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ABSTRACT 

SHAGHAYEGH MASHINKARJAVAN. Hourly Forecasting of Emergency Department 

Arrivals for Different ESI Levels. (Under the direction of DR. VISHNUNARAYAN GIRISHAN 

PRABHU) 

 

Emergency Departments (ED) play a crucial role in the healthcare system, acting as the 

primary gateway for most hospital admissions. As primary entry points to hospital services, it is 

essential that EDs receive focused attention to ensure patients experience a smooth and 

uninterrupted healthcare journey. However, EDs face considerable challenges, with overcrowding 

being a major issue. Various solutions have been proposed to tackle this challenge, among which 

forecasting ED arrivals stands out as a foundational approach. By accurately predicting the number 

of patients arriving at the ED, healthcare providers can better prepare and manage resources, 

aiming to reduce the impact of crowding effectively. 

This study advances ED arrivals forecasting by predicting hourly patient arrivals for one-

hour ahead, focusing on ESI level forecasts to improve resource allocation decisions. It introduces 

a dynamic, rolling base method for model training, a notable improvement over the traditional 

static approach. The research compares the performance of widely used forecasting models with 

more accurate yet straightforward proposed models. The proposed forecasting framework applies 

Multiple Linear Regression (MLR) and develops a Hierarchical forecasting approach, with MLR 

as the forecasting method for top-level and three different top-down reconciliations. Proposed 

models are compared with some state-of-the-art models. Model accuracy is assessed using Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE). Among all the models, the proposed 

model performs better for most of the ESI levels. Following this, the Diebold-Mariano test (DM 

test) is applied to determine if there is a significant difference in accuracy between forecasting 

models.  
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1. INTRODUCTION 

 

The Emergency Department (ED) is a crucial part of the US healthcare system, handling 

most hospital admissions. Since EDs act as the primary entry point to other hospital departments, 

they should receive more focused attention to ensure smooth patient flow through their patient 

journey. Despite being the healthcare safety net, the ED faces challenges due to the high number 

of visits, exceeding 151 million per year, leading to crowding [1]. According to the American 

College of Emergency Physicians (ACEP), ED crowding is defined as: “Crowding occurs when 

the identified need for emergency services exceeds available resources for patient care in the 

emergency department (ED), hospital, or both. The causes of crowding are multifactorial and span 

the entire healthcare delivery system [2]. 

The primary contributors to crowding include a lack of medical staff, beds, and equipment 

and more patients arriving than expected, resulting in very long waiting times [3]. The crowding, 

directly and indirectly, impacts patients’ safety and the well-being of all ED staff by heightening 

frustration, increasing workload, intensifying stress, and leading to higher burnout rates, all of 

which directly influence patient safety.  

Addressing ED crowding requires multifaceted approaches to resource management, as 

identified in various research studies [4],[5],[1].  Effective resource management encompasses not 

just the efficient use of medical supplies and equipment but also the smooth functioning of ED 

operations [6]Managing patient flow, which is heavily impacted by the number and timing of 

patient arrivals, is central to streamlining ED operations. Accurate forecasts of incoming patient 

volume are vital for optimal resource allocation and operational planning. Moreover, by predicting 
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patient arrivals accurately, it's possible to reduce waiting times and improve the overall efficiency 

of the ED, thereby enhancing patient and provider satisfaction.  

Forecasting patient arrivals at the ED is essential, as distinct patterns are observed daily, 

weekly, and monthly. These trends significantly influence the ED's operational planning and 

decision-making [1]. Many studies have traditionally focused on long-term forecasts, like daily or 

weekly volumes [7]. However, hourly forecasting can significantly assist in addressing dynamic 

ED crowding, as unpredictable patient arrivals are one of the primary contributors to ED crowding. 

In most cases except acute scenarios (e.g., ST-elevation myocardial infarction (STEMI)), 

after a patient arrives at the ED, the subsequent step is triage, where they are evaluated and 

assigned an Emergency Severity Index (ESI) level, which represents the patient’s severity level. 

Patients are then directed to a specific area within the ED based on this classification: ESI level 1 

indicates a critical need for immediate attention and requires particular resources. In contrast, ESI 

level 5 denotes a less urgent case that can afford to wait when beds and other resources are not 

immediately available. The ESI levels of patients are a critical factor considered during the ED 

resource allocation plan, as resource requirements are significantly different for each ESI level. 

However, most prior studies focusing on forecasting patient arrivals to the ED have not considered 

ESI levels.  

In summary, adopting comprehensive forecasting strategies at all levels and including 

patients' ESI levels in forecasts enables emergency departments to refine their planning processes, 

optimize staff and resource allocation, and minimize the risk of crowding. This approach is 

particularly advantageous in managing challenges like bed shortages, extended waiting periods, 

increased likelihood of medical errors, and improved performance and patient safety [1]. 
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This research aims to predict one hour ahead of patient arrivals to the PRISMA Health 

Greenville Memorial Hospital ED in Greenville, SC, along with their ESI levels. For this study, 

we utilized three years of historical data to predict ED arrivals one hour ahead for each ESI level, 

focusing on forecasts covering an entire year ahead. Our approach involved comparing various 

time series forecasting models. There are traditional models, which are univariate, that perform as 

our benchmarks: 1- Autoregressive Integrated Moving Average (ARIMA), 2- Exponential 

Smoothing (ES). We also add two other benchmarks with a hierarchical forecasting approach and 

different top-level forecast methods: 3- Hierarchical forecasting with the ARIMA top-level 

forecast and 4- Hierarchical forecasting with the exponential smoothing top-level forecast. These 

two latter models (hierarchical forecasting) include three different reconciliation methods. To 

enhance our predictions, we introduced calendar variables into two new models. The first is a 

Linear Regression model that selects variables from a mix of different types. 

The second is hierarchical forecasting models using linear regression for the top-level 

forecast with three different reconciliation methods. The final model we propose is the ensemble 

model, the simple average of all eight benchmarks and three proposed models. We then evaluate 

how well each model could predict patient arrivals one hour ahead across each ESI level, 

comparing their accuracy to find the most effective approach. We calculate the Mean Absolute 

Error (MAE) and the Root Mean Squared Error (RMSE) to assess accuracy. Additionally, we 

apply the Diebold-Mariano (DM) test to compare the models comprehensively. 

In Chapter 2 of this thesis, we present a comprehensive review of recent and significant 

works, focusing on methodologies referenced within this study. Chapter 3 introduced the 

forecasting techniques we used. Chapter 4 provides an in-depth examination of the dataset 

employed in this research. Following this, Chapter 5 reveals the findings from applying both the 
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benchmark and proposed models to our case study. Finally, Chapter 6 concludes with a series of 

conclusions derived from the analyses conducted in Chapter 5. Additionally, it suggests options 

for future research to enhance the scope and depth of this study further.  
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2. LITERATURE REVIEW 

 

Researchers have extensively applied a range of forecasting techniques to estimate patient 

arrivals at the ED over various forecasting horizons, including hourly, daily, or monthly. 

Forecasting methodologies such as ARMA, VARMA, Holt-Winters, linear regression, multiple 

linear regression (MLR), ARIMA, SARIMAX, Artificial Neural Networks (ANNs), and Recurrent 

Neural Networks (RNNs) have been widely utilized for predicting ED patient arrivals. The 

forecasting results were analyzed through various evaluation methods in each research such as 

Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), or Root Square Mean 

Error (RMSE).  

This chapter summarizes some of the critical studies and research papers related to time 

series forecasting and techniques used to forecast emergency arrivals for EDs. We aim to explore 

the main studies and critical studies in these fields. We start with a review of patient flow 

management to identify the key factors that highlight the importance of forecasting ED arrivals. 

Next, we explore studies focusing on a variety of predicted variables, forecasting horizons, and 

independent variables. These elements are crucial in a literature review as they directly influence 

the outcomes and accuracy of forecasts. Finally, we concentrate on the forecasting methods applied 

in the literature to predict ED arrivals. 

 

 Patient Flow Management 

Hoot et al. presented a review of the role of factors that may cause crowding in the literature 

of emergency departments, the adverse effect of crowding for both patients and hospitals and the 

solution for this problem. Factors that cause ED crowding are input factors (such as Influenza 



6 

 

 

season and non-urgent visits), thoughtful factors (such as inadequate staffing), and output factors 

(such as hospital bed shortage and inpatient boarding). They divided the effect of crowding into 

four significant effects: adverse outcomes (which related to the patient's situation), reduced quality 

(like treatment delays), impaired access (including ambulance diversion and patient elopement), 

and provider loser (financial effect). The solutions for Ed crowding collected by this paper are 

resource management, demand management, and operation research [4]. 

Wiler et al. reviewed different modeling approaches for managing patient flow and 

crowding in EDs. It investigated simulation models, queueing theory, and statistical models, 

assessing their ability to tackle ED operations challenges such as patient arrivals resource 

management [5]. Gul & Celik's review paper provides a detailed survey on statistical forecasting 

in emergency departments. They presented a broad literature survey on different subjects, such as 

methods, variables, and main challenges in ED forecasting [8]. 

In 2022, Prabhu conducted a significant study focused on enhancing patient flow and ED 

management through three innovative approaches that benefit both patient care and staff welfare. 

This research introduced forecasting models for estimating both daily (long-term) for 90 days 

ahead and hourly (short-term) for one week ahead of arrivals, including ESI levels. These 

predictions were utilized to optimize physician scheduling and ED shift structures using a Mixed 

Integer Linear Programming (MILP) model. Additionally, the study analyzed physician stress 

using data analytics and machine learning to identify early signs of burnout. The findings offer 

actionable insights for decision-making, aiming to boost ED operational efficiency, patient safety, 

and overall staff contentment [9]. 
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 Predicted Variable 

The predicted variable refers to the target variable, the dependent variable, or the response 

variable. The classification of papers differs depending on the predicted variable of forecasting 

models. Gul & Celik represent an exhaustive review and categorized the theme of the predicted 

variable in hospital emergency departments into nine primary application areas: (1) ED patient 

demand, arrivals, visits, volume, and presentations, (2) ED patient admissions, (3) ED Length of 

Stay (ED LOS), (4) ED crowding, (5) utilization of ED resources, (6) ED patient wait times, (7) 

ambulance diversions, (8) inpatient admissions, and (9) other topics such as anomaly detection, 

forecasting posttraumatic stress disorder, triage forecasting, forecasting communication risks, 

charge prediction, forecasting patient dispositions, predicting 90-day mortality, and forecasting 

blood product transfusion needs in trauma patients [8]. Among all of them, the definition of ED 

crowding is not the same in all papers. For instance, several studies have looked at ED crowding 

or ED occupancy [10]. Schweigler. et al. focused on creating precise short-term predictions of bed 

occupancy in ED using time series modeling techniques. They labeled queuing models in their 

studies and concentrated on "changes" in EDs instead of on arrivals to the EDs [11]. However, ED 

crowding forecasting has some limitations. Green et al. 's model assumes that the arrival and 

service rates of the system remain constant over time, which doesn't align with the dynamic nature 

of EDs [12]. Hoot et al. demonstrated that patient crowding mainly depends on patient arrival, bed 

occupancy, acuity level, and duration of evaluation and treatment [13]. They suggested a 

framework for patient crowding (or patient flow). By forecasting each aspect, they aimed to 

achieve an overall prediction of ED crowding. 

The ED arrival forecast result is considered input for models to forecast the ED occupancy. 

Some studies for ED occupancy forecasting used other study models for ED arrivals and just 
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focused on ED crowding forecasting. However, others propose methods for forecasting both ED 

arrivals and ED crowding forecasting.  

Hertzum conducted a study to predict hourly ED arrivals and ED occupancy. The findings 

indicated that the models predicting patient arrivals were more precise compared to those for ED 

occupancy. Regression was identified as the most accurate method for forecasting hourly patient 

arrivals, while the ARIMA model proved to be more effective for estimating ED occupancy [14]. 

Most of the studies in the literature have been focused on total ED arrivals, and a few of 

them targeted the ED arrivals based on the stage of their severity. Jiang et al.'s study is one of the 

types of research that explores a deep neural network (DNN) framework for forecasting daily 

arrival flows and hourly arrival flows under different triage levels for a hospital in Hong Kong. 

The variables for their model were selected by genetic algorithm (GA), and the forecast horizon 

for their study was 28 days ahead. Their proposed DNN model achieved high accuracy in terms of 

MAPE and RMSE [15].  

 

 Forecasting Horizon  

The forecast horizon is related to the distance between the last available data in historical 

data and the furthest point we are forecasting for each forecasting step. The forecast horizon is 

different from the resolution of the data. The forecast horizon for hourly data can be one day. This 

means that with hourly data, the forecast produces predictions for 24 hours for the future. 

Therefore, we can say the forecast horizon is one day. Forecasting patient arrivals has been done 

on different time scales in the literature, including monthly, daily, and hourly predictions. The 

influence of the forecast horizon on accuracy measurements is a crucial factor to consider when 

evaluating the performance of forecast models.  
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Schweigler et al. tested their proposed model in two different sizes for the forecasting 

horizon. The proposed model outperformed the benchmark (historical average) for both 4-hours 

and 12-hours ahead. However, the performance of the same model in 4-hours ahead resulted in 

more accurate forecasts compared to the 12-ahead forecasts, which is expected behavior in time-

series models [11]. 

 

 Independent Variables  

Independent variables refer to variables that are used to predict the target variable. They 

are the input of forecasting models. As far back as 1996, Holleman et al. employed calendar 

variables, incorporating seasons (daily, weekly, monthly) and holidays. In 2001, Batal et al. 

utilized day-before and after-holiday date indicators in applying a stepwise linear regression 

method for daily [16]. McCarthy et al. considered holidays and a day after holidays in their Poisson 

model [17]. Carvalho-Silva et al. [18] and Whitt & Zhang [10] examined the fact that daily arrival 

totals exhibit a decrease just before and, on the holidays, while they tend to be higher than usual 

on the days immediately following holidays. Other studies also consider holidays and near 

holidays, the interaction of the month of the year and holidays, and the interaction of the month of 

the year and near holidays as independent variables [19].  

Some studies considered exogenous variables, including weather and temperature, 

precipitation [10],[19],[18] snowfall [19], and features in measuring air pollution [20] for ED 

arrivals prediction. A recent study considered a wide range of specific variables such as average 

cloud coverage, average wind speed, daily change in SFC pressure, average humidity, average 

solar radiation, average air quality score, max Ozone concentration, air quality, and influenza rates 

[21]. Gafni et al. showed that most of their defined variables are more significant than calendar 
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variables like month or week of the year in their study [21]. Batal et al. demonstrated that high 

daily temperatures and snowfall significantly impact their regression model to predict daily 

arrivals [16]. 

 

 Forecasting Method 

Wiler et al. showed in their review research that to compare the models, we should first 

consider the forecasting output [5]. Method-wise, in the case of forecasting hospital ED's arrivals, 

the methods we considered are generally classified into three main types:  

1- Statistical Forecasting methods include autoregressive integrated moving average 

(ARIMA), linear regression (LR), and exponential smoothing (SE), 

2- Hierarchical forecasting with different top-level forecasting and reconciliation methods.  

