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Abstract

MD MAHMUD-UL-TARIK CHOWDHURY. Second Order Cone Programming (SOCP)
Based Fast and Exact Convex Optimal Power Flow (OPF) Models for Electric Grid with
Renewables. (Under the direction of DR. SUKUMAR KAMALASADAN)

With the modernization of power grids, high penetration of distributed energy-based re-
sources (DERs), and modern loads, optimal power flow (OPF) analysis is one of the essen-
tial tools for reliable power system planning and operation. This research proposes novel
OPF models for power distribution and transmission networks using second-order cone pro-
gramming (SOCP). The advantages of SOCP-based convex OPF models are the efficient
computational ability for large network systems and the global optimality. To confirm solu-
tion accuracy, the necessary conditions for the tightness of the angle and conic relaxations
of power flow models are addressed in this research work for the proposed OPF models. In
this dissertation, an OPF architecture is proposed to retrieve the bus voltage angle difference
for radial distribution networks and thus control the reactive power flow, leading to better
voltage regulation in the network and promising a globally optimal solution. This research
also presents a SOCP-based AC-OPF model for unbalanced three-phase radial power distri-
bution networks. Mutual coupling effects are generally ignored in the existing multi-phase
SOCP AC-OPF models. The proposed SOCP-OPF model introduces a coupling coefficient
for the mutual coupling effects on the three-phase unbalanced lines to overcome this criti-
cal issue. The derivation of the coupling coefficients has been illustrated with the required
proof that the relaxation is tight and the solution from the proposed OPF model is optimal
for an unbalanced multi-phase distribution network. Besides the distribution networks, this
work also presents a novel SOCP-based OPF formulation for transmission system power net-
works. Power transmission networks generally have meshed orientation. For meshed power
networks, though the conic relaxation is exact due to the cyclic angle constraints, the angle
relaxation may not be exact. An OPF model is proposed for the SOCP-OPF model for power
transmission networks satisfying the cyclic angle constraints. For that, the model defines a
convex envelope to represent the relative bus voltage angles that satisfy the cyclic constraint
criteria for a mesh in the network. This dissertation also presents an OPF formulation for
AC-DC hybrid power distribution networks. The model determines the optimal modulation
index for the converters for minimum network loss. In addition, this dissertation also pro-
poses a distributed OPF (D-OPF) model for distribution networks and a time-dependent
(T-OPF) model for real-time OPF analysis. All the proposed models in this research are

exact and produce globally optimal solutions for the reliable operation of the power grid.
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CHAPTER 1: INTRODUCTION

1.1 Background

One of the most salient and fundamental tools of power system planning and economic
and stable operation is Optimal Power Flow (OPF) analysis. Research on OPF analysis
started in the mid-seventies due to computational congestion and for inspection of security-
constrained [1,2]. OPF analysis considers the power system’s load flow and security con-
straints, which is a time-ahead operational planning tool for ensuring the system opera-
tion with the optimal control action across operational time frames of power systems. For
the OPF operational planning, particular objectives (e.g., generation costs, network power
losses, voltage and phase angle regulation) are considered by maintaining the bus voltages
and branch flows within the network limits [3}-5]. Initially, OPF analysis mainly focused on
power transmission systems. But overgrowing use of renewable energy-based distributed en-
ergy resources (DERs) in modern power distribution networks is transforming to a complex
structure from conventional distribution network structures [6]. A schematic of the modern
power grid is shown in Fig[T.T] In addition to the modern DERs with different novel kinds
of loads, the network operators (NOs) face challenges in operating the systems with steady-
state network operation with issues like different congestion and voltage instability [7,8].
So, besides the transmission network, the OPF analysis is also becoming increasingly impor-
tant for distribution networks. Besides that, the advent of high penetration of DERs and
controllable loads such as electric vehicles provide significant necessities to compensate for
the randomness in the power system network, which requires the power system industry for

novel OPF algorithms [9H11].
1.2 Motivation

Along with the operational network constraints, OPF is typically formulated using AC
power flow equations, commonly referred to as AC-OPF [12]. Due to the nonlinearity of
network characteristics, the nonlinearity of power flow equations, and other operational
network constraints, the AC-OPF problem is originally NP-hard in nature [13}/14]. Moreover,
this nonlinearity in AC-OPF models leads to computational intractability for large power
networks, and due to the non-convexity, a globally optimal solution is not guaranteed [15-18].
Besides that, the higher penetration of distributed renewable generation sources (DERs) into
the power network adds additional complexity. This complex nature of the grid makes the

AC-OPF analysis infeasible, and the chance of optimal solutions becomes uncertain [19].



1.2. MOTIVATION 2

Sub-station

Distribution j| System

O——©@ & |

Battery
Industrial Load Storage

@

$ T

Residential Load

A Ew
ta.a? @ o | o Sam
) EVs Farm

Figure 1.1: Schematic diagram of a modern power grid.

To overcome the complexity and to overcome the computational challenges of the nonlinear
OPF analysis, conventionally, linear approximations of power flow equations are commonly
used. However, these approximated linear formulations (i.e., DC-OPF ,) compromise
the solution accuracy. Thus, the solutions obtained from such approximated formulations
may not be AC-feasible or exact. However, not only the computational efficiency of the
relaxed convex AC-OPF models are also conditionally exact (hence, AC-feasible) and [22].
Besides that, due to the ability to find global optima, the convex AC-OPF formulations have
been extensively used for various operational applications from power system optimization
and control ,. Besides that, most of the existing OPF models for power distribution
systems are developed based on single-phase network analysis. But the distribution networks
are multi-phase and unbalanced . So, in certain cases, the single-phase OPF solution is
inaccurate or insufficient for distribution networks . So besides the single-phase OPF
analysis, this dissertation also proposes a multi-phase convex OPF model.

Modern power converters with renewable-based DERs and widespread usage of DC loads

(i.e., electric vehicles, modern home appliances) [27H30] are forming DC-DC grid sections
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within the AC power grid. Case-wise, the benefits of the DC system over the AC system
are shown in [31-34]. However, the total replacement of the AC system with the DC system
is not viable at this point [31] since the prevailing distribution networks are predominantly
AC. So, this dissertation also discusses SOCP-based convex OPF models for AC-DC hybrid
networks. This dissertation presents a novel SOCP-OPF model for AC-DC radial config-
ured distribution systems using McCormick relaxation and second-order cone programming
(SOCP). The proposed AC-DC OPF model provides the optimal modulation index for the

converters with the least computational challenge and the optimal power injection.
1.3 Main Contributions of the Dissertation

e In this dissertation, proposed a SOCP-based OPF model which provides an exact opti-
mal solution with bus voltage phase angles for a radial network with high penetration

of multiple DERs.

e The retrieved angle provides an efficient control feature for the reactive power flow and

voltage regulation in radial power distribution networks with inverter-based DERs.

e Proposed a SOCP-OPF model, which provides an exact optimal global solution for a
multi-phase unbalanced power distribution system with high DERs penetration and

multi-phase mutual coupling impact on the network.

e Proposed an OPF model which provides a tight angle relaxation for an exact solution
to the AC-OPF problem using SOCP by satisfying the cyclic constraints for the meshed

transmission network.

e Proposed an OPF model for AC-DC hybrid distribution networks. The model considers
the converters (i.e., AC-DC rectifiers and DC-AC inverters) and determines the optimal

modulation index based on the objective functions and the network constraints.

e Proposed a distributed OPF model for radial type distribution hybrid power networks
extendable to transmission-distribution network co-OPF analysis. Finally, the SOCP-

OPF is analyzed with a real-time simulation platform for power distribution networks.

1.4  Dissertation outline

After Chapter 1, a comprehensive literature review on the state-of-the-art OPF models is
discussed in Chapter 2. A brief comparison of different OPF models is also discussed. This
chapter also sheds some light on the challenges and benefits of the convex OPF models.

Chapter 3 explores a novel SOCP-based OPF model for voltage regulation of power dis-
tribution systems with inverter-based DERs. This chapter also introduces an algorithm to

retrieve the bus voltage phase angle with optimization analysis.
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A SOCP-OPF model for three-phase unbalanced active distribution networks is proposed
in Chapter 4. This model considers the mutual coupling impact on the network with a cou-
pling coefficient. An algorithm for the determination of the coupling coefficient is discussed.

Chapter 5 discussed the inexactness of angle relaxation for the SOCP-OPF model due
to the angle cyclic constraints for mesh power networks. Finally, Proposed a SOCP-OPF
model in a meshed transmission system with cyclic constraints. This chapter also discussed a
comparison of the proposed SOCP-OPF and the existing semi-definite programming (SDP)
based OPF model for transmission networks.

In Chapter 6 SOCP-OPF model for AC-DC hybrid active distribution networks is dis-
cussed. The proposed model considers the modulation index of the converters as an opti-
mization variable.

A SOCP-based distributed OPF model is proposed for the distribution network, which is
extendable for transmission-distribution network co-simulation. Also, a SOCP-based model
is discussed for real-time platform-based OPF analysis.

Finally, Chapter 8 concludes this dissertation with a light shade of future research scope.



CHAPTER 2: LITERATURE REVIEW

2.1  Introduction

Optimal scheduling of the power grid is a significant tool for the economic and optimal
operation of the electric power grid [35]. Optimal power flow (OPF) evolved in 1962 [36]
for finding a local optimum operating point for a power system. Since then, considerable
research has been conducted to develop fast and efficient OPF models and propose algorithms
for finding the global optimum solution. This section discusses a brief literature review on
conventional OPF algorithms of OPF analysis. Researchers have been working on OPF
problems since the mid-seventies. A literature survey of optimal power flow in the electricity
market context is conducted in [37-40]. OPF based on reactive power planning is discussed
in [41,42]. A dynamic OPF for an active distribution network is proposed in [43]. A
distributed OPF and controls survey for Electric Power Systems is conducted in [44]. Later,
a survey of relaxations and approximations of the OPF is discussed in |45]. Below this
section, a brief discussion of different OPF algorithms is conducted. The OPF formulations
contain three types of variables and parameters (i.e., Control variables, state variables and

parameters) for power system optimization.
2.2 Conventional OPF Methods in Power System

This section will light on a brief literature review of common OPF models for power
systems planning and operation. In this dissertation, we will be focusing on the Gradient
and non-random search-based OPF models. A few very common Optimization techniques

are as follows:
e Common optimization techniques:

— Random Search-based methods:
x Evolutionary programming (EP)
* Genetic algorithm (GA)
* Particle swarm optimization (PSO)
* Simulated annealing (SA)
— Gradient and non-random search-based methods:
* Linear programming (LP)
* Non-linear programming (NLP)

- Interior point method (IPM)
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- Sequential quadratic programming method (SQP)
- Quasi-Newton method (QN)
x Convex optimization methods
- Quadratic programming method (QP)
- Second-order cone programming method (SOCP)

- Semidefinite programming method (SDP)

In power system analysis, OPF models can be based on branch flow (BFM) or bus in-
jection (BIM) based network power flow and power balance relations. The research in this

dissertation is conducted mainly based on BFM-SOCP OPF analysis.
2.2.1  Linear Programming (LP)

One of the most commonly applied methods for OPF analysis in power systems is the
linear programming (LP) based OPF models. The linear OPF methods consist of linear
power balance equations, objective functions, and constraints. A conventional linear-integer
programming-based algorithm for the optimum number of generation units is proposed in
[46]. A linearized power flow and linearized OPF model for active distribution networks is
proposed in [47]. LP method has the advantage of handling many variables, thus scalable for
large power networks. However, approximate linear OPF formulations like DC-OPF [20}21]
compromise the solution accuracy. Thus, the solutions obtained from LP formulations are
not always exact and may not be AC-feasible. LP-OPF is the most mature but least general
OPF tool [45] used in power system optimization. LPs use a linear objective function ¢;(z;)

for the OPF. The canonical form of an LP is as follows:
mchZ(:pz) (2.1a)
iEN

where N is the set of all buses in the network.

st ' (2.1D)

2.2.2  Nonlinear Programming (NLP)

Typically, OPF power systems are formulated using AC power flow equations with addi-
tional constraints related to generation and voltage limits. So the OPF models are referred
to as AC-OPF models. Due to the nonlinearity of power flow equations and network opera-
tional constraints, the AC-OPF problems are NP-hard in the original form [13]/14]. Moreover,

due to the non-convexity, the global optimal solution is not guaranteed always, and the non-
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linearity in AC-OPF leads to computational intractability for large power networks [17}/18|.
Multiple NLP OPF models are proposed in [48-51]. A few NLP techniques (i.e., Gradient
Search Method, Newton Method, Quasi-Newton Method) are discussed here. Among these
methods, the gradient search (GS) OPF method uses gradient function information mov-
ing in the opposite direction of the gradient function, which has the disadvantage of slow
convergence with large power networks. On the other hand, Newton’s optimization method
has the advantage of fast convergence. A quadratic approximation is obtained from Taylor
expansion for Newton’s optimization method. However, the formation and inversion of the
Hessian matrix impose a heavy computational burden for large network analysis and cannot
solve the global optima. As an example, an OPF model based on Newton’s method is pro-
posed for HVDC systems in [52] incorporating voltage source converters (VSC). A hybrid
OPF model with sequential quadratic programming (SQP) and differential evolution (DE)
is proposed in [53]. Quasi-Newton method OPF has the advantage of a lower computational

burden. The fundamental mathematical form of NLP-OPF is represented as follows (2.2al).
min Z ci(xi, i) (2.2a)
ieN
where N is the set of all buses in the network.

g(zi,y;) < b
s.t. (2.2b)

h(zhyi) =d;

2.2.3  Quadratic Programming (QP)

Quadratic programming-based OPF analysis (QP-OPF) is a specific optimization that
differs from LP-OPF in the objective function [45]. Quadratic programming-based OPF
models are helpful for loss minimization and conservative voltage regulation (CVR). As an
example, a QP-based OPF model is used for PMU placement in [54]. A generalized linear
programming (LP) OPF is a quadratic programming (QP) OPF with a quadratic objective

function, which is represented as:

min Z xi’ i) (2.3a)

ieN

where N is the set of all buses in the network.

st ' (2.3b)
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2.2.4  Convex OPF Models

It is already discussed that, due to the nonlinearity of power flow equations and network
operational constraints, the power system OPF problems in their original form are NP-
hard [13,|14]. The non-convexity and non-linearity in AC-OPF models face computational
intractability for large power networks with high penetration of DERs. So, linear approxi-
mations of power flow equations are commonly used to overcome computational challenges.
But the LP-OPF models compromise the solution accuracy [55]. On the contrary, the con-
vex relaxation-based OPF models are conditionally exact and computationally efficient [22].
For computational efficiency, researchers have been interested in investigating the solution
to the OPF analysis with convex-OPF models [3}5,22,/5662|. Convex relaxation of OPF is
generally classified into two types: bus injection (BIM) OPF model and branch flow (BFM)
OPF model, but they are mathematically equivalent [63]. A few relaxation-based convex

BIM and BFM-OPF models for power systems are discussed in this dissertation.
2.2.4.1 Relaxations of BEM-OPF models

Baran-Wu first introduced relaxation base branch flow OPF using second-order SOCP
for optimal capacitor placement in distribution systems in [64,/65]. This model was non-
convex due to quadratic equality constraints. Then, Jabr proposed a SOCP relaxation-
based convex BFM-based OPF for the radial system in 2006 [22]. A BFM-based SDP-OPF
is discussed in [66]. The first formulations of the convex continuous SOC AC-OPF with
convex approximations to power flow in radial networks were proposed in [67]. The BFM
OPF models relaxation method consists of two stages, angle relaxation and conic relaxation
in power systems. The conic is exact for radial distribution and transmission networks, but
the angle relaxation for transmission networks is not always. Due to the convexness, the
solution to SOCP-OPF provides a globally optimal solution to the BFM-OPF problem. The
exactness of convex SOCP BFM OPF models is discussed in [68,/69]. For acyclic systems,
exact angle and conic relaxation conditions are also discussed in [70], which can be applied
for special cases of mesh networks. Many relaxations-based OPF models are used in mesh
networks using SDP and chordal relaxation [45,[56,57]. A branch and bound method are
applied to extend to OPF problem [71]. BEM-OPF includes line current and flow as OPF

variables alongside the bus voltage, shown in (2.4b)).

min Z ci(x;) (2.4a)

ieN
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where A is the set of all buses in the network.

Sij = Vilj;

sV, =V = Zi 1 (2.4b)

| 57 = 2ok ik = iins (S — Zig| L) + yi Vi ?

2.2.4.2 Relaxations of BIM-OPF models

Different relaxed OPF models (i.e., SDP, chordal relaxation, and SOCP) are proposed
using BIM-based power flow models. A BIM-based SDP relaxation was first proposed in [10].
The analysis on SDP relaxation with the dual of OPF problem with sufficient conditions for
zero duality gap is derived in [15]. SDP-based BIM OPF model for mesh networks and
the exactness of the convexification is discussed in [3]. Chordal relaxation-based BIM OPF
models are first proposed in [|72,73]. Chordal relaxation eliminates the rank-1 condition of
SDP OPF models over the feasible area. The optimal OPF solution of the original AC-
OPF problem is recovered from the solution of relaxed OPF problems, and [63] discussed
the feasible region of the original OPF, which is an effective subset of the relaxed solution.
BFM-OPF includes bus-injected power flow as OPF variables alongside the bus voltage,

which is shown in ([2.5b]).

min Z ci(z;) (2.5a)

st { Si = Z(i,j)e/\/{v;(‘/i — Vi )ui} (2.5b)

2.2.4.3  Second Order Cone Programming (SOCP) based OPF model (Jabar’s model)

SOCP based models have second-order cone constraints which can be represented as [45]:

min Z ci(x;) (2.6a)

ieEN
where N is the set of all buses in the network.

/

st. R Ar=bh (2.6Db)

z>0

\
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For a power system network which can be represented as follows [22]. For a bus i € N, the
voltage can be represented as: V; = |V;|(cos8; + jsin6;) If; V; cos§; = m; and V;sin6; = n;,
So V; = m; + jn;, thus V;? = m? + n?. For convexification new variables are defined as:
Cii = m? + n?, cij = mym; +mn;n; and s;; = m;n; —ny;m;. These new variables satisfies a new

relation, ¢ + s% = ¢;;¢jj. With the new variables, the SOCP-based BEM-OPF model is as:

) Vg

min Z c(py) (2.7a)

ieN

Pjg — F)]d = G”C” + Z[Gijcij - BijSij] (27b)
JEN

where N is the set of all buses in the network.

Qf — Q;l = —Bjicyi + Z[_Bz'jcij — Gijsij) (2.7¢)
JEN

V2<m?n? <V, (2.7d)

Cij = Cji (2.7¢)

Sij = —Sij (2.71)

C?j + sfj = CiiCjj (2.7g)

2244  Second Order Cone Programming (SOCP) based BFM-OPF model

With the new set of variables defined as: |I;;|* = l;, |V;|*> = u; and |V;|* = w;, the

BFM-OPF model for a power system is as follows:

min Z c(pi) (2.8a)

ieN

where N is the set of all buses in the network.

P! — Pl =" Pyp— > (Py—rijly) + gjuy (2.8b)

k:j—k 1:i—>j
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- Z Qjk — Z (Qij — wijliz) + bju; (2.8¢)

k:j—k i1i—j
uj = u; — 2(ri; P + 25Qij) + (5 + 7)1 (2.8d)
2P;
U; — lij N

With respect to the following network operational constraints:

P} < P! <P}

where overline (.) and underline (.) represent the maximum and minimum limit of a variable

or parameter for the OPF models
2.2.4.5 McCormick relaxation-based BFM-OPF model

McCormick envelopes can construct linear relaxations of the rectangular non-linear power
flow equations. For the McCormick envelopes, the known bounds of each variable are used
for standard optimization tools. The rectangular power flow model can be convexified with
McCormick envelopes [74]. In McCormick, relaxation, a new variable is declared with en-
velopes for each bus i € N as, M;; = m and N; = n . Beside this new variables are also
declared for connecting edges L;; € L like: M;; = m;m;, N;; = n;n; and O;; = m;n;. Then,

the McCormick relaxation-based BFM-OPF model is represented as:

min Z c(pi) (2.9a)

1eN
P! — Pl = Gis(Myi + Nii) + Y _[Gij(Myj + Nij) — Bij(Oi; — 0j,)] (2.9b)
JEN
Q Qd u(Mu + sz + Z Zj MZ] + NZ]) GZ]<OZ] - Oﬂ)] (29C)

JEN
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V? < M+ Ny < V? (2.9d)

The nonlinear variables like M;; = m;m; are convexified with McCormick envelopes as:

Mi; > m;m; +mim; — m;m,; (2.10a)
M;; > mym; + mim; — m;m; (2.10Db)
M <mymg +mim; —mym; (2.10c)
M;; < mym; +mym; — m;m; (2.10d)

where m and m represent the minimum and maximum limits of the variables.
2.2.4.6  Semidefinite programming (SDP) based OPF model

Semidefinite programs generalize second-order cone programs with decision variables or-
ganized as a vector x; the decision variables in a semidefinite program take the form of a
symmetric matrix X [45]. Let X > 0 indicate positive semidefinite matrix. So the SDP-based

OPF models can be represented as:

min Ztr.C’(X) (2.11a)
ieN
s.t. {tr.(A,.X) = b, X >0 (2.11b)

where tr.() stands for the trace operator. A; and C; are square and symmetric matrices. b;
is a specified scalar vector. The following sections represent the BFM and BIM-OPF models

based on SDP based relaxation method.
2.2.4.7  Semidefinite programming (SDP) based BFM-OPF model

If, S is denoted for the apparent power, i¥; = l;; and |v;|* = u;, the SDP based BFM-OPF

model is represented as follows:

min Ztr.C(si) (2.12a)

eN
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Zd@ag(&j - Zijlij> + Sgj — Sdj = Z dzag(Sjk) (212b)
i1i—j k:j—k

U; = Ui — (SZJZ;; + ZZJS:}) + ZijlijZ;} (212C)

U; Sij
>0 (2.12d)

S5 i

U; Sl'j

rank =1 (2.12e)

Where, () € H, Hermitian matrix. If, for a line L;; € £ connecting the bus (i,5) € N,

then the line constraints are imposed in a convex form as follows:

(2.12f)

2.2.4.8  Semidefinite programming (SDP) based BIM-OPF model

If power balance is considered at the bus ¢ € A/, the non-convex bus injection model (BIM)

1s:

P! —P'= " Re{Vi(Vi =V )y} (2.13a)
(i,5)EN

QI — Q= D Im{Vi(Vi— V)y;} (2.13b)
(i,5)EN

P! < P/ <P
Q<Q<Q (2.13¢)
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The capacity constraint for the line L;; € L can be represented as:

10:5] = 16: — 0;] < 05 (2.14a)

131 = {Vi(Vi = V] )i}l < S5 (2.14b)
|Pyj| = |Real{Vi(V; = V}")y;;}| < Pi (2.14c)
Vi = Vj| < (AVy) (2.14d)

The bus injection model expressed in (2.15) and (2.14]) is a non-convex formulation. For
convexification of the model for SDP, new variables have been declared as W;; = V;V,* and

(2

Wi; = VlVJ* The SDP formulation can be expressed as:

min Z tr.C(s;) (2.15a)

ieN
P! — P! = " Re{(Wi — Wiy} (2.15b)
(i,5)EN
Q! —Qf = Z Im{(Wi; — Wij)yi;} (2.15¢)
(i,5)eEN

P! <P, <P}

QI <Q, <@} (2.15d)

2

7

K?SVVMSV

If for a line L;; € £ connecting the bus (i, ) € N, then the line constraints are imposed in

a convex form:

Im{W;;} < Re{W;}tan(0;;) (2.16a)

|Si;| = (Wi — Wiyl < Sy (2.16b)
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|Py| = |Reall| (Wi — Wij)yi; || < P (2.16¢)

W € H" is a semidefinite Hermitian matrix. For SDP formulation, OPF solution is tight

and feasible if W > 0 and rank{W} = 1.



