the

concepts of data types, literals, primitive variables, assignment, operators, casting,

classes, objects, constructors, method calling, parameters, and if statements. The

Qualtrics link of the MMT-A was embedded in each section’s learning management

system (Canvas). Students completed the test as part of their required homework.

Students received 2 points for completing the test. As a preamble of the test, the

instruction stated that there were no points for answering the correct answer, nor was

there a penalty for answering incorrectly. Students were informed that the assignment

was not assessing their knowledge of Java but rather interested in their intuitions.

Out of 248 students who completed the MMT-A, 113 gave us their consent to analyze

their data. After removing incomplete and duplicate cases, I analyzed 93 participants’

responses.

Spring 2021-Post-test: To document how novice programmers’ mental models

changed after formal classroom instruction, I administered the MMT-A in the same

sections of ITSC 1212 on week 13. I received 187 responses in this round of data

collection. However, among them, only 101 participants gave their consent to analyze

their data. When I paired each individual participant’s responses with the pre-test,

I obtained 66 data points (paired pretest-posttest).

Spring 2023-Post-Instruction: To collect more data and to understand more

how the novice programmers’ mental models changes after classroom instruction, I

again administered MMT-A in Spring 2023. I attempted to collect data from our

two CS1 courses Introduction to Computer Science I and Introduction to Computer

Science II and one CS2 course ITSC 2214: Data Structures and Algorithms. As per

the study design, participation in my study was completely voluntary. Instructors

had the choice to give the students participatory points or make it a required activity.

61

Unfortunately, I only received responses from the ITSC 1212 course. MMT-A was

administered among 11 sections of ITSC 1212. Six instructors taught all 21 sections

of the course. All the sections were running in person. The data was collected on week

13 of a 14-week semester when all students received formal instruction on arrays. The

course curriculum followed a traditional CS1 course with labs and activities following

CS Awesome AP CS A Java Course [156]. A total of 85 participants responded to

the MMT-A with their consent.

Summer 2023-Post-Instruction: Furthermore, I administered MMT-A in Sum-

mer 2023 from the sections of ITSC 1212 and ITSC 1213. Like the previous studies,

I collected data from ITSC 1212 when students were given formal instructions on

arrays. The course curriculum and material of ITSC 1212 was the same as Spring

2023. The data was collected from two sections of ITSC 1212 ; one instructor was in

charge of them. I received 26 data from ITSC 1212 course.

Moreover, I collected data in the first week of ITSC 1213. ITSC 1213 course is the

follow-up course of ITSC 1212, where students start the course by revising arrays. I

collected data from two sections of ITSC 1213, taught by two instructors. I obtained

50 responses from ITSC 1213 course.

Fall 2023-Qualitative: To ensure participants interpret the MMT-A questions

correctly and the choices truly represent the mental model assertions I mapped, I

collected data from a think-aloud [157] qualitative approach with the MMT-A. I

interviewed ten novice programmers who have learned arrays while asking to answer

a subset of questions of MMT-A while performing think-aloud. The study details are

presented in Chapter 10.

4.13 Conclusion

In this chapter, I describe the development, deployment of MMT-A. MMT-A has

been used to elicit novice programmers’ mental model assertions. I analyzed the

mental model assertions based on consistency and correctness. The analysis led me

62

to classify and rank mental models. With the ranks, I scored the mental models.

In the next chapters, I present the results collected from the deployment of MMT-A

among different subjects in various timelines.

CHAPTER 5: INCOMING NOVICE PROGRAMMERS’ MENTAL MODELS

5.1 Introduction

CS1 students come with a wide variety of programming backgrounds, experiences,

and misconceptions. According to the theory of constructivism, learners build up new

knowledge on existing similar models [39]. Therefore, learners utilize their existing

knowledge to build the next further meaningful understanding. As the purpose of my

dissertation is to investigate novice programmers’ mental models, it is crucial for me

to study CS1 students’ initial mental models to document and address the gaps in

their knowledge. Perceiving their knowledge gap ahead of time might help focus the

target instruction.

In this chapter, I report the findings based on the following research questions:

RQ1. What are the characteristics of incoming novice programmers’ mental models?

RQ2. How are the incoming novice programmers’ initial mental models of array’s

parts components in comparison with the state changes components?

RQ3. What impact do prior programming experience and demographics have on

the mental model of the participants in our study before classroom instruction?

Based on my findings, most incoming novice programmers exhibit correct and consis-

tent mental models for array components name and type. However, for array’s parts :

index, elements, and all the state changes components: declaration, instantiation,

assigning elements, and assignment most students exhibit incorrect and inconsistent

mental models. Moreover, the results show that the participants’ mental model con-

sistency and correctness score (labeled as the mental model score) is significantly

64

higher for parts than for state changes. Additionally, the participants with prior pro-

gramming knowledge held more consistent and correct mental models than those who

did not have prior knowledge. Moreover, male participants’ mental model consistency

and correctneess scores were significantly higher than the female’s, providing further

evidence of the preparatory gap across genders in computing.

5.2 Data Collection

Because I was interested in the mental model of novice programmers before they get

instruction in arrays and to explore whether prior experience made a difference or not,

I am using the data set Spring 2021-Pre-test (details mentioned in Section 4.12).

The test took place during the 6th week of a 14-week semester after the course covered

the concepts of data types, literals, primitive variables, assignment, operators, casting,

classes, objects, constructors, method calling, parameters, and if statements. The

Qualtrics link of the MMT-A was embedded in each section’s learning management

system (Canvas). Students completed the test as part of their required homework.

Students received 2 points for completing the test. As a preamble to the test, the

instruction stated that there were no points for answering the correct answer, nor was

there a penalty for answering incorrectly. Students were informed that the assignment

was not assessing their knowledge of Java but rather interested in their intuitions.

5.3 Participants

Out of 248 students who completed the MMT-A, 113 gave me their consent to

analyze their data. After removing incomplete and duplicate cases, I could include 93

participants’ responses in our analysis. The majority identified as male (71%), 20.4%

identified as female. Of the 93 participants, 52.7% reported having CS as their major

of study. Over half of the participants (54.8%) had no prior programming experience

before enrolling in the CS1 course. Among the 46 students who had prior program-

ming experience, 12 participants had experience with Java, and 33 participants had

65

experience with other programming languages (e.g., Python, JavaScript, C#, C++,

SQL, HTML, Snap).

5.4 Results

Sections 5.4.1 enumerate the assertions residing in novice programmers’ mental

models of an array. I present the correctness and consistency of incoming novice

programmers’ mental models in Sections 5.4.2, 5.4.3, and 5.4.4. Lastly, the effect

of prior programming experience and demographics on novice programmers’ mental

models is discussed in Section 5.4.5.

5.4.1 Mental Model Assertions

As previously described, concepts in the mental model of arrays are broken down

into parts and state changes. Below, I present the findings for each concept. Each

section contains two tables. The first shows all the assertions for each concept with

an indication of whether the assertion was correct or incorrect and the number of

times each assertion appears in the MMT-A. The second table shows the results of

the participant selections for each assertion. It indicates if the assertion was always

selected, sometimes selected, or never selected. It is worth noting that for assertions

that are correct (e.g., assertion MN1 in Table 5.1 and Table 5.2), I expect partici-

pants always to select it, as that indicates a correct/consistent mental model of the

concept. However, for assertions that are incorrect (e.g., assertion MN2 in Table 5.1

and Table 5.2), the expected result is for the participant to never select it.

5.4.1.1 Assertions for Parts

This section presents the results for all the parts components of the array mental

model included in the MMT-A.

Part : Name

The assertions MN1, MN2, and MN3 appeared in two questions each, and MN4

and MN5 appeared in only one question each (see Table 5.1). The results show that

66

69 out of 93 students selected MN1 when it appeared as the correct option, and an

additional 12 students selected sometimes. For the incorrect choices, a total of 75

students avoided (i.e., never selected it) MN2, 92 avoided MN3, 88 avoided MN4, and

93 (all 100%) avoided MN5. Table 5.2 summarizes the frequency distribution for each

kind of selection.

Table 5.1: List of assertions for the part name.

Assertions Correctness Num. of
Questions

MN1: Array reference variable is the name of the array Correct 2
MN2: Array type is the name of the array Incorrect 2
MN3: Keyword new is the name of the array Incorrect 2
MN4: Whatever comes after equal sign in an initialization is the name
of the array

Incorrect 1

MN5: First element in the array is the name of the array Incorrect 1

Table 5.2: Frequency distribution of the selection of assertions for the part name.

MN1 MN2 MN3 MN4 MN5
correct incorrect incorrect incorrect incorrect

Always selected 74.2% (69) 12.9% (12) 0% (0) 5.4% (5) 0% (0)
Sometimes selected 12.9% (12) 6.5% (6) 1.1% (1) 0% (0) 0% (0)
Never selected 12.9% (12) 80.6% (75) 98.9% (92) 94.6% (88) 100% (93)
Total 100% (93) 100% (93) 100% (93) 100% (93) 100% (93)

Part : Index

Table 5.3 lists the assertion used in our MMT-A. The frequency distribution of

each assertion is presented in Table 5.4. For indices, I have broken down the correct

assertion into two separate assertions, MI1.1 and MI1.2. The assertions MI1.1 ap-

peared nine times and MI1.2 6 times. Together, those two are the correct assertions

regarding the use of indices in arrays. The other incorrect assertions are listed in

Table 5.4. It is worth noting that MI4 and MI5 represent common misconceptions on

the use of array indices, namely that the index of the first element in the array is [1]

and that the last element is stored at [n] instead of the correct answer of [n-1].

67

The correct assertion of MI1.1 was selected consistently by 28% of the participants.

In addition, 71% (66) of the participants sometimes selected this option. Surprisingly,

the complimentary assertion of MI1.1, MI1.2, had a different distribution than MI1.1.

None of the participants selected it consistently, and an additional 73.1% (68) selected

it some of the time (at least once).

The incorrect choices show a high percentage of participants who avoided those

options. MI2 was never selected consistently; 3.2% of the participants selected it

at least once, and 96.8% of the participants avoided it altogether. Table 5.4 shows

similar numbers for MI3, MI6, and MI7.

MI4 and MI5, however, have different numbers. These assertions reflect a mis-

understanding of how indices work in Java. They reflect an understanding that the

index starts at 1 (MI4) and ends at n instead of n-1 (MI5). The start/end of an

array is a documented misconception [7,111], so it is no surprise that these incorrect

assertions drew higher responses from participants. Only 4 participants selected MI4

consistently (all eight times that it appeared), but 62.4% (58) of the participants se-

lected it at least once. The number of participants was lower for MI5, with 2.2% (2) of

the participants consistently selecting this option (all seven times that it appeared),

and 66.7% (62) of them selecting at least once.

Table 5.3: List of assertions for the part index.

Assertions Correctness Num. of
Questions

MI1.1: Array index starts with 0 Correct 9
MI1.2: Array index ends with n-1 (index of last element) Correct 6
MI2: Index of an array can be of any type, not just integers Incorrect 3
MI3: There is no indexing into the array Incorrect 2
MI4: Array index starts with 1 Incorrect 8
MI5: Array index ends with n (index of last element) Incorrect 7
MI6: Array index does not map to its corresponding location in the
array

Incorrect 3

MI7: Students think the index is the element. Incorrect 3

68

Table 5.4: Frequency distribution of the selection of assertions for the part index.

MI1.1 MI1.2 MI2 MI3 MI4 MI5 MI6 MI7
correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

28%
(26)

0%
(0)

0%
(0)

2.2%
(2)

4.3%
(4)

2.2%
(2)

0%
(0)

1.1%
(1)

Sometimes
selected

71%
(66)

73.1%
(68)

3.2%
(3)

17.2%
(16)

62.4%
(58)

66.7%
(62)

10.8%
(10)

26.9%
(25)

Never
selected

1.1%
(1)

26.9%
(25)

96.8%
(90)

80.6%
(75)

33.3%
(31)

31.2%
(29)

89.2%
(83)

72%
(67)

Total 100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

Part : Type

The assertions MT1, MT2, and MT3 each appear in two questions in the instrument

(see Table 5.5). The correct assertion, MT1, represents a clear understanding of the

difference between array name and array type in an array declaration statement.

Table 5.6 shows the frequency distribution of each assertion. The results show that

89.2% (83) of the participants selected MT1 consistently. Only 2 participants avoided

MT1 both times it appeared in the instrument. A handful of participants (9) selected

MT2 sometimes. These students seemed to confuse the array name with the array

type.

Table 5.5: List of assertions for the part type.

Assertions Correctness Num. of
Questions

MT1: Name appearing before the array name is the type of the array Correct 2
MT2: Name of the array is the type of the array Incorrect 2
MT3: Keyword new is the type of the array Incorrect 2

Part : Element

The assertions ME1.1 and ME1.2 are the correct assertions regarding array ele-

ments. Each of these appeared 2 times in the instrument. Assertions ME2 (5), ME3

(4), ME4 (4), ME5(2), ME6 (2), and ME7 (2) were invalid assertions about array el-

ements (see Table 5.7). As shown in Table 5.8, ME1.1 (size of the array) was selected

69

Table 5.6: Frequency distribution of the selection of assertions for the part type.

MT1 MT2 MT3
correct incorrect incorrect

Always selected 89.2% (83) 1.1% (1) 0% (0)
Sometimes selected 8.6% (8) 9.7% (9) 1.1% (1)
Never selected 2.2% (2) 89.2% (83) 98.9% (92)
Total 100% (93) 100% (93) 100% (93)

consistently by only 3.2% (3) of the participants. In addition, an additional 96.8%

(90) of the participants selected this option at least once. ME1.2 was on the other

hand, a very common choice with 75.3% (70) participants selecting it consistently.

Interestingly, 21.5% (20) of the participants never selected this option. This asser-

tion (ME1.2, elements stored in the array can be of the same time) seem to divide

the participants in the two extremes, 75.3% consistently selected, and 21.5% never

selected it.

Worthy of note is option ME5. This (erroneous) assertion appeared twice in the

instrument and implied that the name of an array was semantically related to the

value stored in the array. For example an array of type String and named “books”

can only store strings containing names of books, such as “Harry Potter”. The results

show that 12.9% (12) of the participants selected this option consistently and an

additional 6.5% (6) of the participants selected this assertion some of the time.

5.4.1.2 Assertions for State Changes

This section presents the results for all the state changes of the array mental model

included in the MMT-A. The sections that follow cover the state changes in our

instrument: declaration (section 5.4.1.2), instantiation (section 5.4.1.2), assigning

elements (section 5.4.1.2) and assignment (section 5.15).

70

Table 5.7: List of assertions of the part element.

Assertions Correctness Num. of
Questions

ME1.1: The array contains n number of elements Correct 7
ME1.2: Elements stored in the array can be only of the declared type Correct 2
ME2: The array contains size+1 elements Incorrect 5
ME3: The array contains size-1 elements Incorrect 4
ME4: After instantiation, the array doesn’t have space to store any
elements (size 0)

Incorrect 4

ME5: Element values and array names are related (e.g., books and
"Harry Potter")

Incorrect 2

ME6: Keyword ‘new‘ is an element in the array Incorrect 2
ME7: Type of values stored do not match type of array Incorrect 2

Table 5.8: Frequency distribution of the selection of assertions for the part element.

ME1.1 ME1.2 ME2 ME3 ME4 ME5 ME6 ME7
correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

3.2%
(3)

75.3%
(70)

0%
(0)

0%
(0)

0%
(0)

12.9%
(12)

2.2%
(2)

1.1%
(1)

Sometimes
selected

96.8%
(90)

3.2%
(3)

61.3%
(57)

30.1%
(28)

4.3%
(4)

6.5%
(6)

1.1%
(1)

6.5%
(6)

Never
selected

0%
(0)

21.5%
(20)

38.7%
(36)

69.9%
(65)

95.7%
(89)

80.6%
(75)

96.8%
(90)

92.5%
(86)

Total 100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

State change: Declaration

The assertions MD1.1, MD1.2, MD1.3, and MD1.4 are the correct assertions for

array declaration (see Table 5.9). The assertion MD1.1 was selected consistently by

38.7% (36) of the participants, with an additional 14% (13) participants selecting

MD1.1 sometimes (see Table 5.10). The remaining 47.3% (44) of the participants

never selected MD1.1. These results indicate a high level of misunderstanding among

the participants in our study.

I observed similar results for MD1.2, with participants almost equally distributed

between always selecting it (41.9%), sometimes (33.3%), and never selecting it (24.7%).

MD1.3 and MD1.4 each appeared only once in our instrument, and as a result, partic-

ipants either selected that assertion (MD1.3 47.3% and MD1.4 29%) or not (MD1.3

71

52.7% and MD1.4 71%).

For the incorrect assertions, MD2 stands out as 21.5% (20) of the participants

consistently selected it. An additional 12.9% (12) of the participants selected this

option at least once. At the other extreme, 65.6% (61) of the participants never

selected this option.

The remaining incorrect assertions (MD3, MD4, MD5, MD6, and MD7) were

mostly selected sometimes or not selected at all. Still, these assertions should not

have been selected (i.e., incorrect assertions). The distribution of responses shows

that these assertions were selected, if not always, sometimes. Thus, this concept is

problematic for lots of students.

Table 5.9: List of assertions of the state change declaration.

Assertions Correctness Num. of
Questions

MD1.1: After declaration, default value of array reference variable is
set to null

Correct 2

MD1.2: After declaration, an array reference variable is created Correct 2
MD1.3: After declaration, no memory is allocated for the array Correct 1
MD1.4: After declaration, no elements can be stored. Correct 1
MD2: There is no default value for the elements of the array
(blank/no value)

Incorrect 2

MD3: The default value for the array reference is the default value
for type (e.g., int is 0, boolean is false)

Incorrect 4

MD4: The default value for the array reference is stored as ’?’ Incorrect 3
MD5: After declaration, memory is allocated for the elements Incorrect 3
MD6: After declaration, the number of elements that can be stored
is unlimited

Incorrect 3

MD7: After declaration, there is a default size for an array Incorrect 1

State change: Instantiation

As shown in Table 5.12, MIn1.1 was selected consistently by 53.8% (50) of the

participants. The rest of the participants, 46.2% (43), never selected this option. A

second valid assertion in this concept, MIn1.2 had no participants selected consis-

tently. About half of the participants, 50.5% (47), selected this option some of the

time with 49.5% (46) of the participants never selecting this option.

72

Table 5.10: Frequency distribution of the selection of assertions for the state change
declaration.

MD1.1 MD1.2 MD1.3 MD1.4 MD2 MD3 MD4 MD5 MD6 MD7
correct correct correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

38.7%
(36)

41.9%
(39)

47.3%
(44)

29%
(27)

21.5%
(20)

0%
(0)

4.3%
(4)

4.3%
(4)

2.2%
(2)

7.5%
(7)

Sometimes
selected

14%
(13)

33.3%
(31) - - 12.9%

(12)
38.7%
(36)

34.4%
(32)

49.5%
(46)

64.5%
(60)

0%
(0)

Never
selected

47.3%
(44)

24.7%
(23)

52.7%
(49)

71%
(66)

65.6%
(61)

61.3%
(57)

61.3%
(57)

46.2%
(43)

33.3%
(31)

92.5%
(86)

Total 100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

100%
(93)

MIn2 most participants (67.7%) never selected this option and 29% of the partici-

pants selected it sometimes. Only a handful (3.2%) selected this option consistently.

Similarly, MIn3 was selected by 41.9% (39) of the participants sometimes and 48.4%

(45) never selected it. Only a few participants, 9.7% (9), selected MIn3 consistently.

For MIn4, no participant selected it consistently. Just over half of the participants,

52.7% (49), selected it sometimes and the rest, 47.3% (44), avoided this option.

Table 5.11: List of assertions for the state change instantiation.

Assertions Correctness Num. of
Questions

MIn1.1: After instantiation, memory is allocated for the array Correct 1
MIn1.2: After instantiation, the appropriate default value is assigned
to the elements

Correct 4

MIn2: After instantiation, ‘?’ is stored as a default value Incorrect 3
MIn3: After instantiation, there is no default value (blank) stored for
the elements

Incorrect 4

MIn4: After instantiation, no memory is allocated Incorrect 4

Table 5.12: Frequency distribution of the selection of assertions for the state change
instantiation

MIn1.1 MIn1.2 MIn2 MIn3 MIn4
correct correct incorrect incorrect incorrect

Always selected 53.8% (50) 0% (0) 3.2% (3) 9.7% (9) 0% (0)
Sometimes selected 0% (0) 50.5% (47) 29% (27) 41.9% (39) 52.7% (49)
Never selected 46.2% (43) 49.5% (46) 67.7% (63) 48.4% (45) 47.3% (44)
Total 100% (93) 100% (93) 100% (93) 100% (93) 100% (93)

73

State change: Assigning Elements

Table 5.13 shows all the assertions for the concept, Assigning Elements with two

correct and four incorrect assertions (see Table 5.14). For the correct assertions,

MAE1.1 was never selected consistently. Most participants, 87.1% (81), selected this

assertion some of the time, and 12.9% (12) of the participants avoided it completely.

For the other correct assertion, MAE1.2, a third of the participants, 33.3% (31),

selected it consistently, and an additional 43% (40) participants selected it sometimes.

23.7% (22) participants avoided this option.

For the incorrect assertions, MAE2, MAE3, MAE4, and MAE5, zero (0) partic-

ipants selected these options consistently. For MAE2 and MAE3, the participants

were divided almost evenly between selecting it sometimes (MAE2 58.1% and MAE3

51.6%) and avoiding it altogether (MAE2 41.9% and MAE3 48.4%).

MAE4 and MAE5 appeared only twice in the instrument. For MAE4, no partic-

ipant selected it consistently, 16.1% selected it some time, and 83.9% avoided the

option altogether. For MAE5, 9.7% selected it consistently, an additional 6.5% se-

lected it sometimes, and the majority of the participants, 83.9%, never selected this

option.

Table 5.13: List of assertions for the state change assigning elements.

Assertions Correctness Num. of
Questions

MAE1.1: Assignment copies the value from right to left. Correct 6
MAE1.2: The variable on the right-hand side remains the same after
assigning.

Correct 2

MAE2: The value of a variable never changes. Incorrect 8
MAE3: A variable can hold multiple values at a time / ‘remembers’
old values.

Incorrect 10

MAE4: Assignment swaps values of the left and right hand side. Incorrect 2
MAE5: Primitive assignment is the same as reference assignment. Incorrect 2

74

Table 5.14: Frequency distribution of the selection of assertions for the state change
assigning elements.

MAE1.1 MAE1.2 MAE2 MAE3 MAE4 MAE5
correct correct incorrect incorrect incorrect incorrect

Always selected 0% (0) 33.3% (31) 0% (0) 0% (0) 0% (0) 9.7% (9)
Sometimes selected 87.1% (81) 43% (40) 58.1% (54) 51.6% (48) 16.1% (15) 6.5% (6)
Never selected 12.9% (12) 23.7% (22) 41.9% (39) 48.4% (45) 83.9% (78) 83.9% (78)
Total 100% (93) 100% (93) 100% (93) 100% (93) 100% (93) 100% (93)

State change: Array Assignment

Table 5.15 lists all assertions related to the state change array assignment, also

labeled as assignment in short. MA1, the correct assertion, only had 2.2% (2) of the

participants selecting it consistently. An additional 57.0% (53) of the participants

selected this option sometimes, and 40.9% (38) of the participants avoided this option.

The first of the incorrect assertions, MA2, had 89.2% (83) of the participants

avoiding this option, and the remainder of the participants 10.8% (10), selected it

consistently. The next incorrect assertion, MA3, had a fairly even distribution of par-

ticipants, with 34.4% (32) selecting it consistently, 45.2% (42) selecting it sometime,

and 20.4% (19) avoiding it.

The last two incorrect assertions, MA4 and MA5, did not have any participant

select it consistently. The participants were divided between selecting it sometimes

(MA4 22.6% and MA5 24.7%), with the majority in both cases avoiding it altogether

(MA4 77.4% and MA5 75.3%).

Table 5.15: List of assertions for the state change array assignment.

Assertions Correctness Num. of
Questions

MA1: Array assignment copies reference from right to left. Correct 3
MA2: Array assignment appends value at the end of the array. Incorrect 1
MA3: Array assignment copies the values. Incorrect 3
MA4: Array assignment transfers (cuts) values. Incorrect 2
MA5: Array assignment copies the reference but does not share mem-
ory.

Incorrect 2

75

Table 5.16: Frequency distribution of the selection of assertions for the state change
array assignment

MA1 MA2 MA3 MA4 MA5
correct incorrect incorrect incorrect incorrect

Always selected 2.2% (2) 10.8% (10) 34.4% (32) 0% (0) 0% (0)
Sometimes selected 57% (53) 0% (0) 45.2% (42) 22.6% (21) 24.7% (23)
Never selected 40.9% (38) 89.2% (83) 20.4% (19) 77.4% (72) 75.3% (70)
Total 100% (93) 100% (93) 100% (93) 100% (93) 100% (93)

Table 5.17: Participant’s overall correctness and mental model score with total scores
for parts and state changes. The statistically significant difference between the cor-
rectness score and mental model score of arrays parts and state changes is shown in
the last row.

Correctness
Score

Mental Model
Score

Mean
(%) SD Mean

(%) SD

Overall 53.75 5.94 61.54 6.45
Parts 68.64 2.99 71.29 4.46
State
changes 44.27 3.67 51.79 3.03

Parts vs.
State
changes

p <0.001 p <0.001

5.4.2 Mental Model Correctness

I scored each participant based on the correctness of their answers, as discussed

in Section 4.6. I referred to this score as the correctness score. As there were 36

questions, the possible highest score could be 36, and the lowest score could be 0. I

report on the total correctness score and the correctness score for each part and state

change component.

For the total correctness score, the participants answered an average of 19.35

(53.75%, σ = 5.94, N = 93) questions correctly (see Table 5.17). A participant’s

minimum correctness score is six, and the maximum score is 32.

Moreover, I computed the correctness score for the parts and state changes. I had

76

Table 5.18: Participants’ correctness, consistency, and mental model classification for
each part and state changes.

Components #
Qs.

Correctness Consistency Mental Model ClassificationConsistent Inconsistent
Mean %
(N=93) SD N % N % II CI IMI CMI IMC CMC C

N % N % N % N % N % N % N %
P:Name 2 80.65 35.38 81 87.10 12 12.90 0 - 12 12.90 12 12.90 0 - 0 - 0 - 69 74.20
P:Index 5 50.11 41.98 42 45.20 51 54.80 16 17.20 9 9.70 23 24.70 0 - 9 9.70 6 6.50 28 30.10
P:Type 2 93.55 19.82 84 90.30 9 9.70 3 3.20 1 1.10 6 6.50 42 45.20 0 - 0 - 41 44.10
P:Elements 5 72.47 26.20 87 93.50 6 6.50 1 1.10 2 2.20 4 4.30 5 5.40 1 1.10 45 48.40 35 37.60
S:Declaration 6 47.49 24.69 85 91.40 8 8.60 0 - 1 1.10 8 8.60 55 59.10 0 - 23 24.70 6 6.50
S:Instantiation 4 35.48 28.39 72 77.40 21 22.60 6 6.50 13 14.00 14 15.10 43 46.20 1 1.10 10 10.80 6 6.50
S:Assigning Elements 6 49.82 29.84 63 67.70 30 32.30 3 3.20 2 2.20 24 25.80 32 34.40 3 3.20 21 22.60 8 8.60
S:Assignment 6 41.40 25.49 26 28.00 67 72.00 3 3.20 5 5.40 41 44.10 18 19.40 23 24.70 1 1.10 2 2.20

14 questions for parts and 22 questions covering state changes. The mean correctness

score for parts was 9.61 (68.64%, σ = 2.99, N = 93) and for state changes was 9.74

(44.27%, σ = 3.67, N = 93).

Table 5.18 (column 3) shows the detailed breakdown of the correctness score for

the concepts of parts and state changes. I present the mean correctness score in

percentage as the number of questions varies for each concept. Note that participants’

mean correctness scores were higher for parts than for state changes. A paired t-test

shows that participants scored significantly higher (t = 13.14, p < 0.001) in parts

than in state changes (shown in Table 5.17).

5.4.3 Mental Model Consistency

Based on the contradictions in a participant’s mental model, I categorized men-

tal models into two categories: consistent and inconsistent (see Section 4.5 for the

definition). I measured mental model consistency for each part and state change. Ta-

ble 5.18 (columns 4 and 5) includes the absolute frequency (N) and relative frequency

(%) obtained from the analysis of consistency.

The majority of the participants (more than 50%) had a consistent mental model

for name (87.1%, 80), type (90.3%, 84), elements (93.5%, 87), declaration (91.4%,

85), instantiation (77.4%, 72) and assignment of elements (67.7%, 63).

Two of the components of parts and state changes, however, resulted as inconsis-

tent based on the participants’ answers. The majority of the participants had an

77

inconsistent mental model for index (54.8%, 51) and array assignment (72%, 67).

5.4.4 Mental Model Score: Combining Correctness & Consistency

As described in Section 4.7, I categorized and ranked a mental model based on its

consistency and correctness score. The correct mental model (see Table 4.2), which is

always consistent, is ranked the highest (6). As a mental model rank is given for each

part and state changes, a total mental model score is calculated by adding the mental

model ranks for the components of each part and state changes. There are, in total,

eight components. Therefore, the highest mental model score a participant can earn

is 48, considering everything is correct. The lowest mental model score a participant

can achieve is 0. The participants scored a mean total mental model score of 29.54

(61.54%, σ = 6.45) (see Table 5.17). For the parts components the mean score is

17.11 (71.29%, σ = 4.46) and for the state changes components the mean score is

12.43 (51.79%, σ = 3.03). I performed a paired t-test to compare the differences

within the parts and state changes mental model score. Similar to the parts and state

changes correspondence score, I found a statistically significant difference between

these two scores. The participants’ mental model score for the parts components was

higher than the states changes components (t = 10.85, p < 0.001) (shown in Table

5.17).

5.4.5 Mental Model Score and Demographics

I performed additional analysis on participants’ mental model score and their de-

mographics (details are in Table 5.19). I performed a one-way ANOVA and found a

statistically significant difference (F (2, 90) = 6.47, p = 0.002) in participants’ mental

model scores based on the prior programming language experience. Tukey’s HSD

Test for multiple comparisons found that participants who had experience with pro-

gramming language other than Java scored significantly higher than participants who

had no programming experience (p = 0.002, 95% C.I. = [-8.29, -1.64]).

78

Table 5.19: Participants’ correctness score and mental model score by demographics.

Demographics
Correctness

Score MMS

Mean (%) SD p Mean (%) SD p

Previous
Programming
Experience

(a) Yes
(n = 42) 57.47 6.07 n.s. 65.08 6.43 n.s.
(b) No
(n = 49) 50.69 5.65 58.5 6.16

Programming
Language
Learned

(a) None
(n = 48) 46.75 5.55

c > a
57.63 6.46

c > a(b) Java
(n = 12) 47.92 6.31 59.73 7.79

(c) Other
Language
(n = 33)

58.58 4.59 67.98 4.68

Gender
(a) Female
(n = 19) 46.78 4.79 n.s. 56.83 5.56 b > a
(b) Male
(n = 66) 55.56 6.20 62.63 6.79

CS Major
(a) Yes
(n = 49) 53.64 5.99 n.s. 62.94 7.22 a > b
(b) No
(n = 44) 48.31 5.12 60.04 5.50

79

Moreover, I found a statistically significant difference in the total mental model

score when I conducted an independent t-test based on the participants’ major con-

centration. Participants who are CS majors (x̄ = 30.21, σ = 7.22) had significantly

higher mental model scores than participants who are not CS majors (x̄ = 28.82,

σ = 5.50) (F = 3.96, p ≤ 0.05).

Additionally, I performed statistical analysis with gender as an independent vari-

able. My analysis revealed that male participants (x̄ = 12.59, σ = 3.33) scored

significantly higher than female participants (x̄ = 11.74, σ = 2.02) in states changes

mental model score (F = 7.95, p ≤ 0.05). When I analyzed the participants’ corre-

spondence score and mental model score based on previous programming experience

(programming learned or not), I found no statistical difference (see Table 5.19).

5.4.6 Mental Model Classification Frequency Distribution

I classified mental models into eight categories, as described in Section 4.7. Similar

to the frequency distribution of each assertion (described in Sections 5.4.1.1 and

5.4.1.2), I describe the frequency distribution of each mental model category (see

Figure 5.1) for each component below.

5.4.6.1 Part : Name

As shown in Table 5.18, none of the participants could be classified in the category

of inconsistent and incorrect for the concept name. Based on the analysis, I found

twelve (12.9%) participants to hold consistent and incorrect mental models. These 12

participants were holding wrong assertions consistently without any internal contra-

diction. I found 12 participants (12.9%) to be in the IMI category. These participants’

mental models were mostly incorrect and had evidence of internal contradiction. For

name, I did not find any participants in the CMI, IMC, and CMC categories. How-

ever, the majority of our participants’ (N = 69, 74.2%) mental models were in the

correct (C) category.

80

Figure 5.1: Frequency distribution (in percentage) of the categories of the mental
models. Here, II: Inconsistent and Incorrect mental model, CI: Consistently Incorrect
mental model, IMI: Inconsistent and Mostly Incorrect mental model, CMI: Consistent
and Mostly Incorrect mental model, IMC: Inconsistent and Mostly Correct mental
model, CMC: Consistent and Mostly Correct Mental Model, C: Correct mental model.

5.4.6.2 Part : Index

For the part index, I found a spread in the distribution. My findings placed 16

(17.2%) participants in the II category, 9 (9.7%) participants in the CI category, and

23 (24.7%) participants in the IMI category. On the other hand, I found 9 (9.7%)

participants in the IMC category, 6 (6.5%) participants in the CMC category, and 28

(30.1%) in the correct category. Interestingly, for index, the frequency distribution

was higher in the incorrect categories. As the concept of index was not taught to the

students at the time of this study, this finding is not surprising.

5.4.6.3 Part : Type

For the component type, I found the majority of participants (N = 42, 45.2%)

in the consistent and mostly incorrect (CMI) category. Then, I found 41 (44.1%)

participants in the correct category. The rest of the participants were dispersed in

IMI (N= 6, 6.5%), CI (N = 1, 1.1%), and II (N = 3, 3.2%) categories (see Table 5.18).

81

5.4.6.4 Part : Elements

Although, similar to index, array elements is a new concept, I found the major-

ity of participants (N = 45, 48.4%) in the consistent and mostly correct category

(CMC). The correct category was filled with 35 (37.6%) participants. The rest of the

participants were dispersed in the other categories (see Table 5.18).

Taken together, the participants’ distribution was more inclined towards the correct

assertion for the parts component. Interestingly, for the state changes components,

that is not the case. Below, I describe the frequency distribution of the participants

in each mental model category for the state changes components.

5.4.6.5 State Change: Declaration

For declaration, the majority of the participants (N = 55, 59.1%) were found to

be in the consistent and mostly incorrect (CMI) category. Next, I found 23 (24.7%)

participants in the consistent and mostly correct (CMC) group. My results showed

only six (6.5%) participants could be placed in the correct category. The rest of the

sample was distributed into CI (N = 1, 1.1%) and IMI (N = 8, 8.6%) categories.

5.4.6.6 State Change: Instantiation

Similar to declaration, I found majority of the participants (N = 43, 46.2%) be-

longed in CMI category for instantiation. Consecutively, I found 14 (15.1%) partic-

ipants in the IMI category, followed by the CI category (N = 13, 14%). Strikingly,

for instantiation, more frequency distribution was found in the incorrect categories

(total N = 76, 81.8%). Ten (10.8%) participants were in the category of consistent

and mostly correct, and only 6 participants consistently answered correctly all the

questions of instantiation (see Table 5.18).

5.4.6.7 State Change: Assigning Elements

For assigning elements, I found 32 (34.4%) participants in the CMI category. Con-

secutively, 24 (25.8%) and 21 (22.6%) participants were found in the IMI and CMC

82

categories. I found 8 (8.6%) participants in the correct category for this concept.

5.4.6.8 State Change: Array Assignment

When one array reference variable is assigned to another array reference variable,

I labeled the state change as assignment. I found the majority of participants (N =

41, 44.1%) belonged to the inconsistent and mostly incorrect (IMI) group. Next, I

found 23 (24.7%) participants in the IMC category. It is noteworthy to mention that

over 50% participants were distributed in the incorrect categories. I noticed only 2

(2.2%) participants in the correct category.

The frequency distribution in mental model categories indicates that the state

change components were more challenging for our participants than the parts com-

ponents.

5.5 Discussion

In this section, I discuss the key findings regarding incoming novice programmers’

mental models based on the research questions stated in Section 5.1. A discussion

geared towards RQ1 is discussed in Section 5.5.1, RQ2 in Section 5.5.2, and RQ3 in

Section 5.5.3.

5.5.1 Incoming Novice Programmers’ Mental Models

To answer my first research question RQ1. What are the characteristics of

incoming novice programmers’ mental models? I draw evidence from the

frequency distribution of selection of assertions for each component of array’s parts

and state changes as well as the correctness scores and frequency distribution of

mental model consistency and classification. Below I discuss the findings reflecting

upon the RQ1.

In summary, I can conclude with the following comments on incoming novice pro-

grammers’ mental models:

Name : Incoming CS1 students’ mental model on name seemed well developed in

83

light of correctness and consistency.

Index : Since the concept of indexing is novel to incoming CS1 students, their

mental model seemed inconsistent and not well developed.

Type: The majority of the incoming CS1 students’ mental models of array’s type

is well developed.

Elements: Most of the students’ mental models are well developed for identifying

suitable elements an array can store. However, their mental model seemed inconsis-

tent regarding the number of elements an array can store.

Declaration: Incoming CS1 students’ mental models of declaration seemed in-

complete based on their selection of assertions and their consistency.

Instantiation: Similar to declaration, students do not have a clear mental model

of the state changes that occur after instantiation, such as memory allocation and

initialization of default values to the elements.

Assigning Elements: Incoming CS1 students’ mental models of assigning el-

ements seemed inconsistent on the correct assertions and consistent for one of the

incorrect assertions.

Assignment : The most of incoming CS1 students’ mental models of array’s as-

signment are incorrect and inconsistent.

Below, I elaborate on my discussion of each comment.

For the component name, the majority of the students consistently selected the

right assertion (MN1). Even though the students have not learned arrays yet in the

classroom, they have seen primitive variables and objects, and they know how to

identify their name. Therefore, it’s not surprising that the name of the array was

consistently correct for most students. The data from Table 5.18 further solidifies this

argument. Table 5.18 shows over 80% of the students’ mental models were correct

and consistent for the component name. In addition, almost 75% of the students were

categorized as having the correct (abbreviated as C) mental models. Moreover, even

84

before learning arrays, students could differentiate between an array’s name and an

element it is storing. Hence, the incorrect assertion ‘MN5: First element in the array

is the name of the array’ was not present in the student’s mental models at all.

Unlike name, the selection of assertion for index was scattered. Only a handful

(28%) of the students consistently selected the correct assertion about the array’s start

index. Additionally, none of the participants consistently (always) selected the right

assertion about an array’s last index. However, over 70% of the students sometimes

selected the correct assertions MI1.1 and MI1.2. I can interpret this occurrence as

since the students are not taught the array’s structure yet, their mental model of

array’s index is inconsistent. The evidence that approximately 55% of the students

were deemed inconsistent (Table 5.18, column 8) strengthens the claim. Students’

mental model classification was scattered between correct (C), inconsistent and mostly

incorrect (IMI), and inconsistent and incorrect (II) (shown in Table 5.18). I observed

the commonly known misconception regarding arrays that their indices start with 1

(62.4%) and end with n (66.7%), gaining similar selection (sometimes) as the correct

counterparts MI1.1 and MI1.2. Since students are not familiar with the concept of

indexing, among the parts components, the index has the least correct mental models.

Similar to the component type, I found most students (89.2%) consistently (always)

selecting the correct assertion. I apply the similar observation that since data type

has already been taught; the students applied their mental models of data type to

identify the type of the array. Table 5.18 provides further evidence for this claim.

Over 90% of students were correct in answering the questions regarding array’s type.

The consistent support (75.3%) for the correct assertion ‘ME1.2: Elements stored

in the array can be only of the declared type’ also supports students’ mental model

development of the array’s data type.

The component array’s elements was composed of two knowledge units: the number

and the type of element it can store. As mentioned earlier, most of the students

85

always selected the correct assertion about what type of element a given array can

store. However, only three students always selected the correct assertion about the

number of elements a given array can store. Most of the student’s responses on this

were inconsistent (96.8% sometimes selected).

Although most of the students (47.3%) did not think that after the declaration, an

array reference variable is set to null (MD1.1), many of them (41.9%) consistently

believed that after the declaration, an array reference variable is created (MD1.2).

However, a fair portion of them selected this assertion sometimes (33.3%). Therefore,

I can conclude that this assertion has not been solidified in their mental models. Al-

though being correct, over half of the students never selected that there no memory

allocation after declaration (52.7%). Data from Table 5.18 further shows the incom-

pleteness of students’ mental models on declaration. Most of the students answered

incorrectly to the declaration questions. The distribution of mental model classifica-

tion further showed that most students were holding consistent and mostly incorrect

mental models.

Though over half of the students supported the fact that after array instantiation,

memory is allocated for the array (MIn1.1), they are not sure about what default

value is set for each of the elements. In Java, once instantiated, the default value

of each element is set to 0 for integer arrays, 0.0 for deciMAE arrays, and ‘\u0000’

for character arrays. Some of them thought there was no default value or blank in

the elements after an array instantiation. This evidence suggests that students do

not have a clear understanding of memory allocation and the default values of the

array once declared and instantiated. Among all the components, students demon-

strated the least correctness (35.35%) on questions of array instantiation. Analysis

of their responses’ consistency revealed that they were mostly consistent in selecting

the incorrect assertion. This may indicate that there lies evidence of misconceptions

in their mental models of array instantiation. Since they have not been instructed in

86

the classroom, these findings are not surprising.

Assigning a value to an element of an array is the same as assigning a value to

a primitive variable. At the point of data collection, students are expected to gain

proficiency with primitive variable assignments. However, though almost 90% of stu-

dents selected sometimes, surprisingly, none of the students consistently chose the

correct assertion that the assignment copies the values from right to left (MAE1.1).

In previous research, Ma et al. [158] found that even after classroom instruction, ap-

proximately only one-third of students held consistent and correct mental models of

value assignment. Strikingly, almost 60% students selected sometimes that the value

of a variable never changes (MAE1.2). On the other hand, nine participants believed

consistently that primitive variable assignments work the same as the reference as-

signments. From Table 5.18, we can see almost 50% students answered incorrectly the

questions regarding array assigning elements. Even though almost 70% of them were

found to be consistent, the mental model classification further revealed that most of

the students’ mental models were consistent and mostly incorrect (CMI).

In the CS education domain, students are commonly known to have inconsistent

mental models for reference variable assignments [17, 28]. Our findings provide evi-

dence to support the claim. Only 41.4% of students answered all the questions cor-

rectly regarding array assignment. Most importantly, the majority of the students’

(72%) mental models were inconsistent. Further investigation revealed most (44.1%)

of their mental models were inconsistent and mostly incorrect (IMI) (see Table 5.18).

The assertion level analysis revealed that many of the students consistently believed

that array assignment copied the values (MA3). This is a predominant misconception

regarding a reference variable assignment established in the literature [17, 28,152].

