
REINFORCEMENT LEARNING BASED MULTI-LAYER TRAFFIC
ENGINEERING FOR INTELLIGENT WIRELESS NETWORKING: FROM

SYSTEM TO ALGORITHMS

by

Pinyarash Pinyoanuntapong

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2023

Approved by:

Dr. Pu Wang

Dr. Minwoo Lee

Dr. Dong Dai

Dr. Mohsen Dorodchi

Dr. Weichao Wang

ii

©2023
Pinyarash Pinyoanuntapong
ALL RIGHTS RESERVED

iii

ABSTRACT

PINYARASH PINYOANUNTAPONG. Reinforcement Learning based Multi-layer
Traffic Engineering for Intelligent Wireless Networking: From System to

Algorithms. (Under the direction of DR. PU WANG)

The AI-digital era is characterized by an unprecedented surge in data usage, span-

ning from data centers to IoT devices. This growth has driven the evolution of AI-

optimized networks, designed to fuse AI capabilities with advanced network solutions

seamlessly. However, these networks grapple with challenges such as the complexity

of network layer protocols, discrepancies between simulated AI models and their real-

world implementations, and the need for decentralized AI training due to network

distribution.

To address these challenges, we introduce the AI-oriented Network Operating Sys-

tem (AINOS). At the core of AINOS are two foundational sub-platforms: the "Net-

work Gym," tailored for AI-driven network training, and "Federated Computing,"

designed for decentralized training methodologies. AINOS provides a comprehensive

toolkit for rapid prototyping, deployment, and validation of AI-optimized networks,

bridging the gap from simulation to real-world deployment.

Harnessing the powerful features of AINOS, we prototyped AI-optimized network-

ing solutions using a safe Reinforcement Learning (RL) strategy for Traffic Engineer-

ing (TE) at both the link and network layers. At the link layer, we implemented a

scalable RL-based traffic splitting mechanism that learns optimal traffic split ratios

across Wi-Fi and LTE through guided exploration. For the network layer, we de-

vised an online Multi-agent Reinforcement Learning (MA-RL) approach with domain-

specific refinements to determine optimal paths in real-time for wireless multi-hop

networks. In our exploration of Network Assisted AI optimization, we reduced Fed-

erated Learning training time with our MA-RL multi-routing approach and proposed

a robust Decentralized Federated Learning solution that leverages single-hop connec-

iv

tions for enhanced network performance. Our results demonstrate the strengths of

AI-enhanced networks in proficiently managing heterogeneity and latency.

v

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to the individuals and institutions

that have been instrumental in my journey through the PhD program. Their un-

wavering support and guidance have been invaluable to me. First and foremost, I

extend my heartfelt appreciation to my advisor, Dr. Pu Wang. His expertise in inter-

disciplinary research and his continuous encouragement have been the pillars of my

academic growth. Dr. Wang’s unwavering belief in my potential empowered me to en-

hance my skills and competence as a researcher. I am equally thankful to my doctoral

committee members, whose insightful suggestions and feedback played a pivotal role

in shaping the trajectory of my research. Their willingness to serve on my committee

and their dedication to evaluating my doctoral dissertation are deeply appreciated. I

would like to acknowledge the collaborative spirit of my fellow lab members. Their

support and camaraderie have been invaluable to me, and I am fortunate to be a

part of such a diverse and talented team. I am grateful to the College of Computing

and Informatics at UNC Charlotte for their support, particularly through the GASP

scholarship, which made my PhD program financially feasible. I would also like to

extend my gratitude to Intel and the National Science Foundation for their gener-

ous research funding, which significantly contributed to the success of my research

endeavors. I appreciate the opportunity to collaborate with Intel researchers, whose

expertise and collaboration greatly enriched my work. Last but not least, I want to

express my sincere thanks to my loving wife, parents, friends, and family members.

Their unwavering patience, care, and support over the past few years have been my

source of strength and motivation. This journey would not have been possible with-

out the collective support and encouragement of these individuals and organizations.

I am deeply grateful for their contributions to my academic and personal growth.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

CHAPTER 1: INTRODUCTION 1

1.1. AI Networking 1

1.2. FL in Wireless Multi-hops 2

1.3. Problem statements 3

1.4. Overview of Research 5

1.5. Contributions 6

1.6. Dissertation Organization 7

CHAPTER 2: AI-ENABLED WIRELESS NETWORK OPERATING
SYSTEM: AINOS

9

2.1. System Overview 9

2.2. Network Gym 10

2.2.1. Algorithm Plane 11

2.2.2. Control Plane 12

2.2.3. Data Plane 13

2.3. FedEdge Design and Prototyping 14

2.3.1. FedEdge Overall Design 14

2.3.2. Federated Networking 16

2.3.3. Telemetry-enabled Dataplane 17

2.3.4. Network Core Services 19

vii

CHAPTER 3: A SCALABLE AND SAFE DEEP REINFORCEMENT
LEARNING DESIGN FOR MULTI-CONNECTIVITY TRAFFIC
MANAGEMENT

20

3.1. Overview 20

3.2. Challenges 22

3.3. Proposed Solution 23

3.3.1. Adaptive Noise Exploration 24

3.3.2. Clip Random Exploration 25

3.4. Results and Conclusion 30

CHAPTER 4: MULTIAGENT MARKOV DECISION PROCESSES
(MA-MDP) FOR NETWORK ROUTING TRAFFIC ENGINEER-
ING (ALGORITHMS FOUNDATIONS)

32

4.1. Overview 32

4.2. Proposed Research 32

4.3. Distributed TE Learning Framework 35

4.3.1. Local Critic for Policy Evaluation 36

4.3.2. Local Actor for Policy Improvement 38

4.3.3. Local Executor for Policy Execution 41

4.4. Experiments 41

4.4.1. Experiment Setup 41

4.4.2. Varying Traffic Loads: Low to High 43

4.4.3. Adaptivity under High Traffic Load Region 44

4.4.4. Convergence Analysis under a Stationary Case 45

4.5. Conclusions 46

viii

CHAPTER 5: NETWORK ASSISTED AI OPTIMIZATION THROUGH
MA-RL ROUTING

47

5.1. Overview 47

5.2. Optimizing FL Convergence via Reinforcement Learning 48

5.2.1. Problem Formulation 48

5.2.2. Convergence Optimization via Multi-agent Reinforce-
ment Learning

50

5.2.3. Loop-free Action Space Refining 51

5.3. RL Application 52

5.4. System Implementation 54

5.4.1. Overall Implementation 54

5.4.2. Federated Networking Subsystem Implementation 54

5.4.3. Federated Computing Subsystem Implementation 55

5.5. Experimental Evaluation 56

5.5.1. Experiment Setup 56

5.5.2. Main Results 59

5.5.3. FL iteration and wall-clock convergence 59

5.5.4. Results of Loss Convergence on CIFAR-10 and
MobileNet

61

5.5.5. Impact of worker location distribution 62

5.5.6. Scalability Analysis 63

5.5.7. Conclusion 64

ix

CHAPTER 6: SCALABLE AND ROBUST AIOT VIA DECENTRAL-
IZED FEDERATED LEARNING

66

6.1. Overview 66

6.2. Centralized Federated Learning 67

6.2.1. Challenges of CFL 68

6.3. Decentralized Federated Learning 69

6.3.1. Generic Decentralized FL Framework 69

6.4. Simulation and Physical Testbed Evaluation of FL Management
Modes

71

6.4.1. Experiment Setup 71

6.4.2. Performance and Communication Comparisons 76

6.4.3. Conclusion 77

CHAPTER 7: CONCLUSIONS 79

7.1. Summary 79

7.1.1. Future work 80

REFERENCES 82

x

LIST OF TABLES

TABLE 5.1: FL Hyperarameters 56

xi

LIST OF FIGURES

FIGURE 1.1: Research Overview 5

FIGURE 1.2: RL Multi-layers Traffic Engineering 6

FIGURE 2.1: Architecture of AINOS 9

FIGURE 2.2: NetworkGym 10

FIGURE 2.3: Architecture of FedEdge Framework with FedEdge
simulator

14

FIGURE 2.4: MultiFlow Table 18

FIGURE 3.1: Edge-based Multi-Access Traffic Management Framework . 20

FIGURE 3.2: Reinforcement Learning based design of intelligent Multi-
Access Traffic Management

21

FIGURE 3.3: Summary of the proposed guided exploration for online
RL-based multi-access traffic management.

23

FIGURE 3.4: Guided Exploration Workflow 25

FIGURE 3.5: Deployment topology 28

FIGURE 3.6: Sequential Training Workflow 28

FIGURE 3.7: Comparison of safe-RL and GMA-baseline during the train-
ing

29

FIGURE 3.8: Comparison of PPO and DDPG Test Evaluation on all
environment

29

FIGURE 4.1: Distributed TE Framework which adopts multi-agent, asyn-
chronous actor-critic (AC) architecture. Each router’s actor updates
its policy function while critic updates the function approximation
of state-action Q values.

36

FIGURE 4.2: Network topology in the simulations [1] 41

xii

FIGURE 4.3: Average of 50 runs of E2E delay patterns on low to high
network loads

43

FIGURE 4.5: Average of 50 runs for convergence of learning algorithms
in fixed high network loads (λ = 3.5). For each run, we measured
the average delivery time for every 100 time steps

45

FIGURE 5.1: RL Application with tabular Q estimation 49

FIGURE 5.2: Loop-free action space (AS) refining. There exist two loop-
free paths between the ingress router and egress router. For each
router, we refine the action space (AS) for each router in the network
that two routing paths traverse through.The RL algorithm will ex-
plore the actions in the refined action space to learn loop-free routing
paths.

50

FIGURE 5.3: EdgeML - Testbed Topology and Node View 53

FIGURE 5.4: Federated Computation - Namespace Isolation 55

FIGURE 5.5: Loss convergence comparison of BATMAN-Adv, on-policy
greedy, and on-policy softmax with 9 workers

59

FIGURE 5.6: LEAF and 2-CNN: Validation Accuracy convergence com-
parison of BATMAN-Adv, On-policy greedy, and On-policy softmax
with 9 workers

59

FIGURE 5.7: LEAF and 2-CNN: Loss Convergence Time after 170 global
rounds under different routing protocols

60

FIGURE 5.8: CIFAR-10 and MobileNet: Loss Convergence Time after 70
global rounds under different routing protocols

60

FIGURE 5.9: LEAF and 2-CNN: Total convergence time comparison of
Batman-adv routing (black), On-policy greedy (grey), On-policy soft-
max (light blue), and Computation time (red hatched) under different
worker location distributions after 80 global rounds.

61

FIGURE 5.10: LEAF and 2-CNN: Total convergence time comparison
of Batman-adv routing (black), On-policy softmax (light blue), by
varying total number of workers and location after 20 global rounds.

63

xiii

FIGURE 5.11: CIFAR-10 and MobileNet: Total convergence time com-
parison of Batman-adv routing (black), On-policy softmax (light
blue), by varying total number of workers after 70 global rounds.

64

FIGURE 6.1: Federated Learning (FL) in IoT Network. (a) Classical
centralized FL. (b) Decentralized FL

67

FIGURE 6.2: In Synchronous DFL, workers keep time by waiting for
the slowest workers to fill their buffers before aggregating. In Asyn-
chronous DFL, the faster workers aggregate immediately no matter
how full the buffer is, which allows them to avoid waiting but neces-
sitates program robustness to handle communication at any time.

69

FIGURE 6.3: IoT Multi-hop Network topologies 72

FIGURE 6.4: Comparison of Centralized and Decentralized Federate
Learning performance in Simulation and Testbed environments
(LEAF and CIFAR-10), each with cases for having no straggler or
having a straggler with a 40s per local training round.

75

xiv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

AI-NOS AI-oriented Network Operating System

AIoT Artificial Intelligence of Internet of Things

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

E2E End-to-end delay

FL Federated Learning

MA-RL Multi-agent Reinforcement Learning

MATM Multi-access Traffic Management

MDP Markov Decision Process

QoS Quality of Service

RATS Radio Access Technologies

RL Reinforcement Learning

CHAPTER 1: INTRODUCTION

1.1 AI Networking

In recent decades, there is been a marked surge in data usage from data center

infrastructures, mobile devices, and IoT devices. As communication networks pivot

from cloud server-based architectures towards edge devices, they have become foun-

dational to this burgeoning digital landscape. Amidst this shift, network service

providers find themselves grappling with the dual responsibility of ensuring reliable

connectivity while also maintaining a high quality of service (QoS) for end devices.

Factors like throughput, end-to-end delay (E2E), jitter, and packet loss have gained

prominence, particularly given the congestion arising from increased data traffic.

Simultaneously, breakthroughs in wireless communication, such as 5G, coupled

with advancements in Artificial Intelligence (AI), have given rise to the Artificial In-

telligence of Things (AIoT)[2]. This innovative convergence features AI-empowered

IoT devices adept at autonomously analyzing data and making proactive, precise de-

cisions. These AIoT applications, including smart surveillance camera networks, in-

telligent transportation systems, connected healthcare, smart homes, and smart grids,

are laying the groundwork for future smart cities. As a consequence, the installation

of a vast number of smart edge devices is imperative. However, with the profusion

of AIoT devices comes a deluge of data. To manage this explosive growth, AI-driven

automated processing, often centralized, becomes essential. Such centralized machine

learning models demand that training data be housed at a singular server, necessi-

tating the transfer of immense volumes of IoT device data from the network’s edge

to this central hub. This dynamic not only stresses our communication networks but

also amplifies potential vulnerabilities concerning data privacy.

2

Traffic engineering (TE), as evidenced by numerous studies [3, 4, 5], stands out

as a pivotal method for optimizing network performance. This is achieved through

dynamic measurement and analysis of real-time network traffic and crafting optimal

routing decisions to accommodate the quality of service (QoS) demands prompted by

high traffic volumes. Focusing on key QoS metrics such as end-to-end (E2E) delay

and E2E throughput, TE endeavors to fine-tune these parameters. Nevertheless,

optimizing these E2E TE metrics poses a formidable challenge in wireless multi-hop

networks, owing to substantial uncertainties and variances in traffic flow patterns,

wireless link statuses, operational conditions of wireless routers, and network topology.

Concurrently, as the mobile industry propels towards 5G and beyond, it is be-

coming palpably clear that a singular access technology will be insufficient to cater

to the diverse requirements intrinsic to both human and machine communications.

Meeting the escalating performance prerequisites for current and future applications

necessitates the incorporation of multi-access traffic management at the network edge,

reinforcing the essentiality of comprehensive strategies to address the ever-expanding

and complex communication demands.

1.2 FL in Wireless Multi-hops

Federated learning [6] is technique to build a machine learning model in a dis-

tributed approach. The training happens in decentralized edge devices. All the edge

nodes train on there locally available data and local model is shared with the server

to aggregate into a global model. This approach will reduce the data privacy and

security problem when dealing with sharing the training data across nodes. As the

edge devices or workers will share only the model updates to the servers,this enable a

cost efficient communications on the links. FL can reduce the communications itera-

tions required by increasing the number of worker nodes to increase the computations

which leads to faster convergence times. The global model is continuously updated

with help of the local models shared by the worker nodes or edge devices. FL has

3

advantage which multi-hop networks can be benefit from such as reduced channel uti-

lization and computational time, faster model convergence times. Enabling FL over

multi-hop networks can not only enhance the over all experience for end clients but

also increase the accessibility of AI for diverse applications. However, the majority of

the studies on FL infrastructure and implementations focused on conventional infras-

tructures such as datacenters and network deployments, which have reliable network

conditions such as guaranteed network bandwidth and end-to-end delay. The perfor-

mance and complexity of FL applications over multi-hop wireless networks are still

unexplored.

1.3 Problem statements

This demands the efficient and intelligent utilization of limited network resources

to optimize network performance. To address the constantly increasing QoS ex-

pectations of network entities, such as mobile users, automobiles, unmanned aerial

vehicles, and Internet of Things devices, and to build low-latency, ultra-reliable, and

energy-efficient networks, Reinforcement Learning (RL) [7] and Deep Reinforcement

Learning (DRL) [8], which combines Deep Neural Networks (DNNs) with RL, have

been proposed as effective tools to provide Artificial Intelligence (AI)-enabled network

solutions for key issues in the future internet such as network acceleration and energy

efficiency. It allows a network entity to learn an optimal decision-making policy by

interacting with dynamic and uncertain network environments, which is commonly

modeled as a Markov Decision Process (MDP) [9].

Recent advancements in Reinforcement Learning (RL) have proved promising tech-

nologies to enable the experience-based model-free solution. In particular, it addresses

advanced internet challenges such as routing optimization, congestion control, edge

computing, and multi access traffic management (MATM). There are several key

advantages.