CHAPTER 3: A NEW SECOND-ORDER CONE PROGRAMMING MODEL FOR
VOLTAGE CONTROL OF POWER DISTRIBUTION SYSTEM WITH
INVERTER-BASED DISTRIBUTED GENERATION

3.1  Introduction and Contributions

Optimal power flow (OPF) has been a fundamental analysis of power system networks for
optimal operation based on an objective function. The objective functions may include the
minimization of generation cost and network power losses, voltage and phase angle regulation
considering network transmission capacity and voltage fluctuations [4}/5]. Distributed gen-
eration systems (DGs) based on renewable energy have been overgrowing in modern power
distribution networks, transforming the structure of conventional distribution to a complex
one [6]. The engagement of the renewable energy-based DGs and novel types of critical loads
influence the utility distribution industry for novel OPF algorithms [9-11,/75-78|. Power
system analysis and operations greatly rely on the AC OPF for optimal operations [12].
However, the higher penetration of distributed renewable generation sources into the power
network adds additional layers of complexity, leading the AC OPF to infeasible or uncer-
tain solutions [19]. Distribution Network Operators (DNOs) face challenges to maintain
steady-state network operation with issues like voltage rise and congestion when distribu-
tion networks are populated with renewable energy-based DGs [7,8]. Besides, finding the
optimum global point of operation for the non-deterministic polynomial and non-linear OPF
model is hard [15,/16]. So, with the distributed DGs, the power system distribution networks
demand a novel and computationally efficient OPF model.

One method for a computationally fast solution is to convert the AC OPF models to
DC models but with the sacrifice of convergence and accuracy [79]. The DC OPF models
become linear with the relaxation of the reactive power and assuming flat voltage magnitude
of all buses throughout the network [80]. In linearized models, the network is simplified to
guarantee computational efficiency and robustness [81]. Different types of optimal power
flow models have been proposed in different research |45 82-84]. Besides that, specially
for radial distribution networks few more algorithms have been proposed in [85-87]. Due
to the inexactness issue of DC OPF models and the non-convexity of AC OPF models, the
complexity from the increasing penetration of DGs inspires the convex OPF models to ensure
fast, feasible, and tight solutions. The convex second-order cone programming (SOCP) based
OPF model was first proposed in 22|, and the Semidefinite programming (SDP) model in [5].

The required conditions for the exact and feasible SDP solution in radial and mesh networks
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are discussed in [3,56,57]. However, the SOCP models are computationally more friendly
and efficient than the SDP relaxation models [58]. One challenge for an effective solution
of the SOCP model is the need to relax and recover voltage angles. Possible and exact
optimal global solution recovery within the quadratic and arctangent equalities from the
SOCP convexification are discussed in [59,/60]. While there are no upper bounds or a wide
boundary on the load flow in a radial distribution network, the OPF solution is tight and
exact from a SOCP model [61},62].

3.1.1  Major Contributions

In this chapter, we have proposed a branch flow-based SOCP OPF model, which is mo-
tivated by [3}/64,/68]. In [68] a SOCP-based optimization model and in [3}64] an optimal
placement of switched capacitors in distribution networks is discussed. The branch flow
SOCP OPF model presented in this research is very suitable for distribution networks as it
emphasizes the branch parameters. The main advantages of the modeling framework are as

follows.

The model can be used for both cost and loss minimization objective functions and is

scalable for large networks due to its computational efficiency.

e The approach can model the high penetration of DGs in the power distribution network

as it recovers the angle directly within the optimization process.

e The architecture provides an exact optimal solution with bus voltage phase angles for

a radial network with high penetration of multiple DERs.

e The retrieved angle provides an efficient control feature to the reactive power flow and

voltage profile.

e The approach can be used for voltage regulation in power distribution networks with

high DGs penetration.

The chapter is organized into multiple sections. The theoretical analysis, OPF methodol-
ogy, and relaxation framework are discussed in section 3.2. Section 3.3 discusses the model
implementation methods and results for both the angle derivation and the reactive flow

control methodology, and Section 3.4 concludes the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N:  Set of all buses in the network

L:  Set of all branches in the network

Vi Voltage at the bus: € N

u;:  Square of the voltage magnitude at the bus ¢ € N
SY: Apparent power injection at the bus i € N

S¢: Apparent power demand at the bus i € N

P?: Real power injection at the bus i € N

P?: Real power demand at the bus i € N

Q?:  Reactive power injection at the bus i € N

Q% Reactive power demand at the bus i € N

P;j: Real power flow through the line L; ;) € L

Qij:  Reactive power flow through the line L; ;) € L
I;j: Current flow through the line L; ;) € L

Square of the magnitude of current flow through the line L; j) € L

o~

<o

79

6;;:  Bus voltage angle difference between the bus i and bus j, (i,j) € N
Zij:  Impedance of the line L; ;) € L

Gij:  Conductance of the line L; ;) € L

B;;: Susceptance of the line L ;) € L

3.2  Proposed Methodology

3.2.1  Branch Flow Model

k
Sub- |, Pd I —_
station > ===
~HT
DG(Pgj) --
m

Figure 3.1: Branch flow model including DGs.

The proposed OPF methodology is based on a branch flow model, emphasizing the bus
voltage, phase, and the branch flow parameters such as current, real, and reactive power flow
through the branches. For a power distribution network, consisting with buses [i, j, k] € N

as like Fig. [3.1] the fundamental power flow equations can be represented as:

Sy = Vil (3.1)

Vi =V = Zi1 (32)

The power balance at the buses [i,7,k] € N, in terms of the flows through the lines
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[L(i,5),L(j, k)] € L is:

S9— 8 =" S — > (Sij — Zyly?) + v Vi (3.3)
k:j—k i —]
From (@) and F32),

Vil = Vil* +1Z P |15 — (23355 + Z5:S:5) (3.4)

If a line L;; € L connecting two buses {i,j} € N, the real and reactive power flow across

the line can be expressed as follows:

Pyj = GV = GijViVj cos(0;) — By ViV sin(6y) (3.5)

Qij = _Bijv? + B”V;V] COS(&U) — ng‘/zV] sin(@l-j) (36)

3.2.2  Convexification for the Proposed SOCP OPF

For an optimization problem, the mathematical form is:

minimize/maximize f(zx)

Subject to b, < fi(z) < b;

The vector, z = {x1, x2, T3........ x,} is the optimization variables for the objective function
f(z) € R. Where, f; : R — R" are the constraints and b; is the limit. The main focus of
this work is on the convex optimization for a power system network, where the objective and

constraints are convex, and satisfy the inequality:
filAvx + Agy) < fi(Arx) + fi(Agy),Vo,y € R", Ay, Ag €R

For a second order cone set C,

C={(x1,%9, oo, tp) i Xy > /22 + 25+ .....+22_ ) €C

If the solution set of an optimization problem is X = {1, xox3.....} € C, for the second-order
cone optimization, the cone C encloses the global space S € C which ensures the optimal
global solution within the convex space.

The power flow equations from to are non-convex. S0, the solution suffers from

scalability and incapable of providing any feasible solution for the large power distribution
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networks. However, if a convex space encloses the non-convex space for a global optimal
feasible solution for S, € C,, the power flow equations can be re-written as a convex set
of equations. The solution from the convexed space is the optimal solution of the parent
non-convex OPF problem [88]. With the help of a new set of variables, (3.1 to are
convexified as follows: |[;;|* = l;;; |V;|? = u; and |V;]* = w;. Then from and (3.4):

P! —Pi= 3 Pu— ) (Py—ryly) +g5u (3.7)
k:j—k ii—]

QI —Qf = D Qi — D (Qi — wijly) + bju; (3:8)
kij—k ivi—j

uj = u; — 2(ri; Pij + 2;Qij) + (Tfj + x?j)lij (3.9)

The equality in (3.1) can be represented in the form of a second order cone (SOC) as follows:

w;+lij > || 2Qy; (3.10)

The OPF model for a network is enclosed within a space, where a feasible solution satisfies
an objective function based on some imposed constraints on a power network. For the
objectives of the OPF, all of the physical laws of a power network are satisfied. This research
investigates the generation cost and real power loss minimization objectives for a distribution
network. Besides that, the voltage discrepancy can also be investigated. The objective

functions are as follows:

e Line loss minimization,

min[ > rijlij] (3.11)

(i,7)€L

e Generation cost minimization,

min[»  ¢iP,] (3.12)

iEN,

e Minimization in bus voltage difference,

min| Z a;(u; — uy)] (3.13)
(g

i,J)EN
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e Or, the combination of these three f(z),

(i)€L €Ny iE€N,

where N, is the set of DER connected buses. The following constraints are imposed with

the model to observe the branch flow effect on a power network.

Pt < Py < P

Q" < Qg < Qe

Py < Py < P

Qi < Qi < QP (3.15)
(95”" <0 <O

u;nm <u < ulmaac

3.2.3  Angle Inclusion and Reactive Power Management

Real power flow change is mainly sensitive to the phase angle difference A6, while the
reactive power depends on the voltage magnitude where the X/R ratio is high, such as
transmission networks [89]. However, for distribution network systems, the X/R ratio is
low, so phase angles play a significant impact on the reactive power and thus on the voltage
magnitude. A general method of relaxing this angle in convex optimization due to the non-
convexity thus fails to deliver global optimal solutions. Contrary to the previous works, in
the proposed model, the voltage phase angle is included in the convex space. The method is
as follows. For the convexification of the bus voltage angle relationship, from and

we get
—ViV; sin(@ij)(G?j + ij) = (B Pij + Gi;Q45) (3.16)

However, is still non-convex. As the bus ¢ € N and bus 7 € N are two adjacent
connected buses and if [V, V™", Ve Vmn] & 1 in per unit then we can safely assume
that V;V; ~ 1. For distribution networks, the angle difference for any two adjacent connected
buses can thus be written as sin(6;;) ~ 6,;, where 6,; is the bus voltage angle difference
between the bus ¢ € N and bus j € N. Then from (3.16)):

_ BijPij + GijQyj
B + G

0,; = (3.17)
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Equation is included with the SOCP model to retrieve the bus voltage angle difference
between two connected buses (i,j) € N for the line L(i,j) € L. If the substation bus is
considered as the reference, the bus voltage phase angle for all the buses in the radial network
is recovered from this bus voltage angle difference. Further, if a DG system integrated with

battery and PV can feed constant real power support to the network, we can write

Therefore, by controlling the bus angle difference, the reactive power flow, and finally,
through this, the voltage magnitude can be controlled. Suppose a DG with reactive power
support is available near the substation bus in a distribution network. In that case, the
voltage profile can be controlled or keep stable for critical load changing without the need
to have a load tap changer (LTC). This ensures an optimal point of operation for minimum
generation cost or minimum loss and provides a point of control to the reactive power flow.

Based on this theoretical framework, an algorithm for controlling the reactive power flow
and thus the voltage regulation in the network can be developed with the retrieved angle

difference as shown in Algorithm [I}
3.3 Simulation and Evaluation

The proposed model is implemented as A: Angle recovery from the SOCP branch flow
model, B: Reactive power flow control with the recovered bus voltage angle difference within
the optimal solution space, and tested on several real-life IEEE standard network systems
using Matlab/Simulink with MOSEK solver. The model’s performance is verified with the
Non-linear Programming (NLP) solution obtained from the OpenDSS and MatPower plat-

forms.
3.3.1  Implementation of the Angle Recovery Model

For part A, the MOSEK solver in the Matlab platform has been used for the convex OPF

model consisting of (3.7) to (3.10) and (3.17). The simulation results from the proposed

model show that the results are tight and exact for different test cases and similar to the

NLP solution.
3.3.1.1  Case 1 (IEEE 32-Bus Test System)

The model is tested on the modified IEEE 32-bus network system with and without
DGs penetration. The placement of the DGs at the modified IEEE 32-bus distribution
system is shown in Fig. [3.2l The IEEE 32-bus system is a modified version of the IEEE
33 bus radial distribution network. The substation bus (bus no. 0) is substituted with a

generation system, and the system-rated voltage is 12.66 kV, with 31 lines connecting 32-
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Algorithm 1 Reactive Power Control Algorithm

-Find the lines L;; € L with the bus, i € N in the distribution network.
-Make reference to the optimized voltage profile at '(t — 1)’ time period.
-At 't’ time period the PV source supplies or due to change in load the voltage profile
fluctuates to v;(t).

AV = iy (T — 1) — v4(2).

-Set the tolerance &

while |Av;| > £ do

if Av; > 0 then

Find the incoming and outgoing branch reactive flow with bus '’
if If outgoing Q;; == (+)ve then

decrease the 6;; : 0;; € 077", 07" ]

end
Ise if If outgoing Q;; == (—)ve then

increase the 6, : 6;; € [emm, 073

@

end

else if If incoming Q;; == (+)ve then
increase the 6;; : 0;; € [0, 077]
end

Ise if If incoming Q;; == (—)ve then

decrease the 6;; : 0;; € [0, 7]

@

end

nd

Ise if Av; < 0 then
Find the incoming and outgoing branch reactive flow with bus "¢’
if If outgoing Q;; == (+)ve then

increase the 0;; : 0;; € [0, 077°]

® O

nd
Ise if If outgoing QQ;; == (—)ve then

decrease the 6,5 : 0;; € [0, 6717

o O

nd
Ise if If incoming QQ;; == (+)ve then

decrease the 0;; : 6, € [Qmm, 0751

o O

end
else if If incoming Q;; == (—)ve then

increase the 6;; : 6;; € [emma 07"

end

end
Avi = Viyref (t - 1) - Ui(t)nth-

end

buses. The proposed SOCP model is designed in a way so that it can handle multiple DGs
penetration in a network. The result comparison for the IEEE 32-bus network is shown in
Table and Table [3.2| for nonlinear power flow (MP-PF), NLP OPF (MP-OPF), and the
proposed SOCP model (SOCP-OPF). For the minimum generation-cost objective function,
the voltage profile from the proposed SOCP OPF model and NLP model is shown in Fig.
3.3l The retrieved bus voltage angle difference in the 32-bus network from the proposed
SOCP OPF model and the NLP OPF model are compared in Fig. [3.4] It can be seen
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Figure 3.2: Modified IEEE 33-bus distribution network.
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Figure 3.3: Voltage profile comparison between MatPower NLP and SOCP OPF.

that the bus angle difference from the proposed SOCP model matches the NLP results. The
percent loss [(Total generation-Total load)*100/Total generation| in the network, the voltage
mismatch for the different objective function with the convergence times, and the voltage
mismatch between the proposed SOCP model and the NLP OPF is shown in Table[3.2] The
convergence time is compared on a machine with an Intel(R) Core(TM) i7-10510U CPU @
2.30 GHz processor and 16 GB RAM environment. For convex formulation, the proposed
SOCP model is computationally more efficient than the NLP model. The % loss with the
proposed method is less than the NLP PF and the NLP OPF. For the IEEE 32-bus network,

the DG placement with the maximum and minimum generation capacity and the generator’s
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Figure 3.4: Bus voltage angle difference in IEEE 32-bus network for MatPower NLP and SOCP OPF.

Table 3.1: Modified 32-bus system power flow comparisons

MP-PF MP-OPF  SOCP-OPF

No. ppar pmm Qmer Qmn G P, Q, P, Q, P, Q,
I 10 - 10 ~-10 90 390 243 203 150 203 L50
7035 0100 025 00 79 0.00 000 035 025 035 025
12 030 0075 020 00 87 0.00 0.00 030 020 030 0.20
13 032 0000 000 00 70 000 0.00 0.32 0.00 032 0.00
15 008 0075 020 00 92 000 0.00 .075 020 0.075 0.20
16 030 0300 000 00 70 000 0.00 0.30 0.00 030 0.00
24 041 0.00 020 00 81 000 0.00 041 020 041 020

cost coefficients are discussed in Table [3.1] With this network configuration, the power flow
solution is similar to the benchmark OPF solution from the MatPower platform, verifying
the tightness of the optimal global solution from the proposed model.

Table 3.2: Modified 32-bus network system analysis

MP-OPF SOCP-OPF SOCP-OPF

MP-PE (min cost)  (min cost)  (min loss)

Time .08 Sec .92 Sec .61 Sec .53 Sec
% Loss 4.74% 1.85% 1.78% 1.77%
Gen. cost 319.72 320.21

MP-OPF (mc) SOCP-OPF (mc)

Vs VS
SOCP-OPF (mc) SOCP-OPF (ml)
Voltage mismatch .0003% 045%

mc*=min cost ml*=min loss
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Table 3.3: IEEE 123-bus system performance comparisons

123 Total Total Gen % Loss % Loss % L Cost Cost
Bus Load SOCP  SOCP SOCP 72 gsoCp SOCP

System  Py(MW) Py (MW) (min) (min) (PF) (min)  (min)
Base Case  1.1633 1.2017  320% 320% 3.20% 110.55 110.55
10% DG 1.1633 1.1892 218 % 218 % 2.75 % 109.15 109.15
30% DG 1.1633 1.1836 1.71% 1.711% 271 % 108.44 108.44
50% DG 1.1633 1.1782 1.26 % 1.26 % 2.64 % 107.74 107.74

3.3.1.2  Case 1 (IEEE 123-Bus Test System)

Besides the IEEE 32-bus radial network system, the proposed model is analyzed on the
IEEE 123-bus network system for the base case and DG penetration. For DG penetration,
10%, 30%, and 50% DGs of the total connected load in the network are considered. The
comparative analysis has been shown in Table for different percentages of DGs penetra-
tion in the network. The model is evaluated for both minimum generation cost and minimum
loss objective functions. If the generation cost from the DG units is lower than the cost of
the power available from the substation bus, then the % loss is found to be the same for
both of the objective functions. From the results in Table[3.3] it can be observed that the %
loss decreases with the higher penetration of DGs in the network. The OPF solution conver-
gence time for the proposed SOCP compared to NLP OPF on other benchmark platforms
is shown in Table |3.4] for the IEEE 123-bus network. The DG placement and the generation
with each configuration are shown in Table[3.5] Due to the convexity of the proposed model,
the proposed requires less time for convergence than the NLP OPF model. The 123-bus
network base case’s voltage profile and the DG penetration configuration are shown in Fig.
and [3.6] respectively. With the DG penetration, the OPF model voltage limit is kept
between 0.9 pu to 1.1 pu for minimum and maximum voltage limits, respectively. From
Fig. it can be observed that the network voltage amplitude level rise with the increase
of the DGs penetration. The bus voltage angle difference is retrieved from the proposed
123-bus network system model for comparison. The bus voltage angle difference from the
proposed model for the base case is shown in Fig. The result is verified with the angle
recovered from the OpenDSS platform for the base case. Fig. shows the angle retrieved
from the proposed SOCP model while DGs are connected and verified with the result from
the MatPower NLP. The results from the proposed SOCP model are similar to the OpenDSS
and MatPower NLP solutions. The negligible discrepancy in the angle difference is due to
the approximations for convexification of . Comparing the proposed model’s solution
with the OpenDSS and MatPower NLP solution validates the approximation of the model.
It was also observed that the model is capable of an optimal global solution for other large

distribution networks.
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Figure 3.5: Voltage profile in IEEE 123-bus network base case.
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Figure 3.6: Voltage profile in IEEE 123-bus network with 10%, 30% and 50% DGs.

Table 3.4: IEEE 123-bus system time of convergence (ToC) comparisons

123 SOCP SOCP Mat Power Power Flow
Bus ToC ToC ToC ToC
System  (min cost) (min loss) (NLP) (MP)

Base Case 0.28 sec 0.39 sec 0.45 sec 0.73 sec
10 % DGs  0.33 sec 0.39 sec 0.46 sec 0.80 sec
30 % DGs 0.36 sec 0.41 sec 0.48 sec 0.77 sec
50 % DGs 0.34 sec 0.39 sec 0.51 sec 0.81 sec

3.3.2 Reactive Power Flow Control

The reactive power flow control Algorithm [I|is proposed using the bus retrieved voltage

angle difference as discussed in the previous section. The algorithm is capable of controlling
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Table 3.5: Generation Profile for IEEE 123-bus system with DGs
Bus SOCP | SOCP MP MP Bus SOCP | SOCP | MP MP
Case No pY Q7 pY Q7 | Case No pY Q7 pY g
mw mvar mw mvar mw mvar mw mvar
Base | 1 1.2034 | .7153 | 1.2034 | .7153 14 .0067 | .0145 | .0067 | .0146
1 0.9270 | .5103 | 0.9270 | .5105 18 .0133 | .0088 | .0133 | .0086
11 0.0133 | .0088 | 0.0133 | .0088 19 .0067 | .0087 | .0067 | .0088
31 0.0133 | .0088 | 0.0133 | .0088 21 0133 | .0088 | .0133 | .0086
10% 54 0.0700 | .0464 | 0.0700 | .0464 24 .0133 | .0087 | .0133 | .0083
DGs 66 0.0067 | .0044 | 0.0067 | .0044 26 .0133 | .0087 | .0133 | .0083
73 0.0467 | .0309 | 0.0467 | .0309 30 .0133 | .0082 | .0133 | .0078
84 0.0817 | .0541 | 0.0817 | .0541 32 .0133 | .0087 | .0133 | .0083
95 1 0.0133 | .0088 | 0.0133 | .0088 34 | .0067 |.0041 | .0067 | .0047
108 | 0.0133 | .0088 | 0.0133 | .0088 35 .0133 | .0033 | .0133 | .0033
1 0.7236 | .1253 | 0.7236 | .1269 37 0133 | .0075 | .0133 | .0077
8 0.0133 | .0088 | 0.0133 | .0087 40 0067 | .0212 | .0067 | .0224
11 0.0133 | .0088 | 0.0133 | .0087 43 .0067 | .0084 | .0067 | .0084
18 1 0.0133 | .0088 | 0.0133 | .0087 45 0133 | .0057 | .0133 | .0057
21 0.0133 | .0088 | 0.0133 | .0088 47 .0067 | .0054 | .0067 | .0055
30 0.0133 | .0088 | 0.0133 | .0088 50 .0700 | .0464 | .0700 | .0458
32 0.0133 | .0088 | 0.0133 | .0088 53 .0067 | .0464 | .0067 | .0464
37 0.0133 | .0088 | 0.0133 | .0088 55 .0133 | .0088 | .0133 | .0088
45 | 0.0133 | .0087 | 0.0133 | .0087 o7 1 .0067 | .0292 | .0067 | .0295
50 | 0.0700 | .0464 | 0.0700 | .0463 | 50% | 60 .0067 | .0464 | .0067 | .0464
53 0.0067 | .0464 | 0.0067 | .0463 | DGs | 64 .0133 | .0088 | .0133 | .0088
o7 0.0067 | .0464 | 0.0067 | .0463 67 .0467 | .0044 | .0467 | .0044
30% | 60 0.0067 | .0464 | 0.0067 | .0464 68 .0250 | .0044 | .0250 | .0044
DGs | 64 0.0133 | .0088 | 0.0133 | .0088 71 .0133 | .0088 | .0133 | .0088
67 | 0.0467 | .0044 | 0.0467 | .0043 77 1 .0133 | .0088 | .0133 | .0088
7 0.0133 | .0309 | 0.0133 | .0308 78 0817 |.0044 | .0817 | .0044
78 0.0817 | .0461 | 0.0817 | .0461 81 .0133 | .0088 | .0133 | .0088
86 0.0067 | .0441 | 0.0067 | .0440 84 .0133 | .0088 | .0133 | .0088
89 0.0133 | .0087 | 0.0133 | .0088 86 .0067 | .0464 | .0067 | .0464
98 | 0.0133 | .0087 | 0.0133 | .0088 89 0133 | .0088 | .0133 | .0088
101 | 0.0133 | .0087 | 0.0133 | .0088 92 .0133 | .0088 | .0133 | .0088
102 | 0.0133 | .0087 | 0.0133 | .0088 96 .0133 | .0088 | .0133 | .0088
106 | 0.0133 | .0087 | 0.0133 | .0087 98 .0067 | .0404 | .0067 | .0406
109 | 0.0133 | .0087 | 0.0133 | .0087 101 | .0133 | .0088 | .0133 | .0088
113 | 0.0067 | .0464 | 0.0067 | .0464 102 | .0133 | .0088 | .0133 | .0088
116 | 0.0067 | .0464 | 0.0067 | .0463 106 | .0133 | .0088 | .0133 | .0088
1 0.5199 | .0051 | 0.5199 | .0051 109 | .0133 | .0088 | .0133 | .0088
50% | 4 0.0067 | .0139 | 0.0067 | .0140 111 | .0133 | .0088 | .0133 | .0088
DGs | 8 0.0133 | .0088 | 0.0133 | .0088 113 | .0067 | .0464 | .0067 | .0463
11 0.0133 | .0088 | 0.0133 | .0088 116 | .0067 | .0464 | .0067 | .0462
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Figure 3.7: Bus voltage angle difference in IEEE 123-bus network base case.
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Figure 3.8: Bus voltage angle difference in IEEE 123-bus network with 10%, 30% and 50% DGs.

the voltage to any critical load bus with the control of DGs reactive power flow. Besides,
it is shown that the proposed method can be more useful and economical than the load-tap
changer (LTC) operations. The proposed control method’s impact is shown in Fig.
(a)-(b) for IEEE 32-bus and for the IEEE 123-bus networks in [3.9| (¢)-(d).