5.5.2 Parts vs. State Changes

To answer the research question How are the incoming novice programmers’

initial mental models of array’s parts components in comparison with the

87

state changes components? I draw evidence from the correctness score and the

mental model score. I found data supporting the evidence that the mental model

components of state changes were more challenging to novice programmers than the

parts. I found that our participants’ correctness score was significantly higher for parts

components than states. Similarly, I found parts mental model score significantly

higher than state changes mental model score. Moreover, for parts components, I saw

the frequency distribution of selecting the assertions 100% of the time was skewed

to the correct assertion. However, for state changes components, the percentage of

selection was scattered. I observed a similar pattern for the frequency distribution

of mental model categories (see Figure 5.1). From these findings, I can answer that

the novice programmers’ mental model correctness and consistency for array’s parts

components are better than the state changes components.

Prior studies have also found both the novices and upper-level students struggle

to understand interactions between states [26, 80, 152]. Krishnamurthi et al. [30]

describe that comparative studies between stateful and non-stateful programming

concepts are understudied in computing education. He remarked, “state is a powerful

tool that must be introduced with responsibilities” [30, p.385]. State changes in

introductory programming concepts such as variables, arrays, and objects were also

seen to be poorly portrayed by most of the common CS1 textbooks [159]. Psychologist

Mayer [5,160] showed through several studies that illustrations of a scientific concept’s

parts and state changes improved the students’ performance of recall and creative

problem-solving.

5.5.3 Students’ Demographics and Mental Models

Below, I discuss the following research question RQ3. What impact do prior

programming experience and demographics have on the mental model of

the participants in our study before classroom instruction? The results

revealed several correlations between participants’ demographics and their mental

88

models. First, I observed a significant difference in correctness score and mental

model score based on participants’ programming experience. Those who learned a

programming language other than Java performed better than those who have no

prior programming experience (see Table 5.19). Clearly, prior programming knowl-

edge seemed to affect mental model consistency and correctness even before class-

room instruction. Researchers have found that prior programming experience can

also impact the classroom climate for a CS1 course [161, 162]. Students having prior

programming knowledge can create a defensive climate, which is detrimental to those

without prior experience [162]. Prior programming knowledge is also considered a

predictor of success in a CS1 course [162, 163]. In a study, most students who had

prior programming knowledge felt that their prior knowledge was a factor of success,

and they felt more confident [162]. Moreover, prior programming knowledge also im-

pacts CS1 students’ perception of pair programming. Research suggests CS1 students

should form partnerships based on comparable levels of prior programming knowl-

edge [162]. The MMT-A can be an instrument to learn the initial existing knowledge

about arrays of CS1 students. By knowing that student partnerships can be formed

to make a more effective pair programming experience.

Second, I found the participants who are CS majors scored significantly higher in

the mental model score than non-majors. Worthy of note that 51% (n = 25) of the

CS major participants had previous programming experience, whereas only 38.6% (n

= 17) of non-majors had prior programming experience.

Lastly, the female participant’s mental model score was significantly lower than the

male participants in our study. My results mirror research reported in the literature

documenting the inequities faced by female students in introductory programming

courses. My work expands on work by Ramalingam et al. [76], which showed that

student’s mental models influence their self-efficacy. Self-efficacy has been found to

impact course performance and persistence in college courses. This also aligns with

89

prior work focused on introductory programming that repeatedly has shown female

students with lower self-efficacy [164–167].

5.6 Summary

In this chapter, I presented the results gathered from investigating novice pro-

grammers’ mental models of arrays before classroom instruction. The use of MMT-A

elicited mental model assertions for each of the array components. From the mental

model assertion, I analyzed the consistency and correctness of incoming novice pro-

grammers’ mental models. The results revealed that components I classified as state

changes were more challenging for novice programmers than parts. My findings also

revealed that prior programming knowledge has an impact on novices’ initial mental

models’ consistency and correctness. This finding supports the belief of construc-

tivism that learners are not clean slates. Moreover, mental model consistency and

correctness analysis revealed gender inequity. I found female participants held signifi-

cantly lower mental model consistency and correctness scores than male participants.

Moreover, their mental model score was lower than the average for the whole group.

The study contributes to our understanding of novices’ initial mental models of

arrays based on their mental model assertions, mental model consistency, and cor-

rectness. The next chapter presents the results of investigating novice programmers’

mental models after they have received classroom instruction on arrays.

CHAPTER 6: NOVICE PROGRAMMERS’ MENTAL MODELS AFTER

INSTRUCTION

6.1 Introduction

In the previous chapter, I summarized my findings from investigating novice pro-

grammers’ mental models before they were given any formal instruction on arrays.

This chapter presents the results of my investigation of the novice programmers’

mental models after they were given formal instructions along with formative and

summative assessments on arrays. The research questions around this investigation

are similar to Section 5.1. However, the research questions are answered by centering

on novice programmers who already have learned arrays.

Therefore, I state the research questions below:

RQ4. What are the characteristics of novice programmers’ mental models after they

have learned arrays?

RQ5. How are the novice programmers’ mental models of the array’s parts compo-

nents in comparison with the state changes components after they have learned

arrays?

RQ6. What impact do prior programming experience and demographics have on the

mental model of the participants after they have learned arrays?

I found that the novice programmers’ mental models of the array’s parts compo-

nents seemed well-developed. However, even after classroom instruction, the mental

models of array’s state changes components of students suffer inconsistency and inac-

curacy. The mental model gap between array’s parts and state changes components

91

that were found in incoming novice programmers’ remained intact after the formal

classroom instruction. Further analysis showed the mental model difference based

on prior programming experience and gender, which existed prior to instruction di-

minished after the classroom instruction. Interestingly, the mental model difference

based on correctness and consistency between CS majors and non-majors persists. In

this chapter, I describe the data I collected and present the results in detail.

6.2 Data Collection

As this study aimed to uncover novice programmers’ mental models after they

have learned arrays, I used the data set collected after formal classroom instruc-

tion on arrays. Therefore, I used the Spring 2021-Post-test, Spring 2023-Post-

Instruction, and Summer 2023-Post-Instruction (described in Section 4.12) to

answer my research questions.

6.3 Participants

As mentioned earlier, I administered MMT-A post-instruction in three semesters:

Spring 2021, Spring 2023, and Summer 2023. In total, 262 participants gave their

consent to analyze their data. After removing incomplete and duplicate cases, I could

include 144 participants’ responses in my analysis. Most of our participants identified

themselves as male (70.1%), 20.8% identified as female, 4.86% preferred not to answer,

and the rest (4.2%) reported being gender non-binary. Of the 144 participants, 67.4%

reported having CS as their major of study. Over half of the participants (54.2%)

had no prior programming experience before enrolling in the CS1 course. Among

the students who had prior programming experience, 12 participants had experience

with Java, and 54 participants had experience with other programming or markup

languages (e.g., Python, JavaScript, C#, C++, SQL, HTML, Snap).

92

6.4 Results

Sections 6.4.1 enumerate the assertions residing in novice programmers’ mental

models of an array after they have learned arrays. I present the correctness and

consistency of novice programmers’ mental models in Sections 6.4.2, 6.4.3, and 6.4.4.

Lastly, the effect of prior programming experience and demographics on novice pro-

grammers’ mental models is discussed in Section 6.4.5.

6.4.1 Mental Model Assertions

As previously described, concepts in the mental model of arrays are broken down

into parts and state changes. Below, I present the selection of mental model assertion

for each component of arrays parts and state changes.

6.4.1.1 Assertions for Parts

Part : Name

The assertions MN1, MN2, and MN3 appeared in two questions each, and MN4

and MN5 appeared in only one question each (see Table 6.1). The results show that

132 out of 144 students selected MN1 when it appeared as the correct option, and

an additional seven students selected sometimes. For the incorrect choices, a total

of 135 students avoided (i.e., never selected it) MN2, 144 (all) avoided MN3, 141

avoided MN4, and 142 (all 100%) avoided MN5. Table 6.2 summarizes the frequency

distribution for each kind of selection.

Table 6.1: List of assertions for the part name.

Assertions Correctness Num. of
Questions

MN1: Array reference variable is the name of the array Correct 2
MN2: Array type is the name of the array Incorrect 2
MN3: Keyword new is the name of the array Incorrect 2
MN4: Whatever comes after equal sign in an initialization is the name
of the array

Incorrect 1

MN5: First element in the array is the name of the array Incorrect 1

93

Table 6.2: Frequency distribution of the selection of assertions for the part name.

MN1 MN2 MN3 MN4 MN5
correct incorrect incorrect incorrect incorrect

Always selected 91.7%
(132)

2.1%
(3)

0%
(0)

2.1%
(3)

1.4%
(2)

Sometimes selected 4.9%
(7)

4.2%
(6)

0%
(0) - -

Never selected 3.5%
(5)

93.8%
(135)

100%
(144)

97.9%
(141)

98.6%
(142)

Total 100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

Part : Index

Table 6.3 lists the assertions used in the MMT-A. The frequency distribution of

each assertion is presented in Table 6.4. I have broken down the correct assertion

into two separate assertions, MI1.1 and MI1.2. The assertions MI1.1 appeared nine

times and MI1.2 six times. Together, those two are the correct assertions regarding

the use of indices in arrays. The other incorrect assertions are listed in Table 6.4. It

is worth noting that MI4 and MI5 represent common misconceptions on the use of

array indices, namely that the index of the first element in the array is [1] and that

the last element is stored at [n] instead of the correct answer of [n-1].

The correct assertion of MI1.1 was selected consistently by 56.9% (82) of the par-

ticipants. In addition, 43.1% (62) of the participants sometimes selected this option.

Surprisingly, the complimentary assertion of MI1.1 and MI1.2 had a different distri-

bution than MI1.1. None of the participants selected it consistently, and an additional

96.5% (139) selected it some of the time (at least once).

The incorrect choices show a high percentage of participants who avoided those

options. MI2 was never selected consistently; 1.4% of the participants selected it

at least once, and 98.6% of the participants avoided it altogether. Table 6.4 shows

similar numbers for MI3, MI6, and MI7.

94

MI4 and MI5, however, have different numbers. These assertions reflect a misun-

derstanding of how indices work in Java. They reflect a misunderstanding that the

index starts at 1 (MI4) and ends at n instead of n-1 (MI5). The start/end of an

array is a documented misconception [7,111], so it is no surprise that these incorrect

assertions drew higher participant responses. Although none of the participants al-

ways selected, 37.5% of participants selected MI5 at least once. Similarly, none of the

participants always selected MI5, but 32.6% (47) of them selected it at least once.

Table 6.3: List of assertions for the part index.

Assertions Correctness Num. of
Questions

MI1.1: Array index starts with 0 Correct 9
MI1.2: Array index ends with n-1 (index of last element) Correct 6
MI2: Index of an array can be of any type, not just integers Incorrect 3
MI3: There is no indexing into the array Incorrect 2
MI4: Array index starts with 1 Incorrect 8
MI5: Array index ends with n (index of last element) Incorrect 7
MI6: Array index does not map to its corresponding location in the
array

Incorrect 3

MI7: Students think the index is the element. Incorrect 3

Table 6.4: Frequency distribution of the selection of assertions for the part index.

MI1.1 MI1.2 MI2 MI3 MI4 MI5 MI6 MI7
correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

56.9%
(82)

0%
(0)

0%
(0)

1.4%
(2)

0%
(0)

0%
(0)

0%
(0)

0%
(0)

Sometimes
selected

43.1%
(62)

96.5%
(139)

1.4%
(2)

6.3%
(9)

37.5%
(54)

32.6%
(47)

9%
(13)

6.3%
(9)

Never
selected

0%
(0)

3.5%
(5)

98.6%
(142)

92.4%
(133)

62.5%
(90)

67.4%
(97)

91%
(131)

93.8%
(135)

Total 100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

Part : Type

The assertions MT1, MT2, and MT3 each appear in two questions in the instrument

(see Table 6.5). The correct assertion, MT1, represents a clear understanding of the

difference between array name and array type in an array declaration statement.

95

Table 6.6 shows the frequency distribution of each assertion. The results show that

97.2% (140) of the participants selected MT1 consistently. Only one participant

avoided MT1 both times it appeared in the instrument. Only one participant selected

MT2 both times, and two participants selected MT2 sometimes. These students

seemed to confuse the array name with the array type.

Table 6.5: List of assertions for the part type.

Assertions Correctness Num. of
Questions

MT1: Name appearing before the array name is the type of the array Correct 2
MT2: Name of the array is the type of the array Incorrect 2
MT3: Keyword new is the type of the array Incorrect 2

Table 6.6: Frequency distribution of the selection of assertions for the part type.

MT1 MT2 MT3
correct incorrect incorrect

Always selected 97.2%
(140)

0.01
(1)

0%
(0)

Sometimes selected 2.1%
(3)

1.4%
(2)

0.01
(1)

Never selected 0.01
(1)

97.9%
(141)

99.3%
(143)

Total 100%
(144)

100%
(144)

100%
(144)

Part : Element

The assertions ME1.1 and ME1.2 are the correct assertions regarding array ele-

ments. Each of these appeared two times in the instrument. Assertions ME2 (5),

ME3 (4), ME4 (4), ME5(2), ME6 (2), and ME7 (2) were invalid assertions about

array elements (see Table 6.7). As shown in Table 6.8, ME1.1 (size of the array) was

selected consistently by only 4.2% (6) of the participants. In addition, an additional

95.8% (138) of the participants selected this option at least once. ME1.2 was, on

the other hand, a very common choice, with 82.6% (119) participants selecting it

96

Table 6.7: List of assertions of the part element.

Assertions Correctness Num. of
Questions

ME1.1: The array contains n number of elements Correct 7
ME1.2: Elements stored in the array can be only of the declared type Correct 2
ME2: The array contains size+1 elements Incorrect 5
ME3: The array contains size-1 elements Incorrect 4
ME4: After instantiation, the array doesn’t have space to store any
elements (size 0)

Incorrect 4

ME5: Element values and array names are related (e.g., books and
"Harry Potter")

Incorrect 2

ME6: Keyword ‘new‘ is an element in the array Incorrect 2
ME7: Type of values stored do not match type of array Incorrect 2

consistently. Interestingly, 13.2% (19) of the participants never selected this option.

This assertion (ME1.2, Elements stored in the array can be only of the declared type)

seems to divide the participants into two extremes: 82.6% consistently selected, and

13.2% never selected it.

Worthy of note is option ME5. This (erroneous) assertion appeared twice in the

instrument and implied that the name of an array was semantically related to the

value stored in the array. For example, an array of type String and named “books” can

only store strings containing names of books, such as “Harry Potter”. The results show

that 7.6% (11) of the participants selected this option consistently, and an additional

2.1% (3) selected this assertion sometimes.

Table 6.8: Frequency distribution of the selection of assertions for the part element.

ME1.1 ME1.2 ME2 ME3 ME4 ME5 ME6 ME7
correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

4.2%
(6)

82.6%
(119)

0%
(0)

0%
(0)

0%
(0)

7.6%
(11)

0.01
(1)

1.4%
(2)

Sometimes
selected

95.8%
(138)

4.2%
(6)

25.7%
(37)

26.4%
(38)

5.6%
(8)

2.1%
(3)

3.5%
(5)

5.6%
(8)

Never
selected

0%
(0)

13.2%
(19)

74.3%
(107)

73.6%
(106)

94.4%
(136)

90.3%
(130)

95.8%
(138)

93.1%
(134)

Total 100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

97

6.4.1.2 Assertions for State Changes

This section presents the results for all the state changes of the array mental model

included in the MMT-A. The sections that follow cover the state changes in our

instrument: declaration, instantiation, assigning elements, and assignment.

State change: Declaration

The assertions MD1.1, MD1.2, MD1.3, and MD1.4 are the correct assertions for

array declaration (see Table 6.9). The assertion MD1.1 was selected consistently by

32.6% (47) of the participants, with an additional 16% (23) participants selecting

MD1.1 sometimes (see Table 6.10). The remaining 51.4% (74) of the participants

never selected MD1.1. These results indicate a high level of misunderstanding among

the participants in our study.

The assertion MD1.2 was selected consistently by 45.8% (66) of the participants,

with an additional 29.2% (42) participants selecting MD1.1 sometimes (see Table 6.10).

The remaining 25% (36) of the participants never selected MD1.2. MD1.3 and MD1.4

each appeared only once in our instrument, and as a result, participants either se-

lected that assertion (MD1.3 67.4% and MD1.4 45.8%) or not (MD1.3 32.6% and

MD1.4 54.2%).

For the incorrect assertions, MD2 stands out as 27.8% (40) of the participants

consistently selected it. An additional 13.9% (20) of the participants selected this

option at least once. At the other extreme, 58.3% (84) of the participants never

selected this option.

The remaining incorrect assertions (MD3, MD4, MD5, MD6, and MD7) were

mostly selected sometimes or not selected at all. Still, these assertions should not

have been selected (i.e., incorrect assertion). Particularly, MD5 (42.4%) and MD6

(50.7%) have a higher selection rate at least once. The distribution of responses

shows that these assertions and, thus, this concept is problematic for lots of students.

98

Table 6.9: List of assertions of the state change declaration.

Assertions Correctness Num. of
Questions

MD1.1: After declaration, default value of array reference variable is
set to null

Correct 2

MD1.2: After declaration, an array reference variable is created Correct 2
MD1.3: After declaration, no memory is allocated for the array Correct 1
MD1.4: After declaration, no elements can be stored. Correct 1
MD2: There is no default value for the elements of the array
(blank/no value)

Incorrect 2

MD3: The default value for the array reference is the default value
for type (e.g., int is 0, boolean is false)

Incorrect 4

MD4: The default value for the array reference is stored as ‘?’ Incorrect 3
MD5: After declaration, memory is allocated for the elements Incorrect 3
MD6: After declaration, the number of elements that can be stored
is unlimited

Incorrect 3

MD7: After declaration, there is a default size for an array Incorrect 1

Table 6.10: Frequency distribution of the selection of assertions for the state change
declaration.

MD1.1 MD1.2 MD1.3 MD1.4 MD2 MD3 MD4 MD5 MD6 MD7
correct correct correct correct incorrect incorrect incorrect incorrect incorrect incorrect

Always
selected

32.6%
(47)

45.8%
(66)

67.4%
(97)

45.8%
(66)

27.8%
(40)

1.4%
(2)

0%
(0)

0%
(0)

5.6%
(8)

4.9%
(7)

Sometimes
selected

16%
(23)

29.2%
(42) - - 13.9%

(20)
36.1%
(52)

0.01
(1)

42.4%
(61)

50.7%
(73) -

Never
selected

51.4%
(74)

25%
(36)

32.6%
(47)

54.2%
(78)

58.3%
(84)

62.5%
(90)

99.3%
(143)

57.6%
(83)

43.8%
(63)

95.1%
(137)

Total 100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

100%
(144)

State change: Instantiation

As shown in Table 6.12, MIn1.1 was selected consistently by 76.4% (110) of the

participants. The rest of the participants, 23.6% (34), never selected this option. A

second valid assertion in this concept, MIn1.2 had no participants selected consis-

tently. Just over half of the participants, 62.5% (90), selected this option some of the

time, with 37.5% (54) of the participants never selecting this option.

MIn2, most participants (88.9%) never selected this option, and 8.3% of the partic-

ipants selected it sometimes. Only a handful (2.8%) selected this option consistently.

Similarly, MIn3 was selected by 21.5% (31) of the participants sometimes, and 78.5%

99

(113) never selected it. None selected MIn3 consistently. For MIn4, which is about no

memory allocation after instantiation, two participants selected it consistently. 46.5%

(67) selected it sometimes, and the rest, 52.1% (75), avoided this option.

Table 6.11: List of assertions for the state change instantiation.

Assertions Correctness Num. of
Questions

MIn1.1: After instantiation, memory is allocated for the array Correct 1
MIn1.2: After instantiation, the appropriate default value is assigned
to the elements

Correct 4

MIn2: After instantiation, ‘?’ is stored as a default value Incorrect 3
MIn3: After instantiation, there is no default value (blank) stored for
the elements

Incorrect 4

MIn4: After instantiation, no memory is allocated Incorrect 4

Table 6.12: Frequency distribution of the selection of assertions for the state change
instantiation

MIn1.1 MIn1.2 MIn2 MIn3 MIn4
correct correct incorrect incorrect incorrect

Always selected 76.4% (110) 0% (0) 2.8% (4) 0% (0) 1.4% (2)
Sometimes selected - 62.5% (90) 8.3% (12) 21.5% (31) 46.5% (67)
Never selected 23.6% (34) 37.5% (54) 88.9% (128) 78.5% (113) 52.1% (75)
Total 79.2% (114) 79.2% (114) 79.2% (114) 79.2% (114) 79.2% (114)

Table 6.13: List of assertions for the state change assigning elements.

Assertions Correctness Num. of
Questions

MAE1.1: Assignment copies the values from right to left. Correct 6
MAE1.2: The variable on the right-hand side remains the same after
assigning.

Correct 2

MAE2: The value of a variable never changes. Incorrect 8
MAE3: A variable can hold multiple values at a time / ‘remembers’
old values.

Incorrect 10

MAE4: Assignment swaps values of the left and right hand side. Incorrect 2
MAE5: Primitive assignment is the same as reference assignment. Incorrect 2

State change: Assigning Elements

Table 6.13 shows all the assertions for the concept, Assigning Elements with two

correct and four incorrect assertions (see Table 6.14). For the correct assertions,

100

MAE1.1 was never selected consistently. However, almost all participants, 97.9%

(141), selected this assertion some of the time, and only 2.1% (3) of the participants

avoided it completely. For the other correct assertion, MAE1.2, 66% (95) selected it

consistently, and an additional 19.4% (28) participants selected it sometimes. 14.6%

(21) participants avoided this option.

For the incorrect assertions, MAE2 and MAE3 zero (0) participants selected these

options consistently. Most participants avoided MAE2 (66.7%) and MAE3 (70.1%).

MAE4 and MAE5 appeared only twice in the instrument. For MAE4, only three

participants selected it consistently, 11.1% selected it sometime, and 86.8% avoided

the option altogether. For MAE5, 4.2% selected it consistently, an additional 9.7%

selected it sometimes, and the majority of the participants, 86.1%, never selected this

option.

Table 6.14: Frequency distribution of the selection of assertions for the state change
assigning elements.

MAE1.1 MAE1.2 MAE2 MAE3 MAE4 MAE5
correct correct incorrect incorrect incorrect incorrect

Always selected 0% (0) 66% (95) 0% (0) 0% (0) 2.1% (3) 4.2% (6)
Sometimes selected 97.9% (141) 19.4% (28) 33.3% (48) 29.9% (43) 11.1% (16) 9.7% (14)
Never selected 2.1% (3) 14.6% (21) 66.7% (96) 70.1% (101) 86.8% (125) 86.1% (124)
Total 100% (144) 100% (144) 100% (144) 100% (144) 100% (144) 100% (144)

Table 6.15: List of assertions for the state change array assignment.

Assertions Correctness Num. of
Questions

MA1: Array assignment copies reference from right to left, sharing
the memory.

Correct 3

MA2: Array assignment appends value at the end of the array. Incorrect 1
MA3: Array assignment copies the values. Incorrect 3
MA4: Array assignment transfers (cuts) values. Incorrect 2
MA5: Array assignment copies the reference but does not share mem-
ory.

Incorrect 2

101

State change: Array Assignment

Table 6.15 lists all assertions related to the state change array assignment, also

labeled as assignment in short. MA1 is the correct assertion; nine of the participants

selected it consistently. However, over half of the total participants (63.9%) sometimes

selected this option, and 29.9% of participants avoided it.

The first of the incorrect assertions, MA2, had 93.1% (134) of the participants

avoiding this option, and the remainder of the participants, 6.9% (10), selected it

consistently. The next incorrect assertion, MA3, had a distribution of participants,

with 10.4% (15) selecting it consistently, 70.8% (102) selecting it some time, and

18.8% (27) avoiding it.

The last two incorrect assertions, MA4 and MA5, did not have any participant

select it consistently. The participants were divided between selecting it sometimes

(MA4 16.7% and MA5 22.9%), with the majority in both cases avoiding it altogether

(MA4 83.3% and MA5 77.1%).

Table 6.16: Frequency distribution of the selection of assertions for the state change
array assignment.

MA1 MA2 MA3 MA4 MA5
correct incorrect incorrect incorrect incorrect

Always selected 6.3% (9) 6.9% (10) 10.4% (15) 0% (0) 0% (0)
Sometimes selected 63.9% (92) - 70.8% (102) 16.7% (24) 22.9% (33)
Never selected 29.9% (43) 93.1% (134) 18.8% (27) 83.3% (120) 77.1% (111)
Total 100% (144) 100% (144) 100% (144) 100% (144) 100% (144)

6.4.2 Mental Model Correctness

I scored each participant based on the correctness of their answers in MMT-A, as

discussed in Section 4.6. I referred to this score as the correctness score. As there

were 36 questions, the possible highest score could be 36, and the lowest score could

be 0. I report on the total correctness score and the correctness score for each part

and state change component.

102

Table 6.17: Participant’s overall correctness and mental model score with individual
scores for parts and state changes. Participants’ correctness score and mental model
score for the state changes is statistically significantly lower than the parts (shown in
the last row).

Correctness
Score

Mental Model
Score

Mean
(%) SD Mean

(%) SD

Overall 70.79 6.49 77.62 6.82
Parts 88.14 2.63 90.97 3.56
State
changes 59.75 4.45 64.26 4.12

Parts vs.
State
changes

p <0.001 p <0.001

For the total correctness score, the participants answered an average of 25.49 out of

36 (70.79%, σ = 6.49, N = 144) questions correctly (see Table 6.17). A participant’s

minimum correctness score is seven, and the maximum score is 36.

Moreover, I computed the correctness score for the parts and state changes. I had

14 questions for parts and 22 questions covering state changes. The mean correctness

score for parts was 12.34 out of 14 (88.14%, σ = 2.63, N = 144) and for state changes

was 13.14 out of 22 (59.75%, σ = 4.45, N = 144).

Table 6.18 (column 3) shows the detailed breakdown of the correctness score for

the concepts of parts and state changes. I present the mean correctness score in

percentage as the number of questions varies for each concept. Note that participants’

mean correctness scores were higher for parts than for state changes. A paired t-test

shows that participants scored significantly higher (t = 21.07, p < 0.001) in parts

than in state changes (shown in Table 6.17).

6.4.3 Mental Model Consistency

Based on the contradictions in a participant’s mental model assertion, I categorized

mental models into two categories: consistent and inconsistent (see Section 4.5 for the

103

definition). I measured mental model consistency for each part and state change. Ta-

ble 6.18 (columns 4 and 5) includes the absolute frequency (N) and relative frequency

(%) obtained from the analysis of consistency.

Almost all participants (over 90%) had a consistent mental model for name (93.75%,

135), type (97.92%, 141), elements (93.75%, 135), and declaration (95.83%, 138). For

instantiation, over 80% of participants were consistent in their mental model asser-

tions.

Among the parts components, participants demonstrated the least mental model

consistency for array’s index (68.06%, 98). Worthy to note, for the state change

assignment, most of the participants (77.78%, 112) demonstrated inconsistency in

their mental models.

6.4.4 Mental Model Score: Combining Correctness & Consistency

As described in Section 4.7, I categorized and ranked a mental model based on its

consistency and correctness score. The correct mental model (see Table 4.2), which

is always consistent, is ranked the highest (6). As a mental model rank is given for

each part and state changes, a total mental model score is calculated by adding the

mental model ranks for the components of each part and state changes. There are,

in total, eight components. Therefore, a participant’s highest mental model score is

48, considering everything is correct. The lowest mental model score a participant

can achieve is 0. The participants scored a mean total mental model score of 37.26

(77.62%, σ = 6.82) (see Table 6.17). For the parts components, the mean score is

21.83 (90.97%, σ = 3.56) and for the state changes components the mean score is

15.42 (64.26%, σ = 4.12). I performed a paired t-test to compare the differences

within the parts and state changes mental model score. Similar to the parts and state

changes correspondence score, I found a statistically significant difference between

these two scores. The participants’ mental model score for the parts components was

higher than the states changes components (t = 21.42, p < 0.001) (shown in Table

104

Table 6.18: Participants’ correctness, consistency, and mental model classification
for each part and state changes (N = 144). Here, II: Inconsistent and Incorrect
mental model, CI: Consistently Incorrect mental model, IMI: Inconsistent and Mostly
Incorrect mental model, CMI: Consistent and Mostly Incorrect mental model, IMC:
Inconsistent and Mostly Correct mental model, CMC: Consistent and Mostly Correct
Mental Model, C: Correct mental model.

Components #
Qs.

Correctness Consistency Mental Model ClassificationConsistent Inconsistent
Mean %
(N=144) SD N % N % II CI IMI CMI IMC CMC C

N % N % N % N % N % N % N %
P:Name 2 94.10 20.90 135 93.75 9 6.25 2 1.39 3 2.08 7 4.86 0 - 0 - 0 - 132 91.67
P:Index 5 85.69 26.09 98 68.06 46 31.94 5 3.47 0 0 11 7.64 0 - 25 17.36 8 5.56 90 62.50
P:Type 2 98.26 10.92 141 97.92 3 2.08 0 - 1 0.69 3 2.08 0 - 0 - 0 - 140 97.22
P:Elements 5 84.17 28.17 135 93.75 9 6.25 2 1.39 3 2.08 5 3.47 8 5.56 2 1.39 23 15.97 101 70.14
S:Declaration 6 52.55 27.26 138 95.83 6 4.17 1 0.69 2 1.39 5 3.47 72 50.00 0 - 50 34.72 14 9.72
S:Instantiation 4 56.08 36.84 121 84.03 23 15.97 0 - 14 9.72 21 14.58 48 33.33 2 1.39 8 5.56 51 35.42
S:Assigning Elements 6 74.54 28.49 115 79.86 29 20.14 3 2.08 0 - 17 11.81 19 13.19 8 5.56 43 29.86 53 36.81
S:Assignment 6 54.63 23.02 32 22.22 112 77.78 3 2.08 4 2.78 52 36.11 19 13.19 57 39.58 2 1.39 7 4.86

6.17).

6.4.5 Mental Model Score and Demographics

I analyzed participants’ correctness scores and mental model scores based on their

demographics (details are in Table 6.19). When I analyzed the participants’ corre-

spondence score and mental model score based on previous programming experience

(programming learned or not), I found no statistical difference (see Table 6.19). More-

over, I performed a one-way ANOVA and found no statistically significant difference

in participants’ mental model scores based on the prior programming language expe-

rience.

However, I found a statistically significant difference in the total mental model score

when I conducted an independent t-test based on the participants’ major concentra-

tion. Participants who are CS majors (x̄ = 26.23, σ = 6.10) had significantly higher

correctness scores than participants who are not CS majors (x̄ = 23.96, σ = 7.07)

(F = 0.97, p ≤ 0.05). Similarly, participants who are CS majors (x̄ = 38.21, σ = 6.21)

had significantly higher mental model scores than participants who are not CS majors

(x̄ = 35.30, σ = 7.63) (F = 1.30, p ≤ 0.05).

Additionally, I performed statistical analysis with gender as an independent vari-

able. I found no significant difference in correctness and mental model scores based

105

Table 6.19: Participants’ correctness score and mental model score by demograph-
ics. Participants’ correctness and mental model scores were statistically significantly
higher for those who are CS majors (last two rows).

Demographics
Correctness

Score
MMS
Score

Mean (%) SD p Mean (%) SD p

Previous
Programming
Experience

(a) Yes
(n = 66) 72.14 6.53 n.s. 79.04 6.48 n.s.
(b) No
(n = 78) 69.66 6.48 76.42 7.08

Programming
Language
Learned

(a) None
(n = 78) 68.98 6.58

n.s.
75.88 7.14

n.s.(b) Java
(n = 12) 65.51 7.58 74.48 8.04

(c) Other
Language
(n = 54)

74.59 5.98 80.83 5.83

Gender
(a) Female
(n = 30) 72.42 4.93 n.s. 78.75 5.02 n.s.
(b) Male
(n = 101) 69.91 7.00 76.94 7.43

CS Major
(a) Yes
(n = 97) 72.85 6.10 p ≤ 0.05

(a > b)
79.60 6.21 p ≤ 0.05

(a > b)(b) No
(n = 47) 66.55 7.07 73.41 7.63

106

on gender.

6.4.6 Mental Model Classification Frequency Distribution

I classified mental models into eight categories, as described in Section 4.7. Similar

to the frequency distribution of each assertion (described in Sections 6.4.1.1 and

6.4.1.2), I describe the frequency distribution of each mental model category (see

Figure 6.1) for each component below.

Figure 6.1: Frequency distribution (in percentage) of the categories of the mental
models. Here, II: Inconsistent and Incorrect mental model, CI: Consistently Incorrect
mental model, IMI: Inconsistent and Mostly Incorrect mental model, CMI: Consistent
and Mostly Incorrect mental model, IMC: Inconsistent and Mostly Correct mental
model, CMC: Consistent and Mostly Correct Mental Model, C: Correct mental model.

6.4.6.1 Part : Name

As shown in Table 6.18, only two out of 144 of the participants could be classified

in the category of inconsistent and incorrect (II) for the concept name. Based on

the analysis, I found three participants to hold consistent and incorrect (CI) mental

models. These three participants were holding wrong assertions consistently without

any internal contradiction. I found seven participants (4.86%) to be in the IMI

category. These participants’ mental models were mostly incorrect and had evidence

107

of internal contradiction. For name, I did not find any participants in the CMI, IMC,

and CMC categories. However, most of our participants’ (N = 132, 91.67%) mental

models were in the correct (C) category.

6.4.6.2 Part : Index

For the part index, I found a spread in the distribution. My findings placed 5

(3.47%) participants in the II category, zero participants in the CI category, and 11

(7.64%) participants in the IMI category. On the other hand, I found 25 (17.36%)

participants in the IMC category, 8 (5.56%) participants in the CMC category, and

90 (62.5%) in the correct category. Interestingly, for index, the frequency distribution

was higher in the correct categories. As the concept of index was taught to the

students at the time of this study, this finding is not surprising.

6.4.6.3 Part : Type

For the component type, I found the majority of participants (N = 140, 97.22%)

in the consistent and correct (C) category. Then, I found 41 (44.1%) participants

in the correct category. The rest of the participants were dispersed in IMI (N= 3,

2.08%) and CI (N = 1, 0.69%) categories (see Table 6.18). None of the participants

had incorrect and inconsistent mental models for type.

6.4.6.4 Part : Elements

I found the majority of participants (N = 101, 70.14%) in the consistent and correct

category (C). Only two participants were found to hold inconsistent and incorrect

mental models. The remaining participants were dispersed in the other categories

(see Table 6.18). For elements, over 85% mental models were in the correct spectrum.

Taken together, the participants’ distribution was more inclined towards the correct

assertion for the parts component. Interestingly, that is not the case for the state

changes components. Below, I describe the frequency distribution of the participants

in each mental model category for the state changes components.

108

6.4.6.5 State Change: Declaration

Unlike the parts components of arrays, only fourteen participants hold consistent

and correct mental models for array declaration after they have learned arrays. Half

of the participants (N = 72) were found to be in the consistent and mostly incorrect

(CMI) category. Next, I found 50 (34.72%) participants in the consistent and mostly

correct (CMC) group. The rest of the sample was divided into CI (N = 2, 1.39%),

IMI (N = 5, 3.47%), and II (N = 1, 0.69) categories.

6.4.6.6 State Change: Instantiation

I found one-third of the participants (N = 51, 35.42%) belonged in correct (C)

category for instantiation. Consecutively, I found 48 (33.33%) participants in the CMI

category, followed by the CI category (N = 14, 9.72%). Strikingly, for instantiation,

more frequency distribution was found in the incorrect categories (total N = 83,

57.64%). Eight (10.8%) participants were in the category of consistent and mostly

correct, and only 2 participants were in the inconsistent and mostly incorrect (IMI)

category (see Table 6.18).

6.4.6.7 State Change: Assigning Elements

For assigning elements, most of the participants belonged to the correct (C) (36.81%)

and consistent and mostly correct (CMC) (29.86%) category. Consecutively, 19

(13.9%) and 17 (11.81%) participants were found in the CMI and IMI categories.

None of the participants were consistently incorrect for the component assigning el-

ements. I found 3 (2.08%) participants in the incorrect and inconsistent category for

this component.

6.4.6.8 State Change: Array Assignment

When one array reference variable is assigned to another array reference variable,

I labeled the state change as assignment. I found most participants (N = 41, 44.1%)

belonged to the inconsistent and mostly correct (IMC) category. Next, I found 52

109

(36.11%) participants in the IMC category. It is noteworthy to mention that over

50% of the participants were distributed in the incorrect categories. I noticed only

seven (4.86%) participants were in the correct category.

The frequency distribution in mental model categories indicates that the state

change components were more challenging for our participants than the parts com-

ponents.

6.5 Discussion

In this section, I discuss the key findings on novice programmers’ mental models

after they have learned arrays based on the research questions stated in Section 6.1.

A discussion geared towards RQ1 is discussed in Section 6.5.1, RQ2 in Section 6.5.2,

and RQ3 in Section 6.5.3.

6.5.1 Novice Programmers’ Mental Models after Learning Arrays

To answer my first research question RQ4. What are the characteristics

of novice programmers’ mental models after they have learned arrays?

I draw evidence from the frequency distribution of selection of assertions for each

component of array’s parts and state changes as well as the correctness scores and

frequency distribution of mental model consistency and classification. Below, I discuss

the findings reflecting upon the RQ4.

In summary, I can conclude with the following comments on incoming novice pro-

grammers’ mental models:

Name : Students’ mental model on name after they have learned arrays seemed

well developed in light of correctness and consistency. For the component name,

similar to the finding from the pre-test, most students consistently selected the right

assertion (MN1). The data from Table 6.18 further solidifies this argument. Table

6.18 shows over 90% of the students’ mental models were correct and consistent for

the component name.

110

Index : Novice programmers’ mental models of array indexing seemed to be devel-

oping. More practice and exposure are needed to make it well-developed. Over 60%

of the students were placed in the mental model category (C), deeming them to be

consistent and correct. Although over 96.5% of students selected the correct assertion

on the array’s last index sometimes, none was found to select it all the time it was

presented. Moreover, some of the students were still confused about the start index

being one and the end index being n.

Type: The majority of the incoming CS1 students’ mental models of array’s type

is well developed.

Elements: Most of the students’ mental models are well developed for identifying

suitable elements an array can store. The frequency distribution of the selection of

assertions was similar to the pre-test results. However, fewer students chose the wrong

assertion on the array’s size. After instruction, students seem more accurate about

the array’s size. However, a similar percentage of students in the pre-test chose ME5

consistently, even after instruction. ME5 was identified as a misconception in both

the pre-test and post-test (described in Chapter 8). Addressing this misconception

in class may reduce the frequency.

Declaration: Similar to the incoming CS1 students’ mental models of declaration,

the outgoing CS1 students’ mental models of array declaration seemed incomplete

based on their selection of assertions and their consistency. Further comparison of

the pre-test and the post-test data in Chapter 7 highlights that students’ mental

model of array declaration did not improve significantly.

Instantiation: Similar to declaration, students do not have a clear mental model

of the state changes that occur after instantiation, such as memory allocation and

initialization of default values to the elements. Nearly half of the participants selected

sometimes that no memory is allocated after instantiation. Similar to the pre-test

data, none of the students could always accurately select the correct default of an

111

array after instantiation.

Assigning Elements: Majority of students’ mental models of assigning elements

seemed mostly accurate but, for some, not always consistent.

Assignment : Most of the students’ mental models of array’s assignment are

incorrect and inconsistent. Over 70% of students who have learned arrays sometimes

selected that array of reference assignment copy values.

6.5.2 Parts vs. State Changes

To answer the research question How are the novice programmers’ men-

tal models of the array’s parts components in comparison with the state

changes components after they have learned arrays? I draw evidence from the

correctness score and the mental model score. I found data supporting the evidence

that the mental model components of state changes were more challenging to novice

programmers than the parts. I found that our participants’ correctness score was

significantly higher for parts components than states. Similarly, I found parts mental

model score significantly lower than state changes mental model score. Moreover,

for parts components, I noticed the frequency distribution of selecting the assertions

100% of the time was skewed to the correct assertion. However, for state changes

components, the percentage of selection was scattered. I observed a similar pattern

for the frequency distribution of mental model categories (see Figure 6.1). From these

findings, I can answer that even after classroom instruction, the novice programmers’

mental model correctness and consistency for array’s parts components are better

than the state changes components.

6.5.3 Students’ Demographics and Mental Models

Below, I discuss the following research question RQ6. What impact do prior

programming experience and demographics have on the mental model of

the participants in our study? Interestingly, I found no significant difference be-

112

tween the correctness and mental model scores based on students’ prior programming

experience or their learned programming language. The score difference between the

students who have learned other programming languages and those who had no ex-

perience that existed in the pre-test was not found after the classroom instruction.

Moreover, Chapter 5 mentions the gender difference (male students scored higher

than female) that existed in the incoming novice programmers’ mental models. Inter-

estingly, that gender difference was not found in the post-instruction dataset. I found

no significant difference between the correctness and mental model scores based on

students’ gender. However, the correctness and mental model score difference between

the CS majors and non-majors students persist even after classroom instruction. Per-

haps CS majors may put more effort into learning programming than those who do

not want to pursue CS as an academic major.

6.6 Summary

In this chapter, I presented the results gathered from investigating novice program-

mers’ mental models of arrays as they received classroom instruction on arrays. The

use of MMT-A elicited mental model assertions for each of the array components.

From the mental model assertion, I analyzed the consistency and correctness of in-

coming novice programmers’ mental models. Surprisingly, even after formal classroom

instruction, students’ mental models of state changes components remained mostly

inconsistent and incorrect. Particularly, I only found a handful of students (less than

20 among 144) holding the correct and consistent (abbreviated as C in Table 6.18)

mental models for an array declaration and assignment. The mental model differ-

ence between the array’s parts components and state changes components still exists.

This may indicate that more emphasis and clear articulation are needed to explain

the hidden state changes to students.

The previous chapter presented the results of investigating mental models before

classroom instruction, and this chapter presented novices’ mental models of arrays

113

after classroom instruction. The next chapter demonstrates the change in novice

programmers’ mental models from the pre-test to the post-test.

CHAPTER 7: NOVICE PROGRAMMERS’ MENTAL MODEL SHIFTS FROM

PRE- TO POST-INSTRUCTION

7.1 Introduction

As part of a journey to explore novice programmers’ mental models, I was also in-

terested in exploring how novice programmers’ mental models change after classroom

instruction. Classroom instruction plays a crucial role in affecting mental models.

One of the goals of formal classroom instruction is to shift learners’ mental models

toward more accuracy. In Chapter 5, I presented my findings exploring novice pro-

grammers’ mental models before classroom instruction. In Chapter 6, I presented

novice programmers’ mental models after classroom instruction. In this Chapter, I

present my findings based on RQ7. How do the correctness and consistency

of novice programmers’ mental models of arrays change after (pre-test vs.

post-test) classroom instruction?

The results showed that overall, the mental model correctness and consistency of

arrays improved after classroom instruction. However, even though improved, I found

that participants’ mental model correctness and consistency of the parts components

were better than the state change components regardless of prior programming ex-

perience. Mental model correctness and consistency improved for all the array’s

components except for declaration.