• RL achieves robust and resilient performance in complicated network commu-

4

nication system uncertainties and randomness by requiring neither strong as-

sumptions nor accurate network modeling.

• RL designs to handle non-stationary. Therefore, it automatically adapts to the

time-varying network dynamics

• RL can deal with large and sophisticated state/action spaces when combined

with the recent advances in linear and non-linear function approximation, which

is called Deep Reinforcement Learning (DRL).

Despite these advancements, the deployment of AI networking encounters numerous

challenges due to the absence of AI-enabled platform:

• Protocol Complexity: The layered protocols in modern networks complicate

AI integration, demanding careful navigation through each layer of the protocol

stack, each with their specific standards and communication formats.

• Sim-to-Real Transition: The transition of AI models from simulations to

real-world networks presents significant obstacles, mainly due to the dispari-

ties and variabilities between simulated environments and actual operational

networks.

• Decentralized AI Training: Networks typically operate in a distributed man-

ner, contrasting with the centralized nature of traditional AI training models,

thereby necessitating new strategies for implementing AI training that can pro-

ficiently operate within a decentralized network infrastructure.

5

1.4 Overview of Research

Figure 1.1: Research Overview

In this dissertation, we focus on two research directions : AI for wireless net-

working and Network-Assisted AI optimization, both fundamentally anchored by our

AI-enabled network platform, the AI-oriented Network Operating System (AINOS).

Within the core of AINOS lie two foundational sub-platforms: the "Network Gym,"

which is tailored for AI-driven network training, and "Federated Computing," de-

signed to facilitate decentralized training methodologies. The first research trajectory

ventures into AI for wireless networking, employing RL-based multi-layer TE to opti-

mize diverse network performance metrics, including delay and throughput, traversing

different network layers, and particularly in the scope of federated learning traffic. Sig-

nificantly, the "Network Gym" serves as our developmental platform for implementing

RL-based algorithms and strategies. Concurrently, the second trajectory involves an

6

exploration of Network-Assisted AI optimization, where our aim is to enhance com-

munication efficiency and design robust model aggregation schemes within federated

learning applications. Our strategy leverages the "Federated Computing" component

of AINOS, aiming to streamline and optimize decentralized training methodologies.

Therefore, the contributions of this dissertation are as follows.

1.5 Contributions

Figure 1.2: RL Multi-layers Traffic Engineering

• First, we introduce AINOS, incorporating two innovative sub-platforms: "Net-

work Gym," designed for AI-driven network training, and "Federated Comput-

ing," engineered to facilitate decentralized training methodologies. Additionally,

we developed a Programmable Wireless Network Operating System (WINOS)

and a physical wireless mesh testbed, an AI-enabled platform specifically tai-

lored for wireless multi-hop network physical testbeds.

7

• We implemented a centralized, online Reinforcement Learning (RL)-based multi-

access traffic management system, utilizing guided exploration methods. This

approach systematically explores and learns optimal traffic distribution across

multiple Radio Access Technologies (RAT) by utilizing NetworkGym, a remote

online simulation tool provided by Intel, ensuring effective management of multi-

RAT environments.

• We formulated RL-based Traffic Engineering (TE) for wireless multi-hop routing

as a Markov Decision Process (MA-MDP) and provided insights into the algo-

rithmic foundations of RL-based TE in this domain [10, 11]. We developed an

online multi-agent reinforcement learning (MA-RL) algorithm, complemented

with domain-specific action space refining schemes, enabling on-the-fly learning

of delay-minimum forwarding paths for wireless multi-hop routing problems,

aimed particularly at reducing federated learning training time [12, 13]. We

validated these methodologies using WINOS and our physical testbed, substan-

tiating their efficacy and reliability in practical scenarios.

• Empowered by FedEdge [13], we propose a robust and decentralized generic

Federated Learning (FL) framework, adept at operating in both synchronous

(Sync-DFL) and asynchronous (Async-DFL) modes, thereby augmenting the

adaptability of AIoT systems amidst various conditions and device capabilities

[14, 15]. In particular, Async-DFL emerges as a pioneering approach, deliv-

ering a fully asynchronous FL framework that strategically mitigates worker

waiting and represents a significant advancement in AIoT environments with

heterogeneous devices and fluctuating computing and networking speeds.

1.6 Dissertation Organization

The remainder of this research is structured as follows: In Chapter 2, we introduce

our AINOS system platform. Chapter 3 proposes a Scalable and Safe Deep Reinforce-

8

ment Learning Design for Multi-Connectivity Traffic Management at the link layer.

Subsequently, in Chapter 4, we present the Markov Decision Process (MA-MDP)

for Network Routing Traffic Engineering, laying down the algorithmic foundations

of the technique. Then, we demonstrate our Multi-Agent Reinforcement Learning

(MA-RL) routing approach, aimed at optimizing Federated Learning traffic in a live

testbed. Finally, in Chapter 5, we propose a robust and decentralized generic Feder-

ated Learning (FL) framework that mitigates stragglers by employing asynchronous

and single-hop communication strategies.

CHAPTER 2: AI-ENABLED WIRELESS NETWORK OPERATING SYSTEM:

AINOS

2.1 System Overview

Figure 2.1: Architecture of AINOS

In this chapter, we introduce AINOS, a sophisticated AI wireless experimental

platform designed with a system-in-loop framework. This platform is constructed to

support a wide array of AI network applications, spanning from traffic management

to network routing, and extending to federated learning. AINOS is not only robust

but also versatile, being compatible with various environmental platforms including

ns3 simulation, Mininet-WiFi emulation, and wireless mesh physical testbeds. The

key advances of this platform include the ease of algorithm development, seamless

integration with real network protocols, and efficient code and knowledge transla-

tion between simulator and testbed. Two critical sub-platforms reside at the core of

AINOS: the "Network Gym" and "Federated Computing". The "Network Gym" is

10

developed specifically to provide a fertile environment for AI-driven network training,

functioning as our platform for developing and implementing Reinforcement Learning

(RL)-based algorithms and strategies. On the other hand, "Federated Computing"

is designed to optimize and facilitate decentralized training methodologies, thereby

streamlining our approaches in these training solutions.

These platforms work cohesively, offering a formidable environment for the devel-

opment of AI network applications while showcasing the innovative integration of

networking and Artificial Intelligence.

2.2 Network Gym

Figure 2.2: NetworkGym

11

The AI-enabled networking platform offers several significant contributions. The

Algorithm plane, using standard and custom libraries, fast-tracks algorithm proto-

typing, enhancing efficiency. The Control plane, incorporating AI-oriented protocol

stack abstraction and APIs, enables seamless integration of AI control mechanisms

into existing network protocols [16]. The Data plane, consisting of a simulator, em-

ulator, and testbed controlled by south-bound APIs, minimizes simulator-to-reality

drift in AI model deployment, thus ensuring consistent performance. Furthermore,

the platform supports distributed and federated model training, a pivotal feature for

creating scalable network AI solutions. Its unique design allows for intelligent traffic

splitting at the link layer, delay-optimal multiple-path routing at the network layer,

and adaptive rate control for real-time video streaming at the transport/application

layer.

2.2.1 Algorithm Plane

The Algorithm Plane plays a pivotal role in the platform, focusing on the rapid de-

velopment and prototyping of algorithms tailored for AI-driven networking solutions.

Within this component, network engineers and developers have access to a range of

libraries and agents to expedite their algorithm development process [16].

2.2.1.1 Custom Algorithm Agent

For utmost flexibility, NetworkGym allows users to define their specialized agents

using the Gymnasiumâs API. Detailed instructions on creating custom agents can be

found in the Gymnasiumâs tutorial [16], enabling developers to craft algorithms that

suit their specific networking requirements.

2.2.1.2 Stable-Baselines3 Agent

The Stable-Baselines3 Agent stands out by incorporating state-of-the-art (SOTA)

Reinforcement Learning (RL) algorithms sourced from the stable-baselines3 frame-

work. These algorithms include renowned ones such as:

12

• PPO (Proximal Policy Optimization)

• DDPG (Deep Deterministic Policy Gradient)

• SAC (Soft Actor-Critic)

• TD3 (Twin Delayed Deep Deterministic Policy Gradient)

• A2C (Advantage Actor-Critic)

Moreover, these algorithms have been seamlessly integrated to interact with the

NetworkGym Environment, allowing network professionals to harness the power of

RL for networking tasks [17].

2.2.1.3 CleanRL Agent

To cater to custom algorithm development, the platform offers the CleanRL Agent

[18]. This agent serves as a valuable resource for crafting specialized algorithms tai-

lored to unique networking challenges. Network engineers can leverage the CleanRL

Agent to create and implement their custom solutions effectively.

Together, these libraries empower network professionals to efficiently design and

customize AI algorithms, ultimately enhancing the efficiency of AI solution creation.

2.2.2 Control Plane

The Control Plane is the orchestrator of AI integration into networking protocols,

offering a structured approach to managing control mechanisms. This component

incorporates:

• AI-Oriented Protocol Stack Abstraction: This layer of software abstracts

and interfaces with network protocols, allowing for seamless integration of AI

control mechanisms. Network protocols remain intact, while AI algorithms

optimize network behavior.

13

• APIs (Application Programming Interfaces): APIs serve as the commu-

nication bridge between AI applications and the network control plane. They

standardize data exchange and instructions, facilitating AI’s influence on net-

work operations.

The Control Plane ensures that AI and traditional network protocols coexist har-

moniously, simplifying the introduction of AI-based enhancements.

2.2.3 Data Plane

The Data Plane plays a critical role in AI model testing and deployment by offering

a suite of tools for network simulation and emulation:

• Simulator (ns-3): We employ the ns-3 (Network Simulator 3) platform to sim-

ulate network conditions. ns-3 is known for its speed and scalability, making it

capable of simulating large-scale network topologies and deployments efficiently.

It supports various Radio Access Technologies (RATs) such as 4G, 5G, and Wi-

Fi, allowing us to replicate different wireless network technologies and scenarios,

including congestion, latency, and packet loss. However, it’s important to note

that ns-3 does not run real network software and protocol stacks; it simulates

their behavior to provide a controlled testing environment for our AI models.

• Emulator (tc-link and Mininet-WiFi): For emulating real network de-

vices and their behavior, we rely on tc-link in conjunction with Mininet-WiFi.

Mininet-WiFi is a versatile emulator that enables our AI models to interact with

virtual network components as if they were operating in a real-world network.

Tc-link allows us to manipulate and control network traffic conditions within

this emulator, providing fine-grained control for testing under various network

scenarios. It bridges the gap between simulated and real-world conditions.

• Testbed: A testbed, whether physical or virtual, provides a controlled network

14

infrastructure that can be monitored and manipulated through south-bound

APIs. It ensures that AI models are tested in a real-world network environment.

The Data Plane’s suite of tools minimizes the disparity between simulated and

real-world network behavior, ensuring consistent AI model performance.

In addition to these core components, the platform supports distributed and feder-

ated model training, as well as intelligent traffic splitting, delay-optimal multiple-path

routing, and adaptive rate control. These features collectively contribute to scalable

and efficient AI solutions for network optimization and management.

2.3 FedEdge Design and Prototyping

Federated Networking

Telemetry Enabled Datapath
(INT – OfSoftswitch13)

MAC80211

Radio-1 Radio-2

PHY

Control

Flow

Manager
Topology

Discovery

Telemetry

Manager

Line-speed Q

Estimator

Netlink
Da

ta
pl

an
e

Ne
tw

or
k

Co
re

RL
 A

pp

NorthBound Protocol – REST API

π
Q-Network

Q-table

Actor Crtic

SouthBound Protocol - OpenFlow

Radio Intf

Control

Network State

Database

Radio-3

Federated Computing

Da
ta

se
ts

Co
m

pu
te

Co
m

m
un

ic
at

io
n

TFDS LEAF
Custom

Dataset

Data Filter
Data

Sampler
Data Meta

GRPC

REST-API

ProtoBuf

JSON

End-Point Router
(FEDEDGE COM

Protocol)

Model Repo

Training

Coordinator

(Server / Client)

Optimizer

FL Algorithms

(Generic FedAvg)LocalLocalGlobalGlobal LocalGlobal

ML Backend

(Tensorflow)

Send Recv

Training Engine

Federated Computing

Da
ta

se
ts

Co
m

pu
te

Co
m

m
un

ic
at

io
n

TFDS LEAF
Custom

Dataset

Data Filter
Data

Sampler
Data Meta

GRPC

REST-API

ProtoBuf

JSON

End-Point Router
(FEDEDGE COM

Protocol)

Model Repo

Training

Coordinator

(Server / Client)

Optimizer

FL Algorithms

(Generic FedAvg)LocalGlobal

ML Backend

(Tensorflow)

Send Recv

Training Engine

Transport Layer

Federated Computing

Da
ta

se
ts

Co
m

pu
te

Co
m

m
un

ic
at

io
n

TFDS LEAF
Custom

Dataset

Data Filter
Data

Sampler
Data Meta

GRPC

REST-API

ProtoBuf

JSON

End-Point Router
(FEDEDGE COM

Protocol)

Model Repo

Training

Coordinator

(Server / Client)

Optimizer

FL Algorithms

(Generic FedAvg)LocalGlobal

ML Backend

(Tensorflow)

Send Recv

Training Engine

Transport Layer

Figure 2.3: Architecture of FedEdge Framework with FedEdge simulator

2.3.1 FedEdge Overall Design

Our objective in this work is to develop a framework that can be used on Commercialoff-

the-shelf hardwares and as well as within system-in-loop emulator framework to allow

15

users to seamlessly implement and validate the effectiveness of RL routing solutions.

Therefore, (1) We first developed a AI-Enabled Wireless Network Operating System

(WINOS), which seamlessly integrates programmable measurement, i.e., the proposed

SINT In-band telemetry framework and the programmable wireless network control.

(2) We designed and implemented S-INT, a distributed in-band telemetry system,

where each router runs its own telemetry module that is built on the top of Open-

Flow datapath/processing pipeline.

FedEdge is the first experimental prototype framework developed to support wire-

less multi-hop federated learning. FedEdge provides modularity with communication

functions between the nodes and easy to integrate to a real testbed or a simula-

tion without any modification to the underlying architecture or the code-base. The

architecture of FedEdge contains two components namely federated computing and

federated networking. Each of the components are built in a layered approach where

each layer has bidirectional communications to upper or lower layers. In general fed-

erated computing involves in customizing and configuring FL functionality and fed-

erated networking is a AI based wireless network operating system which is mainly

responsible for fast and reliable wireless network links between the aggregator node

and worker nodes.The main goal of this component is to optimize the the wireless

network through the AI enabled algorithms to do route optimizations and provide

in-band telemetry data used for online training of RL agent.Federated computing

contains three layers (1) Datasets layer stores the training datasets for FL (2) Com-

pute layer provides with core functionalities, for instance to train a model and store

the trained model and finally (3) Communication layer used FedEdge COMM protocol

to establish and maintain connections with aggregator and worker nodes. Similar to

federated computing component federated networking component has three layers (1)

Dataplane Layer will integrate software defined switch allows programmable packet

switching and also allowing the in-band telemetry to cost-efficient real-time reporting

16

of network status. (2) The Network Core Layer will do traditional network functions

such as node discovery, maintaining network links counters and status database and

managing the traffic flows etc. (3) RL App layer contains the actor-critic RL agent

for learning delay-optimized routes in the edge nodes. The integration of simulator

to FedEdge architecture is simple because of the modularity of FedEdge, which can

use the topology built by FedEdge simulator and train the RL agent on the wireless

multihop backbone network.

2.3.2 Federated Networking

In the previous section, we detailed our design and implementation of federated

computing. The key objective of our work is to improve the convergence time of

federated learning systems by optimizing communication delay over multi-hop wire-

less networks. To tame the network latency and to implement reinforcement learning

routing module, first we need a platform that enables visibility of per-packet net-

working statistics (such as delay) for RL training. In addition, we need to realize

distributed and programmable network control so that the MA-RL policies can be

learned, deployed, and executed in a real-time fashion. To satisfy the above two

requirements, we developed a federated networking subsystem by enhancing and cus-

tomizing WiNOS, a distributed wireless network operating system proposed in our

previous work [19]. The federated networking subsystem is composed of three layers

(1) Dataplane, (2) Network Core services, and (3) RL Applications. Compared with

WiNOS, the new enhancements include the redesigned dataplane and upgraded core

services to support multi-radio networking, customized in-band telemetry processing

to support federated networking, and the new RL application with domain-specific

action space refining. The details of some important components of federated net-

working system are introduced as below.

