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ABSTRACT 

 

SHWETA PRASAD.  Exploring the Impact of Pandemic Scenarios on Healthcare Workforce 

Availability: An Agent-Based Modeling Approach.  

(Under the direction of DR. VISHNUNARAYAN GIRISHAN PRABHU) 

 

Protecting healthcare workers (HCWs) during a pandemic such as the one brought on by the severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to provide timely medical care 

for patients. Although prior studies have investigated HCW unavailability during the pandemic 

and have developed policies such as double masking, rotating shift schedules, etc., none of the 

studies have modeled critical parameters such as varying patient census, vaccination rates, 

transmission rates, and multiple hospital locations. This research models a high-risk HCW group 

of perioperative staff, which includes anesthesiologists, nurse anesthetists, and nurses, to 

investigate the impact of segregating and rotating HCW staffing shifts in a large health system 

with multiple locations to address staff unavailability during the COVID-19 pandemic and prepare 

for potential future pandemics. Using the data from one of the largest health systems in South 

Carolina, we developed an agent-based simulation model with susceptible, exposed, infected, and 

recovery compartmental model to simulate various pandemic scenarios. Over 24 scenarios with 

different combinations of patient census, patient transmission rates, and vaccination rates were 

simulated while accounting for variables like geographic segregation, interpersonal contact limits, 

patient census, transmission rates, provider vaccination status, hospital capacity, incubation time, 

quarantine period, and patient-provider interactions to identify that policies that protect HCWs 

from getting infected.  

Simulated findings indicate that restrictive policies and their rotation version of policies 

significantly (p-value < 0.01) reduced the peak weekly unavailability of HCWs by as much as 25% 
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when vaccination rates were lower (<75%). Moreover, these policies significantly (p-value < 0.01) 

reduced the percentage of HCWs getting infected over the simulation period by as much as 60% 

when vaccination rates were lower (<75%). However, the benefits of these policies diminished 

and were statistically insignificant when the vaccination rates increased to 90%. Observations from 

this research indicate the importance of modeling different parameters of a pandemic, such as 

vaccination rates, transmission rates, patient census, and other operational information, to develop 

targeted policies that protect HCWs during different pandemic stages. While the findings are based 

on the perioperative staff population, they can be implemented or considered while studying other 

high-risk groups. The simulation model can also be adjusted to simulate different hospital systems 

and future pandemics by manipulating the respective parameters to support future pandemic 

preparedness.  
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CHAPTER 1: INTRODUCTION 

The impact of COVID-19 on global populations has been profound and far-reaching. The 

pandemic has left an indelible mark on societies worldwide, from the loss of lives to widespread 

economic disruption. The economic fallout has resulted in job losses, business closures, and 

financial insecurity for countless individuals and families. Additionally, lockdowns, travel 

restrictions, and social distancing measures have altered daily routines and social interactions, 

contributing to widespread mental health challenges. Close to 14.9 million excess deaths were 

associated with the COVID-19 pandemic in 2020 and 2021, reinforcing the magnitude of the crisis 

(n.d.). As of the 20th of April 2022, the global confirmed cases of COVID-19 surged to more than 

500 million patients (Moosavi et al., 2022). 

While the impact of COVID-19 was profound across various industries, healthcare systems have 

been strained to their limits. Health systems faced several challenges, including shortages of beds 

and medical supplies and the unavailability of healthcare workers (HCWs), with immense burdens 

on their capacity to provide care. The prioritization of resources (personal protective equipment, 

masks, etc.) allocated to patients and the lack of PPEs due to supply chain challenges inflated the 

shortage of PPEs for frontline healthcare personnel. To worsen the scenario, the lack of vaccines 

during the initial outbreak and the high infectivity of the virus significantly impacted the HCW's 

availability to provide care. Elective surgeries were postponed/canceled, and these resources were 

allocated to the frontline. Furthermore, physicians from all specialties, retired physicians, and 

medical students were encouraged to join the healthcare industry due to the shortage of healthcare 

personnel. 
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While it is challenging to measure the actual risk associated with increased viral inocula, higher 

viral loads in patients who are very sick convey at least a hypothetical risk to medical professionals 

(Greenland et al. 2020). Studies on the transmission of SARS-CoV-2 from patients to healthcare 

personnel have been conducted; in these cases, infection management is crucial for safeguarding 

healthcare personnel and halting the spread of the virus (D. Wang et al., 2020). In addition to 

standard precautions, the World Health Organization guidelines advise healthcare providers to use 

droplet and contact precautions when caring for patients who have been confirmed or suspected to 

have SARS-CoV-2 infection.  

Contact with infected surfaces and droplets/aerosol are the two main ways that COVID-19 is 

spread from person to person. If a person is exposed to high aerosol concentrations for an extended 

period of time in a somewhat enclosed space, aerosol propagation may also occur. Airborne 

precautions should also be used when performing any aerosol-generating procedure, such as 

suctioning, bronchoscopy, intubation, or cardiopulmonary resuscitation. (n.d.) Healthcare 

providers who treat patients with coronavirus disease 2019 (COVID-19) are more susceptible to 

catching the infection themselves. Particularly risky are aerosol-generating methods, including 

intubation, bag-mask ventilation, high-flow nasal cannula (HFNC), and non-invasive ventilation 

(NIV) (Tran et al., 2012). Airborne precautions are being used by many healthcare workers as an 

extra safety measure when caring for COVID-19 patients, according to frontline reports and 

additional guidance from groups in Hubei province (Wax & Christian, 2020). 

Studies on the psychological effects of COVID-19 infection, the prevalence of the virus among 

healthcare workers, and the difficulties in providing healthcare have all been covered, but 

relatively few have concentrated on creating policies and plans to safeguard the workforce and 
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lower the number of unavailability of healthcare workers. To support their research on better 

understanding how to mitigate the COVID-19 crisis, the authors have gathered information on a 

variety of strategies, including leadership, education, telemedicine, surge capacity planning, 

mathematical modeling, adjustable staffing algorithms, leadership, and ethical considerations. 

They assess these strategies' efficacy in light of previous pandemic experiences and offer doable 

suggestions for healthcare facilities that encounter staffing shortages in the event of a public health 

emergency. The research emphasizes the significance of putting safety precautions in place for 

healthcare personnel. 

Healthcare personnel are particularly vulnerable to viral transmission from sick patients during 

intubation (odds ratio, 6.6), according to experience from the 2003 SARS pandemic (Tran et al., 

2012). It should be highlighted, though, that a number of the medical professionals who became 

infected with SARS while performing intubations were merely donning standard surgical 

facemasks at the time of the procedure, and there is not much proof connecting intubation to an 

increased risk of virus transmission to medical personnel when appropriate airborne precautions 

are followed (Editorial I Anaesthesia and SARS, n.d.; Peng et al., 2020). Notably, while a number 

of post hoc reports from the 2003 SARS epidemic and newly emerging reports from the current 

epidemic advise using more advanced PPE—like powered air-purifying respirators, double gloves, 

coveralls, foot covers, or hoods—when conducting aerosol-generating procedures like intubation, 

there does not seem to be any proof that these precautions are better than more commonplace 

droplet, contact, and aerosol ones (Peng et al., 2020). 
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Medical workers made up 14% of the first 40,000 confirmed cases of coronavirus in Spain. 30% 

of the workers at the Igualada Hospital in Catalonia were placed in home isolation. Similar 

incidents have happened all around Europe (Coronavirus in Europe: Thousands of Health Workers 

Out of Action - The New York Times, n.d.). As of February 12, 2020, estimates from the Chinese 

Center for Disease Control indicate that over 3,000 healthcare workers had contracted the virus, 

despite significant attempts to stop its spread and reduce human-to-human transmission.1. 

Healthcare professionals are far more likely than the general public to contract COVID-19 (Chen 

et al., 2020). 

Critical care and anesthesiology teams need to be ready for the arrival and ongoing care of patients 

infected with 2019-nCoV because there is a considerable probability that these patients will 

experience respiratory failure, necessitating critical care support. Due to their airway and 

ventilation management, anesthesiologists are perhaps significantly more at risk than medical 

professionals in other subspecialties. In the intensive care unit (ICU), they must tend to severely 

ill patients and provide perioperative care for patients undergoing urgent and emergency surgeries. 

They must also be close to the airway of patients during emergency airway intubation outside the 

operating theater. Although it is currently unknown how many anesthesiologists are affected, a 

handful of them have contracted the virus after performing tracheal intubation for confirmed 

COVID-19 patients. The operating room presents a risk of nosocomial infections to members of 

the perioperative team, including anesthesiologists, due to its hectic nature.  

Understanding the virus's propagation and assessing its effects on healthcare systems were made 

possible in large part by modeling during the COVID-19 pandemic. To estimate crisis management 

strategies and predict transmission dynamics, a variety of modeling techniques were applied, such 
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as Agent-Based Modeling (ABM). Specifically, ABM provided a potent tool to characterize 

individual behaviors and interactions within populations, revealing how these micro-level 

dynamics influenced macroscopic outcomes. Defined rules and behaviors for individual agents 

and tracking emergent patterns over time, agent-based modeling (ABM) enables researchers to 

simulate complex events. It was based on the concept of agents as computer entities with 

independent behavior. Because it can be difficult to depict using typical mathematical models 

alone, this method proved particularly helpful in conveying the complex social dynamics involving 

illness spread and healthcare solutions. Policymakers, medical experts, and researchers could gain 

a deeper understanding of the pandemic's intricacies and develop more efficient mitigation and 

response plans by utilizing ABM. 