7.2 Data Collection

In Spring 2021, I collected data with MMT-A in a quasi-experimental design. In

Section 4.12, I describe the Spring 2021-Pre-test and Spring 2021-Post-test

data collection timeline and procedure. To understand the effect of instruction on

115

novice programmers’ mental models, I used the paired dataset from Spring 2021-

Pre-test and Spring 2021-Post-test. I found 66 participants who participated in

both the pre-test and the post-test and consented to data analysis. The students were

allowed to complete the MMT-A test as a pre-test during the 6th week of a 14-week

semester after the course covered the concepts of data types, literals, primitive vari-

ables, assignment operators, casting, classes, objects, constructors, method calling,

parameters, and if statements. The instructors asked the students to complete the

MMT-A again, this time as a post-test after the instruction on arrays (week 13).

7.3 Participants

The majority of the participants among the sixty-six participants identified as male

(47, 71.2%), with 13 (19.7%) identified as female, 1 as gender non-conforming, and

the rest (5, 7.57%) preferred not to answer. Of the 66 participants, 32 (48.5%)

reported having CS as their study major. Almost half of the participants (32, 48.5%)

had no programming experience before enrolling in the CS1 course. Among the 34

participants with prior programming experience, 5 had experience with Java, and

29 had experience with other programming languages (e.g., Python, JavaScript, C#,

C++, SQL, HTML, Snap).

7.4 Results

7.4.1 Mental Model Correctness

I performed a paired t-test to compare participants’ pre-test and post-test cor-

rectness scores. I found that the post-test correctness score (x̄ = 25.15, 69.86%,

σ = 6.31) was significantly higher (t = 8.18, df = 65, p < 0.001) than the pre-test

(x̄ = 20.30, 56.39%, σ = 5.76).

I measured each participant’s correctness score change from the pre-test to the

post-test. The mean change was 4.85 (σ = 4.81), where one participant scored seven

points lower in the post-test, and one scored fifteen points higher. The correctness

116

Table 7.1: Pre-test and Post-test Mean Correctness Score of the Components of
Arrays. (N = 66)

Components Correctness Score T-test
P = part, Pre-test Post-test Pre vs. Post
S = state Mean SD Mean SD t df p
P:Name 87.12% 29.50 93.18% 21.28 1.73 65 p < 0.05
P:Index 52.73% 42.91 88.48% 23.55 6.82 65 p < 0.001
P:Type 96.21% 13.33 100.00% 0.00 2.31 65 p < 0.05
P:Elements 71.52% 27.64 79.70% 27.29 1.93 65 p < 0.05

P:Total 70.57% 3.00 87.64% 2.39 6.99 65 p < 0.001

S:Declaration 50.76% 25.22 47.73% 29.94 n.s.
S:Instantiation 36.74% 28.83 62.50% 37.53 -4.72 65 p < 0.001
S:Assigning Elements 54.29% 30.71 70.96% 32.20 4.19 65 p < 0.001
S:Assignment 44.19% 23.84 54.29% 22.13 3.72 65 p < 0.001

S:Total 47.36% 3.55 58.54% 4.50 5.85 65 p < 0.001

Total Score 56.39% 5.76 69.86% 6.31 8.18 65 p < 0.001

score from the pre-test to the post-test decreased for 13.6% of the participants. On

the other hand, I observed an increase in the correctness score for 80.3% of the

participants. For 6% (4) of the participants, their correctness scores did not change

from the pre-test to the post-test.

As can be seen from Table 7.1 (P:Total), the participants’ post-test parts score

(x̄ = 87.64%, σ = 2.39) is significantly higher (t = 6.99, df = 65, p < 0.001) from

their pre-test scores (x̄ = 70.57%, σ = 3.00).

Additionally, the difference between the pre-test and post-test correctness scores

for state change was statistically significant (t-test t = 5.85, df = 65, p < 0.001)

(S:Total in Table 7.1). Participants’ mean correctness score for the state change

components was higher in the post-test (x̄ = 58.54%, σ = 4.50) than the pre-test

(x̄ = 47.36%, σ = 3.55).

I compared the correctness score for each component of parts and state changes.

Table 7.1 shows the participants’ pre-test and post-test means and standard deviations

(SD) for all the components of parts and state changes. For the component name, a

117

paired t-test (t-test significant at α = 0.05, t = 1.73, df = 65, p = 0.04) revealed that

participants’ post-test scores (x̄ = 93.18%, σ = 21.28) were significantly higher than

their pre-test score (x̄ = 87.12%, σ = 29.50). Similarly, I found an increase for the

part component index (t-test significant at α = 0.001, t = 6.82, df = 65, p < 0.001),

type (t-test significant at α = 0.05, t = 2.31, df = 65, p = 0.01), and elements (t-test

significant at α = 0.05, t = 1.93, df = 65, p = 0.03).

For the state change components, I found that the participants’ post-test scores

were significantly higher than their pre-test scores: instantiation (t = −4.72, df =

65, p < 0.001), assigning elements (t = 4.19, df = 65, p < 0.001), and assignment

(t = 3.72, df = 65, p < 0.001). I found no significant difference between the mean

correctness score of the pre-test and the post-test for declaration.

7.4.1.1 Correctness Level

As mentioned in Section 4.7, I categorized correctness into four levels: incorrect,

mostly incorrect, mostly correct, and correct. Table 7.2 shows the classification of

the correctness levels for the pre-test and post-test. In either pre-test or post-test,

I found no participant in the incorrect category (all incorrect answers). The scores

show that 36.4% of the participants in the pre-test scored in the mostly incorrect

level, and in the post-test 13.6% participants scored in this level. In the pre-test,

63.6% of participants were at the mostly correct, and 84.8% scored at this level in the

post-test. Finally, no participant answered all the questions correctly in the pre-test,

and only one did so in the post-test.

7.4.2 Mental Model Consistency

I labeled participants’ components of parts and state changes consistent or inconsis-

tent based on the definition mentioned in Section 4.5. Table 7.3 shows the consistency

classification (in percentages) for each component in the pre-test and post-test.

I performed a crosstabulation (see Table 7.4) to analyze the shift of mental model

118

Table 7.2: Frequency distribution of participants from the pre-test and the post-test
across different correctness levels.

Correctness Pre-Test Post-Test
Level n % n %
Incorrect 0 0.0% 0 0.0%
Mostly Incorrect 24 36.4% 9 13.6%
Mostly Correct 42 63.6% 56 84.8%
Correct 0 0.0% 1 1.5%
Totals 66 100.0% 66 100.0%

Table 7.3: Mental Model Consistency Scores per Component: Pre-test and Post-test
(N = 66).

Components Mental Model Consistency McNemar’s-test
P=part, Pre-test Post-test Pre vs. Post
S=state Consistent Inconsistent Consistent Inconsistent p

P:Name 89.39% 10.61% 92.42% 7.58% n.s.
P:Index 51.52% 48.48% 74.24% 25.76% p < 0.05
P:Type 92.42% 7.58% 100.00% 0.00% n/a
P:Elements 93.94% 6.06% 98.48% 1.52% n.s.
S:Declaration 93.94% 6.06% 84.38% 15.62% n.s.
S:Instantiation 74.24% 25.76% 83.33% 16.67% n.s.
S:Assigning Elements 68.18% 31.82% 78.79% 21.21% n.s.
S:Assignment 25.76% 74.24% 25.76% 74.24% n.s.

119

consistency from the pre-test to the post-test. Below, I describe the shift for each

component of parts and state changes.

For the part name, consistency status did not change significantly from the pre-test

to the post-test (McNemar’s test not significant at α = 0.05 level, p = 0.75). For the

name component most participants remained consistent in the post-test.

I found index to have a significant shift. A McNemar’s test determined a statisti-

cally significant difference in the proportion of mental model shift for index based on

consistency in the pre-test and post-test at α = 0.05 level, p = 0.006.

For the part type, only 5 participants were found to have an inconsistent mental

model in the pre-test. After the post-test, all of them shifted to the consistent mental

model. Because the frequency of the consistent participants in the post-test was zero,

I could not perform McNemar’s test.

The mental model shifts from the pre-test to the post-test for the part elements

were not statistically significant (McNemar’s test). Similarly, I found no statistically

significant difference (McNemar’s test) in the proportion of mental model consistency

shifts for the state change declaration, instantiation, nor assigning elements.

For the state change assignment, I did not find a statistically significant difference

(McNemar’s test) in the proportion of mental model shifts. Out of the 49 participants

who held inconsistent mental models, most (38) remained inconsistent even after

classroom instruction of arrays. Only 11 of the 49 participants’ mental models shifted

from inconsistent to consistent. On the other hand, eleven participants shifted from

consistent to inconsistent. Only Six participants remained consistent in the post-test.

7.4.3 Mental Model Classification

Below, I describe the participants’ mental model classification shift from the pre-

test to the post-test for each component of parts and state changes. I label the increase

in mental model rank from the pre-test to the post-test as a positive shift, a decrease

as a negative shift, and ranks remaining the same as neutral. Table 7.5 portrays the

120

Table 7.4: Crosstabulation showing the changes in participants’ frequency of mental
model consistency shift from pre-test to post-test for each component.

Post-test
Inconsistent Consistent Total

Part: Name

Pre-test
Inconsistent 1 6 7
Consistent 4 55 59
Total 5 61 66

Part: Index

Pre-test
Inconsistent 11 21 32
Consistent 6 28 34
Total 17 49 66

Part: Type

Pre-test
Inconsistent 0 5 5
Consistent 0 61 61
Total 0 66 66

Part: Element

Pre-test
Inconsistent 1 3 4
Consistent 0 62 62
Total 1 65 66

State Change: Declaration

Pre-test
Inconsistent 1 3 4
Consistent 9 51 60
Total 10 54 64

State Change: Instantiation

Pre-test
Inconsistent 4 13 17
Consistent 7 42 49
Total 11 55 66

State Change: Assigning Elements

Pre-test
Inconsistent 7 14 21
Consistent 7 38 45
Total 14 52 66

State Change: Assignment

Pre-test
Inconsistent 38 11 49
Consistent 11 6 17
Total 49 17 66

121

(a) Name (b) Index

(c) Type (d) Elements

Figure 7.1: Mental model classification shift for the four part components. Here, we
have portrayed positive rank shifts (color blue), negative rank shifts (color red), and
neutral (color green). As an example, 54 participants’ mental models were correct in
the pre-test (Pre_C), and 59 participants’ mental models were correct in the post-test
(Post_C) for name.

frequencies of participants in all three kinds of shifts for all eight components.

Part Name: A Wilcoxon signed-rank test did not find a significant change in men-

tal model classification shifts (Z = −1.76, p = 0.078). For name, I found that most

122

(a) Declaration (b) Instantiation

(c) Assigning Elements (d) Assignment

Figure 7.2: Mental model classification shift for the four state change components.
Here, we have portrayed positive rank shifts (color blue), negative rank shifts (color
red), and neutral (color green).

123

participants (53 of the 66 participants) mental model classification did not shift from

the pre-test to the post-test. A deeper analysis revealed that, out of those 53 par-

ticipants, 51 mental models were correct in the pre-test and remained correct in the

post-test (C to C).

Part Index: A Wilcoxon signed-rank test showed a statistically significant shift in

the mental models (Z = −4.89, p < 0.001) for index. Thirty-seven participants expe-

rienced a positive mental model shift after the classroom instruction of arrays index.

Figure 7.1b shows the variation of the shifts. On the other hand, five participants

had a negative mental model shift. The remaining 24 participants had no change in

their mental model classification.

Part Type: Similar to index, I found a statistically significant change in the mental

model shifts for type (Z = −5.85, p < 0.001). I found that most pre-test participants

(n = 38) increased their mental model ranks. I observed one participant’s men-

tal model shifting from inconsistent and incorrect (II) to correct (6) (Figure 7.1c).

Twenty-eight participants’ mental models remained correct (C) in the post-test.

Part Elements: I did not find a statistically significant change in the mental model

shifts (Z = −1.41, p = 0.16) for elements. I observed that 26 participants had

no change in mental models, and 26 had a positive shift. On the other hand, 14

participants experienced a negative mental model shift (details are in Figure 7.1d).

State Change Declaration: I did not find a statistically significant change in the

mental model shifts (Z = −0.65, p = 0.51) for the state change declaration. For

state change declaration, most of the participants (n = 30) mental models did not

shift. Twenty participants’ mental models shifted into negative ranks (details are in

Figure 7.2a). Only 14 participants’ mental models shifted into positive ranks.

State Change Instantiation: I found a statistically significant change in the men-

tal model shifts for array instantiation (Z = −4.05, p < 0.001). Most participants

(n = 39) mental models shifted into positive ranks for instantiation (details are in

124

Table 7.5: Frequencies of participants across positive, negative, neutral mental model
classification shift with the p value of Wilcoxon Signed-rank test.

Components
P: part
S: state changes

Mental Model Classification Shift Wilcoxon Signed-
Rank Test

Positive
Shift

Negative
Shift Neutral Total p

P:Name 9 4 53 66 n.s.
P:Index 37 5 24 66 p < 0.001
P:Type 38 0 28 66 p < 0.001
P:Elements 26 14 26 66 n.s.
S:Declaration 14 21 31 66 n.s.
S:Instantiation 39 12 15 66 p < 0.001
S:Assigning Elements 42 11 13 66 p < 0.001
S:Assignment 25 11 30 66 p < 0.05

Figure 7.2b). Fifteen participants’ mental models remained the same. Conversely, 12

participants’ mental models shifted into a negative rank.

State Change Assigning Elements: I found a statistically significant change in

the mental model shifts for assigning elements (Z = −3.86, p < 0.001). Forty-two

participants experienced positive shifts. Thirteen participants’ mental models did

not shift. Eleven participants’ mental models shifted to negative ranks. Figure 7.2c

shows the mental model classification shift details.

State Change Assignment: A Wilcoxon signed-rank test showed a statistically sig-

nificant change in mental models (Z = −2.27, p < 0.05) from the pre-test to the

post-test for the state change assignment. Twenty-five participants mental model

ranks improved after classroom instruction, although scattered across various groups

(see Figure 7.2d). Eleven participants’ mental model ranks decreased in the post-test.

For assignment, thirty participants’ did not have a shift in their mental models.

7.4.4 Mental Model Score

I paired each participant’s pre-test mental model score and post-test mental model

to analyze the difference. By conducting a paired t-test, I found that participants’

mental model scores in the post-test were significantly higher than those in the pre-

125

Table 7.6: Pre-test and Post-test Frequency Distribution across the Mental Model
Categories. (N = 66)

Components
P = part,
S = state

II CI IMI CMI IMC CMC C

Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test
P:Name 0.00% 0.00% 7.58% 3.03% 10.61% 7.58% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 81.82% 89.39%
P:Index 18.18% 3.23% 9.09% 0.00% 19.70% 3.23% 0.00% 0.00% 9.09% 14.52% 9.09% 9.68% 34.85% 69.35%
P:Type 1.52% 0.00% 0.00% 0.00% 6.06% 0.00% 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 42.42% 100.00%
P:Elements 1.52% 0.00% 3.03% 1.52% 3.03% 1.52% 6.06% 10.61% 1.52% 1.01% 48.48% 28.79% 36.36% 57.58%
S:Declaration 0.00% 4.69% 0.00% 1.56% 6.06% 9.38% 57.58% 45.31% 0.00% 1.56% 27.27% 28.13% 9.09% 9.38%
S:Instantiation 7.58% 3.03% 12.12% 6.06% 16.67% 10.61% 42.42% 25.76% 1.52% 3.03% 13.64% 9.09% 6.06% 42.42%
S:Assigning Elements 4.55% 1.54% 1.52% 0.00% 24.24% 13.85% 27.27% 16.92% 3.03% 4.62% 28.79% 23.08% 10.61% 40.00%
S:Assignment 0.00% 0.00% 6.06% 4.55% 46.97% 34.85% 16.67% 16.67% 27.27% 39.39% 1.52% 1.52% 1.52% 3.03%

test (t = 10.02, df = 59, p < 0.001). Furthermore, participants’ mental model scores

broken down to the parts (t = 9.34, df = 61, p < 0.001) and state changes (t = 5.42,

df = 63, p < 0.001) components were significantly higher in the post-test than the pre-

test. When I analyzed the direction of the mental model score change from pre-test

to post-test, I found that 90% of the participants’ mental model scores increased.

7.4.5 Previous Programming Experience and Mental Models

I analyzed participants’ mental model scores and their programming experience

(details are in Table 7.7). Based on the previous programming experience, I separated

participants’ scores into three groups. The participants in the No prior programming

group (n = 32) reported no prior programming experience. Some participants (n =

5) learned Java before enrolling in our course and thus were placed into the Java

programming group. The reason for enrolling in this course was either that it was a

degree requirement or they were retaking this course. The remaining participants (n

= 29) had various programming backgrounds (e.g., Python, JavaScript, C#, C++,

SQL, HTML, Snap), grouped in the Other programming languages group.

In the next subsections, I present the analysis of participants’ correctness and

mental model scores based on their prior programming experience.

7.4.5.1 Correctness Score

A one-way ANOVA revealed a statistically significant difference at α = 0.05 level

(F (2, 65) = 7.17, p = 0.002) in participants’ correctness scores based on the prior pro-

126

gramming language experience. Tukey HSD Test for multiple comparisons found that

participants with experience with programming languages other than Java scored sig-

nificantly higher than participants without programming experience (p = 0.001, 95%

C.I. = [-8.32, -1.82]) at α = 0.05 level. However, I found no statistically significant

difference in the correctness scores between Java programming, No prior program-

ming, and Java programming and the Other programming languages group. Before

any classroom instruction, participants in the No prior programming group answered

50% of questions of the MMT-A correctly. The few participants in the Java program-

ming group’s correctness score mean was 52.79%. The participants with previous

programming experience with other languages scored the highest mean (64.08%). I

found a similar difference when I investigated the breakdown of the total correctness

score of parts and state changes. Participants from the Other programming languages

group scored statistically significantly higher than the No prior programming group

in the correctness score for parts (One-way Anova: F (2, 65 = 8.76), p < 0.001; Tukey

HSD Test: p < 0.001, 95% C.I. = [-4.53, -1.22]) at α = 0.001 level and for state

changes (One-way Anova: F (2, 65 = 3.94), p = 0.03; Tukey HSD Test: p = 0.04, 95%

C.I. = [-4.29, -0.10]) at α = 0.05 level.

I performed the same analysis in the post-test. In the post-test, I observed differ-

ences in the scores of those with prior programming experience and those without.

The participants from the Other programming languages group scored significantly

higher than the No prior programming group in the total correctness score (One-way

Anova: F (2, 65 = 3.72), p < 0.05; Tukey HSD Test: p = 0.03, 95% C.I. = [-7.73,

-0.29]) and correctness score for parts (One-way Anova: F (2, 65 = 3.89), p < 0.05;

Tukey HSD Test: p = 0.04, 95% C.I. = [-2.86, -0.04]) at α = 0.05 level. Unlike the

pre-test, I found no statistically significant difference in the state changes correctness

score.

127

7.4.5.2 Mental Model Score

Similar to the correctness score, in the pre-test, the Other programming languages

group scored the highest (68.69%) (see Table 7.7) on their mental model score (MMS).

I performed one-way ANOVA to find the various programming experience group dif-

ferences in participants’ mental model scores. Post hoc analysis revealed that the par-

ticipants’ mental model scores were statistically significantly higher in the Other pro-

gramming languages group than the No prior programming group (One-way Anova:

F (2, 65 = 6.00), p < 0.05; Tukey HSD Test: p = 0.003, 95% C.I. = [-8.33, -1.51]) at

α = 0.05 level. A similar difference was noticed in the mental model scores for parts

(One-way Anova: F (2, 65 = 6.72), p < 0.05; Tukey HSD Test: p = 0.002, 95% C.I. =

[-5.77, -1.11]). However, participants’ mental model scores for the state changes were

not significantly different between the No prior programming and the Other program-

ming languages groups. The difference between the mental model scores of those who

learned Java and the rest of the groups was not statistically significant.

The difference in the mental model score across the Other programming languages

group and No prior programming group was also present in the post-test. Partici-

pants’ mean mental model score in the post-test from the Other programming lan-

guages group was significantly higher than the mean mental model score of the No

prior programming group (One-way Anova: F (2, 65 = 3.72), p < 0.05; Tukey HSD

Test: p = 0.04, 95% C.I. = [-8.51, -0.18]) at α = 0.05 level. However, when I observed

the difference in mean mental model score for parts and state changes, I found no

differences in prior programming experience.

7.5 Discussion

7.5.1 Mental model correctness and consistency change at the end of the course

The results indicated that the participants’ mental model correctness and consis-

tency of arrays improved at the end of the semester. Overall, the correctness and

128

Table 7.7: Mental model correctness score, correctness score for parts, state changes,
mental model score, mental model score for parts, state changes across different pro-
gramming background from the pre-test and the post-test.

Programming
Language
Learned

N Pre-test Post-test
Mean
(%) SD Tukey

HSD
Mean
(%) SD Tukey

HSD

Correctness Score

(a) No Prior
Programming 32 50.00 6.04 c >a

p < 0.05

65.19 5.86 c >a

p < 0.05
(b) Java
Programming 5 52.78 5.66 62.22 8.88

(c) Other
Programming
Languages

29 64.08 4.22 76.33 5.74

Correctness Score
Parts

(a) No Prior
Programming 32 60.50 3.09 c >a

p < 0.001

83.48 2.40 c >a

p < 0.05
(b) Java
Programming 5 74.29 3.51 78.57 3.46

(c) Other
Programming
Languages

29 81.00 2.01 93.84 1.92

Correctness Score
State Changes

(a) No Prior
Programming 32 43.32 3.83 c >a

p < 0.05

53.55 4.03
n.s.(b) Java

Programming 5 39.09 2.30 51.82 5.77

(c) Other
Programming
Languages

29 53.27 3.01 65.20 4.51

MMS

(a) No Prior
Programming 32 58.73 6.29 c >a

p < 0.05

74.29 6.44 c >a

p < 0.05
(b) Java
Programming 5 64.58 5.39 70.15 14.74

(c) Other
Programming
Languages

29 68.96 4.59 83.33 5.56

MMS Parts

(a) No Prior
Programming 32 66.42 4.38 c >a

p < 0.05

88.98 3.30 c >a

p < 0.05
(b) Java
Programming 5 80.00 3.42 81.94 6.66

(c) Other
Programming
Languages

29 80.75 3.05 96.13 2.24

MMS State Changes

(a) No Prior
Programming 32 51.04 3.15

n.s.
60.00 4.00

n.s.(b) Java
Programming 5 49.17 2.59 50.00 6.44

(c) Other
Programming
Languages

29 57.17 2.84 70.12 4.17

129

mental model scores improved significantly in the post-test. I also observed improve-

ments in the scores of parts and state changes. The participants’ total correctness

and mental model scores for parts improved significantly at the end of the semester.

Similar improvements were found for the scores of state changes. Below, I summarize

the mental model change in correctness and consistency for all the eight components

of parts and state changes.

Part Name: I found most of the participants’ mental models of name to be cor-

rect and consistent. The participants’ mental model correctness and consistency for

name were already developed before the classroom instruction on arrays. A possi-

ble explanation might be that the component name was already taught when they

learned primitive variable name. Therefore, they could easily relate to array reference

variable name.

Part Index: The results showed the mean total correctness score improved sig-

nificantly (52.73% to 88.48%) for index at the end of the semester (see Table 7.1).

Moreover, participants’ mental model consistency shifted significantly from inconsis-

tent to consistent at the end. Overall, I can conclude that the participants’ mental

model correctness and consistency improved at the end of the semester.

Part Type: The total correctness score improved significantly from the pre-test to

the post-test for type. At the end of the semester, all of our participants’ mental

models were consistent and correct for type, with 38 participants making a positive

significant shift in the post-test. A possible explanation might be that similar to

name, the notion of type was taught and practiced for primitive variables. Therefore,

at the semester’s end, they are not confused about type. This finding, along with

the findings for name, may support the constructivist mental model (mentioned in

Section 2.1.4) where learners utilized their existing knowledge of name and type to

relate in a new concept ‘arrays’.

Part Elements: Similar to the other parts components, the mean total correctness

130

score for elements was significantly higher in the post-test. Out of the 66 partici-

pants, 61 had consistent mental models in the pre-test, and they remained consistent

in the post-test (see Table 7.4). Elements being a new concept, I did not see as

many participants in the correct mental model category compared to the other parts

components.

State change Declaration: Surprisingly, for declaration, the total correctness score

did not improve at the end of the semester. The mental model consistency shift and

mental model classification shift were not significant. Most of the participants were

found to hold consistent and mostly incorrect (CMI) mental models in the pre-test

and the post-test (see Table 7.6). As Figure 7.2a shows, mental model shifts were

distributed across various categories. As I included questions in the MMT-A about

the hidden aspects of arrays (default value after the declaration, memory allocation),

the mental model assertions may not be strongly ingrained in our participants yet.

Array declaration is the same as a reference variable declaration. Previous studies

have found that students have several misconceptions regarding memory management

after a reference variable declaration [28,123].

State change Instantiation: Participants’ correctness scores significantly improved

(36.74% to 62.50%) at the end of the semester for instantiation. Mental model con-

sistency did not shift significantly. However, I observed a significant shift in mental

model classification. 39 participant shifted their mental models to higher ranks. At

the end of the semester, 42.42% had correct mental models, which increased from

6.06% in the pre-test.

State change Assigning Elements: I observed participants’ correctness scores sig-

nificantly improve at the end of the semester for assigning elements. Mental model

consistency did not shift significantly. However, I observed a significant shift in the

mental model classification. Forty-two participants’ mental models shifted positively.

At the end of the semester, 40% had correct mental models, which increased from

131

10.61% in the pre-test.

State change Assignment: Though our participants’ mental model correctness score

increased (44.19% to 54.29%) significantly in the post-test, the mean score of the post-

test remained low for assignment. Mental model consistency did not shift significantly.

Interestingly, unlike the other components, most participants held inconsistent mental

models in the pre-test (74.24%) and the post-test (74.24%). As Gawronski et al. [42]

said, mental model inconsistency serves as a cue for potential errors. When I looked

at the mental model classification, I found more participants holding inconsistent

and mostly correct (IMC). I observed only 3.03% of participants holding the correct

(C) mental model at the end of the semester. Previous studies [17, 152] have found

understanding reference variable assignments challenging for students. The findings

suggest that at the end of the CS1 course, mental model correctness and consistency

of an array assignment may not be strongly developed yet in our participants.

7.5.2 Parts vs. State Changes

I found evidence that the mental model components of state changes were more

challenging to our CS1 students than the parts. I found that the participants’ cor-

rectness score was significantly higher for parts components than state changes, both

in the pre-test and the post-test. Similarly, I found parts mental model score sig-

nificantly higher than state changes mental model score. Moreover, from Figure 7.1

and 7.2, I can notice that while the mental model classification shifts for parts were

uniform, the mental model classification shifts for state changes were scattered across

various kinds of shifts from the pre-test to the post-test. In particular, I observed

lesser improvements in declaration and assignment. It may indicate that where mental

model correctness and consistency have already developed for the parts components,

it may not be true for the dynamic, hidden state changes.

132

7.5.3 Impact of Prior Programming Experience

I found significant differences in the participants’ total correctness scores based on

prior programming experience. Participants who have learned other programming

languages scored significantly higher in the MMT-A, which remained significant even

at the end of the semester. I found similar findings for the correctness score for parts,

total mental model score, and mental model score for parts (see Table 7.7). However,

I observed no difference in the total correctness and mental model scores for state

changes. The dynamic state changes hidden under abstraction layers seemed equally

hard for the participants with or without prior programming experience.

7.6 Summary

To summarize the answer of the RQ7, I can conclude that the overall correctness

and consistency of novice programmers’ mental models of arrays improved after class-

room instruction. Even though I observed improvement in all the major components

of array’s parts and state changes, students’ mental models of the state change compo-

nent array declaration did not improve after classroom instruction. In classrooms and

labs, students usually instantiate and initialize arrays right after declaration to serve

the purpose of an assignment. Hence, it gives students less opportunity to under-

stand and manipulate an array after declaration. Moreover, in most practices, array

declaration and instantiation are shown with a single line (e.g., int[] scores = new

int[5];); in these cases, the hidden state changes that are happening underneath

the line of code after declaration are often not explained or visible to students. This

finding and observation again strengthen the evidence that the dynamic state changes

are harder to understand than to understand the structure (the parts) of a program-

ming concept regardless of prior programming experience. The results presented in

this chapter also supported the claim. Even after classroom instruction, even though

improved, the mental model gap between array’s parts and state changes remains

133

intact.

In previous chapters, I presented novice programmers’ mental models of arrays

before and after classroom instruction. In this chapter, I demonstrated how classroom

instruction impacted their mental models. While eliciting their mental models, I also

uncovered many misconceptions residing in novice programmers’ mental models. In

the next chapter, I present misconceptions I found in novice programmers’ mental

models before and after classroom instruction.

CHAPTER 8: MISCONCEPTIONS IN NOVICE PROGRAMMERS’ MENTAL

MODELS

A portion of the results presented in this chapter has been published in the Proceed-

ings of 2019 IEEE Frontiers in Education Conference (FIE ’23). Full citation can be

found here [168].

8.1 Introduction

Misconceptions are false, persistent beliefs contradicted by established scientific

evidence. [13]. Students enter into introductory programming courses with mental

models filled with misconceptions, intuitive beliefs, or commonsense notions, typi-

cally generated from prior knowledge from domains such as mathematics and natural

languages [8,28,110]. The faulty intuitive beliefs generated from pre-existing related

knowledge structures often get embedded in their mental models and, if not refuted

in the classroom [104], continue to remain a mistake in future courses. Hence, numer-

ous computing educators consider research on novice programmers’ misconceptions

vital [8, 29, 110,169].

My doctoral research aimed to elicit assertions of novice programmers’ mental mod-

els of arrays. While analyzing the consistency of the assertions, I uncovered several

misconceptions. I define a mental model as a collection of assertions, and I define

a consistently chosen wrong assertion as a misconception. I report misconceptions

among students from the before-instruction sample, after-instruction sample, and the

change in misconceptions (paired pre-test post-test). Knowledge about incoming CS1

students’ (before instruction) misconceptions can allow educators to address them

with instruction or other educational interventions. Knowledge about CS1 students’

135

misconceptions after instruction can provide the CS1 educators the opportunity to

reflect on their instructional strategy and the CS2 educators an opportunity to clar-

ify the misconceptions. The misconception change among the paired pre-test and

post-test students revealed the direction of change after classroom instruction.

I placed 30 wrong assertions multiple times as distractors in the MMT-A. In this

chapter, I report and discuss the misconceptions of arrays found to be held by novice

programmers before and after classroom instruction on arrays. Nine misconceptions

were documented for parts components and seven for state changes before class-

room instruction. Six misconceptions were documented for parts components and

six for state changes after classroom instruction. Our results show that over half of

our participants held at least one misconception before and after learning arrays in

classrooms. Novice programmers mostly held misconceptions about the arrays’ dec-

larations (state change) both as incoming CS1 students and when they have learned

arrays. After classroom instruction, the number of students holding misconceptions

about the parts components decreased. However, for the state changes components,

in most cases, the number of students holding misconceptions increased even after

classroom instruction.

8.2 Methodology

As mentioned in Section 4.9, I defined a wrong assertion as a misconception when

that assertion was presented more than once, and a participant selected that assertion

every time. To present the misconceptions residing in incoming CS1 students’ (before

classroom instruction on arrays) mental models, I utilized Spring 2021-Pre-test (N

= 93) data set (described in Section 4.12). To present the misconceptions residing

in CS1 students after classroom instruction on arrays, I utilized Spring 2021-Post-

test, Spring 2023-Post-Instruction, and Summer 2023-Post-Instruction data

sets (described in Section 4.12) (N = 144). I report the misconceptions found in

the participants before and after classroom instruction on arrays in Section 8.3.1.

136

Moreover, I also analyzed each participant’s change in misconception by pairing their

data among the Spring 2021-Pre-test and Spring 2021-Post-test data set (N =

66). I present the results of the change in misconceptions in Section 8.3.2.

8.3 Results

8.3.1 Misconceptions Before and After Classroom Insruction

From the data I collected, I found 16 misconceptions among the participants of

before-classroom instruction and 12 misconceptions among the participants of after-

classroom instruction. Table 8.1 shows these misconceptions and the percentage of

participants that selected them. As a reminder, these wrong assertions were consis-

tently selected when presented, and thus, I labeled them as misconceptions. In the

before-instruction data set, I found nine misconceptions for parts and seven miscon-

ceptions for the state changes. In the after-instruction data set, I found six miscon-

ceptions for parts and six misconceptions for the state changes.

Table 8.1: List of Misconceptions found in the study. Each misconception is labeled
with a unique identifier used as reference throughout the dissertation. The last column
shows the percentage of participants holding the misconception.

Component Name Type Misconceptions Before Instruction(%) After Instruction(%)

Name Part MN2: Students think type is the name. 12.9% 2.1%
Index Part MI3: There is no indexing. 2.2% 1.4%

MI4: Indexing starts at 1. 4.3% 0%
MI5: Indexing ends with n. 2.2% 0%
MI7: Students think the index is the element 1.1% 0%

Type Part MT3: The array name is the type of the array. 1.1% 0.7%
Element Part ME5: Elements and array names are semantically related. 12.9% 7.6%

ME6: Keyword ‘new‘ is an element in the array. 2.2% 0.7%
ME7: No understanding about data type of elements. 1.1% 1.4%

Declaration State Change MD2: There is no default value (blank/no value). 21.5% 27.8%
MD3: The default value for the array reference is the default value for type (e.g., int is 0, boolean is false). 0% 1.4%
MD4: The default value for the array reference is stored as ? 4.3% 0%
MD5: After declaration, memory is allocated for the elements. 4.3% 0%
MD6: After declaration, the number of elements that can be stored is unlimited. 2.15% 5.6%

Instantiation State Change MIn2: After instantiation, a question mark (?) is stored as a default value. 2.2% 2.8%
Assigning Elements State Change MAE5: Students think primitive assignment is the same as reference assignment. 9.7% 4.2%
Assignment State Change MA3: Assignment copies the values. 7.5% 10.4%

The 4th column of Table 8.1 (label: Before Instruction (%)) presents the per-

centage of participants who selected each misconception. The three most common

misconceptions from before-instruction data were: MD2: There is no default value

(21.51%), MN2: Students think type is the name (12.90%), and ME5: Elements and

array names are semantically related (12.90%). Similarly, the three most common

137

misconceptions from after-instruction data were: MD2: There is no default value

(27.8%), MA3: Assignment copies the values (10.4%), and ME5: Elements and array

names are semantically related (7.6%). In the following paragraphs, I describe each

of the misconceptions found in our data.

8.3.1.1 Parts : Name, Type

Two of the parts components produced misconceptions in ways that were comple-

mentary to each other. For the part name, 12.9% participants had the misconception

that an array’s type was the name of the array (MN2) before classroom instruction.

Conversely, 1.08% of the participants believed that the array’s name was the type

of the array (MT3). A similar finding was observed in the after-instruction dataset.

2.1% participants had the misconception that an array’s type was the name of the ar-

ray (MN2) after classroom instruction. Conversely, 0.7% of the participants believed

that the array’s name was the type of the array (MT3).

8.3.1.2 Part : Index

For the component index, I found four misconceptions in the before-instruction data

set and one misconception in the after-instruction data set. I found that 2.15% of

the participants before instruction held a misconception that indexing does not exist

in arrays (MI3). Even after classroom instruction, 1.4% of participants still held the

misconception. Before instruction, 4.30% of participants held the misconception that

indexing starts at 1 (MI4). Similarly, 4.3% participants believed array indexing ends

at n (MI5). Further analysis revealed that only one participant had the misconception

that array indexing starts at one and ends with n (MI4 and MI6). Moreover, 1.08% of

participants thought the element was the index (MI7) before classroom instruction.

8.3.1.3 Part : Elements

I asked questions about an element of integer arrays named books and gadget.

The strings “Harry Potter” and “Smartwatch” were placed as options to probe the

138

misconception that an array name is semantically related to its element (ME5) (An

exemplary question can be seen in Figure 10.3). 12.9% of the participants from the

before-instruction dataset held this misconception. Even after classroom instruction,

7.6% of the participants held the misconception of ME5. Also, in the element part,

2.15% from the before-instruction and 0.7% from the after-instruction participants

believed the keyword new is an element of an array (ME6). Finally, 1.08% of the

participants from the before-instruction and 1.4% from the after-instruction predicted

had chosen elements that can be stored in an array mismatched with their type (ME7).

8.3.1.4 State change: Declaration

Among the before-instruction participants, 21.51% held the misconception that

after the declaration, instead of storing null, the array reference variable is blank

or doesn’t have any default value (MD2). Interestingly, I observed a slight increase

(27.8%) in the percentage of participants holding this misconception after classroom

instruction. After instruction, some of the participants also believed the default values

that are stored in an array reference variable after instantiation are also stored after

array declaration (MD3). However, this misconception was not found in the before-

instruction dataset. In contrast, 4.3% participants from the before-instruction data

set believed a question mark (?) is the default value of an array reference variable

when declared (MD4). Moreover, 4.3% of the participants believed an unlimited

number of elements could be stored in the array after declaration (MD6). These two

wrong assertions (MD4 and MD5) were not found in the after-instruction sample.

Lastly, the percentage of participants believing that after the declaration, the number

of elements that can be stored is unlimited (MD6) experienced an increase from

before-instruction (2.15%) to after-instruction (5.6%).

139

8.3.1.5 State change: Instantiation

I have found only one misconception on the state change of instantiation. 2.23%

of the participants thought a question mark (?) is stored as the elements of an array

after instantiation (MIn2). A similar percentage (2.8%) of participants held this

misconception after classroom instruction.

8.3.1.6 State change: Assigning Elements

I found one misconception related to assigning elements. 9.68% of the participants

had a misconception that assigning another variable to an indexed location of an

array (e.g., numbers[1] = count;) acts as a reference assignment, meaning they

share the space, not just the value (MAE5). After instruction, the percentage of the

participants holding this misconception decreased (4.2%).

8.3.1.7 State change: Array Assignment

Similar to the previous component, only one misconception was found in the compo-

nent of reference assignment. When an array reference variable is assigned to another

array reference variable (e.g., salary = newSalary), the reference gets copied over,

not the values. 7.53% of the participants believed array assignment copies the values

of the arrays before classroom instruction. Surprisingly, after classroom instruction,

the percentage of the participants holding this misconception increased (10.4%)

8.3.1.8 Parts and State Changes

Figure 8.1 shows the frequency distribution of participants holding at least one mis-

conception across all the part and state change components. Array declaration was

the most common type of misconception among participants (both before instruction

and after instruction), holding at least one misconception. After classroom instruc-

tion, the number of participants holding at least one misconception on declaration

did not decrease but slightly increased (31.9% from 31.18%). From Figure 8.1, I can

observe that the frequency of participants holding at least one misconception for the

140

parts components decreased in the after-instruction; for name and index decreased

significantly (p < 0.05). However, for the state changes components, I observed a

slight decrease (for instantiation and assigning elements) or increase (for declaration

and assignment).

Figure 8.1: Frequency distribution of the participants holding at least one miscon-
ception across the parts and state changes components before and after classroom
instruction.

As shown in Figure 8.2, before instruction 13 (14%) of the participants held mis-

conceptions about only parts components. Moreover, 25 (26.9%) participants held

misconceptions about only state changes components. Additionally, 15 (16.1%) par-

ticipants held misconceptions for both parts and state changes components. Forty

participants had no misconceptions (note they had mistakes but were not consistently

selected to label them as misconceptions).

Figure 8.3 shows 9 (6.25%) of the participants held misconceptions about only parts

components after classroom instruction. Moreover, 55 (38.19%) participants held mis-

conceptions about only state changes components. Additionally, 9 (6.25%) partici-

pants held misconceptions for both parts and state changes components. Seventy-one

141

(49.31%) participants had no misconceptions.

Figure 8.2: Venn diagram showing 13 participants (14%) had misconceptions on only
parts components, 25 (26.9%) on only state changes components, and 15 (16.1%) on
both the components. 40 (43%) participants did not have any misconceptions.

Figure 8.3: Venn diagram showing 9 participants (6.25%) had misconceptions on only
parts components, 55 (38.19%) on only state changes components, and 9 (6.25%) on
both the components. 71 (49.31%) participants did not have any misconceptions.

Over half of our participants held at least one misconception before classroom in-

struction (57%) and after (50.7%). Among the before-instruction participants, for part

components, I found 65 participants (69.89%) with no misconception, 20 (21.51%)

had one, 7 (7.53%) had two, and 1 (1.08%) with three misconceptions (see chart (a)

in Figure 8.4). For state changes components, I found 35 (37.63%) with no mis-

conceptions, 38 (40.86%) with one, 14 (15.05%) with two, and 6 (6.45%) with three

misconceptions (see chart (b) in Figure 8.4).

142

Among the after-instruction participants, for part components, I found 126 partic-

ipants (87.5%) with no misconception, 16 (11.1%) had one, 2 (1.4%) had two (see

chart (c) in Figure 8.4). For state changes components, I found 80 (55.6%) with no

misconceptions, 49 (34%) with one, 14 (9.7%) with two, and 1 (0.7%) with three

misconceptions (see chart (d) in Figure 8.4).

Figure 8.4: Frequency distribution of the participants across the number of miscon-
ceptions (zero, one, two, or three).

8.3.1.9 Prior Programming Experience

I analyzed if prior programming experience affects the misconceptions found in stu-

dents’ mental models. I found no significant correlation between participants’ prior

programming experience and their number of misconceptions. I also explored the

correlation between each misconception listed in Table 8.1 and the participants’ prior

143

programming experience. I found several weak correlations between a specific miscon-

ception and participants’ prior programming experience from the before-instruction

sample. However, no such correlation was found among the participants from the

after-instruction sample. I found that the misconception MN2: Students think type

is the name had a weak negative correlation with participants who had program-

ming experience with programming languages other than Java (phi coefficient: -0.30,

p < 0.05). I also found a positive weak correlation between MT3: The array name is

the type of the array and participants who had experience with Java (phi coefficient:

0.27, p < 0.05), and MA3: Assignment copies the values and participants who had

learned programming languages other than Java (phi coefficient: 0.21, p < 0.05).

8.3.2 Change in Misconception from Pre-test to Post-test

Below, I describe the participants’ changes in misconceptions from the pre-test to

the post-test based on each component of arrays.

8.3.2.1 Parts : Name, Type

For the component name, I found that in the pre-test, five participants held the

misconception ‘MN2: Array type is the name of the array’ before instruction on ar-

rays. After classroom instruction on arrays, five participants’ misconceptions cleared

up. However, one participant’s misconception remained even after instruction. One

participant did not have the misconception (MN2) in the pre-test, but this miscon-

ception appeared in the post-test. Figure 8.5 shows the changes in misconceptions

for the component name.

For the component type, I could not find any misconception in any of the partici-

pants.

8.3.2.2 Part : Index

For the part component index, eight participants had the following misconceptions

in the pre-test: ‘MI3: There is no indexing into the array ’ (2), ‘MI4: Array index

144

starts with 1 ’ (3), and ‘MI5: Array index ends with n (index of last element)’ (2).

After instruction, all of their misconceptions were absent (portrayed in Figure 8.5).

