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Abstract

MD MAHMUD-UL-TARIK CHOWDHURY. Second Order Cone Programming (SOCP)
Based Fast and Exact Convex Optimal Power Flow (OPF) Models for Electric Grid with

Renewables. (Under the direction of DR. SUKUMAR KAMALASADAN)

With the modernization of power grids, high penetration of distributed energy-based re-

sources (DERs), and modern loads, optimal power flow (OPF) analysis is one of the essen-

tial tools for reliable power system planning and operation. This research proposes novel

OPF models for power distribution and transmission networks using second-order cone pro-

gramming (SOCP). The advantages of SOCP-based convex OPF models are the efficient

computational ability for large network systems and the global optimality. To confirm solu-

tion accuracy, the necessary conditions for the tightness of the angle and conic relaxations

of power flow models are addressed in this research work for the proposed OPF models. In

this dissertation, an OPF architecture is proposed to retrieve the bus voltage angle difference

for radial distribution networks and thus control the reactive power flow, leading to better

voltage regulation in the network and promising a globally optimal solution. This research

also presents a SOCP-based AC-OPF model for unbalanced three-phase radial power distri-

bution networks. Mutual coupling effects are generally ignored in the existing multi-phase

SOCP AC-OPF models. The proposed SOCP-OPF model introduces a coupling coefficient

for the mutual coupling effects on the three-phase unbalanced lines to overcome this criti-

cal issue. The derivation of the coupling coefficients has been illustrated with the required

proof that the relaxation is tight and the solution from the proposed OPF model is optimal

for an unbalanced multi-phase distribution network. Besides the distribution networks, this

work also presents a novel SOCP-based OPF formulation for transmission system power net-

works. Power transmission networks generally have meshed orientation. For meshed power

networks, though the conic relaxation is exact due to the cyclic angle constraints, the angle

relaxation may not be exact. An OPF model is proposed for the SOCP-OPF model for power

transmission networks satisfying the cyclic angle constraints. For that, the model defines a

convex envelope to represent the relative bus voltage angles that satisfy the cyclic constraint

criteria for a mesh in the network. This dissertation also presents an OPF formulation for

AC-DC hybrid power distribution networks. The model determines the optimal modulation

index for the converters for minimum network loss. In addition, this dissertation also pro-

poses a distributed OPF (D-OPF) model for distribution networks and a time-dependent

(T-OPF) model for real-time OPF analysis. All the proposed models in this research are

exact and produce globally optimal solutions for the reliable operation of the power grid.
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CHAPTER 1: INTRODUCTION

1.1 Background

One of the most salient and fundamental tools of power system planning and economic

and stable operation is Optimal Power Flow (OPF) analysis. Research on OPF analysis

started in the mid-seventies due to computational congestion and for inspection of security-

constrained [1, 2]. OPF analysis considers the power system’s load flow and security con-

straints, which is a time-ahead operational planning tool for ensuring the system opera-

tion with the optimal control action across operational time frames of power systems. For

the OPF operational planning, particular objectives (e.g., generation costs, network power

losses, voltage and phase angle regulation) are considered by maintaining the bus voltages

and branch flows within the network limits [3–5]. Initially, OPF analysis mainly focused on

power transmission systems. But overgrowing use of renewable energy-based distributed en-

ergy resources (DERs) in modern power distribution networks is transforming to a complex

structure from conventional distribution network structures [6]. A schematic of the modern

power grid is shown in Fig.1.1. In addition to the modern DERs with different novel kinds

of loads, the network operators (NOs) face challenges in operating the systems with steady-

state network operation with issues like different congestion and voltage instability [7, 8].

So, besides the transmission network, the OPF analysis is also becoming increasingly impor-

tant for distribution networks. Besides that, the advent of high penetration of DERs and

controllable loads such as electric vehicles provide significant necessities to compensate for

the randomness in the power system network, which requires the power system industry for

novel OPF algorithms [9–11].

1.2 Motivation

Along with the operational network constraints, OPF is typically formulated using AC

power flow equations, commonly referred to as AC-OPF [12]. Due to the nonlinearity of

network characteristics, the nonlinearity of power flow equations, and other operational

network constraints, the AC-OPF problem is originally NP-hard in nature [13,14]. Moreover,

this nonlinearity in AC-OPF models leads to computational intractability for large power

networks, and due to the non-convexity, a globally optimal solution is not guaranteed [15–18].

Besides that, the higher penetration of distributed renewable generation sources (DERs) into

the power network adds additional complexity. This complex nature of the grid makes the

AC-OPF analysis infeasible, and the chance of optimal solutions becomes uncertain [19].



1.2. MOTIVATION 2

Figure 1.1: Schematic diagram of a modern power grid.

To overcome the complexity and to overcome the computational challenges of the nonlinear

OPF analysis, conventionally, linear approximations of power flow equations are commonly

used. However, these approximated linear formulations (i.e., DC-OPF [20, 21]) compromise

the solution accuracy. Thus, the solutions obtained from such approximated formulations

may not be AC-feasible or exact. However, not only the computational efficiency of the

relaxed convex AC-OPF models are also conditionally exact (hence, AC-feasible) and [22].

Besides that, due to the ability to find global optima, the convex AC-OPF formulations have

been extensively used for various operational applications from power system optimization

and control [23, 24]. Besides that, most of the existing OPF models for power distribution

systems are developed based on single-phase network analysis. But the distribution networks

are multi-phase and unbalanced [25]. So, in certain cases, the single-phase OPF solution is

inaccurate or insufficient for distribution networks [26]. So besides the single-phase OPF

analysis, this dissertation also proposes a multi-phase convex OPF model.

Modern power converters with renewable-based DERs and widespread usage of DC loads

(i.e., electric vehicles, modern home appliances) [27–30] are forming DC-DC grid sections
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within the AC power grid. Case-wise, the benefits of the DC system over the AC system

are shown in [31–34]. However, the total replacement of the AC system with the DC system

is not viable at this point [31] since the prevailing distribution networks are predominantly

AC. So, this dissertation also discusses SOCP-based convex OPF models for AC-DC hybrid

networks. This dissertation presents a novel SOCP-OPF model for AC-DC radial config-

ured distribution systems using McCormick relaxation and second-order cone programming

(SOCP). The proposed AC-DC OPF model provides the optimal modulation index for the

converters with the least computational challenge and the optimal power injection.

1.3 Main Contributions of the Dissertation

• In this dissertation, proposed a SOCP-based OPF model which provides an exact opti-

mal solution with bus voltage phase angles for a radial network with high penetration

of multiple DERs.

• The retrieved angle provides an efficient control feature for the reactive power flow and

voltage regulation in radial power distribution networks with inverter-based DERs.

• Proposed a SOCP-OPF model, which provides an exact optimal global solution for a

multi-phase unbalanced power distribution system with high DERs penetration and

multi-phase mutual coupling impact on the network.

• Proposed an OPF model which provides a tight angle relaxation for an exact solution

to the AC-OPF problem using SOCP by satisfying the cyclic constraints for the meshed

transmission network.

• Proposed an OPF model for AC-DC hybrid distribution networks. The model considers

the converters (i.e., AC-DC rectifiers and DC-AC inverters) and determines the optimal

modulation index based on the objective functions and the network constraints.

• Proposed a distributed OPF model for radial type distribution hybrid power networks

extendable to transmission-distribution network co-OPF analysis. Finally, the SOCP-

OPF is analyzed with a real-time simulation platform for power distribution networks.

1.4 Dissertation outline

After Chapter 1, a comprehensive literature review on the state-of-the-art OPF models is

discussed in Chapter 2. A brief comparison of different OPF models is also discussed. This

chapter also sheds some light on the challenges and benefits of the convex OPF models.

Chapter 3 explores a novel SOCP-based OPF model for voltage regulation of power dis-

tribution systems with inverter-based DERs. This chapter also introduces an algorithm to

retrieve the bus voltage phase angle with optimization analysis.
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A SOCP-OPF model for three-phase unbalanced active distribution networks is proposed

in Chapter 4. This model considers the mutual coupling impact on the network with a cou-

pling coefficient. An algorithm for the determination of the coupling coefficient is discussed.

Chapter 5 discussed the inexactness of angle relaxation for the SOCP-OPF model due

to the angle cyclic constraints for mesh power networks. Finally, Proposed a SOCP-OPF

model in a meshed transmission system with cyclic constraints. This chapter also discussed a

comparison of the proposed SOCP-OPF and the existing semi-definite programming (SDP)

based OPF model for transmission networks.

In Chapter 6 SOCP-OPF model for AC-DC hybrid active distribution networks is dis-

cussed. The proposed model considers the modulation index of the converters as an opti-

mization variable.

A SOCP-based distributed OPF model is proposed for the distribution network, which is

extendable for transmission-distribution network co-simulation. Also, a SOCP-based model

is discussed for real-time platform-based OPF analysis.

Finally, Chapter 8 concludes this dissertation with a light shade of future research scope.



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Optimal scheduling of the power grid is a significant tool for the economic and optimal

operation of the electric power grid [35]. Optimal power flow (OPF) evolved in 1962 [36]

for finding a local optimum operating point for a power system. Since then, considerable

research has been conducted to develop fast and efficient OPF models and propose algorithms

for finding the global optimum solution. This section discusses a brief literature review on

conventional OPF algorithms of OPF analysis. Researchers have been working on OPF

problems since the mid-seventies. A literature survey of optimal power flow in the electricity

market context is conducted in [37–40]. OPF based on reactive power planning is discussed

in [41, 42]. A dynamic OPF for an active distribution network is proposed in [43]. A

distributed OPF and controls survey for Electric Power Systems is conducted in [44]. Later,

a survey of relaxations and approximations of the OPF is discussed in [45]. Below this

section, a brief discussion of different OPF algorithms is conducted. The OPF formulations

contain three types of variables and parameters (i.e., Control variables, state variables and

parameters) for power system optimization.

2.2 Conventional OPF Methods in Power System

This section will light on a brief literature review of common OPF models for power

systems planning and operation. In this dissertation, we will be focusing on the Gradient

and non-random search-based OPF models. A few very common Optimization techniques

are as follows:

• Common optimization techniques:

– Random Search-based methods:

∗ Evolutionary programming (EP)

∗ Genetic algorithm (GA)

∗ Particle swarm optimization (PSO)

∗ Simulated annealing (SA)

– Gradient and non-random search-based methods:

∗ Linear programming (LP)

∗ Non-linear programming (NLP)

· Interior point method (IPM)
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· Sequential quadratic programming method (SQP)

· Quasi-Newton method (QN)

∗ Convex optimization methods

· Quadratic programming method (QP)

· Second-order cone programming method (SOCP)

· Semidefinite programming method (SDP)

In power system analysis, OPF models can be based on branch flow (BFM) or bus in-

jection (BIM) based network power flow and power balance relations. The research in this

dissertation is conducted mainly based on BFM-SOCP OPF analysis.

2.2.1 Linear Programming (LP)

One of the most commonly applied methods for OPF analysis in power systems is the

linear programming (LP) based OPF models. The linear OPF methods consist of linear

power balance equations, objective functions, and constraints. A conventional linear-integer

programming-based algorithm for the optimum number of generation units is proposed in

[46]. A linearized power flow and linearized OPF model for active distribution networks is

proposed in [47]. LP method has the advantage of handling many variables, thus scalable for

large power networks. However, approximate linear OPF formulations like DC-OPF [20,21]

compromise the solution accuracy. Thus, the solutions obtained from LP formulations are

not always exact and may not be AC-feasible. LP-OPF is the most mature but least general

OPF tool [45] used in power system optimization. LPs use a linear objective function ci(xi)

for the OPF. The canonical form of an LP is as follows:

min
∑
i∈N

ci(xi) (2.1a)

where N is the set of all buses in the network.

s.t.


Axi = bi

xi ≥ 0

(2.1b)

2.2.2 Nonlinear Programming (NLP)

Typically, OPF power systems are formulated using AC power flow equations with addi-

tional constraints related to generation and voltage limits. So the OPF models are referred

to as AC-OPF models. Due to the nonlinearity of power flow equations and network opera-

tional constraints, the AC-OPF problems are NP-hard in the original form [13,14]. Moreover,

due to the non-convexity, the global optimal solution is not guaranteed always, and the non-
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linearity in AC-OPF leads to computational intractability for large power networks [17,18].

Multiple NLP OPF models are proposed in [48–51]. A few NLP techniques (i.e., Gradient

Search Method, Newton Method, Quasi-Newton Method) are discussed here. Among these

methods, the gradient search (GS) OPF method uses gradient function information mov-

ing in the opposite direction of the gradient function, which has the disadvantage of slow

convergence with large power networks. On the other hand, Newton’s optimization method

has the advantage of fast convergence. A quadratic approximation is obtained from Taylor

expansion for Newton’s optimization method. However, the formation and inversion of the

Hessian matrix impose a heavy computational burden for large network analysis and cannot

solve the global optima. As an example, an OPF model based on Newton’s method is pro-

posed for HVDC systems in [52] incorporating voltage source converters (VSC). A hybrid

OPF model with sequential quadratic programming (SQP) and differential evolution (DE)

is proposed in [53]. Quasi-Newton method OPF has the advantage of a lower computational

burden. The fundamental mathematical form of NLP-OPF is represented as follows (2.2a).

min
∑
i∈N

ci(xi, yi) (2.2a)

where N is the set of all buses in the network.

s.t.


g(xi, yi) ≤ bi

h(xi, yi) = di

(2.2b)

2.2.3 Quadratic Programming (QP)

Quadratic programming-based OPF analysis (QP-OPF) is a specific optimization that

differs from LP-OPF in the objective function [45]. Quadratic programming-based OPF

models are helpful for loss minimization and conservative voltage regulation (CVR). As an

example, a QP-based OPF model is used for PMU placement in [54]. A generalized linear

programming (LP) OPF is a quadratic programming (QP) OPF with a quadratic objective

function, which is represented as:

min
∑
i∈N

xi
T ci(xi) (2.3a)

where N is the set of all buses in the network.

s.t.


Axi = bi

xi ≥ 0

(2.3b)



2.2. CONVENTIONAL OPF METHODS IN POWER SYSTEM 8

2.2.4 Convex OPF Models

It is already discussed that, due to the nonlinearity of power flow equations and network

operational constraints, the power system OPF problems in their original form are NP-

hard [13, 14]. The non-convexity and non-linearity in AC-OPF models face computational

intractability for large power networks with high penetration of DERs. So, linear approxi-

mations of power flow equations are commonly used to overcome computational challenges.

But the LP-OPF models compromise the solution accuracy [55]. On the contrary, the con-

vex relaxation-based OPF models are conditionally exact and computationally efficient [22].

For computational efficiency, researchers have been interested in investigating the solution

to the OPF analysis with convex-OPF models [3, 5, 22,56–62]. Convex relaxation of OPF is

generally classified into two types: bus injection (BIM) OPF model and branch flow (BFM)

OPF model, but they are mathematically equivalent [63]. A few relaxation-based convex

BIM and BFM-OPF models for power systems are discussed in this dissertation.

2.2.4.1 Relaxations of BFM-OPF models

Baran-Wu first introduced relaxation base branch flow OPF using second-order SOCP

for optimal capacitor placement in distribution systems in [64, 65]. This model was non-

convex due to quadratic equality constraints. Then, Jabr proposed a SOCP relaxation-

based convex BFM-based OPF for the radial system in 2006 [22]. A BFM-based SDP-OPF

is discussed in [66]. The first formulations of the convex continuous SOC AC-OPF with

convex approximations to power flow in radial networks were proposed in [67]. The BFM

OPF models relaxation method consists of two stages, angle relaxation and conic relaxation

in power systems. The conic is exact for radial distribution and transmission networks, but

the angle relaxation for transmission networks is not always. Due to the convexness, the

solution to SOCP-OPF provides a globally optimal solution to the BFM-OPF problem. The

exactness of convex SOCP BFM OPF models is discussed in [68, 69]. For acyclic systems,

exact angle and conic relaxation conditions are also discussed in [70], which can be applied

for special cases of mesh networks. Many relaxations-based OPF models are used in mesh

networks using SDP and chordal relaxation [45, 56, 57]. A branch and bound method are

applied to extend to OPF problem [71]. BFM-OPF includes line current and flow as OPF

variables alongside the bus voltage, shown in (2.4b).

min
∑
i∈N

ci(xi) (2.4a)
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where N is the set of all buses in the network.

s.t.


Sij = ViI

∗
ij

Vi − Vj = ZijIij

Sj =
∑

k:j→kSjk −
∑

i:i→j(Sij − Zij|Iij|2) + y∗j |Vj|2

(2.4b)

2.2.4.2 Relaxations of BIM-OPF models

Different relaxed OPF models (i.e., SDP, chordal relaxation, and SOCP) are proposed

using BIM-based power flow models. A BIM-based SDP relaxation was first proposed in [10].

The analysis on SDP relaxation with the dual of OPF problem with sufficient conditions for

zero duality gap is derived in [15]. SDP-based BIM OPF model for mesh networks and

the exactness of the convexification is discussed in [3]. Chordal relaxation-based BIM OPF

models are first proposed in [72, 73]. Chordal relaxation eliminates the rank-1 condition of

SDP OPF models over the feasible area. The optimal OPF solution of the original AC-

OPF problem is recovered from the solution of relaxed OPF problems, and [63] discussed

the feasible region of the original OPF, which is an effective subset of the relaxed solution.

BFM-OPF includes bus-injected power flow as OPF variables alongside the bus voltage,

which is shown in (2.5b).

min
∑
i∈N

ci(xi) (2.5a)

s.t.

{
Si =

∑
(i,j)∈N{Vi(Vi − V ∗

j )y
∗
ij} (2.5b)

2.2.4.3 Second Order Cone Programming (SOCP) based OPF model (Jabar’s model)

SOCP based models have second-order cone constraints which can be represented as [45]:

min
∑
i∈N

ci(xi) (2.6a)

where N is the set of all buses in the network.

s.t.


||Eix+ bi|| ≤ gTi x+ di

Ax = b

x ≥ 0

(2.6b)
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For a power system network which can be represented as follows [22]. For a bus i ∈ N , the

voltage can be represented as: Vi = |Vi|(cos θi + j sin θi) If; Vi cos θi = mi and Vi sin θi = ni,

So Vi = mi + jni, thus V 2
i = m2

i + n2
i . For convexification new variables are defined as:

cii = m2
i +n2

i , cij = mimj +ninj and sij = minj −nimj. These new variables satisfies a new

relation, c2ij + s2ij = ciicjj. With the new variables, the SOCP-based BFM-OPF model is as:

min
∑
i∈N

c(pi) (2.7a)

P g
j − P d

j = Giicii +
∑
j∈N

[Gijcij −Bijsij] (2.7b)

where N is the set of all buses in the network.

Qg
j −Qd

j = −Biicii +
∑
j∈N

[−Bijcij −Gijsij] (2.7c)

V 2
i ≤ m2

i + n2
i ≤ V

2

i (2.7d)

cij = cji (2.7e)

sij = −sij (2.7f)

c2ij + s2ij = ciicjj (2.7g)

2.2.4.4 Second Order Cone Programming (SOCP) based BFM-OPF model

With the new set of variables defined as: |Iij|2 = lij, |Vj|2 = uj and |Vi|2 = ui, the

BFM-OPF model for a power system is as follows:

min
∑
i∈N

c(pi) (2.8a)

where N is the set of all buses in the network.

P g
j − P d

j =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rijlij) + gjuj (2.8b)
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Qg
j −Qd

j =
∑
k:j→k

Qjk −
∑
i:i→j

(Qij − xijlij) + bjuj (2.8c)

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (2.8d)

ui + lij ≥

∥∥∥∥∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥∥∥∥∥
2

(2.8e)

With respect to the following network operational constraints:

P g
i ≤ P g

i ≤ P
g

i

Qg

i
≤ Qg

i ≤ Q
g

i

V i ≤ Vi ≤ V i

I ij ≤ Iij ≤ I ij

where overline (.) and underline (.) represent the maximum and minimum limit of a variable

or parameter for the OPF models

2.2.4.5 McCormick relaxation-based BFM-OPF model

McCormick envelopes can construct linear relaxations of the rectangular non-linear power

flow equations. For the McCormick envelopes, the known bounds of each variable are used

for standard optimization tools. The rectangular power flow model can be convexified with

McCormick envelopes [74]. In McCormick, relaxation, a new variable is declared with en-

velopes for each bus i ∈ N as, Mii = m2
i and Nii = n2

i . Beside this new variables are also

declared for connecting edges Lij ∈ L like: Mij = mimj, Nij = ninj and Oij = minj. Then,

the McCormick relaxation-based BFM-OPF model is represented as:

min
∑
i∈N

c(pi) (2.9a)

P g
j − P d

j = Gii(Mii +Nii) +
∑
j∈N

[Gij(Mij +Nij)−Bij(Oij −Oji)] (2.9b)

Qg
j −Qd

j = −Bii(Mii +Nii) +
∑
j∈N

[−Bij(Mij +Nij)−Gij(Oij −Oji)] (2.9c)
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V 2
i ≤Mii +Nii ≤ V

2

i (2.9d)

Mii, Nii ≥ 0 (2.9e)

The nonlinear variables like Mij = mimj are convexified with McCormick envelopes as:

Mii ≥ mimj +mimj −mimj (2.10a)

Mii ≥ mimj +mimj −mimj (2.10b)

Mii ≤ mimj +mimj −mimj (2.10c)

Mii ≤ mimj +mimj −mimj (2.10d)

where m and m represent the minimum and maximum limits of the variables.

2.2.4.6 Semidefinite programming (SDP) based OPF model

Semidefinite programs generalize second-order cone programs with decision variables or-

ganized as a vector x; the decision variables in a semidefinite program take the form of a

symmetric matrixX [45]. LetX ≥ 0 indicate positive semidefinite matrix. So the SDP-based

OPF models can be represented as:

min
∑
i∈N

tr.C(X) (2.11a)

s.t.

{
tr.(AiX) = biX ≥ 0 (2.11b)

where tr.() stands for the trace operator. Ai and Ci are square and symmetric matrices. bi

is a specified scalar vector. The following sections represent the BFM and BIM-OPF models

based on SDP based relaxation method.

2.2.4.7 Semidefinite programming (SDP) based BFM-OPF model

If, S is denoted for the apparent power, i2ij = lij and |vi|2 = ui, the SDP based BFM-OPF

model is represented as follows:

min
∑
i∈N

tr.C(si) (2.12a)
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i:i→j

diag(Sij − zijlij) + sgj − sdj =
∑
k:j→k

diag(Sjk) (2.12b)

uj = ui − (Sijz
∗
ij + zijS

∗
ij) + zijlijz

∗
ij (2.12c)

 ui Sij

S∗
ij lij

 ≥ 0 (2.12d)

rank

 ui Sij

S∗
ij lij

 = 1 (2.12e)

Where, (∗) ∈ H, Hermitian matrix. If, for a line Lij ∈ L connecting the bus (i, j) ∈ N ,

then the line constraints are imposed in a convex form as follows:

sgi ≤ sgi ≤ sgi

Sij ≤ Sij ≤ Sij (2.12f)

ui ≤ diag(ui) ≤ ui

2.2.4.8 Semidefinite programming (SDP) based BIM-OPF model

If power balance is considered at the bus i ∈ N , the non-convex bus injection model (BIM)

is:

P g
i − P d

i =
∑

(i,j)∈N

Re{Vi(Vi − V ∗
j )y

∗
ij} (2.13a)

Qg
i −Qd

i =
∑

(i,j)∈N

Im{Vi(Vi − V ∗
j )y

∗
ij} (2.13b)

P g
i ≤ P g

i ≤ P
g

i

Qg

i
≤ Qg

i ≤ Q
g

i (2.13c)

V i ≤ |Vi| ≤ V i



2.2. CONVENTIONAL OPF METHODS IN POWER SYSTEM 14

The capacity constraint for the line Lij ∈ L can be represented as:

|θij| = |θi − θj| ≤ θij (2.14a)

|Sij| = |{Vi(Vi − V ∗
j )y

∗
ij}| ≤ Sij (2.14b)

|Pij| = |Real{Vi(Vi − V ∗
j )y

∗
ij}| ≤ P ij (2.14c)

|Vi − Vj| ≤ (∆V ij) (2.14d)

The bus injection model expressed in (2.15) and (2.14) is a non-convex formulation. For

convexification of the model for SDP, new variables have been declared as Wii = ViV
∗
i and

Wij = ViV
∗
j . The SDP formulation can be expressed as:

min
∑
i∈N

tr.C(si) (2.15a)

P g
i − P d

i =
∑

(i,j)∈N

Re{(Wii −Wij)y
∗
ij} (2.15b)

Qg
i −Qd

i =
∑

(i,j)∈N

Im{(Wii −Wij)y
∗
ij} (2.15c)

P g
i ≤ Pgi ≤ P

g

i

Qg

i
≤ Qgi ≤ Q

g

i (2.15d)

V 2
i ≤ Wii ≤ V

2

i

If for a line Lij ∈ L connecting the bus (i, j) ∈ N , then the line constraints are imposed in

a convex form:

Im{Wij} ≤ Re{Wij} tan(θij) (2.16a)

|Sij| = |(Wii −Wij)y
∗
ij| ≤ Sij (2.16b)
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|Pij| = |Real[|(Wii −Wij)y
∗
ij|]| ≤ P ij (2.16c)

Wii +Wjj −Wij −Wji ≤ (∆V ij) (2.16d)

W ∈ Hn is a semidefinite Hermitian matrix. For SDP formulation, OPF solution is tight

and feasible if W ≥ 0 and rank{W} = 1.



CHAPTER 3: A NEW SECOND-ORDER CONE PROGRAMMING MODEL FOR

VOLTAGE CONTROL OF POWER DISTRIBUTION SYSTEM WITH

INVERTER-BASED DISTRIBUTED GENERATION

3.1 Introduction and Contributions

Optimal power flow (OPF) has been a fundamental analysis of power system networks for

optimal operation based on an objective function. The objective functions may include the

minimization of generation cost and network power losses, voltage and phase angle regulation

considering network transmission capacity and voltage fluctuations [4, 5]. Distributed gen-

eration systems (DGs) based on renewable energy have been overgrowing in modern power

distribution networks, transforming the structure of conventional distribution to a complex

one [6]. The engagement of the renewable energy-based DGs and novel types of critical loads

influence the utility distribution industry for novel OPF algorithms [9–11, 75–78]. Power

system analysis and operations greatly rely on the AC OPF for optimal operations [12].

However, the higher penetration of distributed renewable generation sources into the power

network adds additional layers of complexity, leading the AC OPF to infeasible or uncer-

tain solutions [19]. Distribution Network Operators (DNOs) face challenges to maintain

steady-state network operation with issues like voltage rise and congestion when distribu-

tion networks are populated with renewable energy-based DGs [7, 8]. Besides, finding the

optimum global point of operation for the non-deterministic polynomial and non-linear OPF

model is hard [15,16]. So, with the distributed DGs, the power system distribution networks

demand a novel and computationally efficient OPF model.