3- Artificial Intelligence Forecasting Techniques include artificial neural networks (ANN), 

Decision Trees and Random Forests, and Deep Learning. The latter have increasingly 

become famous for non-linear models due to their ability to capture complex patterns in 

data.  

 

 Statistical Forecasting Methods 

Carvalho-Silva et al. conducted a study about forecasting one week and one month ahead 

daily ED arrivals for total. They compared the accuracy (MAPE) of Seasonal ARIMA (SARIMA), 

ARIMA, Moving Average, Holt-Winter, and Multiplicative Winter methods. The study found that 

the SARIMA model with weekly seasonality demonstrated significantly better accuracy [18]. 

One of the critical studies that considers acuity level, or the Emergency Severity Index in 

ED arrivals, is Sun et al.'s study in 2009. They categorized patients into three "patient acuity 
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categories-PAC": P1, P2, and P3, where P1 is the most acute, and P3 is the least acute. This 

research considers public holidays, ambient temperature, humidity, and pollution standard index 

(PSI), but the specific variables used varied for each PAC. For instance, public holidays were 

omitted for P1, and pollution was not included as a variable for P2. The research applied the 

ARIMA and SARIMA methods to each acuity category and the total number of patient 

attendances. They utilized 24 months of data for training, the subsequent six months for validation, 

and the following three months for testing to forecast daily ED attendance [20]. 

Choudhury & Urena's study rigorously evaluated a proposed SARIMA model for 

normality, stationarity, and autocorrelation. They also compare the result of their model with the 

Holt-Winters, neural network and TBATS model, which led to the best performance of the 

SARIMA model. However, their study did not involve various models and different parameters 

for each step of their forecasting dataset, and like many other studies, they applied a unique 

ARIMA (3,0,0) (2,1,0)[24] model for forecasting hourly data [22]. 

Côté et al. investigated linear regression models, including forecasting annual, monthly, 

daily, and hourly arrivals for two years (2007–2009). For hourly arrivals, they implemented 

Fourier regression to describe wavelike patterns observed in hourly ED arrivals[23].  

 Whitt & Zhang employed a Seasonal Autoregressive Integrated Moving Average model 

with external factors (SARIMAX), incorporating variables such as holidays and temperature, to 

forecast daily ED arrivals. Additionally, they utilized SARIMA models, regression analyses 

incorporating calendar and weather variables, and the Multilayer Perceptron (MLP) model, a type 

of artificial neural network, as part of their machine learning methodology. The SARIMAX model 

surpassed the performance of all other models. Then, they implemented a model combining the 

result of the ED arrivals forecasting, neural networks, and a periodic doubly stochastic 
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inhomogeneous Poisson process to predict occupancy level one hour to six hours ahead. The 

essential advantage of their approach was the dynamic adaptation of the training data, rather than 

relying on a single fixed model to forecast all the testing data. The result showed that with at least 

10 weeks of rolling average training data, predicting one-hour ahead had the best accuracy (the 

lowest mean square error -MSE) [10]. 

McCarthy et al. employed a Poisson log-linear regression model to analyze low-acuity and 

high-acuity arrivals hourly forecasting for one year [17]. Their model's accuracy was assessed 

through 50% and 90% prediction intervals.  

Exponential smoothing is one of the well-established methods for forecasting hourly data for 

ED arrivals. Morzuch and Allen (2006) applied a double exponential smoothing model for the 

double multiplicative seasonal data to hourly forecast for 168 steps ahead. They compared the 

results with their previous study, applying the standard Holt-Winters exponential smoothing 

method to evaluate its performance. Despite anticipating a more accurate outcome with the new 

approach regarding RMSE, the improvement was minimal (RMSE: 2.403 with double seasonal, 

compared to 2.413 with Holt-Winters). They attributed this slight difference to the stability of their 

ED arrival data over time [23]. 

As highlighted in Section 2.1, Prabhu's study partly concentrated on forecasting ED 

arrivals, serving as a foundation for subsequent analysis. The research employed methods such as 

ARIMA, SARIMA, Extreme Gradient Boosting (XGBoost), and Random Forest Regression to 

predict arrivals and ESI levels for both 90 days in advance using daily data and one week ahead 

using hourly data. The findings demonstrated that XGBoost outperformed the other models in both 

long-term and short-term forecasting scenarios. 
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 Hierarchical Forecasting 

 A topic that has not been extensively studied in emergency department (ED) research is 

the importance of achieving consistent forecasts across different ESI levels. This involves ensuring 

that the forecasts for individual ESI levels align with each level's total number of patients. 

Inconsistent forecasts at different levels can lead to conflicting decisions and a lack of overall 

coherence in managing ED crowding. Hierarchical forecasting techniques aim to address this issue 

and make forecasts more consistent and coherent [21]. Many studies prove that reconciliation is 

guaranteed to improve base forecasts [24]. 

Reconciliation plays a crucial role in hierarchical time series forecasting. It refers to a 

technique to ensure consistency across different levels of a hierarchical or grouped series of 

forecasts. Numerous approaches have been explored in the literature to achieve data consistency 

and accuracy. Among these, temporal reconciliation is a major technique in the field. This 

approach is based on combining short-term and long-term forecasts that were introduced by 

Andrawis et al. They proposed a method that merged short-term and long-term forecasts, 

leveraging diverse information from different time scales [25]. Temporal hierarchies were 

introduced by Athanasopoulos et al. [26]. The structure for aggregating data addressed how to 

combine more frequent data points (for example, data collected monthly) into less frequent ones 

(for example, on a quarterly or annual basis), focusing on the progression of time. Recently, a new 

approach was proposed by Di Fonzo and Girolimetto named "cross-temporal" [27]. This involves 

ensuring that forecasts are consistent across different levels of aggregation, both in terms of cross-

section (such as different regions) and temporal (like monthly to annual forecasts). The paper 

illustrates this with a case study on Australian GDP, demonstrating improved accuracy over 

traditional single-dimension reconciliation methods.  
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Hierarchical forecasting works for point forecasting and probabilistic forecasting. 

Athanasopoulos et al., using Australian GDP data, demonstrated how these methods not only 

produce coherent forecasts but also improve overall accuracy in both point and probabilistic 

forecasting frameworks [28]. Their study assumed that the top level referred to Gaussian 

probabilistic forecasts and the bottom levels referred to the non-parametric bootstrap method. 

 In hierarchical time series forecasting, disaggregation is key. The most traditional 

disaggregation was studied by Gross and Sohl, for sales forecasting. They examined twenty-one 

different proportion disaggregation methods with district approach, named from A to I, and some 

of them have numbers such as “I” that contain “I1”, “I2”, “I3”.   Methods A and F were based on 

the simple average of historical proportions. They introduced three disaggregation techniques that 

appeared most promising in sale forecasting applications (A, F, I). Two methods, (A) and (F), are 

based on historical data and weighted sales averages, and (I) assigns different weights based on 

the correlation between lagged and current sales proportions [29]. The problem with their 

disaggregation methods was that they didn't account for changes at different levels during 

forecasting. Addressing this, Hyndman and Athanasopoulos introduced a new statistical 

reconciliation method for both top-down and bottom-up approaches, overcoming this limitation 

[30], [31], [32]. Their method is notable for its ability to use different types of initial forecasts, 

including those based on expert opinions. The approach delivered reconciled point forecasts at 

different hierarchy levels and considered the correlations and interactions among series within 

each level. 

In recent studies, Panagiotelis et al. introduced a novel reconciliation approach using 

orthogonal projections. They highlighted the significance of linear aggregation constraints in 

reconciliation and presented its solution through a multidimensional geometric perspective, similar 
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to a multivariate setting [33]. Hollyman et al. mentioned that the mathematics of this approach 

closely aligns with forecast combination, as both depend on equations for summing random 

variables. This method inherits the advantages of combined forecasts, demonstrating how to 

compute statistically unbiased reconciled forecasts at any hierarchical level, effectively 

transforming simple reconciliation problems into forecast combinations [34]. 

A recent study focused on forecast reconciliation methods for both point and probabilistic 

forecasts is Rostami-Tabar and Hyndman's. They concentrated on forecasting daily ambulance 

demand for 84 days (12 weeks) ahead using a hierarchical approach with different forecasting 

methods for the top level, including Stationary (naïve model that future days similar to past days), 

Exponential Smoothing State Space model (ETS), Generalized Linear Model or GLM (linear 

regression model for non-Gaussian distributions), Poisson Regression Using TSGLM (GLM 

models which include auto-regression component for considering dependencies in series), and 

Ensemble model that contain a simple average of all the previous models. They applied the 

Minimum Trace (MinT) reconciliation method for the bottom-up hierarchical forecasting. The 

structure of the hierarchy time series contained three main groups: nested hierarchical structure 

based on control area, health board, and nature of the incident, which means there were 1530 time 

series in total. Since they considered multiple grouped attributes in their hierarchical structure and 

there was no unique way to disaggregate top forecasts, they did not use the top-down approach. 

Their research findings indicated that at a higher level of aggregation, forecast improvement with 

reconciliation surpasses that of bottom-level series, which are characterized by noise and minimal 

to no systematic patterns. Among all the proposed forecasted models, the ensemble model had 

better accuracy than each individual model for higher levels of hierarchy. For the bottom level, 

ETS outperformed.  
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 Artificial Intelligence Forecasting Techniques 

The neural network model is highly effective for time series forecasting. However, 

choosing the wrong network parameters can cause over-fitting, as pointed out by Choudhury and 

Urena [20]. This issue can result in the model performing well with the in-sample data it was 

trained on but poorly in forecasting data, resulting in less accurate forecasting [22]. 

Jones et al. examined different methods, including seasonal autoregressive integrated 

moving averages, time series regression, exponential smoothing, and artificial neural network 

models, to predict the number of daily patients at EDs. Data was collected from three different 

hospital EDs located in different locations, and they named them "facility_1" to "facility_3 in their 

study and did not consider the level of each ED. They made models for forecast horizons ranging 

from 1, 7, 14, 21, and 30 days ahead based on training data from January 1, 2005, through March 

31, 2007 [19]. The authors found that sophisticated models such as artificial neural networks only 

slightly improve forecast accuracy (MAPE) compared to multiple linear regression with calendar 

variables. This obtained an acceptable accuracy for predicting the number of daily patients at EDs. 

Gafni et al. analyzed that machine learning models, including random forests and gradient, 

boosted machines (GBM), and a hybrid model using the boosted Prophet algorithm, led to better 

model accuracy (RMSE) for predicting daily ED arrivals than univariant time series models [21].  

In their 2013 study, Xu et al. employed a Non-linear Least Square Regression (NLLSR) 

framework, Artificial Neural Network (ANN), and multiple linear regression to forecast daily 

arrivals of two patient types (categories 3 and 4 patients, which are less critical1). They considered 

various contributing variables, including climate factors (rainfall, wind speed, temperature, 

humidity), weekdays, holidays, and influenza outbreaks. The results showed that the ANN method 

 
1
 Based on triage system in Hong Kong accident and Emergency Departments, which is similar to ESI level in U.S 

health system.  
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outperformed both multiple linear regression and NLLSR approaches in terms of performance 

[35]. 

Sudarshan et al. proposed three models, Conventional Neural Network (CNN), Long Short-

Term Memory (LSTM), and Random Forest (RF), to forecast ED arrivals 3-days ahead and 7-days 

ahead. The prediction utilized 3.5 years of ED arrivals, calendar variables, and weather 

information. The outcomes revealed that CNN achieved the smallest MAPE for the 3-day forecast, 

while LSTM performed better for the 7-day forecast [36]. 

To address the use of machine learning algorithms that have become prevalent in recent 

years, Zhang et al. introduced the application of diverse machine learning algorithms, such as 

LSTM. The MIC was employed to analyze intricate non-linear relationships between multiple 

variables in datasets. At first, they applied the Maximal Information Coefficient (MIC) for feature 

selection and the kernel principal component analysis (KPCA) to reduce the dimension of all the 

selected variables. Among all the models evaluated, LSTM demonstrated the highest performance 

[37]. Interestingly, the linear regression model exhibited greater accuracy in this research than 

ARIMA and several machine learning models. 

 

 Summary and Conclusions 

Table 2-1 summarizes some of the critical reviewed studies about forecasting the number of 

ED arrivals.  

This study addresses gaps in previous research by aiming to predict ED arrivals with three 

key objectives. Firstly, it focuses on forecasting one hour ahead to reduce crowding in ED in the 

short term and better resource management, such as estimating the number of beds that are not 

occupied in EDs. Secondly, forecast ED arrivals based on ESI levels of patient arrivals, which is 
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essential for effective triage planning, resource allocation, predicting ED occupancy, and 

managing patient flow. Third, this research adopts a rolling base method for model training, a more 

flexible approach compared to the static models often seen in other studies. We propose a forecast 

framework and compare the results obtained by default-setting benchmarks commonly used in 

healthcare with the results obtained by these accurate yet uncomplicated models.  
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Table 2-1: The summary of the notable reviewed studies about ED arrival forecasting.  

