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ABSTRACT

MEHRDAD BIGLARBEGIAN. High Frequency GaN Power Converters Digital
Twin. (Under the direction of DR. BABAK PARKHIDEH)

There is a need for a foundation of a research study aimed at investigations on near

real-time reliability awareness of Gallium Nitride devices in high-frequency power con-

verters for which we need advanced hardware and algorithms. This dissertation is

moving beyond traditional reliability analysis and looking to more applicable and ac-

curate analytical tools by introducing deep learning techniques and advanced sensing

solutions. The computational structures will be applied at the edge of the power

converter through online sensing and data processing units as well as on a remote

server. They will provide an iterative ability to predict the time until the device may

fail or reach a pre-defined degradation threshold.

With the availability of the most granular information deduced from advanced

devices, a new data-driven scheme is proposed for system monitoring and possible

lifetime extension Gallium Nitride power converters. The approach relies on the real-

time Rds(on) data extraction from the power converter, and calibration of an adaptive

model using multi-physics co-simulations under power cycling. More specifically, the

focus is on deploying machine learning algorithms to exploit for the parameter esti-

mation in power electronics engineering reliability. The proposed techniques in this

work are quite new and have not yet been developed and analyzed for high-frequency

power converters specifically with Gallium Nitride power semiconductor devices.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Over the years, many solutions have been proposed to convert the primary source

of energy to the electricity. Despite all the novel techniques to improve the quality

and the conversion efficiency, more than 40% of the primary energy got lost [1]. Power

electronics systems can provide effective solutions due their reliable, efficient, smaller

footprint and weight in the wide range of applications as high voltage direct current,

motor drives, distributed energy sources, solid-state transformers, transportation sys-

tems, data centers, and etc. Due to significant progress of consumer electronics in

recent years, it is expected by 2030, the power electronics will be used in 80% of

applications somewhere from generation to end-users [2].

Having advanced Wide Band-gap (WBG) technologies such as Silicon Carbide

(SiC), Gallium Arsenide (GaAs), Aluminum Nitride (AlN), Boron Nitride (BN), and

Gallium Nitride (GaN) are crucial to meet the progressive trends in future. For the

power applications (< 650V ), GaN semiconductor is a promising solution for many

due to their superior performance regarding conduction loss, switching loss, thermal

resistance. Although GaN devices theoretically are more reliable compared to the

existing Si-based technologies, however, lack of available data sets do not exist to

guarantee their reliable service over the time. Lack of this information will signifi-

cantly impact maintenance scheduling for large companies and utilities.

This dissertation focuses on the challenges on the reliability of GaN power devices,

and explicitly proposes a new cost-effective framework online reliability assessment of

high-frequency GaN power converters.
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1.2 Literature review

In today’s world, for practical implementation and proper functionality of switch-

ing power supplies, several main performance factors are considered: efficiency, size,

cost, and the reliability. The advancement material, digital processors, and power

semiconductors provide new opportunity to reach beyond the former limits quickly.

Depending on the usage, some of these factors could be highlighted more than the

others; however, due to the dependability of many applications to switching power

converters, these days we need to improve all these factors (Fig. 1.1) at the same

time. The dependability in power electronics converters makes the reliability very

critical from component level manufacturing to system level engineering.

Inverter

Inverter

CostEfficiency

Reliability Weight

Figure 1.1: Conceptual matrix: The four major parameters for advanced power
electronics converter designs.

Many studies have been dedicated to analyzing the reliability of power electronics

systems under electrical loading, environmental conditions, and mechanical stresses

over the years. In one of the most comprehensive survey-based studies over 200

products of 80 companies, solder and semiconductors are responsible for 34% of the

failure, capacitors 30%, Printed Circuit Board (PCB) for 26%, and the rest goes to

connectors and different facts [3, 4]. Therefore, many reliability analysis dedicated

to power semiconductors and capacitors. Many researchers spend significant time to
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study capacitor failures. The outcome is that a capacitor is among the weakest link,

which degrades quite fast over thermal and electrical stresses. In digitally controlled-

power converters, the failure diagnostic in capacitors are relatively straightforward.

The ripple current/voltage variations, changes of equivalent series resistance, and

capacitance are the most common techniques for diagnostics of failure in capacitors

[5, 6].

In power semiconductor modules duo to significant higher stress on power semicon-

ductor modules and continuous progress of devices, vast studies carried out and still

the research is continuing. For instance, in Si-based power modules such as Metal

Oxide Semiconductor Field Effect Transistor (MOSFET) and Insulated Gate Bipolar

Transistor (IGBT), the failure mechanisms are categorized into two groups as extrin-

sic and intrinsic failures. The extrinsic failures include the transistor packaging issues

that are mainly summarized as a bond-wire lift, die solder detachment, and contact

migration [7, 8]. The intrinsic refers to failure damages coming from the semicon-

ductor itself. Most common failures of intrinsic types are the dielectric breakdown,

time-dependent dielectric breakdown, electromigration [9, 10, 11, 12].

In recent years, thanks to the development and growth of WBG devices, efficient,

lighter, and reliable power converter will be promised to the industry. The WBG

materials have much higher energy band-gap compared to Si, which enables a new

path for operating at higher temperature and power.

Although technically the WBG-based power converter should be more reliable due

to their higher activation of energy, practically due to continuous improvement of

cost-effective device packaging, the reliable operation of these compound semicon-

ductors is unknown. There are some research papers and industrial reports dealing

with the reliability analysis of Si devices and recently SiC devices, whereas there

are few reports on GaN power devices. Recent studies focus on single device perfor-

mance in DC operation for power and thermal cycling like most reliability study. The
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Weibull distribution has historically been the best tool for describing the reliability

engineers in probability prediction of failures over time. While this technique is very

accurate at describing failure distributions for large populations of components, it

works very poorly at predicting the time until failure of an individual component Fig.

1.2. Moreover, the proposed techniques are very expensive (time, and cost), and their

adaptability for the new technologies should be examined fundamentally. Therefore,

there is a need to rethink about the reliability platform establishing for failure pattern

recognition.
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Figure 1.2: Conventional reliability modeling: Accelerated life tests of hundreds
of hours are developed for extracting the mathematical modeling of device failure.

1.3 Proposed solution

In this dissertation, the goal is to characterize and recognize the component-wise

pattern variations through the actual measurement of the GaN power devices in a

power converter. Therefore, a new concept of reliability analysis is proposed, and the
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main contributions are presented as follows:

a) Data collection for fault diagnostic and risk analysis through the state of the

high-frequency current solutions. This part mainly focuses on gathering data related

to the failure mechanism of the devices to run advanced learning methods.

b) From the available data, the advanced learning methods should be processed to

be able to extract the proper information to be able to analyze the power converter

reliable, safe and healthy operation shown in Fig. 1.3. In this framework, the machine

learning technique will be used to be able to find the correlations between unknown

physical and mathematical equations.

c) Proposing mathematical modeling from the existing technologies of GaN devices

used in power converter, and calibrating them for advanced learning.

The behavior of the device during normal operation and the degradation region

will be analyzed. The features associated with the failure will be extracted using

Recurrent Neural Network (RNN) method, and the faulty device will be recognized.

Once the healthy pattern versus defective device got identified as the base of training

the data, the new data sets will be predicted with the actual measurement of the

device. In general, the process could be analyzed either through edge computation

in the microprocessor as cloud computations where the cloud servers are located for

the captured data. In this thesis the cloud server computation was used for easier

implementation; however, the possibility of edge computation was also examined.

As it mentioned above, most of the commonly applied techniques relied on the

Accelerated Life Test (ALT) of the actual device as Device Under Test (DUT) to

apply harsh testing and be able to find the suitable regions of the devices through

the Physics of Failure (PoF). In our proposed method, the Finite Element Analysis

(FEA) will be used, and the ALT will be implemented in the simulation platform.

As we expect the simulation modeling might not be accurate in the beginning state

due to lack of the previous model of a device or converter, the active calibration
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Figure 1.3: General proposed reliability solution: The proposed framework of
Internet of Things reliability analysis using edge/cloud computations for an advanced
power electronics converter.

method will be used to reduce the computation error over the time through the actual

measurements. This eventually leads to finding cheaper, and adaptable solution as

more data will be collected, and the simulation could be calibrated over the time.

1.4 Thesis contributions

The thesis chapters are described as follows: Chapter 2 describes the failure mech-

anism affecting enhancement mode GaN power devices. Chapter 3 focuses on the

fault diagnostic and the proposed solution for the active prognostics including the

test benches. This chapter presents the architecture of the system as power electron-

ics point of view. In Chapter 4, the concept of Deep Learning Reliability Awareness

of Converters at the Edge (Deep RACE) is developed. Chapter 5 focuses on the
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system integration through edge computation following with the experimental results

in Chapter 6. Chapter 7 discusses a new current measurement technique for active

Rds(on) measurements followed with the experimental results along with the conclu-

sion and future work in Chapter 8. The thesis organization is also shown in Fig.

1.4.

Introduction

Failure Mechanism in GaN Power Devices

Online Prognostic in Switching Power Converters

GaN Power Converter-Digital Twin

Deep Learning for Online Reliability Assessment

Smart Current Monitoring in Power GaN

Experimental Results and Analysis

Conclusion

Figure 1.4: Thesis framework: The main contributions of this work are provided
in eight chapters.



CHAPTER 2: FAILURE MECHANISM OF GaN TRANSISTORS IN POWER

APPLICATIONS

2.1 Characteristics and structure of GaN transistors

The invention of the High-electron-mobility transistor (HEMT) and using a chan-

nel instead of a doped region, which results in the generation of GaN transistors goes

to back to 1970s. However, they have not been widely used due to technology matu-

ration, and significantly lower cost of Si-based transistors. After 2000, using depletion

mode GaN devices in RF application got more popular, where fabrication of different

crystals such as SiC and AlGaN have been implemented [13, 14]. Nowadays, the gen-

eral road map of using GaN will be categorized as: GaN on Si (for high power low cost

applications) [15, 16], GaN on SiC (high performance, high cost for RF applications)

[17], GaN on Diamond (for higher thermal conductivity applications) [18], GaN on

GaN (Integrated IC, vertical GaN for future applications) [19]. It is expected by 2024

the GaN power market has annual growth more than 28% [20].

The common structure of GaN power devices is built in lateral architecture, which

results in lower parasitic capacitance. Moreover, this architecture makes the main

conduction path shorter, which results in lower Rds(on). In today’s technology, the Si

wafer is considered for the substrate to reduce the cost of manufacturing. GaN crystals

are grown on the buffer layer (typically AlN) on the top of the substrate, followed by

AlGaN to form an ohmic contact. The piezoelectric effect as a main source of GaN

conductivity, the high concentration of electrons will be accumulated between AlGaN

and GaN layer, and typically referred to as Two-Dimensional Electron Gas (2DEG).

In enhancement mode GaN devices, a dielectric layer is considered underneath of the

gate metal to make the normally-off transistors shown in Fig. 2.1.
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Figure 2.1: Lateral GaN structure: The cross section of an enhancement GaN.

The lateral GaN structure has some benefits like relatively easy fabrication, lower

conduction loss, and inexpensive solution. However, relatively low breakdown voltage,

and the current collapse issue (due to high current flow near the surface) are the main

drawbacks of this architecture [21]. After processing the waver, in order to make

electrical connection to the outside, unlike many conventional methods for bond wire

attachment, direct soldering of contacts to the wavers are used in state-of-the-art

solutions of lead manufacturers [13, 16].

In general, higher energy band gap results in higher voltage breakdown, and lower

ohmic resistance, which GaN shows promising performance on this side. Theoreti-

cally, GaN transistors should have a longer lifetime than Si devices because of their

significantly higher activation energy (>2.0 e.V compared to 0.7 e.V for Si). However,

engineers based on their requirements might come up with an individual converter de-

sign. These design might also have significant differences concerning topology, power

rating, efficiency, performance, and implementation.

Today’s manufacturers focused on two types of GaN power modules as enhancement

and Cascode GaN devices. The enhancement mode GaN was known as normally

OFF devices, and Cascode built as the combination of depletion mode GaN in series

with Si-MOSFET. The Cascode architecture was proposed by different manufacturers

(Transphorm, Sharp and TI), where in addition to depletion mode GaN a normally

OFF Si-MOSFET is offered to make it feasible in many common designs. The gate

circuit design of the MOSFET can control the ON/OFF state of the GaN since the
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MOSFET with higher absolute voltage compared to GaN threshold voltage. This

topology has two side effects: As the gate circuit of the MOSFETs operates at a

higher voltage level compared to the GaN, and consequently has a higher loss in

the circuit. Moreover, the series MOSFETs will add additional resistance on the

conduction path and reverse recovery charge of the body diode. On the other side,

enhancement mode GaN give an opportunity to make the device normally OFF when

the applied gate voltage compared to the source is zero. However, the effect of reverse

conduction due to its inherent physics of the GaN semiconductors, they can fully turn

on in the third quadrant. Lack of Si-body diode in the GaN devices might result in

a higher loss during transients in Switch Mode Power Supplies (SMPS), which needs

careful adjustment of dead-times. Moreover, a lower threshold of the voltage in the

enhancement mode GaN offers lower loss in the gate driver circuits, but it makes

the design very challenging because of overshoot and cross-talk considerations in the

layout. All in all, simple packaging and no reverse recovery charge issue coming from

the body diode, potentially much lower on-resistance gives a lot of interest for the

manufacturer and designers to invest in this technology.

Due to relatively new evolved technology in the last years, and different manu-

facturing processes for GaN modules, a need for comprehensive reliability analysis

would be crucial. This will be very helpful for designers who need transitions to this

technology. Even for Si-based devices where their reliability have been examined,

and standards test setup have been verified for several decades, there is no specific

methodology to show the performance and characterization of power devices under

converter operation, which might be varied from one to another design.

2.2 Failure mechanism in power semiconductors

2.2.1 Challenges for reliability evaluation in GaN power devices

Theoretically, GaN power transistors should have a longer lifetime than Si-devices

because of their higher activation energy. However, due to some manufacturing lim-
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itation, this might not have been shown in any product yet. For instance, to reduce

the cost of the GaN devices, many of lead manufacturers fabricate GaN on the Si-

substrate, where GaN and Si inherently have crystal mismatching. High-temperature

methods have characterized most common ALT analysis for Si-based semiconductors

and the failure mechanisms. For instance, Arrhenius exponential law as one of the

most common techniques for the reliability assessment in Si-based semiconductors,

the variation of activation energy results in the higher error for extrapolation to the

real test conditions. Therefore, there are some severe constraints to comment on

the accuracy of the conventional methodologies for failure mechanism extraction and

remaining useful life estimation [22, 23].

Table 2.1: Summary of main failure mechanisms in GaN power

Failure Potential Rds(on) Vth Ig
Scottkey contact Increase Increase -

Contact degradation - - Increase
Ohmic thermal degradation Increase Abnormal changes -

Charge trapping* Increase Decrease -
Hot carrier trap generation* Increase Decrease Increase

Piezoelectric* Increase Decrease Abnormal changes

2.2.2 A review of failure mechanism in previous studies

Power cycling tests on the discrete 650V GaN devices have been performed thor-

oughly in [24, 25] under several ALT. These studies showed the variations of Idss,

Rds(on), Vth, and Tj are more dominant after the ALT, and also verified that the

solder layer is crucial in the device early degradation. Using Rds(on) as a precursor

for earlier failure of GaN devices was considered under ALT, and Extended Kalman

Filter estimator was developed for device failure propagation and threshold identifi-

cation in [26]. However, all of these methods have been analyzed under DC input

supplies, where the results might vary under real switching converter operation, and

need further evaluations.
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Figure 2.2: Lateral GaN structure: The most susceptible regions in GaN device.

Furthermore, the focus is on finding the root of failure in GaN devices, by using

similar semiconductors as Si-power semiconductors and GaAs in RF applications.

The failure mechanism in Si-modules is categorized into two main groups as intrinsic

and extrinsic. Intrinsic refers to failure damages coming from the semiconductors

failures; however, the latter one includes the transistor packaging issues. Most com-

mon failures of intrinsic types are the dielectric breakdown, time-dependent dielectric

breakdown, electromigration. For extrinsic, bond-wire lift failure, die solder degrada-

tion are reported in the previous literature [7, 8, 27, 28, 29, 30]. These studies verified

the bond-wire lift has the severe effect on the device failure over time. However, be-

cause of the significant progress of developing new packages, such as LGA or GaN-PX,

the conventional bond-wire issues cannot be easily found as the common failure in

the modern GaN devices [31, 32]. Some studies by focusing on the similarity of the

crystal structure of GaAs, and considering the similar substrate characteristics of Si-

based semiconductors derived the potential failure in GaN modules [33, 34, 35, 36].

The most common potential failure of lateral GaN power devices is shown in Fig. 2.2

and precursor identifications are summarized in Table 2.1.



CHAPTER 3: ONLINE PROGNOSTIC IN SWITCHING POWER CONVERTERS

3.1 Introduction

Controllable power semiconductor devices play the most dominant role in the

switching power converters. Operating at high current and voltage create extreme

stress on the power devices, which meanwhile make them the most susceptible com-

ponents in the converters. Therefore, reliable operation of the power converters will

be more highlighted in emerging technologies and future applications.

To address the reliability issues of a complex system in the design, fabrication, and

maintenance process, different diagnostic and prognostics techniques are proposed.

