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ABSTRACT 

HANNAH E. LUCE. Establishing Time-Continuous Normative Scores for Teaching Strategies 
GOLD® Using a Multilevel Growth Curve Modeling Approach.  

(Under the direction of DR. RICHARD G. LAMBERT) 
 

 
Young children are assessed to meet federal mandates and inform policy decisions, 

provide teachers with useful information to make instructional decisions and set reasonable 

learning goals, and facilitate communication with families. While young children are frequently 

assessed using whole-child assessments which often yield criterion-referenced score 

interpretations, norm-referenced score interpretations can help teachers understand relative 

performance and set reasonable goals for growth. Although researchers have provided validity 

evidence for both criterion- and norm-referenced score interpretations for one widely used early 

childhood assessment, GOLD®, current national normative scores lack precision for several 

reasons, including the use of two-time-point and cross-sectional data. To improve estimates, a 

nationally representative sample of assessment records from 18,000 children ages birth through 

kindergarten was fitted to a series of hierarchical linear models (HLMs) to establish normative 

estimates conditioned on months of age and instruction. Secondary study purposes included 

making inferences about the nature of growth from birth through kindergarten, providing 

evidence of the most effective time metric for modeling developmental growth, and examining 

the relationship between child-level characteristics and normative scores. Results indicated that 

a) HLMs provide reasonably valid normative ability and growth estimates, b) developmental 

growth, as measured by GOLD®, generally slows from ages birth through three years and 

accelerates from age three through age six, c) the most effective time metric for modeling 

developmental growth depends on the age band and domain of development, and d) child-level 

characteristics, including, race/ethnicity, gender, and primary language are associated with 
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significantly different patterns of preliminary performance and/or growth for children who are 

one- or two-years of age and older. 
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DEFINITIONS 

Authentic assessment: is used to “help teachers observe the progress children make through a 

process that emerges naturally. Evidence of development and learning is gathered during 

everyday instructional activities” (Lambert, 2020, p. 7). 

Balanced data: each participant in the study has the same number of measurements (O’Connell 

et al., 2008). 

Criterion-referenced: “when interpretations are criterion-referenced, absolute score 

interpretations are of primary interest. The meaning of such scores does not depend on rank 

information. Rather, the test score conveys directly a level of competence in some defined 

criterion domain” (American Educational Research Association (AERA) et al., 2014, p. 76). 

Developmental assessment: A measure used to understand a child’s developmental level in 

comparison to progressions that demonstrate typical or expected developmental behaviors given 

age or grade (Lambert, 2020). 

Enhanced Assessment Grant: A competitive federal grant program designed to support states 

in improving the quality of assessment programs designed to measure the academic achievement 

of elementary and secondary school students (Education Department, 2016). 

Every Student Succeeds Act (ESSA): Signed into law in 2015, the Act scaled back the federal 

government’s role in education policy and granted more autonomy to states and schools. 

However, states and schools were still responsible for establishing accountability systems which 

included proficiency on state tests, as well as several other indicators (Klein, 2016). 

Formative assessment: “a process used by teachers and students during instruction that provides 

feedback to adjust ongoing teaching and learning to help students improve their achievement of 

intended instructional outcomes” (AERA et al., 2014 as cited in Lambert, 2020, p. 7).  
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Good Start Grow Smart: Introduced by George W. Bush in 2002, Good Start Grow Smart was 

an initiative designed to strengthen Head Start, improve early education through partnerships 

with states, and establish avenues for disseminating knowledge of best practices in early 

childhood education to teachers, caregivers, and parents (Executive Office of the President, 

2002). 

Growth curve modeling (GCM): “is a statistical method for analyzing change over time using 

longitudinal data... Growth curve models focus both on similarities among individuals, captured 

by the mean structure, and on differences among individuals, captured by the covariance 

structure” (Diakow, 2018). 

Latent growth curve (LGC): An approach to growth curve modeling that can be fitted within a 

structural equation modeling framework and used to estimate linear or curvilinear growth 

(O’Connell et al., 2008).  

Multilevel model (MLM): An approach to growth curve modeling which includes an extension 

of the linear regression model and accommodates data with natural or artificial nesting structures 

(O’Connell et al., 2008). 

No Child Left Behind (NCLB): instated in 2002, the law reauthorized the former Elementary 

and Secondary Education Act and “effectively scaled up the federal role in holding schools 

accountable for student outcomes” (Klein, 2015, no page number).  

Norm-referenced: “when scores are norm-referenced, relative score interpretations are of 

primary interest. A score for an individual or for a definable group is ranked within a distribution 

of scores or compared with the average performance of test takers in the reference population 

(e.g., based on age, grade…)” (AERA et al., 2014, p. 76). 
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Race to the Top Early Learning Challenge: A federally funded grant program designed to 

improve the quality of early learning, by a) increasing the number of disadvantaged children in 

high-quality infant, toddler, and preschool programs, b) designing and implementing a system of 

high-quality early learning experiences and services, and c) ensuring assessment aligns with 

research-based practices (Office of Early Childhood Development, 2019). 

School Readiness Act of 2003: Passed in 2003, the School Readiness Act amended the previous 

Head Start Act. The revised Act included many amendments that pertained to funding 

allocations, community outreach and services, staff qualifications and development, evaluation 

activities, and the implementation of standards-based learning and assessment activities (H.R. 

2210 The School Readiness Act, 2003). 

Time-continuous normative score: A normative score that is conditional on variables that 

change with time, such as age, grade-level, or instructional exposure (Thum et al., 2020).  

Time-structured: data are collected at equal intervals for all participants (O’Connell et al., 

2008). 

Time-varying covariate: An independent variable that may influence the dependent variable 

and may change over time, e.g., age, instructional exposure or changing schools (O’Connell et 

al., 2008).  

Time-invariant covariate: An independent variable that may influence the dependent variable 

and does not change over time, e.g., gender, race or ethnicity (O’Connell et al., 2008). 

Whole-child assessment: “a balanced way to measure and track a child’s progress in all 

developmental domains… Unlike traditional subject-based assessments, whole-child assessments 

allow teachers to understand the complete picture of a child” (Marrs, 2020, no page number).    



CHAPTER ONE: INTRODUCTION 

In 2002, President George W. Bush signed the No Child Left Behind (NCLB) Act which 

reinstated the previous Elementary and Secondary Education Act. The new legislation was 

designed to facilitate better outcomes for all students by mandating standards-based education 

reform and increased accountability through rigorous testing programs (Klein, 2015). The new 

focus on school- and state-accountability increased the need for tests that measured student 

achievement and demonstrated how children, schools, and states increased achievement over 

time. While NCLB was later replaced by Every Student Succeeds Act (ESSA), the use of 

rigorous and standards-based testing programs and the need to demonstrate continuous 

improvement remains a cornerstone of the American education system.  

Although NCLB was drafted to improve educational outcomes for K-12 students through 

standardized testing programs and increased accountability measures, early childhood education 

also experienced significant changes. After NCLB was signed into legislation, a cascade of 

federal initiatives and grants ensued that enticed states to develop content standards and 

comprehensive assessment plans for early childhood education programs (Klein, 2016). Policy 

makers believed that enticing states to develop and implement early content standards, teach 

language, literacy, and mathematics content, and monitor progress toward rigorous learning 

objectives, would provide children with the skills needed to reach greater levels of proficiency 

by the time they participated in state-wide achievement testing programs in third grade and 

beyond (Stipek, 2006).  

While federal-level policies have required states to develop, support, and maintain testing 

programs, individual states, districts, schools, and teachers have also developed and/or adopted 

additional measures to understand how young children learn and grow and to inform local-level 

1



decisions. Teachers and schools can use ability and growth data to inform instructional decisions, 

identify strengths and needs (Kohli et al., 2015; Ebel, 1962), monitor progress (Shanley, 2016), 

set reasonable goals for growth (Thum & Kuhfeld, 2020), and communicate with families and 

other stakeholders (Burts et al., 2016; Lambert, 2020). 

Although achievement and growth data can be useful for many purposes, test scores 

alone are not meaningful. Instead, teachers, policy makers, and other stakeholders must interpret 

scores within a given context to make inferences about children. Test score interpretations that 

involve comparing an individual child’s score to a group of scores to determine relative 

performance can be described as norm-referenced score interpretations (Lok et al., 2016). Norm-

referenced interpretations allow for inferences regarding relative standing or growth. Conversely, 

some test scores are best interpreted by referencing predetermined learning objectives, standards 

or criterion. These tests are referred to as criterion-referenced assessments, which provide 

information about a child’s level of ability compared to a predetermined benchmark (AERA et 

al., 2014). While these score interpretations differ, “in practice… there is not always a sharp 

distinction. Both criterion-referenced and norm-referenced scales may be developed and used 

with the same test scores if appropriate methods are used to validate each type of interpretation” 

(AERA et al., 2014. p. 96).  

Furthermore, researchers have found that both criterion- and norm-referenced score 

interpretations can work together to support teaching, learning, and a broader system of 

accountability (Thum & Kuhfeld, 2020). Criterion-referenced score interpretations can provide 

teachers with specific and targeted information about each child’s unique strengths and 

weaknesses at the item-level and aid in instructional planning (Ebel, 1962; Kohli et al., 2015), 

while teachers can use norm-referenced assessment data to understand relative performance and 
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growth over time (Lambert, 2020), and set reasonable learning goals given child-level 

characteristics (Thum & Kuhfeld, 2020). Together, these unique score interpretations help 

educational stakeholders support teaching and learning and factor into a broader system of 

accountability.  

Within the context of early childhood education, teachers frequently use criterion-

referenced assessments to understand children’s knowledge, skills, and abilities across domains 

of learning and development. Criterion-referenced score interpretations allow early childhood 

educators to understand each child’s current developmental level or academic ability in 

comparison to predetermined standards. However, criterion-referenced scores do not frequently 

yield data that allow teachers to meaningfully compare past and present performance, or 

understand reasonable growth given the child’s current level of performance (Lambert, 2020; 

Thum & Kuhfeld, 2020). Furthermore, criterion-referenced assessments that feature many items 

or objectives can yield an overwhelming amount of information, making it challenging for 

teachers to draw inferences about overall performance. Teachers may find additional score 

interpretations, such as domain-level norm-referenced interpretations, useful in understanding 

overall performance and what levels of performance are achievable, given child characteristics 

and patterns of growth over time (Thum & Kuhfeld, 2020).  

Problem and Purpose 

Teaching Strategies GOLD® is the most widely used authentic assessment in early 

childhood education settings. During the 2021-2022 academic year, over 1.3 million children 

were assessed using GOLD®, including children from all 50 states, D.C., and Puerto Rico. Over 

time researchers have examined the measurement properties of GOLD® scores and established a 

wealth of validity evidence for the use of GOLD® as an authentic, formative, developmental, and 
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criterion-referenced assessment with children ages birth through third grade (Lambert, 2020; 

Lambert, 2017), including children from diverse linguistic and racial/ethnic backgrounds 

(Lambert, 2022), and children with disabilities (Kim et al., 2015; Lambert, 2022). However, in a 

recent technical manual, Lambert (2020) also provided preliminary validity evidence in support 

of norm-referenced score interpretations. National normative ability and growth scores were 

established using quartiles, or fourths of the distribution of scores for each age band and major 

domain of learning or development presented in the assessment system. Although teachers can 

use the current normative ability and growth scores provided in the manual to understand relative 

performance, current estimates lack precision and therefore utility, for four primary reasons, 

including: 

1) Lambert (2020) used cross-sectional data to establish ability and growth norms. 

However, researchers have found that growth norms based on cross-sectional data are not 

sufficient for estimating intra-individual growth because researchers cannot rule out 

competing explanations for growth over time (e.g., different curriculum, historical events, 

or attrition (Singer & Willet, 2003; Thum & Kuhfeld, 2020).  

2) Current growth norms were established by taking the difference between pairs of data 

points, e.g., fall and spring scaled scores. Yet, researchers have found that conducting 

longitudinal data analysis using two-time-point data is unfavorable when three or more 

measurement occasions are available (Curran et al., 2010; Singer & Willet, 2003). 

Researchers have suggested that difference scores, obtained by subtracting the pretest 

score from the posttest score, may be vastly unreliable, as both pre- and post-test scores 

are subject to measurement error (Lord, 1956). Furthermore, researchers have argued that 

the process of change cannot be captured by two-time-point data (Singer & Willet, 2003). 
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3) The third problem stems from varying assessment windows. Each district or program that 

uses GOLD® has a unique window for finalizing fall, winter, and spring assessment 

scores. For example, while some programs may finalize fall ratings in early October, 

other programs may finalize ratings in late December. Currently, normative scores 

provide teachers with information about average performance at the 25th, 50th, and 75th 

percentile at the average assessment occasion for fall, winter, and spring for each age 

band. However, teachers working in programs that finalize assessment scores early may 

draw the false conclusion that their children are underperforming when compared to their 

age-level peers. Conversely, teachers working in programs that finalize assessment scores 

late may draw the false conclusion that their children are outperforming their age-level 

peers.  

4) Finally, Lambert (2020) provided norms by GOLD® age bands, which include, birth- to 

one-year-old children, one- to two-year-old children, two- to three-year-old children, 

preschool (three- to four-year-old children), pre-k (four- to five-year-old children), 

kindergarten (five- to six-year-old children), and first grade (six- to seven-year-old 

children). However, the youngest and oldest children served in each age band may be 

nearly a year apart. Given that children typically learn and develop rapidly in the early 

years (Center on the Developing Child, 2016), normative scores provided for one-year 

age bands that capture average development yield estimates that lack precision for 

teachers with children who are younger or older than their peers.  

Due to the limitations of current national normative ability and growth estimates, the 

primary purpose of this study was to establish time-continuous normative ability and growth 

scores for the typical child at each point in time from birth through third grade. By increasing the 

5



precision of national normative scores, teachers can make more meaningful comparisons 

between their children and other children who have received a similar amount of instruction or 

who are approximately the same age. Furthermore, teachers can use the ability norm estimates to 

determine expected growth between any two months of age or instruction within the same 

academic year (Thum & Kuhfeld, 2020). Secondary study purposes included a) identifying the 

most effective time metric for modeling growth across domains of learning and development for 

children ages birth through kindergarten, b) making inferences about the nature of the growth 

process (e.g., shape of the growth trajectory) from birth through kindergarten across domains of 

learning and development, and c) exploring whether or not and to what extent child-level 

characteristics are associated with different growth trajectories. 

Research Questions 

1. What do model-based estimates suggest the average child will do at each point in time

from birth through kindergarten, across each of the six major domains of learning and

development presented in the GOLD® assessment system?

2. Which time metric is most effective for modeling growth, approximate instructional

exposure or age in months, from birth through kindergarten?

3. What do hierarchical linear model-estimated slopes from age-separated cohort data

suggest about the shape of the developmental pathway from birth through kindergarten

across domains of learning and development?

4. How do growth trends differ between subgroups of children (e.g., by race/ethnicity,

gender, and primary language)?
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Significance 

 Results from the present study seek to make five significant contributions, including, a) 

equip teachers and administrators with more precise normative ability and growth estimates, b) 

provide additional validity evidence for the use of GOLD® normative scores with children ages 

birth through kindergarten, c) establish evidence in support of the best practice for modeling 

change over time in young children’s developmental and academic abilities, d) establish 

preliminary evidence in support of the best model for demonstrating longitudinal growth from 

birth through kindergarten across domains of learning and development, and e) provide evidence 

of differences in growth trends by subgroups of children. 

Increased Utility of Normative and Growth Scores 

First, the results of this study, including updated tables with time-continuous normative 

scores for each major domain of learning and development and age band, seek to equip teachers 

with more precise normative ability estimates. In the presence of more precise estimates, 

teachers can draw more meaningful conclusions about relative performance given a child’s age 

or instructional exposure. New estimates may be particularly useful for teachers who finalize 

ratings earlier or later than average or have children who are younger or older than their grade 

level peers. For example, a teacher who finalizes ratings in December could use the instructional 

norms to determine the expected domain-level scaled scores for pre-k children after four months 

of instruction. By using the normative scores corresponding to four months of instruction rather 

than the average fall assessment occasion, she could obtain estimates that were reflective of the 

amount of instruction her children actually received. Then, when she compared her children’s 

scores to the estimates corresponding to four months of instruction, she could quickly determine 

which children may need additional support to meet grade-level expectations. 
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Similarly, in the presence of more precise estimates, conditioned on months of age and 

instruction, teachers could also draw more meaningful conclusions about expected growth using 

any two normative estimates within the same age band. For example, a kindergarten teacher who 

finalizes fall scores in September and winter scores in January could subtract instructional 

estimates corresponding to one month of instruction from estimates corresponding to five months 

of instruction to determine how many scale points, on average, children gain from fall to winter 

for each domain of learning and development. Next, she could examine how many scale points 

her children gained between fall and winter and determine which children may need additional 

support to meet expected growth between January and the end of the year in June. 

Finally, administrators can also use normative ability and growth scores to understand 

aggregate performance and growth trends. For example, a district-level administrator whose pre-

k teachers finalized assessment scores in September, October, and November could determine 

whether average performance across domains of development and classrooms looked similar 

even though assessment scores were finalized at different points in time. Similarly, 

administrators whose pre-k teachers finalized fall assessment scores in September and October 

and spring scores in May, could calculate expected growth for children across seven and eight 

months of instruction respectively to determine whether children, on average, across classrooms 

demonstrated patterns of expected growth.  

While the examples above are not exhaustive, they highlight how the new time-

continuous normative ability and growth estimates could be used to draw more meaningful 

conclusions about relative performance and growth. Compared to previous estimates which only 

showcased typical performance at the average fall, winter, and spring assessment occasions, the 
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new estimates provide substantially more flexibility, thus providing more meaningful 

comparisons.  

Validity Evidence 

 According to researchers, “it is commonly observed that the validation process never 

ends, as there is always additional information that can be gathered to more fully understand a 

test and the inferences that can be drawn from it” (AERA et al., 2014, p. 21). Within the context 

of the present study, evidence of the stability and accuracy of parameter estimates, and 

subsequent national normative estimates is provided to further substantiate the norm-referenced 

validity argument. While future research should seek to examine the appropriateness, usefulness, 

and meaningfulness of norm-referenced score interpretations for children ages birth through 

kindergarten, the current study posits valid and reliable estimates which are prerequisite to 

supporting relative score interpretations. 

Modeling Time 

Additionally, results from the present study provide evidence of the best practice for 

modeling children’s developmental and academic growth from birth through kindergarten. While 

researchers have frequently modeled older children’s growth as a function of grade level (Mok et 

al., 2015; Shanley, 2016; Thum & Kuhfeld, 2020), young children’s growth is closely related to 

age (Harkness et al., 2013), and changes rapidly (Center on the Developing Child, 2016). Given 

that young children within the same classroom may vary in age by a full year and development is 

closely associated with age, modeling ability estimates as a function of age in months may yield 

more precise estimates (Hujar et al., 2021; Singer & Willet, 2003). Furthermore, while 

instructional exposure is a significant predictor of academic abilities in mathematics and reading 
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for older children (Thum & Kuhfeld, 2020), researchers have not examined the association 

between instructional exposure and developmental growth for young children.  

Nature of Growth 

 Furthermore, while the present study used HLMs to model typical developmental growth 

from the beginning to the end of each academic year, many researchers have fitted multi-year 

longitudinal data to polynomial models to adequately capture the deceleration of growth over 

time (Mok et al., 2015; Shanley, 2016; Thum & Kuhfeld, 2020). While this type of analysis 

requires assessment records from the same cohort of children year after year (Mok et al., 2015; 

Shanley, 2016; Thum & Kuhfeld, 2020) to rule out competing explanations of growth over time 

(Singer & Willet, 2003), inferences about the nature of the growth process are made. Results 

from the present study not only provide evidence of the nature of growth, as measured by 

GOLD® across domains of learning and development from birth through kindergarten, but also 

may aid in model selection for future research studies using multi-year longitudinal GOLD® data. 

Subgroup Differences  

 Finally, GOLD® was developed and has been validated for children ages birth through 

third grade (Lambert, 2020; Lambert, 2017), including children from diverse racial/ethnic and 

linguistic backgrounds (Lambert, 2022) and children with disabilities (Kim et al., 2013; Lambert, 

2020). Researchers have examined and provided evidence of negligible levels of differential item 

functioning between subgroups of children (Lambert, 2022). Additionally, researchers have 

provided evidence of measurement invariance between subgroups of children, including, boys 

and girls, children who are native and non-native English speakers, and White children and 

children of color (Lambert, 2022). Yet, researchers have not examined how growth trajectories 

differ by subgroup. Results from the present study contribute evidence of typical growth 
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trajectories by notable subgroups of children, including, boys and girls, children whose primary 

language is English, Spanish, or other, and children who belong to different racial and ethnic 

groups. Given evidence of invariant measurement between boys and girls, White children and 

children of color, and native and non-native English speakers, latent means can be compared 

meaningfully to understand true differences in preliminary development and growth rates over 

time (Pirralha, 2020).  

Summary of Methodology 

A series of hierarchical linear models (HLMs) were used to estimate average or typical 

performance at each point in time from birth through kindergarten across the six major domains 

of learning and development presented in the GOLD® assessment system. Two-level models 

were used to nest assessment occasions (level one) within individual children (level two). Across 

models, the outcome variable, Social-Emotional, Physical, Language, Cognitive, Literacy, and 

Mathematics GOLD® domain-level scaled scores, were modeled as a function of either age in 

months or months of approximate instructional exposure. HLMs were specified for each age 

band, domain of learning or development, and month of age or instruction, resulting in 72 

models (e.g., Kindergarten Unconditional Mathematics Age in Months Growth Model or 

Kindergarten Unconditional Mathematics Instructional Exposure Growth Model). Next, HLMs 

were used to understand average developmental level prior to instruction (intercept) and average 

rate of growth (slope) for every month of instruction and average developmental level for the 

youngest child in each age band (intercept) and average rate of growth (slope) for every 

additional month of age. Pseudo-r2 values and Akaike Information Criterion (AIC) compared 

across non-nested models to determine which time metric accounted for more variation in the 

outcome, domain-level scaled score, for each age band and domain of development. Next, linear 
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growth rates from age-separated cohorts were examined sequentially to make inferences about 

the nature of developmental growth, as measured by GOLD®. Finally, child-level characteristics, 

including, gender, race/ethnicity, and primary language, were dummy coded and modeled at 

level two to examine differences in average primary performance and growth rate over time by 

subgroup membership.  

Delimitations 

The primary purpose for the current study was to model typical development at each 

point in time from birth through kindergarten. Although GOLD® is a rater-mediated assessment 

and researchers have found children’s scores are subject to significant rater effects (Hujar et al., 

2021), rater-effects were not examined or modeled within the current study. To understand 

typical growth while minimizing rater-induced nesting effects, two strategies were used. First, 

only children who shared a rater with no more than 24 other children were eligible to be 

sampled. Next, frequencies were reviewed to examine how many children in the final sample 

shared the same rater. Results suggested most teachers in the sample assigned a rating to one 

child (n=9,067, 50.37%), two children (n=3,934, 21.86%), or three children (n=1,484, 8.24%). 

While not in the scope of the current study, which focused on average ability and growth 

estimates regardless of rater behavior, future research should seek to use three level HLMs to 

nest assessment occasions (level one) within individual children (level two) and children within 

raters (level three) to understand how rater effects contribute to children’s preliminary 

performance and growth trajectories over time. This type of study would be aided by additional 

information about raters (e.g., years of teaching experience, level of education, and interrater 

reliability certification status). 
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Limitations 

The current study used secondary data to a) develop time-continuous normative scores, b) 

provide evidence of the most effective time metric for modeling young children’s developmental 

and academic growth, c) establish preliminary evidence in support of the nature of the growth 

process from birth through kindergarten across domains of learning and development, and d) 

provide evidence of differences in growth trajectories by subgroups of children. However, any 

time researchers engage in secondary data analysis, where data were collected for other 

purposes, limitations can arise. Within the context of the current study, there are five data-

imposed limitations and one contextual limitation. Data-imposed limitations are summarized 

below and discussed in greater detail in Chapter Three. The contextual limitation is discussed 

fully below. 

Data-imposed limitations include, a) ability and growth estimates could not be 

established for first-, second-, and third-grade children, as very few children at these grade levels 

were assessed using GOLD® during the 2021-2022 academic year, b) longitudinal data including 

no more than three assessments per child placed limitations on the structure of growth models 

and reliability of model-estimated growth parameters, c) children belong to age-separated 

cohorts, placing limitations on inferences about the nature of the growth process from birth 

through kindergarten, d) GOLD® data tend to include a greater proportion of low-income 

children than the general population, therefore limiting the generalizability of normative 

estimates to the broader population of children ages birth through kindergarten, and e) 

assessment data for Asian children in birth- to one-year-old and kindergarten classrooms was 

limited, therefore the sample for the present study slightly underrepresents these populations of 

children. 
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The final limitation is contextual and includes the impact of the COVID-19 pandemic. 

Using 2021-2022 assessment data to establish normative scores may yield atypical results. As a 

direct result of the pandemic, many children did not have typical early childhood care 

experiences. Many children were at home with family members, and some preschool and pre-k 

programs moved to hybrid or online-synchronous instruction. Future research should seek to 

replicate the current study, using data that are more representative of children’s learning and 

development who have engaged in typical early childhood educational experiences.  

14



CHAPTER TWO: LITERATURE REVIEW 

This chapter provides an overview of relevant literature on assessment practices in early 

childhood, trends in child development and academic abilities, and methods for modeling 

children’s growth over time. A thorough review of extant literature on the topics outlined above 

provides context for this study which sought to model typical development at each point in time 

from birth through kindergarten across the six major domains of learning and development 

presented in GOLD®. This research aims to provide teachers with an additional resource to a) 

make decisions about children, b) set reasonable goals for growth, and c) communicate with 

families and other stakeholders. Results also aim to inform scholarly methodological literature 

which is rather void of studies that examine young children’s academic and developmental gains 

using a multilevel modeling approach. 

Assessment in Early Childhood 

After NCLB was signed into legislation, a series of federal initiatives and grants were 

created to entice state-level officials to develop and enhance early childhood standards and 

assessment practices. Federal initiatives, including Good Start Grow Smart and The School 

Readiness Act called upon states to develop early learning standards in the areas of Mathematics, 

Language, and Literacy (H.R. 2210 The School Readiness Act, 2003; Stipek, 2006). 