 
2 Including 1 day and 2 days after holiday, 1 day and 3 days before holiday. 
3 Different EDs but they are not categorized based on the severity levels. 
4 categories 3 and 4 patients, which are less critical. 
5 P1, P2, and P3, where P1 is the most acute, and P3 is the least acute. 
6 High-acuity (ESI_1 and ESI_2) and low-acuity (ESI_3, ESI_4, ESI_5) 

 

Year Citation 

Severities 

Levels or 

Total 

Forecasting Horizon 
Forecast 

Interval 
Tested Models Independent Variables* Best Model 

2022 Prabhu 

Severities 

Levels and 

Total 

90 days ahead for daily data 

/ one week ahead for hourly 

data 

Daily / 
Hourly 

ARIMA/ SARIMA/ XGBoost/ 
Random Forest/Regression 

Hour of the day XGBoost 

2022 Zhang et al., Total 3 months ahead 
Daily / 

Hourly 
Linear regression, ARIMA, LSTM, 

Hour of the day, day of the 
week, season of the year, holiday, 

temperature variables, Mean wind speed, 

Air quality index 

LSTM 

2020 
Choudhury & 

Urena 
Total - Hourly 

SARIMA, TBATS, Holt-Winters, 

Neural network, 
Hour of the day SARIMA 

2018 
Whitt & 

Zhang  

Severities 
Levels and 

Total 

One day ahead for total 
Two hours ahead for 

severity levels 

Daily / 

Hourly 

SARIMAX, SARIMA, Regression, 

MLP 

Hour of the day, day of the week, month 
of the year, holiday2, temperature, 

precipitation 

SARIMAX 

2018 
Carvalho-

Silva et al., 
Total 

one week ahead /  

one month ahead 
Daily 

ARIMA, SARIMA, Moving 

Average, Holt-Winter, Neural 
Network 

Day of the week, month of the year SARIMA 

2017 Hertzum Total3 one month ahead Hourly 
Regression for ED arrivals and 

ARIMA for ED occupancy 

Hours of the day, Day of the week, 

Month of the year  

ARIMA for ED 

arrivals 

2013 Xu et al., 
Severities 

Levels4 
37 days ahead Daily 

Non-linear Least Square Regression 
(NLLSR), ANN, and multiple linear 

regression 

Temperature, rainfall, wind speed, 
humidity, day of the week, month, 

holidays, and influenza outbreaks, 

ANN 

2009 Sun et al., 
Severities 

Levels5 
3 months ahead Daily SARIMA, ARIMA 

Day of the week, Month of the year, 

holidays, temperature, humidity, and PSI 

For P1: ARIMA, for 
P2 and P3: 

SARIMA 

2008 
McCarthy et 

al., 

Severities 

Levels6  
one year ahead Hourly Poisson log-linear regression model 

Hour of the day, day of the week, 

season, calendar year, holidays,  
- 

2008 Jones et al., Total 

Daily forecast for 1, 7, 14, 

21, and 30 days ahead for 

one month 

Daily 

Regression, SARIMA, Exponential 

Smoothing, ANN, Multiple linear 

regression 

Day of the week, month of the year, 
holidays, temperature, precipitation 

Multiple linear 
regression 

2001 Batal et al., Total 3 months ahead Daily Regression 
Day of the week, month of the year, 
season, holidays, snowfall (inches), 

temperature 

- 
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3. BACKGROUND OF FORECASTING METHOD 

 

This chapter provides an overview of time series decomposition and then some background on 

the techniques and methods we used in this study, including: 

1. Exponential Smoothing 

2. Autoregressive Integrated Moving Average  

3. Multiple Linear Regression 

4. Hierarchical Forecasting  

5. Evaluation techniques include mean absolute error and mean absolute percentage error. 

 

 Time Series Decomposition 

To study the behavior of a time series meticulously, we need to decompose it into several 

elements, including trend, cycle, seasonal, and error. Trend (T) is related to the long-term direction 

of the time series. Cycle (C) is a repeating pattern characterized by regularity but unknown and 

not accrued in fixed, such as frequency a business cycle. Typically, any cyclic element will be 

included within the trend component unless specified otherwise. Season (S) is a repeating pattern 

with a recognized periodicity, such as every 12 months per year or every seven days per week. 

Seasonality is fixed and has known frequency. Irregular or error (E) is an unanticipated and 

unpredictable series element [38]. 

Using this clarification, we can transform each time series y into one of the following. 

y = T + S + E, where each component is added together; or, y = T × S × E, where the time 

series is the product of components; or, y = (T + S) × E, which means seasonal and trend are 

considered additive, while the error component is treated as a multiplicative factor. 
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 Exponential Smoothing (ES) 

 Exponential smoothing has been found to have extensive application in forecasting. This 

method is used to predict the behavior of a time series based on the weighted average of the 

behavior of past data where a smaller weight is put on older data. The nearer the data is to the 

forecasting target, the more weight will be placed on this method. Equation 3-1 shows the one step 

ahead forecasting for the time t+1 for the time series y, which equals a weighted average of all the 

observations in series y1, y2, …,yt. 

 

 𝑦̂𝑡+1∣𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)
2𝑦𝑡−2 +⋯+ 𝛼(1 − 𝛼)

𝑡−1𝑦1 3-1 

 

Where 𝑦̂𝑡+1∣𝑡  is the forecasted value of one-step ahead for the time series y for the time t+1, and 

0≤α≤1 is the smoothing parameter. The formula shows that the weight for the time series in time t 

has the largest value, and the oldest observation (y1) has the smallest weight value [38].  

Hyndman et al. structured exponential smoothing methods and demonstrated the State 

Space Models model as a unique solution based on the characteristics of Error (E), Trend (T), and 

Seasonality (S), known as the ETS model, that underlie exponential smoothing methods.  

ETS model considers five different time series types based on the nature of their trend: 1-

time series without any trend, or time series with a fixed level of trend without any growth; 2- 

additive trend; 3- damped additive; 4- multiplicative trend; 5- damped multiplicative trend. 

Similarly, based on the seasonality of the time series, three types of seasonality for the ETS model 

are 1- non-seasonal, 2-additive, and 3- multiplicative. Finally, based on the types of error time, 

aeries can have additive or multiplicative errors [39]. This leads to 30 different models for ETS. 

The point forecasts will be identical when comparing the point forecasts produced by additive and 
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multiplicative error components using the same smoothing parameter values. Table 3-1 shows all 

the ETS models for additive error.  

 

Table 3-1: ETS models for additive error  [39] 

Trend component 

Seasonal component 

N 

(None) 

A 

(Additive) 

M 

(Multiplicative) 

N (None) N, N N, A N, M 

A (Additive) A, N A, A A, M 

Ad (Additive damped) Ad, N Ad, A Ad, M 

M (Multiplicative) M, N M, A M, M 

Md (Multiplicative damped) Md, N Md, A Md, M 

 

 

Here, we describe one of the models in Table 3-1 used in this research: ETS (A, N, A) or 

Holt-Winters' Seasonal method. This model is applied for time series with additive error, non-

trend, and additive seasonal components. The general ETS model for this time series has the 

following formula: 

 𝑦𝑡 = 𝑓(𝑙𝑡−1, 𝑠𝑡−𝑚, 𝜀𝑡) 3-2 

 

Where f is an additive function, 𝑙𝑡−1 is the level component at time t-1, 𝑠𝑡 is the seasonal 

component at time t, and m donates the number of the seasonality and 𝜀𝑡 is the error term. A quick 

description of the level implies an average value per time period (which is different from the trend 

that shows the change in the value). We can write the formula 3-2 in another way:  

 

 𝑦𝑡 = 𝑙𝑡−1 + 𝑠𝑡−𝑚 + 𝜀𝑡 3-3 

 𝑙𝑡 = 𝑙𝑡−1 + 𝛼𝜀𝑡 3-4 

 𝑠𝑡 = 𝑠𝑡−𝑚 + 𝛾𝜀𝑡  3-5 

Both α and γ are constants; α is the smoothing parameter for the level, and γ is the smoothing 

parameter for the seasonality.  
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Forecast for h-step ahead for time t+1 with ETS (A, N, A) can be written in the following: 

 

 𝑦̂𝑡+ℎ∣𝑡 = 𝑙𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) 3-6 

 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)𝑙𝑡−1 3-7 

 𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 3-8 

 

Where k is the integer part of h-1/m, 𝑙𝑡 denotes the series level at time t.  

All the constants and smoothing parameters (for ETS (A, N, A) smoothing parameters are α 

and γ) are estimated by maximizing the "likelihood" (MLE). By MLE, the probability of obtaining 

the training data is maximized.  Maximizing the likelihood for an additive error model has a similar 

result as minimizing the sum of squared errors (SSE) [40].  

Model selection for the ETS model can be done using all the information criteria (AIC, AICc, 

and BIC). For ETS models, Akaike's Information Criterion (AIC) is defined as: 

 

L is the likelihood of the model, and k is the number of parameters and initial states we need to be 

estimated. The AICc or corrected AIC is considered for small sample sizes and defined as: 

 

 
𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1
 

3-10 

 

Where N is the number of observations used for estimation (training data). 

The Bayesian Information Criterion (BIC) is another statistical criterion used in model 

selection and statistical modeling. The BIC aims to find the model that maximizes the likelihood 

while penalizing complex models. It is defined as: 

 

 𝐴𝐼𝐶 = −2𝑙𝑜𝑔 (𝐿) + 2𝑘 3-9 
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 𝐵𝐼𝐶 = 𝐴𝐼𝐶 + 𝑘[𝑙𝑜𝑔 (𝑁) − 2] 3-11 

 

 For all AIC, AICc, and BIC, lower values indicate a better trade-off between fit and 

complexity, making models with lower AIC, AICc, and BIC referable [40]. 

 

 Autoregressive Integrated Moving Average (ARIMA) 

One univariate time series forecasting model is ARIMA, which applies to stationary or non-

stationary time series. The ARIMA model is a combination of three main components. This is 

achieved by selecting the appropriate values for its three parameters (p, d, q). Accurate choices for 

p, d, and q are crucial for effectively capturing cyclic patterns and seasonality in the data. Here is 

a brief overview of the parameters in ARIMA modeling: 

1- AutoRegressive component (AR) shows the relationship between current and lagged 

observations. The AR with pth order autoregressive component displays the current 

observation as a linear function of p-lagged values. Therefore, p determines the order of 

AutoRegressive components in the ARIMA model.   

An autoregressive model of order p can be written as follows. 

 

 𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 3-12 

Where c is a constant term or drift, ϕi (j=1, …, p) is the coefficient of the autoregressive 

term for lag i, and εt is white noise. 

2- —Integrated component (I): This refers to differencing the time series data to achieve 

stationarity,y where the statistical properties of time series (such as mean or variance) 

do not change over time. The number of differencing needed to make time series 

stationary is shown by (the d).  
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3- Moving Average component (MA) represents the relationship between the current 

observation and a residual error from the past parameter. (q) indicates the number of 

lagged residuals used in the model. The MR model of order q is a regression model that 

uses past forecast errors to forecast yt. 

 

 

Where c is a constant, θk is the moving average coefficient for lag k, and εt is white noise.   

The initial stage in constructing an ARIMA model involves assessing data for stationarity 

and checking the normality of its distribution. In the case of a non-stationary time series, the initial 

step involves eliminating the trend and seasonality, which represent systematic patterns to 

transform the time series into one without recognizable and predictable patterns. It will be 

achievable by doing differencing. This shows us that for estimating the parameters of the ARIMA 

model, we need to determine the number of differencing (d) before finding p and q. Therefore, 

ARIMA (p, d, q) modeling integrates differencing with autoregressive (AR) and moving average 

(MA) components, and we can write the ARIMA (p, d, q) for y′t as the differenced time series. As 

a result, ARIMA (p, d, q) incorporates both past values of yt and lagged errors. 

 

 

The Seasonal ARIMA model (SARIMA) is used when the time series shows seasonal 

patterns. SARIMA combines non-seasonal and seasonal factors in a multiplicative approach, 

represented as SARIMA (p, d, q)(P, D, Q)m, where p, d, q, are the same as ARIMA model and: 

P: indicates the seasonal AR order. 

 𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 3-13 

 𝑦𝑡
′ = 𝑐 + 𝜙1𝑦𝑡−1

′ +⋯+𝜙𝑝𝑦𝑡−𝑝
′

⏟              
𝐴𝑢𝑡𝑜 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 (𝐴𝑅) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞⏟            
𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑀𝐴) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+ 𝜀𝑡 3-14 
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D: represents seasonal differencing. 

Q: stands for the seasonal MA order. 

m: represents the number of periods per season. 

 

For seasonal time series, first, we determine the order of D.  Finding the "Seasonal 

Strength" determines the appropriate number of seasonal differences. A high variance in the 

seasonal component of a time series (St) indicates that seasonality strongly affects the non-

stationary nature of the time series.  

 
𝐹𝑆 = 𝑚𝑎𝑥 (0,1 −

(𝑅𝑡) 

(𝑆𝑡 + 𝑅𝑡) 
) 

3-15 

 

When the variance of the seasonal component is large (ratio=0), it means that the seasonal 

component (FS) is fully active with a value of one. For time series with Fs less than 0.6, the seasonal 

difference is insignificant; therefore, it does not account for the seasonal difference (D=0). 

Otherwise, one seasonal difference is suggested (D=1). 

If the time series is non-seasonal but is non-stationary, then only the number of differences 

(d) is needed to obtain a stationary time series[40]. With the Unit Root test, the number of 

differencing will be accessible. The most essential unit root test techniques are the Augmented 

Dickey-Fuller Test, the Augmented Dickey-Fuller Test (ADF), the Phillips-Perron (PP) test, and 

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test. For our analyses, we applied the KPSS test 

where the null hypothesis or H0 is that the time series is stationary. If H0 is rejected, then we need 

differencing [41].  

After choosing d and D, initial values for p, q, P, and Q are considered by different 

variations of them. These values can be determined by ACF and PACF plots. After that, the 
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parameters of 𝑐, 𝜙1, …, 𝜙𝑝 and also, 𝜃1, …, 𝜃𝑞 need to be determined for different models. This 

parameters estimation can be done by MLE, which is similar to minimizing the least square 

estimation. After estimating all the parameters, model selection can be done using an information 

criterion such as AIC: 

 

 

K is the constant. If in formula 3-4, 𝑐 = 0, then k=0, if not (𝑐 ≠ 0), then k=1. 

 (p+q+P+Q+k+1) is the number of parameters in the model, including c. This is the penalty part 

for comparing different models. L is the maximized likelihood of the model fitted to the differenced 

data set. The corrected AIC and BIC can be written as: 

 

 

AIC, AICc, or BIC minimizing will lead to proper models.  

Adding a "drift" term to an ARIMA model means including a linear trend. For instance, 

consider the model ARIMA (1,1,0) with drift. This model has one autoregressive term, one 

differencing operation, no moving average term, and a linear trend. This choice indicates the 

model's capability to capture a long-term trend observed in the training data (related to forecasting 

data points). According to Equation 3-14, this model can be shown mathematically as the 

following equation: 

 

 𝐴𝐼𝐶 =  −2 𝑙𝑜𝑔 (𝐿)  + 2(𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝑘 + 1) 3-16 

 
𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +

2(𝑝 + 𝑞 + 𝑘 + 1)(𝑝 + 𝑞 + 𝑘 + 2)

𝑁 − 𝑝 − 𝑞 − 𝑘 − 2
 

3-17 

 𝐵𝐼𝐶 = 𝐴𝐼𝐶 + [𝑙𝑜𝑔 (𝑁)  − 2](𝑝 + 𝑞 + 𝑘 + 1) 3-18 

 𝑌𝑡 ́ = 𝑐 + ∅1. (𝑌𝑡−1 ́ − 𝑐) + 𝜖𝑡 3-19 
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Where: 

𝑌𝑡 ́ is the differenced time series at time t, 

c is the constant term (drift), 

∅1 is the coefficient of the autoregressive term for lag1, 

𝑌𝑡−1 ́ is the differenced time series at the previous time step, 

𝜖𝑡 is the white noise error term at time t. 

 

 Multiple Linear Regression 

Multiple Linear Regression (MLR) is a fundamental and widely used model in forecasting 

practices. MLR is a statistical technique that models the relationship between more than one 

independent variable or predictor and the dependent variable or response variable by fitting a linear 

equation to the observed data. Independent variables can be both quantitative and categorical 

variables. Correlation between variables can include both main effect and cross effect.  