The evaluation of these processes is beneficiary to enable health management systems

for useful life estimation and reducing the risk of failures [37, 38, 39]. However, the

applied techniques (i.e., such as Kalman filter and Bayesian calibration) used classical

first-order models; therefore their accuracies are limited and cannot be adaptive to

long-term changes. Moreover, in advanced power electronics, it is hard to understand

the degradation physics due to the system’s sophistication, which makes then model

them accurately in mathematical formats [40, 41, 42].

Recent advances in machine learning open a new horizon toward smart and au-

tonomous systems. Applying machine learning at the earliest stage of design pro-

cedure has the most significant effect on the reliability pattern modeling. With the

new wave of the Internet of Things (IoT), there is a big chance to be connected to

any devices [43, 44]. In particular, the much higher impact could be in the power

electronics as many factors are unknown, or it is tough to model in classical fashion.

A real-time, low latency decision making and scalable systems require to move the

computation of prediction from the cloud to the network nodes.
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This section presents a transformative approach for power semiconductor devices

reliability to streamline the integration of devices into the smart power electronics

systems. Therefore, an integrated framework is proposed based on cloud-edge plat-

form, where training happens in the cloud and inference at the edge next to the power

devices. In this regard, the recent advances of Recurrent Neural Networks (RNN) in

deep learning is used to capture the behavior over time in complex systems. While

training can be done off-line, interference will be operated at the edge (on-line) pro-

viding real-time feedback of the reliability modeling as well as active control and

decision making for device proliferate.

3.2 Online reliability analysis GaN devices

The GaN power semiconductor is a promising solution to improve the efficiency

and the performance of future power converters [45, 46]. Despite the superior char-

acteristics of GaN devices, they are often turned down due to limited information on

reliability in many applications. Diagnostics/prognostics approaches enable a pos-

sibility of solving reliability issues in complex systems from design to operation for

remaining useful life estimation, and mitigation of failure risks. The studies on relia-

bility assessment and system monitoring have focused on component level reliability,

damage accumulation, data analytic and condition-based predictions [12, 40]. Com-

ponent failure approaches rely on the statistical model derived from obtained data

in a laboratory environment and/or historical component usage [11]. These methods

are not considered prognostics since they do not take into account the unit-to-unit

difference and their specific usage history. The damage accumulation methods offer

more accurate tendency, but they need empirical verification and experimental obser-

vations. Data analytic and condition-based monitoring focus on big-data extraction,

and estimation with the past usage history data provided by ALT. Several methods

are proposed for mean-life estimates like six sigma, fault tree analysis, state space,

and filtering estimations [41, 47].
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Figure 3.1: Conventional reliability solution: #N samples of devices with #M
conditions have been analyzed experimentally under accelerated life tests to find the
reliability model. Adaptability with the new technologies and the experimental costs
are their main drawbacks.

Furthermore, a newly developed PoF analysis is presented to identify the failure

root mechanism and drive the reliability models quantitatively. Theoretically speak-

ing, it is possible to make life predictions based on these methods; however, the

performance is likely going to be poor when compared to the actual failure time

observed. This occurs because no knowledge of the actual component is used, and

all the applied techniques considered the constant failure rates in components and

system levels [11, 48]. Most of the developed approaches relied on stress on the de-
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vices under power/thermal cycling with the experimental observations shown in Fig.

3.1. In the active monitoring technique, based on the available data from the sys-

tem, a predictive online model for the converter operation can be derived. Having

the limited knowledge of the existing state or the system status, the adaptive model

can predict the system characteristics within the next time horizons shown in Fig.

3.2. The combination of failure diagnostics (model derivation) and self-verification

techniques (deep learning analysis) can be evolved as a new generation of physics-

based diagnostic/prognostic scheme to develop an adaptive model for a system level

reliability.

Failure Diagnostic Region 

Failure Threshold

Time

RDS_ON
Prognostic-Diagnostic Region

Traditional ALT

: Knee points (kknee)* 

* 

Confidence Interval Region 

Horizon Time Prediction

Figure 3.2: Proposed solution: Adaptive prognostics concept using multi-physics
co-simulations and machine learning algorithm with advanced monitoring.

This work presents a hybrid condition-based prediction where the ALT will be

run in multi-physics simulations. Based on the simulated reliability model, a new

RNN machine learning scheme is proposed for the system prognostics. Here, the

component selection for the reliability analysis and modeling of solder fatigue in

the power converter is described. This section also proposes the methodology for

health conditioning system, which focuses on machine learning method for parameter

estimations of the system calibration.
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3.3 GaN Power Converter-Digital Twin

3.3.1 Thermomechanical susceptibility

In the existing lateral enhancement mode GaN products, GaN is grown on the Si-

substrate. Due to inherent mismatching of stacked materials, the different Coefficient

of Thermal Expansion (CTE) of the mounted GaN onto the PCB causes generation of

cracks. The GaN power device is subject to the high power, which makes the thermo-

mechanical stress in the solder joints among the most susceptible sections. Therefore,

the crack could propagate along the solder joints and eventually it will result in per-

manent failure in the devices. The solder joint fatigue existed in Si-based devices,

but the fatigue in the compound semiconductors will be worse. Although there is no

direct correlation between crack propagation and physical parameter extraction, the

previous study showed this mechanism could have an impact on the gradual increase

of the electrical resistance [49, 50, 51].

3.3.2 Reliability framework of power converter

To comment on the reliability assessment of power converters, it is essential to have

a robust converter. Therefore, the summarized all the possible candidate of GaN

devices are provided that could be used for this study. The loss index of Rds(on)×Qg

is defined to compare the efficiency power conversion in different devices, the thermal

resistance and the reverse recovery charge also considered as shown in Table 3.2.

The various CTE of stacked layers inject stress concentrations, and they cause de-

formation of materials. The deformation mainly is observed as a crack on the solder

joints, and eventually results in permanent failure of the compound semiconductors.

The characterization of the crack propagation is very hard because of the complexity

of the device and assembling of stacked layers. Moreover, challenging on the measure-

ments of the operation of high-frequency converter makes the system modeling very

difficult. Therefore, a new framework is proposed to be able to characterize the un-
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known parameters that physically are not possible to measure them on the operating

power converter. The main contribution is to correlate the mathematical formula-

tions of the direct measurement of Rds(on) the corresponding mechanical parameters

responsible for the fatigue. The proposed framework consists of three main sections

as simulation-based ALT, online system monitoring, and the machine learning unit.

In the simulation-ALT, the energy-based fatigue of the power semiconductor under

stress-strain hysteresis is modeled. The Gerber files of the converter layout will be

imported, and the semiconductor device is shaped accordingly. Knowing the device

conduction loss, the ALT is carried out under temperature cycling with the FEA. The

simulation output provides a degradation model of the actual system. The model

calibration is needed due to lack of detailed information of mounted device onto the

PCB in the real order. The calibration will be done with the online measurements

and update the unknown parameters through machine learning units. The online

monitoring system focuses on system measurement of the main physical parameters

(e.g., voltage, current, and the temperature). The resistance of the semiconductor,

total loss, and the converter power range can be calculated based on the captured data.

The machine learning unit based on the proposed model calibrates the simulation

model according to the actual measurements shown in Fig. 3.5.

3.3.3 Energy-based fatigue failure modeling

Thermal fatigue failure due to the CTE of materials is the main failure mechanism

of the solder joint connections, especially in the compound semiconductors. The

increase in the electrical resistance during fatigue has been studied and verified in

[49, 50]. The energy-based fatigue is used by focusing on the energy accumulated in

the susceptible regions shown in Fig. 3.3. The dissipated energy occurs within the

strain-stress diagram, and the variations of resistance-strain are depicted in (3.1):

∆Rds(on) = Rds(on)(1 + 2v + a)ε (3.1)
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Figure 3.3: Mounted GaN on the PCB: Simplified model of a lateral GaN mounted
on the PCB. GaN and Silicon (substrates) are isolated with thin layer of AlGaN, and
packaging is not considered in the model.

where v is Poisson ratio, a is the resistivity of the material, and ε is the material

strain [51]. These parameters depend on the material and the operational tempera-

ture can be considered as constant values. The total mechanical strain of the solder

deformation can be given as (3.2):

εt = εe + εc + εp (3.2)

where the εe, εc, εp are elastic, creep and plastic strains respectively, and can be

calculated in (3.3):

dεs
dt

= Css[sinh(ασ)]nexp(
−Ea
kT

) (3.3)

εe = σ/E (3.4)

dεc
dt

=
dεs
dt

(1 + εtB)exp(−Bdεc
dt
t) (3.5)

The summary of the parameters and the associated values are in Table 3.1.
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Table 3.1: Stress-strain parameters for the simulation analysis

Parameter Description Value Unit
Css Constant 8× e4 1/s
α Stress level 4.6× e−4 1/psi
k Boltzmann coefficient 1.38× 10−23 m2Kg/s2K
n Stress component 4 -
Ea Activation of energy 0.7 e.V
εt Transient creep strain 0.025 -
B Transient creep coefficient 260 -
Cp Constant 1.2× e−23 -
m Constant 5.5 -
T Ambient Temperature 300 K

During solder fatigue, the plastic strain plays a major role, where the rests of the

strain changes remain almost constant [41, 52]. Knowing the material properties and

the junction temperature of the device, the parameters associated with the elastic

and creep strains will be constant:

∆Whys =

∮
Hystloop

σdε (3.6)

wherein (3.6) σ is the stress, ε is strain, and Whys is the cyclic dissipated energy

loss shown in Fig. 3.4. Knowing the changes of strain (ε) could result in changes

of on-resistance Rds(on), while the ALT runs for each iteration, a series test resistor

will be added to the model to calculate the resistance variations. It can be presumed

that the energy loss calculated in ∆Whys will potentially affect the tiny variations

on the physical measurement of the on-resistance. Since finding all the unknown

parameters associated with the loss model could be very difficult and time-consuming,

the simplified model of this is used. Since the strain changes have a linear impact in

the initial stages, the simplified model is developed as:

εt = A× (σload/σref )B (3.7)
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where A and B are the unknown parametric constants coming from the machine

learning algorithm, εt is the total strain and σload is the load stress depending on the

GaN loss generation and material properties defined in the simulation platform, and

σref is the reference stress expected from the manufacturer test plans shown in Fig.

3.6. Here, the fundamental material properties are used that has been used in the

lateral GaN devices.

Strain

Stress

Strain

Stress

Strain

Stress

Figure 3.4: The hysteresis loss: Once the nominal mean stress is less than border
mean stress (left) vs. the mean stress is higher than the border mean stress (right).
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Figure 3.5: Proposed framework for GaN power converter-Digital Twin: The
online device monitoring, and simulation-based ALT for reliability analysis. A ma-
chine learning system is developed for system calibrations and parameter estimations.

The major contribution here is to estimate the infinitesimal loss generation resulted
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from the solder fatigue of the stress and strain diagram through the simulations. In

practical application, it is tough to measure the stress-strain variations, but with

physical loss generation of the device, the loss could be speculated through the math-

ematical analysis. Knowing the properties of the material in the stacked layer of

the GaN devices, a test resistor will be placed to characterize the device resistance

variations. In this system, Darveaux fatigue modeling is used to evaluate the crack

propagation and life prediction of the solder material [52]. Based on this model, the

solder fatigue under the thermal cycle conditions tests can be simplified as (7.6):

N = k1(
∆Wave

Wref

)
k2

+ a/k3(
∆Wave

Wref

)
−k4

(3.8)

where, ∆Wave is the average dissipated energy calculated in the infinitesimal the

area of stress-strain of the solder joint under the fatigue cycles, k1 and k3 are energy

coefficients of crack initiation and propagation, and k2, k4, are energy exponents of

crack initiation and propagation respectively. The a parameter reflects the distance

of the crack, and it could potentially start from one side of solder joint [53].

Figure 3.6: Simulation of the accelerated life test: The fatigue failure mode of
the lateral GaN device is simulated through the finite element analysis.
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The variations of the electrical resistance results in the changes of the strain pro-

ductively, where the simulated results for filtered 10000 cycles are shown in Fig. 3.7.
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Figure 3.7: Simulation of strain-resistance: The resistance variations and the
strain changes are simulation based on the proposed geometry.

The strain variations resulted from Fig. 3.7 could potentially change the variation

in energy loss generated through the solder fatigue. Therefore, in each run, the stress

changes in equation 3.7 is calculated and the power loss generation in each cycle is

simulated accordingly shown in Fig. 3.8.

Finally, the simulated results for on-resistance for more than 10000 iterations under

four different scenarios with various coefficients in equation 3.7 shown in Fig. 3.9.

Since the simulation gives pure resistance changes, a normal distribution process noise

is added to the simulated results for easier training and make it more realistic to the

actual device measurement.
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Figure 3.8: Simulation of strain-resistance: The simulated energy loss generated
from the stress and strain variation of the joints in the accelerated life analysis.

Figure 3.9: Simulation result of the accelerated life test: The variations Rds(on)

under temperature cycling due to solder fatigue of GaN on Silicon.
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CHAPTER 4: DEEP LEARNING FOR ONLINE RELIABILITY ASSESSMENT

4.1 Introduction

With the significant growth of advanced high-frequency power converters, on-line

monitoring and ongoing reliability assessment of power electronic devices are incredi-

bly crucial. Existing reliability modeling approaches for power electronic devices often

use classical first-order models which limit the reliability assessment. Furthermore,

they often look at the individual devices in isolation and do not take into account the

collected data across many devices with similar underlying physic. Mathematically

formulating and precise understanding of the physical degradation in high-frequency

power converters is notoriously tricky, due to systemâs sophistication and many un-

known non-deterministic variables. To solve this problem, a wide range of stochastic

diagnostic and prognostics techniques have been proposed to address the reliability

issues of a complex system in the design, fabrication, and maintenance process. Ex-

amples are classical time series modeling and prediction techniques such as Kalman

filter and Bayesian calibration. However, these approaches are often bounded to first-

order models in isolation and are not able to bring the collective behavior of many

devices with the same underlying physic to create an accurate algorithmic construct.

Therefore, their prediction accuracy is minimal. One example of associated issues

using existing machine learning technique in the next subsection. Recent advances

in deep learning open a new horizon toward smart and autonomous systems. Deep

learning offers a data-driven paradigm to understand, model and predict the behavior

of complex systems by extracting the in-depth collective knowledge.
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4.1.1 Challenges of using machine learning algorithm (Bayesian model)

The growth pattern of Rds(on), can be modeled using an exponential fit as the

device goes through aging. The goal is to fit a model with the best set of parameters

whose behavior resemble the Rds(on) variations. In the proposed approach, unlike the

reliability-based models, a single system (subsystem) is considered. The principle

of the proposed algorithm follows Bayes theorem. The parameters are considered

as unknown random variables and express our knowledge about the parameters in

the form of probability distributions. Based on this prior knowledge and available

observations (measurements), a posterior probability of parameters can be derived.

The prior knowledge about parameters is expressed independently from observation,

and the posterior probability of parameters given a series of observations is derived

using Bayes theorem. Since it is virtually impossible to obtain the posterior in a

closed form manner, this is done through a Monte Carlo Markov Chain (MCMC)

process. Metropolis-Hastings algorithm is one form of these methods, which have

been recently used in the model calibration applications [54].

The behavior of On-resistance change has different patterns of growth that are

distinguishable by abrupt changes shown in Fig. 4.3. One specific implication of

this statement is a sharp knee shape variation in the observed data due to loading

conditions, ambient temperature or substantial device/system characteristic changes.

This can be seen as a critical point in which the device degradation pattern starts

growing at a faster rate. To find the knee, a line is regressed from the first to the last

measurement. The knee lies in the region that has the largest amount of deviation

from the regressed line. Rds(on) behavior is modeled in (4.1):

log(Rds) =


a1 × t+ b1, t < t0

a2 × (t− t0) + b2, t ≥ t0

(4.1)
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where t0 is a point in the neighborhood of the knee and a1, b1, a2 and b2 are regres-

sion parameters. In this framework, each parameter has a prior probability density

function that expresses the prior beliefs in the true parameter values. The proposed

priors are Normal (Gaussian) distributions N(µ, σ) where the means (µ) are reason-

able guesses for the parameter values based on some initial test results. The algo-

rithm estimates the posterior P (θ|D) distribution using a limited number of sampled

parameters. It starts by generating a candidate sample θc of parameters from the

parameter space with a probability p(θc) and likelihood P (D|θc). The next candidate

θc
′ is selected using a random jump from θc. The new candidate is always accepted if

it improves the ratio r = P (θc
′|D)

P (θc|D)
× P (θc

′)

P (θc)
, otherwise the candidate has a second chance

of acceptance through comparing r with a randomly generated number, 0 < α < 1.

If r > α the new candidate is accepted. Meanwhile, the old candidate is chosen as

the new candidate for the next iteration. After enough iterations (greater than 20000

as suggested by [54]) the algorithm stops, and convergence for posteriors is reached

as shown in Fig. 4.1 and Fig. 4.2, respectively.

As of the main advantages of using this method, Uncertainty is a natural outcome

of the process during the parameter extraction estimation, and learning algorithm

development, which highlighted are in Fig. 4.3.