17

2.3.3 Telemetry-enabled Dataplane

The crucial function of dataplane is to forward packets in-line with the native Linux

wireless MAC80211 network stack and to provide programming primitives to control

packet forwarding. To enable programmable packet forwarding on wireless multi-hop

networks, we leveraged OpenFlow-based Datapath to send and receive data packets.

Our datapath is developed using OpenFlow Software switch, namely Ofsoftswitch13

[20]. Dataplane functionality is pivotal for realizing AI-enabled forwarding schemes.

Nowadays, dataplanes are not only designed to handle packet forwarding, but they

also gather vast amount of data for network monitoring using SNMP, sFLOW, Col-

lectd, and many more. However, existing solutions do not support actionable data

sampling or measurement schemes that can be rapidly exploited for routing schemes

with delay minimization as the objective. In addition, they require additional channel

resources and fail to capture real-time delay of packets.

With an AI-enabled platform as the core of our system design, we proposed and

developed a real-time in-band network telemetry module. The primary objective of

our telemetry solution is to collect real-time experience of packets, such as per-hop

delay over each traversing link or end-to-end link, in a cost-efficient manner. Towards

this end, we have developed and implemented a distributed in-band telemetry system

[19], where each router runs its own telemetry module built on the top of OpenFlow

processing pipeline. Our in-band telemetry system consists of a new telemetry packet

header, two new packet matching actions (i.e., PUSHINTL and POPINTL) and the

telemetry processor. To assist AI-enabled federated networking, we reconfigure the

telemetry processor so that whenever a FL packet passes through the router, the

router will recognize such packet and insert a timestamp (i.e., the time instance when

FL packet arrives at the router) into the telemetry packet header. Then, by using the

PUSHINTL action, the router performs packet encapsulation by adding the telemetry

packet header into the FL packet. After receiving such FL packet, the next-hop router

18

decapsulates the FL packet via POPINTL action and retrieves the timestamp. The

difference between the timestamps of the sending router and receiving router is the

one-hop packet delivery delay. The key advantage of our in-band telemetry is that

the routers are able to use data packets to carry measurement data with minimum

cost, where the measurement data or experience are the keys for training RL agents.

In this work, the in-band telemetry system is tested and optimized so that the extra

delay induced by the telemetry processing operations is negligible.

Last, wireless networks have another dimension of control on PHY, such as the

channel and power, that may significantly affect its overall performance. We have ex-

tended programmability to control PHY using NetLink interface from the controller.

Each RF hardware on the router is attached as a virtual port on the datapath and

link layer discovery such as neighbor peering is handled by MAC80211 stack.

Figure 2.4: MultiFlow Table

19

2.3.4 Network Core Services

OpenFlow-enabled controller provides core services for interacting with the dat-

apath and to develop network applications for orchestrating the packet handling

behavior. Our core services include OpenFlow Manager based on RYU controller,

telemetry manager, network state, and telemetry database based on MangoDB [21],

and radio interface manager based on NetLink library. OpenFlow manager is respon-

sible for providing the required APIs or handlers to monitor and control the datapath

in realtime by adding/removing entries into OpenFlow table

Standard packet forwarding behavior, such as receiving and forwarding packets

over ports, can be realized using a single flow table. However, the complexity of the

flow table increases exponentially when handling telemetry packets due to the nature

of sequential processing of flow table instructions. Hence, we leveraged multi-flow

table-based flow instructions for handling packet forwarding, as shown in Figure 2.4.

First, table-0 instructions will identify the presence of telemetry by matching the

ether_type, and then the relevant action is performed. Second, table-1 handles ARP

requests/replies, and finally, table-2 flow instructions perform the actions for forward-

ing the packets to the output port.

The telemetry manager instructs and gathers packet flow monitoring metrics from

the telemetry-enabled datapath. Our network state database provides RPC-based

interfaces for data access within the kernel layer and also provides access interfaces

via Northbound APIs for network applications, such as reinforcement learning-based

routing algorithms.

CHAPTER 3: A SCALABLE AND SAFE DEEP REINFORCEMENT LEARNING

DESIGN FOR MULTI-CONNECTIVITY TRAFFIC MANAGEMENT

3.1 Overview

Figure 3.1: Edge-based Multi-Access Traffic Management Framework .

The desire to create multiple concurrent connections via multiple access technolo-

gies, such as LTE+5G+WiFi, to achieve higher bandwidth and stability has grown

as more client devices are equipped with multiple radio interfaces. A new multi-

access traffic convergence model is motivated by the emergence of edge computing

where the convergence point at the network can be combined with intelligent traffic

management that distribute packets across multi-path to improve quality of service

(QoS), as illustrated in Figure 3.1. Multi-access traffic distribution techniques can

be created using cutting-edge data-driven machine learning (ML) approaches. We

apply the reinforcement learning (RL) method, which develops a multi-access traf-

fic distribution strategy by interacting with the environment. However, poor policy

throughout the exploration during initial training stages for online RL may seriously

21

degrade performance. In live-network deployment, failure to meet QoS can harm

user experience, such as connection outages and interruptions. In this chapter, we

propose two approaches to ensure QoS performance with guided exploration for an

online-RL-based multi-access traffic management

Figure 3.2: Reinforcement Learning based design of intelligent Multi-Access Traffic
Management

The goal for edge-based intelligent multi-access traffic management is to determine

the best traffic steering (packet routing) strategy for multi-access users based on radio

conditions and quality of service (QoS) targets. We developed reinforcement learning

(RL) based design of multi-access traffic management. As summarized in Figure 3.2,

the idea is to design an intelligent traffic management RL-agent that learns through

interaction with the environment. The arrows from âEnvironmentâ to âAgentâ in-

dicate the candidate metrics to be collected that can be used as input states to the

agent and/or for reward calculation. The arrow from âAgentâ to âEnvironmentâ in-

dicates the control or policy (output action) to be configured by the Intelligent Traffic

Management agent.

We consider the case where the output action for the Intelligent Traffic management

RL-agent is the traffic split ratio: a(u) =
[
a(u,1), . . . , a(u,l), . . . , a(u,L)

]
,

22

where a(u,l) denotes the portion of traffic for user u to be routed towards the Lth

access links among all L available access links. The action space for a(u,l) is continuous

in [0,1]L, i.e.,0 ≤ a(u,l) ≤ 1,∀l, with a constraint of
∑L

l=1 a
(u,l) = 1 Since

∑L
l=1 a

(u,l) = 1

, we can substitute a(u,L) = 1−
∑L−1

l=1 a
(u,l) . For the simple case where there are only

two available access links, RL-agent output action for user u is simply au, where au is

the ratio of traffic steer to the 1st link and 1− au is the ratio of traffic steered to the

2nd link. In the remaining of the disclosure, we will drop the indexing for user link

for a(u,l) for simplicity while explaining our design. All concepts we described for at

are applicable to a(u,1), . . . , a(u,L−1), where t is the time index.

3.2 Challenges

Typically, for continuous action space, deep RL trains a policy neural network

that chooses a suitable action t based on the learned experience. Then, an additive

Gaussian noise nt ∼ N(0, σ), where 0 is the mean and σ represents the standard

deviation (std), will be added to t to produce the final output action at to explore

unknown action space:

at = µt + nt, where nt ∼ N(0, σ)

This approach of selecting action with noise is categorized as a stochastic policy

according to Gaussian distribution. The likelihood probability of taking current policy

can be calculated by the probability distribution function of Gaussian distribution

with mean = µt and std = σ.

The level of randomness of current policy, i.e., how aggressively current policy

explores unknown space, will rely on the value of the Gaussian noise. On one hand,

the higher Ï tends to give more exploration toward unknown actions. This may lead

to poor training performance and unstable policy issues. On the other hand, if a low Ï

number was chosen, the policy may approach local optimum as exploration knowledge

23

is limited. Therefore, σ should be chosen as a hyper-parameter with impact to the

training performance during the training process. In online-RL training, an agent

takes random action to explore and learn new information in order to achieve a

good long-term reward. However, poor exploration decision could lead to a severe

performance degradation. In traffic splitting distribution case, if the exploration

random policy decides to send more traffic to a congested link, it can accumulate a

large queue resulting in long-term degradation of latency performance.

3.3 Proposed Solution

Figure 3.3: Summary of the proposed guided exploration for online RL-based multi-
access traffic management.

In this invention, we propose mechanisms to ensure that the Intelligent Traffic man-

agement RL-agent selects output action in better exploration direction during online

RL training. Figure 3.3 summarizes our proposal: based on the state and reward

observation, we developed 1) noise adaptation and 2) guided exploration strategies

to properly adjust the final output at to ensure the exploration direction and amount

are properly controlled.

24

3.3.1 Adaptive Noise Exploration

We propose to adaptively increases or decreases the noise level based on recently

observed rewards. The basic idea is to scale up the noise level when recent reward is

low and scale down the noise level when recent reward is high.

An example of additive noise level adjustment strategy is the following:

σ0 = σinit

σt+1 =


σt − δdown if rt > THhigh

σt if THlow < rt ≤ THhigh

σt + δup if rt ≤ THlow

(3.1)

where THlow, THhigh, εup > 0, and εdown > 0 are the design parameters selected by

model developers for âreward lower threshold for noise adjustmentâ, âreward upper

threshold for noise adjustmentâ, ânoise increment step sizeâ, and ânoise decrement

step sizeâ, respectively.

Another example of multiplicative noise level adjustment strategy is the following:

σ0 = σinit

σt+1 =


(1− εdown) · σt, if rt > THhigh

σt, if THlow < rt ≤ THhigh

(1 + εup) · σt, if rt ≤ THlow

(3.2)

where εup > 0 and εup > 1 are the design parameters selected by model developers

for ânoise upward scaling ratioâ and ânoise downward scaling ratioâ, respectively.

For the multi-access traffic management use case, we can set the reward function as

the absolute value of one-way delay difference between Wi-Fi and LTE links. However,

the average one-way delay varies largely in different network conditions, leading to

25

different upper limits. Therefore, as an example, we re-scale the delay difference by

the following normalization function

rt = rdiff = − dt
dmax

, where dt denotes the absolute value of delay difference between WiFi and LTE links,

t is the time index, dmax is the historical maximum value of delay difference between

WiFi and LTE links observed by the user. Then, we can carefully select upper and

lower reward thresholds for noise adjustment and apply either the additive noise level

adjustment or multiplicative noise level adjustment strategy with proper parameter

setting for step sizes or scaling ratios during the training process.

Figure 3.4: Guided Exploration Workflow

3.3.2 Clip Random Exploration

We can leverage knowledge from previously developed policies to guide the explo-

ration process during RL training. The idea is that previously developed policies can

provide insight on which exploration direction is preferred. We propose a guided ex-

ploration with clipped action space method that uses prior knowledge to control the

direction of agent to only explore unknown actions in safe action space region. Thus,

26

the clip function prevent agent to explore toward wrong direction. For example, for

the multi-access traffic management use case, the preferred direction of exploration

can be determined by the congestion level. When a link is more congested, the pre-

ferred exploration direction is to reduce load from the link; for a less congested link,

the preferred exploration direction is to steer more traffic toward the link. That is,

agent is encouraged to explore toward the direction of sending more traffic to less

congested link.

The workflow of our proposed guided exploration algorithm is summarized in Fig-

ure 4. After sampling an action based on the policy network output µt and additive

Gaussian noise nt, we leverage prior knowledge to perform a check on âexploration di-

rection preference.â If the exploration direction is not preferred, we apply adjustment

to the action, such as ignoring the noise or applying noise in the opposite direction.

Checking exploration direction preference:

For multi-access traffic management, prior knowledge metrics for determining the

preferred the direction of exploration can be as follow,

• One-way delay (OWD) of the link, OWDi

• Queue accumulation trend, qi

• Wi-Fi MCS-index vs LTE CQI trend, ri

For example, by comparing the One-Way Delay (OWD) of an access link to the

average OWDs across all available paths, we can assess how congested the access

link is compared to other links. A simple rule can be encouraging to explore to-

wards increasing at if OWDi < AvgjOWDj, and to explore towards decreasing at if

OWDi > AvgjOWDj. An example of the above rule for the 2-links case is shown in

Figure 3.4.

Similarly, we can create rules based on queue size of each link, or the link quality

conditions, to check the preference of exploration direction. A threshold can also be

27

added to the checking logic, so that action adjustment occurs only when the preference

is significant enough.

We can also compare the prior knowledge metrics from all users to determine which

set of users should apply guided exploration and let the remaining users to explore

freely.

Adjust action when exploring towards unpreferred direction

When the random action is in the wrong direction region and the checking logic

determines that an action adjustment is needed, we can modify the action towards

the preferred exploration direction. Below are some examples of clipping rules for

multi-access traffic management with only 2 links, where at is the ratio of traffic

steered to link 1, and 1− at is the ratio of traffic steered to link 2:

Example clipping rule 1:

aclipt =


max(µt, at), if OWD1 > OWD2

min(µt, at), if OWD1 < OWD2

(3.3)

The idea is that when the exploration is in the wrong direction, we can simply

ignore the random noise, forcing at = µt to prevent random exploration. Otherwise,

the random action is in the right direction, and the agent is allowed to explore freely

in the right direction.

Example clipping rule 2:

aclipt =


(µt − |nt|), if OWD1 > OWD2

(µt + |nt|), if OWD1 < OWD2

(3.4)

The idea is that when the exploration is in the wrong direction, we can simply apply

the random noise to the opposite direction, i.e., forcing to explore in the preferred

direction. Otherwise, the random action is towards in the right direction, and the

28

agent is allowed to explore freely toward the right direction.

Another example clipping strategy is that we can scale down the noise or limit the

maximum value of the noise when exploring towards the unpreferred direction.

Figure 3.5: Deployment topology

Env2

Critics Actor

Env1

Critics Actor

(s,r) a
(s,r)

a

Episode 1 Episode2

Env5

Critics Actor

(s,r)

Episode5

Strong Wi-Fi
Strong

Wi-FI & LTE
Weak
Wi-Fi

Mix
Left: Wifi (1.5)
Right: LTE (0.8)

Mix
1&4: Wifi (1.5)
2&3: LTE (0.8)

(WiFi/LTE=1.5) (WiFi/LTE=1.0) (WiFi/LTE=0.8)

Figure 3.6: Sequential Training Workflow

29

Figure 3.7: Comparison of safe-RL and GMA-baseline during the training

Figure 3.8: Comparison of PPO and DDPG Test Evaluation on all environment

30

3.4 Results and Conclusion

In Figure 3.7, we observe latency spikes around 30 and 25 ms in the GMA baseline

at approximately 300 and 800 time steps. These spikes can be primarily attributed to

the challenges inherent in the mobility-oriented setup, particularly when users move

farther away from the base station and access point. As users distance themselves,

weaker connection signals become a prevalent issue, significantly impacting the net-

work’s performance and resulting in intermittent latency spikes.

On the other hand, our experimental results effectively demonstrate the efficacy

of our proposed safe-RL mechanism in addressing these latency surges. This mecha-

nism effectively mitigates the sudden packet latency spikes, a phenomenon observed

in both the GMA-based baseline and RL training without the safe-RL mechanism.

Our safe-RL approach empowers our agent to make informed decisions that priori-

tize maintaining a safe latency range, ensuring consistently low latency around 5 ms

throughout the training process.

More experiments were conducted for our DRL-based multi-access traffic man-

agement solution, In addition to showing robustness under varying traffic loads, we

further tested our DRL model with different user densities. We evaluated our designs

of RL-based Multi-Access Traffic Management for five deployment environments with

a mix of strong, medium, and weak WiFi and/or LTE links and three different loading

conditions for UDP traffic by varying the location of four User Equipments (UEs),

as shown in Figure 3.5. In Figure 3.6, we sequentially performed RL training under

different conditions, and models trained from different stages were tested across all

deployments. As shown in Figure 3.8, we observed that RL with the Proximal Policy

Optimization (PPO) method can quickly learn and adapt to new environments dur-

ing the training phase. However, PPO fails to memorize previous experiences and is

unable to train a model that performs well in all environments. Therefore, we imple-

mented the Deep Deterministic Policy Gradient (DDPG) method with an experience

31

replay buffer to overcome the forgetting issue and designed scalable models with Long

Short-Term Memory (LSTM) to support various numbers of users. Results show that

DDPG with an experience replay buffer, models trained at later stages continue to

perform well in previous training environments, and we can train an ML model that

performs well in all evaluated conditions.

