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ABSTRACT 

 

LUKE DEMARS. Specification and modeling of mid-spatial frequency errors in optical 

systems. (Under the direction of DR. THOMAS J. SULESKI) 

 

Recent advancements in manufacturing and post-processing of optics with sub-aperture 

methods have enabled greater degrees of freedom to realize complex optical surfaces. 

Introduction of residual mid-spatial frequency (MSF) surface errors is a consequence of 

sub-aperture manufacturing. MSF errors have spatial frequencies between ‘low frequency’ 

form and ‘high frequency’ roughness with ambiguous bounds and with distributions that 

range from nearly random to highly deterministic and complex, depending on 

manufacturing method and conditions. MSF errors degrade optical performance and 

present significant challenges for both specification and optical performance predictions. 

The lack of specifications that directly connect to optical performance and the lack of 

widely available capabilities and procedures for modeling of generalized MSF errors are 

significant impediments to understanding their impacts in imaging systems. 

The primary goals of this dissertation are (1) to explore and expand the connections 

between MSF specifications and optical performance for complex MSF error distributions, 

and (2) to demonstrate the implementation of these concepts within commercial software 

packages to enable the exploration of generalized MSF errors in optical systems. Results 

are addressed through three articles. The first article addresses the mathematical 

development and benefits of pupil-difference probability distribution (PDPD) moments to 

specify MSF errors and connect them to optical performance. The second article builds 

from this work to provide modeling procedures and explores their application to both 

random and deterministic MSF errors. The third article demonstrates the integration of 
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these new concepts and methods into MATLAB™ and CODE V™, and their use on sample 

refractive and reflective imaging systems. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background and Motivation: Mid-Spatial Frequency Surface Errors and Impacts on 

Optical Performance 

Sub-aperture manufacturing has enabled the development of compact freeform systems 

that provide novel functionalities in imaging and non-imaging applications [1]. Mid-spatial 

frequency (MSF) surface errors are by-products of sub-aperture manufacturing processes 

that fall between form and roughness  [2]. There are several different definitions for MSF 

surface errors based, for example, on period  [3] and spatial frequency  [4], residual error 

after fitting the first 36 fringe Zernike terms [2], Fresnel length [2], and location of 

diffracted light outside the core of the point spread function  [5]. However, these definitions 

do not consider the optical footprint of the part [6] or the distribution of the MSF surface 

error  [7–10]. 

Standard MSF distributions include raster, radial, or azimuthal distributions, as shown 

in Figure 1-1 (a-c)  [2]. While the standard distributions cover relevant cases, MSF 

distributions can be considerably more complex, such as a superposition of the distribution 

classes over a broad range of mid-spatial frequencies [11,12], as shown in Figure 1-1 (d). 

 

 
Figure 1-1: (a-c) Representative idealized MSF signatures. (d) Experimentally 

measured surface that contains a superposition of raster and radial MSF errors.  
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The complexity of MSF surface errors arises from multiple sources in sub-aperture 

manufacturing, including the toolpath, tool geometry and wear, vibration, thermal errors, 

and material [1,13–15]. Considerable efforts have been made to mitigate MSF errors by 

post polishing  [16–21] or random tool paths  [22–30] while other methodologies focus 

either on non-contact processing methods or tool design optimization  [31]. 

Efforts to understand and prevent MSF errors in sub-aperture manufacturing have been 

made because these errors have a variety of impacts on optical performance, including 

image degradation [6,32,33], ghost images [34], low-angle scattering [5,35], self-

imaging [36,37], distortion [38,39], and reflectivity in the x-ray regime [40]. Previous 

methods for performance prediction of imaging systems with MSF surface errors have 

assumed random or isotropic error distributions [5,41,42]. This assumption of randomness 

has presented a challenge for the specification of generalized MSF errors and their 

connections to optical performance, as MSF errors with similar single valued statistics can 

have drastically different optical performances [7,9,10,43]. To illustrate this challenge, two 

MSF surface errors, each with the same root mean square (RMS) surface error of 70 nm 

and peak to valley (PV) of 200 nm, have been superimposed onto identical but separate 

BK7 planoconvex lenses with the same focal length of 100 mm.  We then use the 2D image 

simulation tool in CODE V™  [44] to simulate the image of a USAF bar target at a source 

wavelength of 546 nm, as shown in Figure 1-2. Figure 1-2 shows that, although both MSF 

errors have the same specifications, they have different imaging performance. The 

difference can be seen in the directionality of the degradation in the 2D modulation transfer 

function (MTF) in each case. For the radial MSF distribution, the 2D MTF has radially 

symmetric degradation which produces a halo blur in its image. For the raster MSF 
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distribution however, the 2D MTF degradation is in the direction of the surface error, which 

produces duplicate images as previously described by Tamkin [34]. 