During the COVID-19 pandemic, various modeling approaches were vital for understanding the 

virus's propagation and evaluating its effects. Frontline healthcare personnel, such as doctors, 

nurses, and support staff, encountered hitherto unheard-of difficulties in coordinating patient care 

while lowering the risk of contracting the virus during the COVID-19 pandemic. Governments, 

medical facilities, and researchers used advanced methods like Agent-Based Modelling to study 

transmission dynamics as the virus spread worldwide, which helped them assess crisis 

management plans. 

Agent metaphor fits perfectly well to the demands of complex and inherently distributed 

applications, where each agent is a coarse-grained computational system in its own right, as well 

as independently modifiable (Abar & Kinoshita, 2010). The earliest social agent-based model, in 

which people are represented by agents and socially relevant processes are represented by agent 

interactions, is credited to Thomas Schelling. Agent-based modeling (ABM) is a technique that 
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makes it possible to mimic the individual behaviors of a variety of agents, monitor the results and 

behavior of the system over time, and explore system processes down to the level of their 

component parts (Crooks & Heppenstall, 2012). Fundamentally, ABM tools aid academics and 

practitioners in examining the ways in which the qualities, restrictions, and rules at the micro level 

affect a system's macroscopic behavior. As objects, agents are characterized by particular states 

and collections of useful characteristics, traits, or regulations; in other words, they have 

"behaviors" that can, under certain conditions, cause unique actions (Abar et al., 2017). When 

modeling complex phenomena, agent-based models are especially useful since they allow for the 

establishment of agency relationships between numerous agents or active entities with certain 

inherent features, which in turn allows for automated reasoning and problem-solving (Abar et al., 

2017). When object-oriented ideas are applied, ABM is frequently a natural way to describe and 

simulate a system made up of real-world things (Gilbert & Terna, 2000). Among modeling 

methodologies, the agent-based approach is closer to "reality." Social theory, which is difficult to 

explain with mathematical formulas, can be represented and tested by agent-based simulations 

(Axelrod, 1997). By defining basic behavioral and transition rules linked to clearly defined entities, 

the models frequently map more readily to the problem's structure than equation-based models 

(Van Dyke Parunak et al., 1998). 

Agents are capable of learning from their own experiences, acting on predetermined rules (such as 

heuristics), and interacting with the simulated world and other agents as well as themselves to 

inform their judgments. Three levels of communication between agents may arise from their 

interactions with one another: one-to-one, one-to-many, and one-to-place, in which one agent can 

affect other agents present in a specific location (Yousefi et al., 2018). 
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Libraries of predefined methods and functions are frequently used to support toolkits. These 

libraries can be seamlessly integrated into an agent-based model and connected with other software 

libraries, such as geographic information systems (GIS) like OpenMap or GeoTools. A toolkit can 

significantly cut down on the amount of time needed to develop the model, freeing up more time 

for study. Nevertheless, disadvantages include the need for the researcher to devote a significant 

amount of time to learning the programming language and how to create and apply a model in the 

toolkit. It is conceivable that the required feature will not be available after this time investment. 

Apart from toolkits, software for building agent-based models is becoming more and more 

accessible. AgentSheets and NetLogo are two notable examples. Using this software is especially 

helpful for quickly developing prototype or basic models. The main disadvantage of employing 

software is that it may limit researchers to the design framework it supports and make it impossible 

for them to modify or incorporate other tools. 

The fact that agent-based models are frequently highly visual is very beneficial because, in terms 

of ABM, visualization is one of the best ways to convey important model information. Because 

ABM can explore systems with dynamic patient or health worker activity—a limitation of other 

differential equation or event-based simulation tools—its use in mapping health systems, for 

instance, has increased steadily over the past three decades. This makes ABM an essential tool for 

exploratory analysis. 

Numerous fields, including healthcare, epidemiology, economics, and environmental science, 

have adopted agent-based modeling. ABM's capacity to mimic the actions of independent agents 

and depict intricate relationships among them renders it especially advantageous for 

comprehending dynamic systems and forecasting their consequences. 
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Modeling and simulation capabilities in healthcare systems have improved with the integration of 

ABM and machine learning (ML) approaches. With the use of machine learning algorithms, it is 

possible to glean insights from enormous datasets, spot trends and patterns, and create predictive 

models that project possible future events. By creating more precise and reliable models, 

researchers may examine many scenarios under different circumstances and analyze complicated 

healthcare dynamics in a more nuanced manner. 

Our goal is to offer insights into the best staffing strategies for anesthesiology departments through 

a thorough study of simulation results and scenario-based modeling, supported by real-world data 

and knowledgeable advice from healthcare stakeholders. In order to create more robust and 

adaptable healthcare systems in the event of pandemics and public health catastrophes in the future, 

we work to contribute to the development of evidence-based decision-support systems for 

healthcare management. 

In this work, we analyze the effect of staffing rules on the spread of COVID-19 among 

anesthesiology departments by utilizing ABM in conjunction with machine learning approaches. 

As frontline healthcare professionals, anesthesiologists encounter particular difficulties because of 

their intimate contact with patients during operations like airway management and intubation. We 

simulate various staffing strategies and assess their efficacy in limiting workforce disturbance, 

reducing the risk of infection transfer, and reducing the risk of mortality among healthcare 

providers by creating an agent-based simulation model. 

This study is especially pertinent to agent-based modeling (ABM) since it provides a dynamic 

framework. The simulation of the complex interactions and behaviors of individual 

anesthesiologists in a healthcare setting confronting the COVID-19 epidemic is effective. Rather 
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than treating all individuals equally, ABM considers their individual choices and activities. This 

enables researchers to observe how factors such as personnel levels, safety protocols, and patient 

interactions impact the virus's ability to spread within medical facilities.  

In contrast to conventional models, ABM enables the modeling of a wide range of traits, actions, 

and decision-making procedures of independent agents—like anesthesiologists—within a 

complicated system. ABM offers a nuanced understanding of how staffing policies, infection 

control measures, and resource allocation strategies influence the spread of the virus and the 

capacity of healthcare providers to continue providing essential services by taking into account 

variables like contact patterns, patient interactions, and adherence to safety protocols. In order to 

prevent the spread of COVID-19 and maintain the resilience of healthcare systems in the face of 

unprecedented challenges, policymakers and healthcare administrators may make well-informed 

decisions with the help of this granular approach, which makes it easier to explore different 

scenarios and actions. 

An efficient method for transferring management ideas through a mostly visual medium is agent-

based modeling and simulation (Prabhu et al., 2020). Agents may represent organizations, 

individuals within institutions, or entire industry application processes. Agent-based modeling 

allows users to specify how objects and agents interact within their domain of interest. These 

models are then used to create user-generated real-world system models (Girishan Prabhu et al., 

2022; Prabhu et al., 2023).   

Methods, data sources, parameter values, simulation model structure, and scenarios taken into 

consideration are all covered in sections that make up the research. Along with offering insights 

into methods for reducing transmission risks and guaranteeing the safety of healthcare personnel, 
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the study presents a thorough framework for examining the COVID-19 pandemic among 

anesthesiologists working in healthcare institutions. 

The objective of the research is to comprehend the dynamics of virus transmission and the effects 

of multiple parameters on the spread of the virus among healthcare professionals. These elements 

include testing frequency, quarantine measures, immunity periods, and patient and colleague 

interactions. PRISMA Health Upstate and publicly accessible publications and literature on 

COVID-19 transmission probabilities, incubation periods, asymptomatic probability, recovery 

periods, and mortality rates are among the data sources. Clarity on the simulation setup is provided 

by the specific outlines of the model's parameters, values, and assumptions. The actual simulation 

model uses an agent-based methodology, considering every anesthesiologist as a distinct agent 

with particular characteristics and constraints. It was constructed using AnyLogic.  

Based on contact rates and transmission probabilities, the model simulates interactions between 

anesthesiologists inside healthcare facilities and tracks each physician's status (vulnerable, 

exposed, infected, recovered). The simulation includes a number of scenarios, such as varying 

patient transmission rates and anesthesiologist immunity periods. It also takes into consideration 

the procedures for testing, the length of quarantine, and the potential for immunity or reinfection 

following recovery. To promote clarity and comprehension of the simulation procedure, the 

model's architecture and techniques for imitating the spread of viruses among medical 

professionals are described in depth. 
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CHAPTER 2: LITERATURE REVIEW 

The interaction of agents depends on past experiences, and the unprecedented nature of the 

pandemic lets the onus be on the continual adaptation of dynamic occurrences (Abar et al., 2017) 

an extensive selection of 85 ABMS software tools is reviewed, giving data about the kinds of 

agents that each tool may be able to utilize and meticulously pulling the finer points from the user 

manuals or documentation of each specific tool and its applicability in terms of basic features, 

attributes while contributing to the relative comparison among various tools. Based on the study, 

AnyLogic was deemed appropriate.  

The COVID-19 pandemic has prompted research efforts to understand the dynamics of infectious 

disease spread and develop effective strategies for mitigating its impact on public health systems. 

In this context, integrating agent-based modeling (ABM) and machine learning (ML) techniques 

has emerged as a promising approach for analyzing complex healthcare systems and informing 

evidence-based decision-making. This literature review provides an overview of recent studies that 

have utilized ABM and ML methodologies in the context of healthcare management during the 

COVID-19 pandemic. 

Reports suggest that anesthesiologists have experienced high rates of burnout among themselves 

as a result of the enormous obstacles they have faced globally during the COVID-19 pandemic. 

