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ABSTRACT

POURIA KARIMI SHAHRI. Designing Hierarchical Infrastructure-based Traffic
Control Frameworks for Large-Scale Heterogeneous Traffic Networks. (Under the

direction of DR. AMIRHOSSEIN GHASEMI)

This research aims to develop, enhance, and validate infrastructure-based hierarchi-

cal control framework designs for improving the mobility of large-scale heterogeneous

traffic networks. This research defines heterogeneity as a multi-vehicle traffic network

consisting of Human-Driven Vehicles (HDVs) and Autonomous Vehicles (AVs), distin-

guished by their operational characteristics and controllability. AVs have gained huge

interest across private industry, academia, government, and the public because they

promise higher road efficiency, improved safety, better energy consumption, and im-

proved emissions. However, the widespread adoption of autonomous vehicle technol-

ogy will likely take place over several years (if not decades) as the technology becomes

more widely accepted by the general public and more cost-effective. Therefore, there

will be a long period of time when we have both AVs and HDVs sharing the same road

and it is essential to develop traffic management strategies that take the uncertainty

associated with the heterogeneity in the traffic networks into account. Furthermore,

it is crucial to understand the extent to which these control strategies improve the

performance of the traffic network. To capture the realistic nature of large-scale

heterogeneous traffic networks, we adopt the heterogeneous (multi-class) METANET

model wherein the density and velocity dynamics of each vehicle class in each cell are

described mathematically. In order to achieve a higher-fidelity traffic model, we con-

sidered state- and class-dependent model parameters to better capture the complex

underlying dynamics of a heterogeneous traffic network. Moreover, in this research,

we propose a hierarchical distributed infrastructure-based control framework to man-

age large-scale heterogeneous traffic networks. At the lower-level, we employed the

Distributed Filtered Feedback Linearization (D-FFL) controller. The purpose of this
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controller is to track the desired density of each vehicle class in the target cells which

is set by the upper-level controller. D-FFL tracks the reference density by controlling

the suggested velocity of vehicles in the target cell and its upstream cell. The D-FFL

controller requires only limited model information, specifically, knowledge of the vec-

tor relative degree and the dynamic-inversion matrix, which is the nonlinear extension

of the high-frequency-gain matrix for linear systems. The controller inputs derived

by the classic feedback linearization control approach (ideal control inputs) and the

control inputs generated by the D-FFL are mathematically equivalent. However, the

feedback linearization method requires full knowledge of the plant model and mea-

surement of the disturbance of the system which is hard to achieve based on the com-

plex underlying dynamics of the heterogeneous traffic network. At the upper-level,

in our initial design, a Distributed Extremum-Seeking (D-ES) controller is designed

and implemented which aims to find the optimal operating densities of each vehicle

class in the target cells over time. D-ES is a model-free, real-time adaptive control

algorithm that is useful for adapting control parameters to unknown system dynam-

ics and unknown mappings from control parameters to an objective function. The

gradient-based D-ES comprises three essential components: the dither signals, the

gradient estimator, and the optimizer operating at progressively slower time scales.

The primary objective of the upper-level controller in our research is to achieve two

main goals simultaneously: the maximization of the average flow of the target cell to

mitigate traffic congestion and the minimization of the flow difference between the

target cell and the upstream flow to prevent the propagation of congestion in the back-

ward direction. The desired densities are then fed into the lower-level controller as the

reference model. To improve the performance of the designed hierarchical controller

and reduce the convergence time, we designed and implemented Newton Extremum

Seeking (NES) at the upper level of the hierarchy to feed the optimal density of target

cells to the lower-level controller. One of the key distinctions between the Newton al-
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gorithm and the gradient algorithm is that the convergence of the former is not solely

contingent on the second derivative (Hessian) of the cost map and it is user-assignable.

In fact, this allows for the deliberate synchronization of all parameters to converge

at a uniform pace, resulting in straightforward paths leading to the optimal point in

a shorter time. Moreover, to address the potential loss in optimality that may arise

due to continuous sinusoidal perturbations around the optimal point, we propose a

switched control scheme to be added to the NES structure. The proposed switched

control scheme involves reducing the amplitude of perturbations after convergence,

specifically within a neighborhood around the desired state. The switch is determined

by utilizing a Lyapunov function that is based on an averaged model of the NES feed-

back system. This Lyapunov function is designed to approximate the proximity to

the desired state, and based on this estimate, the switch is activated to reduce the

perturbation size. The enhanced upper-level controller design is named Lyupanov-

based Switch Newton Extremum Seeking (LSNES) which is then combined with the

FFL to form the hierarchical control framework. Finally, we established a MATLAB-

VISSIM COM interface that allows closed-loop control of a simulated traffic scenario

in PTV-VISSIM to test and validate the effectiveness of the distributed ES-FFL and

LSNES-FFL control approaches in large-scale traffic networks. The simulation results

show that our initial control framework design can effectively reduce congestion and

prevent congestion back-propagation during peak hours in homogeneous and hetero-

geneous traffic networks. We further compare our novel control framework design

with common model-free macroscopic traffic control approaches. By implementing

our improved hierarchical control framework, we also show that the Lyupanov-based

Switch Newton Extremum Seeking-FFL (LSNES-FFL) control framework has a %42

faster convergence rate with respect to the conventional ES-FFL method.
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CHAPTER 1: INTRODUCTION

1.1 TRAFFIC MANAGEMENT STRATEGIES

As cities expand and people’s mobility requirements rise, traffic congestion becomes

a huge issue associated with urbanization. In 2021, Americans collectively wasted 3.4

billion hours as a result of congestion. [1]. The ongoing increase in the demand for cur-

rent transportation infrastructure is placing strain on already nearly saturated road

networks. Nevertheless, constructing new infrastructure is not a sustainable solution

for alleviating congestion, as urban development and transportation infrastructure

battle for the same limited space resources. In response to this challenge, a range of

traffic control strategies, encompassing both infrastructure-based and vehicle-based

traffic control measures, has been developed [2; 3; 4; 5; 6; 7; 8; 9]. The vehicle-based al-

gorithms focus on controller synthesis for individual vehicles, where each vehicle eval-

uates its control solution with available information to improve its performance (such

as energy consumption, travel time, or safety) [10; 11; 12; 13; 14; 15; 16; 17; 18; 19].

However, the egotistical nature (only focusing on its performance) of this type of con-

troller and the availability of only local information can deteriorate the overall traffic

network’s traffic flow and overall performance [20; 21]. The infrastructure-based al-

gorithms, using the macroscopic models of a traffic network, focus on improving the

aggregated traffic behavior such as overall traffic flow, average density, total travel

time, etc. [4; 5; 6; 7; 8; 9; 22; 23; 24; 25]. Examples of infrastructure-based controllers

are ramp-metering [26], variable speed limit control [27], and lane management [28].

Among these initiatives, there is substantial interest in Autonomous Vehicle (AV)

technologies from private industry, academia, government, and the public. This huge

interest arises from the potential benefits AVs offer, including enhanced road efficiency,
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increased safety, reduced energy consumption, and improved emissions [29; 30]. Nev-

ertheless, the widespread adoption of AV technology is likely to unfold gradually

over several years, if not decades, as the technology gains broader acceptance and

becomes more cost-effective [29]. Therefore, it is essential to develop traffic manage-

ment strategies that consider the uncertainty associated with the heterogeneity in

the traffic network and understand the extent to which these strategies improve the

network’s performance and efficiency [31].

Researchers have been using various definitions of heterogeneity in traffic networks

such as heterogeneity in operational characteristic [32], in controllability [33; 34] where

AVs are considered as controllable agents that can follow the commands from the con-

troller, in traffic properties [35] that both signalized and non-signalized intersections

are available in the traffic network, in various sizes of vehicles in the traffic network

[36], and in different vehicle types [37]. In this research, we consider the heterogene-

ity in terms of the operational characteristics and controllability of different types of

vehicles; Human-Driven-Vehicles (HDVs) and Autonomous Vehicles (AVs).

1.1.1 DYNAMIC MODELS FOR HETEROGENEOUS TRAFFIC NETWORKS

The study of traffic flow modeling dates back to the 1950s, with notable contribu-

tions by researchers such as Lighthill and Whitham [38] and Richards [39]. These pio-

neers independently formulated mathematical models for freeway traffic flow, drawing

parallels between traffic dynamics and fluid mechanics. Since that time, the math-

ematical modeling of traffic flow has gotten the attention of numerous researchers,

as evidenced by the work of Ferrara and others [40]. Anticipating traffic patterns is

integral to various practical applications in the realms of traffic and transportation,

including travel information services, traffic management, decision-support systems,

and freight and fleet management systems. At the network level, the most suitable

tools for forecasting traffic conditions and potentially optimizing traffic measures

are traffic simulation models. These models span from less detailed macroscopic
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(infrastructure-based) models to highly detailed microscopic (vehicle-based) dynamic

models [41].

Macroscopic models, whether categorized as first-order, second-order, or higher,

describe how the traffic system’s states change over time. This involves the consider-

ation of two independent variables: i)time, and ii) space [42]. In the traffic dynamics

mathematical model in continuous mode, these variables are presumed to demon-

strate continuity, while discrete traffic models involve their discretization. In the

latter scenario, a freeway segment is subdivided into multiple smaller road sections,

and Time is divided systematically into a set number of intervals. This modeling

approach, spanning from the evolution of aggregate quantities to the discretization

of independent variables, offers a comprehensive understanding of traffic dynamics

across temporal dimensions and spatial considerations [43].

The first-ever continuous macroscopic traffic model, the Lighthill Whitham Richards

(LWR) model, was formulated in the 1950s by Lighthill and Whitham [38], along with

Richards [39]. This model’s core idea is that vehicles quickly adapt their speeds to

a steady-state relation based on the current traffic density. Nevertheless, it has its

downsides, one being the failure to account for the gradual changes in vehicle speeds

caused by the lack of consideration for inertia effects[44]. This drawback can lead to

vehicles experiencing unnaturally high accelerations or decelerations [44]. Further-

more, the model reliably predicts that the traffic leaving a congested cell matches the

road’s capacity flow if the downstream cell in the road is free from congestion. This

stands in contrast to the real-world phenomenon of capacity drop that we see in traffic

networks [45]. The widely known discretized version of the LWR model is the Cell

Transmission Model (CTM), introduced by Daganzo in [46; 47]. Initially designed

for roads without on-ramps or off-ramps, it was later expanded in [48] to accommo-

date traffic networks with complex features like intermediate exits or entrances, and

intersections.
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Analyzing and predicting traffic states in a heterogeneous (mixed) traffic network

stands as a prominent research area in traffic and transport science [49]. Consequently,

researchers have categorized multiclass traffic models to differentiate between various

vehicle classes navigating the same traffic network [50]. Depending on the model’s

objectives, these vehicle classes may be specified as distinct types of vehicles or as

specific characteristics of the drivers. Irrespective of the specific vehicle types under

consideration, multiclass models possess a superior descriptive capacity compared to

single-class models [26]. This enhanced capability enables them to better capture the

dynamics of a large-scale traffic network in the real world. Multiclass models stand

out in capturing important traffic phenomena that escape models concentrating solely

on one vehicle class. This is especially true for interactions among diverse groups of

vehicles sharing the same infrastructure. The majority of multiclass first-order traffic

models derive from extending the LWR model, with only a limited number offering

multiclass extensions of the CTM [51]. In specific scenarios, multi-lane models are

employed to illustrate the characteristics of heterogeneous traffic flow, as exemplified

in [52]. An alternative method is outlined in [53], where the model incorporates two

vehicle classes and a set of lanes that are designated for each class. Expanding on

this concept, a kinematic wave theory model of mixed traffic flow is introduced in

[54] and further developed in [55] to accommodate lane-changing and lateral move-

ment scenarios. These studies assume that vehicles follow predetermined paths, with

vehicle class utilizing the same route. In a distinct approach, [56] introduces a novel

dynamic model for the interaction of various vehicle classes in a non-cooperative

manner, where the vehicles with slower velocities act as moving bottlenecks for ve-

hicles with faster speeds trying to optimize their speed without affecting the slower

vehicle classes. In this framework, each class of vehicles represents a homogeneous

group of vehicles interacting with other vehicle groups within the overall traffic flow.

Based on this model, each class is characterized by a unique Macroscopic Fundamen-
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tal Diagram (MFD), which illustrates the relationship between road traffic flow and

traffic density. The MFD is a concept used in transportation engineering and traffic

flow theory to describe the relationship between traffic flow, density, and speed at

a macroscopic level [47]. Unlike microscopic models that focus on individual vehicle

movements, the MFD looks at aggregate traffic behavior over a larger spatial scale,

such as a road network or an entire urban area. The MFD typically represents the

relationship between the average network-wide flow and the average network-wide

density. The fundamental diagram is often depicted as a curve showing how the flow

or velocity changes with density. The MFD concept is useful for understanding the

overall efficiency and performance of a transportation system [57]. A recent devel-

opment in first-order macroscopic traffic models used in the multiclass context is the

Fastlane model, first proposed in [58]. Subsequent improvements were implemented

in [59], broadening the scope of Fastlane to include the integration of ramp metering,

enabling the independent control of distinct vehicle classes.

To address the limitations of first-order continuous models, second-order traffic

flow models emerged approximately two decades later. In addition to considering

traffic density dynamics, these models explicitly incorporate a dynamic equation for

the mean speed. The Payne–Witham (PW) model [60] belongs to the category of

continuous traffic flow models at the macroscopic level, representing the dynamics of

aggregate variables denoted as traffic flow. Key variables in macroscopic models in-

clude average mean speed, traffic density, traffic flow, location, and time. Continuous

macroscopic models, particularly the PW model, utilize the analogy between traffic

and fluids. However, as highlighted in [61], significant disparities exist between them,

necessitating accurate representation in traffic models. Vehicles in traffic networks,

unlike fluids, are anisotropic particles primarily responsive to the flow behind them

and barely affected by the traffic flow ahead of them.

Furthermore, in contrast to molecules, drivers possess distinct personalities, con-
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tributing to discrepancies within the PW model, and resulting in unrealistic behav-

iors like negative speeds. Aw, and Rascle in [62], along with Zhang [63], proposed

modifications to the PW model to rectify these inconsistencies. Their adjustments

involved incorporating anticipation and relaxation terms to enhance the model’s rep-

resentation of road networks. Another category of traffic models falls under discrete

second-order models, exemplified by the METANET model [64; 65; 66]. The model

adopts a discrete approach in both space and time, wherein the freeway stretch is seg-

mented into distinct road portions, termed cells, and the time horizon is divided into

equally spaced time intervals. In the METANET model, the presence of on-ramps

and off-ramps is accounted for within the sections.