 

 

Figure 1-2: Comparison of imaging from lens elements with MSF errors that have 

different distributions but similar statistics. 

 

 

Progress has been limited in specification and modeling of generalized MSF surface 

errors due to the assumption of isotropic or radial MSF surface errors and a lack of 

commercially available software and procedures to model generalized MSF surface errors 

in imaging systems. With this in mind, this dissertation addresses these challenges by first 
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exploring use of novel areal specification methods that facilitate differentiation of the 

performance impacts of different MSF error distributions. A workflow is then developed 

and implemented in commercial software packages to demonstrate use of these areal 

specifications to assess the impacts of generalized MSF errors at a system level.  

 

1.2 Review: Areal Specification  

The general goal of areal specification is to quantify complex distributions where one-

dimensional specification tools and metrics would leave ambiguity [9,45,46]. Historically, 

three primary methods of areal specification have been used: areal power spectral density 

(PSD), orthogonal decomposition, and the area structure function (ASF). We now briefly 

review these three methods and their limitations below. 

The areal PSD is a 2D plot that quantifies the normalized Fourier magnitude squared as 

a function of spatial frequency [46] and has been utilized in both cartesian [47–49] and 

polar formats [11,50–53]. A main benefit of using the areal PSD is that it can distinguish 

between different MSF distributions  [11]. However, the primary quantifiable metric 

obtained from the areal PSD is the RMS of the surface error [54]; phase information is lost 

from taking the modulus during calculation of the areal PSD. It is also possible to determine 

the RMS slope, curvature, and shape parameters [55]. While the RMS slope has previously 

been used for specifying MSF errors  [40,56,57], the curvature and shape parameters have 

been under-utilized. One recent approach proposed stitching together the amplitude and 

phase of multiple 2D Fourier transforms of height maps of increasingly higher resolutions. 

The inverse Fourier transform of the 2D stitched spectra is then taken to construct a highly 

resolved height map [53]. However, no further analysis or use of the highly resolved 

surface was proposed after reconstruction.  
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Orthogonal decomposition has also been used to specify MSF surface errors by 

decomposing the surface error into a weighted sum of orthogonal polynomials. The 

weighting coefficients of the individual polynomials in the basis set can be visually 

represented with a two-dimensional ‘coefficient map’ [58] that can facilitate the 

identification of different MSF distributions. This method has previously been applied, for 

example, for circular surfaces using sag orthogonal [59,60] and slope orthogonal basis 

sets [49,61], for square apertures with sag orthogonal basis sets [48,62], and for more 

general aperture surfaces using basis sets that have both global and local properties [63–

66]. MSF specification using orthogonal decomposition can require tens of thousands of 

terms to adequately quantify the MSF surface errors. 

Lastly, the ASF is a 2D map of height difference variance across a surface aperture [67]. 

The ASF is an adaption of the structure function, which originated in turbulence 

modeling  [68]. A benefit of the ASF is that it can assess non-stationary surfaces which is 

relevant for the analysis of both form and MSF errors [67]. Researchers have also shown 

that the ASF can be stitched together from multiple instruments and can quantify the 

impacts of the metrology platform instrument transfer function (ITF) on the surface [69]. 

A limitation of the ASF is its lack of connection to optical performance. Liang and Alonso 

showed that the ASF can be utilized in a transfer function under the assumption of Gaussian 

statistics [70], but MSF errors do not necessarily follow Gaussian statistics [10]. In this 

dissertation, we introduce the pupil-difference probability distribution (PDPD) moments, 

which are related to the ASF but are a generalization of the height difference moments [10], 

and show their connections to optical performance. 
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1.3 Challenges with Optical Modeling of MSF surface errors 

Historically, three main approaches have been used for modeling the optical 

performance of MSF surface errors. The first uses perturbation theory [42,71,72] and 

statistical optics [73]. Perturbation theory assumes that the amplitude of the perturbation 

of the alignment or surface of an optic is small enough to approximate the optical path 

length of the perturbation as the difference in path lengths between the nominal system and 

the system with the perturbation. This approach has been used in previous work that 

investigated the impact of tilt, displacement, and form errors [71,72]. Youngworth and 

Stone were the first to use perturbation theory to project MSF errors through an optical 

system to its exit pupil [42]. With the resulting error distribution in the exit pupil, they then 

estimated the optical performance degradation resulting from the MSF error using a simple 

relationship between the wavefront variance and the Strehl ratio. In recent work, Liang and 

Alonso explored the validity of perturbation theory in two [74] and three [75] dimensions 

and found that its validity depends on the distance between the MSF surface error and the 

plane of propagation, the nominal period of the MSF surface error, and whether or not the 

MSF surface error resulted in the formation of Talbot images [74,75]. However, even 

though these ‘rules of thumb’ were explored for generalized low to high NA systems, they 

have not been explored for specific optical systems up to this point.  