One method for a computationally fast solution is to convert the AC OPF models to

DC models but with the sacrifice of convergence and accuracy [79]. The DC OPF models

become linear with the relaxation of the reactive power and assuming flat voltage magnitude

of all buses throughout the network [80]. In linearized models, the network is simplified to

guarantee computational efficiency and robustness [81]. Different types of optimal power

flow models have been proposed in different research [45, 82–84]. Besides that, specially

for radial distribution networks few more algorithms have been proposed in [85–87]. Due

to the inexactness issue of DC OPF models and the non-convexity of AC OPF models, the

complexity from the increasing penetration of DGs inspires the convex OPF models to ensure

fast, feasible, and tight solutions. The convex second-order cone programming (SOCP) based

OPF model was first proposed in [22], and the Semidefinite programming (SDP) model in [5].

The required conditions for the exact and feasible SDP solution in radial and mesh networks
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are discussed in [3, 56, 57]. However, the SOCP models are computationally more friendly

and efficient than the SDP relaxation models [58]. One challenge for an effective solution

of the SOCP model is the need to relax and recover voltage angles. Possible and exact

optimal global solution recovery within the quadratic and arctangent equalities from the

SOCP convexification are discussed in [59, 60]. While there are no upper bounds or a wide

boundary on the load flow in a radial distribution network, the OPF solution is tight and

exact from a SOCP model [61,62].

3.1.1 Major Contributions

In this chapter, we have proposed a branch flow-based SOCP OPF model, which is mo-

tivated by [3, 64, 68]. In [68] a SOCP-based optimization model and in [3, 64] an optimal

placement of switched capacitors in distribution networks is discussed. The branch flow

SOCP OPF model presented in this research is very suitable for distribution networks as it

emphasizes the branch parameters. The main advantages of the modeling framework are as

follows.

• The model can be used for both cost and loss minimization objective functions and is

scalable for large networks due to its computational efficiency.

• The approach can model the high penetration of DGs in the power distribution network

as it recovers the angle directly within the optimization process.

• The architecture provides an exact optimal solution with bus voltage phase angles for

a radial network with high penetration of multiple DERs.

• The retrieved angle provides an efficient control feature to the reactive power flow and

voltage profile.

• The approach can be used for voltage regulation in power distribution networks with

high DGs penetration.

The chapter is organized into multiple sections. The theoretical analysis, OPF methodol-

ogy, and relaxation framework are discussed in section 3.2. Section 3.3 discusses the model

implementation methods and results for both the angle derivation and the reactive flow

control methodology, and Section 3.4 concludes the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N : Set of all buses in the network
L: Set of all branches in the network
Vi: Voltage at the bus i ∈ N
ui: Square of the voltage magnitude at the bus i ∈ N
Sg
i : Apparent power injection at the bus i ∈ N
Sd
i : Apparent power demand at the bus i ∈ N
P g
i : Real power injection at the bus i ∈ N
P d
i : Real power demand at the bus i ∈ N
Qg

i : Reactive power injection at the bus i ∈ N
Qd

i : Reactive power demand at the bus i ∈ N
Pij: Real power flow through the line L(i,j) ∈ L
Qij: Reactive power flow through the line L(i,j) ∈ L
Iij: Current flow through the line L(i,j) ∈ L
lij: Square of the magnitude of current flow through the line L(i,j) ∈ L
θij: Bus voltage angle difference between the bus i and bus j, (i, j) ∈ N
Zij: Impedance of the line L(i,j) ∈ L
Gij: Conductance of the line L(i,j) ∈ L
Bij: Susceptance of the line L(i,j) ∈ L

3.2 Proposed Methodology

3.2.1 Branch Flow Model

Figure 3.1: Branch flow model including DGs.

The proposed OPF methodology is based on a branch flow model, emphasizing the bus

voltage, phase, and the branch flow parameters such as current, real, and reactive power flow

through the branches. For a power distribution network, consisting with buses [i, j, k] ∈ N

as like Fig. 3.1, the fundamental power flow equations can be represented as:

Sij = ViI
∗
ij (3.1)

Vi − Vj = ZijIij (3.2)

The power balance at the buses [i, j, k] ∈ N , in terms of the flows through the lines
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[L(i, j), L(j, k)] ∈ L is:

Sg
j − Sd

j =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − Zij|Iij|2) + y∗j |Vj|2 (3.3)

From (3.1) and (3.2),

|Vj|2 = |Vi|2 + |Zij|2|Iij|2 − (ZijS
∗
ij + Z∗

ijSij) (3.4)

If a line Lij ∈ L connecting two buses {i, j} ∈ N , the real and reactive power flow across

the line can be expressed as follows:

Pij = GijV
2
i −GijViVj cos(θij)−BijViVj sin(θij) (3.5)

Qij = −BijV
2
i +BijViVj cos(θij)−GijViVj sin(θij) (3.6)

3.2.2 Convexification for the Proposed SOCP OPF

For an optimization problem, the mathematical form is:

minimize/maximize f(x)

Subject to bi ≤ fi(x) ≤ bi

The vector, x = {x1, x2, x3........xn} is the optimization variables for the objective function

f(x) ∈ R. Where, fi : R −→ Rn are the constraints and bi is the limit. The main focus of

this work is on the convex optimization for a power system network, where the objective and

constraints are convex, and satisfy the inequality:

fi(A1x+ A2y) ≤ fi(A1x) + fi(A2y),∀x, y ∈ Rn, A1, A2 ∈ R

For a second order cone set C,

C = {(x1, x2, ....., xn) : xn ≥
√
x21 + x22 + .....+ x2n−1) ∈ C

If the solution set of an optimization problem is X = {x1, x2x3.....} ∈ C, for the second-order

cone optimization, the cone C encloses the global space S ∈ C which ensures the optimal

global solution within the convex space.

The power flow equations from (3.1) to (3.4) are non-convex. So, the solution suffers from

scalability and incapable of providing any feasible solution for the large power distribution
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networks. However, if a convex space encloses the non-convex space for a global optimal

feasible solution for Sx ∈ Cx, the power flow equations can be re-written as a convex set

of equations. The solution from the convexed space is the optimal solution of the parent

non-convex OPF problem [88]. With the help of a new set of variables, (3.1) to (3.4) are

convexified as follows: |Iij|2 = lij; |Vj|2 = uj and |Vi|2 = ui. Then from (3.3) and (3.4):

P g
j − P d

j =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rijlij) + gjuj (3.7)

Qg
j −Qd

j =
∑
k:j→k

Qjk −
∑
i:i→j

(Qij − xijlij) + bjuj (3.8)

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (3.9)

The equality in (3.1) can be represented in the form of a second order cone (SOC) as follows:

ui + lij ≥

∥∥∥∥∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥∥∥∥∥
2

(3.10)

The OPF model for a network is enclosed within a space, where a feasible solution satisfies

an objective function based on some imposed constraints on a power network. For the

objectives of the OPF, all of the physical laws of a power network are satisfied. This research

investigates the generation cost and real power loss minimization objectives for a distribution

network. Besides that, the voltage discrepancy can also be investigated. The objective

functions are as follows:

• Line loss minimization,

min[
∑

(i,j)∈L

rijlij] (3.11)

• Generation cost minimization,

min[
∑
i∈Ng

ciPgi ] (3.12)

• Minimization in bus voltage difference,

min[
∑

(i,j)∈N

αi(ui − uj)] (3.13)
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• Or, the combination of these three f(x),

min[
∑

(i,j)∈L

rijlij +
∑
i∈Ng

ciPgi +
∑
i∈Ng

αiui] (3.14)

where Ng is the set of DER connected buses. The following constraints are imposed with

the model to observe the branch flow effect on a power network.

Pmin
gi
≤ Pgi ≤ Pmax

gi

Qmin
gi
≤ Qgi ≤ Qmax

gi

Pmin
ij ≤ Pij ≤ Pmax

ij

Qmin
ij ≤ Qij ≤ Qmax

ij (3.15)

θmin
ij ≤ θij ≤ θmax

ij

umin
i ≤ ui ≤ umax

i

3.2.3 Angle Inclusion and Reactive Power Management

Real power flow change is mainly sensitive to the phase angle difference ∆θ, while the

reactive power depends on the voltage magnitude where the X/R ratio is high, such as

transmission networks [89]. However, for distribution network systems, the X/R ratio is

low, so phase angles play a significant impact on the reactive power and thus on the voltage

magnitude. A general method of relaxing this angle in convex optimization due to the non-

convexity thus fails to deliver global optimal solutions. Contrary to the previous works, in

the proposed model, the voltage phase angle is included in the convex space. The method is

as follows. For the convexification of the bus voltage angle relationship, from (3.5) and (3.6)

we get

−ViVj sin(Θij)(G
2
ij +B2

ij) = (BijPij +GijQij) (3.16)

However, (3.16) is still non-convex. As the bus i ∈ N and bus j ∈ N are two adjacent

connected buses and if [V max
i , V min

i , V max
j , V min

j ] ≈ 1 in per unit then we can safely assume

that ViVj ≈ 1. For distribution networks, the angle difference for any two adjacent connected

buses can thus be written as sin(θij) ≈ θij, where θij is the bus voltage angle difference

between the bus i ∈ N and bus j ∈ N . Then from (3.16):

Θij = −
BijPij +GijQij

B2
ij +G2

ij

(3.17)
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Equation (3.17) is included with the SOCP model to retrieve the bus voltage angle difference

between two connected buses (i, j) ∈ N for the line L(i, j) ∈ L. If the substation bus is

considered as the reference, the bus voltage phase angle for all the buses in the radial network

is recovered from this bus voltage angle difference. Further, if a DG system integrated with

battery and PV can feed constant real power support to the network, we can write

θij ∝ Qij (3.18)

Therefore, by controlling the bus angle difference, the reactive power flow, and finally,

through this, the voltage magnitude can be controlled. Suppose a DG with reactive power

support is available near the substation bus in a distribution network. In that case, the

voltage profile can be controlled or keep stable for critical load changing without the need

to have a load tap changer (LTC). This ensures an optimal point of operation for minimum

generation cost or minimum loss and provides a point of control to the reactive power flow.

Based on this theoretical framework, an algorithm for controlling the reactive power flow

and thus the voltage regulation in the network can be developed with the retrieved angle

difference as shown in Algorithm 1.

3.3 Simulation and Evaluation

The proposed model is implemented as A: Angle recovery from the SOCP branch flow

model, B: Reactive power flow control with the recovered bus voltage angle difference within

the optimal solution space, and tested on several real-life IEEE standard network systems

using Matlab/Simulink with MOSEK solver. The model’s performance is verified with the

Non-linear Programming (NLP) solution obtained from the OpenDSS and MatPower plat-

forms.

3.3.1 Implementation of the Angle Recovery Model

For part A, the MOSEK solver in the Matlab platform has been used for the convex OPF

model consisting of (3.7) to (3.10) and (3.17). The simulation results from the proposed

model show that the results are tight and exact for different test cases and similar to the

NLP solution.

3.3.1.1 Case 1 (IEEE 32-Bus Test System)

The model is tested on the modified IEEE 32-bus network system with and without

DGs penetration. The placement of the DGs at the modified IEEE 32-bus distribution

system is shown in Fig. 3.2. The IEEE 32-bus system is a modified version of the IEEE

33 bus radial distribution network. The substation bus (bus no. 0) is substituted with a

generation system, and the system-rated voltage is 12.66 kV, with 31 lines connecting 32-
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Algorithm 1 Reactive Power Control Algorithm
-Find the lines Lij ∈ L with the bus, i ∈ N in the distribution network.
-Make reference to the optimized voltage profile at ′(t− 1)′ time period.
-At ′t′ time period the PV source supplies or due to change in load the voltage profile
fluctuates to vi(t).
-∆vi = vi,ref (t− 1)− vi(t).
-Set the tolerance ξ
while |∆vi| ≥ ξ do

if ∆vi > 0 then
Find the incoming and outgoing branch reactive flow with bus ′i′

if If outgoing Qij == (+)ve then
decrease the θij : θij ∈ [θmin

ij , θmax
ij ]

end
else if If outgoing Qij == (−)ve then

increase the θij : θij ∈ [θmin
ij , θmax

ij ]

end
else if If incoming Qij == (+)ve then

increase the θij : θij ∈ [θmin
ij , θmax

ij ]

end
else if If incoming Qij == (−)ve then

decrease the θij : θij ∈ [θmin
ij , θmax

ij ]

end
end
else if ∆vi < 0 then

Find the incoming and outgoing branch reactive flow with bus ′i′

if If outgoing Qij == (+)ve then
increase the θij : θij ∈ [θmin

ij , θmax
ij ]

end
else if If outgoing Qij == (−)ve then

decrease the θij : θij ∈ [θmin
ij , θmax

ij ]

end
else if If incoming Qij == (+)ve then

decrease the θij : θij ∈ [θmin
ij , θmax

ij ]

end
else if If incoming Qij == (−)ve then

increase the θij : θij ∈ [θmin
ij , θmax

ij ]

end
end
∆vi = vi,ref (t− 1)− vi(t)nth.

end

buses. The proposed SOCP model is designed in a way so that it can handle multiple DGs

penetration in a network. The result comparison for the IEEE 32-bus network is shown in

Table 3.1 and Table 3.2 for nonlinear power flow (MP-PF), NLP OPF (MP-OPF), and the

proposed SOCP model (SOCP-OPF). For the minimum generation-cost objective function,

the voltage profile from the proposed SOCP OPF model and NLP model is shown in Fig.

3.3. The retrieved bus voltage angle difference in the 32-bus network from the proposed

SOCP OPF model and the NLP OPF model are compared in Fig. 3.4. It can be seen
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Figure 3.2: Modified IEEE 33-bus distribution network.

Figure 3.3: Voltage profile comparison between MatPower NLP and SOCP OPF.

that the bus angle difference from the proposed SOCP model matches the NLP results. The

percent loss [(Total generation-Total load)*100/Total generation] in the network, the voltage

mismatch for the different objective function with the convergence times, and the voltage

mismatch between the proposed SOCP model and the NLP OPF is shown in Table 3.2. The

convergence time is compared on a machine with an Intel(R) Core(TM) i7-10510U CPU @

2.30 GHz processor and 16 GB RAM environment. For convex formulation, the proposed

SOCP model is computationally more efficient than the NLP model. The % loss with the

proposed method is less than the NLP PF and the NLP OPF. For the IEEE 32-bus network,

the DG placement with the maximum and minimum generation capacity and the generator’s
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Figure 3.4: Bus voltage angle difference in IEEE 32-bus network for MatPower NLP and SOCP OPF.

Table 3.1: Modified 32-bus system power flow comparisons

MP-PF MP-OPF SOCP-OPF

No. Pmax
g Pmin

g Qmax
g Qmin

g C Pg Qg Pg Qg Pg Qg

1 10 - 10 -10 90 3.90 2.43 2.03 1.50 2.03 1.50
7 0.35 0.100 0.25 00 79 0.00 0.00 0.35 0.25 0.35 0.25
12 0.30 0.075 0.20 00 87 0.00 0.00 0.30 0.20 0.30 0.20
13 0.32 0.000 0.00 00 70 0.00 0.00 0.32 0.00 0.32 0.00
15 0.08 0.075 0.20 00 92 0.00 0.00 .075 0.20 0.075 0.20
16 0.30 0.300 0.00 00 70 0.00 0.00 0.30 0.00 0.30 0.00
24 0.41 0.100 0.20 00 81 0.00 0.00 0.41 0.20 0.41 0.20

cost coefficients are discussed in Table 3.1. With this network configuration, the power flow

solution is similar to the benchmark OPF solution from the MatPower platform, verifying

the tightness of the optimal global solution from the proposed model.

Table 3.2: Modified 32-bus network system analysis

MP-PF MP-OPF
(min cost)

SOCP-OPF
(min cost)

SOCP-OPF
(min loss)

Time .08 Sec .92 Sec .61 Sec .53 Sec
% Loss 4.74% 1.85% 1.78% 1.77%

Gen. cost 319.72 320.21
MP-OPF(mc)

vs
SOCP-OPF(mc)

SOCP-OPF(mc)
vs

SOCP-OPF(ml)
Voltage mismatch .0003% .045%

mc*=min cost ml*=min loss
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Table 3.3: IEEE 123-bus system performance comparisons

123
Bus

System

Total
Load

Pd(MW )

Total Gen
SOCP

Pg(MW )

% Loss
SOCP
(min)

% Loss
SOCP
(min)

% Loss
(PF)

Cost
SOCP
(min)

Cost
SOCP
(min)

Base Case 1.1633 1.2017 3.20 % 3.20 % 3.20 % 110.55 110.55
10% DG 1.1633 1.1892 2.18 % 2.18 % 2.75 % 109.15 109.15
30% DG 1.1633 1.1836 1.71 % 1.71 % 2.71 % 108.44 108.44
50% DG 1.1633 1.1782 1.26 % 1.26 % 2.64 % 107.74 107.74

3.3.1.2 Case 1 (IEEE 123-Bus Test System)

Besides the IEEE 32-bus radial network system, the proposed model is analyzed on the

IEEE 123-bus network system for the base case and DG penetration. For DG penetration,

10%, 30%, and 50% DGs of the total connected load in the network are considered. The

comparative analysis has been shown in Table 3.3 for different percentages of DGs penetra-

tion in the network. The model is evaluated for both minimum generation cost and minimum

loss objective functions. If the generation cost from the DG units is lower than the cost of

the power available from the substation bus, then the % loss is found to be the same for

both of the objective functions. From the results in Table 3.3, it can be observed that the %

loss decreases with the higher penetration of DGs in the network. The OPF solution conver-

gence time for the proposed SOCP compared to NLP OPF on other benchmark platforms

is shown in Table 3.4 for the IEEE 123-bus network. The DG placement and the generation

with each configuration are shown in Table 3.5. Due to the convexity of the proposed model,

the proposed requires less time for convergence than the NLP OPF model. The 123-bus

network base case’s voltage profile and the DG penetration configuration are shown in Fig.

3.5 and 3.6, respectively. With the DG penetration, the OPF model voltage limit is kept

between 0.9 pu to 1.1 pu for minimum and maximum voltage limits, respectively. From

Fig. 3.6, it can be observed that the network voltage amplitude level rise with the increase

of the DGs penetration. The bus voltage angle difference is retrieved from the proposed

123-bus network system model for comparison. The bus voltage angle difference from the

proposed model for the base case is shown in Fig. 3.7. The result is verified with the angle

recovered from the OpenDSS platform for the base case. Fig. 3.8 shows the angle retrieved

from the proposed SOCP model while DGs are connected and verified with the result from

the MatPower NLP. The results from the proposed SOCP model are similar to the OpenDSS

and MatPower NLP solutions. The negligible discrepancy in the angle difference is due to

the approximations for convexification of (3.17). Comparing the proposed model’s solution

with the OpenDSS and MatPower NLP solution validates the approximation of the model.

It was also observed that the model is capable of an optimal global solution for other large

distribution networks.
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Figure 3.5: Voltage profile in IEEE 123-bus network base case.

Figure 3.6: Voltage profile in IEEE 123-bus network with 10%, 30% and 50% DGs.

Table 3.4: IEEE 123-bus system time of convergence (ToC) comparisons

123
Bus

System

SOCP
ToC

(min cost)

SOCP
ToC

(min loss)

Mat Power
ToC

(NLP)

Power Flow
ToC
(MP)

Base Case 0.28 sec 0.39 sec 0.45 sec 0.73 sec
10 % DGs 0.33 sec 0.39 sec 0.46 sec 0.80 sec
30 % DGs 0.36 sec 0.41 sec 0.48 sec 0.77 sec
50 % DGs 0.34 sec 0.39 sec 0.51 sec 0.81 sec

3.3.2 Reactive Power Flow Control

The reactive power flow control Algorithm 1 is proposed using the bus retrieved voltage

angle difference as discussed in the previous section. The algorithm is capable of controlling
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Table 3.5: Generation Profile for IEEE 123-bus system with DGs

Case Bus
No.

SOCP
Pg
i

mw

SOCP
Qg

i

mvar

MP
Pg
i

mw

MP
Qg

i

mvar
Case Bus

No.

SOCP
Pg
i

mw

SOCP
Qg

i

mvar

MP
Pg
i

mw

MP
Qg

i

mvar
Base 1 1.2034 .7153 1.2034 .7153

50%
DGs

14 .0067 .0145 .0067 .0146

10%
DGs

1 0.9270 .5103 0.9270 .5105 18 .0133 .0088 .0133 .0086
11 0.0133 .0088 0.0133 .0088 19 .0067 .0087 .0067 .0088
31 0.0133 .0088 0.0133 .0088 21 .0133 .0088 .0133 .0086
54 0.0700 .0464 0.0700 .0464 24 .0133 .0087 .0133 .0083
66 0.0067 .0044 0.0067 .0044 26 .0133 .0087 .0133 .0083
73 0.0467 .0309 0.0467 .0309 30 .0133 .0082 .0133 .0078
84 0.0817 .0541 0.0817 .0541 32 .0133 .0087 .0133 .0083
95 0.0133 .0088 0.0133 .0088 34 .0067 .0041 .0067 .0047
108 0.0133 .0088 0.0133 .0088 35 .0133 .0033 .0133 .0033

30%
DGs

1 0.7236 .1253 0.7236 .1269 37 .0133 .0075 .0133 .0077
8 0.0133 .0088 0.0133 .0087 40 .0067 .0212 .0067 .0224
11 0.0133 .0088 0.0133 .0087 43 .0067 .0084 .0067 .0084
18 0.0133 .0088 0.0133 .0087 45 .0133 .0057 .0133 .0057
21 0.0133 .0088 0.0133 .0088 47 .0067 .0054 .0067 .0055
30 0.0133 .0088 0.0133 .0088 50 .0700 .0464 .0700 .0458
32 0.0133 .0088 0.0133 .0088 53 .0067 .0464 .0067 .0464
37 0.0133 .0088 0.0133 .0088 55 .0133 .0088 .0133 .0088
45 0.0133 .0087 0.0133 .0087 57 .0067 .0292 .0067 .0295
50 0.0700 .0464 0.0700 .0463 60 .0067 .0464 .0067 .0464
53 0.0067 .0464 0.0067 .0463 64 .0133 .0088 .0133 .0088
57 0.0067 .0464 0.0067 .0463 67 .0467 .0044 .0467 .0044
60 0.0067 .0464 0.0067 .0464 68 .0250 .0044 .0250 .0044
64 0.0133 .0088 0.0133 .0088 71 .0133 .0088 .0133 .0088
67 0.0467 .0044 0.0467 .0043 77 .0133 .0088 .0133 .0088
77 0.0133 .0309 0.0133 .0308 78 .0817 .0044 .0817 .0044
78 0.0817 .0461 0.0817 .0461 81 .0133 .0088 .0133 .0088
86 0.0067 .0441 0.0067 .0440 84 .0133 .0088 .0133 .0088
89 0.0133 .0087 0.0133 .0088 86 .0067 .0464 .0067 .0464
98 0.0133 .0087 0.0133 .0088 89 .0133 .0088 .0133 .0088
101 0.0133 .0087 0.0133 .0088 92 .0133 .0088 .0133 .0088
102 0.0133 .0087 0.0133 .0088 96 .0133 .0088 .0133 .0088
106 0.0133 .0087 0.0133 .0087 98 .0067 .0404 .0067 .0406
109 0.0133 .0087 0.0133 .0087 101 .0133 .0088 .0133 .0088
113 0.0067 .0464 0.0067 .0464 102 .0133 .0088 .0133 .0088
116 0.0067 .0464 0.0067 .0463 106 .0133 .0088 .0133 .0088

50%
DGs

1 0.5199 .0051 0.5199 .0051 109 .0133 .0088 .0133 .0088
4 0.0067 .0139 0.0067 .0140 111 .0133 .0088 .0133 .0088
8 0.0133 .0088 0.0133 .0088 113 .0067 .0464 .0067 .0463
11 0.0133 .0088 0.0133 .0088 116 .0067 .0464 .0067 .0462
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Figure 3.7: Bus voltage angle difference in IEEE 123-bus network base case.

Figure 3.8: Bus voltage angle difference in IEEE 123-bus network with 10%, 30% and 50% DGs.

the voltage to any critical load bus with the control of DGs reactive power flow. Besides,

it is shown that the proposed method can be more useful and economical than the load-tap

changer (LTC) operations. The proposed control method’s impact is shown in Fig. 3.9

(a)-(b) for IEEE 32-bus and for the IEEE 123-bus networks in 3.9 (c)-(d).

3.3.2.1 Case 1 (IEEE 32-Bus Test System)

In Fig. 3.9 (a), the change in voltage is shown at bus 12 of the IEEE 32-bus network. For

a case, if a DG comes into production or if the voltage fluctuates due to the change of load,

the proposed algorithm can maintain and regulate the voltage to its reference voltage level.

In Fig. (3.9) (a), the 1st iteration voltage profile (red) is the fluctuation in the voltage due
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Figure 3.9: Voltage control with reactive power and angle difference management.

to the change of loading condition at the tth period while the reference voltage profile (black)

is the optimal point at the (t− 1)th period. For voltage regulation, the reactive flow control

algorithm is applied to the branches connected to bus 12. Line 14 and 15 are the connected

lines to bus 12. It can be seen from the voltage profile (blue) after the final iteration that

the voltage profile is near the reference voltage when introducing the proposed method. The

voltage profile (purple) by controlling the LTC tap position at −2 is also shown in the same

Fig. for comparison. This indicates that the proposed algorithm has better control over the

voltage magnitude. Fig. 3.9(b) shows the change in the bus voltage angle difference across

the lines connected to bus 12.

3.3.2.2 Case 1 (IEEE 123-Bus Test System)

The Algorithm 1 is also applied for the IEEE 123-bus network system for voltage regula-

tion. Fig. 3.9 (c) shows the effectiveness of the proposed voltage and reactive flow control

algorithm when there is a voltage fluctuation at bus 9 (original bus 7) in this research of

the IEEE 123-bus network. The 1st iteration voltage profile (red) is the fluctuation in the

voltage due to the change in loading condition at the tth period, while the reference voltage

profile (black) is the optimal point at the (t − 1)th period. The voltage profile (blue) is

the final iteration which is closer to the reference voltage (black). Also in Fig. 3.9 (c), the

voltage profile (purple) for LTC tap position at −1 is shown. Fig. 3.9 (d) shows the change

of the bus voltage angle difference at the lines 5 & 9, which are the connected branches to

the bus 9. Angle difference in one branch is decreasing while increasing for the other branch,

which controls the reactive flow, thus the voltage regulation. It can also be seen that the
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tap position can be managed better especially if there is a DG source near the substation

for a distribution network. Overall, it can be seen that the voltage can be controlled more

precisely using the reactive flow control with the bus voltage angle difference adjustment

from the algorithm proposed in this research.

3.4 Summary

This research has proposed and evaluated a branch flow-based SOCP OPF model capable

of angle recovery and reactive power flow control and thus capable of voltage regulation.

The proposed model concerns the branch current and branch power flows instead of only

nodal injections. The recovered angle is in the form of bus angle difference for all inter-

connected lines throughout the network. Based on the retrieved angle, this research has

also proposed a reactive flow control algorithm and voltage control. It is demonstrated that

the proposed model is exact for the global OPF solution and tested in the modified IEEE

32-bus radial network and IEEE 123-bus network systems. Due to convexity, the model has

better computational efficiency than the NLP OPF models. Finally, the proposed reactive

flow and the voltage control algorithm provide a better and more economic control scheme

in the power distribution networks.