3.3.2.1  Case 1 (IEEE 32-Bus Test System)

In Fig. [3.9] (a), the change in voltage is shown at bus 12 of the IEEE 32-bus network. For
a case, if a DG comes into production or if the voltage fluctuates due to the change of load,
the proposed algorithm can maintain and regulate the voltage to its reference voltage level.

In Fig. (3.9) (a), the 1st iteration voltage profile (red) is the fluctuation in the voltage due
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Figure 3.9: Voltage control with reactive power and angle difference management.

to the change of loading condition at the ¢, period while the reference voltage profile (black)
is the optimal point at the (¢ — 1), period. For voltage regulation, the reactive flow control
algorithm is applied to the branches connected to bus 12. Line 14 and 15 are the connected
lines to bus 12. It can be seen from the voltage profile (blue) after the final iteration that
the voltage profile is near the reference voltage when introducing the proposed method. The
voltage profile (purple) by controlling the LTC tap position at —2 is also shown in the same
Fig. for comparison. This indicates that the proposed algorithm has better control over the
voltage magnitude. Fig. [3.9(b) shows the change in the bus voltage angle difference across

the lines connected to bus 12.
3.3.2.2 Case 1 (IEEE 123-Bus Test System)

The Algorithm [ is also applied for the IEEE 123-bus network system for voltage regula-
tion. Fig. [3.9| (c) shows the effectiveness of the proposed voltage and reactive flow control
algorithm when there is a voltage fluctuation at bus 9 (original bus 7) in this research of
the IEEE 123-bus network. The 1st iteration voltage profile (red) is the fluctuation in the
voltage due to the change in loading condition at the t;, period, while the reference voltage
profile (black) is the optimal point at the (f — 1)y period. The voltage profile (blue) is
the final iteration which is closer to the reference voltage (black). Also in Fig. [3.9| (c), the
voltage profile (purple) for LTC tap position at —1 is shown. Fig. 3.9 (d) shows the change
of the bus voltage angle difference at the lines 5 & 9, which are the connected branches to
the bus 9. Angle difference in one branch is decreasing while increasing for the other branch,

which controls the reactive flow, thus the voltage regulation. It can also be seen that the
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tap position can be managed better especially if there is a DG source near the substation
for a distribution network. Overall, it can be seen that the voltage can be controlled more
precisely using the reactive flow control with the bus voltage angle difference adjustment

from the algorithm proposed in this research.
3.4 Summary

This research has proposed and evaluated a branch flow-based SOCP OPF model capable
of angle recovery and reactive power flow control and thus capable of voltage regulation.
The proposed model concerns the branch current and branch power flows instead of only
nodal injections. The recovered angle is in the form of bus angle difference for all inter-
connected lines throughout the network. Based on the retrieved angle, this research has
also proposed a reactive flow control algorithm and voltage control. It is demonstrated that
the proposed model is exact for the global OPF solution and tested in the modified IEEE
32-bus radial network and IEEE 123-bus network systems. Due to convexity, the model has
better computational efficiency than the NLP OPF models. Finally, the proposed reactive
flow and the voltage control algorithm provide a better and more economic control scheme

in the power distribution networks.



CHAPTER 4: SECOND-ORDER CONE PROGRAMMING (SOCP) MODEL FOR
THREE PHASE OPTIMAL POWER FLOW (OPF) IN ACTIVE DISTRIBUTION
NETWORKS

4.1 Introduction and Contributions

With the high penetration of distributed renewable energy-based generations, power dis-
tribution system OPF modeling has become more complex. For instance, the conventional
approach of iterative power flow methods becomes computationally complex and inaccu-
rate, affecting the operation reliability of the power grid. Typically, OPF is formulated
using AC power flow equations with additional constraints referred to as AC-OPF. However,
the AC-OPF problem is challenging and hard to solve due to the quadratic and non-linear
characteristics of the power flow equations [5,15]. Due to the non-convexity of power flow
equations and constraints, the original AC-OPF problem is NP-hard [13].

To overcome this issue, linear approximations of power flow equations such as DC-OPF [20]
are commonly used, compromising the solution’s accuracy. Also, the DC-OPF doesn’t ac-
count for the optimal point of the reactive power and thus becomes unsuitable for an un-
balanced distribution network [44]. Conversely, the convex relaxations of AC-OPF prob-
lems are generally shown to be exact under certain conditions and computationally effi-
cient [90] [57] [70]. Due to the computational superiority and ability to find the optimal
solutions, the convex AC-OPF formulations have been extensively used in power system op-
timization applications [91] [92] [93]. Typically, power distribution systems are unbalanced
due to the unequal three-phase loads, untransposed lines, and conductor bundling [94]. Even
though distribution networks are multi-phase and unbalanced, most OPF models for power
distribution systems are developed based on single-phase network analysis [25]. In recent
years, the high penetration of DERs has contributed heavily to further imbalance, which is
challenging to forecast with single-phase OPF analysis due to the random generations [26].

So, this article proposes a three-phase SOCP-OPF model.
4.1.1  Existing Research Works:

Researchers have been exploring efficient OPF models for multi-phase power networks.
A three-phase non-linear OPF model was proposed in [95], which includes the mutual
impedance for minimizing network loss. The power flow formulation considers the inverse
matrix of the primitive impedance matrix of size (3n; x 3n;), where 'n;” is the number of

branches in the network. This confines the scalability of the NLP-OPF model. Multiple ap-
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proximated linear three-phase power flow models were proposed to overcome the scalability
issue for active distribution networks considering different types of loads [14}/18,96]. However,
those linear models are approximated and thus will not provide exact solutions always. Be-
sides these linear models, Chordal relaxation-based convex AC-OPF models for multi-phase
unbalanced distribution systems have also been proposed in [17,/97]. Convex approaches,
based on branch flow models (BFM) using semidefinite programming (SDP) and a linear
model for OPF in multi-phase radial networks, were proposed in [66]. For the linear model,
the line loss in the network is ignored. Another variant that extends the convex modeling to
incorporate delta connections is proposed in [98| and the exactness of the convex relaxation
is evaluated in [99|. For scalability, an SDP-OPF formulation for unbalanced microgrids was
illustrated in [100]|, which is solvable in polynomial time. If the solution is infeasible for a
system, sufficient conditions are developed to provide a feasible solution in [101}/102].

A convex SOCP load flow model for radial distribution networks was first proposed in [22].
For SOCP relaxation, the angle and conic relaxation steps are always exact for radial net-
works, provided there are no upper bounds on loads [68,/69]. In [90], a SOCP-based OPF
framework decomposes the three-phase networks into three independent single-phase net-
works. One of the significant drawbacks of these state-of-the-art SOCP models is that these
models ignore the mutual coupling in the multi-phase networks. Compared to the SOCP-
OPF model, the SDP-OPF formulation is theoretically stronger [103]. However, in SDP-OPF
models, the matrix size grows as the number of buses’ squares, making it computationally
challenging to solve OPF for a large network [104]. Moreover, SDP formulation finds a
physically meaningful solution if the line-flow capacity is considerably high [101]. How-
ever, SOCP-based AC-OPF models are scalable, computationally feasible [105], and more

efficient [90] compared to SDP-OPF models.
4.1.2  Major Contributions

This article proposes a BFM-based SOCP-OPF model that considers multi-phase mutual
coupling effects. The proposed SOCP-OPF model aims to develop a computationally efficient
and scalable three-phase OPF algorithm to find globally optimal solutions for unbalanced
power distribution systems. The proposed OPF model is inspired by the research works
in [68,69,106]. Numerical simulations have been conducted on different IEEE test networks
to validate the proposed model’s computational efficiency and scalability. The performance of
the proposed SOCP-OPF model is compared with the BFM-SDP OPF [66|, linear OPF [66],

and NLP-OPF models. The salient contributions of the proposed work are:

e The proposed SOCP-OPF model provides an optimal global solution in multi-phase

unbalanced distribution systems, including mutual coupling effects.
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e The derivation of a convex representation of the ZIP loads for the proposed OPF model

is included in the model.

e The approach is computationally feasible and scalable with high penetration of DERs’.

The chapter is organized as follows. Section 4.2 discusses the proposed three-phase OPF
methodology and relaxation framework. Section 4.3 discusses the model’s exactness and
optimality. Section 4.4 evaluates the simulation results. Finally, Section 4.5 concludes the
chapter with a summary.

The variable and parameters used in this chapter are as follows:

€2 Coupling coefficient

N?:  Set of all buses in the network

NP:  Set of all buses with DERs in the network

£¢. Set of all branches in the network

V% Voltage at bus N; € N¢

7’ Max. voltage limit at bus N; € N

V% Min. voltage limit at bus N; € N¢

ul:  Square of the voltage magnitude at bus N; € N'¢

[s?]i:  Apparent power injection at bus N; € N

[s9)i:  Apparent power demand at bus N; € N?

[p?]i:  Real power injection at bus N; € N?

[pﬁ]i: Real power demand at bus N; € N/?

[¢7]i:  Reactive power injection at bus N; € N?

[¢7)i:  Reactive power demand at bus N; € N?

P[? Real power flow through line, L¢ € LY

ij Reactive power flow through hne L¢ € Lo

[f}: Current flow through line, L¢ € L?

ZZ-: Current magnitude square through line, L¢ € Lo

N

Impedance of the branch, L¢ € Lo
Resistance of the branch, L¢ e L?

SRS S

<

x? Reactance of the branch, L‘g € Le
E;g Max. voltage magnitude square at bus N; € N'¢
¢

u’:  Min. voltage magnitude square at bus N; € N/¢

[Tog’]i: Max. generator real power limit at bus N; € ./\/'g‘b

[£¢]i: Min. generator real power limit at bus V; € ./\ff
]
]

i+ Max. generator reactive power limit at bus N; € /\/'g‘Z5
¢°];:  Min. generator reactive power limit at bus N; € ./\/’gqj
Max. current flow through the line, Ld) € L?

Min. current flow through the line, L¢’ € Le

S..: Max. apparent power flow through line, Ld’ € L
Min. apparent power flow through line, L¢ €L

4.2  Proposed Methodology

For the proposed OPF model, multi-phase radial distribution networks are considered
where £? represents the set of connected multi-phase branches, and A/? is the set of multi-
phase buses in the network. Nid) and NV j’ denote the bus indexes, which can be three, two, or
single phases. For the branch ij € L£?, the multi-phase real power flow and reactive power

flow are represented as P;? and Q;@ respectively from bus Nf € N° to bus N f e N?. Sf} is
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the apparent power flow. [p?]; and [¢}]; are the injected power while, [p%]; and [¢7]; are the

real and reactive power demand at the bus N jﬁ e N?.
4.2.1  Three-Phase Branch Flow Model

The power flow and the voltage drop of the multi-phase line segment ij € L£? connecting

two buses N € N'® and N f € N? of a network can be represented as follows:

¢ _ 1P 7ox
S¢ = VeI (4.1)

(2

Vi? — V¢ =200 (4.2)

where If} is the current flow from the bus Nf5 € N? to bus Nf € N through the branch

Lf’j € L£? with an impedance of zf; The power balance at the bus N f € N? is as follows:

(591 [sals S S
[sh; ] — [[shli| = > Shl — > Sy
k:j—k 1:1i—>j
[sgls [sals ik S5 )
Zz'aja Zzagb Z%C (]Z)Q yaa* 0 0 (‘/}a)Z
DR B [ R I N (U (43
i:i—]
a2zl | (I5)? 0 0y (V)2

where {Nf’,N;s, N,f} € N?, and {L¢ Lfk} € L£?. From 1) and 1' it can be derived as

50
follows:
2¢< S¢> *

¢ 10} g~y
v (44

2

Considering the square in 1} the voltage relationship between bus Nf’ € N? & bus

Nf € N is as follows:

V| ] G ) e @ e+ 2| |
(VeR| = [ |+ | G2+ )2 (2 2 )+ (a2 | | (1)
Wi | wer] (e e e e e 2] g2
I N E A R

A I A TS R AR
A N E A A N
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where z;; = r;; + jz;;. Relaxing the phase angle and considering, |If;|2 = lg; |Vj¢|2 = uf and

V212 = uf; (4.5) can be represented as follows:

wr|fur| G e e e R ] |
a] = || |4 @ R e (e e | |
ug g (ri2 4+ (259)*  (r)® + (x3)* (rgf)” + (25 | |15
N

S A L R E o R R
R B B E Al I o

When the current If; =|I ;’;\463 is not relaxed, the polarity of the current changes based on
the phase angle. As the phase angle of the current is relaxed and ZZ- > 0, 1) and 1)
do not address the mutual coupling impact correctly. So a co-efficient £? is introduced with
(4.6 to address the coupling effect for multi-phase networks properly. The angle relaxation
is discussed in more detail in Section [4.2.2.1] and the derivation of the co-efficient £ for the

proposed OPF model is discussed in section [£.2.3] of this article.
4.2.2  Convexification for the Proposed OPF Model
4.2.2.1  Angle Relaxation

The power flow equations from to are non-convex, and the mutual coupling effect
on the multiple phases of the network depends on the phase angles. But, in the proposed
convex model, the phase angle of the voltage and the current are relaxed as If;- = |]$|
and Vj‘z> = ]Vf’| So, to introduce the mutual coupling for multi-phase branches, a coupling
coefficient £? is considered for the proposed OPF model. For the convexification of
to 1} new variables have been introduced with the model. Considering, |If;|2 = l?};
|Vj¢|2 = uj’ and [V?)2 = uf and the coupling coefficient €2, the convex form of the power

balance equation (4.3]) can be written as:

a a a a

[Sg]J (sl ik Sz'j

b — b — b — b

ol | = (st | = 22 [S%] = 22 |

k:j—k 1:—]

c c c c

[59]3 (sl ik Sij

aa b ab c . ac a aa a

25 2z 25 lij Y 0 0 uj

E a ,ba bb c ,bc b bb b

i

a ca b.cb cc c cc c
13 Z5 fzij 2 _lij 0 0 y uj |
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where {£2, €%, £} € €9 refers to the coupling coefficients. Splitting the (4.7)) in terms of real

and reactive power after angle relaxation, the power balance at bus N, f € N? are as follows:

[pgl [pal; P, P
AR SR ARSI
k:j—k 1:0—>]
pli| (vl P, P
ree ghrgb o goerge) |1 g 0 0 |uf
a,.ba bb c,.be b bb b
+Z I rl 1l T 10 g 0 u; (4.8)
1:1—]
“rfj‘? brfjb Tfjc _lfj 0 0 g*° uj_
451 g3l e 5
gl | = |1l | = 2o | @] — 2 | @
k:j—k i:i—>j
gl ] | las); c )
aa b,.ab ¢ H.ac a aa a
Ty Ty Ty lij b 0 0 uj
+ ) |eoate at gl {2+ 0 B 0] |ub (4.9)
g
a,.ca b,.cb cc c cc c
Ty s lij 0O 0 b uj |
where z{, = r{, + jal, S5 = Pi+jQ%, yf = g7 + jb%, [s%; = [p?); + jl¢¢];, and [s5]; =

(i) + dlg);-
As (4.6) does not address the mutual coupling impact; accordingly the coupling coefficient
€% is introduced in (4.8) and (4.9). To address the voltage drop between the bus Ni‘b e N?

& bus N f € N? the convex relationship can be written as:

wl o fur| | e RN @) le? ] |
wl = fut| + | IelOR?+ @@ (P @ e+ | |
wl o lu] [elome @ e e e | )
oot eng| ] [ eny el o]

=2 \ety et | [ PY| <2 el al e Q)

RERE B B L B G e N )
(4.10)

where [—|7 indicates the transpose of a matrix. For each of the branches in the network, the

feasible set is still non-convex due to the quadratic equality as follows:

(S5 _ o _ (PO + (@)
uf uf

¢ _
lij _ (4.11)
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4.2.2.2  Conic Relaxation

With the conic-relaxation, the non-convex optimal solution space is enclosed within a
feasible convex space [107]. After the angle relaxation, the OPF model is still no-convex due
to , which is convexified by the following conic relaxation with a conic inequality in
(4.12). For the proposed OPF model, all branches (all phases independently) satisfy this

conic constraint in (4.12)).

2P,
A )
uf 15> || 27, (4.12)

¢ ¢

4.2.2.3  OPF Architecture

For a power distribution network, the OPF solution is the point of operation to supply
the demand in the whole network so that all physical laws of power flow are satisfied con-
sidering the imposed constraints. Suppose a power flow solution set is 1/¢ = {Sf, SZ, If;-, Vf}
satisfies the objective considering the imposed constraints on the network, then ¢ will be
the optimal point of operation for the network. As the proposed model in this chapter is
convex, we have considered convex objective functions. We have considered the minimum
5

real power loss, 7‘?}|]i4 and power generation cost, ¢; [Pj’]i as objectives in this article. So,

¢

the objective function f(x}

) is increasing with proportional to the current flow If; The

objectives considered with the proposed branch flow SOCP-OPF model are as follows:

a) Network real power loss minimization:

min{ Yy {rﬂ {13]} (4.13)

Li]' eLe

b) Real power generation cost minimization:

min{ Z alplli} (4.14)

b AP
NPeNy

where ¢; is the generation cost coefficient for the DER at the bus N € N . The decision
variables are the power generation [p;ﬂl- and [qg]i in this chapter. Finally, the proposed

SOCP-OPF model with a convex objective function is as follows:

min Z f(x?) (4.15)

NPeN?

subject to: (4.8)-(4.10) and (4.12); with the following imposed constraints on the control
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variables:

Pl < [p2): < [P

[¢%); < [4%): < [T2)s
9 ! ! (4.16)
ul <uf <ul

¢ 79
lij < U

where [p?]; and [¢¢]; are the real and reactive power generation of the DER at the bus
N? € N?. Voltage limits are defined as, ul = |V and @’ = |V?|2 for the bus N € N°.
¢ .

Current flow limit is defined as ij = |Tf;|2 I

;; 18 the rated current flow limit for the branch

LY € L,
4.2.3  Derivation of the Coupling Coefficient £¢

For a three-phase system, the mutual coupling impact depends on the voltage and current
phase angles. However, in the proposed SOCP-OPF model, the phase angles are relaxed,
and new variables are introduced for convexification. Further, a new coupling coefficient £¢
is introduced to address the effect of the mutual coupling impedance effect. In this section,
the derivation of £? is discussed. A three-phase line with a mutual coupling impedance effect

is illustrated using Fig. The voltage drop between the two ends of the line model in

a Zaa a/
T
Z
b Zpp abi Tzac b/
Z
c Zeo bﬂi l d

Figure 4.1: Three phase network line model.

Fig. can be represented as follows:
Vo =V = Zaalo + Zaplp + Zocle (4.17)

If the square of the currents is considered for an unbalanced network, then I? + I? + I?
= |IL|2£0 + |1,|*£(—240 + o) + [1,]*£(240 + ). For a three-phase network, this can be

re-written as:

lo + lo(—.5 — 867 + A°) + 1,(—.5 + .865 + A°) ~ 0 (4.18)

In (4.18), A’ and \° are for the angle a; and y which are due to the unbalanced nature of
a power distribution networks and the imaginary parts of the 2"* and 3™ terms of (4.18))

cancel out each other. As mentioned before, the phase angle is relaxed and convexified using
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the amplitude of the current |If;

> = l?} and as l;@ > 0, the mutual coupling is adjusted with
the help of the coupling coefficient £? so that, for a-phase I, + £%l, + &¢I, ~ 0. Therefore,

comparing with the coefficients of (4.18):
€°,€"¢] = —05+ X7

A\? stands as A* for the phase-a, A\’ for the phase-b and \¢ for the phase-c of a branch in the
network. The value of A\? changes depending on the unbalanced nature of the network. The
asymmetrical impedance of the low-voltage distribution networks, asymmetrical load, and
single-phase loads result in unbalanced distribution networks. However, in practical systems,

the network characteristics remain as close to a balanced network as possible [108}/109], so

the value of A? is small (i.e., for the IEEE 123-bus network \?=[-0.1,0.1]).
4.2.4  Modeling of the ZIP Load

The proposed model is applicable to a network with ZIP loads as well. A ZIP load is

formulated as follows [110]:

[p3l: [aili O O | |uf [agli 00 | |(u)"? [ag];
ol =1 0 faili O | |ul{+ | 0 [agli O | [(u)*|+ |[ai]i (4.19)
PGl 0 0 afli] |uf 0 0 lasgli| |(u)"? [ag];
[qali il 0 0 | |uf bl 0 0 | [(u)? [b5]:
[ggli| =1 0 Bl O | fulf | 0 [0l O | [(@)*]+ |[B}]; (4.20)
[gg: 0 0 [bfli] |uf 0 0 [Bls| | (u)'? [b5];

where [af],, [a3];, [a3], and [b7],, [b5],, [b3], are scalar parameters for the active and reactive

loads at the bus N € N¢. [af], and [b7],, [a3], and [b5]., [a3], and [b3],, are specified for

the constant impedance (Z), constant current (/) and constant power (P) respectively. The
constant current term in the ZIP load model is non-convex due to the variable uzl 2=,
However, a second-order variable can be convexified for a boundary near unity as follows
[107]:

2’ ~ (z+7T)r — 2T (4.21)

If the voltage constraints for the AC-OPF are [V, V],

wm (V,+V)Vi—V,Vi ieN (4.22)

Law)
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In (4.19) and (4.20)), the non-convex terms can be represented as the following for the con-

vexification with the proposed model.

——
| v |
_ ~ u§+V’-’z§?

()2 = |vP| =~ VQ’TZK*’ (4.23)
c Ly Sye
@)V e

The reason for this conversion is that; it makes the model capable of analyzing the effect of

voltage-dependent loads on the power distribution network.
4.2.5  Modeling of the Regulators

Regulators are essentially considered as tap-changing transformers in the model. The
regulators/transformers in the network are generally used to keep the system voltages within
the allowable range. Usually, distribution regulators have 16 taps up and 16 taps down of the
rated voltage (33 tap positions, including the zero tap position). Each tap adjusts the voltage
by 0.625% [111]. In the proposed model, the square of bus voltage magnitude (|[V¢|*> = u?)
is used, so the regulators and the transformers are modeled as described in this section. For

the transformers/regulators, ratio = [aq, ay, ac], where [V, V2 VAT = [a,Vi*, ap V), a V"

and (2, 20, Z5 )" = (a2 28, ay 2, a2 Z5;, |7 then the ratio can be represented as follows:
aq 1 0.00625
1 1 1
ay| = |1 0.00625 (4.24)
n® n® ne
ae 1 0.00625

where n? is the tap number of the regulator. This article does not consider the mixed integer
OPF, and n? is not a variable. For a branch where regulators and transformers are placed,

the voltage can be represented as follows:

wal el [ emeeemn enemr @ e+ @] [
] = [uta| + |lellos + @) R el | |2
wl ] Lelor @) e0R e (o e | i)
A ] T DN T B I o [ B

—2{ o e | R } o —2{ et | } @
v ey v | (m] 0 e wy gy ||y [a

where [—]. x [—] represents the element-wise multiplication.
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4.3  Exactness and Optimality of the OPF Model

This section discusses the exactness and optimality of the proposed SOCP-OPF model for

multi-phase radial networks.
4.3.1 Exactness

The exactness of SOCP relaxation for single-phase OPF is guaranteed under certain con-
ditions, which are illustrated in [90]| [57,/70]. For single-phase radial power networks, the

power flow relations are as follows:

Sjk = S5j + Z (Sz] — Zijlij)u]' — U = QRG(Z;kS]k) — |ij|2lj]€uj'ljk Z |Sjk|2 (426&)

ii—j
For linear approximation, [l;;,l;x] = 0 is considered in (4.26). In radial networks, for a
solution set s from the linear model, the line flow and the voltage amplitude square are
defined as Sﬁ" and ué.m, respectively. For a power flow direction from bus N; to bus 0 (sub-
station bus) through a unique path P; of the network, it is proved in 90|, that S, < Sj“k”
and u; < ué’m Physically, Sj“k” denotes the power injections through branch Lj;, € P; towards

the bus 0. For checking the tightness, a matrix function is defined as:

A=~ 215 (IS G)1) (127)

=J

where 5 is the maximum capacity of power injection and I, is an identity matrix of size

(2 x 2). Further, [z;;] = [ri; ;)" and [S{(5)]T = [[P(5)]T [Q%(5)]"] with the definition
as, [a;]* = max{0,a;}. For convenience, A and zj are labeled as A; and z; for further
discussion. If S, is a power injection region where voltage upper bounds do not bind

and the objective function f(x) is strictly increasing, then SOCP is exact if the following

conditions hold [90]:

1. If, in the network, for each unique path P; from bus N; to bus 0 have k links as

((ik,ik—1); -, (i1,%0)). Then A; A; A, 2z, >0forall<s<t<k.