It should be noted this method avoids the high number of damage accumulation

in comparison with conventional reliability-based prediction methods where a large

number of units are âtestedâ under same conditions, and consequently, the confidence

interval of the model is derived. Therefore, initially, a single device is considered

in both the accelerated test set up and nominal (practical) operating points of the

converter. Also, the importance of the proposed method becomes apparent when

either there are negligible changes in the fault cursor for a significant time or there is

a substantial change in the operating conditions.
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Figure 4.1: Parameter estimation: The probability density function of the poste-
rior as the unknown parameters, and verification MCMC algorithm.
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Figure 4.2: Parameter estimation: The probability density function of the poste-
rior as the unknown parameters, and verification MCMC algorithm.
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Figure 4.3: Bayesian calibration: The output results of the algorithm for pattern
recognition within the confidence interval. Red: drain-source resistance changes, blue:
the estimated resistance variation within the specific confidence level after the data
filtering and highlighted near the knee point.

4.2 Recurrent neural networks

The RNN is a branch of neural networks specialized for analyzing a sequence of

data notated by X = [x1 x2 ... xτ ] where τ is the number of input sequences.

Fig. 4.4 depicts an RNN computation node, i.e. neuron, and its unrolling version

where τ = 4. A neuron passes the information from the past to the current time by

sharing the information and updating the cell state, c; therefore, the sharing process

enables RNN to model a behavior of a time sequence. In a standard RNN cell, and

the given input X, the cell output Z = [z1 z2 ... zτ ] is computed as:

it = Wixt +Wcct−1 + bi (4.2)

ct = ζ(it) (4.3)

ot = Woct + bo (4.4)

zt = ξ(ot) (4.5)
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Figure 4.4: Recurrent Neural Networks: The schematic of standard RNN cell
and its unrolling version for four input time sequence

where ζ(·) and ξ(·) are nonlinear activation functions, Wi is input weight, Wc is the

state cell weight, Wo is the output weight, and bi, bo are biases for input and output

values, respectively. Knowing Y = [y1 y2 ... yτ ] as the referenced output, the loss

function can be defined in:

L(Z, Y ) =
τ∑
t=1

L(zt, yt) (4.6)

In (4.6), L(zt, yt) can be mean squared error of a regression function or cross-entropy

for classification purposes.

argmin
θ

L(z(θ), Y ) (4.7)

where θ is a network vector model described as: θ = [Wi Wc Wo bi bo c0]. To

extract the proper weight factors of the proposed model, Back Propagation Through

Time (BPTT) algorithm can be applied to train the RNN network [55, 56]. In the

standard RNN, one of the major issues of using BPTT is losing the sensitivity of

cells to the earliest inputs due to the chain of partial derivation. This phenomena is

known as vanishing gradient problem and eventually prevents the network reaches to

the earliest states in deep RNN [57].
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4.3 Deep Learning Reliability Awareness of Converters at the Edge

(Deep RACE)

This section presents a framework of online reliability awareness system for power

device diagnostics model and system integration for prognostic development. The

extended version of RNN is applied, called LSTM for data training, and edge compu-

tations. Then, a new architecture is proposed that leverages the benefits of advanced

power electronics converter, communication, control structure, and the cloud-edge

platform for real-time prediction. First, the work focused on how the power MOS-

FET degradation behavior was modeled using deep LSTM network. Then, the new

architecture is presented for the online system integration through the edge-cloud

computation platform.

4.3.1 Long short-term memory

To prevent the vanishing gradient, LSTM is introduced, which proposes a subset

of the cyclical node inside its cell known as “memory” [58]. An LSTM cell has three

vectorized sigmoid (σ) functions, which each individual function operates as a gate

and controls the flow of information passing through the cell — the input, output,

and forget gates. Each gate maps its input to S = {si|si ∈ [0, 1]}, where zero is a

closed gate and one means the gate is open. Moreover, the cell state (memory) is

preserved by C as a new candidate. The information of new candidates should be

stored in cell state, and introduced by c̃ shown in Fig. 4.5. Therefore, the output of

each LSTM cell is:

it = σ(Wivt + bi) (4.8)

ft = σ(Wfvt + bf ) (4.9)

ot = σ(Wovt + bo) (4.10)

c̃t = tanh(Wcvt + bc) (4.11)
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ct = ft � ct−1 + it � c̃t (4.12)

ht = ot � tanh(ct)� c̃t (4.13)

where θ = [Wi Wo Wf Wc bi bo bf bc c0] is a network model that should be

trained, and vt = [xt ht−1], � is Hadamard product. The input gates (4.8) decide

what portion of current input will be stored in cell memory and forget gate (4.9)

chooses which portion of memory should be erased. Therefore, new information

(candidate) will be mined by (4.11), and the cell memory will be updated in (4.12).

Moreover, the output gate (4.10) decides which part of cell memory should affect the

LSTM output at time t, and finally the LSTM output value is calculated in (4.13).
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Figure 4.5: A single LSTM cell: Inside of an LSTM cell consisting of three gates
and the state of the cell is preserved by variable ct.

To model the complexity of ∆Rds(on) propagation, using an individual cell is not

sufficient. Therefore, there is a need to design a deep LSTM architecture to increase

the network depth, and build up the progressive pattern recognition of sequential data

in both coarse and fine grain directions. In this real-time system, a stacked LSTM is

developed to generalize the existing pattern in power MOSFET degradation.
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4.3.2 Device model training

For the precursor of device failure degradation, we consider the trajectory resistance

of drain-source of power MOSFET during ON time (i.e., ∆Rds(on)). As ∆Rds(on) is

intrinsically a time series, we design the model using deep LSTM network, where

the training is developed by aggregating data from different devices with the same

technologies. For each network training iteration of power devices, a batch should be

created. Therefore, for predicting the next n samples of ∆Rds(on) based on provided

last input sequence (τ), batch should consist of ∆Rds(on) with the size of (τ + n). In

each batch, increasing of device vectors help to expand the network and model the

complex degradation properly that results in higher accuracy of the predicted trajec-

tory. The 3D-batch tensor configuration for training iteration is shown in Fig. 4.6.

The dimension of vector Rk
mt is characterized based on the input size shown by k,

where m is the available devices for training, and t is the sequence.

Rk
11 · · · Rk

1τ · · · Rk
1(n+τ)

Rk
2(n+τ)

...
Rk
m(n+τ)

R1
11 · · · R1

1τ · · · R1
1(n+τ)

R1
21 · · · R1

2τ · · · R1
2(n+τ)

... . . . ... . . . ...
R1
m1 · · · R1

mτ · · · R1
m(n+τ)

k = κ

k = 1

Figure 4.6: Batch tensor configuration: Three dimensional batch tensor with a
characterized vector Rk

mt.

For designing of deep LSTM network, we also need to consider two major parame-

ters known as number of hidden layers, and the number of stacked layers. The number

of hidden layer is the dimension of vectors generated in equations (4.8)-(4.13). The

vector size can be changed by altering the weight tensor shape and bias tensor shape

defined in equations (4.8)-(4.11). Increasing the hidden layer is interpreted as in-
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creasing the “memory” size of the LSTM and its capacity to learn existing complex

pattern in a signal. The stacked layer is the other parameter to increase the depth

of the LSTM network. Here, by stacking the cell up together in a way the ht of one

cell is used as an input to its adjacent top cells. Acquiring proper values for these

parameters can be done by exploring the space-based design constraints (e.g., system

accuracy, processing time, and power consumption) [59]. The architecture of stacked

LSTM with the input sequence of τ and the stacked layer size of ` is depicted in

Fig. 4.7.
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Figure 4.7: The stacked LSTM: An unrolled LSTM cell predicts the next n samples
of ∆Rds(on) based on last sensed data.
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Algorithm 1 Training the deep LSTM network
Input: Xtraining, Ytraining, Xtest, Ytest, τ,m, n, `, k, ε, eth, itmax
Output: θλ; 1 ≤ λ ≤ `, θd . Network models
1: computation_graph← LSTM(hidden_layer, `)
2: error ←∞ . Initialize the test error
3: ← 0
4: init_rand(θλ for λ in [1...`]) . Initialize LSTM network models from truncated

normal distributions
5: init_rand(θd)
6: while ( ≤ itmax) or (error ≥ eth) do
7: Xbatch, Ybatch ← generate_data(Xtraining, Ytraining, m, n, τ , k)
8: ∆Rds(on)← inference(computation_graph,Xbatch, [θλ for λ in [1...`]], θd) .

Predicted ∆Rds(on) for training
9: errortraining ← L(∆Rds(on), Ybatch)

10: [θλ for λ in [1...`]], θd ← optimizer(computation_graph, errortraining, [θλ for
λ in [1...`]], θd)

11: xtest, ytest ← generate_data(Xtest, Ytest, m, n, τ , k)
12: ∆Rds(on)← inference(computation_graph, xtest, ytest, [θk for k in [1...`]], θd) .

Predicted ∆Rds(on) for test
13: error ← L(∆Rds(on), ytest)
14: ← + 1
15: end while

Since the output vector ht ∈ [−1, 1], it is required to denormalize the deep LSTM

network output to actual system measurement. Therefore, a fully connected layer is

added to the output of stacked LSTM to map ht to the predicted ∆Rds(on) at time t

as shown in Fig. 4.8.

+××xt
Deep Stacked 

LSTM

ht

Wd

bd

zt

Figure 4.8: The proposed deep LSTM network model: A linear layer is added
to the deep stacked LSTM to map ht to on-line measured ∆R at time t.

Based on modified deep LSTM structure, the network models are described as:
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θλ = [Wλi Wλo Wλf Wλc bλi bλo bλf bλc cλ0 ], 1 ≤ λ ≤ `. In our model, k is

the index of stacked layer, and ` is the stacked layer number. In each LSTM cell,

θd = [Wd bd] will be trained by the cloud, and it will be used at edge for real-time

prediction.



CHAPTER 5: SYSTEM INTEGRATION

5.1 Introduction

This section presents the framework of the online reliability awareness system for

diagnostic modeling and prognostic development. The proposed architecture uses

advanced communication, control and power structure for reliability analysis. The

four major sections are a) power stage development, b) sensing unit, c) control system

and d) cloud computation networks.

5.1.1 Real-time edge analysis

The edge converter has its local controller equipped with an embedded SoC to

predict the power transistor degradation. The µ-controller unit is responsible for

modulating the gate signals for the power converter control, and continuous moni-

toring the voltage, current, and temperature of power converters. The captured data

also will be transferred to the cloud to perform the reliability analysis for each edge

node. The SoC runs inference section of deep LSTM and estimates the trajectory

device resistance ∆Rds(on) based on the trained network models from the cloud. The

real-time edge node computation of switching converter through Deep RACE is shown

in Fig. 5.1.

5.1.2 Data training and batch aggregation on the cloud

Despite conventional methodologies, where the reliability models were extracted

from costly accelerated life tests, we added the cloud server for real-time system

operation. The cloud stores the actual data from the switching converter and trains

them for reliability model exploration. In this context, the cloud side update edge

Deep LSTM models to increase the confidence interval of the prediction, and estimate
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the remaining useful life the devices. While the edge nodes use local computing power

to perform the prediction, it relies on the cloud for training the network and updating

the aggregated device models. To increase the confidence interval of the power devices

and the system operation, we defined ∆Rt as the predefined threshold. Once the error

of predicted device resistance ∆Rds(on) is greater than the preset threshold ∆Rt, the

network models will be automatically updated through training the network on the

cloud server.

  A/D converter

Deep learning 

Reliability 

Awareness in 

Converters at the 

Edge

(Deep RACE)

PWM Generator

Control Signals

Digitization

100kHz

Controller Unit

Advanced

Reliability 

Enhancement

Control

Reliability and Prognostic

12.5MHz Sampling

Real System Measurement and Prediction

Sensing Unit

(∆R)

Figure 5.1: The edge node diagram: It consists of a µ-controller and AI SoC to
generate gate signals and predict the trajectory resistance of power transistor.

5.2 Architecture for real-time system monitoring

5.2.1 Proposed physics of failure-statistics model using cloud computations

To enable an active diagnostic/prognostic reliability awareness system, a new base-

line architecture for investigation and predictive model development is proposed as

shown in Fig. 5.2. This architecture utilizes the most advanced communication, con-

trol, and power structures to address the system robust operation with IoT approach.

The overall system is categorized into four major sections as a) power stage, b) sensing

elements, c) control units, d) cloud networks. In the power stage, the most advanced

power electronics converter without any compromising on the system performance

will be designed and operated under nominal conditions. The power converter can be



40

tested under different ambient temperature or humidity for robustness evaluations.

The second stage consists of accurate high current and voltage sensors to capture

characterization and enable a proper Data Acquisition System (DAS) for converter

monitoring under switching. In the controller unit, all the digitization process of the

measurement signals and transferring the signal to the cloud, as well as an advanced

analogue/digital controller will be performed. This section is a local controller of

the converter, which can effectively implement the predictive models defined in the

other layers. Lastly, the cloud network, which consists of multi-processors to run

the complex parallel computations for model derivation with the multi-physics co-

simulations, as well as the deep learning algorithm for parameter calibrations. This

section potentially is a data storage area, which is available for data processing, and

advanced algorithm development.

5.2.2 Hardware system setup

To verify the analysis, a buck converter consists of four GaN modules (GS66516B)

is designed in a parallel configuration. The power stage schematic of the synchronous

buck converter is shown in Fig. 5.3. Considering all the precautions for optimized

gate loop path, reducing magnetic interface, and thermal management, the prototype

was built on a four-layer PCB. The inner layers board were utilized to conduct the

switching node current, which also increases the surface to dissipate the heat genera-

tion. The input signals for the gate driver generated from the micro-controller. The

+9V isolated power supplies for the gate drivers were clamped with a Zener diode at

+5.6V to make sure the devices are fully ON in the saturated region, but still lower

than the absolute borderline for gate signals (+7V) recommended by the manufac-

turer. The more detailed analysis of this design can be found in [60], and the main

components used for the prototype design are provided in Table 5.1.
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Figure 5.2: New IoT approach for reliability assessment: DAS for characteri-
zation of power converters, and multi-process computation on cloud networks. The
proposed infrastructure architecture provides feasibility of data-processing techniques
for adaptive prognostics in power electronics converters.

5.2.3 Prototype robustness verification

For precise assembling and soldering of the GaN modules on the PCB, the re-flow

oven (LPKF ProtoFlow S) for surface mount devices is used. To verify the perfor-

mance robustness of the converter operation, for the first two weeks, the converter

was running with no heat-sink, but with Fluorinert (FC-40), as a non-electrical con-

ductive liquid. The Fluorinert is elected because of the advantage of having a wide

range of boiling temperature, and very high-volume electrical resistivity. These capa-

bilities provide a symmetric temperature distribution and isotherms behavior. Then,

DC input bus voltage was set at 60V and the switching frequency of the gate drivers

fixed at 100kHz and 50% duty cycle. This forces 14A current passes through the RL

load with an impedance of 2Ω. The converter was successfully tested for two weeks

at the 400W nominal power.

Afterward, the heat-sink was attached to the board to make the junction tempera-

ture of the GaN devices at the nominal current operation less than 80 in the standard
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Figure 5.3: Hardware prototype: The buck converter designed in four layers.

room temperature. For this test, the automatic software-based protection system was

built-up to provide the feasibility of continuous setup operation. The prototype was

tested for more than 30 billion cycles with an active cooling system.

Table 5.1: Components in Converter Circuit Design

Item Manufacture Part No. Description
1 GS66516B GaN transistors
2 SI8271GB-IS Isolated gate driver
3 PES1-S5-S9-M-TR Isolated power supply
4 ACM4520-142-2P-T000 Common mode choke filter
5 CD0603-Z3V9 Zener diode
6 C1608X7R1H104K080AA 0.1uF Bypass capacitor
7 C5750X7R2E105K230KA 1uF Bypass capacitor
8 ERJ-3BQF1R0V 1Ω Resistor
9 ERJ-3EKF20R0V 20Ω Resistor
10 ERJ-FC0603E50R0BST1 10Ω Resistor
11 ERJ-PA3F4701V 4.7kΩ Resistor

To enable continuous operation of the switching converter, a supervisory system

control was designed. This system is implemented in Python, where power sup-

ply units and all measurement are controlled remotely and operated continuously as

shown in Fig. 5.4. Two threads, one for measurement, and one for safety concerns

are considered. The measurement thread will capture the scope data, and stores in
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the cloud networks. If the load current is within the safety range, the Rds(on) will be

calculated based on the captured raw data.

Power 

Supply 

Unit

Board 

Under 

Test

Scope

Data 

Acquisition 

System

Control 

Software

Unit

Cooling 

System
Load

Figure 5.4: Data acquisition system: Supervisory system control was designed for
data collection and converter protection. red: power path, blue: control signals, and
green: sensing signals.

The calculation is relying on the voltage measurement of the bottom switches

(N2890A), and the differential voltage measurement (N2791A) for top devices, as the

inductor current, will be captured by the high bandwidth current probe (TCP303).

To avoid the effect of noise during transients and improve the measurement accuracy,

Rds(on) will be calculated only during 40% to 60% dury cyles in both rising and falling

of inductor current.

The second thread for the safety requirement will repeatedly acquire the power

supply status. Depending on the status or the output power, a shutdown will be

initiated. This is mainly based on the deviation between actual power and the de-

sired power (400W). If the deviation of the load current exceeds 3%, an emergency

shutdown will be initiated, where the detailed thread is shown in Fig. 5.5.

Moreover, automated data acquisition system for the switching converters is de-

signed. This system is implemented in Python, and all the units were operated

continuously over 30 billion electrical cycles and data also stored on the cloud shown

in Fig. 5.6 whereas the second system operates over 100 billion electrical cycles in

Fig. 5.7.
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Figure 5.5: Data acquisition system: The thread is provided for device character-
ization and resistance measurement.
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Figure 5.6: The filtered on-resistance variations: The 400W buck prototype was
tested over 30G cycles with continuous operation at 100kHz switching frequency, and
drain-source resistance variations was captured automatically.