As emphasized earlier, there are various motivations to explicitly integrate mul-

tiple vehicle classes into traffic flow models, extending beyond first-order models to

encompass second-order ones. In [43], modifications are made to the single-class

METANET model to represent a mixed traffic flow, by considering a unique FD

for each vehicle class. Another second-order traffic model accommodating multiple

classes is introduced in [67; 68]. In this model, each class of vehicles adheres to its

own MFD and is confined within a designated space. An extension of the METANET

model to accommodate a multi-class (heterogeneous) framework is presented in [69],

subsequently refined in [70; 71] for a freeway section, and further adapted in [72] for

a whole network. In these subsequent models, interactions among various vehicle

groups are characterized by class-specific MFDs, with the flow of each class depen-

dent on the dynamic coupling term and the total density. In our proposal, we adopt

the multiclass METANET model as presented in [68] for the heterogeneous traffic

network. Additional insights into this model, examining its use in the heterogeneous

traffic network containing AVs and HDVs, are elaborated in Chapter 2.
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1.1.2 CONTROLLER DESIGN FOR HETEROGENEOUS TRAFFIC

NETWORKS

The demand for creating monitoring and management plans for freeway traffic net-

works has risen in recent decades due to the ongoing rise in traffic congestion and

its negative impacts on individuals and the environment. Despite being designed to

accommodate substantial traffic volumes, freeway networks have faced challenges in

coping with the growing demand, and conventional infrastructure interventions often

fall short of addressing this issue [73]. Consequently, implementing targeted con-

trol measures frequently emerges as the optimal strategy for optimizing the efficiency

of freeway traffic systems. Freeway traffic management can take various forms. One

approach involves regulating the entry of traffic flows onto the freeway through the im-

plementation of ramp metering. Another method entails controlling the movement of

vehicles within the freeway itself, achieved through mainstream control. This entails

guiding vehicles along designated paths and implementing efficient route guidance

strategies [40; 74; 75].

The goals of traffic controllers are closely tied to enhancing traffic conditions on

freeways, specifically aiming to reduce congestion and alleviate its negative impacts

[76]. The primary aim of traffic controllers is to minimize total travel time, given its

direct impact on travelers. However, recently, researchers have introduced additional

control objectives to address environmental concerns, enhance safety, and consider

issues related to the overall quality of life for people. Consequently, we can catego-

rize the objective control functions into three main groups [40; 77; 78; 79; 80]: (I)

Enhancement of system performance by reducing congestion and emissions, (II) In-

creasing safety, reducing the stop-and-go event in traffic, and preventing congestion

back-propagation (III) Reducing the total travel time and total travel distance.

Numerous traffic controllers have been developed to regulate freeway traffic by

tracking specific set-points as desired values for traffic states, specifically traffic den-
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sity [81; 82]. The common approach is to establish reference densities for the traf-

fic network and implement traffic control strategies to effectively track these refer-

ence densities by controlling the flow, velocity, or other terms of a large-scale traf-

fic network[83; 84]. Desired values for traffic density, varying across different road

sections and changing over time, represent a versatile and common scenario in ho-

mogeneous and heterogeneous traffic networks. In advanced control strategies, these

set points can be dynamically defined based on current traffic conditions, especially

in hierarchical control setups where an upper-level controller computes real-time set

points [84]. However, the more straightforward approach is to maintain fixed values

for these density targets. Often, the critical density of the vehicle class in the homo-

geneous traffic networks is the set desired density. Implementing a controller in the

traffic network to track the critical density is synonymous with maximizing the flow,

exploiting the road capacity as much as possible [85].

Traffic flow management in the mainstream based on local measurements of the

traffic’s states is a key aspect of flow control strategies. Various forms of mainstream

control implementation exist, with [86] presenting a comprehensive concept of this

control action. In this approach, traffic flow control is introduced as a tool for reg-

ulating mainstream traffic. The deployment of various actuators, including Variable

Speed Limits (VSL), traffic lights, or advanced controllers providing instructions di-

rectly to drivers, is part of this control strategy.

As stated before, there is a lot of attention on heterogeneous traffic networks con-

sisting of HDVs and AVs. Two main categories in controlling methods are closed-loop

control, where a portion of the output signal is fed back to the input to reduce errors

and improve stability, and open-loop control, which does not monitor or measure the

condition of its output signal as there is no feedback. Now there are various sub-

categories in controlling methods such as optimal control, feedback control, robust

control, phase control, and centralized and decentralized control which can all be used
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in different heterogeneous traffic flow control methods like variable speed limit (VSL)

control [87; 88; 89; 90; 91], ramp metering [92; 93; 94; 95], traffic signal control [96; 97],

platooning [98; 99; 100; 101; 102], lane management [31; 103; 104], longitudinal and

lateral control [105; 106].

In [87], researchers explored how to implement VSL in mixed-traffic highways with

various penetration rates (levels of heterogeneity). Wu et al. developed a variable

speed limit control strategy considering the relationship between headways and the

visibility distance of autonomous vehicles [107]. In another study, the authors pro-

posed a VSL algorithm to reduce the stop-and-go behavior of vehicles at traffic signals

after finding out the relations among flow parameters by building a multiclass cell

transmission model (CTM) [108]. Yu et al. presented an optimal variable speed

limit control strategy for AVs in heterogeneous freeway corridors with multiple bot-

tlenecks [90]. Another researcher addressed the VSL control problem for automated

vehicles before they enter the speed reduction zone on freeways [91]. Ramezani et

al. presented a two-level controller to reduce the congestion in the heterogeneous

traffic network by controlling the lateral flows of AVs [33]. The first level controller

finds the optimal density distribution upstream of the bottlenecks and the second

controller controls the lane change advisory system in lateral movements. The same

researcher presented a hierarchical perimeter flow control that operates on the bor-

der between urban regions to minimize the network delay and also to distribute the

congestion more homogeneously by controlling the flow rate between regions [109].

In another study, researchers used AVs in a partial penetration rate traffic system to

develop a variable speed limit control in order to reduce the time delay and improve

the bottlenecks[110]. Talebpour et al. investigated the effect of lane dedication to

AVs in two-lane and four-lane highways on congestion reduction and total travel time

reliability [111]. They also showed that AVs’ effectiveness in increasing the system’s

throughput is more than connected AVs with the same penetration rate. Moreover,
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[112] stated that using intelligent control of AVs can dampen stop-and-go waves in a

single-lane traffic network. As stated before, besides reducing congestion, increasing

the throughput of the traffic network and its capacity is another aim of related papers.

Chen et al. presented a theoretical framework to show how AVs will affect the het-

erogeneous traffic network capacity. Furthermore, they have investigated the optimal

distribution of AVs across the lanes based on given network demand and penetration

rate [113]. Additionally, another research has been conducted which discusses the

optimal deployment of AV lanes in different penetration rates to increase the traffic

system’s capacity and throughput [114].

The main challenges associated with the design of infrastructure-based traffic con-

trollers are due to (i) uncertainty and nonlinearity of the traffic system macro-

scopic dynamics and (ii) significant computational load of centralized macro-level

controllers [115]. For instance, the model parameters of the METANET model are

state-dependent and, thus, hard to characterize [68]. Furthermore, the optimal oper-

ating density of a congested cell in heterogeneous traffic networks with an unknown

downstream bottleneck is not always known [116]. To address these issues, different

control algorithms, including model-free based control algorithms have been inves-

tigated [31; 116; 117; 83]. Model-free control approaches require limited or even no

information from the dynamics of the traffic network, such as Extremum Seeking (ES)

control and Filtered Feedback Linearization (FFL) [83; 118; 119; 120].

Feedback linearization (FL) controller has been widely used as a set-point tracking

(density tracking) controller for traffic management [121; 122]. However, the main

drawback of FL is that it requires full model information and the measurement of

the network disturbance. The traffic dynamics contain uncertainties associated with

the unmodeled dynamics of a traffic system, which can intrinsically be state- and

control-dependent, making it impractical to get the required model information for

the FL controller [122]. This research addresses this shortcoming by introducing the
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Filtered Feedback Linearization (FFL) approach. FFL is a high-parameter-stabilizing

control technique that addresses both command following and disturbance rejection

for Multi-Input-Multi-Output (MIMO) nonlinear systems where the equilibrium of

the zero dynamics is locally asymptotically stable [123; 124]. FFL is mathematically

equivalent to filtering a standard feedback linearization controller. However, unlike

the standard FL, the controller only requires limited model information, specifically,

knowledge of the vector relative degree and the dynamic-inversion matrix. As a

result, FFL makes the L∞ of the command following error arbitrarily small despite

the presence of unknown disturbances[123; 125].

As discussed earlier, prior studies on traffic control rely on feedback control [126;

127; 85]. These studies utilize a predefined constant set-point based on historical traf-

fic data, often the critical density at which the traffic network achieves its maximum

flow. However, the critical density may not always be optimal due to the complex

dynamics of heterogeneous traffic networks [84; 120]. In [85], we used the FFL ap-

proach for the first time in a non-signalized heterogeneous traffic network to reach the

desired density for AVs and HDVs in the target cell. However, the desired densities

for AVs and HDVs were set equal to the critical density of each vehicle class based

on simulation data. Therefore we introduce a hierarchical controller design which

consists of two levels. At the lower level, we utilize the FFL controller to adjust the

velocity of vehicles in the target cells in order to reach the desired density for each

vehicle class. At the upper level, we implement an ES controller to determine the

optimal densities of each vehicle class and feed that into the lower-level controller as

a reference density.

Extremum Seeking (ES) control has been intensively studied over the recent years

[128; 129; 130; 131; 132; 133; 134; 135], especially after the theoretical work by Krstic

and Wang [136] proving the convergence of cost function to a neighborhood of the

optimal value using averaging analysis and singular perturbation. ES control is a
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model-free optimization method that targets the steady-state performance of dy-

namic systems [136; 137]. An ES controller adjusts the input to a dynamic sys-

tem to optimize the steady-state output, such as cost or performance, with minimal

knowledge about the underlying dynamics [128; 138]. Gradient-based ES comprises

three essential components: the dither signals, the gradient estimator, and the op-

timizer operating at progressively slower time scales [139]. ES has been applied to

various control scenarios, including traffic light control and trajectory optimization

[119; 140; 141]. ES leverages a small periodic excitation, usually sinusoidal, to stim-

ulate the tuning parameters and quantifies the impact of the parameters using the

output of a nonlinear map [142]. It is a real-time control method that seeks to opti-

mize the steady-state dynamic of a system whose characteristics are not fully known

[129; 136]. The method achieves this by approximating the gradients of the input-

output mapping [128; 143]. Despite being studied in various contexts, ES has not

received much attention for traffic congestion and flow control. In [144], ES con-

trol is employed for traffic congestion control with a downstream bottleneck. In this

study, an unknown flow-density relationship is considered at the bottleneck area,

and the optimum density of the upstream cell is determined to mitigate the con-

gestion. Moreover, they assumed the traffic flow to be the control input; however,

direct traffic flow control is not practical. To address this issue, a set-point tracking

controller shall be integrated into the design of an ES-based controller [119]. In our

paper [119; 85], a novel hierarchical control framework consisting of distributed ES

and FFL is designed to mitigate the congestion in a homogeneous traffic network.

In this framework, FFL updates the velocity communicated to the vehicles so that

the desired density, which ES determines, is achieved. Furthermore, in this study, we

enhance the performance of the novel hierarchical control framework by incorporating

Lyapunov-based Switched Newton Extremum Seeking (LSNES) at the upper level of

the control hierarchy and FFL at the lower level [120]. One of the key distinctions
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between the Newton algorithm and the gradient algorithm is that the convergence

of the former is not solely contingent on the second derivative (Hessian) of the cost

map and it is user-assignable. In fact, this allows for the deliberate synchronization

of all parameters to converge at a uniform pace, resulting in straightforward paths

leading to the optimal point in a shorter time [128; 132]. The effectiveness of the

Newton algorithm becomes particularly evident in the realm of multi-input optimiza-

tion challenges. This advantage is most pronounced when dealing with problems in

which the Hessian matrix notably deviates from the identity matrix. In such sce-

narios, the gradient algorithm frequently leads to the convergence of distinct input

vector elements at notably disparate rates [145]. The issue of divergent convergence

rates among different input vector elements presents an inherent challenge in gradient-

based optimization schemes. To tackle this challenge, a potential solution involves

adjusting the algorithm using the inverse of the Hessian matrix. However, this ap-

proach can be impractical in situations where the system model remains unknown.

In contrast, the Newton algorithm offers a compelling solution by enabling uniform

convergence rates for all input vector elements or allowing for rate customization if

equipped with a convergent Hessian matrix estimator. This underscores the Newton

algorithm’s advantage in scenarios where gradient-based methods may grapple with

disparate convergence rates, primarily stemming from limited knowledge about the

Hessian matrix properties [128]. Consequently, addressing limit cycle concerns and

achieving asymptotic convergence to the optimal set point stands as a notable issue

in Newton-based Extremum Seeking (NES). To overcome this challenge, we imple-

mented a Lyapunov-based switched approach that ensures asymptotic convergence

to the optimal set point [146]. This ensures stable and robust convergence behav-

ior of the control system, even in the presence of uncertainties. The utilization of a

Lyapunov-based switching mechanism provides a rigorous mathematical framework

for stability analysis, significantly enhancing the control system’s reliability and ro-
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bustness. The switched approach further offers adaptability and flexibility in selecting

the appropriate control actions based on the system’s current state. This adaptabil-

ity proves particularly advantageous in the context of intricate and dynamic systems,

such as heterogeneous traffic networks.

1.2 PROBLEM STATEMENT

This thesis aims to develop a hierarchical infrastructure-based control algorithm to

control homogeneous and heterogeneous large-scale traffic networks. Although many

previous works have developed infrastructure-based controllers for traffic networks,

several major challenges, particularly for heterogeneous traffic networks, are yet

to be addressed – that is the focus of this dissertation. In this research, we aim to

address three objectives. In particular,

Aim 1: Modeling a Heterogeneous Traffic Network. The first aim of

this research is to develop a modeling framework that can describe and predict

the behavior of a heterogeneous traffic network. To capture the realistic nature

of heterogeneous traffic systems, a proper way of coupling the dynamics of

AVs and HDVs must be determined to achieve a high-fidelity mathematical

model. Furthermore, to avoid implementing extensive inter-flow constraints

which results in a more complex controller design, we need to consider class-

and state-dependent model parameters in the heterogeneous traffic model and

calibrate them with field data.

Aim 2: Developing and Enhancing Traffic Management Strategies

for Large-scale Traffic Networks. The second aim of this research is to

enhance mobility in homogeneous and heterogeneous traffic networks. We will

design non-model-based hierarchical control approaches to examine to what ex-

tent mobility can be improved for different levels of heterogeneity when facing

congestion during traffic peak hours. The main goal of our infrastructure-based
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control framework is to reduce the congestion in target cells and prevent back-

propagation of the congestion. Furthermore, we will also improve the perfor-

mance and the convergence speed of the designed macroscopic controller.

Aim 3: Test and Validation. The effectiveness of the proposed infrastructure-

based scalable control framework will be validated on an integrated model of

heterogeneous traffic network highway scenarios using PTV-VISSIM software.

The proposed study will bridge different fields of study, establish new results for

an important subclass of traffic, control, and optimization problems, establish a new

fundamental theory in hierarchical control, and significantly advance state-of-the-art

heterogeneous multi-vehicle traffic networks.

This dissertation is organized as follows. Chapter 2 provides an overview of the

homogeneous and heterogeneous macroscopic traffic model, which is a descriptive

tool for macroscopic highway traffic system dynamics. Chapter 3 elaborates on the

development of a multi-level control platform for the purpose of realizing desirable

traffic dynamics. Chapter 4 details the simulation results of the hierarchical control

design, showcasing its proficiency in managing homogeneous and heterogeneous traffic

networks. Finally, Chapter 5 serves as a conclusion, summarizing the research’s key

findings and presenting suggestions for future research directions.



CHAPTER 2: TRAFFIC DYNAMICS MODELLING

This chapter is focused on modeling the dynamics of both homogeneous and hetero-

geneous traffic networks. First, we go through the details of the METANET model

for a single-class traffic network and then we introduce the METANET model for

mixed traffic networks.

2.1 HOMOGENEOUS METANET MODEL

Figure 2.1: Schematic of a traffic network.