The general K-variables linear regression is: 

 

 𝑌𝑡 = 𝛽1 + 𝛽2𝑋2𝑡 + 𝛽3𝑋3𝑡 +⋯+ 𝛽𝑘𝑋𝑘𝑡 + 𝑢𝑡 3-20 

 

Where the intercept β1 to βk are unknown parameters, X1 to Xk are known independent variables, 

and ut is the random or nonsystematic component with zero mean and unknown variance σ2 or 

independent normally distributed random variable N(0, σ2). Unknown variables are named 

Regression Coefficients and estimated using the Ordinary Least Squares (OLS). OLS minimizes 

the sum of squared errors (SSE). This general MLR is linear in the parameters (β) [42]. We 

interpret βk as the average effect on Yt of one unit increase in Xk, holding all other variables fixed.  
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Finding the right fit for the model involves a trade-off between how well it performs and 

how complex it becomes. Therefore, the number of regressors plays an essential role in MLR. The 

dependent variable is often only associated with a subset of the predictors. There are various 

methods to select predictors. One of the methods is “stepwise regression,” which can be done 

backward, forward, or hybrid. Backward stepwise regression modeling starts with the model with 

all the potential predictors and removes one predictor each time, keeping the model if it improves 

the forecasting accuracy. Forward stepwise regression starts with modeling with limited predictors 

and adds one predictor each time. The model is kept if it has improvement in accuracy. These steps 

continue until no further improvement. Hybrid stepwise regression modeling adds a predictor 

backward and drops the predictor in forward stepwise regression when considered together.  

To select the best model to forecast, we can directly estimate the error of the validation set. 

For this purpose, predicted y for validation data can be generated by applying the estimated 

coefficients within the regression equation for training data and assuming the error term is zero. 

Then, based on best-estimated coefficients and setting the error term to zero, y for validating the 

data set is predicted.  

 

 The Hierarchical Time Series Forecasting  

A hierarchical time series is a collection of time series organized in a hierarchical 

aggregation structure. Time series is arranged into various levels based on factors such as variable 

categories, time periods, or regions.  

Hierarchical forecasting is the methodology used to generate predictions for such 

hierarchical time series. Figure 3.1   shows a  single-level hierarchical time series structure. Each 
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row is one level, and the node at the top level is the aggregation of child nodes. Therefore, we have 

the following equations for this single-level time series. 

 

 𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑦𝐴 + 𝑦𝐵 + 𝑦𝐶 3-21 

 

 
Figure 3.1: A schematic diagram of a  single-level hierarchical time series 

 

The matrix form for equation3-21 can be written as: 

 

 

[

𝑦𝑡𝑜𝑡𝑎𝑙
𝑦𝐴
𝑦𝐵
𝑦𝑐

] = [

1 1 1
1 0 0
0 1 0
0 0 1

] × [

𝑦𝐴
𝑦𝐵
𝑦𝐶
] 

 

3-22 

The goal of hierarchal forecasting is to enhance the forecasting accuracy for a specific level 

or all levels within the hierarchy. A method employed to forecast an aggregation level or different 

levels ensures that the forecasts remain consistent and "coherent," meaning predictions for 

aggregates should align with the sum of the corresponding disaggregated forecasts [24].  

Hierarchal forecasting methods are broadly categorized into two major approaches: "bottom-

up" and "top-down." Bottom-up methods commence by generating forecasts independently for the 

lowest-level or bottom-level components within the hierarchy. These individual forecasts are then 

 

 Level 1 

 Level Top  ytotal 

 yA  yB  yC 
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aggregated upwards, leading to the forecast for higher-level series, ultimately resulting in the 

"Total" series (ytotal) at the top level of the hierarchy. In "top-down" approaches, the initial step is 

to create a forecast for the highest-level series, typically denoted as the "Total" series (ytotal), at the 

top of the hierarchy. Then, these forecasts are disaggregated and broken down into lower-level 

components. These methods ensure the forecasts are consistent and aligned at each hierarchy level. 

The mathematical form of the hierarchy forecasting with the bottom-up approach for single 

level hierarchy in Figure 3.1 is described in the following. Considering the h-step ahead forecast 

for each bottom-level time series at time t: 𝑦̂𝐴(𝑡+ℎ|𝑡) ,  𝑦̂𝐵(𝑡+ℎ|𝑡)  , 𝑦̂𝐶(𝑡+ℎ|𝑡), then the coherent 

linear h-step ahead forecast for the time t for the "Total" time series (𝑦̃𝑡+ℎ|𝑡) will be: 

 𝑦̃𝑡+ℎ|𝑡 = 𝑦̂𝐴(𝑡+ℎ|𝑡) + 𝑦̂𝐵(𝑡+ℎ|𝑡) + 𝑦̂𝐶(𝑡+ℎ|𝑡) 3-23 

For a top-down approach, let 𝑦̂(𝑡+ℎ|𝑡) be the vector of the initial h-step ahead forecast at 

time t for the "total" time series. Then, we have the following equation for each bottom-level time 

series in Figure 3.1. 

 𝑦̃𝐴(𝑡+ℎ|𝑡) = 𝑝1𝑦̂𝑡+ℎ|𝑡 ,  𝑦̃𝐵(𝑡+ℎ|𝑡) = 𝑝2𝑦̂𝑡+ℎ|𝑡  ,   𝑦̃𝐶(𝑡+ℎ|𝑡) = 𝑝3𝑦̂𝑡+ℎ|𝑡 3-24 

Where pj (here, j=1,2,3) are the proportion that distribute the forecast of the top level to the bottom 

level, and 𝑦̃𝐴(𝑡+ℎ|𝑡), 𝑦̃𝐵(𝑡+ℎ|𝑡), 𝑦̃𝐶(𝑡+ℎ|𝑡) are the h-step ahead forecast for time series A, B, and C in 

the bottom level. 

The main question for the top-down approach is how to efficiently conduct the proportions 

of forecast from the top to the bottom level of hierarchical data. We previously mentioned the 

Gross-Sohl reconciliation in Section 2.5.2, and now we will explain two methods, A and F, in more 

detail for single level hierarchical data. 
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1- An average of historical proportions, labeled as "top-down Gross-Sohl method A" or 

"tdgsa"7, for j=1,…,m, number of time series in the bottom level, this method calculates 

the average historical proportions by the formula, 

 

𝑝𝑗(𝑡) =
1

𝑁
∑

𝑦𝑗,𝑡

𝑦𝑗,𝑡𝑜𝑡𝑎𝑙

𝑁

𝑡=1

 3-25 

Where N is the size of the historical data set, yj,t is the value of the bottom level series at time t, 

ytotal is the aggregate value of all the time series for the time t in the bottom level, which for single- 

level hierarchical time series is equal to top level time series.  

2- The proportion of the historical average, labeled as "top-down Gross-Sohl method F" or 

"tdgsf"8, for j=1,…,n number of time series in the bottom level, this method determines the 

proportion of the historical average by the formula, 

 

𝑝𝑗(𝑡) =
∑

𝑦𝑗,𝑡
𝑁

𝑁
𝑡=1  

∑
𝑦𝑗,𝑡𝑜𝑡𝑎𝑙
𝑁

𝑁
𝑡=1

 3-26 

Where N is the size of the historical data set, yj,t is the value of the bottom level series at time t, 

ytotal is the aggregate value of all the time series for the time t in the bottom level, which for single 

level hierarchical time series is equal to top level time series. 

These two approaches for determining the proportion lead to different results for the bottom 

level. However, since these two approaches do not consider the change in the bottom level of the 

time series, it may be less accurate to forecast for the lower level, especially if data have significant 

changes in the forecasting window [32]. To resolve this challenge, calculating the proportions 

based on the forecasted proportions of the bottom level series is considered. Against two other 

 
7 This method is labeled as “Top-down HP1” in [32] 
8 This method labeled as “Top-down HP2” in [32] 
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approaches in which we do not need the forecasting for the bottom level, this method starts with 

the initial forecast that refers to making h-step-ahead forecasts for all series (total time series in 

the top level including all the time series in the bottom level). For one-level hierarchy, this process 

is obtained by the following equation: 

 𝑝𝑗(𝑡) =
𝑦̂𝑗,𝑡,ℎ

∑ 𝑦̂𝑗,𝑡,ℎ
𝑚
𝑗=1

 3-27 

Where 𝑦̂𝑗,𝑡,ℎ is the forecasted value for h-step ahead of the bottom at time t, for j=1,…,m number 

of time series in the bottom level. This method is considered "top-down forecast proportions" or 

"tdfp"9.  

For top-down approaches to single level hierarchy, the final top-level forecasts are equal 

to the initial top-level forecasts. Therefore, we can summarize the forecasting for time series for 

h-step ahead (𝑦̃𝑗,ℎ )   in  Figure 3.1   according to the -down forecast proportions-top -tdfpwith  

equations following.  

 

 𝑦̃𝐴(𝑡) = (
𝑦̂𝐴(𝑡+ℎ|𝑡)

𝑆̂ℎ
) 𝑦̂𝑡+ℎ|𝑡 3-28 

 𝑦̃𝐵(𝑡) = (
𝑦̂𝐵(𝑡+ℎ|𝑡)

𝑆̂ℎ
) 𝑦̂𝑡+ℎ|𝑡 3-29 

 𝑦̃𝐶(𝑡) = (
𝑦̂𝐶(𝑡+ℎ|𝑡)

𝑆̂ℎ
) 𝑦̂𝑡+ℎ|𝑡 3-30 

 

Where 𝑦̂𝑡+ℎ|𝑡 is the h-step ahead forecasted for the Total time series, 𝑆̂ℎ is equal to the sum of all 

the forecasted time series at the bottom level. If the bottom level includes m time series, then: 

 
9 This method is labeled as “Top-down FP” in [32] 
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𝑆̂ℎ =∑𝑦̂𝑗,ℎ

𝑚

𝑗=1

 
3-31 

 

 Ensemble Model 

An Ensemble is a composite model that combines multiple individual models to improve 

forecast accuracy over any single model in the ensemble. Different models can identify unique 

patterns, trends, and connections within the data. Combining these models allows us to take 

advantage of their strengths and minimize their weaknesses, improving overall performance. There 

are several methods to produce ensemble models, including simple averages and weighted 

averages. Simple average is one of the models of ensemble methods commonly used for 

forecasting. A simple average improves the accuracy of each forecasted method by reducing 

individual models' bias in many cases [43]. A simple average model is a straightforward approach 

that averages the forecasts from multiple models, giving each model's forecast equal weight. This 

method uses a linear formulation for a simple average, where a vector of n forecasts, denoted as f, 

is combined with the same weights.  

 

 
𝐹𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =

1

𝑛
 (𝑓1 + 𝑓2 +⋯+ 𝑓𝑛) 

 

3-32 
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 Evaluation Techniques 

There is no “best” forecasting model. To find a better forecasting model, we can see the 

forecast error loss differential and then compare the accuracy of different models. Various 

measurement scales are employed in point load forecasting to assess forecasting accuracy and find 

the better model by comparing their accuracy. Standard evaluation measures include Absolute 

Error (AE), Percentage Error (PE), Mean Absolute Error (MAE), Root Square Mean Error 

(RSME), and Mean Absolute Percentage Error (MAPE). MAE provides results in the same units 

as the data, not percentages, offering a more precise measure of error magnitude. It works by 

calculating the absolute differences between actual and predicted values, known as absolute errors 

(AE), and then averaging them across the dataset. 

 
𝑀𝐴𝐸 =

1

𝑛
∑  ∣  𝐴𝑐𝑡𝑢𝑎𝑙 𝑡 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑡 ∣

𝑛

𝑡=1

 3-33 

Where n is the size of the time series we forecast.  

RMSE is another scale-dependent measurement that measures the average magnitude of 

the errors between predicted and actual values, considering both the size and direction of the errors. 

A lower RMSE suggests that the model's predictions are, on average, closer to the actual values.  

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑( 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡)2
𝑛

𝑡=1

  3-34 

 

Models exhibiting lower MAE and RMSE values are preferred because they embody fewer 

errors. Considering Formula 3-33 and 3-34, it is clear that when AE is large, or there are outliers 

in the data set, the RMSE impacts more than MAE [44]. This means that when errors are 
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relatively small, the RMSE and MAE yield similar results. MAE and RMSE are evaluation 

metrics that pose no issues, even if the actual data contains zero values. Therefore, for this 

research, we calculate both RMSE and MAE to evaluate the forecasting method. 

 

 Diebold-Mariano (DM) test 

We can compare the accuracy of two forecasting models by standard evaluation metrics. For 

instance, the model with a smaller MAE or RMSE is considered more precise. But suppose the 

differences between the two models are not too much. In that case, we need to compare forecasts 

and find if the differences in forecast errors between the two models hold statistical significance 

[45]. In this context, the Diebold-Mariano (DM) test is used to find if the results of the two 

forecasts are significantly different. The test allows different loss functions to measure 

forecasting errors, such as squared or absolute errors. The DM test can apply to various error 

metrics, including MAE or RMSE. To apply the test, the DM statistic is computed by 3-35: 

 

 
DM =

𝑑̅

√𝜎̂𝑑̅
2

𝑁

 
3-35 

Where 𝑑̅ is the mean difference in the forecasting errors of the two models over N forecast 

horizons or number of observations, 𝜎̂𝑑̅
2 is the estimated variance of the differences in forecasting 

errors.  

The Diebold-Mariano (DM) statistic is assumed to follow a normal distribution under the 

null hypothesis due to the central limit theorem. This means that with a large sample size, the 

distribution of the sample mean will be approximately normal, regardless of the original 

distribution of the population. Therefore, the null hypothesis for the DM test is considered: there 
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is no difference in the predictive accuracy of the two models. This means that the mean 

difference in their forecasting errors equals zero. Therefore, we can reject the null hypothesis at 

the 5% level if |DM| > 1.96.  
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4. DATA 

 

The data used for the thesis include the number of emergency arrivals to the five-level 

emergency department (ED) of PRISMA Health Greenville Memorial Hospital (GMH), 

Greenville, SC. A five-level ED is following up on the Emergency Severity Index (ESI). ESI for 

PRISMA includes a triage algorithm that plans clinical classification for patients into five groups 

from the most urgent situation (ESI_1) to low severity situation (ESI_5). ESI_1 refers to patients 

in critical condition requiring immediate intervention. ESI_2 refers to patients who may be 

unstable and need to be seen quickly by a physician. ESI_3 refers to patients who are stable and 

require treatment within 30 minutes. Patients categorized under ESI_4 are stable and do not need 

immediate, urgent care. Patients in ESI_5 are highly stable and can be treated non-urgently; they 

usually do not need tests and are often discharged on the same day. 

Hourly emergency arrivals for four years from January 2017 to the end of December 2020 

for each ESI and totals were exported from the Electronic Health Record (EHR) database of 

PRISMA hospital and used as input for this research. Variables used for this research are 1-time, 

which includes the year, month of the year, day of the week, and hour of the day; 2-historical ED 

arrival, an integer number. 

Table 4-1, including the Total arrivals time series, represents all the ESIs for emergency 

arrivals to the five-level emergency department at PRISMA Health Greenville Memorial Hospital. 

For each ESIj (where j=1, 2, 3, 4, 5), the ED arrivals for the hour t from 2017 to December 2020 

are represented as Aj(t). A time series, labeled as Atotal(t), is formed by aggregating the "Total" 

values for all ESIs from 2017 to December 2020, with t representing the time points (t=1, 2, ..., T).  

Table 4-2 shows some basic statistics for each time series. 
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Table 4-1: Data availability and severity level of each emergency department. 