1 '_iifl
2. The power injections (s) satisfies u/"(s) < ;.

The condition (1) depends on the network parameters (r;;, i, D;; @;» ¥;), which can be
checked ex-ante the OPF analysis. For the proposed SOCP-OPF model in this article,
the line impedance is addressed in — considering the mutual impedance with the
means of a coupling coefficient €. For all the branches in each phase, the conic constraint
(4.12) is satisfied independently. For multi-phase networks, even with the mutual coupling,
the conditions ka < Sf,;”" and uf < uflm are valid for each phase independently which is

proved in the following sub-section in|4.3.1.1f. When uj”m(s) < E?, SOCP relaxation is exact
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for the proposed model if the following condition satisfies.

e For each phase of the network independently, with each unique path P; from bus V;

to bus 0; A¢A¢ LAS 0 >0foralll1 <s<t<k.

g1 10

This can be checked ex-ante of the SOCP-OPF analysis. The SOCP-OPF is exact if all
branches have a minimum solution gap. The solution gap, defined as o = ]ullf; - (Sf;)Ql is
measured after the OPF analysis. It was observed that the solution gap (o) is very small

from the proposed model (considered as o < 1077).
4.3.1.1  Proof of Exactness

For each unique path (P;) in the radial network for a power flow from bus N; to bus 0 in
phase-a:
]('lk =5+ Z Sa _ jeaja —szablb _ £CZCLCZC>

LYY
1]

For linear approximation, [I¢, lfj, I;] = 0; so for a power injection for the phase-a at bus N¢:

alzn alm
S sj + E Sij

=]

When in practical power networks, self-impedance is higher than mutual impedance 5%, <
S;,;lm(s). In the same way, it can also be shown for the other phases. So in general form, it
is proved as, Sj’k S¢ lm( ). From the proposed OPF model, the voltage drop relationship

between bus N7 and Ny for the phase-a is as follows:
§—uip = 2Re(2555,) — |25 Pl — €N 0n — 1611252 L5,
uj k ik~ 5k Jk

where 2% = [29¢ €025 £°2%]; S =[S, 5%, 54" If the voltage amplitude square at the
bus 0 is uo, then for power flow from bus N? to bus 0 through each unique path P;, the

voltage relation for phase-a is as follows:

u]—uo—ZZRe ka

(4,k)EP;
— 3 (P € + )
(4,k)EP;
(4,k)EP;
a lln

(jk 67)2

:>U _UO <ualzn_ug
a,lin

:>u <u
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In the same way, it can also be shown for the other phases. So in general form it is proved

as; u¢ < u¢ lin

4.3.2  Optimality

The objective function f(z; ) for the proposed OPF model is convex and increasing with
the current flow ’If;’. Let us consider an optimal solution set from the proposed SOCP-
OPF model as, ¢ = (Sf;,l?;,ﬂ s¢), where a branch Lf} € L£? has strict inequality such

that u?lf; (ﬁ,‘?)2 + (Q) . Further, let us assume there exists another feasible solution

— (G [P b 2 P 7P bGP _ QP _ _ped P P _ =0 [50]. — [39].
set as ¢ = (55, b, 0, 59), where [i; = If; — €, 57 = S5 — €°€%255, a7 = a7, [87)i = [55);,
5% = [39): + e¢£¢zij and [59]; = [39]; for a €? > 0. As Z;’; = lld; — ¢? has a strict smaller
value, then the OPF objective value f (7,@) is smaller than the objective value as f(¢). This
contradicts the optimality of the solution set zﬂ Thus to prove that the solution z/; is a

globally optimal solution, it is sufficient to show €? = 0. The following remarks illustrate the

optimality of the proposed SOCP-OPF model.

Remark. An optimal point of solution will be within the convex space if the solution satisfies

“-8)-{4-10). (4-19) and (4.16).

Proof. As, 1; is an optimal solution from the proposed SOCP-OPF model, so it satisfies

(4.8)-(4.10), (*.12) and (4.16). For analyzing (4.8)-(4.9) together, the power flow equation

with the apparent power generation s? and apparent power flow SZ are considered here for

the bus Nf’ € N? and N J‘b e N?. I, zﬂ is a solution within the solution space, zﬁ also satisfies

-, and . For the solution set @/A) at the bus Nf5 € N?:

52 = [89): — [89); = [8%): — [5%): — €967

7 g g

- ZS’Z - Z (S — €2201) + via? — E%%Z
Jii—g k:k—1

= > SLA S = > (Sh— €l +yltal - e
iy g k:k—1

- Z S?;' - Z (Spi = £2200%) + via
Jii—7g k:k—i

At the bus N7 € N2,

57 = (530 — 153 = 135 — [52ls

= 2 S 2 (S5 = €0G0) + i
k:j—k i1i—]

= D 8= D (Sh - €0ulh) sl — (S5 + €€02h) — €005 + )]
k:j—k il =50 i

- 3 8- (S el

k:j—k 10— ]
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So, for both nodes Nf’ eN? & Nf e N?, @/A) satisfies 1.1} For 1[), 4.10|) is checked for

the branch L;; € L? as follows:

;¢ = 4, = 26°(r Py + 25,05) + [(r)” + (25)1€° 1T

1= i ij

= ;" = 10;" — 2600 (P + €60r8) + 2l (QF + €2€%xl)] + [(rf)? + (wfj)2]lf¢l(5?}- +¢€)
= 10y = ;0 — 26°(rL P+ 2LQ%) + (D) + (a3)?)|€°If,

— 260 [(r%) 4 ()] + €21 [(r0)? + ()7

]

In the proposed model, it is derived that &2 = —0.5 & |A|. Hence, —2¢%¢%[(r%)2 + (27)2] +

ij ij

|£¢|e¢[(r?}-)2 + (:l:z)g] ~ 0. So, 9 satisfies (4.10) for the link L;; € £, as follows:

¢ =af =20 Py + Q%) + ()2 + (x5)21e?IG

1= i ]

As, ¢ is within the conic convex space then from 1)

~0 7 LAY
= 4,217 + ) — (Sf + €225¢%)? > 0

= 0, °10 — (S)? + €?[af — (€9)%(2)%e® — 250¢%20] > 0

elal — (¢ ¢)2(ZZ-)2E¢ — 2§3§ ¢zf;] is negligible when the relaxation is exact for a power network.

]

Remark. If e =0, then z/; = zﬁ, so mo other solution set exists within the solution space for

which the objective function value is smaller than f(v). The solution 12 from the proposed

OPF model s globally optimal.

Proof. In this article, the objective function f (xf) is convex for the proposed SOCP-OPF
<

model. For the two minima at ¢ and ¥, f(¢)) < f(4). From the definition of convexity:

F(hab + (1 = h)) < hf (D) + (1 — h) f() (4.28)

where h € [0,1]. As hf(¢)) < hf(¢)); then,

hf(d) + (L= h)f() < hf(d) + (1= h)f(&) = hf(d) + (1 — k) f(d) < f(¥)

Using (4.29) to the definition of the convexity in (4.28)):

Flhab + (1= h)d) < f() (4.29)

Since f(1) is the optimal point from the proposed OPF model, so for any other solution



4.3. EXACTNESS AND OPTIMALITY OF THE OPF MODEL 46
within the space is f(¢)) > f(¢)). Which contradicts with (4.29)). To satisfy both conditions
it must be 1% = 1&, thus € = 0. So, the solution from the proposed model is a globally

optimal solution for convex objectives. 0

Start
Initialize, \? =0 & AN
v
_,E Run the SOCP-OPF for (15) )

v

Determine the solution gap

(o512 + (052 + — — — — +[oTn)?
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Figure 4.2: Flow chart of the proposed SOCP-OPF algorithm. The 'n’ indicates the iteration number.

Table 4.1: A\? swipe and % of network loss in the IEEE 123-bus (with 20% DERs) network

Optimal Optimal % of Network

No. A b A€ Loss
Point of Operation-1 -0.1 0.05 0.05 2.6830
Point of Operation-2 0.0 0 0 2.6171
Point of Operation-3 0.1 0.045 0.055 2.5808

4.3.3  Inclusion of \? in the Proposed OPF Model

The proposed SOCP-OPF model solves unbalanced distribution networks for an optimal
point of operation with conic relaxation. Inclusion of A\? and the minimization of solution
gap o = |uzlf; - (SZ)2| is illustrated in Fig. The determination of the A\? depends on the
o? and requires multiple iterations based on the unbalanced nature of the network. af’e s and
the increment step size of AX? are defined at the optimization’s beginning. After solving
the optimization for , the average of solution gap o is determined and checked with

the o?

res for determining the optimal value of M (ie., A2\ & X¢) for the network. Among

the iteration steps (n) few points of operation (i.e.,A* = —0.1, \*» = 0.0, A* = 0.1) are shown



4.3. EXACTNESS AND OPTIMALITY OF THE OPF MODEL 47

A%=-0.1

% of Loss

2.7

2.6
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% of Loss
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0 0.1

AC Ab

Figure 4.3: Tllustration of the A\? swipe for the IEEE 123-bus network (with 20% DERs).

—Aa=-0.1 —Aa=0.0 Aa=0.1 No Coupling (NC)
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Figure 4.4: Tllustration of the solution gap (o) with the A? sweep for the IEEE 123-bus network (with 20%
DERs). (a), (b) & (c) considering coupling coefficient (£#) and (d), (e) & (f) with no coupling impact.

in Fig. for the IEEE 123-bus network (with DERs), how the point of OPF varies with
the value of \?. Fig. shows the impact of A’, A and A\® on the solution gap (o). If the
coupling impact is not considered, the solution gap is higher. The desired values of the \?
are determined when the value of the objective function is minimum. With the change of

A\?. three operation points are represented in Table as an example, and the desired values
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are \* = 0.1, \? = 0.045, and \® = 0.055. The proposed model is implemented on different

practical IEEE networks for analysis, and the results are discussed in the next section.

4.4  Simulation and Evaluation

The proposed SOCP-OPF model is simulated in Matlab with the MOSEK solver with a
machine configuring an Intel(R) Core(TM) i7-10510U CPU @ 2.30 GHz processor, 16 GB
RAM. It is observed that the model can handle high penetration of DERs and solve large
distribution network systems for the optimal point of operation. When the OPF model is
implemented for base case networks, it only considers the mutual coupling effect between
lines. The model also considers unbalanced DERs (shown in Table for the IEEE 123-
bus network). So, when the DERs supply an unbalanced current to the lines, the mutual
coupling effect is considered for determining the coupling coefficient due to this unbalanced
current. The chapter also showcases the effectiveness of the proposed model under such
conditions. In short, the model can address the multi-phase network’s coupling effect with
and without considering DERs. The analysis and the observations are discussed in the

following subsections.

44.1 Case 1 (IEEE 123-Bus Network Test System)

First, the model is tested on the IEEE 123-bus distribution network. The bus renumbering
of the 123-bus network in this article is illustrated in Fig. [£.5 The physical transformers
between the nodes (76—77) and the regulators between the nodes (1—2), (23—24), (109—114)
and (123 — 124) are modeled as described in section II(E) of this article. The behavior of
closed switches is regularized using a short-line model with negligible impedance (/= .0001 +
7.0001pu). The voltage limits [V, V] are [0.9,1.1] for the OPF simulations. The proposed
model is relaxed with a second-order cone inequality , the solution gap, defined earlier
as o = |ullz - (SZ)2| for each branch and used the 2nd order norm as shown in the flowchart
in Fig. for the simulation.

The results from the proposed SOCP-OPF model are verified with the solution from a
Non-Linear Programming (NLP) based on a fixed point iteration method. Besides that, the
performance of the proposed SOCP-OPF model is compared with a) convex SDP-OPF b)
linear OPF (considering (4.8)-(4.10] excluding the terms associated with /;;) and, ¢) a SOCP-
OPF model without considering the coupling impact. For the base case of the IEEE 123-bus
network, the results are optimal and very close to the solution compared to the NLP-OPF
and SDP-OPF models. Also, as the proposed model considers the mutual coupling for multi-
phase lines, the solution gap is very negligible comparing the loading condition (constant
power and ZIP loads) of the 123-bus network.

Besides the base case, the proposed SOCP-OPF model also considers the high penetration
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Table 4.2: Position and capacity of the DERs (20%) on the IEEE 123-bus network system

49

Bus p¢  pb 1 @ @ @
No. (kw) (kw) (kw) (kvar) (kvar) (kvar)
14  0~40 - - -20~20 - -
19 - 0~40 - - -10~10 -
20 - 0~40 - - -10~10 -
25  0~20 - - -10~10 - -
30 - - 0~40 - - -20~20
33 105 70 70 -70~70 -40~40 -40~40
34 - - 0~40 - - -20~20
61 - - 0~40 - - -20~20
64 0~40 - - -20~20 - -
72 - - 0~40 - - -20~20
97 0~35 0~35 0~35 -20~20 -20~20 -20~20
110 0~40 - - -20~20 - -
117 - - 0~20 - - -10~10
119 - - 0~40 - - -20~20

of DERs in a distribution network. The model has also been tested on the IEEE 123-bus
network with penetration of DERs (20% of the total connected loads). The DERs can supply
the real power and supply or absorb reactive power in the network upon requirements based
on the objective function. The DERs’ placement in the network and the capacity of the DERs

are illustrated in Table [£.2]  The negative limit expresses the reactive power absorption

111 112 113 66 65 67 68 69
64
® 63
61 62
116 115 114 60
57 58 59
56
55
104 103 73 71 72 73 74
126 124 78 >4
7 21 20 19 3272 23 24 25 26 27 28
125 %
123
) 4 750 -®77| 30 31 32
3 9 10 |12 29
o
- 34 35 36
2 1 13 14 15 16 17 18 33
5 119 53 51 49 47 45 40 37
cg /8
121 120 122 52 50 48 46 44 43 39 38 41 42

Figure 4.5: Adapted IEEE 123-bus network with the renumbered buses.

capacity of the DERs. Fig. compares the three-phase voltage profile from the proposed
SOCP model (when, \* = 0.1, \’ = 0.045, and A\° = 0.055) with the NLP-OPF solution as
well as with a convex SDP-OPF, linear OPF, and existing SOCP-OPF models, while DERs
are connected in the network. The comparison of the generation of the proposed OPF model
with other models is illustrated in Table. [£.3]

As the linear OPF model ignores the network loss, the generation results are not considered

in this table. When the coupling coefficient is considered, the solution results are more
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analogous to the benchmark models (i.e., NLP, SDP). The objective value is measured at the
points (i.e., A\, = —0.1, A\, = 0.0, A\, = 0.1) of operation concerning A and is demonstrated
in Fig. 4.3 The solution gap for three points of A? is shown in Fig. 4.4l The solution gap
is minimum at the operational point for A* = 0.1, \> = 0.045, and \° = 0.055. The primal
and dual error convergence for the 123-bus network system from the proposed OPF model is
illustrated in Fig. [£.9) From the analysis, for the 123-bus network, the SOCP-OPF is tight,
and the solution from the model is globally optimal. Also, it proves the model’s capacity to

handle the unbalanced behavior of a network with high penetration of DERs.
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Figure 4.6: Three-phase voltage profile for the IEEE 123-bus network with 20% DERs and considering ZIP
loads. Legend 'SOCP’ is for the proposed OPF model and ’SOCP(NC)’ for the SOCP-OPF with no coupling
coefficient.

4.4.2  Case 2 (650-Bus & 2500-Bus Network Test Systems)

The proposed SOCP-OPF model is tested with more extensive networks to check the
scalability. The 650-bus and 2500-bus network systems are derived from the IEEE 8500-
bus network. The 2500-bus network is the medium voltage (MV) version of the 8500-bus
network system. All the low voltage lines and nodes are aggregated to the respective MV
nodes. The 650-bus system is the 3-phase version of the 8500-bus network system. All the
single-phase MV nodes from the 2500-bus system are aggregated to the closest 3-phase nodes.
The proposed SOCP-OPF is compared with NLP-OPF, SDP-OPF, linear OPF, and existing
SOCP-OPF solutions. For the OPF analysis, the limit for the [V, V] is [0.9, 1.1]. However,
it is observed that within these limits, the SOCP-OPF without the coupling is infeasible

for the 650-bus network. Similarly, the linear and SOCP models without considering the
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Figure 4.7: Three phase voltage profile for the 650-bus network.

coupling (these are state-of-the-art), are infeasible for the 2500-bus network. The three-
phase voltage profile for the 650-bus and IEEE 2500-bus networks are shown in Fig. and
Fig. respectively. Fig. illustrates the primal and dual error convergence for different
distribution network systems from the proposed SOCP-OPF model.

Finally, the SOCP-OPF solution convergence time is compared with the existing OPF
models. The convergence time comparison among different OPF models and the voltage
mismatch between the solution from the proposed SOCP-OPF model and the NLP-OPF
solution for different power distribution network systems are illustrated in Table £.4. The
solution convergence speed of the proposed SOCP-OPF model is considerably high, and the
voltage mismatch in different radial-type distribution networks is minimal and within the
standard operation limit.

Table 4.4: Convergence time and voltage mismatch comparison

SOCP vs NLP
Voltage Mismatch (%)
Phase Phase Phase

b C

13-bus 0.38 1.29 047 0.19 .0480 .0486  .0727
123-bus  0.41 1.59 055 0.28 0271 .0198  .0050
650-bus  0.59 6.17 247 0.32 0302 .0116 .0261
2500-bus  1.49 48.2 - - .0240  .0020 .0001

Network Convergence Time (Sec)

SOCP NLP SDP Linear
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Figure 4.8: Three phase voltage profile for the IEEE 2500-bus network.
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Figure 4.9: Primal and Dual error vs iteration number for different networks.

4.5  Summary

This chapter proposes a SOCP-OPF model for unbalanced multi-phase power distribution
networks. The model relaxes the voltage and current phase angles and introduces a coupling
coefficient. The mutual coupling coefficients address the mutual coupling impedance impact
on a multi-phase network due to the phase angles. The improvement in the proposed model’s
tightness with the mutual coupling coefficient is evaluated. The model is simulated for
different loading conditions and high DERs penetration for multiple unbalanced multi-phase
networks. It has been proven that the OPF model is exact, and the solution is globally
optimal. Also, the proposed model is feasible for large networks and computationally fast.
For future research, the tightness of the multi-phase SOCP-OPF model will be analyzed more
extensively. Further, the OPF model can be extended to mixed-integer (MI) and receding

horizon control (RHC) SOCP-OPF analysis for multi-phase power distribution networks.



CHAPTER 5: A SECOND-ORDER CONE PROGRAMMING (SOCP) BASED
OPTIMAL POWER FLOW (OPF) MODEL WITH CYCLIC CONSTRAINTS FOR
POWER TRANSMISSION SYSTEMS

5.1  Introduction and Contribution

Optimal Power Flow (OPF) analysis is one of the salient tools in power system planning
and operation for particular objectives (e.g., generation costs, power losses) by maintaining
the bus voltages and branch flows within the operational limits |[112H115]. OPF analysis is
typically formulated using AC power flow equations considering multiple operational con-
straints, referred to as AC-OPF. Due to the non-convexity of power flow equations and
network constraints, the AC-OPF problem originally is non-deterministic polynomial (NP)-
hard |13}/14]. Moreover, the non-convexity in AC-OPF formulation leads to computational
intractability, particularly for large power networks; thus, a globally optimal solution may
not be guaranteed [18,|114]. Conventionally, linear approximations of power flow equations
are commonly used to overcome the computational challenges of the non-convex AC-OPF
formulations. However, approximation of linear formulations like DC-OPF [20,21] compro-
mise the solution accuracy. Thus, the solutions from such formulations may not be optimal.

On the contrary, the convex relaxations of AC-OPF problems are conditionally exact
(hence, AC-feasible) and computationally efficient [22|. Due to the ability to find global op-
tima, the convex AC-OPF formulations have been extensively used in various power system
optimization applications [23),24,116|. Additionally, the convex envelopes have been a promis-
ing approach for the non-linear terms in OPF analysis [117]. However, it was noted that the
accuracy of the convex relaxations depends on the tightness of these convex envelopes [118].
A robust convex restriction to solve robust OPF problems is introduced in [119]. To this end,
sufficient conditions for the exactness of the relaxations are illustrated in [56,[57]. Among the
variants of convex OPF formulations, the second-order cone programming (SOCP) |22], and
semi-definite programming (SDP) [5] based models are used commonly for OPF problems.
SOCP-based load flow formulation was first proposed for radial distribution networks in [22],
and a conic quadratic model was proposed in [120] for meshed networks. For the SOCP-OPF
model, the angle and conic relaxations are exact in radial networks with no upper bounds
on loads.

In the mesh networks, angle relaxation of AC-OPF can be inexact as the cyclic constraints
are not satisfied (i.e., the sum of voltage angle difference around any loop should be zero) [74].

The conditions for the angle recovery for the SOCP-OPF model are discussed in 68} 69].
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Three methods are proposed in |74] for enhancing the original SOCP-OPF model for mesh
networks that ensure the cyclic constraints for the mesh networks. However, the model suf-
fers computational challenges for large meshed networks. In [121], instead of considering the
cyclic constraints directly for the meshed networks, an alternative SOCP-OPF model using
difference-of-convex programming (DCP) is used, which requires convex-concave procedure
(CCP) based iterations. A SOCP-OPF model is proposed with relaxation by generating new
cutting planes using SDP relaxation in [122|. Though the SDP cuts effectively exclude infea-
sible solutions and enhance the SOCP relaxation of OPF, they add computational burden
on the solution process. Reference [123| proposes relaxation of the cyclic constraints, where
a higher-order moment relaxation matrix for each maximal clique is formed to satisfy the
cyclic constraints. In conclusion, the existing SOCP-OPF models face challenges with the
cyclic constraints for tight and scalable OPF methods for the meshed networks.

On the other hand, SDP formulation retains the angle information and can find an exact
solution of OPF analysis for meshed networks with certain conditions and limitations [3]/124].
So, SDP relaxations are theoretically more robust [122] compared to SOCP relaxations for
meshed transmission networks. However, the matrix size grows as the square of the number
of buses in SDP leads to a high computational need for large networks [104]. In addition,
SDP formulations find a physically meaningful OPF solution if the line-flow limits are not
binding [125]. However, SOCP relaxation-based OPF models are computationally efficient
for large networks [117].

From the above discussion, the SOCP is computationally efficient but suffers from angle
relaxation for meshed power networks due to the cyclic angle constraints. This motivates our
proposed work to consider cyclic constraints directly in the SOCP AC-OPF formulation to
obtain exact OPF solutions for meshed networks. With this premise, this chapter proposes a
convex envelope to retrieve and include the bus voltage angle difference across the branches
that satisfies the cyclic constraints in any mesh cycle in the power network. Additionally,
the branches that do not belong to any mesh follow the radial network approach as [106,126|
to determine the bus voltage phase difference for a tighter envelope. The bus voltage phase
angle difference is recovered after the optimization if a wide envelope is considered. In the
proposed approach, the voltage and current phase angles are first relaxed for converting the
non-convex power flow equations into convex form. Then, a quadratic equation is relaxed as
a second-order conic inequality constraint. Finally, a convex envelope is derived for the bus

voltage angle difference, adhering to the cyclic constraints in the network.
5.1.1  Major Contributions

The main contributions of the proposed model are as follows:

e A convex envelope is proposed to retrieve the bus voltage angle difference for all the
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branches in a power network. The envelope is determined based on the optimal power
flow and the voltage limits. With the proposed OPF model, the bus voltage angle

difference remains within the envelope and satisfies the mesh cyclic constraints.

e A theoretical framework, including the mathematical proof is developed for the relax-

ation of meshed power networks with the angle cyclic constraints.

e The approach also proposes a graph theory-based model for extracting the mesh cycles
from a power network. The mesh cycles are determined from a network ex-ante of
the SOCP-OPF analysis. Thus, the cycle information is a parameter for the proposed
SOCP-OPF model.