Consider a freeway traffic network, as shown in Fig. 2.2, wherein the road is

discretized into multiple cells. The following assumptions are made throughout the

rest of the discussion. A freeway corridor is divided into links; a link could be divided

into cells if necessary; however, for simplicity, each link is considered as a cell in this

research; and each link contains at least one traffic sensor. Consider the following

notations in the following table:
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i- cell index

Ci cell i

T - time step for model update

Li length of cell i

λi number of lanes in cell i

ρi(k)- density for cell i during time interval k

vi(k)- distance mean speed for the cell i during time interval k

qi(k)- flow for the cell i during time interval k

Ui(k)- suggested velocity (speed control variable) for cell i

Payne [147] inferred the speed dynamics by making specific assumptions, including

the equilibrium state assumption v(x, t + τ) = U(ρ(x + ∆x, t)). This presumption

suggests that the Macroscopic Fundamental Diagram’s (MFD) speed-density (v − ρ)

relationship has anticipated the density over a distance ∆x, with the average driver’s

response delayed by τ in time. Utilizing Taylor series expansion on both temporal

and spatial dimensions of the equation and subsequently discretizing it, the resulting

expression for speed dynamics is outlined below:

vi(k + 1) = vi(k) +
T

τ
(Ui(ρi(k))− vi(k))−

T

Li

vi(k)(vi−1(k)− vi(k))

− εT

τLi

ρi+1(k)− ρi(k)

ρi(k) + κ
. (2.1)

The parameters τ , ε, and κ are values to be determined through calibration using

field data. Eq. (2.1) contains three main terms that are discussed as follows:

1. First item - relaxation term: The relaxation term functions as a high-gain filter

in the context of dynamic systems, characterized by the expression 1
τ

with a

small τ [148]. The objective of the drivers collectively is to attain the desired

speed Ui(ρi(k)), which serves as the control variable. The careful selection of
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this desired speed is pivotal in capturing the nuances of driver behavior.

2. Second item - convection term: The convection term represents the impact

of traffic from the upstream cell on the downstream cell, indicating the speed

changes resulting from incoming and outgoing vehicle speeds. Its adjustment

can involve introducing a factor, typically expressed as ρi−1

ρi
. This modification

accounts for the driver’s speed adjustment concerning the density difference

between the two neighbor cells [149]. Notably, this term holds the highest

sensitivity in speed dynamics.

3. Third item - The density gradient term signifies that as the downstream density

rises or falls, the speed in the current cell will correspondingly decrease or

increase;

− εT

τLi

ρi(k)− ρi+1(k)

ρi(k) + κ
= −1

τ
(
εT

Li

ρi(k)− ρi+1(k)

ρi(k) + κ
). (2.2)

Here, τ represents the time delay characterizing how swiftly a group of drivers

responds to the perception of traffic density. Essentially, each driver’s observation

pertains to the inter-vehicle distance in the immediate surroundings, akin to the

driver’s localized density perception. Meanwhile, ε functions as a sensitivity factor.

The expression within the brackets articulates the influence of downstream cell den-

sity: an elevation in the downstream density correlates with a reduction in speed

within the current cell. The incorporation of ρi(k) in the denominator serves the

purpose of normalization.

The introduction of the parameter κ > 0 serves two primary objectives:

• Enhancing the model’s performance, particularly in scenarios characterized by

medium to high density;
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• Mitigating the singularity or excessive sensitivity of the term to the model under

low-density conditions.

Given that the suggested velocity, Ui(ρi(k)), essentially serves as the parameter

for speed control, it can be customized with values unrelated to density (ρi(k)), or

even excluded from parameterization entirely. These adjustments involve a simple

transformation of coordinates. However, choosing direct parameterization with den-

sity establishes a direct connection between the control design and the shape of the

Fundamental Diagram (FD). When we integrate the dynamics of density and speed,

the METANET model emerges, as outlined in previous works [66; 147; 150]:

Specifically, the dynamics of cell Ci are shown in continuous form as follows:

qi(t) = ρi(t)vi(t), (2.3a)

ρ̇i(t) =
1

Liλi

(
qi−1(t)− qi(t) + di(t)

)
(2.3b)

v̇i(t) =
1

τ

(
Ui(t)− vi(t)

)
+

1

Li

[
vi(t)

(
vi−1(t)− vi(t)

)
− ε

τ

ρi+1(t)− ρi(t)

ρi(t) + κ

]
(2.3c)

where di(t) is a disturbance flow (e.g., uncontrolled traffic flow including the off-

ramps and on-ramps). Here, if we assume the suggested velocity of each cell is

following the FD diagram, the Ui(t) = Vi(t) is considered the suggested velocity for

the vehicles in each cell of the traffic network, where Vi(t) = vFF.exp
[

−1
am,i

(
ρi(t)
ρc

)am,i
]

is the mathematical model of the steady-state velocity-density relationship in the

Macroscopic Fundamental Diagram (MFD) [151]. vFF is the free-flow velocity, and ρc

is the critical density where the flow is at capacity on a given lane. Also, am,i is another

model parameter that can be determined from field data in the model calibration

process. However, in this research, we consider Ui(t) = (1 − βi(t))Vi(t) where βi(t)

is the control input and it is within the range of 0 ≤ βi(t) ≤ 1. In particular, when

βi(t) = 0, the controller is suggesting vehicles to follow their macroscopic steady-state
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behavior based on the FD diagram. On the other hand, βi(t) = 1 indicates that the

controller is commanding the vehicles to stop. Now that we have covered the basics

of the METANET model for homogeneous traffic networks, we deep dive into the

details of the heterogeneous METANET model to capture the differences and explain

the crucial extra terms when it comes to modeling mixed traffic networks. Also, the

equations of motion for the traffic dynamic model are introduced.

2.2 HETEROGENEOUS METANET MODEL

Now consider a highway traffic network with mixed flow as shown in Fig. 2.2

wherein the road is discretized into multiple cells. We characterize cell Ci, where

i ∈ {1, 2, · · · , n}, by the density of AVs and HDVs (ρi,A, ρi,H), space mean speed of

vehicles in each class (vi,A, vi,H) within the cell, and the average flow rate (qi,A,qi,H)

of the cell for AVs and HDVs.

Figure 2.2: A schematic of a traffic network discretized into multiple cells with the
length of Li. The state variables of each cell are density (ρi,A, ρi,H), average velocity
(vi,A, vi,H), and the flow (qi,A, qi,H) of each vehicle class.

The heterogeneous (multi-class) METANET model is an extension of the well-

known METANET model [74] that we also discussed in the previous section. In

this model, in cell i ∈ {1, · · · , n}, for each class of vehicles, two sets of fundamental

diagrams are defined that describe the macroscopic behavior of AVs and HDVs in

a homogeneous (fully autonomous or fully human-driven) traffic network. Fig. 2.3

demonstrates two fundamental diagrams wherein a higher free-flow speed (vA,FF >

vH,FF), larger critical density (ρc,A > ρc,H), higher capacity (CA > CH) and larger jam

density (ρJ,A > ρJ,H) are assumed for AVs with respect to HDVs.
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Figure 2.3: The flow-density relationship of AVs and HDVs.

For the heterogeneous METANET model, the dynamic equations for each vehicle

class in the freeway cells are written in continuous form as follows:

qi,A = ρi,Avi,A, (2.4a)

qi,H = ρi,Hvi,H, (2.4b)

ρ̇i,A =
1

Liγi
(qi−1,A − qi,A + di,ρA), (2.5a)

ρ̇i,H =
1

Liγi
(qi−1,H − qi,H + di,ρH), (2.5b)

v̇i,A =
1

τA

(
Ui,A(t)− vi,A(t)

)
+

1

Li

[
vi,A(t)

(
vi−1,A(t)− vi,A(t)

)
− εA
τA

ρi+1,A(t)− ρi,A(t)

ρi,A(t) + ρc,AκA

]
,

(2.6a)

v̇i,H =
1

τH

(
Ui,H(t)− vi,H(t)

)
+

1

Li

[
vi,H(t)

(
vi−1,H(t)− vi,H(t)

)
− εH
τH

ρi+1,H(t)− ρi,H(t)

ρi,H(t) + ρc,HκH

]
.

(2.6b)

di = [di,ρA di,ρH ] represents the disturbance that includes unregulated traffic flow
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for both AVs and HDVs. Additionally, the suggested velocities for AVs and HDVs

in the traffic network are represented by Ui,A(t) = (1 − βi,A(t))Vi,A(t) and Ui,H(t) =

(1− βi,H(t))Vi,H(t), where

Vi,A(t) = vFF,A exp

[
−1

am,A

(
ρi,A(t)

ρc,Aαi,A(t)

)am,A
]
, (2.7a)

Vi,H(t) = vFF,H exp

[
−1

am,H

(
ρi,H(t)

ρc,Hαi,H(t)

)am,H
]
. (2.7b)

αi,A and αi,H in (2.7a) and (2.7b) are the dynamic coupling terms specific to individ-

ual vehicle classes within each cell. These terms play a crucial role in interconnecting

the dynamic behaviors of HDVs and AVs. A comprehensive discussion of the dy-

namic coupling terms can be found in Section 2.2.2 for further insights. Next, we

introduce the control inputs βi,A(t) and βi,H(t), where 0 ≤ βi,A(t), βi,H(t) ≤ 1, as a

means to adjust the suggested (recommended) velocity of each cell for each vehicle

class. In the absence of any local controller, denoted by βi,A(t) = 0 or βi,H(t) = 0, the

system operates without intervention, and its macroscopic dynamics conform to the

steady-state velocity-density behavior. Conversely, when βi,A(t) = 1 or βi,H(t) = 1, it

indicates that the controller recommends the vehicles come to a complete stop as per

the prescribed control action. In traffic dynamic model equations (2.4a)-(2.7b), there

are multiple model parameters for each class of vehicle such as τH, τA, εH, εA, κH, κA,

am,H and, am,A. All these parameters were introduced and their functionality was ex-

plained in the previous section for a single-class METANET model. In some research

papers, researchers add an extension to the traffic model which improves the fidelity

of the model in complex traffic networks with multiple bottlenecks. For example,

in [152], they added multiple constraints on the inter-flow between each cell and its

downstream cell based on the traffic phase of each cell. Although this approach will

lead to a higher fidelity traffic model, it will cause a high level of complexity when

it comes to designing a controller for the traffic networks. In this research, instead
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of adding the flow constraints to the model, we considered the METANET model

parameters to be class-and-state-dependent parameters instead of constant values.

By calibrating these parameters using the field data for each class of vehicle in var-

ious traffic phases and traffic states, we improved the fidelity of the traffic model to

capture all the complex traffic phenomena in a large-scale traffic network.

2.2.1 EQUATIONS OF MOTION

Traffic dynamics in (2.4)-(2.6) can be mathematically expressed as

ẋ(t) = f(x(t)) + g(x(t))
(
u(t)

)
+D(t), (2.8a)

y(t) = Cx(t), (2.8b)

where t ≥ 0; x = [ρT vT]T ∈ R4n is the state vector where ρ = [ρ1,A ρ1,H · · · ρn,A ρn,H]T

and v = [v1,A v1,H · · · vn,A vn,H]
T. y = [ρs,A(t), ρs,H(t), · · · , ρm,A(t), ρm,H(t)]

T ∈

R2m−2s+2 is the output vector where 2 ≤ s ≤ m ≤ n, u = [βs−1,A βs−1,H · · · βm,A βm,H]
T

∈ R2m−2s+4 is the input control vector, f(x) = [ρ̇1,A ρ̇1,H · · · ρ̇n,A ρ̇n,H v̂1,A v̂1,H · · · v̂n,A

v̂n,H]
T ∈ R4n where by assuming a same length for all cells Li = L we have v̂i,A(t) =

1
τA

(
Vi,A(t)− vi,A(t)

)
+ 1

L

[
vi,A(t)

(
vi−1,A(t)− vi,A(t)

)
− εA

τA

ρi+1,A(t)−ρi,A(t)

ρi,A(t)+κAρc,A

]
and v̂i,H(t) =

1
τH

(
Vi,H(t)− vi,H(t)

)
+ 1

L

[
vi,H(t)

(
vi−1,H(t)− vi,H(t)

)
− εH

τH

ρi+1,H(t)−ρi,H(t)

ρi,H(t)+κHρrmc,H

]
, g(x)

=
[
[0](2m−2s+4×2n) [0](2m−2s+4×2s−4) [ĝ(x)](2m−2s+4×2m−2s+4) [0](2m−2s+4×2n−2m)

]T
where

ĝ(x) = diag{− 1
τ
Vs−1, ...,− 1

τ
Vm} and, D = [d1,ρA d1,ρH · · · dn,ρA dn,ρH d1,vA d1,vH · · ·

dn,vA dn,vH ]
T ∈ R4n is the unknown-and-unmeasured disturbance. The dimensionality

of the input vector u(t) is greater than that of the output vector y(t) due to the con-

straints imposed on the control inputs (0 ≤ βi,A(t), βi,H(t) ≤ 1). Efficient regulation

of vehicle density in cell Ci requires two control inputs for recommended velocities

in Ci−1 (upstream cell) and Ci (target cell). These commands can be adjusted to

modify inflow and outflow, enabling dynamic density control within Ci based on the

controllability matrix from [42].
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2.2.2 DYNAMIC COUPLING TERMS

To simulate the interplay between human-driven vehicles and autonomous vehi-

cles on a macroscopic scale, numerous approaches have been suggested to model the

dynamic coupling terms αA and αH [56; 153; 154]. One widely adopted approach em-

ploys the user-equilibrium assumption to model the interaction between HDVs and

AVs. This assumption posits that all vehicles aim to minimize travel time, equivalent

to maximizing speed [67]. In a user-optimum scenario, vehicle classes distribute them-

selves across road space, preventing a vehicle from increasing speed without slowing

down slower vehicles. This definition considers the anisotropic property [68], where

a vehicle’s speed depends solely on vehicles with equal or lower speeds. Faster vehi-

cles cannot decrease the speed of slower ones, and approaching vehicles from behind

has no influence. Additionally, vehicles are assumed to occupy only essential space.

Therefore, the dynamic coupling terms αH and αA are defined as a fraction of road

used assigned to each vehicle class [68].

In this research, we also adopted the user-equilibrium assumption. In particular, to

determine αA and αH, first, we assume that the macroscopic and stationary behavior

of each class (human-driven vehicles and autonomous vehicles) can be described by

homogeneous flow-density fundamental diagrams, as illustrated in Fig. 2.3. Without

loss of generality, as discussed earlier, we presumed that the class of human-driven

vehicles has a smaller jam density, a lower traffic network capacity, and a less negative

congestion-wave speed. By leveraging the user-equilibrium assumption, three distinct

interaction modes can manifest. These interaction modes are categorized as free-flow,

semi-congested, and congested phases, as depicted in Fig. 2.4. Below, we discuss how

the dynamic coupling terms are defined in each one of these phases based on Algorithm

1.