ESI Time Span Description 

ESI_1 Jan 2017- Dec 2020 Hourly emergency arrivals to ESI_1 

ESI_2 Jan 2017- Dec 2021 Hourly emergency arrivals to ESI_2 

ESI_3 Jan 2017- Dec 2022 Hourly emergency arrivals to ESI_3 

ESI_4 Jan 2017- Dec 2023 Hourly emergency arrivals to ESI_4 

ESI_5 Jan 2017- Dec 2024 Hourly emergency arrivals to ESI_5 

Total Jan 2017- Dec 2025 Total hourly emergency arrivals  

 

Table 4-2: Statistics of the data for each ESI. 

Time series Minimum Value Maximum Value Rounded Mean Standard Deviation 

A1(t) 0 5 0 1 

A2(t) 0 11 2 2 

A3(t) 0 19 4 3 

A4(t) 0 13 2 1 

A5(t) 0 7 0 0 

Atotal(t) 0 30 9 5 

 

As we see, A3(t) has the highest average ED arrivals, while A1(t)and A5(t) have the lowest 

averages during this time. However, the emergence of COVID-19 in 2019 and 2020 led to 

variations in ED arrivals compared to previous years. 

Having a more comprehensive understanding of data, we first studied the Total time series. 

Since the target of this research is forecasting each ESI, five time-series A1(t), A2(t), A3(t), A4(t), 

A5(t) for four years are also reviewed separately.  

 

 Hour of the day 

The arrival data at different times of the year might have potential seasonality in different 

blocks. We aim to identify seasonality by plotting the data in potential seasonal blocks. Figure 4.1 

shows the boxplot grouped by the hour of the day for the total time series between 2017 and 2020.  
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Figure 4.1: Boxplot of the total arrival grouped by hour of the day. 

The box plot of total arrivals shows a daily seasonality, which means that the average arrivals 

are concentrated between 9:00 a.m. and 8:00 p.m. We will use this information to select the model 

for our proposed solution. However, this seasonal behavior is unclear when visually checking the 

same boxplot for individual ESI. Besides, we observed more fluctuations and less regular patterns 

at this hierarchy level. Figure 4.2 shows the average hourly arrival for each ESI_1 to ESI_5. ESI_1 

and ESI_5 exhibit the highest variability in average arrivals. 
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Figure 4.2: Boxplot of each ESI grouped by hour of the day. 

 Day of week 

Another potential seasonality is the day of the week. The arrival pattern could be different 

on different days of the week. Figure 4.3 describes the seasonality linked to the day of the week. 

It shows that the average number of patient arrivals is less on weekends than on weekdays. On 
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weekdays, patient arrivals remain relatively stable within a specific range. However, a slight 

increase in patient arrivals is observed on Mondays and Tuesdays. 

 

 
Figure 4.3: Boxplot of the total arrivals grouped by the day of the week. 

 

Figure 4.3 shows similar boxplots for each individual ESI. We can observe the same 

patterns in each ESI, but they are less visible at this level. This behavior makes the day of the week 

a potential candidate for an expletory variable of the forecasting model to explain the weekly 

seasonal pattern.  
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Figure 4.4: Boxplot of the arrivals in each ESI grouped by the day of the week. 

  

 Month of the year 

We examined whether there were any variations in ED arrivals across different months of 

the year. As depicted in Figure 4.5, the total ED arrivals throughout the months exhibited seasonal 

behavior at some levels. We can see higher arrivals in summer and winter compared to shoulder 

months. Figure 4.6 shows the same boxplot for each individual ESI.  



44 

 

 

 
Figure 4.5: Boxplot of the total arrival grouped by month of the year. 



45 

 

 

 
Figure 4.6: Boxplot of the arrival for each ESI grouped by month of the year. 

 

Since the COVID-19 pandemic could affect patient arrivals in different months of the year 

in 2020, we investigate the average patient arrivals for the total months of 2017 to 2020 separately 

in Figure 4.7. Obviously, the number of arrivals dropped significantly in April 2020 due to the 

COVID-19 outbreak in the US. The arrivals recovered after two months, and we can even see an 

increase in numbers in July 2020. 
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Figure 4.7: Monthly arrivals for all ESIs from 2017 to 2020. 
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5. METHODOLOGY 

 

This chapter presents the methodology of all the models we apply for one-hour ahead ED 

arrivals corresponding to each ESI category. In this research, we proposed a solution to forecast 

the arrival at ED. The proposed solution is examined in a case study using real-world data 

introduced in Chapter 3, and it is compared to state-of-the-art models as benchmarks. This chapter 

elaborates on benchmark models, proposed solutions, and the case study results. 

 

 Benchmark Models  

To evaluate the performance of the proposed models, we employed eight different significant 

models from the literature, as the benchmark models are shown in Figure 5.1 and listed as follows: 

1. Exponential Smoothing  

2. ARIMA 

Hierarchical forecasting with exponential smoothing and three different reconciliation approaches: 

3. Hierarchical forecasting with exponential smoothing and an average of historical 

proportions (tdgsa) reconciliation 

4. Hierarchical forecasting with exponential smoothing and the proportion of the 

historical average (tdgsf) reconciliation 

5. Hierarchical forecasting with exponential smoothing and forecasted proportions of 

bottom-level (tdfp) reconciliation  

Hierarchical forecasting with ARIMA and three different reconciliation approaches: 

 

6. Hierarchical forecasting with ARIMA An average of historical proportions (tdgsa) 

reconciliation 
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7. Hierarchical forecasting with ARIMA and the proportion of the historical average 

(tdgsf) reconciliation 

8. Hierarchical forecasting with ARIMA and forecasted proportions of bottom-level 

(tdfp) reconciliation 

 

 
Figure 5.1: Benchmark Models. 

 

The first benchmark model is the exponential smoothing model. For the exponential 

smoothing benchmark model, we use the ETS() function in the (fable) package in R software 

with default setting and without specifying the right-hand side of the formula in order to make a 

model to fit the training data [46]. For point forecasts, multiplicative trend methods are not 

considered since they produce poor forecasts. Therefore, in the first step, ETS() applies all 

combinations of (Error, Trend, Seasonal ) models that determine the optimized values by using 

MLE for the smoothing parameters and initial state variables. Then, the model selection for 

choosing the best models (more accurate and less complicated) according to AICc is made. 
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Finally, the best model is applied to point forecast with the forecast()10 function in the fable 

package for one step ahead or as many steps as required.  

 

The second benchmark model in this research is ARIMA. In R software, auto.arim() 

function in the forecast package fits the ARIMA model for any univariate time series to use for 

point forecast [47]. The algorithm for this auto.arima() is determined by Hyndman and 

Khanddakar (JSS, 2008):  

1. Identify whether the training data is stationary or not. If not, select the number of 

seasonal differences (D) using the seasonal strength test11 and the number of non-

seasonal differences (d) via KPSS12. 

2. Choose p, q, P, Q, and c by minimizing the AICc. 

3. Use stepwise search to create different models with different p,d,q, P, D, Q.  

4. Obtain the best model by minimizing the AIC.  

 

The authors suggest that making as few differences as possible would be better because 

differencing can decrease the accuracy of predictions [48]. After training the model with the 

selected ARIMA model, with the forecast() function, the forecasting for one step (or any other 

number of steps) will be done.  

Hierarchical forecasting is another approach for this study. The first step is creating the 

hierarchical time series from the training dataset. For the hierarchical forecasting model, the hts() 

 
10

 The version of fable package used for this research is 0.3.3 and for the forecast is 8.21.1 
11

 By nsdiffs() function automatically. 
12

 By ndiffs() function automatically. 
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function in the (hts) 13 package is applied to create hierarchical and grouped time series. We 

identify the bottom and top levels for a one-level hierarchical time series. Once we set up the 

hierarchical structure, we use the forecast() function to generate the top-level forecast. The 

standard method in the hts() function for this top-level or total time series forecast is ETS models, 

but we have the option to use other methods, such as ARIMA by argument (fmethod). Following 

that, we can apply specific reconciliation methods outlined in Section 3.5. We specify the 

reconciliation method using the argument (method) [49]. 

 

 Proposed Models  

We propose five primary models for predicting one-hour-ahead ED arrivals: The Multiple 

Linear Regression (MLR) models and hierarchical forecasting with MLR for top-level forecast 

and three different reconciliation models for the top-down approach, Ensemble model. Figure 5.2 

shows all the proposed models. 

 

 
Figure 5.2: Proposed Models. 

 

 
13

 hts package used in this study is version 6.0.2 
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 Multiple Linear Regression models (MLR) 

Figure 5.3 shows the steps of developing the MLR models.  

 

 
Figure 5.3: Forecasting Number of ESI level arrivals with MLR model. 

According to some literature, we assume that holidays can impact the volume of ED arrivals. 

Therefore, we consider this feature an independent variable to predict the number of EDs' arrivals. 

To capture the potential holiday effects on ED arrivals, we introduced two holiday-related 

variables, including a binary variable indicating the federal holidays (F). The federal holidays 

include New Year's Day, the Birthday of Martin Luther King, Presidents Day, Memorial Day, 

Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving, and Christmas. This 

variable is categorical, including two classes, 0 for non-holiday dates and 1 for holiday dates.  
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Another calendar variable is days after federal holidays (AF). The latter variable is 

categorical, with zero values if the day before is not a holiday and one, two, or three for one, two, 

and three days after each federal holiday, respectively.  

We use a trend variable (Tt) as a quantitative variable to capture potential trends in the hourly 

arrival. A trend variable is a natural number for each hourly data point in ascending order. It is the 

same as an index for the data set. Since our data contains three years, we can identify the long-

term trend in arrivals.  

We also consider some interaction effects of class variables in our models. Interaction terms 

help the model understand the complex ways variables relate to each other. We considered two 

types of interaction effects in MLR models, including:  

1- Hour of the day×Day of the week that leads to 24×7 cross effect (Ht×Dt) 

2- Hour of the day×Days after a holiday that leads to 24×4 cross effect (Ht×(AF)t). 

Combining the variables defined above, we developed ten models listed in Table 5-1. We use 

Python, and functions are employed from the sklearn library to derive the results for each model. 

 

Table 5-1: The models developed for the proposed solution. 

Name Model 

M_1 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht 

M_2 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Dt 

M_3 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Dt+𝛽4(Ht×Dt) 

M_4 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Ft 

M_5 Aj(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3(Ht×Dt)+𝛽4Ft 

M_6 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Dt+𝛽4Mt 

M_7 Aj(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Dt+𝛽4Mt+𝛽5(Ht×Dt) 

M_8 Aj(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3Mt+𝛽4(𝐻𝑡 × 𝐷𝑡) + 𝛽5Ft 

M_9 Aj(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3Mt+𝛽4(𝐻𝑡 × 𝐷𝑡) + 𝛽5Ft+𝛽6 (AF)t 

M_10 Aj(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3Mt+𝛽4(𝐻𝑡 × 𝐷𝑡)+𝛽5Ft+𝛽6 (AF)t+𝛽7(Ht×(AF)t) 
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 Hierarchical forecasting with MLR model 

The second solution proposed in this research is hierarchical forecasting with an MLR 

model for the top-level forecast and using three different top-down reconciliations. Figure 5.4 

shows the process of this forecasting model.  

 

Figure 5.4: Hierarchical forecasting with MLR model 

The following steps describe this method: 

1. Finding the best MLR model for the top-level time series using a validation period 

(The model selection is explained in Section 5.2.4) 

2. Finding the proportion of top-level forecast for each bottom-level time series of 

hierarchical data.  

3. Reconcile the forecasts using three methods (tdgsa), (tdgsf), and (tdfp), which are 

explained in Section 3.5. 

To forecast the top level, we cannot use the same models we developed for the ESI level 

(Section 5.2.1) because, as we explored the data in Chapter 4, the patterns are different at the 

aggregate level, and using the same model as we have for each level will make the reconciliation 
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useless. Therefore, we developed different versions of MLR models for Atotal(t). We employed the 

same variables we used for the models for each level except the hour of the day (H) variable. 

Instead, we introduced a new categorical variable named (HG) to represent seasonal blocks of the 

day. This variable, (HG), is divided into three categories as follows: 

- Group_1 (00:00 a.m. to 8:00 a.m.): Characterized by the lowest number of total ED arrivals 

during the day. 

- Group_2 (9:00 a.m. to 8:00 p.m.): This includes most ED arrivals, indicating peak activity 

during this period. 

- Group_3 (9:00 p.m. to 11:00 p.m.): Marked by fewer ED arrivals. 

The interaction effects we considered are (HG)t×Dt, which leads to 3×7 cross effect, and 

(HG)t×(AF)t, which leads to 3×4 cross effect. 

We developed ten different models for the total time series. The model functions are listed in Table 

5-2. 

Table 5-2: The models for the Total time series. 

Name Model 

MT_1 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t 

MT_2 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt 

MT_3 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Mt 

MT_4 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Ft 

MT_5 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Ft 

MT_6 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Mt+𝛽5((HG)t×Dt) 

MT_7 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Ft+𝛽5((HG)t×Dt) 

MT_8 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Mt+𝛽5Ft+𝛽6((HG)t×Dt) 

MT_9 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Mt+𝛽5Ft++𝛽6((HG)t× Dt) + 𝛽7(AF)t 

MT_10 Atotal(t)=𝛽0 + 𝛽1Tt+𝛽2(HG)t+𝛽3Dt+𝛽4Mt+𝛽5Ft+𝛽6((HG)t×Dt)+𝛽7(AF)t+𝛽8((HG)t×(AF)t) 
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We must notice that the reconciliation by (tdgsa) and (tdgsf) methods don't need the 

bottom-level component individual forecasts; they use the proportion of the historical actual values 

to do the reconciliation. On the other hand, for the forecast proportion or (tdfp) method, we need 

a base forecast at the bottom level. We use the MLR selected model, explained in Section 5.2.1, 

as the base forecast for the hierarchical forecasting with MLR and (tdfp) reconciliation method.  

 Ensemble model 

This model is the average of all twelve models (the benchmarks and the four other proposed 

models). We want to see if the performance of the average forecasting results of all the models is 

better than each individual model.  

 

 Model Selection for MLR Models 

The model selection for both the MLR proposed model and hierarchical with MLR models 

is based on a rolling forecast approach for a validation period. Figure 5.5 shows the process for 

model selection.  

 

Figure 5.5: Model Selection for MLR models. 
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To forecast on a rolling basis, we need to move the training and forecasting windows h-

step forward to cover the entire validation period. The training for each forecasting data point is 

shifted by size h. Figure 5.6 shows  an example of a rolling forecast with a fixed training period.  

 

 

Training Training Training Training Validation     

 Training Training Training Training Validation    

  Training Training Training Training Validation   

   Training Training Training Training Validation  

    Training Training Training Training Validation 

 

Figure 5.6: The rolling basis forecast. 

 

In the case study section, we used two fixed years of data to train the models to forecast 

one-hour ahead for a validation period. We repeat the forecast for all hours of one validation year. 

Then, we calculate the average of the evaluation metrics explained in Section 3.6. The model with 

the smallest average MAE is selected as the best model to forecast the testing period.  

