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ABSTRACT

CHRIS AVERY. Functional Dynamics in Beta-Lactamase: Insights into Substrate
Recognition and Inhibition. (Under the direction of DR. DONALD JACOBS)

Beta-lactamase proteins are among the most prominent causes of antibiotic resistance.

These enzymes confer resistance to beta lactam antibiotics, which are commonly used

to treat bacterial infections. In recent years, novel beta-lactamase have emerged

exhibiting resistance to all classes of beta lactams, representing a major threat to

global health.

The mechanism by which beta-lactamase can expand their substrate specificity to

confer bacteria with resistance to novel drugs is complex and not-well elucidated.

In this work, beta-lactamase function is explored using a variety of computational

techniques to identify the molecular mechanisms behind antibiotic resistance. In

particular, the connection between protein dynamics and protein function is explored

in beta-lactamase, revealing how changes in enzyme motion are related to changes in

the enzyme substrate specificity.

To study beta-lactamase function, a library of molecular dynamics (MD) simu-

lations was generated which includes simulations of TEM-1, TEM-2, TEM-10, and

TEM-52 beta-lactamase, either in its apo or holo form. Holo simulations were per-

formed with the enzymes in complex with either ampicillin, amoxicillin, cefotaxime,

or ceftazidime. The enzyme-antibiotic combinations were chosen to represent both

wild-type and extended-spectrum beta-lactamase activity.

To identify the functional dynamics responsible for substrate recognition, Super-

vised Projective Learning with Orthogonal Completeness (SPLOC) was employed.

SPLOC compared the beta-lactamase simulations under different groupings to un-

derstand the role of both enzyme mutations and antibiotic interactions in determin-

ing substrate recognition. These motions were also leveraged to classify whether an
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enzyme would be able to express extended-spectrum antibiotic binding. Finally, the

utility of exploiting these functional dynamics to inhibit beta-lactamase function was

explored using pepStream. Novel peptides were generated which bound with speci-

ficity to regions of the enzyme exhibiting functional dynamics.

This work identified dynamic signatures in beta-lactamase underlying substrate

recognition. Importantly, these signatures took the form of increased flexibility in

loops bordering the active site of the enzymes, which mediate local conformational

flexibility that facilitates optimal substrate interactions with different antibiotics.

Notably, the dynamic signatures between different protein-antibiotic systems was

unique, reflecting the complexity of the mechanisms underlying antibiotic binding. A

proof-of-concept for designing de-novo peptides to bind with beta-lactamase at these

regions suggests that a novel class of beta-lactamase inhibitors could inhibit these

motions required for substrate recognition, yielding a novel method for controlling

beta-lactamase mediated antibiotic resistance.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Proteins constitute one of the most crucial classes of molecules in biology, playing a

pivotal role in various cellular functions essential for the existence of life. As a result,

the investigation of proteins and their functions has significantly influenced research

in biology, physics, chemistry, and numerous related disciplines. A full treatment of

protein biophysics can be found in an introductory textbook such as [3]; To moti-

vate the work presented here, some relevant concepts are presented in the following

sections.

1.1.1 What is a Protein?

Over time, our comprehension of proteins has undergone significant advancements,

shaping our fundamental understanding of their nature and functionality. Proteins

are polymer chains of amino acids linked together by peptide and disulfide bonds,

forming what is known as the primary structure. The sequence of amino acids that

make up a protein, along with their specific arrangement, is referred to as protein

sequence. There are 20 canonical amino acids which are found in protein molecules,

which means for a protein whose sequence is of length N , 20N unique protein chains

can be formed. Amino acids are composed of an amino group, a carboxyl group, and

a side chain residue, all connected to a central carbon atom. Amino acids can be

linked together into chains through peptide bonds joining the carboxyl group of one

amino acid to the amino group of another.

Amino acids can be classified based on their chemical properties. They can be

either charged (positive or negative) or uncharged, hydrophobic or hydrophilic. Fur-
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thermore, their side chains can exhibit various structural motifs, including aliphatic

chains or aromatic rings. The biophysical characteristics of an amino acid sequence

plays a crucial role in determining its interactions with the surrounding environment.

In the vicinity of a cell, this environment is predominantly aqueous and encompasses

a diverse array of proteins, sugars, RNA, lipids, and various metabolites that pro-

teins can interact with. Additionally, self-interactions between amino acids within

a protein can significantly impact its behavior. Intramolecular interactions, such as

hydrogen bonding, are considered to be the fundamental driving forces behind the

intricate process of protein folding.

Folding refers to the transformation of a protein from a disordered chain of amino

acids into a well-structured protein conformation. Amino acids possess multiple hy-

drogen atoms, enabling the formation of hydrogen bonds. These bonds serve as

nature’s adhesive, allowing molecules to adhere to each other through non-covalent

interactions. Hydrogen bonds facilitate the association of different segments within

a protein chain, giving rise to well-organized structures like alpha helices and beta

sheets. These local structures, known as secondary structures, are pervasive through-

out the protein realm. Secondary structures combine to form a compact overall

structurem, called a fold or tertiary structure, encompassing the entire protein chain.

The process of folding a protein from a disordered chain of amino acids into a tightly-

packed fold is intricate and not yet fully understood. However, it is widely assumed

that the information necessary for proper folding of a protein in a given environment

is encoded within the amino acid sequence, as demonstrated by Anfisen’s "Ther-

modynamic Hypothesis" [4]. Recent advances in machine learning algorithms, such

as AlphaFold2 (AF2), have demonstrated remarkable success in predicting protein

structure directly from its sequence. [5]

Protein folding is governed by thermodynamics, where the most probable structure

of a protein is the one that maximizes the release of energy during folding. The
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energy available to a protein is quantified by the Gibbs Free Energy, defined by

1.1. In this equation, H represents enthalpy, which is the energy associated with the

chemical bonds that define the protein’s structure. S denotes entropy, which reflects

the degeneracy of states and the degrees of freedom within the structure. Lastly, T

represents the temperature of the ensemble.

G = H − TS. (1.1)

In biochemistry, processes that occur in molecular systems are characterized by the

associated change in free energy of the system. The likelihood of a process occurring

is determined by the size of the change in free energy ∆G, where negative changes

in free energy indicate processes that are more likely to occur. According to statisti-

cal mechanics, the likelihood of protein folding can be quantified by an equilibrium

constant defined in Equation 1.2, where Z represents the partition function for the

system.

Keq =
Zfold
Zunfold

= e−∆G/kbT (1.2)

The equation indicates that the probability of a protein folding is proportional to the

Boltzmann factor, which accounts for the free energy change at a given temperature T .

In the context of protein structure, the ’process’ under consideration is the transition

from a disordered structure to an ordered protein structure, involving the formation

and disruption of hydrogen bonds and other non-covalent interactions.

Beyond the tertiary structure, proteins can also aggregate into multi-chain com-

plexes, which serve as functional units and represent the quaternary structure, the

highest level of protein organization. The most probable structure a protein takes for

globular proteins is called the proteins native fold. It is crucial to recognize that pro-

teins are not rigid entities but possess significant flexibility. In cellular environments,

the presence of various surrounding molecules can profoundly impact the folding pro-
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cess of proteins, leading to substantial reshaping effects.

1.1.2 Structure, Function, and Beyond

Protein structure is believed to be strongly linked to protein sequence and function.

Notably, protein structures exhibit much less diversity compared to protein sequences.

It was previously noted that most proteins folds share alpha helix and beta sheet

motifs, and many sequences can share the same fold. Studies have shown that a

high sequence similarity does not imply a high structure similarity, and vice versa. A

cutoff at 30% sequence similarity, known as the twilight zone [6], represents the limit

to where two proteins will be likely share a fold. This suggests that protein folding

holds meaning beyond simple sequence, namely that protein structure is a major

predictor for protein function. This relationship between protein sequence, structure

and function has become a fundamental principle in protein biophysics called the

sequence-structure-function paradigm. [7]

Protein function is often a loosely defined term in the literature due to its complex-

ity, however in general it refers to biochemical and physical events involving proteins,

including how proteins interact with their cellular environment. [8] A common source

for different protein functions is the Gene Ontology (GO) database [9], which divides

function into three categories: molecular function which includes processes such as

catalytic activity or ATP binding, cellular component which describes where in a cell

a protein acts, or biological process which describes what functional pathway, like

DNA repair, a protein takes part in.

The complexity of protein function is as diverse as the cell needs it to be to keep

itself alive. At the molecular level, even proteins that perform the same task, such

as two enzymes that hydrolyze the same functional group of of a molecule, may

have functional differences in respect to catalytic efficiency or substrate specificity.

Changes in functionality like this most often result from point mutations that in-

terfere with protein activity. Evolution can introduce random mutations which can
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be selected for providing a gain or loss of function depending on what increases the

fitness of the organism. Substrate specificity, the ability of enzymes to bind strongly

with particular partners, is an important example of changes in function like this,

with applications to drug design.

Together these observations regarding the relationship between sequence, struc-

ture, and function underlies the sequence-structure-function paradigm. The sequence

determines how a protein folds into a structure, which has been evolved to facilitate

a particular function. Mutations occur independently to change the sequence, subtly

specializing the structure and function of the protein. Over time, numerous mutations

can accumulate, leading to a family of proteins with related structures, sequences, and

functions. Over long time periods, divergent functions may arise, however in general,

mutations which become fixed on a protein often cause small shifts in function that

may benefit its parent organism due to some environmental adaptation. The under-

lying idea is that when a structure has been evolved to perform a function, it tends

to undergo small, rather than large, functional changes.

Sequence, structure, and function are the foundation for understanding how pro-

teins work. The development of both experimental and computational methods have

been instrumental for giving researchers a tangible glimpse into the world of proteins.

These advancements have enabled the elucidation of function in many proteins at the

atomic level, allowing for the study of biochemical mechanisms of complex reactions.

Despite these strides, how to characterize or alter protein function still remains com-

plex, with the exact role of point mutations and the environment on function not

being fully understood and difficult to model and predict.

An area rapidly gaining interest in the wider protein science community is the role

of protein dynamics in determining protein function. [10, 11] Protein dynamics refers

to the movement of proteins in their environment due to thermal fluctuations and

external stimuli. Proteins in their native state can be rigid or flexible. Some proteins,
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called intrinsically disordered proteins (IDP), do not settle into an ordered structure

at all and are characterized as having high flexibility. [12] Often proteins do not have

just one stable conformation within its fold, but can transition between a few different

conformations as it executes its function. [13] Even slight changes in conformation

can change the function of a protein. A reorientation of secondary structure or just a

few residues can disrupt the complex network of interactions between a protein and its

ligand, leading to a gain or loss of function. Mechanisms like allostery use global and

local conformational change to regulate the function of a protein. [14] Consequently,

the role of dynamics in protein function has become prominent in protein biophysics

and protein engineering research, and will be the subject of this work.

1.2 Problem Statement

Proteins play an important role in defending cells from harmful environmental

invaders. In bacteria, these proteins can be used to confer antimicrobial resistance,

allowing bacteria to evade drugs that would otherwise kill them.

Antimicrobial resistance (AMR) poses a significant threat to public health. Ac-

cording to the Antibiotic Resistance Report in 2019 from the Center for Disease Con-

trol, there are over 2.8 million AMR infections per year in the US. [15] Antibiotics

have been a primary weapon against bacterial infections for over 70 years, however

widespread AMR poses a major threat to their continued efficacy. The emergence of

AMR towards a new drug can develop when bacteria are exposed to a new medicine.

A small fraction of the bacteria may survive due to random mutations enabling the

surviving bacteria to pass on their preferred traits to future generations, resulting in

resistant strains. [16, 17] In response, measures have been put in place to reduce the

spread of AMR, such as measures to prevent antibiotics from being released into the

environment and to control the number of extraneous prescriptions. [18, 19] However,

novel approaches for combating AMR microbes are needed.

One approach to address AMR is to engineer novel drugs that can circumvent a



7

pathogen’s defenses. Achieving this requires a detailed understanding of antimicrobial

resistance mechanisms and the complex process of drug design. Drug design is a

complex process which uses High Throughput Screening (HTS) to search for potential

molecules that have a high affinity for a target, and highly parallel affinity experiments

to test them. [20, 21] However, this method is time-consuming, costly, and high-

risk for each new drug approved for use. Additionally, HTS often only provides a

limited understanding of the mechanisms behind how drugs work. To address this

computational approaches have been implemented including both ligand-based and

structure-based approaches which leverage large databases, structural data, and more

recently machine learning.

Over thousands of years bacteria have developed many antimicrobial resistance

mechanisms, and one of the most common is a family of proteins called beta-lactamase.

Many thorough reviews on beta-lactamase-based AMR exist, such as [22, 23], and

some of the relevant information is presented here. Beta-lactamase confer resis-

tance against a class of antibiotics called beta-lactams, which includes penicillins,

cephalosporins, monobactams, and carbapenems. All beta lactams share a common

structural feature called a beta lactam ring, a 4-member ring motif. Their mecha-

nism of action is to bind to a cell wall transpeptidase (penicillin binding protein),

preventing the cross-linking of peptidoglycans which hold the bacterial cell wall to-

gether, ultimately leading to cell death. Beta-lactamase are hydrolases, thought to be

directly descended from transpeptidases [24], that intercept the drugs and catalyze a

reaction that breaks a bond in the beta lactam ring which is critical for recognition

and binding to transpeptidase proteins.

The super-family of beta-lactamase proteins is very large, encompassing thousands

of enzymes. Among them, the most commonly encountered are TEM, SHV, CTX,

and OXA families. TEM-1, discovered in 1963, is considered the wild type enzyme

as it was initially the most prevalent. During the "golden age" of drug discovery
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during the 1950’s and 1960’s many new antibiotics were rapidly developed which led

to a significant evolutionary pressure on bacteria to adapt beta-lactamase enzymes

for better survival, which in turn led to the explosion of beta-lactamase diversity

that is now seen today. A crucial factor in this diversity is that beta-lactamases are

plasmid encoded genes, which allows for horizontal gene-transfer between bacterial

communities.

While all beta-lactamase share the same catalytic function, each enzyme is fine

tuned to exhibit specificity for certain antibiotics. For example, TEM-1 primarily

acts on penicillins, while CTX enzymes prefer cephalosporins, and OXA enzymes fa-

vor oxacillin. This subtle change in function between enzymes poses a significant

challenge to public health in combating beta-lactamase-mediated resistance. Al-

though beta-lactamase enzymes show significant sequence diversity between families,

changes in substrate specificity can also vary greatly within a family where sequence

is highly conserved, as is the case for the TEM family. This adaptability comes from

point mutations which influence enzymes specificity through structural and dynamic

changes, although the exact mechanisms that control substrate recognition are un-

known. These changes, in tandem with antibiotic misuse, has created a feedback

loop that amplifies the emergence of novel beta-lactamase enzymes, ultimately lead-

ing to the current rise in extended-spectrum, carbapenem, and inhibitor resistant

beta lactamase around the world (ESBLs, CBLs, ard IRBLs, respectively).

1.3 Research Objectives

This project focuses on understanding changes in beta-lactamase function, specifi-

cally substrate specificity, in response to mutations to its sequence. Important struc-

tural and dynamic changes in the enzyme are identified using a variety of bioinfor-

matic tools. Prior to presenting the results, in Chapter 2 a computational biology

background to beta-lactamase-mediated AMR will be given along with a discussion of

current methods in computational studies of protein function and dynamics. Chapter



9

3 will introduce the main tools developed or utilized in this project.

This project addresses two scientific questions: 1) Can the dynamic impact of muta-

tions on beta-lactamase be discerned to elucidate how the enzyme develops resistance

to different antibiotics? 2) Can this information be applied to inform the computa-

tional drug design process. As part of Aim 1, Chapter 4 uses traditional and new

techniques for analyzing molecular dynamics (MD) simulations of beta-lactamase.

This reveals the importance of dynamic allostery, and quantifies the functional dy-

namics which drives beta-lactamase function. Aim 2 explores the efficacy of using

peptides as beta-lactamase inhibitors to combat AMR. In Chapter 5 pepStream, a

method of predicting de-novo peptide binders for specific regions on a proteins, is

employed to predict binding peptides which target regions on beta-lactamase that

express functional dynamics as determined in Chapter 4. Finally in Chapter 6, the

conclusions of these studies are presented and summarized and discussed in a broader

context.



CHAPTER 2: BACKGROUND

In this chapter necessary biophysical and biochemical background on beta-lactamase

is presented.

2.1 Functional Dynamics in Proteins

Recognizing the link between protein dynamics and protein function is now widely

acknowledged; however, identifying functional motions poses a significant challenge.

Proteins exhibit motion on multiple scales of time and structure. The largest, and

often slowest, motions are associated with folding, where a chain of amino acids

transitions from random coil to compact domain. At the next level down are domain

motions which control conformational changes within a protein, both in terms of

global changes to the whole domain and local changes to particular structure elements.

The smallest motions are sidechain dynamics, which include atomic motion such as

rotations between side chain rotamers down to bond vibrations. Each of these motions

plays a crucial role in determining how a protein functions.

Protein dynamics has remained elusive because they are challenging to directly

observe. X-ray crystallography, the most prominent structure determination method

(representing 85.3% of the Protein Data Bank (PDB) [25] structures as of July 5,

2023), only provides a single structure. In contrast, nuclear magnetic resonance

(NMR), the third most prominent method (representing 6.77% of the PDB struc-

tures as of July 5, 2023), offers multiple conformations, enabling a glimpse at the

potential conformational dynamics of proteins. B-factors from crystallography have

been observed to loosely correlate with protein flexibility and has served as an in-

dicator of protein motion. [26] Infrared spectroscopy can be used to probe protein



11

dynamics as domain-level molecular motions are detectable at these wavelengths.

[27] However, this information may be insufficient to provide atomistic details about

molecular mechanics.

To bridge this gap, many studies rely on computational modelling of protein dy-

namics in combination with these experimental methods. Molecular force fields have

been developed based on theories of intermolecular interactions that are calibrated

against experimental data. While the models are far from perfect, they have been

shown to reasonably approximate the physics of proteins in solution, and have proven

useful in aiding experimental studies. [28]

The primary drawback of using computational models to study protein dynamics

is the vast number of timescales that functional protein motions can occur. This can

range from the picoseconds to hours or days, while MD simulations are typically lim-

ited to the micro-millisecond range. Additionally, for large proteins it becomes nearly

impossible to simulate motions at this scale due to hardware constraints. Sufficient

sampling is needed to fully understand molecular processes, thus these challenges can

be addressed to some degree by using coarse grained MD models [29], accelerated

molecular dynamics, or Markov state models. [30]

Ultimately, the goal of thorough sampling is to characterize the conformational free

energy landscape (FEL) of a protein. Proteins can exist in a multitude of microstates

represented by local minima of the FEL. [11] For example, two microstates could

represent the starting and ending conformation for a protein undergoing a specific

process. A transition between one state and another represents the process proceed-

ing. The functional dynamics of the protein are often those which allow for the protein

to move between microstates.

The free energy change (∆G) associated with such processes is related to relative

depths of the microstate minima on the FEL. Obtaining accurate ∆G values would

require sufficiently sample every possible conformation available to the protein. Due
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to the nature of proteins this is infeasible, so concessions are often made to adequately

sample just a portion of the FEL relevant to the problem.

2.1.1 Flexibility and Function

In the thermodynamic context, globular proteins have a native state, which corre-

sponds to their folded and functional conformation. This state exists at the point of

lowest free energy on the FEL, resembling a funnel or basin. Current research indi-

cates that, locally, the FEL is actually rugged, giving rise to various partially folded

microstates the protein can access as it transitions from random coil to folded. [31, 32]

Additionally, the bottom of the basin can also be rugged and broad. In the case of

a rugged, flat-bottomed basin, a degeneracy of local minima within the flat bottom,

manifests physically as multiple equally likely folded conformations which the protein

can transition between in equilibrium, similar to the example given above.

Transitions between conformation states are facilitated Brownian motion. Thermal

fluctuations within the protein and its surroundings cause continuous small fluctu-

ations around the native state structure. If a sufficiently large random fluctuation

occurs, the protein can be displaced from its current conformation enough to allow it

to enter another microstate. The propensity for a protein to escape its current basin

is controlled by the free energy barriers between states, and this process can either

be driven entirely by random thermal motion, or by external stimuli.

To be functional, a change in conformation must result in a modification in the

protein’s ability to perform its specific task. For example, a protein may fold in such

a way that its active site is initially obscured from the solvent-accessible surface, so

that interaction with a ligand is unfavorable. After conformational change, however,

the active site is opened and interactions are favorable. In this case the change results

in the protein being able to interact with its ligand. Often times the environment

plays a crucial role in triggering functional changes in proteins. This is one of the

many ways that the molecular environment is related to protein function.
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In the case where random fluctuations are not enough to completely eject a protein

from its local minimum, it tends to return to equilibrium and reassert its native

conformation. The extent of this elasticity in proteins, to deform its shape, is referred

to as the native state flexibility of the protein. Flexibility can manifest at all levels of

the proteins structure, including its global domain shape, secondary structures, and

even down to side chain mobility.

Proteins can leverage flexibility in a variety of functional ways. For example, a pro-

tein can reposition amino acid side chains for optimal interacting poses or contribute

to maintaining the structural integrity of a fold. [33] Flexibility can also arise by

random chance through brownian motion as described above. Discerning flexibility

which arises from random chance versus as part of protein function is a challenging

task.

2.1.2 Detecting Functional Flexibility

Consider a set of sampled conformations of a protein, C = {ci}. Each ci rep-

resents a vector of x, y, and z coordinates of each atom in the protein, ci =<

x1, x2, x3, ..., y1, y2, y3, ..., z1, z2, z3 >. The index i represents the ith time step of the

trajectory. To assess flexibility in proteins, some simple metrics can be employed.

To allow meaningful comparisons between changes in atomic positions throughout

a trajectory, a base line reference is required. [34] The true native state structure

would be ideal, however this is not attainable. Instead, the initial conformation of

the trajectory x0 or the conformation closest to the average can be used in its place.

During this discussion the reference will be called xref .

The Root Mean Square Deviation (RMSD) [35] is a commonly used metric that is

for assessing the change in a proteins structure throughout a trajectory. For any single

conformation, the RMSD is calculated the average deviation of all atoms compared

to the reference as in Equation 2.1.
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RMSD(xi, xref ) =
√
〈(xref − xi)2〉atoms (2.1)

In the above equation 〈·〉 represents an average over the atoms per conformation.

The RMSD provides a single numerical value to compare to the average deviation of

a protein from a reference.

To gain a more detailed understanding of where flexibility along a protein chain

occurs, Root Mean Square Fluctuation (RMSF) can be used. This metric averages

the deviations between each conformation and a reference per atom basis over the full

trajectory. The RMSF provides insights into the fluctuations and variations exhibited

by individual atoms across the set of conformations.

RMSF ({xi}, xref ) =
√
〈(xref − xi)2〉i (2.2)

RMSD and RMSF should be carefully considered to avoid arriving at misleading

conclusions. As an example, a large value for RMSD may actually indicate that the

trajectory has moved away from the reference conformation but is rigidly sampling

this divergent pose. This would raise the value without increasing actual flexibility.

Additionally, a common reference structure when comparing values across different

proteins so that all values can be compared on equal footing.

RMSD and RMSF provide some insight into the motions atoms in a protein can

exhibit beyond a single structure. However, protein motions are often more complex

and function can involve cooperative motion across the protein. Furthermore, it is

difficult to distinguish what motion is functional versus non-functional. For this, more

complex models have been developed. Recently, machine learning has been exploited

for understanding protein dynamics. [36] These advanced methods provide a deeper

understanding of the complex motion involved in protein function.
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2.1.3 Internal Dynamics of Proteins

Global metrics of flexibility, such as RMSD and RMSF, provide insights into pro-

tein behavior, however they can fall short in capturing the full complexity of pro-

tein function. The internal motions of proteins, such as conformational changes or

hinge bending motions, can also facilitate various biological processes involving pro-

teins. However, identifying and modeling these dynamics pose significant challenges.

Nonetheless, gaining a comprehensive understanding of protein dynamics provides a

detailed picture of how proteins interact with their environment, revealing the under-

lying mechanisms of their functionality.

2.1.3.1 Elastic Network Models

A common approach to detecting functional motions in proteins is to build an

Elastic Network Model (ENM), which are extensively reviewed in [37]. ENMs char-

acterize the global vibrational motions of a protein by treating proteins as a network

of springs and computing the normal modes of the network. The lowest frequency

motions correlate to the largest amplitude structural motions of the protein.

ENMs can be constructed from a single protein structure. There are several types

of commonly used ENMs for protein analysis, including Gaussian Network Models

(GNM) and Anisotropic Network Models (ANM). GNM models fluctuations about

the equilibrium state of the protein without considering the directionality of the

motion, while ANMs include direction information. In GNMs, the spring network is

constructed using distances between atoms and their equilibrium positions, resulting

in an n dimensional network for an n-atom protein. In ANMs displacements in all

3n directions are considered, resulting in a 3n-dimensional network. The following

discussion will focus on ANMs.

ENMs can be used to perform fast, coarse-grained simulations of protein motion,

serving as an alternative to computationally expensive MD simulations. [38] They
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have been found to perform well in reconstructing conformational changes in proteins

and in capturing important fluctuations as described by b-factors in x-ray crystallog-

raphy. [39]

In an ENM, atoms in a protein structure are represented as masses connected

by springs, representing bond constraints. Consequently, the whole system can be

thought of as a set of coupled oscillators. The equilibrium structure, denoted as

r0 = [x0
i , y

0
i , z

0
i ] where i is an index over all atoms, represents the configuration of

oscillators at equilibrium. This system can be treated in a way similar to a network

of springs as can be found in any introductory Classical Mechanics textbook, such

as [40]. Expanding around equilibrium, the potential energy of the system can be

expressed up to the second order as:

V (r − r0) = V (r0) +
∑
i

(
∂V (r0)

∂ri
)(ri − r0

i ) +
∑
i,j

1

2
(
∂2V (r0)

∂ri∂rj
)(ri − r0

i )(rj − r0
j ) (2.3)

The first and second term are zero by definition, as the system being in equilibrium.