CHAPTER 4: SECOND-ORDER CONE PROGRAMMING (SOCP) MODEL FOR

THREE PHASE OPTIMAL POWER FLOW (OPF) IN ACTIVE DISTRIBUTION

NETWORKS

4.1 Introduction and Contributions

With the high penetration of distributed renewable energy-based generations, power dis-

tribution system OPF modeling has become more complex. For instance, the conventional

approach of iterative power flow methods becomes computationally complex and inaccu-

rate, affecting the operation reliability of the power grid. Typically, OPF is formulated

using AC power flow equations with additional constraints referred to as AC-OPF. However,

the AC-OPF problem is challenging and hard to solve due to the quadratic and non-linear

characteristics of the power flow equations [5, 15]. Due to the non-convexity of power flow

equations and constraints, the original AC-OPF problem is NP-hard [13].

To overcome this issue, linear approximations of power flow equations such as DC-OPF [20]

are commonly used, compromising the solution’s accuracy. Also, the DC-OPF doesn’t ac-

count for the optimal point of the reactive power and thus becomes unsuitable for an un-

balanced distribution network [44]. Conversely, the convex relaxations of AC-OPF prob-

lems are generally shown to be exact under certain conditions and computationally effi-

cient [90] [57] [70]. Due to the computational superiority and ability to find the optimal

solutions, the convex AC-OPF formulations have been extensively used in power system op-

timization applications [91] [92] [93]. Typically, power distribution systems are unbalanced

due to the unequal three-phase loads, untransposed lines, and conductor bundling [94]. Even

though distribution networks are multi-phase and unbalanced, most OPF models for power

distribution systems are developed based on single-phase network analysis [25]. In recent

years, the high penetration of DERs has contributed heavily to further imbalance, which is

challenging to forecast with single-phase OPF analysis due to the random generations [26].

So, this article proposes a three-phase SOCP-OPF model.

4.1.1 Existing Research Works:

Researchers have been exploring efficient OPF models for multi-phase power networks.

A three-phase non-linear OPF model was proposed in [95], which includes the mutual

impedance for minimizing network loss. The power flow formulation considers the inverse

matrix of the primitive impedance matrix of size (3nl × 3nl), where ’nl’ is the number of

branches in the network. This confines the scalability of the NLP-OPF model. Multiple ap-
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proximated linear three-phase power flow models were proposed to overcome the scalability

issue for active distribution networks considering different types of loads [14,18,96]. However,

those linear models are approximated and thus will not provide exact solutions always. Be-

sides these linear models, Chordal relaxation-based convex AC-OPF models for multi-phase

unbalanced distribution systems have also been proposed in [17, 97]. Convex approaches,

based on branch flow models (BFM) using semidefinite programming (SDP) and a linear

model for OPF in multi-phase radial networks, were proposed in [66]. For the linear model,

the line loss in the network is ignored. Another variant that extends the convex modeling to

incorporate delta connections is proposed in [98] and the exactness of the convex relaxation

is evaluated in [99]. For scalability, an SDP-OPF formulation for unbalanced microgrids was

illustrated in [100], which is solvable in polynomial time. If the solution is infeasible for a

system, sufficient conditions are developed to provide a feasible solution in [101,102].

A convex SOCP load flow model for radial distribution networks was first proposed in [22].

For SOCP relaxation, the angle and conic relaxation steps are always exact for radial net-

works, provided there are no upper bounds on loads [68, 69]. In [90], a SOCP-based OPF

framework decomposes the three-phase networks into three independent single-phase net-

works. One of the significant drawbacks of these state-of-the-art SOCP models is that these

models ignore the mutual coupling in the multi-phase networks. Compared to the SOCP-

OPF model, the SDP-OPF formulation is theoretically stronger [103]. However, in SDP-OPF

models, the matrix size grows as the number of buses’ squares, making it computationally

challenging to solve OPF for a large network [104]. Moreover, SDP formulation finds a

physically meaningful solution if the line-flow capacity is considerably high [101]. How-

ever, SOCP-based AC-OPF models are scalable, computationally feasible [105], and more

efficient [90] compared to SDP-OPF models.

4.1.2 Major Contributions

This article proposes a BFM-based SOCP-OPF model that considers multi-phase mutual

coupling effects. The proposed SOCP-OPF model aims to develop a computationally efficient

and scalable three-phase OPF algorithm to find globally optimal solutions for unbalanced

power distribution systems. The proposed OPF model is inspired by the research works

in [68,69,106]. Numerical simulations have been conducted on different IEEE test networks

to validate the proposed model’s computational efficiency and scalability. The performance of

the proposed SOCP-OPF model is compared with the BFM-SDP OPF [66], linear OPF [66],

and NLP-OPF models. The salient contributions of the proposed work are:

• The proposed SOCP-OPF model provides an optimal global solution in multi-phase

unbalanced distribution systems, including mutual coupling effects.
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• The derivation of a convex representation of the ZIP loads for the proposed OPF model

is included in the model.

• The approach is computationally feasible and scalable with high penetration of DERs’.

The chapter is organized as follows. Section 4.2 discusses the proposed three-phase OPF

methodology and relaxation framework. Section 4.3 discusses the model’s exactness and

optimality. Section 4.4 evaluates the simulation results. Finally, Section 4.5 concludes the

chapter with a summary.

The variable and parameters used in this chapter are as follows:

ξϕ: Coupling coefficient
N ϕ: Set of all buses in the network
N ϕ

g : Set of all buses with DERs in the network
Lϕ: Set of all branches in the network
V ϕ
i : Voltage at bus Ni ∈ N ϕ

V
ϕ

i : Max. voltage limit at bus Ni ∈ N ϕ

V ϕ
i : Min. voltage limit at bus Ni ∈ N ϕ

uϕi : Square of the voltage magnitude at bus Ni ∈ N ϕ

[sϕg ]i: Apparent power injection at bus Ni ∈ N ϕ
g

[sϕd ]i: Apparent power demand at bus Ni ∈ N ϕ

[pϕg ]i: Real power injection at bus Ni ∈ N ϕ
g

[pϕd ]i: Real power demand at bus Ni ∈ N ϕ

[qϕg ]i: Reactive power injection at bus Ni ∈ N ϕ
g

[qϕd ]i: Reactive power demand at bus Ni ∈ N ϕ

P ϕ
ij: Real power flow through line, Lϕ

ij ∈ Lϕ

Qϕ
ij: Reactive power flow through line, Lϕ

ij ∈ Lϕ

Iϕij: Current flow through line, Lϕ
ij ∈ Lϕ

lϕij: Current magnitude square through line, Lϕ
ij ∈ Lϕ

zϕij: Impedance of the branch, Lϕ
ij ∈ Lϕ

rϕij: Resistance of the branch, Lϕ
ij ∈ Lϕ

xϕij: Reactance of the branch, Lϕ
ij ∈ Lϕ

uϕi : Max. voltage magnitude square at bus Ni ∈ N ϕ

uϕi : Min. voltage magnitude square at bus Ni ∈ N ϕ

[pϕg ]i: Max. generator real power limit at bus Ni ∈ N ϕ
g

[pϕ
g
]i: Min. generator real power limit at bus Ni ∈ N ϕ

g

[qϕg ]i: Max. generator reactive power limit at bus Ni ∈ N ϕ
g

[qϕ
g
]i: Min. generator reactive power limit at bus Ni ∈ N ϕ

g

I
ϕ

ij: Max. current flow through the line, Lϕ
ij ∈ Lϕ

Iϕij: Min. current flow through the line, Lϕ
ij ∈ Lϕ

S
ϕ

ij: Max. apparent power flow through line, Lϕ
ij ∈ Lϕ

Sϕ
ij: Min. apparent power flow through line, Lϕ

ij ∈ Lϕ

4.2 Proposed Methodology

For the proposed OPF model, multi-phase radial distribution networks are considered

where Lϕ represents the set of connected multi-phase branches, and N ϕ is the set of multi-

phase buses in the network. Nϕ
i and Nϕ

j denote the bus indexes, which can be three, two, or

single phases. For the branch Lϕ
ij ∈ Lϕ, the multi-phase real power flow and reactive power

flow are represented as P ϕ
ij and Qϕ

ij respectively from bus Nϕ
i ∈ N ϕ to bus Nϕ

j ∈ N ϕ. Sϕ
ij is
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the apparent power flow. [pϕg ]j and [qϕg ]j are the injected power while, [pϕd ]j and [qϕd ]j are the

real and reactive power demand at the bus Nϕ
j ∈ N ϕ.

4.2.1 Three-Phase Branch Flow Model

The power flow and the voltage drop of the multi-phase line segment Lϕ
ij ∈ Lϕ connecting

two buses Nϕ
i ∈ N ϕ and Nϕ

j ∈ N ϕ of a network can be represented as follows:

Sϕ
ij = V ϕ

i I
ϕ∗
ij (4.1)

Vi
ϕ − Vjϕ = zϕijI

ϕ
ij (4.2)

where Iϕij is the current flow from the bus Nϕ
i ∈ N ϕ to bus Nϕ

j ∈ N ϕ through the branch

Lϕ
ij ∈ Lϕ with an impedance of zϕij. The power balance at the bus Nϕ

j ∈ N ϕ is as follows:


[sag]j

[sbg]j

[scg]j

−

[sad]j

[sbd]j

[scd]j

 =
∑
k:j→k


Sa
jk

Sb
jk

Sc
jk

−
∑
i:i→j


Sa
ij

Sb
ij

Sc
ij



+
∑
i:i→j


zaaij zabij zacij

zbaij zbbij zbcij

zcaij zcbij zccij



(Iaij)

2

(Ibij)
2

(Icij)
2

+


yaa∗ 0 0

0 ybb∗ 0

0 0 ycc∗



(V a

j )
2

(V b
j )

2

(V c
j )

2

 (4.3)

where {Nϕ
i , N

ϕ
j , N

ϕ
k } ∈ N ϕ, and {Lϕ

ij, L
ϕ
jk} ∈ Lϕ. From (4.1) and (4.2) it can be derived as

follows:

V ϕ
j = V ϕ

i −
zϕijS

ϕ
ij
∗

V ϕ
i

∗
(4.4)

Considering the square in (4.4), the voltage relationship between bus Nϕ
i ∈ N ϕ & bus

Nϕ
j ∈ N ϕ is as follows:


(V a

j )
2

(V b
j )

2

(V c
j )

2

 =


(V a

i )
2

(V b
i )

2

(V c
i )

2

+


(zaaij )

2 + (xaaij )
2 (rabij )

2 + (xabij )
2 (racij )

2 + (xacij )
2

(rbaij )
2 + (xbaij )

2 (rbbij )
2 + (xbbij )

2 (rbcij )
2 + (xbcij )

2

(rcaij
)2 + (xcaij )

2 (rcbij )
2 + (xcbij )

2 (rccij )
2 + (xccij )

2



(Iaij)

2

(Ibij)
2

(Icij)
2



−


zaaij zabij zacij

zbaij zbbij zbcij

zcaij zcbij zccij



Sa
ij
∗

Sb
ij
∗

Sc
ij
∗

−

zaaij

∗ zabij
∗ zacij

∗

zbaij
∗ zbbij

∗ zbcij
∗

zcaij
∗ zcbij

∗ zccij
∗



Sa
ij

Sb
ij

Sc
ij

 (4.5)
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where zij = rij + jxij. Relaxing the phase angle and considering, |Iϕij|2 = lϕij; |V
ϕ
j |2 = uϕj and

|V ϕ
i |2 = uϕi ; (4.5) can be represented as follows:


uaj

ubj

ucj

 =


uai

ubi

uci

+


(zaaij )

2 + (xaaij )
2 (rabij )

2 + (xabij )
2 (racij )

2 + (xacij )
2

(rbaij )
2 + (xbaij )

2 (rbbij )
2 + (xbbij )

2 (rbcij )
2 + (xbcij )

2

(rcaij
)2 + (xcaij )

2 (rcbij )
2 + (xcbij )

2 (rccij )
2 + (xccij )

2



laij

lbij

lcij



−


zaaij zabij zacij

zbaij zbbij zbcij

zcaij zcbij zccij



Sa
ij
∗

Sb
ij
∗

Sc
ij
∗

−

zaaij

∗ zabij
∗ zacij

∗

zbaij
∗ zbbij

∗ zbcij
∗

zcaij
∗ zcbij

∗ zccij
∗



Sa
ij

Sb
ij

Sc
ij

 (4.6)

When the current Iϕij = |I
ϕ
ij|∠θ

ϕ
ij is not relaxed, the polarity of the current changes based on

the phase angle. As the phase angle of the current is relaxed and lϕij ≥ 0, (4.5) and (4.6)

do not address the mutual coupling impact correctly. So a co-efficient ξϕ is introduced with

(4.6) to address the coupling effect for multi-phase networks properly. The angle relaxation

is discussed in more detail in Section 4.2.2.1, and the derivation of the co-efficient ξϕ for the

proposed OPF model is discussed in section 4.2.3 of this article.

4.2.2 Convexification for the Proposed OPF Model

4.2.2.1 Angle Relaxation

The power flow equations from (4.1) to (4.5) are non-convex, and the mutual coupling effect

on the multiple phases of the network depends on the phase angles. But, in the proposed

convex model, the phase angle of the voltage and the current are relaxed as Iϕij ⇒ |I
ϕ
ij|

and V ϕ
j ⇒ |V

ϕ
j |. So, to introduce the mutual coupling for multi-phase branches, a coupling

coefficient ξϕ is considered for the proposed OPF model. For the convexification of (4.1)

to (4.5), new variables have been introduced with the model. Considering, |Iϕij|2 = lϕij;

|V ϕ
j |2 = uϕj and |V ϕ

i |2 = uϕi and the coupling coefficient ξϕ, the convex form of the power

balance equation (4.3) can be written as:


[sag]j

[sbg]j

[scg]j

−

[sad]j

[sbd]j

[scd]j

 =
∑
k:j→k


Sa
jk

Sb
jk

Sc
jk

−
∑
i:i→j


Sa
ij

Sb
ij

Sc
ij



+
∑
i:i→j


zaaij ξbzabij ξczacij

ξazbaij zbbij ξczbcij

ξazcaij ξbzcbij zccij



laij

lbij

lcij

+


yaa 0 0

0 ybb 0

0 0 ycc



uaj

ubj

ucj

 (4.7)
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where {ξa, ξb, ξc} ∈ ξϕ refers to the coupling coefficients. Splitting the (4.7) in terms of real

and reactive power after angle relaxation, the power balance at bus Nϕ
j ∈ N ϕ are as follows:


[pag]j

[pbg]j

[pcg]j

−

[pad]j

[pbd]j

[pcd]j

 =
∑
k:j→k


P a
jk

P b
jk

P c
jk

−
∑
i:i→j


P a
ij

P b
ij

P c
ij



+
∑
i:i→j


raaij ξbrabij ξcracij

ξarbaij rbbij ξcrbcij

ξarcaij ξbrcbij rccij



laij

lbij

lcij

+


gaa 0 0

0 gbb 0

0 0 gcc



uaj

ubj

ucj

 (4.8)


[qag ]j

[qbg]j

[qcg]j

−

[qad ]j

[qbd]j

[qcd]j

 =
∑
k:j→k


Qa

jk

Qb
jk

Qc
jk

−
∑
i:i→j


Qa

ij

Qb
ij

Qc
ij



+
∑
i:i→j


xaaij ξbxabij ξcxacij

ξaxbaij xbbij ξcxbcij

ξaxcaij ξbxcbij xccij



laij

lbij

lcij

+


baa 0 0

0 bbb 0

0 0 bcc



uaj

ubj

ucj

 (4.9)

where zϕij = rϕij + jxϕij, S
ϕ
ij = P ϕ

ij + jQϕ
ij, y

ϕ
j = gϕj + jbϕj , [sϕg ]j = [pϕg ]j + j[qϕg ]j, and [sϕd ]j =

[pϕd ]j + j[qϕd ]j.

As (4.6) does not address the mutual coupling impact; accordingly the coupling coefficient

ξϕ is introduced in (4.8) and (4.9). To address the voltage drop between the bus Nϕ
i ∈ N ϕ

& bus Nϕ
j ∈ N ϕ the convex relationship can be written as:


uaj

ubj

ucj

 =


uai

ubi

uci

+


[(raaij )

2 + (xaaij )
2] |ξb|[(rabij )2 + (xabij )

2)] |ξc|[(racij )2 + (xacij )
2)]

|ξa|[(rabij )2 + (xabij
2)] [(rbbij )

2 + (xbbij )
2] |ξc|[(rbcij )2 + (xbcij )

2)]

|ξa|[(rcaij )2 + (xcaij )
2)] |ξb|[(rcbij )2 + (xcbij

2)] [(rccij )
2 + (xccij )

2]



laij

lbij

lcij



−2


raaij ξbrabij ξcracij

ξarbaij rbbij ξcrbcij

ξarcaij ξbrcbij rccij



P a
ij

P b
ij

P c
ij

− 2


xaaij ξbxabij ξcxacij

ξaxbaij xbbij ξcxbcij

ξaxcaij ξbxcbij xccij



Qa

ij

Qb
ij

Qc
ij


(4.10)

where [−]T indicates the transpose of a matrix. For each of the branches in the network, the

feasible set is still non-convex due to the quadratic equality as follows:

lϕij =
(Sϕ

ij)
2

uϕi
⇒ lϕij =

(P ϕ
ij)

2 + (Qϕ
ij)

2

uϕi
(4.11)
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4.2.2.2 Conic Relaxation

With the conic-relaxation, the non-convex optimal solution space is enclosed within a

feasible convex space [107]. After the angle relaxation, the OPF model is still no-convex due

to (4.11), which is convexified by the following conic relaxation with a conic inequality in

(4.12). For the proposed OPF model, all branches (all phases independently) satisfy this

conic constraint in (4.12).

uϕi + lϕij ≥

∥∥∥∥∥∥∥∥∥∥
2P ϕ

ij

2Qϕ
ij

uϕi − l
ϕ
ij

∥∥∥∥∥∥∥∥∥∥
2

(4.12)

4.2.2.3 OPF Architecture

For a power distribution network, the OPF solution is the point of operation to supply

the demand in the whole network so that all physical laws of power flow are satisfied con-

sidering the imposed constraints. Suppose a power flow solution set is ψϕ = {sϕi , S
ϕ
ij, I

ϕ
ij, V

ϕ
i }

satisfies the objective considering the imposed constraints on the network, then ψϕ will be

the optimal point of operation for the network. As the proposed model in this chapter is

convex, we have considered convex objective functions. We have considered the minimum

real power loss, rϕij|I
ϕ
ij|2 and power generation cost, ci[P ϕ

g ]i as objectives in this article. So,

the objective function f(xϕi ) is increasing with proportional to the current flow Iϕij. The

objectives considered with the proposed branch flow SOCP-OPF model are as follows:

a) Network real power loss minimization:

min{
∑

Lij∈Lϕ

[
rϕij

] [
lϕij

]
} (4.13)

b) Real power generation cost minimization:

min{
∑

Nϕ
i ∈Nϕ

g

ci[p
ϕ
g ]i} (4.14)

where ci is the generation cost coefficient for the DER at the bus Nϕ
i ∈ N ϕ

g . The decision

variables are the power generation [pϕg ]i and [qϕg ]i in this chapter. Finally, the proposed

SOCP-OPF model with a convex objective function is as follows:

min
∑

Nϕ
i ∈Nϕ

f(xϕi ) (4.15)

subject to: (4.8)-(4.10) and (4.12); with the following imposed constraints on the control
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variables: 

[pϕ
g
]i ≤ [pϕg ]i ≤ [pϕg ]i

[qϕ
g
]i ≤ [qϕg ]i ≤ [qϕg ]i

uϕi ≤ uϕi ≤ uϕi

lϕij ≤ l
ϕ

ij

(4.16)

where [pϕg ]i and [qϕg ]i are the real and reactive power generation of the DER at the bus

Nϕ
i ∈ N ϕ

g . Voltage limits are defined as, uϕi = |V ϕ
i |2 and uϕi = |V ϕ

i |2 for the bus Nϕ
i ∈ N ϕ.

Current flow limit is defined as lϕij = |I
ϕ

ij|2. I
ϕ

ij is the rated current flow limit for the branch

Lϕ
ij ∈ Lϕ.

4.2.3 Derivation of the Coupling Coefficient ξϕ

For a three-phase system, the mutual coupling impact depends on the voltage and current

phase angles. However, in the proposed SOCP-OPF model, the phase angles are relaxed,

and new variables are introduced for convexification. Further, a new coupling coefficient ξϕ

is introduced to address the effect of the mutual coupling impedance effect. In this section,

the derivation of ξϕ is discussed. A three-phase line with a mutual coupling impedance effect

is illustrated using Fig. 4.1. The voltage drop between the two ends of the line model in

Figure 4.1: Three phase network line model.

Fig. 4.1 can be represented as follows:

Va − Va/ = ZaaIa + ZabIb + ZacIc (4.17)

If the square of the currents is considered for an unbalanced network, then I2a + I2b + I2c

= |Ia|2∠0 + |Ia|2∠(−240 + α1) + |Ia|2∠(240 + α2). For a three-phase network, this can be

re-written as:

la + la(−.5− .86j + λb) + la(−.5 + .86j + λc) ≈ 0 (4.18)

In (4.18), λb and λc are for the angle α1 and α2 which are due to the unbalanced nature of

a power distribution networks and the imaginary parts of the 2nd and 3rd terms of (4.18)

cancel out each other. As mentioned before, the phase angle is relaxed and convexified using



4.2. PROPOSED METHODOLOGY 40

the amplitude of the current |Iϕij|2 = lϕij and as lϕij ≥ 0, the mutual coupling is adjusted with

the help of the coupling coefficient ξϕ so that, for a-phase la + ξbla + ξcla ≈ 0. Therefore,

comparing with the coefficients of (4.18):

[ξa, ξb, ξc] = −0.5± λϕ

λϕ stands as λa for the phase-a, λb for the phase-b and λc for the phase-c of a branch in the

network. The value of λϕ changes depending on the unbalanced nature of the network. The

asymmetrical impedance of the low-voltage distribution networks, asymmetrical load, and

single-phase loads result in unbalanced distribution networks. However, in practical systems,

the network characteristics remain as close to a balanced network as possible [108, 109], so

the value of λϕ is small (i.e., for the IEEE 123-bus network λϕ=[-0.1,0.1]).

4.2.4 Modeling of the ZIP Load

The proposed model is applicable to a network with ZIP loads as well. A ZIP load is

formulated as follows [110]:


[pad]i

[pbd]i

[pcd]i

 =


[aa1]i 0 0

0 [ab1]i 0

0 0 [ac1]i



uai

ubi

uci

+


[aa2]i 0 0

0 [ab2]i 0

0 0 [ac2]i



(uai )

1/2

(ubi)
1/2

(uci)
1/2

+


[aa3]i

[ab3]i

[ac3]i

 (4.19)


[qad ]i

[qbd]i

[qcd]i

 =


[ba1]i 0 0

0 [bb1]i 0

0 0 [bc1]i



uai

ubi

uci

+


[ba2]i 0 0

0 [bb2]i 0

0 0 [bc2]i



(uai )

1/2

(ubi)
1/2

(uci)
1/2

+


[ba3]i

[bb3]i

[bc3]i

 (4.20)

where [aϕ1 ]i, [a
ϕ
2 ]i, [a

ϕ
3 ]i and [bϕ1 ]i, [b

ϕ
2 ]i, [b

ϕ
3 ]i are scalar parameters for the active and reactive

loads at the bus Nϕ
i ∈ N ϕ. [aϕ1 ]i and [bϕ1 ]i, [a

ϕ
2 ]i and [bϕ2 ]i, [a

ϕ
3 ]i and [bϕ3 ]i, are specified for

the constant impedance (Z), constant current (I) and constant power (P ) respectively. The

constant current term in the ZIP load model is non-convex due to the variable u1/2i = Vi.

However, a second-order variable can be convexified for a boundary near unity as follows

[107]:

x2 ≈ (x+ x)x− xx (4.21)

If the voltage constraints for the AC-OPF are [V i, V i],

ui ≈ (V i + V i)Vi − V iV i; i ∈ N (4.22)
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In (4.19) and (4.20), the non-convex terms can be represented as the following for the con-

vexification with the proposed model.


(uai )

1/2

(ubi)
1/2

(uci)
1/2

 =


V a
i

V b
i

V c
i

 ≈


ua
i +V

a
i V

a
i

V
a
i +V a

i

ub
i+V

b
iV

b
i

V
b
i+V b

i

uc
i+V

c
iV

c
i

V
c
i+V c

i

 (4.23)

The reason for this conversion is that; it makes the model capable of analyzing the effect of

voltage-dependent loads on the power distribution network.

4.2.5 Modeling of the Regulators

Regulators are essentially considered as tap-changing transformers in the model. The

regulators/transformers in the network are generally used to keep the system voltages within

the allowable range. Usually, distribution regulators have 16 taps up and 16 taps down of the

rated voltage (33 tap positions, including the zero tap position). Each tap adjusts the voltage

by 0.625% [111]. In the proposed model, the square of bus voltage magnitude (|V ϕ|2 = uϕ)

is used, so the regulators and the transformers are modeled as described in this section. For

the transformers/regulators, ratio = [aa, ab, ac], where [V a
s , V

b
s , V

c
s ]

T = [aaV
a
p , abV

b
p , acV

c
p ]

T

and [Za
ijs , Z

b
ijs , Z

c
ijs ]

T = [a2aZ
a
ijp , a

2
bZ

b
ijp , a

2
cZ

c
ijp ]

T then the ratio can be represented as follows:


aa

ab

ac

 =


1 0.00625

1 0.00625

1 0.00625


 1 1 1

na nb nc

 (4.24)

where nϕ is the tap number of the regulator. This article does not consider the mixed integer

OPF, and nϕ is not a variable. For a branch where regulators and transformers are placed,

the voltage can be represented as follows:


uaj

ubj

ucj

 =


uai a

2
a

ubia
2
b

ucia
2
c

+


[(raaij )

2 + (xaaij )
2] |ξb|[(rabij )2 + (xabij )

2] |ξc|[(racij 2 + (xacij )
2]

|ξa|[(rabij )2 + (xabij )
2)] [rbbij

2 + (xbbij )
2] |ξc|[(rbcij 2 + (xbcij )

2]

|ξa|[(rcaij )2 + (xcaij )
2] |ξb|[(rcbij )2 + (xcbij )

2] [(rccij )
2 + (xccij )

2]
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(4.25)

where [−].× [−] represents the element-wise multiplication.
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4.3 Exactness and Optimality of the OPF Model

This section discusses the exactness and optimality of the proposed SOCP-OPF model for

multi-phase radial networks.