 

 Post-processing of forecasting results 

Consequently, we will incorporate eight distinct benchmark models derived from 

representative studies in the literature and four proposed models in our study. Our objective is to 

predict numerical values as integers. To improve our understanding of these forecasted values 

and the precision of their evaluation, we will consider rounded values for all forecasts for the 

year 2020. As a result, a post-processing step will be applied, wherein all forecasted values 

across the selected models will be rounded to the nearest integer before assessing each model's 

forecasting performance. 
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 Case Study 

To evaluate the proposed models' performance and compare them with the benchmark 

models, we conducted a case study using the real-world data described in Chapter 4. In this case 

study, we use 2020 as the testing year. We will predict the one-hour ahead values for each time 

series Aj(t) for j=1,…,5 at the time t for the test year. In simpler terms, we aim to forecast the 

values for each hour of the day, starting from the first hour on January 1, 2020, and continuing for 

the entire year. 

For this purpose, we consider a rolling-basis approach to creating a training dataset for each 

point forecast. Each training dataset has a three-year window. This means that for each data point 

to forecast, the training data includes three years of hourly data, approximately 3*365*24=26280 

hourly data points. For instance, to forecast A2(t) emergency arrivals at 1:00 p.m. on October 10, 

2020, the training data starts from 1:00 p.m. on October 10, 2017, to 12:00 p.m. on October 10, 

2020. 

In addition, for the model selection parts of the proposed solution, we used 2019 as the 

validation year and two years of data as the training window. We used this domain to evaluate the 

performance of all the proposed MLR models and the MLR model for the Atotal(t) time series.  

The first benchmark model for our experiment is the exponential smoothing model. We 

create the training data set for each ESI_1 to ESI_5 time series. Then, we fit a model by the ETS() 

function by default arguments for each data point to forecast. The function selects the best model 

based on minimizing AICc. Among all 30 models described in Section 3.2, the one that is selected 

by  the  ETS() function for most of the training data set, for all the time series and various data 

points, is ETS(A, N, A). This model is an additive error ETS model with additive seasonality and 

non-trend. For each forecast, the initial states for the level (l0) and seasonality-related parameters 
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(s0 through s23) are estimated automatically with the ETS() function. We refer  

𝑓1,𝑗(𝑡) as the forecasted value of the time series 𝐴𝑗(𝑡) obtained through the exponential 

smoothing method.  

The second benchmark model we applied for this research is the ARIMA model. A training 

model for each data point is created to forecast one-hour ahead ED arrivals for each time series 

Aj(t), j=1,…,5. ARIMA models that the auto.arima() function selected to forecast each Aj(t), 

j=1,…,5 are shown in Table 5-3. The best ARIMA model for each hour in the forecasting window 

is selected separately. Therefore, for a given Aj(t), we could have different models in different 

forecasting hours.  

Table 5-3: The ARIMA models used for different ESIs. 

Models A1(t) A2(t) A3(t) A4(t) A5(t) 

ARIMA (1,1,0) ×     

ARIMA (0,1,1)  ×  ×  

ARIMA (1,1,1)  × ×   

ARIMA (1,1,0) with drift    × × 

ARIMA (0,1,1) with drift  ×  ×  

ARIMA (1,1,2)  ×    

ARIMA (0,1,2)   ×   

ARIMA (2,1,1)   ×   

ARIMA (2,1,0)     × 

ARIMA (0,1,3)   ×   

ARIMA (3,1,0)    × × 

ARIMA (5,1,0) ×   × × 

ARIMA (3,1,3) with drift   ×   

ARIMA (4,0,1) with non-zero mean  ×    

ARIMA (1,0,3) with non-zero mean  ×  ×  

ARIMA (5,0,1) with non-zero mean  ×  ×  

 

Table 5-3 shows that the selected models that auto.arima() function select as the best models 

to forecast each ESI time series data for the most point forecast. We denote 𝑓2,𝑗(𝑡) as the 

forecasted value of the time series 𝐴𝑗(𝑡) using ARIMA model.  

For hierarchical forecasting, we organize our data to match the hierarchical structure. The 

hierarchy's top level, labeled "Total" captures the overall measure of all ESIs combined. This 
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aggregated "Total" series is then broken down into five distinct series, which form the bottom level 

of our hierarchical data structure. This hierarchical time series structure for the case study is single-

level. Figure 5.7 illustrates the arrangement of the hierarchical tree diagram for the data. It consists 

of a single level, with five nodes in the bottom and top levels containing the total number of ED 

arrivals to all the ESIs. The total number of time series for the hierarchal time series is six.  

 

 
Figure 5.7: Hierarchical tree diagram. 

 

Table 5-4 lists the names of six benchmark models that use the hts() function for the time 

series Aj(t) at the specific time t. 

 

Table 5-4: All HTS with ETS and ARIMA models 

𝑓3,𝑗(𝑡) HTS with ETS and (tdfp) reconciliation 

𝑓4,𝑗(𝑡) HTS with ETS and (tdgsa) reconciliation 

𝑓5,𝑗(𝑡) HTS with ETS and (tdgsf) reconciliation 

𝑓6,𝑗(𝑡) HTS with ARIMA and (tdfp) reconciliation 

𝑓7,𝑗(𝑡) HTS with ARIMA and (tdgsa) reconciliation 

𝑓8,𝑗(𝑡) HTS with ARIMA and (tdgsf) reconciliation 

 

In benchmark hierarchical forecasting models denoted as HTS_with ETS and HTS_with 

ARIMA, we utilize ETS and ARIMA forecasting for the ESI_Total time series, respectively. For 

HTS_with ETS, three top-down reconciliation methods (tdgsa, tdgsf, and tdfp) described in 

Section3.5 are applied, resulting in three forecasting models for the year 2020, predicting one hour 

Total

ESI_1 ESI_2 ESI_3 ESI_4 ESI_5
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ahead for each of the five time series Aj(t), for j=1,…,5. Similarly, in HTS_with ARIMA, the same 

three top-down reconciliation methods are considered, generating three forecasting models for the 

Aj(t).  

The first proposed model is the MLR model we developed for each ESI level. To select the 

best model for each ESI, we used the year 2019 as the validation year and then ran all the ten 

models proposed in Table 5-1 the models on a rolling basis for one-hour ahead forecasting with 

two years of training data. Each model was applied to forecast one hour ahead of ED arrivals for 

2019 for total ED arrivals with two years of rolling base hourly training data (starting from 2017). 

Then, we calculate MAE and RMSE as evaluation metrics to rigorously assess each model's 

performance. The model that exhibits the best outcomes based on these metrics is selected to 

forecast ED arrivals for Aj(t), time series for 2020. The results of the model selection are shown 

in Table 5-5.  

 

Table 5-5: The result of MAE for each ESI using the year 2019. 

Models A1(t) A2(t) A3(t) A4(t) A5(t) 

M_1 0.4546 1.2044 1.6770 1.0352 0.3198 

M_2 0.4544 1.2055 1.6740 1.0329 0.3195 

M_3 0.4542 1.2008 1.6683 1.0315 0.3159 

M_4 0.4545 1.2044 1.6771 1.0352 0.3198 

M_5 0.4492 1.2011 1.6677 1.0342 0.3019 

M_6 0.4494 1.2088 1.6764 1.0373 0.3099 

M_7 0.4526 1.2002 1.6715 1.0323 0.3221 

M_8 0.4493 1.2032 1.6708 1.0355 0.3063 

M_9 0.4492 1.2035 1.6709 1.0353 0.3064 

M_10 0.4494 1.2073 1.6740 1.0366 0.3066 

 

We select models with the lowest MAE to forecast each time series. For A1(t), since M_5 

and M_9 models yield equal MAE values, we use the simple average of these models to forecast 

for the ED arrivals of ESI_1 by MLR method. We identify 𝑓9,𝑗(𝑡) as the forecast of the time 
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series Aj(t), j=1,…,5 at time t, produced by the MLR model. The selected models to apply for 

forecasting each time series for 2020 are listed in Table 5-6. 

 

Table 5-6: Selected best MLR models for each ESI using the validation year. 

Forecasted 

value  
Selected MLR Model 

𝑓9,1(𝑡) 
Average of M_5 and M_9 

M_5:  A1(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3 (Ht×Dt)+𝛽4Ft 

M_9: A1(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3Mt+𝛽4( Ht×Dt)+𝛽5Ft+𝛽6(AF)t 

𝑓9,2(𝑡) M_7: A2(t)=𝛽0 + 𝛽1Tt+𝛽2Ht+𝛽3Dt+𝛽4Mt+𝛽5 (Ht×Dt) 

𝑓9,3(𝑡) M_5: A3(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3(Ht×Dt)+𝛽4Ft  

𝑓9,4(𝑡) M_3: A4(t)=𝛽0+𝛽1Tt+𝛽2Ht+𝛽3Dt+𝛽4(Ht×Dt)  

𝑓9,5(𝑡) M_5: A5(t)=𝛽0 + 𝛽1Ht+𝛽2Dt+𝛽3(Ht×Dt)+𝛽4Ft 

 

The proposed hierarchical forecasting model, with a multiple linear regression model, has 

some differences from HTS_with ETS and HTS_with ARIMA. The initial forecasting with 

regression and a top-down reconciliation method involves identifying an optimal linear regression 

model to predict the Atotal(t) time series. To achieve this, we need to implement model selection. 

Similar to model selection for forecasting with MLR for each Aj(t), for j=1,…,5 time series, we 

conduct a systematic approach comprising ten distinct models for Atotal(t) time series. Each model, 

as determined in Table 5-2, was applied to forecast one hour ahead of ED arrivals for 2019 for 

total ED arrivals with two years of rolling base hourly training data (starting from 2017). The 

model that is outperformed based on MAE and RMSE metrics is selected to forecast ED arrivals 

for the Atotal(t) time series for 2020.  

As mentioned, we execute all the MLR forecasting models in Python for this research. 

Once we collect all the results for forecasting the one-hour ahead values of Atotal(t) for 2019, we 

evaluate the forecasting results. Table 5-7 provides a summary of MAE for all the models.  
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Table 5-7: The MAE result for model selection for Total time series using the year 2019. 

Models MAE 

MT_1 2.5292 

MT_2 2.5176 

MT_3 2.5157 

MT_4 2.5289 

MT_5 2.5155 

MT_6 2.4956 

MT_7 2.4969 

MT_8 2.4949 

MT_9 2.4945 

MT_10 2.495 

 

While all the models to forecast the total ED arrival have a promised performance, models 

MT_8 and MT_9 have the lowest MAE. We consider RMSE for this case. Table 5-8 shows the 

RMSE values for the Atotal(t) for all the models for the year 2019.  

 

Table 5-8: The  RMSE result for model selection for Total time series using the year 2019. 

Models RMSE 

MT_1 3.2538 

MT_2 3.229 

MT_3 3.2247 

MT_4 3.2535 

MT_5 3.2261 

MT_6 3.203 

MT_7 3.2046 

MT_8 3.2008 

MT_9 3.201 

MT_10 3.2019 

 

This makes MT_8 the preferred choice for forecasting the Atotal(t) time series for 2020. 

Where 𝐴̃𝑡𝑜𝑡𝑎𝑙(𝑡) is the one-hour ahead forecast for the ESI_Total time series for the time t with 

MT_8, MLR method, and obtained by: 

 

 𝐴̃𝑡𝑜𝑡𝑎𝑙(𝑡) = Tt+(HG)t+Dt+Mt+Ft+Dt×(HG)t 5-1 
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After we obtain the forecast for Atotal(t) time series through MT_8, to implement 

hierarchical forecasting with the MLR model (HTS_with MLR), we consider three top-down 

reconciliation methods (tdgsa, tdgsf, and tdfp). 

First, we consider the hierarchical model with the MLR method produced by (tdfp) 

reconciliation. Equation 5-2 determines the forecasted value for each Aj(t), j=1, 2, ..., 5. 

 

 𝑓10,𝑗(𝑡) = 𝑃𝑗(𝑡)  × 𝐴̃𝑡𝑜𝑡𝑎𝑙(𝑡) 5-2 

Where 𝑓10,𝑗(𝑡) is the one-hour ahead forecast for Aj(t) time series for the time t with hierarchical 

with MLR by (tdfp) reconciliation. As mentioned in Section 3.5, we also require base forecasts for 

the bottom level for hierarchical with MLR using (tdfp) reconciliation. We use the MLR 

forecasting models selected for each time series according to Table 5-5 as the base forecasts. 

Therefore, we establish the forecast proportion following Equation 3-26 in Section 3.5. Here, we 

can show the formula to calculate forecasting for each  Aj(t), j=1, 2, ..., 5 with hierarchical with 

MLP using (tdfp) reconciliation: 

 

 
𝑃𝑗(𝑡) =

𝑓9,𝑗(𝑡) 

𝑓9,1(𝑡) + 𝑓9,2(𝑡) + 𝑓9,3(𝑡) + 𝑓9,4(𝑡) + 𝑓9,5(𝑡)
   

5-3 

Where 𝑓9,𝑗(𝑡) is the one-hour forecast for the 𝐴𝑗(𝑡) j=0,1,…,5 time series for the time t with MLR 

model.  

 For the hierarchical forecasting model with MLR and (tdgsa)/(tdgsf), since we deal with 

single-level hierarchical data, we easily determine the proportions with (tdgsa) and (tdgsf) using 

the formula outlined in Section 3.5. Consequently, if 𝑓11,𝑗(𝑡)  is the forecast for all the time series 



64 

 

 

of bottom level represented  Aj(t), j=1, 2, ..., 5 by hierarchical forecasting model with MLR for 

top-level forecast and (tdgsa) reconciliation, then we have: 

 𝑓11,𝑗(𝑡) = 𝑃𝑗(𝑡) × 𝐴̃𝑡𝑜𝑡𝑎𝑙(𝑡) 5-4 

For each Aj(t), we will have corresponded 𝑃𝑗(𝑡) according to Equation 3-25. Since the 

historical data for each time series is produced on a rolling basis for our case study, the training 

time series for each Aj(t) at time t is different. Therefore, the proportion for each time series 

needs to be calculated separately. Equation 5-5 shows how the proportion for (tdgsa) 

reconciliation is determined: 

 

𝑃𝑗(𝑡) =
1

𝑁
∑

𝐴𝑗(s) 

𝐴𝑡𝑜𝑡𝑎𝑙(𝑠)

(𝑡−1)−26280

𝑠=(𝑡−1)

 

5-5 

Where N=26280 is the size of the historical data set, Aj(s) is the value of the bottom level (j) series 

at time s of historical data, 𝐴𝑡𝑜𝑡𝑎𝑙(𝑠) is the top level of training time series at time s. 

Similarly, 𝑓12,𝑗(𝑡) is the forecasted value with hierarchical and MLR forecast for top-level 

and (tdgsf) reconciliation for time t.  