The term ∂2V (r0)
∂ri∂rj

defines the elements of the Hessian matrix H. The fluctuations

about the equilibrium position can be represented by the 3N dimensional vector

∆r = [(x − x0)i, (y − y0)i, (z − z0)i], which simplifies the potential energy for small

fluctuations about the equilibrium state to 2.4.

V (r − r0) =
1

2
Hij∆ri∆rj =

1

2
∆rTH∆r (2.4)

When this is substituted into the Euler-Legrange equations, the equations of mo-

tions for the system can be obtained as in 2.5.

M∆r̈ = −H∆r (2.5)
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This takes the form of Hooke’s law describing harmonic motion. The solutions for

this is well-known and takes the form of a set of n modes with the form 2.6.

∆ri = Aicos(ωit+ φi) (2.6)

When this is substituted back into the equations of motion, with some algebra, the

vector Ai becomes the solution to an eigenvector equation shown in 2.7.

Mω2
iAi = HAi (2.7)

The operator that needs to be diagonalized to obtain the normal modes is K =

M−1H, known as the mass-weighted Hessian. The eigenvalues of this operator rep-

resent the squared frequencies of oscillation for the corresponding normal mode. It

is important to note that the eigenvalues do not have to be positive by definition. A

positive eigenvalue indicates the frequency of a harmonic oscillation in a local min-

ima of the free energy landscape, while a negative eigenvalue leads to an imaginary

frequency which represents saddle points in the free energy landscape or transition

states of the molecule.

This model for describing the internal motions of proteins is directly motivated

from fundamental physics principles. Correctly parameterizing the matrix H (or K)

is crucial for capturing the true physical motions of the system. In most models, the

form of this matrix is determined by the connectivity of the of the spring network, as

illustrated in Equation 2.5. The value of Hij is equal to the spring constant between

atoms i and j in the network, and correspondingly, for two non-interacting residues

this value will be zero as they do not exert force on each other. For interacting

residues it will be positive and correlate to the strength of their interaction.

For a GNM, the H matrix is defined to be kI, where k is a parameter of the model

and I is the identity matrix. On the other hand, ANMs have more sophisticated
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structure because they separate the three components of fluctuation vectors, thereby

providing more information about the normal modes of the protein. [37] In general,

the exact definition of the Hij is not explicitly defined, however it is common to

define them such that closer atom pairs have higher spring constants. Additionally,

a common practice is to use a cutoff distance for considering two atoms as interact

with each other, where Hij is 0 for atoms further than this cutoff.

ENMs rely on several assumptions which must be considered when evaluating the

validity of the model. Firstly, ENMs are valid in the linear response regime for the

network, which practically means that it can only describe atomic motions that are

small relative to the natural length of the springs connecting them. The concern is

that the force constants may change dynamically as the system evolves. For example,

consider the case that two residues start near each other and therefore have a non-zero

k value. As the protein changes its structure, which would break the assumption, the

atoms move apart resulting in a decrease in the k value over time.

Another consideration is that ENMs are typically constructed using a single protein

structure, which may overlook important environmental effects which influence the

protein dynamics. Solvent molecules and other small molecules are typically not

represented in these models. Finally, normal mode motions are still approximations

to the actual dynamics a protein might undergo in reality. The normal modes can only

describe motions up to the level of coarse graining that was used in the underlying

elastic network describes.

For fluctuations around the equilibrium structure in the quasi-harmonic approx-

imation, the Hessian matrix has been shown to be approximately equivalent to a

precision matrix, or the inverse of a covariance matrix derived from the frames of

an MD simulation, H ≈ kT 〈Q−1〉. [41] Given this observation, MD simulations can

be used to estimate an ENM for a protein. This approach removes the need to pa-

rameterize a Hessian matrix as the elements originate directly from sampled protein
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motion. No simulation can sample all possible conformations a protein can take, and

so the resulting Hessian will also only be approximate. Since the eigenvectors for

the covariance matrix are identical to those of its inverse (with inverted eigenvalues),

finding the eigenvectors of the covariance matrix, a technique referred to as Principal

Component Analysis (PCA), is equivalent to finding the normal modes of motion

using an ENM. This approach is called Essential Dynamics (ED).

2.1.3.2 Essential Dynamics

Essential Dynamics aims to find the largest amplitude motions of a protein. [42,

34] In the context of ENMs, these high-amplitude motions correspond to the lowest

frequency normal modes. [43] To perform ED, a trajectory of protein conformations

can be sampled with MD or experimental methods. Prior to analyzing the dynamics,

all frames of the trajectory must be aligned using structural superposition to remove

trivial degrees of freedom describing global translation and rotation.

PCA is the method which underlies ED. The primary objective is to transformation

the original data into a set of collective variables which maximize variance. [44, 45]

A collective variable, Equation 2.8, is a generalized coordinate of a system which

describes a global feature of the original data. [46, 47]

q(t) = Σicixi(t) = 〈vi|x(t)〉 (2.8)

For a protein, the vector of atomic positions at time t serve as the observables of the

system, denoted by xi(t). Generally, a collective variable is a linear combination of

the observables, weighted by a set of coefficients {ci}. Learning this set of coefficients

which maximizes the variance of q(t) is the goal of PCA. Mathematically, the desired

coordinates correspond to the eigenvectors of the covariance matrix, where the value

of each ci is defined by the components of each eigenvector, |vk〉. These eigenvec-

tors can be computed by solving the following eigenvalue problem. The eigenvalue
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corresponding to |vk〉 is λk.

Q |vk〉 = λk |vk〉 (2.9)

To find the most variant motions of the protein, the matrix Q in Equation 2.9 is

equal to the covariance matrix computed from the trajectory. In this context, the

eigenvalues represents to the variance of the motion that is described by the associated

eigenvector. A collective variable, called the principal component, can be obtained

projecting the observations onto an eigenvector.

The "essential dynamics" of the protein correspond to the motions described by the

eigenvectors with the largest eigenvalues. Under the quasi-harmonic approximation,

the essential dynamics are equivalent to the normal modes with the lowest frequency.

This correspondence between essential dynamics and low-frequency motion explains

why the lowest frequency motions are often considered to be the motions with the

largest amplitude.

For a protein with 3N total degrees of freedom (N being the number of atoms in

the structure), the number of principal components needed is highly dependent on the

system and dynamics being observed. However, the choice of how many components

to keep is often left to more quantitative metrics such as requiring a minimum percent

of the original variance or using Cattell’s criterion. [48]

The choice of matrix Q is not limited to the covariance matrix of Cartesian coor-

dinates, however, only the covariance matrix has the special interpretation of repre-

senting low-frequency vibrations. In principle, any symmetric and positive definite

matrix of observables from an MD trajectory can be used to describe protein motion.

For a matrix which satisfies these conditions, the eigenvectors will form complete

orthonormal basis set, valid for constructing collective variables to describe features

of the system. The motions described by different matrices, and constructed from

different coordinate types in PCA will reflect different assumptions and have different
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interpretations. [49]

A common matrix that can be used is the correlation matrix, R, which describes the

pairwise correlation between observables, Rij = ρ(xi, xj). [49] In correlation-based,

the eigenvalues represent the proportion of original variate correlation is represented in

each principal component. A rule of thumb for correlation PCA is that an eigenvalue

greater than 1 indicates that the eigenvector encompasses at least one variable’s worth

of correlation.

PCA is a useful method for identifying functional motions in proteins due to its

ability to automatically identify the most variant or correlated dynamics of the sys-

tem. When treated as a linear transformation into a one-dimensional collective vari-

able, each eigenvector provides an interpretable model for identifying which atoms

contribute to the motion it represents.

PCA belongs to a class of algorithms called projection pursuit or dimensionality

reduction, which stems form the algorithm of the same name [50], in which high

dimensional data is projected into a low dimensional representation. [51] In PCA,

dimension reduction is done by dropping the eigenvectors which are below a threshold

for variance or correlation. This filtering process eliminates motions that are typically

considered random fluctuations or noise. PCA can also be applied to a variety of

different types of degrees of freedom, including dihedral angles and atom to atom

distance pairs, in order to identify different types of motions. Generally, PCA is well

suited for identifying large scale motions like conformational change or hinge bending,

e.g. in DNA binding protein domains. [52]

ED is usually applied to just the alpha carbon atoms in a protein, as early studies

demonstrated that coarse graining a protein to just the backbone or alpha carbon

atoms is sufficient for identifying large motions in proteins. [53] Higher resolution

models are tend to be noisy, as the large-scale backbone motions wash out the informa-

tion from smaller side chain motions. [54] The primary benefit of using coarse-grained
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models is that the reduction in computational burden associated with computing es-

sential dynamics. However, ED can be effectively applied to a small subset of atoms

or residues at the all-atom or heavy atom level, allowing for an investigation into

the role of side chain motions in protein function. This type of funnel approach can

provide valuable insights into the role protein dynamics play in function, however it

usually requires expert knowledge about the system to curate such a set of atoms.

2.1.4 Allostery

In the context of functional flexibility, protein function is driven by the conforma-

tional capacity of the protein itself. However, in the case of allostery, function is driven

by ligand binding. Ligand binding is a fundamental mechanism used by proteins to

perform functional processes, whether this is catalysing reactions or transmitting

inter-cellular signals. Allostery is a phenomenon that occurs in proteins with two or

more distant binding sites, either on the same or separate chains. [14, 55] It involves

a binding event at one binding site influencing the affinity for binding a ligand at an-

other site, often the active site. The change in affinity can be quantified by a change

in ∆Gbinding, which is called ∆∆G. Negative ∆∆G indicates positive allostery, where

binding one ligand increases the affinity for binding another. Conversely, positive

∆∆G is negative allostery, where binding one ligand decreases the affinity for binding

another.

The molecules that induce allostery in proteins are called allosteric effectors. When

both allosteric effectors are the same kind of molecule they are called homotropic, oth-

erwise, they are heterotropic allosteric effectors. Allostery arises because events at

distant sites on a protein can still influence each other through a mechanism called co-

operativity. Allosteric signals can be transmitted between binding sites via allosteric

pathways, which are mediated through conformational change and perturbations in

the normal mode motions of a protein. [56] Although allostery was once thought to

be a rare phenomenon, more recently it has been recognized that allostery may be a



23

universal mechanism in all proteins [57].

Hemoglobin, which is responsible transporting oxygen around a body, is one of the

most well-known examples of allostery, reviewed in [58]. Hemoglobin is comprised

of four subunits, each capable of reversibly binding with a single oxygen molecule.

Studies of the Hemoglobin binding curve implied that cooperativity between oxygen

binding sites was present, particularly that binding an oxygen on one subunit in-

creased the affinity for binding on the other subunits. Further study of this system

revealed a structural basis for the observed cooperative effect. When an oxygen binds

into a subunit, an allosteric signal is propagated across the quaternary structure of

hemoglobin through interfacial contacts between monomers. This signal induces a

conformational change in the binding site that improves the affinity of oxygen bind-

ing, leading to the observed cooperative effect.

Hemoglobin is an example of structurally transmitted allostery, however, allostery

can occur through two main mechanisms: conformational and dynamic allostery.

Conformational allostery occurs when the first binding event triggers a conformational

change at another site, modulating the affinity for a binding event to occur at this

site. This mechanism is reminiscent of the induced fit or conformational selection

model [59] for ligand binding which states a ligand can only bind to a protein when

both molecules adopt mutually favorable conformations. In comparison to allostery,

the change in binding site conformation occurs when both receptor and ligand are

present in appropriate conditions. Comparatively, in allostery the conformational

change must be catalyzed by effector binding, regardless if the other conditions are

met.

Classic models of conformational allostery treat it as a two-state system with the

two conformational states called tensed (T) and relaxed (R). A molecule in the T state

has a lower affinity for ligand binding, while in the R state it has higher affinity for

ligand binding. In the 1960’s, the Monod-Wyman-Changeux (MWC) model [60] was
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proposed to explain allostery. In this model the T and R state were pre-existing in

the conformational ensemble of the protein in equilibrium, defined by an equilibrium

constant. In the MWC model, the binding constants of the ligand to the T and

R states are the same at each binding site, and independent of the state of any

other binding sites. A binding event at any site triggers a shift in the conformation

equilibrium. With each binding (or unbinding) event the equilibrium changes more

and all the sub-units become more likely to change from T to R (or vice-versa). This

called the continuous model.

Shortly after the MWCmodel was introduced, the Koshland-Nemethy-Filmer (KNF)

model, or sequential model, was proposed. [61] In the KNF model, the change in con-

formational equilibrium only impacts binding subunits which were interfacially linked.

The sequential model suggests that binding affinity across the whole protein changes

as a chain reaction. These models are still used today, although, it has been shown

that a protein may have more than one T or R state. The models have been updated

to reflect this reality.

The MWC and KNF models have been successful in explaining allosteric mecha-

nisms in proteins, however the models still contain some limiting assumptions. Firstly,

these models addressed allostery that is present in proteins composed of identical

(symmetric) binding monomers. In further work such as in [62], cooperativity be-

tween ligand binding events were explored from the perspective of separate contri-

butions from conformational changes to the ligand binding domain and quaternary

structure, as in the induced fit model. Secondly, it was assumed that conformational

change was only mechanism which could cause allostery.

In 1984 Cooper and Dryden introduced a new model that did not require specific

conformational change mechanisms. [63] They provided a thermodynamic proof which

quantified ∆∆G due to ligand binding in terms of a contribution from conformational

change as well as changes to the internal motions of proteins. This model proposed
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that a sufficiently large change in binding affinity can come from a shift in the normal

modes when an allosteric effector bound to the protein. Because normal modes are

collective motions, changes in the proteins motion could be easily transmitted around

the protein and between distal binding sites.

To illustrate their concept, the authors consider a situation involving a protein

which has two identical binding sites, which can be occupied in three states: apo E,

singly occupied EL, or fully occupied EL2. The change in affinity between singly

occupied and fully occupied can be approximated by the shift in normal mode fre-

quencies, as described by Equation 2.10.

∆∆G = −kT ln(
ν2

1

ν0ν2

) (2.10)

Here, νi represents the frequency of normal modes for the states with i = 0, 1, 2

occupied binding sites.

2.2 Beta Lactams and Beta-Lactamase

Antibiotics are the first line of defense against bacterial infection. In 2021, the

CDC reported 210.9 million antibiotic prescriptions in the United States alone. [64]

Among these prescriptions, the top two classes of drugs were beta lactams, specifically

penicillins and cephalosporins, with a combined total of 77.8 million prescriptions.

Additionally, an additional category known as "beta lactams with increased activity"

contributed an extra 22 million prescriptions. The beta lactam amoxicillin, a deriva-

tive of penicillin, is the most commonly used antibiotic worldwide. Beta lactams are

an important class of drugs used worldwide, and so safeguarding their efficacy is a

primary goal for maintaining global health.

Beta lactams refer to several classes of drugs which share a common chemical mo-

tif called a beta lactam ring. [23] The 4-membered ring is characterized by a square

structure comprised of three carbon atoms, one nitrogen atom, and an oxygen atom
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connected to the carbon of the C-N bond. The four major classes of beta lactam an-

tibiotics are penicillins, cephalosporins, monobactams, and carbapenems. Penicillins,

being the oldest and first clinically approved class of beta lactam, was discovered

serendipitously by Alexander Fleming in 1928 [65] when he reported a petri dish of

bacteria where some mold had contaminated the sample and stopped the bacteria

cultures from growing. From this benzylpenicillin, or Penicillin G, was developed and

first clinically deployed by the early 1940s. [66] Today, a variety of common peni-

cillins are still widely used including amoxicillin, ampicillin, and piperacillin. The

core structure of penicillin-like drugs is the beta lactam ring with a thiazolidine ring

attached on one side and an interchangeable residue on the other side. The identity

of the residue determines the identity of the compound. Other classes of beta lactam

preserve the beta lactam ring but have different structures.

Cephalosporins have similar core structures to penicillin. However, in cephalosporins,

the 5-member thiazolidine ring is replaced with a 6-membered dihydrothiazine ring.

This change allows for a second interchangeable residue group and increases the gen-

eral size and weight of the drugs compared to penicillin. Cephalosporins were first

found in the 1950’s and have become a vital group of antibiotics. [67] They are di-

vided into five generations which are grouped based on their spectrum of activity.

Later generations include activity against a broader range of bacteria including both

gram-positive and gram-negative bacteria.

Monobactams have a more significant shift in structure, lacking a second ring fused

to the beta lactam ring. Instead they consist of just the beta lactam ring with two

residue groups. Azteronem is the most common example of monobactam antibiotics.

Finally, carbapenems have historically been the most clinically effective class of beta

lactams. They have been able to evade common forms of resistance to beta lac-

tam drugs because they are extremely structurally stable and have high affinities for

their target. Carbapenems have the central beta lactam ring which is fused to a 5-
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membered carbon ring, with various additional residues. Because carbapenems have

a wide spectrum of activity and have been effective for treating multi-drug resistant

bacterial infections, they are some of the most important drugs currently in use.

All classes of beta lactam antibiotics generally share the same mechanism of ac-

tion on bacteria. [68, 69] Bacteria often posses a rigid cell wall to maintain cellular

structure and add an extra layer of defense against harmful environmental toxins.

Bacterial cell walls consist of peptidoglycans, which are tightly cross linked into a

mesh-like structure by transpeptidases. These transpeptidases responsible for cross-

linking peptidoglycans via a short peptides are the primary target of beta lactams

and as such are also called Penicillin Binding Proteins. It was observed that peni-

cillin molecules irreversibly bind with a Serine residue in the transpeptidase active

site, thereby interrupting cell wall synthesis. Consequently, the cell wall is destabi-

lized, eventually leading to bacterial death. Since eukaryotes lack cell walls while

bacteria possess them, cell walls have become a significant target for antibiotics.

2.2.1 Beta Lactamase Structure and Function

Bacteria can acquire resistance to beta lactams in three main ways. [70] First,

modifications to the PBP targets can make binding with beta lactams much less

favorable. Second, the use of efflux pumps controls the concentrations of antibiotics

near the cell wall. Finally, and most commonly, bacteria can produce a protein

known as beta-lactamase. Beta-lactamase is a large superfamily of proteins that share

a similar biochemical function: catalyzing a hydrolysis reaction with beta lactam

antibiotics, leading to the cleavage of the C-N bond necessary for PBP binding. This

binding event is quickly turned over, allowing beta-lactamase to rapidly reset its

active site and find another antibiotic to deactivate.

The beta-lactamase superfamily can be divided into structural categories A, B,

C, and D (Ambler classification [71]) or into functional categories based on their

substrate spectra (Bush-Jacobi classification [72, 73]). Classes A, C, and D share a
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common Serine-based mechanism of action. A conserved serine residue is activated

and attacks the carbonyl atom on the beta-lactam ring, forming a covalently bonded

acyl-enzyme complex. A water molecule is then activated and cleaves this bond,

leaving the beta lactam ring broken. When the ring is broken, the molecule is unable

to bind to the PBP target, rendering the drug inactive. Serine beta-lactamases are

thought to have evolved directly from PBPs on bacterial cell walls as both active

sites contain a conserved SXXK motif for substrate recognition. [24] Class B beta-

lactamase, which are metalloenzymes, employ a zinc mediated enzymatic pathway

for inactivating beta-lactam molecules. [74] These metalloenzymes are of particular

concern for public health as they can evade traditional beta-lactamase inhibition

mechanisms designed for serine based enzymes. Beta-lactamase have long been of

interest in biochemistry due to their clinical significance and their status as diffusion-

limited enzymes with fast hydrolysis speeds. [75]

Classes A, C and D beta-lactamase are structurally conserved families, despite

having significant sequence diversity. The structure of these beta-lactamase consists

of a catalytic alpha-beta-alpha domain with the active site pocket bordering a beta-

sheet wall, with an all-alpha terminal domain, shown in Figure 2.1. An important

omega loop found adjacent to the active site in serine beta-lactamases, has been has

been shown to play a crucial role in functional mechanisms of the enzyme. [76] NMR

[77, 78] has shown that this loop exhibits high flexibility on longer (ms and beyond)

timescales, and markov state models have been used to predict the opening of a

cryptic pocket near this loop. [79]

Experiments where the omega loop was removed found a significant decrease in

beta-lactamase activity [80], attributed to structural changes and the loss of catalytic

residue E166. Given its proximity to the active site, several residues on the omega

loop, such as E166 and N170, are proposed to directly contribute to antibiotic hydrol-

ysis. Competing theories regarding the mechanism for activating the catalytic water
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Figure 2.1: Structure of TEM-1 beta-lactamase with important secondary structure
elements labelled. The omega loop is colored in cyan while catalytic residues are
shown in magenta, including: Ser70, Lys73, Ser130, Asn132, Glu166, Lys234, Ala237.
The green sphere shows the primary binding site for antibiotics. Figure Credit: [1].

molecule and S70 have been proposed. These involve a hydrogen bonding network

between K73, E166, N174, K234. [81]

Although the omega loop has been well studied, the full extent to which it controls

beta-lactamase activity has not yet been probed. In particular the role of dynamics

in this flexible loop may yet explain the subtlties of substrate recognition.

The functional classification of beta-lactamase is based on which drug substrates

that an enzyme can bind to. The three major classifications of beta-lactamase are

as follows: 1) cephalosporinases, 2) serine beta-lactamases, and 3) metallobetalacta-

mases. Each group is further subdivided to separate categories based on substrate

recognition properties. For example, group 2 beta-lactamases are divided into peni-

cillin resistant (2b), extended-spectrum resistant (2be), inhibitor resistant (2r), car-

benicillin resistant (2c), cloxacillin and oxacillin resistant (2d), and carbapenem resis-

tant (2f) subgroups. Additionally combinations of these subgroups can exist as well,

e.g. example extended-spectrum cephalosporin and inhibitor resistant, 2ber.

Two of the most concerning functional classes of beta-lactamase are extended-

spectrum beta-lactamase (ESBL) and Inhibitor Resistant beta-lactamase (IRBL).

ESBL refers to beta-lactamase that exhibit resistance against third generation cephalosporins
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Figure 2.2: The mutational landscape of the 193 TEM beta-lactamase. The color
scale is set by the frequency of mutation.

and other extended-spectrum beta lactam drugs, and ISBL refers to beta-lactamase

that are able to inactivate antibiotics even in the presence of beta-lactamase inhibitors.

ESBL and IRBL pose significant clinical concerns, with the CDC estimating that ES-

BLs alone were responsible for 197, 000 infections and $1.2 billion in healthcare cost

in 2017, and these numbers are part of a rising trend. [15]

The resilience of beta-lactamase to new beta lactam substrates is a defining fea-

ture of these proteins and a key factor in their role as a primary cause of AMR.

Various families of beta-lactamase have been evolved to confer resistance to specific

classes of beta lactams, Examples include KPC (K. Pneumonia Carbapenemase) or

OXA (Oxacillinase), whereas other enzymes in families like TEM or SHV can demon-

strate a variety of different resistance phenotypes. [82, 83, 84] While structure is

generally conserved among serine beta-lactamases, sequence conservation is specific

family. This suggests that within families like TEM or SHV, the resistance profile is

controlled by point mutations which modulate substrate recognition.

By aligning the sequences of TEM beta-lactamases, it becomes evident that muta-

tions occur at relatively few spots along the sequence as depicted in Figure 2.2. This

figure shows the mutation landscape for 193 variants in the TEM family. The distri-

bution across the TEM sequence shows that mutations are not randomly distributed

but occur in high frequencies at a small subset of specific loci. Additionally some mu-
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tations, such as from E/K or G/S, have high frequencies across the family suggesting

that these mutations provide the enzyme with the highest increase in evolutionary

fitness.

Mutations can divided into a three main categories: primary, accessory, and un-

known function mutations. Primary mutations directly change the substrate profile

of beta-lactamase. Many of these mutations have been studied extensively in crystal

structures of beta-lactamase, and are reviewed in [85]. In the TEM family, G238S

and R164S are considered primary mutations conferring resistance to Cefotaxime

and Ceftazidime respectively. Enzymes that confer resistance to third generation

cephalosporins such as these are classified as ESBL, and these mutations are consid-

ered hallmarks of this phenotype. In Figure 2.2, the highest frequency mutations are

often primary mutations.

Accessory mutations can affect catalytic specificity, however are usually act in

conjunction with primary mutations to amplify changes. In TEM beta-lactamases,

E104K and E240K are examples of accessory mutations. Specificity-changing muta-

tions destabilize beta-lactamase, so additional accessory mutations like M182T have

been found to restabilize the protein.

Finally there are mutations which do not change the specificity of the enzyme,

nor have any obvious other impacts, but still are some how common within their

respective families. One example is Q39K, the mutation that distinguishes TEM-2

from TEM-1. These two enzymes are known to have similar catalytic properties.

Many TEM beta-lactamase can be considered as having been derived from a TEM-1

or TEM-2 lineage based on the presence of this mutation. A more recent study of

this mutation in TEM-72 using molecular dynamics simulation [86] suggested that

Q39K also acts to destabilize the protein.
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2.2.2 Beta Lactamase Inhibitors

One of the reasons that beta lactam antibiotics remain effective treatment options,

even with the emergence of beta-lactamase resistance, is the availability of beta-

lactamase inhibitors. Traditionally enzyme inhibitors have been small molecules that

are used in combination with a traditional beta lactam. These molecules come in two

main generations. Currently most beta-lactamase inhibitors work by having their

own beta lactam ring motif which binds in the beta-lactamase active site. Beta-

lactamase inhibitors have been reviewed extensively in the literature [87, 81], and

relevant information from these works are shown here.