Free-Flow Phase: The first traffic phase is when both AVs and HDVs drive at their
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Algorithm 1 Traffic Phase Determination Algorithm
if ( ρi,H

ρc,H
+

ρi,A
ρc,A

≤ 1) then

Traffic phase: Free-flow

else if ( ρi,H
ρ̄c,H

+
ρi,A
ρ̄c,A

≤ 1) then

Traffic phase: Semi-congested

else if ( ρi,A
ρJ,A

+
ρi,H
ρJ,H

≤ 1) then

Traffic phase: Congested

end if

free-flow velocity. Therefore we have

vFF,H = Vi,H < Vi,A = vFF,A. (2.9)

In the free-flow phase of the traffic network, it is assumed that the density of both

HDVs and AVs within their respective allocated road space is at most equal to their

critical density. In particular,

ρi,H
αi,H

≤ ρc,H,
ρi,A
αi,A

≤ ρc,A. (2.10)

Figure 2.4: Traffic phases for heterogeneous traffic network.
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Algorithm 1 demonstrates the criterion that sets apart the free-flow phase from the

semi-congested phase. Since the sum of the fractions equals 1 (αi,A + αi,H = 1), we

can determine the optimal allocation of road space to each vehicle category in the

free-flow phase as follow:

αi,H =
ρi,Hρc,A

ρi,Hρc,A + ρi,Aρc,H
,

αi,A =
ρi,Aρc,H

ρi,Aρc,H + ρi,Hρc,A
. (2.11)

In real-world scenarios, during free-flow mode, the number of vehicles on the road

is low enough that it allows them to navigate through various lanes, ensuring a path

to maintain their free-flow velocity.

Semi-Congested Phase: In the heterogeneous traffic flow where the free-flow veloc-

ity of AVs is higher than HDVs, it is possible for HDVs to remain in the free-flow

phase, while AVs have transitioned to the congested mode [57; 155]. In particular

vFF,H = Vi,H ≤ Vi,A < vFF,A. (2.12)

In this traffic phase, the effective density of HDVs is less than or equal to their

critical density, and the effective density of AVs is larger than their critical density.

The condition shown in Algorithm 1 determines the boundary constraint for the semi-

congested phase. ρ̄c,A and ρ̄c,H are the “perceived” critical density of AVs and HDVs

[156], defined as:
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ρ̄c,A = ρc,A

[
−am,Aln

(
vFF,H
vFF,A

e
( −1
am,H

)
)] 1

am,A

, (2.13a)

ρ̄c,H = ρc,H. (2.13b)

The proof of the boundary condition and perceived densities in (2.13) are included

in [68]. The optimal allocation of space fraction for AVs and HDVs in the semi-

congested phase is calculated as follows:

αi,H =
ρi,H
ρ̄c,H

, αi,A = 1− αi,H (2.14)

Congested Phase: Here, both AVs and HDVs are in the congested phase, and the

velocities of each class of vehicles are the same.

Vi,H = Vi,A < vFF,H < vFF,A. (2.15)

Using (2.15), the space fraction of HDVs and AVs in the congested phase is calcu-

lated as follows:

αi,A =
A

B
, αi,H + αi,A = 1, (2.16)

A =
(
(ρc,H − ρJ,H)ρc,AvFF,A − (ρc,A − ρJ,A)ρc,HvFF,H

)
ρAρH

+ (ρc,A − ρJ,A)ρc,HρJ,HvFF,H ρA,

B = (ρc,A − ρJ,A)ρc,HρJ,HvFF,HρA + (ρc,H − ρJ,H)ρc,AρJ,AvFF,AρH.

The total average flow relationship in an MFD can be calculated through the

following equation:
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Figure 2.5: Total flow-density relationship of heterogeneous METANET model for
AVs and HDVs.

Qi = ρi,HV
( ρi,H
αi,H

)
+ ρi,AV

( ρi,A
αi,A

)
. (2.17)

In Fig. 2.5 the average flow rate of the traffic network for a full spectrum of

heterogeneity is shown.



CHAPTER 3: HIERARCHICAL CONTROLLER DESIGN

This section focuses on the design of a distributed hierarchical macroscopic traffic

management controller to improve the performance of a large-scale traffic network in

terms of mobility. It is important to note that this chapter only covers the control

design details for heterogeneous traffic networks since it includes all the necessary

calculations for either homogeneous or heterogeneous traffic networks. The designed

control approach aims to (i) improve the system performance in terms of congestion

reduction, and (ii) prevent congestion back-propagation. The initial controller design

has a two-level structure with a Distributed Extremum Seeking (D-ES) algorithm

at the upper level and a Distributed Filtered Feedback Linearization (D-FFL) at

the lower level, acting as a VSL control in the traffic network, as shown in Fig.

3.1. The description of each level control algorithm is given below. However, crucial

modifications have been made to the initial controller design to address the important

research gaps that we will discuss in detail later. Further in this research, to improve

the hierarchical controller performance, we introduce significant modifications to the

initial controller design. Later in this thesis, a detailed discussion will highlight the

specific enhancements made.

3.1 LOWER-LEVEL MACROSCOPIC CONTROLLER

3.1.1 DISTRIBUTED FILTERED FEEDBACK LINEARIZATION CONTROL

Within the introduced multi-level traffic control framework, we recommend im-

plementing a Distributed Filtered Feedback Linearization (D-FFL) controller in the

lower level to adjust the communicated recommended velocities for vehicles in order

to achieve the targeted densities of AVs and HDVs in the target cells.
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Figure 3.1: Schematic of a large-scale heterogeneous traffic network with n cells con-
sisting of the hierarchical controller (Upper-level: D-ES, Lower-level: D-FFL). The
cost function (J) is fed into the upper-level controller (D-ES), where the desired den-
sity (ρd) of the cell for each vehicle class is calculated and fed into the lower-level
controller (D-FFL) as the reference model. D-FFL controller then generates the con-
trol inputs (β) to set the suggested velocity for each vehicle class in each cell.

The implementation of the D-FFL control is dependent on the relative degree

and dynamic inversion matrix, as discussed in [125]. Specifically, the relative degree

between the inputs ui−1 and ui to the output yi is established as 2 for a specific cell Ci.

The design of the D-FFL control approach is based on two underlying assumptions:

Assumption 1 The disturbance function D(t) is a continuous function and its deriva-

tive Ḋ(t) is accessible.

Assumption 2 The inputs of the reference model, ρdA(t) (desired density for AVs)

and ρdH(t) (desired density for HDVs), and their derivatives ρ̇dA(t) and ρ̇dH(t) are as-

sumed to be bounded.

Now let us examine the output of the local reference model, denoted as ym, which

meets the requirements of the local reference model equation.

φ(p)ym(t) = ζ(p)r(t), (3.1)
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where ym = [ym,A ym,H], r = [ρds,A ρds,H · · · ρdm,A ρdm,H]
T ∈ R2m−2s+2 is the AVs and

HDVs desired densities vector for the target cells, p = d
dt

is the differential operator,

and φ and ζ are m×m diagonal matrices.

By considering ei = [ym,A,i − yA,i ym,H,i − yH,i]
T as the error vector, the square root

of the average power of the density error can be calculated as follows

Pe =

[
1

t1 − t0

∫ t1

t0

eT(τ)e(τ)dτ

] 1
2

, (3.2)

where the difference between t0 and t1 shows the convergence time of the output

density reaching the desired density. The main goal is to develop a control input u that

can achieve asymptotic stabilization of the closed-loop system (2.8) and minimize the

error power Pe to an arbitrarily small value, even when the disturbance is unknown

for each cell.

Assuming we have a perfect knowledge of the plant dynamics and measurement

of the disturbance in (2.8), we derive the control input based on the Feedback Lin-

earization (FL) approach. First, consider

ÿA
ÿH

 = ψ(x,ΦD) +

Mu,A 0

0 Mu,H


uA
uH

 , (3.3)

where u = [uA uH]
T and y = [yA yH]

T are derived from (2.8a) and (2.8b) with minor
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changes to better show the calculations towards the FL control input. Also, we have

ψ(x,ΦD) = C
∂f

∂x
(f(x) +D) + CḊ,ΦD = [D Ḋ]T

Mu,A =


(ρV )s−1 −(ρV )s 0 ··· 0

0 (ρV )s −(ρV )s+1 ··· 0
0 0 0 ··· 0
... ... ... ... ...
0 ··· 0 (ρV )m−1 −(ρV )m


A

, (3.4a)

Mu,H =


(ρV )s−1 −(ρV )s 0 ··· 0

0 (ρV )s −(ρV )s+1 ··· 0
0 0 0 ··· 0
... ... ... ... ...
0 ··· 0 (ρV )m−1 −(ρV )m


H

. (3.4b)

The standard FL control input (desired control input ud) is designed as [122]:

udA(xA,ΦD,ΦrA) = −M−†
u,A(Mu,AM

−†
u,A)

−1
(
ν(xA,ΦD,ΦrA) + ψ(xA,ΦD)

)
, (3.5a)

udH(xH,ΦD,ΦrH) = −M−†
u,H(Mu,HM

−†
u,H)

−1
(
ν(xH,ΦD,ΦrH) + ψ(xH,ΦD)

)
, (3.5b)

where ΦrA = [rA ṙA r̈A]
T, ΦrH = [rH ṙH r̈H]

T, xA = [ρA vA], xH = [ρH vH], M−†
u,A

and M−†
u,H are the pseudo inverse of Mu,A and Mu,H respectively, and ν(xA,ΦD,ΦrA) =

φ(p)y − ζ(p)r − [ρ̈s,A, ρ̈s,H, · · · , ρ̈m,A, ρ̈m,H]
T.

It is shown in [123] that if uA = udA and uH = udH, then limt→∞ e(t) = 0 and Pe = 0.

Thus, the ideal control inputs udA and udH accomplish reference density tracking as

the lower-level control objective. However, these control inputs, udH and udA are not

practically feasible since they rely on the complete state measurements xA(t), xH(t),

uncertain dynamic function f(xA(t), xH(t)), and the and unmeasured and unknown

disturbance D(x(t), t).

A filter is designed to overcome the challenges mentioned by passing the FL control
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inputs udA and udH through it to generate the control input u. Specifically,

[pσ̄z(p)I + σ̄z(0)M
′
u,AMu,A]uA = σ̄z(0)M

′
u,AMu,Au

d
A, (3.6a)

[pσ̄z(p)I + σ̄z(0)M
′
u,HMu,H]uH = σ̄z(0)M

′
u,HMu,Hu

d
H. (3.6b)

Let M ′
u,A and M ′

u,H denote the transpose of Mu,A and Mu,A, respectively. Addi-

tionally, let σ̄z(s) be a monic polynomial with a degree of at least 2 (r ≥ 2) and

real coefficients that are dependent on a real parameter z. The polynomial σz can be

represented as σ̄z = sr + σ̄r−1,zs
r−1 + · · · + σ̄1,zs + σ̄0,z, where σ̄0,z, · · · , σ̄r−1,z ∈ R.

σ̄z is a critical design parameter that must meet specific requirements as outlined in

[157]. Here, udi,A and udi,H are given by (3.5a) and (3.5b) which cannot be implemented

due to their dependency on the full model information. Now by substituting (3.3)

into (3.5a) and (3.5b), and substituting the result into (3.6a) and (3.6b), we have the

D-FFL control inputs:

pσ̄z(p)uA = σ̄z(0)M
′
u,A[ζ(p)rA − φ(p)yA], (3.7a)

pσ̄z(p)uH = σ̄z(0)M
′
u,H[ζ(p)rH − φ(p)yH]. (3.7b)

The controller inputs (3.5a), (3.5b) and (3.7a), (3.7b) are mathematically equivalent

if z → ∞, dt→ 0 and there is no constraint on the control input u. The control inputs

(3.7a) and (3.7b) are independent of the variables ψ(x,ΦD) or the measurements of D

and Ḋ. Instead, the D-FFL input control design relies on various factors, including the

knowledge of the dynamic inversion matrix Mu, the relative degree, and parameters

of the reference model ζ1, ζ0, φ1, φ0, and σ̄z. By considering these factors, the D-FFL

control input can be optimized and implemented effectively in the control system.

Proposition 1 Assuming the minimum phase system is given by (2.8) and (3.7) and

that assumptions 1-2 hold, it can be stated that for a sufficiently large value of the
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real parameter z in the filter polynomial σ̄z(s), the closed-loop system (2.8) and (3.7)

is asymptotically stable. The smallest value of z that stabilizes the system depends on

the specific dynamics and parameters of the system.

Proof: The proof can be found in [123; 125].

Remark 1 The selection of an adequately large value for the parameter z can lead

to a significant reduction in the average power of the performance error, denoted as

Pe, to a desired level. However, in the quantified FFL with discrete time steps, the

maximum z value is proportional to the inverse of the time step and larger z values

will cause instability in the system.

In real-world scenarios, it is common to use a nominal plant model to identify a

suitable value for z that can guarantee stability while achieving the desired level of

performance. It is important to note that Mu,A and Mu,H are non-square matrices,

and their arrays are dependent on the measured densities ρj,A, ρj,H, and steady-

state velocity-density relationship Vj,A, Vj,H for j ∈ {s, · · · ,m} as shown in (3.4a)

through (3.4b). Here, Vj,A, Vj,H are a function of vFF,A and vFF,H respectively which

is predefined for each cell, parameters am,A, am,H, ρc,A and ρc,H that may not be

necessarily known. However, numerical testing in our research suggests that the

estimated values for these parameters, if their magnitudes are greater than the actual

values and have the correct sign, can still yield stable and well-performing control.

For practical purposes, vFF,A and vFF,H can be taken as upper bounds for Vj,A and

Vj,H respectively, and used in place of these terms in Mu,A and Mu,H. This observation

is consistent with the robustness properties demonstrated in [157]. We define M̄u,A

and M̄u,H as upper bounds of Mu,A and Mu,H since Vi,A ≤ vFF,A and Vi,H ≤ vFF,H, in
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particular:

M̄u,A =


ρs−1vFF −ρsvFF 0 ··· 0

0 ρsvFF −ρs+1vFF ··· 0
0 0 0 ··· 0
... ... ... ... ...
0 ··· 0 ρm−1vFF −ρmvFF


A

, (3.8a)

M̄u,H =


ρs−1vFF −ρsvFF 0 ··· 0

0 ρsvFF −ρs+1vFF ··· 0
0 0 0 ··· 0
... ... ... ... ...
0 ··· 0 ρm−1vFF −ρmvFF


H

. (3.8b)

Thus, it is not necessary for the D-FFL controller to receive the precise values of the

class- and state-dependent parameters in the traffic model when M̄u is substituted

for Mu in (3.7).

3.2 UPPER-LEVEL CONTROLLER

3.2.1 DISTRIBUTED EXTREMUM SEEKING CONTROL APPROACH

Distributed Extremum Seeking (D-ES) controller at the upper level of the hier-

archical controller is designed to compute the optimal densities of vehicles in each

class, denoted as ρdi,A and ρdi,H, in the target cells. As discussed earlier, the primary

objective of the upper-level controller is to achieve two main goals simultaneously:

the maximization of the average flow of the target cell to mitigate traffic congestion

and the minimization of the flow difference between the target cell and the upstream

flow to prevent the propagation of congestion in the backward direction. Specifically,

for each congested cell, an optimization problem is defined as follows

max
ρi,A,ρi,H

Ji(t) =w̄i,1(t)Q
2
i (t)− w̄i,2(t)

[
Qi(t)−Qi−1(t)

]2
. (3.9)

The average flow rate Qi(t), which is subject to the dynamics equations, is defined

in (2.17). In addition, w̄i,1(t) and w̄i,2(t) are each term’s weight in the local objective

function. We added the second term −w̄i,2(t)
(
Qi(t) − Qi−1(t)

)2

in the objective
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function to prevent the creation of a fully autonomous traffic cell in a mixed traffic

network. The rationale behind this is that it is assumed that a fully autonomous

traffic network has a higher capacity than a mixed traffic network, as discussed in

Chapter 2. The first term in (3.9) achieves its maximum value in a fully autonomous

cell, however, if the HDVs in the upstream cell are stopped, congestion will start to

back-propagate, resulting in a reduction of the overall average flow and performance

of the whole traffic network.