Significant percentages of academic anesthesiologists in Pakistan have reported depersonalization, 

a decrease in personal accomplishments, and emotional exhaustion—all of which are major causes 

of burnout (Milenovic et al., 2020). This condition is not exclusive to Pakistan; research from other 

areas, such Zambia, also shows that anesthesia providers—especially nonphysician practitioners—

have significant rates of burnout (Milenovic et al., 2020). Maslach Burnout Inventory (MBI) 
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definitions of burnout include extreme tiredness, detachment and cynicism from the work, and a 

sense of failure and ineffectiveness, which suggests that burnout is a common problem in the field 

(Maslach & Leiter, 2016). These difficulties have been made worse by the COVID-19 outbreak; 

reports suggest that higher rates of PTSD are seen in nurses, particularly those working in 

anesthesia, as a result of prolonged workdays and ongoing exposure to the virus (Shaker Ardakani 

et al., 2023). Moreover, extensive modifications are now required to address concerns including 

work hour limitations, provider wellbeing, and safety issues as a result of the anesthesiology 

departments' reorganization in response to the pandemic, as seen at Montefiore Medical Center in 

New York City (Shaparin et al., 2021). The crisis has also brought attention to how critical it is for 

healthcare facilities to have an appropriate staffing level, where effective staff scheduling is 

essential to maintaining high standards of care and optimizing patient capacity (Cammer et al., 

2014). The worldwide scope of the pandemic's impact on healthcare systems is highlighted by the 

similar problems that have been seen in other wealthy nations ((Faghanipour et al., 2020), 

(Sepulveda et al., 2020)). With their broad experience and multidisciplinary talents, 

anesthesiologists are well-positioned to take the lead in pandemic preparedness despite these 

obstacles, providing promise for successful adaptation to the changing healthcare delivery 

landscape (Shaparin et al., 2021), (Adams & Walls, 2020). 

Effective management and control of medical center capacity during times of high demand may 

emerge as critical solutions in tackling the problems posed by pandemic epidemics. In order to 

maximize the number of cured patients, Burdett et al. (Burdett et al., 2017) investigate this further 

by using mixed-integer linear programming, in which various patient kinds are assigned to 

optimize resource allocation and hospital capacity. Subsequently, He et al. (He et al., 2019) offer 

an integrated nurse staffing-scheduling model that uses two-stage stochastic programming to 
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reduce the risk of understaffing in the face of variable patient demand. This is followed by a model 

that authors in (Ordu et al., 2021) suggest that combines simulation and linear optimization in 

order to determine the necessary number of emergency beds, medical professionals, and nurses. In 

their article, Moosavi et al. (Moosavi et al., 2022) discuss the difficulty of staff scheduling in 

institutions during pandemics and stress the need to increase staffing levels. With an emphasis on 

reducing uncovered demand and staff preference violations, Guo and Bard (Milenovic et al., 2020) 

address the bi-objective staff scheduling problem utilizing a hybrid MILP formulation and column 

generating technology. Using a two-stage stochastic programming approach, Aydas et al. (Aydas 

et al., 2023) optimize staffing and adjustment costs by assessing short-term adjustment staff 

scheduling under demand uncertainty. Smet et al. (Maslach & Leiter, 2016) expand on this by 

introducing neighborhood search algorithms and constructive heuristics to reduce overall 

scheduling costs in a heterogeneous staff scheduling problem. A comparable staff scheduling 

problem is investigated by Hojati (Milenovic et al. 2020), who uses an iterative greedy algorithm 

to produce high-quality solutions. In health centers, Maenhout and Vanhoucke (Maenhout & 

Vanhoucke, 2013) combine scheduling and staffing decisions while taking the qualities of nurses 

into account. A dynamic program and MILP model are suggested by Lieder et al. (Lieder et al., 

2015) to reduce task tardiness and earlyness penalties in residential care facilities. A stochastic 

programming model for staff scheduling in the face of unknown demand and patient lengths of 

stay is provided by Bagheri et al. (Bagheri et al., 2016) In addition, Güler and Geçici (Güler & 

Geçici, 2020) use mathematical programming to deal with the scheduling of doctor days off during 

pandemics, and Guerriero and Guido (Guerriero & Guido, 2022) provide integer programming 

models for staff scheduling during several pandemic scenarios, emphasizing different levels of 

flexibility. These studies provide a comprehensive framework that addresses staff scheduling 
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issues during pandemics by utilizing a variety of mathematical and computational techniques to 

maximize resource allocation and operational effectiveness in healthcare facilities. 

METHOLOGIES:  

2.1. FRED framework and overcoming limitations  

Studies have looked at the dynamics of influenza spread among urban populations, focusing on St. 

Petersburg, Russia. It models the spread of sickness using agent-based modeling, accounting for 

various contact patterns, workplace setups, and epidemic scenarios. It examines the effects of 

several population mixing assumptions on peak heights, epidemic curves, and outbreak lengths. 

(Leonenko et al., 2020)The researchers developed an Agent-Based Modeling (ABM) framework 

to address the issues with the existing models, particularly FRED. They first initialize the model 

by assigning a random status to each person's infectiousness and characterizing attributes like 

immunity. Individuals go about their daily lives, going to places where they might come into 

contact, such as homes, workplaces, or schools. Two elements that influence the transmission of 

an infection are infectiousness and contact rates. Infectivity varies over time in the disease 

dynamics model. Discrete time steps are employed in the Python-based simulations, which make 

use of Pandas and scipy.stats. Python and QGIS are used to analyze the instances' spatial 

distribution. Publications also discuss future research objectives, such as age-dependent contact 

rates and the initial infection spread. It provides insight into the challenges of influenza 

transmission in urban environments and the implications for public health interventions, in general. 

2.2. Individual Space-Time Activity-based Model (ISTAM)  
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Simulations of the dynamics of an imaginary influenza outbreak in the Dutch city of Eemnes using 

the Individual Space-Time Activity-based Model (ISTAM) has been studied. (Yang et al., 

2011)Work has been done to assess the efficacy of several CDC-recommended control methods, 

such as social distancing, closing schools, and instituting household quarantine, using intricate 

agent-based modeling. The best course of action, according to the results, is to impose a household 

quarantine, which considerably lowers the overall and peak number of cases while delaying the 

outbreak's peak day. On the other hand, closing schools on their own shows little effectiveness, as 

some illnesses are transferred to other locations. Mitigation tactics are more successful when 

control measures like home quarantine and school closure are combined. Sensitivity analyses show 

how the fundamental reproductive number (R0), alert values, and compliance levels affect the 

efficacy of control mechanisms. The work provides important insights for enhancing epidemic 

response techniques in urban areas, highlighting the significance of taking human behavior, real-

world processes, and environmental elements into account when simulating disease transmission. 

2.3. SIR model 

With a focus on the Greater Toronto Area (GTA), the creation and application of a simulation 

model intended to comprehend the dynamics of disease distribution during a pandemic outbreak 

has been looked at. (Aleman et al., 2011) It highlights the difficulties in obtaining precise 

reproduction numbers (R0) and transmission rates for illnesses, which are necessary for modeling. 

In order to represent individual behaviors, interactions, and transitions between susceptible, 

infectious, and removed states, the model uses an agent-based simulation technique and adopts the 

Susceptible-Infectious-Removed (SIR) framework. Data from social-contact studies and census 

records, among other sources, are used to include factors impacting the transmission of diseases 
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into the model. These factors include age-specific interactions, household sizes, commuting 

patterns, and transmission dynamics in public venues like hospitals and schools. The simulation 

takes into account both intimate and casual relationships, paying special emphasis to how public 

transportation affects the dynamics of urban transmission. It starts outbreaks and experiments with 

mitigation tactics, such as social distancing campaigns, evaluating their efficacy with GIS 

visualization and statistical analysis. Despite the inherent difficulties in validating pandemic 

models, the model's role in guiding government planning is emphasized, particularly for 

organizations such as the Ontario Agency for Health Protection and Promotion (OAHPP). It 

emphasizes the model's usefulness as a "what-if" tool for scenario comparisons and intervention 

assessments. 

2.4. Measles SEIR Model 

RepastS introduces ideas such as projection and context, in which projections form spatial 

relationships and the context include agents. The model integrates GIS for geographical modeling 

and enables simulation development and execution using the Repast Symphony toolkit and its Java 

APIs. A graphical user interface (GUI) allows for scenario creation and outcome analysis as agents 

interact within a physical world that is governed by predetermined rules and spatial relationships. 

This simulation employs the Measles SEIR Model with different settings and focuses on a portion 

of the population affected by a measles outbreak in Burnaby, British Columbia, Canada. (Perez & 

Dragicevic, 2009) Four scenarios clarify the dynamics of disease propagation by showing different 

ratios of susceptible to infected persons. Computational restrictions and data limitations for model 

validation are challenges. Sensitivity analysis guides model refining by identifying important 

parameters influencing outcomes. Based on sensitivity analysis results, the model realistically 
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mimics disease outbreaks in urban areas and provides insights into the dynamics of dissemination. 

However, additional agent qualities and behaviors could be added in the future to enhance realism. 