Figure 5.7: The filtered on-resistance variations: The buck converter was tested
over 100 billion electrical cycles 400W and 100kHz. The drain-source on-resistance
variations was captured automatically, and stored on the cloud networks.



CHAPTER 6: EXPERIMENTAL RESULTS

6.1 Introduction

The performance of the proposed real-time reliability analysis was examined for

training the data and applying the Deep RACE. This section describes the testing

scenarios, the hardware setup, and the experimental results. First, the proposed

method is verified using the experimental setup results from the available data in

[30], and the simulated package in the FEA. The details of the concept are shown in

Fig. 6.1
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Figure 6.1: The proposed reliability solution: The advanced solution leverages
the benefits of Internet of Things for reliability analysis using edge/cloud.

6.1.1 Experimental training of power transistors

On the cloud server, we used Intel Xeon CPU E5-2640 to train the deep LSTM

network, where we initially modeled Si-power MOSFETs. The experimental data sets
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for the training of the power MOSFET (IRF520NPbf) are provided in [30]. Then,

a new set of data is predicted based on the trained system at the edge with no

prior knowledge. For the application with higher window resolutions (i.e., higher

output sequence), the network input sequence should also be increased to minimize the

prediction error. The experiments verified for the prediction of ∆Rds(on) degradation

behavior, even limited data sets were enough for training the system characteristics.

Therefore, the Deep RACE is trained to estimate the next 104 samples (equals to one

minute ALT). Table 6.1 summarizes the deep LSTM network parameters.

Table 6.1: The parameters for LSTM network training

Item Parameter Description Value
1 k Input size 1
2 τ Input sequence 21
3 eth Error threshold 10−5

4 n Output sequence 104
5 itmax Maximum iterations 1000
6 ε Number of hidden layer 64
7 ` Number of stacked layer 4
8 m Number of device for training 4

The Google TensorFlow framework is used to implement our stacked LSTM network

model. Each LSTM cell is instantiated by calling tensorflow.contrib.rnn.LSTMCell

function where the number of “hidden layer” is passed as an argument to this function.

In the next step, an array consists of LSTMCell with the size of “stacked layer” is gen-

erated. Then, the array will be passed to the tensorflow.contrib.rnn.MultiRNNCell

function to create the stacked LSTM network. The network unrolling is accom-

plished through tensorflow.nn.dynamic_rnn function. We defined Mean Square

Error (MSE) (6.1) as an objective loss function, and used tf.train.AdamOptimizer

method to minimize the function:

MSE =
1

n

n∑
i=1

(yi − zi(θ))2 (6.1)
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where zi(θ) is the predicted output trajectory from the Deep RACE, and yi is the

actual measurement of the device resistance.

6.1.2 Hardware setup design and verification

To evaluate the prediction system on edge, a hardware setup is developed. In

this system, µ-controller controls the power converter, and also captures the voltage,

and current of the power semiconductor and then transfers them to TX2 board for

edge analysis. For the safety purpose, the automated supervisory control is designed

for analogue data collection of the switching converter and also protects the system

operation if the power conversion deviates more than 5%.

While the training process is performed in the cloud, we evaluated the prediction

of the device resistance variation at the edge. Fig. 6.2, Fig. 6.3 Fig. 6.4, Fig. 6.5,

and Fig. 6.6 illustrate five examples of predicted results of power devices and clarifies

the effectiveness of the proposed algorithm. Although the apparatus behavior of each

power device degradation looks similar, the microscopic observation of the transistors

is different within the same time horizon. For instance, the trained network is ex-

pecting an exponential increment in a region of ∆Rds(on) > 0.02Ω for Dev#4. Then,

the MSE was compensated through a learning phase at cloud-side, and the predicted

resistance was increased linearly at the edge.
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Samples
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0.02

0.04
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R

Dev#1 - Predicted
Dev#1 - Measured

Figure 6.2: Experimental results: The prediction of ∆Rds(on) variations of device-1
through Deep RACE method.
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Figure 6.3: Experimental results: The prediction of ∆Rds(on) variations of device-2
through Deep RACE method.
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Figure 6.4: Experimental results: The prediction of ∆Rds(on) variations of device-3
through Deep RACE method.
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Figure 6.5: Experimental results: The prediction of ∆Rds(on) variations of device-4
through Deep RACE method.
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Figure 6.6: Experimental results: The prediction of ∆Rds(on) variations of device-5
through Deep RACE method.

In the various scenarios of the system training, the trajectory resistance for Dev#5

is predicted based on learning from Dev#1 to Dev#4. Then, recursively we substi-

tute the other devices to predict an unknown transistor resistance variations. We

also verified the system characteristics from achieved the experimental results in two

scenarios as MSE and error distribution in Table 6.2.

Table 6.2: Prediction error for the power MOSFET transistors

Devices #1 #2 #3 #4 #5
log(MSE) -13.61 -13.05 -13.95 -13.36 -12.94

The error distribution for system overall convergence error is defined as follows:

Errordist = (yi − zi(θ)) (6.2)

where zi(θ) is the predicted output trajectory from the Deep RACE, and yi is the

actual measurement of the device resistance (∆Rds(on) in our model). Fig. 6.7 depicts

that the error distribution caused by Deep RACE method is less than 1% percent

on average. Moreover, we compared our method with two well-known classical ap-

proaches (Kalman Filter, and Particle Filter) for power MOSFETs. Since it is very
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crucial to detect the MOSFET resistance variation ∆Rds(on) < 0.05Ω, we compared

the average of absolute error at the detection point(=∆R5%) in these methods by

using (6.3), and the results are summarized in Table 6.3.

Errorabs =
|∆Rds(on) −∆R5%|

∆R5%

(6.3)
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Figure 6.7: Error distribution: The box plot of errors for five power modules.

Table 6.3: The comparison of absolute average error of Deep RACE with the others

Method
Kalman
Filter
[61]

Particle
Filter
[30]

Bayesian
Calibration

[62]
Deep RACE

Average
Absolute Error 17.75% 15.85% 15.00% 11.01%

We extended our exploration to consider the effect of power device data aggregation

on prediction accuracy and risk analysis. For each data point, we ran 1000 Monte-

Carlo test, and then the average of the whole sets of the test is picked. The results
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show that by increasing the number of devices, the MSE decreases with an exponential

rate depicted in Fig. 6.8.
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Figure 6.8: The egde node diagram: It consists of a µ-controller and AI SoC to
generate gate signals and predict the trajectory resistance of power transistor.

6.1.3 Power consumption and processing time analysis

Furthermore, we evaluated the power consumption for the inference part of the

network on an embedded TX2 board. The nVidia Jetson TX2 embedded SoC is

used to evaluate the performance of Deep RACE approach at the edge. Table 6.4

summarizes the specification of embedded SoC.

We set the tensorflow configuration to device_count = {‘GPU’: 0}, where no

computation carried out at the embedded GPU, and in the second approach we

made it ON. For the matrix size of 125 (input sequence + output sequence), it was

observed that the CPU processed 3.2x faster than GPU for one device prediction. This
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Table 6.4: nVidia TX2 embedded module specification

CPU Quad Cortex-A57 @ 2GHz + Dual Denver2 @ 2GHz
GPU 256-core Pascal @ 1300MHz
DDR 8GB LPDDR4 @ 1866MHz

performance degradation is because of data copying between CPU and GPU memory

region – Note the DDR power consumption is higher for ‘GPU’: 1 scenario. In the

other word, the amount of data is not enough for GPU to overlap the delay between

data computation and movement. Increasing the number of devices that should be

predicted per each edge node or increasing the prediction window resolution (output

sequence) improves the performance for GPU since it performs more computation

than CPU per each data movement. Table 6.5 summarizes the delay and power

dissipation for two different cases.

Table 6.5: TX2 embedded board power consumption

GPU: OFF GPU: ON
Module CPU DDR CPU+DDR GPU DDR GPU+DDR

Power (W) 1.07 0.80 1.87 0.166 0.90 1.06
Delay (ms) 26 85

Now the work is extended the work to analyze a single unit of GaN power converter

(Fig. 6.9 and Fig. 6.10) with the proposed hybrid condition-based prognostic. The

simulation platform is designed for GaN on Si for ALT analysis based on the rated

power of the semiconductor total loss discussed in Section 3.3. Four simulation results

are provided for the training, and then the machine learning technique is applied. The

results are provided in Fig. 6.11. Using the simulation analysis for the training of the

system, the predicted results showed consistency within the time interval frame.

In summary, a novel framework for reliability assessment of power converters. The

approach can be used for new technologies where limited information on their relia-

bility is available. In this work, the focus was on the monitoring of the on-resistance
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Figure 6.9: Experimental verification: The hardware setup was implemented in-
cluding the high-frequency power converter controller by µ-controller, the SoC-TX2
for edge computation. The supervisory control is designed for the safety protection.

Figure 6.10: Experimental verification: Temperature rise control of the converter
through thermal image.

variations over the time as a precursor for failure diagnostics of the synchronous 400W

GaN buck converter at 100kHz. The failure mechanism of solder fatigue with the

energy-based modeling was discussed using FEA simulations. The RNN method is

applied for data analysis and model calibration. The proposed network model verified

with Si-MOSFET using the simulation analysis and available experimental. The work
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Figure 6.11: Prognostic results: The Rds(on) variations for GaN with Si-substrate
using the FEA simulations, and only one set of data for training.

is also extended our network model to predict the GaN converter trajectory resistance

using the simulation analysis. The more detailed analysis also carried out to observe

the failure mechanism on the GaN power devices as proof of concept shown in Fig.

6.12 and Fig. 6.13.
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Figure 6.12: Experimental results: The solder degradation is observed on the
source of GaN power devices in the defected device of the buck converter.
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Figure 6.13: Experimental results: The solder degradation is not observed on the
source and drain of GaN power devices in the healthy device of the buck converter.



CHAPTER 7: SMART CURRENT MONITORING IN GaN POWER

DEVICES-SENSEGaN

7.1 Introduction

To enhance the performance of switching converters along with improving their

efficiency in power electronics applications, a need for higher switching frequency is

inevitable. Thanks to the development of WBG semiconductors like SiC and GaN, by

knowing hardware difficulties for implementation of high switching frequency/high-

current converters to overcome layout issues, electromagnetic interfaces, thermal dis-

sipation management, and passive component challenges, finding alternative solutions

for current information is important [63, 64]. Accurate current sensing methods are

among the major steps toward the WBG power converters, bringing multiple oppor-

tunities such as effective protection, control, loss calculation, and prognostics tech-

niques [65]. Traditional resistive based methods such as Shunt resistor and Rds(on)

(drain-source resistance during ON time) monitoring, due to their high losses, and

temperature variation dependency, have some fundamental challenges, especially in

high-frequency converters [66].

In modern research of current measuring using advanced methods, (Hall Effect,

Induction-based transducers, Rogowski coil, and Magnetoresistance (MR) sensors

are now more focused on the investigation of alternative isolated approaches [67].

Although significant progress has been made in recent years in the development of

these sensors, they are limited to the effective bandwidth of less than 1MHz. High

current MR-based sensors have superior performance at the higher frequencies, but

due to their relatively high costs, they have not been fully developed in most of the

commercial products [68]. Therefore, with significant efforts in pushing the frequency
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and power in WBG semiconductors (especially GaN), novel sampling techniques can

still provide useful current information. The target is to develope a discrete design of

current mirroring method to monitor the current of an active switch in boost converter

at 150kHz with GaN.

The current mirroring technique can be used for monitoring power device currents

practically in a loss-less manner compared to the Shunt resistor method. In power

electronics, the current mirroring is commercialized and often known as the SenseFET

approach [69, 70, 71, 72]. In this approach, two Silicon-Metal Oxide Semiconductor

Field Effect Transistors (Si-MOSFET) with different resistances are connected in

parallel. The one with higher resistance carries much smaller current, yet can rep-

resent the current in the main branch [73, 74, 75, 76]. Recently, this approach has

been demonstrated for SiC and GaN devices integrated with Si MOSFET [77, 78].

However, this technique is typically non-isolated and hence, applicable for grounded

devices where the common mode voltage is higher than 30V.

7.2 Current mirroring in GaN-SenseGaN

Current sensing with SenseGaN originally comes from current mirroring in inte-

grated MOSFET at electronic circuits. In most of the transistor fabrication both in

Field Effective Transistors (FET) and High Electron Mobility Transistors (HEMT),

either in lateral or vertical, thousands of individual cells are interconnected in paral-

lel configurations[79, 16, 31, 80]. Since these cell arrays are all identical, by isolating

the source connection of one or several cells, a new pin can be considered for sensing

purpose. The new configuration can monitor the active switch current proportionally.

As the Power and Sense transistors have the common drains and gates, by neglect-

ing the small fraction of a voltage drop across the Sensing resistor, the gate-source

signal can be assumed the same for both modules. Furthermore, the amplifier circuits

force the same drain-source voltage drop across the Power transistor. Therefore, it is

expected that the voltage drop across the sensing resistor proportionally shows the
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Figure 7.1: SenseGaN configuration: Proposing a scheme of SenseGaN for lateral
dies based on available commercial products. (a): shows the geometry of SenseGaN
die with virtual grounding to compensate thermal coupling and impedance matching.
(b): represents the geometry of SenseGaN dies with Sense resistor without virtual
ground compensation. (c): shows the equivalent electrical circuit model of SenseGaN
with virtual grounding. This section will include all the logic circuits in a die inter-
connected into the power transistor. (d): shows the equivalent electrical circuit model
of Sense resistor for a single switch.

drain-source current of the main Power device. This configuration also provides an

opportunity to change the width-length ratio (W/L) of the channel in FETs, which

directly reflects on the transistor turn-on resistance. The scaled-down version of the

main current stream of the drain can pass through the transistor with smaller W/L

ratio and would dramatically improve the loss compared to other resistive techniques

like the Shunt resistor measurement [81]. In the integrated switch, the combination

of parallel cells can be arranged by Power and Sense modules as shown in Fig. 7.1.

Theoretically, this technique does not suffer from bandwidth limitations and can

be perceived as very high accurate measurement method; however, in practice, the

voltage sampling and current measurement accuracy might be varied due to the tem-



61

Gate Drive
in

Vout

V

Gate Drive

L = 33u

DSP
+
-

-
+

-
+

+
- Rsense

1Ω 

Si8271

Si8271

10kΩ 

10kΩ 

1Ω 4.7kΩ 

10Ω 

1Ω 

10Ω 

4.7kΩ 

1Ω 

C = 1u R

82pF

1kΩ 

100kΩ 

1kΩ 

Power GaN Sense GaN

Power GaN 

GS66508T

100kΩ 

10pF

100kΩ 

10pF

100kΩ 

82pF

100kΩ 

load

LM6154
LM6154

LM6154

LM6154

10Ω 

GS66508TGS66508T  Q1     Q2   

100kΩ 

V   out

V in

ADC

Virtual grounding and analogue signal processing

 Active Device Sensing Device

Synchronous Device

100kΩ 

S/H

Circuit

(a) (b)

   I   
D

     on(Q1)R   
     on(Q2)R   

senseR   

Figure 7.2: Schematic capture: Schematic of implemented virtual grounding for
SenseGaN technique in a GaN boost converter. The virtual grounding circuit guaran-
tee the tight connection of GaN power (Q1) and Sensing GaN (Q2) and consequently
more accurate monitoring of the main current. The zoomed-in of the circuit shows
the main current stream for temperature variation characterization.

perature dependency of Rds(on), sensing resistor, and gate-source mismatching. More-

over, in GaN transistors, Rds(on) increases at higher voltage like MOSFETs, which

also needs to be considered. To mitigate the effect of temperature dependency and

current ratio mismatching of SenseGaN, it is required to optimize sensing resistor.

Therefore, based on the proposed technology for compensation of impedance match-

ing, and virtual grounding for both transistors (Power and SenseGaN), additional

circuits should be carefully designed shown in Fig. 7.2.

7.3 SenseGaN characterization

To analyze the temperature dependency and selecting proper Sense resistance for

the proposed method, thermal coupling between Power and Sensing modules should

be considered carefully. Since both devices are coming with the same fabrication

technology, the thermal coupling between the transistors will be assumed the simi-
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larly [82]. Therefore, drain-source resistance of the GaN device running at various

temperature can be varied and simplified as (7.4):

RDS(on) = R25◦C
DS(ON)

e(T−25
◦C)/k (7.1)

In which, T represents the device temperature in Celsius, and k is the thermal coeffi-

cient of the transistor. Equation (7.4) shows drain-source resistance while the switch

is running, and the equivalent electrical circuit of SenseGaN topology can be modeled

as Fig. 7.2(b). Assuming ideal current sharing in both Power and Sense Modules, the

current ratio based on the voltage drop across the sensing resistor can be simplified

as (7.5):

IQ1

IQ2

=
RDS(on)Q2 +Rsense

RDS(on)Q1

=

R25◦C
DS(ON)Q2

e(T−25
◦C)/kQ2

R25◦C
DS(ON)Q1

e(T−25
◦C)/kQ1

+
Rsense

R25◦C
DS(ON)Q1

e(T−25
◦C)/kQ1

(7.2)

where Rsense is the sensing resistor, Rds(on)Q1 and Rds(on)Q2 show the drain-source

resistance of Power and SenseGaN, respectively. To mitigate the temperature depen-

dency of the current ratio in the switches, multiple parameters can be adjusted. The

simplified equation is in (7.6):

IQ1

IQ2

=
R25◦C
DS(ON)Q2

R25◦C
DS(ON)Q1

+
Rsense

R25◦C
DS(ON)Q1

e(T−25
◦C)/kQ1

(7.3)

In (7.6), similar device fabrication technology provides a close thermal coupling which

enforces the first term as a constant parameter, and the temperature dependency of

the second term can be optimized by minimizing Rsense. Therefore, choosing low

values for sensing resistor will help to reduce temperature dependency effects and

increase the enhanced performance at a higher switching frequency.