The chapter is organized as follows. Section 5.2 discusses the proposed methodology, in-
cluding the mathematical modeling in the relaxation framework and the graph theory-based
cycle extraction method. The impacts of line flow limits on the SDP and SOCP-OPF models
are illustrated in Section 5.3. Section 5.4 analyzes the exactness and global optimality of the
proposed model. Section 5.5 discusses the model implementation and result evaluation, and

Section 5.6 concludes the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N:  Set of all the buses in the network

N,: Set of all the buses with generators in the network

L: Set of all the branches in the network

6 maximum limits of the variables and parameters

():  minimum limits of the variables and parameters

Vi Voltage at the bus i € N

u;:  Magnitude square of the voltage at the bus i € A/

S?: Apparent power at the bus i € N

Sd: Apparent power demand at the bus i € N/

P?: Real power injection at the bus i € N,

P2 Real power demand at the bus i € N/

Reactive power injection at the bus i € N

Reactive power demand at the bus i € N/

P,;: Real power flow through the branch L;; € £ connecting the bus (i,7) € N/
Qij:  Reactive power flow through the branch L;; € £ connecting the bus (i, j) € N
Sij: Apparent power flow through the branch L;; € £ connecting the bus (i, j) € N
I;;:  Current flow through a branch L;; € £ connecting the bus (i,j) € N

l;;:  Magnitude square of the current flow through a branch L;; € £

6,;:  Bus voltage angle difference between the bus (i, j) € N

zi;:  Impedance of the branch L;; € £ connecting the bus (i, j) € N

Gij:  Real part of the off-diagonal components of the admittance matrix (Y)

B,j:  Imaginary part of the off-diagonal components of the admittance matrix (Y)
s, ¢ & cf: Cost coefficients for the generator at bus i € N

5.2 Proposed Methodology

It is well known that power transmission networks are generally in meshed orientation.
Thus for generic model development, a small section of a meshed transmission network is
considered as represented in the schematic diagram in Fig. [5.1] In this chapter, 'L’ is
considered as the set of all branches, and N is the set of all network buses. Further, ¢ and
J € N denote the bus index, and L;; € £ denotes the branch connecting the bus i € N and
bus j € N.

Figure 5.1: Schematic diagram of a simple meshed network.

5.2.1  Branch Flow Model (BFM) in Power System

Considering the above notations, the power flow relation through a branch L;; € £ and

voltage relations between the bus i € N and bus j € N can be represented as follows:

Sy = Vil (5.1)
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— 5.2

v=Vi-
where z;; is the impedance of the branch L;; € £. S;; and I;; represent the apparent power
and current flow from bus i € N to bus j € N through the branch L;; € L, respectively.

The power balance equation at the bus j € N is as follows:
S =8¢ =" Si— Y (Siy — 2islyl*) + i [ViI? (5.3)
kij—k iri—j
where y; = g;+ jb; is the half lump shunt admittance equivalent of the line at the bus j € N.
Let Y denotes the admittance matrix of a power network, which has off-diagonal components
as Y;; = G; + jB;; for each branch L;; € £ of the network. The real and reactive power flow

through a branch L;; € £ between two buses ¢ € N and j € N can be represented as:

Pij = —Gij‘/f + G”V;‘/j cos(@l-j) + BZJV;V; sin(@ij) (54)

Qij = By;V;? = ByViVj cos(byy) + Gi;ViV; sin(6;5) (5.5)

where 6,; = 0; — 0;; 0; and 60; are the bus voltage phase angle at the bus ¢ and j € N
respectively. Further, from (5.4]) and (5.5)):

BijPij + Gi;Qij

ViVjsinb;; = 2 2

(5.6)

Eqn. (5.6) shows the dependency of the bus voltage angle difference on the power flow

through a branch in the network.
5.2.2  Relaxations and Inclusion of the Cyclic Constraints
5.2.2.1  Angle Relaxation

In the proposed convex model, to convexify (5.1)-(5.3]), the phase angle of the voltage and
the current are relaxed as, I;; = |[;;| and V; = |V;|. New variables have been introduced as

|I;;|* = lij; |Vi]* = w; and |V}]? = u;. The equation in (5.1)) is converted as follows:

Considering the magnitude squared in (5.2]), the voltage relationship between the bus i € N/

& bus j € N is as follows:

Vil? = [Vil? + 24 ° |15 ° — (23,5 + 25;535) (5.8)
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With the new variable as |I;;|* = l;;; |Vi|*> = u; and |V}]|* = u; for the squared terms and

with further simplification in ((5.8)):
uj = u; — 2(ri; Py + 255 Qij) + (ri; + )l (5.9)

With the angle relaxation and new-defined variables, the apparent power balance relationship

from (5.3)) at the bus j is:

- st = 3 S 37 (Sy — 2l + sy (5.10)

k:j—k 1:i—]

Splitting the ((5.10]) in terms of real and reactive power, the power balance at bus j € N is

as follows:
Pjg - de = Z Pix — Z (Pij — riili;) + g5, (5.11)
k:j—k 11— ]
Q1= Q1= Qi — > _(Qij — wijlyj) + bju, (5.12)
k:j—k :i—]

where z;; = 1;; + jx;;; ri; and x;; are the resistance and reactance of the line L;; € £
respectively. Sy = Pij + jQij, y; = g; + jbj, S = P/ + jQ, and S]C-l = de +jQ;l.
5.2.2.2  Conic Relaxation

For each of the branches in the network, the OPF model is still non-convex due to the

quadratic equation in (5.7)) as:

S2 P2+ Q2
lij = u—” =l = —4—+~ U'Q” (5.13)

With the conic-relaxation, the non-convex solution space is enclosed within a feasible conic

convex space [107]. For the proposed model, further convexification is done by conic relax-

ation in (5.13)) with a conic inequality as follows in ((5.14)):

2P,

ij

U; — lij

Fig. [5.2(a) represents the conic space for the OPF solution. The solution gap is minimum if
the OPF solution is on the surface and the solution gap increases if it moves away from the
surface, as demonstrated in Figl5.3] The difference between solution points A and B is the

solution gap of the SOCP-OPF analysis.
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Figure 5.2: (a) Representation of the conic space; (b) the envelope for 6;;, where U-E indicates the upper
level and L-E indicates the lower level of the envelope.
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Figure 5.3: Feasible zone: NLP vs. SOCP. The feasible space for the NLP lies at the boundary of the
Pfj + Q?j = u;l;; curve, while the feasible space for the SOCP is the shaded area right of the curve. Solution
gap, o = |B — Al.

5.2.2.3  Cyclic Constraints

It is stated in the earlier discussion that for an exact SOCP-OPF analysis, cyclic con-

straints are needed to be satisfied for meshed networks as shown below:

> Ot F0,=0 (5.15)

(,4,...x)EC
where suffixes i, j, and x are the buses engaged with a particular mesh cycle (C) in a power
network. In the proposed OPF model, the bus voltage angle difference is retrieved based on
, and the cyclic constraints in are satisfied within the convex solution space. For
this purpose, is relaxed within an envelope comprising and as boundary

conditions.

M oy on
ViV ;cos 5+ 2 2
M o o
Hl-j =~ + tan - _ Y (517)

———
V.V, cos - 2 2
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where M = V;V;sin(6;;) = %ﬁ;ﬁ@” A visual representation of the proposed envelope
ij i
is illustrated in Fig. |5.2 (b), and the derivation of the envelope is shown in the following

sub-section [£.2.3
5.2.3  Derivation of the Envelope for the 6;;:

The following convex envelope in ([5.18))-(5.19) encloses the sine function in a polyhedral

set as follows [107]:

gm gm om
sin6;; < cos (—2)(0;; — =) + sin (-2) (5.18)
2 2 2
gm gm om
sin 6;; > cos (%)(QU + %) — sin (%) (5.19)

where 07 = max[|0y],6;;1].

Power transmission system networks are commonly in mesh orientation. For transmission
networks, as the bus voltage (p.u) maximum and minimum limits are near unity and usually,
the voltage (p.u) maximum and minimum limit of [V, V] = [0.9,1.1]. If, V;V;sin6;; = M,

then within the voltage limit, the sin 6;; function is relaxed as, sin6;; > VLV and sin §;; <
iV

M )
v Then from (|5.18|):

M o™ o™ o
7 < 29y (0, — 24 Zij.
VZ j_COS(Q)( J 2)+Sln<2)

or M or

:>0,~]——jZ__ gm tan —~

2 ViV jcos - 2
M oy on
J 02.. 2 2
ViV jcos 4+
From ([5.19):
M or m om
v 2 o5+ 5 s ()
or M or
= 0, ) < — +tan —%
2 KZ-K]- oS 2
M e o
=0; < ————— +tan =+ — 2L (5.21)
J 07 2 2
Kizj cos

where M = V;V;sin(0;;) = (BigPy=GyQuj)
J ( J) (G3,+B3)
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5.2.4  Convexity of the Proposed Envelope

The envelope in (5.20) and ([5.21)) are represented as follows:

[1(P,Q) = a(By; Py — Gi;Qi5) + b1

J2(P,Q) = a(By; Py — Gi;Qi5) + 2

pm om om om .
where @« = —1—; 3 = —tan - + <t and B, = tan 3 — 5. f(P,Q) can be split
J

2
ViV cos 5+

into two first-order functions as, f(P,Q) = f(P) + f(Q). From the definition, a first-order
equation can be considered as convex. In this article the envelope formed by f(P, Q) is used
for the relaxation of 6;; from (5.6) as, f1(P,Q) < 0;; < fo(P, Q).

5.2.5  Proposed SOCP-OPF Architecture

The primary goal of an OPF analysis is to provide a supply-demand balance based on
an objective while satisfying the imposed network constraints. The proposed OPF model
can be applied with different objective functions f(x), such as network loss minimization,
generation cost minimization, bus voltage regulation, or a combination of these. We have
considered only convex objective functions for the proposed SOCP-OPF model in this article.
The following objective functions are analyzed with the proposed OPF model.

a) Network power loss minimization:

man Z Tz'j|Iij|2 = min Z Tijlij (522)

Lijeﬁ Lijeﬁ

b) Real power generation cost minimization:
min Y [h(P?)’ + ¢ P! + ] (5.23)

where ¢ ($/MWh?), ¢{($/MWh) and c¢{($/h) represent the quadratic cost coefficients of the
generator at the bus i € N,. For considering the cost function as a convex equation ¢ > 0.

Finally, the proposed SOCP-OPF model with a convex objective function is as follows:
min Z f(z;) (5.24)

Subject to: (5.9), (5.11), (5.12)) and (5.14)- (5.17)); along with the following imposed con-
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straints on the control variables:

P <P <P

Q< Q! <Q
- (5.25)

IA
~I

i iJ

IN

u; < up < Uy

\

where P? and @7 are the real and reactive power generation of the generator at the bus

i € N,. Voltage limits are defined as, u; = |V,;|> and @; = |V|? for the bus i € N'. Current

flow limit is defined as Zij = \TijIQ. 71-]- is the rated current flow limit for the branch L;; € L.
5.2.6  Graph Theory-Based Mesh Cycle Extraction

The proposed OPF analysis process starts with determining all the mesh cycles in a
network. A graph theory-based methodology is proposed to find all the mesh cycles. The
mesh cycles are determined from a network ex-ante of the SOCP-OPF analysis. The bus
voltage angle difference between the buses is determined within the envelope defined by
& , which satisfies the cyclic angle constraints in the network with the imposed
. An Adjacency matrix (A) is generated for the network branches to find the cycles.
If the bus number in a network is "N,", then the size of the Adjacency matrix is (N, x Np).
Graph vertices label the rows and columns of the matrix. If bus i € N and bus j €
N are adjacent connected, then in position (,5) of A is 1 otherwise 0. Then with the
interconnected branches, mesh cycles are traced. The shortest mesh cycle is considered for
the model if a branch engages with multiple mesh cycles. The shortest mesh cycle has the
least number of edges and buses engaged with the mesh. For example as shown in Fig. [5.6]
the branch Lis is engaged with multiple mesh cycles as MCi(1,2,5,1), MCy(1,2,4,5,1)
and MCs5(1,2,3,4,5,1). However, the mesh cycle M is considered the shortest for the
branch Lis. If a branch L;; is already within a previous mesh cycle, then it does not need
to find for another cycle. This approach is continued until all branches’ mesh cycles are
determined. If a network branch is not engaged with any mesh cycles, then that is listed
as a dangling branch. The algorithm for the cycle extraction is illustrated in Algorithm 2]
Worth to note that, in the meshed branches, power transmission networks usually have a few
dangling branches forming a radial-type network part. For those radial type branches, the
phase angle difference depends on the width of the envelopes derived in and . If
a tight envelope is considered with a smaller ;7 (i.e., 10° — 20°), the phase angle difference
(0:7) is retrieved during the OPF execution. However, if a broader range of 0]} is considered
for the envelope, 6;; is recovered after the optimization process from . Algorithm [2| is

also used to determine the radial-type dangling branches of the network. The execution
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Algorithm 2 Network Mesh Cycle Extraction
-Determine the total bus number N, and branch number Ny in the power network.
-Get data input for "from bus (f;)" and "to bus (¢)", {fs, t»} € N and form the Adjacency
matrix (A) of size (N, X Ny).
-Define a matrix A for the vertices engaged with mesh cycles in the network.
-Define a matrix B for the vertices of the dangling branches.
forn=1: N, do
if branch L;;(n) is not already in matriz "A" or "B" then
-Trace for the inter-connected branches from the branch L;;(n) for any mesh cycles
(C) engaged with L;;(n).
if branch L;;(n) is in 'k number of mesh cycles: then
Find the total number of buses in each mesh cycle from Cy.
Find the shortest path mesh cycle Ci"*r*¢s* engaged with the branch L;;(n) from
Cy.
Find the total bus no. N/ in the shortest mesh cycle Cg"**".
for m=1 to Ni’?es}‘ do
Find all of the bus indexes 4, j..z of the mesh cycle Ci""*s and store them in
the matrix A.
end
nd
Ise if branch L;j(n) is not in a mesh then
Store the bus indexes i & j engaged with the dangling branch L;; in the matrix

B.
end

O

end

end

-The matrix A returns the cycles, and the matrix B returns the radial branches of the
network.

-Here, Cjhortest is the shortest mesh cycle among the mesh cycles Cj for branch L;; with
minimum edges.

time of Algorithm [2] for different test cases is shown in Table 5.7} Information regarding the
cycles is included as a parameter in the proposed SOCP-OPF model after completing the

mesh cycle extracting process before the optimization begins.
5.3 Line Flow Limits and Bi-directional Flow
5.3.1  Impact of Line Flow Limits

This section discusses the impact of the line flow limits on the SDP-OPF models compared
to the proposed SOCP-OPF model. The SDP-OPF models fail to determine a feasible and
physically meaningful solution for a tighter line-flow limit |3,/125]. To evaluate the impact

of line flow limits on SDP, consider the power flow representation as follows:

Pz'g - Pid = Z Re{(W;; — VVU)%*]} (5.26)
(i,)EN
QI —Qf = > Im{(Wi — W)y} (5.27)

(i,5)EN
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where W;; = V;V;* and W;; = V;V;* Vi and V; are the bus voltage at the bus ¢ € N and bus

j € N respectively. The inequality constraints are defined as follows:

P! <P <P

Q< <Q] (5.28)

2

i

VI<Wu <V

For a branch L;; € £ connecting the buses i € N and j € N, the line constraints can be

imposed in a convex form as:
1S3 = |(Wai = Wig)yi| < S (5.29)

Splitting (5.29) in terms of real and reactive flow, the power flow relation can be represented

as follows:

|P;| = |Real[|(Wy; — W)yl < Py (5.30)

|Qis| = magl| (Wi — Wiyl < Qs (5.31)

where W € H" is a semidefinite Hermitian matrix. The SDP-OPF formulation is tight and

the solution is feasible optimal if W > 0 and rank{W} = 1.

Remark. If narrow band line flow limits are imposed on , then the SDP-OPF solver

computationally fails or leads to an incorrect solution.

Proof. From ({5.29) it can be written as, [(W;; — Wiyl < Sy = |(ViVir = ViV sl < Sy
If i € N and j € N are two adjacent buses connected with a line L;; € L; V; = V},,Z6;

Vi = (Vin + AV)Z(0 + Af) and y;; = —L—, then

V2 — (V2 +V,,AV)/ — AfYyr| < Sij (5.32)

If the SDP OPF is characterized with a voltage range [1 — &, 1 + ¢], where £ is small, then
—2¢ < AV < 2¢. Thus V,,AV = 0 or negligible = (V2 —V2/ — A)ys;| < Sij.
This means |V,2(1 — 1£ — Af)|y;;|£5;;] < Sij. Then in terms of real power, it can be shown

that:

‘Vri’yij’{COS 51']‘ — COS (613 — AQ)}’ S Fz’j (533)
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For a branch L;; € £ the line impedance is z;; = r;;+jx;;. Considering that for a transmission

network, x;; >> r;; and y;; = 0,7 =~ Z So for a transmission network (5.33|) can be

1 .

represented as follows:
[lyi;|Vim sin(A0)| < Py (5.34)

If the voltage phase angle difference Af between two adjacent connected buses is not signif-
icantly low, the lower line flow constraint shown in fails. So, the solution from the
SDP formulation becomes infeasible or inaccurate.

The SOCP-OPF model is relaxed with the conic relaxation as w;l;; > 512] The current
flow l;; = |I;;|* is proportional to the apparent power flow S;;. So, in contrast with the

SDP-OPF models, the SOCP-OPF models do not suffer from the line flow limit issue. [

5.3.1.1  Example

The impact of the line flow limit on the SOCP-OPF and SDP-OPF analysis is illustrated

with an example of a 5-bus network [127], shown in Fig. [5.4] Line flow limits are imposed

Y A
Bus 1 Bus 2 Bus 3
400 MW

240 MW

Bus 5 (‘{')Bus 4

Figure 5.4: Schematic diagram of the 5-bus network.

on the two branches L; o and Ly, as ?(172) = 400MW and ?(4’5) = 240MW respectively.
It is observed that the SDP-OPF model became infeasible with these network constraints.
Further, the two-line flow limits have been increased by a multiplying factor €. For a range of
6?(1’2) and 6?(475); the network has been solved with different OPF models, and the results
are illustrated in Fig. . With the increase of the value of €, the line limit increases (i.e.,
when e = 2, the flow limit is increased by 100%). The total load is 1000 MW in the network,
and a feasible solution occurs when the total generation meets the total demand. Besides the
5-bus network, tighter line limits are also imposed and tested for different branches in the
IEEE 57-bus and 118-bus networks. Because of the stricter line limits, the SDP-OPF model

computationally fails to provide a feasible solution as opposed to the SOCP-OPF model.
5.3.2  Bi-directional Flow in SOCP-OPF

The SOCP-based OPF models are widely used for radial-type power networks, and the
conditions for the exact solution for any reverse power flow are discussed in [128|. However, it

is necessary to check the feasibility of the SOCP-OPF model for possible bi-directional power



5.3.  LINE FLOW LIMITS AND BI-DIRECTIONAL FLOW 67

1200
w o Tolal Loaq  se— S0P NLP s SOCP
o, TO0N) g ——— e ——— L L L
S
= BDD_"""""‘.""."""‘
n_m Infeasible solution for
— 800 SDP
1y}
et -{- ]
2 400} ‘_!H
Infeasible solution for
200 t SOCP
0 .
1] 1 2 3 4 5

€

Figure 5.5: Impact of the branch flow limits on different OPF models.

flow conditions for meshed network systems. Consider bus j € A in Fig. with connected
two adjacent buses i € N & k € N. The power flow through the branches connected with

the bus j € N is as follows:
Py = rijliy = PjiPie = milji — Pry By = 11505 — PuPjm = Tjmljm — Pmj

These relations can be derived for reactive power flow as well. From Fig. the real power

balance at the bus j € NV is as:
P! —Pl= " Py~ Y (Py—rijly) + gjuy (5.35)
k:j—k B:i—]

If the power flows in at bus j from the bus ¢ and [ and goes out to the bus k and m then

from ([5.35)):
P} — P! = Py + Pjm — (Pyj — 133li3) — (Py — r15l15) (5.36)

If the direction of power flow at bus j is reversed, then:
P} — P = Pji + Pji = (Pij — 1jlj) — (Pnj — Tmjlimg) (5.37)

From (5.36) and (5.37)); l;x = lx; and lj,,, = ;. If the solution gap from the proposed SOCP
model is minimal for the forward flow from bus i to bus j, then Sfj = wli;. If the power
flows from bus j to bus 7, the solution will also be considered exact if it satisfies SJ%- = u,ly;,

which can be extended as follows:

Sh + (i + 2l — 2y (Pyriy — Qijg) = wslyy (5.38)
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As the optimal solution for the forward flow is considered with a minimal solution gap as

SZ-QJ- = w;l;;, then from ([5.38]):
(Tizj + x?jﬂij — 2(Pyrij — Qijs) =0 (5.39)

For the proposed SOCP-OPF model the voltage relation between bus i € N and bus j € N

is expressed as follows:
wj = wy — 2(ry Py + 245 Qu) + (13 + a3l (5.40)

From and for a reverse flow, the solution gap is also minimal if u; = u;. For
the reverse flow in the branch Lj; € £, it can also be shown that for minimal gap solution,
u; = w. Suppose there is any possible bi-directional flow through a branch in a mesh
network; the OPF solution gap will be minimal if the bus voltage difference between the two

connected buses with that particular branch is minimal.
5.4  Exactness and the Optimality of the Proposed SOCP-OPF Model

The exactness and the global optimality of the proposed SOCP-OPF model are discussed
in this section. The feasible set of the OPF problem is convex with the angle relaxation and
conic relaxation of the non-linear equality in (b.13) within a conic space. The exactness of
an OPF solution from the proposed model depends on the conic space formed by and
the cyclic angle constraints. The solution gap is defined as, o = |u;l;; — SZ2]| in this article.

For the proposed OPF model, we have considered the objective function f(z) as convex
and increasing with the current flow [;;. Let us consider an optimal solution set from the
proposed OPF model as, @Z) = (gij, lNij,ﬂ, Sg). Further, assume there exist another feasible
solution set as ¢ = (Sij,fij,ﬁ, gg), where Zij = l~ij — €, S'ij = Sij — ez, U = Uy, S,f’ =
gid = Sfl + €z;; and de = de for a € > 0. Also, the solution @/A) satisfies the angle cyclic
constraints. The OPF objective value f(1) is smaller than the objective value f(t) as,
Zij = l~l-j — ¢, has a strict smaller value. This contradicts the optimality of the solution set 1;
from the proposed OPF model. The proposed model will be proved as tight, and the solution
is globally optimal if the cyclic constraints are satisfied and there is no other solution set
lower than . It is sufficient to show e = 0 for proving the global optimality. The following

remarks validate the global optimality and the tightness of the model when cyclic constraints

are satisfied in a mesh network.

Remark. An optimal solution set is within the conic convex solution space if the solution
satisfies (5.9), . (5-19), and .

Proof. As 1) is the optimal solution from the proposed OPF model, it satisfies l} 1}
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(5.12) and (5.14)). The (5.11) and (5.12) are derived in terms of real and reactive power
by splitting the (5.10]). For analyzing (5.11))-(5.12|) together, the power flow equation ({5.10)

with the apparent power S7, apparent power flow S;;, and current flow /;; are considered

here for the bus i & j € N. For the solution set 1& at the bus i € N:

~

_ Qg Gd Q9 od B

p— Z S’ij — Z (S’kz — Z]ﬂ[kz) + yﬂli — €245

Jii—j kik—i

= E Sigr + (Sij + €2i5) — E (Ski — 2kilki) + yitls — €24
jli—j" A5 kik—i

= E Sij — E (Ski — 2rilks) + yiti;
Ji—j k:k—1

At the bus j € V-

~ ~ Ad ~ ~d
Sj=5¢-81=259 -3
= > Sk — > (S — 2i5lig) + y51

k:j—k 1—]

= > Sik— D (S — zgleg) + ysty — [(Sy + ezi5) — 245l + )]
kij—k il =i

= > Sk = > (S — 2uliy) + iy
k:j—k ii—j

For the solution set ¢, the voltage relation (5.9) is as follows considering the branch Li; € L:

u]' = dz — Q(Tijpij + xij@ij) + (Tfj + .7712])[1]

= dj = Utz — Q[Tij(ﬁ)ij + 67“7;]') + l’ij(QZ'j + exij)] + (Tfj + ZL’%)(Z” + 6)

= 10 = i; — 2(ri; Py + 2 Qij) + (] + 2l — e(rd + 23)
The solution v satisfies 1} if e(r; +a3;) = 0. As for a branch L;; € £, (r}; +x3;) # 0. So
Y satisfies 1' only if € = 0.

