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ABSTRACT 
 
 

EZRA BROOKS.  Towards AI-Accelerated Volumetric Human Telepresence.  (Under the 
direction of DR. PU WANG) 

 
 

 Real-Time video solutions such as volumetric human telepresence require a degree of 

quality than cannot be guaranteed by existing solutions. In order to implement reinforcement 

learning in this context, programmable platforms are required for fast prototyping, evaluation 

and testing. We present a platform that can be used to develop and test more robust models with 

performance parameters that closely resemble real-world scenarios. We explore the components 

required to make such a platform viable, and we demonstrate the performance of the overall 

system. 
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Chapter 1: Introduction 

 

1.1 Motivation 

 

Current research in real-time video performance suggests that reinforcement learning can be 

used to improve video quality of experience. [1][2][3] In order to develop reinforcement learning 

in the context of real-time video it is necessary to evaluate models embedded in a network 

environment that mimics real-world scenarios. To achieve this goal, we present a reconfigurable 

framework for fast model development and evaluation that combines real-time video, 

reinforcement learning, network architecture, and simulation of real-world network congestion. 

The motivation for this work comes out of the larger project of real-time human telepresence. 

The success of this technology depends on improvements in real-time video performance. This 

framework provides functionality to evaluate RL models in a real-world scenario, so that they 

can be incorporated into a larger real-time human telepresence system. 

 

1.2 Proposed Solution 

 

RL-WebRTC is a framework composed of multiple components that act together in a unified 

pipeline. The first component provides the environment for developing reinforcement learning 

(RL) models that can be used for improving performance in real-time video transmission. 

Specifically, Stable-Baselines3 implements state-of-the-art reinforcement learning algorithms 

such as Proximal Policy Optimization (PPO) and Deep Deterministic Policy Gradient (DDPG). 

[4] Other custom algorithms can also be implemented as needed. 
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The second component implements the RL algorithm in the context of a network 

environment. The AI-Gym toolkit provides a training environment suitable for use in a real-time 

video application, and the algorithm is implemented in the context of WebRTC, an open-source 

framework for real-time communication. This process allows for customized algorithms, and it is 

a well-documented and widely used standard. [5] 

 The third component provides the environment for deploying the application in various 

platforms such as NS3 (simulation), Mininet (emulation) and a testbed (real world 

implementation). Together, these components provide the full pipeline from algorithm 

development to training and deployment, that can be used to implement reinforcement learning 

within a real-time video application. The framework is flexible in its configuration and can be 

implemented in a variety of platforms and contexts. 

 

 

Figure 1. RL-WebRTC components 
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Chapter 2: Background 

 

2.1 WebRTC 

 

WebRTC is the gold standard for real-time peer-to-peer networking. It supports Real-Time 

Transport Protocol (RTP) and uses server configuration to isolates tasks such as establishing 

connections and media streaming. In addition, it is open source and supported by all major 

platforms. [5] As a widely accepted and well-documented framework, WebRTC is a strong 

candidate to provide core functionality in any real-time video application. 

 

 

Figure 2. WebRTC server architecture [5] 
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2.2 Google Congestion Control (GCC) 

 

WebRTC implements the Google Congestion Control (GCC) algorithm, which was designed 

to work with RTP/RTCP protocols and is based on the idea of using delay gradient to infer 

congestion. This algorithm is heuristic based and provides a set of rules to govern bitrate based 

on measured delay. [6] While WebRTC is the current standard, current research suggests that the 

performance of WebRTC could be improved with the inclusion of reinforcement learning to 

augment or even replace the rule-based approach taken by GCC. 

 

Figure 3. GCC heuristic rules [6] 

 

2.3 Hybrid Receiver-Side Congestion Control (HRCC) 

 

HRCC is a framework that adapts WebRTC and adds a reinforcement learning component. 