Additionally, federal grant programs, such as the Race to the Top Early Learning Challenge and 

the Enhanced Assessment Grant provided states with additional funds to develop comprehensive 

early childhood assessment systems, including Kindergarten Entrance Assessments (Hanover 

Research, 2013). Policy makers believed that teachers and schools could boost older student 

achievement by establishing content standards and systematically measuring academic and 

developmental progress in early childhood education settings (Stipek, 2006). 
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In addition to complying with the terms and conditions of federal initiatives and policies, 

valid and reliable assessment data can also be a powerful tool for individual schools, grade-

levels, and teachers. At a local level, assessment data can be used to inform teaching and 

learning (Hartwig, 2016), set reasonable learning goals (Thum & Kuhfeld, 2020), and 

communicate with stakeholders (Burts et al., 2016). By understanding each child’s unique 

strengths and needs, teachers can help all children reach their fullest potential. 

While there are many reasons that children are assessed in early childhood classrooms, 

researchers note several significant challenges with assessing young children. First, young 

children tend to demonstrate their knowledge, skills, and abilities more episodically than older 

students (Goldstein & Flake, 2015; Wakabayashi et al., 2019). Second, most young children 

cannot demonstrate their abilities directly using traditional testing formats (Bagnato et al., 2014; 

Bredekamp & Copple, 2008; National Association for the Education of Young Children, 2020). 

And third, young children should be assessed across all relevant domains of learning and 

development, including those that are not typically assessed with older children (Goldstein & 

Flake, 2015; National Research Council, 2008). Given both the complexity and necessity of 

understanding how young children grow, develop, and learn, educational researchers have 

explored numerous approaches to assessing young children and agree that authentic assessment 

is the best practice (Bagnato et al., 2014; Bagnato & Ho, 2006; Bredekamp et al., 2008; National 

Association for the Education of Young Children, 2020).  

Authentic assessment has been deemed to be the best practice because it allows early 

childhood educators to observe and systematically document children’s knowledge, skills, and 

behaviors in natural contexts and over multiple occasions to understand what children know and 

can do (Hartwig, 2016). The structure of authentic assessment allows for teachers to overcome 
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some of the challenges discussed previously by a) gathering evidence of learning and 

development over time and across different contexts and b) providing children with opportunities 

to demonstrate their skills and abilities in natural contexts (Bagnato et al., 2014). 

 Although authentic assessments are widely used in early childhood settings and 

frequently yield data that are best interpreted using criterion-referenced approaches, in the 

presence of adequate validity evidence, norm-referenced interpretations can be made as well 

(AERA et al., 2014; Lambert, 2020). While criterion-referenced score interpretations can provide 

practitioners with information about children’s skills and abilities compared to a predetermined 

set of benchmarks and aid in instructional planning, they do not frequently facilitate 

interpretations about growth over time. Norm-referenced score interpretations allow stakeholders 

to make sense of a child’s performance and patterns of growth in comparison to the reference 

population (AERA et al., 2014). The primary benefits of norm-referenced score interpretations 

include, a) allowing teachers and policy makers to understand what levels of performance are 

reasonably achievable, given child characteristics, such as preliminary performance (Reardon & 

Galindo, 2009), instructional exposure, grade, (Thum & Kuhfeld, 2020), disability status (Hujar 

et al., 2021), gender (Hujar et al., 2021; Voyer & Voyer, 2014) and primary language (Roberts & 

Bryant, 2011) and b) providing an accurate depiction of a population of scores (Angoff, 1984). 

While norm-referenced score interpretations alone are not sufficient for instructional planning, 

they provide an additional source of information to support teaching and learning and facilitate 

data-driven decision making at the local-, state- and national-level. 

Widely Used Authentic Assessment Measures 

 To meet federal legislative mandates and provide teachers and schools with information 

about what children know and can do, test publishers have created numerous authentic formative 
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assessments designed for use with young children. Two of the most widely used authentic 

assessments include GOLD® and the Child Observation Record (COR) or more recently, the 

Child Observation Record Advantage (COR Advantage). Both assessment systems are 

observational measures designed to assess the whole child. The first measure, GOLD®, was 

designed and has been externally validated for use with children ages birth through third grade 

(Lambert, 2020; Lambert, 2017). GOLD® includes over 70 items across 10 domains of learning 

and development: including, social-emotional, physical, language, cognitive, literacy, 

mathematics, science and technology, social studies, the arts, and English-language acquisition 

(Burts et al., 2016). The second measure, the COR Advantage, was designed for use with 

children ages birth through kindergarten and features 34 items across 11 domains of learning and 

development: including, approaches to learning, social and emotional development, physical 

development and health, language, literacy, communication, mathematics, creative arts, science 

and technology, and social studies (Wakabayashi, 2019).  

 According to The American Educational Research Association (2014), “validity refers to 

the degree to which evidence and theory support the interpretations of test scores for the 

proposed uses of tests. Validity is, therefore, the most fundamental consideration in developing 

and evaluating tests” (p. 11). To ensure fair assessment and valid score interpretations, 

researchers and test publishers have examined the validity of GOLD® and COR Advantage 

scores using empirical data. Over the last two decades, several researchers have sought to 

establish validity evidence for the use of the COR/COR Advantage as an authentic formative 

assessment with children ages birth through kindergarten. Researchers have used large samples 

of children’s assessment records to examine and provide evidence of construct validity (Akaeze 

et al., 2022; Fantuzzo et al., 2002; Wakabayashi et al., 2019), content validity, concurrent 
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validity, and interrater reliability (Wakabayashi et al., 2019). Although researchers have 

established a substantial amount of validity evidence to support the use of the COR Advantage 

with young children, none of the studies used nationally representative samples of children, 

therefore limiting the generalizability of results. 

In addition to providing validity evidence for the use of the COR/COR Advantage with 

young children, researchers have also sought to provide validity evidence for the desired 

interpretations of GOLD® scores. Over time, researchers have used nationally representative 

samples of assessment records to provide validity evidence for the use of GOLD® with children 

ages birth through third grade (Lambert, 2020; Lambert, 2017), including children with 

disabilities and English Language Learners (ELLs) (Kim et al., 2013; Lambert, 2022). 

Researchers have examined (Lambert et al., 2015) and reexamined internal structure over time to 

provide evidence of construct validity (Lambert, 2020). Additionally, preliminary evidence has 

been established for criterion validity (Lambert, 2020), concurrent validity (Kim et al., 2013), 

measurement invariance across assessment occasions within one academic year (Lambert et al., 

2015), and measurement invariance across subgroups of children, including gender, 

race/ethnicity, disability status, and primary language (Lambert, 2022). While the majority of 

validity evidence has been collected to support the use of GOLD ® as an authentic, formative, and 

criterion-referenced assessment, researchers have also provided preliminary evidence for norm-

referenced interpretations of GOLD ® domain-level scaled scores (Lambert, 2020). 

Limitations and Directions for Future Research 

Young children are assessed for numerous purposes, including, a) to meet accountability 

mandates, b) provide teachers with useful information, and c) communicate with families and 

other stakeholders. While amassing validity evidence and substantiating validity arguments 
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should be prerequisite to interpreting scores and making decisions about children, Goldstein et 

al. (2015) suggest that many assessments designed for use with young children have been subject 

to less rigorous validation research than widely used measures designed for adolescence and 

adults. After careful review of studies that sought to provide validity evidence for two of the 

most widely used authentic assessments in early childhood classrooms across the U.S., it was 

apparent that significant gaps exist. None of the studies conducted with COR or COR Advantage 

assessment records used nationally representative samples of children. When validation research 

is conducted without representative samples of children, it can be challenging, if not impossible, 

to understand whether scores can be extended to all subgroups of children (AERA et al., 2014). 

Future research should replicate earlier study methods using nationally representative samples of 

children to ensure results can be generalized to the broader population of children assessed with 

the COR Advantage.  

Furthermore, while studies conducted to examine the validity of GOLD® scores 

frequently used nationally representative samples of children’s assessment records, additional 

evidence should be provided in support of interrater reliability and concurrent validity. 

Additionally, “when test scores are interpreted in more than one way… each intended 

interpretation must be validated” (AERA et al., 2014, p. 11). Although there is a significant 

amount of validity evidence to support criterion-referenced score interpretations, evidence to 

support norm-referenced interpretations is limited. Lambert (2020) provided normative ability 

and growth estimates across the six major domains of learning and development included in the 

GOLD® assessment system for children ages birth through first grade. Yet, estimates lack 

precision due to the methods used. Future validation studies should seek to establish more 
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precise norms using methods that leverage between-child variability in assessment dates and 

children’s ages at the time of assessment. 

Developmental Trends in Early Childhood 

 For decades educational stakeholders have been interested in understanding how young 

children develop and learn over time. Understanding how children grow allows policy makers to 

craft informed and relevant legislation and for test developers and curriculum writers to create 

developmentally appropriate standards, content, and assessments. Similarly, when teachers 

recognize how most children develop and acquire new skills and abilities, they can tailor 

curricular materials and instruction to meet children’s unique strengths and needs. 

The Nature of Early Development 

 From ages birth through five children’s brains develop more rapidly than at any other 

point in the lifespan (Harkness et al., 2013; Rebello-Britto et al., 2013). Furthermore, researchers 

have observed that some level of growth and development is biological (Harkness et al., 2013), 

while other aspects of development are profoundly influenced by ecological and environmental 

factors (Chetty et al., 2011; Gialamas et al, 2013). For example, researchers have widely 

observed that babies, regardless of geographic location or beliefs about caretaker interactions, 

reach developmental milestones, such as crawling, walking, and talking at similar points in time 

(Harkness et al., 2013). Yet other researchers have found experiences with primary and 

secondary caregivers and the environment interact and influence development (Gialamas et al., 

2013; Yoshikawa et al., 2013). For example, in one study, Gialamas et al. (2013) found that 

higher quality relationships between caregivers and two- and three-year-old children were 

associated with greater cognitive abilities and social-emotional competence at ages six and 

seven, after controlling for child and parent characteristics. Similarly, Chetty et al. (2011) found 
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that children with an excellent kindergarten teacher, rather than poor- or average-quality 

kindergarten teacher, were more likely to receive higher ratings on soft skills by their eighth-

grade teachers and earn significantly more money over a lifetime. Together, these studies 

highlight the complexity of early childhood development and the dynamic relationships between 

biology, caregiver interactions, and the environment where children learn and grow. 

 To simplify the complexity that surrounds development in early childhood, stakeholders 

frequently deconstruct early childhood learning and development into discrete domains (e.g., 

language, cognitive, physical, social-emotional, etc.). Yet, there is growing consensus that young 

children’s learning is highly interconnected and interrelated across domains of learning and 

development (Lambert, 2020, Pace et al., 2019; Rebello-Britto et al., 2013). For example, as a 

child develops greater receptive language skills, she may also use a wider variety of words while 

speaking. Similarly, a child who develops greater spatial reasoning may also develop more 

complex gross motor skills. While learning and development in one area often positively 

influences other areas, researchers have also observed how children can experience uneven 

development across tasks of equal cognitive complexity (Piaget, 1971). For example, a child may 

use conventional grammar in speech, but not in writing. Although individual children may 

experience some unevenness in the acquisition of skills, it’s likely that data aggregated to the 

classroom- or school-level will demonstrate steady growth trajectories across individually 

measured domains or objectives of the same cognitive complexity (Lambert, 2020). 

 Another trend that stems from the interconnectedness of early learning and development 

is that social-emotional competence in early childhood is positively associated with later 

academic achievement (Blewitt et al., 2018; Corcoran et al., 2018; Pace et al., 2019; Rhoades et 

al., 2011) and early academic skills are positively associated with later academic achievement 
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(Goldstein et al., 2015; Kuhfeld et al., 2020; Pace et al., 2019). For example, Rhoades et al. 

(2011) examined the relationship between social-emotional competence at the beginning of 

preschool and academic achievement in first grade. Results suggested that social-emotional 

competence in preschool was a significant predictor of academic ability after controlling for the 

effects of maternal education, household income, and child demographic variables. Likewise, 

Pace et al. (2019) examined the predictive relationship between language, reading, mathematics, 

and social-emotional skills at school entry and later elementary grades. Results suggested that 

ability at school entry within each discrete domain of learning or development was the greatest 

predictor of ability at successive measurements within the same domain. Additionally, language, 

reading, and mathematics abilities at school entry were predictive of later achievement within 

other domains as well. Together these studies highlight the inseparable nature of early childhood 

development and academic achievement in elementary school.  

 Although researchers have found children who demonstrate stronger developmental 

(Rhoades et al., 2011; Pace et al., 2019) and academic (Pace et al., 2019) abilities early on often 

continue to outperform peers in later grades, researchers have also observed that growth rate, 

regardless of preliminary status, tends to decelerate over time across domains of learning (Lee, 

2010; Mok et al., 2015; Shanley, 2016). For example, in one study, Lee (2010) examined growth 

trends in mathematics and reading using a nationally representative and cross-sectional sample of 

Comprehensive Test of Basic Skills (CTBS) assessment records for first through twelfth grade 

students. Results suggested that children made greater gains in reading and mathematics early on 

and fewer gains as time passed. Similarly, Shanley (2016) used latent growth models to examine 

trends in mathematics growth using the Early Childhood Longitudinal Study, Kindergarten Class 

of 1998-1999 (ECLS-K) data. Piecewise models demonstrated the best fit due to the decelerating 
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growth rate in mathematics from kindergarten through eighth grade. Together, these studies 

illustrate the nature of children’s growth which is often rapid early on and slows as children 

progress through subsequent grade levels. 

Differential Growth Trends 

 In addition to exploring aggregate developmental and academic growth trends, 

researchers have also sought to understand how specific demographic characteristics are 

associated with children’s abilities before kindergarten (Hujar et al., 2021; Miller et al., 2021), at 

school entry (Kuhfeld et al., 2020; Reardon et al., 2016; Roberts & Bryant, 2011) and beyond 

(Hujar et al., 2021; Mok et al., 2015; Reardon et al., 2016; Reardon et al., 2009; Shanley, 2016; 

Voyer & Voyer, 2014). While operationalizing, measuring, and isolating child-level variables 

can be a difficult task (Roberts & Bryant, 2011), identifying influential child-level characteristics 

allow policy makers to write legislation to promote equity and close opportunity and 

achievement gaps (Hudson, 2015; Kuhfeld et al., 2020). 

 One child-level characteristic that has been explored extensively is family income. 

Researchers have examined the relationships between children’s developmental and academic 

abilities and a variety of variables that approximate family income, such as, socio-economic 

status (Roberts & Bryant, 2011), FRL status (Hujar et al., 2021), and parental income (Reardon 

& Portilla., 2016). Research suggests that children from low-income families tend to demonstrate 

lower abilities early on (Hujar et al., 2021; Reardon & Portilla, 2016) and slower growth rates 

over time (Hujar et al., 2021; Roberts & Bryant, 2011). For example, Reardon & Portilla (2016) 

examined ECLS-K math and reading scores for children from low-, middle-, and high-income 

families and found that on average, scores were higher at each successive level of income. 

Additionally, while achievement gaps between children from wealthy and poor families 
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narrowed significantly from 1998 to 2010, differences in ability at kindergarten entry continued 

to persist by family-income level (Reardon & Portilla, 2016). Furthermore, Roberts and Bryant 

(2011) examined differences in mathematics ability over time given children’s socioeconomic 

status and home. Results suggested low socioeconomic status was the most significant predictor 

in the model and was strongly associated with slower rates of growth across over time, regardless 

of home language. Together these studies suggest that poverty is significantly related to lower 

abilities early on and slower rates of growth over time.   

 In addition to family-income level, researchers have also examined how ability and 

growth trends differ by race, ethnicity, English-Language-Learner (ELL) status, and primary 

language. Yet, understanding the ways in which these child-level characteristics are related to 

abilities in early childhood and subsequent growth trajectories is complex. Although researchers 

frequently conduct subgroup analyses to understand how abilities and growth trajectories differ 

by child-level characteristics, groups often consist of heterogeneous populations (Roberts & 

Bryant, 2011). For example, researchers may examine mathematics ability at school entry 

between native-English speakers and ELLs. However, the children assigned to the ELL group 

may include children at different levels of English-language proficiency and children from 

different linguistic and cultural backgrounds. Similarly, researchers may be interested in 

understanding differences in literacy ability between White and Black children, yet ethnic 

subgroups may exist within racial categories. While examining differences by race, ethnicity, 

home language, and ELL status can be challenging, researchers have identified several trends 

that yield important information for researchers, practitioners, and policy makers.  

 To begin, researchers have found that ELLs and children who speak languages other than 

English at home tend to demonstrate different abilities in early childhood (Hujar et al., 2021) and 
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different rates of growth over time (Hujar et al., 2021; Roberts & Bryant, 2011). For example, in 

one study, researchers found that ELLs demonstrated lower abilities in mathematics, literacy, 

language, social-emotional, cognitive, and physical domains in the fall semester of Pre-K, yet 

experienced stronger rates of growth than their English-fluent peers between fall and spring 

measurements (Hujar et al., 2021). Furthermore, Roberts and Bryant (2011) examined the 

relationship between children who were labeled English-language proficient, but spoke various 

languages at home, and trends in mathematics and reading achievement. Results suggested that 

children who spoke Spanish at home were more likely to demonstrate lower abilities at 

kindergarten entry than children who spoke English or an Asian language at home. Furthermore, 

measurements in kindergarten for Spanish-speaking children were more predictive of subsequent 

measurements, suggesting it was more difficult for Spanish-speaking children to overcome gaps 

that were present at school entry (Roberts & Bryant, 2011). Together, these studies further 

illuminate the complexity of understanding relationships between both English-language 

proficiency and primary language and abilities in early childhood and subsequent growth rates. 

 While disentangling race and ethnicity from other influential child-level characteristics 

can also present challenges (Roberts & Bryant, 2011), researchers have identified several notable 

trends between race and ethnicity and academic and developmental growth. Recent research 

suggests that achievement gaps have narrowed across academic and most developmental 

domains at school entry between White children and Black children (Kuhfeld et al., 2020) and 

White and Hispanic children (Reardon & Portilla, 2016; Reardon & Galindo, 2009), yet gaps 

continue to persist to some extent (Kuhfeld et al., 2020; Reardon & Portilla, 2016). Furthermore, 

over thirty years of National Assessment for Educational Progress (NAEP) data suggests gaps 

between Black and White children don’t dissipate after school entry, but in fact persist through 
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high school (Young et al., 2017). And, while Hispanic children may experience more rapid 

growth than their White peers early on, growth rate decelerates over time and gaps continue to 

persist through later grades (Reardon & Galindo, 2009). Together these research findings 

describe observable patterns of White Non-Hispanic children demonstrating stronger academic 

and developmental skills and abilities at school entry than Black and Hispanic children, and 

stronger rates of growth over time.  

Finally, researchers have explored differences in preliminary performance and growth 

over time between boys and girls. Research tends to suggest that girls demonstrate stronger 

abilities at school entry (Kuhfeld et al., 2020; Voyer & Voyer, 2014) that persist over time 

(Voyer & Voyer, 2014). For example, researchers examined kindergarteners’ Measures for 

Academic Progress (MAP) Reading and Mathematics Growth assessment records to understand 

whether boys or girls demonstrated greater abilities at school entry. Results suggested that girls 

demonstrated stronger abilities in math and reading at school entry across seven years of 

assessment records (Kuhfeld et al., 2020). Furthermore, to understand if gender gaps persisted 

throughout K-12 education and beyond, Voyer & Voyer (2014) conducted a meta-analysis using 

the results from over 300 studies. Results suggested that across grade levels and subjects, 

regardless of scoring system, girls tended to outperform boys. Yet, this trend isn’t upheld across 

all studies and contexts. In another study conducted by Hujar et al. (2021), boys’ and girls’ 

GOLD® mathematics, literacy, language, cognitive, physical, and social-emotional assessment 

records were compared to understand differences in preliminary ability in Pre-K and growth 

throughout the pre-k year. Results suggested that boys outperformed girls at the beginning of 

pre-k in the areas of literacy, math, language, and cognitive abilities. Yet, girls demonstrated 

stronger rates of growth across most domains, including literacy, math, physical, and social 
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emotional. While research tends to suggest girls outperform boys across subjects and time, this 

finding is not upheld across all studies and contexts. 

Limitations and Directions for Future Research 

While many studies have found that caregiver interactions and early childhood program 

quality have a profound influence on development (Chetty et al., 2011, Gialamas et al., 2013; 

Yoshikawa et al., 2013), other researchers suggest that infants and young toddlers, regardless of 

geographic location, environment or beliefs about caregiver-child interactions, reach many 

developmental milestones at similar points in time (Harkness et al., 2013). Future research 

should seek to examine the relationships between instructional exposure and age and subsequent 

growth to understand whether environmental and ecological factors or biological age have a 

greater influence on developmental growth at each point in time throughout early childhood. 

Additionally, while researchers have widely observed that growth rate decelerates over 

time across domains of learning and development (Lee. 2010; Mok et al., 2016; Shanley, 2016; 

Shin et al., 2013), average gain score estimates provided in the Technical Manual for the 

Teaching Strategies GOLD® manual do not reflect this pattern of growth (Lambert, 2020). 

Instead, gain scores, which reflect the average difference between fall and spring measurements 

for each domain and age band, suggest that children in birth- to one-year-old classrooms and 

kindergarten classrooms make the most significant gains. If gain scores were consistent with the 

broader literature, we would expect to see diminishing gain scores as children progress from 

birth through first grade, yet this is not the case. Future research should seek to use growth curve 

modeling methods to derive more precise growth estimates. Model estimates should be 

reexamined to determine whether developmental and academic growth, as measured by GOLD®, 

provide further evidence in support of diminishing growth rate over time.  

28



Finally, many researchers have sought to understand how demographic variables, such as 

family-income, race, ethnicity, home language, and gender relate to academic and developmental 

performance and growth in early childhood. While research generally suggests that children 

living in poverty (Hujar et al., 2021; Reardon & Portilla 2016; Roberts & Bryant, 2011), Black 

children (Kuhfeld et al., 2020; Young et al., 2017), Hispanic children (Reardon & Portilla, 2016; 

Reardon & Galindo, 2009), children who speak Spanish at home (Roberts & Bryant., 2011), and 

boys (Kuhfeld et al., 2020; Voyer & Voyer, 2014) tend to demonstrate lower abilities in early 

childhood and slower rates of growth, child-level demographic variables can be challenging to 

isolate, operationalize, and measure (Roberts & Bryant, 2011). Furthermore, although 

researchers often seek to establish homogenous subgroups, such as ELLs or Black children, 

within-group heterogeneity and intersecting identities uniquely influence outcomes (Roberts & 

Bryant, 2011). Although the literature can serve as a guidepost for researchers who seek to 

examine and model the relationships between academic performance, developmental progress, 

and a variety of child-level characteristics, it also presents a somewhat unclear picture filled with 

nuances. Researchers must decide how to operationalize child-level characteristics, set criteria 

for inclusion and exclusion, determine how developmental progress and academic abilities will 

be measured and modeled, and place cautionary limitations on findings. 

Modeling Growth 

 Although researchers have been interested in modeling change over time for generations, 

NCLB established a stronger need for educational researchers to model change in student 

achievement (Thum & Kuhfeld, 2020). While there are many different approaches to modeling 

change over time, some are better than others, especially within the context of large-scale 

assessment data, where children are not assessed on the same schedule and do not always share 
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the same number of measurements (O’Connell & McCoach, 2008; Singer & Willet, 2002; Thum 

& Kuhfeld, 2020). 

Before the development and widespread use of growth curve models, researchers 

frequently analyzed the change between pairs of measurements (Bryk & Weisberg, 1976; Curran 

et al., 2010; Rogosa & Willet, 1983). To examine differences between pairs of observations and 

understand intra- and inter-individual change over time researchers frequently used three 

methods, including, two-time-point data analysis, cross-sectional data analysis, and Analysis of 

Variance (ANOVA) or Multivariate Analysis of Variance (MANOVA) (Curran et al., 2010; 

O’Connell & McCoach, 2008; Singer & Willet, 2003). While all of these methods are still used 

today and may be appropriate for smaller-scale studies where researchers wield significant 

control over data collection procedures, none of these methods are sufficient for understanding 

intra- and inter-individual growth when data collection schedules and the number of 

measurements per child vary vastly from program to program and state to state (Thum & 

Kuhfeld., 2020).  

Two-Time-Point Data Analysis  

Although pretest-posttest designs are frequently used in educational contexts to quantify 

the amount that children learned from one point in time to the next, researchers have argued that 

difference scores, obtained by subtracting the pretest score from the posttest score, are vastly 

unreliable (Lord, 1956). Lord (1956) argued that within the context of educational and 

psychological measurement, both pretest and posttest scores are subject to measurement error. 

Therefore, difference scores are even less reliable than single measurements. Singer & Willet 

(2003) also criticized the use of two-time-point data analysis procedures, stating that any 

researcher who uses such methods “narrowly conceptualize[s] change as an increment: the 
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simple difference between scores assessed on two measurement occasions” (Singer & Willet, 

2003, p. 10). In other words, Singer & Willet (2003) argued that a simple difference score could 

not adequately capture the nature of the growth process.   

Cross-Sectional Data Analysis 

Researchers have also used cross-sectional data to infer how individuals change over time 

(Singer & Willet, 2003; Lambert, 2020). However, researchers have suggested that using cross-

sectional data is insufficient for understanding intra-individual growth because differences in 

observed outcomes between measurements could be due to true growth or other factors such as 

attrition (Singer & Willet, 2003; Thum & Kuhfeld, 2020). 

Analysis of Variance 

Researchers have also used ANOVA and MANOVA to make inferences about growth 

over time (Curran et al., 2010; O’Connell & McCoach, 2008). However, researchers working 

from an ANOVA framework face significant constraints in terms of data structure, including, a) 

data must be balanced and b) data must be time-structured (O’Connell & McCoach, 2008; Singer 

& Willet, 2003). In other words, the number of measurements must be the same for all 

individuals and all individuals must be assessed on the same schedule. If individuals are missing 

datapoints, then the researcher must exclude the case from analysis (Curran et al., 2010). 