8.3.2.3 Part : Element

In total, nine participants held misconceptions regarding elements of an array in

the pre-test. The misconceptions are: ‘ME5: Element values and array names are

related (e.g., books and "Harry Potter")’ (8) and ‘ME7: Type of values stored do

not match the type of array’ (1). These participants’ misconceptions were eliminated

after instruction. However, in the post-test, I identified the rise of the misconception

ME5 in three participants and ME7 in one participant. I found another misconcep-

tion in the post-test, which was not identified in the pre-test. One participant from

the post-test believed ‘ME6: Keyword ‘new‘ is an element in the array ’. In total,

I found five participants whose misconceptions arose after instruction, eight partici-

pants’ misconceptions diminished, and one participant’s misconception still remained

after instruction (ME5) (illustrated in Figure 8.5).

8.3.2.4 State change: Declaration

I found twenty participants holding misconceptions on array declaration in the pre-

test. Fifteen of them had a misconception that ‘MD2: There is no default value for

the elements of the array (blank/no value)’ after declaration. I observed the clarifi-

cation of this misconception among 12 participants in the post-test. However, this

misconception remained intact in three participants in the post-test. An additional

nine participants were found to hold this misconception in the post-test. These nine

participants did not have this misconception in the pre-test.

Similarly, nine participants were identified to have the misconception ‘MD4: The

default value for the array reference is stored as ‘?’ ’ in the post-test, which did

not exist in the pre-test. In the pre-test, two participants held the misconception of

MD4. This misconception still remained in one participant in the post-test, and for

145

Figure 8.5: Participants’ change in misconception from the pre-test to the post-test.
The changes are labeled as remained (misconceptions present in the pre-test and
remained in the post-test), gone (misconception present in the pre-test but diminished
in the post-test), and arose (misconception was not present in the pre-test but arose
in the post-test) (N = 66).

one participant, it was clarified.

In the pre-test, three participants held the misconception ‘MD5: After declaration,

memory is allocated for the elements ’. All of their misconceptions were clarified after

instruction; thus, they were absent in the post-test. This misconception arose for one

participant in the post-test.

In summary, I observed misconceptions rising among 19 new participants in the

post-test about array declaration. Sixteen participants’ misconceptions were clarified

in the post-test, and four participants’ misconceptions remained intact in the post-

test. Figure 8.5 shows this frequency distribution.

8.3.2.5 State change: Instantiation

In the pre-test, two participants had a misconception that ‘MIn2: After instantia-

tion, ‘?’ is stored as a default value’. After classroom instruction, this misconception

was clarified. However, this misconception arose among two new participants in the

146

post-test.

8.3.2.6 State change: Assigning Elements

In the pre-test, four participants had a misconception that ‘MAE5: Primitive as-

signment is the same as reference assignment.’. After classroom instruction, this

misconception was clarified for three students. However, this misconception remained

among one participant and arose among three new participants in the post-test.

8.3.2.7 State change: Assignment

Before classroom instruction twenty-four participants believed ‘MA4: Array as-

signment transfers (cuts) values.’ After classroom instruction, this misconception

was clarified among twenty-one participants and remained for three. After instruc-

tion, two new participants began to believe ‘MA4: Array assignment transfers (cuts)

values.’

8.4 Discussion

8.4.1 Misconceptions Identified

Misconceptions are the incorrect assertions residing in humans’ mental models that

do not correspond to reality. Pea [170] termed it as a conceptual “superbug”. Unlike

actual bugs in computing, they are hidden inside a learner’s mental model. According

to mental model theories [40], misconceptions implanted in a mental model cannot be

changed easily. Thus, identifying misconceptions is crucial for effective learning. In a

study of numerous physics teachers, Sadler et al. [102] found that teachers who could

identify students’ misconceptions at the beginning of instruction were more effective

in teaching than the teachers who could not.

I found several misconceptions in my data that were also commonly found in the

literature and often obtained through more time-consuming qualitative methods (e.g.,

interviews). I am confident that our questionnaire (MMT-A) is a suitable proxy to

be used as a probe to elicit students’ misconceptions effectively.

147

A common misconception is that an array’s index goes from index 1 to the number

of elements inclusively [7,111]. In my study, I found evidence of this misconception in

the form of the index starting at 1 (MI4), indexing ending at n (MI5), and, in some

cases, both misconceptions at the same time (MI4 and MI5). These misconceptions

were among the prior-instruction sample. I did not find misconceptions about MI4

and MI5 in the after-instruction sample.

Progmiscon.org [112] listed in their list of common misconceptions that students

think elements are untyped. I found evidence of a similar misconception (ME7) in

the before and after instruction samples. The data shows that students believed the

array’s name and its elements are semantically related (ME5), confirming a similar

finding in the literature, where Kaczmarczyk et al. [7] found that students assumed a

connection between a variable’s name and the element value. Moreover, in both the

physics and mathematics misconceptions literature, students’ misconceptions appear

when they treat abstract concepts as physical objects or they focus too much on the

context of a problem [171].

Kaczmarczyk et al. also found a misconception in their qualitative study that

“students think memory is allocated for Objects which have been declared, but not

instantiated" [7, p.110]. I found evidence to support this finding. 4.3% participants

from our prior-instruction sample believed this notion (Table 8.1 MD5). Kaczmarczyk

et al. [7] found that students believed there is no default value for primitive variables in

Java; I found a similar misconception but for reference variables (MD2). Surprisingly,

when I compared each individual student’s misconception change, I found that nine

students started to believe that after declaration there was no default value stored in

array reference variables (MD2) after classroom instruction. As opposed to storing

null as a default value, many students (before instruction: 21.51%, after instruction:

27.8%) believed there is no default value for reference variables (MD2) or that refer-

ence variables store a question mark (?) as default value (before instruction: 4.3%)

148

(MD4). Some CS1 textbooks use a "?" as a default value in their diagrams [159];

thus, it is unsurprising that some students also have this misconception. Similarly,

2.23% participants from the prior-instruction sample believed question marks (?) are

stored as elements of the array when it is instantiated. After classroom instruction, I

found a misconception among students that the default value for the array reference

variable when it is declared is the same default value when it is instantiated (e.g.,

int is 0, boolean is false). Perhaps they transferred the knowledge of instantiation to

answer the questions regarding declaration.

When a primitive variable is assigned to an array’s element, I found our partic-

ipants believe it works the same as the reference assignment (MAE5). The same

misconception was found in a qualitative study by Sorva [28].

Assigning an array to another is the same as a reference assignment. A prevalent

misconception in reference assignments is that students think values get copied over

instead of references similar to primitive assignments [17,28,152]. In my data, I found

7.53% participants holding this misconception (MA3) among the prior-instruction

sample. Surprisingly, I saw an increase in the percentage in the after-instruction

sample. This may indicate the instruction is not helping clarify this misconception

among students.

8.4.2 Misconceptions: Parts and State Changes

This work identified CS1 students’ mental model misconceptions of arrays.The

most prevalent misconception was in the state change array declaration. Even af-

ter classroom instruction, I observed more students holding misconceptions on array

declaration. From Figure 8.5, I can interpret that there is a visible decrease in the

number of participants having misconceptions about the parts components. How-

ever, surprisingly, in the state changes components, in most cases (three out of four

components), I noticed an increase among the students holding misconceptions after

classroom instruction.

149

Prior studies have found both the novices and upper-level students struggle to

understand the transitions of state changes [26, 80, 152]. Krishnamurthi et al. [30]

describe that comparative studies between stateful and non-stateful programming

concepts are understudied in computing education. He remarked, “state is a powerful

tool that must be introduced with responsibilities" [30, p.385]. Psychologist Mayer [5,

160] showed through several studies that illustrations of a scientific concept’s parts

and state changes improved students’ mental models.

8.5 Summary and Limitations

In Section 2.3.1, I have described how, in other domains, researchers elicited mis-

conceptions with a questionnaire. In the CS domain, few researchers have followed

a quantitative approach to uncover misconceptions (mentioned in Section 2.3.2).

Among the few studies conducted in the domain of CS, most of the researchers used

a qualitative approach to identify misconceptions. As CS classrooms are becoming

larger, it seemed unfeasible to identify CS1 students’ misconceptions and address

them by using a qualitative approach. The questionnaire MMT-A developed based

on mental model assertions and consistency can act as a diagnostic tool to identify

misconceptions in a classroom. If included in an adaptive learning system, the iden-

tified misconceptions can be used to provide adaptive learning content to students.

My results are susceptible to a construction threat to validity, resulting from using

multiple choice questions as some participants may guess or unintentionally choose

an answer. In this case, a wrong answer may occur from a slip or misconception.

As Lewis & Norman [172, p. 414] describe: “A person establishes an intention to

act. If the intention is not appropriate, this is a mistake. If the action is not what

was intended, this is a slip.” I reduced this threat by including a wrong assertion

multiple times in the questionnaire and identifying a participant’s wrong assertion as

a misconception only when they chose it 100% of the times it appeared.

150

To further explore this validity threat, next chapter, I describe a think-aloud study

with MMT-A to observe whether the findings from the qualitative think-aloud data

support the findings of the qualitative data mentioned in this chapter.

CHAPTER 9: EXPLORING VALIDITY AND RELIABILITY OF THE MENTAL

MODEL TEST

9.1 Introduction

The previous chapters presented the results obtained from administering my in-

strument, the Mental Model Test of Arrays (MMT-A). Tony Albano, in his book on

educational and psychological measurement, quoted, “A good test purpose articulates

key information about the test, including what it measures (the construct), for whom

(the intended population), and why (for what reason)” [173, sec.9.1.3]. The purpose

of the MMT-A is to elicit mental models of novice programmers, not to utilize it as

a validated psychometric test or a knowledge assessment instrument (e.g., concept

inventory). Nevertheless, I performed several statistical analyses to explore how my

collected responses fit into the validity claim by following Tony Albano’s definition-

“validity refers to the degree to which evidence and theory support the interpretations

of test scores entailed by the proposed uses of a test” [173, sec.4.1]. By following a

common procedure to provide a validity argument in the CS education domain, I

performed a correlation with the scores obtained from the MMT-A and participants’

CS1 course scores. Moreover, I conducted a statistical analysis with Rasch analysis

(initial dataset) and Item Response Theory (IRT) (complete dataset) analysis.

I found a moderate positive correlation between scores obtained from the MMT-

A and participants’ CS1 exam scores (details are in Section 9.3.1). Rasch analysis

with the initial dataset (Spring 2021-Pre-test Data-set) revealed an acceptable set

of items (details are in 9.3.3). The measure of internal consistency reliability from

Cronbach’s alpha revealed good internal consistency both for the initial and complete

dataset. However, factor analysis with a complete dataset revealed multiple factors

152

present in the participants’ responses which violated the unidimensional assumption

for conducting Item Response Theory. While the violation does not revoke the re-

sults rather it suggests that researchers should carefully consider the implications of

this violation and explore potential reasons for it. In my dissertation’s context, the

violation of unidimensionality is due to the decomposition of the concept of arrays

into sub-components which was necessary and applicable for the purpose of eliciting

novice programmers’ mental models based on the mental model theories. Below I de-

scribe the detailed results. Nonetheless, the graphical representations obtained from

the Rasch Analysis (Wright Map) and Item Characteristic Curve (ICC) from IRT

analysis further strengthen the claim that arrays state changes are harder for novice

programmers.

9.2 Method

As discussed in Section 2.2.2, Allison Tew [83] claimed validity by providing two

pieces of evidence: 1) content-related evidence and 2) construct-related evidence. I

provide content-related evidence by analyzing common CS1 textbooks to identify each

component of parts and state changes of arrays. Later, I developed questions or items

for the Mental Model Test of Arrays (MMT-A) by utilizing the components of parts

and state changes.

Tew [83] provided construct-related evidence with a three-pronged data analysis:

1) think-aloud interview data, 2) statistical analysis using the Item Response Theory

of participants’ responses, and 3) correlation with participants’ scores from Tew’s

assessment instrument and their exam scores. I followed Tew’s approach to explore

construct-related evidence. Chapter 10 presents the data and results of a think-aloud

interview data with MMT-A. In Section 9.3.1, I present the results of the correlation

between scores obtained from MMT-A and participants’ scores obtained from their

CS1 course. After the first round of data collection, with the initial Spring 2021-

Pre-test Data-set, I explored the quality of the questions of my instrument, MMT-

153

A. By conducting statistical analysis with Item Response Theory (IRT) [174], one

can analyze the quality of a set of questions. IRT is a statistical framework used

in psychometric and educational measurement to model the relationship between

individuals’ latent traits (unobservable characteristics, such as ability or proficiency)

and their responses to test items. IRT provides a way to analyze and understand how

individuals with different levels of the latent trait respond to different items in a test

or questionnaire. Different IRT models exist, each with its own set of assumptions and

parameterizations [175]. Common models include the Rasch model (one-parameter

logistic model), the 2-parameter logistic model (2PL), and the 3-parameter logistic

model (3PL). Unidimensionality is a key assumption in IRT models, implying that

the measured construct is adequately represented by a single latent trait [176]. When

unidimensionality is violated, there are multiple underlying factors influencing the

observed responses. While a violation of unidimensionality does not necessarily revoke

the results, it does raise concerns about the validity of the measurement [177]. It is

suggested that researchers should carefully consider the implications of this violation

and explore potential reasons for it.

With the initial smaller set of data collected during the first phase of my data

collection (Spring 2021-Pre-test Data-set, N = 91), the participants’ responses were

analyzed using the Rasch modeling [177] with Winsteps software [178]. Rasch mea-

surement constructs a unidimensional scale that tests how well the data fits the

model [179]. The scale also helps us to determine item fit, item difficulty, and person

reliability to design a high-quality test. Rasch measurement model is suitable for

lower sample size requirements [173]. Rasch analysis provides an item difficulty map

that allows us to understand which items are most and least difficult. It also provides

a person reliability index to determine the replicability of person ordering [180]. In

Section 9.3.3, I discuss the findings of performing Rasch analysis on my initial data

set.

154

Later, I included all the datasets collected during Spring 2021, Spring 2023, and

Summer 2023 to perform statistical analysis. After removing duplicate and blank

data, I performed the statistical analysis on 282 responses. Participants’ responses

were coded as dichotomous data for each item, scoring 1 for correct answers and 0

for incorrect ones. Before performing IRT on the dataset, I wanted to investigate

if the data met the unidimensional assumption. For this purpose, I administered

exploratory factor analysis to ensure that there is more than one latent trait MMT-

A is measuring. Section 9.3.4.1 presents the result of the factor analysis. Then,

Section 9.3.4.2 presents the results of performing the 2-parameter logistic IRT model

(2PL), which includes item-specific parameters for discrimination and difficulty.

9.3 Results

9.3.1 Correlation with Course Scores

I conducted a correlation analysis among participants’ CS1 course scores and scores

obtained from the MMT-A on two data sets: Spring 2021-Pre-test Data-set and

Spring 2021-Post-test Data-set. For both the datasets, I found moderate positive

correlations with scores obtained from MMT-A and CS1 course scores. Below, I

present the detailed results.

9.3.1.1 Spring 2021-Pre-test Data-set

I used two scores from the participants’ course: 1) the total score at the end of the

semester (total CS1 score) and 2) the exam 3 scores. Exam 3 was conducted right

after the topic of arrays was covered in class. I compared the relationship of their

course scores with two scores from the MMT-A: 1) their correctness score (see Section

4.6) and 2) their total mental model score (see Section 4.8).

Correlation between MMT-A generated scores and Exam 3 score

I found a moderate positive correlation between the exam 3 scores and the mental

model score, Pearson’s r = .475, N = 91, (p <= 0.001). Figure 9.2 shows the scatter-

155

plot of the results. Similar results were found when compared with the correctness

score, Pearson’s r = .480, N = 91, (p <= 0.001). Figure 9.1 shows the scatterplot of

the results.

Figure 9.1: Scatterplot showing the correlation between participants’ Exam 3 score
and the correctness score r = .475, N = 91, p <= 0.001.

Figure 9.2: Scatterplot showing the correlation between participants’ Exam 3 score
and the mental model score (r = .480, N = 91, p <= 0.001).

Correlation between MMT-A generated scores and total CS1 score

A Pearson product-moment correlation coefficient was computed to examine the

relationship between participants’ total end-of-semester scores in their CS1 course

156

(total CS1 course) and the correctness score from our instrument. I found a moderate

positive correlation between the two variables, Pearson’s r = .427, N = 91, (p <=

0.001). Figure 9.3 shows the scatterplot of the results.

Figure 9.3: Scatterplot showing the correlation between participants’ total CS1 score
and the correctness score (r = .427, N = 91, p <= 0.001).

Similarly, I found a moderate positive correlation between our participants’ total

CS1 score and the mental model score, Pearson’s r = .481, N = 91, (p <= .001). The

scatterplot is shown in Figure 9.4.

Figure 9.4: Scatterplot showing the correlation between participants’ total CS1 score
and the mental model score (r = .481, N = 91, p <= .001).

Overall, I found statistically moderate strong correlations between the measures

157

from our instruments and students’ overall performance in the CS1 course.

9.3.2 Spring 2021-Post-test Data-set

Here, I present the results utilizing the Spring 2021-Post-test data set with N =

101. I performed a similar analysis, as mentioned in the previous Section.

Correlation between MMT-A generated scores and Exam 3 score

I found a moderate positive correlation between the exam 3 scores and the mental

model score, Pearson’s r = .405, N = 101, (p < 0.001). Figure 9.6 shows the scatter-

plot of the results. Similar results were found when compared with the correctness

score, Pearson’s r = .422, N = 101, (p < 0.001). Figure 9.5 shows the scatterplot of

the results.

Figure 9.5: Scatterplot showing the correlation between participants’ Exam 3 score
and the correctness score r = .422, N = 101, p < 0.001.

Correlation between MMT-A generated scores and total CS1 score

A Pearson product-moment correlation coefficient was computed to examine the

relationship between participants’ total end-of-semester scores in their CS1 course

(total CS1 course) and the correctness score from our instrument. I found a moderate

positive correlation between the two variables, Pearson’s r = .468, N = 101, (p <

0.001). Figure 9.7 shows the scatterplot of the results.

158

Figure 9.6: Scatterplot showing the correlation between participants’ Exam 3 score
and the mental model score (r = .405, N = 101, p < 0.001).

Similarly, I found a moderate positive correlation between our participants’ total

CS1 score and the mental model score, Pearson’s r = .446, N = 101, (p < .001). The

scatterplot is shown in Figure 9.8.

I found statistically moderate positive correlations between the measures from our

instruments and students’ overall performance in the CS1 course in both data sets.

9.3.3 Rasch Analysis with Initial Dataset

9.3.3.1 Unidimensionality

I measured unidimensionality via mean-square (MNSQ) fit statistics and principal

component analysis of Rasch residuals (PCAR). When I loaded all the items with

dichotomous data in the analysis, the PCAR revealed that the Rasch dimension ex-

plained only 26.6% variance in the data with an eigenvalue of 13.03. A variance of

greater than 50% explained by measures provides support for scale unidimension-

ality [181]. Furthermore, I found poor evidence for unidimensionality as the first

contrast eigenvalue was 4.76 (9.7%), which is above the commonly acceptable thresh-

old of 2-3 and higher than 5% [182].

Additionally, I measured MNSQ fit statistics for all the items. MNSQ fit values

between 0.6 and 1.4 are considered reasonable with the measurement model [182].

159

Figure 9.7: Scatterplot showing the correlation between participants’ total CS1 score
and the correctness score (r = .468, N = 101, p < 0.001).

As defined by Lambert [181], infit statistics indicate the fit of individual item re-

sponse patterns to the measurement model, underlying construct, and the possibility

of secondary dimensions. Outfit statistics are sensitive to outliers, in other words,

responses that show great differences between person responses and item difficul-

ties [181]. Underfit or Infit/Outfit MNSQ values exceeding a cut-off (e.g., >1.4) are

usually considered a greater flaw than overfit (MNSQ < 0.6). Overfit was not used

as exclusion criteria in this study [182]. Four items, including 2 items from element

(E1, E3 listed in the MMT-A) and 2 items from instantiation (In1, In2 listed in the

MMT-A), were identified as having infit or outfit mean statistics greater than 1.4

(underfitting items).

As I observed poor measure of unidimensionality and poor fitting for four items, I

reran the Rasch analysis after removing the poorly fitting items (E1, E3, In1, In2).

After removing the poorly fitting items, the dimensionality was reexamined with the

remaining 32 items. There was still poor evidence to support unidimensionality as

the unexplained variance in the first contrast was still above the threshold of 2–3

eigenvalues (3.5) and higher than the recommended 5% (7.4%) suggesting there was

still a noticeable secondary dimension in the items.

160

Figure 9.8: Scatterplot showing the correlation between participants’ total CS1 score
and the mental model score (r = .446, N = 101, p < .001).

As I organized the mental model of arrays into two components, parts and state

changes, I wanted to further explore how the items in each set can construct a latent

variable. The results revealed poor measure of unidimensionality and item fit. How-

ever, the statistical output in the Rasch modeling suggested that a subset of items

worked better together. Seventeen items found fit to be in the subset (N1, I1, I2, I3,

I4, I5, T1, T2, E4, E5, AE1, AE2, AE4, AE5, AE6, A2, A4). The PCAR revealed

that the Rasch dimension explained 43.5% variance in the data with an eigenvalue

of 13.07. The first contrast (the largest secondary dimension) had an eigenvalue of

2.95 and accounted for 9.8% of the unexplained variance. All fit statistics for all of

the subset items were within acceptable limits except AE1. Item AE1 had an outfit

statistic slightly outside the optimal range (1.56), suggesting the presence of outliers

or unusual response patterns. The subset of items I received was at least acceptable,

although not an ideal, scale.

9.3.3.2 Item Difficulty Measures

Rasch analysis also provides a graphical description of the knowledge of the test-

takers and the difficulty of items onto the same item map, known as an Item map

or Wright Map [183]. As Rasch model creates a scale, there is an expected distribu-

161

tion of item difficulty and person ability. These distributions should follow a normal

curve. Figure 9.9 shows the wright map that I obtained from the analysis. It shows

two vertical histograms where items (right histogram) are arranged from the easiest

on the bottom and the most difficult on the top. The left vertical histogram shows

the distribution of persons (denoted by #) arranged by their ability reassured by the

correctness of the items (bottom: lowest ability, top: highest ability). Here, the mid-

dle vertical line that separates the two histograms represents the log-odd units (logit)

scores. Here, M denotes the mean score, S denotes one standard deviation, and T

denotes two standard deviations. Therefore, from Figure 9.9, I can say that the most

difficult item was A1 from the state changes component assignment and the easiest

item was from the part component type T2. Interestingly, 11 items from the part com-

ponents were found to be easier items showing logit scores below the means, and only

five items were from the state changes. All the items showing a sign of difficulty (logit

scores above the mean) were from the state changes (A1_CORR, A6_CORR: assign-

ment ; IN3_corr, IN4_CORR: instantiation; D6_CORR, D3_CORR, D4_CORR,

D1_CORR, D5_CORR: declaration; AE3_CORR, AE1_CORR, AE5_CORR: as-

signing elements). The histograms are shown in Figure 9.9.

9.3.3.3 Reliability

Reliability measures ensure the quality of a test. Oftentimes, the notion of accuracy

is related to it [184]. Reliability refers to how consistent an instrument is in measuring

a construct. I measured reliability using the following Rasch indices: the person

separation index, item separation index, person reliability, and item reliability. A

good test can give more precise locations of item difficulty and person ability [185].

Person separation and item separation indices generated by the Rasch measurement

model help the investigator to determine whether there are enough items and persons

spread along the continuum. A low person separation index (<2.0) means the test

is unable to differentiate between a person’s ability. Similarly, a low item separation

162

Figure 9.9: Item-person map (Wright map) portraying person ability distribution with
the item difficulty distribution. The letters prefixed to the item numbers denote: N
- part: name, T - part: type, I - part: index, E - part: element, D - state change:
declaration, IN - state change: instantiation, AE - state change: assigning elements,
A - state change: assignment.

index (<2.0) means items cannot be separated as easily or difficult. Additionally, the

person reliability index ensures the replicability of the person ordering if the same

person were given a similar set of items measuring the same construct [185]. Alongside

that, the item reliability index ensures the replicability of an item’s placement in

terms of difficulty if the same item were given to a sample with the same size and

attributes [185]. Item and person separation indices greater than 2.0 are considered

163

adequate [182]. Person and item reliability scores above 0.8 are considered a good

indication. I also used Cronbach’s alpha to measure internal consistency.

When I analyzed all 36 items using Rasch measurement, I found the sample-based

person separation index to be 1.86 (< 2.00) and model-based 1.96 (< 2.00). Here,

the sample-based separation index is a lower bound, and the model-based separation

index is an upper bound to this value. In addition, I found the sample-based item

separation index to be 4.44 (good separation: Item Separation Index ≥ 3.0) and

the model-based item separation index to be 4.60 (good separation: Item Separation

Index ≥ 3.0). The sample-based (.95) and model-based (.95) item reliability were

high. However, the sample-based (.78) and model-based (.79) person reliability did

not exceed 0.8.

When I reran the Rasch analysis with 32 items, I found higher sample-based (2.16)

(moderate separation: 2.0 ≤ Item Separation Index < 3.0) and model-based (2.27)

person separation index (moderate separation: 2.0 ≤ Person Separation Index < 3.0)

as well as person reliability (sample-based: 0.82, model-based: .84). Similarly, I found

higher sample-based (4.73) and model-based (4.90) item separation index and person

reliability (sample-based: 0.96, model-based: .96). For these 32 items Cronbach’s

alpha value was .85.

I analyzed the higher correlated subset of 17 items, and I found the following

results: sample-based (2.03) and model-based (2.16) person separation index and

person reliability (sample-based: 0.80, model-based: .82). Similarly, I found the

following for items: sample-based (4.30) and model-based (4.44) item separation index

and item reliability (sample-based: 0.95, model-based: .95). For this subset the

Cronbach’s alpha value was .89, indicating high internal consistency reliability.

Though not all the items of our MMT-A were measured to be fit to create a

unidimensional measurement scale with appropriate reliability, a subset of the items

were found to have a good fit. In the end, with the initial set of data, the Rasch

164

analysis results suggested I needed more data to validate the complete instrument.

9.3.4 Analysis with Full Dataset

9.3.4.1 Exploratory Factor Analysis

An exploratory factor analysis was conducted using Principle Component Analysis

(PCA) to assess the factor structure underlying the items in the MMT-A. PCA is a

statistical method used for dimensionality reduction and data exploration. Varimax

rotation technique was used in factor analysis to simplify the interpretation of factors

by maximizing the variance of the squared loadings. Exploratory factor models were

evaluated based on extracted communalities and factor loadings. Items that had

extracted communalities greater than 0.30 within the same factor were considered

sufficiently related to one another [186]. Similarly, items that loaded on one factor

and had a factor loading greater than 0.30 were strongly correlated to the factor and

remained in the final scale. Table 9.1 and 9.2 show the presence of multiple factors

underlying the participants’ responses. Therefore, I conclude that my dataset does

not meet the assumption of unidimensionality. The reason behind this phenomenon

is maybe because of the division of the concept of arrays into multiple parts and state

changes components. Even though my data violates the unidimensionality assump-

tion, I present the result of the IRT model analysis below.

165

Ta
bl
e
9.
1:

Fa
ct
or

La
od

in
gs

an
d
It
em

-T
ot
al

C
or
re
la
ti
on

s
fo
r
ea
ch

it
em

of
th
e
pa
rt
s
co
m
po

ne
nt
s.

C
om

po
ne
nt

It
em

s
Fa

ct
or

1
Fa

ct
or

2
Fa

ct
or

3
Fa

ct
or

4
Fa

ct
or

5
Fa

ct
or

6
Fa

ct
or

7
Fa

ct
or

8
Fa

ct
or

9
Fa

ct
or

10
Fa

ct
or

11

P
:N

am
e

N
1

0.
48

N
2

0.
41

P
:I
nd

ex

I1
0.
80

I2
0.
79

I3
0.
51

I4
0.
73

I5
0.
75

P
:E

le
m
en
ts

E
4

0.
60

E
5

0.
57

P
:T

yp
e

T
1

0.
33

T
2

P
:E

le
m
en
ts

E
1

0.
92

E
2

0.
34

E
3

0.
94

166

Ta
bl
e
9.
2:

Fa
ct
or

La
od

in
gs

an
d
It
em

-T
ot
al

C
or
re
la
ti
on

s
fo
r
ea
ch

it
em

fo
r
th
e
st
at
e
ch
an

ge
s
co
m
po

ne
nt
s.

C
om

po
ne
nt

It
em

s
Fa

ct
or

1
Fa

ct
or

2
Fa

ct
or

3
Fa

ct
or

4
Fa

ct
or

5
Fa

ct
or

6
Fa

ct
or

7
Fa

ct
or

8
Fa

ct
or

9
Fa

ct
or

10
Fa

ct
or

11

S:
A
ss
ig
ni
ng

E
le
m
en
ts

A
E
1

0.
41

0.
63

A
E
2

0.
58

0.
46

A
E
4

0.
52

S:
In
st
an

ti
at
io
n

In
1

0.
53

S:
D
ec
la
ra
ti
on

D
1

0.
81

D
2

0.
80

D
3

0.
88

D
4

0.
90

D
5

0.
89

D
6

0.
81
4

S:
In
st
an

ti
at
io
n

In
2

0.
81

In
3

0.
83

In
4

0.
78

S:
A
ss
ig
ni
ng

E
le
m
en
ts

A
E
3

0.
67

A
E
5

0.
78

A
E
6

0.
78

S:
A
ss
ig
nm

en
t

A
2

0.
54

A
3

0.
37

A
4

0.
54

A
1

0.
46

A
6

0.
45

A
5

0.
92

167

9.3.4.2 Item Response Theory Analysis

In Item Response Theory (IRT), the 2PL (Two-Parameter Logistic) model is used to

model the probability of a correct response to an item as a function of an individual’s

latent trait (ability) and two item parameters: the discrimination parameter (a) and

the difficulty parameter (b). The 2PL model assumes that the probability of a correct

response increases with the latent trait and that each item has a unique difficulty

level.

Item Difficulty

The difficulty parameter (often denoted as b) is a parameter associated with each

item in a test or assessment. The difficulty parameter represents the level of the latent

trait at which there is a 50% probability of a correct response to the item. In simpler

terms, it indicates the point on the latent trait continuum where an individual has

an equal likelihood of succeeding or failing on the item.

If the difficulty parameter is positive, the item is located to the right of the latent

trait distribution. This means that individuals with higher levels of the latent trait

are required to have a reasonable chance of answering the item correctly. A higher

positive b indicates a more difficult item.

If the difficulty parameter is negative, the item is located to the left of the latent

trait distribution. This suggests that individuals with lower levels of the latent trait

are more likely to answer the item correctly. A lower negative b indicates an easier

item.

The magnitude of the difficulty parameter reflects the degree of difficulty or ease of

an item. Larger positive values of b indicate greater difficulty, while larger negative

values indicate greater ease.

Comparing the difficulty parameters of different items within the same test can

provide insights into the relative difficulty levels of those items. Items with higher

168

positive b values are generally more challenging than items with lower positive b

values.

Item Discrimination

The discrimination parameter (often denoted as a) is a parameter associated with

each item in a test or assessment. The discrimination parameter measures how effec-

tively an item differentiates between individuals with different levels of the latent trait

being measured. For example, in a test of math ability, the discrimination parameter

indicates how well an item distinguishes between individuals with high and low math

abilities.

A positive discrimination parameter (a > 0) indicates that the item effectively

discriminates between individuals with different levels of the latent trait. Higher

values of (a) suggest stronger discrimination.

On the other hand, a negative discrimination parameter (a < 0) is a less common

scenario and is theoretically problematic. A negative value for the discrimination

parameter implies that individuals with higher levels of the latent trait are more

likely to provide incorrect responses, while individuals with lower levels of the latent

trait are more likely to provide correct responses. This goes against the fundamental

assumption of IRT, where higher ability should be associated with a higher probability

of a correct response.

Item Analysis

Table 9.3 shows the percentage of the correct response, point biserial correlation

coefficient with total correctness score, and item difficulty (b) and discrimination

(a) parameters obtained from the IRT for each item. Point biserial correlation was

used to assess the relationship between the correct response of an item with the

total correctness score. Items A5 and A6 seemed problematic due to insignificant

correlation coefficients and low or negative discrimination parameters. Apart from

169

Table 9.3: Results of IRT analysis (N = 282) and Point Beserial Correlation for each
item in the MMT-A. The third column (% correct) denotes the frequency of partic-
ipants in the percentage who answered the item correctly. Point Biserial coefficients
marked with an asterisk (*) denote statistically insignificant.

IRT parameters
Component Items % correct Point Biserial Difficulty (b) Discimination (a)

P: Name N1 87.6 0.49 -1.59 1.88
N2 93.6 0.34 -2.08 1.85

P: Index

I1 83.3 0.59 -1.21 2.61
I2 84.4 0.60 -1.15 3.73
I3 70.2 0.59 -0.83 1.67
I4 83.3 0.62 -1.13 3.45
I5 85.1 0.61 -1.18 4.04

P: Element

E1 64.9 0.35 -1.05 0.68
E2 87.1 0.43 -1.88 1.33
E3 64.2 0.49 -0.81 0.94
E4 80.9 0.66 -1.09 3.44
E5 82.6 0.58 -1.16 2.96

P: Type T1 96.1 0.36 -1.95 2.98
T2 97.9 0.22 -2.47 2.30

S: Declaration

D1 46.8 0.33 0.07 0.63
D2 61.3 0.34 -0.95 0.59
D3 41.1 0.29 0.96 0.35
D4 42.9 0.18 2.18 0.13
D5 59.6 0.26 -0.77 0.56
D6 36.3 0.40 0.76 0.79

S: Instantiation

In1 64.0 0.45 -0.64 1.07
In2 36.0 0.34 0.72 0.86
In3 34.9 0.47 0.58 1.27
In4 48.2 0.42 0.03 0.93

S: Assigning
Elements

AE1 67.0 0.59 -0.66 2.11
AE2 72.3 0.65 -0.79 2.60
AE3 49.6 0.36 -0.03 0.84
AE4 79.8 0.60 -1.04 2.74
AE5 69.8 0.53 -0.78 1.87
AE6 65.9 0.65 -0.78 1.87

S: Assignment

A1 17.1 0.33 2.36 0.73
A2 68.8 0.65 -0.67 2.79
A3 69.1 0.52 -0.78 1.74
A4 70.2 0.55 -0.79 1.97
A5 56.9 0.12* -2.84 0.09
A6 23.1 0.11* -4.61 -0.27

170

these two items, item difficulty ranged from -2.47 (item T2 from the part component

type) to +2.36 (item A1 from the state change component assignment).

Figure 9.10 and 9.11 shows the Items T2 and A1 with their corresponding Item

Characteristic Curve (ICC). The Item Characteristic Curve (ICC) is a graphical rep-

resentation of the relationship between an examinee’s level of the latent trait (ability

or proficiency) and the probability of responding correctly to a particular item in Item

Response Theory (IRT). The ICC is a fundamental concept in IRT, providing insights

into how an item behaves across different levels of the latent trait. The typical ICC

has a sigmoid (S-shaped) curve. The curve starts at a low probability of success for

individuals with low ability, rises sharply through the region where most individuals

are likely to answer correctly, and then levels off at a high probability for individuals

with high ability. Appendix 11 includes the ICC curve for all the 36 items in the

MMT-A.

(a) (b)

Figure 9.10: (a) Question T2 and (b) its Item Characteristic Curve.

(a)

(b)

Figure 9.11: (a) Question A1 and (b) its Item Characteristic Curve.

171

9.3.4.3 Reliability

A Cronbach evaluation indicated that the MMT-A had good internal consistency.

Cronbach’s alpha is a measure of internal consistency reliability. It assesses the extent

to which items in a test are correlated with each other, providing an overall estimate

of how well the items measure the same underlying construct. Cronbach’s alpha of

.90 and above indicates very high internal consistency. That means items in the

test are highly correlated, suggesting a strong and reliable measure of the underlying

construct. Cronbach’s alpha in the range of 0.80 to 0.89 indicates good internal

consistency. This means the test is considered reliable for most research and practical

purposes. With N = 282, for all 36 items, the Cronbach’s alpha value was 0.876,

indicating good internal consistency.

(a) (b)

Figure 9.12: (a) Question A5 and (b) Question A6 used in the Mental Model Test
appeared to be problematic in the item analysis.

9.4 Discussion

The statistical analysis showed that my data did not meet the assumption of uni-

dimensionality for Item Response Theory (IRT) both in preliminary analysis (Sec-

tion 9.3.3) and final analysis (Section 9.3.4). This is due to the items loading up to

multiple constructs. This result is expected, as to elicit novice programmers’ mental

models, I decomposed the concept array into part and state changes components with

four subcomponents each. For assessing the validity of a test, IRT is the common

172

statistical analysis approach in the CS education domain [83, 85, 87]. Therefore, I

proceeded with this approach. To completely validate the MMT-A as a standardized

test in the future, Multidimensional Item Response Theory (MIRT) [187] may seem

appropriate. Due to the purpose of my instrument being to elicit mental models,

not a standardized test, I did not proceed to conduct further statistical analysis with

MIRT.

However, the statistically significant correlation with scores obtained from MMT-A

and participants’ CS1 course score (mentioned in Section 9.3.1) provides credibility

to my instrument. In addition, the Rasch and IRT statistical analysis provided evi-

dence to support further the claim that students found the questions of state changes

difficult. The Wright map (Figure 9.9) from the initial dataset (N = 91) shows the

most difficult question is A1 from the state changes component- assignment and the

easiest question being T2 from the part component type. Moreover, all the questions

with difficulty measured above 0 are the questions on arrays state changes (see Fig-

ure 9.9). The IRT analysis with the full dataset (N = 282) also refers to the same. By

considering items A5 and A6 problematic and excluding them, we can see the items

that have item difficulty above zero are D1, D3, D4, In1, In3, In4, and A1, which are

questions on arrays state changes. The ICC curves (see Appndix 11) provide addi-

tional insight into it. The ICC curves of the part component name started rising in

between -4 to -2 logit ability demonstrating that lower-ability students have a higher

probability of answering correctly. A similar phenomenon was noticed for the items

related to the part components type and elements. For the part component index the

curve started to rise in between -2 to 0 logit ability indicating the items of index are

harder than the items of the rest of parts components. However the ICC curves for the

state changes components declaration and instantiation showed a steep upward curve

rather than a sigmoid shaped curve indicating that as the ability increases so as the

probability of getting the items correct. The average ability test-takes (0 logit) have

173

around or below the probability of 60% to answer the items correctly. On the other

hand, for the parts components, the probability for an average ability test-taker was

higher. The ICC curves again strengthen the finding that the array’s state changes

are harder.

The items A5 and A6 (see Figure 9.12) were found problematic based on the IRT

analysis. Question A5 is the only question that students had to answer by utilizing

the knowledge of the loop. In question A6, students had to consider three arrays,

which can be challenging. Moreover, question A6 was the last question participants

had to answer. Lesser knowledge of loop and cognitive load to handle three arrays

and cognitive tiredness may have impacted the response to questions A5 and A6.

Future administration of MMT-A excluding these two items can provide additional

insight into the findings.

9.5 Conclusion

The purpose of my instrument, the Mental Model Test (MMT-A), is not to be

a standardized test. Nonetheless, I explored the validity and reliability of MMT-

A to assess the quality and consistency of my items. In this Chapter, I presented

the findings by utilizing different statistical measures to provide a conclusion. The

statistically significant correlation between scores obtained from MMT-A and CS1

course score suggests the construct I am hoping to measure with my test correlated

well with what other tests are measuring. Even though my dataset did not meet the

unidimensional assumption of measuring a single latent trait, the results from Rasch

and Item Response Theory further strengthen the claim that array’s state changes

are harder for novice programmers than the parts. The statistical analysis to measure

the reliability of the test provided good measures for MMT-A. In the next Chapter, I

further provide evidence for the results found from MMT-A responses by conducting

a think-aloud study with a subset of questions from the MMT-A.

CHAPTER 10: EXPLORING MENTAL MODELS WITH THINK-ALOUD

10.1 Introduction

In the previous chapters, I presented a quantitative approach to elicit novice pro-

grammers’ mental models and their misconceptions with the questionnaire MMT-A.

I conducted a qualitative study (semi-structured interview with think-aloud proto-

col) with a sub-set questionnaire of MMT-A. I began with three motivations- 1)

to understand novice programmers’ mental models of arrays parts and state changes

components with MMT-A in a qualitative way, 2) to learn if the findings of qualitative

data analysis support the findings of the quantitative data analysis, and 3) to under-

stand if the participants’ interpretation to the choices of the MMT-A is in alignment

with the mental model assertion mapped from the MMT-A’s choices. I presented

eleven questions to ten programming students from the College of Computing and

Informatics at UNC Charlotte. The key finding was participants had more inaccuracy

and confusion regarding the array’s state changes than the parts components. This

finding also emerged in the quantitative data among different participants mentioned

in the previous chapters (Chapters 5 and 6). In addition, I found incorrect assertions

in the qualitative data, which were also present in the quantitative data (mentioned

in Chapter 8). However, qualitative exploration revealed additional assertions from

participants’ mental models, which I did not consider in my list of assertions. This

suggests revising the list of assertions of novice programmers’ mental models of arrays.

175

10.2 Methodology

10.2.1 Participants

I recruited novice programmers from undergraduate students at the University of

North Carolina at Charlotte. Students could participate in this study if they had re-

cently completed or were currently enrolled in ITSC: 1212, ITSC: 1213, or ITSC: 2214

courses. Participants were recruited during the 1st, 2nd, 3rd, and 4th weeks of the

Fall 2023 semester from the College of Computing and Informatics (CCI). I recruited

participants by including flyers placed across the CCI building, announcements sent

to the programming courses, and classroom visits to CCI programming courses. Par-

ticipants received $25 for participating in the study. The study was approved by the

Institutional Review Board (IRBIS-21-0067). I conducted the study with 10 partic-

ipants. Table 10.1 shows details of participants’ programming education, previous

programming experience, and Java learning sources.

10.2.2 Task

I asked participants to answer eleven multiple-choice questions from the MMT-A

using the think-aloud protocol. Participants were shown one question at a time on a

screen. In the MMT-A, assertions were placed in multiple questions to measure con-

sistency. For this qualitative study, I selected a subset of questions from MMT-A from

the array’s each parts and state changes components. I chose the questions that could

provide the context to elicit the set of correct assertions from the participants. For

example, the part component name has only one correct assertion- MN1 (listed in Ta-

ble 5.1). Therefore, I included only one question (see Figure 10.1) for the name where

MN1 is present. I conducted semi-structured interviews to elicit the details of partic-

ipants’ mental model assertions. Figures 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,

10.9, 10.10, and 10.11 show the eleven questions used in this study. Participants were

asked to read each question out loud and then answer while thinking out loud. I

176

asked further related questions to understand the participants’ mental models.

10.2.3 Interview Protocol

Before the interview, students’ consent to audio and video record the semi-structured

interview with the think-aloud protocol was taken. Students were notified that no

prior preparation was needed for the interview. The interviews were conducted using

the video conference platform Zoom. I presented each question to the participant by

sharing my screen. The interview lasted for 25-40 minutes. The participants were

asked to determine the correct answer to each question by thinking out loud. Based

on the participants’ responses, I asked more questions to understand the rationale

behind their responses.

10.2.4 Analysis

The interviews were audio recorded and transcribed. I recorded each participant’s

answers to each question. I recorded their explanation of their chosen answers. I

used In Vivo Coding [188] to preserve participants’ tone, voice, and support for their

mental model assertions. In In Vivo coding, findings are presented from partici-

pants’ own language and terminology rather than alternative methods where codes

are researcher-derived. Participants’ inconsistent answers were discussed with another

research personnel to remove bias from a single coder.