Figure 3.2: Hierarchical control architecture for cell i. D-ES at the upper level feeding
the optimal densities of each class to the D-FFL as the reference model and D-FFL
sets the suggested velocities of each vehicle class in the heterogeneous METANET
model.

D-ES controller is designed and developed to tackle the problem stated in (3.9).

The D-ES specifics are shown in Fig. 3.2. The optimization of the parameters, ρdi,A

and ρdi,H, is achieved through the perturbation of these values using low-amplitude

sinusoidal signals, SA(t) = Ãi,A sin(Ωi,At+ ϕ̃i,A) and SH(t) = Ãi,H sin(Ωi,Ht+ ϕ̃i,H). In

order to guarantee that the ES loop perceives the dynamics of the lower level as a fixed

non-linear system, the frequencies of the perturbation signals denoted as Ωi,A and
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Ωi,H, should be selected to be sufficiently small [136]. Consider Ωi,A = Ωi,H = O(ω),

ωi,A,HPF = ωi,H,HPF = O(ω∆) and, ωi,A,LPF = ωi,H,LPF = O(ω∆) where O is the

statistic order, ω and ∆ are small positive constants.

Remark 2 The D-ES controller’s convergence time for the desired density estimation

is notably slower (10 time slower) than the reaction time of the internal control loop.

By choosing the best ζ and φ which gives us the fastest convergence in (3.7a) and

(3.7b), the Ωi,A and Ωi,H will be maximized. Therefore, it is reasonable to consider

that the reference for the density remains relatively constant in comparison to the

dynamics of the inner loop for both AVs and HDVs.

In D-ES, the rate of convergence can be improved by increasing the perturbation

frequency. However, this improvement comes at the cost of a significant increase in the

steady-state error [136]. In this case, we have opted for a small perturbation frequency

(almost 10 times slower than the inner-loop dynamics). In order to guarantee stability

and convergence of the D-ES controller, a specific set of assumptions must be satisfied

[132].

Assumption 3 A smooth function ℓ : Rn → Rm−s+1 exists such that FLL

(
XLL,

G(XLL, ρ
d
A, ρ

d
H)
)
= 0 if and only if XLL = ℓ(ρdA, ρ

d
H).

Assumption 4 For each ρdA ∈ Rm−s+1 and ρdH ∈ Rm−s+1, the equilibrium xA = ℓ(ρdA)

and xH = ℓ(ρdH) of the system ẊLL = FLL

(
XLL,G(XLL, ρ

d)
)

is locally exponentially

stable uniformly in ρdA and ρdH.

Assumption 5 There exists ρ∗A ∈ Rm−s+1 and ρ∗H ∈ Rm−s+1 such that ∂
∂ρdA

J(ρ∗A) = 0,

∂
∂ρdH

J(ρ∗H) = 0 and ∂2

∂2ρdA
J(ρ∗A) < 0, ∂2

∂2ρdH
J(ρ∗H) < 0.

In this research, we have confirmed the satisfaction of Assumptions 3 and 4, as

the D-FFL controller has been shown to guarantee the asymptotic stability of the
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inner-loop dynamics, as per Proposition 1. Furthermore, Assumption 5 has also been

satisfied, given that the objective function in (3.9) takes a quadratic form according

to the shape of the FD, which is depicted in Fig. 2.5.

The following proposition provides a concise summary of the convergence and sta-

bility characteristics associated with the D-ES:

Proposition 2 Consider the closed-loop feedback system in Fig. 3.2 under Assump-

tions 3-5. Recall that Remark 2 is in place. There exists ω̄ > 0, and for any ω ∈ (0, ω̄)

there exists ∆̄, Ā > 0 such that for the given ω and any |Ã| ∈ (0, Ā) and ∆ ∈ (0, ∆̄)

there exists a neighborhood of the points (xA, ρ
d
A, ξA, ηA) =

(
ℓ(ρ∗A), ρ

∗
A, 0, J(ρ

∗
A)
)

and

(xH, ρ
d
H, ξH, ηH) =

(
ℓ(ρ∗H), ρ

∗
H, 0, J(ρ

∗
H)
)

such that any solution of the feedback system

(2.8) from the neighborhood exponentially converges to an O(ω+∆+|Ã|)-neighborhood

of that point. Furthermore, y(t) converges to an O(ω+∆+|Ã|)-neighborhood of J(ρ∗A)

and J(ρ∗H).

Consider the feedback system depicted in Fig. 3.6, subject to Assumptions 3-5.

Note that Remark 2 is applicable. We can assert the existence of a positive number

ω̄, such that for any ω within the range (0, ω̄), there exist positive constants ∆̄ and

Ā such that, given any value of |Ã| within the interval (0, Ā) and ∆ within (0, ∆̄),

there exists a neighborhood around the points (xA, ρdA, ξA, ηA) =
(
ℓ(ρ∗A), ρ

∗
A, 0, J(ρ

∗
A)
)

and (xH, ρ
d
H, ξH, ηH) =

(
ℓ(ρ∗H), ρ

∗
H, 0, J(ρ

∗
H)
)
. In this neighborhood, any solution to the

feedback system (2.8) will converge exponentially to an O(ω+∆+ |Ã|)-neighborhood

of these points. Additionally, the output signal y(t) will converge to an O(ω+∆+|Ã|)-

neighborhood of J(ρ∗A) and J(ρ∗H).

Proof: The proof is shown in [132; 136].

3.2.2 DISTRIBUTED NEWTON-BASED EXTREMUM SEEKING

In the previous section, we implemented a gradient-based ES at the upper level

of the hierarchical control framework to determine the optimal density of vehicles in
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target cells with unknown downstream bottlenecks. In this section, in order improve

the performance of the traffic network and reduce the convergence time, a Newton-

based ES (NES) is employed at the upper level to compute the optimal density of

target cells for each vehicle class, denoted as ρdi,A and ρdi,H as shown in Fig. 3.3.

The results obtained from our previous design give us the following expression in an

average sense for the parameter variable error in a quadratic map:

˙̃eA = KAHAẽA, (3.10a)

˙̃eH = KHHHẽH, (3.10b)

where ẽA = ρ̂A − ρdA, ẽH = ρ̂H − ρdH, KA and KH are the proportional gains in each

ES loop and HA, HH are the Hessian for each class. This revealed two significant

insights: (i) the ES algorithm, which relies on gradient-based optimization, is locally

convergent, and (ii) the speed of convergence ( ˙̃eA, ˙̃eH) is impacted by the second

derivative (Hessian matrix) of the map denoted as H which is unknown. The classic

ES utilizes gradients for optimizing density in congested cells, and its convergence

rate is contingent on the accurate estimation of the second-order derivative of the

objective function. After deriving the estimation, the convergence speed is primarily

regulated by the proportional gain denoted as K. However, the convergence rate is

subject to limitations, as it must not exceed a specific range; otherwise, it results in

oscillations or overly slow convergence.

As stated before, the major limitation in the gradient-based method is that it starts

seeking the optimal point from an initial condition towards where it has a larger

gradient, and eventually, as it gets closer to the optimal point since the gradient gets

closer to 0, the convergence speed gets super slow. Furthermore, not only the transient

behavior of the gradient estimate is dependent on the shape of the cost function and is

not under our control, but also ρA and ρH as the two variables of the function can have
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Figure 3.3: Distributed NES-FFL control scheme for a Heterogeneous traffic network.

different convergence rates which leads to non-uniform convergence. For example,

consider a cost function similar to (2.17) and Fig. 2.5 with two input variables of

AVs and HDVs densities for cell i. The curvature of the objective function can be

more with respect to AVs density in comparison to HDVs density. The curvature of

a cost function is determined by the Hessian, and when it is higher with respect to

one variable than another, it signifies that the sensitivity or responsiveness of the cost

function to changes in that particular variable is greater, indicating a steeper incline

or decline in the optimization landscape along that variable. The issue in the previous

example is that one variable (AVs density) may converge to its optimal density while

the other variable (HDVs density) is not even close to its optimal point. Non-uniform

convergence is a crucial challenge specifically when the unknown function has abrupt

changes due to the noises or sudden changes in the shape of the function. Therefore,

to improve the convergence speed and prevent the non-uniform convergence of the

gradient-based ES at the upper level of the hierarchical controller, a novel Newton-

based ES (NES) scheme is used to consider the effect of Hessian as shown in Fig.

3.4. The major improvement over the gradient-based ES is that an additional loop

is attached to the former to obtain the estimate of the unknown Hessian matrix.
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Moreover, the other obstacle in the way of designing the NES algorithm is that the

inverse of the Hessian is also required in the Newton algorithm. Note that, since

we are working on a multivariable NES, there will be transients from one optimal

point to another, due to changes in the heterogeneity level of the target cell, and the

estimation of Hessian may not always be accurate. Calculating the inverse of Hessian

algebraically when the Hessian estimate may not be accurate due to changes in the

function and noise of the system, can lead to a singular Hessian inverse which causes

large transient gains and destabilizes the control system. Now since the Hessian

matrix estimate, may not necessarily remain invertible, a dynamic system is designed

to asymptotically generate the inverse. This dynamic system takes the form of a

Riccati differential equation filter [132].

Figure 3.4: Distributed NES-FFL control scheme for a Heterogeneous traffic network.

The NES controller employs sinusoidal signals defined as SA(t) = Ãi,A(t) sin(Ωi,A.t+

ϕA), SH(t) = Ãi,H(t) sin(Ωi,H.t + ϕH), MA(t) = 2
Ãi,A(t)

sin(Ωi,A.t + ϕA) and MH(t) =
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2
Ãi,H(t)

sin(Ωi,H.t + ϕH) to perturb the desired density values for each vehicle class

and probe the objective function map. Moreover, the Newton-based algorithm en-

compasses two other critical elements as shown in Fig. 3.4: N (t), which represents

another perturbation signal and gives us an approximation of the Hessian matrix

(H(t)), and the estimator of the inverse of the Hessian (Γ(t)) which has the form of a

differential Riccati equation. The estimator yields an estimation of the inverse of H,

even in scenarios where the estimation of the H is singular. In [128], it has been shown

that by carefully choosing an appropriate N (t) and calculating the average value of

N (t)J over a full period denoted as 2π
Ωi

, an estimation of the Hessian matrix Ĥ can

be obtained. It is worth noting that the perturbation signal and the Riccati equation

can be class-dependent [158] as depicted in Fig. 3.4. A feasible choice for NA(t)

and NH(t), which satisfies all necessary constraints listed in [128], can be obtained as

follow:

NA(t) =
16

ÃA(t)2

(
sin2(Ωi,A.t)−

1

2

)
, (3.11a)

NH(t) =
16

ÃH(t)2

(
sin2(Ωi,H.t)−

1

2

)
, (3.11b)

which lead us to

ĤA = NA(t)J, (3.12a)

ĤH = NH(t)J. (3.12b)

Next, we employ a dynamic estimator that calculates the inverse of ĤA and ĤH,
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denoted as ΓA and ΓH, utilizing a Riccati equation, as exemplified below:

Γ̇A = ωr,AΓA − ωr,AΓAĤAΓA, (3.13a)

Γ̇H = ωr,HΓH − ωr,HΓHĤHΓH, (3.13b)

where ωr,A and ωr,H are positive values and the equilibria of the Riccati in (3.13) are

Γ∗
A = 0, Γ∗

H = 0 (unstable) and ΓA = Ĥ−1
A , ΓH = Ĥ−1

H (exponentially stable; since

the linearization of (3.13) has the Jacobian −ωr,AI and −ωr,HI). The Riccati filter

has two advantages in our design; i) It is stable in the ΓA = Ĥ−1
A , ΓH = Ĥ−1

H which

is the region of attraction since the goal of the dynamic estimator is to estimate the

Hessian inverse, ii) It removes the unwanted transients that cause instability to the

system. On the other side, the trade-off here is that the convergence speed will be

reduced slightly by using this estimator which acts like a low-pass filter.

To ensure that the underlying dynamics exhibit a static nonlinearity when viewed

from the NES loop perspective, it is crucial to select a perturbation frequency Ωi that

is sufficiently small, as discussed in [136]. Specifically, we consider Ωi = O(ω), where

ωi,H = O(∆ω) and ωi,L = O(∆ω), with O denoting statistical order, and ω and ∆

representing small positive constants.

In order to uphold the stability of the NES controller, a series of assumptions must

be satisfied, as discussed in Assumptions 3-5 and as posited in the literature [128].

The proposition presented in proposition 2 provides a summary of the stability and

convergence characteristics of the upper-level NES controller as well.

3.2.3 DISTRIBUTED LYAPUNOV-BASED SWITCH NEWTON EXTREMUM

SEEKING

The existing ES methods including NES, often converge to a limited cycle around

the desired state instead of achieving precise convergence [146]. Thus, a significant

challenge in utilizing the NES is eliminating the limit cycle behavior and achieving
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Figure 3.5: Distributed LSNES-FFL control scheme for a Heterogeneous traffic net-
work.

asymptotic convergence to the optimal set-point. To address the potential loss in

optimality that may arise due to continuous sinusoidal perturbations around the op-

timal point, we propose a switched control scheme to be added to the NES structure.

The proposed switched control scheme involves reducing the amplitude of perturba-

tions after convergence, specifically within a neighborhood around the desired state.

We incorporated a Lyapunov-based Switch that was proposed by [146] into the NES

(LSNES) approach, which is based on an averaged model of the NES feedback sys-

tem and enables asymptotic convergence to the optimal set point. This Lyapunov

function is designed to approximate the proximity to the desired state, and based on

this estimate, the switch is activated to reduce the perturbation size. In Fig. 3.5, the

hierarchical controller design consisting of distributed LSNES at the upper level and

distributed FFL controller at the lower level is shown.

The Lyapunov function utilized in LSNES is a function of an averaged state vari-

able, which is obtained by taking the average over one oscillation period as shown in
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Figure 3.6: Comprehensive schematic of the control framework design for Ci consisting
of the Newton ES, Lyapunov-based Switch, FFL, and heterogeneous METANET
model. Subscript C at the upper-level controller represents different vehicle classes
in the traffic network (A for AVs and H for HDVs). We are suggesting that all the
perturbation signals, high-pass and low-pass filter frequencies, dynamic estimator,
integrator gain, the Lyapunov function, and the switch are class-dependent.

Fig. 3.6. The Lyapunov functions are given by:

x̃avg,A =
ΩA

2π

∫ t

t− 2π
ΩA

x̃A(τ)d(τ), (3.14a)

x̃avg,H =
ΩH

2π

∫ t

t− 2π
ΩH

x̃H(τ)d(τ), (3.14b)
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where x̃A = [ρ̃dA, ξA, η̃A]
T, x̃H = [ρ̃dH, ξH, η̃H]

T as shown in Fig. 3.6. The switching

mechanism illustrated in Fig. 3.6 utilizes a quadratic Lyapunov function denoted

as V (x̃avg,A) and V (x̃avg,H), which serve as a metric for gauging the closeness of the

averaged values (computed over one NES period) of ρdA, ρdH, ηA and ηH to their

estimated desired values:

V (x̃avg,A) =
1

2
x̃Tavg,AJ̄ x̃avg,A, (3.15a)

V (x̃avg,H) =
1

2
x̃Tavg,HJ̄ x̃avg,H. (3.15b)

The construction of V involves solving the following Lyapunov equation for J̄ con-

sidering Q = QT > 0:

J̄ΥA +ΥT
AJ̄ = −Q, (3.16a)

J̄ΥH +ΥT
HJ̄ = −Q, (3.16b)

where the Jacobian matrices ΥA and ΥH are utilized to approximate the system

dynamics near the equilibrium [146] as follows:

ΥA =


0 K̂ ′

A 0

ω′
ℓ,AJ

′′
A(ρ

d
A)A0,A −ω′

ℓ,A 0

ω′
h,AJ

′
A(ρ

d
A) 0 −ω′

h,A

 , (3.17a)

ΥH =


0 K̂ ′

H 0

ω′
ℓ,HJ

′′
H(ρ

d
H)A0,H −ω′

ℓ,H 0

ω′
h,HJ

′
H(ρ

d
H) 0 −ω′

h,H

 , (3.17b)
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where K̂A = KA

ΩA
, K̂H = KH

ΩH
, ω′

ℓ,A =
ωLPF,A

ΩA
, ω′

ℓ,H =
ωLPF,H

ΩH
, ω′

h,H =
ωH,H

ΩH
, J ′′

A(ρ
d
A) < 0

and, J ′′
H(ρ

d
H) < 0. When the value of V (x̃avg,A) and V (x̃avg,H) are small enough, the

perturbation signals, AA(t) and AH(t), will decay in size. However, if V (x̃avg,A) or

V (x̃avg,H) are not sufficiently small, the perturbation signal will remain at its full size.