4.3.1 Exactness

The exactness of SOCP relaxation for single-phase OPF is guaranteed under certain con-

ditions, which are illustrated in [90] [57, 70]. For single-phase radial power networks, the

power flow relations are as follows:

Sjk = sj +
∑
i:i→j

(Sij − zijlij)uj − uk = 2Re(z∗jkSjk)− |zjk|2ljkujljk ≥ |Sjk|2 (4.26a)

For linear approximation, [lij, ljk] = 0 is considered in (4.26). In radial networks, for a

solution set s from the linear model, the line flow and the voltage amplitude square are

defined as Slin
jk and ulinj , respectively. For a power flow direction from bus Nj to bus 0 (sub-

station bus) through a unique path Pi of the network, it is proved in [90], that Sjk ≤ Slin
jk

and uj ≤ ulinj . Physically, Slin
jk denotes the power injections through branch Ljk ∈ Pi towards

the bus 0. For checking the tightness, a matrix function is defined as:

Ajk = I2 −
2

uj
[zjk]

(
[Slin

jk (s̄)]
+
)

(4.27)

where s̄ is the maximum capacity of power injection and I2 is an identity matrix of size

(2× 2). Further, [zij] = [rij xij]
T and [Slin

jk (s̄)]
+ = [[P lin

jk (s̄)]+ [Qlin
jk (s̄)]

+] with the definition

as, [aj]+ = max{0, aj}. For convenience, Ajk and zjk are labeled as Aj and zi for further

discussion. If Svolt is a power injection region where voltage upper bounds do not bind

and the objective function f(x) is strictly increasing, then SOCP is exact if the following

conditions hold [90]:

1. If, in the network, for each unique path Pi from bus Nj to bus 0 have k links as

((ik, ik−1), ..., (i1, i0)). Then AisAis+1
...Ait−1

zit > 0 for all 1 ≤ s ≤ t ≤ k.

2. The power injections (s) satisfies ulinj (s) ≤ uj.

The condition (1) depends on the network parameters (rij, xij, pi, qi, ui), which can be

checked ex-ante the OPF analysis. For the proposed SOCP-OPF model in this article,

the line impedance is addressed in (4.7)-(4.10) considering the mutual impedance with the

means of a coupling coefficient ξϕ. For all the branches in each phase, the conic constraint

(4.12) is satisfied independently. For multi-phase networks, even with the mutual coupling,

the conditions Sϕ
jk ≤ Sϕ,lin

jk and uϕj ≤ uϕ,linj are valid for each phase independently which is

proved in the following sub-section in 4.3.1.1. When uϕ,linj (s) ≤ uϕi , SOCP relaxation is exact
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for the proposed model if the following condition satisfies.

• For each phase of the network independently, with each unique path Pi from bus Nj

to bus 0; Aϕ
is
Aϕ

is+1
...Aϕ

it−1
zϕit > 0 for all 1 ≤ s ≤ t ≤ k.

This can be checked ex-ante of the SOCP-OPF analysis. The SOCP-OPF is exact if all

branches have a minimum solution gap. The solution gap, defined as σ = |uilϕij − (Sϕ
ij)

2| is

measured after the OPF analysis. It was observed that the solution gap (σ) is very small

from the proposed model (considered as σ ≤ 10−7).

4.3.1.1 Proof of Exactness

For each unique path (Pi) in the radial network for a power flow from bus Nj to bus 0 in

phase-a:

Sa
jk = sj +

∑
i:i→j

(Sa
ij − zaaij laij − ξbzabij lbij − ξczacij lcij)

For linear approximation, [laij, lbij, lcij] = 0; so for a power injection for the phase-a at bus Na
j :

Sa,lin
jk = sj +

∑
i:i→j

Sa,lin
ij (s)

When in practical power networks, self-impedance is higher than mutual impedance Sa
jk ≤

Sa,lin
jk (s). In the same way, it can also be shown for the other phases. So in general form, it

is proved as, Sϕ
jk ≤ Sϕ,lin

jk (s). From the proposed OPF model, the voltage drop relationship

between bus Na
j and Na

k for the phase-a is as follows:

uaj − uak = 2Re(za∗jkS
ϕ
jk)− |z

aa
jk |2lajk − |ξb||zabjk|2lbjk − |ξc||zacjk|2lcjk

where zajk = [zaajk ξbzabjk ξczacjk]; S
ϕ
jk = [Sa

jk Sb
jk Sc

jk]
T . If the voltage amplitude square at the

bus 0 is uϕ0 , then for power flow from bus Na
j to bus 0 through each unique path Pi, the

voltage relation for phase-a is as follows:

uaj − ua0 = 2
∑

(j,k)∈Pi

Re(za∗jkS
ϕ
jk)

−
∑

(j,k)∈Pi

(|zaajk |2lajk + |ξb||zabjk|2lbjk + |ξc||zacjk|2lcjk)

⇒ uaj − ua0 ≤ 2
∑

(j,k)∈Pi

Re(za∗jkS
ϕ
jk)

⇒ uaj − ua0 ≤ 2
∑

(j,k)∈Pi

Re(za∗jkS
ϕ,lin
jk (s))

⇒ uaj − ua0 ≤ ua,linj − ua0

⇒ uaj ≤ ua,linj
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In the same way, it can also be shown for the other phases. So in general form it is proved

as; uϕj ≤ uϕ,linj .

4.3.2 Optimality

The objective function f(xϕi ) for the proposed OPF model is convex and increasing with

the current flow ’Iϕij’. Let us consider an optimal solution set from the proposed SOCP-

OPF model as, ψ̃ = (S̃ϕ
ij, l̃

ϕ
ij, ũ

ϕ, s̃ϕg ); where a branch Lϕ
ij ∈ Lϕ has strict inequality such

that ũϕi l̃
ϕ
ij > (P̃ ϕ

ij)
2 + (Q̃ϕ

ij)
2. Further, let us assume there exists another feasible solution

set as ψ̂ = (Ŝϕ
ij, l̂

ϕ
ij, û

ϕ, ŝϕg ), where l̂ϕij = l̃ϕij − ϵϕ, Ŝ
ϕ
ij = S̃ϕ

ij − ϵϕξϕz
ϕ
ij, û

ϕ
i = ũϕi , [ŝϕg ]i = [s̃ϕg ]i,

[ŝϕd ]i = [s̃ϕd ]i + ϵϕξϕzϕij and [ŝϕd ]j = [s̃ϕd ]j for a ϵϕ ≥ 0. As l̂ϕij = l̃ϕij − ϵϕ has a strict smaller

value, then the OPF objective value f(ψ̂) is smaller than the objective value as f(ψ̃). This

contradicts the optimality of the solution set ψ̃. Thus to prove that the solution ψ̃ is a

globally optimal solution, it is sufficient to show ϵϕ = 0. The following remarks illustrate the

optimality of the proposed SOCP-OPF model.

Remark. An optimal point of solution will be within the convex space if the solution satisfies

(4.8)-(4.10), (4.12) and (4.16).

Proof. As, ψ̃ is an optimal solution from the proposed SOCP-OPF model, so it satisfies

(4.8)-(4.10), (4.12) and (4.16). For analyzing (4.8)-(4.9) together, the power flow equation

with the apparent power generation sϕg and apparent power flow Sϕ
ij are considered here for

the bus Nϕ
i ∈ N ϕ and Nϕ

j ∈ N ϕ. If, ψ̂ is a solution within the solution space, ψ̂ also satisfies

(4.8)-(4.10), (4.12) and (4.16). For the solution set ψ̂ at the bus Nϕ
i ∈ N ϕ:

ŝϕi = [ŝϕg ]i − [ŝϕd ]i = [s̃ϕg ]i − [s̃ϕd ]i − ϵ
ϕξϕzϕij

=
∑
j:i→j

S̃ϕ
ij −

∑
k:k→i

(S̃ϕ
ki − ξ

ϕzϕkil̃
ϕ
ki) + yi

ϕũϕi − ϵϕξϕz
ϕ
ij

=
∑

j′:i→j′,j ̸=j′

Ŝϕ
ij′ + (Ŝϕ

ij + ϵϕξϕzϕij)−
∑
k:k→i

(Ŝϕ
ki − ξ

ϕzϕkil̂
ϕ
ki) + yi

ϕûϕi − ϵϕξϕz
ϕ
ij

=
∑
j:i→j

Ŝϕ
ij −

∑
k:k→i

(Ŝϕ
ki − ξ

ϕzϕkil̂
ϕ
ki) + yi

ϕûϕi

At the bus Nϕ
j ∈ N ϕ,

ŝϕj = [ŝϕg ]j − [ŝϕd ]j = [s̃ϕg ]j − [s̃ϕd ]j

=
∑
k:j→k

S̃ϕ
jk −

∑
i:i→j

(S̃ϕ
ij − ξϕz

ϕ
ij l̃

ϕ
ij) + yjũ

ϕ
j

=
∑
k:j→k

Ŝϕ
jk −

∑
i′:i′→j,i′ ̸=i

(Ŝϕ
i′j − ξ

ϕzϕi′j l̂
ϕ
i′j) + yjû

ϕ
j − [(Ŝϕ

ij + ϵϕξϕzϕij)− ξϕz
ϕ
ij(l̂

ϕ
ij + ϵϕ)]

=
∑
k:j→k

Ŝϕ
jk −

∑
i:i→j

(Ŝϕ
ij − ξϕz

ϕ
ij l̂

ϕ
ij) + yjû

ϕ
j
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So, for both nodes Nϕ
i ∈ N ϕ & Nϕ

j ∈ N ϕ, ψ̂ satisfies (4.8)-(4.9). For ψ̂, (4.10) is checked for

the branch Lij ∈ Lϕ as follows:

ũj
ϕ = ũi

ϕ − 2ξϕ(rϕijP̃
ϕ
ij + xϕijQ̃

ϕ
ij) + [(rϕij)

2 + (xϕij)
2]|ξϕ|l̃ϕij

⇒ ûj
ϕ = ûi

ϕ − 2ξϕ[rϕij(P̂
ϕ
ij + ϵϕξϕrϕij) + xϕij(Q̂

ϕ
ij + ϵϕξϕxϕij)] + [(rϕij)

2 + (xϕij)
2]|ξϕ|(l̂ϕij + ϵϕ)

⇒ ûj
ϕ = ûi

ϕ − 2ξϕ(rϕijP̂
ϕ
ij + xϕijQ̂

ϕ
ij) + [(rϕij)

2 + (xϕij)
2]|ξϕ|l̂ϕij

− 2ξϕ
2
ϵϕ[(rϕij)

2 + (xϕij)
2] + |ξϕ|ϵϕ[(rϕij)2 + (xϕij)

2]

In the proposed model, it is derived that ξϕ = −0.5± |λ|. Hence, −2ξϕ2ϵϕ[(rϕij)2 + (xϕij)
2] +

|ξϕ|ϵϕ[(rϕij)2 + (xϕij)
2] ≈ 0. So, ψ̂ satisfies (4.10) for the link Lij ∈ Lϕ, as follows:

ûϕj = ûϕi − 2ξϕ(rϕijP̂
ϕ
ij + xϕijQ̂

ϕ
ij) + [(rϕij)

2 + (xϕij)
2]|ξϕ|l̂ϕij

As, ψ̃ is within the conic convex space then from (4.12):

ũϕi l̃
ϕ
ij − (S̃ϕ

ij)
2 > 0

⇒ ûi
ϕ(l̂ϕij + ϵϕ)− (Ŝϕ

ij + ξϕzϕijϵ
ϕ)2 > 0

⇒ ûi
ϕl̂ϕij − (Ŝϕ

ij)
2 + ϵϕ[ûϕi − (ξϕ)2(zϕij)

2ϵϕ − 2Ŝϕ
ijξ

ϕzϕij] > 0

ϵϕ[ûϕi −(ξϕ)2(z
ϕ
ij)

2ϵϕ−2Ŝϕ
ijξ

ϕzϕij] is negligible when the relaxation is exact for a power network.

Remark. If ϵ = 0, then ψ̃ = ψ̂, so no other solution set exists within the solution space for

which the objective function value is smaller than f(ψ̃). The solution ψ̃ from the proposed

OPF model is globally optimal.

Proof. In this article, the objective function f(xϕi ) is convex for the proposed SOCP-OPF

model. For the two minima at ψ̃ and ψ̂, f(ψ̂) ≤ f(ψ̃). From the definition of convexity:

f(hψ̂ + (1− h)ψ̃) ≤ hf(ψ̂) + (1− h)f(ψ̃) (4.28)

where h ∈ [0, 1]. As hf(ψ̂) ≤ hf(ψ̃); then,

hf(ψ̂) + (1− h)f(ψ̃) ≤ hf(ψ̃) + (1− h)f(ψ̃)⇒ hf(ψ̂) + (1− h)f(ψ̃) ≤ f(ψ̃)

Using (4.29) to the definition of the convexity in (4.28):

f(hψ̂ + (1− h)ψ̃) ≤ f(ψ̃) (4.29)

Since f(ψ̃) is the optimal point from the proposed OPF model, so for any other solution
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within the space is f(ψ) > f(ψ̃). Which contradicts with (4.29). To satisfy both conditions

it must be ψ̃ = ψ̂, thus ϵϕ = 0. So, the solution from the proposed model is a globally

optimal solution for convex objectives.

Figure 4.2: Flow chart of the proposed SOCP-OPF algorithm. The ’n’ indicates the iteration number.

Table 4.1: λϕ swipe and % of network loss in the IEEE 123-bus (with 20% DERs) network

No. λa
Optimal

λb
Optimal

λc
% of Network

Loss
Point of Operation-1 -0.1 0.05 0.05 2.6830
Point of Operation-2 0.0 0 0 2.6171
Point of Operation-3 0.1 0.045 0.055 2.5808

4.3.3 Inclusion of λϕ in the Proposed OPF Model

The proposed SOCP-OPF model solves unbalanced distribution networks for an optimal

point of operation with conic relaxation. Inclusion of λϕ and the minimization of solution

gap σ = |uilϕij− (Sϕ
ij)

2| is illustrated in Fig. 4.2. The determination of the λϕ depends on the

σϕ and requires multiple iterations based on the unbalanced nature of the network. σϕ
ref and

the increment step size of ∆λϕ are defined at the optimization’s beginning. After solving

the optimization for (4.14), the average of solution gap σϕ is determined and checked with

the σϕ
ref for determining the optimal value of λϕ (i.e., λa,λb & λc) for the network. Among

the iteration steps (n) few points of operation (i.e.,λa = −0.1, λa = 0.0, λa = 0.1) are shown
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Figure 4.3: Illustration of the λϕ swipe for the IEEE 123-bus network (with 20% DERs).

Figure 4.4: Illustration of the solution gap (σ) with the λϕ sweep for the IEEE 123-bus network (with 20%
DERs). (a), (b) & (c) considering coupling coefficient (ξϕ) and (d), (e) & (f) with no coupling impact.

in Fig. 4.3 for the IEEE 123-bus network (with DERs), how the point of OPF varies with

the value of λϕ. Fig. 4.4 shows the impact of λb, λc and λa on the solution gap (σ). If the

coupling impact is not considered, the solution gap is higher. The desired values of the λϕ

are determined when the value of the objective function is minimum. With the change of

λϕ, three operation points are represented in Table 4.1 as an example, and the desired values
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are λa = 0.1, λb = 0.045, and λc = 0.055. The proposed model is implemented on different

practical IEEE networks for analysis, and the results are discussed in the next section.

4.4 Simulation and Evaluation

The proposed SOCP-OPF model is simulated in Matlab with the MOSEK solver with a

machine configuring an Intel(R) Core(TM) i7-10510U CPU @ 2.30 GHz processor, 16 GB

RAM. It is observed that the model can handle high penetration of DERs and solve large

distribution network systems for the optimal point of operation. When the OPF model is

implemented for base case networks, it only considers the mutual coupling effect between

lines. The model also considers unbalanced DERs (shown in Table 4.2 for the IEEE 123-

bus network). So, when the DERs supply an unbalanced current to the lines, the mutual

coupling effect is considered for determining the coupling coefficient due to this unbalanced

current. The chapter also showcases the effectiveness of the proposed model under such

conditions. In short, the model can address the multi-phase network’s coupling effect with

and without considering DERs. The analysis and the observations are discussed in the

following subsections.

4.4.1 Case 1 (IEEE 123-Bus Network Test System)

First, the model is tested on the IEEE 123-bus distribution network. The bus renumbering

of the 123-bus network in this article is illustrated in Fig. 4.5. The physical transformers

between the nodes (76−77) and the regulators between the nodes (1−2), (23−24), (109−114)

and (123 − 124) are modeled as described in section II(E) of this article. The behavior of

closed switches is regularized using a short-line model with negligible impedance (≈ .0001+

j.0001pu). The voltage limits [V , V ] are [0.9, 1.1] for the OPF simulations. The proposed

model is relaxed with a second-order cone inequality (4.12), the solution gap, defined earlier

as σ = |uilϕij− (Sϕ
ij)

2| for each branch and used the 2nd order norm as shown in the flowchart

in Fig. 4.2 for the simulation.

The results from the proposed SOCP-OPF model are verified with the solution from a

Non-Linear Programming (NLP) based on a fixed point iteration method. Besides that, the

performance of the proposed SOCP-OPF model is compared with a) convex SDP-OPF b)

linear OPF (considering (4.8)-(4.10) excluding the terms associated with lij) and, c) a SOCP-

OPF model without considering the coupling impact. For the base case of the IEEE 123-bus

network, the results are optimal and very close to the solution compared to the NLP-OPF

and SDP-OPF models. Also, as the proposed model considers the mutual coupling for multi-

phase lines, the solution gap is very negligible comparing the loading condition (constant

power and ZIP loads) of the 123-bus network.

Besides the base case, the proposed SOCP-OPF model also considers the high penetration
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Table 4.2: Position and capacity of the DERs (20%) on the IEEE 123-bus network system

Bus
No.

pag
(kw)

pbg
(kw)

pcg
(kw)

qag
(kvar)

qbg
(kvar)

qcg
(kvar)

14 0∼40 - - -20∼20 - -
19 - 0∼40 - - -10∼10 -
20 - 0∼40 - - -10∼10 -
25 0∼20 - - -10∼10 - -
30 - - 0∼40 - - -20∼20
33 105 70 70 -70∼70 -40∼40 -40∼40
34 - - 0∼40 - - -20∼20
61 - - 0∼40 - - -20∼20
64 0∼40 - - -20∼20 - -
72 - - 0∼40 - - -20∼20
97 0∼35 0∼35 0∼35 -20∼20 -20∼20 -20∼20
110 0∼40 - - -20∼20 - -
117 - - 0∼20 - - -10∼10
119 - - 0∼40 - - -20∼20

of DERs in a distribution network. The model has also been tested on the IEEE 123-bus

network with penetration of DERs (20% of the total connected loads). The DERs can supply

the real power and supply or absorb reactive power in the network upon requirements based

on the objective function. The DERs’ placement in the network and the capacity of the DERs

are illustrated in Table 4.2. The negative limit expresses the reactive power absorption

Figure 4.5: Adapted IEEE 123-bus network with the renumbered buses.

capacity of the DERs. Fig. 4.6 compares the three-phase voltage profile from the proposed

SOCP model (when, λa = 0.1, λb = 0.045, and λc = 0.055) with the NLP-OPF solution as

well as with a convex SDP-OPF, linear OPF, and existing SOCP-OPF models, while DERs

are connected in the network. The comparison of the generation of the proposed OPF model

with other models is illustrated in Table. 4.3.

As the linear OPF model ignores the network loss, the generation results are not considered

in this table. When the coupling coefficient is considered, the solution results are more
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analogous to the benchmark models (i.e., NLP, SDP). The objective value is measured at the

points (i.e., λa = −0.1, λa = 0.0, λa = 0.1) of operation concerning λϕ and is demonstrated

in Fig. 4.3. The solution gap for three points of λϕ is shown in Fig. 4.4. The solution gap

is minimum at the operational point for λa = 0.1, λb = 0.045, and λc = 0.055. The primal

and dual error convergence for the 123-bus network system from the proposed OPF model is

illustrated in Fig. 4.9. From the analysis, for the 123-bus network, the SOCP-OPF is tight,

and the solution from the model is globally optimal. Also, it proves the model’s capacity to

handle the unbalanced behavior of a network with high penetration of DERs.

Figure 4.6: Three-phase voltage profile for the IEEE 123-bus network with 20% DERs and considering ZIP
loads. Legend ’SOCP’ is for the proposed OPF model and ’SOCP(NC)’ for the SOCP-OPF with no coupling
coefficient.

4.4.2 Case 2 (650-Bus & 2500-Bus Network Test Systems)

The proposed SOCP-OPF model is tested with more extensive networks to check the

scalability. The 650-bus and 2500-bus network systems are derived from the IEEE 8500-

bus network. The 2500-bus network is the medium voltage (MV) version of the 8500-bus

network system. All the low voltage lines and nodes are aggregated to the respective MV

nodes. The 650-bus system is the 3-phase version of the 8500-bus network system. All the

single-phase MV nodes from the 2500-bus system are aggregated to the closest 3-phase nodes.

The proposed SOCP-OPF is compared with NLP-OPF, SDP-OPF, linear OPF, and existing

SOCP-OPF solutions. For the OPF analysis, the limit for the [V , V ] is [0.9, 1.1]. However,

it is observed that within these limits, the SOCP-OPF without the coupling is infeasible

for the 650-bus network. Similarly, the linear and SOCP models without considering the
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Figure 4.7: Three phase voltage profile for the 650-bus network.

coupling (these are state-of-the-art), are infeasible for the 2500-bus network. The three-

phase voltage profile for the 650-bus and IEEE 2500-bus networks are shown in Fig. 4.7 and

Fig. 4.8, respectively. Fig. 4.9 illustrates the primal and dual error convergence for different

distribution network systems from the proposed SOCP-OPF model.

Finally, the SOCP-OPF solution convergence time is compared with the existing OPF

models. The convergence time comparison among different OPF models and the voltage

mismatch between the solution from the proposed SOCP-OPF model and the NLP-OPF

solution for different power distribution network systems are illustrated in Table 4.4. The

solution convergence speed of the proposed SOCP-OPF model is considerably high, and the

voltage mismatch in different radial-type distribution networks is minimal and within the

standard operation limit.

Table 4.4: Convergence time and voltage mismatch comparison

Network Convergence Time (Sec) SOCP vs NLP
Voltage Mismatch (%)

SOCP NLP SDP Linear Phase
a

Phase
b

Phase
c

13-bus 0.38 1.29 0.47 0.19 .0480 .0486 .0727
123-bus 0.41 1.59 0.55 0.28 .0271 .0198 .0050
650-bus 0.59 6.17 2.47 0.32 .0302 .0116 .0261
2500-bus 1.49 48.2 - - .0240 .0020 .0001
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Figure 4.8: Three phase voltage profile for the IEEE 2500-bus network.

Figure 4.9: Primal and Dual error vs iteration number for different networks.

4.5 Summary

This chapter proposes a SOCP-OPF model for unbalanced multi-phase power distribution

networks. The model relaxes the voltage and current phase angles and introduces a coupling

coefficient. The mutual coupling coefficients address the mutual coupling impedance impact

on a multi-phase network due to the phase angles. The improvement in the proposed model’s

tightness with the mutual coupling coefficient is evaluated. The model is simulated for

different loading conditions and high DERs penetration for multiple unbalanced multi-phase

networks. It has been proven that the OPF model is exact, and the solution is globally

optimal. Also, the proposed model is feasible for large networks and computationally fast.

For future research, the tightness of the multi-phase SOCP-OPF model will be analyzed more

extensively. Further, the OPF model can be extended to mixed-integer (MI) and receding

horizon control (RHC) SOCP-OPF analysis for multi-phase power distribution networks.



CHAPTER 5: A SECOND-ORDER CONE PROGRAMMING (SOCP) BASED

OPTIMAL POWER FLOW (OPF) MODEL WITH CYCLIC CONSTRAINTS FOR

POWER TRANSMISSION SYSTEMS

5.1 Introduction and Contribution

Optimal Power Flow (OPF) analysis is one of the salient tools in power system planning

and operation for particular objectives (e.g., generation costs, power losses) by maintaining

the bus voltages and branch flows within the operational limits [112–115]. OPF analysis is

typically formulated using AC power flow equations considering multiple operational con-

straints, referred to as AC-OPF. Due to the non-convexity of power flow equations and

network constraints, the AC-OPF problem originally is non-deterministic polynomial (NP)-

hard [13, 14]. Moreover, the non-convexity in AC-OPF formulation leads to computational

intractability, particularly for large power networks; thus, a globally optimal solution may

not be guaranteed [18, 114]. Conventionally, linear approximations of power flow equations

are commonly used to overcome the computational challenges of the non-convex AC-OPF

formulations. However, approximation of linear formulations like DC-OPF [20, 21] compro-

mise the solution accuracy. Thus, the solutions from such formulations may not be optimal.

On the contrary, the convex relaxations of AC-OPF problems are conditionally exact

(hence, AC-feasible) and computationally efficient [22]. Due to the ability to find global op-

tima, the convex AC-OPF formulations have been extensively used in various power system

optimization applications [23,24,116]. Additionally, the convex envelopes have been a promis-

ing approach for the non-linear terms in OPF analysis [117]. However, it was noted that the

accuracy of the convex relaxations depends on the tightness of these convex envelopes [118].

A robust convex restriction to solve robust OPF problems is introduced in [119]. To this end,

sufficient conditions for the exactness of the relaxations are illustrated in [56,57]. Among the

variants of convex OPF formulations, the second-order cone programming (SOCP) [22], and

semi-definite programming (SDP) [5] based models are used commonly for OPF problems.

SOCP-based load flow formulation was first proposed for radial distribution networks in [22],

and a conic quadratic model was proposed in [120] for meshed networks. For the SOCP-OPF

model, the angle and conic relaxations are exact in radial networks with no upper bounds

on loads.

In the mesh networks, angle relaxation of AC-OPF can be inexact as the cyclic constraints

are not satisfied (i.e., the sum of voltage angle difference around any loop should be zero) [74].

The conditions for the angle recovery for the SOCP-OPF model are discussed in [68, 69].
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Three methods are proposed in [74] for enhancing the original SOCP-OPF model for mesh

networks that ensure the cyclic constraints for the mesh networks. However, the model suf-

fers computational challenges for large meshed networks. In [121], instead of considering the

cyclic constraints directly for the meshed networks, an alternative SOCP-OPF model using

difference-of-convex programming (DCP) is used, which requires convex-concave procedure

(CCP) based iterations. A SOCP-OPF model is proposed with relaxation by generating new

cutting planes using SDP relaxation in [122]. Though the SDP cuts effectively exclude infea-

sible solutions and enhance the SOCP relaxation of OPF, they add computational burden

on the solution process. Reference [123] proposes relaxation of the cyclic constraints, where

a higher-order moment relaxation matrix for each maximal clique is formed to satisfy the

cyclic constraints. In conclusion, the existing SOCP-OPF models face challenges with the

cyclic constraints for tight and scalable OPF methods for the meshed networks.

On the other hand, SDP formulation retains the angle information and can find an exact

solution of OPF analysis for meshed networks with certain conditions and limitations [3,124].

So, SDP relaxations are theoretically more robust [122] compared to SOCP relaxations for

meshed transmission networks. However, the matrix size grows as the square of the number

of buses in SDP leads to a high computational need for large networks [104]. In addition,

SDP formulations find a physically meaningful OPF solution if the line-flow limits are not

binding [125]. However, SOCP relaxation-based OPF models are computationally efficient

for large networks [117].

From the above discussion, the SOCP is computationally efficient but suffers from angle

relaxation for meshed power networks due to the cyclic angle constraints. This motivates our

proposed work to consider cyclic constraints directly in the SOCP AC-OPF formulation to

obtain exact OPF solutions for meshed networks. With this premise, this chapter proposes a

convex envelope to retrieve and include the bus voltage angle difference across the branches

that satisfies the cyclic constraints in any mesh cycle in the power network. Additionally,

the branches that do not belong to any mesh follow the radial network approach as [106,126]

to determine the bus voltage phase difference for a tighter envelope. The bus voltage phase

angle difference is recovered after the optimization if a wide envelope is considered. In the

proposed approach, the voltage and current phase angles are first relaxed for converting the

non-convex power flow equations into convex form. Then, a quadratic equation is relaxed as

a second-order conic inequality constraint. Finally, a convex envelope is derived for the bus

voltage angle difference, adhering to the cyclic constraints in the network.