Similarly, if the individual was assessed at a different point in time, the researcher must listwise 

delete the case or accept the difference in time as a source of random error (O’Connell & 

McCoach, 2008). Although listwise deletion allows the researcher to proceed with analysis, 

deleting participants can bias estimates and negatively impact the power to detect effects 

(Raudenbush & Bryk, 2002).  
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Growth Curve Modeling 

In recent decades, researchers have turned to growth curve modeling to combat the 

limitations of earlier methods of analysis and allow for greater flexibility, including the 

accommodation of partially missing data (O’Connell & McCoach, 2008), non-linear or 

compound-shaped growth trajectories (Curran et al., 2010; Shanley, 2016; Thum & Kuhfeld, 

2020), time-varying covariates (Shin et al., 2013), time-invariant covariates (Mok et al., 2015), 

and greater statistical power (Muthen & Curran, 1997). While researchers can use growth curve 

models to achieve many purposes, educational researchers commonly use these models to 

understand the mean academic or developmental status at a particular meaningful point in time 

(intercept) and mean growth rate over time (slope) (McNeish & Matta, 2017; Raudenbush & 

Bryk, 2002). Additionally, researchers can use growth curve models to examine variation around 

the mean (O’Connell & McCoach, 2008), and the influence of time-invariant (Mok et al., 2015; 

Shin et al., 2013) and time-varying covariates (Shin et al., 2013) to understand the ways in which 

estimated growth trajectories differ by contextual factors and child-level characteristics.  

While there are many approaches to growth curve modeling, educational researchers 

frequently use one of two approaches, including latent growth curve modeling or multilevel 

modeling (MLM). The first approach, latent growth curve modeling, can be fitted under the 

structural equation modeling framework (Curran et al., 2010). Within this framework, 

researchers specify measurement models, impose a mean factor structure, and fix and free 

specific model parameters to examine different aspects of the growth process (McNeish & Matta, 

2017). The second approach, MLM, can be conceptualized as an extension of the traditional 

linear regression model (Bryk & Raudenbush, 1987; O’Connell McCoach, 2008). Although the 

approach was originally developed to accommodate nested data structures, such as, children 
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within classrooms or patients within a provider, the approach has been extended to include 

repeated measurements within individuals (Curran et al., 2010; Raudenbush & Bryk, 2002; 

Singer & Willet, 2003). Using this approach, researchers can nest assessment occasions within 

individuals and examine fixed effects such as mean growth rate or typical preliminary 

performance and random effects, such as the variability around the mean growth trajectory 

(McNeish & Matta, 2017).  

Although researchers have repeatedly demonstrated that latent growth curves (LGCs) and 

MLMs are mathematically equivalent under many conditions (Bollen & Curran, 2006; Curran, 

2003; Ferrer et al., 2009; Mehta & West, 2000), some researchers argue that given certain data 

structures, model specifications, and software capacities, researchers should choose one 

approach over the other (McNeish & Matta, 2017; O’Connell & McCoach, 2008; Curran et al., 

2010). Researchers generally agree that MLMs should be used when researchers are modeling, a) 

three or more levels or b) data that are time-unstructured (O’Connell & McCoach, 2008; 

McNeish & Matta, 2017). Conversely, researchers generally suggest using LGCs when a) 

modeling data from measures that yield scores that are less reliable (Cole & Preacher, 2013), b) 

mediating or moderating relationships are of primary interest (O’Connell & McCoach, 2008), c) 

the nature of growth, e.g., shape of the growth trajectory is unknown (O’Connell & McCoach, 

2008; McNeish & Matta, 2017) or d) specifying multigroup models with partial constraints 

(McNeish & Matta, 2017). 

Using Growth Curve Models to Establish Norms. Although growth curve models are 

frequently used to model educational data and understand longitudinal trends in academic 

achievement and developmental progress (Shin et al., 2012; Mok et al., 2014; Shanley, 2016), 

few researchers have used GCMs to establish normative scores (Pan & Goldstein, 1997; Thum & 
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Kuhfeld, 2020). Pan and Goldstein (1997) used MLM to develop growth norms for young 

children that were conditional on previous height and weight measurements. Pan and Goldstein 

(1997) found that the novel method for establishing norms allowed for significant flexibility and 

easily captured the deceleration of growth over time. Similarly, Thum and Kuhfeld (2020) also 

viewed the methodology as an opportunity to obtain achievement and growth norms across 

content areas and grade levels conditioned on patterns of previous performance and instructional 

exposure. While the researchers of these two studies had different aims, they saw how the 

flexibility of the multilevel modeling methods could be leveraged to obtain normative scores that 

were conditional on variables of interest. While this method for deriving normative scores has 

not been widely adopted, both studies highlight the methodology as a viable option for 

establishing time-continuous normative scores. 

Model fit. When researchers use LGCs and MLMs to understand longitudinal growth 

trends, researchers must examine model fit, or the use of selection criteria to choose between 

competing models, and model adequacy, or the ability of the independent variables to explain 

variability in the dependent variable (McCoach et al., 2022). Researchers using LGCs can use 

global fit indices, including the root mean square error of approximation (RMSEA) and the 

comparative fit index (CFI) to assess overall model fit (McNeish & Matta, 2017). Additionally, 

researchers can examine matrices of residual correlations, regression coefficients, and factor 

loadings to assess local fit and adequacy. However, researchers using MLMs have fewer options 

for assessing model fit and adequacy. Most of the strategies for assessing the fit of MLMs to the 

data include comparing two models and deriving information about relative fit, rather than 

absolute fit (McCoach et al., 2022). Researchers can use the likelihood ratio test (LRT) to 

compare nested models and the Akaike Information Criterion (AIC) and the Bayesian 
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Information Criterion (BIC) to compare non-nested models. Additionally, researchers can use 

pseudo-R2 statistics to examine model adequacy. While there are many pseudo-R2 statistics, 

educational researchers frequently use the proportional reduction in variance pseudo-R2 statistic 

which represents the proportion of additional residual variance explained by the more 

parameterized model (Raudenbush & Bryk, 2002).  

Modeling Time. Regardless of approach, researchers seeking to fit longitudinal data to 

growth curve models must determine how time will be measured and modeled. Singer and Willet 

(2003) acknowledged that there are many ways to measure the passing of time, but ultimately 

researchers should lean on theory and select the most appropriate time metric given their context 

and research aims. Educational researchers have modeled time in many ways, including, 

trimesters (Lambert, 2020), grade-level (Lambert, 2020; Mok et al., 2015; Shanley 2016; Thum 

& Kuhfeld, 2020), age in months (Hujar et al., 2021), and exposure to instruction (Thum & 

Kuhfeld, 2020). Generally, research has demonstrated that increasing the precision with which 

time is measured and modeled also supports goodness of model fit (Shanley, 2016; Thum & 

Kuhfeld, 2020). For example, Shanley (2016) used the ECLS-K 1998-1999 longitudinal dataset 

to estimate growth trajectories for K-8 students in mathematics using nine different LGC models. 

Time was modeled using grade-level and calendar year, the academic year, and the academic 

year with a summer discontinuity. Each model demonstrated increasingly better overall fit, 

suggesting that the specificity and accuracy of the model time metric significantly improved 

model fit. Similarly, in another study conducted by Thum and Kuhfeld (2020), researchers fitted 

longitudinal MAP data to MLMs to estimate intra- and inter-individual growth over time. To 

reduce random error, researchers used both grade level and approximate instructional exposure 

prior to assessment to create time-continuous normative ability and growth scores that were 
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conditional on two different time metrics. Together these studies highlight the importance of 

choosing a significant and meaningful time metric to not only improve overall model fit, but also 

provide more accurate estimates of growth over time. More precise estimates are important for 

several key reasons, including that they, a) allow practitioners to understand how children are 

performing in comparison to individualized growth trajectories, b) facilitate data-driven goal 

setting (Thum & Kuhfeld, 2020), and c) allow policy makers to understand aggregate trends in 

achievement and establish necessary grants and legislation to facilitate better outcomes for 

subgroups of children (Kuhfeld et al., 2020).  

Limitations and Directions for Future Research 

 Although researchers still use cross-sectional data analysis to estimate ability norms 

(Lambert, 2020), this method is unfavorable for several reasons. First, cross-sectional data does 

not adequately capture the intra-individual growth process (Raudenbush & Bryk, 2002; Singer & 

Willet, 2003; Thum & Kuhfeld, 2020). And second, researchers cannot rule out competing 

explanations for change over time (e.g., attrition, historical events) (Singer & Willet, 2003). 

Advances in growth curve modeling offer researchers a method for estimating ability norms 

based on intra-individual growth (O’Connell & McCoach, 2008; Thum & Kuhfeld, 2020) in the 

presence of missing data, time-unstructured data, and unbalanced data (Singer & Willet, 2003). 

Compared to previous methods which required all individuals to share the same assessment 

schedule and number of assessment occasions, growth curve modeling methods are far more 

flexible and allow researchers to maintain most, if not all individuals in the data set (Curran et 

al., 2010). Given that Lambert (2020) used more traditional cross-sectional methods to estimate 

GOLD® normative scores, future research should seek to fit longitudinal assessment data to 

GCMs to establish more precise and time-continuous norms. Using GCMs, assessment occasions 

36



could be nested within individual children and between-child variability could be leveraged to 

increase precision in normative estimates (Thum & Kuhfeld, 2020). By creating more precise 

norms conditioned on age and instruction would allow teachers to make more meaningful and 

accurate interpretations about relative performance.  

Additionally, researchers have long cautioned against two-time-point data analysis in 

psychological and educational research due to measurement error in pre- and posttest scores 

(Curran et al., 2010; Lord, 1956) and the inability of a single difference score to capture change 

as a process (Singer & Willet, 2003). Yet, two-time-point data analysis methods are still 

frequently used to derive estimates of growth over time (Lambert, 2020). Given that Lambert 

(2020) calculated growth scores for each age-band and domain of learning and development by 

taking the difference between the average fall and spring scaled score, future research should use 

growth curve models to avoid the limitations of two-time-point data analysis methods and 

effectively demonstrate change as a process that occurs incrementally over time. Furthermore, 

using growth curve models to produce time-continuous normative scores would provide 

practitioners with a resource to understand typical growth between any two points in time, e.g., 

from zero to three months of instruction or from 60 months of age to 70 months of age.  

Finally, while many researchers have acknowledged that LGCs and MLMs can yield 

nearly identical parameter estimates under many conditions (Bollen & Curran, 2006; Curran, 

2003; Ferrer et al., 2009; Mehta et al., 2000), some researchers argue that given certain data 

structures, model specifications, and software capacities, researchers should select one approach 

over the other (McNeish & Matta, 2017; O’Connell & McCoach, 2008; Curran et al., 2010). For 

example, researchers suggest that in the presence of time-unstructured data, multilevel modeling 

should be considered (McNeish & Matta, 2017; O’Connell & McCoach 2008). While not 
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impossible, researchers using LGCs to model time-unstructured data face significant challenges 

when preparing data for analysis. SEM software requires data to be processed in the wide or 

multivariate format, meaning that each time point requires a different column in the data set 

(McNeish & Matta, 2017). To combat this problem, researchers have collapsed time points into 

coarser categories and effectively created time groups. While this strategy eases the data 

processing burden, researchers lose valuable time information and potentially bias parameter 

estimates. Conversely, within the MLM framework, X is the time variable, therefore each 

individual can have a unique value for X. Furthermore, since MLM software processes data in 

the long or univariate format, each row includes a measurement occasion and corresponding time 

value. To avoid bias estimates and leverage between-child variation in time, e.g., age in months 

and instructional exposure, MLMs should be used to estimate time-continuous normative scores 

(Thum & Kuhfeld, 2020; McNeish & Matta, 2017). 
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CHAPTER THREE: METHOD 

In Chapter Two, a thorough review of literature on the topics of early childhood 

assessment, developmental growth trends, and approaches to modeling growth over time set the 

stage for the current study which sought to model typical academic ability and developmental 

growth from birth through kindergarten using GOLD® domain-level scaled scores. While many 

of the themes and findings presented in Chapter Two are used to develop study hypotheses in 

Chapter Four and discuss the ways in which the results from the present study converge and 

diverge from previous findings in Chapter Five, Chapter Three focuses on the research methods 

and expands upon one approach to modeling change over time with time-unbalanced, time-

unstructured, and nested assessment data. The sequence of topics for the present chapter include: 

the purpose of this study and corresponding research questions, an orientation to the measure, 

GOLD®, discussion of data collection and analysis procedures, methodological limitations, and 

ethical considerations. 

Purpose 

Current GOLD® normative ability and growth estimates lack precision for several 

reasons, including, a) the use of cross-sectional data to derive ability and growth normative 

scores, b) the use of two-time-point data to calculate gain scores, and c) variability in assessment 

schedules and children’s ages at the time of assessment were treated as sources of random error. 

The present study seeks to provide more precise and time-continuous normative ability and 

growth scores for the average child at each point in time from birth through kindergarten using a 

series of multilevel models (Thum & Kuhfeld, 2020; Pan & Goldstein, 1997). To achieve the 

primary study aim and estimate the average child’s preliminary developmental status and linear 

rate of growth for each age-band and domain of learning and development, two-level models 
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were specified. Growth trajectories were modeled as a function of two different time metrics, 

including approximate months of instructional exposure and age in months. Model-based 

estimates were used to construct norm tables for each domain of development, age band, and 

time metric. In addition to developing time-continuous normative scores, additional study 

purposes included: a) provide evidence in support of the most effective time metric for modeling 

young children’s developmental growth from birth through kindergarten across domains of 

learning and development b) provide evidence of the shape of the developmental pathway from 

birth through kindergarten for each domain of learning and development, and c) examine 

differences in preliminary status and linear growth rate over time by child-level characteristics. 

To achieve secondary study purposes, Akaike Information Criteria (AIC) tests and Pseudo-r2 

statistics were used to understand which time metric was the better predictor of academic and 

developmental growth (O’Connell & McCoach, 2008; McCoach et al., 2022). Next, linear slopes 

were examined sequentially from birth through kindergarten for each domain of learning or 

development to make inferences about the nature of the growth process. And finally, growth 

trajectories for different subgroups of children were examined by modeling child-level 

characteristics, including, gender, race/ethnicity, and primary language, at level-two, and 

examining resulting beta coefficients and corresponding p-values (O’Connell & McCoach, 

2008). 

Research Questions 

1. What do model-based estimates suggest the average child will do at each point in time 

from birth through kindergarten, across each of the six major domains of learning and 

development presented in the GOLD® assessment system? 
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2. Which time metric is most effective for modeling growth, approximate instructional 

exposure or age in months, from birth through kindergarten? 

3. What do hierarchical linear model-estimated slopes from age-separated cohort data 

suggest about the shape of the developmental pathway from birth through kindergarten 

across domains of learning and development? 

4. How do growth trends differ between subgroups of children (e.g., by race/ethnicity, 

gender, and primary language)? 

GOLD® 

Data for the current study includes assessment records for children who were assessed 

using Teaching Strategies GOLD® during the 2021-2022 academic year. GOLD® is an 

observation-based authentic formative assessment designed to understand academic abilities and 

developmental growth in children ages birth through third grade (Burts et al, 2016), including 

children with disabilities and ELLs (Kim et al., 2013; Lambert, 2022). While GOLD® was 

designed to measure developmental and academic growth through third grade, the assessment is 

primarily used within early childhood settings, where higher ratings along developmental 

progressions are used to alleviate ceiling effects (Burts et al., 2016). The assessment system is 

comprised of four developmental domains including, social-emotional, physical, language, and 

cognitive, and five content domains including, mathematics, literacy, science and technology, 

social studies, and the arts. GOLD® also features a tenth domain, English language acquisition, 

for use with ELLs (Lambert, 2020). While the entire system features 10 domains, the current 

study sought to model typical developmental growth across the six major domains of learning 

and development identified by Teaching Strategies which include, literacy, mathematics, social-

emotional, physical, cognitive, and language. 
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Assessment Purposes 

According to Burts et al. (2016), the primary purposes of GOLD® include to help 

teachers, a) observe and document children’s learning, b) support, guide, and aid instruction, c) 

identify children who may need further help or evaluation, and d) communicate with families 

and other stakeholders. Additionally, secondary purposes include a) collecting child performance 

data as part of a larger system of accountability and b) providing administrators with information 

to guide professional development opportunities for teachers. To support both primary and 

secondary assessment purposes, GOLD® was developed and has been externally validated for use 

as a formative, authentic, developmental, and criterion-referenced assessment (Lambert, 2017; 

Lambert, 2020). Recently, researchers have also provided validity evidence in support of norm-

referenced score interpretations (Lambert, 2020). 

Constructs 

Teaching Strategies® hypothesized that each domain represented a unitary construct, and 

described the six latent constructs as follows: 

Literacy: Literacy ability begins at birth and progresses throughout early childhood, with 

beginning literacy reflecting “emergent reading and writing behaviors… [such as] verbal 

abilities, phonological sensitivity, familiarity with the basic purposes and mechanisms of 

reading, and letter knowledge (2016, p. 83). Furthermore, as children become readers, 

“they learn to decode unknown words, read with fluency, comprehend various types of 

text, and read for specific purposes and pleasure” (Burts et al., 2016, p. 84). 

Mathematics: Mathematics ability also begins from infancy and includes “mathematical 

vocabulary, concepts, and essential process skills... [such as] problem solving, reasoning, 

communicating, making connections, and representing” (Burts et al., 2016, p.111). 
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Language Development: “Learning to understand and use words. Language also 

involves learning about the structure and sequence of speech sounds, vocabulary, 

grammar, and the rules for engaging in appropriate and effective conversation (Burts et 

al., 2016, p. 41). 

Social-Emotional Development: “Young children’s social-emotional development 

involves learning how to understand their own and others’ feelings, regulate and express 

their emotions appropriately, build relationships with others, and interact in groups” 

(Burts et al., 2016, p. 1). 

Physical Development: “Physical development includes children’s gross-motor (large 

muscle) and fine-motor (small muscle) skills. Balance; coordination; and locomotion, or 

traveling are part of the gross-motor development” (Burts et al., 2016, p. 23). 

Cognitive Development: “Cognitive development, also called intellectual development, 

is influenced by the child’s approaches to learning as well as his biological makeup and 

the environment” (Burts et al., 2016, p. 59). Furthermore, as children progress “they 

become more flexible and multidimensional in their thinking, solve a wider range of 

problems, mentally and symbolically manipulate concrete concepts, and think about their 

own mental activities” (Burts et al., 2016, p. 59). 

Dimensionality 

Over time researchers have affirmed and reaffirmed scale dimensionality using multiple 

statistical methods. For example, Lambert et al. (2015) examined the plausibility of a six-factor 

model using a nationally representative sample of children’s assessment records. Confirmatory 

factor analysis (CFA) results suggested the six-factor model fit the data reasonably well as 

evidenced by the following global fit statistics, Standardized Root Mean Squared Residual 
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(SRMR) =0.033, Comparative Fit Index (CFI) =.932, and Root Mean Square Error of 

Approximation (RMSEA) = 0.066. Local fit was also supported as evidenced by relatively large 

factor loadings (0.737-0.932). Lambert (2020) also tested the assumption of unidimensionality 

for each of the six major domains of learning and development using Principal Components 

Analysis of Rasch Residuals (PCAR). For each domain, the PCAR demonstrated that the Rasch 

dimension explained at least 90% of the variance in the data, thus providing further evidence in 

support of unidimensional constructs. 

Assessment Structure 

Within GOLD®, each domain of learning or development encompasses a set of objectives 

designed to guide teachers through the assessment process. Many objectives are further broken 

down into dimensions to better understand how children are progressing toward specific 

developmental and learning goals. For example, mathematics objective 20, uses number concepts 

and operations, features six unique dimensions, including, 20a) counts, 20b) quantifies, 20c) 

connects numerals with their quantities, 20d) understands and uses place value and base ten, 

20e) applies properties of mathematical operations and relationships, and 20f) applies number 

combinations and mental number strategies in mathematical operations. For this objective and 

series of dimensions, teachers would document children’s knowledge, skills, and abilities toward 

the six dimensions. Children would receive ratings for each dimension, but not the overarching 

objective. See Figure 1 for a visual. 
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Figure 1 
Mathematics Objective 20 and Corresponding Dimensions a-f 
From GOLD® Objectives for Learning and Development; Birth Through Third Grade, by Burts 
et al., 2016, p. xxvi. Image included with permission of Teaching Strategies, LLC. All rights 
reserved. 
 
However, if objectives are not further broken down into unique dimensions, children receive 

ratings at the objective level. For example, children would receive ratings for objective four; 

demonstrates traveling skills, objective five; demonstrates balancing skills, and objective six; 

demonstrates gross-motor manipulation skills. See Figure 2 for a visual.  

 
Figure 2 
Physical Objectives 4- 7 and Dimensions 7a and 7b 
From GOLD® Objectives for Learning and Development; Birth Through Third Grade, by Burts 
et al., 2016, p. xxiv. Image included with permission of Teaching Strategies, LLC. All rights 
reserved. 
 

Progressions. The six major domains of learning and development feature developmental 

progressions. Progressions demonstrate the theoretical developmental pathway from birth 

through third grade for each unique objective or dimension. Each progression provides a 

sequence of expected knowledge, skills, and behaviors that children typically acquire on their 

journey toward mastery. Teachers can use progressions to assist in assigning ratings to child 
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evidence, setting learning goals, planning instructional next steps, and communicating with 

families and other stakeholders (Lambert, 2020).  

Each progression features an ordinal rating scale, ranging from 0 (not yet) to nine, 11, 

13, 15, or 19, depending on the objective or dimension. Progressions also feature indicators and 

examples for each even rating along the expected pathway to aid teachers in understanding 

children’s skills, abilities, and behaviors as they relate to particular steps. Finally, progressions 

include color bands or expectations for ages and for classes or grades that highlight where we 

would expect typically developing children to fall within a given year of life. The red color band 

represents expected development for children ages birth to one-year-old, orange is for children 

ages one- to two-years old, yellow is for children ages two- to three-years old, green is for 

children in preschool, blue is for children in pre-k, purple is for children in kindergarten, and 

pink, gray, and brown are for children in first, second, and third grade respectively. See Figure 3 

for an example.  

 
Figure 3 
Progression for Objective 1a: Regulates Own Emotions and Behaviors 
From GOLD® Objectives for Learning and Development; Birth Through Third Grade, by Burts 
et al., 2016, p. x. Image included with permission of Teaching Strategies, LLC. All rights 
reserved. 
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Scores 

In the most recent GOLD® technical manual, evidence is provided to support four distinct 

score interpretations, including raw scores, widely held expectation (WHE) scores, scaled scores, 

and national normative scores (Lambert, 2020). Each score interpretation is explained in greater 

detail below: 

Raw Scores: Raw scores are calculated when all finalized ratings within a given domain 

are summed. Raw scores represent an ordinal level of measurement and reflect a child’s 

current skills and abilities related to the corresponding domain of learning or 

development (Lambert, 2020). Since raw scores are a summation of all ratings on all 

progressions corresponding to one domain, raw scores can range significantly from one 

domain to another. For example, in literacy, a domain with five objectives and 16 

dimensions, children can obtain raw scores ranging from zero to nearly 200 points. Yet, 

in physical development, a domain with four objectives and only two dimensions, 

children can obtain raw scores ranging from zero to nearly 70 points. Furthermore, since 

some progressions feature ordinal scales ranging from zero to nine points, while others 

feature scales ranging from zero to 19 points, some items have greater influence over the 

domain-level raw score than other items. 

WHE Scores: Raw scores are also used to determine if children are performing below, 

within, or beyond the WHE range for each domain of learning or development. The WHE 

range can be determined by summing the lower WHE bound for each progression within 

a given domain and the upper WHE bound for each progression with a given domain. If a 

child’s raw score for the given domain falls between the lower and upper WHE bounds 

for the given domain, the child is meeting expectations. Conversely, if the child’s score 
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falls below the lower bound of the WHE range, the child is performing below 

expectations and if the child’s score resides above the upper bound of the WHE range 

then the child is exceeding expectations. While WHE scores also reflect an ordinal level 

of measurement, they can be used to understand how a child’s present level of 

performance within a given domain compares to WHEs for children within the same year 

of life (Lambert, 2020). 

Domain-Level Scaled Scores: Scaled scores are obtained by transforming raw scores 

using a Rasch measurement model. Unlike raw scores and WHE scores which reflect an 

ordinal level of measurement, scaled scores have interval-level properties and allow 

educators and researchers to understand developmental and academic growth over time. 

Additionally, since scaled scores reside on a single scale ranging from 0-1000, children’s 

domain-level scaled scores can be compared meaningfully even if children are at 

different developmental levels (Lambert, 2020). Finally, because scaled scores account 

for missing values, they provide a reasonable ability estimate in the presence of missing 

values at the item-level.  

National Normative Scores: National normative scores were obtained using nationally 

representative samples of children’s domain-level scaled scores. For each trimester, year 

of life, and domain, scaled score distributions were divided into quartiles. Performance at 

the 25th, 50th, and 75th percentiles were reported. Teachers can use national normative 

ability scores to understand how their children are performing in comparison to a 

nationally representative sample of children at particular points throughout the academic 

year. Additionally, growth norms capture average change in domain-level scaled scores 

between the fall and spring measurement occasions for each domain and given year of 
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life. Teachers can use growth estimates to understand average growth for each year of life 

(Lambert, 2020). 

To aid in meeting numerous assessment purposes, GOLD® yields four unique scores. 

Educators may use raw scores or WHE scores to plan for future instruction, identify children 

who may need additional support, and communicate with families. However, scores expressed 

using ordinal levels of measurement, such as raw scores or WHE scores, do not allow for 

understanding growth across trimesters or years. Educators and administrators may use interval-

level scaled scores to understand how much growth a child made from the fall of pre-k to the 

spring of pre-k or to understand if a child made more growth during their preschool or pre-k 

year. Furthermore, because scores are placed on a common scale, meaningful comparisons can 

be made between children who are at different developmental levels (Lambert, 2020).  

Reliability. Since the present study sought to understand typical development from birth 

through kindergarten, domain-level scaled scores were used so that preliminary developmental 

abilities and growth rates could be meaningfully compared over time and for children who were 

at different developmental levels. Lambert (2020) acknowledged that “reliability and validity are 

not inherent qualities of an assessment but rather are properties of the information an assessment 

provides under particular conditions of use” (p. 4). Given that evidence of reliability is 

prerequisite to valid score interpretations, Lambert (2020) provided information regarding 

person-separation reliability, item-separation reliability, and internal-consistency reliability for 

GOLD® domain-level scaled scores. High person-separation reliability coefficients suggest that 

there is a high probability of replicating the same separation of persons across multiple 

measurements. For each domain of learning or development, person-separation reliability 

coefficients were greater than or equal to .96. Similarly, high item-separation reliability 
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coefficients suggest that it’s very likely to obtain the same separation of items across multiple 

measurements. Lambert (2020) found that item-separation reliability coefficients were greater 

than or equal to 0.99 across domains of learning and development. And finally, internal 

consistency reliability as measured by coefficient alpha was greater than or equal to .97 for each 

domain of learning or development. In summary, there is substantial evidence to support the 

reliability of GOLD® scaled scores for children ages birth through first grade across the six major 

domains of learning and development (Lambert, 2020). 