2.5. Age-stratified adjustment method 

Age-stratified adjustment method discusses the problems in predicting case fatality rates (CFR) 

for COVID-19 in real-time, citing a number of factors, including age-related impacts, 

comorbidities, probable under-reporting, and the delay between confirmation and death. In order 

to overcome these difficulties, the study aims for more accurate CFR estimations by taking into 

account changes in known outcomes over time using an age-stratified adjustment method (de 

Noordhout et al., 2017). Taking into account that Diamond Princess passengers have an average 

age of 58 years, the study adjusts its estimations to match the age distribution in the Chinese 

outbreak, allowing for wider application. Although assumptions concerning the attribution of 

deaths and population comparability are recognized, several limitations are pointed out, such as 

possible variations in health conditions and healthcare accessibility between passengers on cruise 

ships and the mainstream population. Even though there aren't many deaths among those 70 years 

of age or older on the Diamond Princess, making age-specific CFRs impossible to produce, the 

studies emphasize how crucial it is to account for outcome delays and combine datasets from many 

sources in order to provide early insights regarding COVID-19 severity. In summary, albeit 

accepting certain limitations (e.g., demographic specificity, assumptions used), accounting for age 

differences and result delays is still essential to gaining meaningful insights into the COVID-19 

fatality risk. 

2.6. MATSim an agent-based transport simulation model 
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Research on this investigates how to describe and simulate the urban spread of influenza by 

combining transportation simulation and epidemiological modeling. It is predicated on a closed 

community with no demographic shifts and a constant probability of infection, wherein those who 

are affected carry on with their regular lives. Individual mobility and activities are modeled using 

equilibrium assumptions in the MATSim agent-based transport simulation. (Hackl & Dubernet, 

2019)The model parameters are calibrated to replicate real-world traffic and infection data, with a 

special focus on seasonal influenza outbreaks in Switzerland. Activity schedules are obtained from 

empirical data. In simulations carried out for the Zurich metropolitan area, computational 

constraints limit the population size to 1% of the real population. In order to examine their effects 

on the spread of the epidemic, these simulations alter variables including initial infection rate, 

infection probability, and recovery probability. By comparing the model with the traditional SIR 

model and calculating model parameters based on observable data, studies have effectively 

recreated the influenza epidemic that struck Switzerland in 2016–2017. The epidemic spread 

model's simplicity and computing limitations are its main drawbacks, which point to future 

research topics that should include commuting patterns and demographic characteristics for better 

model realism and accuracy. 

2.7. Susceptible-Exposed-Infectious-Removed-Treated- SEITR model 

With an emphasis on the 2009 H1N1 outbreak in Kunming, China, the study creates an agent-

based modeling (ABM) technique coupled with Geographic Information Systems (GIS) to 

simulate the transmission of influenza in urban environments. (J. Wang et al., n.d.)The model, 

which takes into account factors like cure rate, latent period, and transmission probability, 

represents the spatiotemporal dynamics of influenza transmission using Java programming and 
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Repast Simphony. Realistic urban environments provided by GIS data, such as population density 

layers and road networks, enhance the model. Hospitalized or confined individuals are represented 

by the "Treated" class in the SEITR extension of the SEIR model. While control measures like the 

quarantine ratio and duration to hospitalization are integrated to analyze their impact on disease 

spread, the multi-agent model simulates everyday activities and interactions. The model's accuracy 

is demonstrated by validation against H1N1 pandemic data, where simulation results closely 

resemble observed trends. An assessment of control measures indicates that early hospitalization 

and a quarantine rate more than 0.1 greatly reduce the risk of H1N1 transmission. This all-

encompassing approach helps develop efficient preventive and control methods by providing 

insights into the dynamics of influenza. 

Previous research has shown that several approaches can effectively reduce infections among 

healthcare workers and their unavailability; however, these studies have only been conducted in 

one small institution and do not take into consideration the ways in which different system 

elements interact to influence the spread of infections. The aim is to build a simulation model using 

the agent-based modelling (ABM) approach to gain in-depth insights into disease spread and 

determine the optimal staffing policy that minimizes infection spread and unavailability among 

the Healthcare workers. 

In our approach to addressing infection control methods, we've incorporated crucial components. 

Among these, we've emphasized the importance of vaccination rates among healthcare workers 

(HCWs), recognizing that higher rates can significantly lower the spread of illnesses. Additionally, 

we've taken into account the rates of infection transmission at each facility. Assessing the quantity 

of interactions between healthcare workers and patients has been a focal point, as these encounters 
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play a pivotal role in transmission dynamics. Moreover, we've recognized the significance of 

accounting for hospital patient censuses, understanding that fluctuations in patient counts can 

impact HCWs' workloads and exposure risks. By integrating these elements into our infection 

control policies, we've have hoped to propose an effective way to reduce the spread of illnesses. 
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CHAPTER 3: METHODS 

3.1. Input Data 

Data used in this study regarding bed capacity, locations, and perioperative HCWs required were 

derived from Prisma Health Upstate, which did not include any identifiers. The study was provided 

an Institutional Review Board (IRB) exemption by the Prisma Health IRB. The rest of the data 

used in the study were collected from publicly available epidemiologic data about COVID-19. We 

consider six different locations of Prisma Health Upstate and three different types of HCWs 

(anesthesiologists, anesthetists, and nurses) who are a part of the perioperative team. Among these, 

locations 1 - 4 are regular facilities receiving patients of all types, whereas two smaller locations 

were transitioned to treat only COVID-19 patients because of the surge experienced. There are 

1167 beds available for patient care in total (facility 1: 700, facility 2,3,4: 108, and facility 5,6: 

45), including inpatient beds and operating rooms. In our model, we did not specifically focus on 

the OR workflow. Instead, we focused on the inpatient beds and interactions out-of-the-OR activity 

(recovery room, workstation, etc.). The primary reason for this was that we assume that clinicians 

are masked and protected in the OR, whereas they might not be in the recovery room and 

workstation. We consider the number of interactions between each patient and each HCW type as 

a key factor in our ABM, which allows us to capture the impact of HCW availability on their 

workload in terms of patient interactions and the likelihood of getting infected. In our model, 

although we use a fixed transmission probability per interaction, the probability of an HCW getting 

infected is not static. We consider it as a function of total HCWs available to work, patient volume, 

and the average number of interactions with patients according to the following formula:  
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Patient-HCW contact rate = ((COVID-19 patient census * the average number of 

interactions required per patient)/ number of available HCWs).  

Here, the COVID-19 patient census would vary based on the scenario under consideration 

(discussed in the next paragraph). The average number of interactions required per patient is based 

on the HCW type, where we assume nurses have more contact with patients than anesthetists. The 

number of HCWs represents the healthy workforce of each HCW available in the hospital. The 

motivation to use this equation here is to account for the varying HCW workload during a 

workforce shortage or surge in COVID-19 patients without detailed modeling of the complex 

workflow, which is significantly different for an operating room vs. an inpatient bed. Due to the 

lack of detailed data on the number of interactions required per patient with HCWs and the 

characterization of interactions among HCWs themselves in their workspace, we set these numbers 

in our experiments based on expert opinions from HCWs in the Prisma Health Department of 

Anesthesiology (see Table 1). Here, the number of interactions follows the CDC's guidelines for 

close contact, which is less than 6 feet away from a person for 15 minutes or more. The interactions 

between anesthesiologists represent their interactions in the recovery room, workstation, etc., and 

not while caring for patients. For nurses, their interactions represent their interactions in 

workstations and while passing by between inpatient beds. The number of interactions between 

anesthetists represents those outside the operating room. While it is possible that there might be 

no interaction between each HCW, we assume they could interact while passing by inpatient beds, 

workstations, lockers, or operating rooms. For the data on the testing frequency and quarantine 

period, we followed the policies and practices at Prisma Health during January 2022. The data 

pertinent to the COVID-19 transmission probabilities, incubation time, presymptomatic time, 

asymptomatic and symptomatic probability, recovery period, and mortality rate were obtained 
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from publicly available Centers for Disease Control and Prevention (CDC) guidelines and 

literature from February 2022(COVID-19 Pandemic Planning Scenarios | CDC, n.d.). The 

possibility of reinfection was considered for HCWs returning to work after the mandatory 

quarantine since multiple studies reported such cases (What Is COVID-19 Reinfection? | CDC, 

n.d.) (Falsey et al., 2021). Finally, as represented in Table 1, the possibility of infection after 

vaccination was also considered, as prior studies observed that no vaccination provided 100% 

protection against COVID-19. 

Although our model does not explicitly consider factors outside the hospital, to replicate the 

population dynamics, we consider three different scenarios for patient census represented by the 

percentage of hospital bed occupancy by COVID-19 patients at each facility: (i) low patient census 

(20-25%), (ii) medium patient census (45-50%), and (iii) high patient census (more than 80%). 

Additionally, we also consider two infection transmission rates: low and high transmission 

scenarios. Finally, we consider four scenarios where 0%, 50%, 75%, and 90% of HCWs' are 

vaccinated to evaluate the impact of vaccination rates. Although these combinations of factors 

(patient census, transmission rates, vaccination rates) do not come from actual scenarios at the 

partner hospital, the research team aimed to model and investigate these different scenarios to 

capture different population dynamics stages (early stage, peak infection, and recovery) for 

COVID-19 or similar pandemic. Table 1 below summarizes the key input parameters used for our 

model.  

Table 1: Model parameters and values. 