5.1.1 Major Contributions

The main contributions of the proposed model are as follows:

• A convex envelope is proposed to retrieve the bus voltage angle difference for all the
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branches in a power network. The envelope is determined based on the optimal power

flow and the voltage limits. With the proposed OPF model, the bus voltage angle

difference remains within the envelope and satisfies the mesh cyclic constraints.

• A theoretical framework, including the mathematical proof is developed for the relax-

ation of meshed power networks with the angle cyclic constraints.

• The approach also proposes a graph theory-based model for extracting the mesh cycles

from a power network. The mesh cycles are determined from a network ex-ante of

the SOCP-OPF analysis. Thus, the cycle information is a parameter for the proposed

SOCP-OPF model.

The chapter is organized as follows. Section 5.2 discusses the proposed methodology, in-

cluding the mathematical modeling in the relaxation framework and the graph theory-based

cycle extraction method. The impacts of line flow limits on the SDP and SOCP-OPF models

are illustrated in Section 5.3. Section 5.4 analyzes the exactness and global optimality of the

proposed model. Section 5.5 discusses the model implementation and result evaluation, and

Section 5.6 concludes the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N : Set of all the buses in the network
Ng: Set of all the buses with generators in the network
L: Set of all the branches in the network
(): maximum limits of the variables and parameters
(): minimum limits of the variables and parameters
Vi: Voltage at the bus i ∈ N
ui: Magnitude square of the voltage at the bus i ∈ N
Sg
i : Apparent power at the bus i ∈ Ng

Sd
i : Apparent power demand at the bus i ∈ N
P g
i : Real power injection at the bus i ∈ Ng

P d
i : Real power demand at the bus i ∈ N
Qg

i : Reactive power injection at the bus i ∈ Ng

Qd
i : Reactive power demand at the bus i ∈ N

Pij: Real power flow through the branch Lij ∈ L connecting the bus (i, j) ∈ N
Qij: Reactive power flow through the branch Lij ∈ L connecting the bus (i, j) ∈ N
Sij: Apparent power flow through the branch Lij ∈ L connecting the bus (i, j) ∈ N
Iij: Current flow through a branch Lij ∈ L connecting the bus (i, j) ∈ N
lij: Magnitude square of the current flow through a branch Lij ∈ L
θij: Bus voltage angle difference between the bus (i, j) ∈ N
zij: Impedance of the branch Lij ∈ L connecting the bus (i, j) ∈ N
Gij: Real part of the off-diagonal components of the admittance matrix (Y )
Bij: Imaginary part of the off-diagonal components of the admittance matrix (Y )
ci2, c

i
1 & ci0: Cost coefficients for the generator at bus i ∈ Ng

5.2 Proposed Methodology

It is well known that power transmission networks are generally in meshed orientation.

Thus for generic model development, a small section of a meshed transmission network is

considered as represented in the schematic diagram in Fig. 5.1. In this chapter, ’L’ is

considered as the set of all branches, and N is the set of all network buses. Further, i and

j ∈ N denote the bus index, and Lij ∈ L denotes the branch connecting the bus i ∈ N and

bus j ∈ N .

Figure 5.1: Schematic diagram of a simple meshed network.

5.2.1 Branch Flow Model (BFM) in Power System

Considering the above notations, the power flow relation through a branch Lij ∈ L and

voltage relations between the bus i ∈ N and bus j ∈ N can be represented as follows:

Sij = ViI
∗
ij (5.1)
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Vj = Vi −
zijS

∗
ij

V ∗
i

(5.2)

where zij is the impedance of the branch Lij ∈ L. Sij and Iij represent the apparent power

and current flow from bus i ∈ N to bus j ∈ N through the branch Lij ∈ L, respectively.

The power balance equation at the bus j ∈ N is as follows:

Sg
j − Sd

j =
∑

k:j→k

Sjk −
∑
i:i→j

(Sij − zij |Iij |2) + y∗j |Vj |2 (5.3)

where yj = gj+jbj is the half lump shunt admittance equivalent of the line at the bus j ∈ N .

Let Y denotes the admittance matrix of a power network, which has off-diagonal components

as Yij = Gij + jBij for each branch Lij ∈ L of the network. The real and reactive power flow

through a branch Lij ∈ L between two buses i ∈ N and j ∈ N can be represented as:

Pij = −GijV
2
i +GijViVj cos(θij) +BijViVj sin(θij) (5.4)

Qij = BijV
2
i −BijViVj cos(θij) +GijViVj sin(θij) (5.5)

where θij = θi − θj; θi and θj are the bus voltage phase angle at the bus i and j ∈ N

respectively. Further, from (5.4) and (5.5):

ViVj sin θij =
BijPij +GijQij

G2
ij +B2

ij

(5.6)

Eqn. (5.6) shows the dependency of the bus voltage angle difference on the power flow

through a branch in the network.

5.2.2 Relaxations and Inclusion of the Cyclic Constraints

5.2.2.1 Angle Relaxation

In the proposed convex model, to convexify (5.1)-(5.3), the phase angle of the voltage and

the current are relaxed as, Iij ⇒ |Iij| and Vi ⇒ |Vi|. New variables have been introduced as

|Iij|2 = lij; |Vi|2 = ui and |Vj|2 = uj. The equation in (5.1) is converted as follows:

uilij = S2
ij (5.7)

Considering the magnitude squared in (5.2), the voltage relationship between the bus i ∈ N

& bus j ∈ N is as follows:

|Vj|2 = |Vi|2 + |zij|2|Iij|2 − (zijS
∗
ij + z∗ijSij) (5.8)
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With the new variable as |Iij|2 = lij; |Vi|2 = ui and |Vj|2 = uj for the squared terms and

with further simplification in (5.8):

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (5.9)

With the angle relaxation and new-defined variables, the apparent power balance relationship

from (5.3) at the bus j is:

sgj − sdj =
∑
k:j→k

Sjk −
∑
i:i→j

(Sij − zijlij) + yjuj (5.10)

Splitting the (5.10) in terms of real and reactive power, the power balance at bus j ∈ N is

as follows:

P g
j − P d

j =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rijlij) + gjuj (5.11)

Qg
j −Qd

j =
∑
k:j→k

Qjk −
∑
i:i→j

(Qij − xijlij) + bjuj (5.12)

where zij = rij + jxij; rij and xij are the resistance and reactance of the line Lij ∈ L

respectively. Sij = Pij + jQij, yj = gj + jbj, Sg
j = P g

j + jQg
j , and Sd

j = P d
j + jQd

j .

5.2.2.2 Conic Relaxation

For each of the branches in the network, the OPF model is still non-convex due to the

quadratic equation in (5.7) as:

lij =
S2
ij

ui
⇒ lij =

P 2
ij +Q2

ij

ui
(5.13)

With the conic-relaxation, the non-convex solution space is enclosed within a feasible conic

convex space [107]. For the proposed model, further convexification is done by conic relax-

ation in (5.13) with a conic inequality as follows in (5.14):

ui + lij ≥

∥∥∥∥∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥∥∥∥∥
2

(5.14)

Fig. 5.2(a) represents the conic space for the OPF solution. The solution gap is minimum if

the OPF solution is on the surface and the solution gap increases if it moves away from the

surface, as demonstrated in Fig.5.3. The difference between solution points A and B is the

solution gap of the SOCP-OPF analysis.
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Figure 5.2: (a) Representation of the conic space; (b) the envelope for θij , where U-E indicates the upper
level and L-E indicates the lower level of the envelope.

Figure 5.3: Feasible zone: NLP vs. SOCP. The feasible space for the NLP lies at the boundary of the
P 2
ij +Q2

ij = uilij curve, while the feasible space for the SOCP is the shaded area right of the curve. Solution
gap, σ = |B −A|.

5.2.2.3 Cyclic Constraints

It is stated in the earlier discussion that for an exact SOCP-OPF analysis, cyclic con-

straints are needed to be satisfied for meshed networks as shown below:

∑
(i,j,...x)∈C

θij + θjk + ...+ θxi = 0 (5.15)

where suffixes i, j, and x are the buses engaged with a particular mesh cycle (C) in a power

network. In the proposed OPF model, the bus voltage angle difference is retrieved based on

(5.6), and the cyclic constraints in (5.15) are satisfied within the convex solution space. For

this purpose, (5.6) is relaxed within an envelope comprising (5.16) and (5.17) as boundary

conditions.

θij ≥
M

V iV j cos
θmij
2

− tan
θmij
2

+
θmij
2

(5.16)

θij ≤
M

V iV j cos
θmij
2

+ tan
θmij
2
−
θmij
2

(5.17)
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where M = ViVj sin(θij) =
BijPij−GijQij

G2
ij+B2

ij
. A visual representation of the proposed envelope

is illustrated in Fig. 5.2 (b), and the derivation of the envelope is shown in the following

sub-section 5.2.3.

5.2.3 Derivation of the Envelope for the θij:

The following convex envelope in (5.18)-(5.19) encloses the sine function in a polyhedral

set as follows [107]:

sin θij ≤ cos (
θmij
2
)(θij −

θmij
2
) + sin (

θmij
2
) (5.18)

sin θij ≥ cos (
θmij
2
)(θij +

θmij
2
)− sin (

θmij
2
) (5.19)

where θmij = max[|θij|, |θij|].

Power transmission system networks are commonly in mesh orientation. For transmission

networks, as the bus voltage (p.u) maximum and minimum limits are near unity and usually,

the voltage (p.u) maximum and minimum limit of [V , V ] = [0.9, 1.1]. If, ViVj sin θij = M ,

then within the voltage limit, the sin θij function is relaxed as, sin θij ≥ M
V iV j

and sin θij ≤
M

V iV j
. Then from (5.18):

M

V iV j

≤ cos (
θmij
2
)(θij −

θmij
2
) + sin (

θmij
2
)

⇒ θij −
θmij
2
≥ M

V iV j cos
θmij
2

− tan
θmij
2

⇒ θij ≥
M

V iV j cos
θmij
2

− tan
θmij
2

+
θmij
2

(5.20)

From (5.19):

M

V iV j

≥ cos (
θmij
2
)(θij +

θmij
2
)− sin (

θmij
2
)

⇒ θij +
θmij
2
≤ M

V iV j cos
θmij
2

+ tan
θmij
2

⇒ θij ≤
M

V iV j cos
θmij
2

+ tan
θmij
2
−
θmij
2

(5.21)

where M = ViVj sin(θij) =
(BijPij−GijQij)

(G2
ij+B2

ij)
.
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5.2.4 Convexity of the Proposed Envelope

The envelope in (5.20) and (5.21) are represented as follows:

f1(P,Q) = α(BijPij −GijQij) + β1

f2(P,Q) = α(BijPij −GijQij) + β2

where α = 1

V iV j cos
θm
ij
2

; β1 = − tan
θmij
2

+
θmij
2

and β2 = tan
θmij
2
− θmij

2
. f(P,Q) can be split

into two first-order functions as, f(P,Q) = f(P ) + f(Q). From the definition, a first-order

equation can be considered as convex. In this article the envelope formed by f(P,Q) is used

for the relaxation of θij from (5.6) as, f1(P,Q) ≤ θij ≤ f2(P,Q).

5.2.5 Proposed SOCP-OPF Architecture

The primary goal of an OPF analysis is to provide a supply-demand balance based on

an objective while satisfying the imposed network constraints. The proposed OPF model

can be applied with different objective functions f(x), such as network loss minimization,

generation cost minimization, bus voltage regulation, or a combination of these. We have

considered only convex objective functions for the proposed SOCP-OPF model in this article.

The following objective functions are analyzed with the proposed OPF model.

a) Network power loss minimization:

min
∑
Lij∈L

rij|Iij|2 ⇒ min
∑
Lij∈L

rijlij (5.22)

b) Real power generation cost minimization:

min
∑
i∈Ng

[ci2(P
g
i )

2 + ci1P
g
i + ci0] (5.23)

where ci2($/MWh2), ci1($/MWh) and ci0($/h) represent the quadratic cost coefficients of the

generator at the bus i ∈ Ng. For considering the cost function as a convex equation ci ≥ 0.

Finally, the proposed SOCP-OPF model with a convex objective function is as follows:

min
∑

f(xi) (5.24)

Subject to: (5.9), (5.11), (5.12) and (5.14)- (5.17); along with the following imposed con-
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straints on the control variables: 

P g
i ≤ P g

i ≤ P
g

i

Qg

i
≤ Qg

i ≤ Q
g

i

lij ≤ lij

ui ≤ ui ≤ ui

(5.25)

where P g
i and Qg

i are the real and reactive power generation of the generator at the bus

i ∈ Ng. Voltage limits are defined as, ui = |V i|2 and ui = |V i|2 for the bus i ∈ N . Current

flow limit is defined as lij = |I ij|2. I ij is the rated current flow limit for the branch Lij ∈ L.

5.2.6 Graph Theory-Based Mesh Cycle Extraction

The proposed OPF analysis process starts with determining all the mesh cycles in a

network. A graph theory-based methodology is proposed to find all the mesh cycles. The

mesh cycles are determined from a network ex-ante of the SOCP-OPF analysis. The bus

voltage angle difference between the buses is determined within the envelope defined by

(5.16) & (5.17), which satisfies the cyclic angle constraints in the network with the imposed

(5.15). An Adjacency matrix (A) is generated for the network branches to find the cycles.

If the bus number in a network is "Nb", then the size of the Adjacency matrix is (Nb ×Nb).

Graph vertices label the rows and columns of the matrix. If bus i ∈ N and bus j ∈

N are adjacent connected, then in position (i, j) of A is 1 otherwise 0. Then with the

interconnected branches, mesh cycles are traced. The shortest mesh cycle is considered for

the model if a branch engages with multiple mesh cycles. The shortest mesh cycle has the

least number of edges and buses engaged with the mesh. For example as shown in Fig. 5.6,

the branch L12 is engaged with multiple mesh cycles as MC1(1, 2, 5, 1), MC2(1, 2, 4, 5, 1)

and MC3(1, 2, 3, 4, 5, 1). However, the mesh cycle MC1 is considered the shortest for the

branch L12. If a branch Lij is already within a previous mesh cycle, then it does not need

to find for another cycle. This approach is continued until all branches’ mesh cycles are

determined. If a network branch is not engaged with any mesh cycles, then that is listed

as a dangling branch. The algorithm for the cycle extraction is illustrated in Algorithm 2.

Worth to note that, in the meshed branches, power transmission networks usually have a few

dangling branches forming a radial-type network part. For those radial type branches, the

phase angle difference depends on the width of the envelopes derived in (5.16) and (5.17). If

a tight envelope is considered with a smaller θmij (i.e., 10o − 20o), the phase angle difference

(θij) is retrieved during the OPF execution. However, if a broader range of θmij is considered

for the envelope, θij is recovered after the optimization process from (5.6). Algorithm 2 is

also used to determine the radial-type dangling branches of the network. The execution



5.3. LINE FLOW LIMITS AND BI-DIRECTIONAL FLOW 64

Algorithm 2 Network Mesh Cycle Extraction
-Determine the total bus number Nb and branch number NL in the power network.
-Get data input for "from bus (fb)" and "to bus (tb)", {fb, tb} ∈ N and form the Adjacency
matrix (A) of size (Nb ×Nb).
-Define a matrix A for the vertices engaged with mesh cycles in the network.
-Define a matrix B for the vertices of the dangling branches.
for n = 1 : NL do

if branch Lij(n) is not already in matrix "A" or "B" then
-Trace for the inter-connected branches from the branch Lij(n) for any mesh cycles
(C) engaged with Lij(n).
if branch Lij(n) is in ′k′ number of mesh cycles: then

Find the total number of buses in each mesh cycle from Ck.
Find the shortest path mesh cycle Cshortestk engaged with the branch Lij(n) from
Ck.
Find the total bus no. Nmesh

ij in the shortest mesh cycle Cshortestk .
for m = 1 to Nmesh

ij do
Find all of the bus indexes i, j..x of the mesh cycle Cshortestk and store them in
the matrix A.

end
end
else if branch Lij(n) is not in a mesh then

Store the bus indexes i & j engaged with the dangling branch Lij in the matrix
B.

end
end

end
-The matrix A returns the cycles, and the matrix B returns the radial branches of the
network.
-Here, Cshortestk is the shortest mesh cycle among the mesh cycles Ck for branch Lij with
minimum edges.

time of Algorithm 2 for different test cases is shown in Table 5.7. Information regarding the

cycles is included as a parameter in the proposed SOCP-OPF model after completing the

mesh cycle extracting process before the optimization begins.

5.3 Line Flow Limits and Bi-directional Flow

5.3.1 Impact of Line Flow Limits

This section discusses the impact of the line flow limits on the SDP-OPF models compared

to the proposed SOCP-OPF model. The SDP-OPF models fail to determine a feasible and

physically meaningful solution for a tighter line-flow limit [3, 125]. To evaluate the impact

of line flow limits on SDP, consider the power flow representation as follows:

P g
i − P d

i =
∑

(i,j)∈N

Re{(Wii −Wij)y
∗
ij} (5.26)

Qg
i −Qd

i =
∑

(i,j)∈N

Im{(Wii −Wij)y
∗
ij} (5.27)
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where Wii = ViV
∗
i and Wij = ViV

∗
j . Vi and Vj are the bus voltage at the bus i ∈ N and bus

j ∈ N respectively. The inequality constraints are defined as follows:

P g
i ≤ P g

i ≤ P
g

i

Qg

i
≤ Qg

i ≤ Q
g

i (5.28)

V 2
i ≤ Wii ≤ V

2

i

For a branch Lij ∈ L connecting the buses i ∈ N and j ∈ N , the line constraints can be

imposed in a convex form as:

|Sij| = |(Wii −Wij)y
∗
ij| ≤ Sij (5.29)

Splitting (5.29) in terms of real and reactive flow, the power flow relation can be represented

as follows:

|Pij| = |Real[|(Wii −Wij)y
∗
ij|]| ≤ P ij (5.30)

|Qij| = |Imag[|(Wii −Wij)y
∗
ij|]| ≤ Qij (5.31)

where W ∈ Hn is a semidefinite Hermitian matrix. The SDP-OPF formulation is tight and

the solution is feasible optimal if W ≥ 0 and rank{W} = 1.

Remark. If narrow band line flow limits are imposed on (5.29), then the SDP-OPF solver

computationally fails or leads to an incorrect solution.

Proof. From (5.29) it can be written as, |(Wii −Wij)y
∗
ij| ≤ Sij ⇒ |(ViV ∗

i − ViV ∗
j )y

∗
ij| ≤ Sij.

If i ∈ N and j ∈ N are two adjacent buses connected with a line Lij ∈ L; Vi = Vm∠θ;

Vj = (Vm +∆V )∠(θ +∆θ) and yij = 1
zij∠θij

, then

|{V 2
m − (V 2

m + Vm∆V )∠−∆θ}y∗ij| ≤ Sij (5.32)

If the SDP OPF is characterized with a voltage range [1 − ξ, 1 + ξ], where ξ is small, then

−2ξ ≤ ∆V ≤ 2ξ. Thus Vm∆V ≈ 0 or negligible ⇒ |(V 2
m − V 2

m∠−∆θ)y∗ij| ≤ Sij.

This means |V 2
m(1− 1∠−∆θ)|yij|∠δij| ≤ Sij. Then in terms of real power, it can be shown

that:

|V 2
m|yij|{cos δij − cos (δij −∆θ)}| ≤ P ij (5.33)
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For a branch Lij ∈ L the line impedance is zij = rij+jxij. Considering that for a transmission

network, xij >> rij and yij =
1

zij∠δij
; δij ≈ π

2
. So for a transmission network (5.33) can be

represented as follows:

||yij|V 2
m sin(∆θ)| ≤ P ij (5.34)

If the voltage phase angle difference ∆θ between two adjacent connected buses is not signif-

icantly low, the lower line flow constraint shown in (5.34) fails. So, the solution from the

SDP formulation becomes infeasible or inaccurate.

The SOCP-OPF model is relaxed with the conic relaxation as uilij ≥ S2
ij. The current

flow lij = |Iij|2 is proportional to the apparent power flow Sij. So, in contrast with the

SDP-OPF models, the SOCP-OPF models do not suffer from the line flow limit issue.

5.3.1.1 Example

The impact of the line flow limit on the SOCP-OPF and SDP-OPF analysis is illustrated

with an example of a 5-bus network [127], shown in Fig. 5.4. Line flow limits are imposed

Figure 5.4: Schematic diagram of the 5-bus network.

on the two branches L1,2 and L4,5, as P (1,2) = 400MW and P (4,5) = 240MW respectively.

It is observed that the SDP-OPF model became infeasible with these network constraints.

Further, the two-line flow limits have been increased by a multiplying factor ϵ. For a range of

ϵP (1,2) and ϵP (4,5); the network has been solved with different OPF models, and the results

are illustrated in Fig. 5.5. With the increase of the value of ϵ, the line limit increases (i.e.,

when ϵ = 2, the flow limit is increased by 100%). The total load is 1000 MW in the network,

and a feasible solution occurs when the total generation meets the total demand. Besides the

5-bus network, tighter line limits are also imposed and tested for different branches in the

IEEE 57-bus and 118-bus networks. Because of the stricter line limits, the SDP-OPF model

computationally fails to provide a feasible solution as opposed to the SOCP-OPF model.

5.3.2 Bi-directional Flow in SOCP-OPF

The SOCP-based OPF models are widely used for radial-type power networks, and the

conditions for the exact solution for any reverse power flow are discussed in [128]. However, it

is necessary to check the feasibility of the SOCP-OPF model for possible bi-directional power
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Figure 5.5: Impact of the branch flow limits on different OPF models.

flow conditions for meshed network systems. Consider bus j ∈ N in Fig. 5.1 with connected

two adjacent buses i ∈ N & k ∈ N . The power flow through the branches connected with

the bus j ∈ N is as follows:

Pij = rijlij − PjiPjk = rjkljk − PkjPlj = rljllj − PjlPjm = rjmljm − Pmj

These relations can be derived for reactive power flow as well. From Fig. 5.1, the real power

balance at the bus j ∈ N is as:

P g
j − P d

j =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rijlij) + gjuj (5.35)

If the power flows in at bus j from the bus i and l and goes out to the bus k and m then

from (5.35):

P g
j − P d

j = Pjk + Pjm − (Pij − rijlij)− (Plj − rljllj) (5.36)

If the direction of power flow at bus j is reversed, then:

P g
j − P d

j = Pjl + Pji − (Pkj − rkjlkj)− (Pmj − rmjlmj) (5.37)

From (5.36) and (5.37); ljk = lkj and ljm = lmj. If the solution gap from the proposed SOCP

model is minimal for the forward flow from bus i to bus j, then S2
ij
∼= uilij. If the power

flows from bus j to bus i, the solution will also be considered exact if it satisfies S2
ji
∼= ujlij,

which can be extended as follows:

S2
ij + (r2ij + x2ij)l

2
ij − 2lij(Pijrij −Qijxij) ∼= ujlij (5.38)
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As the optimal solution for the forward flow is considered with a minimal solution gap as

S2
ij
∼= uilij, then from (5.38):

(r2ij + x2ij)lij − 2(Pijrij −Qijxij) ∼= 0 (5.39)

For the proposed SOCP-OPF model the voltage relation between bus i ∈ N and bus j ∈ N

is expressed as follows:

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (5.40)

From (5.39) and (5.40) for a reverse flow, the solution gap is also minimal if ui ∼= uj. For

the reverse flow in the branch Ljk ∈ L, it can also be shown that for minimal gap solution,

uj ∼= uk. Suppose there is any possible bi-directional flow through a branch in a mesh

network; the OPF solution gap will be minimal if the bus voltage difference between the two

connected buses with that particular branch is minimal.

5.4 Exactness and the Optimality of the Proposed SOCP-OPF Model

The exactness and the global optimality of the proposed SOCP-OPF model are discussed

in this section. The feasible set of the OPF problem is convex with the angle relaxation and

conic relaxation of the non-linear equality in (5.13) within a conic space. The exactness of

an OPF solution from the proposed model depends on the conic space formed by (5.14) and

the cyclic angle constraints. The solution gap is defined as, σ = |uilij − S2
ij| in this article.

For the proposed OPF model, we have considered the objective function f(x) as convex

and increasing with the current flow Iij. Let us consider an optimal solution set from the

proposed OPF model as, ψ̃ = (S̃ij, l̃ij, ũ, S̃g). Further, assume there exist another feasible

solution set as ψ̂ = (Ŝij, l̂ij, û, Ŝg), where l̂ij = l̃ij − ϵ, Ŝij = S̃ij − ϵzij, ûi = ũi, Ŝg
i = S̃g

i ,

Ŝd
i = S̃d

i + ϵzij and Ŝd
j = S̃d

j for a ϵ ≥ 0. Also, the solution ψ̂ satisfies the angle cyclic

constraints. The OPF objective value f(ψ̂) is smaller than the objective value f(ψ̃) as,

l̂ij = l̃ij − ϵ, has a strict smaller value. This contradicts the optimality of the solution set ψ̃

from the proposed OPF model. The proposed model will be proved as tight, and the solution

is globally optimal if the cyclic constraints are satisfied and there is no other solution set

lower than ψ̃. It is sufficient to show ϵ = 0 for proving the global optimality. The following

remarks validate the global optimality and the tightness of the model when cyclic constraints

are satisfied in a mesh network.

Remark. An optimal solution set is within the conic convex solution space if the solution

satisfies (5.9), (5.11), (5.12), and (5.14).

Proof. As ψ̃ is the optimal solution from the proposed OPF model, it satisfies (5.9), (5.11),
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(5.12) and (5.14). The (5.11) and (5.12) are derived in terms of real and reactive power

by splitting the (5.10). For analyzing (5.11)-(5.12) together, the power flow equation (5.10)

with the apparent power Sg
i , apparent power flow Sij, and current flow lij are considered

here for the bus i & j ∈ N . For the solution set ψ̂ at the bus i ∈ N :

Ŝi = Ŝg
i − Ŝd

i = S̃g
i − S̃d

i − ϵzij

=
∑
j:i→j

S̃ij −
∑
k:k→i

(S̃ki − zkil̃ki) + yiũi − ϵzij

=
∑

j′:i→j′,j ̸=j′

Ŝij′ + (Ŝij + ϵzij)−
∑
k:k→i

(Ŝki − zkil̂ki) + yiûi − ϵzij

=
∑
j:i→j

Ŝij −
∑
k:k→i

(Ŝki − zkil̂ki) + yiûi

At the bus j ∈ N :

Ŝj = Ŝg
j − Ŝd

j = S̃g
j − S̃d

j

=
∑
k:j→k

S̃jk −
∑
i:i→j

(S̃ij − zij l̃ij) + yjũj

=
∑
k:j→k

Ŝjk −
∑

i′:i′→j,i′ ̸=i

(Ŝi′j − zi′j ˆli′j) + yjûj − [(Ŝij + ϵzij)− zij(l̂ij + ϵ)]

=
∑
k:j→k

Ŝjk −
∑
i:i→j

(Ŝij − zij l̂ij) + yjûj

For the solution set ψ̃, the voltage relation (5.9) is as follows considering the branch Lij ∈ L:

ũj = ũi − 2(rijP̃ij + xijQ̃ij) + (r2ij + x2ij)l̃ij

⇒ ûj = ûi − 2[rij(P̂ij + ϵrij) + xij(Q̂ij + ϵxij)] + (r2ij + x2ij)(l̂ij + ϵ)

⇒ ûj = ûi − 2(rijP̂ij + xijQ̂ij) + (r2ij + x2ij)l̂ij − ϵ(r2ij + x2ij)

The solution ψ̂ satisfies (5.9) if ϵ(r2ij + x2ij) ≈ 0. As for a branch Lij ∈ L, (r2ij + x2ij) ̸= 0. So

ψ̂ satisfies (5.9) only if ϵ = 0.