CHAPTER 4: MULTIAGENT MARKOV DECISION PROCESSES (MA-MDP)

FOR NETWORK ROUTING TRAFFIC ENGINEERING (ALGORITHMS

FOUNDATIONS)

4.1 Overview

The overall objective of this chapter is to provide the insight of algorithms foun-

dations of RL-based TE for wireless multi-hop routing. Thus, we develop a modular

and composable multi-agent learning system, which provides modules and module

extensions that can be selected and assembled in various combinations to generate a

specific multi-agent reinforcement learning algorithm that can automate the E2E TE

in multi-hop computer networks. Towards this goal, (1) we formulate distributed TE

as a multi-agent extension of Markov decision process (MA-MDP); (2) to solve this

MA-MDP problem, we propose a modular and composable learning framework con-

sisting of three interleaving modules, each of which can be implemented using different

algorithms along with different algorithm extensions. These implementations can be

selected and assembled in various combinations to generate a specific reinforcement

learning algorithm; (3) we propose a distributed multi-agent actor-critic-executor

(MA-ACE) architecture to simplify the interleaving operations between framework

modules, thus facilitating fast learning algorithm prototyping and instantiation; (4)

we present preliminary results through simulations in a discrete-time network envi-

ronment.

4.2 Proposed Research

We formulate the traffic engineering problem as a multi-agent extension of Markov

decision process [22, 23, 24], where a set N = (1, ..., N) of agents (i.e., routers)

33

interacts in an environment with an objective to learn the award-maximizing behavior.

An MA-MDP learns which next-hop each router should send its packets to in order to

move the packets to their destinations with the optimal end-to-end traffic engineering

(E2E-TE) performance metrics including E2E delay, E2E throughput, and hybrid

E2E TE metric that jointly considers delay and throughput. An MA-MDP for N

routers is defined by a tuple < S,O1, ...,ON ,A1, ...,AN ,P , r1, ...rN >, where

• S is a set of environment states, which include the network topology, the source

and destination (i.e., source and destination IP addresses) of each packet in

each router, the number of packets (queue size) of each router, and the status

of links of each router, e.g., signal-to-interference-plus-noise ratio (SINR).

• Oi, i = 1, ..., N is a set of observations for each router i, which include local

network states available at router i. For example, the observation can be simply

the destination of the incoming packet.

• Ai, i = 1, ..., N is a set of actions for each router i, which include the next-hop

routers the current router can forward the packets to.

• P : S × A1 × ...×AN × S 7→ [0, 1] is the state transition probability function,

which models the environment dynamics. The environment dynamics are driven

by the unknown stochastic packet arrival processes of traffic sources, and the

packet departure processes that are determined by the action and link status of

each router.

• ri, i = 1, ..., N : Ai × S 7→ R is the reward function of each router i, which

is defined based on the E2E-TE metrics we want to optimize. In this paper,

we aim to optimize E2E delay. Therefore, the reward ri = di is defined as the

(negative-signed) 1-hop delay di a packet experiences when it is forwarded from

current router i to next-hop router i+ 1. di includes processing delay, queueing

delay, transmission delay, and propagation delay.

34

When a packet enters a router i, the router obtains its local observation o ∈ Oi of

the network states and takes an action a ∈ Ai to determine where to send this packet

to. As a result, the router receives a reward ri (e.g., (negative) one-hop delay) when

the packet arrives at its next-hop router i + 1, which has its own local observation

o′ ∈ Oi+1. Each router selects actions based on a policy πi, which specifies how

the router chooses its action given the observation. The policy can be stochastic

πi(a|o) : Oi × Ai 7→ [0, 1], where given current observation o ∈ Oi, the router sends

a packet to the next-hop router a ∈ Ai according to the probability πi(a|o) with∑
a∈Ai πi(a|o) = 1. The policy can be also deterministic πi(o) : Oi 7→ Ai, where

given current observation o ∈ Oi, the router sends a packet to a fixed next-hop router

a ∈ Ai. The return Gi =
∑T

k=i rk is the total reward from intermediate state si to final

state sT , where si and sT are the states when a packet arrives at the intermediate

router i and destination router T , respectively. Let s1 be the initial state when a

packet enters the network from its source router. The goal is to find the optimal

policy πi for each router i so that the expected return J(π) from the initial state

(E2E TE metric) is maximized,

J(π) = E[Gi|π] = E[
∑T

i=1
ri|π] (4.1)

where π = π1, ..., πN . Using different reward function (e.g., 1-hop delay di), J(π) can

characterize different individual E2E-TE metric (e.g., expected E2E delay E[G
(d)
i |π] =

E[
∑T

i=1 di|π]).

In TE problems, the states are fully observable. That is, the state is uniquely

defined by the observations of all routers (i.e., P (o|s, a) > 0 =⇒ P (s′|o) = 1). Thus,

in the following sections, for simplicity of notation, we represent an observation o as

a state s. In the scope of this paper, we examine only the E2E delay as a reward

for delay-optimal traffic engineering. Moreover, we assume that the environmental

35

dynamics, which are characterized by the state transition probability and the distri-

bution of the rewards, are unknown for practical real-world applications. This leads

us to propose the following model-free multi-agent reinforcement learning framework.

4.3 Distributed TE Learning Framework

The proposed modular framework architecture includes a generic composing proce-

dure, which assembles a variety of different algorithm and extension options to enable

fast prototyping and evaluation. It consists of three key modules, each of which can

be implemented using different algorithms along with using different algorithm exten-

sions. These implementations can be selected and assembled in various combinations

to generate specific reinforcement learning algorithms. This framework will be devel-

oped based on the generalized policy iteration (GPI) strategy [25]. GPI was initially

developed to generalize single-agent value-based reinforcement learning algorithms.

We will extend it for solving generic TE problems, which needs to exploit emerging

policy gradient based learning along with function approximation in a multi-agent

setting.

In particular, our framework consists of three interleaving modules for each router/agent:

policy evaluation, policy improvement, and policy execution. Let us consider a par-

ticular router i and its policy πi to be learned. Policy evaluation estimates the action-

value functions,

qπii (s, a) = Eπi
[
Gi =

∑T

k=i
rk|si = s, ai = a

]
(4.2)

that measure the expected return (expected E2E TE metric) if the router i performs

a given action in a given state. Next, policy improvement utilizes the estimated

action-values qπii (s, a) to adjust current policy πi in the direction of greater expected

return. After that, the agent executes a behavior policy bi to generate new action-

reward experiences for next-round policy evaluation and improvement. As illustrated

36

Figure 4.1: Distributed TE Framework which adopts multi-agent, asynchronous actor-
critic (AC) architecture. Each router’s actor updates its policy function while critic
updates the function approximation of state-action Q values.

in Fig. 4.1, we adopt a distributed actor-critic-executor architecture similar to asyn-

chronous advantage actor-critic (A3C) [26] to simplify and implement the interleaving

operations between policy evaluation, improvement, and execution. Each router has

its own actor, critic and executor running locally and in parallel. The local critic uses

a variety of methods to estimate the action-value functions Qπi
i (s, a), which criticize

the action selections. Based on critic’s inputs, the actor improves the target policy

that we want to learn and optimize. Then, the executor executes the actions accord-

ing to the behavior policy, which is either equal to the target policy or similar to the

target policy but more exploratory.

4.3.1 Local Critic for Policy Evaluation

4.3.1.1 1-hop Action-value Estimation

As shown in eq. (4.2), the performance of the policy π is measured by the action-

value qπi (s, a), which is a E2E TE metric. Thus, there will be no direct training sample

for policy evaluation until a packet forwarded by this router arrives at its destination.

37

Inspired by temporal-difference prediction [25], we can apply spatial-difference (SD)

prediction to quickly update the estimation of qπi (s, a) only using local information

exchanged between adjacent routers. In particular, the action-value qπi (s, a) of router

i can be recursively rewritten as the sum of 1-hop reward of router i and the action-

value of the next-hop router i+ 1, i.e.,

qπii (s, a) = E
[
ri + q

πi+1

i+1 (s′, a′)
]
. (4.3)

This equation (4.3) indicates qπii (s, a) can be estimated by averaging the samples of

ri + q
πi+1

i+1 (s′, a′). This leads to a simple SD predication method based on exponential

weighted average (EWA), which iteratively updates the estimate of qπii (s, a), denoted

by Qπi
i (s, a), based on 1-hop experience tuples (s, a, ri, s

′, a′) and the estimate of

q
πi+1

i+1 (s′, a′) of next-hop router, denoted by Qπi+1

i+1 (s′, a′), i.e.,

Qπi
i (s, a)← Qπi

i (s, a) + α[ri +Q
πi+1

i+1 (s′, a′)−Qπi
i (s, a)] (4.4)

where α ∈ (0, 1] is the learning rate.

4.3.1.2 n-hop Action-value Estimation

1-hop action-value estimation can be generalized to n-hop one by using n-hop

return rni instead of 1-hop return ri to update the action-value estimate. The n-hop

return rni is the accumulated reward when a packet arrives at the n-hop router, i.e.,

rni =
∑i+n−1

k=i rk. For example, if the reward is 1-hop delay, rni represents n-hop delay.

With n-hop return, the action-value estimation process in eq. (4.4) can be generalized

to

Qπi
i (s, a)← Qπi

i (s, a) + α[rni +Q
πi+n
i+n (s′, a′)−Qπi

i (s, a)]

for all n ≥ 1 where Qπi+n
i+n (s′, a′) is the action-value of router i + n. It is shown

in previous research [27, 28, 29] (e.g., in video gaming settings) that n-hop/n-step

38

estimation may lead to better policy with higher expected return (e.g., better E2E TE

metric in our case) because the n-hop estimate has smaller bias compared with the

1-hop one. However, n-hop estimate may not work well in non-stationary cases and

may slow down policy learning process because of the higher variance in the n-step

estimation and the longer waiting time to obtain n-hop return from the router n-hop

away.

4.3.1.3 Expected n-hop Action-value Estimation

Variance in the action-value estimates is unavoidable because the environment can

introduce stochasticity through stochastic rewards rni and stochastic environment

state transitions P . There is little we can do to reduce the variance caused by envi-

ronmental stochasticity, except using a suitably small learning rate α. Besides envi-

ronmental stochasticity, the action change of next-hop or nth-hop router introduces

additional variance. To mitigate such variance, instead of Qπi+n
i+n (s′, a′), the expected

value E[Q
πi+n
i+n (s′, a′)] =

∑
a′∈Ai+n πi+n(s′, a′)Q

πi+n
i+n (s′, a′) is used to update Qπi

i (s, a),

∀n ≥ 1 [30]:

Qπi
i (s, a)← Qπi

i (s, a) + α[rni + E[Q
πi+n
i+n (s′, a′)]−Qπi

i (s, a)].

4.3.2 Local Actor for Policy Improvement

Policy evaluation process drives the action-value function to accurately predict

the true returns (E2E TE metrics) for current policy. Policy improvement process

improves the policy with respect to current action-value function. Policy improvement

can be done through action-value methods or policy-gradient methods. In this paper,

we focus on action-value methods.

4.3.2.1 Action-value methods

Action-value control algorithms aim to learn an deterministic target policy, which

maximizes the performance objective J(π) in eq. (4.1), i.e., the expected return from

39

start state, by selecting a fixed greedy action with respect to the expected return

from any state. This can be done by letting each router i greedily improve its current

policy πi, i.e., select the action with the maximum estimated action-value,

πi(s)← arg max
a
Qπi
i (s, a).

Since value based methods can only learn deterministic policies, this naturally leads

to single-path TE solutions, where a single routing path is learned between a source

source-destination pair. The single-path TE solutions are simple and easy to im-

plement. However, to improve E2E delay at high traffic load cases, multi-path TE

solutions are generally preferred, where each source-destination pair is connected with

multiple routing paths to better distribute traffic load and reduce E2E delay. To ad-

dress this problem, two generic near-greedy action selections can be exploited: (1)

ε−greedy policy, where with probability 1−ε, select the best action and with probabil-

ity ε, other actions are selected, and (2) softmax-greedy policy, where each action a is

selected with a probability P (a) according to the exponential Boltzmann distribution

P (a) =
exp(Qπi

i (s, a)/τ)∑
b∈Ai exp(Qπi

i (s, b)/τ)

where τ is a positive parameter called the temperature. High temperatures (as τ →

∞) cause the actions to be almost equally probable (close to random action selection).

Low temperatures (as τ → 0) get close to the deterministic action selection. The near-

greedy methods force each router to select next-hop forwarding nodes stochastically,

which create multiple routing paths connecting source and destination nodes.

4.3.2.2 Double learning

All action-value algorithms above involve maximization during the construction

procedure for the target policies. More specifically, the target policies follow the

40

greedy or near-greedy action selection methods given the current action values, which

are defined with a maximization operation. In this case, the maximum of the esti-

mated action values is used as an estimate of the maximum of the true action value.

This can lead to a significant overestimation bias and thus degrade the gain of the

learning algorithms. To address this overestimation bias, double learning can be

adopted [31], which decouples action selection from its evaluation using a pair of es-

timators. In particular, we divide the time steps (or equivalently the experiences)

into two sets and use them to learn two independent estimates, namely Qπi
i,1(s, a)

and Qπi
i,2(s, a). One estimate, e.g., Qπi

i,1(s, a), can be used to determine the im-

proved action denoted by a∗(Qπi
i,1), according to greedy or near-greedy strategies πi ∈

{greedy, softmax, ε− greedy}. Then, we use the other estimate Qπi
i,2(s, a) to provide

the estimation of the value of the improved action, i.e., Qπi
i,2(s, a

∗) = Qπi
i,2(s, a

∗(Qπi
i,1)),

Then, the role of the two estimates can be reversed to yield a second unbiased estimate

Qπi
i,1(s, a

∗(Qπi
i,2)).

Double learning strategy can be combined with any policy evaluation and policy

improvement methods to create new learning algorithms. For example, we can design

the double expected softmax learning by combining double learning with expected

action-value estimation and softmax policy improvement. In this case, the action

value update rule for the first estimate Qπi
i,1(s, a) is given as follows

Qπi
i,1(s, a)←Qπi

i,1(s, a) + α[ri + Ψi+1,2(s
′, a′)−Qπi

i,1(s, a)].

Here, Ψi+1,2(s
′, a′) =

∑
a∈A P (a, 1)Q

πi+1

i+1,2(s
′, a′) where P (a, 1) =

exp(Q
πi
i,1(s,a)/τ)∑

b∈Ai
exp(Q

πi
i,1(s,b)/τ)

.

By the same way, we can obtain the update rule for the second estimate Qπi
i,2(s, a).

Similarly, we can also combine double learning with greedy policy improvement, where

Ψi+1,2(s
′, a′) = Q

πi+1

i+1,2(s
′, arg maxaQ

πi
i+1,1(s

′, a)).

41

Figure 4.2: Network topology in the simulations [1]

4.3.3 Local Executor for Policy Execution

In reinforcement learning, the behavior policy bi is the policy that generates the

actual actions of the learning agent, which yields the actual experiences for improving

target policy πi. For on-policy learning, the behavior policy bi is same as the policy

being improved (target policy πi). For off-policy learning, the behavior policy bi is

different from the target policy, where the target policy is generally the greedy policy

and the behavior policy is near-greedy to encourage explorations. The policy πi will

be learned when the evaluation process and the improvement process stabilize, that

is, no longer produce changes.

4.4 Experiments

4.4.1 Experiment Setup

We evaluate the performance of the learning-based TE algorithms in a discrete-

time network simulator [1], which is widely used to investigate the performance of

42

Q-learning based routing algorithm and its variants [1, 32, 33, 34, 35]. The network

topology is shown in Fig. 4.2, where the nodes represent routers and edges represent

network links. In this discrete-time simulation, the whole network is driven by three

major factors: the packets arrival pattern, the average packet arrival rate, and the

queuing and link delay. First, packets are periodically generated with a randomly

selected source router and destination router for each packet. Second, the network

loads are based on the packet arrival rate and it is driven by Poisson distribution

with parameter λ, the average number of packets injected into network per time step.

Third, when a packet arrives at a router, it has to wait in a FIFO queue (queue

length = 1000 packets) and thus experiences queuing delay. The packet will be

transmitted over the communication link if it becomes the head-of-line packet. The

transmission delay of the communication link needs to be constant in this simulator

and accordingly, we use the unit transmission delay for the simulations (i. e. , the

link delay is set to 1.0).

Local states at each router include the source and destination IPs of the incoming

packet and local queue length, i.e., s = (srcIP, dstIP, queue). The action is the

next-hop forwarding node, i.e., nexthop ID. The critic sets 1-hop value estimation

(n = 1). The 2-hop value estimation (n = 2) is included to examine the comparative

efficacy of n-hop learning.

In this experiment, we investigated deterministic and near-deterministic policies

with ε-greedy (ε = 0.1) and softmax (τ = 1).