Parameters Values 
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Provider transmission rate 4.0% 

Patient transmission rate  0.04% or 0.004% 

Incubation period Triangular (2,4,12) days 

Asymptomatic probability 40% 

Quarantine period 5/10/14 based on vaccination 

Mortality rate 1.8% 

Reinfection Rate 0.0004% 

Immunity period 60 days 

Transmission rate after vaccination 12.5% of transmission rate 

Providers and Patients vaccinated 0% or 50% OR 75% or 90% 

Workforce testing frequency 1 per week 

Patient Census 700-108-34 based on location 

Number of interactions between providers per hour 

● Anesthesiologists and Anesthesiologists  

 

3 per hour 

1 per hour 
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● Anesthesiologists and Nurse 

Anesthetists/Nurses 

● Nurse Anesthetists and Nurses 

3 per hour 

Number of interactions between providers and patient 

● Anesthesiologists and patients 

● Nurse Anesthetists/Nurses and patients 

 

2 per patient 

3 per patient 

3.2. Simulation Model 

In this paper, we created a simulation model in AnyLogic using agent-based modeling (ABM). 

This provided the flexibility to consider each anesthesiologist, nurse, and nurse anesthetist as a 

unique agent with specific parameters and attributes, interacting with other HCWs working in the 

same hospital. Additionally, this allowed the flexibility to model each hospital as an agent with 

further segregation into groups within each hospital. Moreover, the capability to track the current 

state (in terms of Susceptible-Exposed-Infected-Recovered, or SEIR) of each HCW made this the 

best option to model the rapidly spreading COVID-19. 

Figure 1 depicts the state chart for each HCW, which illustrates the different states where an HCW 

can be at any given time. Before initiating the simulation, each agent is first scheduled to work at 

a specific hospital location for a week. Based on the policy under consideration, each HCW is 

assigned a list of HCWs with whom they can potentially interact within the hospital. By default, 

all HCWs start in the susceptible pool (assuming they are not infected). We employ two options 

to initiate infection among HCWs: a) through patient interactions or b) through interactions with 

other HCWs. If infected, instead of going directly into the state of being infectious, the HCW 
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moves on first to the exposed state, where they stay for a certain period (referred to as the 

incubation period). In this exposed state, a provider is infected but not infectious, meaning they 

cannot spread the disease. Following the exposed state, they move on to the so-called 

presymptomatic phase, where they do not present any symptoms but are infectious, meaning they 

can potentially infect other HCWs. The symptomatic HCWs are tested immediately and follow 

appropriate quarantine protocols. The asymptomatic HCWs continue spreading the infection to 

other HCWs unless they test positive during the routine weekly testing, after which they follow 

the quarantine protocols. Following the quarantine procedures, there is a small probability that the 

HCW can expire, but most of them recover and enter the work system, where they can be reinfected 

based on the reinfection probability. A detailed process flow of different stages an HCW may 

progress through during the simulation can be seen below. 
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Figure 1: HCW state 
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From a modeling standpoint, on simulation initialization, each HCW is connected to a specific 

hospital, forming a bidirectional connection where each HCW is linked to a hospital, and each 

hospital is connected to a certain number of HCWs based on the hospital requirement. Further, 

within each hospital, we have groups that represent the various shifts available, as the HCWs will 

only interact with colleagues present during the same group. The HCW-to-HCW interaction is 

initiated by a separate hospital state chart message. Upon receiving the message from the HCW, 

the linked hospital will iterate and find other HCWs working on the same shift in the same hospital 

and forward the message to one of them based on the contact rate. Forwarding the message triggers 

the HCW state chart, and the HCW either transits to the exposed state or stays in the susceptible 

state based on the probability of transmission.  

3.3. Simulated Policies 

To identify the best staffing strategy that minimizes the number of infections and unavailability 

among HCWs, we compared six staffing policies under different scenarios of patient volume, 

vaccination status, and infection transmission rates. Based on expert opinions from the Department 

of Anesthesiology faculty at Prisma Health Upstate, we used the percentage of weekly availability 

of the HCWs and the total HCWs infected as the two primary performance metrics to compare 

various staffing policies. Specifically, we investigated six staffing policies with 3 primary policies 

and a fourth rotating policy integrated with the first three policies. Below, we provide the details 

regarding the six policies. 

Policy 1 - Inter-Hospital Mixing (Baseline policy/Current Practice) 

This policy corresponds to the current practice in the partner health system, where an HCW is 

allowed to work in any facility. Specifically, an HCW is assumed to have the option to switch 
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facilities and/or groups every week but will work at the same facility each week. This policy allows 

the highest flexibility in staffing and scheduling. In our simulation model, the assignments of 

HCWs to facilities and groups are generated randomly.  

Policy 2 - Inter-Group Mixing 

In this policy, we first divide HCWs into groups and restrict the HCWs' interactions by restricting 

their shift options only to those available within a facility. Here, an HCW can switch groups within 

the same facility but cannot sign up for a shift in a different facility.  

Policy 3 - No Mixing 

In this policy, we further restrict the interactions among HCWs by segregating them into 

predefined groups within a single facility. They can only bid for a particular shift and stay with the 

same team throughout the simulation study horizon.  

Policy 4,5,6 – Rotating Schedule 

With these policies, we reduce the number of HCWs present in the hospital by implementing a 

rotation schedule. Specifically, at any given time, we assign 67% of the HCWs to work and the 

other 33% to stay at home, and these groups are rotated every two weeks. We combine this rotating 

policy with the aforementioned three policies, inter-hospital mixing, inter-group mixing, and no 

mixing, to obtain Policy 4, 5, and 6, respectively. 

These policies were developed based on discussions with the providers at Prisma Health Upstate 

to ensure their realism and generality so that they can be adopted into any health system with 

multiple facilities. Specifically, based on discussions with expert clinicians working in 

perioperative settings, we used 22.5% of bed capacity as the low capacity, 47.5% as medium 

capacity, and 85% as a high capacity when COVID-19 patients occupied these beds. We evaluate 
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the performance of different policies under multiple scenarios where we vary the patient census, 

vaccination status, and infection transmission probabilities. As mentioned earlier, these scenarios 

are not actual scenarios observed in the partner hospital. Instead, we consider various combinations 

of these factors as they allow us to differentiate between different types and sizes of healthcare 

facilities, reflect the impact of state/local policies, and model both high and low-risk geographical 

locations. Specifically, we tested the six staffing policies as detailed: 

● Case 1: Low patient census & high patient transmission rate. 

● Case 2: Med patient census & high patient transmission rate. 

● Case 3: High patient census & high patient transmission rate. 

● Case 4: Low patient census & low patient transmission rate. 

● Case 5: Med patient census & low patient transmission rate. 

● Case 6: High patient census & low patient transmission rate. 

Two hundred replications of simulations were run for each combination of the parameters such 

that the reported metrics for the total number of infected HCWs was with a 99% confidence 

interval of +/- .1. A one-way ANOVA was utilized to compare if the total number of HCWs 

infected under each policy was statistically significantly different. In case of significant differences 

for the ANOVA, it was followed with a Tukey posthoc to identify the groups that varied 

statistically. For both statistical tests, an α = 0.05 was used. 
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CHAPTER 4: RESULTS 

This section summarizes the performances of the above six staffing policies across four 

vaccination levels, totaling 24 scenarios. Across each, the relative ratio of HCWs was 64.3% 

nurses, 27.46% nurse anesthetists, and 8.1% anesthesiologists. For ease of interpretation, we 

present the results across six cases and six policies at each vaccination rate, starting with 0% 

vaccination.  

4.1. Zero Percent Vaccination 

This policy corresponds to the early phase of the pandemic when no vaccines are available to 

prevent or reduce the spread of the virus. First, we investigate the percentage of HCWs infected 

over 90 days across various policies under each case, as seen in Table 2.  

Table 2. Percentage of healthcare workers (HCWs) infected over 90 days at zero vaccination.  

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 98.7±0.10 97.2±0.90 91.8±0.91*† 98.0±0.22 97.1±0.80 91.6±0.71*† 

2 98.6±0.11 98.7±0.32 98.4±0.62 98.2±0.70 98.7±0.39 98.1±0.56 

3 98.9±0.09 99.0±0.11 98.7±0.41 98.9±0.01 99.0±0.00 99.0±0.00 

4 83.2±1.05 50.1±0.91* 26.1±1.10*† 83.0±1.10 50.1±0.87* 26.4±0.44*† 
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5 98.0±0.12 82.7±0.42* 59.4±0.01*† 98.3±0.62 81.7±0.66* 59.0±0.14*† 

6 98.8±0.90 96.5±0.19 83.3±0.45*† 98.9±0.87 96.7±0.70 80.9±1.01*† 

* = significantly different from policy 1,4 

† = significantly different from policy 2,5 

On performing an ANOVA, we observed that during high patient transmission cases (1-3), there 

were no statistically significant differences between the six policies (p-value > 0.05) except for 

one case (Case 1). For case 1, which is a low patient census scenario, we observed that policies 3 

and 6, where HCWs are most restricted (no mixing), reported a significant reduction in the 

percentage of HCWs infected over the 90 days compared to policy 1 (p-value = 0.01), policy 2 (p-

value = 0.02), policy 4 (p-value = 0.01), and policy 5 (p-value = 0.02).  

For low patient transmission cases (4-6), we observed statistically significant differences (p-value 

< 0.05) in the total percentage of HCWs infected over 90 days. On performing a posthoc test, we 

observed that policies 3 and 6, where HCWs are most restricted (no mixing), reported a significant 

reduction in the percentage of HCWs infected over the 90 days compared to policy 1 (p-value < 

0.01), policy 2 (p-value < 0.01), policy 4 (p-value < 0.01), and policy 5 (p-value < 0.01) across all 

low patient transmission cases (4-6). Additionally, we observed that the semi-restricted policy 

(inter-group mixing) and its rotation counterpart, i.e., policies 2 and 5, reported a significant (p-

value < 0.05) reduction in the percentage of HCWs infected over 90 days compared to policy 1 

and policy 4 (inter-hospital mixing) for cases 4 and 5. Finally, we observed that on comparing 

respective policies to their rotational counterparts, i.e., policy 1 vs. policy 4, policy 2 vs. policy 5, 
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and policy 3 vs policy 6, we did not observe any statistically (p-value > 0.05) significant 

differences.  