63

7.4 Converter design-simulation analysis

As a proof of concept for implementation of SenseGaN, a boost converter was

initially modeled accurately in the Spice using manufacturer model (GS66508T). At

the power stage level of this design, the isolated gate drivers are considered to run

both Power and SenseGaN. As all the devices are selected similarly, they all have

adequate breakdown voltage across the drain-source. Since the input capacitance of

the both devices is the same, a bigger resistor also added on gate path of SenseGaN to

bring a small delay and avoiding high voltage transient. This modification is essential

to make sure GaN power (Q1), fully operates in a saturated mode and can be reflected

in sensing transistor (Q2).

7.5 Converter design-simulation analysis

There are three different methods to provide proper isolation to avoid the voltage

common mode issue: a) optical, b) capacitive, and c) electromagnetic isolations. The

first method relies on the light intensity proportional to the measured signal coming

through the photoconductive element (typically a diode). However, this technique

requires at least 0.7V to guarantee the diode is ON. The second method is a proper

solution for many systems, but the capacitance characteristics make a longer delay on

especially during fast transients. In the electromagnetic method, a pair of conductive

coils provides a physical barrier between circuits. The proposed method is the com-

bination of the second and third approaches, where the two small air-core inductors

as well as the capacitor resonance circuits, and virtual grounding.

As shown in (7.6), to reduce the effect of temperature dependency, the sensing

resistor should be selected as small as possible; however, choosing small resistor has a

drawback, which enforces the higher drain current pass through SenseGaN (Q2) and

consequently increases the loss. On the other hand, Fig. 7.3 shows higher resistance

holds the voltage across the sensing transistor while it is off and thus creating some
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(a)

(b)

Figure 7.3: Spice simulation results: SenseGaN in two different scenarios. blue:
inductor current, orange: measurement with SenseGaN circuit a) sensing resistor is
1Ω, b) sensing resistor is 1kΩ. As it shown choosing higher resistance would impact
the sensing significantly. For these devices, it is recommended to use sensing resistor
<20Ω to compromise between higher efficiency and system robustness performance.

issues. For instance, while the sensing resistor is very large (assuming open circuit),

no current will circulate from the sensing path, and the sensing transistor shows the

scaled down of the drain-source voltage across the switch. This can also be observed

in Fig. 7.3 for two different scenarios. In the hardware setup, it is recommended to

use a resistor less than 20Ω to make sure the system operation at higher switching

frequency is still robust. The resistor itself could be more robust to decouple the

variations, which also can be used for Rds(on) capturing.
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    DC+  DC-

Inductor

Isolated 

Power Supply

                 SENSE GaN

Top Power GaN

Bot Power GaN

Load Connection

DSP-micro Controller

DC Supply for 

Control Signals

Figure 7.4: Hardware setup: The prototype was designed in four layers: Top layer:
Power stage, Inner layer-1: Power ground, Inner layer-2: Shield layer, Bottom layer:
Control signals and conditioning circuits.

7.6 Converter design-hardware prototype and experimental results

To verify the analysis and simulation results, a prototype board was built with four

layers as it shown in Fig. 7.4. The converter was tested under different loads as well as

switching frequencies (up to 150kHz). The input signals for the gate driver generated

from the microcontroller. The +9V isolated power supplies for the gate drivers were

clamped with a Zener diode at +3.9V to make sure the devices are fully ON in the

saturated region, but still lower than the absolute borderline for gate signals (+7V)

recommended by the manufacturer.

Furthermore, very fast precision rail-rail Op-Amp (LM6154) was also used to gen-

erate virtual grounding. Since spikes can also be observed during turn on of the

sensing device, selecting a capacitor in the range of (<1nF ) in parallel with sensing

resistor, and having multiple filter stages is recommended to reduce the effect of com-

mon noise. Finally, the prototype converter was tested successfully, and the results

are provided in Fig. 7.5. Although in the figure some, spikes are observed during

turn-on time, they are not harmful and can be ignored with blind analogue circuits.
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(a)

(b)

(c)

Figure 7.5: Experimental results: a) blue: input gate signal from micro controller,
and orange: output gate signals of the isolated gate driver. b) blue: inductor current
measured with amplifier current gun, orange: drain-source voltage of the converter
c) blue: inductor current measured with amplifier current gun, orange: current mea-
surement with SenseGaN 150kHz, 5A boost power converter.
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7.7 SenseGaN in the BCM control of a DC-DC boost converter

In (quasi) soft-switching circuits, most attentions have been paid to zero-voltage

switching due to the ease of voltage measurement and availability of passive compo-

nents [83]. In power MOSFETs, turn-on losses are more dominant than turn-off losses

[84]. Therefore, Boundary Conduction Mode (BCM) operation is desirable in many

power electronics converters [85]. To operate the converter at BCM, it is required to

have a proper control scheme to change the switching frequency as well as an accurate

method to detect the zero current.

Different Zero Current Detection (ZCD) methods and associated control schemes

for BCM operation have been proposed in recent literature. The current monitoring

with isolated secondary winding of an inductor for unidirectional application is used

in [86], dynamic current mirroring by memorization capability of charging capacitor

is presented in [87], reverse current detection of inductor current by freewheeling

switch is implemented in [88], and online digital predictive BCM using equivalent

series resistance of an inductor is provided in [89]. In a cost conscious yet efficient

converters with voltage mode or duty cycle control, series-connected RC filters are

used to detect the zero-current crossing point in [90], [91]. For bidirectional converters,

using a secondary winding only for zero current crossing detection has been proposed

in [92]. Cost, bandwidth, and sensitivity at low currents are the reasons that isolated

current sensors such as Hall-effect current sensors may not be the solution for many

and emerging high-frequency power converters.

The current mirroring technique can be used for monitoring the power device cur-

rent practically in a loss-less manner compared to shunt resistor method. In power

electronics, current mirroring is commercialized and often known as SenseFET ap-

proach. In this approach, two Si MOSFETs with different resistances are connected

in parallel. The one with higher resistance carries much smaller current, yet can

represent the current in the main branch with proportion. Recently, this approach
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has been demonstrated for SiC and GaN devices integrated with Si MOSFET in [77],

[78]. This approach can be cost effective if all integrated into the device die [72], [71].

However, the SenseFET is typically non-isolated and hence, applicable for grounded

devices where the common mode voltage is higher than 30V. For instance, the Sense-

FET in synchronous boost converters as power factor correction circuit can be used

in the active switch for controlling the converter in either Continuous Conduction

Mode (CCM) or Discontinuous Conduction Mode (DCM).
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Figure 7.6: Schematic capture: The boost operation system with SenseGaN and
control units.
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In this section, a control scheme is proposed for a synchronous boost converter to

operate in BCM. The active switch current is only sensed using the current mirror-

ing technique. The challenge is the zero current for BCM operation obtained at the

synchronous mode is not available for direct measurement. The converter operation

mode cursor, i.e. CCM/BCM is identified through an adaptive comparison. The

cursor is used in an iterative control scheme to bring the converter to BCM. The

concept will be demonstrated on a boost converter using 650V GaN devices. The

current mirroring circuit has been implemented with the same GaN device for the ac-

tive switch, which we call SenseGaN. The circuit details and experimental verification

will be presented.

7.8 Proposed boundary conduction mode control In a boost converter

7.8.1 Active switch current measurement with SenseGaN

In this method, a parallel sensing GaN is used for the current mirroring of the active

power module. The schematic of the sensing technique for a boost converter is shown

in Fig. 7.6. Having the same gate signal source, and considering a virtual grounding

to force the same drain-source voltage for both devices, then the voltage drop across

the sensing resistor proportionally reflects the active transistor current. Therefore, a

sensing GaN (Q2) can effectively monitor the current of GaN power (Q1). Ideally,

this technique is not limited by bandwidth, and can be perceived at the very high

accurate measurement with significant low power loss. The compromise to choose

the proper sensing resistor should be considered for the robustness of the system at

higher switching frequency (smaller resistance) and lower loss (bigger resistance).

7.8.2 The proposed algorithm for BCM control

In the boost converter, since the SenseGaN can only be placed on the bottom side

to avoid common mode voltage issues, it can only measure the current during ON

time. Assuming to run the converter with the same average current marked in Fig.
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Figure 7.7: The system operation mode and curser identifications: a) The
inductor current at CCM (blue) and BCM (red) with the same average current. b)
The current monitoring with the SenseGaN for the active device in CCM and BCM.
(here, the zoomed-in version of threshold trigger reference signal for delay generation
is exposed) c) The microcontroller compares the trigger reference signal generated by
the comparator and PWM signals to generate the delay signal in CCM and BCM.

7.7(a), the measurement at CCM is more like perpendicular trapezoid; however, in

BCM the sensing element is characterized as a triangle shown in Fig. 7.7(b). This

signature is used as an identifier to distinguish CCM and BCM. By monitoring of the

input voltage and knowing the inductance value, the slope of inductor current can be

calculated in each cycle. Since the slope for both CCM and BCM are the same, an

analogue delay trigger signal generated through a fast comparator is considered as a

parametric identification value.

Due to the small input threshold voltage of the comparator, the SenseGaN device

does not capture the diagonal linear region at CCM condition. Therefore, the gener-

ated trigger signal respect to the reference PWM has a zero delay; however, in BCM,

the trigger signal compared to the reference PWM signal has a constant non-zero
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value. This delay can be calculated as: (Tdelay = LVth
Vin

) where Tdelay is the generated

delay, Vth is the predefined input threshold voltage of the comparator, and Vin/L is

the slope of the inductor current when the device is ON. The delay signal will be

calculated in each cycle. Then based on the captured delay, the control action can be

updated sequentially to find the BCM of the converter.

d DCM

Operation 

       

Δf                  

       

Δf                  

T
SW

Region

d
BCM

dCCM

Figure 7.8: The system operation modes: The operational regions for distinguish-
ing CCM, BCM, and DCM in a single cycle. Orange: CCM, Blue: Optimum region
for BCM, Gray: DCM.

The first part of the algorithm is to distinguish the CCM and BCM conditions.

Here, once the load condition changes (for instance, higher current), the microcon-

troller captures a zero delay, thus the converter operation is considered as CCM.

Now based on the algorithm, the microcontroller gradually reduces the switching

frequency to adaptively find the new BCM. This process will be continued till the

generated non-zero delay matches with the calculated delay. Fig. 7.7(c) shows the

delay comparisons of the algorithm in CCM and BCM.

The second part of the algorithm needs to be run to make sure the converter

does not operate in DCM. This is very crucial because the generated delay signals in

BCM and DCM have the same value. Here, by decreasing the switching frequency in

small intervals from the BCM switching frequency the controller can still observe the
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Figure 7.9: SenseGaN control: The scheme flow chart for the proposed BCM
control algorithm.

same delay signal, and the converter operation is perceived at DCM; On the other

way, assuming to run the converter with calculated delay, by minor increasing the

switching frequency once the BCM delay is detected, the converter operation will

be entered to CCM. Therefore, the converter always operates in a narrow region as

highlighted blue in Fig. 7.8.

Visualization of the details of the implemented BCM control of the boost converter

in the microcontroller is shown in Fig. 7.9. The algorithm consists of interconnection

of multiple functions as External Interrupt (XINT), Analogue to Digital Converter

(ADC), and PWM Interrupt. For the microcontroller, two main inputs are required

to create a criterion representing BCM conditions, and detection of the current state

of the boost converter. The first one is the input voltage, and the other is the trigger

signal. The analogue input voltage signal is applied to ADC for the delay time
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calculation, and the trigger signal enters to XINT for initiation of interrupt service

routine.

Once the rising-edge of the trigger signal is received, the microcontroller executes

the XINT. Therefore, it calculates the elapsed time of the trigger signal with Time-

based Counter Register (TBCTR). The TBCTR is a counter register to generate

PWM signal in microcontroller. As shown in Fig. 7.9, initially since TBCTR is

zero, the PWM signal will be active high. When the TBCTR reaches to the Counter

Compare Register (CMPR), the high PWM signal is forced to low, and once TBCTR

reaches the Time Based Period Register (TBPRD), the TBCTR will be reset to

zero. Since the TBCTR is synchronized with the PWM signal, the elapsed time of

the trigger signal is calculated in each PWM cycle. Both CMPR and TBPRD are

determined according to the operation condition of the boost converter.

Figure 7.10: Experimental results: SenseGaN operation at 2.5A with 350mV/A
sensitivity. Purple: inductor current measurement (amplifier current gun), Blue:
SenseGaN measurement, Green: generated trigger signal from the analogue com-
parator (TLV3502).

Based on the calculation of the elapsed time, the status of the boost converter



74

operation mode can be determined. If the trigger time is shorter than the delay time,

it means that the boost converter is in CCM. If the trigger time is longer than the

delay time, it means that the boost converter is in BCM/DCM. Since the slope of

the inductor current will remain constant even at different operation conditions, the

inductor current at CCM hits the threshold level faster than BCM/DCM.

Once the comparison is over, regulation of the PWM switching frequency is ex-

ecuted to keep the operation mode in BCM. If the operation mode is CCM, the

TBPRD is increased to reduce the switching frequency. If the operation mode is the

BCM/DCM, the TBPRD is decreased to raise the switching frequency. By updat-

ing the TBPRD, the operation mode is regulated. Since the trigger signal for both

BCM/DCM is the same, repetitive increase of the switching frequency is required to

guarantee the narrow region represented in Fig. 7.8.

7.9 Experimental verification

To verify the effectiveness of the proposed method, a prototype was built in four-

layer board. On the top layers, all the power components including the GaN devices

and inductors are placed. Additional shield is implemented in the inner layer to re-

duce the effect of switching noises on the measurements circuits. On the bottom layer,

conditioning and controlling circuits including the microcontroller (TMS320F28335),

ultrafast Op-Amps and comparators are placed. In this setup, 650V/30A GaN de-

vices (GS66508T, Rds(on) = 50mΩ) and the isolated gate drivers (Si8271-GB-IS) were

used. Furthermore, multiple design criteria were considered such as bigger resistor

on the gate path of the SenseGaN (Q2). This is essential to have sufficient delays for

proper current mirroring from the main GaN power (Q1) and avoid voltage transients.

Since the input capacitance of the both Power and sensing devices are the same, a

bigger precision resistor is also added to the gate path of the SenseGaN to bring a

proper delay and avoiding high voltage transient. Ultrafast precision rail-rail Op-Amp

(LM6154) with high common mode rejection noise was used to provide virtual and
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firm ground. The sensing resistor is chosen as 20Ω precision resistor with ultra-low

tolerance (< 0.1%). Multiple filter stages (fc <1MHz) are also added to reduce the

noise and achieve required signal scaling as shown in the schematic capture, Fig. 7.6.

The converter was tested under different load conditions and switching frequencies to

verify its sensitivity, linearity and system robust operation. An example of the circuit

operation with active switch current measurement using SenseGaN is represented in

Fig. 7.10.

delay at BCM          No delay at CCM              Updated delay at new BCM

       1                   2           3

(a)

(b) (c)

Figure 7.11: Experimental results: Implementation of BCM in a boost converter
with SenseGaN. Purple: inductor current measured with an amplifier current gun,
Green: generated trigger signal with the fast comparator Blue: trigger signal for load
change. a) Converter operation at different CCM and BCM regions. b) Initial BCM
condition (duty cycle: 40%), and transient to CCM (60%) c) New BCM steady-
state condition for higher current after implementing the iterative control scheme.
Delay detection between trigger signal and PWMs are highlighted in BCM and CCM
operation.

Initially, the converter operates at 40% duty cycle with 24kHz under a resistive

load of 8Ω. As shown in Fig. 7.11(a), the converter operates in BCM and the delay
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is detected by the trigger signal. By increasing the duty cycle to 60%, the converter

enters CCM and the trigger rising-edge becomes equal to the active switch on-time.

In other words, there is no delay. This has been highlighted in Fig. 7.11(b). As

mentioned, the delay makes sure the converter is in BCM. Through the microcon-

troller, the switching frequency sweeps with 1kHz steps to reach the desirable delay,

indicating the converter is practically in BCM. In this example, the BCM operation

reaches at 17kHz and has been highlighted in Fig. 7.11(c).

7.10 Isolated current mirroring in GaN-Iso-SenseGaN

With significant efforts in increasing the frequency and power in WBG semicon-

ductors (especially GaN), novel sampling techniques are required to provide useful

current information for the advanced control strategy [93]. SenseGaN is a powerful

technique for active monitoring of the device, which is a proper way for the full in-

tegration into the power module. This method initially was introduced in [60], for

current monitoring of an active switch in the boost converter. However, using this

method for high voltage application where the common mode voltage is higher than

(> 30V ), there are some limitations on the filtering stages (OpAmp voltage).