Off-policy, on-policy, expected value estimation (Expected), double learning (DBL),

and n-hop learning (n = 2) are employed in the framework to examine the efficacy of

learning-based adaptation. Two baseline algorithms are also included: the shortest-

path routing and the off-policy greedy algorithm (i.e., Q-routing [1]). For Q-routing,

both behavior and target policies are greedy, and the explorations are implicitly driven

by the changes in action value (Q-value) estimations.

43

0 10000 20000 30000 40000 50000 60000 70000 80000
Simulation Time

0

10

20

30

40

50

60

70

80

Av
er

ag
e

De
liv

er
y

Ti
m

e
Shortest Pah
Off policy greedy
Off policy -greedy
Off policy Softmax
On policy -greedy
On policy Softmax
On policy Expected Softmax
Off policy DBL greedy
Off policy DBL -greedy
Off policy DBL Softmax
On policy DBL -greedy
On policy DBL Softmax
On policy DBL Expected Softmax
On policy DBL Expected Softmax 2hops

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Network Loads

Figure 4.3: Average of 50 runs of E2E delay patterns on low to high network loads

4.4.2 Varying Traffic Loads: Low to High

Unlike previous research that has tested algorithms in single traffic load case, we

consider the low to high load condition to study the overall performance of all adaptive

learning algorithms in non-stationary network environment, where the state transition

probability function keeps changing as traffic load increases. In this experiment,

the following changes to the network parameters were made according to time. We

initialized Q-table values with 0. The first 10k time steps were given for the initial

exploration at a low load λ = 0.5. λ is increased by 0.5 for every 10k time steps.

From pilot tests, we select the best performing learning rate α = 0.9 for all algorithms

except 2-hop learning algorithm, whose optimal learning rate is α = 0.5.

44

4.4.3 Adaptivity under High Traffic Load Region

The results in Fig. 4.3 show that all of reinforcement learning approaches learn

efficient routing policies while the shortest path routing scheme failed to tolerate the

increased packet loads (when λ > 2.0). During the medium traffic loads (2.0 ≤ λ ≤

3.0), off-policy learning algorithms outperform on-policy algorithms, where off-policy

softmax with double learning is the best one during the load (2.0 ≤ λ ≤ 2.5) and off-

policy softmax is the best during the load (λ = 3.0). During high traffic loads (3.5 ≤

λ ≤ 4.5), on-policy algorithms outperform off-policy approaches. Moreover, for on-

policy algorithms, expected value evaluation helps to improve the delay performance

due to the smaller variance in the return estimation. Double learning, for most of the

cases except loads (λ = 3.0), is beneficial by reducing maximization bias. Softmax

action-selection, in general, helps the agent to select second-best control links with

a probability, and it helps exploration of other paths to balance the traffic in high

network loads and to reduce average packet delivery time. 2-hop learning algorithm

does not bring much performance gain.

In this experiment, we further investigate the performance of the learning algo-

rithms in high-traffic load cases. We increase the network loads from λ = 3.5 to

λ = 4.4 by 0.1 on every 10k time steps. As illustrated in Fig. 4.4.2, when network

loads are high, again double learning algorithms with softmax action selection (or-

ange, red, and brown solid lines) shows highest adaptivity and best performance.

As network loads further increases, off-policy double learning adapts poorly, com-

paring to on-policy double learning algorithms after λ = 3.9. These results show

additional exploration, leaving from deterministic policy, helps balancing high net-

work traffic loads. Both softmax and on-policy learning add efficient exploration for

this, and avoiding over-estimation with double-learning improves overall E2E delay

performance. Fig. 4.4.2 shows the delay performance with higher time resolution,

where the average packet delay is computed for every 1,000 time steps. We observe

45

that all algorithms take some time to learn and eventually adapt to the traffic load

changes well.

300

400

500
Off policy greedy
Off policy -greedy
Off policy Softmax
On policy -greedy
On policy Softmax
On policy Expected Softmax
Off policy DBL greedy
Off policy DBL -greedy
Off policy DBL Softmax
On policy DBL -greedy
On policy DBL Softmax
On policy DBL Expected Softmax
On policy DBL Expected Softmax 2hops

0 5000 10000 15000 20000 25000 30000 35000 40000
Simulation Time

5

10

15

20

Av
er

ag
e

D
el

iv
er

y
Ti

m
e

(a) High learning rate (α = 0.9)

800

1000

1200

1400 Off policy greedy
Off policy -greedy
Off policy Softmax
On policy -greedy
On policy Softmax
On policy Expected Softmax
Off policy DBL greedy
Off policy DBL -greedy
Off policy DBL Softmax
On policy DBL -greedy
On policy DBL Softmax
On policy DBL Expected Softmax
On policy DBL Expected Softmax 2hops

0 5000 10000 15000 20000 25000 30000 35000 40000
Simulation Time

5

10

15

20

Av
er

ag
e

D
el

iv
er

y
Ti

m
e

(b) Low learning rate (α = 0.1)

Figure 4.5: Average of 50 runs for convergence of learning algorithms in fixed high
network loads (λ = 3.5). For each run, we measured the average delivery time for
every 100 time steps

4.4.4 Convergence Analysis under a Stationary Case

In Fig. 4.5, with fixed high network loads (λ = 3.5) , we test the convergence of

learning modules using different learning rates (0.1 and 0.9, respectively). The the

fixed traffic load case represents stationary network condition, where state-transition

probability function converges as time proceeds. As shown Fig. 4.5, all learning

algorithms converge eventually. As expected, high learning rate = 0.1 leads to better

delay performance for all algorithms because of low bias in action-values (i.e., Q

values) estimation. However, the learning time is much higher with the low learning

rate. High learning rate (0.9) shortens the convergence time at least by half to reach

fairly good (through not optimal) performance. Moreover, we observe the double

learning models stably converges the best results for both low and high learning rates.

With high learning rate, double learning algorithms only one third of convergence

time, compared with low learning rate case.

46

4.5 Conclusions

In this work, we formulate distributed TE problems in reinforcement learning prob-

lems and suggest a composable framework for diverse learning algorithm application.

Through extensive comparative experiments, we demonstrated high adaptiveness of

learning-based distributed TE approaches, which lead robust load-balancing network

systems that minimize the E2E delay. Empirically, we were also able to observe that

reducing over-estimation bias with double-learning along with non-deterministic ac-

tion selection with softwax improves adaptivity and sustainability of network systems.

CHAPTER 5: NETWORK ASSISTED AI OPTIMIZATION THROUGH MA-RL

ROUTING

5.1 Overview

In this chapter, we aim to present our novel system design and practical use case of

RL-based TE wireless multi-hop routing in the real physical system over FL applica-

tion. Therefore, our objective in this work is to develop a framework that can be used

on Commercialoff-the-shelf hardwares and as well as within system-in-loop emulator

framework to allow users to seamlessly implement and validate the effectiveness of RL

routing solutions. Therefore, (1) We first developed a AI-Enabled Wireless Network

Operating System (WINOS), which seamlessly integrates programmable measure-

ment, i.e., the proposed SINT In-band telemetry framework and the programmable

wireless network control. (2) We designed and implemented S-INT, a distributed in-

band telemetry system, where each router runs its own telemetry module that is built

on the top of OpenFlow datapath/processing pipeline. (3) We adopt and applied a

Multi-Agent Reinforcement Routing application for FL wireless multi-hop applica-

tion using WINOS. In this case, each router is an agent, which observes the network

states (e.g., the source IP and destination IP of the incoming FL packet) and learns

the optimal networking policy (e.g., the forwarding action at each router) based on

the reward signals (i.e., negative per-hop delay) with an objective to maximize the

expected total return (i.e., end-to-end delay) from the initial state (i.e., when the FL

packet entering the network) to the terminal state (i.e., when the FL packet leaving

the network) as a result it can minimize the wall-clock convergence time to achieve

the desired FL accuracy

Line-speed Action-state Value Estimation: The key challenge to implement rein-

48

forcement routing algorithms is how to estimate the action-state values (i.e., Q values)

without inducing so much control overhead. In particular, estimating Q values relies

on the measurement of per-hop per-packet delay as shown in eq. (4.4). Directly re-

questing the delay information from the neighboring router could introduce significant

overhead to the bandwidth-limited wireless channel. Therefore, it is necessary to re-

design the way of exchanging information among neighbors. We design the line-speed

Q value estimation for each router i, which aims to realize Q estimation at the line

speed, i.e., the speed at which packets come in the router. The local Qi estimation of

router i is directly coming from its next-hop neighbor. The motivation of such design

is based on the fact that the action-state value Qi of router i is estimated based on

the per-packet reward (per-packet delay) ri and the action-state value Qi+1 of the

next-hop router i + 1. Both Qi+1 and per-packet reward ri is immediately available

at next-hop router i + 1 where ri is obtained via the in-band telemetry introduced

above. Therefore, it is more cost-effective to let next-hop router i + 1 estimate the

action-state value Qi of the current router i via exponential moving average. The

estimated action-state value E(ri + Qi+1) is sent back by the next-hop router i + 1

to current router i periodically (e.g., every five seconds). Such a scheme allows the

action-state value to be updated at the line speed, while orderly reducing the control

overhead.

5.2 Optimizing FL Convergence via Reinforcement Learning

5.2.1 Problem Formulation

Our overall objective is to minimize the run-time convergence time to achieve the

desired FL accuracy. Towards this goal, the optimal strategy is to minimize the

worker-server delay of the slowest worker, which experiences the maximum delay

among all workers. However, in highly dynamic wireless environments, the role of

the slowest one can be randomly switched among different workers as time proceeds.

In this paper, we sought a sub-optimal solution, where we minimize the average

49

2 3 4 5

…… ……………… ……

2 10 20 30 40

Q-table of each node

src IP, des IP

Neighbor IDs
state

Interface 1

Interface 2

Interface 3

Action Space

Router i

FL packets

Router i +1

π
Line-speed

Q estimation
(Core Services)

Q

Server/Network Controller

Action Space Refining
(RL App)

In-band
Telemetry

Topology Discovery
(Core Services)

Figure 5.1: RL Application with tabular Q estimation

end-to-end (E2E) delay between all workers and the server. However, even for such

sub-optimal solution, we cannot apply the classic model-based optimization because

the server-worker E2E delay cannot be explicitly formulated as a closed-form function

of the routing/forwarding decisions [36]. As a result, a model-free optimization strat-

egy based on multi-agent reinforcement learning is much more desirable, where each

wireless router exploits its instantaneous local experiences to collaboratively learn the

delay-minimum routing paths between the workers and the server.

In particular, this problem can be formulated as the multi-agent Markov decision

processes (MA-MDP), which can be solved by multi-agent reinforcement learning

algorithms. Given the local observation oi, which is the source IP and destination IP

of the incoming FL packet, each router or agent i selects an action a, i.e., the next-hop

router, to forward this packet, according to a local forwarding policy πi. After this

packet is forwarded, the router i receives a reward ri, which is the negative one-hop

delay between router i and the selected next-hop router. The packet delivery delay

di,i+1 is the time interval between the time when packet arrives at router i and the

time when the packet arrives at the next-hop router i+ 1. The packet delivery delay

di,i+1, which includes the queuing delay, processing delay and transmission delay, is

50

2

3

4

5 61

AS:(2) AS:(3,4)

AS:(5)

AS:(5)

AS:(6)

ingress router egress router

Figure 5.2: Loop-free action space (AS) refining. There exist two loop-free paths
between the ingress router and egress router. For each router, we refine the action
space (AS) for each router in the network that two routing paths traverse through.The
RL algorithm will explore the actions in the refined action space to learn loop-free
routing paths.

a random value measured in real-time by in-network telemetry module introduced

in the next section. The return Gi =
∑T

k=i rk is the total reward from intermediate

state si to final state sT , where si and sT are the states when a FL packet arrives at

the relay router i and destination router T , respectively. Let s1 be the initial state

when a FL packet enters the network from its source router. The source/destination

router is the router that a worker or the server is attached to. The objective is to find

the optimal policy πi for router i so that the expected return J(π) from the initial

state (i.e.,E2E server-worker delay) is optimal, where J(π) = E[G1|π] = E[
∑T

i=1 ri|π]

where π = π1, ..., πN .

5.2.2 Convergence Optimization via Multi-agent Reinforcement Learning

To solve the above MA-MDP problem, we exploit the multi-agent reinforcement

learning, where the routers (agents) distributively learn the optimal target forwarding

policy π to minimize the average server-worker delay. To implement the multi-agent

reinforcement learning algorithm, we adopt a distributed actor-critic architecture sim-

ilar to asynchronous advantage actor-critic (A3C) [37, 26], where each router individ-

ually runs a local critic and a local actor,

51

5.2.3 Loop-free Action Space Refining

The MA-RL routing is one kind of the distributed routing algorithms. However, the

key idea of RL is to improve the policy by learning from experiences including failures.

Therefore, an agent can freely explore and learn all possible routing paths including

the ones with loops, where the data packets continue to be routed within the network

in an circle. Our experiments show that the routing loops can have a catastrophic im-

pact on a RL-based networking, such as the slowly converged routing policy and TCP

disconnections between the server and workers. To address this problem, we propose

a action space refining algorithm, which aims to construct the loop-free action spaces

for each router in such a way that the routers can independently and distributively

explore any forwarding action (i.e., the next-hop router) from such refined action

space, while avoiding generating routing paths with loops. The refined action space

is defined with respect to each pair of ingress and egress routers. The ingress router

is the router from which the FL traffic flow enters the network and the egress router

is the router from which the FL traffic leaves the network. Therefore, the maximum

number of action spaces constructed on each router is equal to 2N , where N is the

total number of routers in the network. The action space refining algorithm works

as shown in the Fig. 5.2. First, build the global network topology. Then, find all

the loop-free paths between the ingress router and egress router by applying iterative

depth-search-first (DSF) traversal or K-shortest path finding algorithms (with suffi-

ciently large K). Next, for each router, there may exist multiple paths traversing it

and its action space is a set of the next-hop nodes of all the traversing paths. It is

easy to prove that employing such refined and loop-free action spaces, our MA-RL

forwarding scheme will surely learn the routing paths without loops.

It is worth to note that the action space refining algorithm is only performed by

a network controller which has the global network topology. The implementation

details are shown in the next section.

52

5.3 RL Application

RL routing solution is developed as a network application that can access and pass

messages using core services REST API. The first step to implement an Actor-Critic

RL algorithm (Section 5.2) is to build the Q-table based on the local topology infor-

mation retrieved from the network state database as shown in Figure 5.1. Following

this, we can initiate the Q-table using the estimated Q-values E(ri +Qi+1) stored in

the database. Actor disseminates the routing control decisions following the critics

and policy π to the OpenFlow manager. OpenFlow manager translates the RL de-

cisions into actionable OpenFlow datapath instructions for orchestrating the packet

forwarding behavior. To accelerate the RL policy convergence, the loop-free action

space is calculated by the action space refining application (Section 5.2.3). This ap-

plication is running on the network controller, which has the global network topology

readily available via the topology discovery module. Our topology discovery module

can operate in either a centralized or distributed manner. The centralized approach

directly uses the link layer discovery protocol (LLDP) that is initialized and coordi-

nated by the network controller. For the distributed approach, each router discovers

its one-hop neighbors via IEEE 802.11 local topology discovery scheme and the lo-

cal typologies from all the routers are then aggregated by the network controller to

form the global topology. It is worthy to note that both the network controller and

wireless routers employ the same federated network subsystem shown in Figure ??,

except that the network controller runs an additional action space refining applica-

tion. This implementation enables online reinforcement learning which updates Q

table in real-time. Therefore, it does not require to train in a simulated environment

before deployment to real physical wireless routers.

Besides the Q table, we can also adopt different function approximations such as

neural networks for non-linear Q value approximations especially when more network

states are utilized, such as traffic matrix and queue lengths. However, this can raise

53

additional concerns related to computation requirements for deployment. Adoption

and investigation of different nonlinear function approximation is out-of-scope of this

paper, leaving them as a future work.

Programmable Wireless Router

Telemetry Enabled Datapath
(INT – OfSoftswitch13)

MAC80211

WiFi - 1 WiFi - 2 WiFi - 3

PHY

Control

W
iN

O
S

-
Da

ta
pl

an
e

Nvidia Jetson Xavier NodeGateworks Multi-Radio Router

Federated Computing

Da
ta

se
ts

Co
m

pu
te

Co
m

m
un

ic
at

io
n

TFDS LEAF
Custom

Dataset

Data Filter
Data

Sampler
Data Meta

GRPC

REST-API

ProtoBuf

JSON

End-Point Router
(FEDEDGE COM

Protocol)

Model Repo

Training

Coordinator

(Server / Client)

Optimizer

FL Algorithms

(Generic FedAvg)LocalGlobal

ML Backend

(Tensorflow)

Send Recv

Training Engine

Transport Layer

Ne
tw

or
k

Co
re

RL
 A

pp

Flow

Manager
Topology

Discovery

Telemetry

Manager

Line-speed Q

Estimator

Netlink

NorthBound Protocol – REST API

π
Q-Network

Q-table

Actor Crtic

SouthBound Protocol - OpenFlow

Radio Intf

Control

Network State

Database

Figure 5.3: EdgeML - Testbed Topology and Node View

54

5.4 System Implementation

5.4.1 Overall Implementation

We prototype our EdgeML system with a mesh topology as shown in Figure 5.3.