10.3 Results

Table 10.2 summarizes the correctness of all the participants’ responses to the

eleven questions. Below I describe each participants’ responses to the questions in

details.

177

Table 10.1: Details of each participant’s (n = 10) programming exposure, previous
programming experience, and source where they learned Java.

Participants Prior Programming
Experience

Java learning
Source

CCI passed
computing courses
with semesters

P1 None UNCC course,
Youtube

ITSC: 1212: Spring 2022,
ITSC: 1213: Fall 2022,
ITSC: 2214: Spring 2023

P2 Java, C++
UNCC course,
Youtube,
Online tutorials

ITSC 1212: Fall 2021,
ITSC: 1213: Spring 2022,
ITSC: 2214: Fall 2022

P3 C, C++ UNCC course
ITSC: 1212: Fall 2021,
ITSC: 1213: Spring 2022,
ITSC: 2214: Fall 2022

P4 None Textbook
ITSC: 1212 equivalent
at a community college:
Summer 2023

P5 None UNCC course,
Online tutorials

ITSC: 1212: Fall 2021,
ITSC: 1213: Spring 2022

P6 AP CS Principles AP CS course
materials

AP CS Principles in
High school.

P7 Markup language
(HTML, CSS), JavaScript UNCC Course ITSC: 1212: Spring 2023

P8
Block based programming
in high school, Java at previous
University.

UNCC course,
Textbooks,
Online tutorials

ITSC: 1212: Credit by exam

P9 AP CS Principles (Python) in
high school UNCC Course ITSC: 1212: Spring 2023

P10 No UNCC Course ITSC: 1212: Summer 2023

178

Table 10.2: Partcipants’ response to each question (questions are on leftmost column;
P: parts components, S: state changes components). Participants’ correct response
is marked with a check mark (X), incorrect response with a cross (X), and confusion
with (C). The highest course completion for P1, P2, and P3 is ITSC: 1212, ITSC:
1213, and ITSC: 2214 (yellow columns). The highest course completion for P5 is
ITSC: 1212 and ITSC: 1213 (green column). The highest course completion for P4
and P6-P10 is ITSC: 1212 (purple columns).

Components Questions P1 P2 P3 P5 P4 P6 P7 P8 P9 P10
P: Name and Type Q1 X X X X X X X X X X
P: Index Q2 X X X X X X X X X X
P: Element Q3 X X X X X X C X X X
S: Declaration Q4 X X X X X X X X X X
S: Declaration Q5 X X X X X X X X C C
S: Instantiation Q6 X X X X C C C C C X
S: Instantiation Q7 X X X X X X X X X X
S: Assigning Elements Q8 X X X X X X X X X X
S: Assignment Q9 X X X X X X X X X X
S: Assignment Q10 X X X X X X X X X X
S: Assignment Q11 X X X X X X X X X X
Score (out of 11) 9 9 9 8 8 8 5 7 6 5

10.3.1 Parts Components

10.3.1.1 Name & Type

Figure 10.1 (correct answer marked with X) shows one of the questions (Name &

Type: Q1) from the MMT-A presented to all the participants. Everyone responded

to the question with the correct answer. P1 also identified the name of the array to be

scores in the next question (Index Q2: Figure 10.2). P5 answered the question with

more details. P5, while identifying the name of the array, remarked “It’s behind the

parentheses, where you declare the name after the parentheses are where you define

what the array or object is going to be. char is the type.” P7 identifies letters as

the name as it appears on the left of the assignment operator (=). However, P7

seemed unsure about what char means, saying, “I think like if I were to code it, I

know what you mean, but I don’t know how to explain what char specifically means

in this situation.” The rest of the nine participants identified char as the data type.

179

They identified the array’s name by seeing the word that is next to the array’s data

type.

Figure 10.1: Think-aloud question probe for part: name. The correct answer is option
(b).

10.3.1.2 Index

Figure 10.2 shows one of the questions (Index: Q2) from the MMT-A presented

to all the participants. Everyone responded to the question with the correct answer.

All the participants responded confidently that array indexing starts with zero. They

mentioned the indices of the scores array are 0, 1, 2.

Figure 10.2: Think-aloud question probe for part: index. The correct answer is option
(c).

10.3.1.3 Elements

Figure 10.3 shows one of the questions (Elements: Q3) from the MMT-A presented

to all the participants. Eight out of the ten participants confidently responded with

the correct answer. They said because books is an integer array, it will only store

integer numbers. They did not choose the other option because they thought they

180

were either decimals, characters, or Strings. P7 was uncertain between the correct

option and option (c). P7 thought because the array’s name was books, it could

store the String element ‘Harry Potter’. P7 remarked, “I feel like because the name is

books, I thought of Harry Potter first, but because it says int what my guess would be

10.” P7 was “51% ” confident for the correct answer and “49% ” confident for option

(c): ‘Harry Potter’. P10, while responding to the Elements: E1 question at first,

Figure 10.3: Think-aloud question probe for part: elements. The correct answer is
option (a).

expressed confusion on what the term element means. P10 remarked, “I actually

don’t know what an element is.” Then P10 realized an element might be what it

is called a value in the array. P10 then answered the question with 10 (option (a))

explaining 10 to be the only integer here that could be technically stored in the int

array.

10.3.2 State changes Components

10.3.2.1 Declaration

Two questions from the MMT-A were presented to our participants on the state

change component declaration (see Figure 10.4). In Java, when an array is declared,

an array reference variable is created, and by default, it stores null in it. null is a

special keyword in Java stored in the reference variables to show that the reference

variable refers to nothing.

181

Declaration: Q4

Five (P1, P2, P3, P5, and P6) among the ten participants answered the first

question (Declaration: Q4 see Figure 10.4) correctly. These five participants used the

process of elimination to conclude with the right answer. P1 discarded option (b) as

the code in the question char[] productCode did not mention any capacity (size).

P2 discarded option (b) as he believes productCode array cannot store an unlimited

number of elements as it is an array, not an ArrayList. P1 was also found to have this

view. P3, P4, and P5 said productCode cannot store unlimited elements because it

does not have a size right now. In this context, referring to array instantiation, P6

remarked “I think you need another line of code that says like, how, how many spaces

the array has.” In addition, P7 labeled this question as “tircky”. This participant was

confused between the correct option and option (b). However, this participant was

“65% ” confident that option (b) was the correct answer. However, this participant

was quite confident that there was no limit to how many things can be stored in an

array.

Figure 10.4: Think-aloud question probes for state change: declaration. The correct
answer is option (d).

P1 and P2 discarded option (c) as a correct choice, mentioning productCode is an

array, not an ArrayList. These five participants discarded option (d) because there

182

Figure 10.5: Think-aloud question probes for state change: declaration. The correct
answer is option (a).

was no line of code that assigned question mark (?) to the productCode array. P2

believed no elements can be stored in the productCode array right now because it

is not instantiated. P3 seemed confused about the concept of default values in Java.

P3 mentioned that an array does not auto-store anything when it is declared.

These five participants chose option (a), which says productCode is a reference

variable for an array to be true. In the follow-up, I asked them what is a reference

variable. P1 mentioned the line of code char[] productCode; is not actually creating

an array with space (memory). This participant thinks we can refer to the array with

the reference variable productCode, but we cannot actually store elements in it. P2

had difficulty explaining what is an array reference variable. P2 remarked, “It’s stuff

that makes sense in my head, but I’ve never had to put it to words. When you refer to

an object, it’s typically you are using its name. So, like, the reference variable is, like

a pointer to the object.” P3 also mentioned the same difficulty in explaining what an

array reference variable is. According to this participant, an array “reference variable

stores the array itself that it’s referencing.” P5 mentions an array reference variable as

a pointer. This participant explained that by executing the line of array declaration,

productCode is not pointing anywhere. P6 stated the difference between a reference

variable and a primitive variable while defining it. P6 stated that a primitive variable

is like a value. Because an array is an object, an array reference variable stores a

183

location “ like it’s pointing to a specific place in the memory.” Despite providing a

clear explanation of a reference variable, P6 felt “70% ” confident with the answer.

Moreover, four participants (P4, P7, P9, P10) said they do not remember what a

reference variable is. Therefore, they did not consider option (a) as a correct answer.

On this note, P4 remarked, “I’m not good with my jargon. So I just don’t really

remember, what a reference variable is.”

The next popular choice was option (c). Three participants (P4, P9, P10) chose

the option (c) to be true. All of them said that there is no mention of a specific size

in the declaration; right now, it is an empty array (default size is zero), but it can be

grown as needed by specifying its size later by instantiation. On this remark, P4 used

an analogy of an empty house with no rooms saying, “It’d (productCode array) be

like an empty house with no rooms. And then time we declare a productCode with a

new character. We would add it to the to the thing and it would create a new room.”

All of the participants believed option (d) could not be a choice as a question mark

(?) was not assigned to the productCode array.

Declaration: Q5

After declaration, null is stored in an array reference variable in Java. The question

Q5 (see Figure 10.5) aimed to elicit our participants’ knowledge in this regard.

Seven (P1-P6, P8) out of the ten participants responded with the correct answer

(option (a): null). Among them, three participants (P3, P4, and P8) used the

process of elimination, and four participants (P1, P2, P5, P6) directly concluded the

answer. Although P1 answered correctly when explaining the answer, a potential mis-

conception came out. This participant remarked, “if you tried to reference this, like,

pageNumber[1], you would get null.” According to Java semantics, pageNumber[1]

does not exist right now as the array reference variable is only declared in this line

of declaration. P2 answered correctly but used the wrong terminology. P2 said the

answer is null because “it hasn’t been initialized yet.” The terminology here should

184

be instantiated, not initialized. P5 answered this question with null; however, was a

bit confused with option (b) blank/no value. P9 and P10 were also confused between

null and blank/no value. P9 was “50% ” sure, and P10 was “60% ” for the correct

answer to be blank/no value (option (b)). P9 tried to differentiate between null

and blank/no value as “Blank is just, you know, blank and there’s nothing in it. But

null, it’s like, like it’s holding null.” P10 said, “I just feel blank because there are no

values yet. But that can change. And I feel like if it was null, means it’s void, so it

wouldn’t technically be void. So I would say blank, I think”. P10 thinks null is void

and blank means empty. Although this participant interpreted null and blank no

value in a similar way, this participant thinks they are different. P10 explained null

with a mathematical term ‘∅’ saying “it can’t return a value or it can’t hold a value

may be one of the two.”

P2 discarded option (b) by saying ‘blank’ is not a computer term. P2 further

explained to consider ‘blank’ as an empty quotation mark (‘ ’), but P2 would term

that as null. P6 further mentions never seeing anything return blank. Therefore, P6

also does not consider ‘blank’ to be a computer term.

All participants discarded options (c) and (d), explaining because a zero or question

mark (?) was not assigned to the pageNumbers array, it can not store them. However,

P4 showed a little bit of support for option (c): 0. P4 thought that as pageNumbers

array reference variable is an integer type, it may auto-store zero. I put zero as

a viable option because some students might think the same default value that is

stored in the elements of arrays after instantiation (i.e., 0 in int array, 0.0 in float

or double array) are stored in an array reference variable when it is declared.

As a follow-up question, I asked all the participants what is null. Table 10.3

summarizes the key findings of the responses. Most of the participants (n = 6)

responded null as nothing or no value. P1 in this context remarked, “Null, I think to

me, it’s saying like, there’s nothing like there’s no value of any type, like, you’re not

185

Table 10.3: Themes Emerging from the question ‘what is null?’

What is null? Partcipants
1. null is kind of an error P1, P7.
2. null is absence of anything, lack of content, void, or empty set. P2, P3, P5, P10.
3. null is nothing or no value. P1, P3, P5, P8, P9, P10.
4. null is a standard form or programmer term of nothing P3, P8.
5. null means the variable is not pointing to anything. P2, P6.

getting an integer, you’re getting nothing.” P3 described null as “it’s kind of a telling

you as the programmer, hey there’s nothing in here. You haven’t assigned anything.”

P5 views null as nothing, which later can be filled with stuff.

Some of the participants (n = 4) defined null as the absence of anything, void, or

an empty set. On this note, P2 remarked, “null is the absence of anything, it’s not

zero, it’s not. It’s just the absence of having any sort of data that it’s pointing to.”

P3 and P8 mentioned null as the programming standard term of nothing. P8

remarked, “null is the computer science-like coding version of nothing.” While defin-

ing null, P2 and P6 explicitly said a variable stores null when it is not pointing to

anything. P6 quoted, “if it’s a reference variable, it means it’s not actually pointing

to any data. It’s just empty.” Though uncertain P1 and P7 hinted null to be an

error. P7 remarked, “I don’t remember exactly what null is, it’s, but it’s not an error.

I know that there’s a difference between a null and an error, but it’s like, kind of an

error. Null is a kind of error.”

10.3.2.2 Instantiation

When an array is instantiated, memory is allocated for the array to store elements

with the size n, and the reference pointing to the array gets assigned to the array

reference variable. Appropriate default values (i.e., 0 in int array) are stored in each

of the elements of the array in Java. Question Q6 gauged participants’ knowledge

of the memory allocation of the array after instantiation, and Q7 assessed partici-

pants’ knowledge about the default value stored in array elements after instantiation

(questions presented in Figure 10.6 and 10.7).

186

Instantiation: Q6

Only three participants (P1, P2, P3) answered this question correctly (option (a)

in Figure 10.6). It is worth mentioning that these three participants had passed the

three core programming courses in our college: ITSC 1212: Introduction to Computer

Science I, ITSC 1213: Introduction to Computer Science II, and ITSC 2214: Data

Structures and Algorithm. However, P1 and P3 used the process of elimination to

arrive at this conclusion. P2 concluded with the correct answer, saying, “it’s (goals

array) going to be a length of four. So, however much memory that takes up, it would

be allocated.” P1 defined instantiation as the creation of a new array. P1 reiterated

that the array’s size is four with indices 0, 1, 2, and 3. While explaining what is

happening after an array instantiation P3 provided a clear difference between array

declaration and instantiation. P3 remarked, “Okay, then I’m going to make a new

one. variable goals, this is going to point to this... So whenever I call on goals, it’s

going to say that, Oh, you mean this one over here! The ones in the past (pointing

to the declaration question) would have been okay, I’m going to make a new integer

array; I’m going to call it goals. So I said, Okay, goals. When I call goals, it’s going

to be like, Okay, what are you talking about? What? Where’s it? ”

Four participants seemed unsure about the accurate answer to the question Q6.

P4 stated to be equally unsure about the correct option (a) and incorrect option (c).

This participant claimed to be out of practice with arrays. However, at the moment of

the interview, P4 was currently enrolled in the ITSC: 1213 course, which begins with

the review of arrays. P4 thought the array’s size was five (option (c)) and thought

the indices were 0, 1, 2, 3, and 4. The same confusion was held by P9. P9 also stated

that the indices of the goals array are 0, 1, 2, 3, and 4. It is worth mentioning

that similar to P4, P9 was enrolled in the ITSC: 1213 course at the moment of the

interview. P10 chose option (c) as the correct answer without any confusion. P10

also stated the indices be 0, 1, 2, 3, and 4.

187

Figure 10.6: Think-aloud question probes for state change: instantiation. The correct
answer is option (b).

Figure 10.7: Think-aloud question probes for state change: instantiation. The correct
answer is option (a).

Participants P6 and P8 were confused between the correct option (a) and incorrect

option (b). However, P6 believes goals array has a certain amount of memory. P8

noted option (b) as the correct option as this participant thought each element of

the goals array stores null as a default value after instantiation. Both P6 and P8

believe the size of goals array is four, not five.

P10 seemed confused about the correct answer for question Q6. This participant

has a different view about this line of instantiation. P10 is certain that the array’s size

is not five (option (c)). According to this participant, the line of code in the question

int[] goals = new int[4]; means we are assigning the fifth element of the array

to the goals variable. On this remark, P10 said, “I think this (the line of code in the

question) is calling on the fifth element, so there can potentially be more” (referring

to the size of the goals array). P10 mentioned being only enrolled in theITSC: 1212

188

course in Spring 2023.

Instantiation: Q7

Figure 10.7 shows the question Instantiation: Q7. This question aims to elicit

participants’ mental models of default values stored in each element of an array when

it is instantiated. Only one participant (P4) answered this question correctly. P4 is

well aware that the default value (P4 called it ‘base value’)(which is 0 in this case) got

assigned to the temp array “because that’s typically what Java does.” However, this

participant did not seem 100% certain about the answer. Most of the participants (n

= 9) either chose option (c) or (d).

P1 thought there was a syntax error in the code because the square bracket ([]) is

placed after the name of the array reference variable, not before. This participant is

not aware of this alternate way to declare an array. However, P1 did not choose option

(d) because the error mentioned in option (d) did not match what this participant

believed. When prompted to consider this a correct way to declare an array, this

participant chose option (c) as the correct answer. P1 believes that because we did

not assign any value to the elements, it cannot store 0; therefore, the elements should

be blank. P2 had the same belief as P1. P6, P7, and P10 seemed unsure between the

incorrect options (c) and (d). P10 mentioned that options (c) and (d) are essentially

the same. P10 thought as the elements have not been allocated yet, each element

of the myList array has no value. P6 thought the execution of the code would give

an error, but the error would not be given because the array elements have not been

allocated yet (option (d)). P6 believes after instantiation, memory is allocated, and

this participant expressed this belief in the previous question (Q6). P6 believes an

error might occur because there is nothing in index 55 of the array because it was

never set to any value. P6 is “50% ” confident between options (c) and (d). While

thinking about the answer, P6 remarked, “I never learned how the memory works for

arrays.”

189

Similar to P6, P3, P5, and P8 also believe in error but think the reason for the error

stated in option (d) is wrong. P3 explains the answer as “you made a new integer that

can hold 100 different elements. But you haven’t put anything in any of those 100

different elements. It’s a bunch of boxes with nothing in them.” P3 believes accessing

the elements of the myList array by assigning the element of 55 in temp will cause

nullPointerException.

Similar to P1, P5 thought the alternate way to declare an array by placing the

square brackets after the name of the array (myList []) is an error. P5 explains the

error as “I don’t believe Java allows that. I don’t believe Java allows square brackets

to be in the name of an object.” On the same note, P8 believes the program will

generate an error: element not found.

Most of the participants did not consider option (a) (n = 9) and option (b) (n

= 10) as a correct choice because they think an element can only store a zero or a

question mark if it is assigned to it.

10.3.2.3 Assigning Elements

Figure 10.8 shows the question from the MMT-A presented to the participants

on the state change component assigning elements. All of the participants except

P3 answered this question correctly. These nine participants stated even though

the value of velocity[2] has changed in the last line, it did not affect the value

of velocity[1]. The older value, which velocity[2] stored at the moment of the

assignment operation (=), gets stored in velocity[1]. In this context, P4 mentioned

coding as a linear process. All the participants immediately discarded option (c) by

saying an array element cannot store two values at the same time. P3 answered

this question with option (d). P3 thinks assignment operation with the elements

of an array works similarly to a reference assignment. This participant mentioned

velocity[1] pointing to velocity[2].

190

Figure 10.8: Think-aloud question probes for state change: assigning elements. The
correct answer is option (b).

10.3.2.4 Assignment

Figures 10.9, 10.10, and 10.11 show the three assignment questions from the

MMT-A presented to the participants. When an array is assigned to another array,

two things happen: 1) the array reference gets assigned from right to left, and 2) the

reference of the right side does not change. With these two questions, I aim to unfold

participants’ mental model of array assignment.

Assignment: Q9

All participants except P10 answered this question correctly. All nine participants

used the same explanation to conclude with their answer as they did in the assigning

literal question (Q8). P5 and P7 explicitly mentioned the values of the largeNumbers

array will get copied over to smallNumbers. P1 was unsure whether the assignment

operation changes the values or makes it point to the largeNumbers array. Whereas,

P2 and P3 mentioned after the assignment operation, the smallNumbers array is

pointing to the largeNumbers array.

P10 is the only participant who chose the incorrect choice: option (c). According

to this participant, the smallNumbers and largeNumbers variables used in the as-

191

Figure 10.9: Think-aloud question probes for state change: assignment. The correct
answer is option (d).

Figure 10.10: Think-aloud question probes for state change: assignment. The correct
answer is option (b).

signment operation are not the arrays created in the first two lines. These are two

different primitive variables. Therefore, the smallNumbers array will be unchanged.

This participant explains “it’s (smallNumbers array) still gonna be 10, 20, 30, 40.

Because on the third line and code, there’s no brackets (i.e., []), so I don’t think it

would recognize that it’s, it’s small numbers array, that array equals large numbers

array, because I think it’s just gonna, like it could be any variable. So I don’t think it

would know if it’s like the array.”

Assignment: Q10, Q11

All the participants used the same mental model assertion that the assignment

copies values from right to left to answer the question Q9, which they used to answer

the previous questions. However, when asked about the values of yourBag array

(question Q11), everyone except P3 answered incorrectly. Most participants (n =

192

Figure 10.11: Think-aloud question probes for state change: assignment. The correct
answer is option (b).

8) believed the array assignment is only copying values; therefore, the changes of

the elements of myBag in the last two lines of code should not effect the yourBag

array. However, P1 was unsure and was expressing this uncertainty repeatedly. P1

later concluded by saying, “I’m thinking one option is now yourBag is like pointing

at myBag, if that makes sense. And the other one is the values are literally being

reassigned. I think I think it’s more likely that it’s reassigning.” P3 held the correct

mental model assertion of array assignment. However, P3 also believed primitive

assignment works as reference assignment (mentioned in Section 10.3.2.3).

On the other hand, P10 again applied the mental model assertion used in Q9 to

answer Q11. P10 believes that because there are no square brackets in the third line

of code (yourBag = myBag), yourBag array will hold the initial values of 5, 15.

10.3.3 Incorrect Assertions

Throughout the think-aloud semistructured interview, I found participants stating

assertions that are incorrect based on the semantics of Java. I present these asser-

tions as incorrect assertions, which have the potential to be possible misconceptions.

Table 10.4 lists the incorrect assertion found in the data. Three participants (P4,

P9, P10) mentioned during the interview that an array’s index ends with n (array’s

size). In Java, array indexing begins with 0 and ends with n-1. All three participants

described the indices of the goals array from question Q6 (see Figure 10.6) to be

193

0, 1, 2, 3, 4. Meanwhile, the accurate indices are 0, 1, 2, and 3. It is worth noting

that these three participants had the experience of completing only the ITSC: 1212

course. Moreover, in the context of the question, Q6, P1, and P3 mentioned arrays

can hold size+1 elements. P7 appeared believing the array’s name and the values it

can hold are semantically related. This participant thought the String “Harry Potter”

could be an element of the books array even though books array is an integer array.

Three participants (P4, P9, P10) appeared to believe after the declaration, the

default size of an array is 0, and later on, during instantiation, it can grow as needed.

These three participants chose option (c) as the correct choice in the question Dec-

laration: Q4 (see Figure 10.4). However, in the MMT-A, I mapped the choice (c)

with the following assertion ‘MD5: After declaration, memory is allocated for the el-

ements’. The participants did not seem to imply that option (c) meant MD5. These

participants appeared to believe as in the declaration, there is no mention of the ar-

ray’s size; the default size of the array is zero, which can be changed when an array

is instantiated. On the other hand, P7 appeared to believe that because there is no

specific mention of the array’s size in the declaration, there will be no limit on the

stored elements in the array. P7 mentioned while choosing option (b) in question

Q4 (see Figure 10.4) as the correct choice, “in every array, I’m pretty sure we were

taught that there’s no limit of how many things can be stored”. I mapped option (d)

of the questions Q4 and Q5 to the following assertion: ‘MD4: The default value for

the array reference is stored as ’?’. However, in the interview process, I realized one

participant (P8) considered a question mark (?) as the default value of the array ref-

erence variable after declaration only when the array reference variable is of character

(char) type. P8 answered with a question mark in question Q4 when the given array

(productCode) was character typed. However, P8 did not choose a question mark (?)

in the following question Q5 when the given array (pageNumbers) was integer (int)

typed. P8 discarded option (d) in the question Q5 by saying, “So first off question

194

Table 10.4: Incorrect assertions found in the think-aloud semi-structured interview
data with participants (n = 10) separated by the highest course completion.

Misconceptions or Incorrect Assertions Highest Course Completion
ITSC: 1212 ITSC: 1213 ITSC: 2214

1. MI5: Indexing ends with n (array’s size). P4, P9, P10 - -
2. ME5: Elements and array names are
semantically related (e.g., books and “Harry Potter”). P7 - -

3. After declaration, the default size of an array is 0
which can be grown as needed later. P4, P9, P10 - -

4. MD6: After declaration, the number of elements
that can be stored is unlimited. P7 - -

5. After declaration, question mark (?) is stored in
the char typed \\array reference variable as a default value. P8 - -

6. MD2. After declaration, there is no default value for the
elements of the array (blank/no value). P6, P7, P10 - P1, P2

7. After instantiation, null is stored in each of the indices as
the default elements. P8 P5 -

8. MAE5. Primitive assignment is the same as reference
assignment. - - P3

9. MA3. Array assignment copies the values. P4, P6, P7, P8,
P9, P10 P5 P1, P2

mark is not in there because question mark is a character ”. Half of the participants

(see Table 10.4) appeared to believe that after the declaration, the array reference

variable stores no value/blank.

Two participants (P5, P8) mentioned they believe after instantiation null is stored

in each of the elements as a default value. P5 while answering question Q6 mentioned,

“Currently it would store four null values. Null in index 1, 2, 3 and zero. And then

memory is allocated for the elements of goals array. I’m gonna say no, not for the

elements because it’s null. So I don’t think it would allocate memory to it. goals

store the whole group of these null objects.”

P3 appeared to believe the assignment operation between two array elements works

the same as the reference assignment. P3 was the only one who answered correctly

about the array assignment (question Assignment: Q11). The rest of the nine par-

ticipants appeared to believe that the array assignment only copies the values, not

references.

195

10.3.4 Miscellaneous Findings

The previous section mentioned wrong assertions or misconceptions found in the

data. During the interview, I observed some findings that I had not anticipated.

Below, I summarize the findings:

“Java does not auto-store”- No knowledge of default values: I found many

participants in many contexts consistently claiming that Java does not have a concept

of default values. In the context of question Declaration: Q4 (see Figure 10.4), nine

participants rejected question mark (?) being the default value of an array reference

variable when declared. Their reason was since we did not assign a question mark (?)

to the productCode array, it cannot store a question mark. A similar explanation was

found for discarding a zero as a default value stored in an array reference variable

when declared. After instantiation, zero is stored in the elements of an integer array.

In the context of question Q7, nine participants believed zero could not be stored in

the elements because we had not assigned zero to each element. They consistently

mentioned Java cannot have a default value unless assigned.

“I’m not good with jargon.”- Lack of knowledge of programming termi-

nologies: Four participants (P4, P7, P9, P10) stated they did not remember what

the programming terminology meant. These four participants stated they don’t re-

member what a reference variable is. In addition, P7 does not remember what null

is. Also, P10 could not remember what an element was. It is worth noting that all

these four participants had passed only the first introductory computing course,ITSC:

1212. Moreover, I noticed inconsistent use of terminology. For example, P4 repeatedly

termed the process of instantiation as the declaration.

“There are no brackets”- Syntactical confusion: Throughout the interview

session, some participants appeared to have syntactical confusion. P1 and P5 recog-

nized an alternate way of declaring array (int myList[]) to be an error as they had

not seen this way of declaring an array. On the other note, P10 appeared to believe

196

you need to include a square bracket([]) if you want to assign one array to another.

For example, in the context of the question Assignment: Q9, according to P10, the

correct way of an array assignment is smallNumbers[] = largeNumbers[];. These

two variables will not be considered arrays without the square brackets.

10.4 Discussion

Based on the above results, I discuss several key findings and their connection to

the prior work mentioned in this dissertation.

10.4.1 Parts vs. State changes

Throughout all the responses collected from the MMT-A, one finding emerged re-

peatedly: students struggle more with array’s state changes components than the

parts components. This qualitative analysis strengthens this finding. Almost all the

students accurately answered the questions related to the parts components (see Fig-

ure 10.2). At the same time, inaccuracy and confusion were seen in the answers to

the questions related to the state changes components. Moreover, while generating

answers, I observed students quickly narrowing down an answer for the parts com-

ponents. On the other hand, for answering the questions of state changes, students

mostly used the process of elimination without full confidence. I also found more

incorrect assertions about the components of state changes. Incorrect assertions were

found among the students who passed all three core computing courses in CCI related

to array’s state change: declaration and instantiation.

State changes are dynamic and invisible although crucial to learn [25, 26]. State

changes are difficult to understand as the mechanism is hidden from the perceptual

view [19, 20]. The textual representation of a program has little or no connection to

the state change it provokes [25, 27]. Mapping syntax properties to concrete state

changes create obstacles not only for novices but also for advanced programmers [25].

197

10.4.2 Incorrect Assertions

I found the evidence of six incorrect mental model assertions in the qualitative

data included in the MMT-A. These six assertions were also found in the quanti-

tative data (mentioned in Chapter 8). The incorrect assertions regarding the end

index of an array (MI5 in Table 10.4) is a well-known misconception of arrays [7].

The quantitative and quantitative responses provided evidence for this misconcep-

tion present in our students. Interestingly, this misconception (MI5) was found to be

present in the before-instruction (ITSC: 1212) data set, not the after-instruction (see

Table 8.1). The participants holding this wrong assertion in the think-aloud interview

had completed ITSC: 1212.

The next wrong assertion in Table 10.4, ME5, was found in the quantitative data

both within before and after instruction participants. I included this misconception

as an option of MMT-A by reviewing Kaczmarczyk et al.’s work [7]. In their semi-

structured think-aloud study, they found participants assuming a semantic connection

between values and the variable names regardless of the variable type. They found

their participant remarking, “And so because there’s two arrays, cheese and meats, uh,

all those turkey and ham and roast beef are gonna be sorted into the meats array” [7,

p.109]. I also found a participant assuming the String “Harry Potter” as an element

of the integer books array because “Harry Potter” is the name of a book.

I found several misconceptions regarding array’s state change: declaration. In the

quantitative analysis (mentioned in Chapters 5, 6 and 8), I found the component dec-

laration to be the most challenging to the students. The component declaration deals

with underlying memory usage, which is hidden from the programmer. Kaczmarczyk

et al. [7] also found many misconceptions regarding underlying memory usage in their

work. The participants of my study stated that they did not properly understand the

concept of memory usage in Java. On this context P6 mentioned, “I never learned

how the memory works for arrays.” P2 mentioned lack of practice in dealing with

198

underlying memory usage by saying, “I would say I don’t have a ton of experience

messing with uninitialized arrays like this, very quickly when you start programming

Java, you learn to initialize things because you’ll get errors and so I don’t really play

around with uninitialized.”

In previous work, researchers have reported confusion on primitive and reference

variable assignments [17,28,74]. Sorva [28] found that students think assigning prim-

itives is equivalent to assigning references. In the interview, I also encountered this

misconception (listed in Table 10.4). Moreover, a common misconception among

students is that an array assignment only replaces values in the elements. I found

almost all the participants holding this misconception. These two misconceptions

regarding assignment operation were also found in the quantitative data (mentioned

in Table 8.1) by using the MMT-A.

I found a misconception among several students that variables do not hold default

values unless assigned in Java. A participant from Kaczmarczyk et al. [7] work also

mentioned a similar belief. One of their participants said, “I don’t think any value is

being created for them because there’s no assignment there. You know, it’s just being

declared as a variable” [7, p.110]. My study participants mentioned an array reference

variable holding nothing or blank. A similar belief was found among the participants

of Kaczmarczyk et al. [7].

Incorrect assertions 3, 5, and 7 (see Table 10.4) emerged as new misconceptions

from our data that I did not include in my incorrect assertions list nor I have seen

in the literature. The emergence of these three misconceptions informs us more

about the incorrectness of novice programmers’ mental models. Moreover, the mutual

misconceptions found from the quantitative and qualitative data can suggest that

MMT-A can be used as a diagnostic tool to uncover misconceptions.

199

10.4.3 Exploration of mental model consistency

Throughout the interview process, I observed the evidence that points to the ap-

plication of consistent mental models in expressing similar knowledge. P1, while an-

swering question Q2 (see Figure 10.2), mentioned indexing starting from 0. P1 then

reiterated that while answering question Q6 (see Figure 10.6). I observed students use

the same mental model consistency to answer multiple times that a zero or question

mark (?) cannot be stored in an array unless assigned. I observed evidence that they

were consistently applying the correct mental model that the assignment operator

copied from right to left in answering all the questions related to the assignment.

Moreover, I noticed P10 consistently applying the incorrect mental model assertion

whenever an assignment operation between two arrays was noticed. P10 responded

with the incorrect mental model assertion that there should be square brackets on

each operand in an assignment operation if we want to specify the variables as arrays.

10.4.4 Impact of Programming Exposure

I observed the impact of programming exposure on the responses of my participants.

From Table 10.2, we can notice the participants who had the most programming ex-

posure (completed ITSC: 1212, 1213, and 2214 courses) more accurately answered the

questions. From Table 10.2, we can observe the difference in mental model correct-

ness across the participants with different programming exposure. However, for the

parts components, similar accuracy was found regardless of the difference between

programming exposure. The main difference can be noticed in the components of

state changes. A similar finding was found in the quantitative data. In previous

chapters, I mentioned participants with prior programming experience before joining

our college scored higher in the state changes than participants with no programming

experience.

Moreover, I found a prevalence of misconceptions among the participants who had

200

completed only ITSC: 1212. In Table 10.4, we can notice misconceptions are more

prevalent among the participants who had passed only ITSC: 1212.

10.4.5 Implications to the MMT-A

One of the purposes of this semi-structured think-aloud interview study with a sub-

set of questionnaires from the MMT-A was to understand if the students reveal more

mental model assertions which are not included in our pre-defined list of assertions.

Although most of the assertions I defined and mapped to each choice of the MMT-A

matched with the participants’ mental model assertion, I found three additional as-

sertions not present in my list. In the context of question Q4 (see in Figure 10.4),

participants responded with option (c) (Misc3 in Table 10.4), saying the default size

of the array is 0, which can be grown by specifying the size later (maybe hinting

at instantiation). However, I mapped option (c) with the assertion ‘MD5: Students

think memory is allocated’. Since the option mentions a default size, I interpreted

the corresponding assertion as MD5. However, participants did not perceive option

(c) to be MD5. They said the array’s default size is 0, which did not mean that they

believed memory was allocated after declaration.

Moreover, I placed a question mark (?) as a distractor in the questions of dec-

larations by reviewing a textbook portraying a question mark as a default value of

an array after declaration and instantiation (mentioned in Chapter 3). Therefore, I

mapped the choice of question mark (?) with the following assertion: ‘MD4: Students

think ? is stored as a default value’. MD4 asserts a question mark to be the default

value without specifying the array type. However, in the interview session, I found

that a participant advocated for the question mark (?) as a default value of an array

reference variable only when the array reference variable is character (char) typed.

Additionally, in the context of the question Q6 (see Figure 10.6), participants

responded with option (b) by stating each of the elements stored null. However, I

mapped the option (b) with the following assertion: MIn4: After instantiation, no

201

memory is allocated. P5 appeared to believe memory is not allocated for the array,

which matches my mapped assertion. However, P8 believed memory is allocated by

saying “Though null is stored in each element. array instantiation was given for four

spaces for the four integers.” Given this evidence, it suggests we have more possible

mental model assertions which need to be considered for analyzing the responses from

MMT-A.

10.5 Summary

In this Chapter, I presented the details of the qualitative study I performed. From

the findings, I presented a detailed mental model of programming learners of arrays

parts and state changes. The key results of the qualitative study are similar to the

quantitative study: students’ mental model of array’s state changes is less accurate

and inconsistent than the parts components. I also found common misconceptions

identified in the quantitative data to be present in the qualitative data. This suggests

that students’ interpretation of the subset of questions of MMT-A in large are aligned

with our sets of assertions. Moreover, from the qualitative findings, I discovered new

incorrect assertions that I did not include in my set of incorrect assertions. This

finding implies that qualitative data can provide more insight into the improvement

of MMT-A.

CHAPTER 11: DISCUSSION AND CONCLUSION

In this Chapter, I discuss the overall findings of my dissertation work. I discuss

the implication of my findings to future research and teaching practices. I outline a

summary of the contribution resulting from this work. Lastly, I conclude with the

limitations of my research studies.

11.1 Overall Summary of Findings

In this dissertation work, I introduced a questionnaire-based instrument, ‘the Men-

tal Model Test of Arrays (MMT-A)’ (details are in Chapter 4), to elicit novice pro-

grammers’ mental models of arrays through the lens of mental model theories based

on correctness and consistency. The data revealed several insightful findings aligned

with the previous literature.

Students’ mental model correctness and consistency for array’s state

changes are lower than the parts components. I began with analyzing intro-

ductory programming textbooks. With this analysis, I found the portrayal of array’s

state changes had less emphasis. Moreover, the connection with underlying memory

with the array’s structure and state changes was absent in most of the textbooks

(discussed in Chapter 3). This finding motivated me to understand novice program-

mers’ mental models of array’s parts and state changes. Students held more incorrect

and inconsistent mental models for array’s state changes than the parts components.

This finding was common in every phase of data collection.

• Students’ mental model correctness and consistency was lower for array’s state

changes than the parts components before their classroom instruction of arrays

in our CS1 course

203

• Students who successfully completed the CS1 course, even though their mental

model correctness and consistency improved after classroom instruction, the

knowledge gap between the parts and state changes persists.

• Students’ persisting misconceptions were mostly seen about the array’s state

changes components.

• Students’ qualitative responses revealed confusion in the questions of array’s

state changes.

It is worth noting that understanding state changes of arrays requires a well-developed

mental model of reference variables and underlying memory usage. A reference vari-

able is a part of the structure of an array that is not visible in the code snippet, unlike

other part such as name and type. This finding broadly supports the work of other

studies in this area. We have seen a plethora of misconceptions related to reference

assignments [17, 28], object declaration, and instantiation [7]. Moreover, in my text-

book analysis, I found only one textbook explaining array declaration with diagrams

and only a handful of textbooks depicting how reference assignment works. Perhaps

CS1 students could easily connect the parts components (i.e., name, type) from the

code syntax. However, perceiving the underlying steps of dynamic state changes is

difficult by just perceiving the code syntax. These findings further solidify the claim

that the state changes components are threshold concept [20–22,189]. Threshold con-

cepts are potentially very troublesome for students, and mastering them significantly

transforms their learning trajectory in an irreversible way so that the transformation

is unlikely to be forgotten [189]. Being a troublesome concept, novice programmers

are known for holding incorrect or incomplete mental models of state changes [17,29].

From the mental model perspective, my dissertation findings further provide the evi-

dence to solidify the findings from the literature that CS1 students struggle to develop

accurate and consistent mental models for arrays state changes.

204

Prior knowledge affects initial mental models. Constructivist belief articu-

lates that learners use their existing knowledge to develop a mental model of a new

system. In my work, this phenomenon was found when students entered into a CS1

course. Most students were found to hold correct and consistent mental models for

arrays name and type as, at the time of data collection, they had already learned

primitive variables and data types. Moreover, students who had experience with

other programming languages had better mental models before classroom instruction

(see Chapter 5). This phenomenon was also found when I paired participants’ data

before and after the CS1 instruction of arrays only for the parts components. (see

Chapter 7). Whereas prior programming knowledge did not make any impact on

the mental models of the state changes components. Moreover, in the larger set of

post-instruction data, I found no effect of prior knowledge on their mental models

(see Chapter 6) on either parts or state changes components.

Gender difference diminished after instruction. Before classroom instruction

on arrays, I found a gender difference in mental models. Male students’ mental models

were more correct and consistent than the female students. However, this gender

gap diminished as the students received instruction on arrays. This may suggest no

additional intervention is needed to close the gender gap in terms of mental model

development among CS1 students.

11.2 Implications

State changes require more attention. Findings from my work are well aligned

with previous literature which elucidates that inaccuracy and inconsistency exist in

novice programmers’ mental models of array’s state changes. In Java, similar to ar-

rays, objects are also manipulated with reference variables having the analogous state

changes (e.g., declaration, instantiation). Therefore, it may be a case that the same

difficulties and misconceptions can be found in novice programmers’ mental models

of objects, which may further hinder their success in more advanced courses such as

205

Data Structures. The dynamic state changes are hidden under abstraction layers.

Understanding the dynamic state changes and its connection to code is crucial for

a programmer to succeed. The ability to shift between levels of abstraction (i.e.,

concrete code to underlying state changes) determines the expertise of a program-

mer [190].

The purpose of abstraction that makes the state changes hidden is not to confuse

programmers but rather to provide a new semantic level in which programmers can

be absolutely precise. Our job as educators is to uncover the abstraction layers to the

programming learner so that they can shift between the abstraction ladder. More-

over, teachers should make the students aware that state changes are troublesome,

and students need to pay more attention and practice. Despite this importance,

Schulte and Bennedsen [191] found programming teachers do not consider providing

an overall picture of how programs’ dynamic aspects get executed by the notional ma-

chine as important. Instructors and educators need to explain more and provide more

specific materials for practice that deliberately introduce all the factual assertions of

each component of arrays state changes. Several visualization tools (e.g., [192, 193],

physical memory models [194], object and memory diagrams [195, 196] are proposed

to be effective in explaining state changes. However, their impact on mental models

is less studied. Instructional design strategies that are proven to improve mental

models need to be introduced and intervened. The impact of explanative diagrams

(described in Appendix 11) designed using the empirical multimedia-learning princi-

ples based on mental model theories can be assessed in the future step. Moreover,

misconception-driven feedback [197] seems promising for addressing misconceptions

in mental models.

We need more research on notional machines. A notional machine is a

pedagogical tool to explain how programs execute in a given language with an appro-

priate learner-oriented abstraction [2,26,30,34]. Researchers argue notional machines

206

can be an appropriate tool to present the hidden layers of programming, hence state

changes. However, Krishnamurthi et al. [30] argue there is scant research to identify

which design and representation of a notional machine is appropriate for the mental

model development of different levels of students. My research findings can provide

future research directions on the design of notional machines, which can be evalu-

ated to address the mental model gaps (i.e., incorrect assertions) mentioned in my

dissertation.

Students and instructors need to be aware of mental models. Mental

models govern actions and represent a person’s belief system. However, they are

individualistic, and often, the learners are unaware of the gaps in the mental model.

Moreover, if instructors teaching a concept are unaware of the gaps in students’ mental

models, there will be no effort to address them. Hence, the flaws in the mental model

become fixated, making it harder to change. Therefore, it is very crucial for the

learner and the instructor to be aware of the mental models to prevent the fixation

of flawed mental models.

CS1 course should introduce a separate section based on prior program-

ming experience. I found the impact of prior programming experience in the ini-

tial mental models of novice programmers’ when they enter into a CS1 course. This

finding suggests there needs to be a separate section based on prior programming

experience where instructors can address students based on their initial knowledge.

11.3 Summary of Contributions

This thesis presents the following contributions to the body of research in CS

education:

1. A summary of interdisciplinary literature connecting mental models and CS

education.

2. A novel instrument to elicit mental models of arrays in a scalable way based on

207

the theories of mental models- the Mental Model Test of Arrays(MMT-A).