Measurement Invariance. While evidence of scaled score reliability is one important 

source of validity evidence, another critical source includes evidence of measurement invariance. 

According to The American Educational Research Association et al. (2014), 

A test that is fair within the meaning of The Standards reflects the same construct(s) for 

all test takers, and scores from it have the same meaning for all individuals in the 

intended population: a fair test does not advantage or disadvantage some individuals 

because of characteristics irrelevant to the intended construct (p. 50).  

To provide evidence that constructs were interpreted similarly across children who belong to 

different subgroups, researchers used multigroup CFA to examine measurement invariance 

(Lambert, 2022). Resulting fit statistics supported strict measurement invariance between boys 

and girls (CFI=.997, TFI=.997, RMSEA= .049, 95% CI[.049,.049], SRMR=.044), children 

whose primary language was English and children whose primary language was Spanish 

(CFI=.996, TFI=.996, RMSEA=.057 95% CI[.057,.057], SRMR=.050], and children who 

identify as White and non-White (CFI=.997, TFI=.997, RMSEA=.053 95% CI[.053,.054], 

SRMR=.051). Given evidence of strict invariance, meaningful comparisons can be made across 
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latent factor means for boys and girls, White and non-White children, and children whose 

primary language is English and children whose primary language is Spanish (Pirralha, 2020). 

Data Collection Procedures 

Teachers engage in the assessment process as they collect evidence of children’s learning 

and development during routine activities, compile evidence into portfolios, make preliminary 

placements along developmental and learning progressions, and finalize ratings at predetermined 

timepoints throughout the academic year (Lambert, 2020). Many teachers finalize ratings three 

times throughout the year, including once at the end of each trimester. However, frequency of 

use varies from program-to-program and state-to-state. When teachers finalize ratings along 

developmental and learning progressions, item-level data are entered into the Teaching Strategies 

GOLD® online platform. Item-level scores are summed to obtain domain-level raw scores. Next, 

domain-level raw scores are transformed to scaled scores using a Rasch measurement model. 

The model uses a proprietary algorithm to impute item-level data for any child that has received 

ratings on at least 80% of progressions within each domain. The model is based on mean 

substitution and uses other ratings within the domain to estimate missing values.   

Variables 

The 2021-2022 dataset included item-level ratings, domain-level raw scores, and domain-

level scaled scores. In addition to assessment data, most children had demographic information 

on record, including, grade-level, birthdate, gender, race, ethnicity, and primary language and 

some children had information on record, including, disability status and FRL-eligibility status. 

Several additional variables were created and added to the 2021-2022 data set. Model variables 

and demographic variables are described in greater detail below.  
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Social Emotional, Language, Physical, and Cognitive Domain-Level Scaled Scores: 

calculated by transforming the social-emotional, language, physical, and cognitive 

domain-level raw scores using a Rasch measurement model. The resulting scores 

represent developmental status on the date the ratings were finalized for each respective 

construct. Scores reflect an interval-level of measurement and reside on a scale that 

ranges from 0-1000. 

Literacy and Mathematics Domain-Level Scaled Scores: calculated by transforming 

the literacy and mathematics domain-level raw scores using a Rasch measurement model. 

The resulting scores represent academic ability on the date the ratings were finalized for 

each respective construct. Scores reflect an interval-level of measurement and reside on a 

scale that ranges from 0-1000. 

Checkpoint Finalization Date: This is a date variable and reflects the date a child’s 

ratings were finalized in the online platform for a particular checkpoint, e.g., the fall 

social-emotional checkpoint or the winter mathematics checkpoint. 

Approximate Instructional Exposure: This variable was created by taking the 

assessment finalization date for each domain and measurement and subtracting the 

typical school start date, August 14, 2021. This variable represents approximate 

instructional exposure in months and ranges from 0 to 11. 

Age in Months: This variable was created by taking the assessment finalization date for 

each domain and measurement and subtracting the child’s birthdate. This variable 

represents each child’s age at the time each assessment score was finalized. This variable 

ranges from 0 to 80.  
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Age in Months Centered: This variable was created by taking each child’s age in 

months at the time of assessment and subtracting the first age included in each age band. 

This variable represents a child’s additional months of age from the first age included in 

the age band at the time of each assessment finalization date. This variable ranges from 0-

20. 

Birthdate: This is a date variable and reflects the date a child was born. The birthdate 

variable was used to calculate the child’s age in months at each desired point in time 

(e.g., beginning of the academic year). 

Age-Band: This categorical variable includes six distinct categories, birth to one-year-

old children, one- to two-year-old children, two- to three-year-old children, preschool 

children (three- to four-year-olds), pre-k children (four- to five-year-olds), and 

kindergarten children (five- to six-year-olds). While each child is assigned to an age-band 

based on their classroom level, it is possible to have children within each color band that 

reside outside of the intended age range served. For example, it’s likely that there are 

some seven-year-old children in kindergarten classrooms. 

Academic Year Start Date: This date variable was established using the average start 

date for the academic year in the U.S., August 14, 2021, and is the same for all children 

in the sample (DeSilver, 2019). 

Age Cut Date: This date variable was created using a typical cut date to determine 

eligibility to start kindergarten. This date is September 1, 2021, and is the same for all 

children in the sample (O’Connor, 2019). 

Gender: This is a dichotomous categorical variable; children can be identified as male 

(0) or female (1). 
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Race/Ethnicity: This categorial variable combines race and ethnicity and features the 

same categories as the U.S. Census, including, White Non-Hispanic, Black Non-

Hispanic, Asian Non-Hispanic, Native American, Native Hawaiian, Alaskan Native, or 

Pacific Islander Non-Hispanic, Bi- or Multiracial Non-Hispanic, and Hispanic or Latino. 

Dummy variables were created for each race/ethnicity category.   

Primary Language: This categorical variable represents a child’s first language and 

includes the following categories: English, Spanish, and Other. Dummy variables were 

created for each language category. 

Free- and Reduced-Price Lunch Eligibility Status: This is a dichotomous categorical 

variable; children can be identified as Free- and Reduced-Price Lunch eligible (1) on 

ineligible (0). 

Individualized Family Service Plan Eligibility Status: This is a dichotomous 

categorical variable; children can have an Individualized Family Service Plan (1) or not 

(1).  

Individualized Education Plan Eligibility Status: This is a dichotomous categorical 

variable; children can have an Individualized Education Plan (1) or not (1).  

Population 

During the 2021-2022 academic year, nearly 1.3 million children in birth through 

kindergarten classrooms were assessed using the English version of GOLD®, including children 

from all 50 states and Washington, D.C. Results from the current study seek to provide 

normative ability and growth scores that can be generalized to children who are in birth to one-

year-old, one- to two-year-old, two- to three-year-old, preschool, pre-k, and kindergarten 

classrooms and are assessed using GOLD®. 
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Eligibility Criteria 

Prior to sampling, several criteria were established to support the development of precise 

time-continuous normative scores and eliminate some degree of construct-irrelevant variance. 

First, while there are English and Spanish versions of GOLD®, only children assessed using the 

English-version of GOLD® were considered for the current study, as researchers have not 

established measurement invariance between the Spanish- and English-versions of GOLD®. 

Next, the number of children nested within each rater was reviewed. To capture typical 

classroom use, the National Association for the Education of Young Children’s Staff-to-Child 

Ratio and Class Size guidelines (2018) and empirical data were considered. Children in birth to 

one year old classrooms were eligible to be sampled if they shared a rater with one to 19 other 

children, children in one- to two-year-old and two- to three-year-old classrooms were eligible if 

they shared a rater with three to 19 other children, and preschool, pre-k, and kindergarten 

children were eligible to be sampled if they shared a rater with five to 24 other children. This 

criterion served two purposes, including a) to capture typical use which includes teachers 

assigning ratings to children in their own classrooms and b) to reduce nesting effects which may 

be induced if a single rater assigned ratings to all the children in one childcare center. 

Additionally, to enact the sampling plan, age band and race/ethnicity data were needed. 

Therefore, only children with race, ethnicity, and age band data were eligible to be sampled. 

Finally, to be considered for the current study, children had to be reasonably aged for their age 

band/grade level. The lower age threshold for each age band or grade was the first age included 

in the color band (e.g., children in birth to one-year-old classrooms had to be zero months as of 

September 1, 2021, and children in kindergarten classrooms had to be at least 60 months on 

September 1, 2021). The upper threshold for each age band was determined by examining 
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empirical distributions. This criterion was implemented to support the development of normative 

scores that were not overly influenced by outliers and reflective of typical development at each 

point in time from birth through kindergarten. See Table A1 in Appendix A for more information 

about children’s ages at the age cut date, September 1, 2021. 

Sampling Strategy 

Stratified random sampling was used to derive a nationally representative sample of 

children ages birth through kindergarten who were assessed using GOLD® during the 2021-2022 

academic year. First, the sampling frame was divided into six strata using children’s age/grade 

bands, including, birth to one-year-old children, one- to two-year-old children, two- to three-

year-old children, preschool children (three- to four-year-olds), pre-k children (four- to five-year-

olds), and kindergarten children (five- to six-year-olds). Next, 2020 Census race/ethnicity data 

for children was used to determine the proportion of children to sample from each stratum. 

According to the 2020 Census data, children who identified as White Non-Hispanic made up 

about one-half of the population of children in the U.S. (N=36,854,828, 49.65%). Children who 

identified as Hispanic or Latino made up approximately one-fourth of the population 

(N=18,983,948, 25.58%). Children who identified as Black Non-Hispanic made up nearly one-

seventh of the population (N=10,196,603, 13.74%). And finally, children who identified as Asian 

Non-Hispanic (N=4,011,508, 5.40%), two or more races Non-Hispanic (N=3,412,289, 4.60%), or 

Native Hawaiian Non-Hispanic, Pacific Islander Non-Hispanic, Alaskan Native Non-Hispanic, 

and American Indian Non-Hispanic (N=762,457, 1.03%) accounted for small proportions of the 

population (Population Division U.S. Census Bureau, 2022, as cited by Annie E. Casey 

Foundation, 2023). Given a target sample of 3,000 children per age-band stratum, the target 

sample per age band strata included 1,490 White Non-Hispanic children, 767 Hispanic or Latino 
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children, 412 Black Non-Hispanic children, 162 Asian Non-Hispanic children, 138 Bi- or 

Multiracial Non-Hispanic children, and 31 Native Hawaiian Non-Hispanic, Pacific Islander Non-

Hispanic, Alaskan Native Non-Hispanic, or American Indian Non-Hispanic children.  

Sample 

The full sample included assessment records from 18,000 children who resided in 

classrooms where GOLD® checkpoints were finalized three times during the 2021-2022 

academic year. Children ranged in age from zero to 70 months on September 1, 2021 (M =34.33, 

SD=21.04). The sample was split relatively evenly between boys (n=9,330, 51.88%) and girls 

(n=8,655, 48.12%). The race/ethnicity breakdown closely mirrored the Census records and was 

as follows: White Non-Hispanic (n=8,983, 49.91%) Hispanic or Latino (n=4,624, 25.69%), 

Black Non-Hispanic (n=2,484, 13.80%), Asian Non-Hispanic (n=890, 4.94%), Bi- or Multiracial 

Non-Hispanic (n=832, 4.62%), and Native Hawaiian Non-Hispanic, Pacific Islander Non-

Hispanic, Alaskan Native Non-Hispanic, and American Indian Non-Hispanic (n=187, 1.04%). 

Asian children were slightly underrepresented in the birth- to one-year-old (n=134) and the 

kindergarten (n=140) sample. Most children’s primary language was English (n=13,429, 

74.61%), followed by Spanish (n=2,454, 13.63%), and other (n=2,117, 11.76%). Nearly one-

third of children sampled (n=4,993, 27.74%) were eligible for free- or reduced-price lunch 

(FRL). A small proportion of children sampled were on an Individual Family Support Plan or 

Individualized Education Plan (n=1,226, 6.81%) and a small proportion were identified as 

English Language Learners (n=1,635, 9.08%). Additional demographic data and relevant 

descriptive statistics are provided in Table A2 in Appendix A. 
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Data Analysis Procedures 

 Longitudinal GOLD® data were fitted to a series of MLMs to obtain estimates of the fixed 

effects and establish time-continuous ability and growth normative scores for children ages birth 

through kindergarten across domains of learning and development. Compared to previous 

methods used to establish norms which included cross-sectional and two-time point data, MLMs 

were used to produce more precise estimates that were reflective of the intra-individual growth 

process and leveraged between-child variability in age and instructional exposure (Pan & 

Goldstein, 1997; Thum & Kuhfeld, 2020). Multilevel models were used, rather than LGCs, for 

two primary reasons, including researchers a) suggest that MLMs are preferable in the presence 

of time-unstructured data (Curran et al., 2010; McNeish & Matta, 2017; O’Connell & McCoach, 

2008) and b) have used MLMs to establish normative ability and growth estimates in other 

contexts (Pan & Goldstein, 1997; Thum & Kuhfeld, 2020). Within the MLM framework, HLMs 

were selected because linear models typically fit the data reasonably well when individuals have 

three measurements that were collected over a relatively short time-period (Raudenbush & Bryk., 

2002).  

Measuring and Modeling Time 

Researchers seeking to model developmental and academic growth using hierarchical 

linear growth models must select a time metric that is meaningful to their phenomenon and 

research aims. After reviewing numerous studies that sought to describe the growth process 

across domains of learning and development for children ages birth through kindergarten and 

beyond, it was apparent that researchers have used many different units to measure and model 

the passing of time. Researchers have used trimesters (Lambert, 2020), grade-level (Mok et al., 

2015; Shanley, 2016; Thum & Kuhfeld, 2020), instructional exposure, (Thum & Kuhfeld, 2020) 
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and age in months (Hujar et al., 2021). Yet, none of these studies sought to understand 

continuous growth trends from birth through kindergarten. Furthermore, while researchers 

seeking to model older student’s academic growth often explored numerous approaches to 

measuring and modeling time (Shanley, 2016; Thum & Kuhfeld, 2020), literature was void of 

studies that sought to understand the most effective time metric for modeling young children’s 

developmental growth which is frequently rapid (Center for the Developing Child, 2016) and 

closely related to age (Harkness et al., 2013).  

Given the limitations of previous research, the current study modeled the passing of time 

using two different time metrics: age in months and approximate months of instructional 

exposure at the time of each assessment finalization date. Normative score estimates based on 

months of instructional exposure may be useful in understanding typical performance for 

children who are also typically aged and children in older age bands, while normative estimates 

based on months of age may be more appropriate for babies and toddlers where developmental 

progress is closely related to age (Harkness et al., 2013). 

Centering Time. Once a time metric is selected, researchers must also choose a centering 

strategy that allows for meaningful interpretations of intercept parameters (O’Connell & 

McCoach, 2008; Raudenbush & Bryk, 2002). For each age band, age in months was centered on 

the first age included in the age band. For example, each model for babies in birth to one-year-

old classrooms was centered on zero month. Likewise, each model for kindergarteners was 

centered on 60 months. Using this strategy, age intercepts can be interpreted as the expected 

domain-level scaled score for the youngest children in the age band. Additionally, across all age-

bands, instructional exposure was centered on the average school start date, August 14, 2021 
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(DeSilver, 2019). Using this centering strategy, instructional exposure intercepts can effectively 

be interpreted as the expected domain-level scaled score for children prior to instruction. 

Data Requirements and Assumptions 

Researchers seeking to model growth using hierarchical linear growth models must 

examine several assumptions prior to conducting analyses. If assumptions are ignored and 

misspecification occurs at level one, level-one and level-two estimates can be biased 

(Raudenbush & Bryk, 2002). Individual age-band files were reviewed for each data requirement 

and assumption and results are discussed in subsequent paragraphs. 

Missing data. While HLMs allow for missing data, data must be missing completely at 

random (MCAR) or missing at random (MAR) (O’Connell & McCoach, 2008; Raudenbush & 

Bryk, 2002). Data are considered MCAR if missing values are randomly distributed across the 

variable and unrelated to other variables, while data are considered MAR if missing values are 

not randomly distributed and are related to other variables in the dataset (Raudenbush & Bryk, 

2002). Little’s MCAR test (1988) was used to examine whether data were MCAR. Large Chi-

Square statistics and statistically significant p-values suggested that the missing values were not 

MCAR across age bands. To examine the plausibility that data were MAR, missing values were 

carefully examined in relation to other observed values. Through careful review, a pattern of 

missingness emerged between site IDs and domain-level scaled scores, where the missingness of 

the domain-level scaled score could be explained by the child’s site ID. Given that the propensity 

of missing values was determined to be related to other observations, the mechanism of 

missingness was determined to be MAR.  

While researchers can use HLMs to model incomplete data, missing data should be 

handled carefully to ensure unbiased estimates (Raudenbush & Bryk, 2002). After careful 

60



examination, it was determined that data were missing for less than 7% of cases for each 

variable. Researchers have suggested that the benefit to multiple imputation is insignificant 

below 5% missingness and estimates are unlikely to be biased by missing data below 10% (Lee 

& Huber, 2021). Therefore, missing values were not imputed. Instead, Full Information 

Maximum Likelihood was used to obtain parameter estimates in the presence of partially missing 

data (Raudenbush & Bryk, 2002). 

Observations and Parameter Estimates. First, hierarchical linear modeling requires that 

individuals have at least one measurement (Raudenbush & Bryk, 2002). This requirement was 

met through preliminary data cleaning procedures. Next, HLMs require one more wave of data 

than the number of growth parameters included in the level one model (O’Connell & McCoach, 

2008). This data requirement was met given that most children had three measurements and only 

two level-one parameters were estimated (slope and intercept).  

 Linearity. HLM assumes a linear relationship between the independent and dependent 

variables (Palmeri, n.d.). To examine the tenability of this assumption, SPSS 28 was used to 

create scatter plots using children’s age in months and model residuals and children’s 

instructional exposure and model residuals. Across age bands, domains, and time metrics, plots 

demonstrated a random scatter, thus providing support for the tenability of this assumption.  

Homogeneity of Variance. To examine the tenability of this assumption, SPSS 28 was 

used to create scatter plots of fitted values and residuals (Palmeri, n.d.). Across age bands, 

domains, and time metrics, plots demonstrated a random scatter, thus supporting the tenability of 

this assumption. 

Normality of Residuals. HLM assumes normality of residuals (Palmeri, n.d.). To 

examine the tenability of this assumption, QQ plots were used to examine the relationship 
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between the standardized residuals and normal quantiles. While there was some deviation at the 

tails, overall, the residuals demonstrated a linear diagonal pattern across age bands, domains, and 

time metrics, providing evidence to support the tenability of this assumption.   

Software and Estimation Procedures 

Hierarchical linear growth models were fitted to longitudinal data using HLM 8 software. 

To derive model-based estimates, full information maximum likelihood (ML) estimation 

procedures were used. Under ML, the software estimates values for the level-two fixed 

coefficients, γ, Tau matrix, T, and level-one residual variance, σ2 that maximize the joint 

likelihood of all three parameters given the sample data, Y (Raudenbush & Bryk, 2002). ML was 

selected over the default estimation procedure, restricted information maximum likelihood 

(REML) for two reasons, including a) ML is preferable in the presence of missing data 

(Raudenbush et al., 2002) and b) ML is required to compare non-nested models using 

Information Criteria tests such as the AIC test (McCoach et al., 2022).  

Modeling Typical Development 

To answer the first research question, which sought to understand typical or average 

development at each point in time from birth through kindergarten across each of the six major 

domains of learning and development presented in the GOLD® assessment system, longitudinal 

assessment data were fitted to a series of MLMs (Pan & Goldstein, 1997; Thum & Kuhfeld, 

2020). First, data were fitted to 36 completely unconditional models, one for each age band and 

domain of learning and development. Completely unconditional models were specified for three 

reasons, including to, a) decompose variance, b) calculate the intraclass correlations (ICCs), and 

c) obtain baseline model fit statistics. Variance components, including the proportion of 

between-child and within-child variance, were used in subsequent analyses and ICCs were 
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examined to determine if a significant proportion of the total variance resided between children 

and therefore provided justification for nesting assessment occasions within children. 

Equation 1 includes the Completely Unconditional Level I Model and was used to model 

a child’s domain level scaled score, 𝑌𝑌𝑡𝑡𝑡𝑡, as a function of the child’s average academic or 

developmental level across measurements, 𝜋𝜋0𝑡𝑡, and a residual term, 𝑒𝑒𝑡𝑡𝑡𝑡. Equation 2 includes the 

Completely Unconditional Level II Model and was used to model a child’s average academic or 

developmental level across measurements, 𝜋𝜋0𝑡𝑡, as a function of the grand mean academic or 

developmental level, 𝛽𝛽00, and an error term, 𝑟𝑟0𝑡𝑡. Although the subscript t was used in the 

Completely Unconditional Model, time was not modeled in this set of equations, rather, 𝜋𝜋0𝑡𝑡 is an 

estimate of each child’s average academic or developmental level across measurements and 𝛽𝛽00 

represents the grand mean academic or developmental level across children. While researchers 

typically begin with the Unconditional Model, rather than the Completely Unconditional Model, 

the Completely Unconditional Model was required for partitioning variance and more 

importantly, obtaining proportion of variance reduction statistics for more parameterized models, 

including the Unconditional Instructional Exposure Growth Model and the Unconditional Age in 

Months Growth Model. Furthermore, while the Completely Unconditional Level I and Level II 

Models are the same across time metrics, a second set of Completely Unconditional Level I and 

Level II Models with different subscripts are provided in Equations 3 and 4, so that subsequent, 

nested or more parameterized models can maintain the same set of subscripts.  

 

Completely Unconditional Level I Model (Instruction) 

          𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡             (1) 

Where:  
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𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 

𝜋𝜋0𝑡𝑡  = average academic or developmental level for child i across measurements 

𝑒𝑒𝑡𝑡𝑡𝑡 = within child residual 

 

Completely Unconditional Level II Model (Instruction) 

            𝜋𝜋0𝑡𝑡 = 𝛽𝛽00 + 𝑟𝑟0𝑡𝑡           (2) 

Where:  

𝜋𝜋0𝑡𝑡  = average academic or developmental level for child i across measurements 

𝛽𝛽00 = grand mean academic or developmental level 

𝑟𝑟0𝑡𝑡 = random error in measurement for child i 

 

Completely Unconditional Level I Model (Age in Months) 

          𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋2𝑡𝑡 + 𝑒𝑒1𝑡𝑡𝑡𝑡            (3) 

Where:  

𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 

𝜋𝜋2𝑡𝑡  = average academic or developmental level for child i across measurements 

𝑒𝑒1𝑡𝑡𝑡𝑡 = within child residual 

 

Completely Unconditional Level II Model (Age in Months) 

            𝜋𝜋2𝑡𝑡 = 𝛽𝛽20 + 𝑟𝑟1𝑡𝑡           (4) 

Where:  

𝜋𝜋2𝑡𝑡  = average academic or developmental level for child i across measurements 

𝛽𝛽20 = grand mean academic or developmental level 
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𝑟𝑟1𝑡𝑡 = random error in measurement for child i 

 

Next, 72 unconditional hierarchical linear growth models were specified, one for each 

age band, domain of learning and development, and time metric. Intercepts were allowed to vary 

for all growth models, as evidenced by level-two residual terms, 𝑟𝑟1𝑡𝑡 and 𝑟𝑟2𝑡𝑡. Model-estimated 

random intercept reliability coefficients suggested intercept values were generally reliable across 

Unconditional Instructional Exposure Growth Models (.76-.93) and Unconditional Age in 

Months Growth Models (.71-.94). While intercepts were allowed to vary between children, linear 

slopes were fixed. To examine whether random slope models demonstrated significantly better 

fit to the data, random slope coefficients were added to Kindergarten Level II Instructional 

Exposure Growth Models and Level II Age in Months Growth Models. Statistically significant 

chi-squared values resulting from Likelihood Ratio Tests (LRT) suggested that random-slope 

models demonstrated better fit to the data. However, LRTs which rely on chi-squared tests are 

notoriously sensitive to large sample sizes (McCoach et al., 2022). Therefore, model AICs were 

also reviewed. Minimal changes in AIC values across nested models suggested the additional 

error term was unnecessary and therefore, the more parsimonious models were retained.  

Equation 5 includes the Unconditional Level I Instructional Exposure Growth Model and 

was used to model the domain-level scaled score for child i at time t, 𝑌𝑌𝑡𝑡𝑡𝑡, as a function of the 

child’s academic ability or developmental level prior to instruction, 𝜋𝜋0𝑡𝑡, a linear rate of growth, 

𝜋𝜋1𝑡𝑡, additional months of instruction since the beginning of the academic year, (instruction – 

instruction1)ti, and a residual term, 𝑒𝑒𝑡𝑡𝑡𝑡. The Unconditional Level II Instructional Exposure 

Growth Model includes equations 6 and 7. Equation 6 was used to model each child’s academic 

or developmental level prior to instruction, 𝜋𝜋0𝑡𝑡, as a function of the average academic ability or 
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developmental level prior to instruction, 𝛽𝛽00, and an error term, 𝑟𝑟0𝑡𝑡. Equation 7 was used to 

model each child’s linear rate of growth, 𝜋𝜋1𝑡𝑡, as a function of the average growth rate, 𝛽𝛽10. 

 

Unconditional Level I Instructional Exposure Growth Model 

                𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡 + 𝜋𝜋1𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1)𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡         (5) 

Where:  

𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 

𝜋𝜋0𝑡𝑡  = academic or developmental level prior instruction for child i 

𝜋𝜋1𝑡𝑡 = linear rate of growth for child i 

instruction = months of instruction for child i at time t 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 0 months of instruction for child i 

𝑒𝑒𝑡𝑡𝑡𝑡 = within child residual at time t 

 

Unconditional Level II Instructional Exposure Growth Model 

𝜋𝜋0𝑡𝑡 = 𝛽𝛽00 + 𝑟𝑟0𝑡𝑡           (6) 

                  𝜋𝜋1𝑡𝑡 = 𝛽𝛽10                                  (7) 

Where:  

𝜋𝜋0𝑡𝑡  = academic or developmental level prior to instruction for child i 

𝛽𝛽00 = average academic or developmental level prior to instruction 

𝑟𝑟0𝑡𝑡 = random error in intercept for child i 

𝜋𝜋1𝑡𝑡 = linear rate of growth for child i 

𝛽𝛽10 = average linear growth rate 
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Equation 8 includes the Unconditional Level I Age in Months Growth Model and was 

used to model the domain-level scaled score for child i at time t, 𝑌𝑌𝑡𝑡𝑡𝑡, as a function of the child’s 

academic ability or developmental level at the beginning of the age band, 𝜋𝜋2𝑡𝑡, a linear rate of 

growth, 𝜋𝜋3𝑡𝑡, additional months of age from the first age in that age band (age – age1)ti, and a 

within child residual term, 𝑒𝑒1𝑡𝑡𝑡𝑡. The Unconditional Level II Age in Months Growth Model 

includes equations 9 and 10. Equation 9 was used to demonstrate each child’s academic or 

developmental level at the beginning of the age band, 𝜋𝜋2𝑡𝑡, as a function of the average academic 

ability or developmental level at the beginning of the age band, 𝛽𝛽20, and an error term, 𝑟𝑟1𝑡𝑡. 