The first generation of inhibitors includes clavulanic acid, sulbactam, and tazobac-

tam. These inhibitors function by forming stable acyl-enzyme complexes with beta-

lactamase blocking the enzyme from binding with a drug in the future. These reac-

tions are irreversible and inhibitors that act this way are often called suicide inhibitors.

These molecules have been clinically approved for use alongside particular antibiotics.

For example, clavulanic acid is prescribed with amoxicillin or ticarcillin, sulbactam

with ampicillin, and tazobactam with piperacillin or ceftolozane. Most penicillinase

beta-lactamase are susceptible to these first generation beta lactamase inhibitors, and

sulbactam even possesses its own mild antibiotic potency.

While beta-lactamase inhibitors have shown success in inhibiting penicillinases,

the emergence of carbapenemase, cephalosporinase, and other beta-lacatamase resis-

tance drives research into novel inhibitors. A second generation of inhibitors, which

do not contain a beta lactam, has been recently developed. This includes avibac-

tam (approved 2015 [88, 89]), vaborbactam (approved 2017 [90, 91]), and relebactam

(approved 2021 [92]).

Avibactam works in combination with ceftazidime to restore efficacy against ESBL

producing bacteria. Avibactam is a diazabicyclooctane (DBO) molecule noted for

having a bridged bicyclic core. Although avibactam does not contain a beta-lactam
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ring it still forms a stable Michaelis complex via a carbamate linkage with the catalytic

serine in the active site of the protein. This complex, however, is far more stable,

allowing the inhibitor to occlude ceftazidime from entering the binding pocket.

Vaborbactam and relebactam are inhibitors which can restore carbapenem efficacy

against carbapenemase beta-lactamase. Vaborbactam has been approved for use with

meropenem, and relebactam with a combination or imipenem and cilastatin. These

inhibitor-drug combinations have reduced some of the threat from multi-drug resistant

bacteria, in particular against carbapenemase beta-lactamases.

Vaborbactam is the result of extensive research into the utility of boronic acids

as beta-lactamase inhibitors. They demonstrate efficacy against serine-like class A

and C carbapenemases. Boronic acids have shown inhibitory properties against beta-

lactamase, which involve interactions between the inhibitor and the catalytic serine of

beta-lactamases. Relebactam is another DBO-based inhibitor with a bridged bicyclic

urea core, derived from the structure of avibactam. Its mechanism of inhibition is

similar to avibactam, however, it has been designed to be more stable, resulting in

longer lived enzyme-inhibitor complexes.

An interesting case in the inhibition of beta-lactamase involves beta-lactamase

Binding Protein (BLIP), a naturally occurring protein known to bind to beta-lactamases

to inhibit their function. The BLIP/beta-lactamase protein-protein interaction (PPI)

is a model system for studying PPIs because the it is well characterized and large.

[93, 94] Due to this BLIP/beta-lactamase serves as a valuable model system for PPIs

throughout literature.

The first BLIP was reported in 1996 [95] and since then three other BLIP or BLIP-

like proteins have been discovered. [96, 97] Studies involving BLIP in complex with

TEM-1 beta-lactamase show that the BLIP/beta-lactamase PPI surface could include

more than 49 residues on TEM-1. [98] X-Ray Crystallography has been performed to

directly resolve the structure of the beta-lactamase enzymes in complex with BLIP
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[95, 99], and mutagenesis assays have been performed to determine the functional

importance of various residues. [93, 100] It was found that residues 99-112, which

form a helix-loop-helix region on TEM-1 that is adjacent to the binding pocket were

most critical for BLIP binding. Interactions allow BLIP to cover the binding pocket

of beta-lactamase, hindering drug molecules from accessing the catalytic Serine.

Although BLIP initially showed good inhibitory properties for beta-lactamase, it

was also found to have a narrow spectrum of activity, primarily restricted to class

A beta-lactamases. Additionally, as a larger protein, it may not have appropriate

pharmacokinetic properties to be an effective inhibitor in a clinical setting.

2.2.3 Antimicrobial Peptides

BLIP stands out among beta-lactamase inhibitors because it is a protein rather than

a small molecule like the other inhibitors discussed. Proteins and peptides represent

a relatively new and untapped source for novel drugs. While synthetic antibiotic

peptides are currently gaining traction, peptides have long played a significant role

in the medical world. Insulin, first reported in 1922 [101], is a notable example of

clinical peptides use. Since then only around 80 additional peptide-based medicines

have made it to market. [102] Several factors have been attributed to the lack of suc-

cess of peptide drugs, include: low oral bioavailability, short half-life, lack of target

selectivity, and a lack of membrane permeability. [103] However, with advancements

in synthetic peptide design, molecular engineers can now manipulate the pharmacoki-

netic properties of peptides with ease. These new capabilities addresses some of these

prior issues, leading to a recent revival in the popularity of peptide drugs.

Most antimicrobial peptides (AMPs) are either naturally occurring peptides or de-

rived analogs of natural occurring peptides. [104] Although few AMPs have become

approved drugs, thousands of naturally occurring antimicrobial peptides have been

discovered. AMPs are usually small peptides with around 10-100 residues, usually

possessing a net positive charge. The positive charge arises from needing to counter-
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act the negative charge present on bacterial membranes. Hydrophobicity is another

important characteristic of these peptides. They often have partitioned hydrophobic

and hydrophilic regions, with the hydrophobic portions of the peptide being able to

penetrate into the bacterial membrane.

Peptide drugs may also be modified with the addition of non-natural amino acids

and other small molecule motifs. This class of AMP is referred to as antimicrobial

peptide conjugates, as the extra molecule is conjugated directly to the peptide. [105,

106, 107] The extra molecule may be another antibiotic and work in tandem with the

peptide to increase its efficacy.

The work of Rudgers et al. in 2001 [108], which focuses potential peptide-based in-

hibitors for beta-lactamase, mined BLIP for potential peptide sequences which might

bind with beta-lactamase. The study showed that just a fragment from BLIP was

able to maintain binding efficacy with beta-lactamase. The fragments used were sev-

eral short peptides selected from the crystallographically determined PPI surface.

The selected peptides had the highest number of naturally occurring inter-molecular

contacts. When synthesized and tested for binding affinity, the peptides exhibited

significant binding, however the signal was weak compared to that of the full BLIP.

This work highlights the potential for designing of peptides for protein binding

based on naturally occurring PPI surfaces. It should be noted that this process still

required some by-hand modifications with the natural sequence, e.g. adding cysteine

residues at the ends of the peptide to induce a disulfide bond to make the peptide

cyclic. This was done with expert knowledge to improve the positioning of the peptide

at the interaction surface.

2.3 Drug Discovery

Given these developments and the continued the prominence of beta-lactamase

antibiotic resistance, there is still much progress to be made before the challenge is

considered solved. Therefore, novel methods of drug discovery are needed to address
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the current state of antibiotic resistance.

The current directions in drug discovery methods are reviewed in [109]. Tradition-

ally, the focus was on naturally occurring substances such as with the discovery of

penicillin. Modern drug discovery has evolved into a biochemistry-based pursuit for

synthetic or natural molecules. This process can be divided into two parts: lead iden-

tification and lead optimization, where lead refers to candidate for a new drug. Lead

identification involves the identification of leads, either by a screening process or by

de-novo design. Traditionally, this requires many tedious experiments to determine

which substances interact favorably with the target. [20]

After leads are identified, they are filtered for drug-like qualities to become drug

candidates. A good lead is subjective of its target, however, Lipinski’s rules, or the

rule of five [110], can be used to ensure leads have general drug-like qualaities. Though

the rules are not absolute, the core tennants are that viable drug-like substances will

have fewer than 5 hydrogen bond donors, fewer than 10 hydrogen bond acceptors, a

molecular mass less than 500 daltons, and an octanal-water partition coefficient less

than 5. These criteria primarily address drug solubility and membrane permeability

properties. The leads which pass these criteria can become potential drug candidates,

where they leads are tested against the target, and optimized cyclically through an

iterative optimization process. After a drug converges to its optimized state, it may

then be passed along for the next phase to be approved for clinical trials.

High Throughput Screening (HTS) [20, 111] is often used during lead identification

to search for small molecules that exhibit a high affinity for a target. This screening

tests each molecule using highly parallel affinity experiments, however, this leads

to an excessive time and cost for the development of each new drug approved for

use. To alleviate these challenges, computational approaches which perform "Virtual

Screening" have been integrated into this process.

Computational approaches, reviewed in [112], can be divided into two different
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strategies: Ligand Based Drug Design (LBDD) and Structure Based Drug Design

(SBDD). In LBDD, the target structure is unknown, but several ligands known to

bind to the target are used to build and optimize a model ligand using Quantitative

Structure-Activity Relationships (QSAR). [113] On the other hand, SBDD lever-

ages the known target structure and exploits the properties of the target to search

for drugs with favorable characteristics. This can be achieved by searching known

small-molecule libraries, de-novo design, molecular dynamics/docking simulations,

and, more recently, machine learning.

2.3.1 Peptide Drug Discovery

Peptides occupy a unique space in the pharmaceutical world, existing in the space

between small-molecule drugs and large biologics. Naturally occurring peptides in-

volved in cellular processes, including signal transduction, signal modulation, and

innate antimicrobial defense, can be leveraged in the search for novel drugs. Nat-

urally occurring and synthetic peptides used for medicinal purposes have a lower

immunogenicity, and they can have high binding affinity and specificity for their tar-

gets compared with small-molecule drugs. Currently, the primary drawbacks of using

peptide drugs include two key aspects: limited membrane permeability, impeding

their access to specific targets, and a low stability in vivo. [114, 103]

The rise in interest in peptide therapeutics is in part driven by increased capacity for

rational design and high-throughput screening of candidate peptides. Protein-peptide

interactions exhibit remarkable specificity, and these interactions can be refined or

manipulated through the introduction of point-mutations. In 1982 the first site-

directed mutation studies demonstrated that mutations to a protein active site can

lead to control over catalytic activities. [115, 116] Additionally, work in peptide-

small molecule conjugates are expanding the possibilities of leveraging a wider array

of chemical motifs to further control molecular interactions. Finally, with the advent

of cost effective and more accurate sequencing methods, large arrays of peptides can
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be tested at once.

Despite the advancements made in improving the viability of peptide drugs, de-novo

drug design remains a time intensive and costly endeavor. In the absence of having a

known binder for a potential drug target, a major challenge lies in identifying peptides

that will interact well with the target. This challenge can be addressed through the

use of computational methods.

2.3.2 Computational Methods in Peptide Drug Design

Computational methods have played a significant role in drug discovery, having a

prominent role in modern SBDD and LBDD pipelines. These methods are described

above.

To perform protein-based SBDD, structures of the proteins and peptides involved

in drug interactions are needed. The three most common methods for determin-

ing high-quality atomic structures of proteins, as found in the PDB, include X-Ray

crystallography, NMR, cryo-electron microscopy. [25] While these methods produce

reliable structures of proteins based on experimental measurements, the need for

structures in drug design outpaces the speed at which structures can be determined.

Moreover, some proteins and peptides, such as IDPs, do not form long-term stable

structures, posing additional challenges to the rational design process.

Various computational approaches to predicting structure exist, with varying levels

of accuracy. Homology modelling [117], a popular approach, involves comparing a

protein sequence with similar sequences of known structures and generating a protein

structure using these templates. Other methods of computational structure prediction

include fragment assembly and various physics-guided, de-novo structure prediction

methods. [118]

Machine learning-based protein structure prediction has reached a level of accep-

tance within the biophysics research community that it can be used to complement

structure determination by experimental methods. Recent advances in machine learn-
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ing structure prediction are reviewed in [36]. Notably AlphaFold2 (AF2), released

publicly by Google’s DeepMind research group in 2021 [5], is at the forefront of this

revolution in structure prediction, having decisively won the CASP-14 competition.

[119] Since its release, AF2 has become an indispensable tool for protein design. While

DeepMind did not return to CASP-15, AF2 continues to lead the field, with other

labs improving on the model, making it more accurate and tractable to use.

Protein structure prediction models are not infallible, however having a plausible

model for any protein or peptide to start a SBDD study reduces the barrier for

conducting exploratory research. It is important to be aware of the limitations of

structure prediction and, if possible, account for these shortcomings when designing

any molecule. Despite the many successes of AF2, structure prediction and protein

folding remain active areas of research and machine learning should not be used as a

replacement for experimental verification.

Molecular docking is a computational approach which aims at predicting the how

two molecules interact. Docking can be used for protein and small molecule or protein

and protein interactions. Docking programs output predicted structures for a recep-

tor/ligand complex, known as poses, and the relative strength of the interaction. The

interaction strength is characterized by a scoring function which has some correlation

to how well the two partners interact. A recent overview of docking methods and

scoring functions is provided in [36].

From a biophysical perspective, the strength of interactions between two molecules

is given by the change in free energy due to binding, ∆Gbind. This quantity en-

compasses many complex factors including intermolecular and solvation interaction

energies. The value ∆Gbind can be indirectly calculated by molecular-mechanics

Poisson-Boltzmann surface area (MM-PBSA), linear interaction energy (LIE), al-

chemical simulation methods, or umbrella sampling and Weighted Histogram Accu-

mulation Method (WHAM), however these methods are unreliable, tedious to per-
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form, and rely on slow molecular dynamics simulations to sample the docking process.

[120, 121, 122]

To overcome this, modern docking methods have developed three types of scoring

methods for computing an analog to free energy: physics-based scores, empirically-

derived scores, and machine learning scores. [123] Although these scores correlate to

docking affinity, they do not represent real physical free energy. Despite this, scoring

functions with reasonable correlation to ∆Gbind can be used to rank docking pose

candidates and filter large libraries to identify potential lead compounds.

Docking has been widely used to predict protein-small molecule interactions. How-

ever, the prediction of PPIs, and by association protein-peptide interactions, poses a

greater challenge due to the inherent size and flexibility of proteins, which complicates

to problem with numerous degrees of freedom. [124, 125]

Some PPI calculators incorporate the inherent flexibility of proteins to generate

more realistic models. [126, 127] However, the gain in complexity due to this renders

these methods intractable for high-throughput applications like virtual screening.

Other docking programs perform rigid-rigid docking, where both the receptor and

ligand are kept in a rigid conformation. [128, 129] Rigid docking is much faster than

flexible docking at the cost of accuracy. This approach works well if both receptor

and ligand are crystallized in their correct docking poses. Often this is not the case,

and in vivo docking relies on the inherent flexibility of molecules to allow binding

partners to take complimentary shapes.

Docking methods can provide terse rankings of PPIs for large scale studies, but

should be validated by a more realistic docking procedure or experimental verification

to ensure the accuracy of a predicted pose. Rigid-rigid docking in particular, is mostly

suited for ranking candidates rather than analyzing biophysical interactions. Some

programs, such as HADDOCK [127], use a hybrid approach. An initial rigid docking

is performed to identify binding pockets on the target, followed by flexible refinement
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using molecular dynamics to relax the molecules into a more favorable complex.

Despite these challenges, several key computational developments over the last

decade have positioned peptide pharmaceutical design to emerge as a source for new

medicines. GPU-accelerated computing has improved almost all aspects of computa-

tional structural biology. Many methods, especially docking and molecular dynamics,

utilize grid-based algorithms that are highly suitable for GPU computation. For ex-

ample, MEGADOCK is a software which uses GPU calculations and has cut down

the time of protein-peptide docking prediction from minutes to seconds. Without

GPUs, high-throughput docking studies would not be possible.



CHAPTER 3: METHODOLOGY/TECHNICAL ADVANCEMENTS

To investigate beta-lactamase function several methods were either developed or

used. This chapter outlines the methods associated with this work and subsequent

chapters present the results of these studies.

3.1 Molecular Dynamics

MD simulation is an invaluable tool for studying molecular interactions at the

atomic level. Molecular processes across multiple timescales, ranging from picosec-

onds to milliseconds, can be investigated. [130] MD simulations use classical Newto-

nian physics to evolve a system over time. The physics simulated are defined by a force

field, which parameterizes all interactions between elements in the system. [131, 132]

The elements used in MD are usually atoms or groups of atoms in coarse grained

models. The all-atom molecular mechanics forcefield uses quantum mechanical cal-

culations to parameterize bonded and non-bonded interactions, including covalent

bonds, electrostatics, van der Waals (VDW) forces, and the properties of atoms in

their environment.

Simulations require a initial starting structure, which is modelled in real space,

and usually obtained through crystallography or NMR. Prior to starting the sim-

ulation, the initial structure is spot checked for structural defects, such as missing

atoms or residues, and prepared by solvating the protein or complex. Any additional

ligands, cofactors or solutes are added and the whole system is neutralized with ions.

The whole system is energy minimized using steepest descents so that the structure

is in a physically realizable conformation. Energy minimization is crucial as any

molecules added to the system, such as waters and ions, may not be initially placed
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in a physically favorable position. Additionally structures from crystallography do

not represent the true in-vivo native state conformation of the protein, and these

defects can introduce error into the dynamics sampled in a simulation.

After minimization, the system is further equilibrated to a constant temperature

and pressure (NPT) ensemble. First the system is coupled to a thermostat and equili-

brated to a constant temperature. Second it is coupled to barostat and equilibrated to

constant pressure. The equilibration step can be performed in several ways, however

a common approach is to add position restraints to the protein backbone atoms to al-

low the waters and ions to relax and come into equilibrium with the protein, without

significantly perturbing the protein’s starting structure. Finally, the NPT ensem-

ble is then freed for full production. The GROMACS MD software package is used

throughout this work to simulate the motions of beta-lactamase. [133] GROMACS is

a freely available and supports both MPI parallelization and GPU accelerations for

optimized simulation performance. [134]

MD simulations were conducted to investigate the dynamics of beta-lactamase

both in isolation and in interaction with various antibiotics. The wild type TEM-1

beta-lactamase, which is considered a diffusion limited enzyme, can reach catalytic

efficiencies (kcat/Km) on the order tens of nanoseconds per reaction with the its appro-

priate substrate. [135, 136, 137] Accordingly, simulations lasting for a few hundred

nanosecond should be sufficient to observe the dynamics associated with substrate

recognition and binding. With a few interesting exceptions, beta-lactamase is well

known to stably maintain its conformation. [79] This means that the majority of en-

zyme motion will be in side chain and backbone flexibility. Consequently, the choice

of simulation time is thought to be long enough to observe most of the interesting

protein dynamics of beta-lactamase in its native state. To increase the sampling of

the systems of interest, a shotgun sampling approach was employed. Multiple simu-

lations with independent starting structures were performed in order to account for



44

the randomness associated with system preparation and equilibration.

For this study, four mutants of beta-lactamase were selected: TEM-1 and TEM-2

representing WT resistance and TEM-10 and TEM-52 representing ESBL resistance.

The TEM family was selected because it contains variants from multiple functional

classes of beta-lactamase, including wild-type, ESBL, and IRBL conferring mutants.

Additionally, the TEM family has both a highly conserved sequence and structure

suggesting that functional differences in the proteins are likely to come from changes

in protein dynamics.

Compared to the TEM-1 sequence, two primary mutations associated with ESBL

are R164S and G238S. [85] The ESBL mutants used here were selected to represent

each these mutation signatures. Specifically, TEM-10 [138] contains the R164S/E240K

mutations while TEM-52 [139] contains the E104K/M182T/G238S mutations. TEM-

2 [140] differs from TEM-1 by the Q39K substitution, This mutation is not directly

responsible for increased substrate recognition, however computational studies have

shown this mutation induces a synergistic destabilization of the enzyme. [86] The

mutants used in the current study encompass a diverse representation of the "core"

mutations within the TEM family that confer ESBL resistance.

To understand how protein dynamics facilitates function in beta-lactamase, partic-

ularly the effective binding to and inactivation of antibiotics, four drugs were selected

to be modelled and simulated in complex with the different mutants. Two examples

from both broad-spectrum and extended-spectrum antibiotics were selected.

Ampicillin (AIC) and Amoxicillin (AMX), derived from penicillin, are broad-spectrum

antibiotics which are widely used across the world. They are susceptible to resistance

by most beta-lactamase producing bacteria. The two drugs share a very similar

structure. In AIC, a benzyl group is fused to the penicillin core, with an amino

group attached to the linking methyl group. In AMX, the benzyl group is replaced

with a phenol group. In recent years, drug/inhibitor combinations such as AMX and
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Figure 3.1: Structures of the four ligands used for simulation in this work: a) ampi-
cillin (AIC), b) amoxicillin (AMX), c) cefotaxime (CEF), and d) ceftazidime (CAZ).

Clavulanic Acid have restored some of the effectiveness of these drugs.

Cefotaxime (CEF) and Ceftazidime (CAZ) are third generation extended-spectrum

cephalosporin antibiotics selected for this work. The cephalosporin core structure al-

lows for two functional groups. In CEF the first functional group attached to the core

six-membered ring is a methoxyimino group with a thiazole ring attached and the sec-

ond functional group is and O-COOH. CAZ has a similar thiazole plus methoxyimino

functional group however the imino group has a more complex structure including

two extra methyl groups and a carboxyl group. The second functional group is a

charged pyridine ring. The bio-active forms of these molecules are shown in figure 3.1

3.1.1 Starting Structures and System Preparation

For the simulations conducted in this work, eight X-ray crystallography structures

representing various TEM beta-lactamase were downloaded from the PDB. These

crystal structures are summarized in table 3.1. To prepare the structures, crystal
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waters and other artifacts such as co-factors or ligands were removed. When aligned

by alpha carbon, the RMSD across all of the structures was 0.314 Å. This low value

demonstrates how structurally rigid the TEM beta-lactamase family is, as each crystal

structure had almost identical conformations.

In PyMol [141], the structures were computationally mutated to represent the

TEM-1 sequence, and then further mutated and saved to express TEM-2, TEM-10,

and TEM-52. In the case of crystal structure 1HTZ, the structure already represented

a natural TEM-52 enzyme, and so for this case the experimentally derived structure

was used instead of a computational mutation. There are not any examples of TEM-2

or TEM-10 in the PDB. The final dataset of protein structures contained 8 crystal

structures mutated to 4 different enzymes for a total of 32 structures.

Table 3.1: Summary of beta-lactamase crystal structures used as starting structures
for MD simulations.

PDB CODE Resolution (Å) Mutation (From TEM-1) Reference
1ERM 1.7 N/A Ness 2000 [142]
1ERO 1.7 N/A Ness 2000 [142]
1ERQ 1.7 N/A Ness 2000 [142]
1HTZ 2.4 E104K/M182T/G238S Orencia 2001 [143]
1JWP 1.75 M182T Wang 2002 [144]
1LHY 2.0 R244S Wang 2002 [145]
1XPB 1.9 N/A Fonze 1995 [146]
3JYI 2.7 N170G Brown 2009 [147]

To simulate the selected beta-lactamase mutants in the presence of different antibi-

otics, a model of each ligand was constructed using base structures extracted from

PDB entries. The entries used for each ligand are described in table 3.2. Initial

models of each ligand were extracted their respective PDB files. These models were

then processed in the molecular modelling software Avogadro [148], where bonds were

reformed when necessary and explicit hydrogen atoms were added. Care was taken

to make sure the ligands represented the correct charge state and protonation state

for physiological pH to represent their the bioactive form. AIC and AMX both have
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a neutral formal charge, however the carboxyl and amine groups are in their charged

state. CEF and CAZ have a formal charge of −1, and CEF has a single charged

carboxyl group while CAZ has two negatively charged carboxyl groups and a positive

charge on the pyridine ring.

The process of deactivating beta lactam antibiotics by beta-lactamase can be ap-

proximated into three main steps: substrate recognition, acylation, and deacyla-

tion/turnover. [149] Each step involves the forming or breaking of distinct bonds,

thus in each step the ligand has a distinct structure. This study is primarily inter-

ested in the dynamics which allow beta-lactamase to recognize different substrates,

therefore the structures were designed to model the ligand prior to acylation.

Table 3.2: Summary of crystal structures from which initial ligand structures were
found.

Ligand PDB Code Resolution (Ang.) Reference
AIC 3KP3 3.2 Cheng et al. 2010 [150]
AXL 6I1E 1.64 Bellini et al. 2019 [151]
CEF 4PM5 1.26 Adamski et al. 2015 [152]
CAZ 5TWE 1.5 Patel et al. 2017 [153]

Protein ligand complexes were generated by docking the ligands into the apo beta-

lactamase structures using global rigid receptor-flexible ligand docking in AutoDock

Vina. [154] The combination of 4 ligands and 32 apo beta-lactamases resulted in a

total of 128 docking experiments. AutoDock Vina ranked the poses by their predicted

binding affinity, and top scoring poses were qualitatively examined to identify the

poses which had the most favorable interactions between the protein and ligand.

The specific critera used was that the ligand should be predicted to be near the

known active site of the protein, and the reactive oxygen on the beta lactam ring was

required to be facing the catalytic SER70 on beta-lactamase so that interaction would

be more favorable. The most acceptable pose from each experiment was selected to

be simulated.

All simulations were performed for 500 ns in an NPT ensemble at 300K and 1 barr
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of pressure, using a base forcefield of Amber99SB-ILDN. [155] The parameters for

the ligands were generated using Antechamber, part of the AmberTools package, and

integrated into the forcefield with ACPYPE. [156, 157]

The simulation procedure began by placing the molecular models in a cubic box

with minimum of 1.0 angstrom between the protein and the box edges. On average

the simulation boxes ranged between 8 and 9 nm on each side. The box was filled

with TIP3P water molecules and sodium ions were added to neutralize the net charge

on the system. The whole system was energy minimized such that the maximum

force on any atom in the simulation box was less than 1000 kJ/(mol · nm).