As, 1 is the optimal solution from the proposed OPF model, it is within the conic space

as follows:

= UAZ(ZAZ] + 6) — (gl] + ZijG)z >0

If e =0; dilgj — S;QJ > 0. The solution set 1/3 is within the conic space and the solution gap

E[ﬁz - Z?je — QSZJZU] is minimal. ]

Remark. When the solution satisfies the cyclic angle constraints, the OPF model is tight,



5.4. EXACTNESS AND THE OPTIMALITY OF THE PROPOSED SOCP-OPF MODEL70

along with when € = 0 the solution from the proposed OPF model is globally optimal.

Proof. @/AJ is the optimal solution with a minimal solution gap satisfying the cyclic angle

constraints in the network. So for a mesh including the branch L;; € L:

BiiPii + Gi: Qs BiPir + GO Bs.Psi+Go.Q
sin~t L i— J%j + sin~? le‘c/ ]g—; jkB%jk + . sin”! V] V]GQ ]Bcgj =0 (5.41)
V;VJ(sz + Bij) J k( jk + jk) 5 7,( Vi + j,l.)

As the cyclic angle constraint is imposed on the proposed SOCP-OPF model for the solution

¢ in the mesh cycle consisting of the branch L;; € L. Then for the solution set of ¥

!

B;i P + G:Q; B P + GO By ,Ps.+G.Q o,
gin~1 24 4 "2" J%J +sin~! ik Jk—; chgjk 4+ 4ginTl Y 5 J 6223 -0
Vi j(Gij + Bij) VJ'V’f(ij + Bjk) VJJVi(GJ"i T Bj'i)
= sin~ ! Bibij + GijQus + e(Byry + Giyi) + sin~* Binbon + GG (5.42)

ViVi(G3, + B3)
L Byl + Gy iQy s

2 2N
Vj/V;(Gj,i + Bj,i)

ViVi(G3 + BY)

+ sin

~

1 is the optimal solution with a minimal solution gap. So, comparing d5.41[) and (I5.42b if

e ~ 0; the cyclic constraints are satisfied similarly for ¢ as @/A) The solution gap for ) is also
minimal. The solution gap, defined as o = |u;l;; — S7;| is measured after the OPF analysis.
The solution gap (o) is very small from the proposed model for the test cases in this article.

Further, for the two solution set ¢ and 1), it is assumed f (1@) < f(¢). From the definition

of the convexity for convex objective functions:

flav+ (1= a)) < af (@) + (1 - a) f() (5.43)
where a € [0, 1]. Then:
af () + (1= a)f(§) < af(@) + (1= a)f () = af($) + (1 - a) f(&) < f(¥)
From and (5.49):
flad+ (1= a)d) < f(¥) (5.44)

Since f(1) is the optimal solution, so for any other solution within the convex space is
f(¥) > f(«), which contradicts with . To satisfy both conditions it must be ¢ = 1),
thus e = 0. So for a convex objective function, it is impossible to have another solution set
lower than . So the solution from the proposed OPF model is globally optimal and satisfies

the cyclic angle constraints in the mesh network. O
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5.5  Simulation and Evaluation

The proposed OPF model has been simulated and tested in the MATLAB® with the
MOSEK® solver platform. The proposed OPF model is simulated in multiple standard
test cases (i.e., IEEE 14-bus, 57-bus, 118-bus, and 2736-bus network systems [127]) and
a synthetic 500-bus network [129]. The results from the proposed SOCP-OPF model are
compared with the NLP-OPF and SDP-OPF solutions from MATPOWER® [127]. The
solution from the SDP-OPF in MATPOWER® for the 118-bus network is globally optimal
and feasible with a minimum branch resistance of 1 x 10~ per unit [124]. Thus, The same
network conditions are applied in the proposed SOCP-OPF model. It has been observed
that the solution from the SOCP-OPF model matches with the solution from the SDP-OPF

proven to yield global optimal solutions [124] for the test systems considered.
5.5.1  Implementation of the Proposed SOCP-OPF Model

The model implementation starts with the identification of the mesh cycles in the network
using Algorithm [2 Then the optimization process is executed with the proposed SOCP-
OPF model, where the cyclic constraints for all the meshes are satisfied. This improves
the exactness of the SOCP-OPF model for mesh networks and provides a globally optimal
solution.

As an illustrative example, in Fig. [5.6] the schematic diagram of the IEEE 14-bus network
shows the mesh cycles with all of the branches associated with any loop. In the network,
bus no. 8 is not associated with any mesh cycle and is considered as a radial type dangling

branch from the Algorithm

Table 5.1: Comparison of the angle difference summation over cycles between SOCP with cyclic constraints
(CC) and without cyclic constraints (WCC) on the IEEE 14-bus network

SOCP-WCC SOCP-CC SOCP-WCC SOCP-CC

ngsp 100% load ~ 100% load ~ 200% load ~ 200% load
' (Degree) (Degree) (Degree) (Degree)

1 2.1347 3.803e-07  4.4935 1.007e-06

2 -2.9525 0 -4.9639 0

3 0.0272 1.493e-07  -0.5300 6.981e-08

4 -0.3881 0 -2.2302 0

3 -0.5042 -9.94e-17  1.7143 1.988e-16

6 0.0999 0 0.8921 0

7 -0.1146 0 -0.394 0

Table shows the comparison of the bus voltage phase difference summation over mesh
cycles between SOCP-OPF with cyclic constraints (CC) and without cyclic constraints
(WCC) for different loading conditions. For the WCC, the sum of the angle difference
increases with the higher loading conditions. As a convex OPF model, the proposed model
promises a globally optimal solution for convex objectives with the imposed cyclic constraints.

The OPF solution from the proposed model for the IEEE 14-bus network is compared with
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Figure 5.6: Single line schematic diagram of the IEEE 14-bus network.

Table 5.2: Generation comparison in IEEE 14-bus network
(linear cost function)

Bus o Pg (MW) Qg (MVAR) Pg (MW) Qg (MVAR)
No. ' (SOCP) (SOCP) (NLP) (NLP)

1 20 12858 0 128.58 0

2 20 139.99 21.72 140.00 21.70

3 40 0 30.04 0 30.04

6 40 0 10.22 0 10.15

8 40 0 8.05 0 8.05

the benchmark results from NLP-OPF and SDP-OPF models in MATPOWER. The real
and reactive power generation for the minimum generation cost objective function is shown
in Table and Table 5.3] It is observed that the power generation in different buses is
same as the NLP-OPF model.

The proposed OPF model is further simulated on more extensive networks to check the
scalability. Table. [5.4] shows the generation comparisons of the proposed SOCP-OPF model
with NLP-OPF and a convex SDP-OPF model. The network conditions for the proposed
SOCP-OPF model are the same as the MATPOWER models. The percent of generation
mismatch between the proposed SOCP-OPF vs. NLP-OPF and SOCP-OPF vs. SDP-
OPF model is illustrated in Table 5.4 MATPOWER uses an interior point solver. Due to
the solver difference, there is a negligible generation discrepancy between the OPF models.
The maximum real power difference for the SOCP-OPF vs. NLP-OPF is 0.09% (2736-Bus
Network), and the reactive power difference is 0.84% (118-Bus Network). For the SOCP-

OPF vs. SDP-OPF, the maximum real power difference is 0.11%, and the reactive power
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Table 5.3: Generation comparison in IEEE 14-bus network
(quadratic cost function)

Bus Pg Qg Pg Qg
C, C Co (MW) (MVAR) (MW) (MVAR)

No. (SOCP) (SOCP) (NLP) (NLP)
I 004 20 0 194.40 0 19443 0

2 025 20 0 3678 2370 3680  23.67
3 001 40 0 2874 2512  28.75  25.13
6 001 40 0 0 12.71 0 12.63
8 001 40 0 852 851 850 851

difference is 0.81% (2736-Bus Network). Due to space constraints, only the voltage profile
of the IEEE 118-bus network is demonstrated in Fig/5.7 The power loss from the proposed
SOCP-OPF model and the voltage profile mismatch between the proposed OPF model and
the NLP-OPF model is illustrated in Table [5.6l The tightness of the OPF model has been
analyzed using the solution gap from represented as o = |u;l;; — Sj;|. The solution gap
(o) for all the branches is measured, and the average value is presented in Table . For all
of the test cases, the o and % of voltage deviation (Av) are minimal for the proposed OPF
model compared to the NLP counterpart. The convergence time of the proposed SOCP-
OPF is compared with the SDP-OPF and NLP-OPF models as shown in Table The
test system is an Intel(R) Core(TM) i7-10510U CPU, 2.30 GHz processor, and 16 GB RAM
machine. From the results shown in Table it is observed that the convergence time for
the proposed SOCP-OPF model is significantly lower than the NLP-OPF and SDP-OPF

models.

1.08

1.06
— 1.04 |
=0
Z
> 1.02

1
| —e—socP —e—nNLP —B—sDP
0-98 1 1 1 1 1
20 40 60 80 100
Bus No.

Figure 5.7: Voltage profile for the IEEE 118-bus network.

5.5.2  Impact of the Envelope Width on the SOCP-OPF

This section evaluates one of the major contributions to deriving a convex envelope based
on (5.16)) and (5.17)). The optimal solution from the proposed model includes an optimal bus
voltage angle difference within the envelope based on the power flow and satisfies the cyclic

angle constraints as (5.15)). The impact of the envelope width on the 6;; is illustrated in Fig.
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Table 5.6: Voltage comparison between SOCP-OPF vs NLP-OPF

Voltage Mismatch Power Loss Avg. Solution

Test case (SOCP vs NLP)  (SOCP)  Gap (SOCP)
14-Bus Network 0.000 % 3.56 % 5.1e-09
57 Bus Network 0.008 % 1.28 % 9.4e-09
118-Bus Network 0.015 % 1.99 % 2.3e-09
500-Bus Network 0.007 % 1.54 % 1.4e-08

2736-Bus Network 0.025 % 1.87 % 7.03e-09

Table 5.7: OPF solution convergence time comparison and execution time of Algorithm

Test Run Time (sec) OPF Convergence Time (sec)
Case (Algorithm SOCP NLP SDP
14-Bus Network 0.34 0.31 0.34 0.39
57-Bus Network 1.52 0.34 0.56 0.44
118-Bus Network 2.04 0.41 0.64 0.48
500-Bus Network 6.24 0.52  1.05 6.47
2736-Bus Network 15.85 1.47  3.52 322.4

for the IEEE 14-bus, IEEE 57-bus, and IEEE 118-bus networks. In the figure, 6;; is shown
for the 67" = 20°, and 30°, where, 07 is defined as 07 = max[|0;;],]0;;] for the envelope in
1' and 1’ While 0] increases, the width of the envelope increases, so the deviation
of 0;; from the optimal point increases, which is illustrated in Table[5.5] The 6;;(NLP) is the
reference value determined from the NLP-OPF solution in MATPOWER. Then the standard

deviation of §;; is illustrated as Af;;, which is defined as Af;; = \/ 104 (NLP);VHL” (SOCP)]2, Np,

is the total number of branches in the network. From the analysis, the standard deviations
are considerably low even for 6]} = 30° for all the cases, which is an acceptable range for the
envelope for most practical transmission networks. From this, it is observed that a reasonable
width can be considered for the envelope with the proposed SOCP-OPF model for optimal
operation. The impact of the envelope width on the solution gap (o) is illustrated in Fig.
for the IEEE 118-bus network. It is observed as when the width of the envelope is smaller,
and the cyclic constraints (CC) are considered, the solution gap (o) is considerably lower
than without considering (WCC). With the cyclic constraints, the solution gap (o) is less
than 1 x 1077, The figure shows the results in per-unit (pu) with a base of 100 MVA. This
concludes that the proposed model’s cyclic constraints significantly improve the exactness of

the SOCP-OPF model for mesh networks.
5.5.3  Analysis of Voltage Difference on the Solution Gap

The effect of the voltage change for bi-directional flow is analyzed with the change of
loading conditions. A load in a particular bus is changed with a multiplying factor A € [0, 3]
(i.e., when A = 1 the load is increased by 100% and when A = 2, increased by 200% and so
on) for observing the impact of the bus voltage difference between two adjacent connecting
buses and thus tightness of the proposed model. For the IEEE 14-bus network’s overload

condition, the voltage difference between bus no. 1 and bus no. 2 is low. Hence, the solution
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Figure 5.8: 6;; from the proposed envelope satisfying the cyclic constraints. Here, (a) & (d) are for the IEEE
14-bus network, (b) & (e) are for the IEEE 57-bus network, and (c¢) & (f) are for the IEEE 118-bus network,
respectively.
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Figure 5.9: Impact of the envelope width on the solution gap (o) for the IEEE 118-bus network (a) 6J} = 20°
(b) 077 = 30°.

gap (o) is low, and while the cyclic constraints are applied, the OPF model is tighter, which
is shown in Fig. [5.10| (a)-(b). The metric o presents the overall tightness, with close to
zero being tighter and thus more accurate. To illustrate the effect of a more extensive
network, bus no. 43 and bus no. 44 in the IEEE 118-bus network are considered. The
solution gap is checked by assessing the voltage difference for both conditions (i.e., with and
without imposing the cyclic constraints). When there is a load increase (considered as the
multiplying factor A € [0, 3]). The results show that the model is tight with CC and WCC
when the voltage difference between two adjacent buses is small. However, with a larger
voltage difference between adjacent buses, the solution gap is comparatively higher when
cyclic constraints are not considered. This impact is observed on other buses as well. The
solution gap from the proposed SOCP-OPF model is significantly lower, as shown in Fig.
5.10[ (¢)-(d). These results show that the proposed architecture is tight even for bi-directional

flow if the cyclic constraints are applied with the OPF model.
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Figure 5.10: Impact of the bus voltage difference on the solution gap (o). Here, (a) & (b) and (c) & (d)
are for the IEEE 14-bus and 118-bus networks, respectively. (CC: Cyclic constraints, WCC: Without cyclic
constraints.)

5.6  Summary

This chapter represents a novel branch flow-based SOCP-OPF model for meshed power
transmission networks. A convex envelope is derived to satisfy cyclic angle constraints in
meshed power networks. The tightness of the proposed OPF model and the solution gap
is improved when the cyclic angle constraints are imposed. The condition for the proposed
SOCP-OPF model’s tightness for bi-directional power flow through a branch is also ana-
lyzed. The OPF model has been simulated and evaluated for several IEEE standard meshed
transmission test networks and compared with NLP-OPF and SDP-OPF models. From the
simulation analysis, the proposed model is tight and provides a globally optimal solution.
Furthermore, the computational efficiency and solution time for convergence of the proposed
SOCP-OPF is improved by up to 58% when compared to the NLP-OPF and SDP-OPF
models for large networks. The proposed OPF model is extendable for the mixed-integer

version of OPF analysis and contingency analysis for unbalanced power networks.



CHAPTER 6: OPTIMAL POWER FLOW (OPF) ANALYSIS FOR AC-DC TYPE
ACTIVE DISTRIBUTION NETWORKS WITH SECOND ORDER CONE
PROGRAMMING (SOCP) MODEL

6.1 Introduction and Contribution

Power system network grids are mainly based on alternating current (AC) [130}131].
Due to the invention of modern power converters with renewable-based distributed energy
resources (DERs) and increased use of modern DC-type loads, DC grid systems are getting
incorporated with the conventional AC grid system [27,28|. Though DC grid-systems have
several advantages over AC grid-systems [132,[133|, complete replacement of AC grid with
DC systems is not feasible [134]. Hence, the researcher proposes the AC-DC power network
system leveraging the benefits of the DC systems connected with AC grid systems [135,/136].

Under different constraints (i.e., network thermal and reactive power limits), the optimal
power flow (OPF) analysis is a salient tool for system operation and planning. Due to the
nonlinearity of Conventional AC-OPF formulations, AC-OPF analysis is nondeterministic
polynomial (NP) hard (NP-hard) in its original form [13]. Due to this complexity, linear
approximated models (i.e., DC-OPF [21]) are used, which compromise the solution accuracy
[137]. The conventional OPF models fail to perform the OPF analysis of the AC-DC network
accurately as the AC-DC network has additional components such as converters, additional
types of buses, etc. The solution to the OPF analysis of the AC-DC networks through
conventional OPF models may lead to computational infeasibility. Hence, researchers have
focused on developing efficient OPF models for AC-DC power distribution networks.

Few works of literature have discussed the OPF analysis for the AC-DC distribution
networks. An AC-DC load flow model based on the Newton Raphson (NR) OPF has been
proposed in [138] with voltage source converter (VSC) HVDC links but did not consider the
DC grid. The net active power injection into the DC system area accounts for the DC links.
A generalized approach to the load flow analysis considering the converters and DC grid of
AC-DC distribution systems is discussed in [139]. But, these load flow models also do not
consider the optimal operation of the network. An OPF model for transmission systems with
volatile renewable resources is presented in [140] with AC-DC network structure. But, the
non-convexity in OPF equations do not guarantee a globally optimal solution [141], [142].

As the convex relaxation of AC-OPF problems is computationally efficient [22], [106], and
conditionally exact [57,90,/143| (hence, AC-feasible). Hence, a modified second-order cone

(SOC) [68] based convex model will be an efficient approach for the OPF analysis in a dis-
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tribution network with AC-DC structural orientation. The research work presented in [144]
validates the above statement by using SOCP-based formulation with voltage source con-
verters (VSC) for AC-DC type power distribution systems. Nevertheless, the model does
not consider radial distribution networks and DERs. Hence, this article proposes an OPF
model using SOCP for AC-DC-type distribution networks with DERs. Then a modified
interior point method (IPM) based non-linear NLP-OPF model is considered to compare
the performance of the proposed AC-DC SOCP-OPF model. NLP-OPF models are compu-
tationally challenging [61,/62]. The SOCP-OPF model proposed in this article is based on

branch flow-based power flow equations.
6.1.1  Major Contributions

The contributions of the proposed approach are as follows:

e Even though with the angle and conic relaxations of the power flow relations and the
relaxation of the non-linear relations of the power converters (i.e., AC-DC rectifiers,
DC-AC inverters) with McCormick envelopes the SOCP-OPF model provides an exact
optimal solution for AC-DC distribution networks. Being convex in nature, the OPF

model guarantees the globally optimal solution.

e The proposed model determines the optimal modulation index of the converters (i.e.,
AC/DC rectifiers and DC/AC inverters) based on the objective functions, converter

ratings, and network constraints.

e A minimum voltage deviation condition is considered with the objective functions
using a participation factor variable. With different participation factors and DERs
penetration, the OPF model provides optimal solutions providing the robustness of the

OPF analysis approach.

e The computational efficiency of the SOCP-OPF model for AC-DC networks has been
verified by comparing it with an IPM-based NLP-OPF model in this article. The

simulation analysis proves that the SOCP-OPF model is computationally superior to

the NLP-OPF model.

The organization of this chapter is as follows. Section 6.2 discusses the AC-DC distribution
network, and Section 6.3 discusses the proposed OPF methodology. An interior point-based
NLP-OPF model is discussed in Section 6.4. Then, Section 6.5 discusses the model result
analysis from the simulated test cases. Finally, the summary is discussed in Section 6.6 of

this chapter.
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The variable and parameters used in this chapter are as follows:

N:  Set of all the buses in the network
VD Max voltage deviation from the reference voltage
oi;:  solution-gap

M:  Modulation index of a converter

K: Participation factor of the objectives
N:  Set of the buses

Ny Set the buses with DERs

LL:  Set of the branches

v;: Bus voltage at 1 € N

u;:  voltage magnitude square at ¢ € N

s7: Injection of power (apparent) at i € N,
sd: Load ati € N

p?:  Injection of power (real) at i € N,

pd: Load (real) at i € N/

¢J:  Injection of power (reactive) at i € N,
q!:  Load (real) at i € N

P,;: Power flow (real) in L;; € L

Qij:  Power flow (reactive) in L;; € L

Si;: Power flow (apparent) in L;; € L

I;: Current through L;; € L

l;j:  Square of current magnitude through L;; € L
zi;:  Line impedance of L;; € L

ci: DER’s cost-coefficients at i € N,

6.2 AC-DC Structure of Distribution Network

The hybrid structure of AC-DC distribution systems consist different AC and DC com-
ponents which includes conventional AC loads, DC loads (i.e., Electric vehicles (EVs)), AC
generators, and DC generating units (i.e., PV farms), as shown in Fig. [6.1] In the OPF
analysis, the inclusion of the converter model is challenging because of its nonlinear char-
acteristics. This chapter utilizes the per-unit equivalent mathematical model of the power

converter developed by the authors in [145] [146].

o =
Qb <:[1] o g 8[|
A O a
(=] A
=)
GRID AC BUS —~ DC Bus
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INTERFACE
o 5 >
2 mit 55 5

Figure 6.1: Single line representation of an AC-DC distribution network.

¥3a
peo
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Per Unit relation of converters (PWM Inverter & Rectifiers): The input-output
voltage and power relationships (in per-unit) of the converters can be represented using (6.1
and (6.2]), respectively.

V; = UiM (61)
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Pout - n-Pm (62)

where 7 is the efficiency co-efficient of the converter and M is the modulation index. The
base value relation on input and output sides of the converters is provided in Table

Table 6.1: Converter input-output base relation

PWM Rectifier PWM Inverter
V;lc = %i‘/;zc ‘/ac = %‘/dc
[dc(B) = %Iac Iy = %ijdc

6.3  Proposed Methodology for SOCP-OPF
6.3.1 Branch Flow Model

In this article, we have considered radial distribution networks with n number buses. N
is the set of all buses in the network with N = {1,2,3.....,n}. L represents the set of the
branches with n — 1 number of branches. The branches are denoted as L;; connecting the
pair of buses (7, 7). v; denotes the bus voltage at i € AN'. With the apparent power S;; and

current flow I;; in L;; € L, the power flow relations are represented as follows:
Sij = UZI;; (63&)

where the distribution lines are modeled with a series impedance of z;; = r;; + jz;; for the
branch L;; € L. As a radial-type network, any bus of the network has only one incoming

branch. So, the apparent power at j € N is as:

st — 57+ Sy — 2| L 1P = S (6.3h)
j—k
where s? is the apparent power injected by DERs, and 5? is the apparent load associated
with the bus j € V.
If a converter is located at the bus j of the network, then a dummy bus is considered as
4 at the input of the converter. Therefore, the input/output relation of the voltage for the

converter is represented as follows:
v; = vy M(6.3c)

The benefits of the convex OPF analysis are already discussed in the introduction section
of this article. Angle and conic relaxation are considered for the convexification for the

SOCP-OPF model, which is discussed in the following subsection.
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6.3.2  Angle, Conic and McCormick Relaxation
6.3.2.1  Angle and Conic relaxation

For convexification, the phase angle of the voltage and current phase is relaxed. Then,
new variables are defined as, |v;|* = u; and |I;;|* = [;;. With the new-defined variables, the

power flow relationships are as follows:

Considering the voltage magnitude square and using the new-define variables for the squared

terms, the voltage drop between the bus pair (I,7) € N is as follows:
u; =u; + |Zij|2lij — (ZijS;} + Z;}Sij) (6.5)
With the new variables, at bus j € N the power balance is:
4 Sy — 2l — s =) Sk (6.6)
j—k

Along the angle relaxation, the relation in (6.4)) is convexified with conic relaxation with the
following inequality:

uili; > P+ Q3 (6.7)

For the AC-DC network, the proposed OPF model considers multiple power converters.

For the converters, the voltage relation is as follows:
2 2772
[v;|* = vy |"M* = u; = u;ym(6.8)

where m = M?2. is still non-convex, which is convexified with the McCormick envelopes.
6.3.2.2  McCormick Relaxation for the Converters

AC-DC networks contain multiple converters. In this article, the AC-DC and DC-AC
converters are considered only. As the modulation index (M) is an optimization variable,
is non-convex. So the voltage relation is convexified with McCormick envelopes
[74]. For the converter at the bus j € A if the input voltage relation is noted as u; = wu,

and the output as u; = uey, the voltage relationship is as follows:

Uyt = Uin T (6.9)
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This non-convex relation in is convexified with the following McCormick envelopes:

Uout = mLuin + muf:n - mLUZ{;Z (610&)
Uout = mUuin + mugl - mUUgl (610b)
Uout < mUUin + muan - mUUiL:n (610C)

Uout < M Uz, + mutf), — m*ug), (6.10d)

where m* = m, m" =m, uf, = [U;,|* and u;, = |v;,|*, modulation index as m ,,_,. = M2 __

m
M? for AC-DC and DC-AC converters.