As, ψ̃ is the optimal solution from the proposed OPF model, it is within the conic space

as follows:

ũil̃ij − S̃2
ij ≥ 0

⇒ ûi(l̂ij + ϵ)− (Ŝij + zijϵ)
2 ≥ 0

⇒ ûil̂ij − Ŝ2
ij + ϵ[ûi − z2ijϵ− 2Ŝijzij] ≥ 0

If ϵ = 0; ûil̂ij − Ŝ2
ij ≥ 0. The solution set ψ̂ is within the conic space and the solution gap

ϵ[ûi − z2ijϵ− 2Ŝijzij] is minimal.

Remark. When the solution satisfies the cyclic angle constraints, the OPF model is tight,
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along with when ϵ = 0 the solution from the proposed OPF model is globally optimal.

Proof. ψ̂ is the optimal solution with a minimal solution gap satisfying the cyclic angle

constraints in the network. So for a mesh including the branch Lij ∈ L:

sin−1 BijP̂ij +GijQ̂ij

V̂iV̂j(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ...+ sin−1

Bj′ iPj′ i +Gj′ iQj′ i

Vj′Vi(G
2
j′ i

+B2
j′ i
)
= 0 (5.41)

As the cyclic angle constraint is imposed on the proposed SOCP-OPF model for the solution

ψ̃ in the mesh cycle consisting of the branch Lij ∈ L. Then for the solution set of ψ̃:

sin−1 BijP̃ij +GijQ̃ij

ṼiṼj(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ...+ sin−1

Bj′ iPj′ i +Gj′ iQj′ i

Vj′Vi(G
2
j′ i

+B2
j′ i
)
= 0

⇒ sin−1 BijP̂ij +GijQ̂ij + ϵ(Bijrij +Gijxij)

V̂iV̂j(G2
ij +B2

ij)
+ sin−1 BjkPjk +GjkQjk

VjVk(G2
jk +B2

jk)
+ ......

+ sin−1
Bj′ iPj′ i +Gj′ iQj′ i

Vj′Vi(G
2
j′ i

+B2
j′ i
)
= 0

(5.42)

ψ̂ is the optimal solution with a minimal solution gap. So, comparing (5.41) and (5.42) if

ϵ ≈ 0; the cyclic constraints are satisfied similarly for ψ̃ as ψ̂. The solution gap for ψ̃ is also

minimal. The solution gap, defined as σ = |uilij − S2
ij| is measured after the OPF analysis.

The solution gap (σ) is very small from the proposed model for the test cases in this article.

Further, for the two solution set ψ̃ and ψ̂, it is assumed f(ψ̂) ≤ f(ψ̃). From the definition

of the convexity for convex objective functions:

f(aψ̂ + (1− a)ψ̃) ≤ af(ψ̂) + (1− a)f(ψ̃) (5.43)

where a ∈ [0, 1]. Then:

af(ψ̂) + (1− a)f(ψ̃) ≤ af(ψ̃) + (1− a)f(ψ̃)⇒ af(ψ̂) + (1− a)f(ψ̃) ≤ f(ψ̃)

From (5.43) and (5.44):

f(aψ̂ + (1− a)ψ̃) ≤ f(ψ̃) (5.44)

Since f(ψ̃) is the optimal solution, so for any other solution within the convex space is

f(ψ) > f(ψ̃), which contradicts with (5.44). To satisfy both conditions it must be ψ̃ = ψ̂,

thus ϵ = 0. So for a convex objective function, it is impossible to have another solution set

lower than ψ̃. So the solution from the proposed OPF model is globally optimal and satisfies

the cyclic angle constraints in the mesh network.
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5.5 Simulation and Evaluation

The proposed OPF model has been simulated and tested in the MATLAB® with the

MOSEK® solver platform. The proposed OPF model is simulated in multiple standard

test cases (i.e., IEEE 14-bus, 57-bus, 118-bus, and 2736-bus network systems [127]) and

a synthetic 500-bus network [129]. The results from the proposed SOCP-OPF model are

compared with the NLP-OPF and SDP-OPF solutions from MATPOWER® [127]. The

solution from the SDP-OPF in MATPOWER® for the 118-bus network is globally optimal

and feasible with a minimum branch resistance of 1× 10−4 per unit [124]. Thus, The same

network conditions are applied in the proposed SOCP-OPF model. It has been observed

that the solution from the SOCP-OPF model matches with the solution from the SDP-OPF

proven to yield global optimal solutions [124] for the test systems considered.

5.5.1 Implementation of the Proposed SOCP-OPF Model

The model implementation starts with the identification of the mesh cycles in the network

using Algorithm 2. Then the optimization process is executed with the proposed SOCP-

OPF model, where the cyclic constraints for all the meshes are satisfied. This improves

the exactness of the SOCP-OPF model for mesh networks and provides a globally optimal

solution.

As an illustrative example, in Fig. 5.6, the schematic diagram of the IEEE 14-bus network

shows the mesh cycles with all of the branches associated with any loop. In the network,

bus no. 8 is not associated with any mesh cycle and is considered as a radial type dangling

branch from the Algorithm 2.

Table 5.1: Comparison of the angle difference summation over cycles between SOCP with cyclic constraints
(CC) and without cyclic constraints (WCC) on the IEEE 14-bus network

Loop
No.

SOCP-WCC
100% load
(Degree)

SOCP-CC
100% load
(Degree)

SOCP-WCC
200% load
(Degree)

SOCP-CC
200% load
(Degree)

1 2.1347 3.803e-07 4.4935 1.007e-06
2 -2.9525 0 -4.9639 0
3 0.0272 1.493e-07 -0.5300 6.981e-08
4 -0.3881 0 -2.2302 0
5 -0.5042 -9.94e-17 1.7143 1.988e-16
6 0.0999 0 0.8921 0
7 -0.1146 0 -0.394 0

Table 5.1 shows the comparison of the bus voltage phase difference summation over mesh

cycles between SOCP-OPF with cyclic constraints (CC) and without cyclic constraints

(WCC) for different loading conditions. For the WCC, the sum of the angle difference

increases with the higher loading conditions. As a convex OPF model, the proposed model

promises a globally optimal solution for convex objectives with the imposed cyclic constraints.

The OPF solution from the proposed model for the IEEE 14-bus network is compared with
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Figure 5.6: Single line schematic diagram of the IEEE 14-bus network.

Table 5.2: Generation comparison in IEEE 14-bus network
(linear cost function)

Bus
No. C1

Pg (MW)
(SOCP)

Qg (MVAR)
(SOCP)

Pg (MW)
(NLP)

Qg (MVAR)
(NLP)

1 20 128.58 0 128.58 0
2 20 139.99 21.72 140.00 21.70
3 40 0 30.04 0 30.04
6 40 0 10.22 0 10.15
8 40 0 8.05 0 8.05

the benchmark results from NLP-OPF and SDP-OPF models in MATPOWER. The real

and reactive power generation for the minimum generation cost objective function is shown

in Table 5.2 and Table 5.3. It is observed that the power generation in different buses is

same as the NLP-OPF model.

The proposed OPF model is further simulated on more extensive networks to check the

scalability. Table. 5.4 shows the generation comparisons of the proposed SOCP-OPF model

with NLP-OPF and a convex SDP-OPF model. The network conditions for the proposed

SOCP-OPF model are the same as the MATPOWER models. The percent of generation

mismatch between the proposed SOCP-OPF vs. NLP-OPF and SOCP-OPF vs. SDP-

OPF model is illustrated in Table 5.4. MATPOWER uses an interior point solver. Due to

the solver difference, there is a negligible generation discrepancy between the OPF models.

The maximum real power difference for the SOCP-OPF vs. NLP-OPF is 0.09% (2736-Bus

Network), and the reactive power difference is 0.84% (118-Bus Network). For the SOCP-

OPF vs. SDP-OPF, the maximum real power difference is 0.11%, and the reactive power
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Table 5.3: Generation comparison in IEEE 14-bus network
(quadratic cost function)

Bus
No. C2 C1 C0

Pg
(MW)

(SOCP)

Qg
(MVAR)
(SOCP)

Pg
(MW)
(NLP)

Qg
(MVAR)
(NLP)

1 0.04 20 0 194.40 0 194.43 0
2 0.25 20 0 36.78 23.70 36.80 23.67
3 0.01 40 0 28.74 25.12 28.75 25.13
6 0.01 40 0 0 12.71 0 12.63
8 0.01 40 0 8.52 8.51 8.50 8.51

difference is 0.81% (2736-Bus Network). Due to space constraints, only the voltage profile

of the IEEE 118-bus network is demonstrated in Fig.5.7. The power loss from the proposed

SOCP-OPF model and the voltage profile mismatch between the proposed OPF model and

the NLP-OPF model is illustrated in Table 5.6. The tightness of the OPF model has been

analyzed using the solution gap from (5.14) represented as σ = |uilij−S2
ij|. The solution gap

(σ) for all the branches is measured, and the average value is presented in Table 5.6. For all

of the test cases, the σ and % of voltage deviation (∆v) are minimal for the proposed OPF

model compared to the NLP counterpart. The convergence time of the proposed SOCP-

OPF is compared with the SDP-OPF and NLP-OPF models as shown in Table 5.7. The

test system is an Intel(R) Core(TM) i7-10510U CPU, 2.30 GHz processor, and 16 GB RAM

machine. From the results shown in Table 5.7, it is observed that the convergence time for

the proposed SOCP-OPF model is significantly lower than the NLP-OPF and SDP-OPF

models.

Figure 5.7: Voltage profile for the IEEE 118-bus network.

5.5.2 Impact of the Envelope Width on the SOCP-OPF

This section evaluates one of the major contributions to deriving a convex envelope based

on (5.16) and (5.17). The optimal solution from the proposed model includes an optimal bus

voltage angle difference within the envelope based on the power flow and satisfies the cyclic

angle constraints as (5.15). The impact of the envelope width on the θij is illustrated in Fig.
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Table 5.6: Voltage comparison between SOCP-OPF vs NLP-OPF

Test case Voltage Mismatch
(SOCP vs NLP)

Power Loss
(SOCP)

Avg. Solution
Gap (SOCP)

14-Bus Network 0.000 % 3.56 % 5.1e-09
57 Bus Network 0.008 % 1.28 % 9.4e-09
118-Bus Network 0.015 % 1.99 % 2.3e-09
500-Bus Network 0.007 % 1.54 % 1.4e-08
2736-Bus Network 0.025 % 1.87 % 7.03e-09

Table 5.7: OPF solution convergence time comparison and execution time of Algorithm 2

Test
Case

Run Time (sec)
(Algorithm 2)

OPF Convergence Time (sec)
SOCP NLP SDP

14-Bus Network 0.34 0.31 0.34 0.39
57-Bus Network 1.52 0.34 0.56 0.44
118-Bus Network 2.04 0.41 0.64 0.48
500-Bus Network 6.24 0.52 1.05 6.47
2736-Bus Network 15.85 1.47 3.52 322.4

5.8 for the IEEE 14-bus, IEEE 57-bus, and IEEE 118-bus networks. In the figure, θij is shown

for the θmij = 20◦, and 30◦, where, θmij is defined as θmij = max[|θij|, |θij|] for the envelope in

(5.16) and (5.17). While θmij increases, the width of the envelope increases, so the deviation

of θij from the optimal point increases, which is illustrated in Table 5.5. The θij(NLP ) is the

reference value determined from the NLP-OPF solution in MATPOWER. Then the standard

deviation of θij is illustrated as ∆θij, which is defined as ∆θij =
√

[θij(NLP )−θij(SOCP )]2

NL
, NL

is the total number of branches in the network. From the analysis, the standard deviations

are considerably low even for θmij = 30o for all the cases, which is an acceptable range for the

envelope for most practical transmission networks. From this, it is observed that a reasonable

width can be considered for the envelope with the proposed SOCP-OPF model for optimal

operation. The impact of the envelope width on the solution gap (σ) is illustrated in Fig. 5.9

for the IEEE 118-bus network. It is observed as when the width of the envelope is smaller,

and the cyclic constraints (CC) are considered, the solution gap (σ) is considerably lower

than without considering (WCC). With the cyclic constraints, the solution gap (σ) is less

than 1× 10−7. The figure shows the results in per-unit (pu) with a base of 100 MVA. This

concludes that the proposed model’s cyclic constraints significantly improve the exactness of

the SOCP-OPF model for mesh networks.

5.5.3 Analysis of Voltage Difference on the Solution Gap

The effect of the voltage change for bi-directional flow is analyzed with the change of

loading conditions. A load in a particular bus is changed with a multiplying factor λ ∈ [0, 3]

(i.e., when λ = 1 the load is increased by 100% and when λ = 2, increased by 200% and so

on) for observing the impact of the bus voltage difference between two adjacent connecting

buses and thus tightness of the proposed model. For the IEEE 14-bus network’s overload

condition, the voltage difference between bus no. 1 and bus no. 2 is low. Hence, the solution
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Figure 5.8: θij from the proposed envelope satisfying the cyclic constraints. Here, (a) & (d) are for the IEEE
14-bus network, (b) & (e) are for the IEEE 57-bus network, and (c) & (f) are for the IEEE 118-bus network,
respectively.

Figure 5.9: Impact of the envelope width on the solution gap (σ) for the IEEE 118-bus network (a) θmij = 20o

(b) θmij = 30o.

gap (σ) is low, and while the cyclic constraints are applied, the OPF model is tighter, which

is shown in Fig. 5.10 (a)-(b). The metric σ presents the overall tightness, with close to

zero being tighter and thus more accurate. To illustrate the effect of a more extensive

network, bus no. 43 and bus no. 44 in the IEEE 118-bus network are considered. The

solution gap is checked by assessing the voltage difference for both conditions (i.e., with and

without imposing the cyclic constraints). When there is a load increase (considered as the

multiplying factor λ ∈ [0, 3]). The results show that the model is tight with CC and WCC

when the voltage difference between two adjacent buses is small. However, with a larger

voltage difference between adjacent buses, the solution gap is comparatively higher when

cyclic constraints are not considered. This impact is observed on other buses as well. The

solution gap from the proposed SOCP-OPF model is significantly lower, as shown in Fig.

5.10 (c)-(d). These results show that the proposed architecture is tight even for bi-directional

flow if the cyclic constraints are applied with the OPF model.
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Figure 5.10: Impact of the bus voltage difference on the solution gap (σ). Here, (a) & (b) and (c) & (d)
are for the IEEE 14-bus and 118-bus networks, respectively. (CC: Cyclic constraints, WCC: Without cyclic
constraints.)

5.6 Summary

This chapter represents a novel branch flow-based SOCP-OPF model for meshed power

transmission networks. A convex envelope is derived to satisfy cyclic angle constraints in

meshed power networks. The tightness of the proposed OPF model and the solution gap

is improved when the cyclic angle constraints are imposed. The condition for the proposed

SOCP-OPF model’s tightness for bi-directional power flow through a branch is also ana-

lyzed. The OPF model has been simulated and evaluated for several IEEE standard meshed

transmission test networks and compared with NLP-OPF and SDP-OPF models. From the

simulation analysis, the proposed model is tight and provides a globally optimal solution.

Furthermore, the computational efficiency and solution time for convergence of the proposed

SOCP-OPF is improved by up to 58% when compared to the NLP-OPF and SDP-OPF

models for large networks. The proposed OPF model is extendable for the mixed-integer

version of OPF analysis and contingency analysis for unbalanced power networks.



CHAPTER 6: OPTIMAL POWER FLOW (OPF) ANALYSIS FOR AC-DC TYPE

ACTIVE DISTRIBUTION NETWORKS WITH SECOND ORDER CONE

PROGRAMMING (SOCP) MODEL

6.1 Introduction and Contribution

Power system network grids are mainly based on alternating current (AC) [130, 131].

Due to the invention of modern power converters with renewable-based distributed energy

resources (DERs) and increased use of modern DC-type loads, DC grid systems are getting

incorporated with the conventional AC grid system [27, 28]. Though DC grid-systems have

several advantages over AC grid-systems [132, 133], complete replacement of AC grid with

DC systems is not feasible [134]. Hence, the researcher proposes the AC-DC power network

system leveraging the benefits of the DC systems connected with AC grid systems [135,136].

Under different constraints (i.e., network thermal and reactive power limits), the optimal

power flow (OPF) analysis is a salient tool for system operation and planning. Due to the

nonlinearity of Conventional AC-OPF formulations, AC-OPF analysis is nondeterministic

polynomial (NP) hard (NP-hard) in its original form [13]. Due to this complexity, linear

approximated models (i.e., DC-OPF [21]) are used, which compromise the solution accuracy

[137]. The conventional OPF models fail to perform the OPF analysis of the AC-DC network

accurately as the AC-DC network has additional components such as converters, additional

types of buses, etc. The solution to the OPF analysis of the AC-DC networks through

conventional OPF models may lead to computational infeasibility. Hence, researchers have

focused on developing efficient OPF models for AC-DC power distribution networks.

Few works of literature have discussed the OPF analysis for the AC-DC distribution

networks. An AC-DC load flow model based on the Newton Raphson (NR) OPF has been

proposed in [138] with voltage source converter (VSC) HVDC links but did not consider the

DC grid. The net active power injection into the DC system area accounts for the DC links.

A generalized approach to the load flow analysis considering the converters and DC grid of

AC–DC distribution systems is discussed in [139]. But, these load flow models also do not

consider the optimal operation of the network. An OPF model for transmission systems with

volatile renewable resources is presented in [140] with AC-DC network structure. But, the

non-convexity in OPF equations do not guarantee a globally optimal solution [141], [142].

As the convex relaxation of AC-OPF problems is computationally efficient [22], [106], and

conditionally exact [57, 90, 143] (hence, AC-feasible). Hence, a modified second-order cone

(SOC) [68] based convex model will be an efficient approach for the OPF analysis in a dis-
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tribution network with AC-DC structural orientation. The research work presented in [144]

validates the above statement by using SOCP-based formulation with voltage source con-

verters (VSC) for AC-DC type power distribution systems. Nevertheless, the model does

not consider radial distribution networks and DERs. Hence, this article proposes an OPF

model using SOCP for AC-DC-type distribution networks with DERs. Then a modified

interior point method (IPM) based non-linear NLP-OPF model is considered to compare

the performance of the proposed AC-DC SOCP-OPF model. NLP-OPF models are compu-

tationally challenging [61, 62]. The SOCP-OPF model proposed in this article is based on

branch flow-based power flow equations.

6.1.1 Major Contributions

The contributions of the proposed approach are as follows:

• Even though with the angle and conic relaxations of the power flow relations and the

relaxation of the non-linear relations of the power converters (i.e., AC-DC rectifiers,

DC-AC inverters) with McCormick envelopes the SOCP-OPF model provides an exact

optimal solution for AC-DC distribution networks. Being convex in nature, the OPF

model guarantees the globally optimal solution.

• The proposed model determines the optimal modulation index of the converters (i.e.,

AC/DC rectifiers and DC/AC inverters) based on the objective functions, converter

ratings, and network constraints.

• A minimum voltage deviation condition is considered with the objective functions

using a participation factor variable. With different participation factors and DERs

penetration, the OPF model provides optimal solutions providing the robustness of the

OPF analysis approach.

• The computational efficiency of the SOCP-OPF model for AC-DC networks has been

verified by comparing it with an IPM-based NLP-OPF model in this article. The

simulation analysis proves that the SOCP-OPF model is computationally superior to

the NLP-OPF model.

The organization of this chapter is as follows. Section 6.2 discusses the AC-DC distribution

network, and Section 6.3 discusses the proposed OPF methodology. An interior point-based

NLP-OPF model is discussed in Section 6.4. Then, Section 6.5 discusses the model result

analysis from the simulated test cases. Finally, the summary is discussed in Section 6.6 of

this chapter.
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The variable and parameters used in this chapter are as follows:

N : Set of all the buses in the network
V Dmax: Max voltage deviation from the reference voltage
σij: solution-gap
M : Modulation index of a converter
K: Participation factor of the objectives
N : Set of the buses
Ng: Set the buses with DERs
L: Set of the branches
vi: Bus voltage at i ∈ N
ui: voltage magnitude square at i ∈ N
sgi : Injection of power (apparent) at i ∈ Ng

sdi : Load at i ∈ N
pgi : Injection of power (real) at i ∈ Ng

pdi : Load (real) at i ∈ N
qgi : Injection of power (reactive) at i ∈ Ng

qdi : Load (real) at i ∈ N
Pij: Power flow (real) in Lij ∈ L
Qij: Power flow (reactive) in Lij ∈ L
Sij: Power flow (apparent) in Lij ∈ L
Iij: Current through Lij ∈ L
lij: Square of current magnitude through Lij ∈ L
zij: Line impedance of Lij ∈ L
ci: DER’s cost-coefficients at i ∈ Ng

6.2 AC-DC Structure of Distribution Network

The hybrid structure of AC-DC distribution systems consist different AC and DC com-

ponents which includes conventional AC loads, DC loads (i.e., Electric vehicles (EVs)), AC

generators, and DC generating units (i.e., PV farms), as shown in Fig. 6.1. In the OPF

analysis, the inclusion of the converter model is challenging because of its nonlinear char-

acteristics. This chapter utilizes the per-unit equivalent mathematical model of the power

converter developed by the authors in [145] [146].

Figure 6.1: Single line representation of an AC-DC distribution network.

Per Unit relation of converters (PWM Inverter & Rectifiers): The input-output

voltage and power relationships (in per-unit) of the converters can be represented using (6.1)

and (6.2), respectively.

vj = viM (6.1)
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Pout = ηPin (6.2)

where η is the efficiency co-efficient of the converter and M is the modulation index. The

base value relation on input and output sides of the converters is provided in Table 6.1.

Table 6.1: Converter input-output base relation

PWM Rectifier PWM Inverter
Vdc =

2
√
2√
3
Vac Vac =

√
3

2
√
2
Vdc

Idc(B) =
3

2
√
2
Iac Iac =

2
√
2

3
Idc

6.3 Proposed Methodology for SOCP-OPF

6.3.1 Branch Flow Model

In this article, we have considered radial distribution networks with n number buses. N

is the set of all buses in the network with N = {1, 2, 3....., n}. L represents the set of the

branches with n − 1 number of branches. The branches are denoted as Lij connecting the

pair of buses (i, j). vi denotes the bus voltage at i ∈ N . With the apparent power Sij and

current flow Iij in Lij ∈ L, the power flow relations are represented as follows:

Sij = viI
∗
ij (6.3a)

where the distribution lines are modeled with a series impedance of zij = rij + jxij for the

branch Lij ∈ L. As a radial-type network, any bus of the network has only one incoming

branch. So, the apparent power at j ∈ N is as:

sgj − sdj + Sij − zij |Iij |2 =
∑
j→k

Sjk (6.3b)

where sgj is the apparent power injected by DERs, and sdj is the apparent load associated

with the bus j ∈ N .

If a converter is located at the bus j of the network, then a dummy bus is considered as

j
′ at the input of the converter. Therefore, the input/output relation of the voltage for the

converter is represented as follows:

vj = vj′M(6.3c)

The benefits of the convex OPF analysis are already discussed in the introduction section

of this article. Angle and conic relaxation are considered for the convexification for the

SOCP-OPF model, which is discussed in the following subsection.
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6.3.2 Angle, Conic and McCormick Relaxation

6.3.2.1 Angle and Conic relaxation

For convexification, the phase angle of the voltage and current phase is relaxed. Then,

new variables are defined as, |vi|2 = ui and |Iij|2 = lij. With the new-defined variables, the

power flow relationships are as follows:

uilij = S2
ij (6.4)

Considering the voltage magnitude square and using the new-define variables for the squared

terms, the voltage drop between the bus pair (I, j) ∈ N is as follows:

uj = ui + |zij|2lij − (zijS
∗
ij + z∗ijSij) (6.5)

With the new variables, at bus j ∈ N the power balance is:

sgj + Sij − zijlij − sdj =
∑
j→k

Sjk (6.6)

Along the angle relaxation, the relation in (6.4) is convexified with conic relaxation with the

following inequality:

uilij ≥ P 2
ij +Q2

ij (6.7)

For the AC-DC network, the proposed OPF model considers multiple power converters.

For the converters, the voltage relation is as follows:

|vj|2 = |vj′ |2M2 ⇒ uj = uj′m(6.8)

where m =M2. (6.8) is still non-convex, which is convexified with the McCormick envelopes.

6.3.2.2 McCormick Relaxation for the Converters

AC-DC networks contain multiple converters. In this article, the AC-DC and DC-AC

converters are considered only. As the modulation index (M) is an optimization variable,

(6.8) is non-convex. So the voltage relation (6.8) is convexified with McCormick envelopes

[74]. For the converter at the bus j ∈ N if the input voltage relation is noted as uj′ = uin

and the output as uj = uout, the voltage relationship is as follows:

uout = uinm (6.9)
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This non-convex relation in (6.9) is convexified with the following McCormick envelopes:

uout ≥ mLuin +muLin −mLuLin (6.10a)

uout ≥ mUuin +muUin −mUuUin (6.10b)

uout ≤ mUuin +muLin −mUuLin (6.10c)

uout ≤ mLuin +muUin −mLuUin (6.10d)

wheremL = m,mU = m, uUin = |vin|2 and uLin = |vin|2, modulation index asm
AC−DC

=M2
AC−DC

and m
DC−AC

=M2
DC−AC

for AC-DC and DC-AC converters.

6.3.3 Operational Cases for a Network with AC-DC Structure

An AC-DC type distribution network structure forms with multiple network configura-

tions, as illustrated in Fig. 6.2. This section evaluates the mathematical formulations of the

proposed SOCP-OPF model for the network.

Figure 6.2: AC-DC network model with converters.

6.3.3.1 Case: 1 (AC-AC Network)

Only AC network sections of a network are considered for this case. So only the AC-AC

convexified equations are considered for the power flow, which is illustrated as follows:

pgj + Pij − rijlij − pdj =
∑
j→k

Pjk (6.11a)
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qgj +Qij − xijlij − qdj =
∑
j→k

Qjk (6.11b)

The (6.11a), and (6.11b) are derived by splitting (6.6) in terms of real and reactive power,

using Sij = Pij + jQij, sgj = pgj + jqgj , and sdj = pdj + jqdj . Further simplifying (6.5) and (6.7):

uj = ui − 2(rijPij + xijQij) + (r2ij + x2ij)lij (6.11c)

ui + lij ≥

∥∥∥∥∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥∥∥∥∥
2

(6.11d)

6.3.3.2 Case: 2 (AC-DC converter)

Case: 2 is considered at the coupling buses where an AC section is connected with a DC

section through a converter in the network. An example section of case: 2 is shown in Fig.