The minimized system was equilibrated with position restraints on the protein

backbone. A velocity-rescaling thermostat was coupled to the system for 1 ns to

equilibrate the temperature to 300 K. [158] Then a Parrinello-Rahman barostat was

coupled with the system over an additional 1 ns to equilibrate pressure. [159] Finally

the position restraints were dropped and production began.

To account for any artifacts of dropping the position restraints, the first 100 ns

of each production run was excluded from subsequent analysis as a "burn-in" pe-

riod. In total 160 independent MD simulations of beta-lactamase was run for this

study, representing 20 distinct systems (combinations of TEM-1, TEM-2, TEM-10,

and TEM-52 with ligation states APO, AIC, AXL, CEF, CAZ). Each system had 8

replicate 500 ns simulations.

Each simulation was inspected by downloading the raw simulation trajectory and

visualizing it using PyMol. The simulations were monitored for notable events, such

as large scale conformational changes or global unfolding events. None of the simula-

tions showed major unfolding, although local unfolding of the terminal residues was

observed, however this was not concerning as high flexibility on the protein termini

are expected during MD. In several simulations, the omega loop was observed to par-

tially dislodge itself from the main body of the protein and extend into the solvent.
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These events, although rare, are of particular interest as they have been predicted

to have potentially functional implications for beta-lactamase. Despite their rarity,

the trajectories that exhibited these events were kept, as they represent physically

realistic behaviors for the protein.

During simulations involving protein/antibiotic complexes, disassociation events

between the protein and ligand were occasionally observed. This can occur for a

few reasons, including due to a suboptimal starting pose or random fluctuations

during the simulation which result in the ligand being knocked out of place. Since

no external restraints or forces were used to force the ligand to stay bound to the

protein, such events expected given the time scales of the simulations. However, in

most of the cases, the inter-molecular interactions were strong enough to hold the

antibiotic molecules on the surface of the protein. When dissociation did occur, the

simulation was stopped and restarted from the beginning or, in the case of multiple

failures, an alternate binding pose was selected.

Another event observed in some simulations was the ligand remaining in contact

with the protein, and moving out of the binding pocket by "crawling" across the

protein surface. When this happened, the ligand tended to get trapped on loops

directly bordering the pocket or move across the beta sheet bordering the active site

to occupy an alternate pocket between the the C-terminal alpha helix and the the

loop between helix 10 and 11. This location appeared to be a common place on

beta-lactamase where ligands seemed to have an affinity for residing. These events

are further investigated in Chapter 4.

3.2 Essential Dynamics: JEDi

Protein motions are highly complex due to the large number of degrees of free-

dom associated with the x, y, and z positions of atoms. Even when coarse-grained

to a single atom per residue, there can still be hundreds of degrees of freedom to

explore. Several methods for understanding these motions were presented in Chapter
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2, including ENMs and ED.

Java Essential Dynamics Inspector (JEDi) [54] is a Java-based software toolkit

which provides a comprehensive set of features for performing ED analysis of protein

dynamics. With JEDi, users can design a customized PCA analysis to gain insights

into molecular systems, with a focus on generating easy to visualize and easily in-

terpretable data. When a trajectory is loaded into JEDi as a set of PDB files, it

calculates fundamental statistics up to the fourth statistical moment, and generates

high quality plots for quick inspection. Additionally, RMSD and RMSF are computed

and plotted for the trajectory. Most data calculated can either be returned as figures

or in data files that can be exported for further analysis.

There are a variety of tools in JEDi which set it apart from other ED software.

JEDi offers multiscale PCA in terms of coarse graining and atom/residue subsetting,

allowing users to analyze protein motions at different levels. Coarse graining options

include alpha carbon, backbone, heavy atom, and all atom, and subsetting allows

users to specify subsets of atoms or residues for each coarse grained analysis. This

multiscale approach to protein motion enables users to characterize the large global

motions of proteins using a low-resolution level, while studying specific atomic level

motions using a high-resolution level. This can include motions such as the movement

of secondary structure elements or the arrangement of atoms within the active site of

an enzyme.

A novel method of performing PCA on large sets of atoms called hierarchical PCA

(HPCA) is also implemented in JEDi. In this method, PCA is first performed on

all-atom representations of each residue independently. The the top N components

from each residue are combined as low-dimensional global features of the protein, and

PCA is performed again on this representation. HPCA relies on a divide-and-conquer

approach to allow the all-atom ED of entire proteins to be calculated in a computa-

tionally efficient way. JEDi offers an array of advanced statistical options to increase
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the robustness of an analysis, including covariance shrinking [160], sparsification, and

outlier detection.

In addition to PCA specifications, JEDi offers several tools for high-quality analysis

and motion comparison with a focus on easy visualization. In addition to high quality

plots, PDB files are created, which can be visualized in PyMOL. For example, a PDB

file is created where the B-factor column is replaced by the RMSF of the trajectory,

which easily illustrates where large fluctuations are found. Additionally, JEDi will

create a PyMol movies displaying the global motions described by each eigenvector

and a movie displaying the superposition of all the essential motions. These high-

quality movies allow direct interpretation of PCA vectors in 3d coordinate space.

JEDi also facilitates the comparison of essential motions between two proteins.

The program provides a pooling tool which combines trajectories together for a single

analysis. This is an important tool because the eigenvectors from independent PCA

runs cant be directly compared unless the trajectories have all been aligned to the a

common reference structure. JEDi performs such an alignment before running PCA.

By pooling the trajectories and conducting analysis, JEDi can identify and de-

scribe the differences in essential dynamics between two proteins. If the differences

in motion between the proteins are larger than the largest motion observed in either

protein individually, then JEDi will find these motions in the pooled trajectory. Al-

ternatively, if multiple trajectories are aligned and JEDi analyzes each individually,

then the eigenvectors can be directly compared in JEDi using the subspace analysis

tool. This tool gives a quantitative comparison of essential dynamics by comparing

the eigenvectors using overlaps and cumulative overlaps, and Root Mean Square Inner

Products (RMSIP). [161, 162, 163]

Many other features have been included in JEDi, and a detailed discussion can be

found in [54].
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3.3 Allostery

A model for predicting dynamic allostery in proteins has been previously devel-

oped [41] and its application to the present work was described in [1]. This model

uses perturbation theory to predict how the normal modes of a protein may change

upon a simulated binding event. The normal modes of a protein can be computed

from the Hessian matrix as described in Section 2.1.3.1. Using the quasi-harmonic

approximation, the Hessian matrix, Ho, describing second derivatives of an effective

potential Veff , is approximated by the inverse of the covariance matrix, Σ, of the pro-

teins motions. Using this, an unperturbed Hessian can be derived from a molecular

dynamics simulation of a protein in its apo state as in Equation 3.1.

Ho = RTΣ−1 = kT

p∑
k=1

|k〉 1

λk
〈k| (3.1)

Here, λk is the eigenvalue associated with the kth eigenvector |k〉 of the covariance

matrix, Σ. The number of eigenvector modes considered is p, which, for the exact

inverse, would be equal to the full dimensionality of the protein or 3 times the number

of atoms sampled. Using the quasi-harmonic approximation allows the Hessian matrix

to be characterized without using an explicit functional form for the effective potential

between atoms.

The modes with the lowest eigenvalues of the covariance matrix correspond to

the smallest motions or random fluctuations of protein dynamics. However, because

there are so many of these modes, they dominate the sum in Equation 3.1. The

accumulation of so many small eigenvalues can introduce considerable noise when

taking the inverse of the matrix, which originates from the instability of taking the

inverse of very small values. To address this, an approach was developed in previous

work to de-correlate this noise.

To de-correlate noise from the covariance matrix, first the eigenspectrum of the
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matrix is obtained. Eigenvalues below a minimum threshold value, λm, are consid-

ered to be noise. To lessen the effect of this noise in Equation 3.1, the eigenvalues

associated with the noise are replaced with the average value of noise eigenvalues,

λavg = 〈λi〉λi<λm . Using the average value preserves the trace of the matrix while

removing the instability associated with taking the inverse of extremely small values.

In prior work, the value of λm could be set as an algorithm parameter. However, here

λm corresponds to the minimum uncertainty in atomic coordinates extracted from

MD simulations, estimated to be 0.01 Å. After de-correlation, the Hessian in terms

of the pseudo-inverse of the covariance matrix is given by Equation 3.2, where nmax

is the number modes with eigenvalues above λm and p is the dimensionality of the

system.

Ho = kT

(
nmax∑
k=1

|k〉 1

λk
〈k|+

p∑
j=nmax+1

|j〉 1

λavg
〈j|

)
(3.2)

The normal modes of the unbound protein can be found using the unperturbed

Hessian matrix defined in Equation 3.2. To model the effects of effector ligand bind-

ing, a perturbation matrix, Hp, that models harmonic restraints to the local region

around specific residues where the ligand is thought to bind, can be defined. These

perturbations are modelled as additional springs having an associated spring constant

ks determining the strength of the perturbation. The exact form of the perturbation

between two atoms i and j would be Vij = 1
2
ks|ri − rj|2. When ks is positive, the

restraint represents a rigidifying perturbation to the protein.

In the allostery program described here, springs can be added to regions centered

about specific carbon alpha atoms. Users can define the rules for adding springs,

including the geometry, radius, and spring constant. To ensure the validity of using

perturbation theory, the added spring constant should be small relative to the actual

values of the Hessian matrix. The radius sets the size of the region in which springs

can be added to, centered on the carbon alpha atom of the specified residue. The
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geometry determines the pattern by which springs can connect atoms within this

region, with a possible "triad", "ball", or "star" pattern.

The effective Hessian matrix, which combines the unperturbed Hessian with the

perturbations, is given asH = Ho+Hp. Perturbation theory can be used to determine

changes to the normal modes and their frequencies. To scan for allostery across the

whole protein, the frequencies for each normal mode k can be computed using the

unperturbed Hessian ν0(k), with perturbations representing one ligand bound at the

active site using one set of springs ν1(k), and with perturbations representing an

active site ligand and an effector molecule bound at a distal residue using another

set of springs ν2(k). The resulting ∆∆G can be calculated using the result of Cooper

and Dryden, described in Equation 2.10. Practically, the lowest 6 modes should

be dropped from this sum, as they represent the 6 trivial degrees of freedom for

translational and rotational motions. The total change in binding free energy can be

computed with Equation 3.3.

∆∆G = −kT
∑
k>6

ln

(
v1(k)2

v0(k)v2(k)

)
. (3.3)

The magnitude of ∆∆G found here is dependent on the strength of the pertur-

bation. Therefore the values should not be considered as physical ∆∆G values, but

rather a propensity scale that indicates potential allosteric signals. Furthermore, the

models used in this work are built from coarse grained representations of proteins,

which means that some significant vibrations in side chain motions could be missed.

Finally, when scanning for allostery across an entire protein, if springs are added to the

network such that springs at two binding sites are added in an overlapping way, then

rigidifying contributions could be overcounted. In this work, the full beta-lactamase

enzyme is scanned for allostery using Ser70 as the active site center. However no

interesting signals were observed due to this overlapping effect, and in Chapter 4,
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only the distal effects are considered.

3.4 SPLOC

Supervised Projective Learning with Orthogonal Completeness (SPLOC) [2] is a

machine learning algorithm specifically developed for discriminant analysis of large

multivariate time series data typical of molecular dynamics trajectories. A driving

motivation during the development of SPLOC was that the nature of functional mo-

tions in proteins cannot be assumed, unlike in ED where the most significant motions

are assumed to be the largest. SPLOC takes a supervised approach which assumes

the dynamics that facilitate function in proteins will be shared by all proteins labelled

as functional and absent in all proteins labelled as non-functional. SPLOC does not

assume the nature of important atomic motions a priori,instead, it tries to maximize

statistically significant similarities or differences between different classes of molecules

presented. By focusing on these changes, SPLOC can elucidate the functional dy-

namics regardless of whether they correlate to large variance motions. SPLOC was

designed to facilitate comparing the dynamics between protein mutants that have

different functional properties through the analysis of MD simulations. The learning

process in SPLOC employs a novel form of machine learning based on projection

pursuit.

Input samples for SPLOC are partitioned into data packets, which represent en-

sembles of conformations of a protein. For training, the data packets can be labelled

as functional or non-functional. SPLOC treats each data packet as one observation

of protein dynamics. Rather than focusing on differences between individual protein

structures from MD simulations, SPLOC focuses on maximizing differences between

the emergent properties of trajectories. SPLOC optimizes a set of basis-vectors that

discriminate data packets in feature space. In feature space, each data packet is rep-

resented by a 2N dimensional vector, where N is the number of SPLOC modes. The

elements of this vector consist of the mean and variance of all the samples in the data
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Figure 3.2: The connection between data packets and feature space in SPLOC is
exemplified. In a), three data packets (squares, circles, diamonds) from two classes
(red and blue) are shown projected into a 2D space defined by two basis vectors found
by SPLOC. The x-axis represents an i-mode while the y-axis represents a d-mode. In
b) and c), the distributions of the projections along both modes are shown. Finally in
d) and e) the MFSP for both modes are shown, where the mean and variance of the
distribtution of a data packet along the mode are plotted. Notably, the data packets
differentiate by class along the d-mode (d) but not along the i-mode. Figure Credit:
[2]

packet when projected onto each of the N SPLOC modes. Feature space is usually

visualized in 2D slices per SPLOC mode, called a mode feature space plane (MFSP).

A illustrative example of feature sapce is shown in Figure 3.2.

By considering data packets in feature space, statistical differences in data packets

can be easily identified, even if the raw projections exhibit significant overlap. This

emergent approach reflects the dynamic nature of proteins, where a single observation

of a protein conformation is not sufficient to understand its dynamics. It is possible

for two proteins with different functions to share 99% of their conformation space,

while their functional differences are the result of the other 1%.

The optimization process in SPLOC involves maximizing a single score, called
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efficacy, through a pareto-optimization of three scoring functions: selection power

(SP), consensus power (CP), and clustering quality (CQ). SP measures how well the

projections of data packets separate along a basis vector in respect to different classes

via a signal to noise and a signal beyond noise ratio. This metric combines differences

between the means and variances of projections. CQ is used to measure how well the

data packets cluster in each MFSP. The CQ is used to weight a non-linear rectifier

function that acts as an activation when computing the total efficacy of the mode.

In this way SPLOC is able to learn the most appropriate orthogonal basis set for

discrimination. Finally, Consensus Power (CP) measures the statistical significance

for the discriminative power of the basis vectors across all functional-nonfunctional

data packet comparisons.

The calculations for SP, CP, and CQ are performed individually for each SPLOC

mode, and combined into a single value called mode efficacy. The total efficacy for

a set of basis vectors is the sum of efficacy over all vectors in the set. This value is

the objective function that SPLOC attempts to maximize. Depending on the value

of SP and CQ, a vector is labelled as a discriminant (d-mode), indifferent (i-mode),

or undetermined (u-mode) feature of the data. SPLOC considers both statistically

discriminant and indifferent features as potentially interesting projections of the data,

and as such both d-modes and i-modes contribute to mode efficacy. For this reason,

SPLOC is incentivized to maximize the number of d- and i-modes that it finds.

For a basis vector to be identified as a discriminant or indifferent feature, it must

meet particular criteria for each of the independent metrics. Otherwise, a basis vector

will be labeled undetermined. To be a d-mode the vector must have high SP and CQ,

while to be an i-mode, the vector must have low SP and CQ. Both d- and i-modes

must have high CP to ensure statistical significance. The threshold for CP is called

the voting threshold and can either be set by the user or calculated as a function of

the sampling statistics of the training data packets. The exact implementation and
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equations used to calculate SP, CQ, CP, and efficacy are described in the seminal

publication, [2].

An initial guess for a basis vector set is either provided by the user, taken as PCA

eigenvectors, or set to an identity matrix representing the original features of the data.

The efficacy of the initial basis set is computed to begin the optimization process.

Generalized Jacobi rotations within two-dimensional subspaces [164] are employed to

rotate pairs of basis vectors until they maximize efficacy. Basis vectors are chosen

for rotation by an importance sampling procedure that prioritizes vectors most likely

to increase total efficacy of the basis. During training, SPLOC avoids getting stuck

in local optima by employing undirected rotations in the undetermined space. This

allows the u-modes to compete with already high efficacy modes in the discriminate

or indiscriminate subspaces. The optimization continues until SPLOC converges to

a solution.

SPLOC finds projection directions that represent different perspectives for under-

standing features which are either the same or different between two classes. This

perspective can be biased with slight modifications to how SP, CP, and CQ are cal-

culated. SPLOC offers several "modes" that allow it to bias solutions toward finding

discriminant or indifferent features, or to allow an unbiased search for features. Using

these modes SPLOC can be used to uncover different perspectives of the same data

which highlight different information content. [165]

3.4.1 Functional Dynamics in SPLOC

In SPLOC the basis vectors, |k〉, form a complete set that is partitioned into

subspaces as either d-modes, i-modes, or u-modes. Due to the completeness of the

full set, each vector can be used to build a projection operator, P , that can isolate

just the motions described by the particular SPLOC mode. Similarly, a filter for

capturing the motions within each SPLOC subspace can be constructed using all the
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modes in the space, as shown in Equation 3.4.

P =
N∑
k=1

|k〉 〈k| (3.4)

When a data packet is projected into one of the subspaces by a projection opera-

tor, only the fluctuations described by the modes of that subspace are kept. This

allows the discriminant and indifferent motions of a trajectory to be separated and

analyzed independently. Subsequently, the RMSF can be computed in the original

basis, giving the fluctuations in the discriminant subspace (dRMSF) and indifferent

subspace (iRMSF) separately. This enables the identification of the exact locations

on a protein where dynamic differences and similarities occur.

The SPLOC algorithm was originally designed to determine differences in molecular

dynamics simulations of proteins. Remarkably, it has been shown to be an effective

general discriminant analysis method for a variety of multivariate applications [2,

166]. SPLOC distinguishes itself from other dimensionality reduction and projection

pursuit methods for several reasons. Firstly, SPLOC is a data driven supervised

algorithm and does not rely on assumptions or underlying models to find similarities

or differences between data classes. In contrast, many projection pursuit methods

require a projection index serves as an underlying model for evaluating projection

directions. In SPLOC, efficacy is used for this purpose, however efficacy is a data

driven calculation. Secondly, by retaining all basis vectors as potentially interesting

projections, SPLOC can predict both differences and similarities in the data. This,

combined with the multiple bias modes, allows all of the data to be analyzed from

multiple perspectives in order to fully understand the underlying properties.

3.4.2 SPLOC Discovery Likelihood

SPLOC also incorporates a method for computing the likelihood that data packets

come from one class or the other. This soft classification method relies on probabilities
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based on distributions along projection modes. This method involves presenting a

known set of training data packets from classes 1 and 2 as {X1}N1 and {X2}N2 , along

with a set of d basis vectors for classification, {|k〉}d. The goal is to compute the

likelihood that a set of NU unlabelled data packets, {XU}NU
, is likely to come from

class 1 or not.

First, the probability distributions for each data packet, known and unknown, pro-

jected onto the kth classification vector, fY (〈XY |k〉) are computed. 〈XY |k〉 represents

the projections of the data packet onto the basis vector, and Y can denote class 1,

class 2, or unlabelled. The overlap integral between all pairwise probability densi-

ties, I(X, Y ), is calculated and mapped to a likelihood that the distributions are

distinguishable, Pd(I(X, Y )).

The prior probability that all data packets between class 1 and class 2 are distin-

guishable along mode k can be computed as w(k)
1 =

∏
Pd(I(X1, X2)), and the same

can be done for class 2 to get w(k)
2 . The overlap integral between unknown data

packets and known data packets from class 1 or 2 then represents the conditional

probability that the unknown data packet belongs to that class when projected onto

mode k, given as either tk(XU |1) or tk(XU |2).

Using Bayes theorem, the probability that an unknown data packet, projected along

mode k, belongs to class 1 can be written as pk(XU) = 1 −
∏

(1 − tk(XU |1)w
(k)
1 ). A

value of 1 indicates the data packet is part of class 1. Conversely the probability

that the data packet is not part of class 1 along mode k is written as qk(XU) =

1−
∏

(1− tk(XU |2)w
(k)
2 ).

Finally, the classification is computed as the likelihood that the data comes from

class 1 or not, lk(XU) = pk(XU)qk(XU). Rather than computing if the data packet is

class 1 or 2, this value is computed to reflect the concept of functional dynamics in

proteins. Among all the motions a protein may undergo, only a specific motion may

be required for function. Therefore any protein which has functional characteristics
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must exhibit this motion. On the other hand, proteins that do not function have

no restraint on what motions they can exhibit, except, that they cannot show the

specific motion required for function. In other words, there is one unique feature that

makes a class functional, but nearly infinite ways a system could not be functional.

Considering this, it is logical to calculate likelihood to be class 1 rather than any other

class. A total likelihood that the system comes from class 1, combining information

from all modes, is called the discovery likelihood. It can be calculated by taking the

root mean square of lk(XU) over all modes in the classifying basis set.

3.5 Subspace Comparison

A common theme used between essential dynamics, SPLOC, and many other pro-

jection pursuit methods is the optimization of a complete orthonormal set of basis

vectors, which can then be subdivided into subspaces describing interesting features

of the data. When performing these analyses on different systems, various techniques

have been developed to directly compare the information content in different vector

subspaces. It is important to consider that in order to compare vector spaces they

must have the same dimension, and the vectors must be defined in the same frame of

reference.

Being in the same frame of reference means that the data should be observed

consistently, ensuring that any two measurements are meaningful relative to each

other. In the context of proteins, this requires aligning all the frames of each trajectory

with each other in 3D space. This alignment procedure removes any relative global

translational and rotational motion, establishing a consistent frame of reference for

analysis.

When these two conditions are satisfied, there are several metrics for comparing

subspaces, some of which have been included in both JEDi and SPLOC. Firstly,

two individual basis vectors can be compared by computing their overlap. This is

essentially just the inner product of two basis vectors, |vi〉 and |vj〉 as shown in
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Equation 3.5, and directly measures the cosine of the angle between the vectors.

O(|vi〉 , |vj〉) = 〈vj|vi〉 (3.5)

The overlap between identical, normalized vectors is 1, while perfectly orthogonal

vectors have an overlap of 0.

To compare two vector subspaces, V = {|vi〉}Nv and U = {|uj〉}Nu , the root mean

square inner product (RMSIP) can be used to obtain a single number between 0

and 1 to describe how similar the vector spaces are. [163] A value of 0 indicates

the subspaces are totally orthogonal, while a value of 1 indicates they are identical.

The equation for RMSIP is valid for subspaces that are the same or different sizes,

although they must be the same dimension. The equation for RMSIP is given in

Equation 3.6.

RMSIP (U, V ) =

√√√√ 1

max(Nv, Nu)

∑
|vi〉∈V

∑
|uj〉∈U

〈vj|vi〉 (3.6)



CHAPTER 4: FUNCTIONAL DYNAMICS IN BETA LACTAMASE

4.1 Background

The function of beta-lactamase is the hydrolysis of the beta lactam ring motif on

antibiotics, thereby inactivating them. This fundamental function is shared across all

classes of beta-lactamase. The complexity of this function increases when considering

how various beta-lactamase are able to hydrolyze different beta lactam antibiotics

at different rates, giving rise to the functional classes [73] such as penicillinases,

cephalosporinases, and carbapenemases.

As more beta-lactamase have been discovered, it has become clear that some fam-

ilies, such as CTX and KPC, maintain their catalytic function across all members.

However, other families, like TEM and SHV, express multiple functional classes. In-

terestingly, functional classes such as extended-spectrum or inhibitor resistance can

arise in the same family multiple times through amino acid substitutions. Consider-

ing the case of the TEM family, these mutations often involve single, double, or triple

point mutations, while overall, the sequence and structure remains highly conserved

across the family. This suggests that control over substrate recognition is mediated

by the biophysical effects of point mutations on the enzyme structure and dynamics.

This chapter focuses on the role of enzyme dynamics in controlling differences in

catalytic efficiency in TEM beta-lactamase.

4.1.1 Research Goals

To explore the role of dynamics, a library of molecular dynamics trajectories was

generated for several TEM beta-lactamase, representing either the wild type peni-

cillinase/narrow spectrum cephalosporinase or extended-spectrum cephalosporinase
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phenotypes. The details about the generation of these trajectories are described in

Chapter 3.

This chapter analyzes the simulations using ED and SPLOC to identify the dynam-

ics which exhibit the most notable shifts between different beta-lactamase systems.

These shifts are either due to point mutations or substrate binding. Additionally,

dynamic allostery is also considered using the in-house method for detecting dynamic

allostery from Chapter 3.3 to identify potential allosteric hot-spots on the protein.

The goal of this research is to identify the pre-hydrolysis dynamics within beta-

lactamase that are important facilitating protein-ligand binding. As the functional

mechanism of beta lactam hydrolysis is conserved across all serine beta-lactamases,

the observed differences in substrate recognition within the family must be due ei-

ther to environmental effects or a physical mechanism that influences ligand capture

and binding. Without major conformational change, protein dynamics provides a

reasonable mechanism for doing this.

Protein dynamics encompass a wide range of motions, but often only a small por-

tion of a protein native state conformational ensemble are relevant for function. The

majority of motions in proteins are dominated by thermal fluctuations with little

significance. For TEM beta-lactamase, which has a well conserved sequence and

structure across its family, functional dynamics are likely to manifest as localized mo-

tions that optimize local conformational geometries or cooperative allosteric motions,

rather than large global conformational changes.