Equation 9 was used to model each child’s linear rate of growth, 𝜋𝜋3𝑡𝑡, as a function of the average 

growth rate, 𝛽𝛽30. 

 

Unconditional Level I Age in Months Growth Model 

                            𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋2𝑡𝑡 + 𝜋𝜋3𝑡𝑡(𝑎𝑎𝑎𝑎𝑒𝑒 − 𝑎𝑎𝑎𝑎𝑒𝑒1)𝑡𝑡𝑡𝑡 + 𝑒𝑒1𝑡𝑡𝑡𝑡          (8) 

Where:  

𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 

𝜋𝜋2𝑡𝑡  = academic or developmental level for child i at the youngest age in the age band 

𝜋𝜋3𝑡𝑡  = linear rate of growth for child i 

age = age in months for child i at time t 

𝑎𝑎𝑎𝑎𝑒𝑒1 = first age in age band, measured in months 

𝑒𝑒1𝑡𝑡𝑡𝑡 = within child residual at time t 

 

Unconditional Level II Age in Months Growth Model 

𝜋𝜋2𝑡𝑡 = 𝛽𝛽20 + 𝑟𝑟1𝑡𝑡           (9) 
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                  𝜋𝜋3𝑡𝑡 = 𝛽𝛽30                     (10) 

Where:  

𝜋𝜋2𝑡𝑡  = academic or developmental level for child i at the youngest age in the age band 

𝛽𝛽20 = average academic or developmental level at the youngest age in the age band 

𝑟𝑟1𝑡𝑡 = random error in intercept for child i 

𝜋𝜋3𝑡𝑡  = linear rate of growth for child i 

𝛽𝛽30 = average linear growth rate 

 

The Most Effective Approach to Modeling Time 

To answer the second research question which sought to provide evidence of the most 

effective approach to measure and model time for children ages birth through kindergarten 

across domains of learning and development, two approaches were used. First, level-one pseudo-

r2 statistics, including the proportional reduction in variance statistics, were calculated for each 

set of nested models (e.g., the Completely Unconditional Kindergarten Language Model and the 

Unconditional Kindergarten Age in Months Language Model) (Raudenbush & Bryk, 2002 as 

cited in McCoach et al., 2022). Next, pseudo-r2 values were compared for each set of 

unconditional models (e.g., the Unconditional Kindergarten Age in Months Language Model and 

the Unconditional Kindergarten Instructional Exposure Language Model) to understand which 

time metric explained a greater proportion of variance in the outcome. Larger pseudo-r2 were 

used to provide preliminary evidence in support of the most effective time metric for each age 

band and domain of development.  

Next, Information Criteria, including model AICs, were used to compare Unconditional 

Instructional Exposure Growth Models and Unconditional Age in Months Growth Models 
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(Akaike, 1973 as cited in McCoach et al., 2022). The AIC, which can be calculated by 

multiplying the number of parameters by two and subtracting 2 times the log-likelihood, 

provides information about model deviance while imposing a small penalty for less parsimonious 

models. Smaller AIC values provide evidence of better model fit. Smaller AIC values from each 

set of non-nested unconditional models were used to provide further evidence of the most 

effective time metric for each age band and domain of development (McCoach et al., 2022). 

Inferring the Nature of the Growth Process 

Researchers who have examined longitudinal growth trends over a number of years have 

frequently found growth rate slows as children age (Mok et al., 2015; Shanley, 2016; Thum & 

Kuhfeld, 2020). While the proposed study does not seek to draw definitive conclusions about the 

nature of growth from birth through kindergarten, as assessment records belong to age-separated 

cohorts of children, the third research question sought to make inferences about the nature or 

shape of the growth process across domains of learning and development. To achieve this aim, 

model-estimated linear slopes were examined for children ages birth through kindergarten for 

each domain of learning and development.  

Examining Subgroup Differences in Growth Trajectories 

The fourth research question sought to understand how growth trends differed between 

subgroups of children. For decades, researchers have demonstrated that children’s developmental 

and academic growth trajectories can differ significantly between subgroups of children, such as 

boys and girls (Hujar et al., 2021; Voyer & Voyer, 2014), White Non-Hispanic, Hispanic, and 

Black Non-Hispanic children (Kuhfeld et al., 2020; Reardon & Portilla, 2016; Reardon & 

Galindo, 2009) children who come from low-income or middle- or high-income families (Hujar 

et al., 2021, Reardon & Portilla, 2016, Roberts & Byrant, 2011), and children that are native and 
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non-native English speakers (Hujar et al., 2021; Roberts & Bryant, 2011). Researchers often 

examine differences in initial academic abilities and developmental levels (Hujar et al., 2021; 

Kuhfeld et al., 2020; Reardon & Portilla, 2016) and growth rates over time (Reardon & Galindo, 

2009; Voyer & Voyer, 2014) to inform teaching practices and policy decisions (Kuhfeld et al., 

2020).  

To answer the final research question, child-level characteristics including, gender, 

race/ethnicity, and primary language were modeled at level two to understand how certain 

characteristics were related to typical preliminary performance (intercept) and linear growth rate 

(slope). For this analysis, data were fitted to 72 hierarchical linear growth models, one for each 

age-band, domain of learning and development, and time metric. Resulting beta coefficients and 

p-values were examined to understand whether child-level characteristics were significantly 

related to average preliminary performance and mean linear growth rate after controlling for 

other variables in the model. Beta coefficients with corresponding p-values <=.05 were 

interpreted to understand the typical effect of each child-level characteristic on preliminary 

developmental status and growth rate over time.  

Equation 11 includes The Conditional Level I Instructional Exposure Growth Model, and 

was used to model the domain-level scaled score for child i at time t, 𝑌𝑌𝑡𝑡𝑡𝑡, as a function of the 

child’s academic ability or developmental level prior to instruction, 𝜋𝜋0𝑡𝑡, a linear rate of growth, 

𝜋𝜋1𝑡𝑡, additional months of instruction since the beginning of the academic year, (instruction – 

instruction1)ti,, and an error term, 𝑒𝑒𝑡𝑡𝑡𝑡 . The Conditional Level II Instructional Exposure Model 

includes equations 12 and 13. Equation 12 was used to model each child’s developmental level 

prior to instruction, 𝜋𝜋0𝑡𝑡, as a function of average ability prior to instruction, 𝛽𝛽00, a female effect, 

𝛽𝛽01, a Spanish effect, 𝛽𝛽02, an other language effect, 𝛽𝛽03, a Black Non-Hispanic effect, 𝛽𝛽04, an 
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Asian Non-Hispanic effect, 𝛽𝛽05, a Native American, Pacific Islander, Hawaiian Native, and 

Alaskan Native Non-Hispanic effect, 𝛽𝛽06, a Bi- and Multiracial effect, 𝛽𝛽07, a Hispanic effect, 

𝛽𝛽08, and a residual term, 𝑟𝑟0𝑡𝑡. Equation 11 models each child’s linear growth rate, 𝜋𝜋1𝑡𝑡, as a 

function of the average linear growth rate, 𝛽𝛽10, a female effect, 𝛽𝛽11, a Spanish effect, 𝛽𝛽12, an 

other Language effect, 𝛽𝛽13, a Black Non-Hispanic effect, 𝛽𝛽14, an Asian Non-Hispanic effect, 

𝛽𝛽15, a Native American, Pacific Islander, Hawaiian Native, and Alaskan Native Non-Hispanic 

effect, 𝛽𝛽16, a Bi- and Multiracial effect, 𝛽𝛽17, a Hispanic effect, 𝛽𝛽18. 

 

Conditional Level I Instructional Exposure Growth Model 

              𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡 + 𝜋𝜋1𝑡𝑡(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1)𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡       (11) 

Where:  

𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 

𝜋𝜋0𝑡𝑡  = academic or developmental level prior instruction for child i 

𝜋𝜋1𝑡𝑡 = linear rate of growth for child i 

instruction = months of instruction for child i at time t 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 = 0 months of instruction for child i 

𝑒𝑒𝑡𝑡𝑡𝑡 = within child residual at time t 

 

Conditional Level II Instructional Exposure Growth Model           

     (12) 

𝜋𝜋0𝑡𝑡 = 𝛽𝛽00 + 𝛽𝛽01(𝑓𝑓𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒)𝑡𝑡 + 𝛽𝛽02(𝑆𝑆𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝑡𝑡 + 𝛽𝛽03(𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑓𝑓𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒)𝑡𝑡 + 𝛽𝛽04(𝐵𝐵𝑓𝑓𝑎𝑎𝑖𝑖𝐵𝐵) +

𝛽𝛽05(𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽06(𝑁𝑁𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑒𝑒 𝐴𝐴𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽07(𝑀𝑀𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑆𝑆𝑓𝑓𝑒𝑒 𝑅𝑅𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖)𝑡𝑡 + 𝛽𝛽08(𝐻𝐻𝑖𝑖𝑖𝑖𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)𝑡𝑡 + 𝑟𝑟0𝑡𝑡  
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(13) 

𝜋𝜋1𝑡𝑡 = 𝛽𝛽10 + 𝛽𝛽11(𝑓𝑓𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒)𝑡𝑡 + 𝛽𝛽12(𝑆𝑆𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝑡𝑡 + 𝛽𝛽13(𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑓𝑓𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒)𝑡𝑡 + 𝛽𝛽14(𝐵𝐵𝑓𝑓𝑎𝑎𝑖𝑖𝐵𝐵) +

𝛽𝛽15(𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽16(𝑁𝑁𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑒𝑒 𝐴𝐴𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 + 𝛽𝛽17(𝑀𝑀𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑆𝑆𝑓𝑓𝑒𝑒 𝑅𝑅𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖)𝑡𝑡 + 𝛽𝛽18(𝐻𝐻𝑖𝑖𝑖𝑖𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)𝑡𝑡   

Where:  

𝜋𝜋0𝑡𝑡= academic or developmental level prior to instruction for child i 

𝛽𝛽00 = average ability or developmental level prior to instruction  

𝛽𝛽01= unique female effect in intercept 

𝛽𝛽02= unique Spanish effect in intercept 

𝛽𝛽03= unique other language effect in intercept 

𝛽𝛽04= unique Black Non-Hispanic effect in intercept  

𝛽𝛽05= unique Asian Non-Hispanic effect in intercept 

𝛽𝛽06= unique Native American Non-Hispanic effect in intercept 

𝛽𝛽07= unique Multiracial Non-Hispanic effect in intercept 

𝛽𝛽08= unique Hispanic effect in intercept  

𝑟𝑟0𝑡𝑡= random error in intercept for child i  

𝜋𝜋1𝑡𝑡= linear growth rate for child i  

𝛽𝛽10= average linear growth rate  

𝛽𝛽11= unique female effect in slope 

𝛽𝛽12= unique Spanish effect in slope 

𝛽𝛽13= unique other language effect in slope 

𝛽𝛽14= unique Black Non-Hispanic effect in slope 

𝛽𝛽15= unique Asian Non-Hispanic effect in slope  

𝛽𝛽16= unique Native American Non-Hispanic effect in slope 
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𝛽𝛽17= unique Multiracial Non-Hispanic effect in slope 

𝛽𝛽18= unique Hispanic effect in slope  

 

Equation 14 includes The Conditional Level I Age in Months Growth Model, and was 

used to model the domain-level scaled score for child i at time t, 𝑌𝑌𝑡𝑡𝑡𝑡, as a function of the child’s 

academic ability or developmental level at the beginning of the age band, 𝜋𝜋2𝑡𝑡, a linear rate of 

growth, 𝜋𝜋3𝑡𝑡, additional months of age from the first age in the age band, (age – age1)ti, and an 

error term, 𝑒𝑒1𝑡𝑡𝑡𝑡. The Conditional Level II Age in Months Model includes equations 15 and 16. 

Equation 15 was used to model each child’s developmental level at the beginning of the age 

band, 𝜋𝜋2𝑡𝑡, as a function of average ability, 𝛽𝛽20, a female effect, 𝛽𝛽21, a Spanish effect, 𝛽𝛽22, an 

other language effect, 𝛽𝛽23, a Black Non-Hispanic effect, 𝛽𝛽24, an Asian Non-Hispanic effect, 𝛽𝛽25, 

a Native American, Pacific Islander, Hawaiian Native, and Alaskan Native Non-Hispanic effect, 

𝛽𝛽26, a Bi- and Multiracial effect, 𝛽𝛽27, a Hispanic effect, 𝛽𝛽28, and a residual term, 𝑟𝑟0𝑡𝑡. Equation 16 

was used to model each child’s linear rate of growth, 𝜋𝜋3𝑡𝑡, as a function of the average rate of 

growth, 𝛽𝛽30, a female effect, 𝛽𝛽31, a Spanish effect, 𝛽𝛽32, an other language effect, 𝛽𝛽33, a Black 

Non-Hispanic effect, 𝛽𝛽34, an Asian Non-Hispanic effect, 𝛽𝛽35, a Native American, Pacific 

Islander, Hawaiian Native, and Alaskan Native Non-Hispanic effect, 𝛽𝛽36, a Bi- and Multiracial 

effect, 𝛽𝛽37, and a Hispanic effect, 𝛽𝛽38. 

 

Conditional Level I Age in Months Growth Model 

      𝑌𝑌𝑡𝑡𝑡𝑡 = 𝜋𝜋2𝑡𝑡 + 𝜋𝜋3𝑡𝑡(𝑎𝑎𝑎𝑎𝑒𝑒 − 𝑎𝑎𝑎𝑎𝑒𝑒1)𝑡𝑡𝑡𝑡 + 𝑒𝑒1𝑡𝑡𝑡𝑡        (14) 

Where:  

𝑌𝑌𝑡𝑡𝑡𝑡 = academic or developmental level for child i at time t 
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𝜋𝜋2𝑡𝑡  = academic or developmental level for child i at the youngest age in the age band 

𝜋𝜋3𝑡𝑡  = linear rate of growth for child i 

age = age in months for child i at time t 

𝑎𝑎𝑎𝑎𝑒𝑒1 = first age in age band, measured in months 

𝑒𝑒1𝑡𝑡𝑡𝑡 = within child residual at time t 

 

Conditional Level II Age in Months Growth Model            

     (15) 

𝜋𝜋2𝑡𝑡 = 𝛽𝛽20 + 𝛽𝛽21(𝑓𝑓𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒)𝑡𝑡 + 𝛽𝛽22(𝑆𝑆𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝑡𝑡 + 𝛽𝛽23(𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑓𝑓𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒)𝑡𝑡 + 𝛽𝛽24(𝐵𝐵𝑓𝑓𝑎𝑎𝑖𝑖𝐵𝐵) +

𝛽𝛽25(𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽26(𝑁𝑁𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑒𝑒 𝐴𝐴𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽27(𝑀𝑀𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑆𝑆𝑓𝑓𝑒𝑒 𝑅𝑅𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖)𝑡𝑡 + 𝛽𝛽28(𝐻𝐻𝑖𝑖𝑖𝑖𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)𝑡𝑡 + 𝑟𝑟1𝑡𝑡  

     (16) 

𝜋𝜋3𝑡𝑡 = 𝛽𝛽30 + 𝛽𝛽31(𝑓𝑓𝑒𝑒𝑓𝑓𝑎𝑎𝑓𝑓𝑒𝑒)𝑡𝑡 + 𝛽𝛽32(𝑆𝑆𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖ℎ)𝑡𝑡 + 𝛽𝛽33(𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑟𝑟 𝑓𝑓𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑒𝑒)𝑡𝑡 + 𝛽𝛽34(𝐵𝐵𝑓𝑓𝑎𝑎𝑖𝑖𝐵𝐵) +

𝛽𝛽35(𝐴𝐴𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽36(𝑁𝑁𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑒𝑒 𝐴𝐴𝑓𝑓𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖)𝑡𝑡 +  𝛽𝛽37(𝑀𝑀𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑆𝑆𝑓𝑓𝑒𝑒 𝑅𝑅𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖)𝑡𝑡 + 𝛽𝛽38(𝐻𝐻𝑖𝑖𝑖𝑖𝑆𝑆𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)𝑡𝑡            

Where:  

𝜋𝜋2𝑡𝑡= academic or developmental level for child i at the first age in the age band 

𝛽𝛽20 = average ability or developmental level at the first age in the age band 

𝛽𝛽21= unique female effect in intercept 

𝛽𝛽22= unique Spanish effect in intercept 

𝛽𝛽23= unique other language effect in intercept 

𝛽𝛽24= unique Black Non-Hispanic effect in intercept  

𝛽𝛽25= unique Asian Non-Hispanic effect in intercept 

𝛽𝛽26= Native American Non-Hispanic effect in intercept 

𝛽𝛽27= Multiracial Non-Hispanic effect in intercept 
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𝛽𝛽28= Hispanic effect in intercept  

𝑟𝑟1𝑡𝑡= random error in intercept for child i  

𝜋𝜋3𝑡𝑡= linear growth rate for child i  

𝛽𝛽30= average linear growth rate  

𝛽𝛽31= unique female effect in slope 

𝛽𝛽32= unique Spanish effect in slope 

𝛽𝛽33= unique other language effect in slope 

𝛽𝛽34= unique Black Non-Hispanic effect in slope 

𝛽𝛽35= unique Asian Non-Hispanic effect in slope 

𝛽𝛽36= Native American Non-Hispanic effect in slope 

𝛽𝛽37= Multiracial Non-Hispanic effect in slope 

𝛽𝛽38= Hispanic effect in slope 

 

Limitations 

Within the context of the current study, there are five data-imposed limitations including, a) 

ability and growth estimates could not be established for first-, second-, and third-grade children, 

b) longitudinal data including no more than three assessments per child placed limitations on the 

structure of growth models and reliability of model-estimated growth parameters, c) assessment 

data were from age-separated cohorts, which placed limitations on inferences about the nature of 

the growth process from birth through kindergarten, d) GOLD® data tend to include a greater 

proportion of low-income children than the general population, therefore limiting the 

generalizability of normative estimates to the broader population of children ages birth through 

kindergarten, and e) assessment data for Asian children in birth- to one-year-old and 
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kindergarten classrooms was limited, therefore the sample for the present study slightly 

underrepresents these populations of children. 

To begin, ability and growth estimates could not be calculated for first-, second-, and 

third-grade children even though GOLD® was designed and has been externally validated for use 

with these populations (Lambert 2020; Lambert 2017). The 2021-2022 dataset included less than 

2,000 first-, second-, and third-grade children, therefore there were not enough assessment 

records to establish time-continuous normative scores. If more first-, second-, and third-grade 

children are assessed using GOLD® in subsequent academic years, researchers should seek to 

replicate research methods used in the present study to derive age-based and instructional-based 

normative estimates for older children. 

Next, longitudinal data including no more than three assessments per child placed 

limitations on the structure of growth models. Given three measurements per child, only two 

level-one parameters could be estimated, including, intercept and slope. While more complex 

MLMs may have demonstrated a better fit to the data, more complex models could not be tested 

given the current dataset. In the future, if a multi-year longitudinal database is available, 

researchers may consider fitting longitudinal GOLD® data to more complex models such as 

HLMs with time-varying covariates or MLMs with quadratic parameters to account for 

acceleration or deceleration in growth rate over time.  

Additionally, given only three measurements per child, the reliability of model-estimated 

parameters was impacted. However, according to The Standards for Educational and 

Psychological Measurement: 

The reliability/precision of measurement is always important. However, the need 

for precision increases as the consequences of decisions and interpretations grow 
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in importance. If a test score leads to a decision that is not easily reversed… a 

higher degree of reliability/precision is warranted. If a decision can and will be 

corroborated by information from other sources… scores with more modest 

reliability/precision may suffice (2014, p. 33). 

Given that GOLD®  data is typically used for a) formative purposes and b) to provide 

child outcome data as one part of a larger system of accountability (Burts et al., 2016), 

more modest reliability estimates are likely sufficient. For example, model-estimated 

intercepts for Unconditional Age in Months Growth Models were reasonably reliable for 

babies in birth- to one-year-old classrooms (.71-.79) and toddlers in one- to two-year-old 

classrooms (.76-.81). And model-estimated intercepts for Unconditional Age in Months 

Growth Models were very reliable for children in two- to three-year-old classrooms (.81-

.88), preschool classrooms (.86-.90), pre-k classrooms (.87-.91), and kindergarten 

classrooms (.90-.94). However, in the presence of more measurements researchers should 

replicate the current study to increase the reliability/precision of model-estimated 

parameters and subsequent normative estimates. 

Next, children included in the current study belong to age-separated cohorts. While this 

study sought to examine linear slopes across age-bands and domains of development to infer the 

nature of the growth process from birth through kindergarten, results should be interpreted with 

caution as alternate explanations for observable differences between age-separated cohorts of 

children cannot be ruled out (Singer & Willet, 2013). In the presence of longitudinal data for the 

same group of children from birth through kindergarten, researchers may reexamine the nature of 

the growth process using a multilevel modeling approach.  
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Additionally, although free- and reduced-priced lunch eligibility data was not modeled in 

the current study because many programs did not enter children’s free- and reduced-priced lunch 

eligibility data, GOLD® assessment records tend to overrepresent children from low-income 

families. Therefore, while results from the present study can likely be generalized to the 

population of children who are assessed using GOLD®, results may not generalize to the broader 

population of children in the U.S. who are ages birth through kindergarten. 

 And finally, although the present study sought to use stratified random sampling to obtain 

a nationally representative sample of children ages birth through kindergarten, there were not 

enough Asian children to obtain representative samples for two age bands, including birth- to 

one-year-old children and kindergarten children. While that goal was to obtain samples for each 

age band that included 162 (5.40%) Asian children, the birth- to one-year-old sample included 

134 (4.47%) Asian children and the kindergarten sample included 140 (4.67%) Asian children.  

Ethical Considerations 

 Prior to conducting analyses, the Office of Research Protections and Integrity at the 

University of North Carolina at Charlotte determined that the current study falls into the exempt 

category under 45 CFR 46. 104(d) and therefore did not require a full review. Data were 

obtained legally through an agreement with Teaching Strategies®. There are no foreseen risks to 

children whose assessment records will be used to derive national normative ability and growth 

estimates. Results will be shared with Teaching Strategies. 
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CHAPTER FOUR: RESULTS 

The primary purpose of this study was to establish time-continuous normative scores for 

children ages birth through kindergarten for each major domain of learning and development 

presented in the GOLD® assessment system. Secondary purposes included establishing evidence 

of the most effective time metric for modeling developmental growth, investigating the nature of 

developmental growth over time, and examining the relationship between various child-level 

characteristics and normative scores. Hierarchical linear models were used to investigate 

research questions. Results corresponding to each research question are provided in subsequent 

paragraphs.  

Hierarchical Linear Model-Estimated Normative Scores 

The first research question was: what do model-based estimates suggest the average child 

will do at each point in time from birth through kindergarten, across each of the six major 

domains of learning and development presented in the GOLD® assessment system? To answer 

this research question, individual hierarchical linear growth models were used to model each 

child’s domain-level scaled score as a function of age in months and months of instructional 

exposure. Resulting beta coefficients, including intercepts and linear slopes, were used to 

construct time-continuous normative estimates for each domain of development, age band, and 

time metric.  

Instructional Exposure Norms 

Individual hierarchical linear growth models were used to estimate the average 

developmental level prior to instruction, 𝛽𝛽00, and the average linear growth rate, 𝛽𝛽10, for each 

age band and domain of development. Next, intercept, 𝛽𝛽00,  and slope, 𝛽𝛽10, coefficients were 

used to estimate the typical developmental level for each domain, age band, and month of 
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instruction. Normative scores based on months of instruction are provided for children in two- to 

three-year-old, preschool, pre-k, and kindergarten classrooms in Table 1. Normative scores based 

on months of instruction were not created for children in birth- to one-year-old and one- to two-

year-old classrooms because the academic year was less predictable for very young children. For 

example, babies in birth- to one-year-old classrooms frequently enter programs when parental 

leave ends.  

Table 1 
Instructional GOLD® Normative Scores  

    Average Scaled Score 

Age Band / 
Grade Level 

Months of 
Instruction 

Social 
Emotional Physical Language Cognitive Literacy Math 

Two - Three 0 318 419 324 302 354 202 

 1 324 427 333 310 360 210 

 2 331 435 341 317 367 218 

 3 337 443 349 325 374 226 

 4 344 450 357 332 380 234 

 5 350 458 365 339 387 242 

 6 357 466 373 347 394 250 

 7 363 474 382 354 401 258 

 8 370 482 390 362 407 266 

 9 376 490 398 369 414 274 

 10 383 498 406 376 421 282 

        
Preschool 0 363 476 381 356 412 273 

 1 372 486 392 366 420 283 

 2 381 497 402 376 428 292 

 3 390 507 413 386 436 301 

 4 399 518 423 397 444 310 

 5 408 528 434 407 452 319 

 6 417 539 444 417 460 328 

 7 427 549 455 427 468 337 

 8 436 560 465 437 476 347 

 9 445 570 475 447 484 356 

 10 454 580 486 458 492 365 

 
       

Pre-K 0 403 521 432 400 457 321 

 1 414 534 445 413 465 331 

 2 425 547 459 425 474 342 
Table 1 (continued) 
Instructional GOLD® Normative Scores  

80



    Average Scaled Score 

Age Band / 
Grade Level 

Months of 
Instruction 

Social 
Emotional Physical Language Cognitive Literacy Math 

Pre-K 3 437 560 472 438 482 352 

 4 448 573 486 451 491 363 

 5 460 586 499 464 500 374 

 6 471 599 513 477 508 384 

 7 482 612 526 489 517 395 

 8 494 625 540 502 526 405 

 9 505 638 553 515 534 416 

 10 516 651 567 528 543 426 

 
       

Kindergarten 0 457 573 501 464 506 372 

 1 469 586 515 478 517 385 

 2 482 600 528 492 528 399 

 3 495 613 542 506 539 412 

 4 507 627 555 520 550 426 

 5 520 640 569 535 561 440 

 6 533 654 583 549 573 453 

 7 545 667 596 563 584 467 

 8 558 681 610 577 595 480 

 9 571 694 623 592 606 494 
  10 583 708 637 606 617 507 

 

Normative estimates provided in Table 1 can be used to understand the typical 

developmental level, as measured by GOLD®, for each month of instruction for any child who is 

in a two- to three-year-old, preschool, pre-k, or kindergarten program. Instructional norms can be 

used to understand relative performance, given age band and months of instruction. For example, 

a pre-k teacher who finalized assessment scores in mid-October may review the row that 

corresponds to pre-k and three months of instruction. The normative estimates for this row are 

social-emotional (437), physical (560), language (472), cognitive (438), literacy (482), and 

mathematics (352). Next, she can compare her children’s domain-level scaled scores to the 

national normative estimates to understand relative performance. By engaging in this process, 

she can begin to make decisions about children in her classroom who may need additional 

monitoring, support or extensions. 
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 Normative estimates outlined in Table 1 can also be used to understand typical growth 

between any two months of instruction within a given age band. For example, a kindergarten 

teacher who finalizes fall ratings after one month of instruction, and winter ratings after five 

months of instruction can see that kindergarteners typically gain 44 literacy scale points, 51 

social-emotional scale points, 54 physical, language, and mathematics scale points, and 56 

cognitive scale points between measurements. She can use this information to understand if 

children in her classroom are developing at similar rates as kindergarteners from a nationally 

representative sample of children. By engaging in this process, she can make decisions about 

children who may need additional monitoring or support to make adequate gains over time.  