Another historical approach to modeling MSF surface errors utilizes statistical transfer 

functions. A statistical transfer function is a multiplicative factor to the nominal optical 

transfer function (OTF) of a system and is parameterized by both RMS wavefront error 

and the autocorrelation of the wavefront [76]. Use of the statistical transfer function has 

evolved from both turbulence modeling [73,77,78] and surface scatter theory [79,80]. Use 
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of the statistical transfer function for estimating performance degradation due to MSF has 

previously been proposed by Noll [41] and Harvey [5,81]. While the added parameter of 

the autocorrelation function is useful for estimating the performance impacts of correlated 

surfaces, an assumption of Gaussian surface statistics is made in the formulation of the 

transfer function. As a result, the estimates of performance impacts may not be accurate 

for generalized MSF errors as they do not always abide by Gaussian statistics [10].  

Another method commonly used to model MSF surface errors uses a phase skin 

superimposed onto a nominal surface; the MSF surface error can be thought of as a shallow 

conformal grating  [6,32]. This approach has been applied to both 

synthesized [6,14,32,33,36,39,70,82–85] and experimentally-measured surface height 

maps  [34,64,86–89]. While methods to superimpose MSF errors onto optical surfaces and 

apply ray-based and wave-based propagation exist  [6,32,34,36,64,87,90,91], previous 

works have utilized phase skins under three assumptions: (1) the phase skin is 

superimposed onto a single element that is at the aperture stop  [83,86,88,89], (2) the 

workflow for the phase skins assume radially symmetric or random MSF surface 

errors [64,84,87], or (3) the pre-processing of the phase skin does not address 

decomposition of the MSF error distribution  [6,32,34], which can be of importance as 

complex MSF errors may be composed of multiple basic signatures. In this work, we also 

utilize phase skins to superimpose experimental MSF signatures onto surfaces in optical 

imaging system. However, unlike previous approaches, this work also adds capabilities to 

identify and decompose complex MSF distributions without assumption of the surface 

statistics or symmetry.  
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A more recent approach for optical modeling of MSF errors uses the Wigner function. 

This approach enables the propagation of the partially coherent light through an optical 

system with MSF errors. The cost of using this method is an increase in computation time 

and the added complexity of multidimensional analysis [35]. This approach has previously 

been utilized with 1D MSF error cross-sections [35]. It has been suggested this approach 

can be extended to 2D MSF surfaces, but this would further increase the challenges.  

The overall challenge of optical modeling of MSF surface errors is that, due to the lack 

of general procedures and availability of such procedures in commercial software, there 

have been limited studies of MSF impacts in imaging systems without the assumptions or 

complications of previous methods.   

 

1.4 Dissertation Outline 

Chapter 2 introduces the concept of PDPD moments, which are multidimensional 

probability distributions that quantify the height or phase difference of a surface or exit 

pupil to spatial coordinates and image space spatial frequencies and is used to quantify the 

relative modulation of an imaging system. We show that the PDPD moments have several 

advantages for quantifying the optical performance impacts resulting from generalized 

MSF surface errors. 

Chapter 3 builds on use of the PDPD moments and demonstrates their application to 

predicting optical performance for both random and deterministic MSF errors. 

Performance estimates for random surfaces made from the generalized method using 

PDPD moments agree with earlier methods that assumed random surfaces [5,41,42]. We 

also show a procedure for structured MSF errors to relate the maxima of the PDPD 
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moments to recently introduced performance metrics such as the minimum modulation 

curve (MMC) [88] and Q′, which is the normalized area under the MMC [89]. Finally, we 

demonstrate the application of these methods to several different MSF error distributions 

and compare how the estimated optical performance values compare to predictions based 

on earlier methods that assumed random error distributions. 

Chapter 4 demonstrates the integration of MSF modeling and analysis concepts into 

MATLAB™ and CODE V™, and their application to sample refractive and reflective 

imaging systems. In addition, we show that the orientation of MSF errors in the system can 

significantly influence optical performance. 

Lastly, Chapter 5 summarizes the results provided in Chapters 2 through 4 and then 

provides general conclusions on the specification and modeling of MSF surface errors. 