This testbed consists of 10 Nvidia Jetson Xavier nodes, each of which is connected

to one Gateway 5400 multi-radio wireless router. Each Nvidia Jetson node serves as

federated computing node which handles the federated learning training. In addi-

tion, the network core and RL-app of federated networking subsystem are also hosted

on Nvidia Jetson node. On the other hand, Gateworks routers serve as federated

networking node that only hosts a dataplane submodule. The dataplane is orches-

trated using OpenFlow protocol by the network core services hosted on Nvidia jetson

node. Such decoupled system design allows resource-rich Nvidia nodes to handle

the computation-intensive FL operations and RL-based networking intelligence while

keeping the operations of resource-limited routers simple and fast.

5.4.2 Federated Networking Subsystem Implementation

Our multi-radio wireless federating networking nodes (Gateway routers) are off-

the-shelf small-factor single-board computers which support Linux operating systems

with multiple PCIe slots for adding wireless radio cards. In our testbed, we deployed

Ubuntu 20.04 as the operating system and 3 x Compex WLE900VX-I wireless cards

to enable multi-radio wireless nodes. Each wireless radio is set to operate on 5 Ghz

channels and 20 Mhz channel width in 802.11ac operating mode with 15 dBm trans-

mission power. As a result, each wireless router in our testbed can reach roughly 40

Mbps aggregated data rate from three radio cards. On top of the node operating

system, we deploy a dataplane submodule that facilitates a software bridge with a

programmable packet handling routine (i.e OpenFlow Flowtable). All three wireless

cards were configured to operate on disjoint channels, and then they were added to

OpenFlow bridge as OpenFlow ports. Since our router is embedded hardware with

55

limited computation power and cpu cores, the timely availability of CPU processing

cycle is essential for seamless performance. Hence, in our testbed, we explicitly define

CPU cores for the OpenFlow process by using Linux Taskset functionality. It is worth

to note that our proposed experiential framework is relying on OpenFlow/SDN pro-

grammable routing table to implement the RL routing policy. Therefore, there will

be additional computation costs with the trade-off for fully programmable network

stacks.

• Vns1: 172.16.1.1

• Veth1: 172.16.1.2

• Eth0: 172.16.1.200

• Eth1: 172.16.1.100

• Br0: 172.16.1.10

NS1
vns1

br0

veth1

eth0

Router

eth1

NS2
vns2

veth2

172.16.1.100

172.16.1.1 172.16.1.2

172.16.1.10

Figure 5.4: Federated Computation - Namespace Isolation

5.4.3 Federated Computing Subsystem Implementation

A federated computing system is deployed in Nvidia Jetson Xavier node with has

16GB combined RAM for GPU and CPU. Jetson nodes come with Ubuntu 20.04

operating systems and TensorFlow packages as part of the hardware. In our testbed,

each jetson node can host different number of FL worker nodes. Since the primary

goal of our experiment is to study the impact of wireless networking on FL, we

enabled isolation only at the network level using network namespace. The main

56

Table 5.1: FL Hyperarameters

Parameter FEMNIST CNN CIFAR-10 MobileNet

Number of global rounds 30 70-80
Number of local iterator 10 10
Batch size 32 100
learning rate 0.01 0.1
Model size 5.8 Mbytes 7 Mbytes

advantage of such approach is that, within the single hardware we can deploy multiple

workers with isolated TCP/IP layer. Figure 5.4 shows the schematic of the namespace

virtualizated network for worker on each jetson node. On each jetson node, we create a

virtual bridge using Linux brigde-utils and then we create namespaces for each worker.

Following that, the interfaces from the namespace is added to the newly created bridge

using virtual ethernet pairing. At this point, all workers within each jetson node

can communicate independently. To facilitate external connectivity, nodes master

ethernet interface is also added to the same bridge. Finally, each worker can be

launched from their respective namespace by executing the API scripts.

5.5 Experimental Evaluation

We conduct extensive experiments to evaluate the effectiveness of our proposed

networked-accelerated FL system on our physical testbed. We will compare the

performance of our proposed RL-based federated networking with widely-adopted

production-grade wireless networking protocol BATMAN-ADV [38] under a variety

of settings by varying the number of workers, the percentage of stragglers, and worker

location distributions.

5.5.1 Experiment Setup

Model and Dataset: Our experiments consider image classification tasks on FEM-

INIST and CIFAR-10 datasets. Two different models are used in the training experi-

mentsâa shallow two layers of CNN model and MobileNet, whose weights are updated

57

using federated learning.

• FEMNIST CNN: We first use FEMNIST, the federated version of MNIST [39]

on the LEAF[40] character recognition task, where LEAF is a benchmarking

framework for federated learning. FEMNIST consists of handwritten digits

(10), uppercase (26), and lowercase (26) letters leading to a total of 62 classes

with each image having 28×28 pixels. The whole dataset is partitioned into

3550 data portions/users with Non-IID data distribution. In our experiments,

we sub-sampled the dataset by 0.02%, yielding 71 users.

Initially, we evenly distribute these users among three edge routers R9, R10,

and R2 as shown in Figure 5.3. For each router, we assign three active workers

with each active worker consisting of 7–8 users, and one of the 7–8 users will

become the active worker at each global round/epoch of federated training. We

employ a convolutional neural Network (CNN) model during testing. The CNN

model has two convolution layers, with 32 and 64 filters respectively. Each

convolutional layer was followed by a 2x2 max pooling layer. The convolutions

were followed by a fully connected layer with 128 units with ReLU activation. A

final fully connected layer with softmax activation was used as the final output

layer. The model has a size of 5.8 Mbytes.

• CIFAR-10 MobileNet: To demonstrate the feasibility of a real-world scenario,

we introduce the CIFAR-10 dataset [41] and the MobileNet model [42]. CIFAR-

10 has 10 classes, 50,000 training samples, and 10,000 testing samples. We used

the Dirichlet distribution Dir(β) to build Non-IID heterogeneous partitions for

all workers. The value of beta is 0.5, determines the degree of heterogeneity.

To train the CIFAR-10 dataset, we use a MobileNet model, a class of efficient

network architectures for low power computing devices such as the Nvidia Jetson

Xavier platform. To deploy multiple models in resource-constrained hardware,

58

we reduced the width size of the model to be thinner with a width multiplier

(α) of 0.5, and set the input resolution of the network to 224. Our model has a

size of 7 Mbytes.

Baseline Federated Networking Protocol: To compare the performance of our

proposed RL based routing for federated learning, we chose the state of the art mesh

routing protocol, BATMAN-Adv [38] as the baseline. BATMAN-adv is implemented

as a layer 2 proactive routing protocol based on distance vector and radio link based

reliability as the routing metric. In addition, each node only maintains route in-

formation to the next node by which the final destination can be reached. Since

each node only requires next hop information towards the destination node, global

exchange of routing information is not necessary. From the aforementioned opera-

tion of BATMAN-adv, we identified it as the best candidate for comparison as the

operation of our RL routing scheme also utilizes only next hop nodes information.

Moreover, to the best our knowledge, BATMAN-Adv is the only multi-radio mesh

routing protocol that works out of the box on Linux systems as it is embedded within

the Linux kernel for optimized operation. During the experiments, we directly use

the production-grade BATMAN-Adv protocol provided by Linux system.

RL-based Federated Networking Protocols: We study two online learning RL-

based networking algorithms including on-policy greedy algorithm and on-policy soft-

max algorithm. As introduced in Section 5.2, on-policy greedy algorithm uses greedy

policy for both target policy and behavior policy. For on-policy softmax, both target

policy and behavior policy use softmax-greedy policy defined in eq. (??).

Hyperparameters: For FL, we use the batch size of 100 and learning rate of 0.1.

For MA-RL, we use the learning rate of 0.7 for both RL approaches and temperature

τ is set to be 2 for on-policy softmax. We did hyperparameter search for τ and it

shows that different values of τ do not lead to significantly different performance.

59

0 5 10 15 20 25 30
Global Rounds

1.000

1.500

2.000

2.500

3.000

3.500

4.000

Lo
ss

Batman-adv
On policy greedy
On policy softmax

(a) Iteration loss convergence

0 10 20 30 40
Wall Clock Time (Minutes)

1.000

1.500

2.000

2.500

3.000

3.500

4.000

Lo
ss

Batman-adv
On policy greedy
On softmax

(b) Wall-clock loss convergence

Figure 5.5: Loss convergence comparison of BATMAN-Adv, on-policy greedy, and
on-policy softmax with 9 workers

0 5 10 15 20 25 30
Global Rounds

0.100

0.200

0.300

0.400

0.500

0.600

0.700

Ac
cu

ra
cy

(a) Iteration accuracy convergence

0 10 20 30 40
Wall Clock Time (Minutes)

0.100

0.200

0.300

0.400

0.500

0.600

0.700

Ac
cu

ra
cy

(b) Wall-clock accuracy convergence

Figure 5.6: LEAF and 2-CNN: Validation Accuracy convergence comparison of
BATMAN-Adv, On-policy greedy, and On-policy softmax with 9 workers

5.5.2 Main Results

5.5.3 FL iteration and wall-clock convergence

As shown in Figure 5.5 and 5.6, all three federated networking protocols lead to the

same iteration convergence performance in the sense that they achieve the same loss

or validation accuracy after running the same number of epochs. This is as expected

because they use the same underlying federated training algorithm. However, RL-

based federated networking protocols can achieve much better wall-clock convergence

performance, compared with the baseline protocol. This is because RL algorithms can

minimize the per-epoch duration by learning the delay-minimum forwarding paths for

60

0 50 100 150 200 250
Wall Clock Time (Minutes)

0.800

1.000

1.200

1.400

1.600

Lo
ss

Batman-adv (μ = 0, 50% stragglers)
Batman-adv (μ = 0, 90% stragglers)
Batman-adv (μ = 0.9, 50% stragglers)
Batman-adv (μ = 0.9, 90% stragglers)
On-policy greedy (μ = 0.9, 90% stragglers)
On-policy softmax (μ = 0.9, 90% stragglers)

Figure 5.7: LEAF and 2-CNN: Loss Convergence Time after 170 global rounds under
different routing protocols

model exchange between the server and workers.

0 20 40 60 80 100
Wall Clock Time (Minutes)

1.800

1.900

2.000

2.100

2.200

2.300

Lo
ss

Batman-adv
On-policy greedy
On-policy softmax

Figure 5.8: CIFAR-10 and MobileNet: Loss Convergence Time after 70 global rounds
under different routing protocols

61

5.5.4 Results of Loss Convergence on CIFAR-10 and MobileNet

Figure 5.8 presents the performance comparison of CIFAR-10 and MobileNet with

different routing algorithms in terms of loss convergence and wall clock convergence

time. The results become more promising with a larger model size, which lead to

higher FL traffic in the network. Both RL routing solutions reach the same loss

convergence by around 70 and 79 minutes, respectively, approximately 35 minutes

faster than the BATMAN-Adv baseline routing, which takes almost 110 minutes to

achieve the same loss convergence.

3-3-3 2-5-2 2-4-3
Worker Assignment Distributions (9 workers)

0

20

40

60

80

100

120

140

160

To
ta

l W
al

l C
lo

ck
 T

im
e

(M
in

ut
es

)

113.4
117.6 117.4

94.0 94.2
99.2

89.1 87.2
96.4

Batman-adv
On policy greedy
On policy softmax

Figure 5.9: LEAF and 2-CNN: Total convergence time comparison of Batman-adv
routing (black), On-policy greedy (grey), On-policy softmax (light blue), and Compu-
tation time (red hatched) under different worker location distributions after 80 global
rounds.

62

5.5.5 Impact of worker location distribution

In Fig 5.9, we investigate how worker location distribution affects the FL conver-

gence performance. We study the total FL convergence time, FL computing time,

and FL networking time by varying the number of workers that are connected to the

three edge routers (R9, R10, R2). We study three node distributions (3-3-3, 2-5-2,

2-4-3) with a total number of 9 workers. It is evident that the RL-based federated

networking can consistently outperform the baseline networking protocol under dif-

ferent node distributions and achieve up to 25% convergence speedup, compared with

the baseline. Moreover, when the network becomes congested, RL-based federated

networking protocols lead to a higher performance gain because they can learn to

maximize the network resource utilization to better distribute FL flows among all

available forwarding paths. This advantage is shown under 2-5-2 worker distribution,

where the router R10 needs to serve 5 workers, which induces higher FL traffic volume

and a higher level of network congestion around router R10. In this case, on-policy

softmax policy leads to the 25% speedup, which is the maximum one among the three

node distributions. Regarding RL-based approaches, on-policy softmax outperforms

on-policy greedy for all three cases. This is due to the fact that on-policy softmax

can proportionally distribute the traffic flows among the available forwarding paths

according to the E2E delay of each path. Such approach could be more effective to

distribute the traffic loads. In addition, it is observed that the majority of total run

time came from communication time while the computation time (around 8 minutes)

only contributes to a small portion of the total training time. Therefore, optimizing

the federated networking performance is very beneficial to accelerate FL convergence

in multi-hop edge computing networks.

63

9
(0-2-5-2-0)

10
(0-2-6-2-0)

11
(0-2-6-3-0)

12
(0-3-6-3-0)

13
(0-3-6-3-1)

14
(1-3-6-3-1)

Total Number of Workers
 (Worker Location Distribution)

0

10

20

30

40

50

To
ta

l W
al

l C
lo

ck
 T

im
e

(M
in

ut
es

)
29.48

33.29
36.24

39.04 40.13
42.21

23.16
26.00

28.13
30.40

33.00
34.49

Batman-adv
On policy softmax

Figure 5.10: LEAF and 2-CNN: Total convergence time comparison of Batman-adv
routing (black), On-policy softmax (light blue), by varying total number of workers
and location after 20 global rounds.

5.5.6 Scalability Analysis

In Fig. 5.10, we evaluate the FL convergence time by varying the number of workers

attached to five edge routers (R9, R10, R2, R3, R8) with a total number of workers

(9 , 10, 11, 12, 13, 14). As the number of workers increases, the convergence time

of both RL-based approach and baseline protocol increases. This is because as more

workers participate, the total FL traffic volume injected into the network increases

and gradually approach the maximum network capacity. This leads to prolonged E2E

delay and model training time. However, as shown in Fig. 5.10, RL-based approach

keeps outperforming the baseline scheme consistently and reduce the total time by

23%. That is, it is able to learn the delay-minimum forwarding paths even if the

network becomes congested.

We only experimented with 6 and 9 workers for CIFAR10 and MobileNet because

of resource-constrained hardware, as the Nividia Jetson node can only support up

64

(6) Workers (9) Workers
Total Number of Workers

0

20

40

60

80

100

120

To
ta

l W
al

l C
lo

ck
 T

im
e

(M
in

ut
es

)
86.0

104.3

58.0

76.7

53.0

69.0

Batman-adv
On policy greedy
On policy softmax

Figure 5.11: CIFAR-10 and MobileNet: Total convergence time comparison of
Batman-adv routing (black), On-policy softmax (light blue), by varying total number
of workers after 70 global rounds.

to 3 workers per device. As shown in Fig. 5.11, we observed the similar trend as

the number of workers increases, the convergence time of all routing algorithms also

increases. However, the RL-based method continues to outpace the baseline scheme,

which resulted in a 30% reduction in overall time, while achieving the same level of

loss and a final accuracy of 68%.