 𝑓12,𝑗(𝑡) = 𝑃𝑗(𝑡) × 𝐴̃𝑡𝑜𝑡𝑎𝑙(𝑡) 5-6 

The (tdgsf) reconciliation method or proportion of the historical average is determined by  

Equation 3-26 in Section 3.5. Equation 5-7 shows how the proportion for (tdgsf) reconciliation for 

our case study is calculated: 

 

 

𝑃𝑗(𝑡) =
∑

𝐴𝑗(𝑠)
𝑁

(𝑡−1)−26280
𝑠=𝑡−1  

∑
𝐴𝑡𝑜𝑡𝑎𝑙(𝑠)

𝑁
𝑁(𝑡−1)−26280
𝑠=(𝑡−1)

 

5-7 

Where N=26280 is the size of the historical data set, Aj(s) is the value of the bottom level series 

at time s of historical data, 𝐴𝑡𝑜𝑡𝑎𝑙(𝑠) is the top level of training time series at time s. 
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 Ultimately, for every ED arrival at each ESI level and for each one-hour-ahead forecast for 

the year 2020, we find the simple average of all the models as an ensemble model. Thus, we have: 

 
𝑓𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑗(𝑡) =

1

12
(𝑓1,𝑗(𝑡) + 𝑓2,𝑗(𝑡) + ⋯+ 𝑓12,𝑗(𝑡)) 

5-8 

Where 𝑓1,𝑗(𝑡) to 𝑓12,𝑗(𝑡) are the forecasted value of each benchmark and proposed models for the 

time series 𝐴𝑗(𝑡), at time t.  

 

 Results  

This section presents the evaluation of the results for both the benchmark and proposed 

forecasting models, as detailed in the preceding sections. The results of all thirteen models that 

we applied to forecast one-hour ahead of the year 2020 of our case study, are post-processing by 

rounding to the nearest integer number, as we mentioned in Section 5.2. Then, the methods are 

evaluated by determining the MAE and RMSE values. Table 5-8 and  Table 5-9 show the MAE 

and RMSE values respectfully for all the forecasted models for all the 𝐴𝑗(𝑡) time series. 
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 Table 5-9: The MAE values of the forecasts using all models. 
  MAE 

  A1(t) A2(t) A3(t) A4(t) A5(t) 
Benchmark Models 

1 𝑓1,𝑗(𝑡): ETS 0.3322 1.4029 2.3545 1.1098 0.2704 

2 𝑓2,𝑗(𝑡): AUTOARIMA 0.4165 1.3251 2.085 1.0938 0.3178 

3 𝑓3,𝑗(𝑡): HTS+ETS+tdfp 0.3322 1.4002 2.3487 1.1101 0.2688 

4 𝑓4,𝑗(𝑡): HTS+ETS+tdgsa 0.3309 1.4802 2.2843 1.0744 0.2214 

5 𝑓5,𝑗(𝑡): HTS+ETS+tdgsf 0.3323 1.4768 2.2928 1.0728 0.2214 

6 𝑓6,𝑗(𝑡): HTS+ARIMA+tdfp 0.4107 1.2858 1.9297 1.0741 0.3293 

7 𝑓7,𝑗(𝑡): HTS+ARIMA+tdgsa 0.3547 1.224 1.8763 1.0092 0.2216 

8 𝑓8,𝑗(𝑡): HTS+ARIMA+tdgsf 0.7148 1.7207 2.5367 1.4461 0.7033 

Proposed Models 

9 𝑓9,𝑗(𝑡): MLR 0.3385 1.1762 1.716 0.9798 0.2043 

10 𝑓10,𝑗(𝑡): Hierarchical+MLR+tdfp 0.3384 1.1873 1.8021 1.0053 0.1994 

11 𝑓11,𝑗(𝑡): Hierarchical+MLR+tdgsa 0.3309 1.1854 1.8005 1.0115 0.2214 

12 𝑓12,𝑗(𝑡): Hierarchical+MLR+tdgsf 0.3314 1.1854 1.8023 1.0011 0.2214 

13 𝑓13,𝑗(𝑡): Ensamble Model 0.3334 1.2181 1.8176 0.9405 0.2225 

 

 

Table 5-10: The RSME values of the forecasts using all models. 

 RMSE 

A1(t) A2(t) A3(t) A4(t) A5(t) 
Benchmark Models 

1 𝑓1,𝑗(𝑡): ETS 0.6809 1.8351 2.99 1.4718 0.6798 

2 𝑓2,𝑗(𝑡): AUTOARIMA 0.7163 1.7576 2.7034 1.4706 0.6944 

3 𝑓3,𝑗(𝑡): HTS+ETS+tdfp 0.6834 1.8297 2.9786 1.4713 0.677 

4 𝑓4,𝑗(𝑡): HTS+ETS+tdgsa 0.6817 1.906 2.9071 1.4193 0.6197 

5 𝑓5,𝑗(𝑡): HTS+ETS+tdgsf 0.6825 1.9041 2.9139 1.421 0.6197 

6 𝑓6,𝑗(𝑡): HTS+ARIMA+tdfp 0.7148 1.7207 2.5367 1.4461 0.7033 

7 𝑓7,𝑗(𝑡): HTS+ARIMA+tdgsa 0.687 1.6279 2.4699 1.3544 0.6198 

8 𝑓8,𝑗(𝑡): HTS+ARIMA+tdgsf 0.6843 1.6297 2.4731 1.361 0.6197 

Proposed Models 

9 𝑓9,𝑗(𝑡): MLR 0.6813 1.5786 2.2539 1.3295 0.5584 

10 𝑓10,𝑗(𝑡): Hierarchical+MLR+tdfp 0.6859 1.5809 2.3302 1.337 0.5497 

11 𝑓11,𝑗(𝑡): Hierarchical+MLR+tdgsa 0.6817 1.5969 2.3396 1.3422 0.6197 

12 𝑓12,𝑗(𝑡): Hierarchical+MLR+tdgsf 0.6817 1.5969 2.3313 1.3362 0.6197 

13 𝑓13,𝑗(𝑡): Ensamble Model 0.6808 1.6098 2.3605 1.263 0.6205 
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From the tables above, for 𝐴2(𝑡), 𝐴3(𝑡), 𝐴4(𝑡) both MAE and RMSE conclude the same 

methods. However, for 𝐴1(𝑡) and 𝐴5(𝑡) each evaluation technique suggested different forecasting 

methods. On the other hand, the variations among the majority of the models are relatively 

minimal. The negligible difference in MAE between the two models with the lowest MAE makes 

it challenging to determine whether this difference is significant. Therefore, we determine the 

statistical significance of forecasting performance differences between models with minor 

variations in MAE by the Diebold-Mariano (DM) test. As described in Section 3.8, the DM statistic 

corresponds to a normal distribution under the null hypothesis, which considers that the two 

models have equal forecasting accuracy. This means that the mean differences in the forecasting 

errors of the two methods follow the normal distribution, so the differences between the two 

methods are insignificant. The level of significance for this case study is 5%. Table 5-11 to Table 

5-20 illustrates the outcomes of the p-value for DM statistics for all the comparisons for each pair 

of 13 models (78 comparisons). Then we explain the result for the top pairs of models in terms of 

MAE and also RMSE. 
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Table 5-11: p-value for DM statistics for MAE of 𝐴1(𝑡). 

𝑓1,1(𝑡) -             

𝑓2,1(𝑡) <0.01 -            

𝑓3,1(𝑡) 0.26 <0.01 -           

𝑓4,1(𝑡) 0.90 <0.01 0.31 -          

𝑓5,1(𝑡) 0.16 <0.01 0.93 0.02 -         

𝑓6,1(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓7,1(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -       

𝑓8,1(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝑓9,1(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -     

𝑓10,1(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.92 -    

𝑓11,1(𝑡) 0.90 <0.01 <0.01 ≈1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -   

𝑓12,1(𝑡) 0.49 <0.01 0.59 0.13 0.25 <0.01 <0.01 <0.01 <0.01 <0.01 0.13 -  

𝒇̃𝟏𝟑,𝟏(𝒕) 0.16 <0.01 0.71 0.13 0.72 <0.01 <0.01 <0.01 <0.01 <0.01 0.13 0.29 - 

 𝒇̃𝟏,𝟏(𝒕) 𝑓2,1(𝑡) 𝑓3,1(𝑡) 𝑓4,1(𝑡) 𝑓5,1(𝑡) 𝑓6,1(𝑡) 𝑓7,1(𝑡) 𝑓8,1(𝑡) 𝑓9,1(𝑡) 𝑓10,1(𝑡) 𝒇̃𝟏𝟏,𝟏(𝒕) 𝑓12,1(𝑡) 𝑓13,1(𝑡) 

 

 

  Table 5-12: p-value for DM statistics for RMSE of 𝐴1(𝑡). 

 

 

Table 5-13: p-value for DM statistics for MAE of 𝐴2(𝑡). 

𝑓1,2(𝑡) -              

𝑓2,2(𝑡) <0.01 -             

𝑓3,2(𝑡) 0.14 <0.01 -            

𝑓4,2(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,2(𝑡) <0.01 <0.01 <0.01 0.02 -          

𝑓6,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -       

𝑓9,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝒇̃𝟏𝟎,𝟐(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 -     

𝒇̃𝟏𝟏,𝟐(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10 0.71 -    

𝒇̃𝟏𝟐,𝟐(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10 0.71 ≈1 -   

𝑓13,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.33 0.09 <0.01 <0.01 <0.01 <0.01 − 

 𝑓1,2(𝑡) 𝑓2,2(𝑡) 𝑓3,2(𝑡) 𝑓4,2(𝑡) 𝑓5,2(𝑡) 𝑓6,2(𝑡) 𝑓7,2(𝑡) 𝑓8,2(𝑡) 𝒇̃𝟗,𝟐(𝒕) 𝒇̃𝟏𝟎,𝟐(𝒕) 𝑓11,2(𝑡) 𝑓12,2(𝑡) 𝑓13,2(𝑡) 

 

𝑓1,1(𝑡) -             

𝑓2,1(𝑡) <0.01 -            

𝑓3,1(𝑡) 0.24 <0.01 -           

𝑓4,1(𝑡) 0.06 <0.01 0.59 -          

𝑓5,1(𝑡) 0.01 <0.01 0.78 0.09 -         

𝑓6,1(𝑡) <0.01 0.64 <0.01 <0.01 <0.01 -        

𝑓7,1(𝑡) 0.02 <0.01 0.40 0.09 0.15 <0.01 -       

𝑓8,1(𝑡) 0.08 <0.01 0.82 0.31 0.49 <0.01 0.12 -      

𝑓9,1(𝑡) 0.12 <0.01 0.89 0.50 0.83 <0.01 0.24 0.65 -     

𝑓10,1(𝑡) 0.11 <0.01 0.91 0.47 0.79 <0.01 0.26 0.67 0.93 -    

𝑓11,1(𝑡) 0.06 <0.01 0.59 ≈1 0.08 <0.01 0.09 0.30 0.50 0.47 -   

𝑓12,1(𝑡) 0.04 <0.01 0.64 0.49 0.34 <0.01 0.10 0.35 0.60 0.56 0.49 -  

𝒇̃𝟏𝟑,𝟏(𝒕) 0.39 <0.01 0.43 0.49 0.20 <0.01 0.04 0.17 0.34 0.31 0.49 0.39 - 

 𝒇̃𝟏,𝟏(𝒕) 𝑓2,1(𝑡) 𝑓3,1(𝑡) 𝑓4,1(𝑡) 𝑓5,1(𝑡) 𝑓6,1(𝑡) 𝑓7,1(𝑡) 𝑓8,1(𝑡) 𝑓9,1(𝑡) 𝑓10,1(𝑡) 𝑓11,1(𝑡) 𝑓12,1(𝑡) 𝑓13,1(𝑡) 
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Table 5-14: p-value for DM statistics for RMSE of 𝐴2(𝑡). 

𝑓1,2(𝑡) -              

𝑓2,2(𝑡) <0.01 -             

𝑓3,2(𝑡) 0.01 <0.01 -            

𝑓4,2(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,2(𝑡) <0.01 <0.01 <0.01 0.21 -          

𝑓6,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.31 -       

𝒇̃𝟗,𝟐(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝒇̃𝟏𝟎,𝟐(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.04 -     

𝑓11,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.12 -    

𝑓12,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.12 ≈1 -   

𝑓13,2(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 - 

 𝑓1,2(𝑡) 𝑓2,2(𝑡) 𝑓3,2(𝑡) 𝑓4,2(𝑡) 𝑓5,2(𝑡) 𝑓6,2(𝑡) 𝑓7,2(𝑡) 𝑓8,2(𝑡) 𝒇̃𝟗,𝟐(𝒕) 𝒇̃𝟏𝟎,𝟐(𝒕) 𝑓11,2(𝑡) 𝑓12,2(𝑡) 𝑓13,2(𝑡) 

 

 

 

Table 5-15: p-value for DM statistics for MAE of 𝐴3(𝑡) 

 

 

 

 

 

 

 

 

 

 

 

𝑓1,3(𝑡) -              

𝑓2,3(𝑡) <0.01 -             

𝑓3,3(𝑡) 0.04 <0.01 -            

𝑓4,3(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,3(𝑡) <0.01 <0.01 <0.01 <0.01 -          

𝑓6,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.12 -       

𝒇̃𝟗,𝟑(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝑓10,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -     

𝑓11,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.79 -    

𝑓12,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ≈1 0.68 -   

𝑓13,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.06 0.05 0.08 - 

 𝑓1,3(𝑡) 𝑓2,3(𝑡) 𝑓3,3(𝑡) 𝑓4,3(𝑡) 𝑓5,3(𝑡) 𝑓6,3(𝑡) 𝑓7,3(𝑡) 𝑓8,3(𝑡) 𝒇̃𝟗,𝟑(𝒕) 𝑓10,3(𝑡) 𝑓11,3(𝑡) 𝑓12,3(𝑡) 𝑓13,3(𝑡) 
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Table 5-16: p-value for DM statistics for RMSE of 𝐴3(𝑡) 

𝑓1,3(𝑡) -              

𝑓2,3(𝑡) <0.01 -             

𝑓3,3(𝑡) <0.01 <0.01 -            

𝑓4,3(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,3(𝑡) <0.01 <0.01 <0.01 0.02 -          

𝑓6,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.28 -       

𝒇̃𝟗,𝟑(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝑓10,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -     

𝑓11,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.70 -    

𝑓12,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.22 0.01 -   

𝑓13,3(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01  - 

 𝑓1,3(𝑡) 𝑓2,3(𝑡) 𝑓3,3(𝑡) 𝑓4,3(𝑡) 𝑓5,3(𝑡) 𝑓6,3(𝑡) 𝑓7,3(𝑡) 𝑓8,3(𝑡) 𝒇̃𝟗,𝟑(𝒕) 𝑓10,3(𝑡) 𝑓11,3(𝑡) 𝑓12,3(𝑡) 𝑓13,3(𝑡) 

 

 

 

Table 5-17: p-value for DM statistics for MAE of 𝐴4(𝑡) 

𝑓1,4(𝑡) -              

𝑓2,4(𝑡) 0.25 -             

𝑓3,4(𝑡) 0.82 0.24 -            

𝑓4,4(𝑡) <0.01 0.19 <0.01 -           

𝑓5,4(𝑡) <0.01 0.01 <0.01 0.28 -          

𝑓6,4(𝑡) <0.01 <0.01 <0.01 0.97 0.89 -         

𝑓7,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -       

𝒇̃𝟗,𝟒(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝑓10,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.53 <0.01 <0.01 -     