Finally, suggestions for future research are presented.  
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CHAPTER 2: PUPIL-DIFFERNCE MOMEMENTS FOR ESTIMATING RELATIVE 

MODULATION FROM GENERAL MID-SPATIAL FREQUENCY SURFACE 

ERRORS [10] 

 

2.1 Abstract 

Standard surface specifications for mid-spatial frequency errors do not capture complex 

surface topography and often lose critical information by making simplifying assumptions 

about surface distribution and statistics. As a result, it is challenging to link surface 

specifications with optical performance. In this work, we present use of the pupil-

difference probability distribution (PDPD) moments to assess general MSF surface errors 

and show how the PDPD moments relate to the relative modulation. 

 

2.2 Introduction 

Sub-aperture tooling is necessary to fabricate optics with freeform prescriptions [1]. 

Mid-spatial frequency (MSF) surface errors with surface spatial frequencies that fall 

between form and roughness with unclear boundaries are by-products of sub-aperture 

manufacturing [2]. Such MSF errors are important to quantify due to their impacts on 

imaging performance [3]. To quantify these impacts, it is necessary to specify the MSF 

surface error and connect the specification to an optical performance metric.  

Surface specifications for MSF such as the peak to valley (PV), root mean square (RMS) 

surface error, and RMS slope are simple, single valued specifications, but it has been shown 

that MSF distributions with similar simple specification values can have significantly 

different imaging performance [1,4]. One-dimensional specifications, such as the power 

spectral density (PSD) [5] and structure function [6], have also been used to specify the 

period and amplitude of the MSF errors present on the surface. However, it has been 

observed that these 1D representations of MSF can produce similar specifications for 
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different MSF distributions, making it challenging to differentiate the MSF distributions 

[4,7]. 

To better assess the entire optical surface, specification tools such as the polar areal 

power spectral density [8], area structure function (ASF) [9], and orthogonal 

decomposition [10,11] have been effective in quantifying MSF distributions. Although, the 

connection between these surface specifications and optical performance metrics that 

differentiate MSF distributions has not yet been addressed. 

Linking surface specification to optical performance has mainly been performed by 

transfer function [12,13] or perturbative approaches [14,15]. Both approaches have 

challenges; transfer function approaches are typically based on assumed (e.g., gaussian) 

surface statistics, while perturbative approaches often lose information about the MSF error 

distribution by reducing exit pupil metrics to a single-valued quantity (e.g., PV, RMS, RMS 

slope) for relation to the point spread function (PSF) or modulation transfer function (MTF) 

[11,14].  

We assert that previous methods of connecting MSF surface specifications to optical 

performance are limited by one or more of the following: (1) the MSF specification makes 

statistical assumptions that may not hold for deterministic MSF errors; (2) the MSF 

specifications only consider a portion of the optical surface; or (3) the MSF specification 

methods may not have direct links to optical performance that differentiate between MSF 

distributions. All three points must be addressed to facilitate clear connections between 

optical design, manufacturing, and metrology. 

With these statements in mind, Liang and Alonso recently quantified the impacts of 

general MSF groove structures and their random variations on either an optical surface at 



 

 

 

12 

the exit pupil [16,17] or by propagating the MSF error from the optical surface to the exit 

pupil [15]. This work was done by taking the Fourier transform of the pupil-difference 

probability distribution (PDPD). The PDPD Fourier transform was then multiplied by the 

diffraction-limited optical transfer function (OTF) to predict optical performance [16,17]. 

This multiplicative term is also known as the relative modulation [18] or, alternately, 

Hopkins ratio [19].  

In this previous work, the PDPD was used to make analytical estimates of the relative 

modulation [16,17]. However, if an analytical solution is not possible, the PDPD becomes 

challenging to analyze as its probability distribution has four dimensions. For example, if 

a surface has a standard surface resolution of 1024 x 1024 pixels, then the PDPD will 

consist of over four million 1D probability distributions.  

 To reduce the dimensionality in the PDPD without losing connections to optical 

performance, we propose to utilize the central moments of the PDPD as a function of pupil-

shift in an areal map, similar to the area structure function [9]. It should be noted that the 

area structure function is equivalent to the 2nd moments of the PDPD calculated relative to 

zero mean. The present work will show the full derivation, and then demonstrate the 

concept under specific assumptions. 

By utilizing the central moments of the PDPD it will be shown that general MSF surface 

errors can be specified and connected to optical performance. In this work, we first derive 

the mathematical relationship of the PDPD moments to the relative modulation. We then 

demonstrate how the PDPD moments address the three main challenges outlined above. 
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2.3 Relating PDPD moments to Relative Modulation 

There are two approaches to formulate the connection between the PDPD moments and 

the relative modulation. Liang and Alonso proposed the first method, which takes the 

Fourier transform of the PDPD to calculate the relative modulation [16]. In this paper, we 

take the complex pupil-difference’s weighted average [20] to calculate the relative 

modulation. We chose the second method to highlight that relative modulation can be 

calculated without a known PDPD distribution or assumption of stationarity of the PDPD, 

where stationarity is defined as the case when the PDPD distribution and moments are 

invariant to pupil-shift [20].  