5.5.7 Conclusion

In this chapter, we present network-accelerated FL over wireless edge by opti-

mizing the multi-hop federated networking performance. We first formulate the FL

convergence optimization problem as a Markov decision process (MDP). To solve such

65

MDP, we propose the multi-agent reinforcement learning (MA-RL) algorithm along

with loop-free action space refining schemes so that the delay-minimum forwarding

paths are learned to minimize the model exchange latency between edge workers and

the aggregator. To fast prototype, deploy, and evaluate our proposed FL solutions, we

develop EdgeML, which is the first experimental framework in the literature for FL

over multi-hop wireless edge computing networks. Moreover, we deploy and imple-

ment a physical experimental testbed on the top of the widely adopted Linux wireless

routers and ML computing nodes. Such testbed can provide valuable insights into the

practical performance of FL in the field. Finally, our experimentation results show

that our RL-empowered network-accelerated FL system can significantly improve FL

convergence speed, compared to the FL systems enabled by the production-grade

commercially-available wireless networking protocol, BATMAN-Adv

CHAPTER 6: SCALABLE AND ROBUST AIOT VIA DECENTRALIZED

FEDERATED LEARNING

6.1 Overview

The overall objective of this chapter is to present a robust Decentralized Feder-

ated Learning (DFL) solution that leverages single-hop connections to significantly

enhance network performance within the context of Artificial Intelligence of Things

(AIoT). In this chapter, we delve into the challenges posed by existing Federated

Learning (FL) approaches and introduce a novel DFL framework designed to over-

come these challenges.

Our primary focus is to revolutionize the landscape of FL within AIoT by address-

ing the limitations of centralized approaches. To achieve this, we develop a DFL

framework that capitalizes on single-hop connections, aiming to optimize network

efficiency and scalability while preserving data privacy.

Recognizing that the central model aggregation server in traditional FL setups

can lead to communication bottlenecks, we propose a solution that is both robust

and decentralized. This DFL framework offers the flexibility of operating in both

synchronous (Sync-DFL) and asynchronous (Async-DFL) modes, empowering AIoT

systems to adapt to varying conditions and device capabilities.

Async-DFL, in particular, emerges as a pioneering approach within the literature.

It serves as a fully asynchronous FL framework that eliminates worker waiting, a

critical advancement for AIoT environments marked by heterogeneous devices with

varying computing and networking speeds.

Throughout this chapter, we not only present the theoretical underpinnings of our

DFL framework but also provide insights into its practical implementation, deploy-

67

ment, and experimentation. Our findings from simulations and real-world testbeds

underscore the transformative potential of Async-DFL. It stands out by accelerating

model convergence twice as fast as the conventional centralized FL, all while main-

taining convergence accuracy and effectively mitigating the impact of stragglers.

Central Sever

Global Model

Local Dataset Local Model

Local Dataset Local Model

Local Dataset
Local Model

Perform Local SGD for k itera�ons

1
Distribute Updated

Global Model to Devices
3

2 Global Model Aggrega�on:

Local Model

Global Model

AIoT Node

Local Model Updated

(a) Central-server Federated Learning

Local Dataset Local Model

Local Dataset Local Model

Local Dataset Local Model

Local Model

Neighbor Model

AIoT Node

Local Dataset Local Model

AIoT Node AIoT Node

AIoT Node

1

2

3
4

3

4 Local Model
Aggrega�on

Synchronous Asynchronous

Buffer Time-out

Wait for neighbor
models

1 2 3

2 Broadcast model to
1-hop neighbors

Perform final global
model averaging 5

Local Training
Process

For t = 1,2,.., T Do (t:round index)

Local Model update: 1

(b) Decentralized Federated Learning

Figure 6.1: Federated Learning (FL) in IoT Network. (a) Classical centralized FL.
(b) Decentralized FL

6.2 Centralized Federated Learning

Centralized Federated Learning (CFL) addresses a fundamental challenge in ma-

chine learning: how to efficiently harness data and computational power for rapid

model training. Unlike traditional centralized approaches that heavily burden a sin-

gle powerful machine to collect data from IoT edge devices, CFL introduces a more

efficient and privacy-conscious paradigm.

In CFL, data on IoT devices remains untouched by external sources. Instead, it

employs two crucial components: workers and aggregators. Workers represent the

edge devices responsible for training local models using their data, while aggregators,

often central servers, manage the coordination.

In the training process, a common neural network model is initially distributed to

all worker devices. These workers, each starting with an identical untrained model,

iteratively update their local models through a combination of local Stochastic Gradi-

ent Descent (SGD) iterations and global model averaging. Local SGD iterations aim

68

to minimize the training loss by conducting mini-batch SGD updates, while global

model averaging occurs when worker devices send their local models to aggregators

for consolidation. The updated global model is then broadcast back to the workers,

and the training cycle continues.

This approach significantly reduces the computational burden on a central server

and mitigates privacy concerns associated with data exposure. Moreover, centralized

federated learning algorithms, like FedAvg and its variants, are specifically designed

to tackle distributed training challenges in non-convex optimization problems with

training loss minimization as the primary objective. This paradigm offers a powerful

solution for collaborative machine learning without compromising data privacy or

computational efficiency.

6.2.1 Challenges of CFL

While CFL represents a significant departure from the traditional centralized paradigm

towards distributed machine learning, it’s important to recognize that it still faces

certain issues due to its centralized model aggregation approach. Similar to cen-

tralized methods, CFL encounters an inherent communication bottleneck within the

system. Despite distributing the computational load for training, network traffic re-

mains centralized at a single point, placing significant strain on the central server’s

throughput and underutilizing available network bandwidth. Additionally, CFL of-

ten grapples with multi-hop communication, which further hampers its performance.

Consequently, CFL tends to favor network topologies like star networks, where all

workers can send their models in a single hop. However, this preference for specific

topologies limits flexibility and scalability, especially when compared to the more

practical IoT mesh networks commonly found in real-world applications. These chal-

lenges can hinder CFL’s development and adoption in various scenarios.

69

(a) Synchronous DFL (b) Asynchronous DFL

Figure 6.2: In Synchronous DFL, workers keep time by waiting for the slowest workers
to fill their buffers before aggregating. In Asynchronous DFL, the faster workers
aggregate immediately no matter how full the buffer is, which allows them to avoid
waiting but necessitates program robustness to handle communication at any time.

6.3 Decentralized Federated Learning

6.3.1 Generic Decentralized FL Framework

In our Decentralized Federated Learning (DFL) approach, each worker communi-

cates with its one-hop neighbors and shares the aggregation responsibility, as illus-

trated in Fig. 6.2. Instead of sending their local model to a central server, workers

exchange copies of their models with nearby peers. This means that each worker is

an aggregator for their local model and those of their neighbors, without handling

the complete aggregation burden at once.

Our DFL leverages fast single-hop wireless connections, unlike the multi-hop na-

ture of centralized federated learning. This allows workers to operate independently,

without requiring knowledge of the broader network or central server supervision.

This independence grants our framework flexibility, robustness, and scalability.

Fig. 6.2 depicts our versatile DFL framework, which can be configured for ei-

ther synchronous DFL (Sync-DFL) or asynchronous DFL (Async-DFL) modes. Both

modes share a similar local training procedure involving local model updates, model

broadcasting among one-hop neighbors, model reception, and local model aggrega-

tion. This process repeats until reaching a predefined number of training epochs.

After local training, each worker sends its local model to the global aggregation node,

70

which performs the final global model aggregation, yielding the inference model for

IoT devices. The global aggregation node can be a gateway device connecting IoT

networks to the Internet or a randomly selected IoT device.

Sync-DFL and Async-DFL differ in their local model aggregation triggers and last-

round global aggregation strategies. In Sync-DFL, aggregation begins when the model

buffer is full, synchronizing all workers’ training rounds. In Async-DFL, aggregation is

time-triggered, with workers maintaining their own training round counters, allowing

for asynchrony.

A key feature of our framework is the model buffer, serving dual purposes. First, it

facilitates implicit inter-device synchronization in Sync-DFL. Second, it offers a flex-

ible tradeoff between training convergence speed and model quality. Each model rep-

resents a unique data subset, and aggregating more models improves overall training.

Sync-DFL maximizes quality but requires some workers to wait, while Async-DFL

adjusts the tradeoff based on buffer arrivals before aggregation.

Synchronous DFL (Sync-DFL): With synchronous DFL, the workers follow two

converse rules. First, they only aggregate once they have a full buffer, and second,

they will always wait for their stragglers before beginning their own next round of

training. Essentially, the worker’s buffer functions as a clock to keep time with the

rest of the network, as illustrated in Fig. 6.2. Each worker works in the same global

round and generally begins their model broadcasting at a similar time. Once each

worker finishes their broadcasting, they begin checking to see whether their buffer

is full. If the buffer is not full, the worker knows that it is outpacing the network

and will wait until the buffer is full to proceed. Therefore, the workers aggregate

within a similar time, emptying their respective buffers and then moving on to the

next round’s training.

Asynchronous DFL (Async-DFL): Async-DFL takes a divergent approach

compared to Sync-DFL. Instead of having workers wait to ensure an ideal or near-ideal

71

aggregation, it allows workers to proceed regardless of the buffer’s status. Workers

will always have at least their own model to aggregate, even if the buffer is other-

wise empty. Optionally, they may include an adjustable timer to allow other workers

to catch up. Over time, faster workers gradually outpace their slower counterparts,

resulting in workers sharing models with their neighbors regardless of their current

training epoch step, as shown in Fig. 6.2. This leads to workers training on differ-

ent epochs, with the stragglers eventually completing their training independently,

without further broadcasts from their faster peers.

The Async-DFL approach enables faster workers to progress without waiting for

stragglers. Moreover, this asynchronous design allows concurrent operation of com-

putation and networking, with model aggregation occurring alongside model trans-

mission. Although reduced model sharing may make Async-DFL more susceptible

to overfitting, especially with smaller buffer sizes, practical scenarios often involve

workers aggregating with partially filled buffers, countering overfitting as conver-

gence progresses. Given that worker communication tends to be the limiting factor

for epoch speed, avoiding unnecessary delays or redundant communication is crucial

for optimizing convergence speed.

6.4 Simulation and Physical Testbed Evaluation of FL Management Modes

In our set of experiments, we investigate and study how Sync-DFL and Async-DFL

efficiently improve the convergence speed and performance of FL in both a simulated

environment and a live network testbed. Our results are based on a set of experiments

in which we first ran a model training on the network in the centralized as well as

decentralized, synchronous and asynchronous cases.

6.4.1 Experiment Setup

Heterogeneous Data Settings and Models: We utilized two benchmark datasets

for federated learning: FEMNIST, which consists of 62 classes, and CIFAR-10, com-

72

R3

R4

R5

R6

R7

R9

W4W1 W7

W2 W5

W3 W6

R2

W9

W8

R1

R8

Server

R13

W13

W15

W14

R14

R10

R12

W10

W12

W11

R11

R15

Straggler

(a) Simulated Network Topology

435G

435F

435E

435D

435C

435B

435A

Worker
10

423C

423B

423A

430E

430D

430C

430A

R9

410H

410G

410F

410E

410D

410C

410B

410A

409

403E

403D

403C

403B

403A

R3

402A / 402
401

405
431

432A / 432B

STR1

409

409

R10

R1

R6 Worker
6

Worker
3

437

R7
Worker

7

411

436

425
424

422C

432A / 432B

R4

R2

R8

R5

Worker
1

Worker
8

Server

Worker
2

Worker
4

Worker
5

Straggler

430B

Worker 9

(b) Testbed topology

Figure 6.3: IoT Multi-hop Network topologies

prising 10 classes. Our data partition strategy for both datasets followed the non-IID

(Non-Independently and Identically Distributed) settings, utilizing a realistic parti-

tioning method from LEAF. In the case of CIFAR-10, we introduced data heterogene-

ity by employing the Dirichlet distribution Dir(β) to create uneven data partitions

for all worker nodes. The level of data heterogeneity was controlled by the value of

beta, which was set to 0.5 in our experiments. To simulate computation and com-

munication heterogeneity, we introduced a training delay of 40 seconds for straggler

nodes.

Our convolutional neural network (CNN) architecture consists of two convolutional

layers, followed by a fully connected layer, and utilizes local Stochastic Gradient

73

Descent (SGD). The first convolutional layer has 32 filters, while the second has

64 filters, both connected via a 2x2 max-pooling layer. The fully connected layer

comprises 128 units with Rectified Linear Unit (ReLU) activation and feeds into

the final layer, which is fully connected with softmax activation. The size of the

final layer’s model is approximately 5.8 megabytes, representing a low communication

overhead. Additionally, we conducted evaluations using the CIFAR-10 dataset with

a deep neural network model called MobileNet [42], which has a model size of around

15 megabytes, resulting in significantly higher communication traffic.

sCFL Baseline and DFL Implementations: We employed our custom-designed

FedEdge experimental framework [43] to implement the CFL, Sync-DFL, and Async-

DFL solutions. As a CFL baseline, we utilized the widely-adopted FedAvg [44] al-

gorithm. FedEdge [12, 45, 43] serves as a software-defined experimental platform,

encompassing a federated computing module powered by TensorFlow and a software-

defined wireless multi-hop networking module based on Mininet-wifi [46].

FedEdge stands out as the pioneering experimental framework in the literature tai-

lored for Federated Learning (FL) over multi-hop wireless edge computing networks,

such as IoT networks. This framework enabled us to rapidly prototype, deploy, and

evaluate novel FL algorithms, alongside machine learning-based system optimization

techniques, both in simulated environments and with real wireless devices. While

the experimental framework FedML [44] has been employed to explore Sync-DFL

possibilities, it primarily serves as a benchmarking tool rather than a platform for

live-running experiments. It lacks the setup necessary for results in real-world appli-

cations and does not support the versatile Decentralized FedML framework, which

encompasses both Sync-DFL and Async-DFL capabilities.

Physical Testbed Setup: We utilized a physical multi-hop wireless edge com-

puting network as our IoT network testbed [43]. This testbed comprised ten wireless

edge computing nodes, each equipped with a wireless embedded router for commu-

74

nication and an Nvidia Xavier node for computation. The wireless routers featured

three wireless interface cards to enable multi-radio functionality. Each mesh router

operated in Mesh Point (MP) mode, with fixed 2.4 and 5 GHz channels, a 20 MHz

channel width in 802.11ac mode, and a transmit power of 15 dBm. To establish dis-

tributed multi-hop routing, we employed the state-of-the-art Batman-adv protocol,

which facilitated server-to-worker communication in the Sync-DFL case. Specifically,

we connected a server to R1, and worker 9 was designated as a straggler with a

40-second delay.

Each experiment spanned 30 global epochs and comprised 5 local rounds. We used

a batch size of 10 and a learning rate of 0.002 for both the CNN (2Conv + 2FC) and

MobileNet models.

Network Simulation Setup:

In the initial phase of our evaluation, we assessed the performance of our FL solu-

tions within a FedEdge simulator [45]. To validate and analyze the generic decentral-

ized FL framework’s performance, we established a wireless multi-hop IoT network

with a 5x3 grid topology, featuring 15 workers, as depicted in Fig 4.2. The link band-

width was set at 24 Mbps, with each worker’s neighbors being the workers located

one hop away in cardinal directions. In the context of centralized FL, worker 1 served

as the network’s server node while simultaneously participating as a worker.

For our straggler scenario experiments involving the CIFAR10 dataset, we desig-

nated worker 14 (five network hops away from worker 1) as the straggler by intro-

ducing a 40-second delay for each training epoch. This delay simulated either the

limited computing power of IoT devices or a drop in CPU performance. Each run

encompassed 5 local rounds per global epoch, with a batch size of 10, a learning rate

of 0.002, and 50 global rounds.

75

(a) Testbed: LEAF (CNN)
(No straggler)

(b) Testbed: CIFAR-10 (Mo-
bileNet)
(No straggler)

(c) Simulation: CIFAR-10 (Mo-
bileNet)
(No straggler)

(d) Testbed: LEAF (CNN)
(with straggler)

(e) Testbed: CIFAR-10 (Mo-
bileNet)
(with straggler)

(f) Simulation: CIFAR-10 (Mo-
bileNet)
(with straggler)

Figure 6.4: Comparison of Centralized and Decentralized Federate Learning perfor-
mance in Simulation and Testbed environments (LEAF and CIFAR-10), each with
cases for having no straggler or having a straggler with a 40s per local training round.

76

6.4.2 Performance and Communication Comparisons

To assess model convergence, we examined the learning curves and wall-clock time

required to reach specific testing accuracy thresholds (0.5, 0.6, 0.7, and 0.75) for all

methods, where all methods ultimately achieve the same maximum accuracy of 0.75

(Fig. 6.4).

Model Convergence without Stragglers: Fig. 6.4 (a), 6.4 (b), and 6.4 (c)

depict the performance comparison of FL in terms of accuracy and wall-clock conver-

gence time for CFL, Sync-DFL, and Async-DFL in scenarios without stragglers. We

conducted two sets of experiments in the testbed:

For the LEAF dataset with a lightweight CNN model, both Sync-DFL and CFL

achieved similar accuracy levels within comparable time frames (Fig. 6.4 (a)). How-

ever, when using the MobileNet model, which is three times larger than the 4-layer

CNN, CFL exhibited a longer convergence time.