Validity of Estimates. According to The Standards for Educational and Psychological 

Measurement, “validity refers to the degree to which evidence and theory support the 

interpretations of test scores for proposed uses of tests” (2014, p. 11). Within the context of the 

present study, the term validity is used to describe the extent to which evidence suggests that 

model-parameter estimates, and subsequent national normative scores are accurate and stable for 

children ages birth through kindergarten. While valid and reliable normative estimates alone do 

not fully substantiate the norm-referenced validity argument, valid and reliable normative scores 

are prerequisite to supporting teachers and administrators in making useful, meaningful, and 

appropriate inferences about children’s relative performance. Therefore, the validity and 

reliability of model-based estimates and corresponding normative scores were investigated in 

several ways. First, the reliability of model-estimated intercepts was examined. Results 

suggested that model-estimated instructional exposure intercept values were reliable across 

domains of development for children in two- to three-year-old classrooms (.81-.89) and very 

reliable for children in preschool classrooms (.86-.90), pre-k classrooms (.85-.89), and 
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kindergarten classrooms (.87-.93). See Table 2 for reliability estimates for Unconditional 

Instructional Exposure Model-estimated intercepts for children in two- to three-year-old, 

preschool, pre-k, and kindergarten classrooms. 

Table 2 
Reliability of Instructional Exposure Intercepts 
Domain Two to Three Preschool Pre-K Kindergarten 
Social Emotional 0.83 0.87 0.86 0.87 
Physical 0.81 0.86 0.85 0.88 
Language 0.89 0.90 0.89 0.91 
Cognitive 0.84 0.86 0.88 0.90 
Literacy 0.83 0.86 0.85 0.93 
Mathematics 0.85 0.88 0.89 0.90 

 

Next, we would expect children’s scores to increase across grade levels and months of 

instruction. This pattern of growth is generally observable across estimates provided in Table 1. 

For example, if we look at the progression of language development from the time a child is in a 

two- to three-year-old classroom through kindergarten, the typical child in a two- to three-year-

old classroom begins the year with a scaled score of 324 (zero months of instruction) and ends 

the year with a scaled score of 398-406 (9-10 months of instruction). A typical preschooler 

begins the year with a scaled score of 381 and ends the year with a scaled score of 475-486. A 

typical child in pre-k begins the year with a scaled score of 432 and ends the year with a scaled 

score of 553-567. And a typical kindergartener begins the year with a scaled score of 501 and 

ends the year with a scaled score of 623-637. While there is some overlap between contiguous 

grade-levels, as children progress through age bands and months of instruction, scores generally 

increase. 

Finally, model-based estimates were compared to the normative scores provided in the 

Technical Manual for the Teaching Strategies GOLD® Assessment (2nd Edition). While the 

norms provided in the manual present challenges for teachers who finalize assessments earlier or 
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later than average, they still generally reflect typical developmental status at the average fall, 

winter, and spring assessment finalization dates. HLM-based estimates for the most typical 

months for finalizing scores were compared to the estimates derived using score distributions. 

Results suggested HLM-based estimates and score distribution-based estimates provided very 

similar and at times identical results. For example, in 2021, assessment scores for 

kindergarteners were most frequently finalized after two months of instruction, six months of 

instruction, and nine months of instruction. HLM-based social-emotional normative estimates 

were 482 (two months of instruction), 533 (six months of instruction), and 571 (nine months of 

instruction). Similarly, score-distribution based social-emotion normative scores for 

kindergarteners were 483 (fall), 527 (winter), and 569 (spring). In this example, estimates 

displayed discrepancies of 1, 6, and 2 scale points for fall, winter, and spring measurement 

occasions, respectively. On average, the discrepancy in points between traditional estimates and 

HLM-based estimates across domains and assessment occasions was 6.44 points for two- to 

three-year-old children, 6.22 points for preschoolers, 5.67 points for pre-k children, and 4.83 

points for kindergarten children. Together, these results suggest that HLM-based estimates 

provide reasonably valid normative estimates. See Table 3 for a full comparison of normative 

scores derived using score distributions and HLMs. 
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Age Norms 

Individual hierarchical linear growth models were used to estimate the average 

developmental level for the youngest children in each age band, 𝛽𝛽20, and the average linear 

growth rate, 𝛽𝛽30, for each age band and domain of development. Next, intercept, 𝛽𝛽20, and slope, 

𝛽𝛽30, coefficients were used to estimate the typical developmental level for each domain, age 

band, and month of age. Norms are provided for every three months of age in Table 4; however, 

intercept and slope coefficients could be used to derive a normative ability estimate for any 

month of age.  
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Table 4 
Age GOLD® Normative Scores  
    Average Scaled Score 
Age Band/Grade 
Level 

Age in 
Months 

Social 
Emotional Physical Language Cognitive Literacy Math 

Birth - One Year 0 104 76 67 58 0 0 

 3 138 131 103 95 40 0 

 6 173 187 139 131 95 12 
 9 207 242 174 168 149 32 
 12 241 297 210 205 204 53 
 15 275 352 246 241 259 73 
 

       

One - Two Years 12 240 311 202 203 232 57 
 15 261 338 231 228 261 91 
 18 282 364 261 253 291 124 
 21 303 391 291 277 320 158 
 24 323 418 320 302 349 191 
 27 344 445 350 327 378 225 
        

Two - Three Years 24 299 397 300 281 334 179 
 27 318 419 324 303 354 202 
 30 337 442 348 324 373 225 
 33 355 464 371 345 392 248 
 36 374 487 395 366 412 271 
 39 392 509 419 387 431 294 
 

       

Preschool 36 327 435 337 316 381 236 
 39 351 463 366 343 402 261 
 42 376 491 395 371 424 286 
 45 400 519 424 398 445 311 
 48 425 547 453 425 467 336 
 51 449 575 482 452 488 361 
 54 474 603 511 480 510 386 
 

       

Pre-K 48 363 476 381 353 427 280 
 51 393 510 417 387 449 309 
 54 423 544 454 421 472 338 
 57 452 578 490 456 494 367 
 60 482 612 526 490 517 395 
 63 512 645 563 524 540 424 
 66 541 679 599 558 562 453 
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Table 4 (continued) 
Age GOLD® Normative Scores  
    Average Scaled Score 
Age Band/Grade 
Level 

Age in 
Months 

Social 
Emotional Physical Language Cognitive Literacy Math 

Kindergarten 60 413 527 450 411 462 321 
 63 447 563 488 450 494 359 
 66 481 599 525 489 525 396 
 69 515 635 563 528 556 433 
 72 549 671 600 567 587 471 
 75 582 707 638 606 618 508 

  78 616 742 676 645 650 545 
 

Normative estimates provided in Table 4 can be used to understand the typical 

developmental level, as measured by GOLD®, for any reasonably aged child in a birth- to one-

year-old, one- to two-year-old, two- to three-year-old, preschool, pre-k, or kindergarten 

classroom that uses GOLD®. Furthermore, norms provided in Table 4 can be used to understand 

relative performance, given a child’s age band or grade level and age in months. Normative 

scores based on age, rather than months of instruction, may be particularly useful for teachers 

with children who are younger or older than their peers. For example, a kindergarten teacher may 

have children as young as 60 months and as old as 69 months at the beginning of the academic 

year. After finalizing the fall assessment scores, she may wonder if the discrepancies in language 

scaled scores between her youngest and oldest children are concerning or reflective of typical 

patterns of development. To answer her question, she can locate the norms for kindergarten 

language development that correspond to 60 months of age (450 points) and 69 months of age 

(515 points).  

Normative scores based on age may also be particularly useful for teachers in birth- to 

one-year-old and one- to two-year-old classrooms where development occurs rapidly and is 

closely related to biological age (Harkness et al., 2013). For example, a teacher in a birth- to one-
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year-old classroom could use the age-based normative scores to understand whether the babies in 

her classroom are developing as expected. For instance, she can compare the three-month-old 

babies’ domain-level scaled scores to the national normative scores that correspond to children in 

birth- to one-year-old classrooms and three months of age. The normative estimates for this row 

are social-emotional (138), physical (131), language (103), cognitive (95), literacy (40), and 

mathematics (0). Next, she can compare her babies’ domain-level scales scores to the national 

normative estimates to understand relative performance. By engaging in this process, she can 

make decisions about which babies may need additional support to meet developmental 

milestones and effectively communicate with families and other stakeholders. 

Finally, normative estimates provided in Table 4 can also be used to understand typical 

growth between any two months of age within the same age band. For example, a teacher in a 

birth- to one-year-old classroom who acquires a new 12-month-old toddler may be interested to 

know how much physical growth the child might make before leaving her classroom around the 

time she’s 15 months. She can use the norms provided in Table 4 to see that the child may gain 

about 55 physical scale points before leaving her classroom.  

Validity of Estimates. Once again, while valid and reliable normative estimates alone do 

not fully substantiate the norm-referenced validity argument, valid and reliable normative scores 

are prerequisite to supporting teachers and administrators in making useful, meaningful, and 

appropriate inferences about children’s relative performance. Therefore, the validity and 

reliability of model-based estimates and corresponding normative scores were investigated in 

several ways. 

First, the reliability of model-estimated intercepts was examined. Results suggested that 

model-estimated age intercept values were reliable for children in birth- to one-year-old 
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classrooms (.71-.81), one- to two-year-old classrooms (.76-.81), and two- to three-year-old 

classrooms (.82-.88) and very reliable for children in preschool (.86-.90), pre-k (.87-.91), and 

kindergarten (.90-.94) classrooms. See Table 5 for reliability estimates for Unconditional Age in 

Months Model-estimated intercepts for children in birth- to one-year-old, one- to two-year-old, 

two- to three-year-old, preschool, pre-k, and kindergarten classrooms. 

Table 5 
Reliability of Age in Months Intercepts 
Domain Birth - One One - Two Two - Three Preschool Pre-K Kinder 
Social-Emotional 0.78 0.78 0.83 0.87 0.88 0.90 
Physical 0.77 0.76 0.81 0.87 0.87 0.90 
Language 0.81 0.81 0.88 0.90 0.91 0.93 
Cognitive 0.79 0.78 0.84 0.87 0.90 0.92 
Literacy 0.71 0.76 0.82 0.86 0.87 0.94 
Mathematics 0.75 0.77 0.85 0.88 0.91 0.93 

 

Next, we would expect scaled scores to increase as children get older. This pattern is 

generally observable for each domain of development as we move down the columns. For 

example, the typical social-emotional scaled scores for the youngest children in each age band 

are: 104 (birth- to one-year-olds), 240 (one- to two-year-olds), 299 (two- to three-year-olds), 327 

(preschool), 363 (pre-k), and 413 (kindergarten). See Table 4 to review the progression of 

normative scores as children age for every domain of learning and development. 

 Finally, we would expect that Unconditional Age in Months Growth Model-estimated 

intercepts would be lower than Unconditional Instructional Exposure Model-estimated intercepts 

because age in month intercept values are generally reflective of typical development for the 

youngest child prior to instruction and instructional exposure intercept values are generally 

reflective of the typical development for the average aged child prior to instruction. This pattern 

can be observed for every domain of development and age band. For example, the expected 
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mathematics scaled score for a kindergartener who is 60 months old is 321, while the expected 

scaled score for a kindergartener prior to instruction is 372.  

The Most Effective Time Metric 

The second research question was: which time metric is most effective for modeling 

growth, approximate instructional exposure or age in months, from birth through kindergarten? 

To answer this research question, two strategies were used. First, pseudo-r2 statistics were 

calculated for each unconditional model to understand which time metric explained a greater 

proportion of the level-one variance when compared to the completely unconditional model. 

Next, AIC values were calculated for Unconditional Instructional Exposure Growth models and 

Unconditional Age in Months Growth models. For every age band and domain, AIC values for 

pairs of non-nested models were compared to determine which model demonstrated better fit to 

the data. Although resulting pseudo-r2 statistics and AIC values were very similar across every 

set of non-nested models due to highly correlated (r = .68) and linearly measured time variables, 

if fit statistics agreed, preliminary inferences were made about the most effective time metric.  

In the past researchers have found that babies’ developmental growth is closely related to 

biological age (Harkness et al., 2013), yet other researchers have documented how children as 

young as two- or three-years old are significantly influenced by the environment (Yoshikawa et 

al., 2013) and interactions with caregivers (Chetty et al., 2011; Gialamas et al., 2013). Given this 

research, it was hypothesized that age in months may be the most effective predictor of 

developmental growth for children in the youngest two age bands across domains of 

development and instructional exposure may be the most effective predictor for children in two- 

to three-year-old classrooms and beyond.  
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Birth to One Year 

Despite the fact that researchers have identified a strong and positive relationship 

between babies’ biological age and developmental growth (Harkness et al., 2013; Rebello-Britto 

et al., 2013), the most effective predictor of developmental growth for babies in birth- to one-

year-old classrooms was inconsistent across domains of learning and development. Together, 

larger pseudo-r2 statistics and smaller AIC values suggested that age in months was the most 

effective time metric for modeling babies’ social-emotional and physical development. 

Conversely, larger pseudo-r2 statistics and smaller AIC values indicated that instructional 

exposure was the most effective predictor of babies’ mathematics development. And finally, 

given equivalent or larger pseudo-r2 statistics for Unconditional Language, Cognitive, and 

Literacy Age in Months Growth Models and smaller AIC values for Unconditional Language, 

Cognitive, and Literacy Models, no inferences were made about the most effective time metric 

for these domains of learning and development. Results, including level-one pseudo-r2 and AIC 

values are provided in Table 6.  
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Table 6 
Comparison of Unconditional Model Fit Statistics for the First Three Age Bands 

Domain Model Fit 
Birth to One One to Two Two to Three 

Instruct. Age Instruct. Age Instruct. Age 
Social-Emotional pseudo-r² 0.365 0.366 0.190 0.191 0.134 0.135 

 AIC 93295 92872 92938 92935 93452 93534 
  

     
 

Physical pseudo-r² 0.447 0.448 0.175 0.176 0.116 0.117 
 AIC 94870 94005 93947 93927 94425 94490 
  

      

Language pseudo-r² 0.357 0.355 0.238 0.239 0.119 0.120 
 AIC 90952 90586 92474 92361 94002 94018 
  

      

Cognitive pseudo-r² 0.375 0.375 0.230 0.231 0.152 0.153 
 AIC 93992 93417 93349 93203 94435 94443 
  

      

Literacy pseudo-r² 0.278 0.276 0.157 0.159 0.094 0.095 
 AIC 100741 100468 94913 94888 92255 92303 
  

  
    

Mathematics pseudo-r² 0.128 0.127 0.231 0.232 0.143 0.143 
  AIC 93632 93723 95538 95338 93779 93791 

Note. Green indicates age in months was the most effective time metric as evidenced by larger 
pseudo-r2 statistics and smaller AICs, blue indicates that instructional exposure was the most 
effective time metric as evidenced by larger pseudo-r2 statistics and smaller AICs, and red 
indicates that model fit statistcs were contradictory. 

One to Two Years 

Although fit statistics were similar across pairs of non-nested models, results, including 

larger pseudo-r2 statistics and smaller AIC values, indicated that age in months was the most 

effective time metric for modeling developmental and academic growth for toddlers in one- to 

two-year-old classrooms. For every domain of learning and development, the proportion of 

within-child variance was reduced more significantly by modeling domain-level scaled scores as 

a function of age, rather than instruction. For example, by modeling language development as a 

function of age rather than instruction, the level-one residual variance was reduced by 23.9% 

(pseudo-r2
age = .239) rather than 23.8% (pseudo-r2

instruction = .238). Furthermore, smaller AIC 

values also suggested that age in months was the most effective predictor of developmental 
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growth for this age group, regardless of domain. For example, the AIC was smaller for the 

Unconditional Language Age in Months Growth Model (AIC age = 92,361) than the 

Unconditional Language Instructional Exposure Growth Model (AIC instruction = 92,474). 

Additional level-one pseudo-r2 statistics and AIC values for one- to two-year-old models are 

provided in Table 6. 

Two to Three Years 

Researchers have found that caregiver interactions (Gialamas et al., 2013), teacher quality 

(Chetty et al., 2011), and the environment (Rebello-Britto et al., 2013) profoundly influence 

children’s development beginning around two or three years of age. Given these findings, it was 

hypothesized that the most effective time metric for modeling children’s growth may change 

from age to instructional exposure for children in two- to three-year-old classrooms. However, 

results, including model fit statistics for two- and three-year-old children, presented a less clear 

pattern. Across domains of development, larger pseudo-r2 statistics suggested that age was the 

more effective predictor of developmental growth. Yet, smaller AIC values suggested that 

instructional exposure was the more effective predictor of growth. While definitive conclusions 

cannot be made about conflicting results, possible explanations include a) age and instruction are 

equal predictors of developmental growth for children in two- to three-year-old classrooms or b) 

results are a product of linearly measured and strongly correlated time variables.  

Preschool, Pre-k, and Kindergarten 

As children get older, research suggests that relationships with caregivers (Gialamas et 

al., 2013), teacher quality (Chetty et al., 2011), and environmental factors (Rebello-Britto et al., 

2013) have a greater influence on developmental growth. Therefore, it was hypothesized that 

instructional exposure would be a more effective predictor of developmental growth for children 
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in preschool, pre-k, and kindergarten classrooms. Although fit statistics were similar across pairs 

of non-nested models, results, including larger pseudo-r2 statistics and smaller AIC values, 

generally indicated that instructional exposure was the most effective time metric for modeling 

developmental and academic growth for children in preschool, pre-k, and kindergarten 

classrooms. For almost every domain of learning and development, the proportion of within-

child variance was reduced more significantly by modeling domain-level scaled scores as a 

function of instructional exposure, rather than age. For example, when preschoolers’ literacy 

development was modeled as a function of instruction rather than age, the level-one residual 

variance was reduced by 17.6% (pseudo-r2
instruction = .176) rather than 17.5% (pseudo-r2

age = 

.175). Similarly, when pre-k children’s literacy development was modeled as a function of 

instructional exposure rather than age, the level-one residual variance was reduced by 28.8% 

(pseudo-r2
instruction = .288) as opposed to 28.4% (pseudo-r2

age = .284). And finally, when 

kindergarteners’ literacy development was modeled as a function of instruction rather than age, 

the level-one residual variance was reduced by 43.1% (pseudo-r2
instruction = .431) rather than 

42.8% (pseudo-r2
age = .428).  

Lower AIC values for Unconditional Instructional Exposure Growth Models also 

suggested that instructional exposure was a better predictor of developmental growth for every 

domain of learning and development for preschool, pre-k, and kindergarten children. For 

example, AIC values for Unconditional Literacy Instructional Exposure Growth Models were 

lower (AIC preschool = 90,069; AIC pre-k = 88,280; AIC kindergarten = 86,464) than Unconditional 

Literacy Age in Months Growth Models (AIC preschool = 90,210; AIC pre-k = 88,881; AIC kindergarten 

= 87,400). Additional level-one pseudo-r2 statistics and AIC values for preschool, pre-k, and 

kindergarten models are provided in Table 7.  
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Table 7 
Unconditional Model Fit Statistics for Preschool, Pre-K, and Kindergarten 

Domain Model Fit 
Preschool Pre-K Kindergarten 

Instruct. Age Instruct. Age Instruct. Age 
Social-Emotional pseudo-r² 0.194 0.192 0.310 0.305 0.415 0.415 

 AIC 94736 94928 94208 95012 91440 92459 
        

Physical pseudo-r² 0.167 0.166 0.288 0.283 0.271 0.270 
 AIC 94099 94274 93812 94477 93507 94055 
        

Language pseudo-r² 0.148 0.147 0.257 0.255 0.315 0.313 
 AIC 95880 96007 96028 96577 93994 94600 
        

Cognitive pseudo-r² 0.205 0.204 0.313 0.309 0.422 0.419 
 AIC 95648 95882 94378 95131 93506 94481 
        

Literacy pseudo-r² 0.176 0.175 0.288 0.284 0.431 0.428 
 AIC 90069 90210 88280 88881 86464 87400 
        

Mathematics pseudo-r² 0.198 0.198 0.327 0.325 0.476 0.472 
  AIC 92875 93010 90637 91328 88624 89809 

Note. Blue indicates that instructional exposure was the most effective time metric as evidenced 
by larger pseudo-r2 statistics and smaller AICs. 

Patterns Across Age Bands 

Although this research question can best be answered by comparing model fit statistics 

for each set of non-nested unconditional models, model fit statistics revealed two other 

interesting patterns that may aid in contextualizing results. First, while there were frequently 

differences in explanatory power between time metrics across unconditional models, differences 

were modest. For example, instructional exposure generally accounted for 0.2%-0.5% more of 

the variability in pre-k children’s developmental growth than age. Similarly, while Pre-K 

Unconditional Instructional Exposure Growth Model AICs were consistently lower than Pre-K 

Unconditional Age Growth Model AICs, differences were small. This pattern of results can be 

explained by examining the way time variables were measured and modeled. While age in 

months was obtained by subtracting a child’s birth date from each assessment date, months of 
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instructional exposure was obtained by subtracting each child’s assessment date from a typical or 

average school start date, August 14, 2021. Therefore, time metrics were both linearly measured 

and strongly correlated (r = .68).  

Next, the explanatory power of both time metrics varied significantly across age bands. 

Relatively large level-one pseudo-r2 statistics suggested that both approximate instructional 

exposure and age in months explained a significant proportion of variation in developmental 

growth across most domains of development for children in birth- to one-year-old classrooms, 

pre-k classrooms, and kindergarten classrooms. For example, 47.6% of the variance in 

kindergarteners’ mathematics scores could be explained by instructional exposure (pseudo-r2 = 

.476) and 47.2% of the variance in kindergartener’s mathematic scores could be explained by age 

(pseudo-r2 = .472). Conversely, relatively small level-one pseudo-r2 statistics suggested that both 

approximate instructional exposure and age in months did not explain a significant proportion of 

variation in developmental growth across domains for children in one- to two-year-old, two- to 

three-year old, and preschool classrooms. For example, only 17.6% of the variation in 

preschoolers’ literacy scores could be explained by instructional exposure (pseudo-r2 = .176) and 

17.5% of the variation in preschoolers’ literacy scores could be explained by age (pseudo-r2 = 

.175). While small pseudo-r2 statistics indicate that there is a significant proportion of residual 

level-one variance, and residual variance by definition is unexplained error, differences in 

explanatory power between age bands could be due to more severe rater effects at particular 

grade levels. 

Nature of Developmental Growth 

The third research question was: what do hierarchical linear model-estimated slopes 

from age-separated cohort data suggest about the shape of the developmental pathway from 
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birth through kindergarten across domains of learning and development? To answer this 

research question, model-estimated linear slopes were examined sequentially across age bands 

and time metrics. Linear slopes, 𝛽𝛽30, from Unconditional Age Models were examined 

successively from birth through kindergarten to make inferences about the nature of 

developmental growth over time for each domain of development.  

Research suggests that children’s brains develop more rapidly from ages birth to five, 

than at any other point in the lifespan (Harkness et al., 2013; Rebello-Britto et al., 2013). 

Furthermore, researchers have widely observed that developmental and academic growth slows 

as children age and progress through subsequent grade levels (Lee, 2010; Mok et al., 2016; 

Shanley, 2016; Shin et al., 2013). Given these widely observed patterns of development, it was 

hypothesized that linear slopes, regardless of time metric or domain of development, would be 

the steepest for children in the first age band and demonstrate a pattern of deceleration for 

subsequent age bands.  

Age 

While data belong to age-separated cohorts of children and definitive conclusions cannot 

be made about the nature of growth from birth through kindergarten, model-estimated linear 

slopes, 𝛽𝛽30 suggested that developmental growth rate decelerated from birth to age three across 

most domains of development. For example, babies in birth- to one-year-old classrooms gained 

on average, 11.38 (p <.001) social-emotional scale points per month of age, toddlers in one- to 

two-year-old classrooms gained on average, 6.93 (p <.001) social-emotional scale points per 

month of age, and children in two to three-year-old classrooms gained on average, 6.19 (p <.001) 

social-emotional scale points per month of age. This pattern of deceleration in growth rate from 

birth to age three was consistent across social-emotional, physical, language, cognitive, and 
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literacy domains. While this initial sequence provided support for the hypothesis that growth rate 

decelerates as children age, developmental growth rate began to accelerate for preschool, pre-k, 

and kindergarten children. For example, preschoolers earned on average, 8.18 (p <.001) social-

emotional scale points per month of age, pre-k children earned on average, 9.90 (p <.001) social-

emotional scale points per month of age, and kindergarten children earned on average 11.30 (p 

<.001) social-emotional scale points per month of age. This pattern of acceleration was 

consistent across all domains of learning and development.  

Again, although definitive conclusions cannot be drawn about the nature of growth from 

birth through kindergarten, there are three plausible explanations for the observable pattern. 