Drain

Source

Substrate

Sense Resistor

Figure 7.12: Iso-SenseGaN configuration: Proposing a scheme of Iso-SenseGaN
for lateral dies based on available commercial products.
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The target of this section is developing a discrete design of current mirroring method

with the galvanic isolation to run a DC-DC boost converter and a DC-AC converter

in Boundary Conduction Mode (BCM). The active switch current is sensed using the

current mirroring technique shown in Fig. 7.12. To the best of my knowledge, no

prior work has been published to sense the active current of GaN power transistors

with the galvanic isolation to avoid common mode issues. I called this technique

as the Iso-SenseGaN that current monitoring can be effectively used in all common

power electronics converters as shown in Fig. 7.13.

...

W/L=1
W/L=n

Rsense

Resonance 

Circuitry

Figure 7.13: Iso-SenseGaN: The equivalent circuit model of the Iso-SenseGaN for
the available lateral GaN.

There are three different methods to provide proper isolation to avoid the voltage

common mode issue: a) optical, b) capacitive, and c) electromagnetic isolations. The

first method relies on the light intensity proportional to the measured signal coming

through the photoconductive element (typically a diode). However, this technique

requires at least 0.7V to guarantee the diode is ON. The second method is a proper

solution for many systems, but the capacitance characteristics make a longer delay

on especially during fast transients. In the electromagnetic method, a pair of conduc-
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tive coils provides a physical barrier between circuits. The proposed method is the

combination of the second and third approaches as LLC, and virtual grounding are

shown in Fig. 7.14.
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7.11 Iso-SenseGaN characterization

To analyze the temperature dependency and select proper sense resistance, since

both devices will be fabricated with the same technology, the thermal coupling be-

tween the transistors will be assumed similarly [82]. Thus, resistance variation of the

GaN device at the different temperature is simplified as (7.4):

RDS(on) = R25◦C
DS(ON)

e(T−25
◦C)/k (7.4)

where, T is the device temperature in Celsius and k is the thermal coefficient of the

transistor. The simplified current ratio of the devices is shown in (7.5):

IQ1

IQ2

=
R25◦C
DS(ON)Q2

R25◦C
DS(ON)Q1

+
Zsense

R25◦C
DS(ON)Q1

e(T−25
◦C)/kQ1

(7.5)

here, Zsense is the total impedance of the Iso-SenseGaN path, and IQ1, IQ2 show the

current in the power and sense transistors, respectively. Based on (7.5), to reduce the

effect of temperature dependency, the sensing resistor should be very small. However,

the drawback is the higher drain current passes through Iso-SenseGaN (Q2), and

consequently the high current increases the loss. Therefore, a simple Optimization

Function (OF) for each specific design can be run to choose the proper resistance:

OF = k1(Pcon −
Vsw

2

Zsense
) + k2(1 + Zsense) (7.6)

where, Pcon is the converter power, Vsw is the switching node voltage of the SenseGaN

connection, k1 and k2 are the weighting factors for objective function, and constant

ratio R25◦C
DS(ON)Q2

/R25◦C
DS(ON)Q1

is considered as 1. The optimization results are provided

in Fig. 7.15.
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Figure 7.15: Optimization in SenseGaN: The compromise of higher performance
(low resistance) vs. lower loss (high resistance) are analyzed in the OF.

7.12 Iso-SenseGaN in the BCM control of a DC-DC boost converter

To show the capability of the Iso-SenseGaN, the BCM control of common power

electronics converters are proposed here. This method initially was introduced in

[60], for current monitoring of an active switch in the boost converter. However, the

constraints of solution time in microcontroller limit the bandwidth of this technique;

Therefore, Iso-SenseGaN can be placed for each device (Q1), and (Q2) in the DC-DC

boost converter as shown in Fig. 7.16.

Current Sensing Unit

R

Q1

Q2

Vs

L

Figure 7.16: BCM control of a DC-DC boost converter: the system operation
mode at the CCM (blue) and the BCM (red) with the same average current.
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Once the converter operates at the BCM, the current waveform is characterized as

triangle whereas, in the CCM, the current of SenseGaN is considered as trapezoid

shown in Fig. 7.17. Having the information of the top and bottom devices, two fast

analogue comparators are adjusted with two different thresholds that are placed for

each device; the one for the top device indicates the zero current crossing, and for the

bottom switch shows the maximum current. Once the trigger signal is received from

the high threshold comparator, the bottom device will be turned OFF, and the low

threshold comparator turns ON the bottom device, as verified in CHIL test as shown

in Fig. 7.18 and Fig. 7.19 [94].

Inductor Current
Average current for CCM and BCM

BCM
CCM

Low Trigger Reference Top 

Iso-SenseGaN 

Measurements

High Trigger Reference 
Bottom 

Iso-SenseGaN 

Measurements

Figure 7.17: BCM control of a DC-DC boost converter: the current monitoring
reflected in the Iso-SenseGaN. Two reference trigger signals are considered to turn-on
the top and bottom devices consecutive.
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Figure 7.18: BCM control of a DC-DC boost converter: orange: PWM gate
signals, blue: inductor current.

 

Figure 7.19: BCM control of a DC-DC boost converter: orange: bottom Iso-
SenseGaN, blue: top Iso-SenseGaN outputs.

7.13 Iso-SenseGaN in the BCM control of a DC-AC converter

In this section, the potential of SenseGaN technique is used to control an inverter

at the BCM. For each bottom devices, an individual Iso-SenseGaN/SenseGaN will be

placed as shown in Fig. 7.20. Having the information on the bottom devices, two fast

analogue comparators adjusted with two small thresholds voltages are considered for

each of them, individually. The proposed sensor placement for BCM of the DC-AC

converter is shown in Fig. 7.20.
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Figure 7.20: (Iso)SenseGaN for the BCM control of a DC-AC converter:
The proposed architecture for the sensor placement in an inverter.
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Figure 7.21: Inverter operation: The system operation for the BCM operation in
the inverter, proposed by SenseGaN current mirroring techniques. The current path
highlighted with red one shows the four modes of operation.
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To understand the inverter operation, the current path is highlighted in Fig. 7.21.

Knowing this, the fundamental switching frequency of the grid is considered as 60Hz,

where two bottom devices (Q3) and (Q4) turn on/off in each positive and negative

cycles. However, the top switches (Q1) and (Q2) operate at the high switching fre-

quency. Using the fast microcontroller (TMS320F28335) for the input signal and

the analogue fourth order RC-filter using high-speed operational amplifiers (LM4820)

will generate the reference signal. Therefore, the output of the current sensors will be

compared with the generated reference current through the high-speed comparators

as shown in Fig. 7.22.
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GA2
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S2

S1

I_ref
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Figure 7.22: Proposed BCM technique: The analogue circuit logics for PWM
generation through SenseGaN and the fundamental frequency of the grid.

The CHIL test result verifies the feasibility of the proposed BCM control strategy

in a single-phase inverter as shown in Fig. 7.23 and Fig. 7.24. The microcontroller

generates the switching signals for the four GaN switches based on the comparison

between the current reference and the inductor current captured by the sensing GaN.
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Figure 7.23: SenseGaN for the BCM control of a DC-AC converter: Two
reference trigger signals are considered to turn-on the bottom devices consecutively.
The closed loop operation of the DC-AC converter operation is verified in CHIL (blue:
grid voltage)

 
Figure 7.24: SenseGaN for the BCM control of a DC-AC converter: Two
reference trigger signals are considered to turn-on the bottom devices consecutively.
The closed loop operation of the DC-AC converter operation is verified in CHIL (top:
bottom SenseGaN-1, orange: bottom SenseGaN-2)
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Each SenseGaN current unit (S1 or S2) is used in each positive or negative cycle of

the reference current. In the positive sequence, (Q4) is turned on continuously. If the

active switch current of the (Q4), (IS1), is zero, corresponding switch (Q1) is ON. The

inductor current is increased based on the inductor voltage and the inductance value.

Once the inductor current reaches the current reference, the switch (Q1) is turned off

and the bypass loop with a diode in (Q3) making the conduction path to decrease

the inductor current to zero. Therefore, the BCM operation can be achieved with

variable switching frequency based on the inductance, the input and output voltage,

and the reference current. In the negative cycle, same procedure occurs with (IS2),

(Q2), and (Q3). The main important part numbers used for all the prototypes is

provided in Table 7.1.

Table 7.1: Components in converter circuit design

Item Manufacturer Part No. Description
1 GS66516B GaN transistors
2 SI8271GB-IS Isolated gate driver
3 PES1-S5-S9-M-TR Isolated power supply
4 ACM4520-142-2P-T000 Common mode choke filter
5 CD0603-Z3V9 Zener diode
6 LM6154BCM OpAmp 100MHz Bandwidth
7 CL10C820FB8NNNC 82pF Filter capacitor
8 C1608X7R1H104K080AA 0.1uF Bypass capacitor
9 C5750X7R2E105K230KA 1uF Bypass capacitor
10 ERJ-3BQF1R0V 1Ω Resistor
11 ERJ-3EKF20R0V 20Ω Resistor
12 ERJ-PA3F4701V 4.7kΩ Resistor
13 ERJ-FC0603E50R0BST1 10kΩ Resistor



CHAPTER 8: CONCLUSIONS

This dissertation presented a new foundation to investigate the real-time reliability

assessment of high-frequency power electronics converters, which the specific focus

on GaN power devices. The fundamental failure mechanism of GaN power devices

in today’s technology was investigated, and the potential failure for the lateral GaN

devices is studied intensely. The main concept of this dissertation was to provide a

new path toward integration of advanced sensing method along with the applying the

sophisticated and accurate analytical tools for deep leanings. A new methodology was

developed for in-depth learning reliability analysis of high-frequency power converters

with an edge. We proposed the deep LSTM for data training of power devices on

the cloud server, and apply the reliability model for device resistance changes. The

approach relied on the real-time Rds(on) data extraction from the power converter,

and calibration of an adaptive model. The analysis was extended on an embedded

system system-on-chip (SoC-TX2) using the CPU and GPU separately. The results

showed the real-time convergence of the system with less than 11% average error,

85ms processing time through the GPU for power MOSFETs.

Due to the limitations of having enough data for the training and processing the

system, co-simulation of GaN power devices was applied using FEA simulations. In

this platform, the analysis of the aging of the GaN devices due to the soldering was

developed on the cloud. Therefore, the simulation platform generates enough data for

stress-strain loss generation of the solder fatigue, which eventually resulted in device

∆Rds(on)variations. This work was built on Hybrid Condition-based prediction known

as Prognostics to assess the behavior of individual units based not only on their usage

history as inferred from monitoring data but also on expected future load profiles.
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More specifically, the focus was on deploying deep learning algorithms to exploit

for the parameter estimation in power electronics engineering reliability. With the

availability of the most granular information deduced from advanced devices, the new

data-driven scheme can be used for system monitoring and possible lifetime extension

GaN power converters.

For the future of this work, various things can be developed or improved. This

work only focused on the fatigue analysis of solder joins as one of the most susceptible

points in compound semiconductors such as GaN. While the other potential failure

mechanism has not been studied here. Moreover, more samples are required to show

the accuracy of the model in the longer term, which effectively can be helpful for

improvement of the system modeling. The focus of this work was only on the static

device resistance variations; however this would be extended to the extraction of

dynamic ∆Rds(on)to distinguish device and package level failures. In the end, the

integration of the advanced module of SenseGaN for advanced monitoring of GaN

devices was only developed in the discrete model. Toward the integration of sensing

and power devices for developing the smart modules can also be done.



CHAPTER A: PCB EMBEDDED INDUCTORS FOR HIGH-FREQUENCY

POWER CONVERTERS

A.1 Introduction

This section presents a comprehensive method for designing a PCB embedded in-

ductor suitable for high-frequency GaN-based converters, i.e., 5−20A and < 10MHz.

The developed multi-objective algorithm is to maintain high efficiency of the power

converter while achieving the desired power density. In particular, we consider all

spatial parameters of embedded power inductor and formulate a procedure to max-

imize the inductance and minimize the resistance, and consequently minimize the

temperature rise. The numerical calculations using the proposed method are verified

through detailed FEA simulations. Finally, a very high efficient PCB embedded in-

ductor with 50nH, 8mΩ total resistance (DC+AC) for 18A converter is presented,

and its performance is evaluated through detailed FEA simulation and experiments.

Custom-designed inductors solicited in many ways represent an integral part of

almost any power electronics converters. In many low-frequency applications, ferro-

magnetic core and magnetic-core inductors are used due to high and constant per-

meability, but in high-frequency power converters due to increasing core losses and

temperature rise restrictions, magnetic inductors may not be used [95]. Therefore,

replacing the magnetic core with air core can be proposed as one of the promising so-

lutions. Different types of air-core inductors have been presented in many articles and

for various applications; however, considerable challenges such as complexity of fabri-

cation, low-quality factor, low efficiency, and high cost have been addressed. Among

air-core inductors, PCB embedded ones are attractive due to their high-power density,

desirable performance characteristics, low cost, and ease of manufacturing, which can
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bring benefits of miniaturization and integration of the power circuits [96, 97, 98, 99].

To optimize the inductor design for a given application, much research has been done

in literature, combining radio frequency circuits and power electronics to design SMPS

with switching frequencies in the very high-frequency range (30-300MHz), but this

range of frequency is more suitable for resonant DC-DC converters [100, 101, 102].

Even at the lower frequencies (13.56 MHz), some applications of PCB embedded in-

ductors have been investigated in Φ2 class converter, whereby reducing switch voltage

stress, 388W converter with 77% efficiency at 170 V nominal voltage is designed [103].

In [104], also the design of optimized PCB air-core toroid for high-frequency DC/DC

converters with strict requirements in terms of volume and noise has been described.

Thanks to the toroidal geometry, the energy is conserved inside the coil, and most

of the flux is concentrated in the inner part of the toroid to minimize the absorbed

energy [105]. Employing a non-air core PCB embedded inductor, and depending on

the material and the shape of the core, anisotropic core losses, and the need for isola-

tion between the magnetic foils, the multi-objective design is presented in [106]. For

non-embedded inductors, more research can be found to optimize the design from

various aspects [107, 108, 109, 110].

A useful compromise between efficiency and power density of a boost spiral in-

ductor on 3.2kW is achieved using an optimized design procedure for power factor

correction converters development. As shown in [108], there is a challenge in designing

the PCB embedded inductor with a high-quality factor, i.e., high inductance with low

resistance. For example, [111] describes a choice of hollow or full winding structural

designs to maximize its quality factor based on the innermost and outmost radii of

the winding as a measure of the hollowness of the winding for a coreless printed spiral

winding inductor. In contrast to the aforementioned studies, the objective of this

work is to conduct a comprehensive analysis, and design of PCB embedded air core

inductors suitable for smoothing the output current of a voltage sourced inverters.
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As the typical range of switching frequency for the inverters thanks to semiconduc-

tor developments such as GaN switches or Si-based AC-Stacked inverters, cannot

be above 10MHz, the quality factor will be significantly lower compared to resonant

DC-DC converters. To compensate this reduced value, inductor needs to be designed

such that to maintain the high quality-factor and conclusively lower resistance. As

expected, lowering the resistance not only helps to increase the efficiency due to the

reduced conduction loss but also does help to reduce the thermal power loss dissi-

pation, which results in a lower temperature rise of the inductor and higher power

density. The focus so far has been towards achieving high inductance; however, in

many emerging applications including utility applications, very high efficient induc-

tor is required. Referring to [112], in inverters operating with 1-10MHz switching

frequency, inductance value in the range of 50-300nH is sufficient to maintain the

output current Total Harmonic Distortion (THD) below 5%.
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Figure A.1: Schematic configuration: The hybrid sinusoidal unipolar DC-AC con-
verter topology considering one leg as fast switching, the second leg switching with
grid frequency.

To effectively increase the efficiency of the inverter, one of the methodologies is to
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provide hybrid sinusoidal unipolar switching pattern, where one leg of the inverter op-

erates at grid switching frequency, and the other leg operates at much higher switching

frequency as it shown graphically in Fig. A.1. Therefore, there is a great potential

to run the converter at continuous conduction mode to get the benefits of full modu-

lation with constant switching frequency, which make using PCB embedded inductor

as a great candidate for this configuration. The most important research and appli-

cations of PCB inductors are summarized in Table A.1. To best of my knowledge

[113], no prior work has been published to provide a comprehensive framework to de-

sign toroidal PCB embedded inductors considering the power density and efficiency

(>98%) for such inverters.

Table A.1: Summary of important research on PCB inductors for power applications

Article Inductor Resistance Current Efficiency
Anderson [95, 98] 50nH 209mΩ N/A N/A

Sullivan [97] 230nH 10mΩ <3A <96%
Cheon [99] <10nH N/A <200mA <80%
Liang [103] 150nH 42mΩ <2A <80%
Orlandi [104] 150nH 42mΩ N/A N/A
Sullivan [111] 20nH 50mΩ N/A N/A

A.2 The proposed method for the high-current PCB embedded inductor

The proposed multi-objective method formulates all the input/output variables

for designing a PCB embedded inductor. The proposed method decouples ohmic

losses of petals and vias for achieving high efficiency to get a lower temperature rise

and tunes up parameters to obtain desirable inductance value. As shown in Fig.

A.2, the algorithm process is running through three major sectors: 1: inductance

(filtering) 2: petals (efficiency) and 3: vias (temperature rise) design considerations

in six sequential levels. The algorithm starts from level-0 in which the baseline criteria

for electrical and mechanical constraints are set. Mechanical constraints are inductor

type (here toroidal), number of turns, height, inner and outer diameters. In this
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work, electrical constraints are set as input voltage: 35Vdc, duty cycle: 50%, input

DC current: 9A, output AC current: 18A rms, switching frequency: 1-10MHz, and

desired output current ripple: <1%. The three major design sectors will be explained

in the following steps.