In the simulated scenario with 15 workers using the CIFAR-10 dataset and the

MobileNet model (Fig. 6.4 (c)), both Sync-DFL and Async-DFL reached nearly 0.7

test accuracy in approximately 11 minutes, surpassing CFL, which took around 23

minutes to achieve the same accuracy. All methods ultimately reached a maximum

accuracy of approximately 0.75.

CFL’s extended convergence time can be attributed to the need for each worker to

transmit their updated local model to the central server through lengthy and random

multi-hop communication links within the IoT network. The server also has to wait

for all worker models before proceeding to the next training round. This congestion

of network traffic around the server at router 1 contributes to the delay.

Sync-DFL and Async-DFL, in contrast, only require workers to send their updated

models to their single-hop neighbors, making more efficient use of network bandwidth

and distributing traffic load more evenly. This alleviates congestion around bottleneck

links and significantly reduces model training time without compromising convergence

77

accuracy.

Model Convergence with Stragglers: When introducing a straggler into the

network, all FL solutions experience increased model convergence times, with Async-

DFL being the least affected, as shown in Fig. 6.4 (d), 6.4 (e), and 6.4 (f). Sync-DFL’s

results more closely resemble those of CFL. This is because both Sync-DFL and CFL

rely on synchronized local model training across all workers in the network, and thus

their convergence times are directly impacted by the presence of stragglers. However,

Sync-DFL still achieves faster convergence compared to CFL due to its confinement

of model exchanges to 1-hop neighbors, while CFL continues to face communication

bottlenecks around the central server. This effect is expected to persist as the network

scales.

In the simulated test (Fig. 6.4 (f)), Async-DFL achieves a 0.70 accuracy in about

13 minutes, while both CFL and Sync-DFL reach the same accuracy in approximately

86 and 75 minutes, respectively. This represents a roughly six-fold increase in conver-

gence time compared to Async-DFL. The significant difference in tolerance is visually

evident in Fig. 6.4 (f).

In the testbed, LEAF was employed to illustrate relatively light job loads in a live

environment, while CIFAR-10 posed a more demanding training task. In LEAF with

a straggler, Async-DFL achieves over a 2x and 3x convergence speedup compared

to Sync-DFL and CFL, respectively, when all methods reach the same 70% and

75% accuracies. In the CIFAR-10 testbed scenario, Async-DFL requires 1.5x less

convergence time than CFL and 3x less time than Sync-DFL to reach the same

maximum testing accuracy (75%). In a larger simulated network, Async-DFL achieves

a 7x speedup compared to both CFL and Sync-DFL.

6.4.3 Conclusion

Navigating the escalating demands of AIoT systems, the chapter delves into and

assesses the effectiveness of two distinct decentralized federated learning models, con-

78

structing a versatile and composable decentralized FL framework. The experimental

outcomes underscore the DFL’s eminent convergence performance in multi-hop IoT

networks as compared to the conventional CFL. Furthermore, initial results indicate

that Async-DFL not only accelerates model convergence speed but also exhibits no-

table resilience and robustness in heterogeneous IoT environments, even amidst the

inevitable presence of stragglers. Thus, Async-DFL unfolds as a promising contender,

illustrating substantial potential to achieve an optimal balance between model con-

vergence speed and model quality in subsequent large-scale AIoT networks, meriting

additional investigation.

CHAPTER 7: CONCLUSIONS

7.1 Summary

In reflection, the wave of the AI-digital era has bestowed upon us a cascade of data

usage extending from bustling data centers to intricate IoT devices, necessitating the

emergence of networks that can adeptly marry AI capabilities with advanced network

solutions. The challenges that sprouted alongside, including the convoluted nature

of network layer protocols, the palpable discrepancies noticed between simulated AI

models and their real-world counterparts, and the burgeoning need for decentral-

ized AI training owing to network distribution, presented notable roadblocks in fully

realizing the potential of AI-optimized networks.

In our endeavor to navigate through these challenges, we introduced the AI-oriented

Network Operating System (AINOS), embedding within it two pivotal sub-platforms:

the "Network Gym" and "Federated Computing," each delicately crafted to cater to

AI-driven network training and decentralized training methodologies, respectively.

AINOS has emerged as a consummate toolkit, enabling rapid prototyping, deploy-

ment, and validation of AI-optimized networks, and, crucially, forging a bridge from

simulation to tangible real-world deployment.

Through the potent functionalities of AINOS, we prototyped AI-optimized net-

working solutions, incorporating a secure Reinforcement Learning (RL) strategy for

Traffic Engineering (TE) across both the link and network layers. Our implemen-

tations, spanning from a scalable RL-based traffic splitting mechanism at the link

layer to an online Multi-agent Reinforcement Learning (MA-RL) approach at the

network layer, not only discerned optimal paths in real-time for wireless multi-hop

networks but also carved out innovations in Network Assisted AI optimization. This

80

reduced Federated Learning training times and spawned a sturdy Decentralized Fed-

erated Learning solution, capitalizing on single-hop connections to boost network

performance. The outcomes of our research emphatically underscore the potency of

AI-enhanced networks, especially in adeptly navigating through network heterogene-

ity and latency.

As we look forward, the innovations and findings derived from our work with

AINOS may pave the way for further exploration and development in the realm

of AI-integrated networking, opening up new vistas for research and application in a

world that continues to digitally evolve.

Furthermore, as we approach the advent of 6G technology in the near future, one

prominent direction involves the integration of computation and communication for

the purpose of co-optimization [47, 48, 49, 50, 51].

7.1.1 Future work

Recently, data-driven, reinforcement-learning (RL)-based approaches have shown

great potential in other problems of networking research. In RTC-CC area, Pen-

sieve [52] showed that RL-based bitrate adaptation for VoD can reduce frame stalling

while improving bandwidth utilization. Moreover, OpenNetLab [53] is a first open

platform for offline training of RL-based CC algorithms for RTC. In particular, the

simulator in OpenNetLab is tailored for offline training RL-based CC algorithms for

RTC by connecting a customized gym and WebRTC with ns-3. The simulator creates

real WebRTC sender and receiver instances and performs event driven simulation of

network environment with ns-3. With network traces obtained by probing the real

network environment with measurement, the simulator schedules ns-3 events to sim-

ulate changing network environment (e.g. bandwidth, loss and jitter) as recorded in

the trace. However, using simulated network environments only for learning patterns

in network conditions after being trained with real network traces has limitations

because it can only indirectly optimize QoE by simulating frame statistics for real

81

video traffic applications, which is not realistic in terms of real implementation.

In order to achieve this, we plan to propose the following contributions:

• (1) High fidelity Emulator RL-based CC on FedEdge Emulator [sim-to-real],

which can directly optimize QoE by learning from real frame statistics from real

video traffic in addition to training with varied network conditions. We expect

that this high-fidelity will bridge the gap between the simulated environment,

actual RTC, and the video environment.

• (2) To avoid performance fluctuation due to unsafe policies resulting from the

trial-and-error nature of the exploration in RL, we plan to apply an imitation

learning strategy. In particular, the learning models can be trained in the

proposed high-fidelity emulator, and then the trained models will be directly

deployed, fine-tuned, and tested in real applications.

• (3) To accelerate the training convergence and generalization from various net-

work environments, we aim to adopt Federated Learning (FL) to learn from

massive concurrent video telephony sessions. In this way, the RL model can ex-

plore diverse environments to enrich its experience and converge to a universal

model with swarm intelligence learned from all users.

82

REFERENCES

[1] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing net-
works: A reinforcement learning approach,” in Advances in neural information
processing systems (NIPS), pp. 671–678, 1994.

[2] J. Zhang and D. Tao, “Empowering things with intelligence: A survey of the
progress, challenges, and opportunities in artificial intelligence of things,” CoRR,
vol. abs/2011.08612, 2020. [Online]. Available: https://arxiv.org/abs/2011.
08612.

[3] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Require-
ments for traffic engineering over mpls,” tech. rep., 1999.

[4] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip
routing protocols,” IEEE communications Magazine, vol. 40, no. 10, pp. 118–
124, 2002.

[5] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in software de-
fined networks,” in 2013 Proceedings of IEEE INFOCOM, pp. 2211–2219, IEEE,
2013.

[6] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov,
C. Kiddon, J. KoneÄnÃœ, S. Mazzocchi, H. B. McMahan, T. Van Overveldt,
D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning at scale:
System design,” 2019. cite arxiv:1902.01046.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[8] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero, and A. Cabellos,
“A deep-reinforcement learning approach for software-defined networking routing
optimization,” arXiv preprint arXiv:1709.07080, 2017.

[9] M. L. Puterman, Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

[10] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engineering
through multi-agent reinforcement learning,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 435–442, IEEE, 2019.

[11] P. Pinyoanuntapong, M. Lee, and P. Wang, “Distributed multi-hop traffic en-
gineering via stochastic policy gradient reinforcement learning,” in 2019 IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2019.

[12] P. Pinyoanuntapong, P. Janakaraj, P. Wang, M. Lee, and C. Chen, “Fedair: To-
wards multi-hop federated learning over-the-air,” in Proceedings of IEEE SPAWC
2020, 2020.

83

[13] P. Pinyoanuntapong, P. Janakaraj, R. Balakrishnan, M. Lee, C. Chen, and
P. Wang, “Edgeml: Towards network-accelerated federated learning over wireless
edge,” Computer Networks, vol. 219, p. 109396, 2022.

[14] P. Pinyoanuntapong, W. H. Huff, M. Lee, C. Chen, and P. Wang, “Toward
scalable and robust aiot via decentralized federated learning,” IEEE Internet of
Things Magazine, vol. 5, no. 1, pp. 30–35, 2022.

[15] W. H. Huff, pinyarash pinyoanuntapong, R. Balakrishnan, H. Feng, M. Lee,
P. Wang, and C. Chen, “DHA-FL: Enabling efficient and effective AIot via decen-
tralized hierarchical asynchronous federated learning,” in MLSys 2023 Workshop
on Resource-Constrained Learning in Wireless Networks, 2023.

[16] Intellabs, “Training agents in networkgym,” Year.

[17] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and R. Voutilainen,
“Stable-Baselines3: Reinforcement Learning in PyTorch,” 2020.

[18] B. I. A. M. Lab, “Cleanrl: Reinforcement Learning for Robust and Reproducible
Experiments,” 2021.

[19] P. Janakaraj, P. Pinyoanuntapong, P. Wang, and M. Lee, “Towards in-band
telemetry for self driving wireless networks,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 766–773, 2020.

[20] “Ofsoftswitch13.” Available: https://github.com/CPqD/ofsoftswitch13.

[21] “Mangodb.” Available: https://www.mongodb.com/.

[22] P. Xuan, V. Lesser, and S. Zilberstein, “Communication decisions in multi-agent
cooperation: Model and experiments,” in Proceedings of the fifth international
conference on Autonomous agents, pp. 616–623, ACM, 2001.

[23] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of
decentralized control of markov decision processes,” Mathematics of operations
research, vol. 27, no. 4, pp. 819–840, 2002.

[24] L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling, “Learning to cooperate
via policy search,” in Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, pp. 489–496, Morgan Kaufmann Publishers Inc., 2000.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[26] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International conference on machine learning, pp. 1928–1937, 2016.

84

[27] H. van Seijen, “Effective multi-step temporal-difference learning for non-linear
function approximation,” arXiv preprint arXiv:1608.05151, 2016.

[28] A. R. Mahmood, H. Yu, and R. S. Sutton, “Multi-step off-policy learning without
importance sampling ratios,” arXiv preprint arXiv:1702.03006, 2017.

[29] K. De Asis and R. S. Sutton, “Per-decision multi-step temporal difference learning
with control variates,” Proceedings of the 2018 Conference on Uncertainty in
Artificial Intelligence, 2018.

[30] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering, “A theoretical and
empirical analysis of expected sarsa,” in Adaptive Dynamic Programming and
Reinforcement Learning, 2009. ADPRL’09. IEEE Symposium on, pp. 177–184,
IEEE, 2009.

[31] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing
Systems (NIPS), vol. 23, pp. 2613–2621, 2010.

[32] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in
Proceedings of the 2002 International Joint Conference on Neural Networks
(IJCNN’02), vol. 2, pp. 1825–1830, IEEE, 2002.

[33] Y. Shilova, M. Kavalerov, and I. Bezukladnikov, “Full echo q-routing with adap-
tive learning rates: a reinforcement learning approach to network routing,” in
2016 IEEE Conference of Russian Young Researchers in Electrical and Electronic
Engineering (EIConRus),, pp. 341–344, IEEE, 2016.

[34] M. V. Kavalerov, Y. A. Shilova, and I. I. Bezukladnikov, “Preventing instability
in full echo q-routing with adaptive learning rates,” in 2017 IEEE Conference
of Russian Young Researchers in Electrical and Electronic Engineering (EICon-
Rus),, pp. 155–159, IEEE, 2017.

[35] M. Kavalerov, Y. Shilova, and Y. Likhacheva, “Adaptive q-routing with random
echo and route memory,” in 2017 20th Conference of Open Innovations Associ-
ation (FRUCT), pp. 138–145, IEEE, 2017.

[36] S. Lin, P. Wang, I. F. Akyildiz, and L. Min, “Utility-optimal wireless routing in
the presence of heavy tails,” IEEE Transactions on Vehicular Technology, 2018.

[37] P. Pinyoanuntapong, M. Lee, and P. Wang, “Delay-optimal traffic engineering
through multi-agent reinforcement learning,” in IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), IEEE, 2019.

[38] D. Johnson, N. Ntlatlapa, and C. Aichele, “Simple pragmatic approach to mesh
routing using batman,” 2008.

[39] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

85

[40] S. Caldas, S. Meher Karthik Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated Settings,” arXiv
e-prints, p. arXiv:1812.01097, Dec. 2018.

[41] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep.,
2009.

[42] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[43] P. Pinyoanuntapong, P. Janakaraj, R. Balakrishnan, M. Lee, C. Chen, and
P. Wang, “Edgeml:towards network-accelerated federated learning over wireless
edge,” CoRR, vol. abs/2111.09410, 2021. [Online]. Available: http://arxiv.
org/abs/2111.09410.

[44] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma,
A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar,
Q. Yang, M. Annavaram, and S. Avestimehr, “Fedml: A research library and
benchmark for federated machine learning,” in Proceedings of NeurIPS 2020,
2020.

[45] P. Pinyoanuntapong, T. Pothuneedi, R. Balakrishnan, M. Lee, C. Chen, and
P. Wang, “Sim-to-real transfer in multi-agent reinforcement networking for fed-
erated edge computing,” CoRR, vol. abs/2110.08952, 2021.

[46] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothenberg,
“Mininet-wifi: Emulating software-defined wireless networks,” in 2015 11th Inter-
national Conference on Network and Service Management (CNSM), pp. 384–389,
2015.

[47] D. Yang and D. Cheng, “Efficient gpu memory management for nonlinear dnns,”
in Proceedings of the 29th International Symposium on High-Performance Par-
allel and Distributed Computing, HPDC ’20, (New York, NY, USA), p. 185â196,
Association for Computing Machinery, 2020.

[48] D. Yang, W. Rang, and D. Cheng, “Mitigating stragglers in the decentralized
training on heterogeneous clusters,” in Proceedings of the 21st International Mid-
dleware Conference, Middleware ’20, (New York, NY, USA), p. 386â399, Asso-
ciation for Computing Machinery, 2020.

[49] Z. Zhang, D. Yang, Y. Xia, L. Ding, D. Tao, X. Zhou, and D. Cheng, “Mpipemoe:
Memory efficient moe for pre-trained models with adaptive pipeline parallelism,”
in 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 167–177, 2023.

[50] Y. Xia, Z. Zhang, H. Wang, D. Yang, X. Zhou, and D. Cheng, “Redundancy-free
high-performance dynamic gnn training with hierarchical pipeline parallelism,”

86

in Proceedings of the 32nd International Symposium on High-Performance Par-
allel and Distributed Computing, HPDC ’23, (New York, NY, USA), p. 17â30,
Association for Computing Machinery, 2023.

[51] D. Yang, D. Cheng, W. Rang, and Y. Wang, “Joint optimization of mapreduce
scheduling and network policy in hierarchical data centers,” IEEE Transactions
on Cloud Computing, vol. 10, no. 1, pp. 461–473, 2022.

[52] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with
pensieve,” in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, (New York, NY, USA), p. 197â210,
Association for Computing Machinery, 2017.

[53] J. Eo, Z. Niu, W. Cheng, F. Y. Yan, R. Gao, J. Kardhashi, S. Inglis, M. Revow,
B.-G. Chun, P. Cheng, and Y. Xiong, “Opennetlab: Open platform for rl-based
congestion control for real-time communications,” in APNet 2022, July 2022.