First, differences in growth rates between age-separated cohorts of children could be due to 

differences in cohort characteristics. Second, more rapid growth rates for the first (birth through 

one year) and sixth (kindergarten) age bands could be reflective of the curvilinear logistic 

function used to convert raw scores to scaled scores where smaller raw score gains at the tails of 

the distribution contribute to larger differences in scaled scores. And third, it’s possible that 

growth rate, as measured by GOLD®, slows across the first three age bands due to the natural 

slowing of development as children age (Lee, 2010; Shanley, 2016) and strengthens across the 

next three age bands as instruction intensifies. See Table 8 for Unconditional Age in Months 

Growth Model-estimated linear slopes, 𝛽𝛽30, and corresponding p-values. 
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Instructional Exposure 

Similarly, model-estimated linear slopes, 𝛽𝛽10, suggested a pattern of acceleration for 

children in two- to three-year-old classrooms through kindergarten across domains of 

development. For example, in mathematics, children in two- to three-year-old classrooms gained 

on average, 7.99 (p <.001) mathematics scale points per month, preschoolers gained on average, 

9.16 (p <.001) mathematics scale points per month, pre-k children gained on average, 10.59 (p 

<.001) mathematics scale points per month, and kindergarteners gained on average, 13.56 (p 

<.001) mathematics scale points per month. While results were not necessarily consistent with 

the broader literature, which suggests that developmental growth generally slows as children 

progress through subsequent grade levels (Lee, 2010; Shanley, 2016), results were consistent 

with the 50th percentile gain scores provided in the Technical Manual for the Teaching Strategies 

GOLD® Assessment (2nd Edition). For example, children in two- to three-year-old classrooms 

gained on average, 54.85 mathematics scale points from the average fall to spring measurement 

(8.43 scale points per month of instruction), preschoolers gained on average 62.56 mathematics 

scale points from the fall to spring measurement (9.62 scale points per month of instruction), 

children in pre-k gained on average 63.96 mathematics scale points (9.84 scale points per month 

of instruction), and kindergarteners gained on average 95.32 mathematics scale points (13.62 

scale points per month instruction) (Lambert, 2020). 

Again, although definitive conclusions cannot be made about the nature of growth from 

age two through kindergarten, there are three plausible explanations for accelerating growth rates 

across age bands. First, differences in growth rates between age-separated cohorts of children 

could be due to differences in cohort characteristics. Second, acceleration in developmental 

growth rates from the third (two- to three-years-old) through sixth (kindergarten) age bands 
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could be reflective of the curvilinear logistic function used to convert raw scores to scaled scores. 

And third, it’s possible that growth rate, as measured by GOLD® strengthens across age bands as 

instruction intensifies for preschool, pre-k, and kindergarten children. See Table 9 for 

Unconditional Instructional Exposure Growth Model-estimated linear slopes, 𝛽𝛽10, and 

corresponding p-values. 
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Subgroup Differences 

The fourth research question was: How do growth trends differ between subgroups of 

children (e.g., by gender, primary language, and race/ethnicity)? To understand how each 

characteristic affected the expected growth trajectory, including preliminary performance and 

growth rate, child-level characteristics were dummy coded and modeled at level two. Resulting 

beta coefficients and p-values were used to understand the magnitude and significance of each 

effect. Results generally suggested that girls, children whose primary language was not English, 

Black Non-Hispanic, and Hispanic children experienced significantly different patterns of 

performance when compared to the reference group (White Non-Hispanic boys who speak 

English). Conversely results generally suggested that Asian Non-Hispanic children, Native 

American Non-Hispanic children, and Bi- or Multiracial Non-Hispanic children did not 

experience significantly different patterns of growth across age bands and domains of 

development. Results for subgroups of children who demonstrated significantly different patterns 

of performance and/or growth are discussed in greater detail in subsequent paragraphs.  

Girls 

Research generally suggests that girls demonstrate stronger abilities across domains of 

development at school entry (Kuhfeld et al., 2020; Voyer & Voyer, 2014) that persist over time 

(Voyer & Voyer, 2014). Therefore, it was hypothesized that girls would demonstrate higher 

levels of preliminary development and stronger growth over time. Results, including positive 

intercept beta coefficients, β01 and  β21, and statistically significant p-values provided support for 

study hypotheses and agreed with the broader body of literature on this topic. Generally, girls in 

two- to three-year-old and beyond demonstrated stronger preliminary developmental levels 

across domains of development prior to instruction, β01, when compared to boys. For example, 
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girls in two- to three-year-old classrooms earned on average, 18.74 (p <.001) additional language 

scale points prior to instruction. Girls continued to demonstrate stronger language abilities prior 

to instruction throughout preschool (β01  = 23.96, p < .001), pre-k (β01 = 16.03, p < .001) and 

kindergarten (β01  =13.65, p < .001). Similarly, girls in two- to three-year-old classrooms who 

were 24 months of age at the beginning of the academic year earned on average, 17.72 (p <.001) 

additional language scale points, when compared to boys who were the same age. Girls 

continued to demonstrate stronger levels of language development throughout preschool (β21 = 

25.77, p < .001), pre-k (β21 = 16.58, p < .001), and kindergarten (β21 = 14.01, p < .001) when 

compared to boys who were the same age. Together these results suggest that gaps in 

development between boys and girls begin around age two and persist across almost every 

domain of learning and development. 

Finally, despite previous studies which have demonstrated that girls tend to exhibit 

stronger gains over time across domains (Voyer & Voyer, 2014), results from the present study 

suggested that there were not any systematic patterns of differences in growth rates across age 

bands, domains of development, and time metrics. However, kindergarten girls demonstrated 

significantly stronger growth rates, when compared to kindergarten boys. Positive social-

emotional, language, cognitive, and literacy slope coefficients, β11, and statistically significant p-

values suggested that girls made stronger gains for each month of instruction. For example, 

kindergarten girls gained on average an additional .69 (p = .007) mathematics scale points per 

month, when compared to boys. Similarly, positive literacy and mathematics slope coefficients, 

β31, and statistically significant p-values suggested that girls made stronger gains for each 

additional month of age. For example, kindergarten girls gained on average an additional .56 (p = 

.021) mathematics scale points per month of age, when compared to boys. Together, these results 
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suggest that gaps in performance between boys and girls may begin to widen around the time 

children are five or six years old. See Tables 10 and 11 for female effects on instructional growth 

parameters and age growth parameters respectively. Positive and statistically significant beta 

coefficients are highlighted in green to emphasize favorable effects. Conversely, negative and 

statistically significant beta coefficients are highlighted in red to emphasize adverse effects.  
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Spanish-Speaking Children 

 Research suggests that children whose primary language is Spanish demonstrate different 

patterns of growth than children whose primary language is English (Hujar et al., 2021; Roberts 

& Bryant, 2011). Research tends to suggest that speaking Spanish is associated with lower 

preliminary abilities across academic and developmental domains (Hujar et al., 2021; Roberts & 

Bryant, 2011) and stronger rates of growth in early childhood (Hujar et al., 2021; Roberts & 

Bryant, 2011). Given previous research, it was hypothesized that children whose primary 

language was Spanish would demonstrate lower initial levels of development and stronger 

growth rates over time across domains of learning and development. 

 Despite extant literature, which suggests that children who speak Spanish tend to 

demonstrate lower preliminary levels of development across domains (Hujar et al., 2021; Roberts 

& Bryant, 2011), results from the present study suggested children who speak Spanish only 

demonstrated lower patterns of performance in some domains of learning and development. To 

begin, results including negative intercept beta coefficients, 𝛽𝛽02, and statistically significant p-

values suggested that Spanish-speaking children in one- to two-year-old classrooms and beyond 

demonstrated lower initial language development levels than children whose primary language 

was English. For example, Spanish-speaking children in one- to two-year-old classrooms earned 

on average 17.97 (p =.002) fewer language scale points than their English-speaking peers prior to 

instruction. This trend persisted for Spanish-speaking children in two- to three-year-old 

classrooms (𝛽𝛽02= -15.08, p = .027), preschool classrooms (𝛽𝛽02= -22.35, p =.001), pre-k 

classrooms (𝛽𝛽02= -27.49, p =.001), and kindergarten classrooms (𝛽𝛽02 = -17.24, p =.004). 

Similarly, negative intercept beta coefficients, 𝛽𝛽22, and statistically significant p-values 

suggested that Spanish-speaking children in one- to two-year-old, two- to three-year-old, 
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preschool, and pre-k classrooms typically demonstrated lower initial language development 

levels than similarly aged children whose primary language was English. For example, Spanish-

speaking children in one- to two-year-old classrooms earned on average 20.30 (p = .004) fewer 

language scale points at 12 months of age, when compared to their English-speaking peers. This 

trend persisted for Spanish-speaking children in two- to three-year-old classrooms (𝛽𝛽22 = -17.31, 

p = .039), preschool classrooms (-34.11, p <.001), and pre-k classrooms (𝛽𝛽22= -25.19, p .009).  

 Additionally, older children whose primary language was Spanish, including children in 

pre-k and kindergarten classrooms demonstrated lower preliminary academic abilities when 

compared to children whose primary language was English. Negative intercept beta coefficients, 

𝛽𝛽02 and 𝛽𝛽22, and statistically significant p-values suggested that children in pre-k and 

kindergarten experienced additional adverse effects in academic domains, including mathematics 

and literacy. For example, Spanish-speaking children in pre-k earned on average, 14.45 (p = 

.005) mathematics and 14.20 (p = .005) literacy scale points less prior to instruction and 

Spanish-speaking kindergarteners earned on average, 29.32 (p < .001) mathematics and 13.91 (p 

< .001) literacy scale points less prior to instruction than children whose primary language was 

English. Collectively, these results suggest that speaking Spanish may present additional 

challenges for children as academic rigor increases and content-specific vocabulary becomes 

more complex.  

Finally, despite previous research studies, which have found that Spanish-speaking 

children tend to demonstrate stronger rates of growth over time when compared to their English-

speaking peers (Hujar et al., 2021; Roberts & Bryant, 2011), results from the present study did 

not demonstrate any consistent patterns of differences in growth rates across age bands, domains, 

and time metrics. However, Spanish-speaking preschoolers and kindergarteners demonstrated 
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stronger growth in some areas of learning and development. Positive language and cognitive 

slope coefficients, 𝛽𝛽12 and 𝛽𝛽32, suggested that preschoolers experienced stronger growth rates 

across time metrics. For example, Spanish-speaking preschoolers gained on average 2.15 (p = 

.008) additional language scale points and 1.40 (p = .040) additional cognitive scale points per 

month of instruction when compared to their English-speaking peers. Similarly, positive 

mathematics slope coefficients,  𝛽𝛽12 and 𝛽𝛽32, suggested that kindergarteners experienced 

stronger growth rates across months of instruction and months of age. For example, Spanish-

speaking kindergarteners gained on average 1.48 (p = .009) additional mathematics scale points 

per month of instruction than their English-speaking peers. Together these results suggest that 

while inconsistent, some Spanish-speaking children may experience some type of catch-up 

effect. See Tables 12 and 13 for Spanish effects on instructional growth parameters and age 

growth parameters respectively. Positive and statistically significant beta coefficients are 

highlighted in green to emphasize favorable effects. Conversely, negative and statistically 

significant beta coefficients are highlighted in red to emphasize adverse effects. 
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Children who Speak Other Languages 

 Researchers have found that conducting subgroup analyses is challenging because 

researchers must create homogenous groups (Roberts & Bryant, 2011). Yet, in reality, 

intersecting identities and unmeasured variables, such as language proficiency, socioeconomic 

status, and maternal education, threaten the validity and interpretability of results. While children 

in this group are similar to one another in the sense that they speak languages other than English 

or Spanish, the reality is, children in this group are also very different from one another. Across 

the full sample, children in this group speak 53 unique languages, and each age-band cohort 

includes children who speak 20-35 different languages. Given within-group and between-cohort 

heterogeneity, there were no a priori hypotheses regarding differences in preliminary 

performance and patterns of growth over time for children in this group. 

 While there were no consistent differences in preliminary performance across age bands 

and domains, two- and three-year-old children and kindergarteners whose primary language was 

other generally demonstrated lower preliminary developmental levels when compared to their 

English-speaking peers. Negative intercept beta coefficients, 𝛽𝛽03 and 𝛽𝛽23, and statistically 

significant p-values suggested that two- to three-year-old children whose primary language was 

not English or Spanish demonstrated lower initial levels of development across every domain of 

development, when compared to their English-speaking peers. For example, children in two- to 

three-year-old classrooms whose primary language was categorized as other earned on average 

16.38 (p = .002) fewer literacy scale points prior to instruction than their English-speaking peers. 

Similarly, kindergarteners whose primary language was not English or Spanish also 

demonstrated lower preliminary levels of physical, language, cognitive, and literacy 

development, when compared to their English-speaking peers. For example, kindergarteners 
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whose primary language was categorized as other earned on average 5.40 (p = .011) fewer 

literacy scale points than their English-speaking peers prior to instruction.  

 Additionally, while there were not any consistent differences in growth rate over time 

across age bands and domains, children in two- to three-year-old, preschool, and kindergarten 

classrooms demonstrated stronger growth rates across many domains of learning and 

development. Positive slope beta coefficients, 𝛽𝛽13 and 𝛽𝛽33, and statistically significant p-values 

suggested that two- to three-year-old children whose primary language was not English or 

Spanish demonstrated stronger social-emotional, physical, cognitive, literacy and mathematics 

growth. For example, children in two- to three-year-old classrooms whose primary language was 

identified as other, gained an additional 1.81 (p = .008) literacy scale points per month of 

instruction than their English-speaking peers. Similarly, positive slope beta coefficients, 𝛽𝛽13 and 

𝛽𝛽33, and statistically significant p-values suggested that preschool children whose primary 

language was identified as other also experienced stronger physical, language, cognitive, 

literacy, and mathematics growth than their English-speaking peers. For example, preschoolers 

whose primary language was not English or Spanish, gained an additional 1.81 (p = .012) 

literacy scale points per month of instruction. And finally, positive slope beta coefficients, 𝛽𝛽13 

and 𝛽𝛽33, and statistically significant p-values suggested that kindergarteners whose primary 

language was identified as other experienced stronger physical, language, cognitive, and literacy 

growth. For example, kindergarteners whose primary language was identified as other, gained on 

average 1.07 (p < .001) additional literacy scale points per month of instruction when compared 

to children whose primary language was English. See Tables 14 and 15 for other language 

effects on instructional growth parameters and age growth parameters respectively. Positive and 

statistically significant beta coefficients are highlighted in green to emphasize favorable effects. 
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Conversely, negative and statistically significant beta coefficients are highlighted in red to 

emphasize adverse effects. 
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Black Non-Hispanic Children 

Research suggests that Black Non-Hispanic children tend to demonstrate lower abilities 

early on (Kuhfeld et al., 2020; Readon & Portilla, 2016) that persist through high school (Young 

et al., 2017). Therefore, it was hypothesized that Black Non-Hispanic children would 

demonstrate lower patterns of preliminary performance and growth over time. While results, 

including negative intercept beta coefficients, 𝛽𝛽04 and , 𝛽𝛽24, and statistically significant p-values 

generally suggested that Black Non-Hispanic children in one- to two-year-old, two- to three-

year-old, preschool, pre-k, and kindergarten classrooms demonstrated lower preliminary levels 

of development when compared to their White Non-Hispanic peers across many domains of 

learning and development, positive intercept beta coefficients, 𝛽𝛽04 and , 𝛽𝛽24, and statistically 

significant p-values generally suggested Black Non-Hispanic children in birth- to one-year-old 

classrooms demonstrated higher preliminary levels of development when compared to their 

White Non-Hispanic peers. While it’s possible that Black Non-Hispanic children in birth- to one-

year-old classrooms experience an advantage over their White Non-Hispanic peers in the areas 

of language, cognitive, literacy, and mathematics development, it’s also possible that 

unmeasured variables confounded results.  

Finally, despite previous studies, which have found that Black Non-Hispanic children 

tend to demonstrate slower patterns of growth than their White Non-Hispanic peers (Reardon & 

Portilla, 2016; Young et al., 2017), Black Non-Hispanic children in the current study did not 

demonstrate consistently different patterns of growth over time across age bands, domains, and 

time metrics. Positive slope beta coefficients, 𝛽𝛽14 and 𝛽𝛽34, suggested that Black Non-Hispanic 

preschoolers experienced stronger social-emotional, physical, and cognitive growth for each 

month of instruction or age. For example, Black Non-Hispanic preschoolers gained on average, 
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an additional 1.91 (p = .010) cognitive scale points for each month of instruction and an 

additional 1.49 (p = .012) cognitive scale points for each month of age. Conversely, Black Non-

Hispanic children in birth- to one-year-old classrooms and kindergarten classrooms experienced 

slower growth rates in several areas of learning and development when compared to their White 

Non-Hispanic peers. For example, Black Non-Hispanic children in birth- to one-year-old 

classrooms gained on average, 1.01 (p = .036) fewer cognitive scale points and Black Non-

Hispanic kindergarteners gained on average 1.64 (p = .002) fewer cognitive scale points per 

month of instruction, when compared to their White Non-Hispanic peers. See Tables 16 and 17 

for Black Non-Hispanic effects on instructional growth parameters and age growth parameters 

respectively. Positive and statistically significant beta coefficients are highlighted in green to 

emphasize favorable effects. Conversely, negative and statistically significant beta coefficients 

are highlighted in red to emphasize adverse effects. 
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Hispanic Children 

 Research suggests that Hispanic children tend to demonstrate lower preliminary abilities 

at school entry (Kuhfeld et al., 2020; Readon & Portilla, 2016) and stronger growth in the first 

few years of school (Hujar et al., 2021; Reardon & Galindo, 2009). Given previous research, it 

was hypothesized that Hispanic children would demonstrate lower preliminary levels of 

development and stronger growth rates over time. Results generally suggested that Hispanic 

children in two- to three-year-old classrooms and beyond demonstrated lower preliminary 

developmental levels than their White Non-Hispanic counterparts. Negative intercept beta 

coefficients, 𝛽𝛽08 and 𝛽𝛽28, and statistically significant p-values suggested that Hispanic children 

in two- to three-year-old, preschool, pre-k, and kindergarten classrooms typically demonstrated 

lower preliminary levels of development when compared to their White Non-Hispanic peers. For 

example, Hispanic children in two- to three-year-old classrooms earned on average, 15.42 (p = 

.002) mathematics scale points less than their White Non-Hispanic peers prior to instruction. 

This pattern persisted through preschool (𝛽𝛽08 = -10.12, p = .025), pre-k (𝛽𝛽08 =  -14.85, p <.001), 

and kindergarten (𝛽𝛽08 = -22.03, p <.001). Similarly, Hispanic children in two- to three-year-old 

classrooms who were 24 months of age at the beginning of the academic year earned on average, 

14.45 (p = .002) fewer mathematics scale points. This trend persisted for Hispanic children in 

pre-k (𝛽𝛽28 = -18.78, p <.001) and kindergarten (𝛽𝛽28 = -25.44, p <.001).  

Despite previous studies, which have found that Hispanic children experience accelerated 

growth during the first few years of school (Hujar et al., 2021; Roberts & Bryant, 2011), 

Hispanic children in the current study did not demonstrate significantly stronger growth rates 

when compared to their White Non-Hispanic peers. In fact, Hispanic kindergarteners actually 

experienced slower social-emotional and physical growth than their White Non-Hispanic peers. 
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For example, Hispanic kindergarteners on average gained 1.03 (p = .023) social-emotional scale 

points less per month of instruction than their White counterparts. While these observable 

differences in growth rate could be due to true differences in patterns of performance, it’s also 

possible that unmeasured variables such as socioeconomic status could have influenced results. 

See Tables 18 and 19 for Hispanic effects on instructional growth parameters and age growth 

parameters respectively. Positive and statistically significant beta coefficients are highlighted in 

green to emphasize favorable effects. Conversely, negative and statistically significant beta 

coefficients are highlighted in red to emphasize adverse effects. 
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CHAPTER FIVE: CONCLUSIONS 

As discussed in Chapter One, the primary purpose of this study was to provide more 

precise and time-continuous normative ability and growth scores that were reflective of the intra-

individual growth process and leveraged between-child variability in age and instructional 

exposure (Pan & Goldstein, 1997; Thum & Kuhfeld, 2020). Secondary study purposes included 

a) providing evidence of the most effective time metric, age or instructional exposure, for 

modeling developmental growth from birth through kindergarten, b) establishing evidence of the 

nature of the growth process from birth through kindergarten, and c) examining the relationships 

between notable child-level characteristics including, gender, race/ethnicity, and primary 

language, and growth trajectories across domains of learning and development. 

To lay the foundation for the present study, Chapter Two included a thorough review of 

extant literature on the topics of early childhood assessment, developmental growth trends, and 

approaches to modeling growth over time. Next, Chapter Three reviewed the methods, including 

the measure, population, sampling plan, and data collection and analysis procedures. Chapter 

Four included the results corresponding to each research question. And finally, Chapter Five 

includes key results and implications and recommendations for both research and practice.  

Model-Estimated Normative Scores 

The first research question aimed to understand typical development at each point in time 

from birth through kindergarten for every major domain of learning and development presented 

in the GOLD® assessment system. Unconditional hierarchical linear growth models were used to 

estimate growth parameters, including intercepts and slopes. Model-estimated intercepts and 

slopes were used to derive normative ability estimates for every domain, age band, and month of 

instruction or three months of age. While this research question can be answered by examining 
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the Instructional GOLD® Normative Scores provided in Table 1 and the Age GOLD® Normative 

Scores provided in Table 4, it’s also important to understand whether national normative 

estimates are reasonably valid.  

Once again, validity “refers to the degree to which evidence and theory support the 

interpretations of test scores for proposed uses of tests” (AERA et al., 2014, p. 11). However, 

within the context of the current study, validity is used to describe the stability and accuracy of 

model-estimated parameters and subsequent national normative estimates. While valid and 

reliable normative estimates alone do not fully substantiate the norm-referenced validity 

argument, they are prerequisite to making appropriate, useful, and meaningful relative score 

interpretations. Therefore, the validity of model-based estimates and corresponding national 

normative scores was examined using several strategies. First, the reliability of model-estimated 

intercepts was examined. Results suggested that model-estimated intercepts were reasonably 

reliable across age bands for Unconditional Instructional Exposure (.81-.93) and Unconditional 

Age (.71-.94) Growth Models. Second, we would expect normative estimates to increase across 

age bands and months of age and instruction. Results, including model-estimated normative 

scores presented in Table 1 and Table 4 evidenced this trend. Third, for each domain and age 

band, the Unconditional Instructional Exposure Model-estimated should be higher than the 

Unconditional Age in Months Model-estimated intercept. Results, including model-estimated 

intercepts consistently demonstrated this trend across age bands and domains of learning and 

development. And finally, HLM-estimated instructional normative scores were compared to 

score distribution-based norms provided in the Technical Manual for the Teaching Strategies 

GOLD® Assessment (2nd Edition) to determine if estimates were reasonably accurate. Results 

suggested the HLM-estimated instructional normative scores corresponding to the most common 
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months for finalizing scores and score distribution-based norms for the average fall, winter, and 

spring assessment occasions provided similar and at times equivalent estimates. Together, these 

four sources of validity evidence form the foundation of the validity argument for the use of 

HLM-derived national normative GOLD® scores to understand relative performance for children 

ages birth through kindergarten.  

Implications 

 The validity evidence presented in Chapter Four and reviewed in the present chapter has 

two significant implications. First, collectively, the validity evidence suggests that HLM-

estimated normative scores are reasonably reliable and valid. Therefore, HLM-based estimates 

could be used to help teachers draw more precise conclusions about relative performance and 

growth over time. Compared to previous norms, which were provided for the average fall, 

winter, and spring assessment date for each age band, HLM-based norms provide the expected 

score for every month of instruction and every three months of age. By increasing the precision 

in time metric, teachers who finalize scores earlier or later than average or have children who are 

younger or older than average can still draw meaningful conclusions about relative performance 

and growth. Second, while researchers have used MLMs to estimate normative ability and 

growth scores (Thum & Kuhfeld, 2020; Pan & Goldstein, 1997), it’s not a widely used method 

for establishing norms. Results, including validity evidence, from the present study suggest that 

HLMs can be used to establish normative ability and growth scores when data include at least 

three measurements per individual and data are collected over a relatively short period of time. 

Recommendations 

Results from the present study generally suggest that HLM-based normative estimates are 

reasonably reliable and valid. Therefore, Teaching Strategies® should consider adopting the new 
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national normative scores to aid teachers in making more precise relative score interpretations at 

each point in time from birth through kindergarten. Additionally, given “that the validation 

process never ends, as there is always additional information that can be gathered to more fully 

understand a test and the inferences that can be drawn from it” (AERA et al., 2014, p. 21), future 

research should seek to collect additional validity evidence in support of the novel normative 

estimates. For example, while HLM-based estimates were compared to score distribution-based 

estimates to examine whether estimates were reasonably similar, HLM-based estimates and score 

distribution-based estimates were established using different years of data and different cohorts 

of children. Future research could replicate the methods used by Lambert (2020) with the current 

sample to examine how similar estimates are across methods. By engaging in this type of 

research, researchers could a) establish additional validity evidence for HLM-derived national 

normative scores and b) provide further evidence to support the use of HLMs to establish 

normative ability and growth estimates. 

The Most Effective Time Metric 

The second research question aimed to understand which time metric, approximate 

instructional exposure or age in months, was the most effective predictor of developmental 

growth for each age band and domain of development. Model fit statistics, including AIC and 

pseudo-r2 statistics were compared across Unconditional Instructional Exposure Growth Models 

and Unconditional Age in Months Growth Models. Together, smaller AIC values and larger 

pseudo-r2 statistics provided evidence of the most effective time metric for each age band and 

domain of development.  

Researchers have widely observed that babies’ developmental growth is closely related to 

biological age. For example, regardless of geographic location or beliefs about caregiver 
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interactions, babies learn to sit, crawl, walk, and talk at similar points in time (Harkness et al., 

2013; Rebello-Britto et al., 2013). Yet, researchers have also found that children as young as 

two- or three-years old are greatly influenced by their environment (Yoshikawa et al., 2013) and 

interactions with caregivers and teachers (Chetty et al., 2011; Gialamas et al., 2013). Given these 

widely observed trends in child development, it was hypothesized that age in months may be the 

most effective predictor of developmental growth for babies and toddlers ages two and younger 

and instructional exposure may be the most effective predictor of developmental growth for 

children ages two and older. While results for children in one- to two-year-old, preschool, pre-k, 

and kindergarten classrooms were generally in the hypothesized direction across domains of 

learning and development, results for children in birth- to one-year-old and two- to three-year-

old classrooms were less consistent.  