Next, we investigated the weekly unavailability of HCWs under each policy for different cases. 

However, given 6 cases (3 low patient transmission rates and 3 high patient transmission rates) for 

each vaccination rate, we present the values by averaging the 3 low and 3 high patient transmission 

rates. Table 3 below represents the average weekly unavailability of HCWs across three low 

patient transmission rates at zero vaccination rates.  

Table 3. Average weekly healthcare worker (HCW) availability for low transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 

3 95% 97% 97% 98% 98% 99% 

4 85% 90% 93% 89% 93% 95% 

5 72% 81% 89% 72% 81% 89% 

6 65% 77% 87% 62% 75% 86% 
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7 68% 79% 87% 65% 77% 85% 

8 77% 83% 88% 74% 80% 86% 

9 83% 85% 89% 83% 84% 89% 

10 87% 87% 90% 87% 87% 90% 

11 90% 90% 91% 90% 89% 91% 

12 92% 92% 92% 93% 92% 92% 

13 94% 93% 93% 94% 93% 93% 

On investigating the peak unavailability of HCWs across the simulation period (90 days), we 

observed that no mixing (Policy 3) and its rotation version (Policy 6) outperformed other policies 

(Policy 1,2,4,5) by improving the weekly HCW availability by as much as 22%. Further, inter-

group mixing (Policy 2) and its rotation version (Policy 5) outperformed inter-hospital mixing and 

its rotation version (Policy 1,4) by improving the weekly HCW availability by 13%. Figure 2 

below represents the weekly availability of HCWs at a low patient transmission rate. Finally, 

comparing the rotation policies (Policy 4,5,6) to the respective restriction policies (Policy 1,2,3), 

the model predictions did not vary significantly regarding weekly provider unavailability. 
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Figure 2: Average weekly healthcare worker (HCW) availability for low transmission rates. 

On comparing the weekly unavailability of the HCWs under each policy during high patient 

transmission rates, no mixing (Policy 3) and its rotation version (Policy 6) outperformed other 

policies (Policy 1,2,4,5) by improving the weekly HCW availability by as much as 11%, as seen 

in Table 4 below. While not significant, the inter-group mixing (Policy 2) and its rotation version 

(Policy 5) outperformed the inter-hospital mixing and its rotation version (Policy 1,4) by 

improving the weekly HCW availability by 4%. 

Table 4. Average weekly healthcare worker (HCW) availability for high transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 
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2 97% 97% 97% 98% 98% 98% 

3 79% 79% 83% 88% 88% 91% 

4 54% 56% 64% 66% 67% 74% 

5 47% 51% 57% 47% 51% 58% 

6 60% 63% 65% 55% 59% 62% 

7 77% 77% 77% 74% 74% 74% 

8 88% 87% 85% 85% 85% 84% 

9 94% 92% 90% 94% 92% 90% 

10 96% 95% 93% 96% 95% 93% 

11 97% 96% 94% 97% 96% 94% 

12 98% 97% 95% 98% 97% 95% 

13 98% 97% 96% 98% 97% 96% 
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Although the total percentage of healthcare workers infected over the simulation length (90 days) 

did not vary significantly across various policies during the high patient transmission rates 

scenarios except for one case, as noted in Table 4 above, we observed that the no mixing policies 

could reduce the peak unavailability of HCWs during a specific week. Moreover, at zero 

vaccination rates, we observed that the restriction policies could delay peak unavailability by a 

few weeks compared to the flexible policies (current practices). Figure 3 below represents the 

weekly availability of HCWs at a high patient transmission rate during zero vaccination rates. 

 

Figure 3: Average weekly healthcare worker (HCW) availability for high transmission rates. 

4.2. Fifty Percent Vaccination 

Here, we increase the vaccination rates to 50%, which still represents an early adoption phase of 

the vaccinations during the pandemic. First, we investigate the total number of HCWs infected 

over 90 days across various policies under each case, as seen in Table 5.  
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Table 5. Percentage of healthcare workers (HCWs) infected over 90 days at 50% vaccination.  

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 47.9±1.22 46.0±0.98 40.6±0.90*† 48.2±1.01 45.8±0.71 41.0±0.88*† 

2 48.0±0.34 48.1±0.55 47.9±0.81 48.5±0.15 48.3±0.11 48.0±0.56 

3 49.1±0.75 49.0±0.43 48.7±0.33 49.4±0.12 48.6±0.10 48.9±0.31 

4 29.0±0.33 13.3±0.45* 7.9±0.24*† 28.7±0.80 13.0±1.01* 8.1±0.94*† 

5 45.9±0.54 28.5±0.62* 20.1±0.12*† 45.8±0.79 28.4±0.90* 20.2±0.56*† 

6 48.7±0.32 46.8±0.74 36.7±0.85*† 48.9±0.62 47.1±0.55 36.6±0.41*† 

* = significantly different from policy 1,4 

† = significantly different from policy 2,5 

ANOVA tests showed similar results to that of the zero vaccination scenario, where there were no 

statistically significant differences between the six policies (p-value > 0.05) during high patient 

transmission cases except for one case (Case 1). For case 1, we observed that policies 3 and 6, 

where HCWs are most restricted (no mixing), reported a significant reduction in the percentage of 

HCWs infected over the 90 days compared to policy 1 (p-value = 0.01), policy 2 (p-value = 0.02), 

policy 4 (p-value = 0.01), and policy 5 (p-value = 0.03). 
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For low patient transmission cases (4-6), we observed statistically significant differences (p-value 

< 0.05) in the total percentage of HCWs infected over 90 days. On performing a posthoc test, we 

observed that policies 3 and 6, where HCWs are most restricted (no mixing), reported a significant 

reduction in the percentage of HCWs infected over the 90 days compared to policy 1 (p-value < 

0.01), policy 2 (p-value < 0.01), policy 4 (p-value < 0.01), and policy 5 (p-value < 0.01) across all 

low patient transmission cases (4-6). Additionally, we observed that the semi-restricted policy 

(inter-group mixing) and its rotation counterpart, i.e., policies 2 and 5, reported a significant (p-

value < 0.05) reduction in the percentage of HCWs infected over 90 days compared to policy 1 

and policy 4 (inter-hospital mixing) for cases 4 and 5. Similar to the zero vaccine scenario, even 

during low patient transmission rates when the patient census is high (case 6), inter-group mixing 

(policies 2 and 5) and inter-hospital mixing (policies 1 and 4) did not vary significantly. Finally, 

we observed that on comparing respective policies to their rotational counterparts, i.e., policy 1 vs. 

policy 4, policy 2 vs. policy 5, and policy 3 vs policy 6, we did not observe any statistically (p-

value > 0.05) significant differences.  

Next, we investigated the weekly unavailability of HCWs under each policy for different cases. 

Table 6 below represents the average weekly unavailability of HCWs across three low patient 

transmission rates at 50% vaccination rates.  

Table 6. Average weekly healthcare worker (HCW) availability for low transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 
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2 100% 100% 100% 100% 100% 100% 

3 99% 99% 99% 99% 99% 99% 

4 96% 97% 98% 97% 98% 98% 

5 92% 96% 96% 92% 95% 96% 

6 89% 94% 95% 88% 93% 94% 

7 87% 94% 95% 86% 92% 94% 

8 88% 94% 96% 87% 92% 95% 

9 90% 94% 96% 90% 93% 95% 

10 92% 95% 96% 92% 94% 96% 

11 94% 95% 96% 94% 95% 96% 

12 95% 96% 97% 95% 96% 96% 

13 96% 96% 97% 96% 96% 97% 
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On investigating the peak unavailability of HCWs across the simulation period (90 days), we 

observed that no mixing (Policy 3) and its rotation version (Policy 6) outperformed the inter-

hospital mixing and its rotation version (Policy1 and 4) by improving the peak weekly HCW 

availability by as much as 8%. Further, inter-group mixing (Policy 2) and its rotation version 

(Policy 5) outperformed inter-hospital mixing and its rotation version (Policy 1 and 4) by 

improving the weekly HCW availability by 7%. Figure 4 below represents the weekly availability 

of HCWs at a low patient transmission rate. Finally, comparing the rotation policies (Policy 4,5,6) 

to the respective restriction policies (Policy 1,2,3), the model predictions did not vary significantly 

regarding weekly provider unavailability. 

 

Figure 4: Average weekly healthcare worker (HCW) availability for low transmission rates. 

On comparing the weekly unavailability of the HCWs under each policy during high patient 

transmission rates, no mixing (Policy 3) and its rotation version (Policy 6) outperformed the inter-

hospital mixing and its rotation version (Policy 1 and 4) by improving the peak weekly HCW 
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availability by as much as 7% as seen in Table 7 below. Further, inter-group mixing (Policy 2) and 

its rotation version (Policy 5) slightly outperformed inter-hospital mixing and its rotation version 

(Policy 1,4) by improving the weekly HCW availability by 4%. 