A.2.1 Inductance design considerations

This sector calculation is performed to find the proper inductance value for the

output filter of inverter considering the most prominent factors. Initially, a set of

constraints need to be set such as the via minimum diameter, i.e., 1mm and the inner

diameter ten times larger enough. Then, through an iterative process, the outer

diameter and the number of turns will be adjusted to obtain the desired inductance.

L =
N2

2π
hµ0Ln(do/di) +

di + do
4

µ0

[
Ln(8

di + do
di − do

)− 2
]

(A.1)

where N is the number of turns (petals), his the PCB thickness (inductor height),

µ0 is the air permeability, di and do are the inner and outer diameters, respectively.

As it shown in (A.1), by increasing the outer diameter, the number of turns, and

height the inductance can be intensified; however, increasing the outer diameter may

not be acceptable considering the desired density. Therefore, one solution would be

to set the outer diameter and adjust the height and number of turns. With today

standard manufacturing capability, one can easily obtain up to 35mm thickness for

PCB and consequently, the number of turns that plays the dominant role in the

inductance value. As it can be shown, the efficiency exacerbates due to this increase

and a designer may have to adjust other parameters such as the inner diameter again.

Nonetheless, the design proceeds once the desired inductance and density are obtained

numerically, and in the following sectors, the efficiency will be optimized.
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Figure A.2: Optimization approach: The algorithm descriptions to achieve the
lowest resistance at the highest possible power density for the PCB embedded inductor
within the 1-10MHz.

A.2.2 Petal design considerations

In this sector, the aim is to find the optimum petal size. Essentially, once the

number of turns in the previous sector is set, the clearance between the petals are
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adjusted to minimize the DC and AC resistance. The governing equation in this

sector is (A.2):

Rtotal = N(2Rpetal +Rin−via/Nin−via +Rout−via/Nout−via) (A.2)

where Rpetal is each petal resistance. Rin−via and Nin−via are the inner via resistance

and numbers, Rout−via and Nout−via are the outer via resistance and numbers, and N

is the number of petals (turns). In (A.2) the DC resistance, as well as AC resistance

due to the skin and proximity effects, are considered. It can be shown that by petal

clearance decrease, the skin effect is reduced, but the proximity effect is increased.

Therefore, the total resistive losses are examined in this sector by adjusting the petal

clearance. Further adjustment is performed in the next section to achieve the desired

efficiency. In other words, a designer may relax the constraints in this step and

conclude on the efficiency in the next step.

A.2.3 Via design considerations

In this part of the algorithm, via diameter and number are set in order to reduce

the total resistance of the inductor further. Equation (A.2) still applies and contains

two variables for the inner and outer vias. One approach to solve this optimization

problem is to impose a set of constraints, for instance, the minimum diameter for a

via, and continue the calculations using the constraints as boundary conditions. This

process is performed for all the variables, and the result with the lowest resistance

will be picked. In many applications, absolute temperature rise needs to be estimated

in addition to the efficiency. Therefore, equation (3) is presented as the final step to

verify the desired temperature rise for the minimal current.

∆T = kI2(
√
f + α)/x3 (A.3)
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In (3), f is the switching frequency of the converter, and I shows the rms current.

Moreover, k and α are constant numbers, and x is the ratio of the length to the

surface area of the inductor. If the desired temperature rise is not met, the pre-

sented algorithm runs recursively to find an alternative solution. The details of the

mathematical correlations are provided in [96, 112, 113].

A.3 Simulation and experimental results

In this section, the result of the optimization method will be analyzed and bench-

marked with an example using JMAG software and a lab prototype. As stated in

the previous section, the first step is to define the set of baseline electrical properties.

In this work, it is assumed that the PCB-embedded inductor will be applicable for

a single-phase inverter with the following nominal specifications: 35V DC, 8.5A DC,

50% duty cycle, low frequency (50/60Hz) output current 17A AC, output current

THD <1%, switching frequency 1-10MHz. The maximum temperature rise for the

board is assumed to be 40C. It can be shown that the inductance value in the range

of 10nH to 100nH would be sufficient for such an inverter. Consequently, the de-

sign procedure was conducted to obtain such inductance while the occupied area and

efficiency were optimized.

In this process, a designer can observe how the algorithm proceeds with all the pos-

sible acceptable solutions and choose the best one. For instance, different acceptable

inductance values are obtained varying the power density and the number of turns

while the efficiency is optimized. Since efficiency is one of our main concerns, 50nH

inductance values with eight turns and the outer diameter of 30mm were selected as

the optimum design (Fig. A.3). It is worth noting the unacceptable regions in Fig.

A.4 in which the temperature rise is out of the acceptable bound, i.e., 40C.
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Figure A.3: Numerical results: The algorithm procedure for providing possible
solutions for power density, and filtering requirements meeting from level-0 to level-
2 based on proposed method. The selected candidate will be highlighted when the
multiplying of the concavity and the derivative of function reach to optimum values.
The possible solutions can be used for running the algorithm from level-3 to level-5.

frequency 1-10MHz. The maximum temperature rise for the 

board is assumed to be 40◦C. It can be shown that the 

inductance value in the range of 50-300nH would be 

sufficient for such an inverter. Consequently, the design 

procedures were conducted to obtain such inductance while 

the occupied area and efficiency reaches to highest value. 

In this process, a designer can observe how the algorithm 

proceeds with all the possible acceptable solutions and 

choose the best one. For instance, as shown in Fig. 5, 

different acceptable inductance values are obtained varying 

the power density and the number of turns while the 

efficiency is optimized. Since efficiency is one of our main 

concerns, 50nH inductance values with eight turns and outer 

diameter of 30mm was selected as a proper design. It is worth 

noting the “unacceptable” region in Fig. 5, where the 

temperature rise is out of the acceptable bound, i.e. 40◦C. 

TABLE II. presents the numerical outputs of the optimum 

design using the proposed algorithm, highlighted with 

possible number of turns, and outer diameter.   

 

TABLE II. 

PHYSICAL PARAMETERS OF DESIGNED INDUCTOR FOR THE 

PROPOSED INDUCTOR 

Parameters Values Units 

Inductance 50 nH 

Number of turns 8 - 

Outer diameter 30 mm 

Inner diameter 15 mm 

DC resistance 2.4 mΩ 

Total resistance excited @5MHz 8 mΩ 

Via diameter 2.8 mm 

Surface to length ratio (x) 6.8 cm 

Number of vias 22 - 

Copper thickness 140 (4) µm (Oz) 

Temperature rise @ 23◦C (ambient) 

& low frequency output current 
36 C◦ 

 

By verifying the proposed method for comprehensive 

methodology through experimental results with half bridge 

GaN converter (EPC-9033), different analysis is also carried 

out. At constant inductance, the optimized efficiency 

variations versus minimum required space to get the highest 

power density are shown in Fig. 5. This also shows 

theoretical maximum efficiency of toroidal PCB embedded 

inductor for <10MHz switching frequency for high current 

(<20A). Afterward, considering the temperature rise lower 

than 40◦C, the maximum theoretical efficiency at various 

currents can be analyzed as shown in  

Fig. 6. 

 
Fig. 4. Numerical Results: The algorithm procedure for 

providing possible solutions for power density, and filtering 

requirements meeting from level-0 to level-2 based on proposed 

method. The selected candidate will be highlighted when the 

multiplying of the concavity and the derivative of function reach 

to optimum values. The possible solutions can be used for 

running the algorithm from level-3 to level-5.    

 

Fig. 5. Simulation Results: The efficiency variations of the 

constant inductance with the minimum possible resistance, at the 

specific allocated area are depicted through the algorithm. This 

shows that a high efficient inductor can be achieved in various 

geometry configurations with different outer diameter and 

number of turns; however, smaller size is more desired to reach 

higher power density. The inner diameter of the inductor is set to 

15mm to keep the temperature rise lower than 40◦C for 18A. 

This provides a comprehensive legend for PCB embedded 

inductor designers in the defined frequency and power range. 

 
Fig. 6. Simulation Results: The efficiency variations of the 

50nH PCB embedded inductor over various ranges of currents. 

The aim is to keep the maximum temperature rise of the inductor 

lower than 40◦C 1MHz switching frequency (blue) has higher 

efficiency than 10MHz (red) one which has a higher AC 

resistance. The figure also shows the maximum theoretical 

efficiency of the PCB embedded inductor at the specific nominal 

current. 

Figure A.4: Simulation results: The efficiency variations of the constant inductance
with the minimum possible resistance, at the specific allocated area, are depicted
through the algorithm. This shows that a high efficient inductor can be achieved in
various geometry configurations with different outer diameter and number of turns;
however, the smaller size is more desired to reach higher power density. The inner
diameter of the inductor is set to 15mm to keep the temperature rise lower than 40C
for 18A. This provides a comprehensive legend for PCB embedded inductor designers
in the defined frequency and power range.



CHAPTER B: CURRENT MEASUREMENT TECHNIQUES FOR

HIGH-FREQUENCY POWER CONVERTERS

B.1 Introduction

Almost in all the power electronics applications such as power conversion in solar

Photovoltaic (PV), wind turbine systems, motor drives, hybrid electric vehicles, cur-

rent sensingâs role is highlighted significantly. Having accurate current sensing makes

controlling, protection and monitoring feasible at different levels of power electronics

systems. Modern the field of high-frequency is now more focused on the investi-

gation of alternative and contact-less measurement approaches for higher efficiency

[114, 115, 116, 117]. In traditional Si-based power converters, the frequency of the

power circuits was relatively low (<100kHz), hence the rate of is limited. Thanks

to the development of new generations of WBG transistors, switching frequency of

new converters is increasing dramatically, i.e.,>1MHz and >30V, which requires more

accurate, faster response and higher bandwidth current sensors [118, 119, 120].

There are various techniques to implement current sensing of power electronics con-

verters. Utilization of these methods depends on applications, and it could be varied

based on control strategy, overcurrent protection. This chapter focuses on possible

techniques related to high-frequency current sensing, which can be implemented onto

PCB to reach higher power density and integration. To evaluate the performance

of these techniques the following factors have been taken into account: simplicity,

response time, accuracy, power consumption, the practicality of implementation for

high-frequency converters, the sensitivity to temperature and offset adjustment, and

topology dependency. The most common techniques are: resistor-based, filter-based,

inductor-based, hall-effect based, and MR-based.
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B.2 Resisor-based current sensing

One of the simplest concepts to measure the current is resistor-based current sens-

ing. The objective of this method is to measure the voltage drop across a sense

resistor, which can be a simple representation of actual current [63, 76]. The crucial

point is the performance of the measurement resistor had to be precisely characterized

before as the characteristic of the sense resistor significantly affects the voltage drop

across that and consequently changes the current measurement. These techniques

can be effectively applied for most of the low switching frequency and high current or

high switching frequency and low current applications. There are multiple methods

for implementing this technique such as an external sense resistor, the internal resis-

tance of the filter inductor, measurement of the drain-source of transistor resistance

during turn-on Rds(on), and SenseFET [116].

In general, since the voltage drop across the resistor at high current increases pro-

portionally to the current, the ohmic losses are also very high. Even considering the

lower resistance in the main current path cannot solve the issue, as more conditioning

circuit needs to be added. But since the lower resistance provides a lower voltage

drop, this removes all the current ripple information, which cannot be practically re-

trieved by adding any additional circuits. Therefore, this method in power electronics

converters has significant issues, especially at high power and high-frequency. Fig.

B.1 shows the schematic of resistor-based current sensing.

The other method is to measure the internal resistance of the inductor in the

market. This method inherently has the lower cost because of using the same inductor

of the converter and potentially has higher accuracy. However, this method can only

measure the current across the inductor path, which primarily can be varied from

one topology to another. In other words, this technique cannot always capture the

current across the required section for monitoring. Besides, this method cannot be

implemented in high power applications and also where the switch current information
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Figure B.1: Shunt method: Schematic of external sense resistor for capturing the
inductor and output current. The voltage drop across the resistor theoretically can
represent the actual current waveform; however, this method in practice has a lot of
issues for high-frequency and high current applications.

is required. Measuring electrical resistance of MOSFETs have been used in [120]. This

technique assumes that a transistor behaves like a resistor when it is the active region.

This technique theoretically can be effective because there is no need to add a current

sensor on the power path that can reduce the cost and the loss of the system. In most

of proposed articles, this technique relies on calculating Rds(on) in (B.1):

Rds(on) =
L/W

µC(Vin − Vth)
(B.1)

where L and W are length and width of transistor channel, C is the capacitance of

oxide, µ is electron mobility, and Vin is the voltage across the switch and Vth shows

the threshold voltage of the MOSFET. However, in reality, threshold voltage and the

capacitance of oxide can be varied over the time under thermal and electrical aging.

Moreover, it has also been shown the internal resistance of transistors in both Si-based

and WBG-based technologies will be affected by junction temperature. Therefore, the
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accuracy of this method is not guaranteed due to the variable performance of Rds(on)

under hard switching, and higher temperature. The SenseFET approach has also

been implemented in various applications for MOSFET technologies shown in Fig.

B.2. In this technique, by adding another transistor with a scaled-down version of

W/L, the actual waveform can be captured. The drain and gate of the measurement

transistor would be the same as the main switch. Then, the source of measurement

transistor will be connected through a Kelvin connection to a resistor, where the

voltage drop across the resistor is representative of the main current.

Main 

Switch
Sense 

Switch

 Q1     Q2   

Gate

W/L=n W/L=1

R
sense

Figure B.2: SenseFET: General scheme of SenseFET. This technique should be
implemented in an integrated package for higher performances.

This technique could be useful at low frequency and chip design, it is not isolated,

and it has some technical challenges such as the difficulty of calibration, impedance

matching, and bandwidth limitation at discrete design. The latter comes from the

fact, and the measurement transistor typically should have much lower W/L, which

requires both transistors have the same fabrication technology.

B.3 Filter-based current sensing

The other approach for current measurement is a filter-based technique, where the

new RC filter in parallel has been added to the RL network of the output filter.

By knowing the total impedance of the inductor, the equivalent series resistor of the
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inductor, additional capacitance and resistor will be added accordingly such that the

voltage drop across the filter stage can represent the current waveform.

A new technique is proposed for accurate filtering, actively calibrate the measure-

ment, and consequently compensate the dynamic changes of passive components in

[76]. However, this approach like resistive-based current sensing method, potentially

has big challenges at high current and high-frequency due to lack of isolation, the

variability of passive components over the time, complexity for implementing in the

discrete design shown in Fig. B.3.

V
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L

Gate 1

Gate 2

Sensing 

Circuit

Figure B.3: Filter method: General schematic of filter-based current sensing. The
active calibration for the passive element is required, and the common-mode voltage
issue still exists in this approach.

B.4 Inductor-based current sensing

The other approach is induction-based methodology which introduced in various

types to induce the voltage or current in the secondary circuit as the measurement.

In wide area, these approaches can also be implemented with various technique, but

they can be categorized as three main groups: AC current transformers, DC current

transformers, and Rogowski-based current sensing techniques.
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The AC current transformer is not a new concept. This method induced the current

in the secondary winding and potentially has high performance for current measure-

ment and can be applied in many power electronics applications. Although previously

these transformers have been built in bulky, nowadays some companies like Coilcraft

released high-performance current transformer sensor (CST7030 and CST4835) in

small packages. They can measure the current at 20A, 48V, and 1MHz. However,

due to the importance of capturing the DC current of converters, they are not very

attractive for power electronics modules.

In DC current transformer, they typically have at least two cores with a rectifier,

then the voltage drop across a resistor at the measurement section can provide current

information. Due to the utilization of coil inductors, they can suffer from the satu-

ration at the high switching frequency, and their typical applications in the market

are not going beyond 100kHz. Rogowski-based current sensing, due to its inherent

simplicity, and no bandwidth limitation is among the most popular techniques in

high-frequency power converters.

The Rogowski-based current sensor typically consists of an air-core inductor with

a low number of turns, where the primary current of the conductor can induce it.

Then the picked up current information can be transformed to the voltage through an

integrator circuit. They might be equipped with a reset signal to indicate the start and

end point of integration [117, 121]. The captured voltage can be a good representative

of the actual current waveform. In literature, this technique has been implemented

successfully in many different ways, including high switching frequency WBG-based

converters. There are multiple ways to improve the performance of the sensor such as

decoupling power and control stage around the sensor area, implementing in a broader

area, or also bringing a new shielding on control section of the sensor. One of the most

common recommendations is to keep the pick-up current coil far from any magnetic

component, which gives more immunity for pick-up coil. However, these solutions
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also sacrifice the power density and bring more complexity for the measurement.

In practice measuring the inductor current and transistors are very critical for high-

frequency converters. The information can be utilized for implementing the advanced

controlling methods, or diagnostics of power switches. In the Rogowski-based method,

inducing the current in the inductor creates a mutual inductance in the power loop,

which potentially is a hazard for high-frequency converters. This comes from the

fact that any unwanted magnetic fields near the pick-up coil should be avoided to

reduce the chance of susceptibility of this method to noise. Therefore, this method

needs accurate knowledge, thorough understanding and proper design of EMI on the

converter power stage. The experimental results are reported in [67].