To calculate the relative modulation, we follow the approach of H.H. Hopkins [18] and 

start with the ratio between the aberrated OTF and the diffraction-limited OTF:  

 

 
( , )

( , ) ( , )
( , )

AB x y

x y x y

DL x y

OTF f f
M f f C f f

OTF f f
= . (2.1) 

 

Here the relative modulation is written as the product of the real part M(fx,fy), and a complex 

factor denoted C(fx,fy).  

To connect the relative modulation to the pupil difference, we use the autocorrelation 

definition of the OTF for both the aberrated and diffraction-limited cases [21]: 
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i if z = . (2.4) 
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Here PDL represents the diffraction-limited pupil for any general shape, i is the pupil shift, 

φ is the pupil aberration, λ is the source wavelength, fi is the image space spatial frequency 

in the far field, the i subscript denotes x and y vectors, and z is the propagation distance to 

the image plane from either a single lens or the exit pupil of an imaging system. In addition, 

we assume the amplitude is constant across the pupil; this is not always the case, but we 

make this simplification here to focus on analyzing MSF phase errors. 

Plugging Eq. (2.2) and (2.3) into Eq. (2.1) and pulling out the mean pupil difference, 

we obtain the following expression that relates the weighted average of the complex pupil 

difference to the relative modulation, as shown in Eq. (2.6):   

 

 
exp[ ( ( , , , ) ( , ))]

( , ) ( , ) exp[ ( ( , ))]
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x y x y

x y x y x y

DL DL x y

i PD x y PD dxdy
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     

 

−
= 

− −




 (2.5) 

 

 exp[ ( ( , ))] exp[ ( ( , , , ) ( , ))]x y x y x yi PD i PD x y PD     = −  (2.6) 

where 

 

 ( , , , ) ( , ) ( , )x y x yPD x y x y x y     = − − − . (2.7) 

 

 This relationship allows us to explore the link between surface specification and optical 

performance. We start by expanding the relative modulation about its Nth central moments in a 

similar fashion to Hopkins [18], 
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Note, in Eq. (2.8), we have factored out the wavenumber (k) and the index contrast (∆n) and have 

left the height distribution (h) in the integral. The expansion of the relative modulation is then  

 

 

1
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 (2.10) 

 

Eq. (2.10) represents the general case, in which the PDPD may be non-symmetric and the relative 

modulation can have real and complex components. We can make additional assumptions to 

simplify Eq. (2.10). First, to ensure that the relative modulation is real, we can assume that the 

underlying PDPD is symmetric [22], which results in zero values for the odd moments. Second, 

we consider cases resulting in small drops in modulation (~ 0.2 to 0.3), so that higher order 

moments are negligible. With these simplifications, the relative modulation can be estimated as 

 

 

2 4

2 2 4 4
( , ) ( , )

( , ) 1 .
2! 4!

C x y C x y

x y

H H
M k n k n

   
   −  +   (2.11) 

 

 

In Eq. (2.11), the 2nd moment represents the pupil-difference variance, and the 4th moment 

represents pupil-difference tailedness [23]. The following example considers cases where Eq. 

(2.11) is valid, but more general examples can be explored using Eq. (2.10).  

 In Figure 2-1, we visualize calculating the PDPD moments for a raster MSF signature that has 

ten cycles across the surface, an RMS surface error = 70 nm and a PV = 200 nm. To calculate the 

2nd and 4th PDPD moment maps, first a copy of the MSF is made and shifted in increments of x 

and y. Then the height difference is taken of the MSF and copy at each pupil shift over regions of 

non-zero overlap. Next, the 2nd and 4th moments are calculated for each pupil difference. Then 

finally, the moments are placed in the moment map at their respective pupil shift locations.  
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Figure 2-1: Flow diagram of calculating 2nd and 4th PDPD moments of MSF example. 

[Reprinted] with permission from [10] © Optica Publishing Group. 

 

 To conclude this derivation, we emphasize that the estimate in Eq. (2.11) is accurate for 

symmetric PDPD distributions without assumption of their stationarity. This result, therefore, 

provides a general relationship that can specify deterministic MSF from sub-aperture 

manufacturing and connect to optical performance. With the underlying mathematics expressed, 

we now demonstrate through example how the PDPD moments address the three challenges of 

specifying MSF and connecting to optical performance.  