This work investigates the changes in dynamics in beta-lactamase from main two

perspectives: a protein perspective, focusing on the impact of mutations on beta-

lactamase, and a ligand perspective, which aims to understand changes to beta-

lactamase due to different ligand interactions. The protein perspective consists of

comparing wild-type (TEM-1 and TEM-2) resistance vs extended-spectrum resistance

(TEM-10 and TEM-52). The ligand perspective, meanwhile, compares the effects of
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broad-spectrum antibiotics (AIC and AXL) vs extended-spectrum antibiotics (CEF

and CAZ) binding to different beta-lactamases. In reality these factors may not be

independent as shifts in dynamics or structure can be the result of the right mutations

encountering a protein with the right antibiotic partner.

Finally, if discrimination between enzyme-ligand systems can be found on the basis

of molecular dynamics, then it should be possible to predict whether a new type

of beta lactamase will bind to an existing antibiotic by observing changes in protein

motions. To test this idea, a classifier is built using SPLOC basis vectors that describe

dynamic differences between proteins known to bind poorly or well with extended

spectrum antibiotics. This application directly connects beta-lactamase function with

enzyme dynamics, and illustrates a new application for using MD simulations to

inform the drug design process.

4.1.2 Chapter Organization

The first part of this chapter presents a comprehensive analysis of the MD simula-

tion library using commonly used analysis methods for molecular dynamics. Potential

hot-spots of dynamic allostery, or regions on beta-lactamase which exhibit coopera-

tive motions with the active site, in TEM beta-lactamase will be predicted using the

apo simulations of beta-lactamase. As presented in [1], the initial results detailing

how SPLOC can be used to identify functional dynamics in TEM beta-lactamase us-

ing MD simulation data will be shown. Next, this methodology will then be extended

to understand beta-lactamase motion changes when interacting with different antibi-

otics. Finally, the concept of using protein dynamics to predict antibiotic resistance

function in beta-lactamase will be prototyped and evaluated. In the final sections the

broader context of these results will be discussed.
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4.2 Molecular Dynamics of TEM Beta-Lactamase

A library of 160 simulations of beta-lactamase enzymes in various conditions were

prepared for this work as described in Chapter 3. Each simulation was run for 500

nanoseconds, at 300 kelvin and 1 barr of pressure. To account for burn-in time after

lifting position restraints, the initial 100 nanoseconds was discarded. In total, 20

unique systems were simulated, consisting of 4 different mutants either in their apo

form and interacting with one of 4 different antibiotics. A shotgun-like approach was

used to generate 8 replicate simulations per system, starting from 8 crystal structures.

In total 3.2 microseconds of dynamics was produced per system.

For this work, JEDi was used to process the simulation data and conduct an initial

essential dynamics analysis. A processing pipeline using JEDi was executed in three

rounds to prepare the trajectories for analysis. Each part of the pipeline operated

independently on each trajectory. The final processed trajectories can be pooled in

various ways for further analysis.

To process each trajectory, first the frames of the associated GROMACS trajectory

file is extracted to separate PDB files. Using JEDi, the preprocessing protocol extracts

the coordinates from the PDB files and constructs an all-atom coordinate matrix. For

this step, the starting structure of the trajectory was used as a reference structure for

alignment by structural superposition.

In the second part of the pipeline, JEDi analysis was performed on the all-atom,

heavy-atom, backbone atom, and carbon alpha atom coarse graining level, still using

the initial structure as the reference. For each level JEDi produces a subset coordinate

matrix. Since different mutants of beta-lactamase have different numbers of atoms,

only the backbone and carbon alpha atoms are considered corresponding sets between

all systems which can be aligned to a common reference. For all further analysis, the

carbon alpha atom subset was considered.

In the final step of JEDi preprocessing, the carbon alpha subset of each trajectory
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Figure 4.1: RMSD for molecular dynamics of beta-lactamase as pooled by a) which
protein mutant is expressed or b) which ligand is present in the simulation. Apo is
considered a separate ligand state.

was aligned to a single global alignment reference structure. Specifically, the first

frame of the APO TEM-1 simulation starting from the 1ERM crystal structure, was

selected. As a result of this pipeline, the 160 MD simulation trajectories were reduced

to matrices containing the x, y, and z coordinates of only the carbon alpha atoms, all

aligned to a common reference.

To assess how much change in the global structure of beta-lactamase occured during

the simulations, the RMSD was computed for each aligned trajectory. The RMSD

of for each simulation was pooled by either the protein mutant (TEM-1, TEM-2,

TEM-10, or TEM-52) or the ligand state (apo, ampicillin (AIC), amoxicillin (AXL),

cefotaxime (CEF), or ceftazidime (CAZ)) of the simulation. RMSD distributions over

each group were found and plotted in Figure 4.1. The maximum RMSD across all

simulations was less than about 3.0 angstroms, reflecting that in no instances did

the beta-lactamase enzyme begin to unfold, and overall, the structure of the enzyme

remained stable throughout all of the simulations.

RMSD values are commonly used to compare MD trajectories and assess major

structural differences between proteins. In Figure 4.1, the RMSD values are centered

at low values. When pooled by mutations, most simulations show significant overlap,
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indicating that the simulations samples structures similar to their starting structure.

When pooled by ligand, in Figure 4.1 b, the distributions show more pronounced

differences compared to each other, however they still share a significant overlap.

Simulations involving either CEF, CAZ, or no ligand (APO) had slightly higher

RMSD on average, which suggests that the proteins either had higher flexibility or

were more malleable during their simulations. Additionally, this suggests that the

proteins adopted a conformation during the simulations that was slightly different

than the initial conformation.

The RMSF, obtained from JEDi, was also grouped in the same way as the RMSD

and is shown in Figure 4.2 a-b. The RMSF curves for all systems are markedly

similar, which indicates that on average regions of flexibility are conserved across

TEM beta-lactamase enzymes. To more carefully compare the RMSF curves, Figure

4.2 c shows the difference in RMSF between TEM-2, TEM-10 and TEM-52 and

TEM-1. Figure 4.2 d shows the difference in RMSF between AIC, AXL, CEF, and

CAZ simulations compared to APO. The most notable changes in protein fluctuations

occured at the omega loop (residues 163-178), particularly in TEM-52 enzymes and

simulations including ceftazidime.

The small deviations observed in beta-lactamase crystal structures, along with the

substantial overlap of RMSD and RMSF values in nearly all simulations, indicate that

the enzyme did not undergo any significant global structural changes. This conclusion

was verified by directly inspecting each simulation in PyMol.

To examine the global motions of beta-lactamase the essential dynamics of the

proteins were analyzed. First, all the trajectories were combined in JEDi using the

pooling functionality, and the essential motions were computed for the alpha carbon

atom subset. To conserve on memory on the UNCC HPC, each trajectory was down-

sampled by selecting only every 10 simulation frames. This downsampling resulted in

a decrease of beta-lactamase snapshots from 1, 280, 000 to a more reasonable 128, 000.
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Figure 4.2: RMSF for molecular dynamics of beta-lactamase as pooled by a) which
protein mutant is expressed or b) which ligand is present in the simulation. Apo is
considered a separate ligand state. Differences in RMSF compared to TEM-1 are
shown in c), and compared to apo in d).

No additional processing of the covariance matrix was performed. The results are

shown in Figure 4.3.

Figure 4.3a illustrates the essential dynamics between all 160 simulations. All

simulations generally overlap in a single continuous projection scatter. The marginal

distribution for PC2 shows almost identical unimodal distributions per mutant, while

PC1 displays a bimodal shape but is still highly overlapping. In Figure 4.3 b, the

most variant motions across all simulations occur at the top of the C-terminal helix,

and around residues 130-137 near the active site of the protein. Surprisingly, these are

not the same regions that have the highest RMSF values occur as shown in Figure 4.2

a-b. These motions represent the most variant motions across all of the simulations,

which may not always correlate to the largest motions in any particular simulation.

The essential dynamics of beta-lactamase are similar in all simulations. However,

to quantify how similar the essential motions of each system were, JEDi analysis

was performed on each of the 20 systems independently. Since all the trajectories

have already been aligned to a common reference, the similarity between essential
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Figure 4.3: Essential dynamics of all beta-lactamase simulations pooled together. a)
PCA projections for all simulation frames colored by what mutant was expressed in
the system. The marginal distributions along each PC axis are shown along the sides
of the plot. b) Beta-lactamase structure colored by where the largest global essential
motions of the protein occur, as constructed by the top 10 PCA modes.

Table 4.1: RMSIP between 10/60 dimensional essential subspaces of protein dynamics
compared by beta-lactamase mutant.

TEM-1 TEM-2 TEM-10 TEM-52
TEM-1 1.00 0.821/0.921 0.817/0.919 0.801/0.904
TEM-2 0.821/0.921 1.00 0.840/0.918 0.797/0.899
TEM-10 0.817/0.919 0.840/0.918 1.00 0.826/0.908
TEM-52 0.801/0.904 0.797/0.899 0.826/0.908 1.00

Table 4.2: RMSIP between 10/60 dimensional essential subspaces of protein dynamics
compared by antibiotic ligand present in the simulation.

APO AIC AXL CEF CAZ
APO 1.00 0.828/0.902 0.817/0.904 0.831/0.917 0.826/0.913
AIC 0.828/0.902 1.00 0.837/0.914 0.827/0.911 0.764/0.900
AXL 0.817/0.904 0.837/0.914 1.00 0.835/0.920 0.799/0.901
CEF 0.831/0.917 0.827/0.911 0.835/0.920 1.00 0.826/0.917
CAZ 0.826/0.913 0.764/0.900 0.799/0.901 0826/0.917 1.00
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dynamics subspaces can be quantified using RMSIP between subspaces spanned by

the top N PCA eigenvectors.

Two methods were used to determine the number of PCA modes, N , to keep:

Cattell’s scree criterion [48] and cumulative variance. Cattell’s scree criterion involves

a qualitative examination of the scree plot, which plots the eigenvalues in descending

order. The criterion for the optimal number of modes is where the the scree curve

"elbows", or shows a significant change in slope. For the cases considered here, this

was around 10 modes in each system. By cumulative variance, or the total percent of

variance preserved when reconstructing the data using N PCA modes, it was found

that at least 80% of the total variance in the systems was reconstructed by around

60 modes.

To assess the similarities of the essential dynamics, the RMSIP was calculated

between all systems using 10 and 60 modes. Table 4.1 gives the RMSIP between

enzyme mutant systems and Table 4.2 shows RMSIP for protein/ligand systems. In

both cases, the RMSIP values are almost all very high, over .8, suggesting that the

essential dynamics of beta-lactamase are very similar.

The similarity of global flexibility metrics and essential dynamics between either

beta-lactamase mutants or antibiotic complexes supports the assumption that the

physical mechanism of beta-lactamase catalytic function on different antibiotics is

mediated through smaller localized dynamics. At the timescale of nanoseconds and

microseconds probed here, beta-lactamase does not commonly undergo large confor-

mational changes. In the context of beta-lactamase kinetics, this result is sensible,

and it suggests that the fold of beta-lactamase enzymes has been optimized for rec-

ognizing the beta lactam motif and rapidly shuffling antibiotics into and out of the

active site.

The functional differences in enzyme catalysis rates for different drugs does not

follow a binary "resistant" or "non-resistant" scale, but rather it exists as a continuous
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measure of how well a beta-lactamase can confer resistance to specific drugs. The

functional differences lie in how easily different a beta-lactamase mutant can recognize

and hydrolyze different classes of beta lactam drugs.

In the absence of conformational change, dynamics which mediate local confor-

mational optimizations for different substrates are either induced by mutations in

the protein perspective or induced by the presence of the substrate itself in the lig-

and perspective. The rest of this chapter presents more sophisticated approaches for

uncovering these functional motions.

4.3 Dynamic Allostery in TEM Beta-Lactamase

In a previous study [1], all four beta-lactamase enzymes were scanned for dynamic

allostery using the method described in Section 3.3. Initially, multiple values for the

radius and spring constant were tested using all three geometries. As expected, the

allosteric response curve demonstrated a roughly linear relationship with the pertur-

bation strength. Through inspection, it was determined that the ball perturbation

type, with a radius of 10 Å and a spring constant of 0.01 yielded the strongest sig-

nal. Using these parameters, the ∆∆G propensity curve was calculated for each of

the 8 apo MD simulation trajectories per mutant. The average response across all 8

trajectories was computed, and error estimates were found using the standard error.

The resulting responses are shown in Figure 4.4.

Notably, the raw propensity curves for each mutant were offset from the x-axis by

roughly constant amount for each mutant. These offsets are likely due to incomplete

sampling of beta-lactamase conformational space in the MD simulations. To make

the comparisons between mutants easier, the offsets were subtracted from the curves

in Figure 4.4a and are reported in the legend.

After subtracting off the offset, it is clear that the average signals for each mutant

enzyme exhibits similar trends. This suggests that allostery is conserved across the

TEM family, likely due to the conserved sequence and structure of the enzymes. The
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Figure 4.4: a) Allosteric response for TEM-1, TEM-2, TEM-10, and TEM-52 beta-
lactamase across all residues. Error bars represent standard error over 8 independent
simulations per mutant. b) Average allosteric response to rigidifying perturbations
across all four mutants shows representative regions of high allosteric propensity.
Signals under 0.0025 are zeroed and shown in white. Figure Credit: [1]
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largest response is a negative allostery spike observed around helix 11. Although all

four mutants display this spike, it is particularly prominent on TEM-10 and TEM-

52. This result is interesting because it matches the location of a known allostery

site discovered by Horn et al. [167] in 2004. Their research showed that this helix

could undergo a confromational change, forming a pocket which allowed non-antibiotic

molecules to bind to beta-lactamase. This binding subsequently decreased the binding

affinity for antibiotics in the active site. The loss in affinity was attributed to a

conformational change in Arg244, which is related to a destabilization in an aromatic

ring stacking interaction by Pro226-Trp229-Pro252.

In the results of Figure 4.4 a, a stabilizing perturbation, which increases rigidity

around this loop, was shown to increase binding affinity in the active site. This

appears to agree with mechanism of the allosteric regulation described above, which

suggests that destabilizing this region should decrease binding affinity in the active

site.

Several other notable predictions of allostery in beta-lactamase were made in this

scan. Due to the noisiness of the signal, this is best visualized directly on the structure

in Figure 4.4 b. In this representation, the low value portion of the signal is removed,

highlighting several regions of the structure with a strong allosteric propensity.

An inhibiting signal was found around helix 3 and 4 (residues 99-114), which are

around 21 Å from the catalytic Ser70 (shown in the figure as a yellow sphere). En-

hancing allosteric propensity can be observed around helix 7 (residues 150-155), about

18.5 Å from Ser70. Generally, these the signals appear to be conserved between all

4 mutants. However, TEM-52 does differ form the other mutants in some regions,

particularly around residues 170-180 on the back side of the omega loop, where there

is a large negative spike suggesting that a binding event here would enhance antibiotic

binding affinity.

These findings are significant as they demonstrate that TEM beta-lactamase en-
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zymes exhibit cooperativity, which is associated with binding efficiency at the active

site. The allostery program was able to validate the known allosteric site on beta-

lactamase, strengthening the likelihood that the other sites identified here represent

novel allosteric targets for TEM beta-lactamase. The existence of an inhibiting signal

at helices 3 and 4 are especially promising as it suggests that binding an effector in

this region will decrease beta-lactamase ability to bind to antibiotics.

There is support in the literature that Tyr105, a residue on the connecting loop

between the two helices, has a connection with beta-lactamase catalytic activity. [168]

Mutation and NMR studies have shown that Try105 can take multiple conformations

in TEM and CTX enzymes, one pointing towards and one away from the active site.

[168, 169] Additionally, the NMR study correlated motion between Try105, catalytic

residue Lys234, and Val216 between helix 10 and 11. A recent simulation-based study

has also uncovered a dynamic connection between the motions of Ty105 and inhibitor

binding at the allosteric site between helix 11 and 12 predicted by Horn [170] The

results found here, in connection with the with literature, suggests that dynamic

allostery may play a more significant role in beta-lactamase function than previously

thought.

4.4 Identifying Functional Dynamics in TEM Beta-Lactamase

The research in this section is driven by the motivation that dynamics play a

significant role in substrate recognition and catalytic function in beta-lactamase en-

zymes. Previously, in Section 4.2, differences between enzymes could not be described

with global flexibility or essential dynamics. To further probe the protein dynamics,

SPLOC is employed to compare dynamic changes between functionally different beta-

lactamase under various conditions.
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4.4.1 Identifying Functional Dynamics

The initial study presented in this section focused on demonstrating the utility

of SPLOC for uncovering dynamic differences in proteins. These results have been

previously published in [1].

At the time of this study, the full molecular dynamics library as described in 3.1

had not been completed, thus only a subset of the full library was used, consisting of

all of the 32 apo beta-lactamase simulations (8 per mutant) and one 500 nanosecond

simulation of each mutant/ligand complex combination. This gives a total of 16 holo

simulations for a total of 48 simulations used in this analysis. For simplicity, this will

be referred to the small set, S-library, while the larger library will be called L-library.

The efficacy metric in SPLOC, described in Chapter 3, takes into account both

differences between data packets from different classes and similarities between data

packets from the same class. In initial attempts to use SPLOC, it was found that

using the trajectories from a particular class did not result in d-modes, as the data

packets did not provide enough statistical similarity to satisfy signal to noise and

statistical significance the algorithm.

To address this, a method was developed for bootstrapping data packets from a

pool of trajectories from the simulation library sharing the same functional class.

This was done to boost the observations-per-variable (OPV) in each data packet.

In this work, three methods for grouping simulations together were used: apo sim-

ulations, holo simulations divided according to the protein perspective, and holo sim-

ulations divided according to the ligand perspective. For a pool of Ntraj simulations,

each consisting of M frames of p variables, a subsample of m frames are randomly

drawn from each trajectory and concatenated into a single data packet. Through this

method, NDP data packets are constructed with a total of NS = m∗Ntraj observations

and an OPV = Ns/p.

If a class of trajectories is defined consisting of different subclasses of systems
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Table 4.3: Description of data packets from different classes to be compared with
SPLOC. Apo protein and holo protein classes in the protein perspective consist of
TEM-1, TEM-2, TEM-10, or TEM-52, while holo protein classes in the ligand per-
spective consist of AIC, AXL, CEF, or CAZ.

Ntraj M m NDP NS OPV
apo protein 8 8000 4000 16 32000 40.55

holo protein (protein perspective) 4 8000 4000 16 16000 20.25
holo protein (ligand perspective) 4 8000 4000 16 16000 20.25

grouped together (e.g. TEM-1 and TEM-2, both showing wild type resistance,

or TEM-1+AIC and TEM-1+AXL with different broad-spectrum antibiotics), data

packets in the class are constructed using observations solely from one subclass. This

means that data packets are not biased in how they represent the dynamics of each

subclass, while also allowing SPLOC to characterize fluctuations that may exist be-

tween subclasses. This approach was used unless unless otherwise stated.

4.4.2 Dynamic Changes Due To Mutations

First the effect of mutations on beta-lactamase dynamics was investigated by com-

paring each beta-lactamase mutant to the wild type TEM-1: TEM-1 vs TEM-2,

TEM-1 vs TEM-10, and TEM-1 vs TEM-52. For each of these three comparisons, 16

bootstrapped data packets were constructed for each class being compared. SPLOC

was run in its neutral mode of operation (MO) which does not bias toward either

discriminant modes (d-modes) or indifferent modes (i-modes) and starting with an

identity matrix as its initial guess. SPLOC was run a total of 10 times for each com-

parison to characterize the consistency among results, re-bootstrapping data packets

each time. This procedure for running SPLOC was used in all subsequent sections,

unless otherwise specified.

The average number of d-modes, i-modes, and u-modes found over the 10 replicate

runs is presented in Table 4.4. SPLOC identified a consistent number of modes in

each subspace as evidenced by the low standard deviations. The number of u-modes

was small compared to d- and i-modes, indicating that SPLOC was able to partition
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Table 4.4: Number of modes found for each apo protein comparison to TEM-1. Error
is given as the standard deviation over 10 independent runs.

# discr. modes # undet. modes # indiff. modes
TEM-1 vs TEM-2 93± 16.85 5.8± 3.32 690.2± 18.36
TEM-1 vs TEM-10 254.1± 22.5 48± 20.99 486.9± 26.54
TEM-1 vs TEM-52 239± 30.95 89.3± 16.26 460.7± 27.32

the motions easily. Notably, TEM-2, which is expected to be similar to TEM-1 on

the basis of their similar catalytic properties, had the fewest d-modes and the most i-

modes. This suggests that TEM-2 is more dynamically similar to TEM-1 than either

TEM-10 or TEM-52.

Additionally, the MSIP (squared RMSIP) was computed between all subspaces

(data not shown). In general, the discriminant subspace for TEM-10 and TEM-52

was conserved between replicate runs, however, for TEM-2, the MSIP for discriminant

subspaces was on average lower. This means that SPLOC did not find the same d-

modes each time it was run, supporting that differences between TEM-1 and TEM-2

are less pronounced.

Figure 4.5 illustrates the dynamic differences between beta-lactamase enzymes. As

expected, the discriminant motions identified by SPLOC were not large compared to

the total RMSF shown in Figure 4.2. TEM-2 had the smallest fluctuations in this

subspace, as most of the motion was accumulated in the i-modes.

Comparatively, TEM-10 and TEM-52 had dRMSF values reaching between 0.6 and

0.8 Å. Both TEM-10 and TEM-52 exhibited large spikes at residues 194− 201 on the

loop connecting helix 9 and helix 10 (H9-H10 loop). Smaller, but significant, spikes

can be seen at the omega loop (residues 163− 178) and the primary catalytic residue

Ser70.

The differences in dynamics observed in TEM-10 seemed to accumulate on the

omega loop, whereas in TEM-52 the differences were distributed around the protein

binding pocket. This observation partially reflects the spatial distribution of mu-
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Figure 4.5: Dynamic differences between a-b) TEM-1 and TEM-2, c-d) TEM-1 and
TEM-10, and e-f) TEM-1 and TEM-52. Panels a,c,e) show the dRMSF and panels
b,d,f) show the dRMSF projected onto a structure of beta-lactamase. The unique set
of mutations for the non-TEM-1 enzymes are shown in black and the catalytic Ser70
is shown in yellow for each. Figure Credit: [1]
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tations in these two beta-lactamase mutants. In TEM-10 both R164S and E240K

are on or proximal to the omega loop, while the mutations on TEM-52, E104K and

G238S, are on opposing sides of the binding pocket. The final TEM-52 mutation,

M182T, is on the complete backside of the protein. It appears from this observation,

for TEM-10 to accommodate its preferred extended-spectrum cephalosporin ligands

the mutations change the motion of the omega loop, while the mutations on TEM-52

induce motions all around the binding pocket, including on the alpha helix holding

Ser70.

These results align with several speculations that have been proposed in the liter-

ature regarding how ESBL enzymes increase their substrate specificity for extended-

spectrum cephalosporins. In general, the omega loop has been identified as a key

component of substrate selectivity. [171] The results here show that different muta-

tions can induce different changes in motions in beta-lactamase.

For the G238S mutation found in TEM-52, it has been suggested that the mutation

causes the omega loop to be able to push away from the β5-β6 turn either from

steric interactions or the loss of a contact with Asn170 [172, 173]. In this work,

increased flexibility is found in TEM-52 in both of these structural regions supporting

this mechanism. Notably, in the expanded L-library, where the omega loop was

observed, albeit rarely, to push itself away from the rest of the protein. The the rest

of enzyme was able to maintain stability during this event, and in some cases the

omega loop was able to return to its original conformation. If this mechanism plays

an important role in modifying substrate specificity, the motion will likely be more

common on timescales beyond what was probed in this work. Increased flexibility was

also observed in other loops surrounding the active site in TEM-52, which suggests

that the widening of the active site is not exclusive to just the omega loop and β5-β6

turn.

The mechanism of R164S has been associated with a change in conformation of
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the omega loop in several studies. [174, 137] It has been suggested, based on crystal

structure observations, that the loop can open up and form a cavity which allows

the larger cephalosporins to access the binding pocket. [144] In Figure 4.5 c-d, the

changes to the R164S containing TEM-10 are strongest at the omega loop, which

supports this mechanism of action. Glu166 on the omega loop is noted to be involved

in the acylation/deacylation process of beta-lactamase. In TEM-2 and TEM-52 the

changes to the omega loop were constrained to the turn not containing this residue,

suggesting that it is important for these enzymes to maintain the proximity of Glu166

to the active site. On the other hand, in TEM-10 this dynamic change is across the

whole front side of the loop. This might suggest that the acylation/deacylation may

favor Lys73 as a general base instead of Glu166 in TEM-10. [175, 176]

One of the most interesting results shown here is the large spike at the H9-H10

loop. This loop is both very distal to the binding site on the protein and occured

consistently in each comparison, including TEM-2. The literature regarding this re-

gion of the protein is sparse, the loop’s connection with the function of beta-lactamase

is unknown. Prior studies have noted that catalytic properties of beta-lactamase are

resilient to mutations here, with the exception of Leu199. A later study showed that

the L201P mutation had a minor stabilizing effect on the protein similar to M182T

on TEM-52. [177, 178] A recent study on allosteric pathways suggested that this loop

acts as a focal point for passing allosteric signals across the enzyme. [179]

4.4.3 Dynamic Changes Due To Ligand Binding

Next, the trajectories in the S-library were divided by enzyme mutant, and each

group was further separated into classes of apo or holo. This comparison aims to

identify where dynamics shift upon a ligand binding to the protein. Data packets

were constructed using the bootstrapping method, however, due to the limited holo

trajectory data available, frames from simulations of different subclasses (TEM-X +

AIC, AXL, CEF, or CAZ) were mixed when constructing holo data packets. Just
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Figure 4.6: Average dRMSF for comparing apo vs holo simulations for a) TEM-1, b)
TEM-2, c) TEM-10, and d) TEM-52. Figure Credit: [1]

as before, SPLOC is run for 10 times per comparison in the unbiased MO, using an

identity matrix as its initial guess.