6.2. For an AC-DC converter at the bus j, a dummy node j ′ is considered at the input of

the converter. Then the load flows through the branch Lij′ before the AC-DC converter is

as follows (6.11a)-(6.11d).

The voltage and power conversion relationships for the converters are as follows:

uj = m
AC−DC

uj′ (6.12a)

where M
AC−DC

is the converter’s (rectifier) modulation index and m
AC−DC

=M2
AC−DC

. For

the proposed analysis, (6.12a) is relaxed with the McCormick envelope as in (6.10). Then,

PDC
out = ηPAC

in (6.12b)

where PAC
in is the input power at the dummy node j ′ , and the converter efficiency is η.

6.3.3.3 Case 3 (DC-DC Network)

Only DC-DC network sections of an AC-DC network are considered for this case. So only

the real power equations are considered for the load flow, which is illustrated as follows:

pgj − pdj + Pij − rijlij =
∑
k:j→k

Pjk (6.13a)

uj = ui − 2rijPij + r2ijlij (6.13b)

ui + lij ≥

∥∥∥∥∥∥∥
2Pij

ui − lij

∥∥∥∥∥∥∥
2

(6.13c)
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The (6.13a)-(6.13c) are derived from the (6.5), (6.6) and (6.7), where only the real power

components are considered.

6.3.3.4 Case 4 (DC-AC Network)

This is considered at the coupling buses where a DC network section is connected with an

AC section through a DC-AC converter. An example section of the case: 4 is demonstrated

in Fig. 6.2. If the converter’s (inverter) modulation index is M
DC−AC

, the power flow through

the converter is as follows:

PAC
out = ηPDC

in (6.14a)

where PDC
in is the DC input power to the converter at the dummy node j ′ and PAC

out is the

AC output power from the inverter at the bus j. The voltage relation of the converter is as

follows:

uj = m
DC−AC

uj′ (6.14b)

where modulation index m
DC−AC

=M2
DC−AC

. For the proposed analysis, (6.14b) is relaxed

using the McCormick envelope as in (6.10).

6.3.4 Proposed SOCP-OPF Model

OPF analysis is performed to determine the optimal operating point (i.e., pgi , q
g
i , etc.) for

an objective function f(x, y) maintaining the network operational and control constraints.

The objective function of the OPF analysis for an AC-DC type network is established as:

f(xi, yi) = f
AC

(xAC
i , yAC

i ) + f
DC

(xDC
i , yDC

i )(6.15)

where x is a vector of the control variables (i.e., the active and reactive power from the

controllable shunts, etc.) and y is a vector of the state variables (i.e., the voltage magnitude).

f
AC

and f
DC

stand for the AC and DC variables of the objective function f(x, y), respectively.

For an AC-DC network, the SOCP-OPF model is proposed as:

min
∑

f(xi, yi) (6.16)
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Subject to (s.t.) : {(6.11a)− (6.14b)} (case-wise) and,

s.t.



pg
i
≤ pgi ≤ pgi

qg
i
≤ qgi ≤ qgi

lij ≤ lij

ui ≤ ui ≤ ui

M ≤M ≤M

(6.17)

where pg
i

and pgi are the minimum and maximum limit of real power injection and qg
i

and qgi

are the minimum and maximum limit of reactive power injection from the DERs at i ∈ Ng.

ui = |vi|2 and ui = |vi|2 at i ∈ N and lij = |Iratedij |2 at Lij ∈ L. M is the modulation index

for a converter with M = v/v and M = v/v.

6.3.4.1 Objective Functions

This article considers different convex objective functions. For generation cost minimiza-

tion or network loss minimization, the converters are prone to dispatch the maximum limit

of reactive support. This results in the voltages hitting the maximum limits. So the system

lacks the required reactive reserves during any contingencies in the network in a particular

operating condition [147]. To avoid this situation, the voltage deviation value is included

as a part of the objective function [148]. The objective function f(x, y) considered with the

proposed model is as follows:

a) Network loss:

f1(x) =
∑
Lij∈L

rijlij (6.18)

or generation cost:

f1(x) =
∑
i∈Ng

cip
g
i (6.19)

where ci is the cost-coefficients for the DERs at i ∈ Ng and for convex cost equation ci ≥ 0.

b) The deviation of voltage is included to the objective function as follows:

f2(y) =
∑
i∈N

|ui − uri |
n

(6.20)

where uri = |vri |2; vri is the reference voltage of a bus at i ∈ N and n is the total bus in the

network.
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Finally, the objective is as follows:

f(x, y) = (1−K)f1(x) +Kf2(y) K ∈ [0, 1] (6.21)

where K is the participation factor for the objective function. The SOCP-OPF model is

compared with an interior point method (IPM) based NLP-OPF model.

6.4 Interior Point Method-based NLP-OPF Model

The injected active power (pi) and reactive power (qi) at a bus i ∈ N can be written as

follows [59]:

pi = v2iGii +
n∑

j=1

vivj[Gijcos(θi − θj) +Bijsin(θi − θj)] (6.22)

qi = −v2iBii +
n∑

j=1

vivj[Gijsin(θi − θj)−Bijcos(θi − θj)] (6.23)

where θi is the voltage phase angle at i ∈ N and i ̸= j. Yij denotes the off-diagonal elements

of the Y bus matrix, which is defined as Yij = Gij + jBij for the network. For the OPF

analysis, equality constraints regarding the power balance are as follows:

∑
pgi −

∑
pdi − pi = 0 (6.24)

∑
qgi −

∑
qdi − qi = 0 (6.25)

Here, pgi and qgi are the power injection and pdi and qdi are the connected load at i ∈ N . For

a converter at j ∈ N :

vj = VinM (6.26)

Here, x = [θi, vi, p
g
i , q

g
i ,M ]T is defined for the unknown variables. The inequality box con-

straints related to the variables in x are defined as follows:

x ≤ x ≤ x (6.27)

where x and x represent the maximum and minimum limit of x, respectively.

Two non-negative slack variables are defined as a = [a1, a2, ..., ar]
T and b = [b1, b2, ..., br]

T .

Here is the size of x. The inequality in (6.27) can be represented as follows:

x = x+ a (6.28)

x = x− b (6.29)
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With the logarithmic barrier functions, the new-defined objective function for the OPF

analysis is as follows:

f(x, y)− µ[
r∑

j=1

ln(aj) +
r∑

j=1

ln(bj)] (6.30)

where aj ∈ a and bj ∈ b are positive and µ is a penalty factor. The Lagrangian function of

the OPF analysis is as follows:

L = f(x, y)−µ[
r∑

j=1

ln(aj)+
r∑

j=1

ln(bj)]−λT

∑ pgi −
∑
pdi − pi∑

qgi −
∑
qdi − qi

−zT (x+a−x)−wT (x−a−x)

where λ, z, w are Lagrange multipliers.

6.5 Simulation and Evaluation

The OPF models are implemented in an Intel(R)-Core(TM) i7-3770 @3.40 GHz, 16 GB

RAM machine. The proposed OPF model determines the optimal (pgi , q
g
i ) and the optimal

modulation index (M) of the converters. The OPF model simulation and experimental anal-

ysis, a 32-bus (modified IEEE 33-bus) and an IEEE 123-bus network systems are modified

to AC-DC type network structure. Power flow analysis is conducted for the validation pur-

pose of the modified AC-DC networks. The power flow analysis (SOCP-PF) is conducted by

excluding the objective function from the OPF model and compared with the results from

the graph-theoretic-based AC-DC power flow model (G-PF) in [145] [146]. The percent of

voltage error is illustrated in Fig. 6.3, which is less than 0.02%. Algorithm 3 illustrates the

implementation of the proposed OPF model and the simulation results are compared with

the IPM-NLP model.

Algorithm 3 AC-DC SOCP-OPF
The number of total branches NL = n− 1.
for k = 1 : NL do

if Lij(k) ∈ L is an AC-AC branch then
Run SOCP-OPF using (6.11a)-(6.11d)

end
if An AC-DC converter is placed at the branch Lij(k) ∈ L then

The converter is placed at the j bus
Define a temporary node as j ′ at the converter
Run SOCP-OPF using (6.12a)-(6.12b) along with (6.11a)-(6.11d)

end
if Lij(k) ∈ L is a DC-DC branch then

Run SOCP-OPF using (6.13a)-(6.13c)
end
if An DC-AC converter is placed at the branch Lij(k) ∈ L then

The converter is placed at the j bus
Define a temporary node as j ′ at the converter
Run SOCP-OPF using (6.14a)-(6.14b) along with (6.13a)-(6.13c)

end
end
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Table 6.2: Rating of the converters

Case Converter
ID

Converter Rating
(KVA)

32-bus Network
M1 1200
M2 500
M3 1200

123-bus Network

M1 400
M2 1000
M3 100
M4 800

Figure 6.3: Percent of error of the voltage profile from the load flow analysis for the 32-bus AC-DC network
structure.

6.5.1 Case 1 (32-Bus Network)

The 32-bus network is derived from the 33-bus network in [149]. The sub-station (bus

no. ’0’) is excluded, and the tie-lines are disconnected for considering a radial type network.

For converting an AC-DC network structure in this article, the reactive components are

excluded from the DC-DC part of the network shown in Fig. 6.4. The placements of the

AC/DC converters (rectifiers) and the DC/AC converter (inverter) are shown in Fig. 6.4 as

well, and the ratings of the converters are in Table 6.2. The modulation index M for different

converters are labeled as M1 (bus no. 6-7), M2 (bus no. 12-13), and M3 (bus no. 26-27).

There are two AC-DC converters between bus no. 6-7 and bus no. 26-27. The DC-AC

converter is placed between bus no. 12-13. The base voltage of the AC side is 12.66 KV, and

the DC side network is 17.90 KV for the 32-bus network. The OPF models are simulated for

the base case and also as well as with high DERs (30% DGs of the total connected loads).

For the experimental simulation, the maximum range of efficiency of the converters is 90%,

and v∗i = 1 (pu) is considered as the reference voltage. The profile of the voltage for the

network with DERs is illustrated in Fig. 6.5. The voltage mismatch is less than 0.01%.

With the increment of the participation factor (K), the weight of the objective function f2

increases, and the voltage deviation decreases. From the SOCP-OPF and NLP-OPF models,

the optimal modulation index (M) for the converters concerning the participation factor (K)

is compared in Table 6.3. The modulation index (M) is comparable to the NLP-OPF model.

The impact of the optimal index M on the network loss minimization objective function is

illustrated in Fig. 6.6. The network loss increases if the converters do not operate with the
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optimal modulation index. When the weight of the participation factor (K) increases, the

voltage deviation from the reference voltage (vri ) decreases, which is demonstrated in Fig.

6.8 in terms of V Dmax. Here voltage deviation is determined as V Di = |vi − vri | for all the

buses in the network, and V Dmax is the maximum voltage deviation among them. The time

of convergence (ToC) of the OPF analysis in Table 6.5 shows the computational efficiency

of the proposed SOCP-OPF model for the 32-bus network.

Figure 6.4: The modified 32-bus AC-DC network with converters.

Figure 6.5: Voltage profile from the 32-bus network. Legend ’SOCP’ indicates the SOCP-OPF model, and
’NLP’ indicates the nonlinear-OPF results.

6.5.2 Case 2 (123-Bus Network)

For checking scalability and robustness, the proposed SOCP-OPF model is simulated on

the IEEE 123-bus network (base case) and with high penetration of DERs (30% DERs of

the total loads). The network is modified to create an AC-DC network structure, as shown

in Fig. 6.7. Three AC/DC converters (rectifiers) and one DC/AC converter (inverter) are

connected to the 123-bus network. The ratings of the converters are in Table 6.2, and

the placements are shown in Fig. 6.7, including the DERs. The AC/DC converters are

labeled as M1 (bus no. 40-41), M2 (bus no. 59-60), and M4 (bus no. 116-117), and the
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Figure 6.6: % Loss vs M for the 32-bus network (30% DERs), when K=0.5.

Figure 6.7: The modified 123-bus AC-DC network with converters.

Figure 6.8: Maximum voltage deviation (V Dmax) across a branch.

DC/AC converter is labeled as M3 (bus no. 68-123), which makes the network structure

as an AC-DC-AC network. The base voltage for the AC-AC and DC-DC sides is 4.16 KV

and 6.8 KV , respectively. A maximum of 90% operating efficiency is considered for all of

the converters in the network. The optimal point (modulation index) of operation for the
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Table 6.4: Optimal ’M’ and percent of network loss for the 123-bus network

Case K Conv.
ID

Optimal
’M’

(SOCP)

Optimal
’M’

(NLP)

Loss
(%)

(SOCP)

Loss
(%)

(NLP)

Base
case

0.0

M1 1.6343 1.6671

14.95% 14.37%M2 1.75233 1.7549
M3 0.5698 0.5675
M4 1.6817 1.6921

0.5

M1 1.6420 1.6590

15.34% 14.69%M2 1.6517 1.6584
M3 0.6182 0.6142
M4 1.6380 1.6333

0.9

M1 1.6400 1.6308

15.81% 15.24%M2 1.6504 1.6689
M3 0.6181 0.6132
M4 1.6325 1.6232

30%
DERs

0.0

M1 1.6862 1.7029

9.16% 9.35%M2 1.7461 1.7650
M3 0.5660 0.5644
M4 1.7581 1.7648

0.5

M1 1.6417 1.6350

9.34% 9.63%M2 1.6477 1.6405
M3 0.6177 0.6096
M4 1.6389 1.6340

0.9

M1 1.6402 1.6333

9.52% 10.02%M2 1.6471 1.6424
M3 0.6176 0.6138
M4 1.6356 1.6324

converters is illustrated in Table 6.4 for both OPF models for different participation factor

K values. With the increase of K, the network loss increases, and the voltage deviation from

the reference voltage decreases. Though the network loss increases by a small portion, the

objective function associated with the f2 keeps the voltage within a stable limit. The voltage

mismatch is less than 0.01% between the two OPF models. Besides that, the modulation

index (M) from the OPF models is also compared. With the increase of the participation

factor (K), the voltage-deviation (V Dmax) from the reference voltage (v∗i ) decreases, which

is demonstrated in Fig. 6.8 for the 123-bus network. The time of convergence (ToC) of

the OPF analysis for the 123-bus network is illustrated in Table 6.5. This shows that the

proposed SOCP-OPF model’s computational efficiency is superior to the NLP-OPF model.

Table 6.5: OPF analysis convergence time comparison

Case K ToC (sec)
SOCP-OPF NLP-OPF

32-bus Network
(Base Case)

0.0 0.21 5.37
0.5 0.19 3.11

32-bus Network
(DERs)

0.0 0.16 3.84
0.5 0.20 3.15

123-bus Network
(Base Case)

0.0 0.25 24.20
0.5 0.21 10.76

123-bus Network
(DERs)

0.0 0.23 8.18
0.5 0.17 8.11
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Figure 6.9: solution-gap (σij) from the SOCP-OPF analysis.

6.5.3 Tightness and Robustness of the SOCP-OPF Model

For the OPF analysis with the SOCP, in this article relaxes the voltage and current

phase angle and considers the McCormick relaxation for the optimal modulation index. The

model also considers conic relaxation and convex objective function f(x, y) for an OPF

solution. The tightness of relaxation of the SOCP model is analyzed with the parameter

of solution-gap defined as σij = |uilij − S2
ij|. The solution-gaps (σij) for all the branches

are measured in the 32-bus and 123-bus networks for different participation factors K and

demonstrated in Fig. 6.9. When the participation factor is K ≈ 0.5 for the net loss and

voltage deviation minimization objective, the solution-gap (σij) is minimum for the network.

Fig. 6.9 illustrates that the solution-gap (σij) is negligible for all the test values of K, so the

relaxation for the proposed SOCP-OPF model is tight for radial distribution networks with

AC-DC structure. The proposed model is tested with different participation factors K (i.e.,

0.1 to 0.9) and with multiple levels of DERs penetration (i.e., base case, 10%, 20% & 30%

DERs). For all the test cases, the SOCP-OPF model provides exact solutions, which are

verified with the solution from the NLP-OPF model and the results are illustrated in Table

6.3 and Table 6.4. Due to space constraints, only the results for the base case and with 30%

DERs are included in the tables. Thus the analysis proves the robustness of the proposed

model.

6.6 Summary

This chapter proposes and analyzes a SOCP-OPF model for AC-DC structured radial

power distribution networks. Besides the operating points of the DERs, the proposed model

also determines the optimal modulation index of the converters in the network. The model

is simulated and evaluated for several modified distribution networks with AC-DC structure.
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Being convex, the AC-DC SOCP-OPF model always produces a globally optimal solution;

from the analytical analysis, the solution gap is negligible. So the relaxation of the proposed

model is tight, and the solution is exact. The solution from the AC-DC SOCP-OPF is

compared with an IPM-based NLP-OPF model for validation. Because of the computational

superiority, the time of convergence (ToC) of the AC-DC SOCP-OPF is significantly low

compared to the NLP-OPF model for the AC-DC network.Besides that, the proposed model

provides accurate OPF solutions for various participation factors in the objective functions

and with various DERs penetration levels. Which proves the robustness of the OPF model.



CHAPTER 7: A DISTRIBUTED OPTIMAL POWER FLOW (D-OPF) MODEL AND A

TIME-DEPENDENT REAL-TIME OPTIMAL POWER FLOW (R-OPF) MODEL WITH

SECOND-ORDER CONE PROGRAMMING (SOCP)

7.1 Introduction and Contribution

Optimal Power Flow (OPF) analysis is fundamental in power system planning and oper-

ation for particular objectives [114]. The high penetration of distributed energy resources

(DERs) has recently increased the complexity of modern power distribution system net-

works [6]. So the OPF analysis for modern power distribution networks (PDNs) is crucial

for efficient and reliable grid operation. AC-OPF problem is naturally nondeterministic poly-

nomial (NP)-hard because of the non-linearity of the original AC power flow equations [13].

So, linear approximations are commonly used, but linear approximated OPF formulations

compromise with the solution accuracy [150]. Besides that, due to the non-convexity of

the original non-linear OPF (NLP-OPF), globally optimal solutions are not always guaran-

teed [114]. Because of these reasons, due to the computational superiority and the capability

of finding the global optimal solution convex, OPF models are extensively used in power sys-

tems [151–153]. One of the most commonly used convex models using second-order cone

programming (SOCP) in power system analysis [22,126]. In prior research, it is proven that

the conic and angle relaxation are exact in radial-type power distribution networks with

certain conditions [68]. So, SOCP-OPF is a good candidate for distributed OPF (D-OPF)

analysis in radial distribution networks.

Traditionally OPF analysis of power distribution networks (PDNs) has been solved with

centralized optimization techniques using a central distribution management system (CDMS)

[44, 154]. High penetration of DERs forms active DNs [155, 156] with increased numbers of

controllable devices and distributed active components. This makes the centralized OPF al-

gorithms complex and sometimes computationally infeasible. Besides computational, main-

tenance, and operational issues, CDMS becomes a vulnerable target for cyber-physical at-

tacks [157]. Also, in the CDMS, the entire network fails for single nodal mismanagement or

operational failure. From these points of consideration, D-OPF is considered for centralized

or decentralized operations for distribution networks.

Researchers have proposed and explored several approaches for solving OPF problems in

a distributed fashion OPF analysis. The most commonly used techniques for D-OPF are

based on the alternating direction method of multipliers (ADMM) [44]. Several D-OPF

techniques based on the ADMM algorithm have been discussed in [17, 66, 88, 96]. For the
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ADMM-based D-OPF models, micro-iterations are counted for local area OPF, while macro-

iterations exchange information for the global variables among the decision-making agents.

Micro and macro-iterations decide the actual time of convergence (ToC) for the algorithm for

a distributed OPF. Even with multiple acceleration methods, the ADMM-based OPF mod-

els require a comparatively large number of iterations for convergence [22]. Thus the ToC

increases for a moderate-size network [18,158]. Besides that, many iterations and a more sig-

nificant communication channel are also required among the distributed areas, which makes

the system impractical or more expensive. Real-time feedback-based methods [68, 69] and

auxiliary problem principle-based [90] models have been explored. However, these methods

also suffer from either a higher number of iteration issues or data exchanging communica-

tion channel latency issues. So, this chapter is motivated by the reduced equivalent network

approximation (ENApp) approach for the D-OPF for radial networks [158].

Because of the computational efficiency and exactness [68, 90], the SOCP-based OPF

model is considered for the proposed D-OPF analysis. For the D-OPF methodology, the

networks are divided into several micro areas, and local OPF analysis is conducted for each

area. Then the optimal operating information is shared among the areas for the optimal

operation of the whole network.

7.1.1 Major Contributions

The main contributions of the proposed work are as follows:

• Proposed a novel distributed optimization approach using SOCP in radial power distri-

bution systems, which leverages a computationally tractable and efficient OPF model

for a globally optimal solution.

• The proposed D-OPF method converges to the solution with comparatively similar

convergence time as centralized OPF analysis with a less computational burden. Also,

it minimizes the effect of the cyber-physical attack on the whole power system network.

• The relaxation is tight for the SOCP D-OPF model, and the model provides an exact

solution with the high penetration of DERs in the network.

• Proposed a time-dependent SOCP-based model for real-time OPF analysis which fa-

cilitates monitoring and control of the grid for an optimal and reliable operation.

In this chapter, the SOCP-OPF methodology in a relaxed framework is discussed in Section

7.2. Section 7.3 discusses the model implementation and the simulation result analysis. Sec-

tion 7.4 proposes a real-time OPF model with simulation analysis and Section 7.5 concludes

the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N : Set of all the buses in the network
N : Set of the buses
Ng: Set the buses with DERs
L: Set of the branches
T : Set of the discrete-time instants
Vi: Bus voltage at i ∈ N
ui: voltage magnitude square at i ∈ N
sgi : Injection of power (apparent) at i ∈ Ng

sdi : Load at i ∈ N
pgi : Injection of power (real) at i ∈ Ng

pdi : Load (real) at i ∈ N
qgi : Injection of power (reactive) at i ∈ Ng

qdi : Load (real) at i ∈ N
Pij: Power flow (real) in Lij ∈ L
Qij: Power flow (reactive) in Lij ∈ L
Sij: Power flow (apparent) in Lij ∈ L
Iij: Current through Lij ∈ L
lij: Square of current magnitude through Lij ∈ L
zij: Line impedance of Lij ∈ L
ci: DER’s cost-coefficients at i ∈ Ng

7.2 Proposed Methodology (Relaxation and Convexification)

7.2.1 Angle and Conic Relaxation for SOCP-OPF

For the OPF analysis, we have considered the branch flow-based power flow model, which

is discussed in this section. This section also elaborates on convexification with angle and

conic relaxation. N is defined as a set of N number of elements for a radial network with N

buses and L is the set of (N − 1) of branches. The set of DERs-connected buses is defined

as Ng. Vi denotes the voltage at a bus i ∈ N of the network. If Sij, and Iij are defined as

the power (apparent) and the current flow, the power flow relations for a branch Lij ∈ L

concerning the bus pair (i, j) ∈ N are as follows:

Sij = ViI
∗
ij (7.1a)

Vj = Vi −
zijS

∗
ij

V ∗
i

(7.1b)

where zij = rij + jxij is the branch impedance of Lij ∈ L. For the bus j ∈ N , the power

balance relationship is as follows:

sgj − sdj + Sij − zij |Iij |2 − y∗j |Vj |2 =
∑

k:j→k

Sjk (7.1c)

where yj is the half-lump shunt admittance and yj = gj + jbj. sgj is the apparent power

injection, and sdj is the apparent power of load associated with the bus j ∈ N .

The non-convex equations concerning the network power flow in (7.13a) - (7.13c) are

convexified with angle and conic relaxations. The angles for the proposed model are relaxed,
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and new variables have been introduced as |Iij|2 = lij; Lij ∈ L and |Vi|2 = ui; i ∈ L. So the

power flow equation (7.13a)- (7.13c) are converted as follows:

uilij = S2
ij (7.2a)

ui − uj − (ZijS
∗
ij + Z∗

ijSij) + |Zij|2lij = 0 (7.2b)

Here (7.14b) is derived from the square magnitude in (7.13b). With the new-defined variables

and further considering Sij = Pij + jQij, yj = gj + jbj, sgj = pgj + jqgj , and sdj = pdj + jqdj ;

(7.13c) is split in terms of real and reactive power as follows:

pgj − pdj + Pij − rijlij − gjuj =
∑
k:j→k

Pjk (7.3a)

qgj − qdj +Qij − xijlij − bjuj =
∑
k:j→k

Qjk (7.3b)

With further simplification in (7.14b) the voltage relationship is obtained as (7.15c).

ui − uj − 2(rijPij + xijQij) + (r2ij + x2ij)lij = 0 (7.3c)

As (7.14a) is still a non-convex relation, the convex model is derived With further conic

relaxation shown below:

ui + lij ≥

∥∥∥∥∥∥∥∥∥∥
2Pij

2Qij

ui − lij

∥∥∥∥∥∥∥∥∥∥
2

(7.3d)

7.2.1.1 Convex SOCP-OPF Model

Primarily OPF analysis is performed on a network to find the optimal point of operation

for an objective f(x). For the exactness, we have considered convex objective functions f(x)

(i.e., loss minimization as, min
∑
rijlij and generation cost minimization as, min

∑
[ci2(p

g
i )

2+

ci1p
g
i + ci0]) for the SOCP-OPF analysis in this article with ci ≥ 0. Here, ci2($/MWh2),

ci1($/MWh) and ci0($/h) are the quadratic coefficients of the generators. The SOCP-OPF

model is as follows:

min f(x) (7.4)



7.2. PROPOSED METHODOLOGY (RELAXATION AND CONVEXIFICATION) 101

Figure 7.1: Distributed Area Configuration of radial distribution networks.

Figure 7.2: Data exchange between a USA and a DSA for the SOCP D-OPF.

subject to (s.t.): (7.15a)-(7.15d) and,

s.t.



ui ≤ ui ≤ ui

pg
i
≤ pgi ≤ pgi

qg
i
≤ qgi ≤ qgi

lij ≤ lij

(7.5)

where pg
i

and pgi are the minimum and maximum limit of real power injection and qg
i

and qgi

are the minimum and maximum limit of reactive power injection from the DERs at the bus

i ∈ Ng. For voltage, the operational minimum and maximum limits are defined as ui = |V i|2

and ui = |V i|2; i ∈ N . Network thermal limit is considered as, lij = |I ij|2. I ij represents the

rated current for Lij ∈ L.

7.2.2 Proposed SOCP D-OPF Model

The SOCP-based distributed OPF (D-OPF) model divides the power network into several

sections, which provides the benefits of local area control and minimizes the cyber-physical

attack’s effect on the whole power system network. The divided area sections are considered

as up-stream area (USA) and down-stream area (DSA) as shown in Fig. 7.1. If a section is

in the middle of two sections, then it will operate as USA for the section towards the radial



7.2. PROPOSED METHODOLOGY (RELAXATION AND CONVEXIFICATION) 102

end and as DSA for the section towards the sub-station. The SOCP-OPF analysis shown in

the previous section is executed for each area for a local optimal operation point. Then the

information is exchanged between the USA and DSA for the next macro iteration, illustrated

in Fig. 7.2.