The following relationship dictates how the size of AA(t) and AH(t) changes over time.

AA(t) =


A0,A if V (x̃avg,A) > ϵ,

−γA
∫ t

tsw
AA(τ)d(τ) if V (x̃avg,A) ≤ ϵ,

(3.18a)

AH(t) =


A0,H if V (x̃avg,H) > ϵ,

−γH
∫ t

tsw
AH(τ)d(τ) if V (x̃avg,H) ≤ ϵ,

(3.18b)

where tsw is the switching time and γ determines the rate at which the perturbation

amplitude shrinks in the proposed control scheme.

Remark 3 In scenarios where the optimal density (ρdA, ρdH) and its corresponding

cost function value (J(ρdA), J(ρdH)) are not known a priori, an estimation procedure

is employed to approximate these values, for use in (3.16). This estimation process

involves numerically differentiating J and J ′ based on the current and previous values

to estimate J ′ and J ′′ at the current density for each vehicle class. Subsequently,

extrapolation is utilized to estimate ρd for both AVs and HDVs using the values of

J ′ and J ′′ at the current density of each vehicle class. Previous studies [146] have

demonstrated the algorithm’s robustness to estimation errors.



CHAPTER 4: SIMULATION RESULTS

To demonstrate the effectiveness of the designed hierarchical controller, we con-

ducted a series of case studies at the lower level and upper level. Fig. 4.1 is the

schematic diagram of the freeway section used in these case studies using real-world

traffic data. It is a subsection of I-485 inner highway, between Mallard Creek Rd and

Harrisburg Rd, Charlotte, North Carolina. This section is approximately 10 miles

long, with 4 lanes with a speed limit of 70 mph. We discretize this network into 10

cells, as shown in Fig. 4.1.

We use I-485 N of Exit 28 (Mallard Creek Rd, Mecklenburg County, NC in Fig. 4.1)

traffic flow data which was reported on Tuesday, 22 December 2020, in peak hours

between 4:00 to 6:00 PM, to calibrate the state- and class-dependent METANET

model parameters. The calibrated model parameters are listed here: γA = 66, γH =

Figure 4.1: I485 inner highway between Mallard Creek Rd and Harrisburg Rd, Char-
lotte, North Carolina. Target cells 5 and 6 that are in the congested phase are
highlighted.
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Figure 4.2: Exemplary MFD (Velocity-Density, Flow-Density) for full AVs and full
HDVs networks using PTV-VISSIM traffic simulation data and METANET model.

44mile2

h
, κA = 18, κH = 14 veh

mile.h
, τA = 3s, τH = 12s and am,A = h(ρi,A), am,H = g(ρi,H)

which are the only state varying parameters in this paper. In this research, we use

brute-force search to find out the h(ki,A) function, which is equal to [16, 11, 4, 2.1] if

the density of cell is [ρi,A ≤ ρc,A, ρc,A < ρi,A ≤ 1.5ρc,A, 1.5ρc,A < ρi,A ≤ 3ρc,A, 3ρc,A <

ρi,A ≤ ρJ,A] respectively. In addition, h(ρi,H) function which is equal to [12, 8, 5, 1.5] if

the density of cell is [ρi,H ≤ ρc,H, ρc,H < ρi,H ≤ 1.5ρc,H, 1.5ρc,H < ρi,H ≤ 3ρc,H, 3ρc,H <

ρi,H ≤ ρJ,H]. Also, the critical density of AVs and HDVs is ρc,A = 38, ρc,H = 29 veh
mile.lane

,

the jam density is ρJ,H = 145, ρJ,H = 190 veh
mile.lane

and the free-flow velocity is vFF,A =

90, vFF,H = 70mph.

4.1 LOWER-LEVEL CONTROLLER (D-FFL) RESULTS

This section is dedicated to evaluating the efficacy of the lower-level controller (D-

FFL) in both homogeneous and heterogeneous traffic networks. We have conducted

a set of case studies specifically designed to gauge the effectiveness of the D-FFL

controller, excluding any influence from the upper-level controller. As a result, the

reference density for the target cells is determined by the infrastructure itself rather

than the ES algorithm, aligning closely with the critical density of the vehicles.

4.1.1 CASE STUDY 1: QUANTIFYING FFL PERFORMANCE

In the first case study, we present a numerical example that demonstrates the

D-FFL controller and the effect of z on the system’s outputs. First, we consider a sce-
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nario where the desired density is defined for cells 4 and 5 (i.e., ξ = [ρd4,A ρ
d
4,H ρ

d
5,A ρ

d
5,H]

T).

This set of densities is a sequence of steps that are passed through a low-pass filter:

103

(s+10)3
.

These distributed controllers can be implemented with knowledge of measurements

of ρ3,A, ρ3,H, ρ4,A, ρ4,H, ρ5,A and, ρ5,H. In this simulation, flow disturbances (d4,ρA ,

d4,ρH , d5,ρA and, d5,ρH) are passed through a second-order Butter-worth filter that has

a 30-Hz cutoff frequency. Fig. 4.3 shows closed-loop simulations for increasing values

of z and demonstrates that as z increases, the error between the reference command

(i.e., desired density) and the cell density decreases. Furthermore, Fig. 4.4 shows as

z increases, the error between the suggested velocity and the velocity decreases.

Next, we examine the impact of discretizing the D-FFL control system for practical

implementation on an infrastructure. In practice, there is limited bandwidth for

measuring the density on the road or sending suggested velocity commands to the

vehicles within a cell. We examine the digital implementation of D-FFL with sample

frequencies of 1, 0.5, 0.2, and 0.1 Hz (i.e., sample times of 1, 2, 5, and 10 seconds).

The dynamics of the traffic network and the D-FFL control, (2.8), (3.7a) and (3.7b),

are discretized using a zero-order hold on the input and a uniform sample time Ts,A =

Ts,H = Ts. In Fig. 4.5, the average power of density error of cell 5 as a function of z

value is shown. In each time step, as z increases, the average power of density error

decreases till it reaches its minimum value, and it increases afterward. Also, as the

time step Ts decreases, the minimum value for the average power of density error

decreases.

4.1.2 CASE STUDY 2: D-FFL VS MTFC-PID

Traffic control in large networks often involves using a PID feedback controller for

Mainstream Traffic Flow Control (MTFC). This approach is similar to the design

of the D-FFL controller, as outlined in [86]. To compare the performance of these

two controllers, we consider a setpoint for the target cell 5, which is equal to the
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Figure 4.3: Densities of cells 4 and, 5 are shown for various z values (1, 0.1, 0.01) for
AVs and HDVs. By increasing the z value from z = 0.01 (first column) to z = 1 (third
column), the output results improve. The density (solid black line) and the desired
density (dashed red line) for target cells (4 and 5) are shown in each subplot.

critical density of AVs and HDVs, and feed it to both controllers. The PID gains

are calculated to give us the best closed-loop command following for the problem.

The calculated gains are Kp=10.2, Ki=0.35, and Kd=0.04. Fig. 4.6 compares the

density of AVs and HDVs when using PID-MTFC and D-FFL controllers in the traffic
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Figure 4.4: Velocities, suggested velocities and controller commands for cells 4 and,
5 are shown for various z values (1, 0.1, 0.01) for AVs and HDVs. By increasing the
z value from z = 0.01 (first column) to z = 1 (third column), the output results
improve. Velocity (dashed-dot black line), suggested velocity (solid black line), and
the controller command (dashed red line) for cells 4, and 5 are shown in each sub-plot
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Figure 4.5: Average power of density error of cell 3 as a function of z in discrete
D-FFL control system and sample time Ts ∈ {1, 2, 5, 10}. For each Ts, as z increases,
the Pe decreases, reaches a minimum, and then increases.

network.

Upon comparing the outcomes obtained from the D-FFL controller and the PID-

MTFC, it is found that the former exhibits a faster settling time. Specifically, the

D-FFL controller can regulate the velocity of AVs in cell 5 and its upstream cell to

attain the intended density within 85 seconds, whereas the PID-MTFC necessitates

188 seconds to achieve the desired set-point. Furthermore, the D-FFL controller

regulates the density of HDVs more efficiently, achieving the desired density in only

80 seconds, while PID-MTFC takes 115 seconds. These findings indicate that the D-

FFL controller is more effective in controlling the speed and density of both AVs and

HDVs and holds promise for managing traffic flow in highly congested networks. It is

important to note that in the designed multi-level control framework, the perturbation

frequency of the D-ES is dependent on the time constant of the lower-level dynamics.

As a result of this interdependence, the D-ES-FFL controller achieves a faster overall
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convergence rate than the ES-PID-MTFC. This can be attributed to the hierarchical

framework’s ability to optimize control action by exploiting the system’s underlying

dynamics. By utilizing the time constant of the lower-level dynamics, the higher-

level controller can adjust its perturbation frequency to more effectively regulate the

system, resulting in superior performance compared to the ES-PID-MTFC controller.

4.1.3 CASE STUDY 3: IMPACT OF DISCRETIZATION, V2I

COMMUNICATION RATES, AND LEVELS OF HETEROGENEITY

We will now evaluate the practical implementation of the D-FFL controller and

the impact of discretization on transportation infrastructure. Real-world implemen-

tation poses limitations in terms of measuring road density and transmitting velocity

suggestions to vehicles within a cell. In such scenarios, AVs are typically assumed to

have a faster Vehicle-to-Infrastructure (V2I) communication rate than HDVs [159].

This enables AVs to receive velocity suggestions through direct V2I communication,

Figure 4.6: Density changes of AVs and HDVs in target cell 5 using PID-MTFC and
D-FFL controllers, with the desired densities set equal to the critical density of each
class.
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reducing the time required to achieve the desired velocity compared to HDVs that

rely on dynamic speed limit signs on the freeway. Specifically, we consider the V2I

communication rate for AVs to be Ts,A = 1s, while the HDV time step changes from

1s to ∞ in our analysis. It is crucial to understand these practical implementation

challenges and their effect on the performance of the D-FFL controller, which is an

essential aspect of its broader deployment in highly congested traffic networks. When

the Ts,H

Ts,A
= 1, dynamic speed limit signs update every 1s, and when the Ts,H

Ts,A
= ∞,

HDVs only follow their steady-state speed density dynamic. We consider the density

error of AVs (ei,A = ym,A − yi,A) in the target cell i = 6 to see the effect of various

V2I rates for HDVs on one cell in a heterogeneous traffic network. Fig. 4.7 shows the

average power of AVs’ density error of target cell 6 for various V2I communication

rates. The average power of AVs’ density error is smaller when HDVs have a faster

communication rate with the traffic network infrastructure, and it keeps increasing as

the communication rate gets slower for HDVs. Furthermore, as the filter gain value z

increases, the Pe,A reduces. Also, it is important to note that high gain values make

the discrete system unstable.

To investigate the effects of heterogeneity levels and different communication rates

for HDVs, we analyzed the same traffic network displayed in Fig. 4.1, using iden-

tical boundary conditions and total inflow rate (qin,TOT). Five relative flow val-

ues ranging from fully human-driven traffic flow to fully autonomous traffic flow

( qin,A
qin,TOT

= 0, 0.25, 0.5, 0.75, 1) are considered to examine the effects of heterogeneity

levels. We assumed that the V2I communication rate for AVs is 1s and we evalu-

ated four different communication rates for HDVs (Ts,H

Ts,A
= 1, 10, 100,∞). For each

scenario, we calculated the steady-state total average flow value for target cells 5 and

6 and the upstream cell 4 (QTOT =
∑i=6

i=5Qi). The 3D plot of QTOT for each level of

heterogeneity and V2I communication rate is illustrated in Fig. 4.8. As is shown, the

total average flow rate is the lowest when the total inflow is fully HDVs, and there is
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Figure 4.7: Average power of AVs’ density error of cell 6 as a function of z in discrete
D-FFL control system with various communication rates for AVs (Ts,A) and HDVs
(Ts,H).

no control over them. On the other hand, when the traffic inflow is fully AVs, and

the V2I communication rate is assumed to be 1s for all the scenarios, we reach the

maximum total average flow value.

4.1.4 CASE STUDY 3: FFL WITH PTV-VISSIM

In this case study, we use a real-world traffic simulator, PTV Vissim, to show the

effectiveness of FFL control in a real-world simulation. VISSIM serves as a widely

employed microscopic traffic simulator, offering a graphical user interface for sim-

ulating both simple static controls (pre-timed or fixed-time) and the flexibility for

dynamic simulation control through versatile programming languages [160]. Inte-
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grating computational tools can streamline the implementation of various traffic con-

trol techniques, with MATLAB being a widely utilized tool that meets the essential

requirements for dynamically controlling VISSIM simulations [160].

The entire process of establishing a direct MATLAB-VISSIM interface for online

implementation of the FFL controller is illustrated in a flowchart (Fig.4.9). Initially,

the traffic network and its corresponding settings are configured using the VISSIM

GUI. Subsequently, the network and settings, such as the number of lanes and free flow

speed, are saved in the VISSIM project (INP) and initialization file (INI), respectively.

The MATLAB environment then dynamically controls the traffic network within the

VISSIM microscopic simulator [160].

To create the direct MATLAB-VISSIM interface, two MATLAB codes were devel-

Figure 4.8: Total average flow value for the target cells 5 and 6 is shown for various
levels of heterogeneity and communication rates.
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oped. The first code, presented as a MATLAB script, issues commands to control the

VISSIM simulator by sending instructions from MATLAB and receiving traffic infor-

mation from VISSIM. This code activates the VISSIM server to establish the COM

object, taking INP and INI files as input. It then accesses "network" and "simulation"

through the COM object. The second code is a Simulink file containing a METANET

model of the traffic network, a Luenberger observer, and the FFL controller. For this

study, a single-step microscopic simulation with a step size of 10 minutes has been

chosen to control and set the state of signal controllers dynamically. After completion

of each cycle (duration = 10 minutes), the density of AVs and HDVs in each cell is

recorded and passed to the MATLAB Simulink environment through the COM in-

terface. Using the observer, the states of the METANET model are updated. Then,

using the measured densities of the METANET model in the Simulink file, the sug-

gested control commands are generated using the FFL controller. These commands

are then passed to the first code and then applied to the VISSIM. The entire process

continues till the end of the total simulation time, which was 120 minutes (12 cycles)

for this study.