The average dRMSF for these four comparisons, apo versus holo in TEM-1, TEM-2,

TEM-10, and TEM-52 enzymes, are shown in Figure 4.6. In the case of the wild-type

resistant TEM-1 and TEM-2 beta-lactamase (Figure 4.6 a-b), the dRMSF response

was small, with spikes only occurring in two locations: the H9-H10 loop and around

H10-H11 loop. For extended-spectrum beta-lactamases TEM-10 and TEM-52 (Figure

4.6 c-d), the response is more distributed around the protein.

TEM-10 shows that ligand binding appears to reduce motion in the omega loop,

characterized by the dRMSF in the apo enzyme being higher than the holo, and

induce a shift in motion around the H10-H11 loop, shown by the tall dRMSF spikes

for both apo and holo. In TEM-52, ligand binding appears to reduce motion at

multiple sites across protein. Most of these sites appear centered on the binding

pocket, including the catalytic Ser70, the H3-H4 loop, the end of helix 7, and the
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H10-H11 loop. Notably, the omega loop does show more flexibility in the apo enzymes

for both TEM-10 and TEM-52, however this peak is much less significant compared

to the other peaks.

The location of the dynamic changes on TEM-52 during ligand binding align with

the dynamic changes in the apo protein resulting from mutations. This suggests that

the increased flexibility induced by mutations in the binding pocket is directly related

to regions where antibiotics are able to anchor themselves to the protein. Conversely,

the largest shift in motion for TEM-10 occured at the H10-H11 loop. However, the

dynamic shifts resulting from TEM-10 specific mutations did not impact this region

as much. This suggests that the change in motion in TEM-10 is dependent on ligand

binding. More generally, ligand binding in different beta-lactamase enzymes may be

occurring by different mechanisms.

Spikes in discriminant motion occurred at both the H9-H10 loop and around the

H10-H11 loop in all four mutants. The role of flexibility in the H10-H11 loop is

more evident, as this loop borders the binding pocket of the molecule and potentially

directly interacts with the ligand. This flexibility could be harnessed by the protein

to help stabilize ligands of different sizes and shapes during hydrolysis. Additionally,

the observation that this loop appears to change its motion due to ligand binding,

rather than due to mutations, supports this idea.

The H9-H10 loop shifts its dynamics due to both mutations and ligand binding.

This loop forms a hinge on the backside of the protein, directly linking the omega loop

and helix 10, both regions that border the active site and also show significant changes

in motion through SPLOC. Consequently, the introduction of flexibility in this loop

may serve as a general mechanism for beta-lactamase enzymes to relieve structural

tension arising from enzyme mutations or environmental factors. This would help

beta-lactamase be more resilient when encountering new antibiotics.

Finally, an attempt was made to understand the common dynamic characteristics
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Figure 4.7: dRSMF and iRMSF from comparing holo beta-lactamase trajectories in
the a-b) ligand perspective and c-d) protein perspective. Figure Credit: [1]

of beta-lactamase bound to different antibiotics. The prior work comparing apo and

holo simulations showed that ligand binding induces either a quenching or shift in

motion at specific locations on the enzyme to accommodate the antibiotic interactions.

To compare motions among beta-lactamase enzymes bound to different ligands, the

16 holo trajectories in the S-library were split into two classes based on either the

protein or ligand perspective.

In the protein perspective, simulations containing wild type-like enzymes (TEM-

1/TEM-2) and those containing extended-spectrum enzymes (TEM-10/TEM-52) were

grouped together. In the ligand perspective, simulations containing broad-spectrum

antibiotics (AIC/AXL) and containing extended-spectrum cephalosporins (CEF/CAZ)

were grouped together. Bootstrapping was employed as shown in Table 4.3 to con-

struct data packets. SPLOC was employed to compare the two classes in the same

method as before, running 10 trials in the unbiased MO, using an identity matrix as

the initial guess.

The dRMSF and iRMSF from comparing the holo simulations in both the ligand

and protein perspectives are shown in Figure 4.7. In the ligand perspective, dRMSF

(Figure 4.7a) shows that changes in motions due to different classes of antibiotics were
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observed at the H10-H11 loop. This loop exhibits discriminant fluctuations in all four

subclasses from the apo vs holo analysis, which suggests that this loop is always fairly

flexible, however, exhibits different motions depending on the ligand present. This

supports the previous SPLOC results described above, that this loop does interact

with antibiotic ligands as they bind, however the nature of this interaction is ligand-

specific. In the protein perspective, several regions, including near the catalytic Ser70,

the omega loop, and the H10-H11 loop, display different motions. The omega loop in

particular displays higher fluctuations in ESBLs.

It is worth noting that both SPLOC analyses shown in Figure 4.7 utilized the same

pool of trajectories, but partitioned in two different ways. Consequently, different

discriminant motions were identified. The differences between the protein and ligand

perspective dRMSFs highlight how examining the same simulations from different

perspectives can change what motions are considered important. Training SPLOC

using all available data in this manner lets SPLOC generate hypotheses to explain any

differences between the groupings that are observed. This highlights the exploratory

ability of SPLOC to identify functional dynamics, while other methods like ED may

struggle. Considering the size of the fluctuations in the indifferent subspaces, PCA

would have likely not been able to identify the discriminant motions against the

background of larger fluctuations. This is a major advantage of using supervised

learning methods like SPLOC for comparing MD simulations. [165]

4.5 Functional Dynamics of Substrate Interaction in Beta-Lactamase Using

SPLOC

In this section, the L-library of MD simulations, which includes equal sampling

across all 20 beta-lactamase systems (four enzyme mutants and five ligand states in-

cluding apo), is used to assess changes in dynamics due caused by ligands. For the

following work, the bootstrapping approach described in Section 4.4.1 was adjusted

so that each bootstrapped sample contained the same number of total observations as
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Figure 4.8: Changes in dynamics between TEM-1 and TEM-2 while in complex with
a) AIC, b) AXL, c) CEF, d) CAZ ligands.

each raw MD trajectory. This adjustment was made to demonstrate that discrimina-

tion between proteins at OPVs similar to unprocessed simulations is feasible. Using

the L-library, Ntraj is now 8 for holo simulation classes, m is now 1000, and NDP is

15. This results in Ns = 8000 and an OPV = 10.14 per data packet. To compare the

new bootstrapping method with the previous one, the apo comparisons were redone

using the new data packet construction method.

Qualitatively, the dRMSF from both methods appeared to be similar. To quan-

titatively compare these results, the RMSIP was compared between discriminant

subspaces obtained from both methods. On average, the RMSIP between discrimi-

nant subspaces for the (old/new) method was (0.653/0.614), and the average RMSIP

between the discriminant subspaces from different methods was 0.57. This result

suggests that, on average, any pair of discriminant subspaces found by different boot-

strapping methods are as similar to each other as another pair of discriminant sub-

spaces found using the same bootstrapping method. Therefore, it is concluded that

the new bootstrapping method does not compromise the quality of the SPLOC re-

sults, but with the advantage of using many less observations per data packet.
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Figure 4.9: Changes in dynamics between TEM-1 and TEM-10 while in complex with
a) AIC, b) AXL, c) CEF, d) CAZ ligands.

Figure 4.10: Changes in dynamics between TEM-1 and TEM-52 while in complex
with a) AIC, b) AXL, c) CEF, d) CAZ ligands.
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All 16 of the holo systems, with 8 replicate simulations per system, were compared

head-to-head to elucidate ligand-specific changes in dynamics due to mutations. For

each ligand, the different beta-lactamase mutants were compared similar to how the

apo enzymes were compared in Section 4.4.2. Specifically, for each ligand, TEM-1

was compared to TEM-2 (Figure 4.8), TEM-10 (Figure 4.9), and TEM-52 (Figure

4.10). These comparisons reveal how mutations change beta-lactamase dynamics to

accommodate different ligands.

In the case of TEM-2, ligand binding induced changes to the enzyme motions

primarily centered at the H10-H11 loop. This region showed the greatest spike in

discriminant motion for AIC or AXL binidng. At this loop, TEM-2 had higher

dRMSF compared to TEM-1 when bound to AIC, whereas TEM-1 had slightly higher

dRMSF than TEM-2 when bound to AXL. This difference is interesting as TEM-

1 and TEM-2 have similar affinities for AIC and AXL, thus changes in substrate

specificity do not account for this. Visualizing the simulations in PyMol revealed

notable insights. For AXL binding, some TEM-1 simulations exhibited significant

conformational change in the H10-H11 loop compared to the apo crystal structures.

In the simulation started from the 3JYI crystal structure specifically, the loop assumed

an extended conformation that is flipped away from the protein and reaching into the

solvent. For AIC binding, no such dramatic conformational changes could be found in

the TEM-2 simulations. However, there was a considerable amount of motion around

the native conformation of the loop, which could explain the spike in Figure 4.8 a.

For CEF binding the enzymes showed little differentiating motion, while for CAZ

binding, some motions seem to be lost in TEM-2 at the omega and H10-H11 loops.

Notably, neither TEM-1 or TEM-2 bind well with CEF or CAZ.

TEM-10 exhibits a similar response to ligand interactions compared to TEM-2,

despite being an extended-spectrum enzyme. Interestingly, TEM-10 retains catalytic

efficacy for AIC experimentally, suggesting that the dynamics that facilitate bind-
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ing to these drugs must still be present in TEM-10, even with its mutations. Un-

like TEM-2, TEM-10 does show dynamic shifts compared to TEM-1 upon binding

CEF, particularly around the H3-H4 and H10-H11 loops. The similarity in dynamic

shifts for TEM-10 and TEM-2 in complex with AIC, AXL, or CAZ, despite the en-

zymes having different substrate specificity profiles, is striking, and more work may

be needed to confirm if these dynamic changes actually impact substrate specificity

in beta-lactamase or are artifacts of the molecular dynamics simulations.

Finally, TEM-52 shows the most pronounced dynamic shift among the mutants for

all ligands. The dRMSF highlights significant changes in dynamics that occur at the

omega loop and H10-H11 loop which is consistent with the rest of the analyses in

this chapter. These results reveal the unsurprising reality that both the mutations

and ligand identity have important roles in changing the motions the TEM beta-

lactamase.

4.6 Using Functional Dynamics To Predict Extended Spectrum Resistance

An important result of this work is that each beta-lactamase system studied ex-

hibits its own dynamic signatures. This raises the question of whether these signatures

can be used as predictors of enzyme kinetics. As discussed in Section 3.4.2, SPLOC

can can use the features it finds to predict whether or not data comes from a par-

ticular class by computing a discovery likelihood. In this section, the feasibility of

using functional dynamics in beta-lactamase to predict substrate specificity profiles

is investigated.

Experimental data on the minimum inhibitory concentration (MIC) for each of

the antibiotics used in this study against each of the enzymes was collected from

literature and is shown in Table 4.5. This table provides valuable information about

the function of enzymes that provides SPLOC with a way to partition training sets.

From the table, it can be seen that the full complexity of "function" in beta-lactamase

is not adequately described by simply labelling an enzyme "wild type" or "extended-



90

Table 4.5: MIC values collected from literature sources. MIC measures how high of
a concentration of a drug is needed to inhibit the growth of a bacteria. Low MIC
values indicate the antibiotic is not susceptible to beta-lactamase resistance, while
high MIC values indicate that it is resisted. Ligand types are denoted on the table,
and TEM-1 and TEM-2 represent wild-type enzymes while TEM-10 and TEM-52
represent ESBL-type enzymes.

MIC (µg/ml) TEM-1 TEM-2 TEM-10 TEM-52
AIC > 128 [180] - > 256 [138] 256[181]
AXL > 1024 [139] - - > 1024 [139]
CEF < 0.125 [180, 182] 0.125 [182] < 1 [138, 182] 32 [139]
CAZ < 0.25 [180, 182] 0.5 [182] < 64 [138, 182] 128 [139]

spectrum".

For example, TEM-10 is considered an extended-spectrum enzyme because CAZ

has a high MIC value for bacteria which produce this strain of beta-lactamase. How-

ever, TEM-10 does not hydrolyze cefotaxime as efficiently. It should be noted that

MIC values for TEM-2 against AIC and AXL could not be found, however literature

supports that it has the same catalytic properties as TEM-1. [180] All of the enzymes

used here appear to be able to effectively resist ampicillin and amoxicillin, with the

exception of TEM-10/AXL for which no experimental data could be found. As such

a meaningful comparison of enzymes which can resist broad-spectrum antibiotic and

those that cannot is not able to be made.

On the other hand, it is possible to divide the enzymes into two groups based on

whether or not they are able to efficiently resist against extended spectrum cephalosporins

CEF and CAZ. In this comparison, TEM-1 and TEM-2 in complex with CEF and

CAZ are considered functional as beta-lactamase is unable to effectively resist against

the antibiotics. TEM-52 in complex with CEF and CAZ are considered non-functional.

Despite being considered an extended spectrum beta-lactamase because it can resist

ceftazidime, TEM-10 has split function between CEF and CAZ. As it does not fall

cleanly into either category, it will not be included in the training set.

Holo simulations are used to train SPLOC, as these capture the enzyme motions
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which have been induced or quenched by the antibiotic’s presence. Bootstrapping

was employed to construct data packets in the same way as in the previous section,

however the number of bootstrapped data packets used was lowered to 5 rather than

the 15. Using raw trajectories as data packets was also tried, but it did not yield

d-modes to classify with. SPLOC was run for 10 replicate trials, in its neutral MO,

and using an identity matrix as the starting basis set.

The bootstrapped data packets were generated using with exactly 8000 samples

each, the same number of samples in each trajectory. After SPLOC was trained the

resulting discriminant mode basis sets from each replicate trial were used as clas-

sifying vectors to predict the discovery likelihood that apo simulations of the four

mutants would not bind to extended-spectrum antibiotics. The discovery likelihoods

are reported as an average over the predictions from all basis sets. Because the statis-

tics were the same, both the raw trajectories and bootstrapped trajectories from apo

simulations were classified using SPLOC. Classifying the bootstrapped trajectories

resulted in better results, and so only results for the bootstrapped trajectories are

shown.

The resulting classifier, shown in Figure 4.11 a, shows that the likelihood that any

of the 4 beta-lactamase enzymes will not bind with extended-spectrum antibiotics

is high. Despite this, there is a noticeable drop in likelihood for TEM-52, a known

binder of both CEF and CAZ. This suggests the classifier detected that TEM-52 is

more likely to bind with these antibiotics compared to TEM-1 and TEM-2. TEM-

10, which is observed to have partial extended-spectrum function, appears to have a

higher likelihood not to bind to extended-spectrum antibiotics compared to TEM-52,

which appears consistent with experimental results in Table 4.5. The table indicates

that TEM-52 binds well with CEF and CAZ, while TEM-10 only binds well with CAZ.

It is possible that with increased sampling, either through further MD simulation or

improved bootstrapping, the relative likelihood contrast can be improved to better
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Figure 4.11: Panels a-b) show SPLOC results for comparing penicillin-like holo dy-
namics. a) shows the discovery likelihood that an enzyme is not going to bind well
to an extended-spectrum enzyme and b) shows where the dynamic shifts occured
during holo simulations which allowed SPLOC to classify the apo systems. c) shows
the dRMSF for TEM-52 projected onto a beta-lactamase structure. dRMSF values
under 0.07 were thesholded to 0.0 in pymol, and the yellow sphere represents Ser70.
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reflect experimental resistance profiles.

In Figure 4.11 b-c, the dRMSF from this SPLOC comparison is shown, representing

where on beta-lactamase the dynamics that formed the basis of the classifier were

found to occur. Primarily these motions occur at the omega loop, particularly at the

top most part of the loop and just after the C-terminal of the loop. Additionally,

there is a smaller peak centered near Ser70 (shown as a yellow sphere in panel c) and

at the beta turn near the omega loop.

With the relatively few examples of functional and non-functional proteins used in

this comparison, the results in the section should not be considered definitive, but a

proof-of-concept for how functional dynamics can be used in a practical application

to predict ligand binding properties of enzymes. To test this more thoroughly, more

enzymes with different binding qualities, especially with broad-spectrum antibiotics,

should be simulated and tested. Moreover, if enough examples of proteins that do and

do not bind with each antibiotic are simulated, then a per-antibiotic classifier could

be constructed. With the addition of more observations of different proteins, it is a

possibility is that the results found here are statistically trivial and get washed away

in noise. However, validation of this methodology could present a novel approach to

identifying antibiotic resistance in unknown beta-lactamase enzymes.

4.7 Discussion and Future Directions

In this chapter the functional dynamics of four TEM beta-lactamase were thor-

oughly characterized using MD simulations combined with SPLOC, a novel discrimi-

nant analysis method. Pairwise comparisons of simulations using different groupings

were able to decouple statistically different motions from the global conformational

motions between mutant enzymes in a variety of different conditions. These dynamic

changes elucidate the role dynamics play in acquiring resistance to new antibiotics.

Although the differences observed in this work have revealed important mechanisms

of substrate recognition and binding in beta-lactamase, there is still more left to un-
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derstand. In this section, some of the key findings about beta-lactamase functional

dynamics are summarized and several future extensions and modifications to the

methodology are proposed.

4.7.1 Hot-spots For Dynamic Change In TEM Beta-Lactamase

Throughout the prior sections, multiple loci on the beta-lactamase enzyme were

identified as sites where changes to the dynamics of the protein are connected to

changes in function, either via mutation or ligand binding. Particularly these regions

most often fell either at important catalytic residues or on loops that surround the

binding pocket.

The omega loop (residues 163-178), a feature common to all class A beta-lactamase,

exhibited the most frequent dynamic changes. This loop has been previously postu-

lated to be important for both substrate recognition and catalysis. [76] Notably,

Glu166, a residue on this loop, is proposed to directly take part in the hydrolysis

of beta lactam rings. The results shown here supports that this loop is critical for

protein function.

In section 4.4.2 it was shown that the omega loop was strongly impacted by mu-

tations that lead to extended-spectrum TEM-10 and TEM-52 beta-lactamase. The

change in motions was most prominent in TEM-10, likely because one of the muta-

tions (R164S) is on the loop itself. However, the dRMSF for the ESBL mutants at

the omega loop was much higher compared to TEM-1.

These findings suggest that the mutations induced specific motions in the omega

loop, allowing the enzyme to accommodate the larger extended-spectrum antibiotics.

Of the ligands used here, the data suggests that CAZ recognition is most sensitive

to motion in the omega loop. Figures 4.8-4.10 illustrate that each mutant bound to

CAZ (panel d) had lower dRMSF compared to TEM-1, implying that the motion

induced into the enzymes by mutations was dampened upon binding with the ligand.

In contrast, changes in omega loop motions compared to TEM-1 due to CEF binding
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was only observed in TEM-52.

On the opposite side of the binding pocket, the H10-H11 loop, along with most

of helix 11, appears to be another region on beta lactamase which is susceptible

to dynamic changes. When comparing apo simulations, only TEM-52 exhibited a

dynamic shift here. This indicates that changes in the dynamics of the H10-H11 loop

are less connected to beta-lactamase mutations, rather the locus to be more impacted

by ligand binding. In Figure 4.6 c and d, this loop showed the strongest change in

dRMSF for TEM-10 and TEM-52 when comparing how the enzymes react to ligands.

This response appears was observed in both broad-spectrum and extended-spectrum

antibiotic interactions with beta-lactamase.

In Section 4.5 the dynamics of this loop were further probed using the expanded

L-library, revealing that the H10-H11 loop responds to binding by all ligands in all 4

mutants. Each system, when compared to TEM-1, had a somewhat unique dRMSF

pattern. However, for enzymes with different mutations bound to the same ligand,

the dynamic signatures all had spikes at the H10-H11 loop.

Based on these observations and its proximity to the active site, these results

suggest that motion in the H10-H11 loop facilitates conformational changes of the

loop, allowing it to better accommodate different ligands. A potential role is for

this loop is helping to stabilize the ligand during hydrolysis. In order to interact

with small AIC and AMX molecules, the H10-H11 loop would be required to have

extra conformational flexibility to reach into the binding pocket where the ligands

reside. Indeed, this loop was observed to take a wide range of conformations during

the MD simulations. Some representative conformations are shown in Figure 4.12.

Alternatively, CEF and CAZ are very bulky and the loop would not have to reach

as far. During the simulations, with CEF in particular, the ligand tended to stretch

itself across the binding pocket and anchoring its ends near the omega loop and the

H10-H11 loop. These observations provide additional support for the loop’s proposed
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Figure 4.12: Selected conformations of the H10-H11 loop. The location of Ser70 is
shown for reference in yellow. Figure Credit: [1]

role in stabilizing the enzyme/antibiotic complex. Notably, it has been suggested in

literature that Val216 on this loop, along with Arg244, plays role in stabilizing the

catalytic water needed to donate a proton for the hydrolysis process. [145, 169]

Lastly, another region which has a propensity for changing its dynamics was the

loop connecting helix 9 and 10. This loop is on the complete opposite side of the

protein compared to the binding site. This distant loop acts as a hinge connecting

the omega loop to the H10-H11 loop and has been suggested to be important for

propagating allosteric signals in beta-lactamase [179], however there is limited prior

evidence in the literature to suggest that it directly impacts the catalytic function of

the protein.

In Section 4.4.2, a major shift was observed in this loop when the protein underwent

mutation. In Section 4.4.3, this loop also exhibited changes in dynamics when the

apo motions of the protein were compared holo motions. Subsequent comparisons

between different holo systems demonstrated a weaker dRMSF signal at this loop.

Based on these findings, the H9-H10 could be crucial for alleviating stress imposed on



97

the beta-lactamase during changes such as mutations or ligand binding. Not only did

it undergo dynamic changes due to both mutations and ligand binding, but it also

connects two other interesting regions on beta-lactamase that are shown to undergo

changes in dynamics as well.

4.7.2 The Nature Of Functional Dynamics In TEM Beta-Lactamase

Most of the dynamic changes discussed in this work involve motions that are small

in magnitude compared to the global motions of the protein. dRMSFs values typically

ranged from 0.1-1.0 Å, whereas the total RMSF reaches up to 3.0 Å. Also, dRMSF

motions tend to be localized at specific regions of the enzyme structure, rather than

uniformly distributed.

Together, these observations reveal that the nature of functional dynamics in TEM

beta-lactamase are primarily involved small, localized motions. These motions likely

could not be identified by direct observation of the MD trajectories and weren’t

captured the essential dynamics of beta-lactamase in Section 4.2. Consequently, the

unbiased and data driven hypothesis formation of SPLOC was essential for elucidating

these motions.

To demonstrate the differences between "important motions" found by SPLOC and

essential dynamics, the discriminant modes found in Section 4.4.2 were compared to

PCA modes found using the same data. Figure 4.13 shows the cumulative overlap

between the top N PCA modes, sweeping from N = 1 to the size of the system (789),

using the discriminant, indifferent, undetermined, and full subspaces from SPLOC.

The motions found in SPLOC d-modes do not accumulate overlap with the PCA

modes until the lowest variance PCA modes were added, at around 400 PCA modes.

In contrast, the cumulative overlap with i-modes increases almost linearly. This

result does not mean that essential dynamics is unable to find functional dynamics in

general, however, it does illustrate why it is important to consider the assumptions

underlying a model before using it. The assumption in PCA is that the most variant
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Figure 4.13: The average cumulative overlap (CO) between SPLOC modes and PCA
modes in a) discriminant space, b) indifferent space, c) undetermined space, and d)
over the entire basis set. CO is computed for each mode in the SPLOC subspace
by summing over the top n PCA vectors. The results here average over all repli-
cate SPLOC runs, and all modes within each subspace, with error bars representing
standard error. Figure Credit: [1]

motions are the most important. As the functional motions in beta-lactamase are not

the most variant motions of the enzyme, PCA is unable to capture them.

4.7.3 Long Time Scale Dynamics

Protein motions exist at a wide range of timescales, yet molecular dynamics sim-

ulation is limited to the picosecond to millisecond range. In this work, simulations

were conducted for 500 nanoseconds at a time, and to effectively increase this limit,

a shotgun approach of running multiple replicate simulations with different starting

structures was employed. While the crystal structures available in the PDB and the

results of the simulations presented in Section 4.2 suggest that TEM beta-lactamases

are generally rigid and do not undergo functional global conformation changes, the

possibility of large conformational changes beyond the scope of what was simulated
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here cannot be completely ruled out.

Computational and NMR studies in the literature suggest that the omega loop is

capable such larger motions [79, 183], albeit in the millisecond time domain. Even

within the 160 simulation library used here, there were examples of the omega loop

pushing itself from the main body of the protein and extending into the solvent, hint-

ing at the existence of such motions. To understand if these motions represent true

functional dynamics of beta-lactamase or if they are due to random thermal fluctu-

ations, or an insufficiently parameterized forcefield, longer simulations are needed to

obtain better sampling. One attractive approach to this is by using accelerated MD

methods.

To this end, some work has begun exploring the use of coarse-grained forcefields,

particularly the MARTINI forcefield which has been used in many accelerated MD

studies of proteins. [184, 29] In MARTINI, groups of about 4 or so atoms in an

all-atom structure of a protein are represented as beads. Each residue on the protein

contains a backbone bead and 1-4 side-chain beads, depending on the structure and

local environment of the amino acid. Common waters, ligands, cofactors, and ions

also have corresponding MARTINI coarse-grained representations. Each bead is then

simulated as a coarse grained atom. Because multiple atoms are represented by

a single object, all-atom forcefield parameters cannot be used, and MARTINI has

specialized forcefield parameters for each potential type of bead. [185]

In addition to reducing the number atoms needed in a simulation, the MARTINI

forcefield also allows for the use of larger time steps, up to 20 femtoseconds, compared

to the 2 femtoseconds required for stability in all-atom simulations. This leads to a

massive speedup in simulation time.