 

2.4 Exemplifying Properties of PDPD Moments 

First, we show that the PDPD has a non-gaussian distribution and that the PDPD moments 

fluctuate as a function of pupil shift. This idea is illustrated by assessing three pupil shift locations 

in the 2nd and 4th moments of the PDPD for the raster sinusoidal MSF surface error shown in Figure 
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2-1. In Figure 2-2, we show histograms of PDPD distributions at three pupil shifts which represents 

the half period of the MSF surface error. As the pupil shift increases, in x, the PDPD distribution 

narrows, and the 2nd and 4th moments decrease, as shown in Table 2-1. The square root of the 2nd 

moment and the fourth root of the 4th moment are included for comparison to the original surface 

errors (PV and RMS) in common units. Therefore, this example shows that the PDPD moments 

can assess general probability distributions without assumption of stationary statistics. In addition, 

this could be extended to non-stationary surfaces as was done for the area structure function [9]. 

 

 

Figure 2-2:  Histograms of three pupil shifts of the PDPD for MSF example shown in Figure 

2-1. [Reprinted] with permission from [10] © Optica Publishing Group. 

 

Table 2-1:  2nd and 4th PDPD moments of distributions shown in Figure 2-2. 

 

Next, we consider how the 2nd and 4th PDPD moments assess the entire surface. To do this, we 

calculate the 2nd and 4th PDPD moments for three characteristic MSF signatures; the raster pattern 

from Figure 2-1, a radial pattern, and an azimuthal pattern. The radial MSF has ten cycles across 

the diameter, and the azimuthal MSF has ten cycles around the perimeter. In addition, all three 

(𝜏𝑥,𝜏𝑦) (mm) (0.3,1.0) (0.35, 1.0) (0.4, 1.0) 

2nd Moment (nm2) 2.0x104 1.0x104 3.0 

(2nd Moment)1/2 (nm) 141.4 100  1.7 

4th Moment (nm4) 6.0x108 1.5x108 14.0 

(4th Moment)1/4 (nm) 156.5 110.7 1.9 
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MSF signatures have an RMS surface error of 70 nm and PV of 200 nm. As shown in Figure 2-3, 

the maps of the 2nd and 4th moments capture the whole surface MSF distribution and the number 

of cycles. For example, the PDPD moments calculated from the raster MSF show ten raster 

oscillations from 0 to 2 mm, the PDPD moments calculated from radial MSF show ten radial 

oscillations from 0 to 2 mm, and the PDPD moments calculated from azimuthal MSF show ten 

oscillations across the perimeter. Thus, the PDPD 2nd and 4th moments allow us to differentiate 

between MSF distributions with similar statistics. This is critical as it has been shown that different 

MSF distributions with the same RMS and PV can have different optical performance [1,4]. 

 

 

Figure 2-3: Comparison of PDPD second and fourth moments for raster, radial, and 

azimuthal MSF distributions of similar statistics. Only the top half of the PDPD moment 

maps are shown to avoid redundancy [9]. [Reprinted] with permission from [10] © Optica 

Publishing Group. 

 

Finally, we show how to connect MSF surface specification to optical performance. To do so, 

we use the three MSF examples from Figure 2-3 to calculate the relative modulation in two 

different ways.  
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First, we calculate the relative modulation using far-field approximations to calculate the 

diffraction-limited and aberrated modulation transfer functions (MTF) [24]. To calculate the 

relative modulation for each aberrated case, we superimpose each MSF error on the curved surface 

of a plano-convex lens with 100 mm focal length. For this example, we assume the optical surface 

is at the exit pupil. In addition, we assume an index contrast of ∆n = 0.493 (PMMA in air), a 

propagation distance z = 100 mm, and a source wavelength of λ = 532 nm. We then propagate the 

wavefront error to the far field with a Fourier transform, and take the squared modulus of the 

complex field to calculate the PSF. This process is repeated for a perfect lens (free of MSF errors) 

to obtain the diffraction-limited MTF. Figure 2-4 shows a qualitative comparison of the PSFs for 

the aberrated cases. Note that each of the MSF signatures has RMS surface error = 70 nm and PV 

= 200 nm, and each of the three examples results in a Strehl ratio of 0.84.  

 

 

Figure 2-4: Qualitative comparison of aberrated PSFs for example cases discussed above 

after normalization to the diffraction-limited PSF and taking the 4th root to increase image 

contrast. [Reprinted] with permission from [10] © Optica Publishing Group. 

 

The normalized absolute Fourier transform of the PSF is taken to obtain the aberrated MTF. We 

then use Eq. (2.1) (with the MTF) to obtain the relative modulation from the far field estimate. 

Next, we use Eq. (2.11) to estimate the relative modulation from the 2nd and 4th PDPD moments, 

as shown in Figure 2-5(a-c). 
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Finally, we take the difference between the relative modulation estimated from the 2nd and 4th 

PDPD moments and the relative modulation from the far-field calculation. As shown in Figure 2-

5(d-f), the difference between the two approaches is <1% for most image space spatial frequencies. 