In this study, we considered the same case study in Case Study 1. The highway

link has five cells with freeway link behavior type and 1mile length. The inflow on the

traffic network was set equal to q0,TOT = 3000veh
h

with the stochastic volume type and

vehicle composition of 0.6 for AVs and 0.4 for HDVs. Data collection points were put

at the end of each cell to collect the flow and velocity information. The vehicle class

of the vehicles in the traffic network was chosen to be "Car" for both HDVs and AVs,

with the driving behavior of "Freeway" for HDVs and "AV normal (CoEXist)" for

AVs. In order to have a distributed traffic control network, we put the variable speed

limit signs every 0.1 mile for AVs, so all the vehicles in each cell get the suggested

velocities information from the controller at almost the same time. The experimental

results of the heterogeneous traffic network with five cells are shown in Fig.4.25
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Figure 4.9: MATLAB-VISSIM simulation platform structure
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Figure 4.10: VISSIM Experimental Results. States (density and velocity) and sug-
gested velocities for cells 5 and 6 are shown. The density (solid black line) and the
desired density (dashed red line) for target cells (5 and 6) are shown in the first col-
umn. Velocity (solid black line) and suggested velocity (dashed red line) for cells 5
and 6 are shown in the second column.

In this experiment, the initial velocity was set equal to 30 mph for both AVs

and HDVs, and the simulation was running for 12 minutes where the controller was

inactive, and there was no data communication between VISSIM and MATLAB. After

12 minutes, the initial density of cells 3 and 4 was equal to 63 and 64veh/mile for

AVs and 40 and 30veh/mile for HDVs, and the controller activated at the same time

to control the speed of AVs in the traffic network. The desired densities for cells 3

and 4 were set equal to 50 and 38 veh/mile respectively for AVs. By generating the

proper suggested velocities for each cell and their upstream cell for AVs and sending

it back to VISSIM, the control system reaches the desired densities after 30 minutes

in cell 3 and 60 minutes in cell 4.
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4.2 HIERARCHICAL CONTROLLER RESULTS

4.2.1 D-ES-FFL FOR HOMOGENEOUS TRAFFIC

In this section, we show the effectiveness of the proposed hierarchical controller, Dis-

tributed Extremum Seeking Filtered Feedback Linearization (D-ES-FFL) controller

in a large-scale homogeneous traffic network.

4.2.1.1 CASE-STUDY 1:D-ES-FFL PERFORMANCE

In this section, we present a numerical example showing the D-ES-FFL controller’s

effectiveness in mitigating congestion and preventing back-propagating congestion

using the METANET model. This case study compares two scenarios where there

is no active infrastructure controller in the traffic network versus when there is an

active local D-ES-FFL controller for target cells in the traffic network. As shown in

Fig. 4.1, the target cells 2, 5, 6, and 9 are on the verge of getting heavily congested

due to the traffic network inflow and unknown downstream bottleneck.

In Fig. 4.23, the states of the target cells 5 and 6 and the upstream cell 4 are

shown for both ”D-ES-FFL” and “No-Control” scenarios. As shown, in the No-Control

scenario, the congestion starts back-propagating, and as the density increases, the

congestion gets heavier, and the average velocity of each cell reduces. By activating

the local “D-ES-FFL” controller, estimating the optimal densities of the cell, and

finally tracking the optimal densities, the target cell avoids jam conditions. According

to (3.9), the local objective function of each target cell is trying to maximize the

average flow rate of the cell and minimize its flow difference with the upstream cell.

In Fig. 4.12, the objective function values for cells 5 and 6 are shown in both scenarios.

Furthermore, the total average flow of all cells upstream of the bottleneck (QTOT =∑6
i=1Qi) is shown. Finally, in Fig. 4.13, a colormap of the velocity changes in the

whole network for the full-time spectrum is shown in both “No-Control” and “D-ES-

FFL” scenarios.
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Figure 4.11: States, Suggested velocities (solid green line) and control commands
(dashed-dotted blue line) for cells 4, 5, and 6 in both scenarios.

4.2.1.2 CASE-STUDY 2: D-ES-FFL WITH PTV-VISSIM

In the second case study, we use a real-world traffic simulator, PTV Vissim, to

show the effectiveness of D-ES-FFL control in a real-world traffic simulation with

real-world traffic data. For this study, after the completion of each cycle (duration =

10 minutes), the density of the target cells is recorded and passed to the MATLAB-

Figure 4.12: Objective functions of target cells 5 and 6 (sub-plot a) and the total
average flow of all cells upstream of the bottleneck (sub-plot b).
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Figure 4.13: Visualization of the traffic velocity data for the whole network in “No-
Control” and “D-ES-FFL” scenarios.

Simulink environment through the COM interface. Next, the local objective function

of the congested cells is calculated and fed to the D-ES controller. Then, using the

estimated optimal densities of D-ES in the Simulink, the suggested control commands

are generated using the D-FFL controller. These commands are then passed to the

MATLAB code and applied to the VISSIM through the COM interface to update

the speed limit signs in the traffic network. We considered the same problem as

case study 1. The highway link has ten cells with freeway link behavior type, and

each cell is 1 mile in length. The inflow on the traffic network was set equal to 1980

veh/h with the stochastic volume type. The vehicle class of the vehicles in the traffic

network was chosen to be “Car” with the driving behavior of “Freeway”. To have a

distributed traffic control network, we put the variable speed limit signs every 0.2 mile,

so all vehicles in each cell get the suggested velocities information from the controller

almost simultaneously. Also, in the first 12 minutes of the simulation, there is no

active controller and effective communication between MATLAB and PTV VISSIM,

so the desired initial conditions are reached. As shown in Fig. 4.14, by activating

the “D-ES-FFL” controller, the average velocity in target cells is greater than the
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Figure 4.14: States (density and velocity) cells 4, 5 and, 6 are shown using PTV-
VISSIM in both scenarios.

“No-Control” scenario while its density is less congested.

4.2.2 D-ES-FFL FOR HETEROGENEOUS TRAFFIC

4.2.2.1 CASE STUDY 1: EVALUATING THE EFFECTIVENESS OF D-ES-FFL

In this study, two traffic network scenarios are compared, where the first scenario

assumes no active infrastructure controller, and the second scenario involves an active

D-ES-FFL controller in the network. Cells 2, 5, 6, and 9, are in the congested phase

in the traffic network during peak hours and are shown in Fig. 4.1. The high traffic

inflow and an unknown downstream bottleneck contribute to this congestion. The

V2I communication rate for AVs is set to 1 second, and the dynamic speed limit signs

are updated every 30 seconds for HDVs.

The densities of AVs and HDVs in target cells 5 and 6 are presented in Fig. 4.15 for

both the D-ES-FFL and No-Control scenarios. In the absence of control, congestion

is observed to back-propagate, leading to more severe congestion and a higher likeli-

hood of reaching jam density. In contrast, the implementation of the local D-ES-FFL
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Figure 4.15: The densities of AVs and HDVs in target cells 5 and 6, as well as the
upstream cell 4 are shown, under both the No-Control and D-ES-FFL scenarios. The
solid blue line represents the density of AVs, while the solid red line represents the
density of HDVs.

controller facilitates the estimation of optimal densities and enables tracking of both

AVs and HDVs densities. As a result, target cells can avoid jam conditions, emphasiz-

ing the significance of utilizing the proposed D-ES-FFL control framework to manage

traffic flow in congested networks. These results demonstrate the performance of the

proposed multi-level control framework in improving traffic management and allevi-

ating congestion in large-scale traffic networks. The optimization of the average flow

rate of each target cell is achieved through a locally designed objective function, which

minimizes the flow difference between the cell and its upstream cell, as expressed in

(3.9). In Fig. 4.16, the values of the objective function for cells 5 and 6 are depicted
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for both the No-Control and D-ES-FFL scenarios, along with the total average flow

of the heterogeneous network.

Fig. 4.17 displays the density changes of AVs across the entire traffic network

through a colormap representation for the full-time spectrum under both the No-

Control and D-ES-FFL scenarios.

4.2.2.2 CASE STUDY 4: TESTING D-ES-FFL WITH PTV-VISSM

This study aimed to assess the efficiency of the proposed D-ES-FFL control frame-

work in a real-world simulation using PTV-VISSIM. Fig. 4.24 provides a flowchart of

the entire process for developing a direct MATLAB-VISSIM interface to implement

the D-ES-FFL controller online. The process starts with setting up the traffic net-

work and corresponding settings in VISSIM GUI, followed by saving the network and

settings in the VISSIM project (INP) and initialization file (INI), respectively. The

Figure 4.16: The values of the objective function (J) for the target cells 5 and 6 and
the total average flow (QTOT) of the traffic network are presented in both scenarios
of No-Control and D-ES-FFL.
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Figure 4.17: Visualization of the traffic density data for AVs across the entire network,
under both the scenarios of having no control and using the D-ES-FFL controller.

MATLAB environment then controls the traffic network in the VISSIM microscopic

simulator. To establish a direct MATLAB-VISSIM interface, two MATLAB codes

are developed. The first code, a MATLAB script, controls the VISSIM simulator by

sending commands from MATLAB and receiving traffic information from VISSIM.

Specifically, this code activates the VISSIM server to create the COM object, takes

INP and INI files as input, and accesses "network" and "simulation" through the

COM object. The second code, a Simulink file, consists of the cost function model

of the traffic network, the D-ES to estimate the desired densities of AVs and HDVs,

and the D-FFL control to generate the control inputs.

In order to implement the D-ES-FFL controller, the study employs a single-step

microscopic simulation with a step size of 10 minutes to adjust the state of signal

controllers in real-time. At the end of each 10-minute cycle, the density of each

cell is saved and transmitted to the MATLAB-Simulink environment using the COM

interface. The saved densities are then used to update the cost function value in the

Simulink file, which is used to generate the desired densities of AVs and HDVs through

the D-ES controller. After generating desired densities of AVs and HDVs through the
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Figure 4.18: The structure of the simulation platform using MATLAB and VISSIM.

D-ES controller using the updated cost function value, the D-FFL controller generates

control inputs based on these desired densities. These control inputs are then fed into

the first code to calculate suggested velocities, which are subsequently applied to the

VISSIM simulation. This process is repeated until the end of the simulation time,

which is set to 120 minutes (12 cycles) for this particular study.

In this study, the same case as in case study 3 is considered, where the highway

link consisted of ten cells with a freeway link behavior type and a length of 1 mile.

The traffic network has an inflow of 3000 vehicles per hour with a stochastic volume

type and a vehicle composition of 0.6 for AVs and 0.4 for HDVs. Flow and velocity

information is collected at the end of each cell. Both HDVs and AVs are classified as
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Figure 4.19: VISSIM Experimental Results. Densities of AVs and HDVs are shown
for No-Control and D-ES-FFL scenarios.

"Car," with "Freeway" driving behavior for HDVs and "AV normal (CoEXist)" for

AVs. Variable speed limit signs are placed every 0.1 miles for AVs and every 0.3 miles

for HDVs to create a distributed traffic control network, allowing AVs to communicate

at a faster rate compared to HDVs, as discussed in case study 3. The experimental

results for the ten-cell heterogeneous traffic network are presented in Fig. 4.25.

4.2.3 D-LSNES-FFL FOR HETEROGENEOUS TRAFFIC

4.2.3.1 CASE STUDY 1: LSNES-FFL PERFORMANCE REVIEW

In this section, we begin our analysis by comparing the performance of the newly

designed LSNES-FFL control system with the existing ES-FFL control system. This
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comparison aims to demonstrate the enhanced capabilities of the improved upper-level

controller in effectively managing large-scale traffic scenarios.

To start, we use a quadratic map, as denoted in (3.9), to contrast the gradient-based

and Newton-based ES methods. It is important to note that we maintain uniformity

in all parameters, with the sole exception of the gain matrix, to ensure a fair and

unbiased comparison.

For the Newton-based approach, the convergence rate is influenced by the expres-

sion −KNΓ(t)H. Notably, this rate can vary for different vehicle types within the

traffic network. Conversely, the gradient-based scheme relies on the eigenvalues of

KGH. To maintain parity, we select KG to be equivalent to −KNΓ0.

Fig. 4.20 presents the density of AVs within target cell 5 while under the influence

of three distinct active controllers in the traffic network. To ensure a just comparison

among these methods, we initialize each scenario with identical initial conditions and

model parameter values. Additionally, we uphold the equality of KG and −KNΓ0.

As observed in the results, the Newton ES method demonstrates a notably accel-

erated convergence towards the desired density when compared to the gradient-based

ES approach, showcasing a significant 42% improvement. Furthermore, the incor-

poration of the Lyapunov-based switch contributes to a reduction in perturbation

size once the system enters the vicinity of the desired density. This enhancement in

control strategies ultimately leads to more effective traffic management and increased

system robustness.

To further compare the designed control methods, we conducted a comprehensive

traffic scenario analysis. This involved three scenarios: one with no traffic controller

(akin to the section of I-485 as our benchmark case study), one with an active ES-FFL

controller, and one with an active LSNES-FFL controller within the traffic network.

In Fig. 4.21, we depict the density changes of AVs and HDVs in target cells 5

and 6, as well as the upstream cell 4. This allows us to discern the performance
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Figure 4.20: Target cell 5 AV density changes using ES-FFL (Blue), NES-FFL (Red),
and LSNES (Black). The Newton-based ES has 42% faster convergence rate in com-
parison to gradient-based ES.

differences among these scenarios. Remarkably, the LSNES-FFL control approach

outperforms the others by exhibiting a superior convergence rate in achieving the

desired density for both AVs and HDVs in each cell. This outcome not only reduces

overall congestion but also effectively prevents congestion from propagating backward,

thereby enhancing traffic management significantly.

Following that, we proceed to validate the efficacy of the LSNES-FFL controller

in alleviating congestion and hindering the back-propagation of congestion through

another numerical demonstration. This case study entails a comparative analysis of

three scenarios: the initial scenario, where no active infrastructure controller operates

within the traffic network; the second scenario, deploying a localized hierarchical

mainstream traffic flow controller for cells with unknown downstream bottlenecks;

and the third scenario, implementing the local LSNES-FFL controller, as illustrated

in Fig. 3.5, for designated cells within the traffic network. Specifically, cells 2, 5,

6, and 9 are singled out as susceptible to severe congestion owing to an unknown
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Figure 4.21: The densities of AVs and HDVs in target cells 5 and 6, as well as the
upstream cell 4 are shown, in No-Control, ES-FFL, and LSNES-FFL scenarios. The
solid blue line represents the density of AVs, while the solid red line represents the
density of HDVs.

downstream bottleneck.

Among the array of local control strategies, the most prevalent methodologies in-

volve hierarchical feedback traffic flow controllers. These strategies are predominantly

founded on the formulation of desired traffic conditions and the execution of control

measures aimed at maintaining the prevailing traffic state in proximity to predefined

set-point values. Managing traffic in expansive networks frequently involves the uti-

lization of a PID feedback controller for Mainstream Traffic Flow Control (MTFC)

[86]. At a lower level, the control measures are calculated with feedback control

laws that explicitly account for the presence of multiple vehicle classes and seek to

concurrently alleviate congestion and prevent congestion back-propagation. These

encompass Extended Multi-Class MTFC (EMC-MTFC) controllers, as depicted in

Fig. 4.22, wherein control measures are explicitly depicted for each vehicle class,

and the control methodology draws not only from downstream measurements of the
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controlled cell but also from a broader range of system state measurements. These

measurements are acquired within a defined region (termed a cluster) whose size

varies dynamically, influenced by the upper level of the control scheme.