For children in birth- to one-year-old classrooms, age in months was the most effective 

predictor of social-emotional and physical development, while instructional exposure was the 

most effective predictor of mathematics development. Contradictory fit statistics for birth- to 

one-year-old language, cognitive, and literacy models suggested that neither predictor was more 

effective than the other. Considering the literature base which clearly suggests babies’ 

developmental growth is closely related to biological age, we must consider alternative 

explanations for contradictory results. Although definitive conclusions cannot be made about 

conflicting fit statistics or results that oppose the study hypothesis, the most likely explanation 

stems from the way time metrics in the present study were measured and modeled. While age in 

months at the time of assessment was calculated by taking the date of assessment and subtracting 

the child’s birthdate to obtain the child’s age in months at the time of assessment, months of 

approximate instructional exposure was in fact approximate. Without program start dates, a 
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typical school start date (08/14/2020) was imposed for all children in the sample. Approximate 

instructional exposure was calculated by taking the date of assessment and subtracting the 

artificial school start date to obtain each child’s approximate months of instruction at the time of 

assessment. Given that both time variables were measured linearly and there was a strong 

bivariate correlation between time metrics (r = .68), the explanatory power of each time metric 

was similar regardless of domain or age band and fit statistics, including pseudo-r2 statistics and 

AICs were very similar across non-nested models. 

Similarly, contradictory fit statistics for two- to three-year-old social-emotional, physical, 

language, cognitive, literacy, and mathematics models indicated that neither predictor was more 

effective than the other. Once again, while definitive conclusions cannot be made about 

contradictory fit statistics, results are likely attributable to strongly correlated and linearly 

measured time variables. Alternatively, consistently contradictory and near equivalent model fit 

statistics could suggest that two- to three-year-old children’s development is equally influenced 

by both age and instruction. While this explanation is perhaps less plausible, it is at least in part 

supported by the literature which suggests that children younger than two- or three-years-old are 

more influenced by age (Harkness et al., 2013; Rebello-Britto et al., 2013) and children ages two 

or three and older are profoundly influenced by the environment (Yoshikawa et al., 2013) and 

interactions with caregivers (Gialamas et al., 2013).  

Implications 

Results from this research question have three important implications. First, although 

differences were modest, consistent results, including smaller AICs and larger pseudo-r2 

statistics, suggests instructional exposure was the most effective predictor for children in 

preschool, pre-k, and kindergarten classrooms. Collectively these results provide support for the 
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study hypothesis and suggest that children ages three and older need access to high-quality 

instruction by way of high-quality early childhood care. Second, given that age and instructional 

exposure were strongly correlated and linearly measured, AICs and pseudo-r2 statistics were very 

similar across non-nested models. Similar and at times contradictory fit statistics made it 

challenging to draw definitive conclusions about the most effective time metric, especially for 

some age bands and domains of learning and development. Inferences about the most effective 

time metric could likely be strengthened in the presence of more precise instructional exposure 

data. And finally, while results generally suggest that instructional exposure was a more 

significant predictor of developmental growth for children ages three and older, pseudo-r2 

statistics suggest that age is generally still an important predictor of developmental growth 

through kindergarten. Therefore, early childhood teachers may benefit from knowing their 

children’s ages and typical patterns of development associated with each age.  

Recommendations 

 While differences in AICs and pseudo-r2 statistics were modest across non-nested 

models, consistent results in the hypothesized direction for preschool, pre-k, and kindergarten 

children suggest that instruction is a more prominent predictor of development for children ages 

three and older. Given previous research which suggests that children as young as two or three 

are profoundly influenced the learning environment (Yoshikawa et al., 2013) and interactions 

with teachers and caregivers (Chetty et al., 2011; Gialamas et al., 2013) and results from the 

present study, state- and federal-education agencies should expand access to high-quality early 

childhood education programs for all children ages three and older. 

 Next, given inconsistent results for two age bands and small differences in AICs and 

pseudo-r2 statistics across all non-nested models, researchers should seek to replicate the current 
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study with more precise instructional exposure data. Given program-specific start dates and 

vacation schedules, researchers could more accurately measure and model instructional 

exposure. By modeling instructional exposure more precisely, fit statistics for non-nested models 

would likely demonstrate larger discrepancies and clearer patterns may emerge across age bands 

and domains of development. 

Finally, small pseudo-r2 statistics for one- to two-year-old models and two- to three-year-

old models suggested that models for these age bands included the most residual error. While 

residual error by definition is unexplained variance, researchers have suggested that a significant 

proportion of unexplained variance in domain-level scaled scores is due to rater effects (Hujar et 

al., 2021). To understand which time metric is the most effective predictor of developmental 

growth across domains and age bands, researchers may also consider eliminating assessment 

records for children whose teachers are not interrater reliability certified in an effort to eliminate 

some degree of construct irrelevant variance and obtain model fit statistics that are more 

reflective of trends in developmental growth.  

Nature of Developmental Growth   

Unconditional Age in Months Growth Model-estimated linear slopes, β30, were examined 

sequentially for children ages birth through kindergarten and Unconditional Instructional 

Exposure Growth Model-estimated linear slopes, β10, were examined sequentially for children in 

two- to three-year-old, preschool, pre-k, and kindergarten classrooms to make inferences about 

the nature of developmental growth across years of instruction.  

Generally, research suggests that developmental growth slows as children age and move 

through subsequent grade levels (Harkness et al., 2013; Lee, 2010; Masonic Institute for the 

Developing Brain, 2021; Mok et al., 2016; Shanley, 2016; Shin et al., 2013). Therefore, it was 
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hypothesized that across domains of development and time metrics, linear slopes would decrease 

in magnitude across age bands. While model-estimated linear slopes for age in months models, 

β30, demonstrated a pattern of deceleration across the first three age bands, β30, demonstrated a 

pattern of acceleration across the next three age bands. For example, babies in birth- to one-year-

old classrooms gained 11.38 (p < .001) social-emotional scale points per month of age, toddlers 

in one- to two-year-old classrooms gained 6.93 (p < .001) social-emotional scale points per 

month of age, children in two- to three-year-old classrooms gained 6.19 (p < .001) social-

emotional scale points per month of age, children in preschool classrooms gained 8.18 (p < .001) 

social-emotional scale points per month of age, children in pre-k classrooms gained 9.90 (p < 

.001) social-emotional scale points per month of age, and children in kindergarten classrooms 

gained 11.30 (p < .001) social-emotional scale points per month of age.  

Similarly, model-estimated linear slopes for instructional exposure models, β10, 

demonstrated a pattern of acceleration across age bands. For example, children in two- to three-

year-old classrooms gained 6.53 (p < .001) social-emotional scale points per month of 

instruction, children in preschool classrooms gained 9.12 (p < .001) social-emotional scale points 

per month of instruction, children in pre-k classrooms gained 11.36 (p < .001) social-emotional 

scale points per month of instruction, and children in kindergarten classrooms gained 12.66 (p < 

.001) social-emotional scale points per month of instruction. 

While results for children ages three and older generally contradicted study hypotheses 

and the broader literature which suggests developmental growth slows as children age and move 

through subsequent grade levels (Harkness et al., 2013; Lee, 2010; Masonic Institute for the 

Developing Brain, 2021; Mok et al., 2016; Shanley, 2016; Shin et al., 2013), results were 

consistent with typical gain scores provided in the Technical Manual for the Teaching Strategies 
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GOLD® Assessment (2nd Edition) Birth Through Third Grade. Gain scores provided in the 

technical manual generally suggest that developmental growth decelerates across the first three 

age bands and accelerates across the next three age bands. While definitive conclusions about the 

contradictory patterns of growth cannot be made, there are three plausible explanations for the 

observed results. First, differences in slopes could be reflective of true differences in growth 

rates between age-separated cohorts of children (Singer & Willet, 2003). Second, differences in 

slopes could be attributable to the method used for obtaining scaled scores, which includes the 

use of a curvilinear function where smaller raw score gains at the tails of the distribution 

contribute a greater number of scale points. And finally, growth rate, as measured by GOLD®, 

could decelerate across the first three age bands due to the natural slowing of development as 

children age (Shanley, 2016) and strengthen across the next three age bands as instruction 

intensifies. 

Implications 

 Again, while definitive conclusions cannot be made about the nature of developmental 

growth from birth through kindergarten using age-separated cohort data, linear slopes, β30, 

suggest that developmental growth decelerates from ages zero to three years accelerates from 

three to six years. Given this pattern of growth, it may be most appropriate for researchers with 

access to multi-year longitudinal GOLD® data to fit data to two separate polynomial models, one 

for children ages birth through three years and one for children ages three through six years. By 

incorporating a time-squared or time-cubed parameter, researchers may be able to adequately 

capture the deceleration in growth that occurs across the first three age bands and the 

acceleration that occurs across the second three age bands.  
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Recommendations 

 While inferences can be made about the nature of growth for children ages birth through 

kindergarten using age-separated cohort data, competing explanations for differences in growth 

rates cannot be eliminated. To strengthen inferences, Teaching Strategies® should assign and 

maintain consistent child IDs across academic years to establish a multiyear database. Given 

multiyear longitudinal data, researchers could fit data to more complex models that may 

demonstrate better fit to the data and more accurately capture the nature of the growth process 

from birth through kindergarten. For example, researchers could fit assessment data for children 

ages birth to age three to both linear and quadratic models. Next, researchers could use LRTs to 

determine whether the quadratic model demonstrated significantly better fit to the data than the 

linear model (O’Connell & McCoach, 2008; McCoach et al., 2022). Similarly, with more than 

three measurements per child, researchers could model scaled scores as a function of age in 

months and incorporate a level-one time-varying covariate such as instructional exposure. By 

modeling scaled scores as a function of both age and instructional exposure, researchers could 

likely explain a greater proportion of variance in the outcome and increase the precision and 

utility of normative estimates (Shanley, 2016; Thum & Kuhfeld, 2020).  

Subgroup Differences 

The fourth research question sought to investigate how growth trends differ by subgroups 

of children. Conditional Instructional Exposure Growth Models and Conditional Age in Months 

Growth Models were fitted to the data to understand the unique effect of each child-level 

characteristics on preliminary developmental status and growth rate. Positive and statistically 

significant beta coefficients indicated the group experienced stronger preliminary developmental 

levels or stronger growth over time, when compared to the reference group (White Non-
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Hispanic, English-speaking, boys). Conversely, negative and statistically significant beta 

coefficients suggested that the group experienced lower preliminary developmental levels or 

slower growth over time, when compared to the reference group.  

Girls  

Research generally suggests that girls demonstrate stronger abilities early on (Kuhfeld et 

al., 2020; Voyer & Voyer, 2014) that persist over time (Voyer & Voyer, 2014). Therefore, it was 

hypothesized that girls would demonstrate stronger preliminary abilities and growth rates, when 

compared to boys. Results including positive and statistically significant intercept beta 

coefficients generally suggested that girls ages two and older demonstrated stronger preliminary 

developmental levels across domains and time metrics, when compared to boys. Additionally, 

positive slope beta coefficients suggested that kindergarten girls demonstrated stronger social-

emotional, cognitive, literacy, and mathematics growth across months of instruction and stronger 

literacy and mathematics growth for each additional month of age, when compared to boys. 

Together, these results suggest that gaps between boys and girls emerge around the time children 

are two years old and gaps between boys and girls may begin to widen around age five or six. 

Children who Speak Spanish 

Researchers generally agree that children whose primary language is Spanish 

demonstrate lower abilities early on (Hujar et al., 2021; Roberts & Bryant, 2011) and stronger 

growth rates throughout early childhood (Hujar et al., 2021; Roberts & Bryant, 2011). Therefore, 

it was hypothesized that children whose primary language was Spanish would demonstrate lower 

preliminary abilities and stronger growth rates, when compared to children whose primary 

language was English. However, results suggested that Spanish-speaking children only 

demonstrated lower patterns of preliminary performance in certain areas of development. Results 
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including negative and statistically significant intercept beta coefficients suggested that Spanish-

speaking children ages one and older demonstrated lower preliminary levels of language 

development across time metrics, when compared to children whose primary language was 

English. Additionally, negative and statistically significant intercept beta coefficients indicated 

that children ages four and older whose primary language was Spanish demonstrated lower 

preliminary academic abilities across time metrics when compared to children whose primary 

language was English. Collectively, these results suggest that Spanish-speaking children a) tend 

to demonstrate lower patterns of language development across age bands, and b) may experience 

additional adverse effects on academic performance as academic rigor increases in pre-k and 

kindergarten.  

Finally, despite the fact that several researchers have found that children whose primary 

language is Spanish typically demonstrate stronger developmental in early childhood (Hujar et 

al., 2021; Roberts & Bryant, 2011), results which primarily included nonsignificant slope beta 

coefficients suggested that there were not any consistent patterns of differences in growth rates 

between children whose primary language was Spanish and children whose primary language 

was English across age bands and domains of development. Together, these results suggest gaps 

are not systematically widening or narrowing between English-speaking and Spanish-speaking 

children from ages birth through six. 

Children who Speak Other Languages.  

 Researchers have suggested that primary language is significantly related to children’s 

academic and developmental growth (Hujar et al., 2021; Roberts & Bryant, 2011), yet growth 

trends differ between children who belong to different primary language groups (Roberts & 

Bryant, 2011). Given within-group and between-cohort heterogeneity there were no a priori 
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hypotheses regarding patterns of preliminary performance or growth for children whose primary 

language was categorized as other. Results including negative and statistically significant 

intercept beta coefficients for two- and three-year-old and kindergarten children suggested that 

children at these age levels demonstrated significantly lower preliminary developmental levels 

across most domains, when compared to their English-speaking peers. However, positive and 

statistically significant slope beta coefficients for two- to three-year-old, preschool, and 

kindergarten suggested that children at these age levels demonstrated significantly stronger 

growth for many domains of development than their English-speaking peers.  

Black Non-Hispanic Children. 

Research generally suggests that Black children demonstrate lower abilities early on 

(Kuhfeld et al., 2020; Young et al., 2017) that persist over time (Young et al., 2017). Therefore, 

it was hypothesized that Black Non-Hispanic children would demonstrate patterns of lower 

preliminary performance and growth over time. Results including negative and statistically 

significant intercept beta coefficients for children ages one and older generally suggested that 

Black Non-Hispanic children demonstrated significantly lower preliminary developmental levels 

across most domains of development than their White Non-Hispanic peers. However, results 

including non-significant, positive, and negative slope beta coefficients suggested that there was 

not a clear pattern of differences in growth rates between Black Non-Hispanic children and 

White Non-Hispanic children across age bands, domains, and time metrics.  

Hispanic Children. 

Research generally suggests that Hispanic children demonstrate lower abilities in early 

childhood (Reardon & Portilla, 2016; Reardon & Galindo, 2009) and stronger rates of growth 

prior to first or second grade (Hujar et al., 2021; Roberts & Bryant, 2011). Therefore, it was 
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hypothesized that Hispanic children would demonstrate lower preliminary developmental levels 

and stronger rates of growth over time. While results, including negative intercept beta 

coefficients suggested that Hispanic children ages two and older demonstrated significantly 

lower preliminary developmental levels across most domains of development when compared to 

their White Non-Hispanic peers, nonsignificant slope beta coefficients suggested that Hispanic 

children did not experience significantly different growth rates when compared to their White 

Non-Hispanic peers. Collectively, these results suggest that while Hispanic children tend to 

demonstrate lower preliminary levels of development than their White Non-Hispanic peers, gaps 

are not systematically narrowing or widening from ages birth through age six. 

Implications  

 Over time many educational researchers have examined differences in growth trends 

between subgroups of children, such as boys and girls (Hujar et al., 2021; Voyer et al., 2014) 

children of color and White children (Kuhfeld et al., 2020 Reardon & Portilla, 2016; Reardon & 

Galindo, 2009; Young et al., 2017) and children from diverse socioeconomic backgrounds 

(Hujar et al., 2021; Roberts & Bryant, 2011). By exploring differences in patterns of 

performance and growth over time, researchers have effectively established evidence of 

systematic differences in performance and growth between subgroups of children and influenced 

state- and federal-level policies. For example, President Lyndon B. Johnson established Head 

Start in 1964 to close opportunity gaps between children of color and White children and 

children living in poverty and more affluent children (Hudson, 2015). However, once policies are 

enacted, researchers must continually examine assessment data to understand whether current 

programs and initiatives are positively impacting children and closing opportunity and 

achievement gaps (Kuhfeld et al., 2020).  
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Results for the current study including, negative intercept beta coefficients for Black 

children, Hispanic children, and children whose primary language was not English suggested that 

these subgroups of children demonstrated lower preliminary levels of development than their 

White Non-Hispanic and English-speaking peers. These results provided support for study 

hypotheses and agreed with the broader literature on developmental differences for subgroups of 

children (Kuhfeld et al., 2020; Reardon & Portilla, 2016; Reardon & Galindo, 2009; Young et 

al., 2017). Additionally, positive intercept beta coefficients for girls suggested that girls 

demonstrated higher preliminary levels of development when compared to boys. Again, these 

results provided support for study hypotheses and agreed with the broader literature on 

developmental differences between boys and girls in early childhood and beyond (Kuhfeld et al., 

2020; Voyer & Voyer, 2014). Together, these results suggest that subgroups of children, 

including children of color and White children, children from diverse linguistic backgrounds, and 

boys and girls continue to demonstrate significantly different patterns of development throughout 

early childhood.  

Furthermore, while intercept beta coefficients generally revealed patterns of preliminary 

performance that were consistent with the broader literature, patterns in slope coefficients were 

less consistent across age bands, domains, and time metrics. For example, while it was 

hypothesized that girls would demonstrate stronger patterns of growth over time across age 

bands, results indicated that only kindergarten girls experienced stronger growth rates, when 

compared to boys. Furthermore, while it was hypothesized that children whose primary language 

was Spanish would demonstrate stronger patterns of growth over time across age bands, results 

suggested that there were no systematic patterns of differences across domains. While definitive 

conclusions cannot be made, there are several plausible explanations for the observed results. 
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First, while the current study sought to establish a racially and ethnically representative sample 

of children, the number of children who spoke languages other than English varied by cohort. 

For example, while 726 kindergarteners spoke other languages, only 250 pre-k children spoke 

other languages. Given that some age bands had larger samples of children with particular 

characteristics, statistical significance was easier to obtain for some age bands than others. 

Second, given that data are from age-separated cohorts of children, it’s possible that there were 

true differences in patterns of growth over time between cohorts of children. Third, large 

proportions of residual variance for one- to two-year-old, two- to three-year-old, and preschool 

models suggested that there were more significant rater effects for some age bands, making it 

more challenging to detect true differences in growth rates. And finally, the absence of consistent 

patterns of differences in growth over time for most subgroups of children prior to kindergarten 

or first grade could suggest that while gaps exist, as evidenced by statistically significant 

intercept beta coefficients, gaps are not systematically narrowing or widening between subgroups 

of children from birth through age six. For example, even though Spanish-speaking children 

demonstrate patterns of lower preliminary language development from age one through 

kindergarten, nonsignificant slope coefficients for most age bands suggest that Spanish-speaking 

children are still acquiring language skills at the same rate as their English-speaking peers. 

Finally, while many researchers have found that subgroups of children demonstrate 

significantly different patterns of performance at school entry across domains of learning and 

development (Kuhfeld et al., 2020; Reardon & Galindo, 2009; Reardon & Portilla, 2016), less is 

known about when differences arise. For example, researchers have commonly observed that 

Black and Hispanic kindergarten children demonstrate lower abilities at kindergarten entry than 

their White peers (Kuhfeld et al., 2020; Reardon & Portilla, 2016), yet less has been written 
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about when the gaps in performance begin to emerge. Results from the present study suggest that 

subgroups of children begin to demonstrate different patterns of performance around one- or 

two-years of age. For example, children whose primary language is Spanish and children who 

identify as Black Non-Hispanic demonstrate lower preliminary developmental levels around age 

one, when compared to White Non-Hispanic children and children whose primary language is 

other and children who identify as Hispanic demonstrate lower preliminary developmental levels 

around age two. While girls tend to demonstrate stronger patterns of performance, when 

compared to boys, these gaps in performance also emerge around age two. Together these results 

suggest that gaps between subgroups of children begin to emerge by one to two years of age and 

children may need access to high-quality care prior to age one or two to mitigate opportunity 

gaps and observable developmental differences at school entry.   

Recommendations 

 Subgroups of children including, girls, Black children, Hispanic children, and children 

whose primary language was not English, demonstrated significantly different patterns of 

preliminary performance across domains of learning and development beginning around age one 

or two, when compared to the reference group. Given these results and extant research which 

suggests that children as young as two years old are profoundly influenced by caregiver 

interactions (Gialamas et al., 2013) and the learning environment (Yoshikawa et al., 2013), both 

state and federal educational agencies should seek to provide more comprehensive high-quality 

early childhood education for children prior to one- or two-years of age. By increasing access to 

high-quality care for subgroups of children who commonly demonstrate lower patterns of 

performance, including boys, children who are Black or Hispanic, and children who speak 

languages other than English at home, we may be able to reduce the differences in patterns of 
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performance that are evident at school entry (Kuhfeld et al., 2020; Reardon & Portilla, 2016; 

Reardon & Galindo, 2009) and persist through twelfth grade and beyond (Shanley et al., 2016; 

Mok et al., 2015; Voyer & Voyer, 2014, Young et al., 2017). 

Next, although patterns of differences in preliminary performance were generally in the 

hypothesized direction, patterns were somewhat inconsistent across age bands, domains, and 

time metrics for some subgroups of children. Observed differences between age-separated 

cohorts could be attributed to a number of factors, including a) true differences in patterns of 

performance between age-separated cohorts of children, b) different sample sizes for some 

characteristics (e.g., Spanish-speaking children), c) more significant rater effects for some age 

bands or d) confounding variables (e.g., disability status or socioeconomic status). To strengthen 

inferences about the relationships between subgroup membership and patterns of performance 

and growth over time, future research should seek to a) replicate the present study with multi-

year longitudinal data for one cohort of children to eliminate competing explanations for 

different results between age bands, b) consider using assessment records from children whose 

teachers are interrater reliability certified to eliminate some degree of construct irrelevant 

variance, and c) model additional influential child-level characteristics, including socioeconomic 

status and disability status. By replicating the present study with more reliable assessment data 

and additional child-level characteristics, researchers may be able to detect true differences in 

patterns of performance and growth more easily.  

Finally, while I do not recommend using subgroup-specific slope and intercept beta 

coefficients to construct subgroup-specific normative scores due to the limitations of the current 

study discussed above, in the presence of more stable estimates, future researchers may construct 

subgroup-specific norms to help educational stakeholders understand typical patterns of 
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performance given influential child-level characteristics. While subgroup-specific normative 

scores would not necessarily aid teachers in understanding relative performance and making 

data-driven decisions, they may help to highlight gaps in preliminary performance and growth 

over time between subgroups of children and substantiate the need for additional services and 

programs for young children who tend to experience different patterns of performance, when 

compared to age and grade level peers.  

Summary 

 The primary purpose of the current study was to use HLMs to establish time-continuous 

national normative scores for the most widely used authentic formative assessment in early 

childhood, GOLD®. Secondary study purposes included, a) identifying the most effective time 

metric for modeling growth across domains of learning and development for children ages birth 

through kindergarten, b) making inferences about the nature of the growth process (e.g., shape of 

the growth trajectory), and c) exploring whether or not and to what extent child-level 

characteristics were associated with different growth trajectories.  

Results from the present study seek to make several significant contributions to both 

research and practice. First, results corresponding to the first research question, including several 

sources of validity evidence suggested that HLM-estimated normative ability and growth scores 

are reasonably valid and reliable. This finding is important for two reasons, including, a) valid 

and reliable national normative scores are prerequisite to making appropriate, useful, and 

meaningful relative score interpretations, and b) results provide additional support for the use of 

MLMs to estimate normative ability and growth scores (Pan & Goldstein, 1997; Thum & 

Kuhfeld, 2020). Next, results corresponding to the second research question generally suggest 

that age is the most effective predictor of developmental growth for children in one- to two-year-
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old classrooms and instructional exposure is the most effective predictor of developmental 

growth for children in preschool, pre-k, and kindergarten. Although future research should seek 

to model instructional exposure with greater precision to strengthen analyses and confirm results, 

together these results generally agree with the broader literature and provide further evidence of 

the importance of high-quality instruction for children ages three and older. Results 

corresponding to the third research question generally suggest that developmental growth, as 

measured by GOLD®, slows across the first three age bands and accelerates across the next three 

age bands. Collectively, these results suggested that developmental growth, as measured by 

GOLD®, is non-linear and quadratic models may demonstrate good fit to multi-year longitudinal 

data for children ages birth through three and children ages three through six. And finally, results 

corresponding to the final research question, suggest that subgroups of children, including Black 

children, Hispanic children, children whose primary language is not English, and boys 

demonstrate significantly lower patterns of preliminary performance beginning around age one 

or two. Together, these results suggest that differences in patterns of performance begin as early 

as one year of age, and young children may need access to high-quality care from infancy to 

mitigate gaps between subgroups of children that are commonly observed at kindergarten entry 

(Kuhfeld et al., 2020; Reardon & Portilla, 2016; Reardon & Galindo, 2009) and persist through 

twelfth grade and beyond (Shanley et al., 2016; Mok et al., 2015; Voyer & Voyer, 2014, Young 

et al., 2017). 
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APPENDIX: DEMOGRAPHIC CHARACTERISTICS OF THE FULL SAMPLE 

A1 
Age in Months on September 1, 2021 
Age/Grade Band Age in Months 
  n M SD Minimum Maximum 
Birth to One-Year Olds 3000 4.38 2.16 0 8 
One- to Two-Year Olds 3000 15.56 2.28 12 19 
Two- to Three Year Olds 3000 27.34 2.30 24 31 
Preschool 3000 41.12 3.10 36 46 
Pre-K 3000 52.90 3.15 48 58 
Kindergarten 3000 64.71 3.23 60 70 

 
A2 
Demographic Characteristics of the Full Sample 
Characteristic   n % 
Gender Female 8655 48.12 

 Male 9330 51.88 
Race/Ethnicity White  8983 49.91 

 Black 2484 13.80 
 Asian  890 4.94 
 Native American, Pacific Islander, 

Alaska Native & Hawaiian Native 187 1.04 

 Multiple Races 832 4.62 
 Hispanic 4624 25.69 

Primary 
Language English 13429 74.61 

 Spanish 2454 13.63 
 Other 2117 11.76 

ELL Status Identified as an ELL 1635 9.08 
Disability Status Has IFSP or IEP 1226 6.81 
Poverty Status Receives FRL 4993 27.74 
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