DC-AC DC—-AC

and m
6.3.3  Operational Cases for a Network with AC-DC Structure

An AC-DC type distribution network structure forms with multiple network configura-
tions, as illustrated in Fig. [6.2] This section evaluates the mathematical formulations of the

proposed SOCP-OPF model for the network.

: .
Py, Q; P Qi
—_—
Case 1

AC AC AC

Case 2

DC
1 J k
I - | — |
B —
- I I
DC DC DC
i J k
II P j' Py Qpx
— | |= _—
Case 4
I 4%
DC DC-AC 4¢ AC
ACLine m— DC Line m—

Figure 6.2: AC-DC network model with converters.

6.3.3.1  Case: 1 (AC-AC Network)

Only AC network sections of a network are considered for this case. So only the AC-AC

convexified equations are considered for the power flow, which is illustrated as follows:

P+ Py =il — 9} =Y Pi (6.11a)

j—k
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q] + Qij — wijli; — q = Zij (6.11b)

j—k
The (6.11al), and (6.11b|) are derived by splitting in terms of real and reactive power,
using Si; = Py + jQij, s7 = p] + j¢¢, and s} = pf + jqf. Further simplifying (6.5)) and (6.7):

Uj = U; — Q(Tijpl'j + iL’ijQij) + (7“12] —+ %?J)lw (611(})
2P;
w;+lij > || 2Qy; (6.11d)
U; lij )

6.3.3.2  Case: 2 (AC-DC converter)

Case: 2 is considered at the coupling buses where an AC section is connected with a DC
section through a converter in the network. An example section of case: 2 is shown in Fig.
6.2l For an AC-DC converter at the bus j, a dummy node j is considered at the input of
the converter. Then the load flows through the branch L, before the AC-DC converter is

as follows ([6.11al)-(6.11d)).

The voltage and power conversion relationships for the converters are as follows:

Uj =My peuy(6.12a)

where M

. ) . . . . 2
+c_pe 1s the converter’s (rectifier) modulation index and m,. ,. =M For

AC-DC’

the proposed analysis, (6.12a)) is relaxed with the McCormick envelope as in (6.10]). Then,
Po = 0P (6.12b)

where PAC is the input power at the dummy node 4, and the converter efficiency is .
6.3.3.3  Case 3 (DC-DC Network)

Only DC-DC network sections of an AC-DC network are considered for this case. So only

the real power equations are considered for the load flow, which is illustrated as follows:

pj— p? + Py — 1ijliy = Z P, (6.13a)
k:j—k
u; = u; — 2r; Py + il (6.13b)
2P;;
w; + l; > ! (6.13¢)



6.3. PROPOSED METHODOLOGY FOR SOCP-OPF 86
The ((6.13a))-(6.13¢c|) are derived from the (6.5)), and (6.7]), where only the real power

components are considered.
6.3.3.4  Case 4 (DC-AC Network)

This is considered at the coupling buses where a DC network section is connected with an
AC section through a DC-AC converter. An example section of the case: 4 is demonstrated

in Fig. [6.2] If the converter’s (inverter) modulation index is M

DC-AC?

the power flow through
the converter is as follows:

PAC — pbc (6.14a)

out

where PPC is the DC input power to the converter at the dummy node j' and PA? is the
AC output power from the inverter at the bus j. The voltage relation of the converter is as
follows:

uj =m

6.14b)

J DCfACuj/<

where modulation index m,, ,. = M; o_ac- For the proposed analysis, (6.14b)) is relaxed

using the McCormick envelope as in ((6.10)).
6.3.4  Proposed SOCP-OPF Model

OPF analysis is performed to determine the optimal operating point (i.e., p?, ¢/, etc.) for
an objective function f(z,y) maintaining the network operational and control constraints.

The objective function of the OPF analysis for an AC-DC type network is established as:

f(xia yi) = fAC (x;'ACa yzAC) + ch (xiDC’yiDC>(6'15)

where x is a vector of the control variables (i.e., the active and reactive power from the
controllable shunts, etc.) and y is a vector of the state variables (i.e., the voltage magnitude).
f.o and f, . stand for the AC and DC variables of the objective function f(z,y), respectively.
For an AC-DC network, the SOCP-OPF model is proposed as:

mme(xuyz) (6.16)
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Subject to (s.t.) : {(6.11al) — (6.140)} (case-wise) and,

st Q. (6.17)

M<M

=
A

where P and p! are the minimum and maximum limit of real power injection and [’ and g/
are the minimum and maximum limit of reactive power injection from the DERs at i € N.
u; = |v;|* and W@ = |v;|* at i € N and I;; = |I[**|? at L;; € L. M is the modulation index
for a converter with M = v/v and M = 7/v.

6.3.4.1  Objective Functions

This article considers different convex objective functions. For generation cost minimiza-
tion or network loss minimization, the converters are prone to dispatch the maximum limit
of reactive support. This results in the voltages hitting the maximum limits. So the system
lacks the required reactive reserves during any contingencies in the network in a particular
operating condition [147]. To avoid this situation, the voltage deviation value is included
as a part of the objective function [148]|. The objective function f(x,y) considered with the
proposed model is as follows:

a) Network loss:

filz) = Z Tijli; (6.18)

Li;elL

or generation cost:

file) = e (6.19)

€Ny

where ¢; is the cost-coeflicients for the DERs at i € ./\fg and for convex cost equation ¢; > 0.

b) The deviation of voltage is included to the objective function as follows:

Faly) =) % (6.20)

iEN

where u!l = [v]]%; ! is the reference voltage of a bus at i € A" and n is the total bus in the

network.
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Finally, the objective is as follows:

fla,y) = (1= K)fi(z) + K fa(y) K €0,1] (6.21)

where K is the participation factor for the objective function. The SOCP-OPF model is

compared with an interior point method (IPM) based NLP-OPF model.
6.4  Interior Point Method-based NLP-OPF Model

The injected active power (p;) and reactive power (¢;) at a bus i € A can be written as

follows [59):
Pi = ’U?G“ + Z’Uﬂ)j [GijCOS<9i - 83) + Bwsm(ﬁl - 9])] (622)
j=1
q; = —UZQB” + Z VU5 [G”SZTL(HZ — QJ) - Bz‘jCOS(Qi - 9])] (623)
j=1

where 0; is the voltage phase angle at i € N and i # j. Y;; denotes the off-diagonal elements
of the Y bus matrix, which is defined as Y;; = G;; + jB;; for the network. For the OPF

analysis, equality constraints regarding the power balance are as follows:

Yo=Y p—pi=0 (6.24)
S =Y ¢ —a=0 (6.25)

Here, p/ and ¢/ are the power injection and p¢ and ¢ are the connected load at i € . For
a converter at j € N:

v = ViuM (6.26)

Here, x = [0;,v;, p!,q7, M]T is defined for the unknown variables. The inequality box con-

straints related to the variables in x are defined as follows:

(6.27)
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where T and x represent the maximum and minimum limit of z, respectively.
Two non-negative slack variables are defined as a = [ay, as, ..., a,]T and b = [by, b, ..., b.]T.

Here is the size of x. The inequality in (6.27)) can be represented as follows:

T=z+a (6.28)

r=x—0b (6.29)
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With the logarithmic barrier functions, the new-defined objective function for the OPF

analysis is as follows:

F,y) = ply_Infag) + 3 n(by)] (6.30)

where a; € a and b; € b are positive and p is a penalty factor. The Lagrangian function of

the OPF analysis is as follows:

\r | 2P > b = pi
Y = —a

—(r+a—7)—w" (r—a—zx)

L= f(w,y) =Y n(a)+D_n(b;)]-

where \, z, w are Lagrange multipliers.
6.5  Simulation and Evaluation

The OPF models are implemented in an Intel(R)-Core(TM) i7-3770 @3.40 GHz, 16 GB
RAM machine. The proposed OPF model determines the optimal (p{, ¢) and the optimal
modulation index (M) of the converters. The OPF model simulation and experimental anal-
ysis, a 32-bus (modified IEEE 33-bus) and an IEEE 123-bus network systems are modified
to AC-DC type network structure. Power flow analysis is conducted for the validation pur-
pose of the modified AC-DC networks. The power flow analysis (SOCP-PF) is conducted by
excluding the objective function from the OPF model and compared with the results from
the graph-theoretic-based AC-DC power flow model (G-PF) in [145] [146]. The percent of
voltage error is illustrated in Fig. [6.3] which is less than 0.02%. Algorithm [3|illustrates the
implementation of the proposed OPF model and the simulation results are compared with

the IPM-NLP model.

Algorithm 3 AC-DC SOCP-OPF
The number of total branches N;, = n — 1.
for k=1: Ny do
if L;j(k) € L is an AC-AC branch then
| Run SOCP-OPF using (6.11a)-(6.11d)

end

if An AC-DC converter is placed at the branch L;;(k) € L then
The converter is placed at the 7 bus

Define a temporary node as j at the converter

Run SOCP-OPF using ((6.12a))-(6.12b)) along with (6.11a))-(6.11d))
end

if L;;(k) € L is a DC-DC branch then

| Run SOCP-OPF using (/6.13al)-(6.13¢)

end

if An DC-AC converter is placed at the branch L;;(k) € L then
The converter is placed at the 7 bus

Define a temporary node as j at the converter

Run SOCP-OPF using ((6.14a))-(6.14b|) along with (6.13a))-(6.13c))

end

end
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Table 6.2: Rating of the converters

Converter Converter Rating

Case ID (KVA)
M, 1200
32-bus Network M, 500
Ms 1200
M, 400
M, 1000
123-bus Network M, 100
My 800

0.02

Error (%)
=
=

5 10 15 20 25 30
Bus No.

Figure 6.3: Percent of error of the voltage profile from the load flow analysis for the 32-bus AC-DC network
structure.

6.5.1  Case 1 (32-Bus Network)

The 32-bus network is derived from the 33-bus network in [149]. The sub-station (bus
no. '0’) is excluded, and the tie-lines are disconnected for considering a radial type network.
For converting an AC-DC network structure in this article, the reactive components are
excluded from the DC-DC part of the network shown in Fig. [6.4. The placements of the
AC/DC converters (rectifiers) and the DC/AC converter (inverter) are shown in Fig. as
well, and the ratings of the converters are in Table|6.2] The modulation index M for different
converters are labeled as M; (bus no. 6-7), My (bus no. 12-13), and Mj; (bus no. 26-27).
There are two AC-DC converters between bus no. 6-7 and bus no. 26-27. The DC-AC
converter is placed between bus no. 12-13. The base voltage of the AC side is 12.66 KV, and
the DC side network is 17.90 KV for the 32-bus network. The OPF models are simulated for
the base case and also as well as with high DERs (30% DGs of the total connected loads).
For the experimental simulation, the maximum range of efficiency of the converters is 90%,
and v} = 1 (pu) is considered as the reference voltage. The profile of the voltage for the
network with DERs is illustrated in Fig. [6.5, The voltage mismatch is less than 0.01%.
With the increment of the participation factor (K), the weight of the objective function f,
increases, and the voltage deviation decreases. From the SOCP-OPF and NLP-OPF models,
the optimal modulation index (M) for the converters concerning the participation factor (K)
is compared in Table[6.3] The modulation index (M) is comparable to the NLP-OPF model.
The impact of the optimal index M on the network loss minimization objective function is

illustrated in Fig. [6.6] The network loss increases if the converters do not operate with the
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optimal modulation index. When the weight of the participation factor (K) increases, the
voltage deviation from the reference voltage (v]) decreases, which is demonstrated in Fig.
in terms of V D,,4,. Here voltage deviation is determined as V' D; = |v; — v!| for all the
buses in the network, and V' D, is the maximum voltage deviation among them. The time
of convergence (ToC) of the OPF analysis in Table shows the computational efficiency

of the proposed SOCP-OPF model for the 32-bus network.

22 23 24 32 31 30
25 26 27 28 29

1 2 3 4 6 7 8

9 10
loo“

15 14 13 12 11

19 20 21

*—© ®
hh DERs [ Converters @ ACbus @ DC bus

Figure 6.4: The modified 32-bus AC-DC network with converters.
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Figure 6.5: Voltage profile from the 32-bus network. Legend 'SOCP’ indicates the SOCP-OPF model, and
'NLP’ indicates the nonlinear-OPF results.

6.5.2  Case 2 (123-Bus Network)

For checking scalability and robustness, the proposed SOCP-OPF model is simulated on
the IEEE 123-bus network (base case) and with high penetration of DERs (30% DERs of
the total loads). The network is modified to create an AC-DC network structure, as shown
in Fig. [6.7 Three AC/DC converters (rectifiers) and one DC/AC converter (inverter) are
connected to the 123-bus network. The ratings of the converters are in Table [6.2] and
the placements are shown in Fig. , including the DERs. The AC/DC converters are
labeled as M; (bus no. 40-41), M, (bus no. 59-60), and M, (bus no. 116-117), and the
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Figure 6.6: % Loss vs M for the 32-bus network (30% DERs), when K=0.5.
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Figure 6.7: The modified 123-bus AC-DC network with converters.
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Figure 6.8: Maximum voltage deviation (V D,,q4,) across a branch.

DC/AC converter is labeled as M3 (bus no. 68-123), which makes the network structure
as an AC-DC-AC network. The base voltage for the AC-AC and DC-DC sides is 4.16 KV
and 6.8 KV, respectively. A maximum of 90% operating efficiency is considered for all of

the converters in the network. The optimal point (modulation index) of operation for the
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Table 6.4: Optimal M’ and percent of network loss for the 123-bus network

Conv Optimal Optimal Loss Loss
Case K ID. ™M’ ™M (%) (%)
(SOCP) (NLP) (SOCP) (NLP)
M1 1.6343  1.6671
M2 1.75233  1.7549
0.0 N3 05GOS 06T 14.95% 14.37%
M4 1.6817 1.6921
M1 1.6420  1.6590
Base M2 1.6517 1.6584
case 0.5 M3 0.6182 0.6142 15.34%  14.69%
M4 1.6380 1.6333
M1 1.6400 1.6308
M2 1.6504  1.6689
0.9 N3 06181 06130 15.81% 15.24%
M4 1.6325 1.6232
M1 1.6862  1.7029
M2 1.7461  1.7650
00 —N3— 05660 os5gaa 6% 9:35%
M4 1.7581  1.7648
M1 1.6417  1.6350
30% M2 1.6477  1.6405
DERs 0.5 M3 0.6177 0.6096 9.34% 9.63%
M4 1.6389  1.6340
M1 1.6402 1.6333
M2 1.6471 1.6424
0.9 N3 06176 06158 9.52%  10.02%

M4 1.6356  1.6324

converters is illustrated in Table for both OPF models for different participation factor
K values. With the increase of K, the network loss increases, and the voltage deviation from
the reference voltage decreases. Though the network loss increases by a small portion, the
objective function associated with the f; keeps the voltage within a stable limit. The voltage
mismatch is less than 0.01% between the two OPF models. Besides that, the modulation
index (M) from the OPF models is also compared. With the increase of the participation
factor (K), the voltage-deviation (V D,,,,) from the reference voltage (v}) decreases, which
is demonstrated in Fig. for the 123-bus network. The time of convergence (ToC) of
the OPF analysis for the 123-bus network is illustrated in Table [6.5] This shows that the

proposed SOCP-OPF model’s computational efficiency is superior to the NLP-OPF model.

Table 6.5: OPF analysis convergence time comparison

ToC (sec)
Case K ~socp-opr NLP-OPF

32-bus Network 0.0 0.21 5.37
(Base Case) 0.5 0.19 3.11
32-bus Network 0.0 0.16 3.84
(DERs) 05 0.20 3.15
123-bus Network 0.0 0.25 24.20
(Base Case) 0.5 0.21 10.76
123-bus Network 0.0 0.23 8.18

(DERs) 0.5 0.17 811
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Figure 6.9: solution-gap (o;;) from the SOCP-OPF analysis.

6.5.3  Tightness and Robustness of the SOCP-OPF Model

For the OPF analysis with the SOCP, in this article relaxes the voltage and current
phase angle and considers the McCormick relaxation for the optimal modulation index. The
model also considers conic relaxation and convex objective function f(z,y) for an OPF
solution. The tightness of relaxation of the SOCP model is analyzed with the parameter
of solution-gap defined as o;; = |ul;; — Sj|. The solution-gaps (o;;) for all the branches
are measured in the 32-bus and 123-bus networks for different participation factors K and
demonstrated in Fig. [6.9 When the participation factor is K ~ 0.5 for the net loss and
voltage deviation minimization objective, the solution-gap (¢;;) is minimum for the network.
Fig. illustrates that the solution-gap (o;;) is negligible for all the test values of K, so the
relaxation for the proposed SOCP-OPF model is tight for radial distribution networks with
AC-DC structure. The proposed model is tested with different participation factors K (i.e.,
0.1 to 0.9) and with multiple levels of DERs penetration (i.e., base case, 10%, 20% & 30%
DERs). For all the test cases, the SOCP-OPF model provides exact solutions, which are
verified with the solution from the NLP-OPF model and the results are illustrated in Table
[6.3] and Table[6.4l Due to space constraints, only the results for the base case and with 30%
DERs are included in the tables. Thus the analysis proves the robustness of the proposed

model.
6.6 Summary

This chapter proposes and analyzes a SOCP-OPF model for AC-DC structured radial
power distribution networks. Besides the operating points of the DERs, the proposed model
also determines the optimal modulation index of the converters in the network. The model

is simulated and evaluated for several modified distribution networks with AC-DC structure.
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Being convex, the AC-DC SOCP-OPF model always produces a globally optimal solution;
from the analytical analysis, the solution gap is negligible. So the relaxation of the proposed
model is tight, and the solution is exact. The solution from the AC-DC SOCP-OPF is
compared with an IPM-based NLP-OPF model for validation. Because of the computational
superiority, the time of convergence (ToC) of the AC-DC SOCP-OPF is significantly low
compared to the NLP-OPF model for the AC-DC network.Besides that, the proposed model
provides accurate OPF solutions for various participation factors in the objective functions

and with various DERs penetration levels. Which proves the robustness of the OPF model.



CHAPTER 7: A DISTRIBUTED OPTIMAL POWER FLOW (D-OPF) MODEL AND A
TIME-DEPENDENT REAL-TIME OPTIMAL POWER FLOW (R-OPF) MODEL WITH
SECOND-ORDER CONE PROGRAMMING (SOCP)

7.1 Introduction and Contribution

Optimal Power Flow (OPF) analysis is fundamental in power system planning and oper-
ation for particular objectives |[114]. The high penetration of distributed energy resources
(DERs) has recently increased the complexity of modern power distribution system net-
works [6]. So the OPF analysis for modern power distribution networks (PDNs) is crucial
for efficient and reliable grid operation. AC-OPF problem is naturally nondeterministic poly-
nomial (NP)-hard because of the non-linearity of the original AC power flow equations [13].
So, linear approximations are commonly used, but linear approximated OPF formulations
compromise with the solution accuracy [150]. Besides that, due to the non-convexity of
the original non-linear OPF (NLP-OPF), globally optimal solutions are not always guaran-
teed [114]. Because of these reasons, due to the computational superiority and the capability
of finding the global optimal solution convex, OPF models are extensively used in power sys-
tems |151-{153]. One of the most commonly used convex models using second-order cone
programming (SOCP) in power system analysis [22,126]. In prior research, it is proven that
the conic and angle relaxation are exact in radial-type power distribution networks with
certain conditions [68]. So, SOCP-OPF is a good candidate for distributed OPF (D-OPF)
analysis in radial distribution networks.

Traditionally OPF analysis of power distribution networks (PDNs) has been solved with
centralized optimization techniques using a central distribution management system (CDMS)
[44,/154]. High penetration of DERs forms active DNs [155,|156] with increased numbers of
controllable devices and distributed active components. This makes the centralized OPF al-
gorithms complex and sometimes computationally infeasible. Besides computational, main-
tenance, and operational issues, CDMS becomes a vulnerable target for cyber-physical at-
tacks [157]. Also, in the CDMS, the entire network fails for single nodal mismanagement or
operational failure. From these points of consideration, D-OPF is considered for centralized
or decentralized operations for distribution networks.

Researchers have proposed and explored several approaches for solving OPF problems in
a distributed fashion OPF analysis. The most commonly used techniques for D-OPF are
based on the alternating direction method of multipliers (ADMM) [44]. Several D-OPF
techniques based on the ADMM algorithm have been discussed in |17},66,88,(96]. For the
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ADMM-based D-OPF models, micro-iterations are counted for local area OPF, while macro-
iterations exchange information for the global variables among the decision-making agents.
Micro and macro-iterations decide the actual time of convergence (ToC) for the algorithm for
a distributed OPF. Even with multiple acceleration methods, the ADMM-based OPF mod-
els require a comparatively large number of iterations for convergence [22|. Thus the ToC
increases for a moderate-size network [18[158]. Besides that, many iterations and a more sig-
nificant communication channel are also required among the distributed areas, which makes
the system impractical or more expensive. Real-time feedback-based methods [68,/69] and
auxiliary problem principle-based [90] models have been explored. However, these methods
also suffer from either a higher number of iteration issues or data exchanging communica-
tion channel latency issues. So, this chapter is motivated by the reduced equivalent network
approximation (ENApp) approach for the D-OPF for radial networks |158].

Because of the computational efficiency and exactness [68,90], the SOCP-based OPF
model is considered for the proposed D-OPF analysis. For the D-OPF methodology, the
networks are divided into several micro areas, and local OPF analysis is conducted for each
area. Then the optimal operating information is shared among the areas for the optimal

operation of the whole network.
7.1.1  Major Contributions

The main contributions of the proposed work are as follows:

e Proposed a novel distributed optimization approach using SOCP in radial power distri-
bution systems, which leverages a computationally tractable and efficient OPF model

for a globally optimal solution.

e The proposed D-OPF method converges to the solution with comparatively similar
convergence time as centralized OPF analysis with a less computational burden. Also,

it minimizes the effect of the cyber-physical attack on the whole power system network.

e The relaxation is tight for the SOCP D-OPF model, and the model provides an exact

solution with the high penetration of DERs in the network.

e Proposed a time-dependent SOCP-based model for real-time OPF analysis which fa-

cilitates monitoring and control of the grid for an optimal and reliable operation.

In this chapter, the SOCP-OPF methodology in a relaxed framework is discussed in Section
7.2. Section 7.3 discusses the model implementation and the simulation result analysis. Sec-
tion 7.4 proposes a real-time OPF model with simulation analysis and Section 7.5 concludes

the chapter with a summary.
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The variable and parameters used in this chapter are as follows:

N:  Set of all the buses in the network

N:  Set of the buses

N,:  Set the buses with DERs

L:  Set of the branches

T:  Set of the discrete-time instants

Vi Bus voltage at i € N

w;:  voltage magnitude square at i € N/

sJ: Injection of power (apparent) at i € N,
sd: Load at i € N

p?:  Injection of power (real) at i € N,

pl:  Load (real) at i € N

¢):  Injection of power (reactive) at i € N
qd:  Load (real) at i € N

P,;: Power flow (real) in L;; € £

Qi;:  Power flow (reactive) in L;; € £

Sij:  Power flow (apparent) in L;; € £

I;;: Current through L;; € £

lij: Square of current magnitude through L;; € £
z;;:  Line impedance of L;; € £

¢;: DER’s cost-coefficients at i € N,

7.2 Proposed Methodology (Relaxation and Convexification)
7.2.1  Angle and Conic Relaxation for SOCP-OPF

For the OPF analysis, we have considered the branch flow-based power flow model, which
is discussed in this section. This section also elaborates on convexification with angle and
conic relaxation. N is defined as a set of N number of elements for a radial network with N
buses and L is the set of (N — 1) of branches. The set of DERs-connected buses is defined
as N,. V; denotes the voltage at a bus i € N of the network. If S;;, and I;; are defined as
the power (apparent) and the current flow, the power flow relations for a branch L;; € £

concerning the bus pair (i, j) € N are as follows:

S
Vi =Vi- 0 (7.1b)

where z;; = 1;; + jx;; is the branch impedance of L;; € L. For the bus j € N, the power

balance relationship is as follows:

s§ = s+ Sy — zllyl* =y Vil = > S (7.1c)
k:j—k

g

where y; is the half-lump shunt admittance and y; = g; + jb;. s is the apparent power

injection, and s? is the apparent power of load associated with the bus j € N.