3. An analytical framework to analyze and categorize mental models of arrays

based on correctness and consistency.

4. An analysis approach to identify misconceptions in mental models based on

consistency.

5. A decomposition of the programming concept arrays into its parts and state

changes.

6. An understanding of novice programmers’ mental models before and after the

formal classroom instruction of arrays.

7. An inventory of misconceptions a novice programmer can hold before and after

the formal classroom instruction of arrays.

11.4 Limitations

I claim MMT-A as an instrument to analyze novice programmers’ mental models

of arrays. The results obtained from the MMT-A correlated with a subset of the

participants’ course performance. Furthermore, the results aligned with previous

studies’ findings related to misconceptions. However, the generalizability of the results

should be made with caution. More empirical studies are needed to generalize the

findings. Moreover, the exploration of the validity of the instrument- MMT-A revealed

that the data collected for my dissertation could not meet the unidimensionality

assumption for conducting 1-PL Item Response Theory (Rashch analysis) or 2-PL

Item Response Theory analysis. These analysis results were acceptable, given that

MMT-A is primarily used to elicit mental models and is not a high-stakes test. One

possible reason for this could be based on the theories of mental models, I have

dissected the concept of arrays in parts and state changes where each part and state

change has more components. The mental models for each component are elicited

208

with a collection of assertions. The result is that I could measure the knowledge of

one single concept, ‘arrays,’ but using more than one dimension. A replication of this

study by collecting more data is needed to perform a more reliable validation analysis

of our instrument. More insight from additional qualitative data on the use of the

instrument can also be added to refine the MMT-A further.

It was noteworthy to find the significant differences in students’ mental models due

to different factors, such as gender, and prior programming experience. However, as

discussed earlier, these trends need further investigation as the sample size for each

group for a factor was small and not proportional. In this case, the study can be

repeated with a bigger and more proportional sample size to evaluate whether the

results are consistent.

In my dissertation work, I elicited CS1 students’ mental model assertions. However,

I did not investigate how these mental model assertions originated or were adopted.

It is possible that a different method of eliciting the mental models (e.g., interviews)

might generate different results. Most data for this study was collected during the

academic terms impacted by the global pandemic (COVID-19). It is possible that

this limited participation from students might have impacted the results or that the

results were influenced by the impact that the pandemic had on the entire educational

system.

11.5 Future Directions

Here, I share several ideas and directions that can be explored to further advance

research in this area. The future directions are not limited to:

Developing Mental Model Tests for Other Programming Concepts. The

process to develop the questionnaire of MMT-A by utilizing factual assertions from

Java semantics and incorrect assertions from well-known misconceptions can be fol-

lowed to develop a mental model test for other programming concepts such as objects.

Moreover, the classification of mental models based on correctness and consistency

209

can also be applied to classify mental models of other programming concepts.

Improvising to be a Concept Inventory. My purpose for the approach to de-

veloping a multiple-choice-based questionnaire was to elicit mental model assertions.

Though the development of MMT-A and concept inventory is similar, there are key

differences in the purpose and design approach (discussed in Section 2.2). However,

the process to develop a concept inventory can be followed to improvise the MMT-A

and validate it with Multi-dimensional Item Response Theory to utilize it as a concept

inventory for arrays.

Assessing Educational Intervention. There has been a lack of tests that mea-

sure mental models of arrays except the MMT-A. The next step to improve novice

programmers’ mental models of arrays is to design and assess interventions. The

educational interventions can be assessed with MMT-A as a pre-test and post-test

to ensure the intervention’s impact on mental models. Moreover, techniques such as

misconception-driven feedback [197] or refutational lectures [103] can be evaluated by

identifying misconceptions using the MMT-A.

Providing automated feedback. There has been a proliferation of the develop-

ment and usage of automated assessment tools [198, 199] and personalized adaptive

learning platforms [200]. The nature of MMT-A being a multiple-choice-based test

makes it an appropriate tool to provide automated personalized feedback to students.

The integration of MMT-A as an automatic feedback tool in the future can help in-

structors to assess students’ mental models in their learning trajectories. Moreover,

personalized learning materials or practice modules can be presented to students

based on the gap in their mental models.

Identifying Liminal Space for State Changes of Arrays. Liminal space is a

transitional period between beginning to learn a concept to fully mastering it [201].

Future research can utilize MMT-A across different course levels to identify the liminal

space of array’s state changes.

210

11.6 Conclusion

In this dissertation, I presented my definition of a mental model along with a test

(MMT-A) to elicit CS1 students’ mental models of arrays. From the test, I elicited

assertions of CS1 students’ mental models at different points (i.e., before instruction

and after instruction), allowing us to analyze their mental models’ consistency and

correctness. CS1 students’ mental model correctness and consistency improved from

before arrays classroom instruction to the end of the semester. However, even though

we saw improvements in the parts and state changes components, our results revealed

that mental models of state changes components were less accurate and inconsistent

for novice programmers than parts. Students with prior programming experience

and students without programming experience had similar incorrect and inconsistent

mental models for the components of state changes. This may suggest that educators

need to put more effort into teaching the dynamic invisible aspects of state changes.

The finding can also suggest that the assertions of those dynamic state changes need

more time, experience, and practice to be ingrained in novices’ mental models. The

findings from my dissertation also revealed that prior programming knowledge im-

pacts CS1 students’ initial mental model correctness and consistency. This finding

supports the belief of constructivism [11] that learners are not clean slates. In the

CS education context, the lack of prior programming experience puts students at a

disadvantage when compared to other students. This disadvantage persists after a

semester of the CS1 course.

In closing, I argue that because mental models resemble a system’s parts and

dynamic behavior (e.g., state changes), it gives us an opportunity to capture a men-

tal model and to measure its correctness and consistency. Our findings align with

previous literature that shows that state changes are difficult to grasp for CS1 stu-

dents regardless of prior programming experience. The findings from my dissertation

strengthen the argument that state changes need more attention in future research.

211

REFERENCES

[1] W. B. Rouse and N. M. Morris, “On looking into the black box: Prospects and
limits in the search for mental models.,” Psychological bulletin, vol. 100, no. 3,
p. 349, 1986.

[2] S. Fincher, J. Jeuring, C. S. Miller, P. Donaldson, B. du Boulay, M. Hauswirth,
A. Hellas, F. Hermans, C. Lewis, A. Mühling, et al., “Notional machines in com-
puting education: The education of attention,” in Proceedings of the Working
Group Reports on Innovation and Technology in Computer Science Education,
pp. 21–50, 2020.

[3] P. E. Dickson, N. C. Brown, and B. A. Becker, “Engage against the machine:
Rise of the notional machines as effective pedagogical devices,” in Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer Science
Education, pp. 159–165, 2020.

[4] R. E. Mayer, “Cognitive theory of multimedia learning,” The Cambridge hand-
book of multimedia learning, vol. 41, pp. 31–48, 2005.

[5] R. Mayer and J. K. Gallini, “When is an illustration worth ten thousand
words?,” Journal of Educational Psychology, vol. 82, pp. 715–726, 12 1990.

[6] D. A. Norman, “Some observations on mental models,” in Mental models,
pp. 15–22, Psychology Press, 1983.

[7] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L. Herman, “Identify-
ing student misconceptions of programming,” in Proceedings of the 41st ACM
technical symposium on Computer science education, pp. 107–111, ACM, 2010.

[8] A. Swidan, F. Hermans, and M. Smit, “Programming misconceptions for school
students,” in Proceedings of the 2018 ACM Conference on International Com-
puting Education Research, pp. 151–159, 2018.

[9] N. J. Nersessian, “The cognitive basis of model-based reasoning in science,” The
cognitive basis of science, pp. 133–153, 2002.

[10] J. Hammarbäck, “Finding paths or getting lost?: Examining the mental model
construct and mental model methodology,” 2017.

[11] J. Piaget, Construction of Reality in the Child: Translated by Margaret Cook.
Basic Books, 1954.

[12] J. Proulx, “Constructivism: A re-equilibration and clarification of the concepts,
and some potential implications for teaching and pedagogy,” Radical pedagogy,
vol. 8, no. 1, pp. 65–85, 2006.

212

[13] A. K. Taylor and P. Kowalski, “Naïve psychological science: The prevalence,
strength, and sources of misconceptions,” The Psychological Record, vol. 54,
pp. 15–25, 2004.

[14] R. Hanson, A. Sam, and V. Antwi, “Misconceptions of undergraduate chem-
istry teachers about hybridisation,” African Journal of Educational Studies in
Mathematics and Sciences, vol. 10, pp. 45–54, 2012.

[15] J. Otero, “Influence of knowledge activation and context on comprehension
monitoring of science texts,” Metacognition in educational theory and practice,
pp. 145–164, 1998.

[16] S. Vosniadou, “What can persuasion research tell us about conceptual change
that we did not already know?,” International Journal of Educational Research,
vol. 35, no. 7-8, pp. 731–737, 2001.

[17] L. Ma, Investigating and improving novice programmers’ mental models of pro-
gramming concepts. PhD thesis, University of Strathclyde, 2007.

[18] S. Dehnadi, A cognitive study of learning to program in introductory program-
ming courses. PhD thesis, Middlesex University, 2009.

[19] J. Sorva and T. Sirkiä, “Uuhistle: A software tool for visual program simu-
lation,” in Proceedings of the 10th Koli Calling International Conference on
Computing Education Research, Koli Calling ’10, 2010.

[20] D. Shinners-Kennedy, “The everydayness of threshold concepts: State as an
example from computer science,” in Threshold concepts within the disciplines,
pp. 119–128, Brill, 2008.

[21] J. Rountree and N. Rountree, “Issues regarding threshold concepts in com-
puter science,” in Proceedings of the Eleventh Australasian Conf. on Computing
Education-Vol. 95, pp. 139–146, 2009.

[22] K. Sanders and R. McCartney, “Threshold concepts in computing: past, present,
and future,” in Proceedings of the 16th Koli Calling international conference on
computing education research, pp. 91–100, 2016.

[23] K. Cunningham, “Purpose-first programming: A programming learning ap-
proach for learners who care most about what code achieves,” in Proceedings
of the 2020 ACM Conference on International Computing Education Research,
pp. 348–349, 2020.

[24] E. Vagianou, “Program working storage: a beginner’s model,” in Proceedings of
the 6th Baltic Sea conference on Computing education research: Koli Calling
2006, pp. 69–76, 2006.

213

[25] T. B. Weidmann, S. Thorgeirsson, and Z. Su, “Bridging the syntax-semantics
gap of programming,” in Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pp. 80–94, 2022.

[26] B. Du Boulay, “Some difficulties of learning to program,” Journal of Educational
Computing Research, vol. 2, no. 1, pp. 57–73, 1986.

[27] V. Lonati, A. Brodnik, T. Bell, A. P. Csizmadia, L. De Mol, H. Hickman,
T. Keane, C. Mirolo, and M. Monga, “What we talk about when we talk about
programs,” in Proceedings of the 2022 Working Group Reports on Innovation
and Technology in Computer Science Education, pp. 117–164, 2022.

[28] J. Sorva, “The same but different students’ understandings of primitive and
object variables,” in Proceedings of the 8th International Conference on Com-
puting Education Research, Koli ’08, (New York, NY, USA), pp. 5–15, ACM,
2008.

[29] J. Sorva, “Misconceptions and the beginner programmer,” Computer science
education: Perspectives on teaching and learning in school, vol. 171, 2018.

[30] S. Krishnamurthi and K. Fisler, “Programming paradigms and beyond,” The
Cambridge Handbook of Computing Education Research, vol. 37, 2019.

[31] F. G. Halasz and T. P. Moran, “Mental models and problem solving in using
a calculator,” in Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, pp. 212–216, 1983.

[32] D. E. Kieras and S. Bovair, “The role of a mental model in learning to operate
a device,” Cognitive science, vol. 8, no. 3, pp. 255–273, 1984.

[33] J. M. Carroll and J. R. Olson, “Mental models in human-computer interaction,”
Handbook of human-computer interaction, pp. 45–65, 1988.

[34] J. Sorva, “Notional machines and introductory programming education,” Trans.
Comput. Educ., vol. 13, July 2013.

[35] P. Johnson-Laird, B. Gawronski, and F. Strack, “Mental models and con-
sistency,” Cognitive consistency: A fundamental principle in social cognition,
pp. 225–243, 2012.

[36] J. De Kleer and J. S. Brown, “Mental models of physical mechanisms and their
acquisition,” Cognitive skills and their acquisition, pp. 285–309, 1981.

[37] J. De Kleer and J. S. Brown, “Assumptions and ambiguities in mechanistic
mental models,” in Mental models, pp. 163–198, Psychology Press, 2014.

[38] T. M. Haladyna, Developing and validating multiple-choice test items. Rout-
ledge, 2004.

214

[39] K. Craik, “The nature of explanation cambridge university press: Cambridge,”
1943.

[40] J. K. Doyle, D. N. Ford, M. J. Radzicki, and W. S. Trees, “Mental models of
dynamic systems,” Encyclopedia of Life Support Systems, 2001.

[41] N. A. Jones, H. Ross, T. Lynam, P. Perez, and A. Leitch, “Mental models: an
interdisciplinary synthesis of theory and methods,” Ecology and Society, vol. 16,
no. 1, 2011.

[42] B. Gawronski and S. M. Brannon, “What is cognitive consistency, and why does
it matter?,” 2019.

[43] B. Gawronski and G. V. Bodenhausen, “Self-insight from a dual-process per-
spective,” Handbook of self-knowledge, pp. 22–38, 2012.

[44] S. M. Glynn, B. K. Britton, and R. H. Yeany, The psychology of learning science.
Routledge, 2012.

[45] R. B. Davis et al., Constructivist Views on the Teaching and Learning of Math-
ematics. Journal for Research in Mathematics Education: Monograph No. 4.
ERIC, 1990.

[46] M. Ben-Ari, “Constructivism in computer science education,” Journal of Com-
puters in Mathematics and Science Teaching, vol. 20, no. 1, pp. 45–73, 2001.

[47] M. Ben-Ari, “Constructivism in computer science education,” Acm sigcse bul-
letin, vol. 30, no. 1, pp. 257–261, 1998.

[48] J. Rasmussen, On the structure of knowledge-a morphology of metal models in
a man-machine system context. Risø National Laboratory, 1979.

[49] W. Veldhuyzen and H. G. Stassen, “The internal model concept: An application
to modeling human control of large ships,” Human Factors, vol. 19, no. 4,
pp. 367–380, 1977.

[50] C. D. Wickens, J. G. Hollands, S. Banbury, and R. Parasuraman, Engineering
psychology and human performance. Psychology Press, 2015.

[51] M. D. Williams, J. D. Hollan, and A. L. Stevens, “Human reasoning about a
simple physical system,” Mental models, pp. 131–154, 1983.

[52] R. M. Young, “Surrogates and mappings: Two kinds of conceptual models for
interactive devices,” in Mental models, pp. 43–60, Psychology Press, 2014.

[53] D. Gentner and D. R. Gentner, “Flowing waters or teeming crowds: Mental
models of electricity,” in Mental models, pp. 107–138, Psychology Press, 2014.

215

[54] M. Hegarty, M. A. Just, and I. R. Morrison, “Mental models of mechanical
systems: Individual differences in qualitative and quantitative reasoning,” Cog-
nitive Psychology, vol. 20, no. 2, pp. 191–236, 1988.

[55] J. de Kleer and J. S. Brown, “Qualitative reasoning about physical systems,
chapter qualitative physics based on confluences,” 1985.

[56] D. Gentner and A. L. Stevens, “Mental models,” 1983.

[57] J. H. Larkin and H. A. Simon, “Why a diagram is (sometimes) worth ten thou-
sand words,” Cognitive science, vol. 11, no. 1, pp. 65–100, 1987.

[58] B. Y. White and J. R. Frederiksen, “Qualitative models and intelligent learn-
ing,” Artificial Intelligence and Education: Learning environments and tutoring
systems, vol. 1, p. 281, 1987.

[59] J. M. Clark and A. Paivio, “Dual coding theory and education,” Educational
Psychology Review, vol. 3, pp. 149–210, Sep 1991.

[60] W. Schnotz, “Commentary: Towards an integrated view of learning from text
and visual displays,” Educational psychology review, vol. 14, no. 1, pp. 101–120,
2002.

[61] R. N. Carney and J. R. Levin, “Pictorial illustrations still improve students’
learning from text,” Educational psychology review, vol. 14, no. 1, pp. 5–26,
2002.

[62] S. Ainsworth, “Deft: A conceptual framework for considering learning with
multiple representations,” Learning and instruction, vol. 16, no. 3, pp. 183–198,
2006.

[63] B. Eilam and Y. Poyas, “External visual representations in science learning: The
case of relations among system components,” International Journal of Science
Education, vol. 32, no. 17, pp. 2335–2366, 2010.

[64] L. Leivas Pozzer and W.-M. Roth, “Prevalence, function, and structure of pho-
tographs in high school biology textbooks,” Journal of Research in Science
Teaching, vol. 40, no. 10, pp. 1089–1114, 2003.

[65] K. R. Butcher, “Learning from text with diagrams: Promoting mental model
development and inference generation.,” Journal of Educational Psychology,
vol. 98, no. 1, p. 182, 2006.

[66] S. Byram, B. Fischhoff, M. Embrey, W. Bruine de Bruin, and S. Thorne, “Men-
tal models of women with breast implants: Local complications,” Behavioral
Medicine, vol. 27, no. 1, pp. 4–14, 2001.

[67] S. J. Hysong, R. G. Best, J. A. Pugh, and F. I. Moore, “Not of one mind: mental
models of clinical practice guidelines in the veterans health administration,”
Health services research, vol. 40, no. 3, pp. 829–848, 2005.

216

[68] T. Darisi, S. Thorne, and C. Iacobelli, “Influences on decision-making for un-
dergoing plastic surgery: a mental models and quantitative assessment,” Plastic
and Reconstructive Surgery, vol. 116, no. 3, pp. 907–916, 2005.

[69] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud method:
a practical approach to modelling cognitive,” London: AcademicPress, vol. 11,
pp. 29–41, 1994.

[70] G. Pask and B. C. Scott, “Learning strategies and individual competence,”
International Journal of Man-Machine Studies, vol. 4, no. 3, pp. 217–253, 1972.

[71] L. A. Freeman and L. M. Jessup, “The power and benefits of concept mapping:
measuring use, usefulness, ease of use, and satisfaction,” International Journal
of Science Education, vol. 26, no. 2, pp. 151–169, 2004.

[72] W. C. McGaghie, D. R. McCrimmon, G. Mitchell, and J. A. Thompson, “Con-
cept mapping in pulmonary physiology using pathfinder scaling,” Advances in
Health Sciences Education, vol. 9, no. 3, pp. 225–240, 2004.

[73] C. Wang and M. A. Burris, “Photovoice: Concept, methodology, and use for
participatory needs assessment,” Health education & behavior, vol. 24, no. 3,
pp. 369–387, 1997.

[74] S. Dehnadi, R. Bornat, et al., “The camel has two humps (working title),”
Middlesex University, UK, pp. 1–21, 2006.

[75] A. Radermacher, G. Walia, and R. Rummelt, “Improving student learning out-
comes with pair programming,” in Proceedings of the ninth annual international
conference on International computing education research, pp. 87–92, 2012.

[76] V. Ramalingam, D. LaBelle, and S. Wiedenbeck, “Self-efficacy and mental mod-
els in learning to program,” in Proceedings of the 9th annual SIGCSE conference
on Innovation and technology in computer science education, pp. 171–175, 2004.

[77] H. Julie and D. Bruno, “Approach to develop a concept inventory informing
teachers of novice programmers’ mental models,” in 2020 IEEE Frontiers in
Education Conference (FIE), pp. 1–9, IEEE, 2020.

[78] L. Wittie, A. Kurdia, and M. Huggard, “Developing a concept inventory for
computer science 2,” in 2017 IEEE Frontiers in Education Conference (FIE),
pp. 1–4, IEEE, 2017.

[79] A. K. Taylor and P. Kowalski, “Student misconceptions: Where do they come
from and what can we do?,” Scholarship of Teaching and Learning in Psychol-
ogy, 2014.

[80] K. Goldman, P. Gross, C. Heeren, G. L. Herman, L. Kaczmarczyk, M. C.
Loui, and C. Zilles, “Setting the scope of concept inventories for introductory
computing subjects,” ACM Transactions on Computing Education (TOCE),
vol. 10, no. 2, pp. 1–29, 2010.

217

[81] I. A. Halloun and D. Hestenes, “The initial knowledge state of college physics
students,” American journal of Physics, vol. 53, no. 11, pp. 1043–1055, 1985.

[82] D. Hestenes, M. Wells, and G. Swackhamer, “Force concept inventory,” The
physics teacher, vol. 30, no. 3, pp. 141–158, 1992.

[83] A. E. Tew, Assessing fundamental introductory computing concept knowledge
in a language independent manner. Georgia Institute of Technology, 2010.

[84] A. E. Tew and M. Guzdial, “The fcs1: a language independent assessment of cs1
knowledge,” in Proceedings of the 42nd ACM technical symposium on Computer
science education, pp. 111–116, 2011.

[85] M. C. Parker, M. Guzdial, and A. E. Tew, “Uses, revisions, and the future of
validated assessments in computing education: A case study of the fcs1 and
scs1,” in Proceedings of the 17th ACM Conference on International Computing
Education Research, pp. 60–68, 2021.

[86] M. C. Parker, M. Guzdial, and S. Engleman, “Replication, validation, and use of
a language independent cs1 knowledge assessment,” in Proceedings of the 2016
ACM conference on international computing education research, pp. 93–101,
2016.

[87] B. Xie, M. J. Davidson, M. Li, and A. J. Ko, “An item response theory evalua-
tion of a language-independent cs1 knowledge assessment,” in Proceedings of the
50th ACM Technical Symposium on Computer Science Education, pp. 699–705,
2019.

[88] A. E. Tew and B. Dorn, “The case for validated tools in computer science
education research,” Computer, vol. 46, no. 9, pp. 60–66, 2013.

[89] M. J. Allen and W. M. Yen, Introduction to measurement theory. Waveland
Press, 2001.

[90] T. L. Kelley, “Interpretation of educational measurements.,” 1927.

[91] J. D. Brown, “What is construct validity? what is construct validity?,”

[92] L. J. Cronbach and P. E. Meehl, “Construct validity in psychological tests.,”
Psychological bulletin, vol. 52, no. 4, p. 281, 1955.

[93] D. F. Polit and C. T. Beck, Nursing research: Generating and assessing evidence
for nursing practice. Lippincott Williams & Wilkins, 2008.

[94] D. Gurel, A. Eryilmaz, and L. McDermott, “A review and comparison of di-
agnostic instruments to identify students’ misconceptions in science,” Eurasia
Journal of Mathematics Science and Technology Education, vol. 11, no. 5, 2015.

218

[95] B. J. Guzzetti, T. E. Snyder, G. V. Glass, and W. S. Gamas, “Promoting
conceptual change in science: A comparative meta-analysis of instructional
interventions from reading education and science education,” Reading Research
Quarterly, pp. 117–159, 1993.

[96] A. A. diSessa, “A history of conceptual change research,” in The Cambridge
Handbook of the Learning Sciences, pp. 88–108, Cambridge University Press,
Sept. 2014.

[97] E. D. Vaughan, “Misconceptions about psychology among introductory psychol-
ogy students,” Teaching of psychology, vol. 4, no. 3, pp. 138–141, 1977.

[98] A. Eryilmaz, “Effects of conceptual assignments and conceptual change discus-
sions on students’ misconceptions and achievement regarding force and motion,”
Journal of research in science teaching, vol. 39, no. 10, pp. 1001–1015, 2002.

[99] E. Boyes and M. Stanisstreet, “Misconceptions in first-year undergraduate sci-
ence students about energy sources for living organisms,” Journal of Biological
Education, vol. 25, no. 3, pp. 209–213, 1991.

[100] S. Vosniadou, “16 universal and culture-specific properties of,” Mapping the
mind: Domain specificity in cognition and culture, p. 412, 1994.

[101] A. K. Taylor and P. Kowalski, “Naïve psychological science: The prevalence,
strength, and sources of misconceptions,” The Psychological Record, vol. 54,
pp. 15–25, 2004.

[102] P. M. Sadler, G. Sonnert, H. P. Coyle, N. Cook-Smith, and J. L. Miller, “The
influence of teachers’ knowledge on student learning in middle school physical
science classrooms,” American Educational Research Journal, vol. 50, no. 5,
pp. 1020–1049, 2013.

[103] P. Kowalski and A. K. Taylor, “The effect of refuting misconceptions in the
introductory psychology class,” Teaching of Psychology, vol. 36, no. 3, pp. 153–
159, 2009.

[104] P. Kowalski and A. K. Taylor, “Reducing students’ misconceptions with refuta-
tional teaching: For long-term retention, comprehension matters.,” Scholarship
of Teaching and Learning in Psychology, vol. 3, no. 2, p. 90, 2017.

[105] D. A. Bensley and S. O. Lilienfeld, “What is a psychological misconception?
moving toward an empirical answer,” Teaching of Psychology, vol. 42, no. 4,
pp. 282–292, 2015.

[106] D. E. Trowbridge and L. C. McDermott, “Investigation of student understand-
ing of the concept of velocity in one dimension,” American journal of Physics,
vol. 48, no. 12, pp. 1020–1028, 1980.

219

[107] A. Caramazza, M. McCloskey, and B. Green, “Naive beliefs in “sophisticated”
subjects: Misconceptions about trajectories of objects,” Cognition, vol. 9, no. 2,
pp. 117–123, 1981.

[108] D. R. Mulford and W. R. Robinson, “An inventory for alternate conceptions
among first-semester general chemistry students,” Journal of chemical educa-
tion, vol. 79, no. 6, p. 739, 2002.

[109] P. M. Sadler, “Psychometric models of student conceptions in science: Reconcil-
ing qualitative studies and distractor-driven assessment instruments,” Journal
of Research in Science Teaching: The Official Journal of the National Associ-
ation for Research in Science Teaching, vol. 35, no. 3, pp. 265–296, 1998.

[110] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties in
introductory programming: A literature review,” ACM Transactions on Com-
puting Education (TOCE), vol. 18, no. 1, p. 1, 2017.

[111] E. Kurvinen, N. Hellgren, E. Kaila, M.-J. Laakso, and T. Salakoski, “Program-
ming misconceptions in an introductory level programming course exam,” in
Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education, pp. 308–313, 2016.

[112] L. Chiodini, I. Moreno Santos, A. Gallidabino, A. Tafliovich, A. L. Santos, and
M. Hauswirth, “A curated inventory of programming language misconceptions,”
in Proceedings of the 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 1, pp. 380–386, 2021.

[113] R. Caceffo, P. Frank-Bolton, R. Souza, and R. Azevedo, “Identifying and vali-
dating java misconceptions toward a cs1 concept inventory,” in Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science
Education, pp. 23–29, 2019.

[114] J. Sorva et al., Visual program simulation in introductory programming educa-
tion. Aalto University, 2012.

[115] M. Teif and O. Hazzan, “Partonomy and taxonomy in object-oriented thinking:
Junior high school students’ perceptions of object-oriented basic concepts,” in
Working Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education, ITiCSE-WGR ’06, (New York, NY, USA), pp. 55–60, ACM,
2006.

[116] N. Ragonis and M. Ben-Ari, “A long-term investigation of the comprehension of
oop concepts by novices,” Computer Science Education, vol. 15, no. 3, pp. 203–
221, 2005.

[117] E. Albrecht and J. Grabowski, “Sometimes it’s just sloppiness-studying stu-
dents’ programming errors and misconceptions,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, pp. 340–345, 2020.

220

[118] S. Holland, R. Griffiths, and M. Woodman, “Avoiding object misconceptions,” in
Proceedings of the Twenty-eighth SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’97, (New York, NY, USA), pp. 131–134, ACM,
1997.

[119] J. Sorva, “Students’ understandings of storing objects,” Koli Calling ’07, (AUS),
p. 127–135, Australian Computer Society, Inc., 2007.

[120] T. Sirkiä and J. Sorva, “Exploring programming misconceptions: an analysis of
student mistakes in visual program simulation exercises,” in Proceedings of the
12th Koli Calling International Conference on Computing Education Research,
pp. 19–28, 2012.

[121] S. F. Mazumder, C. Latulipe, and M. A. Pérez-Quiñones, “Are variable, array
and object diagrams in java textbooks explanative?,” in Proceedings of the 2020
ACM conference on innovation and technology in computer science education,
pp. 425–431, 2020.

[122] R. McFall, H. Dershem, and D. Davis, “Experiences using a collaborative elec-
tronic textbook: Bringing the "guide on the side" home with you,” in Proceed-
ings of the 37th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’06, (New York, NY, USA), pp. 339–343, ACM, 2006.

[123] L. W. Foderaro, “In a digital age, students still cling to paper textbooks..” https:
//www.nytimes.com/2010/10/20/nyregion/20textbooks.html, 2010. Accessed:
2019-03-26.

[124] G. A. Valverde, L. J. Bianchi, R. G. Wolfe, W. H. Schmidt, and R. T. Houang,
According to the book: Using TIMSS to investigate the translation of policy into
practice through the world of textbooks. Springer Science & Business Media,
2002.

[125] M. Berges and P. Hubwieser, “Concept specification maps: Displaying content
structures,” in Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’13, 2013.

[126] K. McMaster, B. Rague, S. Sambasivam, and S. Wolthuis, “Coverage of cs1
programming concepts in c++ and java textbooks,” in 2016 IEEE Frontiers in
Education Conference (FIE), 2016.

[127] J. Börstler, M. E. Caspersen, and M. Nordström, “Beauty and the beast: on
the readability of object-oriented example programs,” Software Quality Journal,
2016.

[128] “Amazon’s best sellers..” https://www.amazon.com/
Best-Sellers-Books-Java-Programming/zgbs/books/3608, 2016. Accessed:
2018-06-28.

https://www.nytimes.com/2010/10/20/nyregion/20textbooks.html
https://www.nytimes.com/2010/10/20/nyregion/20textbooks.html
https://www.amazon.com/Best-Sellers-Books-Java-Programming/zgbs/books/3608
https://www.amazon.com/Best-Sellers-Books-Java-Programming/zgbs/books/3608

221

[129] “Object-oriented programming textbooks..” https://www.barnesandnoble.
com/b/textbooks/computer-programming/object-oriented-programming/_/
N-8q9Zvok, 2015. Accessed: 2019-07-02.

[130] K. B. Bruce, A. P. Danyluk, and T. P. Murtagh, Java: An eventful approach.
Pearson Prentice Hall, 2006.

[131] A. L. Roman Lysecky, “Java early objects.” https://www.zybooks.com/catalog/
java-early-objects/. Accessed: 2019-07-12.

[132] P. S. Nair, Java programming fundamentals: problem solving through object
oriented analysis and design. CRC press, 2008.

[133] D. M. Arnow and G. Weiss, Introduction to programming using java: an object-
oriented approach. Addison-Wesley Longman Publishing Co., Inc., 1999.

[134] J. C. Adams, L. R. Nyhoff, and J. L. Nyhoff, Java: An Introduction to Com-
puting. Prentice-Hall, Inc., 2001.

[135] T. Gaddis, S. Mukherjee, and A. K. Bhattacherjee, Starting out with Java:
From control structures through objects. Pearson, 2013.

[136] P. Deitel and H. Deitel, Java How to program. Prentice Hall Press, 2011.

[137] P. Naughton and H. Schildt, Java: The complete reference. McGraw-Hill, Inc.,
1996.

[138] W. Savitch, Java: An Introduction to Problem Solving and Programming, Stu-
dent Value Edition Plus MyProgrammingLab with Pearson eText-Access Card
Package. Pearson, 2017.

[139] Y. D. Liang, Introduction to Java programmng: comprehensive version. Pearson
Education, 2011.

[140] D. S. Malik, JavaTM Programming: From Problem Analysis to Program Design.
Cengage learning, 2011.

[141] C. S. Horstmann, Java Concepts. New York, NY, USA: John Wiley & Sons,
Inc., 4th ed., 2007.

[142] S. Reges and M. Stepp, “Building java programs: A back to basics approach
plus myprogramminglab with pearson etext–access card package,” 2016.

[143] M. Guzdial and B. Ericson, Introduction to computing & programming in Java:
a multimedia approach. Pearson Prentice Hall, 2007.

[144] C. T. Wu, An Introduction to Object-Oriented Programming with Java.
McGraw-Hill Pub. Co., 6th ed., 2006.

https://www.barnesandnoble.com/b /textbooks/computer-programming/object-oriented-programming/_/N-8q9Zvok
https://www.barnesandnoble.com/b /textbooks/computer-programming/object-oriented-programming/_/N-8q9Zvok
https://www.barnesandnoble.com/b /textbooks/computer-programming/object-oriented-programming/_/N-8q9Zvok
https://www.zybooks.com/catalog/java-early-objects/
https://www.zybooks.com/catalog/java-early-objects/

222

[145] A. L. Santos and H. Sousa, “An exploratory study of how programming instruc-
tors illustrate variables and control flow,” in Proceedings of the 17th Koli Calling
International Conference on Computing Education Research, Koli Calling ’17,
(New York, NY, USA), pp. 173–177, ACM, 2017.

[146] B. Tversky, “Spatial mental models,” Psychology of Learning and Motivation,
vol. 27, pp. 109–145, 1991.

[147] P. N. Johnson-Laird, How we reason. Oxford University Press, USA, 2006.

[148] T. M. Haladyna and S. M. Downing, “A taxonomy of multiple-choice item-
writing rules,” Applied measurement in education, vol. 2, no. 1, pp. 37–50, 1989.

[149] B. Bettin, “Toward understanding and enhancing novice students’ mental mod-
els in computer science,” in Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research, pp. 323–324, 2019.

[150] E. Albrecht and J. Grabowski, “Sometimes it’s just sloppiness - studying stu-
dents’ programming errors and misconceptions,” SIGCSE ’20, (New York, NY,
USA), p. 340–345, Association for Computing Machinery, 2020.

[151] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting
java programming errors for introductory computer science students,” ACM
SIGCSE Bulletin, vol. 35, no. 1, pp. 153–156, 2003.

[152] T. Sirkiä et al., “Recognizing programming misconceptions-an analysis of the
data collected from the uuhistle program simulation tool,” Master’s thesis, 2012.

[153] D. Doukakis, M. Grigoriadou, and G. Tsaganou, “Understanding the program-
ming variable concept with animated interactive analogies,” in Proceedings of
the The 8th Hellenic European Research on Computer Mathematics & Its Ap-
plications Conference (HERCMA’07), 2007.

[154] P. Bayman and R. E. Mayer, “Using conceptual models to teach basic computer
programming.,” Journal of Educational Psychology, vol. 80, no. 3, p. 291, 1988.

[155] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K. Kuspa, “A summary of mis-
conceptions of high school basic programmers,” Journal of Educational Com-
puting Research, vol. 2, no. 4, pp. 459–472, 1986.

[156] B. Ericson, B. Hoffman, and J. Rosato, “Csawesome: Ap csa curriculum and
professional development (practical report),” in Proceedings of the 15th Work-
shop on Primary and Secondary Computing Education, WiPSCE ’20, (New
York, NY, USA), Association for Computing Machinery, 2020.

[157] E. Charters, “The use of think-aloud methods in qualitative research an in-
troduction to think-aloud methods,” Brock Education Journal, vol. 12, no. 2,
2003.

223

[158] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating the viability of
mental models held by novice programmers,” in Proceedings of the 38th SIGCSE
technical symposium on computer science education, pp. 499–503, 2007.

[159] M.-Q. Syeda Fatema Mazumder, Celine Latulipe, “Are variable, array and ob-
ject diagrams in java textbooks explanative?,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, SIGCSE 2020, in press.

[160] R. E. Mayer and V. K. Sims, “For whom is a picture worth a thousand words?
extensions of a dual-coding theory of multimedia learning.,” Journal of educa-
tional psychology, vol. 86, no. 3, p. 389, 1994.

[161] L. Murphy and L. Thomas, “Dangers of a fixed mindset: implications of self-
theories research for computer science education,” in Proceedings of the 13th
annual conference on Innovation and technology in computer science education,
pp. 271–275, 2008.

[162] A. Tafliovich, J. Campbell, and A. Petersen, “A student perspective on prior
experience in cs1,” in Proceeding of the 44th ACM technical symposium on Com-
puter science education, pp. 239–244, 2013.

[163] L. J. Barker, C. McDowell, and K. Kalahar, “Exploring factors that influence
computer science introductory course students to persist in the major,” ACM
Sigcse Bulletin, vol. 41, no. 1, pp. 153–157, 2009.

[164] L. K. Alford, M. L. Dorf, and V. Bertacco, “Student perceptions of their abil-
ities and learning environment in large introductory computer programming
courses,” in 2017 ASEE Annual Conference & Exposition, 2017.

[165] L. L. Beck, A. W. Chizhik, and A. C. McElroy, “Cooperative learning techniques
in cs1: design and experimental evaluation,” ACM SIGCSE Bulletin, vol. 37,
no. 1, pp. 470–474, 2005.

[166] A. Lishinski, A. Yadav, J. Good, and R. Enbody, “Learning to program: Gender
differences and interactive effects of students’ motivation, goals, and self-efficacy
on performance,” in Proceedings of the 2016 ACM Conference on International
Computing Education Research, pp. 211–220, 2016.

[167] A. Settle, J. Lalor, and T. Steinbach, “Reconsidering the impact of cs1 on novice
attitudes,” in Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, pp. 229–234, 2015.

[168] S. F. Mazumder and M. A. Pérez-Quiñones, “Incoming cs1 students’ miscon-
ceptions on arrays,” in 2023 IEEE Frontiers in Education Conference (FIE),
pp. 1–9, IEEE, 2023.

[169] M. Clancy, J. Stasko, M. Guzdial, S. Fincher, and N. Dale, “Models and areas
for cs education research,” Computer Science Education, vol. 11, no. 4, pp. 323–
341, 2001.

224

[170] R. D. Pea, “Language-independent conceptual “bugs” in novice programming,”
Journal of Educational Computing Research, vol. 2, no. 1, pp. 25–36, 1986.

[171] G. L. Herman, The development of a digital logic concept inventory. University
of Illinois at Urbana-Champaign, 2011.

[172] C. Lewis and D. A. Norman, “Designing for error,” in Readings in human–
computer interaction, pp. 686–697, Elsevier, 1995.

[173] T. Albano, “Introduction to educational and psychological measurement using
R,” 2018.

[174] R. K. Hambleton and R. W. Jones, “Comparison of classical test theory and
item response theory and their applications to test development,” Educational
measurement: issues and practice, vol. 12, no. 3, pp. 38–47, 1993.

[175] S. E. Stemler and A. Naples, “Rasch measurement v. item response theory:
Knowing when to cross the line.,” Practical Assessment, Research & Evaluation,
vol. 26, p. 11, 2021.

[176] K. B. Christensen, S. Kreiner, and M. Mesbah, Rasch models in health. John
Wiley & Sons, 2013.

[177] W. J. Boone, J. R. Staver, and M. S. Yale, Rasch analysis in the human sciences.
Springer, 2013.

[178] J. Linacre, “A user’s guide to winsteps ministeps,” Rasch model computer pro-
grams manual, vol. 3, no. 0, 2011.

[179] S. E. Stemler and A. Naples, “Rasch measurement v. item response theory:
Knowing when to cross the line.,” Practical Assessment, Research & Evaluation,
vol. 26, p. 11, 2021.

[180] B. D. Wright and G. N. Masters, Rating scale analysis. MESA press, 1982.

[181] R. G. Lambert, “Technical manual for the teaching strategies gold®,” 2020.

[182] T. G. Bond, C. M. Fox, and H. Lacey, “Applying the rasch model: Fundamental
measurement,” in in the social sciences (2nd, Citeseer, 2007.

[183] M. Wilson, Constructing Measures: An Item Response Modeling Approach: An
Item Response Modeling Approach. Routledge, 2004.

[184] M. Wu and R. Adams, Applying the Rasch model to psycho-social measurement:
A practical approach. Educational Measurement Solutions Melbourne, 2007.

[185] T. G. Bond and C. M. Fox, Applying the Rasch model: Fundamental measure-
ment in the human sciences. Psychology Press, 2013.

225

[186] J. W. Osborne, Best practices in exploratory factor analysis. CreateSpace In-
dependent Publishing Platform, 2014.

[187] M. D. Reckase, Multidimensional Item Response Theory. Springer, 2009.

[188] K. Charmaz, Constructing grounded theory: A practical guide through qualita-
tive analysis. sage, 2006.

[189] J. Sorva, “Reflections on threshold concepts in computer programming and be-
yond,” in Proceedings of the 10th Koli calling intl. conf. on computing education
research, pp. 21–30, 2010.

[190] J. Hartmanis, “Turing award lecture on computational complexity and the na-
ture of computer science,” Commun. ACM, vol. 37, p. 37–43, oct 1994.

[191] C. Schulte and J. Bennedsen, “What do teachers teach in introductory pro-
gramming?,” in Proceedings of the second international workshop on Computing
education research, pp. 17–28, 2006.

[192] P. J. Guo, “Online python tutor: Embeddable web-based program visualiza-
tion for cs education,” in Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, 2013.

[193] J. H. Cross, D. Hendrix, and D. A. Umphress, “Jgrasp: an integrated develop-
ment environment with visualizations for teaching java in cs1, cs2, and beyond,”
in 34th Annual Frontiers in Education, 2004. FIE 2004., pp. 1466–1467, 2004.

[194] C. M. Lewis, “Physical java memory models: A notional machine,” SIGCSE
’21, (New York, NY, USA), Association for Computing Machinery, 2021.

[195] L. Thomas, M. Ratcliffe, and B. Thomasson, “Scaffolding with object diagrams
in first year programming classes: Some unexpected results,” 03 2004.

[196] M. Holliday and D. Luginbuhl, “Using memory diagrams when teaching a java-
based cs1,” 04 2018.

[197] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst, “Misconception-driven
feedback: Results from an experimental study,” in Proceedings of the 2018 ACM
Conference on International Computing Education Research, pp. 160–168, 2018.

[198] S. H. Edwards and K. P. Murali, “Codeworkout: Short programming exercises
with built-in data collection,” in Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Education, ITiCSE ’17, (New
York, NY, USA), p. 188–193, Association for Computing Machinery, 2017.

[199] “Gradescope.” https://www.gradescope.com/, 2020. Accessed: 2024-01-18.

https://www.gradescope.com/

226

[200] S. Marwan, G. Gao, S. Fisk, T. W. Price, and T. Barnes, “Adaptive imme-
diate feedback can improve novice programming engagement and intention to
persist in computer science,” in Proceedings of the 2020 ACM Conference on In-
ternational Computing Education Research, ICER ’20, (New York, NY, USA),
p. 194–203, Association for Computing Machinery, 2020.

[201] R. McCartney, J. Boustedt, A. Eckerdal, J. E. Moström, K. Sanders, L. Thomas,
and C. Zander, “Liminal spaces and learning computing,” European Journal of
Engineering Education, vol. 34, no. 4, pp. 383–391, 2009.

[202] B. du Boulay, T. O’Shea, and J. Monk, “The black box inside the glass box: pre-
senting computing concepts to novices,” International Journal of Man-Machine
Studies, vol. 14, no. 3, pp. 237 – 249, 1981.

[203] J. S. Bruner et al., Toward a theory of instruction, vol. 59. Harvard University
Press, 1966.

[204] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching programming:
A review and discussion,” Computer science education, vol. 13, no. 2, pp. 137–
172, 2003.