The HRCC framework combines a heuristic congestion control scheme with an RL agent to 

dynamically tune the values of GCC parameters depending on the network variability. This 

framework demonstrates a creative approach to RL-based real-time video, and it promises 

improved performance over the original WebRTC framework. [7] 
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Figure 4. HRCC decision model [7] 

 

2.4 Gemini 

 

Gemini is another recent project that also takes a unique approach to improving WebRTC 

performance. This framework provides a hybrid model that switches between GCC and an RL 

algorithm. [8] Unlike HRCC, which focuses on GCC, Gemini addresses the overall WebRTC 

architecture, establishing logic to govern the choice between a rule-based and learning-based 

approach. 

 

Figure 5. Gemini decision model [8] 
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2.5 Bang-on-Bandwidth (BoB) 

 

The Bang-on-Bandwidth (BoB) framework builds on Gemini and HRCC to provide an 

alternate approach to implementing reinforcement learning with WebRTC. [9] BoB starts with a 

heuristic-based approach, and then switches to a learning-based approach. BoB promises 

improved performance over both Gemini and HRCC. In addition to providing a new approach to 

real-time video performance, BoB adds a configuration layer on top of WebRTC to run multiple 

models, as well as integrated scripts for visualizing the results. The project is especially useful 

for research since it provides an open-source implementation for public testing. 

 

 

Figure 6. BoB architecture [9] 
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Chapter 3: RL-WebRTC 

 

3.1 RL-Based Adaptive Rate Control 

 

While traditional WebRTC uses a heuristic method to control bitrate, the goal of RL-

WebRTC is to implement adaptive rate control using reinforcement learning in order to achieve 

the optimal encoding rate for higher quality of service (QoS) requirements. An algorithm such as 

PPO can be trained on network criteria such as packet round trip time (RTT), jitter, bitrate, and 

packet loss. It can then be implemented in the application layer as part of a WebRTC-based 

framework. 

 

 

Figure 7. RL-based adaptive rate control training module 
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3.2 RL-WebRTC Pipeline 

 

The RL-WebRTC pipeline consists of training, evaluation, and emulation components. The 

training component uses real-life network traces for state observations, and the WebRTC Gym 

environment for NS3 simulation. The model can then be evaluated by running it in an application 

based on AlphaRTC, an open-source version of WebRTC that provides an interface for custom 

built RL models. [10] Finally, the RL-WebRTC emulator provides a network environment where 

the application runs. The network configurations can be modified if needed, but a user can also 

simply train and run a model in a network scenario without needing to focus on the 

implementation details. In this way, more focus can be spent on improving the algorithm 

performance, rather than designing and managing a test environment. 

 

Figure 8. RL-WebRTC architecture 
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3.3 Reinforcement Learning 

 

There are two main approaches used for implementing the RL component of RL-WebRTC. 

CleanRL is a high-quality single file implementation of deep reinforcement learning algorithms. 

[11] It is easy to extend and customize and it implements everything in a single file. Stable-

Baseline3 (SB3) is less flexible, but it provides more state-of-the-art RL algorithms, and is easy 

to use and well-documented. [4] For testing purposes, SB3 is ideal for prototyping a simple 

model. For long-term research, CleanRL appears to be a better solution for more complex 

models. 

 

3.4 Integrating RL with WebRTC 

 

To implement the RL model within a WebRTC app, we build the app around AlphaRTC. This 

is an open-source project that provides the original WebRTC source code, along with an interface 

for running a custom RL model. The interface sends RTP packet data from the WebRTC bitrate 

estimator module and passes it to a customizable Python template. The RTP parameters are then 

provided to the model and a bitrate estimate is returned. The interface then sends the estimate 

back to the WebRTC congestion controller module, where it is processed accordingly. 
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Figure 9. AlphaRTC RL interface for WebRTC 

 

3.5 RL-WebRTC Emulator: Docker Network 

 

WebRTC runs on the local host by default. To evaluate our model, it is essential to provide an 

environment for the app that emulates a real-world network scenario. To achieve this, we provide 

a Docker network with a defined subnet, and launch the sender and receiver components of the 

application on two containers within that network. This provides an isolated environment in 

which the two containers are on the same network, but otherwise behave just like two separate 

machines. The advantage of Docker is that the application environments are replicable, and the 

entire evaluation stage can be executed on a single machine. 
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Figure 10. RL-WebRTC network architecture 