The PID gains are calculated to give us the best closed-loop command following

for the problem. The calculated gains are Kp=13.2, Ki=0.78, and Kd=0.1.

In Fig. 4.23, we present the density profiles of cells 5 and 6, as well as the up-

stream cell 4, across three distinct scenarios: "LSNES-FFL," "EMC-MTFC," and

"No-Control." It becomes evident that, in the absence of control, congestion initiates

a retrogressive spread, exacerbating congestion levels as density escalates. However,

with the activation of localized controllers, namely the "LSNES-FFL" and "EMC-

MTFC" controllers, designed to estimate and maintain optimal densities, the target

cells effectively evade congestion-related bottlenecks.

Upon a comparative assessment of the outcomes achieved by the LSNES-FFL con-

troller and the EMC-MTFC controller, a notable distinction emerges in terms of

settling time. Specifically, the LSNES-FFL controller demonstrates the ability to

regulate the velocity of autonomous vehicles (AVs) within cell 5, and its upstream

counterpart, achieving the desired density within a mere 85 seconds. In stark con-

trast, the EMC-MTFC controller necessitates a comparatively protracted 188 sec-

Figure 4.22: Distributed EMC-MTFC scheme
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onds to reach the intended set-point. Furthermore, the designed controller exhibits

enhanced efficiency in regulating the density of human-driven vehicles (HDVs), at-

taining the desired density in a mere 80 seconds, while the EMC-MTFC controller

requires 115 seconds.

These findings underscore the superior effectiveness of the LSNES-FFL controller in

managing the speed and density of both AVs and HDVs, holding substantial promise

for optimizing traffic flow in densely congested networks. This superior performance

can be attributed to the hierarchical framework’s capacity to optimize control actions

by exploiting the system’s inherent dynamics. By harnessing the time constant of

lower-level dynamics, the higher-level controller adeptly adjusts its perturbation fre-

quency, resulting in a more precise and efficient system regulation when compared to

the EMC-MTFC controller.

4.2.3.2 CASE STUDY 2: TESTING LSNES-FFL WITH PTV-VISSM

The primary objective of this case study is to assess the effectiveness of the pro-

posed LSNES-FFL control framework through a real-world simulation conducted us-

ing PTV-VISSIM. As illustrated in Fig. 4.24, this study encompasses a comprehensive

process for establishing a direct interface between MATLAB and VISSIM, facilitating

the online implementation of the LSNES-FFL controller.

To implement the LSNES-FFL controller, a single-step microscopic simulation is

employed in this study, with a time step of 10 minutes, enabling real-time adjustment

of signal controllers. At the conclusion of each 10-minute cycle, the density of each

cell is recorded and transmitted to the MATLAB-Simulink environment via the COM

interface. These recorded densities are then utilized to update the cost function value

within the Simulink file, which, in turn, determines the desired densities of both

AVs and HDVs through the LSNES controller. Subsequent to generating the desired

densities using the updated cost function value, the FFL controller generates control

inputs based on these desired densities. These control inputs are subsequently fed into
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Figure 4.23: Density changes of target cells 5 and 6 and their upstream cell 4 in two
cases; Active EMC-ALINEA control and Active LSNES-FFL control.)

the initial code, enabling the calculation of suggested velocities, which are then applied

to the VISSIM simulation. This iterative process continues until the conclusion of the

simulation period, which, in the context of this particular study, is set to 120 minutes

(equivalent to 12 cycles).

In this research, we investigate the same scenario as described in case study 3, where

the highway link comprises ten cells with a freeway link behavior type, each spanning

a length of 1 mile. The traffic network experiences an inflow of 3000 vehicles per

hour, characterized by a stochastic volume type, with a vehicle composition of 0.6 for

AVs and 0.4 for HDVs. Measurements are taken at the end of each cell to gather data

on traffic flow and velocity. Both HDVs and AVs are classified as "Car" and exhibit
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Figure 4.24: The structure of the simulation platform using MATLAB and VISSIM.

specific driving behaviors: HDVs adhere to the "Freeway" driving behavior, while

AVs follow the "AV normal (CoEXist)" behavior. To establish a distributed traffic

control network, variable speed limit signs are strategically placed every 0.1 mile for

AVs and every 0.3 mile for HDVs. This configuration enables AVs to communicate

faster than HDVs, as discussed in case study 3. The experimental findings concerning

this heterogeneous traffic network, consisting of ten cells, are graphically presented

in Figure 4.25.
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Figure 4.25: PTV-VISSIM Experimental Results. Densities of AVs and HDVs are
shown for No-Control and LSNES-FFL scenarios.



CHAPTER 5: CONCLUSION AND FUTURE WORK

This dissertation focuses on modeling and controlling large-scale homogeneous and

heterogeneous traffic networks. In this research, we defined heterogeneity as a multi-

vehicle traffic network consisting of Human-Driven Vehicles (HDVs) and Autonomous

Vehicles (AVs), distinguished by their operational characteristics and controllability.

We used the homogeneous (single-class) and heterogeneous (multi-class) METANET

models to describe the macroscopic behavior of the traffic within each cell. The

METANET model is a second-order model in which the dynamic equations for both

density and velocity changes in each cell in the traffic network are modeled. The

density term is derived from the conservation of vehicles in a traffic network and the

velocity term has three main terms; the relaxation term, convection term, and density

gradient term. The relaxation term functions as a high-gain filter in the context of

dynamic systems and it sets the time delay that drivers take to reach the desired

speed. The convection term represents the impact of traffic from the upstream cell

on the downstream cell, indicating the speed changes resulting from incoming and

outgoing vehicle speeds. The density gradient term signifies that as the downstream

density rises or falls, the speed in the current cell will correspondingly decrease or

increase. There are several model parameters in the METANET model that are cal-

ibrated using the field data, however, in this research we considered all the model

parameters to be state-and-class-dependent. Calibrating the model parameters based

on each vehicle class and their states, helped us to have a higher fidelity traffic model

with no extensive constraints on the inter-flow of vehicles. Furthermore, the velocity

change dynamic equation in the METANET model contains the suggested velocity

term which essentially serves as the parameter for speed control. In this research,
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the suggested velocity term contains two terms; the control input which is set by the

designed infrastructure-based controller, and the second term which is the steady-

state macroscopic flow-density relationship based on the fundamental diagram. In

order to set the suggested velocity for vehicles in each cell, we designed a hierarchi-

cal infrastructure-based controller to mitigate the traffic network’s congestion despite

the unknown disturbances in the system due to the i) complexity of mixed traffic

networks, ii) slower V2I communication rates with HDVs, and iii) state- and class-

dependent model parameters. At the lower level, the Distributed Filtered Feedback

Linearization (D-FFL) is designed and implemented. The purpose of this controller

is to track the desired density of each cell in time which is set by the upper level

controller. D-FFL tracks the reference density by controlling the suggested velocity

of vehicles in the target cell and its upstream cell. The implementation of the D-FFL

control is dependent on the relative degree and dynamic inversion matrix. In this re-

search, the relative degree between the control inputs to the output is two for each cell

and its upstream cell. Moreover, the design of the D-FFL control approach is based

on two underlying assumptions; i) The disturbance function is a continuous function

and its derivative is accessible. ii) The input of the reference model (desired density

of vehicles that are calculated by the upper-level controller) and their derivatives are

assumed to be bounded. The controller inputs derived by the feedback linearization

(ideal control inputs) and the control inputs generated by the FFL are mathemati-

cally equivalent. However, the feedback linearization method requires full knowledge

of the plant model and measurement of the disturbance of the system. Instead, the

D-FFL input control design relies on various factors, including the knowledge of the

dynamic inversion matrix, the relative degree, and the parameters of the reference

model. By considering these factors, the D-FFL control system can be optimized

and implemented effectively in large-scale traffic networks with complex underlying

dynamics that are challenging to get the full information of the model and measure
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the disturbance of the system. At the upper-level, we designed multiple controllers to

improve the overall performance of the hierarchical control. In our initial design, the

Distributed Extremum-Seeking (D-ES) controller aims to find the optimal operating

densities of each vehicle class in the target cells over time. D-ES is a real-time control

method that seeks to optimize the steady-state dynamic of a system whose char-

acteristics are not fully known. The gradient-based D-ES comprises three essential

components: the dither signals, the gradient estimator, and the optimizer operating

at progressively slower time scales. The primary objective of the upper-level controller

in our research is to achieve two main goals simultaneously: the maximization of the

average flow of the target cell to mitigate traffic congestion and the minimization

of the flow difference between the target cell and the upstream flow to prevent the

propagation of congestion in the backward direction. The desired densities are then

fed into the lower-level controller as the reference model. The results obtained from

our initial controller design revealed two significant insights: (i) the ES algorithm,

which relies on gradient-based optimization, exhibits local convergence, and (ii) the

speed of convergence is impacted by the second derivative (Hessian matrix) of the

map which is unknown. To improve the performance of the designed hierarchical

controller and reduce the convergence time, we designed and implemented Newton

Extremum Seeking (NES) at the upper level of the hierarchy to feed the optimal

density of target cells to the lower-level controller. One of the key distinctions be-

tween the Newton algorithm and the gradient algorithm is that the convergence of

the former is not solely contingent on the second derivative (Hessian) of the cost map

and it is user-assignable. In fact, this allows for the deliberate synchronization of all

parameters to converge at a uniform pace, resulting in straightforward paths leading

to the optimal point in a shorter time. The major improvement over the gradient-

based D-ES implementation is that an additional loop is attached to the D-NES to

obtain the estimate of the unknown Hessian matrix. However, the other obstacle
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is that the inverse of the Hessian matrix is also required in the Newton algorithm.

Since the Hessian matrix estimate, may not necessarily remain invertible, a dynamic

system is also designed to asymptotically generate the inverse. This dynamic sys-

tem takes the form of a Riccati differential equation filter. Finally, the existing ES

methods including NES, often converge to a limited cycle around the desired state

instead of achieving precise convergence. Thus, a significant challenge in utilizing the

NES is eliminating the limit cycle behavior and achieving asymptotic convergence

to the optimal set-point. To address the potential loss in optimality that may arise

due to continuous sinusoidal perturbations around the optimal point, we proposed a

switched control scheme to be added to the NES structure. The proposed switched

control scheme involves reducing the amplitude of perturbations after convergence,

specifically within a neighborhood around the desired state. The switch is determined

by utilizing a Lyapunov function that is based on an averaged model of the NES feed-

back system. This Lyapunov function is designed to approximate the proximity to

the desired state, and based on this estimate, the switch is activated to reduce the

perturbation size. The simulation results showed that the Lyupanov-based Switch

Newton Extremum Seeking-FFL (LSNES-FFL) control framework has a %42 faster

convergence rate with respect to the conventional ES-FFL method. Finally, to show

the effectiveness of the proposed methods, we tested and validated the effectiveness of

the designed controllers in homogeneous and heterogeneous traffic networks in various

test cases using MATLAB-SIMULINK and MATLAB-VISSIM with COM interface.

First, we evaluated the efficiency of the lower-level controller (D-FFL) separately by

quantifying its performance and comparing it with another common model-free traf-

fic control method, the MTFC-PID control approach. We showed that our proposed

controller design (D-FFL) has an overall faster convergence rate with respect to the

MTFC-PID method. Furthermore, we evaluated the practical implementation of the

D-FFL controller and the impact of discretization on the transportation infrastruc-
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ture. We showed that by increasing the flow of AVs in heterogeneous traffic networks

and minimizing the V2I communication rate for both AVs and HDVs, we can reach

the maximum average flow of the traffic network. Finally, we used a real-world traffic

simulator, PTV-VISSIM to show the effectiveness of the D-FFL controller. VISSIM

serves as a widely employed microscopic traffic simulator, offering a graphical user

interface for simulating both simple static controls (pre-timed or fixed-time) and the

flexibility for dynamic simulation control through versatile programming languages.

We showed that D-FFL generated the proper suggested velocities for the AVs in tar-

get cells and by sending it back to PTV-VISSIM, the traffic control system reached

the desired densities. Moreover, we presented various test cases in order to show the

effectiveness of the designed hierarchical controller for large-scale homogeneous and

heterogeneous traffic networks. The performance of D-ES-FFL, D-NES-FFL, and

D-LSNES-FFL were investigated and compared together and with common hierar-

chical traffic controllers. Furthermore, all of the designed controllers were tested in

PTV-VISSIM using the MATLAB-VISSIM COM interface.

In summary, to highlight the contributions of this dissertation, we listed them here:

1: Modeling a Heterogeneous Traffic Network. The first aim of this

thesis was to develop a modeling framework that can describe and predict the

behavior of a heterogeneous traffic network including human-driven vehicles and

autonomous vehicles. To capture the realistic nature of the heterogeneous traffic

network under the study, we determined a proper way of coupling the dynamics

of AVs and HDVs and deriving state- and class-dependent model parameters

which led us to achieve a high-fidelity mathematical model for the large-scale

traffic model.

2: Developing and Enhancing Traffic Management Strategies for Large-

scale Traffic Networks. The second achievement of this research was enhanc-

ing the mobility in homogeneous and heterogeneous traffic networks. We de-
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signed and enhanced a hierarchical macroscopic control framework to examine

to what extent mobility can be improved for different levels of heterogeneity

when facing congestion during traffic peak hours. The main contribution of our

novel designed controller is that it only requires very limited knowledge about

the complex underlying traffic model with no information about the disturbance

of the system. Furthermore, we enhanced the control framework performance by

improving the upper-level controller to reduce the convergence time and resolve

congestion issues faster.

3: Test and Validation. We also tested and validated our proposed hierar-

chical control framework by using a real-world traffic simulator, PTV-VISSIM,

using MATLAB-VISSIM COM interface on both homogeneous and heteroge-

neous traffic networks.

As for future work of this research, we have two main recommendations. First, we

recommend combining the filtered feedback linearization method with MPC to handle

the physical constraints like restricted speed or flow in a large-scale traffic network

through nonlinear mapping of the feedback linearization in the optimization problem.

In the case of minimum-phase systems, designing a feedback linearization control re-

sults in an exactly linearized system that can be used for MPC design. A predictive

controller combined with an exact input-output linearization is applied to a target

cell in a large-scale traffic network, which enables accurate density tracking and com-

pliance with the constraints. Second, in order to capture the realistic nature of het-

erogeneous traffic systems, the uncertainties associated with the unmodeled dynamics

(which can intrinsically be state- and control-dependent) must be considered. Tradi-

tionally, traffic management approaches consider worst-case scenarios, where the un-

certainty is conservatively estimated offline from limited data. The offline estimation

approaches require significant amounts of data and may fail to capture new changes

in the system. Thus, the desired safety/robustness objective is usually achieved at
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the expense of closed-loop performance. To address this shortcoming, we propose

to develop a learning-based hierarchical predictive control paradigm. In particular,

we define three objectives for this project. First, at the upper- (macroscopic) level,

we suggest developing distributed learning- and scenario-based model predictive con-

trol (DLB-sMPC) methods wherein functional variational Bayesian neural networks

(BNNs) will be used to model the state- and input-dependent uncertainty online.

Moreover, to enhance the computational efficiencies of the proposed DLB-sMPC, we

recommend developing a set of distributed optimization algorithms. Second, at the

lower- (microscopic) level, to balance between the closed-loop performance and safety

(collision avoidance) on the road, we propose to develop distributed cautious model

predictive control (MPC) based approaches for heterogeneous multi-agent systems.

Finally, to validate the paradigm’s effectiveness on an integrated model of a hetero-

geneous traffic network for both urban and highway scenarios, using PTV-VISSIM

traffic simulation software is recommended.
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