The data z1 (i.e., pg, qg) from the DSA is passed to the USA, and z2 (i.e., V ) from the

USA is passed to the DSA for the next macro iteration at the point of common connection

(PCC). The iteration continues until the value of z2 is under a particular mismatch tolerance

value ’ϵ’. For a USA network section, if the PCC bus is labeled as bus j ∈ N , then at the

PCC for the up-stream area at the tth macro-iteration follows the power balance and voltage

relationship as follows:

ptj + P t
ij − rijltij − gjutj = 0 (7.6a)

qtj +Qt
i,j − xijltij − bjutj = 0 (7.6b)

where ptj = pgj
t − pdj − [pgDSA]

t−1 and qtj = qgj
t − qdj − [qgDSA]

t−1. Here, [pgDSA]
t−1 and [qgDSA]

t−1

is the total amount of real and reactive power injection from the PCC to the DSA section at

the (t− 1)th macro-iteration. The voltage at the bus j ∈ N is determined as follows within

the conic space.

uti − utj − 2(rijP
t
i,j + xijQ

t
ij) + (r2ij + x2ij)l

t
ij = 0 (7.6c)

uti + ltij ≥

∥∥∥∥∥∥∥∥∥∥
2P t

ij

2Qt
ij

uti − ltij

∥∥∥∥∥∥∥∥∥∥
(7.6d)

For a DSA network section, if the PCC bus is labeled as bus j ∈ N . The PCC voltage in

the USA from the tth macro-iteration is labeled as urefj = utj,USA. Then for the down-stream

area for the (t+ 1)th iteration at the PCC:

[pgDSA]
t+1 =

∑
k:j→k

P t+1
jk + gju

t+1
j (7.7a)

[qgDSA]
t+1 =

∑
k:j→k

Qt+1
jk + bju

t+1
j (7.7b)
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ut+1
j = urefj (7.7c)

Based on this formulation, the SOCP D-OPF model implementation is discussed in the

following section.

7.2.2.1 Model Implementation

If a network is split into a ’NA’ number of areas, then for the proposed D-OPF model,

there will be (NA− 1) numbers of PCCs. At each PCC, the variable z2 (upcc for this article)

is compared for consecutive iterations until the change of z2 is lower than a certain value (ϵ)

as |zt+1
2,PCC − zt2,PCC | ≤ ϵ. In this article, ϵ = 1 × 10−6. When the voltage at all the PCCs

satisfies this condition, the D-OPF analysis converges. The area with the sub-station is

always the USA, and an area with a radial end is always a DSA. The intermediate areas are

considered as both USA and DSA with two PCCs. The variable z1,PCC is the (pdPCC , q
d
PCC)

for the USA and (pgPCC , q
g
PCC) for the DSA. The exchange of the variables of z1 and z2 of the

proposed SOCP D-OPF model is illustrated in the Algorithm 4. Apart from the PCC buses,

other parts of the area networks follow (7.15a)-(7.15d) for the power balance and voltage

determination for (7.16) and (7.17).

Algorithm 4 Data exchange of SOCP D-OPF
ϵ = 1× 10−6, ∆z = 1 and n = 1 (macro-iteration)
while ∆z ≥ ϵ do

if An area Ai is only a USA or a DSA then
if n = 1 then

z1 & z2 ← initial value.
end
if n > 1 then

zt+1
1,USA(Ai)

← zt1,DSA(Ai+1)
*(For USA)

zt+1
2,DSA(Ai+1)

← zt2,USA(Ai)
*(For DSA)

end
∆zi = |zt+1

2 − zt2|
end
if An area Ai is both USA & DSA then

if n = 1 then
x1 & x2 ← initial value.

end
if n > 1 then

zt+1
1,USA(Ai)

← zt1,DSA(Ai+1)

zt+1
2,DSA(Ai)

← zt2,USA(Ai−1)

end
∆zi = |zt+1

2 − zt2|
▷ *Two ∆zAi

values from two PCCs
end
∆z = max{∆z1, ∆z2.....∆zNA−1}
n← n+ 1

end

In D-OPF models, the local OPF analysis is performed in the micro-iteration time pe-

riod for each area. While the exchange of variables and operational information among the
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decision-making agents is performed at the macro-iterations. The macro-iterations are dic-

tated to the communication systems. For power system analysis with the D-OPF algorithm,

the time of convergence (ToC) is decided from both micro and macro iterations together.

As SOCP-base OPF models are computationally very efficient, the proposed ENApp-based

D-OPF model requires very few micro and macro iterations. While the existing OPF models

based on alternating direction method of multipliers (ADMM) algorithms require a large

number of macro-iterations (i.e., ≥ 100 iterations) for relatively small systems [159,160]. In

this article, we have compared the benefits and the efficiency of the proposed SOCP D-OPF

model with ADMM based D-OPF model.

7.2.3 ADMM Based D-OPF Model

The OPF problem defined in this article can be expressed as follows [161] and adopted

from [162]:

min f(x) + g(z) (7.8a)

subject to Ax+Bz = c (7.8b)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. n,m and p are the number of

variables in x, z and the number of rows in (7.8b), respectively. The variables of the objective

function (7.16) are separated into two parts, x and z, where f and g are convex functions.

Based on (7.8), the augmented Lagrangian matrix is formed as follows:

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) + (ρ/2)||Ax+Bz − C||22 (7.9)

where ρ > 0 is the augmented Lagrangian parameter, and λ is the Lagrangian multiplier.

The variables are updated as follows:

xt+1 := argmin
x
L(x, zt, λt) (7.10a)

zt+1 := argmin
z
L(xt+1, z, yt) (7.10b)

λt+1 := λt + ρ(Axt+1 +Bzt+1 − c) (7.10c)

The dual and primal residual at (t+ 1)th iteration are:

st+1 = ρATB(zt+1 − zt) (7.11)

rt+1 = Axt+1 +Bzt+1 − c (7.12)

The ADMM-based D-OPF iterations will converge when the residual and primal are less

than the tolerance 10−6.
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7.3 Simulation and Evaluation (D-OPF)

The distributed SOCP D-OPF model is analyzed in the Matlab platform using the MOSEK

solver. For test cases, we have considered multiple IEEE standard test cases (i.e., IEEE 123-

bus and 8500-bus network systems) for experimental analysis. The optimal solution from the

SOCP D-OPF is compared and analyzed with the centralized SOCP C-OPF. Further, the

ToC from the SOCP D-OPF proposed in this article is also compared with ADMM based

OPF model and the observations are discussed below.

Figure 7.3: IEEE 123-bus network (re-numbered) with area divisions.

7.3.1 Case 1 (IEEE 123-bus Network)

For robustness, the OPF model is simulated in the base case and with penetration of

DERs on the IEEE standard 123-bus network. The area division and the renumbering of the

network are shown in Fig. 7.3. The areas are divided at the switching buses of the network.

The Area-1 is the USA, while Area-2 and Area-3 are DSAs for the Area-1. For these three

areas of the 123-bus network, there are two PCCs. PCC-1 is the connection point between

Area-1 and Area-2, while PCC-2 is for Area-1 and Area-3. The voltages (z2) at the PCCs are

illustrated in Fig. 7.4 with D-OPF macro-iterations with DERs which shows that the D-OPF

converges after the fifth iteration. The voltage profiles are compared with the centralized

SOCP-OPF (C-OPF) and illustrated in Fig. 7.5 considering both the base case and with

DERs. The mismatch between voltages from the D-OPF and C-OPF for both cases is less

than 0.01%. The power injection from the DERs is shown in Table 7.1, and the percent of

network loss is illustrated in Fig. 7.6. For calculating the percent of loss for the D-OPF, the

loss of the PCC branches is not considered, which is very negligible. The results show that

the simulation results from the proposed D-OPF match the C-OPF model. The 123-bus
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network is divided into areas as only USA and DSA. However, for the proposed D-OPF, a

power network may have an area that operates as both USA and DSA. The model is further

simulated and analyzed for large networks to evaluate the performance of the SOCP D-OPF

for those areas.

Figure 7.4: Voltage at the PCCs with macro-iterations in IEEE 123-bus network (with DERs).

Figure 7.5: Voltage profile comparison between SOCP-based distributed OPF (D-OPF) and centralized OPF
(C-OPF) for IEEE 123-bus network. ’Base’ and ’DERs’ are for the base case and with DERs in the network.

Figure 7.6: Network loss comparison between centralized OPF (C-OPF) and distributed OPF (D-OPF).

7.3.2 Case 2 (IEEE 8500-bus Network)

For analyzing the scalability, we have considered the IEEE 8500-bus distribution system

network. The network is converted to a single-phase equivalent 2522-node system network
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Table 7.1: Power injection from the DERs
( IEEE 123-bus network)

DERs
(Bus No.)

Centralized OPF Distributed OPF
pg(KW ) qg(KV AR) pg(KW ) qg(KV AR)

1(Sub-station) 998.0 563.3 997.6 562.0
11 13.30 8.82 13.30 8.85
30 13.30 8.80 13.35 8.80
60 6.75 4.45 6.75 4.44
67 46.75 30.9 46.75 30.85
78 13.30 8.80 13.30 8.83
89 13.30 8.80 13.30 8.83
50 70.00 46.42 70.00 46.45
120 13.30 8.80 13.30 8.80

Figure 7.7: IEEE 8500-bus (2522 nodes) network (network is divided into six areas).

Figure 7.8: Voltage profile comparison between SOCP-based distributed OPF (D-OPF) and centralized OPF
(C-OPF) for IEEE 8500-bus network (2522 Nodes) with DERs.

[158]. For analysis, the 2522-bus network is divided into three and six areas as shown in

Fig. 7.7. Area-1 is always the USA for the six area divisions, and Area-3 & 6 are always

DSAs. However, Area-2, 4 & 5 operate as both USAs and DSAs. The voltage profile for the

2522-node system with DERs penetration is illustrated in Fig. 7.8. The mismatch of the

voltage amplitude solution from the D-OPF and C-OPF is less than 0.01% for both three
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Table 7.2: Comparison of time of convergence (ToC) between centralized (C-OPF) and distributed (D-OPF)
models

Test case
C-OPF D-OPF

Time (sec) No. of
Areas

Time (sec)
SOCP SOCP ADMM

123-bus (Base case) 0.25 3 0.88 136
123-bus (DERs) 0.30 3 0.52 93
8500-bus (Base case) 1.06 3 2.68 681
8500-bus (DERs) 1.53 3 3.12 476
8500-bus (Base case) 1.06 6 7.56 N/A
8500-bus (DERs) 1.53 6 8.66 N/A

and six-area divisions. The percent of network loss for the 2522-node network is illustrated

in Fig. 7.6. Besides these, We have compared the solution from the SOCP D-OPF model

with an ADMM-based OPF model for IEEE 123-bus and 2522-bus networks for three area

divisions. The time of convergence (ToC) for different OPF models is illustrated in Table

7.2. Due to the macro-iterations, the ToC is higher for the SOCP D-OPF model than the

SOCP C-OPF but significantly lower than the ADMM-based D-OPF model. As the SOCP

D-OPF model can be applied to any number of divisions, the model can be solved for very

large power with the least risk of a cyber-physical attack on the whole power system network.

7.4 Real-time OPF Analysis

The modern power grid incorporates many DERs and controllable loads, introducing ran-

domness and fluctuations, increasing the complexity of modern power distribution system

networks [6]. So the OPF analysis for modern power grid networks is crucial for efficient

and reliable operation. For this reason, the real-time-based OPF analysis is getting much

attention [163], and traditional optimal power flow methods are only appropriate for appli-

cations that operate on a slow timescale [163]. The time-dependent OPF model is applied

on a Real-time based power grid designed in a real-time platform. For the real-time OPF

analysis, a communication channel is needed to interchange the information between the

OPF model and the power grid. That information on load change contingency is immedi-

ately transferred to the OPF model analysis platform to find the new optimal grid operation

reference point. This project has three major parts: the time-dependent convex SOCP-OPF

model, the communication platform, and the grid model in the real-time simulator platform,

as shown in Fig. 7.9. The real-time-based model computes the optimal reference signal to

the DERs, ensuring stable power-sharing among the DERs.

7.4.1 Time Dependent OPF Methodology

Time-varying loads and generations are considered for the branch flow-based real-time

OPF analysis. For the model formulation, L is noted as the set of all the branches, and N is
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Figure 7.9: Proposed real-time OPF analysis platform.

the set of all buses in a power network. The set of time instants is assumed to be a discrete

set and is denoted by T . t ∈ T is a time instant of the network operation. For each bus

i ∈ N , let Vi(t) is the complex voltage phasor, and si(t) be the net apparent power injections

at bus i at time t. The complex current phasor through line Lij ∈ L is denoted by Iij(t) for

a time instant t. For steady states, the power flow equations are as follows:

Sij(t) = Vi(t)I
∗
ij(t) (7.13a)

where Sij(t) stands for the apparent power flow through the branch Lij ∈ L at the time

instant t. Further voltage drop and power balance relations are as follows:

Vj(t) = Vi(t)−
zijS

∗
ij(t)

V ∗
i (t)

(7.13b)

sgj (t)− sdj (t) =
∑

k:j→k

Sjk(t)−
∑
i:i→j

(Sij(t)− zij |Iij(t)|2) + y∗j |Vj(t)|2 (7.13c)

where zij = rij + jxij is the impedance of a branch Lij ∈ L. sgj (t) is the apparent power

injection, and sdj (t) is the apparent power of load associated with the bus j ∈ N at a time

instant t ∈ T .

7.4.1.1 Angle Relaxation

This article analyzes the real-time OPF analysis for radial power distribution networks.

The non-convex power flow equations in (7.13a) - (7.13c) are convexified with angle and

conic relaxations in this section. With angle relaxation, new variables have been introduced

as |Iij(t)|2 = lij(t); |Vj(t)|2 = uj(t) and |Vi(t)|2 = ui(t). So the power flow equation (7.13a)-

(7.13c) are converted as follows:

S2
ij(t) = ui(t)lij(t) (7.14a)

Taking the voltage magnitude square in (7.13b):

uj(t) = ui(t) + |zij|2lij(t)− (zijS
∗
ij(t) + z∗ijSij(t)) (7.14b)



7.4. REAL-TIME OPF ANALYSIS 110

Further considering the new-defined variables and with angle relaxation (7.13b) at the bus

j ∈ N for the time instant t ∈ T is represented as follows:

sgj (t)− sdj (t) =
∑
k:j→k

Sjk(t)−
∑
i:i→j

(Sij(t)− zijlij(t)) + yjuj(t) (7.14c)

Further considering Sij(t) = Pij(t) + jQij(t), yj = gj + jbj, sgj (t) = pgj (t) + jqgj (t), and

sdj (t) = pdj (t) + jqdj (t); (7.14c) is split in terms of real and reactive power as follows:

pgj (t)− pdj (t) =
∑
k:j→k

Pjk(t)−
∑
i:i→j

(Pij(t)− rijlij(t)) + gjuj(t) (7.15a)

qgj (t)− qdj (t) =
∑
k:j→k

Qjk(t)−
∑
i:i→j

(Qij(t)− xijlij(t)) + bjuj(t) (7.15b)

where yj = gj + jbj is the half lump shunt admittance equivalent of the line at bus j ∈ N .

With further simplification in (7.14b) the voltage relationship is obtained as:

uj(t) = ui(t)− 2(rijPij(t) + xijQij(t)) + (r2ij + x2ij)lij(t) (7.15c)

7.4.1.2 Conic Relaxation

As (7.14a) is still a non-convex relation. For a time instance t ∈ T , (7.14a) is relaxed

With further conic relaxation. The solution space is relaxed with a convex solution space.

The second-order cone relaxation is as follows:

ui(t) + lij(t) ≥

∥∥∥∥∥∥∥∥∥∥
2Pij(t)

2Qij(t)

ui(t)− lij(t)

∥∥∥∥∥∥∥∥∥∥
2

(7.15d)

7.4.1.3 Time Dependent R-OPF Model

With the capability of fast convergence, SOCP-OPF models are a good candidate for

real-time OPF (R-OPF) analysis. The R-OPF analysis depends on the feedback for the

time-varying loads and renewable generations on a faster timescale. The proposed model

aims to optimize an operational objective under the network’s physical and operational

constraints for any time period t ∈ T with controllable devices in the network. The proposed

OPF model considers convex objective functions f(x(t)) (i.e., network loss minimization

as, min
∑
rijlij(t) and generation cost minimization as, min

∑
[ci2(P

g
i (t))

2 + ci1P
g
i (t) + ci0]).

Here, ci2($/MWh2), ci1($/MWh) and ci0($/h) represent the quadratic cost coefficients of the

generators. The SOCP-OPF model is as follows:
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min f(x(t)) (7.16)

subject to: (7.15a)-(7.15d) and,



pg
i
≤ pgi ≤ pgi

qg
i
≤ qgi ≤ qgi

lij ≤ lij

ui ≤ ui ≤ ui

(7.17)

where Ng is the set of all buses with DERs, (.) and (.) represents the minimum and

maximum limits of the variables and parameters. Current flow limit is defined as lij = |I ij|2.

I ij is the rated current for the branch Lij ∈ L.

Figure 7.10: Real-time OPF analysis setup.

7.4.2 Simulation and Evaluation (R-OPF)

Matlab platform is used to simulate and analyze the proposed time-dependent OPF model.

For real-time analysis, Opal-Rt is used with the Rt-lab platform. A real-time compatible

IEEE 123-bus network is modeled using Rt-lab and Simulink for the Opal-Rt platform. DERs

are modeled and connected at the buses shown in Fig. 7.10. The SOCP-OPF analysis is

performed with Matlab for a load profile at the time instance t ∈ T for the objective of

minimum network loss f(x(t)) = min
∑
rijlij. The set-points of the DERs are transferred
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Figure 7.11: Voltage change at the buses with DERs in real-time analysis.

from the OPF platform to the DERs in Opal-Rt. Any load change or any contingency

to the network information is transferred to the OPF platform for new set-points of the

DERs. Operational performance is illustrated in Fig 7.11 with the voltage profiles of the

buses connected with the DERs. With high computational efficiency, the SOCP-OPF model

converges very fast. So a snapshot of one minute of the grid operation is illustrated with the

voltage profile. within this 60 seconds time frame, at 15 seconds, the DERs start to dispatch

power with the set-points from the OPF analysis, and load changes at 35 and 48 seconds.

This information of load change is transferred to the OPF platform, and the new set-points

of DERs are again determined for the next minutes.

7.5 Summary

This chapter proposes and analyzes a SOCP D-OPF model for radial-type power system

networks and a real-time-based R-OPF model. The D-OPF model is analyzed with the

simulation and evaluation for different standard IEEE distribution test feeders and compared

with the centralized SOCP-based C-OPF and ADMM-based D-OPF models. From the result

analysis, the angle and conic relaxations are tight for the D-OPF model, and the model

produces optimal global solutions for convex objective functions like C-OPF. Besides that,

for the capability of dividing a network into several areas, the proposed OPF model offers

convenient local area control and minimum risk of cyber-physical attack on the whole power

system network. Due to the computational efficiency, SOCP base OPF models are good

candidates for real-time OPF analysis of the power grids. For future research, the D-OPF

and the R-OPF model are extendable for OPF analysis in transmission-distribution (T&D)

networks. Though the conic relaxation is always exact for the meshed transmission networks,

the angle relaxation may not always be. So the bus voltage cyclic angle constraints must be

satisfied for the OPF models for T&D OPF analysis.



CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 Conclusion

This dissertation has proposed novel and efficient OPF models for power distribution

and transmission networks using second-order cone programming (SOCP) for reliable and

optimal power system planning and operation of the complex modern power grid. This

research analyses the global optimality and exactness of the proposed OPF models with the

necessary conditions for the tightness of the angle and conic relaxations. In conclusion,

• This dissertation proposes a novel SOCP-OPF model with bus voltage angle recovery

for voltage regulation with reactive power flow control in radial power distribution

networks. The voltage control algorithm provides a better control scheme.

• This research also proposes a novel SOCP-based AC-OPF model for unbalanced three-

phase radial power distribution networks considering the mutual coupling effects on

the three-phase unbalanced lines with a coupling coefficient approach.

• Besides the distribution networks, this work also presents a novel SOCP-based OPF

formulation for transmission system power networks with exact angle relaxation satis-

fying the cyclic angle constraints. This dissertation derives a convex envelope for the

proposed OPF model for meshed transmission networks.

• With the high penetration of DERs and efficient converters, power grids are proposing

an AC-DC-based hybrid network structure. This dissertation also presents an OPF

formulation for AC-DC hybrid power distribution networks with SOCP and McCormick

relaxation for the optimal modulation index for the converters.

• This research proposes a distributed OPF (D-OPF) model for distribution networks

extendable to transmission-distribution (T&D) coupled networks. Finally, the disser-

tation is concluded with a time-dependent OPF model with a real-time platform.

All the proposed OPF models in this dissertation are analyzed in multiple and extensive

networks, and the results show that the models are exact and produce globally optimal

solutions to heavily DER-connected power grids. With the convexness and computational

efficiency, the solution time of convergence of the SOCP-OPF models is superior to the NLP-

OPF and SDP-OPF models with less computational burden. Due to the optimal solution

feasibility, the proposed SOCP-OPF models in this dissertation are promising solutions for

the OPF analysis for complex modern power grids.
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8.2 Future Works

Some of the future research in this direction includes

• We have proposed convex OPF models for power distribution and transmission net-

works. The SOCP-OPF models are extendable for mixed integer type OPF analysis

and for receding horizon control (RHC) optimization for power systems.

• This thesis work has proposed a distributed convex D-OPF model for distribution

networks which is extendable to co-OPF analysis for transmission-distribution (T&D)

coupled power system networks. The real-time R-OPF model is also extendable to the

real-time-based operation and control for T&D networks in future work.
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[141] S. Frank, I. Steponavičė, and S. Rebennack, “Optimal power flow: a bibliographic
survey i,” Energy Systems, vol. 3, 09 2012.

[142] Frank, Stephen and Steponavičė, Ingrida and Rebennack, Steffen, “Optimal power
flow: a bibliographic survey ii,” Energy Systems, vol. 3, 09 2012.

[143] L. Gan, N. Li, U. Topcu, and S. Low, “On the exactness of convex relaxation for
optimal power flow in tree networks,” in Proc. 51st IEEE Conference on Decision and
Control (CDC), pp. 465–471, 2012.

[144] M. Baradar, M. R. Hesamzadeh, and M. Ghandhari, “Second-order cone programming
for optimal power flow in vsc-type ac-dc grids,” IEEE Transactions on Power Systems,
vol. 28, no. 4, pp. 4282–4291, 2013.

[145] K. Murari and N. P. Padhy, “Graph-theoretic-based approach for solving load flow
problem of ac–dc radial distribution network with distributed generations,” IET Gen-
eration, Transmission & Distribution, vol. 14, no. 22, pp. 5327–5346, 2020.

[146] K. Murari, N. Prasad Padhy, and S. Kamalasadan, “Backward-forward sweep based
power flow algorithm for radial and meshed ac-dc distribution system,” in 2021 IEEE
Industry Applications Society Annual Meeting (IAS), pp. 1–8, 2021.

[147] C. Dai, W. Chen, Y. Zhu, and X. Zhang, “Reactive power dispatch considering voltage
stability with seeker optimization algorithm,” Electric Power Systems Research, vol. 79,
no. 10, pp. 1462–1471, 2009.

[148] W. Zhang and Y. Liu, “Multi-objective reactive power and voltage control based on
fuzzy optimization strategy and fuzzy adaptive particle swarm,” International Journal
of Electrical Power & Energy Systems, vol. 30, pp. 525–532, 2008.

[149] M. Baran and F. Wu, “Network reconfiguration in distribution systems for loss re-
duction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2,
pp. 1401–1407, 1989.

[150] B. Stott, J. Jardim, and O. Alsac, “Dc power flow revisited,” IEEE Transactions on
Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[151] J. A. Taylor, Convex optimization of power systems. Cambridge University Press, 2015.

[152] M. M.-U.-T. Chowdhury and S. Kamalasadan, “A new second-order cone programming
model for voltage control of power distribution system with inverter-based distributed
generation,” IEEE Transactions on Industry Applications, vol. 57, no. 6, pp. 6559–
6567, 2021.

[153] M. M.-U.-T. Chowdhury, S. Kamalasadan, and S. Paudyal, “A second-order cone pro-
gramming (socp) based optimal power flow (opf) model with cyclic constraints for
power transmission systems,” IEEE Transactions on Power Systems, pp. 1–12, 2023.

[154] H. Li, X. Yan, J. Yan, A. Zhang, and F. Zhang, “A three-phase unbalanced linear power
flow solution with pv bus and zip load,” IEEE Access, vol. 7, pp. 138879–138889, 2019.

[155] A. S. Zamzam, N. D. Sidiropoulos, and E. Dall’Anese, “Beyond relaxation and new-
ton–raphson: Solving ac opf for multi-phase systems with renewables,” IEEE Trans-
actions on Smart Grid, vol. 9, no. 5, pp. 3966–3975, 2018.



125

[156] T. T. Hashim, A. Mohamed, and H. Shareef, “A review on voltage control methods for
active distribution networks,” Prz. Elektrotech, vol. 88, no. 6, pp. 304–312, 2012.

[157] S. M. Amin, “Smart grid security, privacy, and resilient architectures: Opportunities
and challenges,” in 2012 IEEE Power and Energy Society General Meeting, pp. 1–2,
IEEE, 2012.

[158] R. Sadnan and A. Dubey, “Distributed optimization using reduced network equivalents
for radial power distribution systems,” IEEE Transactions on Power Systems, vol. 36,
no. 4, pp. 3645–3656, 2021.

[159] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power flow for smart
microgrids,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1464–1475, 2013.

[160] T. Erseghe, “Distributed optimal power flow using admm,” IEEE Transactions on
Power Systems, vol. 29, no. 5, pp. 2370–2380, 2014.

[161] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Founda-
tions and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[162] W. Zheng, W. Wu, B. Zhang, H. Sun, and Y. Liu, “A fully distributed reactive power
optimization and control method for active distribution networks,” IEEE Transactions
on Smart Grid, vol. 7, no. 2, pp. 1021–1033, 2016.

[163] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Transac-
tions on Smart Grid, vol. 8, no. 6, pp. 2963–2973, 2017.


	INTRODUCTION
	LITERATURE REVIEW
	A NEW SECOND-ORDER CONE PROGRAMMING MODEL FOR VOLTAGE CONTROL OF POWER DISTRIBUTION SYSTEM WITH INVERTER-BASED DISTRIBUTED GENERATION
	SECOND-ORDER CONE PROGRAMMING (SOCP) MODEL FOR THREE PHASE OPTIMAL POWER FLOW (OPF) IN ACTIVE DISTRIBUTION NETWORKS
	A SECOND-ORDER CONE PROGRAMMING (SOCP) BASED OPTIMAL POWER FLOW (OPF) MODEL WITH CYCLIC CONSTRAINTS FOR POWER TRANSMISSION SYSTEMS
	OPTIMAL POWER FLOW (OPF) ANALYSIS FOR AC-DC TYPE ACTIVE DISTRIBUTION NETWORKS WITH SECOND ORDER CONE PROGRAMMING (SOCP) MODEL
	A DISTRIBUTED OPTIMAL POWER FLOW (D-OPF) MODEL AND A TIME-DEPENDENT REAL-TIME OPTIMAL POWER FLOW (R-OPF) MODEL WITH SECOND-ORDER CONE PROGRAMMING (SOCP)
	CONCLUSION AND FUTURE WORK
	LIST OF PUBLICATIONS
	Bibliography