 

3.6 Traffic Shaping 

 

The final part of model evaluation involves traffic shaping, specifically limiting bandwidth 

on a given interface to simulate real world congestion. RL-WebRTC implements Linux Traffic 

Control (TC), a standard utility for traffic shaping in the Linux environment. The setup allows 

configurations of various model and network trace combinations, and the TC rules are executed 

on a defined interface. In the example shown in Fig. 10 the bandwidth limitation is applied to 

traffic leaving the sender via the standard eth0 interface. 
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3.7 RL Training in WebRTC Gym 

 

To train specifically for AlphaRTC, we use the OpenNetLab Gym. This gym uses NS3 and 

WebRTC for training RL models that will be used to build a bandwidth estimator for WebRTC. 

This setup provides fast and reproducible simulations that mimic video traffic and the protocol 

stack, and it uses a simulated WebRTC sender and receiver in NS3. 

 

 

Figure 11. OpenNetLab AI Gym for WebRTC 

 

3.8 Initial Results 
 

While the focus of this project is the network implementation itself, and the integration of 

the various components at the application layer, it is helpful to look at some outputs to see 

how a basic model performs. In the training stage we can compare the performance of 
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various SB3 algorithms using the NS3 gym. Figures 12 and 13 show an example from a 

baseline model with no fine tuning. In the case, it is a comparison of PPO and DDPG 

algorithms. We can see from the initial outputs that the models perform similarly in 

simulation regarding overall reward, and for specific network parameters such as data receive 

rate. Having set an initial baseline, the user is now free to focus on tasks such as tuning the 

model, or performing further analysis with the emulator, because the training and testing 

environments are already established and available as part of the platform. 

 

 

Figure 12. Initial training: reward 

 

 

Figure 13. Initial training: receive rate 
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For testing we run RL-WebRTC in evaluation mode using various Stable-Baselines 

algorithms, and the 4G 500kbps trace from training. Figures 14 and 15 show that the models 

perform well against the original trace, and predicted bandwidth does not exceed the actual 

available bandwidth, except in a few instances. At this point, the researcher could use these 

results to benchmark performance, and improve the model with further tuning. 

 

 

Figure 14. Emulation of SB-DDPG model  

 

 
Figure 15. Emulation of SB-SAC model 
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 Ultimately, the goal of this platform is for researchers to be able to load a variety of 

models and traces and generate results for different parameters without needing to be concerned 

with the details of network implementation, environment setup, and other administrative details. 

The results shown here depict the first step of such a project. Using the docker setup and network 

configurations provided, it is possible to run the emulation in a network environment with one or 

more models, and then use the results to inform changes to the model training, and the 

corresponding bandwidth estimation code itself. 
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Chapter 4: Conclusion 

 

4.1 Contribution 

 

Real-Time video solutions such as volumetric human telepresence require a degree of quality 

than cannot be guaranteed by existing solutions. In order to develop a strong RL-based system, 

programmable platforms are required for fast prototyping, evaluation and testing. The platform 

presented here can be used to develop and test more robust models with performance parameters 

that closely resemble real-world scenarios. 

 

4.2 Future Work 

 

While Docker is a useful tool for maintaining identical environments, and achieving network 

isolation, it might also be interesting to evaluate performance with more complex custom 

networks, such as those provided by Mininet. One area of future work might involve 

implementing this framework with Containernet. a network emulator that provides Mininet 

capabilities along with Docker container support. [12] 

Another area for future work would be to provide a unified platform, rather than splitting the 

training and evaluation stages into separate components. While we have seen initial success 

running the project in stages, there would be greater benefit from Integrating the RL training and 

evaluation into a single environment. 

Finally, there is the possibility of extracting more information from the evaluation process. 

To fully support more advanced real-time video requirements, it might be beneficial to provide 
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additional Quality of Service (QoS) and Quality of Experience. (QoE) metrics for more nuanced 

feedback.  
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