B.5 Hall effect-based current sensing

One of the most popular methods for measuring both AC and DC current is using

Hall-effect sensors, which works according to Lorentz force. Due to the generation of

magnetic fields in passing of current through a conductor, a voltage can be induced

across a Hall element and represents the current waveform. Hall-effect sensors due

to their low power consumption, easier implementation on high switching frequency

converters, immunity respect to noise and compact designs are desirable for both

academia and industry. In general, there are two types of the Hall-effect sensor

under open-loop and closed loop operation. Both have excellent capability to capture

high current (30A), and relatively high bandwidth (1MHz). But their sensitivity to

temperature drift and offsets will be changed accordingly. Therefore, this needs to be

considered as careful design of Hall cell geometry. These sensors have been studied at

various current, and their characteristics have been demonstrated vastly [118, 122].

Using Hall-effect sensors in high-frequency converters need careful layout consid-

erations including an intelligent decoupling and isolation of power stage and control

stage to reduce reflection of the hall-effect sensor by radiated noise and EMIs. It is

worthwhile to mention that DC current measurement could be potentially a big issue
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due to saturation at a high current level. The experimental results are reported in

[67].

B.6 Magneto resistor-based current sensing

Anisotropic Magneto-Resistors are based on metal alloys as opposed to MRs which

are based on low bandgap semiconductors such as InSb/InAs. The most widely

used AMR devices, which developed and integrated into a chip is composed of four

Permalloy (Ni0.81F0.19) AMRs in a full sensitivity Wheatstone bridge configuration

[123, 67]. MR based current sensors work on the principle of detecting the magnetic

fields generated by current traveling through a trace on the PCB shown in Fig. B.4.

The MR based current sensor is placed on top or underneath a trace carrying the

current without any conductive contact with the current trace. The low-frequency

current through the PCB trace generates a uniformly distributed magnetic field, which

passes through the sensor along the default axis and thus the sensor responds by

sensing the magnetic field [124].

Figure B.4: Magneto-Resistors sensor: General operation of the contact-less AMR
sensor: magnetic field generations at low frequency (left) and high-frequency (right)
are shown.

For high-frequency current, especially above 1 MHz, the generated magnetic field

is concentrated mostly on the edges of the trace due to the skin effect that results

in a non-uniform magnetic field distribution around the PCB trace. Consequently,

the detected magnetic field by the sensor is very weak at higher frequencies. For
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high-frequency applications, due to skin effect, the magnetic field distribution is non-

uniform and affects the sensitivity of the AMR based current sensors. Therefore,

placing the sensor on the opposite side of the PCB for the current trace is not useful

for accurate sensing above 1MHz. For better detection bandwidth and sensitivity, the

magnetic field passing through the default axis of the sensor needs to be concentrated

to make the field more uniform. Therefore, alternative and innovative magnetic con-

centration techniques need to be implemented to make the field normalized and more

uniform.



CHAPTER C: ON SELF-HEALING OF SYSTEM LEVEL INVERTERS

CONSIDERING CURRENT SENSOR INACCURACY AND AGING

DEGRADATION

C.1 Introduction

Due to global warming in todayâs world, many governments encourage the renew-

able distributed generation technologies in power networks, and PV modules have led

to a significant increase in system capacities [125, 126]. In power networks with high

penetration of PV systems, an efficient and reliable operation of the system depends

on the robust operation of the inverter system. Therefore, the robustness of inverters

should be verified during the design and operation conditions [127]. To examine the

robustness of grid-tied PV inverterâs, the comprehensive parameters are considered

as efficiency, Total Harmonic Distortion (THD), Power Factor (PF) compliance, and

Maximum Power Point Tracking (MPPT) accuracy.

The conversion efficiency has a significant impact on the robustness of PV inverters.

This fact has been verified by multiple studies on control architecture, semiconduc-

tors modules, and physical component variations [128, 129]. The harmonic distortion

analysis, as the second high impact index on PV system robustness, studied thor-

oughly in recent articles based on the power quality standards. Due to increasing

the number of switching inverters in future smart grids, THD issue will become more

severe[130, 131, 132]. Finally, PF compliance due to the reflection of distribution net-

work reliability, as well as MPPT accuracy because of its dependability on ambient

conditions and component inaccuracy, represent the robust operation of grid-tied PV

inverters [133, 134, 135, 136, 137].

Therefore the Smart Inverter Robustness Index (SIRI) is used, as a performance
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metric to evaluate the robustness of the grid-tied PV inverter systems [138]. The

goal of this work is to model current sensor aging and propose a self-healing approach

for performance improvement of the PV inverter systems. Then, a Kalman filter

estimation techniques for compensation of the error will be used to mitigate the system

error performance. The estimation method is an effective approach to improve the

robustness of the system based on the state space model of the PV inverters. This

is also helpful to build a platform for self-healing actions to enhance the system

operation.

C.2 Robustness in Grid-tied PV Inverter

C.2.1 Smart inverter robustness analysis

Since the physical variations are a consequence of the inherent randomness in elec-

trical components, to analyze the impact of these uncertainties on the performance

of PV inverters, the system is statistically analyzed. For unformulated problems,

Monte Carlo sampling method is used to provide sets of solutions with a particular

confidence level. Since this approach requires a large set of random walks, advanced

mathematical techniques should be applied to reduce the sampling time.

In this work, we use the stratified Monte Carlo, which is called Random Latin

Hypercube Sampling (RLHS). The RLHS reduces overall sampling points and even-

tually improves the confidence level in the simulation. The cumulative distribution

function of the model is divided into few equally probable sub-sections. Then, the

equal number of sampling points will be selected from these sub-sections. Therefore,

by spreading the sampling points, the minimum required sampling points will be re-

duced significantly [139, 140]. Finally, a novel SIRI parameter will be used to present

the main operational characteristics of the grid connected PV inverters as shown in

(C.1):

SIRI = Eff ∗ × THD∗ × PF ∗ ×MPPT ∗ (C.1)
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Eff ∗ =
Eff − kEff

1− kEff
(C.2)

THD∗ =
THD − kTHD

kTHD
(C.3)

PF ∗ =
PF − kPF
1− kPF

(C.4)

MPPT ∗ =
MPPT − kMPPT

1− kMPPT

(C.5)

where PF ∗ represents power factor compliance, Eff ∗ is conversion efficiency, THD∗

shows harmonic distortion, and MPPT ∗ is the maximum power generated at the

highest efficiency. For each performance characteristic, a limiting factor is defined. For

conversion efficiency, PF, MPPT effectiveness, the imitating factor is the minimum

acceptable based on standards. In our approach, the minimum acceptable conversion

efficiency for the grid-tied PV inverter is assumed 95%; however, this value can be

different based on application and configurations. The limit for PF compliance and

MPPT effectiveness is defined as 99%. Finally, for the THD term, 5% is considered

as the maximum acceptable value based on IEEE standard 519-1992. Assuming all

positive terms of calculating in (C.1), SIRI results in a positive product which reflects

the robust operation. Relative SIRI value defines the robustness operation of the PV

inverter, and the maximum is limited to +1. However, if one or more terms of (1) get

negative values, the inverter operates outside of the robustness region, and the SIRI

will be flagged as -1 [138].

C.2.2 Inverter system modeling and challenges description

The general structure of the PV inverter controller model is proposed in Fig. C.1.

This scheme consists of two cascaded control loops. In this figure, passive compo-
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Figure C.1: PV inverter schematic: The proposed scheme for a single phase in-
verter with the control architecture

nents and sensing elements that could impact reversely on the inverter robustness are

highlighted. The focus of this work is on output current sensing inaccuracies, which is

shown as black. The mathematical modeling of state space equations are formulated

to quantitatively track the single-phase inverter operation. The state variables are

selected based on the DC input voltage, and output current injections with Id and Iq

components thoroughly discussed in [141, 142].

The controller effectiveness of a PV inverter could be affected directly by the current

control loop. The previous study in AC-Stacked grid-tied PV inverters shows, with

less than 18% measurement error, the converter enters to non-robust operation region.

The condition could be more severe for single-phase PV inverters, with only 8%

inaccuracies in the current measurement, the inverter loses its robustness. This study

also shows that by using a proper filter algorithm, there is a chance to improve the

current sensing performance and enhance the robustness of the PV inverters [143].

The current sensor response in two different scenarios with a minor and major co-

variance errors are depicted in Fig. C.2. This figure confirms by applying the Kalman
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Figure C.2: Simulation results: The current sensor response under two different
covariance measurement errors (1% and 10%). blue: ideal waveform, green: actual
system reference response, red: modified system response correction with Kalman
filter estimation.

filter estimator to denoise the current sensor output, the overall system response will

be improved. The proposed model focuses on the manufacturer inaccuracy and sen-

sor variations because of physical changes such as temperature and humidity. The
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results also show when the plant observes the lower covariance sensor noise, the mod-

ified estimation is closer to the ideal waveform as expected. Although this model

is a great example to confirm the potential of the estimation technique to improve

the quality of the output current waveform, this method does not comment on the

inaccuracy variations caused by the sensor aging. The reason refers to the sensitivity

of the proposed model based on the applied filtering method. As the Kalman filter

algorithm is mainly dependent on the physical model, and inaccuracy of the system

modeling will result in wrong outputs. Therefore, there is a need to make a more

precise model to improve the quality of the sensing limitations in the long-term runs.

C.3 Current Sensor Modeling

C.3.1 Sensor aging

The current sensor accuracy and its limitation have been discussed in articles as

bandwidth limitations, temperature drift, and hysteresis saturation [63]. However,

there are some other ambient condition variations such as temperature and humidity

that effect on the current sensor features and inaccuracy.

For instance, in most of the Hall-Effect current sensors, zero current offset error,

sensitivity changes, and non-linearity variations of the sensor respect to temperature

have been reported [63]. For MR current sensors, non-linearity, or sensitivity to mag-

netic noise spectrum interference have been discussed in details in [67]. Lack of inter-

nal voltage references for flux gate sensors, or magnetic sensitivity in Rogowski-based

current sensors are the most important limitations in the advanced sensors[76]. Al-

though the new techniques for hybrid Rogowski-MR current sensor have been showed

superior performance compared to the existing sensors, they are not commercially

available yet. Therefore, it is crucial to model the current sensor performance due to

the susceptibility to a noise and decouple them from system process noise [144].

In this study, a Hall-Effect current sensor (ACS730) is chosen due to its excel-

lent performance under electromagnetic interfaces generated by the high switching
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frequency inverters, and its relatively high accuracy. Based on the manufacturer

datasheet, three different parameters of zero current offset inaccuracy, sensitivity

changes, and non-linearity variations of the sensor are the main source of inaccura-

cies [145]. The absolute error of the sensor is represented as:

Eabs = Eoff × Esen × Elin (C.6)

where, Eoff , Esen and Elin are zero current offset changes, sensitivity, and non-

linearity variations, respectively. Therefore, the normalized covariance matrix of mea-

surement error can be made accordingly. Since PV inverters will be used during days,

the estimation modeling is derived based on white random error generation within the

temperature range 10◦C−50◦C. This means the normalized covariance measurement

matrix is modeled with (10% covariance error). Then, the updated observable matrix

by applying filter gain will be replaced with measurement of the absolute value.

-
+

Voltage 

Regulator

Hall 

Element
Condition Ciruits

Figure C.3: Current sensor model: The scheme of Hall-Effect current sensor for
age modeling.

For the aging model of the Hall-Effect sensor three major sections are consisting of

a voltage regulator, Hall element, and the conditioning circuits as shown in Fig. C.3.

Since the voltage regulator aging typically results in system trip protection, we focus

only on the remaining items.

The sensitivity of the Hall-element could be varied based on the geometry and the
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Figure C.4: Self-healing scheme: The proposed scheme for modified model of the
PV inverter system considering the sensor characteristics and Kalman filter estimator.

sensor characteristics. The sensitivity of non-linear pickup resistance Hall element is

also a function of internal resistance voltage, temperature and magnetic flux density,

which follows as (C.7):

RPU = f(V, T )× (1 + αB2) (C.7)

where V shows the resistor internal voltage drop across the Hall element, T shows

the sensor operating temperature, B is the magnetic flux density of the Hall element,

and α is the empirical parameter, which depends on the sensor design [146]. Based

on the manufacturer information since the coercivity of magnetic polarization has

high impact on the sensor inaccuracy over the time [147], therefore we modeled only

magnetic flux density changes in (C.8):

∆B = (1− β∆V ) (C.8)
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where as β is the calibrated device sensitivity, and ∆V shows the voltage across the

applied unknown field and the zero Gauss [148]. The error model for aging of the

Hall element is simplied as follows:

∆RPU = f(B̂)V,T (C.9)

where f(B̂)V,T shows the sensitivity changes of the Hall element due to magnetic

flux density variations, assuming the normalized temperature and voltage changes

are negligible.

Since the electronics circuits for the calibration also have degradation over the time,

the model for Silicon-based Integrated Circuits is proposed as here:

∆MTTF = R0exp(
−Ea
kT

) (C.10)

where ∆MTTF represents the median time to failure for the Integrated Circuits, Ea

is the activation of the energy for the Silicon, T is the operating temperature of the

sensor, k is a Boltzmann constant, and R0 is the constant values that will be derived

empirically based on the device characteristics [149, 150].

By applying all the correlations from (C.6)-(C.10), the sensor characteristics are

provided as:

V ∗S = VS + (1− |Eabs|10)×∆RPU(t)×∆MTTF (t) (C.11)

where as V ∗S shows the modified sensor measurement output, Eabs|10 shows the abso-

lute error of the sensor with 10% white noise covariance, ∆RPU(t) and ∆MTTF (t)

are the error degradation of the sensor sensitivity over the time.
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C.3.2 Filter compensation and SIRI performance

In this section, a Kalman filter algorithm is designed to increase the current sens-

ing accuracy and consequently improve the system robustness. The Kalman filter

estimates unknown mathematical parameters with limited measurements and speeds

up the response to disturbances. The Kalman filter is mostly running an algorithm

with the proposed model and calculating the residual differences. Fig. C.4 shows how

the parameters for Kalman filter are formulated. While the algorithm is running, the

convergence of developed system reaches to a constant value provided by measure-

ments and system process. Then the recursive equations will be updated to achieve

the proper output estimation. The space vector x̂ represents the state transition of

the model. The propagator Ak matrix shows the estimate of the state of the next

time interval as k + 1. Furthermore, the covariance matrix of the state estimation

is called Pk, and Qk is a normalized covariance matrix of sensor noise introduced by

vk. Here, Rk is a normalized covariance matrix of the measurement error, and state

transitions should be updated based on the proposed recursive equations [151]. Table

C.1 summarizes the parameter selections for system modeling and calibrations.

Table C.1: Selected parameter for model development

Items Parameter Values Unit
1 Ea 0.7 e.V
2 α 0.1-0.3
3 β 0.001-0.005
4 T 323 K
5 k 1.38× 10−23 m2Kg/s2K

To quantify the impact of robust system operation, a single phase grid-tied PV

inverter was modeled in MATLAB Simulink. Since robustness analysis is a statisti-

cal analysis and requires several operating conditions, it is not practical to perform

the analysis on hardware setup. Therefore, simulation models verified by hardware

testbeds in the nominal operating point and statistical analysis is also performed on
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the validated simulation model. In an individual PV inverter, the input voltage of

the inverter is stabilized by a DC capacitor. The inverter switches at 40kHz, and the

output voltage is filtered out by an LC filter.

Number of Cycles

Number of Cycles

Output 

Current

Output 

Current

System response considering aging with covariance 10%

Number of Cycles

Output 

Current

Sensor Aging

(a)

(b) (c)

Figure C.5: Simulation results: The estimation results considered by a Kalman
filter to the modified model of current sensor aging. The system response is mod-
eled with 10% covariance error of the current sensor and shown based during the
aging process. blue: ideal waveform, green: actual sensor measurement, red: system
response correction with Kalman filter without aging considerations, black: system
response correction with Kalman filter considering the aging process.

Table C.2 presents the impact of increasing current sensing inaccuracies on the

robust operation of a single phase grid-tied PV inverter. As it shown in the table,

increasing inaccuracies will reduce MPPT precision and system efficiency. This system

operates in the robust region till 7% standard deviation, which is the boundary of

robustness (Fig. C.5). For the inaccuracies more than 7%, the system enters in

the non-robust region where SIRI sets on -1. Now by applying the sensor model

degradation, the improvement can be achieved in the sensor response. The robustness

analysis for system effectiveness performance was examined and the results presented
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in Table C.3. The new results show the overall improvement in system robustness.

The analysis also shows even though the system still enters the non-robust region, this

happens for more severe sensor error around 11%, which is higher than the previous

case.

Table C.2: Robustness comparison for single phase PV inverter under different current
sensing inaccuracies without compensation

Standard Deviation Efficiency PF THD MPPT SIRI
0% 98.23% 0.9996 1.30% 99.93% 0.4282
1% 97.13% 0.9997 1.37% 99.65% 0.1211
5% 96.90% 0.9994 1.40% 99.56% 0.096
7% 96.37% 0.9993 1.60% 99.12% 0.0237
8% 96.09% 0.9992 1.60% 98.95% -1

Table C.3: Robustness comparison for single phase PV inverter under different current
sensing inaccuracies with compensation

Standard Deviation Efficiency PF THD MPPT SIRI
0% 98.23% 0.9996 1.30% 99.93% 0.4282
1% 98.00% 0.9997 1.37% 99.66% 0.1718
5% 97.68% 0.9994 1.40% 99.59% 0.1118
7% 97.33% 0.9993 1.60% 99.15% 0.0271
8% 96.95% 0.9992 1.60% 98.96% 0.0226
10% 95.85% 0.9989 1.65% 98.75% 0.0112
11% 95.37% 0.9989 1.66% 98.59% -1
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