𝑓11,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.63 <0.01 <0.01 0.14 -    

𝑓12,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.11 <0.01 <0.01 0.28 <0.01 -   

𝒇̃𝟏𝟑,𝟒(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.46 <0.01 <0.01 <0.01 - 

 𝑓1,4(𝑡) 𝑓2,4(𝑡) 𝑓3,4(𝑡) 𝑓4,4(𝑡) 𝑓5,4(𝑡) 𝑓6,4(𝑡) 𝑓7,4(𝑡) 𝑓8,4(𝑡) 𝒇̃𝟗,𝟒(𝒕) 𝑓10,4(𝑡) 𝑓11,4(𝑡) 𝑓12,4(𝑡) 𝑓13,4(𝑡) 
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Table 5-18: p-value for DM statistics for RMSE of 𝐴4(𝑡) 

𝑓1,4(𝑡) -              

𝑓2,4(𝑡) 0.91 -             

𝑓3,4(𝑡) 0.75 0.94 -            

𝑓4,4(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,4(𝑡) <0.01 <0.01 <0.01 0.25 -          

𝑓6,4(𝑡) 0.01 <0.01 0.01 <0.01 <0.01 -         

𝑓7,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -        

𝑓8,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -       

𝒇̃𝟗,𝟒(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝑓10,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.10 -     

𝑓11,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.01 0.25 -    

𝑓12,4(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.18 0.87 <0.01 -   

𝒇̃𝟏𝟑,𝟒(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - 

 𝑓1,4(𝑡) 𝑓2,4(𝑡) 𝑓3,4(𝑡) 𝑓4,4(𝑡) 𝑓5,4(𝑡) 𝑓6,4(𝑡) 𝑓7,4(𝑡) 𝑓8,4(𝑡) 𝒇̃𝟗,𝟒(𝒕) 𝑓10,4(𝑡) 𝑓11,4(𝑡) 𝑓12,4(𝑡) 𝑓13,4(𝑡) 

 

 

 

Table 5-19: p-value for DM statistics for MAE of 𝐴5(𝑡) 

𝑓1,5(𝑡) -              

𝑓2,5(𝑡) <0.01 -             

𝑓3,5(𝑡) 0.03 <0.01 -            

𝑓4,5(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,5(𝑡) <0.01 <0.01 <0.01 ≈1 -          

𝑓6,5(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,5(𝑡) <0.01 <0.01 <0.01 0.32 0.32 <0.01 -        

𝑓8,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 -       

𝒇̃𝟗,𝟓(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝒇̃𝟏𝟎,𝟓(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -     

𝑓11,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 ≈1 <0.01 <0.01 -    

𝑓12,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 ≈1 <0.01 <0.01 ≈1 -   

𝑓13,5(𝑡) <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.32 0.01 <0.01 <0.01 0.01 0.01 - 

 𝑓1,5(𝑡) 𝑓2,5(𝑡) 𝑓3,5(𝑡) 𝑓4,5(𝑡) 𝑓5,5(𝑡) 𝑓6,5(𝑡) 𝑓7,5(𝑡) 𝑓8,5(𝑡) 𝒇̃𝟗,𝟓(𝒕) 𝒇̃𝟏𝟎,𝟓(𝒕) 𝑓11,5(𝑡) 𝑓12,5(𝑡) 𝑓13,5(𝑡) 
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Table 5-20: p-value for DM statistics for RMSE of 𝐴5(𝑡) 

𝑓1,5(𝑡) -              

𝑓2,5(𝑡) 0.02 -             

𝑓3,5(𝑡) 0.07 <0.01 -            

𝑓4,5(𝑡) <0.01 <0.01 <0.01 -           

𝑓5,5(𝑡) <0.01 <0.01 <0.01 ≈1 -          

𝑓6,5(𝑡) <0.01 <0.01 <0.01 <0.01 <0.01 -         

𝑓7,5(𝑡) <0.01 <0.01 <0.01 0.32 0.32 <0.01 -        

𝑓8,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 -       

𝒇̃𝟗,𝟓(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -      

𝒇̃𝟏𝟎,𝟓(𝒕) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -     

𝑓11,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 ≈1 <0.01 <0.01 -    

𝑓12,5(𝑡) <0.01 <0.01 <0.01 ≈1 ≈1 <0.01 0.32 ≈1 <0.01 <0.01 ≈1 -   

𝑓13,5(𝑡) <0.01 <0.01 <0.01 0.01 0.01 <0.01 0.32 0.01 <0.01 <0.01 0.01 0.01 - 

 𝑓1,5(𝑡) 𝑓2,5(𝑡) 𝑓3,5(𝑡) 𝑓4,5(𝑡) 𝑓5,5(𝑡) 𝑓6,5(𝑡) 𝑓7,5(𝑡) 𝑓8,5(𝑡) 𝒇̃𝟗,𝟓(𝒕) 𝒇̃𝟏𝟎,𝟓(𝒕) 𝑓11,5(𝑡) 𝑓12,5(𝑡) 𝑓13,5(𝑡) 

 

 

In the following, we describe the result of the DM test for top models with better 

performance in terms of MAE and RMSE for each ESI level.   

ESI_1: Table 5-11 indicates that the null hypothesis for most of the cases that compare 

𝑓4,1(𝑡) and 𝑓11,1(𝑡) in terms of MAE is not rejected. It turns out there are no significant differences 

between the distribution of errors in these two models, meaning the forecasting with either of these 

two models leads to an accurate forecast. Furthermore, Table 5-12 reveals no significant differences 

between 𝑓13,𝑗(𝑡) which is selected models with 𝑓1,𝑗(𝑡), the second best model to forecast 𝐴1(𝑡) due 

to its lowest RMSE according to in Table 5-10. In Fact, RMSE comparisons between 𝑓13,𝑗(𝑡)  and 

almost all other models for forecasting ESI_1 reveal that the differences between models are not 

significant. This lack of substantial difference is attributed to two main reasons. First, according to  

Table 4-2, the number of arrivals in this ESI level is small since the average number of 

arrivals is zero. It also shows that in the most crowded case, the number of arrivals is not bigger 

than 5. Secondly, as Figure 4.2 illustrates that the randomness of the number of arrivals at this ESI 

level is inevitable. Overall, because of this characteristic of arrivals to ESI_1, the results for most 
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of the comparisons of the other two forecasting models also show that the differences are between 

the following the normal distribution, and the differences are not significant.  

ESI_2: According to Table 5-6, 𝑓9,2(𝑡) is forecasted value for A2(𝑡) that selected variables 

of trend, hour of the day, day of the week, month of the year, and the interaction of hour and day of 

the week. However, according to Table 5-13, there are no significant differences between the MAE 

of  𝑓9,2(𝑡) and  𝑓11,2(𝑡) which is forecasted value of A2(𝑡) by hierarchical with MLR and (tdgsa) 

reconciliation. Also, the null hypothesis in the DM test for comparing the MAE of 𝑓9,2(𝑡) and  

𝑓12,2(𝑡) is rejected. It reveals that there is no difference between the distribution of results of MAE 

of forecasting one-hour ahead if we select either of these three models. Additionally, Table 5-14 

shows that in terms of RMSE, for 𝑓9,2(𝑡) and 𝑓10,2(𝑡) does not differ significantly, suggesting that 

choosing models based on the smallest RMSE does not highlight a significant difference between 

the hierarchical with MLR and (tdfp) and the MLR model for forecasting 𝐴2(𝑡).  

   ESI_3:  Table 5-15 and Table 5-16 demonstrates that the selected MLR model for 

forecasting 𝐴3(𝑡) performs better than other models in terms of both MAE and RMSE. It reveals 

that 𝑓9,3(𝑡) which is the forecasted value of 𝐴3(𝑡) using the M_5 model that contains variables of 

hour of the day, day of the week, holiday, and interaction hour of the day and day of the week yields 

superior outcomes in terms of both MAE and RMSE.  

ESI_4: From Table 5-17 and Table 5-18, for forecasting 𝐴4(𝑡), ensembled model is 

selected due to the lowest RMSE and lowest MAE. This model is significantly different from all 

other models evaluated by RMSE. However, when comparing the MAE for the forecasted 𝐴4(𝑡), 

the difference between the ensemble model and the M_5 model is not significant.  

ESI_5: Finally, Table 5-9 demonstrates that the hierarchical forecasting with MLR and 

(tdfp) model performs better than other models when evaluated using MAE. Table 5-19 indicates 
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that, in terms of MAE, this model significantly outperforms others used to predict𝐴5(𝑡). Table 

5-20 shows that, regarding RMSE, the distribution for differences between forecasting errors for 

none models to forecast 𝐴5(𝑡), and 𝑓9,3(𝑡) is not normal distribution. It reveals that the selected 

MLR model for forecasting 𝐴5(𝑡) M_5 leads to smaller RMSE; hence, it is the best-selected 

model among other presented models.  

To sum up, we conclude that forecasting ED arrivals for most of the ESI levels with MLR 

and hierarchical forecasting with MLR outperform in this case study. The differences between the 

results of proposed models for ESI_2, ESI_3, and ESI_4 are more significant. These ESI levels 

are more crowded than ESI_1 and ESI_5. On the other hand, the ESI_1 level is less crowded; it 

means that the randomness in this level is higher, and it is harder to find patterns.  Therefore, the 

accuracy of the proposed models depends on the volume of the ED arrivals in ESI levels, which 

are the bottom level of the hierarchy. If the number of arrivals is higher at each ESI level, the 

accuracy of the proposed forecasting models is developed. 
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6. CONCLUSION 

 

Preparing for the volume of arrivals by severity level is crucial for efficient hospital patient 

flow management [50], [51]. Given that each ESI level corresponds to patients with different 

needs, customized management strategies are essential. Additionally, the crowding of emergency 

departments is significantly exacerbated by the attendance of low-acuity patients. Furthermore, 

when analyzing the arrivals at each ESI level as separate time series, it is evident that the 

characteristics of each series vary, underscoring the importance of customized forecasting and 

management approaches for each severity level. As Figure 6.1 illustrates, our study proposes a 

solution to a real-world problem. We then apply real-world data to develop our solution, which 

involves proposing forecasting models to predict the number of hourly ED arrivals segmented by 

ESI level. We compare the performance of the proposed models with the state-of-the-art 

benchmark models that are widely applied in the healthcare industry. Ultimately, the forecasting 

results for the proposed model confirm the success of the proposed models.  

 

 

Figure 6.1: Research Conclusion 

 

This research stands out for its use of the rolling base technique, allowing for hourly 

forecasts for one-hour ahead for the entire year. Including an entire year in the forecast makes our 
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evaluation more accurate, not restricted to particular weeks, months, or seasons. This approach 

prevents errors in selecting the best forecasting model due to calendar changes. Additionally, the 

rolling base method ensures that the training data, encompassing three years of hourly data, is 

constantly updated, leading to a more accurate assessment of forecasting performance. 

This dissertation concentrated on diverse methodologies for predicting emergency arrivals 

at each hospital ESI level. For each one-hour ahead forecasting, all the benchmark models 

(ARIMA, ETS, HTS with ARIMA, and HTS with ETS) and proposed models (MLR and 

hierarchical forecasting with MLR models) identified a distinct model for each ESI. Moreover, the 

selected benchmark models for each ESI are specific for each hour; for example, the selected 

model for hour 14:00 on December 12th, 2020, was different from the one for 14:00 on May 12th, 

2020, due to the benchmark models selected based on AIC. However, the proposed models 

simplified this by using a single model for each ESI level, chosen for its lowest amount of MAE 

or RMSE in training data, for all hourly forecasts throughout the testing data. This means the same 

model applied for 14:00 on December 12th as for 14:00 on May 12th for ESI_1, is the same; 

however, it can be different for ESI_2 (ESI_3, ESI_4, ESI_5) in that time. This made the model 

selection and implementation for proposed models more straightforward.  

This research provided a proper case study for applying a hierarchical forecasting model 

using linear regression for the top-level forecast with different reconciliation methods. 

Hierarchical forecasting models' advantage lies in their ability to produce coherent forecasts, a 

feature critical to any forecasting effort where maintaining consistency across various levels is 

essential. 
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Our proposed models outperformed this case study by analyzing thirteen different models. 

We applied the DM test to emphasize that the differences between selected models are significant 

and are not only chosen by measuring the forecast evaluation metrics. The MLR models and 

hierarchical forecasting models with MLR exhibit superior forecasting accuracy for most ESI 

levels. The linear regression forecasting models are coherent, too, meaning the sum of detailed 

forecasts aligns with the aggregated forecast at the top level (total ED arrivals). Furthermore, 

despite MLR models achieving the highest accuracy among all considered models, their simplicity 

in theory and application is undeniable.  

The better performance of MLR forecasting models is due to the ability of regression 

models to capture the complex relationship between the independent and dependent variables. The 

proposed models capture daily, weekly, and yearly seasonality by considering these variables as 

categorical variables. However, ETS() and auto.arima() functions with default settings that are 

used for exponential smoothing and ARIMA forecasting model as benchmarks are able to capture 

limited seasonality. Therefore, if the time series is long, there will be different seasonality patterns 

that ETS() and auto.arima() functions are not capable of capturing all of them. The other important 

reason for outperforming the MLR models relies on the method we use for model selection. We 

select the best MLR model with a validation year, which is not an in-sample model-selecting 

method. This attribute makes them exceptionally reliable for forecasting purposes. On the other 

hand, the model selection for ETS() and auto.arima() are based on minimizing the AIC. AIC 

evaluates different models based on the goodness of the in-sample fit and also simplicity. For 

instance, if the performance of one ARIMA is close to a seasonal ARIMA, or the improvement of 

the seasonal ARIMA is not too much, AIC will select the simpler model, which is ARIMA. 
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Therefore, when we implement forecasting one-hour ahead for entire hours of a year (28280-point 

forecast), the accuracy of the model will be decreased.   

 To further advance our findings and address existing limitations, we have identified five 

main areas for improvement in our research. First, finding the right forecasting time horizon is 

essential. It can be examined if the accuracy of the model will be changed in other forecasting 

horizons. A different short-term forecast allows us to adjust plans more effectively for future 

needs. Second, we need to precisely determine the ideal amount of training data for each model. 

However, we focused on identifying the most effective models using a fixed amount of data. 

Therefore, rather than varying the amount of training data, we consistently used as much historical 

data as we had available for all models (three years of training data and one year of testing). Third, 

our contribution is focused on implementing MLR and hierarchical forecasting with MLR models 

comparable to univariant benchmark models, exponential smoothing, and ARIMA. Therefore, our 

analysis has not included any additional exogenous independent variables such as temperature, 

precipitation, snowfall, or air pollution. However, future studies can explore the impact of adding 

some other independent variables to the accuracy of the MLR models. These improvements will 

help make our research more practical and quicker to use, offering valuable paths for further 

development. Another suggestion for further development for this research is considering different 

structures for hierarchical data or applying different grouped time series that have the same 

behaviors. Finally, instead of the three well-known reconciliation methods for the top-down 

reconciliation method, other reconciliation methods can be considered.  
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