Table 7. Average weekly healthcare worker (HCW) availability for high transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 99% 99% 99% 99% 99% 99% 

3 92% 93% 93% 96% 96% 96% 

4 82% 85% 85% 87% 89% 89% 

5 77% 81% 83% 77% 82% 84% 

6 80% 83% 85% 78% 81% 83% 

7 86% 87% 89% 85% 86% 87% 

8 92% 91% 92% 91% 90% 91% 
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9 95% 94% 94% 95% 94% 94% 

10 97% 96% 95% 97% 96% 95% 

11 98% 97% 96% 98% 97% 96% 

12 99% 97% 97% 99% 97% 97% 

13 99% 98% 97% 99% 98% 97% 

Although the total percentage of healthcare workers infected over the simulation length (90 days) 

did not vary significantly across various policies during the high patient transmission rates 

scenarios except for one case, as noted in Table 7 above, we observed that the no mixing policies 

can reduce the peak unavailability of HCWs during a specific week. While the differences in the 

peak HCW unavailability between the restricted policies (policies 2,3,5 and 6) compared to the 

most flexible policies (policy 1 and 4) are not as significant as observed during the zero-

vaccination rate, they still outperform the inter-hospital mixing policies (Policy 1, 4). Figure 5 

below represents the weekly availability of HCWs at a high patient transmission rate during 50% 

vaccination rates. 
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Figure 5: Average weekly healthcare worker (HCW) availability for high transmission rates. 

Observations from the 0% vaccination rate and 50% vaccination rate simulations suggest that when 

the patient transmission rates are high, the benefits of the restrictive policies (2,3,5,6) are minimal. 

Moreover, we can notice that the benefits of these restrictive policies reduce when the vaccination 

rate increases from 0% to 50%. However, to investigate if the pattern holds, we simulate two 

scenarios: i) 75% vaccination rate and ii) 90% vaccination rate.  

4.3. Seventy-Five Percent Vaccination 

Here, we increase the vaccination rates to 75%, representing the latter stages of simulation, where 

most of the population is vaccinated to protect against the pandemic. Table 8 below represents the 

percentage of HCWs infected over 90 days across various policies under each case.  
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Table 8. Percentage of healthcare workers (HCWs) infected over 90 days at 75% vaccination.  

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 23.0±0.65 21.1±0.40 19.5±0.70* 22.8±0.58 21.0±0.90 19.5±0.11* 

2 24.2±0.45 23.8±0.87 24.0±0.09 24.0±0.80 23.8±0.94 23.7±0.16 

3 25.5±0.33 25.0±0.61 25.1±0.33 25.0±0.23 25.1±0.77 24.4±0.29 

4 8.0±0.85 6.7±0.89 4.0±0.80* 8.0±0.67 6.5±0.22 3.9±0.75* 

5 19.2±1.13 13.3±0.81* 9.3±0.47*† 19.3±0.90 13.2±0.34* 9.2±0.40*† 

6 24.3±0.72 22.5±1.22 16.3±0.29*† 24.3±0.73 22.8±0.32 16.3±0.87*† 

* = significantly different from policy 1,4 

† = significantly different from policy 2,5 

ANOVA tests showed some results similar to 0 and 50% vaccination rates, where restriction 

policies still outperform the flexible/inter-hospital mixing policies (policies 1 and 4) for some 

cases. Specifically, we observed that during high-patient transmission rates, for case 1, policies 3 

and 6, where HCWs are most restricted (no mixing), reported a significant reduction in the 

percentage of HCWs infected over the 90 days compared to policy 1 (p-value = 0.02), and policy 

4 (p-value = 0.02). However, unlike what we observed during 0 and 50% vaccination rates, there 
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were no significant differences between the inter-group and no mixing policies, again highlighting 

the diminished returns of restrictions as vaccination rates increase.  

For low patient transmission cases (4-6), we observed statistically significant differences (p-value 

< 0.05) in the total percentage of HCWs infected over 90 days. On performing a posthoc test, we 

observed that policies 3 and 6, where HCWs are most restricted (no mixing), reported a significant 

reduction in the percentage of HCWs infected over the 90 days compared to policy 1 (p-value < 

0.01), policy 2 (p-value < 0.01), policy 4 (p-value < 0.01), and policy 5 (p-value < 0.01) when the 

patient census was medium or high. However, when the patient census was low (case 4), the no 

mixing policies (policies 3 and 6) were only significantly better than inter-hospital mixing policies 

(policies 1 and 4). The no-mixing policies (policies 3 and 6) and inter-group mixing policies 

(policies 2 and 5) did not vary significantly.  

Further, we observed that the semi-restricted policy (inter-group mixing) and its rotation 

counterpart, i.e., policies 2 and 5, reported a significant (p-value = 0.02) reduction in the percentage 

of HCWs infected over 90 days compared to policy 1 and policy 4 (inter-hospital mixing) for case 

5. On comparing respective policies to their rotational counterparts, i.e., policy 1 vs. policy 4, 

policy 2 vs. policy 5, and policy 3 vs policy 6, we did not observe any statistically (p-value > 0.05) 

significant differences.  

Next, we investigated the weekly unavailability of HCWs under each policy for different cases. 

Table 9 below represents the average weekly unavailability of HCWs across three low-patient 

transmission rates at 75% vaccination rates.  
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Table 9. Average weekly healthcare worker (HCW) availability for low transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 100% 

4 99% 99% 99% 99% 99% 99% 

5 98% 98% 98% 98% 97% 98% 

6 97% 97% 98% 96% 97% 98% 

7 96% 97% 98% 96% 96% 97% 

8 96% 97% 98% 95% 96% 98% 

9 96% 97% 98% 96% 97% 98% 

10 96% 97% 98% 96% 97% 98% 

11 97% 98% 98% 97% 97% 98% 

12 97% 98% 98% 97% 98% 98% 

13 98% 98% 98% 98% 98% 98% 
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On investigating the peak unavailability of HCWs across the simulation period (90 days) during 

low transmission rates, we observed that no mixing (Policy 3) and its rotation version (Policy 6) 

are slightly better than the inter-hospital mixing policies (Policy 1 and 4) and inter-group mixing 

policies (Policy 2 and 5) but not significantly better. We observed that regarding the weekly 

unavailability of HCWs, the restriction policies do not add any significant value when patient 

transmission rates are low, and the vaccination rate is over 75%. Figure 6 below represents the 

weekly availability of HCWs at a low patient transmission rate during 75% vaccination rates. 

 

Figure 6: Average weekly healthcare worker (HCW) availability for low transmission rates. 

On comparing the weekly unavailability of the HCWs under each policy during high patient 

transmission rates, similar to low transmission scenarios, the no mixing (Policy 3) and its rotation 
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4) and inter-group mixing policies (Policy 2 and 5) they were not significantly better. However, it 

is interesting to notice that compared to the low transmission scenarios, the peak unavailability is 

higher during the high transmission scenarios, as seen in Table 10 below.  

Table 10. Average weekly healthcare worker (HCW) availability for high transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 99% 100% 100% 100% 100% 100% 

3 97% 97% 97% 98% 98% 98% 

4 93% 93% 93% 95% 95% 95% 

5 90% 90% 92% 91% 91% 92% 

6 91% 92% 93% 90% 91% 92% 

7 93% 94% 94% 92% 93% 94% 

8 95% 96% 96% 94% 95% 95% 

9 96% 97% 97% 96% 97% 97% 

10 97% 98% 98% 97% 98% 98% 

11 98% 98% 98% 98% 98% 98% 
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12 99% 98% 98% 99% 98% 98% 

13 99% 99% 98% 99% 99% 99% 

Figure 7 below represents the weekly availability of HCWs at a high patient transmission rate 

during 75% vaccination rates. As mentioned above, the peak of HCW unavailability over the 

weeks is higher than the low transmission rates, but there is minimal benefit to the restriction 

policies (policies 2,3,5 and 6) compared to the current practices.  

 

Figure 7: Average weekly healthcare worker (HCW) availability for high transmission rates. 

Overall, we observed that at a 75% vaccination rate, there is only a very negligent benefit of 

restriction policies (policies 2,3,5, and 6) compared to the inter-hospital mixing policies (policies 
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policies are still beneficial in reducing the percentage of HCWs infected over 90 days during some 

cases. Hence, we simulated one more scenario in which the vaccination rates were 90%.  

4.4. Ninety Percent Vaccination 

For this final scenario, we increase the vaccination rate to 90%, representing a recovery stage of 

the pandemic where almost all the population is vaccinated. While it was evident from the prior 

observations that the restrictive policies did not significantly reduce the weekly unavailability 

among HCWs at a 75% vaccination rate, there were a few cases where the restrictive policies 

reduced the overall HCW unavailability compared to the current practices. Table 11 below 

presents the percentage of HCWs infected over 90 days across various policies under each case. 

Table 11. Percentage of healthcare workers (HCWs) infected over 90 days at 90% vaccination.  

Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 7.2±0.17 7.2±0.87 5.9±0.67 7.2±0.30 7.1±0.91 6.0±0.62 

2 9.4±0.30 9.4±0.04 8.6±0.20 9.1±0.69 9.1±0.80 8.0±0.99 

3 10.1±0.39 10.1±0.65 10.0±0.89 10.3±0.20 10.0±0.92 9.9±0.41 

4 1.9±0.66 1.6±0.57 1.4±0.42 2.1±0.46 1.6±0.85 1.5±0.98 

5 4.3±0.75 3.5±0.31 3.1±0.51 4.0±0.90 3.2±0.72 3.0±0.57 
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6 8.1±0.83 7.7±0.49 7.0±1.10 8.1±1.10 7.5±0.56 6.9±0.75 

* = significantly different from policy 1,4 

† = significantly different from policy 2,5 

ANOVA tests showed that irrespective of the patient transmission rates and patient census, the 

restrictive policies, i.e., no mixing policies and inter-group mixing policies, did not significantly 

(p-value > 0.05) reduce the percentage of HCWs getting infected over 90 days compared to the 

current practices (inter-hospital mixing).  