The exceptions are for relative modulation values that approach the cut-off frequencies; these more 

significant errors in the estimate are due to the decrease in the number of data points in the PDPD 

moments as the pupil shift reaches its maximum, where few data points exist. It should also be 

pointed out that there is a slight resolution difference between the estimated and far-field relative 

modulations. This leads to a small (~0.1%) asymmetry in the percentage difference. We note these 

results from the current examples with simple sinusoidal errors are obtained with only the 2nd and 

4th moments, but the more general form of Eq. (2.10) with higher order moments may be needed 

for more complex MSF structures. 

 

 

Figure 2-5: (a-c) Relative modulation from estimated from PDPD moments; (d-f) percentage 

difference maps between the two methods. Note, we transform the pupil shift to image space 

spatial frequency using Eq. (2.4) for both calculations. [Reprinted] with permission from 

[10] © Optica Publishing Group. 
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2.5 Discussion and Conclusion 

In summary, we have reported on the derivation, development, and use of PDPD moments to 

specify generalized MSF errors for PDPD distributions without assumption of the distribution or 

stationarity of the PDPD. We demonstrated that the 2nd and 4th PDPD moments can be used to 

estimate the relative modulation to within 1% for simple MSF structures with symmetric PDPDs. 

Future work will explore the use of the PDPD moments to determine additional optics performance 

metrics and facilitate tolerancing of experimental MSF errors in optical imaging systems.  
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CHAPTER 3: ON THE USE OF PUPIL-DIFFERENCE MOMENTS FOR 

PREDICTING OPTICAL PERFORMANCE IMPACTS OF GENERALIZED MSF 

SURFACE ERRORS  

 

3.1 Abstract 

In this work, we present a methodology for predicting the optical performance impacts 

of random and structured MSF surface errors using pupil-difference probability 

distribution (PDPD) moments. In addition, we show that, for random MSF surface errors, 

performance estimates from the PDPD moments converge to performance estimates that 

assume random or Gaussian statistics. Finally, we apply these methods to several MSF 

surface errors with different distributions and compare how estimated optical performance 

values compare to predictions based on earlier methods assuming random error 

distributions. 

 

3.2 Introduction 

Sub-aperture manufacturing methods are key enablers for freeform optics [1]. However, 

one drawback to sub-aperture processes is the potential to introduce mid-spatial frequency 

(MSF) surface errors [2-6], which can take considerable effort to mitigate [7-16]. MSF 

surface errors fall between ‘low-frequency’ form errors and ‘high-frequency’ roughness 

errors, with ambiguous lower and upper bounds [17]. Understanding the impacts of MSF 

errors on optical performance is important to the larger optics community as such errors 

can cause small angle scatter [18-19], degrade image performance [20-23], and result in 

self-imaging [24,25] and distortion [26,27]. 

MSF surface errors are commonly observed with a broad range of structured 

distributions (e.g., raster, radial, azimuthal) that are related to the manufacturing method 
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[17,28]. Previous methods for predicting the performance impacts of MSF surface errors 

on image quality have relied on assumptions of random or Gaussian error distributions 

[18,29,30]. A common approach is to estimate the Strehl ratio from the surface RMS error 

[30]. This approach will provide a baseline performance estimation for random surfaces in 

this work. However, different MSF distributions with similar simple surface metrics (i.e., 

root mean square (RMS) surface error (), slope, Peak-Valley (PV)) can have drastically 

different optical performance [1,31,32]. Therefore, specification methods that connect 

general MSF surface errors to optical performance are desirable.  

To this end, additional metrics such as the minimum modulation curve (MMC) [33] and 

Q′ [31] have been recently proposed. The MMC metric quantifies the lowest values in the 

2D modulation transfer function (MTF) as a function of radial image space spatial 

frequency and azimuthal angle, while Q′ quantifies the normalized area under the MMC 

and is analogous to the Strehl ratio. These methods are inspired by the 1D modulation 

transfer function (MTF) and its relationship to the Strehl ratio [34], but better quantify and 

distinguish between the optical performance impacts of deterministic MSF surface errors 

and also agree with predictions from earlier statistical methods [30] for cases with uniform 

or random MSF surface errors [31]. However, we note that previous connections of the 

MMC and Q′ to surface specifications were largely empirical [31]. Pupil-Difference 

Probability Distributions (PDPD) were recently introduced by Alonso and Liang as a tool 

to show the impact of MSF groove structures and their random variations on the optical 

transfer function (OTF) [35,36]. Building on that work, we have recently shown that the 

PDPD moments have desirable properties for specification of general MSF surface errors 

and for connecting those specifications to relative optical modulation [32].  
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In this paper, we build on the work from [32] to demonstrate use of the PDPD moments 

to connect both random and structured MSF error distributions to the MMC, Strehl ratio, 

and Q′. We first summarize the measures of optical performance used in this work. We 

then investigate the relationship of the 2nd PDPD moments to  to quantitatively explore 

the convergence of predicted optical performance from random and deterministic MSF 

error distributions. For cases that do not converge, we then provide a procedure relating 

the 2nd and 4th PDPD moments to the minimum modulation curve [33] and Q′ [31]. 