Initial testing of this forcefield with beta-lactamase allowed 500 nanoseconds of

dynamics data to be collected in 1.42 hours, which is a fraction of the more than

48 hour wall time required for a single all-atom simulation of beta-lactamase at the
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same timescale. Despite the impressive wall time speed up, further optimization of

the simulation parameters are needed to maintain enzyme stability before meaning-

ful molecular dynamics can be simulated. During the test simulation, the protein

immediately unfolded, something that was completely unobserved in the all-atom

simulations, and a hallmark of an improperly parameterized simulation.

4.7.4 Outlier Processing

During the course of this research, SPLOC was not able to find discriminant mo-

tions in beta-lactamase without using a bootstrapping approach to construct data

packets. Bootstrapping provided several benefits, including increasing the OPV in

each data packet and allowing each data packet to characterize the variation across

multiple independent simulations of the same class. This greatly decreased the vari-

ance between data packets in SPLOC training sets, increasing the likelihood for

SPLOC to converge.

It is well known that molecular dynamics simulations are stochastic, as is the

nature of molecular dynamics. [186] Unless an random number generator seed is

used, the variance between any two simulations of the same system may be large, and

some motions may be considered to be outliers. Here, an outlier can either represent

a statistical fluctuation of the protein, or it could represent a rare event which is

important for enzyme function. The challenge in interpreting molecular dynamics

is to identify which is which. It should be noted that, in MD, the term outlier is

subjective to the timescale used. A large fluctuation of the protein at 500 ns may

represent statistical noise at 500 ms. [187]

Due to the bootstrapping method employed in this work, the effect of outlier mo-

tions, which may only occur in 1 MD trajectory, will be amplified because the motions

in each simulation is equally represented in the bootstrapped data packet. To address

this, a method of preprocessing which uses SPLOC was conceived for use in future

work. This method removes discriminant motions prior to comparing trajectories
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with SPLOC.

Consider a set of N MD trajectories for a particular system, denoted by S =

{Xi}N . For each trajectory, the simulation frames are randomly partitioned into two

samples, S1 and S2. SPLOC is then used to compare the all the trajectories from

one partitioning to the other, resulting in a set of basis vectors, U , that describes

similarities and differences in the simulations coming from the same system. The

i-modes, represented by {|kI〉}SI
, capture the motions that are the same between

each trajectory in the system. The matrix of indifferent modes representing the

indifferent motions between simulations of class 1 and class 2 are denoted as U i
1 and

U i
2 respectively.

The original trajectories are projected onto both sets i-modes, resulting in a new

set of generalized coordinates to represent the system. If class 1 yields N1I i-modes

and class 2 yields N2I , then a total of NI = N1I + N2I new independent variables

can be used to probe the systems. Each trajectory, projected onto each of the NI

coordinates can be SPLOCed to find differences.

The resulting basis vectors in the discriminant space will be NI dimensional. Each

basis vector can be split into two portions: the first N1I elements represent differences

in the indifferent motions coming from class 1, and the last N2I elements represent

the portion of the vector representing differences in the indifferent motions coming

from class 2. The matrix of vectors can be divided into these portions, a set of partial

vectors V d
1 and V d

2 respectively. Similarly the i-modes can be split into contributions

from each class, V i
1 and V i

2 . These vectors represent the discriminant and indifferent

motions in the basis set representing the indifferent motions of the systems themselves.

Using the properties of linear algebra, each discriminant mode can be "un-projected"

back into the original basis set, representing the atomic coordinates of the trajectory.

The trajectory-basis d-modes (D = {|k〉d}) and i-modes (I = {|k〉i}) that represent

dynamics can be computed as in Equation 4.1 and 4.2, where the basis vectors are
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represented by the column space of the matrix.

D = U i
1 ∗ V d

1 + U i
2 ∗ V d

2 (4.1)

I = U i
1 ∗ V i

1 + U i
2 ∗ V i

2 (4.2)

The benefit of using a complicated scheme like the one described here is that, in

the absence of outlier motions, each data packet used in SPLOC can represent a sin-

gle trajectory. This closer reflects the true dynamics of the system and avoids the

potential over-representation of fluctuations between MD simulations. This method

was fully prototyped and tested using a subset of the beta-lactamase dataset. When

the outlier detection was applied, d-modes could be found using the filtered trajecto-

ries as data packets. However, SPLOC could only find inconsistent or weak d-modes,

resulting in a noisy and difficult to interpret dRMSF. Further work is needed to refine

the outlier detection before it can be readily utilized. Note that it is up to the user

to determine if applying an outlier detection before using SPLOC to identify func-

tional dynamics is appropriate. If the functional dynamics of a system are random

fluctuations, then using outlier detection will throw out any interesting signals.

4.8 Conclusion

Using SPLOC, the functional motions of TEM beta-lactamase have been thor-

oughly characterized. SPLOC found that functional motions that facilitate ligand

binding and recognition are often found to be small localized motions in loop regions

in or bordering the active site. Some distal sites on the protein were also found to

show a change in motion due to mutation or ligand binding, including regions on

beta-lactamase identified as potential hot-spots for dynamic allostery.

TEM beta-lactamase are able to bind to a variety of classes of antibiotics, and in

this work the specific motions which facilitate binding to ampicillin, amoxicillin, cefo-
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taxime, and ceftazidime with TEM-1, TEM-2, TEM-10, and TEM-52 beta-lactamase

were analyzed. Each enzyme/ligand pair was found to have its own unique dynamic

signature characterizing how mutations and ligand binding impacts the dynamics of

the protein.

Finally, the connection between functional dynamics and function was tested by

considering whether the dynamic signatures identified by SPLOC could be used to

predict whether or not beta-lactamase enzymes would exhibit extended-spectrum an-

tibiotic binding. The resulting classifier did show a difference in likelihood between

broad-spectrum and extended-spectrum enzymes, which suggests that beta-lactamase

motion is fundamentally related to substrate specificity. While this type of analysis is

not practical for real time enzyme function classification, it represents a novel perspec-

tive for understanding how antibiotic resistance arises in novel beta-lactamases, and

in general deepens the connection between protein dynamics and protein function.



CHAPTER 5: PEPTIDE INHIBITION OF ANTIBIOTIC RESISTANCE

5.1 Motivation

In this chapter, the feasibility of designing de-novo peptide inhibitors for beta-

lactamase is investigated using a novel peptide design approach called pepStream.

PepStream was originally developed as part of another project to determine peptides

that can bind to disordered regions on proteins. In this work, the method is adapted

and tested on TEM-1 beta-lactamase, a well-ordered globular protein.

Beta-lactamase inhibitors have revitalized the efficacy of beta-lactams such as

amoxicillin. [23] Current beta-lactamase inhibitors, including Clavulanic Acid, Sul-

bactam, and Tazobactam, target the active site of beta-lactamase. These inhibitors

work by either by forming a stable Michaelis-complex with the enzyme using their

own beta-lactam ring motifs, or take residence in the active site pocket, occluding

antibiotics from reaching the catalytic SER70.

Unfortunately, the emergence of inhibitor resistant beta-lactamase poses a promi-

nent threat to global health. [188] In Chapter 4, the dynamics of four TEM beta-

lactamase were analyzed, and motions with importance to substrate recognition and

binding were identified. These dynamic motions occurred both near and far from

the catalytic site on the enzyme, suggesting that modulating the dynamics in these

regions of beta-lactamase can control substrate recognition.

Here, the ideas from Chapter 4 are expanded upon, and pepStream is employed to

predict what kind of peptides might preferentially bind to the regions, where TEM-

1 exhibits functional dynamics. Ideally, the peptides predicted by pepStream will

bind to the enzyme and disrupt the motions needed for antibiotic recognition. These

peptides represent potential de-novo beta-lactamase inhibitors, which use a novel
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inhibition mechanism of targeting the functional dynamics of the protein.

5.2 Automated Peptide Design with PepStream

PepStream is unique among other peptide design platforms as it combines sequence-

based and structure-based approaches to optimize binding peptide sequences. [189,

190, 191] The scope of this chapter is not the conception or design of the pipeline,

rather an new implementation into a single, easy to run SLURM-script-based pipeline.

Parts of the pipeline have been upgraded to include state-of-the-art tools in struc-

tural bioinformatics and methodological improvements, which allow for higher quality

binding partners to be found. These upgrades have made pepStream more accessible

and computationally efficient.

Prior to this work, pepStream had been implemented in a series of bash and python

scripts, with the basic workflow described as follows. There are three major stages

to running pepStream: sequence diversification, peptide construction, and docking-

based filtering. In the sequence diversification stage, sequences are defined repre-

senting the protein of interest, and the subsequence of the protein representing the

binding target. The target sequence, referred to here as a Molecular Recognition

Feature or MoRF, terminology borrowed from intrinsically disordered proteins [12],

is sliced into footprint sequences by successive binary splitting.

These footprints are run through PSI-BLAST [192, 193] to find homologically dis-

tant matches in other proteins, generating a position-specific scoring matrix (PSSM).

The PSSM is used to computationally mutate the footprint sequences to create a list

of "seed sequences". Using BLASTp [192], the PDB is searched for proteins with

homologous regions that match the seed sequences and have a corresponding solved

structure.

In the peptide construction stage, the structures obtained from the BLASTp search

are mined to look for fragments of structures which interact with the region on the

protein homologous to the target sequence. The underlying concept is to leverage
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interactions that nature has optimized through evolution to design peptides, rather

than guessing sequences randomly. Using the PDB structures, the amino acids which

are found to interact with the matching sequence are strung together into a contiguous

peptide fragment, called a cMoRF (complementary MoRF). cMoRFs are potential

candidates for being a peptide binder for the protein. Finally, the structure of the

full protein and each cMoRF peptide are predicted.

In the last stage of the original pipeline, cMoRFs are docked into the protein in

several steps to filter out peptides which do not bind well. Firstly, all of the peptides

are globally docked to the protein with no restraints to determine the top X% of

cMoRFs that interact strongly with the protein. Next, the strongest interacting

peptides are docked again, however this time the docking area is restrained to the

target sequence. The peptides with the highest docking scores from this second

docking phase were considered the best binding peptides in the original pepStream

pipeline.

Specificity can be evaluated for the peptides by docking the top-ranking peptides

to alternate sites on the protein and comparing the relative docking scores. If a

peptide has the highest docking score for the target sequence, then it is considered to

have specificity for this region. The final output of pepStream was a list of peptide

candidates that are predicted to strongly bind with the protein of interest, with

specificity for the target region.

The original pepStream pipeline was designed to be modular, specifically the struc-

ture prediction and docking parts of the pipeline, allowing for the substitution of dif-

ferent software methods as needed. In this version structure prediction was performed

with i-Tasser, and docking was performed with Z-Dock. [194, 129]

In the following sections, a re-implementation of pepStream will be described, fol-

lowed by the results of using pepStream to predict peptides which bind to various

sites on TEM-1 beta-lactamase.
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5.3 Implementation and Updates to pepStream

For this work, pepStream was implemented as a self-contained bash script, accom-

panied by a library of helper bash/python scripts which are called by the main script.

The script was designed to run on a GPU-enabled High-Performance Computing

(HPC) Cluster, with resource usage optimized for UNCC’s Leo cluster. This cluster

is equipped with 8 Nvidia A100 GPUs and 128 Intel Xeon Cores. Each pepStream

job utilizes 1 GPU and 16 CPU cores, allowing 8 jobs to be run concurrently.

The user interface for pepStream was simplified to a single parameter file which is

submitted to pepStream at the command line. All parameters for a job are defined

in this input file, where users simply have to fill in the blanks with their system

of interest, target, alternate target binding sequences, and several other parameters

related to each of the modules in the pipeline.

All outputs for pepStream are organized into a single specified directory designed

for easy access and organization of relevant data. Currently, most of the data is

not compressed, and each run may generate dozens to hundreds of gigabytes of data

depending on how many cMoRFs are identified. This version of pepStream takes a few

days to run from start to end, again dependent on how many cMoRFs are identified.

However, a checkpoint system was implemented so that pepStream can be restarted

if the job crashes or runs out of walltime.

5.3.1 Updates to Structure Prediction

In the updated version of pepStream, i-Tasser was replaced with OmegaFold [195],

resulting in a significant speed up in the structure prediction phase. With OmegaFold,

the prediction of a single structure can take less than a minute. The primary draw-

back of using OmegaFold is that it only produces a single model of a protein structure,

whereas i-Tasser was capable of producing multiple models. This drawback is signif-

icant because rigid docking methods are currently being used in pepStream, and for
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these models conformational shape is an important factor in proper receptor-ligand

docking.

OmegaFold can be forced to produce several different models by adjusting some of

the parameters. However, this may decrease the quality of each model. To address

this, a more sophisticated methodology, called the conformation generation pipeline

(CGP), was devised to produce multiple quality conformations of a structure.

The CGP is run in three main steps. First, OmegaFold is used to generate an

initial conformation of the protein. This structure is then run through a geometric

simulation using FRODA, which is part of the FIRST software. [196, 197] A Python

script then analyzes this trajectory to find the most diverse conformations sampled

by the simulation. These diverse conformations are found by computing the principle

components of the FRODA simulation and applying a clustering algorithm to find a

diverse set of NCONFS conformations. To obtain physically valid conformations,

the most diverse conformations, including the initial OmegaFold structure, are energy

minimized in explicit water using GROMACS.

Currently many of the parameters for FRODA and GROMACS are hidden from

users. However, it would be easy to extend the pepStream input parameter file

to include them in a subsequent update to the pipeline. FRODA is run with a

hydrogen bond energy cutoff of −2 and generates a total of 100000 simulation steps,

outputting a structure every 10 steps to yield a final trajectory of 10000 structures.

For GROMACS, the structure is solvated in a cubic box, the system neutralized with

ions, and the whole system is minimized using steepest descents until the maximum

force on the system is less than 500 kJ/mol.

Conformational diversification is performed because the rigid-rigid docking method

in the next step of the pipeline is highly dependent on the conformation of both the

receptor and ligand. Docking is performed pairwise between NPROT diversified

conformations of the receptor protein and NPEP diversified conformations of the
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peptide, rather than just between one structure of each. This accommodates some

of the intrinsic flexibility within protein-peptide complexes, while not sacrificing too

much computational complexity.

OmegaFold was chosen over the more sophisticated AF2 model, due to its ability

to predict structures of comparable quality, while taking a fraction of the time. On

the UNCC cluster, AF2 required around 40-50 minutes to predict the structure of

TEM-1 beta-lactamase, and around 20-30 minutes for a short peptide. Using the

full CGP, including OmegaFold, FRODA, and GROMACS, this time was reduced to

about 20 minutes for beta-lactamase, and between 1 and 2 minutes for each peptide.

OmegaFold achieves its speed increase by bypassing the computationally expensive

MSA construction, which is the bottleneck step in AF2.

5.3.2 Updates to Docking Methodologies

The docking program in pepStream was updated from Z-Dock [129] to MEGADOCK

[128], primarily to increase the speed of the program. MEGADOCK, having been de-

veloped by the same group, is the successor to Z-Dock. PepStream performs docking

for all pairwise combinations of protein and peptide structures, generating 1000 poses

per complex. Even using ultrafast GPU-accelerated calculations, this step remains

pepStream’s most rate-limiting step.

In the original version pepStream, a two-phased approached to docking was em-

ployed, unrestrained global docking followed by restrained target docking. Only the

top percentage of peptides from the global were selected to move to the targeted dock-

ing phase. Through analyzing the results of several tests, it was determined that the

MEGADOCK scoring function had a moderate to strong dependence on the length

of the peptide sequences. This dependence is less apparent when docking to specific

regions. This can be seen in Figure 5.1.

Additionally, a weakness in the two-phase docking approach in the original pep-

Stream was realized. Performing global docking first followed by targeted docking of
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Figure 5.1: Average docking scores for a) global and b) targeted docking in
MEGADOCK.

only the top X% of cMoRFs can potentially lead to the omission of peptides that

bind well to the target. This situation occurs when the highest docking scores for

peptides binding to the target region are lower than the highest docking scores for

the peptides that don’t bind at the target region. Only in the case where the two sets

of high scoring peptides overlap will pepStream be able to identify the correct high

affinity binders for the target.

As an example, a protein may exhibit high affinity scores for peptides near its active

site, where it has been evolved to bind ligands. However, if a peptide binding far from

the active site were wanted, then pepStream would generate false positive sequences

of peptides that preferentially bound at the active site. Another example of when this

might happen is when a protein has multiple binding sites. In such cases, peptides

that interact strongly with one binding site may overshadow those that interact at

the other.

For these reasons, a modified docking procedure that eliminates global docking

completely is proposed. In this procedure, the first phase of docking uses a docking

area restrained to the target region to find the peptides which have the strongest

interaction with the target. Only the peptides which interact with the target move on.

The second phase performs restrained docking where the docking area is restrained

to a number of user-supplied alternative docking sites to test for specificity. The high
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affinity peptides can then be reranked by which have the highest specificity.

In this scheme, the resulting peptides will be those with the highest affinity and

specificity for binding at the target, rather than the peptides which interact most

strongly anywhere on protein. Additionally, removing the global docking reduced

the impact of the MEGADOCK sequence length-dependent scoring function on the

predicted peptide sequences.

Two additional technical changes were implemented in this version of pepStream.

The first involves how the final docking score, used for ranking peptides, is obtained for

each cMoRF. In the original pipeline, docking scores from all pairwise combinations

of receptor and ligand conformations were accumulated into a list and averaged.

Notably, only some combinations of receptor and ligand conformation will produce

stable complexes. [198] This was the reason for docking multiple conformations in the

first place. Poor receptor/ligand combinations will yield low docking scores, whereas

favorable combinations will yield high docking scores. Even if only one conformational

combination is favorable, the peptide will still bind with the protein as long as both

partners take the correct conformation in vivo. However, including these lower scores

will lower the average docking score for the peptide, which may cause the peptide’s

ranking to be lower than it should be.

To address this, an alternative approach was devised. Instead of averaging all of

the scores, the scores are first compiled into a list and sorted in descending order.

Only the top X% of scores are averaged, representing the conformations with the

strongest protein-peptide interactions. This method reduces bias from poorly-binding

conformations.

Finally, modifications to the method for selecting the top-ranking peptides at the

end of the pipeline was made. Previously, the docking scores for the target region

were ranked and the top N peptides were considered as the best. However, this

approach does not take into account specificity which is an important consideration



112

in pepStream. Specificity is difficult to quantify without experimental data, and so a

surrogate a metric was introduced, given in Equation 5.1. This metric calculated the

difference between the target docking score and the highest scoring alternate binding

site. A positive value indicates that the peptide has specificity.

SP = SCOREtarget −max({SCOREalt.sites}) (5.1)

The target binding scores and specificity scores are ranked individually, resulting in

two separate lists. Starting with 1 and adding a peptide each time, the intersection

between the top N peptides from each list are found. When the length of the in-

tersection reaches a user-defined length of candidate peptides, the algorithm finishes.

This method balances target binding affinity with specificity within the final ranked

list of peptides.

5.4 Results

PepStream was used to identify binding peptides for four MoRFs on beta-lactamase:

the H3-H4 loop, the omega loop, the H9-H10 loop, and the H10-H11 loop. These loops

were chosen as regions that exhibit functional dynamics in TEM beta-lactamase, as

detailed in Chapter 4. That the functional motions correlate with enzyme substrate

specificity suggests that binding a peptide to these locations may inhibit or shift

these motions, allowing the catalytic properties of beta-lactamase to be controlled.

These regions are shown on the structure of TEM-1 in Figure 5.2 in blue. For the

analyses in this section, when one MoRF was chosen to be the target for pepStream,

the remaining MoRFs were used as alternate targets for evaluating specificity.

Initial runs of pepStream over beta-lactamase using the original pipeline, detailed

in Section 5.2, resulted in peptides that had some binding affinity for their target

MoRF, but no selectivity. A lack of selectivity suggested that pepStream was not

producing optimal peptides for beta-lactamase. Only the peptides designed for the
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Figure 5.2: Structure of TEM-1 beta-lactamase colored by initial ten residue target
MoRFs (red), and the expanded target MoRFs (blue). The catalytic SER70 is shown
as a sphere in yellow.

H3-H4 loop showed specificity. However, peptides designed to bind to the other three

MoRFs also had the highest affinity for the H3-H4 loop. This would imply that

all peptides had specificity for the H3-H4 loop, regardless of what MoRF they were

designed to bind to. Based on this, it could not be determined whether the peptides

designed for the H3-H4 loop actually exhibited high specificity, or if this region had

strong non-specific peptide-binding properties.

Although no valid peptides were generated from these runs, these results motivated

many of the improvements that were made to the pipeline, as detailed in Section

5.3.1. After all the changes to the methodologies were implemented, pepStream was

still unable to find specifically binding peptides for any MoRF other than the H3-H4

loop.

One potential explanation for why pepStream could not generate specific peptides

was that the MoRF regions were too long. To test this, a new mode of running

pepStream was formulated. Each MoRF was narrowed down to a 10 residue window.

PepStream was run iteratively, extending the target each time by 1 residue on each

side each iteration, until peptides with selectivity was found.

For each of the MoRFs used in this work, a "core ten" residue section was de-
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termined by inspection and used as the starting window for the procedure. For the

H3-H4, H9-H10, and H10-H11 loops, which represent short linkers between alpha he-

lices, the core residues were selected to include the residues on the linkers. Additional

residues were added on each side to make the total sequence length 10 in each case.

For the omega loop, the core residues were chosen to include the part of the loop that

overhangs the active site of the protein. The core residue sets for each MoRF are

shown in red in Figure 5.2.

For each run of pepStream, a total of 9 alternate binding sites was used to com-

pute specificity. To create alternate binding sites for this procedure, the full MoRF

sequences were broken into roughly 10 residue windows. When a particular MoRF

was chosen as the target, the alternate binding sites from that MoRF were retained,

with the exception of the window that most overlapped with the actual target se-

quence. The actual active site of beta lactamase, centered on the Ser70 residue, with

three flanking residues on either side, was also included in these 9 alternate sites.

However, MEGADOCK failed in all cases to successfully bind any peptide with this

region. This could be because Ser70 is relatively buried at the back of the binding

pocket, making it difficult for a rigid docking scheme to accommodate a rigid peptide

ligand structure in this region.

PepStream was run using the initial 10 residue fragment as a starting target. In

an iterative process, a flanking residue on each side of the target was added and pep-

Stream was re-run. This process was iterated until the target site was twenty residues

long. By varying the target length, the effect of target length on the pepStream design

process could be evaluated. When all iterations of pepStream had completed for each

MoRF, the run which produced peptides with the highest specificity were selected

to be further analyzed. No restrictions on the peptide length were enforced. How-

ever, the minimum fragment length was set to 7 because NCBI does not recommend

blasting amino acid sequences with less than 7 residues.
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Table 5.1: Number of unique cMoRF peptides found from searching the PDB for
complimentary sequences

H3-H4 Loop Omega Loop H9-H10 Loop H10-H11 Loop
Length 10 13 4 1 1
Length 12 22 79 2 9
Length 14 55 221 30 77
Length 16 260 539 47 393
Length 18 908 1194 73 632
Length 20 1562 1631 151 1335

After all runs were completed, pepStream was able to construct peptides with affin-

ity and specificity for all four MoRFs. The lengths resulting in the highest specificity

peptides for each MoRF was 20 for the H3-H4 loop, 20 for the omega loop, 16 for the

H9-H10 loop, and 20 for the H10-H11 loop. The number of cMoRF peptides found

per-MoRF across all different lengths, for all four MoRFs, is shown in Table 5.1 and

the affinity vs specificity graphs from the best runs are shown in Figure 5.3.

An interesting observation from Table 5.1 is that the H9-H10 loop generated sub-

stantially less cMoRFs compared to the other MoRFs. Interestingly, this is the only

MoRF that does not directly border the active site. The number of cMoRFs found

is dependent on the BLAST searches. One potential explanation for this observation

is that there are fewer proteins in the PDB with homology for this region on beta-

lactamase compared to the other MoRFs. With no obvious connection to the hydrol-

ysis of antibiotics, there may be less evolutionary pressure to conserve the sequence

of this loop between families of beta lactamases, resulting in the lower homology

detected here.

In figure 5.3, special attention should be payed to the scales of both the x and

y axes. The H3-H4 loop had significantly higher affinity and specificity compared

to the other MoRFs. The other three MoRFs have roughly the same magnitude for

affinity and for specificity compared to each other. In contrast to the prior pepStream

results, peptides designed for other MoRFs did show specificity for the loop they were
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Figure 5.3: Affinity (y-axis) vs Specificity (x-axis) of peptides for a) the H3-H4 loop
b) omega loop c) H9-H10 loop and d) H10-H11 loop. The yellow dots represent the
top 10 peptides with overall best specificity and affinity for the target as determined
by an automated algorithm. The labels represent their ranking in terms of binding
affinity for the target.
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designed to bind to. This suggests that the high affinity and specificity peptides

show for the H3-H4 is significant, and that this loop has a strong affinity for binding

peptides.

Notably, the H3-H4 loop is the site of the protein-protein interaction between TEM-

1 and BLIP-I. The crystal structure of this complex (PDB: 3GMW [94]) shows that

the interface between these proteins encompasses the entire H3-H4 loop, as well as

a substantial portion of the TEM-1 molecular surface near the active site. An inter-

esting study [108] attempted to try and derive a peptide from BLIP-I which would

retain its binding and inhibitory properties for beta-lactamase. The fragment con-

sisted of BLIP-I residues 46-51, which form a contact between an Alanine of BLIP-I

and Tyr105 of the H3-H4 loop on TEM-1. Ultimately, this work showed that the pep-

tide could inhibit beta-lactamase function, although at much lower potency compared

to the full BLIP-I protein.