The non-convex equations concerning the network power flow in (7.13a]) - (7.13c) are

convexified with angle and conic relaxations. The angles for the proposed model are relaxed,
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and new variables have been introduced as |I;;|* = l;;; L;; € £ and |V;|*> = u;; ¢ € L. So the

power flow equation (7.13a))- (7.13c)) are converted as follows:

wi = uj — (2S5 + Z3585) + | Zy*liy = 0 (7.2b)

Here ([7.14b)) is derived from the square magnitude in ([7.13b)). With the new-defined variables

and further considering S;; = Py + jQuj, y; = g; + jbj, s7 = pf + jq¢f, and s] = pf + jqf;

(7.13c)) is split in terms of real and reactive power as follows:

P — p;l + Bij — rijlij — gju; = Z Py, (7.3a)
k:j—k

q] — C]? + Qij — @ijlyy — bju; = Z Qi (7.3b)
k:j—k

With further simplification in ([7.14b|) the voltage relationship is obtained as ((7.15c]).
i — ;= 2(ri; Py + 24;Qi) + (i + 2i)li; =0 (7.3¢)

As ([7.14a)) is still a non-convex relation, the convex model is derived With further conic

relaxation shown below:
2P

ij

U; — lij )

7.2.1.1 Convex SOCP-OPF Model

Primarily OPF analysis is performed on a network to find the optimal point of operation
for an objective f(x). For the exactness, we have considered convex objective functions f(z)
(i.e., loss minimization as, min Y r;;l;; and generation cost minimization as, min > [ch(p?)*+
cip? + ci]) for the SOCP-OPF analysis in this article with ¢ > 0. Here, c5($/MWh?),
¢ ($/MWh) and c{($/h) are the quadratic coefficients of the generators. The SOCP-OPF

model is as follows:

min f(z) (7.4)
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Figure 7.1: Distributed Area Configuration of radial distribution networks.
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where i and p! are the minimum and maximum limit of real power injection and ¢¢ and q’
are the minimum and maximum limit of reactive power injection from the DERs at the bus
i € N,. For voltage, the operational minimum and maximum limits are defined as u; = |V,]?
and u; = |V;|% i € N. Network thermal limit is considered as, l;; = |I;;|?. I,; represents the

rated current for L;; € L.
7.2.2  Proposed SOCP D-OPF Model

The SOCP-based distributed OPF (D-OPF) model divides the power network into several
sections, which provides the benefits of local area control and minimizes the cyber-physical
attack’s effect on the whole power system network. The divided area sections are considered
as up-stream area (USA) and down-stream area (DSA) as shown in Fig. If a section is

in the middle of two sections, then it will operate as USA for the section towards the radial
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end and as DSA for the section towards the sub-station. The SOCP-OPF analysis shown in
the previous section is executed for each area for a local optimal operation point. Then the
information is exchanged between the USA and DSA for the next macro iteration, illustrated
in Fig. [7.2]

The data z; (i.e., py,q,) from the DSA is passed to the USA, and z; (i.e., V) from the
USA is passed to the DSA for the next macro iteration at the point of common connection
(PCC). The iteration continues until the value of z; is under a particular mismatch tolerance
value ’¢’. For a USA network section, if the PCC bus is labeled as bus j € N, then at the

tth

PCC for the up-stream area at the ¢** macro-iteration follows the power balance and voltage

relationship as follows:

P+ Py — rili; — gju; =0 (7.6a)

g5+ Qi — xyll; — bjul =0 (7.6b)

J

t—1 t—1

t t t—1 -1
where p§ = p? - p“f - [pgDSA] and q§ = q? - q]d - [QJg:JSA] . Here, [pgDSA]t and [quSA]
is the total amount of real and reactive power injection from the PCC to the DSA section at
the (t — 1) macro-iteration. The voltage at the bus j € A is determined as follows within

the conic space.

up —ul = 2(ry; Pl + 24;Q0) + (rf, + 23l =0 (7.6¢)
2P};

w1 > || 2Q (7.6d)
uj — i

For a DSA network section, if the PCC bus is labeled as bus j € N'. The PCC voltage in

f

the USA from the #" macro-iteration is labeled as u;” = yga. Then for the down-stream

area for the (¢ + 1) iteration at the PCC:

Pheal ™ = Z Pfijl + gjuy (7.7a)
k:j—k
[ggpsal ™ =D QU + byult! (7.7h)

k:j—k
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uit = u;ef (7.7¢)

Based on this formulation, the SOCP D-OPF model implementation is discussed in the

following section.
7.2.2.1  Model Implementation

If a network is split into a N4’ number of areas, then for the proposed D-OPF model,
there will be (N4 — 1) numbers of PCCs. At each PCC, the variable 25 (up.. for this article)
is compared for consecutive iterations until the change of z5 is lower than a certain value (e)
as |z§j§§co — 25 poel < € In this article, € = 1 x 107°. When the voltage at all the PCCs
satisfies this condition, the D-OPF analysis converges. The area with the sub-station is
always the USA, and an area with a radial end is always a DSA. The intermediate areas are
considered as both USA and DSA with two PCCs. The variable z; pcc is the (pbeos ¢boc)
for the USA and (p%c, ¢poc) for the DSA. The exchange of the variables of z; and 2, of the
proposed SOCP D-OPF model is illustrated in the Algorithm [d Apart from the PCC buses,
other parts of the area networks follow (7.15a])-(7.15d)) for the power balance and voltage

determination for (7.16]) and (7.17).

Algorithm 4 Data exchange of SOCP D-OPF
e=1x107% Az =1 and n =1 (macro-iteration)
while Az > e do
if An area A; is only a USA or a DSA then
if n =1 then

| 21 & 25 < initial value.
end

if n > 1 then
1
A rsaa) © 2 DsA(AL) *(For USA)
t+1
Z2:E)SA(AH1) < 2 usaan) *(For DSA)

end
Az = |4+ — 2
end
if An area A; is both USA & DSA then
if n =1 then
| x1 & x9 < initial value.
end

if n > 1 then
t+1 t
FLUSA(A)  FLDSA(Ai)
t+1 t
23 DSA(A;) S F2,USA(A;_1)

end

Az = |25t — 2]

> *Two Azy, values from two PCCs
end

Az = max{Az, Azy....Azn, 1}
n<n+1

end

In D-OPF models, the local OPF analysis is performed in the micro-iteration time pe-

riod for each area. While the exchange of variables and operational information among the
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decision-making agents is performed at the macro-iterations. The macro-iterations are dic-
tated to the communication systems. For power system analysis with the D-OPF algorithm,
the time of convergence (ToC) is decided from both micro and macro iterations together.
As SOCP-base OPF models are computationally very efficient, the proposed ENApp-based
D-OPF model requires very few micro and macro iterations. While the existing OPF models
based on alternating direction method of multipliers (ADMM) algorithms require a large
number of macro-iterations (i.e., > 100 iterations) for relatively small systems |159,/160]. In
this article, we have compared the benefits and the efficiency of the proposed SOCP D-OPF

model with ADMM based D-OPF model.
7.2.3 ADMM Based D-OPF Model

The OPF problem defined in this article can be expressed as follows [161] and adopted
from [162]:
min f(x)+ g(z) (7.8a)

subject to Av + Bz =c¢ (7.8b)

where z € R", z € R™, A € RP*", B € RP*™ and ¢ € RP. n,m and p are the number of
variables in x, z and the number of rows in ([7.8b]), respectively. The variables of the objective
function ([7.16]) are separated into two parts, x and z, where f and g are convex functions.

Based on (7.8)), the augmented Lagrangian matrix is formed as follows:

L(z,2,\) = f(x) + g(2) + \T(Az + Bz — ¢) + (p/2)||Az + Bz — C||5 (7.9)

where p > 0 is the augmented Lagrangian parameter, and A is the Lagrangian multiplier.

The variables are updated as follows:

o= argmin L(x, ', \") (7.10a)
2= argmin L(z') 2, 9/) (7.10b)
AL = N p(Az™™ 4+ B2 —¢) (7.10c)

The dual and primal residual at (¢ + 1) iteration are:

s = pATB(Z - ) (7.11)

ritt = Az + B2 — ¢ (7.12)

The ADMM-based D-OPF iterations will converge when the residual and primal are less

than the tolerance 1075,
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7.3 Simulation and Evaluation (D-OPF)

The distributed SOCP D-OPF model is analyzed in the Matlab platform using the MOSEK
solver. For test cases, we have considered multiple IEEE standard test cases (i.e., IEEE 123-
bus and 8500-bus network systems) for experimental analysis. The optimal solution from the
SOCP D-OPF is compared and analyzed with the centralized SOCP C-OPF. Further, the
ToC from the SOCP D-OPF proposed in this article is also compared with ADMM based

OPF model and the observations are discussed below.

IEEE 123 Bus Network
———31 32 119 ) _/,‘,Area'z (\1\13 112 114 115 116
g=51 52 53 120 )
) 111 ‘
| / 110 4
. — 121 108 100 \_
\ 3 107 N
\ a \ @
104 105 106" @
"| 103 f,' =
< | / 124 -
s | 22 21 20| O 100 101 10212\3\
Z ) 1316 126 || /7__7/ 64 9
‘ 761 60 59 g2 | 125 128¢g9| 70 71 72 73
e Vo !
, 4 t - ) 63 122 75 76 77 /
"o o o ¢ e% 74 _.
| 2 > (117 54 55 56 57 58 73 @ @—0 & |
N\ ‘\\\ \
~s 36 \\ 98 96 94 92 S0 85 g\
-‘“—"'*’1 18 17 1?‘/,-' /97 95 93 9185 88 84 83 86 s_yI

Figure 7.3: IEEE 123-bus network (re-numbered) with area divisions.

7.3.1  Case 1 (IEEE 123-bus Network)

For robustness, the OPF model is simulated in the base case and with penetration of
DERs on the IEEE standard 123-bus network. The area division and the renumbering of the
network are shown in Fig. [7.3] The areas are divided at the switching buses of the network.
The Area-1 is the USA, while Area-2 and Area-3 are DSAs for the Area-1. For these three
areas of the 123-bus network, there are two PCCs. PCC-1 is the connection point between
Area-1 and Area-2, while PCC-2 is for Area-1 and Area-3. The voltages (22) at the PCCs are
illustrated in Fig. with D-OPF macro-iterations with DERs which shows that the D-OPF
converges after the fifth iteration. The voltage profiles are compared with the centralized
SOCP-OPF (C-OPF) and illustrated in Fig. considering both the base case and with
DERs. The mismatch between voltages from the D-OPF and C-OPF for both cases is less
than 0.01%. The power injection from the DERs is shown in Table and the percent of
network loss is illustrated in Fig. [7.6] For calculating the percent of loss for the D-OPF, the
loss of the PCC branches is not considered, which is very negligible. The results show that

the simulation results from the proposed D-OPF match the C-OPF model. The 123-bus
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network is divided into areas as only USA and DSA. However, for the proposed D-OPF, a
power network may have an area that operates as both USA and DSA. The model is further

simulated and analyzed for large networks to evaluate the performance of the SOCP D-OPF

for those areas.

1.05
_1.04 ¢
=
=2
-

1.03

1.02 ' '

1 2 3 4 5
Iteration No.

Figure 7.4: Voltage at the PCCs with macro-iterations in IEEE 123-bus network (with DERs).
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Figure 7.5: Voltage profile comparison between SOCP-based distributed OPF (D-OPF) and centralized OPF
(C-OPF) for IEEE 123-bus network. 'Base’ and 'DERSs’ are for the base case and with DERs in the network.
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Figure 7.6: Network loss comparison between centralized OPF (C-OPF) and distributed OPF (D-OPF).

7.3.2  Case 2 (IEEE 8500-bus Network)

For analyzing the scalability, we have considered the IEEE 8500-bus distribution system

network. The network is converted to a single-phase equivalent 2522-node system network
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Table 7.1: Power injection from the DERs
( IEEE 123-bus network)

DERs Centralized OPF Distributed OPF
(Bus No.) Pg(KW) qo(KVAR) py(KW) qy(KVAR)
1(Sub-station)  998.0 563.3 997.6 562.0
11 13.30 8.82 13.30 8.85
30 13.30 8.80 13.35 8.80
60 6.75 4.45 6.75 4.44
67 46.75 30.9 46.75 30.85
78 13.30 8.80 13.30 8.83
89 13.30 8.80 13.30 8.83
50 70.00 46.42 70.00 46.45
120 13.30 8.80 13.30 8.80

2522-bus Network

Figure 7.7: IEEE 8500-bus (2522 nodes) network (network is divided into six areas).

1.05®

V (pu)

0.95 ' ' ' ' :
500 1000 1500 2000 2500

Bus No.

Figure 7.8: Voltage profile comparison between SOCP-based distributed OPF (D-OPF) and centralized OPF
(C-OPF) for IEEE 8500-bus network (2522 Nodes) with DERs.

[158]. For analysis, the 2522-bus network is divided into three and six areas as shown in
Fig. [7.7 Area-1 is always the USA for the six area divisions, and Area-3 & 6 are always
DSAs. However, Area-2, 4 & 5 operate as both USAs and DSAs. The voltage profile for the
2522-node system with DERs penetration is illustrated in Fig. [7.8f The mismatch of the

voltage amplitude solution from the D-OPF and C-OPF is less than 0.01% for both three
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Table 7.2: Comparison of time of convergence (ToC) between centralized (C-OPF) and distributed (D-OPF)
models

C-OPF D-OPF
Test case Time (sec) No. of Time (sec)

SOCP Areas SOCP ADMM
123-bus (Base case) 0.25 3 0.88 136
123-bus (DERs) 0.30 3 052 93
8500-bus (Base case) 1.06 3 2.68 681
8500-bus (DERs) 1.53 3 3.12 476
8500-bus (Base case) 1.06 6 7.56 N/A
8500-bus (DERs) 1.53 6 866 NJA

and six-area divisions. The percent of network loss for the 2522-node network is illustrated
in Fig. [7.6] Besides these, We have compared the solution from the SOCP D-OPF model
with an ADMM-based OPF model for IEEE 123-bus and 2522-bus networks for three area
divisions. The time of convergence (ToC) for different OPF models is illustrated in Table
[7.2l Due to the macro-iterations, the ToC is higher for the SOCP D-OPF model than the
SOCP C-OPF but significantly lower than the ADMM-based D-OPF model. As the SOCP
D-OPF model can be applied to any number of divisions, the model can be solved for very

large power with the least risk of a cyber-physical attack on the whole power system network.

7.4  Real-time OPF Analysis

The modern power grid incorporates many DERs and controllable loads, introducing ran-
domness and fluctuations, increasing the complexity of modern power distribution system
networks [6]. So the OPF analysis for modern power grid networks is crucial for efficient
and reliable operation. For this reason, the real-time-based OPF analysis is getting much
attention [163|, and traditional optimal power flow methods are only appropriate for appli-
cations that operate on a slow timescale [163]. The time-dependent OPF model is applied
on a Real-time based power grid designed in a real-time platform. For the real-time OPF
analysis, a communication channel is needed to interchange the information between the
OPF model and the power grid. That information on load change contingency is immedi-
ately transferred to the OPF model analysis platform to find the new optimal grid operation
reference point. This project has three major parts: the time-dependent convex SOCP-OPF
model, the communication platform, and the grid model in the real-time simulator platform,
as shown in Fig. [7.9. The real-time-based model computes the optimal reference signal to

the DERs, ensuring stable power-sharing among the DERs.
7.4.1  Time Dependent OPF Methodology

Time-varying loads and generations are considered for the branch flow-based real-time

OPF analysis. For the model formulation, £ is noted as the set of all the branches, and N is
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Figure 7.9: Proposed real-time OPF analysis platform.

the set of all buses in a power network. The set of time instants is assumed to be a discrete
set and is denoted by 7 . t € T is a time instant of the network operation. For each bus
i € N, let V;(t) is the complex voltage phasor, and s;(t) be the net apparent power injections
at bus ¢ at time ¢. The complex current phasor through line L;; € £ is denoted by I;;(t) for

a time instant t. For steady states, the power flow equations are as follows:

S(t) = Vi(t)I:(1) (7.13a)

where S;;(t) stands for the apparent power flow through the branch L;; € £ at the time

instant ¢. Further voltage drop and power balance relations are as follows:

- 2ij55(t)
Vi(t) = Vi(t) — —Vi*(Jt) (7.13b)
sIt) = s9(t) = D> Sir(t) = Y (Sig(t) — 25115 (D)%) + v [Vi (1) (7.13¢)

kij—k ii—j
where z;; = 7;; + jx;; is the impedance of a branch L;; € L. 3? (t) is the apparent power
injection, and s?(t) is the apparent power of load associated with the bus j € N at a time
instant t € T.

7.4.1.1  Angle Relaxation

This article analyzes the real-time OPF analysis for radial power distribution networks.

The non-convex power flow equations in ([7.13a) - (7.13c|) are convexified with angle and

conic relaxations in this section. With angle relaxation, new variables have been introduced
as |I;(6)]? = 1;;(t); [V;(t)|* = u;(t) and |V;(¢)]* = u;(t). So the power flow equation (7.13al)-
(7.13c]) are converted as follows:

S2.(t) = ui (1)l (1) (7 142)
Taking the voltage magnitude square in ((7.13h)):

w;(t) = wi(t) + |25 (8) — (2555 (t) + 255535 (t)) (7.14b)
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Further considering the new-defined variables and with angle relaxation (7.13b|) at the bus

j € N for the time instant ¢ € T is represented as follows:

s9(8) = s9(8) = Y Si(t) = D (Sis(t) = 245 (1) + u;(t) (7.14c)

kj—k i

Further considering Si;(t) = Py(t) + jQu;(t), y; = g5 + jbs, si(t) = pj(t) + jq}(t), and
s3(t) = pJ(t) + jqf(t); (7.14d) is split in terms of real and reactive power as follows:

pi(t = Y Pult) = Y (Py(t) — rigli (1) + gu5(0) (7.15a)

k:j—k :i—]

qj(t) — q] Z Qjk(t) Z (Qij (1) — wijli;(t)) + byu;(t) (7.15b)

k:j—k 1:0—]
where y; = g; + jb; is the half lump shunt admittance equivalent of the line at bus j € N.

With further simplification in ((7.14b|) the voltage relationship is obtained as:
wi(t) = ui(t) = 2(ri Py (t) + 245Qu5(t)) + (rf; + )i (1) (7.15¢)

7.4.1.2  Conic Relaxation

As ([7.14al) is still a non-convex relation. For a time instance t € T, (|7.14a) is relaxed
With further conic relaxation. The solution space is relaxed with a convex solution space.

The second-order cone relaxation is as follows:

2P;(t)
u;(t) — (1)

7.4.1.3  Time Dependent R-OPF Model

With the capability of fast convergence, SOCP-OPF models are a good candidate for
real-time OPF (R-OPF) analysis. The R-OPF analysis depends on the feedback for the
time-varying loads and renewable generations on a faster timescale. The proposed model
aims to optimize an operational objective under the network’s physical and operational
constraints for any time period ¢ € T with controllable devices in the network. The proposed
OPF model considers convex objective functions f(z(t)) (i.e., network loss minimization
as, min Y r;;1;;(t) and generation cost minimization as, min Y [ch(P?(t))* + ¢ PY(t) + c})).
Here, ci($/MWh?), c¢i($/MWh) and ci($/h) represent the quadratic cost coefficients of the
generators. The SOCP-OPF model is as follows:
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min f(z(t))

subject to: ([7.15a)-(7.15d) and,

p? <p) <P
<gsﬁsﬁ
li; < Zij

111

(7.16)

(7.17)

where N is the set of all buses with DERs, (.) and (.) represents the minimum and

maximum limits of the variables and parameters. Current flow limit is defined as l;; = |I,;|?.

I;; is the rated current for the branch L;; € L.
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Figure 7.10: Real-time OPF analysis setup.
7.4.2  Simulation and Evaluation (R-OPF)

Matlab platform is used to simulate and analyze the proposed time-dependent OPF model.

For real-time analysis, Opal-Rt is used with the Rt-lab platform. A real-time compatible

IEEE 123-bus network is modeled using Rt-lab and Simulink for the Opal-Rt platform. DERs

are modeled and connected at the buses shown in Fig. [7.I0] The SOCP-OPF analysis is

performed with Matlab for a load profile at the time instance t € T for the objective of

minimum network loss f(z(t)) = min ) r;;l;;. The set-points of the DERs are transferred
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Figure 7.11: Voltage change at the buses with DERs in real-time analysis.

from the OPF platform to the DERs in Opal-Rt. Any load change or any contingency
to the network information is transferred to the OPF platform for new set-points of the
DERs. Operational performance is illustrated in Fig with the voltage profiles of the
buses connected with the DERs. With high computational efficiency, the SOCP-OPF model
converges very fast. So a snapshot of one minute of the grid operation is illustrated with the
voltage profile. within this 60 seconds time frame, at 15 seconds, the DERs start to dispatch
power with the set-points from the OPF analysis, and load changes at 35 and 48 seconds.
This information of load change is transferred to the OPF platform, and the new set-points

of DERs are again determined for the next minutes.
7.5  Summary

This chapter proposes and analyzes a SOCP D-OPF model for radial-type power system
networks and a real-time-based R-OPF model. The D-OPF model is analyzed with the
simulation and evaluation for different standard IEEE distribution test feeders and compared
with the centralized SOCP-based C-OPF and ADMM-based D-OPF models. From the result
analysis, the angle and conic relaxations are tight for the D-OPF model, and the model
produces optimal global solutions for convex objective functions like C-OPF. Besides that,
for the capability of dividing a network into several areas, the proposed OPF model offers
convenient local area control and minimum risk of cyber-physical attack on the whole power
system network. Due to the computational efficiency, SOCP base OPF models are good
candidates for real-time OPF analysis of the power grids. For future research, the D-OPF
and the R-OPF model are extendable for OPF analysis in transmission-distribution (T&D)
networks. Though the conic relaxation is always exact for the meshed transmission networks,

the angle relaxation may not always be. So the bus voltage cyclic angle constraints must be

satisfied for the OPF models for T&D OPF analysis.
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8.1 Conclusion

This dissertation has proposed novel and efficient OPF models for power distribution
and transmission networks using second-order cone programming (SOCP) for reliable and
optimal power system planning and operation of the complex modern power grid. This
research analyses the global optimality and exactness of the proposed OPF models with the

necessary conditions for the tightness of the angle and conic relaxations. In conclusion,

e This dissertation proposes a novel SOCP-OPF model with bus voltage angle recovery
for voltage regulation with reactive power flow control in radial power distribution

networks. The voltage control algorithm provides a better control scheme.

e This research also proposes a novel SOCP-based AC-OPF model for unbalanced three-
phase radial power distribution networks considering the mutual coupling effects on

the three-phase unbalanced lines with a coupling coefficient approach.

e Besides the distribution networks, this work also presents a novel SOCP-based OPF
formulation for transmission system power networks with exact angle relaxation satis-
fying the cyclic angle constraints. This dissertation derives a convex envelope for the

proposed OPF model for meshed transmission networks.

e With the high penetration of DERs and efficient converters, power grids are proposing
an AC-DC-based hybrid network structure. This dissertation also presents an OPF
formulation for AC-DC hybrid power distribution networks with SOCP and McCormick

relaxation for the optimal modulation index for the converters.

e This research proposes a distributed OPF (D-OPF) model for distribution networks
extendable to transmission-distribution (T&D) coupled networks. Finally, the disser-

tation is concluded with a time-dependent OPF model with a real-time platform.

All the proposed OPF models in this dissertation are analyzed in multiple and extensive
networks, and the results show that the models are exact and produce globally optimal
solutions to heavily DER-connected power grids. With the convexness and computational
efficiency, the solution time of convergence of the SOCP-OPF models is superior to the NLP-
OPF and SDP-OPF models with less computational burden. Due to the optimal solution
feasibility, the proposed SOCP-OPF models in this dissertation are promising solutions for

the OPF analysis for complex modern power grids.
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8.2  Future Works

Some of the future research in this direction includes

e We have proposed convex OPF models for power distribution and transmission net-
works. The SOCP-OPF models are extendable for mixed integer type OPF analysis

and for receding horizon control (RHC) optimization for power systems.

e This thesis work has proposed a distributed convex D-OPF model for distribution
networks which is extendable to co-OPF analysis for transmission-distribution (T&D)
coupled power system networks. The real-time R-OPF model is also extendable to the

real-time-based operation and control for T&D networks in future work.
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