[205] M. Guzdial, S. Krishnamurthi, J. Sorva, and J. Vahrenhold, “Notional machines
and programming language semantics in education (dagstuhl seminar 19281),”
in Dagstuhl Reports, vol. 9, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[206] H. Kragh, Niels Bohr and the quantum atom: The Bohr model of atomic struc-
ture 1913-1925. OUP Oxford, 2012.

[207] I. Newton, Philosophiae naturalis principia mathematica, vol. 2. typis A. et JM
Duncan, 1833.

[208] P. E. Smaldino, “Models are stupid, and we need more of them,” Computational
social psychology, pp. 311–331, 2017.

[209] R. Mayer and R. E. Mayer, The Cambridge handbook of multimedia learning.
Cambridge university press, 2005.

[210] R. E. Mayer, “Multimedia learning,” in Psychology of learning and motivation,
vol. 41, pp. 85–139, Elsevier, 2002.

[211] R. E. Mayer, “The promise of multimedia learning: using the same instructional
design methods across different media,” Learning and instruction, vol. 13, no. 2,
pp. 125–139, 2003.

[212] R. E. Mayer and R. Moreno, “A split-attention effect in multimedia learning:
Evidence for dual processing systems in working memory.,” Journal of educa-
tional psychology, vol. 90, no. 2, p. 312, 1998.

227

[213] M. S. Donovan, J. D. Bransford, and J. W. Pellegrino, “How people learn,”
Retrieved March, vol. 8, p. 2006, 1999.

[214] N. M. Lambert and B. L. McCombs, How students learn: Reforming schools
through learner-centered education. American Psychological Association, 1998.

[215] A. Paivio, Mental representations: A dual coding approach. Oxford University
Press, 1990.

[216] A. Baddeley, “Working memory oxford,” England: Oxford Uni, 1986.

[217] A. D. Baddeley, Essentials of human memory. Psychology Press, 1999.

[218] P. Chandler and J. Sweller, “Cognitive load theory and the format of instruc-
tion,” Cognition and instruction, vol. 8, no. 4, pp. 293–332, 1991.

[219] R. E. Mayer, W. Bove, A. Bryman, R. Mars, and L. Tapangco, “When less is
more: Meaningful learning from visual and verbal summaries of science text-
book lessons.,” Journal of educational psychology, vol. 88, no. 1, p. 64, 1996.

[220] R. C. Atkinson and R. M. Shiffrin, “The control of short-term memory,” Scien-
tific american, vol. 225, no. 2, pp. 82–91, 1971.

[221] A. Baddeley, “The episodic buffer: a new component of working memory?,”
Trends in cognitive sciences, vol. 4, no. 11, pp. 417–423, 2000.

[222] W. Schnotz, “An integrated model of text and picture comprehension,” The
Cambridge handbook of multimedia learning, vol. 49, p. 69, 2005.

[223] R. E. Mayer, “Systematic thinking fostered by illustrations in scientific text.,”
Journal of educational psychology, vol. 81, no. 2, p. 240, 1989.

[224] R. E. Mayer, K. Steinhoff, G. Bower, and R. Mars, “A generative theory of
textbook design: Using annotated illustrations to foster meaningful learning of
science text,” Educational Technology Research and Development, vol. 43, no. 1,
pp. 31–41, 1995.

[225] R. Moreno and R. E. Mayer, “Cognitive principles of multimedia learning: The
role of modality and contiguity.,” Journal of educational psychology, vol. 91,
no. 2, p. 358, 1999.

[226] P. Chandler and J. Sweller, “The split-attention effect as a factor in the design of
instruction,” British Journal of Educational Psychology, vol. 62, no. 2, pp. 233–
246, 1992.

[227] R. A. Tarmizi and J. Sweller, “Guidance during mathematical problem solving.,”
Journal of educational psychology, vol. 80, no. 4, p. 424, 1988.

228

[228] R. Moreno and R. E. Mayer, “Engaging students in active learning: The case for
personalized multimedia messages.,” Journal of educational psychology, vol. 92,
no. 4, p. 724, 2000.

[229] R. E. Mayer, R. Moreno, M. Boire, and S. Vagge, “Maximizing constructivist
learning from multimedia communications by minimizing cognitive load.,” Jour-
nal of educational psychology, vol. 91, no. 4, p. 638, 1999.

[230] P. Baggett, “Role of temporal overlap of visual and auditory material in forming
dual media associations.,” Journal of Educational Psychology, vol. 76, no. 3,
p. 408, 1984.

[231] P. Baggett, “6 understanding visual and verbal messages,” in Advances in psy-
chology, vol. 58, pp. 101–124, Elsevier, 1989.

[232] P. Baggett and A. Ehrenfeucht, “Encoding and retaining information in the
visuals and verbals of an educational movie,” ECTJ, vol. 31, no. 1, pp. 23–32,
1983.

[233] S. Y. Mousavi, R. Low, and J. Sweller, “Reducing cognitive load by mixing
auditory and visual presentation modes.,” Journal of educational psychology,
vol. 87, no. 2, p. 319, 1995.

[234] S. F. Harp and R. E. Mayer, “The role of interest in learning from scientific text
and illustrations: On the distinction between emotional interest and cognitive
interest.,” Journal of educational psychology, vol. 89, no. 1, p. 92, 1997.

[235] S. F. Harp and R. E. Mayer, “How seductive details do their damage: A theory
of cognitive interest in science learning.,” Journal of educational psychology,
vol. 90, no. 3, p. 414, 1998.

[236] R. E. Mayer, J. Heiser, and S. Lonn, “Cognitive constraints on multimedia learn-
ing: When presenting more material results in less understanding.,” Journal of
educational psychology, vol. 93, no. 1, p. 187, 2001.

[237] S. Kalyuga, P. Chandler, and J. Sweller, “Managing split-attention and redun-
dancy in multimedia instruction,” Applied Cognitive Psychology: The Official
Journal of the Society for Applied Research in Memory and Cognition, vol. 13,
no. 4, pp. 351–371, 1999.

[238] J. B. Carroll et al., Human cognitive abilities: A survey of factor-analytic stud-
ies. No. 1, Cambridge University Press, 1993.

[239] R. C. Clark and R. E. Mayer, E-learning and the science of instruction: Proven
guidelines for consumers and designers of multimedia learning. john Wiley &
sons, 2016.

[240] R. E. Mayer, “Using multimedia for e-learning,” Journal of Computer Assisted
Learning, vol. 33, no. 5, pp. 403–423, 2017.

229

[241] R. E. Mayer and P. Chandler, “When learning is just a click away: Does simple
user interaction foster deeper understanding of multimedia messages?,” Journal
of educational psychology, vol. 93, no. 2, p. 390, 2001.

[242] R. Moreno and R. Mayer, “Interactive multimodal learning environments,” Ed-
ucational psychology review, vol. 19, no. 3, pp. 309–326, 2007.

[243] R. E. Mayer, G. T. Dow, and S. Mayer, “Multimedia learning in an inter-
active self-explaining environment: What works in the design of agent-based
microworlds?,” Journal of educational psychology, vol. 95, no. 4, p. 806, 2003.

[244] S. Guttormsen Schär and P. G. Zimmermann, “Investigating means to reduce
cognitive load from animations: Applying differentiated measures of knowledge
representation,” Journal of Research on Technology in Education, vol. 40, no. 1,
pp. 64–78, 2007.

[245] J.-M. Boucheix and E. Schneider, “Static and animated presentations in learning
dynamic mechanical systems,” Learning and instruction, vol. 19, no. 2, pp. 112–
127, 2009.

[246] B. S. Hasler, B. Kersten, and J. Sweller, “Learner control, cognitive load and
instructional animation,” Applied Cognitive Psychology: The Official Journal
of the Society for Applied Research in Memory and Cognition, vol. 21, no. 6,
pp. 713–729, 2007.

[247] H. Hassanabadi, E. S. Robatjazi, and A. P. Savoji, “Cognitive consequences of
segmentation and modality methods in learning from instructional animations,”
Procedia-Social and Behavioral Sciences, vol. 30, pp. 1481–1487, 2011.

[248] D. L. Lusk, A. D. Evans, T. R. Jeffrey, K. R. Palmer, C. S. Wikstrom, and P. E.
Doolittle, “Multimedia learning and individual differences: Mediating the effects
of working memory capacity with segmentation,” British Journal of Educational
Technology, vol. 40, no. 4, pp. 636–651, 2009.

[249] K. D. Stiller, A. Freitag, P. Zinnbauer, and C. Freitag, “How pacing of multime-
dia instructions can influence modality effects: A case of superiority of visual
texts,” Australasian Journal of Educational Technology, vol. 25, no. 2, 2009.

[250] P. D. Mautone and R. E. Mayer, “Signaling as a cognitive guide in multimedia
learning.,” Journal of educational Psychology, vol. 93, no. 2, p. 377, 2001.

[251] P. D. Mautone and R. E. Mayer, “Cognitive aids for guiding graph comprehen-
sion.,” Journal of Educational Psychology, vol. 99, no. 3, p. 640, 2007.

[252] F. Amadieu, C. Mariné, and C. Laimay, “The attention-guiding effect and cogni-
tive load in the comprehension of animations,” Computers in Human Behavior,
vol. 27, no. 1, pp. 36–40, 2011.

230

[253] J.-M. Boucheix, R. K. Lowe, D. K. Putri, and J. Groff, “Cueing animations:
Dynamic signaling aids information extraction and comprehension,” Learning
and Instruction, vol. 25, pp. 71–84, 2013.

[254] B. B. De Koning, H. K. Tabbers, R. M. Rikers, and F. Paas, “Attention cueing
as a means to enhance learning from an animation,” Applied Cognitive Psychol-
ogy: The Official Journal of the Society for Applied Research in Memory and
Cognition, vol. 21, no. 6, pp. 731–746, 2007.

[255] E. Jamet, M. Gavota, and C. Quaireau, “Attention guiding in multimedia learn-
ing,” Learning and instruction, vol. 18, no. 2, pp. 135–145, 2008.

[256] S. Kriz and M. Hegarty, “Top-down and bottom-up influences on learning from
animations,” International Journal of Human-Computer Studies, vol. 65, no. 11,
pp. 911–930, 2007.

[257] J. Naumann, T. Richter, J. Flender, U. Christmann, and N. Groeben, “Signaling
in expository hypertexts compensates for deficits in reading skill.,” Journal of
Educational Psychology, vol. 99, no. 4, p. 791, 2007.

[258] E. Ozcelik, I. Arslan-Ari, and K. Cagiltay, “Why does signaling enhance multi-
media learning? evidence from eye movements,” Computers in human behavior,
vol. 26, no. 1, pp. 110–117, 2010.

[259] G. D. Rey, “Reading direction and signaling in a simple computer simulation,”
Computers in Human Behavior, vol. 26, no. 5, pp. 1176–1182, 2010.

[260] K. Scheiter and A. Eitel, “The effects of signals on learning from text and dia-
grams: How looking at diagrams earlier and more frequently improves under-
standing,” in International Conference on Theory and Application of Diagrams,
pp. 264–270, Springer, 2010.

[261] R. E. Mayer, A. Mathias, and K. Wetzell, “Fostering understanding of multi-
media messages through pre-training: Evidence for a two-stage theory of men-
tal model construction.,” Journal of Experimental Psychology: Applied, vol. 8,
no. 3, p. 147, 2002.

[262] R. E. Mayer, P. Mautone, and W. Prothero, “Pictorial aids for learning by doing
in a multimedia geology simulation game.,” Journal of Educational Psychology,
vol. 94, no. 1, p. 171, 2002.

[263] E. Pollock, P. Chandler, and J. Sweller, “Assimilating complex information,”
Learning and instruction, vol. 12, no. 1, pp. 61–86, 2002.

[264] A. Eitel, K. Scheiter, and A. Schueler, “How inspecting a picture affects pro-
cessing of text in multimedia learning,” Applied Cognitive Psychology, vol. 27,
no. 4, pp. 451–461, 2013.

231

[265] L. Kester, P. A. Kirschner, and J. J. Van Merriënboer, “Timing of information
presentation in learning statistics,” Instructional Science, vol. 32, no. 3, pp. 233–
252, 2004.

[266] L. Kester, P. A. Kirschner, and J. J. Van Merriënboer, “Information presenta-
tion and troubleshooting in electrical circuits,” International Journal of Science
Education, vol. 26, no. 2, pp. 239–256, 2004.

[267] L. Kester, C. Lehnen, P. W. Van Gerven, and P. A. Kirschner, “Just-in-time,
schematic supportive information presentation during cognitive skill acquisi-
tion,” Computers in Human Behavior, vol. 22, no. 1, pp. 93–112, 2006.

[268] L. Kester, P. A. Kirschner, and J. J. van Merriënboer, “Just-in-time informa-
tion presentation: Improving learning a troubleshooting skill,” Contemporary
Educational Psychology, vol. 31, no. 2, pp. 167–185, 2006.

[269] I. L. Beck, M. G. McKeown, C. Sandora, L. Kucan, and J. Worthy, “Questioning
the author: A yearlong classroom implementation to engage students with text,”
The Elementary School Journal, vol. 96, no. 4, pp. 385–414, 1996.

[270] R. Moreno and R. E. Mayer, “Personalized messages that promote science learn-
ing in virtual environments.,” Journal of educational Psychology, vol. 96, no. 1,
p. 165, 2004.

[271] B. M. McLaren, K. E. DeLeeuw, and R. E. Mayer, “A politeness effect in learning
with web-based intelligent tutors,” International Journal of Human-Computer
Studies, vol. 69, no. 1-2, pp. 70–79, 2011.

[272] N. Wang, W. L. Johnson, R. E. Mayer, P. Rizzo, E. Shaw, and H. Collins,
“The politeness effect: Pedagogical agents and learning outcomes,” International
journal of human-computer studies, vol. 66, no. 2, pp. 98–112, 2008.

[273] N. Wang, W. L. Johnson, R. E. Mayer, P. Rizzo, E. Shaw, and H. Collins, “The
politeness effect: Pedagogical agents and learning gains.,” in AIED, pp. 686–
693, 2005.

[274] R. E. Mayer, S. Fennell, L. Farmer, and J. Campbell, “A personalization effect
in multimedia learning: Students learn better when words are in conversational
style rather than formal style.,” Journal of educational psychology, vol. 96, no. 2,
p. 389, 2004.

[275] R. K. Atkinson, R. E. Mayer, and M. M. Merrill, “Fostering social agency in
multimedia learning: Examining the impact of an animated agent’s voice,”
Contemporary Educational Psychology, vol. 30, no. 1, pp. 117–139, 2005.

[276] R. E. Mayer and C. S. DaPra, “An embodiment effect in computer-based learn-
ing with animated pedagogical agents.,” Journal of Experimental Psychology:
Applied, vol. 18, no. 3, p. 239, 2012.

232

[277] R. E. Mayer, K. Sobko, and P. D. Mautone, “Social cues in multimedia learning:
Role of speaker’s voice.,” Journal of educational Psychology, vol. 95, no. 2,
p. 419, 2003.

[278] C. I. Nass and S. Brave, Wired for speech: How voice activates and advances
the human-computer relationship. MIT press Cambridge, MA, 2005.

[279] L. Fiorella and R. E. Mayer, “Effects of observing the instructor draw diagrams
on learning from multimedia messages.,” Journal of Educational Psychology,
vol. 108, no. 4, p. 528, 2016.

[280] A. L. Baylor and S. Kim, “Designing nonverbal communication for pedagogical
agents: When less is more,” Computers in Human Behavior, vol. 25, no. 2,
pp. 450–457, 2009.

[281] Q. Dunsworth and R. K. Atkinson, “Fostering multimedia learning of science:
Exploring the role of an animated agent’s image,” Computers & Education,
vol. 49, no. 3, pp. 677–690, 2007.

[282] C. Frechette and R. Moreno, “The roles of animated pedagogical agents’ pres-
ence and nonverbal communication in multimedia learning environments,” Jour-
nal of Media Psychology, 2010.

[283] R. Moreno, M. Reislein, and G. Ozogul, “Using virtual peers to guide visual
attention during learning: A test of the persona hypothesis.,” Journal of Media
Psychology: Theories, Methods, and Applications, vol. 22, no. 2, p. 52, 2010.

[284] D. G. Bobrow, “Qualitative reasoning about physical systems, daniel g. bobrow,
ed,” 1985.

[285] M. Gellevij, H. Van Der Meij, T. De Jong, and J. Pieters, “Multimodal versus
unimodal instruction in a complex learning context,” The Journal of Experi-
mental Education, vol. 70, no. 3, pp. 215–239, 2002.

[286] D. C. Bui and M. A. McDaniel, “Enhancing learning during lecture note-taking
using outlines and illustrative diagrams,” Journal of Applied Research in Mem-
ory and Cognition, vol. 4, no. 2, pp. 129–135, 2015.

[287] M. A. Gernsbacher and K. R. Varner, “The multi-media comprehension bat-
tery,” tech. rep., Tech. Rep, 1988.

[288] M. A. Gernsbacher, Language comprehension as structure building. Psychology
Press, 2013.

[289] M. A. McDaniel, R. J. Hines, and M. J. Guynn, “When text difficulty benefits
less-skilled readers,” Journal of Memory and Language, vol. 46, no. 3, pp. 544–
561, 2002.

233

[290] K. R. Popper, “Science as falsification,” Conjectures and refutations, vol. 1,
no. 1963, pp. 33–39, 1963.

[291] G. Gigerenzer, “Surrogates for theories,” Theory & Psychology, vol. 8, no. 2,
pp. 195–204, 1998.

[292] P. E. Smaldino, “Not even wrong: Imprecision perpetuates the illusion of under-
standing at the cost of actual understanding,” Behavioral and Brain Sciences,
vol. 39, p. e163, 2016.

[293] J. M. Epstein, “Why model?,” Journal of artificial societies and social simula-
tion, vol. 11, no. 4, p. 12, 2008.

[294] W. C. Wimsatt, “False models as means to truer theories,” Neutral models in
biology, pp. 23–55, 1987.

[295] P. E. Smaldino, J. Calanchini, and C. L. Pickett, “Theory development with
agent-based models,” Organizational Psychology Review, vol. 5, no. 4, pp. 300–
317, 2015.

[296] J. C. Schank, C. J. May, and S. S. Joshi, “Models as scaffold for understanding,”
Developing scaffolds in evolution, culture, and cognition, pp. 147–167, 2014.

[297] T. Dragon and P. E. Dickson, “Memory diagrams: A consistant approach across
concepts and languages,” in Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, SIGCSE ’16, (New York, NY, USA), pp. 546–
551, ACM, 2016.

[298] J. Heiser and B. Tversky, “Arrows in comprehending and producing mechanical
diagrams,” Cognitive science, vol. 30, no. 3, pp. 581–592, 2006.

[299] B. Tversky, J. B. Morrison, and M. Betrancourt, “Animation: can it facilitate?,”
International journal of human-computer studies, vol. 57, no. 4, pp. 247–262,
2002.

[300] O.-c. Park and S. S. Gittelman, “Selective use of animation and feedback in
computer-based instruction,” Educational Technology Research and Develop-
ment, vol. 40, no. 4, pp. 27–38, 1992.

[301] L. P. Rieber, “Using computer animated graphics in science instruction with
children.,” Journal of educational psychology, vol. 82, no. 1, p. 135, 1990.

[302] A. Large, J. Beheshti, A. Breuleux, and A. Renaud, “Effect of animation in
enhancing descriptive and procedural texts in a multimedia learning environ-
ment,” Journal of the American Society for Information Science, vol. 47, no. 6,
pp. 437–448, 1996.

[303] L. P. Rieber and M. J. Hannafin, “Effects of textual and animated orienting ac-
tivities and practice on learning from computer-based instruction,” Computers
in the Schools, vol. 5, no. 1-2, pp. 77–90, 1988.

234

[304] W. Schnotz, J. Böckheler, and H. Grzondziel, “Individual and co-operative
learning with interactive animated pictures,” European journal of psychology
of education, vol. 14, no. 2, pp. 245–265, 1999.

[305] J. B. Morrison and B. Tversky, “The (in) effectiveness of animation in instruc-
tion,” in CHI’01 extended abstracts on Human factors in computing systems,
pp. 377–378, 2001.

[306] M. D. Byrne, R. Catrambone, and J. T. Stasko, “Evaluating animations as
student aids in learning computer algorithms,” Computers & education, vol. 33,
no. 4, pp. 253–278, 1999.

[307] J. F. Pane, A. T. Corbett, and B. E. John, “Assessing dynamics in computer-
based instruction,” in Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 197–204, 1996.

[308] R. K. Lowe, “Extracting information from an animation during complex visual
learning,” European journal of psychology of education, vol. 14, no. 2, pp. 225–
244, 1999.

[309] T. Slocum, S. Yoder, F. Kessler, and R. Sluter, “Maptime: software for explor-
ing spatiotemporal data associated with point locations,” Cartographica: The
International Journal for Geographic Information and Geovisualization, vol. 37,
no. 1, pp. 15–32, 2000.

235

APPENDIX A: THE MENTAL MODEL TEST OF ARRAYS (MMT-A)

Preamble: This preamble was put in the Qualtrics survey form to collect responses

from the participants:

Please answer to the best of your abilities. We acknowledge that you do not

know many of the answers. Try to use your intuition to guess the correct answer

with your existing knowledge. Please do not refer to any other information

(books, web pages) or execute the statements on a computer. You will not

receive or lose points based on your correct or incorrect responses.

Questionnaire Unfortunately, the full questionnaire of the MMT-A is only shared

with the committee members and is not available to the public. The test MMT-A

remains the sole intellectual property of the author of the dissertation. Sharing the

whole questionnaire may impact and bias participants involved in future studies.

236

APPENDIX B: EXPLANATIVE DIAGRAMS OF ARRAYS: A MODEL AND A

NOTIONAL MACHINE

B.1 Introduction

To minimize programming misconceptions, researchers [2,26,30] urge CS educators

to explicitly teach the notional machine. A notional machine (NM) is a pedagogic

device or approach to assist the understanding of programming [2]. Theories sur-

rounding notional machines suggest 1) notional machines should be made available

to students early, 2) the design of notional machines should be in line with the cog-

nitive load of the learners, 3) the presentation of the NM should not overload the

learners’ perceptual and mental processing [30, 202]. Explanative diagrams designed

based on the literature on the cognitive psychology of visual instructional methods

can represent a notional machine. In this chapter, I describe three theories related

to the design of my explanative diagrams of arrays: the theory of notional machine,

the cognitive theory of multimedia learning, and the theory of explanative diagrams.

Additionally, I outline when and why explanative diagrams are effective and how they

can serve the purpose of a model and a notional machine. At the end of this chapter,

I propose the model of explanative diagrams of arrays and describe its implication in

learning programming.

B.2 Background

B.2.1 Notional Machine

According to the recent ITiCSE working group report [2], the term “notional ma-

chine” (NM) arose in the 1970s. At that time, researchers started learning about the

psychology of learning programming. The researchers concluded that programming is

specifically hard for learning for being abstract in nature [26,202]. The structure and

behavior of programming concepts are hidden under the coding syntax. We teach chil-

dren abstract symbols of numbers with a concreteness fading framework [203], start-

237

ing from physical objects to pictorial and then abstract representations. However,

programming learners presented with only the abstract code had many difficulties

comprehending the hidden machine [26, 202]. The concept of an NM emerged when

Du Boulay [26,202] proposed a pedagogical approach: the glass box approach. With

this approach, learners attempt to understand how each command changes the states

of the parts of a computer within a relevant abstraction level. Du Boulay [26, 202]

later termed this relevant pedagogical abstraction of a computer- a notional machine.

The term was buried in the literature for four decades until it became prominent

in the mid-2000’s [2]. At first, Robins, Rountree, and Rountree’s [204] publication

reintroduced NM to the computing education research community. Most specifically,

Sorva’s [34] work on the notional machine and introductory programming attracted

many researchers to contemplate the implications of the notional machine.

Definition

Though the term NM got lots of attention in recent (2016-2019) works, researchers

began to adopt, refine, and in some cases re-develop [2]. The ITiCSE working group [2]

found that papers that used the term NM only under 50% of them defined it accu-

rately. Therefore, the term was circulating in the research community in a confound-

ing manner. To remove this ambiguity, a group of researchers gathered in the Dagstuhl

seminar 19281, Notional Machines and Programming Language Semantics in Educa-

tion, from 7th-12th July 2019 [205]. From there, an ITiCSE working group [2] was

formed to capture and characterize the notional machine.

Du Boulay [202] initially defined an NM as an idealized yet simplified conceptual

model of a machine one is trying to control. The properties of the NM are not the

actual machine (hardware) but the programming language by which a human is trying

to instruct the machine. According to Du Boulay [202], the purpose of an NM is to

make the machine’s parts and processes in action visible, simple, and relevant. Later,

Sorva [34] elaborated,

238

“A notional machine encompasses capabilities and behaviors of hardware

and software that are abstract but sufficiently detailed, for a certain con-

text, to explain how programs get executed and what the relationship of

programming language commands is to such executions.” [34, p.8:2]

Recently the ITiCSE working group [2], including Du Boulay, formalized the defi-

nition as, “a notional machine (NM) is a pedagogic device to assist the understanding

of some aspect of programs or programming.” [2, p. 22]

Here, the word notion is implying that it’s a simplified version of the truth [2]. The

complete truth of what happens when a piece of code runs can go from the details of

byte code to the machine code, transistors, and so on. The NM is putting necessary

layers of abstraction to ignore irrelevant complex details to simplify the truth to the

appropriate audience.

Figure B.1: The scope of the notional machine defined by ITiCSE working group [2].

An NM is called a machine because it makes an explicit analogy to a mechanism

consisting of parts that interact to produce a behavior [2], like a switch with clapper,

coils, and wires. A piece of code implicitly interacts with the parts of a computer and

produces behaviors with the parts’ state change. An NM aims to make the implicit

events of interactions explicit. As depicted in Figure B.1, an NM focuses on the

interaction of a programming language with the actual machine.

239

Though these definitions give us a sense of what an NM is, they are not complete.

To make the definition of an NM more concrete, the ITiCSE working group [2] listed

some defining characteristics summarized below with additional synthesis of other

scholarly works on the notional machine.

A notional machine is tied to a programming language.

A notional machine is strongly tied to the semantics of a programming language [26,

34, 202]. Therefore, different kinds of programming languages will have distinct no-

tional machines. For example, a notional machine representing an array in Java

contains references even though an NM of an array in the programming language

C does not have one. Krishnamurthi and Fisler [30], in the Cambridge Handbook,

identified notional machines as a tool to classify programming languages.

A notional machine is a simplified conceptual model.

An NM is a model. It is a model of program execution, but not a detailed one [3].

Using a model to teach science is not new. Bohr’s atom model [206] or Newton’s plan-

etary gravitation model [207] was designed to present complex science in a simplistic

way. These models did not include all the details but included the relevant ones,

which can offer accurate information in a simplistic, comprehensible way. A detailed

model is essential for a designer, but for the one who is learning about a system can

get lost in too much detail. As discussed in the Section ??, a conceptual model is the

most detailed and complete model. As there are layers of abstraction, a notional ma-

chine is considered a simplified conceptual model [2]. Models and conceptual models

articulate parts and states of a system [208] that can answer questions such as: what

happens when you press the brake of a car?

A notional machine is a simplified conceptual model [2], and simple models are

strong [208]. The layer of abstraction determines the simplicity of the conceptual

model. The thicker the layer of abstraction is, the more NM becomes a simpler

conceptual model (see Figure B.2). The thinner the layer of abstraction is, the more

240

Figure B.2: As the layer of abstraction gets thinner, the NM resembles more of the
conceptual model.

NM becomes closer to the complete conceptual model. The teacher or the teaching

agent (e.g., textbooks, program visualization tools) determines the abstraction layer’s

thickness based on their audience. For example, we can explain variables as a chair

to the high school students where only one value can fit in. To CS1 majors, we can

explain a variable as a memory location where a value is stored with its name as an

alias.

A notional machine is a pedagogical tool.

The main aim of a notional machine is to serve as a pedagogical tool [2]. The peda-

gogical decision determines the level of abstraction of the notional machine. However,

the notional machine’s purpose will be served when it is designed with simplicity and

visibility [202]. As stated by Du Boulay,

“A conceptually simple notional machine does not necessarily imply either

a low-level language (such as a simulated assembler) or a weak high-level

language (such as BASIC).” [202, p.239]

An ideal notional machine should have the right amount of detail based on its learners.

The function of an NM is to uncover something about programming that is hidden

from the students [2]. The visibility of an NM is the "glass box" through which

the novice can see the "black boxes" of how programming works [202]. Lack of

visibility creates a risk of implicit assumptions by novices, which can later lead to

241

a misconception. Ben-Ari [46], by gathering evidence from the literature, argues

that students will necessarily construct their own knowledge of the notional machine

when visibility is not ensured. Consequently, Sorva remarked, “intuitive models of

computers are doomed to be nonviable” [34, p. 8:15]. With the right level of detail

and explicit information of how a programming concept works, a teacher can eliminate

implicit assumptions’ risks, thus non-viability.

A notional machine has representations.

A notional machine has a simple and visible representation. This representation

will focus on appropriate detail and ignore irrelevant details. A representation of an

NM can have many forms [2]. For example, by saying to the class a variable is like

a box has a verbal representation. When the same thing is drawn as a diagram to

the class, it has a visual representation. Also, two NMs can complement each other.

For example, an instructor may create a variable table on a whiteboard and show the

variable values in a debugger [2]. More details can also be added to an NM when

transitioning towards more advanced concepts. For example, by adding an arrow

(indicating a reference) to a box of a primitive variable, we can introduce a reference

variable. The ITiCSE working group [2] categorized the NM representations into

three groups: Machine-generated representations, Handmade representations, and

Analogy.

The Interplay of the Notional Machine and Mental Models

The notional machine is an abstracted conceptual model, consistently accurate.

However, novice programmers’ mental models are idiosyncratic, incomplete, and of-

ten inaccurate [34]. A novice programmer does not form the mental model of the

actual machine; rather they form the mental model of the notional machine pre-

sented with [2]. When the notional machine is completely transferred to a mental

model, the mental model becomes accurate and consistent. The portions of the men-

tal model not formed by a notional machine, rather formed intuitively, create the

242

Figure B.3: Interaction between a notional machine, mental model, and the program-
ming behavior presented in [3].

opportunities of misconceptions [3] (see Figure B.3). To be more precise, a notional

machine is not a mental representation or ‘notion’ of someone. Figure B.4 states

that a notional machine is a kind of conceptual model, simplified, abstracted, and

analogous. Learners form a mental model of the notional machine.

Figure B.4: The interplay between the NM and the mental model from [2].

I believe the cognitive theory of multimedia learning can provide design guidelines

for notional machines. Below, I describe the key aspects of Mayer’s cognitive theory

243

of multimedia learning.

B.2.2 Mayer’s Cognitive Theory of Multimedia Learning

The cognitive theory of multimedia learning (CTML) [209] is about how people

learn from words and pictures based on consistent empirical evidence (e.g., [210–

212]) and established on the principles of cognitive science (e.g., [211,213,214]). The

hypothesis underlying this theory is that:

“Multimedia instructional messages that are designed in light of how the human

mind works are more likely to lead to meaningful learning than those that are not” [4,

p.32].

The cognitive theory of multimedia learning derived from cognitive science inter-

nalizes three assumptions, utilizes three memory stores, and describes learning as five

processes.

The Three Assumptions of the CTML

Most of the time, multimedia messages are designed based on the designers’ concep-

tion of how the human mind works. For instance, consider an educational multimedia

message of teaching alphabet to a child- letters flashing with overflowing numbers of

colors. This video reflects that the designer knows that humans possess a single

channel, unlimited capacity, and a passive processing system. However, researchers

on how the human mind works believe in different assumptions [211,213,214]. These

assumptions are also the basis of the cognitive theory of multimedia learning. The

assumptions follow:

Dual-Channel Assumption

The dual-channel assumption has a long history in cognitive psychology and is

most closely related to Paivio’s [215] dual-coding theory. This assumption refers to

the fact that humans process words and images separately with two distinct channels.

Based on this assumption, the cognitive theory of multimedia learning proposes that

244

the human information processing system contains an auditory/verbal channel and

a visual/pictorial channel, which is most consistent with Baddeley’s [216, 217] view.

Therefore, learners process the presented information with two sensory memories:

1) eyes (e.g., for pictures, video, animation, or printed words) and 2) ears (e.g., for

spoken words or background sound). Although this assumption believes in two sep-

arate sensory channels, Mayer [4] believed learners might also perform cross-channel

representations. Paivio’s [215] dual coding theory introduced the cross-channel rep-

resentations of the same stimulus. Cross-channel representation refers to the fact

that humans can absorb information in one form and can transform the information

modality in their minds. For example, though you hear the narration describing that

“when the lever is pulled, the weight instantly falls,” you are also creating a mental

visual image of someone pulling the lever and the weight falling off. Conversely, an

experienced reader presented with a printed text may initially process the information

with the visual channel. However, after processing, the reader may mentally convert

the text into a narrative (i.e., sound).

Limited Capacity Assumption

The second assumption is that humans cannot process unlimited information;

rather, humans process information in portions with a limited capacity. For example,

when you read this text, only some portions of this document are in your working

memory, not the entire text you read. Similarly, when a learner is presented with a

long narration, they would only remember some portions of the narration, not the

verbatim recording. This assumption is supported by the theory of working memory

by Baddley’s [216,217] and the cognitive load theory by Sweller and Chandler [218].

Active Processing Assumption

The cognitive theory of multimedia learning also believes that learners actively

construct knowledge, not passively [4]. Active learning occurs by selecting relevant

information, organizing selected information, and integrating selected material with

245

existing knowledge [210, 218, 219]. CTML [4] denies the passive learning view that

the human information system is like a tape recorder, adding every single piece of

information as much as possible. By engaging in active learning, learners engage

in cognitive processes while processing a piece of information and constructing a

coherent mental model. Mayer describes a mental model in his theory of multimedia

learning as: “A mental model (or knowledge structure) represents the key parts of

the presented material, and their relations” [4, p.36]. He further explains that a

multimedia presentation explaining some phenomena can help the learner develop the

cause-and-effect system and understand how a change in one part causes a change

in another part. Active processing assumptions advocate two implications [4] for

multimedia design: 1) multimedia material should have a coherent structure, not a

collection of isolated facts, and 2) the material should guide the learner on how to

structure the presented material.

A Cognitive Integrated Model of Text and Picture

CTML [4] proposes a cognitive model of multimedia learning based on the above

three assumptions about the human information processing system. This integrated

model is based on multiple memory systems [220], working memory [216, 221], and

dual coding [215]. CTML describes five cognitive processes in three kinds of memo-

ries: sensory memory/registers, short-term memory/working memory, and long-term

memory. Figure B.5 represents a cognitive model of how humans process an integrated

model of text and pictures. Mayer [4] argues that to achieve meaningful learning, a

learner must engage in five cognitive processes: 1) selecting relevant words from the

text, 2) selecting relevant images from the pictures, 3) organizing selected words into a

verbal model, 4) organizing selected images into a pictorial model, and 5) integrating

the verbal and pictorial presentations and with prior knowledge. Below, I summarize

each of the five processes:

Selecting Relevant Words

246

Words can come from the outside world by spoken words (e.g., computer-generated

narration) or written text. Based on Mayer’s [4] model, depending on the medium,

words can enter the sensory memory through either ear (for narration) or eyes (for

printed text). According to Schnotz [222], people have multiple sensory channels

based on multiple sensory modalities between the outside world and working mem-

ory. For the integrated model of words and pictures [4], only two sensory channels

are considered: visual and auditory. According to Schnotsz [222], the visual channel

transfers information from the eye to the visual working memory. Similarly, the au-

ditory channel transfers information from the ear to the auditive working memory.

Schnotz [222] claims that information is stored for a concise amount of time in visual

(i.e., less than 1 seconds) and auditory registers (i.e., less than 3 seconds). According

to Figure B.5, in selecting relevant words, learners pay attention to a sentence or

speech’s pertinent words. When the selected words are passed as input to the sensory

memory, it generates a sound base’s output (sounds in Figure B.5). This sound base

is a mental representation of the selected words or phrases. When the outside media is

printed text, the words reach the eyes. As discussed in the dual-channel assumption,

a learner can form a cross-channel representation. Thus, while processing the visual

words, a learner can transform them into sounds. In the same vein, Schnotz [222],

relying on the theory of mental models, further explains this step. According to him,

when a learner listens to a text or reads a text, they create a text-surface represen-

tation. For example, when reading a statement like this: “Clouds form when the

invisible water vapor in the air condenses into visible water droplets or ice crystals,”

a learner pays attention to the relevant keywords: cloud, form, vapor, condenses,

droplets. These relevant keywords form the text-surface representation. This text-

surface representation is not meaningful yet; instead, it extracts the read’s relevant

words.

Organizing Selected Words

247

Figure B.5: How human mind processes pictures, printed words, and spoken words
from Mayer’s CTML [4]

.

248

Furthermore, Mayer [4] explains that when a learner has formed the sound base,

they start to organize the selected words to form a knowledge structure. Mayer termed

this structure as a verbal model. Figure B.5 shows that the input here is the word-

sound base; after organization, it transforms into a coherent verbal model. According

to Schnotz [222], the representation of this model is propositional. This representa-

tion does not include verbatim wording; rather, it includes the idea expressed in the

text on a conceptual level, like a cause-and-effect chain. For the previous example

of cloud formation, the propositional representation can be: FORM(clouds) if CON-

DENSE(vapor → ice crystals). This formation of the concept is performed in the

auditory working memory. Baddley [216] reported that auditory and visual working

memory are the two subsystems of working memory along with the central executive

systems. As working memory has limited capacity, these two subsystems can store

limited information for a shorter period.

Selecting Relevant Images

Similar to selecting words, when a learner is presented with the external representa-

tion of pictures (e.g., an animation or an illustration), information enters through the

eyes, and concise, relevant portions of the visual representation get stored in the vi-

sual register [4]. Here, in Figure B.5, the box ‘images’ represents the relevant images.

Similar to the sound base, learners create an image base from the selected images.

The image base is sensory-specific as it is tied to the visual modality. Due to the

limited capacity of human information processing systems, the learner cannot store

all the details of a complex illustration or animation. Hence, a learner can only focus

on the key parts of the pictorial information, helping the learner in sense-making.

As Mayer [4] states, the input of this process here is the frames from the external

multimedia message, and the output is the visual image base (referred to images in

Figure B.5). For further processing, the selected images are transferred to the working

memory by visual channel.

249

Organizing Selected Images

The process of organizing selected images corresponds to the process of organizing

the selected words. After forming the image base, the next step is to organize the

images to form a coherent pictorial model [4]. The pictorial model is a structured

visual representation in the learner’s working memory of the image base. Mayer [4]

calls this step organizing selected images (see Figure B.5). In this step, learners

make connections among segments of pictorial information and try to make sense of

it. Most importantly, learners can only build the simple set of connections that can

enable them to build a cause-and-effect structure. In short, with this step, a learner

can form causal links by synthesizing the pictures. This process happens in the visual

channel of the working memory.

Integrating Word-Based and Image-Based Representations

According to Mayer [4], the process of integrating word-based representations with

an image-based representation is an embodiment of sense-making. When informa-

tion from the dual channels integrates, the two representations transform into one

coherent representation. In this process, the verbal and pictorial models’ elements

and relations are mapped onto the other (see Figure B.5). Here, Mayer [4] takes

the constructivist approach and believes that prior experience is also included in the

integration process. Mayer [4] termed this process integration as it involves making

connections between the pictorial and verbal model and prior knowledge residing in

long-term memory. As Mayer [4] and Schnotz [222] stated, the integration process

occurs in the working memory. For example, in the previous example above, while

reading the causal chain of cloud formation, a learner links this information with the

illustration that shows arrows and transitions of water in another form. In short,

both the verbal and pictorial mediums complement each other and overcome each

channel’s limitations. This process is also visible in our regular life. For example,

when we see an illustration but do not know the written language, we try to connect

250

the written language and the picture. As an observation, when a child reads a book

filled with illustrations alongside the texts, it can interpret the text’s meaning by

seeing the pictures even if it can not read.

Though the five processes summarize the cognitive activity, the order is not implied

here. One can think of these five processes happening in the human mind sequentially

in the order written above, but this is not the case. As stated by Mayer [4], each of

these five processes is likely to occur multiple times in multiple forms during a learner’s

interaction with the multimedia presentation. Also, it is a segmented process; it does

not occur as a whole [4]. Learners go through these cognitive processes segment by

segment: they may select some relevant words to form the first sentence of narration

and then focus on the images, move back the focus to narration, and then integrate

the information. The process does not necessarily follow an order and, for certain,

does not happen as a whole. The learners do not finish reading all the texts, watch

all of the pictures, and finally integrate. The five processes are simultaneous and

spontaneous cognitive processes.

Integrating words with pictures does not always generate meaningful learning. Un-

like dual-coding theory [215], the theory of multimedia learning offers principles that

consider the negative effects of integrating words and pictures. Inculcating the three

assumptions and five processes, Mayer [4] offers empirically established design prin-

ciples on integrating words and pictures to generate effective, meaningful learning.

Principles of Cognitive Theory of Multimedia Learning

By conducting empirical studies, Mayer laid out twelve principles of multimedia

learning. Below, I summarize the principles. Principle 1: Spatial Contiguity

Principle

An integrated model of text and pictures is more effective for learning when cor-

responding pictures and words are presented near rather than far from each other

on a page or screen [210]. The rationale behind this principle is that if placed to-

251

gether, the learners do not need to use their cognitive resources to search the page

or screen visually. Also, by viewing the corresponding texts and pictures together,

learners are more likely to hold them in working memory simultaneously. With five

experiments of Mayer’s, he demonstrated that if corresponding texts and pictures

are placed together, learners performed better in recall and knowledge transfer for

both book-based [223,224] and computer-based environments [225]. Other researchers

also found the spatial contiguity effect under the name of Sweller’s split-attention ef-

fect [218,226,227].

Principle 2: Temporal Contiguity Principle

As the spatial contiguity effect discusses texts and pictures’ placement in terms

of space, temporal contiguity discusses the same issue for time. According to this

principle, learners learn better when corresponding words and pictures are presented

concurrently rather than successively. It can seem that spatial and temporal con-

tiguity are identical, but they are not. Spatial contiguity offers suggestions for the

layout of materials processed by the eyes (such as a book page with words and illus-

trations). In contrast, temporal contiguity is important for the layout of the materials

processed by the eyes and ears (e.g., an animation with narration). Mayer [228, 229]

proved that simultaneous presentation is better for retention and transfer tests than

successive presentation when the successive presentation is not small. Mayer based his

work on Bagget, and her colleagues [230–232] previous works on temporal contiguity.

They found that when students viewed films with voice overlay, they performed less in

recall tasks. Sweller [233] included temporal contiguity as a part of the split-attention

effect.

Principle 3: Coherence Principle

This principle deals with learning outcomes when extraneous materials are in-

cluded. This coherence principle [210] offers three implications:

1. Students’ learning outcomes struggle when interesting yet irrelevant words and

252

pictures are added.

2. Students’ learning outcomes struggle when interesting yet extraneous sounds

and music are added to multimedia presentations.

3. Students’ learning outcomes improve when unnecessary words are removed from

a multimedia presentation.

This principle’s rationale is that extraneous materials compete for cognitive re-

sources in working memory and divert attention from important, relevant information.