Although it was evident from the prior experiment that weekly HCW unavailability did not vary 

significantly across different patient transmission rates and patient census, we still present the 

findings from the simulation results at a 90% vaccination rate.  

Table 12. Average weekly healthcare worker (HCW) availability for low transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 100% 

4 100% 100% 100% 100% 100% 100% 

5 99% 99% 100% 99% 99% 100% 
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6 99% 99% 99% 99% 99% 99% 

7 99% 99% 99% 99% 99% 99% 

8 99% 99% 99% 99% 99% 99% 

9 99% 99% 99% 99% 99% 99% 

10 99% 99% 99% 99% 99% 99% 

11 99% 99% 99% 99% 99% 99% 

12 99% 99% 99% 99% 99% 99% 

13 99% 99% 99% 99% 99% 99% 

Figure 8 below represents the weekly availability of HCWs at a low patient transmission rate 

during 90% vaccination rates.
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Figure 8: Average weekly healthcare worker (HCW) availability for low transmission rates. 

While the peak unavailability was slightly higher at higher patient transmission rates compared to 

the low patient transmission rate, the overall availability was always 95%. Table 13 below 

represents the weekly availability at a 90% vaccination rate at a high patient transmission rate.   

Table 13. Average weekly healthcare worker (HCW) availability for high transmission rates. 

Week Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 

1 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 

3 99% 99% 99% 99% 99% 99% 
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4 97% 98% 98% 98% 98% 99% 

5 97% 97% 98% 97% 97% 98% 

6 97% 97% 98% 97% 97% 98% 

7 98% 98% 98% 97% 97% 98% 

8 98% 98% 98% 98% 98% 98% 

9 99% 99% 99% 99% 98% 99% 

10 99% 99% 99% 99% 99% 99% 

11 99% 99% 99% 99% 99% 99% 

12 99% 99% 99% 99% 99% 99% 

13 99% 99% 99% 99% 99% 99% 

Figure 9 below represents the weekly availability of HCWs at a high patient transmission rate 

during 90% vaccination rates.  



56 

 

 

Figure 9: Average weekly healthcare worker (HCW) availability for high transmission rates. 

The simulated findings indicate that at a 90% vaccination rate, irrespective of patient transmission 

rate and patient census, restrictive staffing policies have no statistically significant impact in 

reducing the weekly HCW unavailability and overall percentage of HCWs getting infected over 

90 days.   
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CHAPTER 5: DISCUSSIONS & CONCLUSIONS 

Protecting HCWs during a pandemic is critical for delivering timely and quality care to increased 

patient demands often reported during public health crises. Additionally, HCWs are on the front 

lines of combating the outbreak, risking their lives daily to provide care; hence, their safety not 

only preserves their well-being but also maintains the integrity of the healthcare system, as their 

expertise and dedication are indispensable assets in managing the crisis effectively. Furthermore, 

safeguarding HCWs is essential for maintaining public trust and confidence in the healthcare 

system. If healthcare professionals are not adequately protected, it can lead to increased 

transmission of the virus within healthcare settings, exacerbating the strain on resources and 

potentially leading to higher mortality rates. Moreover, protecting healthcare workers is a moral 

imperative, as they have taken an oath to care for the sick and vulnerable. Failing to prioritize their 

safety jeopardizes their health and undermines the fundamental principles of compassion and 

solidarity upon which healthcare is built. In essence, safeguarding HCWs is a practical necessity 

and reflects our societal values and collective responsibility to protect those who selflessly serve 

others in times of crisis. 

This research investigated the impact of different restriction policies, such as segregating and 

rotating HCWs, on reducing their peak weekly unavailability of HCWs and unavailability over 

three months during various stages of the COVID-19 pandemic at a large health system with 

multiple locations. Specifically, this study furthers the research by incorporating various pandemic 

parameters such as patient census, HCW types, transmission rates, vaccination rates, interactions, 

reinfection, and other COVID-19 data along with multiple hospital locations which no prior studies 

have considered while investigating staffing policies among perioperative HCWs (Habib & Zinn, 
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2020)  (Mascha et al., 2020) (Kluger et al., 2020). By simulating 24 scenarios for 90 days by 

changing the patient census, transmission rates, and vaccination rates at multiple hospital locations, 

our findings indicate that segregating and rotating the HCWs could significantly reduce the peak 

weekly HCW unavailability and percentage of HCWs getting infected over the simulation period. 

Specifically, observations from simulated scenarios suggest that segregating HCWs into smaller 

groups within a facility (no mixing), restricting them to a single facility (inter-group mixing), and 

rotating (alternating the HCWs) shift can significantly reduce the COVID-19 exposure and 

infection spread, thereby reducing HCW shortage during specific scenarios.  

Although findings regarding the rotation schedules align well with prior single-site studies, they 

did not consider the impact of changing patient census, vaccination, and transmission rates. This 

research shows the importance of modeling these parameters (patient transmission rates, patient 

census, vaccination rates, etc.) as we observed that the benefits of the rotation policies diminish as 

the vaccination rates increase or have no significant benefit when transmission rates are higher. 

Furthermore, this work provides the empirical performances of two restriction policies 

(segregation within a facility and restriction to a single facility) through simulations that no other 

prior studies have considered. Furthermore, these restriction policies integrated with the rotation 

schedules performed better than the current practices during specific scenarios, which other studies 

have not considered. These observations are critical for other health systems with multiple 

locations to consider in order to improve HCW availability. 

Although our research focused on modeling the perioperative staff (anesthesiologists, nurse 

anesthetists, and nurses), the observations from this study can be considered while developing 

staffing schedules for other high-risk HCW populations such as emergency medicine, hospitalists, 
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etc., to reduce the HCW unavailability. Additionally, while the current observations are based on 

the data from the COVID-19 pandemic, the model can be used to simulate other pandemic or 

infectious diseases where the SEIR compartmental model is still relevant. Moreover, the model is 

coded and developed in a format that allows for generalization where health systems with multiple 

locations can change the model parameters (beds, HCWs types, etc.) and thereby help better 

prepare and assign their HCW workforce during future pandemics. 

As briefly mentioned above, we observed that segregating HCWs into smaller groups within a 

facility (no mixing), restricting them to a single facility (inter-group mixing), and rotating 

(alternating the HCWs) shift can significantly reduce HCW unavailability during low vaccination 

rates and low patient transmission rates. Specifically, when vaccination rates were 50% or less, we 

observed that segregation policies (no mixing and inter-group mixing) and their rotation versions 

reduced the weekly unavailability of HCWs by as much as 40% compared to the current practices 

at the partner health system. Moreover, the total number of HCWs getting infected over the 90 

days was reduced by as much as 60%, thereby significantly improving HCWs' availability to 

provide care. However, when the vaccination level increases to 75%, the segregation policies (no 

mixing and inter-group mixing) and their rotation versions are not significantly better in reducing 

the peak weekly unavailability of the HCW. Still, these policies were beneficial in reducing the 

total number of HCWs infected over the three months. Finally, when the vaccination levels 

increased to 90%, segregation policies, and rotation versions did not significantly reduce the peak 

HCW unavailability or the percentage of HCWs getting infected over 90 days. These observations 

further highlight the importance of incorporating factors such as vaccination rates, patient 

transmission rates, and patient census while modeling similar infectious diseases in health systems.  



60 

 

Although this research study aimed to comprehensively model an SEIR compartmental model with 

an ABM-based computational model to simulate a pandemic scenario for HCW staff scheduling, 

which can be generalizable to multi-location health systems, this study has a few limitations. First, 

the analysis and results are based on simulated findings as opposed to applied results. However, 

our simulated results are reported with a 99% confidence interval. Another limitation is that we 

assume that each patient, on average, comes in contact with a provider a certain number of times, 

and providers interact with each other at a particular rate. Although these assumptions are based 

on expert opinions from anesthesiologists working in the partner hospital, we recognize the fact 

that the number of actual interactions could be higher in the OR when the HCWs could be in close 

contact most of the time and lower while providing care on inpatient beds, depending on the 

scenario. However, to reduce the complexity of modeling these different workflows, we decided 

to use the average, as we aimed to compare various staffing policies (flexible vs. restricted) during 

various stages of a pandemic (early, medium, and late) without changing any workflow/processes. 

In the future, the model could be updated to incorporate a detailed workflow.  

Another limitation is associated with modeling and replicating the partner hospital's activities. 

While physicians were involved throughout the model development process to replicate the 

actions, we acknowledge that certain assumptions (interactions) and simplifications of complex 

workflow in the model could limit the ability to replicate the activities at the partner hospital 

completely. Additionally, the time until provider availability after infection is based on the 

recovery time and isolation guidelines from the CDC, but we recognize that some hospitals may 

have different practices, and these durations might vary. Finally, from a modeling standpoint, 

future research should consider dynamic policies that switch between different policies discussed 

in the research during the 90-day period rather than keeping the model static over the simulation 
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duration. Doing this would allow hospitals to dynamically adapt their policies to protect HCWs 

during a surge in a pandemic or to account for quick changes observed during a pandemic.  
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