Breaking the alternate binding MoRFs into smaller windows enabled a more de-

tailed look into the distribution of protein-protein interactions on beta-lactamase.

Figure 5.4 presents the binding scores shown for each of the target and alternate

target binding sites per MoRF. In each case, the binding scores for the target had a

very narrow distribution in scores, likely because the scores in this list represent only

the top N percent of docking scores.

The alternate target scores exhibit similar distributions for each pepStream run,

despite being tested on different sets of peptides. For example, consider the three

alternate MoRFs from the H3-H4 loop. In all four panels of Figure 5.4, the alternate

targets for the H3-H4 loop have around the same value for binding affinity (around

1400). The same can be said for the other alternate MoRFs, which implies that the

peptide binding properties on beta-lactamase are more strongly influenced by the

protein sequence properties rather than the peptide sequence.

Examining the cMoRFs generated for each MoRF separately, no evident motifs or
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Figure 5.4: Comparing MEGADOCK scores for alternate-target binding sites used
to compute specificity. For comparison, the target specificity scores are represented
by the first boxplot in each panel.
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sequence patterns that would indicate a general design principle were observed in

the sequences generated by pepStream. Tracing the top cMoRFs back to the PDB

entries they were extracted from can provide insights on the relationships between

MoRF and cMoRF. In most cases the proteins from which the cMoRFs come from

were unrelated to beta-lactamase. However, two of the top ten hits from the omega

loop came from beta-lactamase relevant proteins. One of these hits came from a

transcription regulator of the AmpC gene, which encodes AmpC beta-lactamase, and

the other comes from ShyA an endopeptidase which is able to cleave the peptidoglycan

cross-linking during the cell wall growth process which beta lactams inhibit. [199, 200]

Additionally, one of the top ten hits for the H10-H11 loop came from a structure

TEM-1 itself. [201]

The ProtParam module in BioPython [202] was used to compute six physical pa-

rameters for each of the top 10 and 100 peptides for each MoRF. The properties used

were molecular weight, aromaticity, instability, hydrophobicity, isoelectric point (pI),

and charge at pH 7.0. The results of this for the top 10 cMoRFs are shown in Figure

5.5.

These properties revealed that electrostatics (pI and charge) were primarily respon-

sible for distinguishing peptides which bind with different MoRFs. The H3-H4 and

omega loops prefer positively charged peptides, while the H9-H10 and H10-H11 loops

prefer negatively charged peptides. Additionally, differences in hydrophobicity and

molecular weight also observed between MoRFs. While there are some distinctions

that can be made using only the top 10 peptides, most of these differences were not

significant when the top 100 peptides (not shown) were considered.

5.4.1 cMoRF Sequence Analysis

Several methods were used to explore how pepStream constructed peptides to bind

to the various MoRFs on beta-lactamase. Clustering was performed to explore differ-

ences between peptides designed for different MoRFs and similarities between peptides
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Figure 5.5: Peptide properties computed for the top 10 cMoRFs per MoRF.
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designed for the same MoRF. Clustering peptide sequences between MoRFs aims to

uncover general binding characteristics for each target region, while clustering peptide

sequences designed for the same MoRF aimed to identify recurring motifs indicative

of favorable binding characteristics.

The sequences were initially embedded into 480-dimensional vectors using the

twelve layer evolutionary scale model, ESM-2, a protein language model. [203] ESM-2

is a transformer-based language model that has been trained using only sequence data,

and these types of models have been shown to be able to be predictive of evolutionary

and biophysical properties in proteins. [204] The embeddings were transformed using

PCA and t-SNE (t-stochastic neighbor embedding [205]) to produce two dimensional

maps to easily visualize the data.

To evaluate how well these embeddings differentiated peptide sequences designed

for different MoRFs, clustering using k-means was performed directly on the embed-

ded sequences and the two dimensional representations. The quality of clustering was

evaluated using the silhouette score. A silhouette score of 1 indicates perfect cluster-

ing, a score of −1 indicates poor clustering, and a score of 0 indicates that the data

samples are near the decision boundary between clusters. In addition to clustering

based on protein language embeddings, a phylogenetic tree was constructed for the

peptide sequences using the BLOSUM62 substitution matrix to explore whether the

sequences could be distinguished through evolutionary clustering.

A maximum of the top 100 peptides (fewer, if less than 100 peptides were found)

that exhibited specificity for each MoRF were combined into a single FASTA file and

embedded using the ESM-2 model. The resulting embeddings were further trans-

formed using PCA and t-SNE into low dimensional representations suitable for visu-

alization. Only the top two components were kept on each model. For PCA, the top

two modes were able to reconstruct around 70 percent of the original data variance.

Next, clustering using k-means was performed. These models used a k value of
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4, for the 4 MoRFs where the peptides came from. When clustering directly on the

embedded sequences the silhouette score was around 0.068. This indicates that the

clustering was poor as samples were, on-average, close to the decision boundaries

between clusters.

Alternatively, when clustering was performed on the top two components of the

PCA and t-SNE transformed embeddings, the silhouette scores increased to 0.34 and

0.37 respectively which indicates the clustering improved. Visual inspection of the

clusters does support this, as clusters predicted using the full ESM embeddings appear

more overlapped (Figure 5.6 b,e) compared to clustering on the two dimensional slices

(Figure 5.6 c,f).

Ultimately, the result is that neither clustering scheme correlates with the true

labels (figure 5.6 a,d). This indicates that either the peptides are indistinguishable,

despite being generated for different target MoRFs, or that the ESM-2 model is unable

to capture the information underlying significant differences in the peptide sequences.

One potential reason for this could be that a short peptide, such as the ones generated

in pepStream, does not provide enough context for the transformer-based ESM-2

model to learn meaningful features.

The sequences were further tested using phylogenetic methods. Using the align-

ment software FAMSA [206], the top 10 peptide sequences for each MoRF were aligned

and evolutionary distances were between sequences were computed using the BLO-

SUM62 substitution matrix. [207] A neighbor joining tree was constructed from these

distances using BioPython and visualized using R (see Figure 5.7).

In figure 5.7, the resulting phylogenetic tree shows that the peptides were are not

suitable for phylogenetic analysis. The MSA for this collection of sequences was poor,

evidenced by the clade splits being bunched up near the root of the tree with long

branch lengths to the leaves. This implies that if these peptides share any evolution-

ary relationship, they diverged from each other in the distant past. Despite being
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Figure 5.6: ESM encoding of peptide sequences. Scatter plots in a-c show the em-
bedding vectors projected onto the top two PCA modes, while d-f show the vectors
projected onto the top two t-SNE modes. Panels a and d are colored according to
which MoRF each peptide was designed for, b and e are colored by clustering di-
rectly on the embedding vectors, while c and f are colored by clustering on the two
dimensional representations.

Figure 5.7: Phylogenetic tree for peptide sequences. Actual branch lengths are used
to show the lack of evolutionary relationship between peptides designed for different
MoRFs.
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constructed from fragments of proteins known to interact with sequences homologous

to the target MoRF, the peptides do not cluster by the MoRF they were designed

for.

Despite being a null result, this suggests that that protein-protein interactions at

these particular regions on beta-lactamase are not driven by evolution. In combi-

nation with the result from the ESM-2, this work did not not allow any patterns

or motifs to be discerned for peptide binders to different regions in beta-lactamase.

Although this result is not ideal, it informs the continued development of pepStream,

highlighting the need to improve the pepStream sequence generation protocol. One

possible approach would be to use a more targeted search for PDB structures where

the amount of homology with the target region can be controlled more closely. Con-

structing cMoRFs from structures which are more relevant to the target protein may

produce better candidates for binding.

5.5 Discussion and Future Outlook

The upgrades to pepStream have improved its ability to predict peptides with

specificity to a particular MoRF on a protein. However, there still remains many

improvements to be made in optimizing cMoRFs for protein-peptide interactions.

The work described in this chapter represents an important step on the pathway to

novel peptide inhibitors for beta-lactamase.

In this chapter a proof-of-concept methodology for designing binding peptides was

demonstrated, and through extensive data analysis, several key areas in the pep-

Stream methodology with the potential for future improvement were pinpointed.

The two main areas include the cMoRF construction and diversification step and the

docking step. It is important to recognize that pepStream was originally designed to

predict binders for disordered proteins, which have different properties compared to

globular proteins. Generalizing protocols to work for all proteins is a difficult chal-

lenge, and this is the first attempt to generalize the pepStream methodology outside
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Figure 5.8: PCA results for physical properties of peptides. a) Top two PCA modes,
as colored by the MoRF they were designed to bind to. b) Relative feature importance
of each property toward each PCA mode. Importance is measured by the value of
the squared loadings which correspond to the original property in the PC vector.

the scope of its intended purpose.

One of the notable results shown above was that peptides appeared to be indistin-

guishable from each other, regardless of the MoRF that peptides were designed for.

Three clustering methods were attempted: by physical properties, by ESM-2 sequence

embedding, and by phylogenetic tree clades. Among these methods, comparing the

peptides by physical properties was the most effective.

The 6 physical properties of the top 100 peptides from each MoRF were visualized

using PCA in Figure 5.8 a. The peptides generally exhibited a separation into two

groups along PC1, which can be defined as either peptides designed for the H3-H4 and

omega loops or peptides designed for the H9-H10 and H10-H11 loops. In agreement

with the qualitative results above, the pI and charge at neutral pH most dominantly

contributed to PC1, shown in Figure 5.8 b.

The rational design choice by pepStream becomes apparent when considering that

the H3-H4 and omega loop fragments contain more charged/polar residues than the

other two MoRFs, as can be seen in Figure 5.9. Ideally, a model using the physical

properties of peptides could be constructed to uniquely differentiate the peptides de-

signed for each of the four MoRFs. Global peptide properties, as calculated here, are

unable to create such a model. Since the peptides exhibited specificity for their respec-
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Figure 5.9: Sequences of the four MoRFs used in pepStream resulting in the highest
specificity peptides. Amino acids are colored by biophysical properties.

tive MoRFs, it suggests that a set of features should exist that can describe the un-

derlying differences between the peptides. Future studies will incorporate additional

properties to investigate this, including local physical properties and environmental

effects.

In this study, the peptide sequences generated by pepStream are not randomly

generated, but are only weakly discernible as having been engineered to bind with a

particular motif on a protein. One way in which this will be addressed in future work

will focus on modifying the method by which seed sequences are used to generate the

mutated footprints used to search the PDB.

Currently, unless a long target sequence is used, the footprints used in the the

PSI-BLAST are typically very short, often approaching the 7 residue limit prescribed

by NCBI. Given the complexity of protein sequence space, it is plausible that many

proteins could contain subsequences with homology to a short fragment by random

chance. Consequently, the PSI-BLAST will return many unrelated false-positive hits,

biasing the later steps of pepStream. [208]

A proposed method for addressing this involves starting pepStream with an initial

search of protein sequence space. This search uses a larger region around the target

binding site to find a relatively large set of proteins with homology to the target.

Using a larger sequence in this search will ensure that the returned proteins are not
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random, however, have at least some, evolutionary relationship to the protein of

interest. A user parameter could be introduced to control degree of diversity of this

initial protein pool.

Next, all the proteins resulting from this search would be consolidated into a custom

database to be used in the subsequent PSI-BLAST step. Everything after this step

would run similar to the current implementation, including the BLASTp, where the

full PDB would be searched. By limiting the PSI-BLAST to only search within

proteins with sufficient homology to the target of interest, it is expected that the

cMoRFs generated will have a higher likelihood to interact with the target.

Another avenue of improvement to pepStream pertains to the docking portion of

the pipeline. While the changes already implemented as part of this work represent

improvements to the prior scheme, ultimately using a rigid-rigid docking method is

suboptimal for pepStream. Two major drawbacks of using MEGADOCK include:

larger binding areas bias scores toward longer peptides and not considering flexibility

when optimizing binding conformations.

An alternative method that was considered was AF2-mulitmer. [209] This model

has emerged as one of the most accurate protein-protein interaction prediction models

and has been widely adopted by the community as a docking method. This method

predicts the receptor/ligand complex de-novo, therefore full flexibility is considered

for the receptor and ligand. Additionally, AF2 has also found success in the realm of

predicting peptide structure [210] and protein disordered regions [211]. Integrating

AF2 into pepStream would allow the structure prediction and docking phases to be

merged together as the docked complex could be directly predicted.

Ultimately, AF2-multimer has several drawbacks that make it also unsuitable for

pepStream. Firstly, the prediction process is slow because of the MSA constructing

phase, which is a major bottleneck of AF2 prediction time. Although there are

some options to mitigate this, including using pre-computed MSAs or alternative
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implementations such as colabfold [212], these options are not available on the UNCC

HPC.

Secondly, while testing an implementation of pepStream that uses AF2, a strong

bias was observed for predicting peptides to bind at the primary active site of the

beta-lactamase. While this would be a positive result for protein-protein interactions

in general, in pepStream, where synthetic peptides are designed to bind anywhere on

the protein, including non-canonical binding sites on the receptor, this may cause the

model to improperly predict where protein-peptide contacts are occurring. As further

evidence of this, pLDDT, a measure of prediction confidence in AF2, for the TEM-1

chain was high, while for the peptide it was almost always low. This suggests that in

most cases, AF2 did not know where to place the peptide relative to TEM-1.

Despite being essentially a black box model, AF2 relies on MSAs to predict a

protein structure. [5] A neural network module called an evoformer transforms the

MSA for each chain into a pair-wise distance constraint matrices, which are handed

off to a structure module to predict the 3D structures. Co-evolution and conserved

residues in the MSAs are used to predict where protein-protein contacts will occur

and how the chains are oriented.

AF2 only uses sequence information as an input, and as a result, the model does not

use physics information to inform how a polypeptide chain is structured. Instead, it

learns how sequence information is encoded into an MSA and used learned correlations

between residues to predict distance constraints. This approach leverages the massive

protein databases that have been established over many years. [213, 214] While an

MSA can be thought of as an indirect view of the biophysics associated with sequence

dynamics, the capacity for AF2 to predict proteins structures is limited by the MSA.

Notably, it has been observed that AF2 does not perform well on orphan proteins,

which exhibit limited homology and produce shallow MSAs. [215]

These observations could be used to extrapolate an understanding of why AF2-
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multimer is unable to predict correct binding poses for peptides generated in pep-

Stream. Highly conserved residues are hallmarks of protein active sites, where a

protein interacts with ligands, to ensure that the proteins function is conserved. [216]

It is possible that AF2-multimer has rediscovered this rule through its training, and

attempts to align the most conserved sites of each chain in 3D space.

In the case of two well-defined globular proteins with strong homologies and func-

tional interactions, this assumption is valid. However, if a protein with strong homol-

ogy and a synthetic peptide with a little to no homology were to be predicted, as is the

case with beta-lactamase and peptides generated by pepStream, AF2-multimer would

only be able to find conserved residues for the protein. By its own rules, the model

would try and place the peptides near these conserved protein residues. This would

explain what was observed when AF2-multimer was tested on pepStream datasets.

While this drawback exists in the current model, it could be overcome in future

versions of the model by incorporating a more curated training set for proteins and

peptides with shallow MSAs, and optimizing hardware to speed up predictions. For

these reasons, AF2-multimer is an attractive, yet as of now unsuitable, alternative

for pepStream.

Finally, a potential improvement for mitigating the sequence length dependence

of MEGADOCK scores is described here. Figure 5.10 demonstrates the dependence

of the MEGADOCK scoring function on sequence length for global docking. In the

updated implementation of pepStream, the solution was to reorganize the docking

phase of the pipeline to remove global docking altogether. Despite this, a low level

of correlation can still exist in the restrained docking scores. As a proposed future

improvement to pepStream, this correlation can be corrected by applying the proper

transformation to the raw docking scores.

Several methods were explored to normalize MEGADOCK scores so as to minimize

the correlation between MEGADOCK score and peptide sequence length. Initially, a
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simple attempt was to directly normalize the scores by dividing by the length of the

peptide sequence, shown in Equation 5.2.

SCOREnorm(peptide) =
SCOREraw(peptide)

length(peptide)
(5.2)

This approach resulted in a strong negative correlation between MEGADOCK scores

and sequence length, suggesting that a weaker adjustment was required. An empirical

approach was designed to find the optimal value for a parameterN , by sweeping over a

range of values to find to one that minimizes correlation between scores and sequence

length. The resulting normalisation scheme is given by Equation 5.3.

SCOREnorm(peptide) =
SCOREraw(peptide)

length(peptide)(1/N)
(5.3)

N is allowed to go from 0.0 to 100, excluding 0.0 for stability, to test powers ranging

from infinity to 0.01. Figure 5.10 shows the correlation curve as a function of N , as

well as the MEGADOCK scores before and after transformation. The longest peptides

were the strongest affected. Before permanent implementation into pepStream, it will

be important to benchmark this parameter N across several datasets to understand

how normalization impacts the overall predictions of pepStream, or to see if any

heuristic exists for choosing the value of N .

5.6 Conclusion

In this chapter a significant update to the practical implementation and method-

ology of the peptide design pipeline, pepStream, is described. These improvements

include consolidating the pipeline into a single SLURM script with a user-friendly in-

put parameter file interface, incorporating modern structure prediction and docking

programs to increase the speed of the pipeline, devising a new scheme for running

pepStream, and various other minor technical improvements.
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Figure 5.10: Docking scores vs sequence length from MEGADOCK before and after
transformation by the optimal N value to reduce correlations. a) correlation as a
function of the N value. b) docking scores before transformation. c) docking scores
after optimal transformation.

The latest version of pepStream was applied to predicting novel peptide binders

for beta-lactamase with the goal of finding a new generation of peptide-based beta-

lactamase inhibitors, which operate by targeting regions on the enzyme which exhibit

functional dynamics required for substrate recognition. The results show that pep-

Stream was able to identify peptides that would bind at various region with speci-

ficity, however the specific properties that underlie their binding were unable to be

determined. These results serve as an important benchmark for understanding how

pepStream can be further improved in future work.

Among the four regions targeted in this study, which exhibit functional motions,

the H3-H4 loop showed notably high affinity for protein-peptide interactions. This

suggests that the H3-H4 loop might be a promising potential target for the future

design of peptide beta-lactamase inhibitors.

The results presented contribute to understanding how pepStream performs in

practice, especially on well ordered globular proteins. From this, two directions of

future work for pepStream have been identified: improving the sequence search in

order to generate higher quality peptides and improving the docking procedures to

incorporate flexibility and unbiased scoring metrics for protein-peptide complexes.
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This work will surely lead to a faster and more accurate pepStream, which will be a

great aid in the search for novel peptide drugs.



CHAPTER 6: CONCLUSIONS

Throughout this dissertation, the function of beta-lactamase has been probed

through the lens of protein dynamics. Here, beta-lactamase function refers to the

differences in catalytic efficiency of different enzymes for various antibiotics. Just as

these functional differences are subtle between enzymes, the mechanisms controlling

them are also subtle, and elucidating such changes represents an important challenge

in biophysics and bioinformatics.

Experiments can provide much information about differences in beta-lactamase

efficiency toward different antibiotic drugs. However, this information often demon-

strates that differences exist, but does not provide mechanistic details about how

these changes in function arise. Computational approaches can be leveraged to better

understand the details of how protein function occurs. Molecular Dynamics simula-

tions provide atomistic details about molecular systems that can be used to probe

the detailed motions of proteins. Through MD, phenomena in protein systems like

conformational change, dynamic allostery, and molecular docking can be directly ob-

served.

Many methods designed for interpreting dynamics in MD simulations focus on the

largest motions of the system, as previously it has been assumed that these were the

most important. However, function can also be controlled by small-scale changes to

protein conformations, through mechanisms that can be difficult to elucidate from the

background noise of the simulation. As part of this dissertation, novel approaches to

identifying the functional dynamics in proteins were developed and tested on beta-

lactamase to elucidate the dynamic changes in the enzyme that control substrate

recognition and binding.
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Changes in the motion of beta-lactamase were observed to correlate to its substrate

recognition properties. It is possible that modulating these motions can also modulate

the binding specificity of the enzyme. This suggests the possibility of a novel form of

beta-lactamase inhibition, where inhibitors target regions of the enzyme that couple

to functional dynamics, rather than directly targeting the catalytic Ser70.

Methods of designing peptides which are capable of binding specifically with these

regions were tested. The approach used a pipeline called pepStream, which was

designed to predict peptide binders for disordered regions on proteins. In the work

presented here, several modifications to pepStream were proposed and implemented,

and peptide binders for four different MoRFs on beta-lactamase were predicted.

6.1 Summary Of Results

Functional dynamics in beta-lactamase exist in the form of small-scale motion and

local conformational changes. Mutations to the enzyme imparts flexibility into loops

which border the active site, which in turn allows the enzyme to accommodate differ-

ent types of ligands in the pocket. These changes were expressed as unique dynamic

signatures induced in beta-lactamase enzymes according to the specific combination

of mutations and antibiotic ligand present.

In particular, changes in motions to the omega and H10-H11 loop were observed to

be correlated with changing substrate specificity. The H10-H11 loop was particularly

dynamic, which suggested that the increased flexibility allowed it to adopt different

conformations, which in turn allows the loop to help stabilize antibiotic molecules

during hydrolysis.

Another loop between helix 9 and helix 10 was also noted to exhibit dynamic

changes resulting from both mutation and antibiotic binding. Previously, this loop

was not known to directly impact the catalytic function of the enzyme, as it is on

the opposite side of the protein from the active site. Based on these observations, the

H9-H10 loop is proposed to be involved in a general mechanism aimed at maintaining
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the stability of beta-lactamase when changes are induced elsewhere on the enzyme,

which directly change substrate specificity.

The long range effects of changes in motion impacting the binding affinity of beta-

lactamase for different antibiotics is an example of dynamic allostery. Allostery is a

powerful mechanism which exploits the cooperativity of motions in proteins. Using

a method for identifying dynamic allostery signals in proteins, hot spots of dynamic

allostery were identified on beta-lactamase. In addition to verifying a known allosteric

signal around helix 11, the H3-H4 loop was also found to have a strong allosteric signal

coupling a rigidification of motion in this loop with binding efficacy in the active site.

The various dynamic signatures in beta-lactamase identified through this work

demonstrate the importance of protein dynamics in controlling beta-lactamase ac-

tivity. To test whether antibiotic resistance could be identified solely using these

motions, the likelihood that enzymes would express an expanded substrate recogni-

tion for extended spectrum antibiotics was predicted. This likelihood was found using

a classifier trained on MD simulations of proteins which do and do not bind well to

third generation cephalosporins. It was found that the classifier could correctly rank

enzymes in terms of likelihood not to bind based on apo simulations alone.

Finally a proof of concept for designing peptides to inhibit beta-lactamase at re-

gions correlated to functional dynamics was demonstrated. Using a modified pep-

Stream, peptides which bound to the H3-H4, omega, H9-H10, and H10-H11 loops

were generated. These peptides showed both high affinity and specificity for binding

with the specific region of beta-lactamase they were designed to bind with. Although

the properties that imparted the peptides with specificity for different regions of

beta-lactamase could not be identified, this first step in the design of a new class

of beta-lactamase inhibitors represents a step forward for both combating antibiotic

resistance in beta-lactamase and the rational design of peptide drugs.
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6.2 Discussion and Impact

The nature of functional dynamics in beta-lactamase would not have been able to

be discerned without the methodological advancement of SPLOC. Unlike other MD

analysis techniques, SPLOC does not rely on assumptions to elucidate changes in mo-

tions, rather it uses a supervised comparison to learn a data-driven hypothesis, which

is described by discriminating features called d-modes. By comparing simulations us-

ing emergent properties of data packets, rather than a conformation-by-conformation

comparison approach, SPLOC is able to identify statistically significant changes in

motion between enzymes, even when the two enzymes share the majority of their

conformational spaces.

The dynamic signatures underlying substrate recognition reveals the complexity of

beta-lactamase function. Enzyme specificity is dictated by its specific mutation com-

bination through the introduction of flexibility around the binding pocket. When the

right antibiotic is present, this flexibility is used to adjust the enzymes conformation

in local regions to optimize the interaction.

The ability to classify antibiotic resistance phenotype based on the motions sam-

pled in an apo enzyme is remarkable, and highlights the potential applications of

functional dynamics. The classification scheme here is currently intractable for real-

time antibiotic resistance detection, however, the capacity for MD is becoming more

accessible due to better hardware and machine learning-based forcefields. In the fu-

ture, a scheme similar to what was presented here could be implemented on a larger

scale to predict antibiotic resistance to commonly used beta lactam drugs. In this

scheme the classifiers can be precomputed using SPLOC, based on simulations of

known enzyme/drug pairs, and only the novel beta-lactamase would need to be sim-

ulated to make a prediction. Testing enzymes in this way can reduce the number of

experiments needed to determine what antibiotics will be needed to effectively treat

a bacterial infection.
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The different approaches used in this work were performed on beta-lactamase sys-

tems independently, and the information gleaned from one method was used only as

an insight for another. Although it is beyond the scope of this work, an integrated ap-

proach in which methods like SPLOC and pepStream are able to directly interact and

pass information to each other is feasible based on what was shown here. In this grand

computational drug discovery pipeline, drugs for inhibiting beta-lactamase could be

generated by pepStream, and optimized using SPLOC or the allostery program to

induce or inhibit specific motions in the enzymes.

This integrated approach represents a new paradigm for fighting antibiotic resis-

tance. The computations tools described in this work form the basis of this paradigm,

where the connection between protein dynamics and protein function can be fully ex-

ploited to produce novel drugs.
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