In eleven of eleven experiments [234–236], learners who received multimedia presen-

tations without extraneous material performed significantly better on retention and

transfer tests.

Principle 4: Modality Principle

Does modality matter if you present words and pictures? Yes. Modality principle

suggests that learners learn better when words in multimedia are presented as spoken

words rather than printed text [210]. In four out of four experiments, Mayer [225,229]

found that participants who received animation with narration performed better than

those who received animation with printed text in the recall and transfer test. These

findings have corroborated with a similar finding in previous research [233].

Principle 5: Redundancy Principle

If narration and animation are better, then narration, animation, and text can be

the best. But this is not the case. Humans have a limited capacity in working memory.

Therefore, adding information in more than two forms (e.g., narration, animation,

printed text) will overload working memory channels [210]. Experiments surrounding

the redundancy principle proved that learners who received animation with narration

performed better than those who received animation, narration, and text [236]. In

the same vein, a previous work led by Kalyuga, Chandler and Sweller [237] gave each

group of participants diagrams with text, diagrams with narration, and diagrams

253

with both narration and text. The results showed the redundancy effect. Participants

who learned from diagrams accompanied by narration learned better than those who

learned from diagrams accompanied by narration and text.

Principle 6: Individual Difference Principle

Even if all of the multimedia design principles are retained in a multimedia message,

it can not be effective for all learners. As constructivism [11] (see section ??) says,

learners’ prior knowledge acts as a learning catalyst. Multimedia learning principles

also account for individual differences [210]. The individual difference principle states

that multimedia design effects have a difference among low-knowledge, low-spatial

learners and high-knowledge, high-spatial learners. With this principle, Mayer [210]

specifies for whom the multimedia design effects will be effective. When considering

knowledge as the main effect, in two experiments [5], multimedia design implemen-

tation caused a higher impact on retention when learners’ knowledge was low rather

than high. Similar results were found in four experiments led by Mayer to measure

learners’ transfer skills [160]. Higher transfer skill was found in learners who also had

high spatial ability. Spatial ability is the human mind’s ability to mentally generate,

maintain, and manipulate visual images [238].

Principle 7: Segmenting Principle

People learn more when multimedia is segmented and broken down into chunks.

Mayer [239,240] suggested that to manage complexities, a multimedia message should

be segmented. The procedure to do this is to tally the number of elements in a concept

that the multimedia message is presenting and their interactions. Then, divide the

material into that many segments. Without segmenting, a learner who is unfamiliar

with the topic gets overwhelmed with too much information, which surpasses the

learner’s cognitive capacity. This principle was empirically validated by conducting

ten experimental comparisons by Mayer [241–243] and other researchers [244]. The

results proved that students who learned with segmented lessons [241–243, 245–249]

254

that involving computer-based multimedia lessons on lightning, electric motors, pulley

systems, how the the human eye works, astronomy, and history performed better on

comprehension or transfer tests than students who learned with continuous lessons

covering the identical material.

Principle 8: Signaling Principle

Signaling, often known as visual cues, helps a learner focus on a particular portion

by highlighting text and pictures with coloring, spotlights, or arrows. Mayer’s [240]

signaling principle states: “people learn better from a computer-based multimedia

lesson when essential parts of text or graphics are highlighted" [240, p. 408]. Re-

sults from 18 experiments led by Mayer [242,242,250,251] and other researchers [245,

252–260] on various topics involving computer-based lessons on airplanes, visual per-

ception, geography, mechanical systems, braking systems, cardiovascular system, jet

engine, neural networks supported this principle. Like other principles, this principle

holds by instilling individual difference principle.

Principle 9: Pre-Training Principle

When learners are taught unfamiliar concepts, complex terms, and their cause-

effect relationships can at first overwhelm them. If the learners are pre-trained about

the key terms, then they can better comprehend the cause-effect chains [240]. For

example, if a learner is learning about how the brake system of a car works, With lots

of new information, if the learner keeps listening or reading the terms such as pedal,

master cylinder, and piston, it will be hard for him/her to understand the working

mechanism properly. By knowing the details of each component’s parts (e.g., pedal,

master cylinder) before learning the mechanism, the learner will contextualize more

and integrate the working mechanism. Three separate studies led by Mayer [261,262]

indicated that participants who were pre-trained before the narrated animation of a

braking system performed better than those who did not receive any pre-training. In

the other two experiments led by Chandler and Sweller [263], electrical engineering

255

trainees showed how each electrical component worked before the lesson on safety tests

for electrical appliances performed better than those who learned each component

alongside the lesson. Other researchers also found similar results [264–268].

Principle 10: Personalization Principle

Does the communication tone of information delivery matter? Yes. Learners are

more engaged and connect with E-learning material when the communication mode

is informal, like a conversation [240]. Previous research [269] on discourse processing

revealed that people engage more and try harder to understand the material when

conversing. By following this finding, Mayer [228, 270] presented two multimedia

materials to the learners on botany. One delivers information in a formal tone (i.e.,

passive voice, no pronouns). The other offers the same information in an informal

way (i.e., like a conversation that uses pronouns such as you I). In five out of five

experiments led by Mayer [228, 270–273], participants from the informal material

performed better and even made more solutions to a transfer test than the formal

material group. Mayer [228, 274] later ran two more experiments on the topic of

lightning formation. Learners who received the personalized narrated animation of

the lightning lesson performed substantially better on a transfer test than those who

received formal narrated animation in two experimental setups.

Principle 11: Voice Principle

Along with the tone of communication, the voice also affects multimedia learning.

When multimedia is presented with visuals and sounds, people learn more when the

sound is a human voice, not a machine voice [240, 275, 276]. The rationale behind

this is the same as the personalization principle. Learners feel more engaged and

try to have a deeper understanding when they feel they are communicating with a

human. Mayer [277] found that participants learned more from a narrated animation

by a human about how lightning forms than from a narrated animation of a machine.

Mayer’s hypothesis was based on Reeves and Nass’s [278] work. Reeves and Nass [278]

256

proved that under the right conditions, people treat computers like humans. Mayer

concluded that more research is needed to comment on narrators’ gender and ethnicity

in learning [240].

Principle 12: Embodiment Principle

People learn better when an instructor draws while explaining than explaining with

an already drawn corresponding diagram [240]. This principle suggests the effect of

embodiment in learning. Agents who draw or explain concepts with a gesture, facial

expression, and eye gaze are considered high embodied agents [240]. Learners can

socially and mentally connect more with a high embodied on-screen agent rather than

a low-embodied agent who stands motionless [240]. Mayer [279] asked his participants

to watch two types of video lectures on the Doppler effect. In one video, the instructor

explained the Doppler effect by standing beside a corresponding diagram implying

a low embodied agent. The same instructor was describing the same concept while

drawing the corresponding diagram, implying a high embodied agent. Mayer [276,279]

and other researchers [280–283] found that in 13 of 14 experimental comparisons on

various topics, participants learned better with a high embodied agent than a low

embodied agent.

In this section, I presented a detailed overview of multimedia learning. The theory

acts as one of the foundational theories as I aim to design the notional machine of

arrays as an integrated model of explanative texts and diagrams. Though my design

is inspired by the theory of integrated words and pictures, I do not utilize all of the

principles in my design. Therefore, some of the design principles are outside the scope

of this dissertation. Chapter 3 describes which design principles of CTML I used in

designing the notional machine of arrays.

B.2.3 Explanative Diagram

In Section B.2.2, I presented the cognitive theory of multimedia learning, which

emphasizes the importance of the integrated model of words of pictures. The princi-

257

ples mentioned there recommended how to design the integrated model of text and

pictures. However, if we now put our focus on the pictures, we also need to know

what makes a good illustration and which features of illustrations make them effective.

Richard E. Mayer and Joan K. Gallini’s [5] work titled “When Is an Illustration Worth

Ten Thousand Words?” aims to answer these questions. This empirical research aims

to investigate the educationally relevant issues of how diagrams can be designed and

used to promote the acquisition of runnable mental models. Their research question

included: “When is an illustration most likely to be effective in promoting scientific

understanding?” [5, p.716]. Understanding the integrated model of words and pic-

tures of a system means building a mental model from the words and pictures. From

the theories of mental model [32, 55–58], Mayer et al. [5] determined two features of

a diagram, if retained, can help learners build a runnable mental model: 1) system

topology and 2) component behavior.

Figure B.6: From left to right: the system topology of a car’s brake system and a
bicycle pump from [5].

System topology refers to the portrayal of a system’s major components or parts,

in short, the internal structure of the system [5]. For example, Figure B.6 shows (left)

258

Figure B.7: Component behavior of a car’s brake system from [5].

Figure B.8: Component behavior of a bicycle pump from [5]

the system topology of the brake system. Here each major component consisting of a

tube, wheel cylinder, smaller piston, brake drum, and brake shoe are illustrated and

outlined. Similarly, Figure B.6 (right) shows the system topology of a bicycle pump.

Component behavior refers to the portrayal of each major state that each compo-

nent has [5]. It also shows how a state change in one component relates to the state

changes in other components. Moreover, component behavior portrays the “before”

and “after” states of each component. As depicted in Figure B.7 and Figure B.8, the

component behavior illustrates parts and steps. Figure B.8 represents the before and

after states of a bicycle pump when pulled.

259

B.3 Effectiveness of Explanative Diagrams in Learning

By conducting two experiments, Mayer [5] proposed a framework (see Figure B.9)

for designing a successful instructional method with integrated texts and pictures.

The framework includes the type of learner, the type of text, the type of illustration,

and the type of performance evaluation. This framework also serves as four condi-

tions that must be met for illustrations to promote understanding of a scientific text

effectively.

As discussed in Section B.2.2 multimedia will only be helpful to less knowledgeable

learners or novices. Knowledgeable learners already hold a mental model; therefore,

offering explanative diagrams seems redundant to them. An integrated model of

text and explanative diagrams will only retain its effectiveness when the material is

presented to a novice learner [5].

The second condition is that explanative texts must accompany the diagram to

promote meaningful learning [5]. Expository text can be descriptive, filled with facts,

and also explanative whose purpose is to explain. Specifically, explanative texts

aim to explain the cause-and-effect systems allowing qualitative reasoning [284]. In

one experiment, Mayer [223] found that the group who received diagrams recalled

almost twice as much of the explanative information relative to the non-explanative

information

Diagrams in a text can range from irrelevant photography to systematic illustra-

tions. To be effective in developing mental models, diagrams need to be explana-

tory [5]. Explanative diagram aims to serve the interpretation function [5]. It pro-

motes a reader’s comprehension of how a system works. With system topology and

component behavior as features, explanative diagrams illustrate the cause-and-effect

relationships of the explanative text [5]. Mayer et al. [5] found that explanative dia-

grams improved recall and problem-solving skills than non-explanative diagrams with

three experiments. Moreover, their findings suggest that an explanative diagram im-

260

Figure B.9: Four conditions of effective diagrams by Mayer et al. [5].

261

proves creative problem-solving but not verbatim retention [5]. This improvement

was more noticeable in the low knowledge learners than the high knowledge learners.

The effectiveness of diagrams in learning can be measured with sensitive tests-

a performance test that measures meaningful learning. Sensitive tests aim to mea-

sure learners’ understanding and qualitative reasoning about a system [5]. Recall of

non-explanative text and verbatim retention measure rote learning, not meaningful

learning [5]. Thus, they do not serve as appropriate tests to measure the effective-

ness of the explanative diagram. Mayer et al. [5], in their three experiments, used

explanative recall and problem-solving tests to measure their diagrams’ effectiveness

in promoting meaningful learning.

By retaining these four conditions, diagrams in an expository text can entail the

power to be worth ten thousand words [5]. Here, diagrams aim to scaffold the learning

experience by dissecting a system and placing explicit attention to certain features.

Mayer et al. [5] conducted three separate experiments to validate their four condi-

tions. Ninety-six psychology students from the University of Santa Barbara partic-

ipated in the first experiment. The participants were equally divided into the four

treatment groups: 1) the no diagram group was given a booklet about the braking

system with only texts; 2) the parts diagram group’s booklet contained a diagram

with major parts of the braking system; 3) the steps diagram group depicted major

state changes of a braking system, and 4) the parts and steps contained explanative

diagrams portraying parts and steps. Mayer et al. [5] equally divided the low and

high prior knowledge learners into these four groups. The booklet contained informa-

tion on how different brake systems work, such as mechanical brakes, hydraulic disk

brakes, hydraulic drum brakes, etc. The booklet contained explanative text describ-

ing each part’s state changes and factual information like the historical description

or manufacture information. Mayer et al. [5] used three post-tests to gather evidence

for their hypothesis. The first is the recall test, which asks the participants to write

262

anything about the booklet they can recall. The second test is to measure partici-

pants’ problem-solving skills. This test asks five open-ended questions such as “why

do brakes get hot?” and “what could have gone wrong when your brakes do not

work?”. The last test measures verbatim retention, which asks to place a checkmark

next to the sentence that is a word-for-word match to a sentence in the passage.

In the first experiment [5], low prior learners of the explanative diagram group

significantly (p < .001) outperformed in recalling explanative information but not non-

explanative information. Similar results (p < .001) were found while analyzing the

problem-solving skill. Low prior-knowledge students who read explanative text with

explanative diagrams generated more creative answers to the second post-test than

the other groups [5]. However, the explanative diagram group could not outperform

others in terms of verbatim retention. No difference was found between the four

treatment groups in any post-tests for high prior knowledge learners.

Later, in 2002, Gellevij et al. [285] incorporated Mayer et al.’s [5] four conditions

into their instructional material and evaluated its effects. Their aim was to com-

pare the multimodal versus the unimodal instruction in a complex learning context.

Gellevij et al. [285] designed two instruction manuals for physics teachers to teach

the use of the SimQuest application. One manual contained only textual instruc-

tions on how to use the software. On the other hand, the other manual additionally

contained screen captures with text. Both the manuals contained explanative text.

The authors [285] also designed the screen captures in terms of Mayer et al.’s [5] sys-

tem topology and component behavior. The screen capture showed the major parts

(system topology) of the application and also state changes (component behavior)

after interacting with the application. The participants were also novices in using

computer applications. The authors also instilled Mayer’s [5] fourth criteria (sensi-

tive test) to measure learning outcomes. They measured participants’ mental model

development by asking recall questions, predicting successive screens, and by asking

263

them to identify errors [285]. The authors also measured participants’ cognitive load

and training time. The results from 44 participants showed a statistically significant

overall effect on the development of mental models [285]. Participants from the visual

manual group scored 14% higher than participants of the textual manual. The train-

ing time of visual manual group participants was also statistically significantly lower

(11% slower) than the textual manual participants. Though the visual manual group

contained both texts and images, there was no significant difference in cognitive load

between the participants of the two groups. The authors [285] concluded that their

study satisfied the four conditions for effective illustrations proposed by Mayer and

Gallani [5] and proved their effectiveness.

Though these studies revealed the potential of explanative diagrams, the role of

explanative diagrams in a lecture has not been studied. Recently, in 2015, Bui and

McDaniel [286] aimed to investigate the potential benefits of explanative diagrams

during a lecture. They also compared the learning outcome of an explanative diagram

with an outlined note-taking. In this study [286], 144 undergraduates were randomly

distributed into three groups: control, outlines, and illustrative diagrams. Partici-

pants were asked to listen to a 12-minute lecture about brakes and pumps; each topic

presented one after the other. The lecture was created from the two different passages

by Mayer and Gallini [5]. The participants were encouraged to take notes while lis-

tening to the lecture. The illustrative diagram group was given explanative diagrams

of brakes and pumps (taken from Mayer and Gallini [5]) while the participants of

the group listened to the audio lecture. The authors provided a skeletal note-taking

outline to the outline group [286]. Lastly, the control group was given blank notepads

to take notes. Afterward, two tests, recall and short-answer tests, were administered

to measure learning outcomes [286]. The short-answer test was adopted from Mayer

and Gallini [5]. The authors also analyzed structure building ability of participants

across the three groups [286]. “Structure building reflects the ability to build coherent

264

mental representations (structure) of information.” [286, p. 131]. It is a standardized

test that asks to answer multiple-choice questions after each reading to assess un-

derstanding [287]. Higher scores on the multiple-choice tests mean a greater ability

to create good mental models of the readings [288, 289]. The results revealed that

the outline and illustration group participants significantly outperformed the control

group in the recall test [286]. However, unlike Mayer et al. [5], there was no difference

found across the outline and illustration group regarding the recall. Importantly, the

authors found that low structure builders performed better with the illustrations than

with the outline in the short answer questions. This finding implies that explanative

illustrations serve as a scaffold to the learners who cannot easily generate mental

models after a reading task. However, for high structure builders, there was no dif-

ference in performance for the short answer questions [286]. The authors concluded

that the explanative diagrams likely engaged the participants in deeper levels of com-

prehension while listening to the lecture [286]. They also concluded that providing

some aids to the students while note-taking (e.g., diagrams, outlines) is better than

no aids [286].

The above studies reflect the qualitative advantage of diagrams in reasoning and

how by retaining the two criteria system topology and component behavior, diagrams

can help students build strong mental models.

B.4 Explanative Diagrams: A Model

In 2017, Paul E. Smaldino [208] wrote a chapter in Computational Social Psychol-

ogy titled “Models are stupid, and we need more of them”. There, he wrote:

“Stupid models are extremely useful. They are useful because humans are bound-

edly rational and because language is imprecise. It is often only by formalizing a

complex system that we can make progress in understanding it” [208, p.311].

Smaldino sheds light on the importance of formal models. He defined formal mod-

els as articulating the parts of a system and the relationships between those parts.

265

Explicit articulation of parts and relationships defines a scientific system and sepa-

rates it from “wishy-washy” irrelevant information [290–292]. Formal models remove

the vagueness of verbal models [208]. Verbal models are “implicit models in which

the assumptions are hidden, their internal consistency is untested, their logical con-

sequences are unknown, and their relation to data is unknown” [293]. Smaldino [208]

describes the danger of verbal models as there are many ways to describe the parts

and relationships of a system. By precisely formalizing the parts and steps, formal

models lay out the assumptions in detail and illuminate core dynamics [293]. From

laying out the assumptions, we can reach conclusions[[293]. Even if the conclusions

are flawed, we can examine how they differ from reality, then refine our models,

ultimately becoming less wrong [294–296]

Formal models also explicitly articulate in which way they are simplifying real-

ity [208]. Models should be stupid because humans are stupid [208]. Here, stupidity

is a feature, not a bug. Our brain can not capture all the details; it always ignores

some information. By ignoring all but the irrelevant information, we are making the

best use of our cognitive capability. Formal models also have layers of abstraction.

The hidden details are the strength of the formal model. According to Smaldino [208],

modelers can sometimes be stupid. Modelers often inarticulately describe parts and

the relationship between them. It depends upon the modeler to clearly maintain the

criteria of formal models.

Explanative diagrams are formal models. Here, I will present the rationale behind

my claim. First, if you look into the definition of the explanative diagram and for-

mal models, they are identical. Formal models delineate a system’s parts and the

relationships between those parts. Here, the parts were defined by the system topol-

ogy criteria, and the component behavior defined the relationships between those

parts. An exaplanative diagram retains these two criteria. Thus, by definition, an

explanative diagram is a formal model.

266

Second, explanative diagrams have abstraction layers. Every single detail of a sys-

tem is not portrayed in explanative diagrams. Explanative diagram’s system topology

only illustrates the major parts, not all the parts. As an example, let’s consider the

explanative diagram of the braking system. Only the major parts and state changes

of the parts are shown here. Several irrelevant information such as the size of the

width of the brake shoe, the depth of the brake tube are not emphasized here.

Third, explanative diagrams make implicit assumptions explicit. With a diagram,

a structure can be represented in a coherent way. Imagine the verbal model of the

braking system. Words are not spatial. They can not fully draw the picture of which

parts are connected with which parts and in what direction. By explicitly portraying

the complex mechanism of a system with diagrams, every major aspect of a system

becomes clear and explicit.

B.5 Explanative Diagram: A Notional Machine

Explanative diagrams can be a representation of a notional machine. Below I

describe in the context of this dissertation, how explanative diagrams can serve the

purpose of a notional machine.

Notional machines have pedagogical intent, as do the explanative diagrams. In

Section B.2.1, we saw that notional machines are designed for pedagogical purposes,

in short, for teaching. The purpose of creating explanative diagrams is also to help

students to learn. The origin of explanative diagrams came from the need to promote

meaningful learning [5]. It specifically deals with improving learners’ mental models.

Therefore, the purpose of explanative diagrams and notional machines are the same.

Notional machines are simplified conceptual models, so as explanative diagrams.

Notional machines are simplified abstractions of a conceptual model. I argue expla-

native diagrams are the same. Mayer, while analyzing the role of models in learning,

wrote: “A conceptual model highlights the major objects and actions in a system as

well as the causal relations among them” [223, p.43]. From this definition, we can see

267

that the explanative diagram defines the same. Here, the explanative diagram is not

the most detailed one but covers the major aspects of a system. From the literature,

we know notional machines are simplified conceptual models created in an educational

context. Thus, I can conclude that explanative diagrams are the representation of a

notional machine.

Notional machines are tied to a concept, so as explanative diagrams. As summa-

rized in Section B.2.1, a notional machine is an idealized abstraction of a programming

concept. The programming language’s semantics governs its representation. Expla-

native diagrams are also tied to a system. They represent the major components and

dynamics of a system. Therefore, explanative diagrams of a programming concept

will represent its structure and states, just like a notional machine.

The above arguments suggest that explanative diagrams can serve as a notional

machine in the context of Computer Science education.

B.6 Explanative Diagram of Arrays (EDA)

Keeping in mind the theories of mental models, multimedia learning, notional ma-

chines, and the theory of effective diagrams, I designed a diagrammatic notional

machine of the programming concept ‘arrays’. Arrays are one of the fundamental

programming concepts and also have an inherent structure. Programmers interact-

ing with the structure produce dynamic states of the array. Arrays are more than

variables and also carry some of the complexities of objects (e.g., reference variable,

memory allocation). I reported many misconceptions in Section ??that a novice can

have in variables, arrays, and objects. In that Section, we saw that arrays could carry

misconceptions of variables and objects. This makes the array a programming con-

cept that can be a hub of many misconceptions carried from primitive variables and

objects. The misconceptions suggest there exist hidden ambiguities among novice

programmers about arrays. In this case, a notional machine portraying the implicit

structure and states of an array can improve novices’ flawed mental models. Here, I

268

propose a diagrammatic representation of the notional machine. I followed the princi-

ples of explanative diagrams to design the diagrams and the principles of multimedia

learning to create an integrated model of text and pictures.

The EDA retains the two criteria of explanative diagrams: system topology and

component behavior.

System Topology: The Structure

Figure B.10: The system topology diagram of an array.

I will first introduce the structure of the array and show each major component

of an array. Figure B.10 is the system topology of an array named items. Here, a

rectangular box (yellow box in Figure B.10) embedded with another rectangle with an

arrow is used to represent the array reference variable. The name is inside the yellow

rectangular box associated with the type. To give the detail that reference variables

store memory addresses, not values, we placed a 5-digit number inside the embedded

rectangle which represents the memory address. Our textbook survey [159] found

that the authors portrayed array reference variables with a rectangle box with an

arrow in it; no indication of a memory address is there. Memory diagrams [196,297],

object diagrams [195] also followed the same approach. In the literature on program-

ming misconceptions (Section 2.3.3), I reported that students think no memory is

allocated after an array is created. Furthermore, the absence of memory addresses

can not explicitly portray that array assignment copied memory addresses, not val-

269

ues. Though in my diagram, I introduced the subtlety of memory, I did not include

further unnecessary details about memory. In my EDA, square boxes are used to por-

tray elements with the mention of indices right beneath them. The system topology

diagram outlines each major part with arrows. In one experiment, Julie Heiser and

Barbara Tversky [298] found that participants who viewed a diagram outlined with

an arrow produced a more functional description of the system than a diagram with-

out an arrow. Moreover, I also listed the major components of the array annotated

in the diagram. By doing this, my diagram followed the CTML’s spatial contiguity

principle (described in Section B.2.2), where corresponding words are placed next to

the corresponding part of the diagram.

Component Behavior: The States

After describing and portraying the array’s structure, I introduce each state change

that an array can have. The state changes were described chronologically according

to the execution order. For example, the state declaration is introduced before in-

stantiation.

Declaration For each state change, I portrayed the before and after state of an

Figure B.11: The explanative diagram illustrating an array’s state after declaration.

270

array. The name of the state is highlighted in the header of the diagram (see Fig-

ure B.11). I also placed the corresponding code adjacent to the diagrams. The

explanative texts on what the code does are also placed next to the diagrams fol-

lowing the spatial contiguity principle (described in Section B.2.2). I incorporated

the signaling principles in the diagrams by highlighting essential information. For

example, in the diagram explaining declaration (see Figure B.11), the word null is

a bold and white rectangular box containing nothing changed to green to show the

change in that particular component. The two diagrams showing the change in the

memory address are crucial. By showing both the blank state and the null state

of the reference variable, I draw students’ attention to the fact that null is not the

same as nothing. Lewis [194] reported being asked by the students how null is both

nothing and something? She claimed it helped students to understand the difference

by describing a null reference as an empty pocket [194]. Later, the transition from

the empty pocket to a box with an X in it. Here, she used X to represent null. The

transition of the white rectangular box also emphasizes the fact that it is an array

reference variable whose value changes. Here, one subtle thing to note is that I showed

two changes of the array reference variable by the execution of one line of code in

this diagram. First, the array reference variable gets created, and then the null is

assigned to it.

Instantiation

The array structure takes full form after instantiation. I addressed the instantiation

process as three steps: 1) allocating the memory for the array, 2) assigning the default

values to the elements, and 3) assigning the reference to the array reference variable.

As Figure B.12 shows, I first showed the creation of the array. The top diagram of

Figure B.12 shows the state of the array after it has just been created. The explanative

text next to the diagram explains how it happened.

The next diagram (bottom one) shows the assignment of default values to each

271

Figure B.12: Explanative diagrams showing the each state change after instantiation.

of the elements. By doing that, I try to draw students’ attention to the fact that

in Java, there are default values when an array is created. As students often think

there are no default values [7] and textbooks portray blank or question mark ‘?’ as

default value [159], I wanted to address this issue explicitly. Here, I also utilized the

spatial contiguity principle, signaling principle, and segmenting principle. The next

diagram (Figure B.13) portrays the assignment of the reference variable returned by

the new operator to the array reference variable. The diagram shows the before and

after state of the reference variable. The top diagram shows the state of the array

reference variable after declaration; the diagram below shows the state of an array

reference variable when it is initialized. If one focuses on the memory address, the

same memory address which was generated by executing the code new double[5]

is assigned to the values array reference variable. If I did not portray the memory

address with numbers and placed only the arrow, this subtle change would not be

explicit. I signaled the change of the array reference variable by making the rectangle

box green.

Assigning Elements Assigning elements is like assigning a value to a variable.

272

Figure B.13: The explanative diagrams showing the before and after state change of
an array after assignment.

Figure B.14: The explanative diagrams of assigning a value to an element.

In this case, I only showed the ‘after’ state of the assignment as the state of other

unassigned elements represents the ‘before’ state (see Figure B.14). By doing this, I

am adhering to the coherence principle (described in Section B.2.2), which ensures ex-

traneous information is excluded. Here, I retained the signaling principle and spatial

contiguity principle.

Array Assignment

The array assignment state describes what happens when an array is assigned to

another array. Here, a crucial aspect is that the values of the reference variables

change, not the values of the elements. To address this issue in detail, I showed the

before state of both the arrays related to the assignment. Figure B.15 shows the

273

Figure B.15: The dynamics of array assignment are portrayed with this explanative
diagram.

before assignment state of the arrays values and itemPrice. When the assignment

code gets executed, the memory address of the values changes. This phenomenon

is highlighted in the diagram by showing that the memory address of values and

itemPrice are the same. As students have the misconception that values move from

right to left during an assignment, I explicitly signaled the accurate change by making

the rectangle box of values green. The fact that both the array reference variables can

be used to access the same array is explicitly indicated by the two arrows pointing

toward the same array.

The disposal of the unreferenced variable is also indicated in the diagram by placing

dotted lines around it. The explanative texts here are also described in order of

execution.

The structure of the array and the four states embody the system topology and

the component behavior. An argument can arise here, such as this can be easily

and intuitively shown with animation or other program visualization tools. Below, I

describe my rationale behind choosing static diagrams vs. other animated graphics.

274

B.7 Why Static Diagrams, not Animation?

Diagrams have an ancient history. The history holds for both spatial and abstract

elements and relations [299]. Research on static diagrams suggests that carefully de-

signed and appropriate diagrams are beneficial in explaining complex systems [299].

Animation containing dynamic graphics often appears attractive and compelling. Be-

cause of its dynamics and convenience to show changes, it might be thought that the

learning expands the learning of static diagrams. However, that is not the case in

every situation. Tversky and Morrison [299] did a comparative literature review on an-

imation and static diagrams. They reviewed the literature on animation used to teach

complex systems, mechanical, biological, physical, operational, or computational. On

these topics, previous research (e.g., [300–302]) does show the effectiveness of ani-

mation over static diagrams. However, the study methods are frowned upon [299].

Tversky et al. [299] reported that with a closer look at these studies, it is evident

that the study methods have put extra elements in the animation, which can result

in superiority. For example, for teaching circulatory systems, the use of animation

was found to be more effective than diagrams [302]. However, in this case, the con-

tent of the animation was superior to the diagrams’. The animation portrayed blood

pathways, whereas the static diagram did not. In these kinds of findings, Tversky

et al. [299] noted: “When examined carefully, then, many of the so-called successful

applications of animation turn out to be a consequence of a superior visualization for

the animated than the static case or of superior study procedures such as interactivity

or prediction that are known to improve learning independent of graphics” [299, p.

254].

Moreover, various studies (e.g., [301, 303–305]) reported no benefits of animation

over static diagrams. As an example, Byrne, Catrambone, and Stasko [306] were

surprised to find out that there was no difference in the effectiveness of animated

graphics and static diagrams in teaching students computer algorithms such as depth-

275

first search and binomial heaps. In some cases, viewing animation slowed down the

learning process [299,307] or even felt difficult to perceive and understand (e.g., [308,

309]. Tversky et al. [299] commented on that by saying animations may be distracting

in converting essential information. Animations presented to novices help extract

perceptually salient information but not the causal information of a system [299,308].

Tversky et al. [299] argued the most likely cause of animations’ failure is the perceptual

and cognitive limitation in the processing of a changing visual situation, lacking the

apprehension principle. On the other hand, multiple diagrams can provide the same

information as animation with an additional advantage. Multiple diagrams allow the

learners to compare, contrast, and make deep inspection [299]. An animation where

frames are fleeting with time can be harder to focus on [299].

The above findings suggest that there are more benefits in incorporating effective

diagrams than including animations. Due to diagrams’ accessibility and ease in use,

diagrams designed by reflecting on how people learn can be a perfect candidate for

promoting meaningful learning.

B.8 The Implications of EDA in Learning

The explanative diagram of arrays is an integrated model of text and pictures. The

diagrams are designed by following principles and criteria, which have been proven

to generate deeper understanding and develop better mental models. The model’s

design principles utilized the principles of cognitive theory of multimedia learning

(CTML). CTML has proven to promote meaningful learning. Meaningful learning

enables learners to recall, predict, and troubleshoot. All three are included in the

purpose of the mental model.

From the mental model theory perspective, Mayer et al. [5] claim explanative dia-

grams help learners achieve runnable mental models. It does that in two ways. First,

explanative diagrams establish the connection between a system’s structure and its

function with the two criteria: system topology and component behavior [37]. There-

276

fore, by viewing EDA, novice programmers can readily connect an array’s structure

with its states. Most importantly, the placement of corresponding code in the dia-

grams explicitly connects the structure with its appropriate behavior. When novices

interact with the structure through the programming language without the diagrams,

the representation becomes abstract, and the outcomes of the interaction become ob-

scure. Representing the internal system of arrays spatially with diagrams, each behav-

ior, and function of the array becomes clearer. By doing this, there is a lesser chance

of novices embedding unwitting assumptions, which can later lead to misconceptions.

Second, explanative diagrams make the structure-function connection more robust by

making implicit assumptions explicit. The robustness of a learner’s mental model is

increased when they can make their implicit assumptions explicit [37]. By portraying

each state changes in relation to the array’s structure, explanative diagrams help the

learners to identify implicit assumptions and remove their ambiguities.

I propose a model of texts and diagrams to teach a programming concept. Mod-

els have many advantages. People often believe models empower us with only pre-

dictability. Nonetheless, models can offer more. Dr. Joshua M. Epstein [293] known

for agent-based modeling, listed 16 reasons to build models for other than prediction.

According to him, models can explain when we make them explanatory. EDA retains

the feature of being explanatory. Models can illuminate core dynamics. Models form

the conceptual base in learners by capturing the qualitative behaviors of overarching

interest [293]. EDA, serving as a conceptual model, illuminates the core dynamics of

arrays. Models raise new questions [293]. Models illuminate core uncertainties, which

in turn provoke curiosity [293]. When Lewis [194] with her physical memory model

demonstrated empty pockets as nothing and a cross (X) as null, students were more

inquisitive to learn the difference between nothing and null. EDA portraying subtle

details of state changes opens the avenue to raise questions in students’ minds.

EDA is a representation of notional machines. Researchers [2,3,30,34] of CS educa-

277

tion agree that we should teach notional machines in classrooms. By explicitly teach-

ing the notional machine, we prevent students from building knowledge intuitively.

However, notional machines can be effective if they are designed carefully [30]. EDA

is a representation of notional machines that follow the guidelines of cognitive science

and mental models. The evaluation of EDA with empirical studies will ensure that

the theories behind its design can achieve pedagogical goals or not.

278

APPENDIX C: MARKING SHEET FOR CONTRADICTORY ASSERTIONS

The sets of assertions in each cell contain contradiction. If any two assertions

are found among each sets of assertions for a component, the mental model of that

component is marked inconsistent. The assertions among different cells may not be

contradictory. For example, MI4: Array index starts with 1 and MI5: Array index

ends with n (index of last element) are not contradictory. MI4 is about the start

index of an array and MI5 is about the end index of the array. Thus, they are placed

in different cells (see Figure C.2).

Table C.1: Contradictory Assertions for name. Assertions belonging to the same cell
are contradictory.

Sets of Contradictory Assertions
MN1: Array reference variable is the name of the array.
MN2: Array type is the name of the array.
MN3: Keyword new is the name of the array.
MN4: Whatever comes after equal sign in an initialization is the name of the array.
MN5: First element in the array is the name of the array.

Table C.2: Contradictory Assertions for index. Assertions belonging to the same cell
are contradictory.

Sets of Contradictory Assertions
MI1.1: Array index starts with 0.
MI2: Index of an array can be of any type, not just integers.
MI3: There is no indexing into the array.
MI4: Array index starts with 1.
MI6: Array index does not map to its corresponding location in the array.
MI7: Students think the index is the element.
MI1.2: Array index ends with n-1 (index of last element).
MI2: Index of an array can be of any type, not just integers.
MI3: There is no indexing into the array.
MI5: Array index ends with n (index of the last element).
MI6: Array index does not map to its corresponding location in the array.
MI7: Students think the index is the element.

279

Table C.3: Contradictory Assertions for type. Assertions belonging to the same cell
are contradictory.

Sets of Contradictory Assertions
MT1: Name appearing before the array name is the type of the array.
MT2: Name of the array is the type of the array
MT3: Keyword new is the type of the array.

Table C.4: Contradictory Assertions for element. Assertions belonging to the same
cell are contradictory.

Sets of Contradictory Assertions
ME1.1: The array contains n number of elements.
ME2: The array contains size+1 elements.
ME3: The array contains size-1 elements.
ME4: After instantiation, the array doesn’t have space to store any elements (size 0).
ME1.2: Elements stored in the array can be only of the declared type.
ME5: Element values and array names are related (e.g., books and "Harry Potter").
ME6: Keyword ‘new‘ is an element in the array.
ME7: Type of values stored do not match type of array.

Table C.5: Contradictory Assertions for declaration. Assertions belonging to the same
cell are contradictory.

Sets of Contradictory Assertions
MD1.1: After declaration, the default value of array reference variable is set to null.
MD2: There is no default value for the elements of the array (blank/no value).
MD3: The default value for the array reference is the default value for type (e.g., int is 0, boolean is false).
MD4: The default value for the array reference is stored as ’?’.
MD1.3: After declaration, no memory is allocated for the array.
MD5: After declaration, memory is allocated for the elements.
MD6: After declaration, the number of elements that can be stored is unlimited.
MD7: After declaration, there is a default size for an array.

Table C.6: Contradictory Assertions for instantiation. Assertions belonging to the
same cell are contradictory.

Sets of Contradictory Assertions
MIn1.1: After instantiation, memory is allocated for the array.
MIn4: After instantiation, no memory is allocated.
MIn1.2: After instantiation, the appropriate default value is assigned to the elements.
MIn2: After instantiation, ‘?’ is stored as a default value.
MIn3: After instantiation, there is no default value (blank) stored for the elements.

280

Table C.7: Contradictory Assertions for assigning elements. Assertions belonging to
the same cell are contradictory.

Sets of Contradictory Assertions
MAE1.1: Assignment copies the values from right to left.
MAE2: The value of a variable never changes.
MAE3: A variable can hold multiple values at a time / ‘remembers’ old values.
MAE4: Assignment swaps values of the left and right hand side.
MAE5: Primitive assignment is the same as reference assignment.
MAE1.2: The variable on the right-hand side remains the same after assigning.
MAE4: Assignment swaps values of the left and right hand side.

Table C.8: Contradictory Assertions for assignment. Assertions belonging to the
same cell are contradictory.

Sets of Contradictory Assertions
MA1: Array assignment copies reference from right to left, sharing the memory.
MA2: Array assignment appends value at the end of the array.
MA3: Array assignment copies the values.
MA4: Array assignment transfers (cuts) values.
MA5: Array assignment copies the reference but does not share memory.

281

APPENDIX D: ITEM RESPONSE THEORY ANALYSIS

This appendix contains the item characteristic curves (ICC) for each item included

in the Mental Model Test, as discussed in Chapter 9.

Figure D.1: Item Characteristic Curve for the item N1 included in the array’s parts
component- name.

282

Figure D.2: Item Characteristic Curve for the item N2 included in the array’s parts
component- name.

Figure D.3: Item Characteristic Curve for the item I1 included in the array’s parts
component- index.

283

Figure D.4: Item Characteristic Curve for the item I2 included in the array’s parts
component- index.

Figure D.5: Item Characteristic Curve for the item I3 included in the array’s parts
component- index.

284

Figure D.6: Item Characteristic Curve for the item I4 included in the array’s parts
component- index.

Figure D.7: Item Characteristic Curve for the item I5 included in the array’s parts
component- index.

285

Figure D.8: Item Characteristic Curve for the item T1 included in the array’s parts
component- type.

Figure D.9: Item Characteristic Curve for the item T2 included in the array’s parts
component- type.

286

Figure D.10: Item Characteristic Curve for the item E1 included in the array’s parts
component- elements.

Figure D.11: Item Characteristic Curve for the item E2 included in the array’s parts
component- elements.

287

Figure D.12: Item Characteristic Curve for the item E3 included in the array’s parts
component- elements.

Figure D.13: Item Characteristic Curve for the item E4 included in the array’s parts
component- elements.

288

Figure D.14: Item Characteristic Curve for the item E5 included in the array’s parts
component- elements.

Figure D.15: Item Characteristic Curve for the item D1 included in the array’s state
changes component- declaration.

289

Figure D.16: Item Characteristic Curve for the item D2 included in the array’s state
changes component- declaration.

Figure D.17: Item Characteristic Curve for the item In1 included in the array’s state
changes component- instantiation.

290

Figure D.18: Item Characteristic Curve for the item In2 included in the array’s state
changes component- instantiation.

Figure D.19: Item Characteristic Curve for the item In3 included in the array’s state
changes component- instantiation.

291

Figure D.20: Item Characteristic Curve for the item In4 included in the array’s state
changes component- instantiation.

Figure D.21: Item Characteristic Curve for the item AE1 included in the array’s state
changes component- assigning elements.

292

Figure D.22: Item Characteristic Curve for the item AE2 included in the array’s state
changes component- assigning elements.

Figure D.23: Item Characteristic Curve for the item AE3 included in the array’s state
changes component- assigning elements.

293

Figure D.24: Item Characteristic Curve for the item AE4 included in the array’s state
changes component- assigning elements.

Figure D.25: Item Characteristic Curve for the item AE5 included in the array’s state
changes component- assigning elements.

294

Figure D.26: Item Characteristic Curve for the item AE6 included in the array’s state
changes component- assigning elements.

Figure D.27: Item Characteristic Curve for the item A1 included in the array’s state
changes component- assignment.

295

Figure D.28: Item Characteristic Curve for the item A2 included in the array’s state
changes component- assignment.

Figure D.29: Item Characteristic Curve for the item A3 included in the array’s state
changes component- assignment.

296

Figure D.30: Item Characteristic Curve for the item A4 included in the array’s state
changes component- assignment.

Figure D.31: Item Characteristic Curve for the item A5 included in the array’s state
changes component- assignment.

297

Figure D.32: Item Characteristic Curve for the item A6 included in the array’s state
changes component- assignment.

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	LITERATURE REVIEW
	TEXTBOOK REPRESENTATION OF ARRAY'S PARTS AND STATE CHANGES
	Variables
	Arrays
	Objects
	THE MENTAL MODEL TEST: AN INSTRUMENT TO ELICIT MENTAL MODELS
	INCOMING NOVICE PROGRAMMERS' MENTAL MODELS
	Part: Name
	Part: Index
	Part: Type
	Part: Element
	State change: Declaration
	State change: Instantiation
	State change: Assigning Elements
	State change: Array Assignment
	NOVICE PROGRAMMERS' MENTAL MODELS AFTER INSTRUCTION
	Part: Name
	Part: Index
	Part: Type
	Part: Element
	State change: Declaration
	State change: Instantiation
	State change: Assigning Elements
	State change: Array Assignment
	NOVICE PROGRAMMERS' MENTAL MODEL SHIFTS FROM PRE- TO POST-INSTRUCTION
	MISCONCEPTIONS IN NOVICE PROGRAMMERS' MENTAL MODELS
	EXPLORING VALIDITY AND RELIABILITY OF THE MENTAL MODEL TEST
	Correlation between MMT-A generated scores and Exam 3 score
	Correlation between MMT-A generated scores and total CS1 score
	Correlation between MMT-A generated scores and Exam 3 score
	Correlation between MMT-A generated scores and total CS1 score
	Item Difficulty
	Item Discrimination
	Item Analysis
	EXPLORING MENTAL MODELS WITH THINK-ALOUD
	Declaration: Q4
	Declaration: Q5
	Instantiation: Q6
	Instantiation: Q7
	Assignment: Q9
	Assignment: Q10, Q11
	DISCUSSION AND CONCLUSION
	REFERENCES
	THE MENTAL MODEL TEST OF ARRAYS (MMT-A)
	EXPLANATIVE DIAGRAMS OF ARRAYS: A MODEL AND A NOTIONAL MACHINE
	Definition
	The Interplay of the Notional Machine and Mental Models
	The Three Assumptions of the CTML
	A Cognitive Integrated Model of Text and Picture
	Principles of Cognitive Theory of Multimedia Learning
	MARKING SHEET FOR CONTRADICTORY ASSERTIONS
	ITEM RESPONSE THEORY ANALYSIS