Finally, we demonstrate the application of these methods to several examples with different 

MSF distributions and levels of randomness and compare how estimated optical 

performance values compare to predictions based on earlier methods assuming random 

error distributions. 

 

3.3 Measures of Optical Performance for MSF Errors 

3.3.1 Strehl Ratio 

 

The Strehl Ratio S quantifies the ratio of the peak value of the point spread function 

(PSF) of an aberrated optical system to the peak value for an ideal diffraction-limited 

system [34]. While there are multiple methods to calculate the Strehl Ratio [37-43], we use 

two forms in this work. The first definition is calculated from the area under the aberrated 

(‘AB’) MTF normalized by the area under the diffraction-limited (‘DL') MTF [34], as 

shown in Eq. (3.1): 

  

 
( , )

( , )

AB x y x y

DL x y x y

MTF f f df df
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MTF f f df df
=




 (3.1) 
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The second definition is an exponentially decaying approximation proposed for use with 

MSF errors by Youngworth and Stone [30], as shown in Eq. (3.2):  

  
 2 2 2exp[ ( ) ]S k n  −   (3.2) 

 

where n is the index contrast and k is the wavenumber. With either definition of the Strehl 

ratio, the aberrated MTF can be estimated by multiplying S by the diffraction-limited MTF, 

as shown in Eq. (3.3).  

 ( , ) ( ) ( , )AB x y DL x yMTF f f S MTF f f  (3.3) 

 

One challenge with the Strehl ratio is that it can result in misleading predictions of 

optical performance with deterministic MSF errors. To illustrate this point, we calculate 

the Strehl ratio for both a Gaussian error distribution, Figure 3-1(a), and for a structured 

raster MSF signature, Figure 3-1(b). The Gaussian surface has a PV = 598 nm and an  = 

70 nm. The structured raster MSF signature used in this example has a period of 0.2 mm, 

PV = 200 nm, and  = 70 nm. Note that we scaled the Gaussian surface to have nearly the 

same  and did not control the PV. In order to achieve a specific PV for the Gaussian 

surface, the relative phase angles of the spectra would need to be controlled [44,45]. 

However, for the following examples, having an equivalent  is sufficient. Both surfaces 

are superimposed onto separate but identical plano-convex lenses at the aperture stop with 

100 mm focal length, diameter D = 2 mm, and n = 0.49 at a source wavelength of 532 

nm, as shown in Figure 3-1(c). 

For both cases, we then calculate the PSF from the absolute magnitude squared of the 

propagated field via a Fourier Transform to the image plane under far-field assumptions, 

and then calculate the 2D MTF by taking the magnitude of the Fourier transform of the 

PSF. A cross-section of the 2D MTF along the x-axis for the lens with Gaussian surface is 
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shown in Figure 3-1(d) and for the lens with the structured MSF in Figure 3-1(e). In 

addition, the MTF is estimated from Eq. (3.3), with S = 0.84 from both Eqs. (3.1) and (3.2) 

in each case. From Figure 3-1(d), we see that random errors are well estimated by the Strehl 

ratio but Figure 3-1(e) shows that the Strehl ratio underestimates the impacts of the 

deterministic MSF error on MTF.  

 

 
Figure 3-1: (a) Gaussian surface error; (b) structured raster MSF error, (c) optical 

system used in example; (d) MTF and Strehl estimate for Gaussian surface case; (e) 

MTF and Strehl estimate for Structured MSF case. 

 

3.3.2 MMC and Q′ 

As discussed in Section 3.2, the minimum modulation curve (MMC) [33] and Q′ [31] 

were recently proposed to better estimate optical performance impacts of more general 

MSF errors. The MMC is a useful metric because it accounts for the directionality that 

MSF errors may have but also reduces to estimates given by Strehl ratio for random surface 

error distributions [31]. Analogous to the Strehl ratio, Q′ is quantified by calculating the 
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area under the MMC normalized by the area under the diffraction-limited MTF [31], as 

shown in Eq. (3.4). The MMC can be estimated from Q′ using Eq. (3.5).  

 

 '
( )

( )DL

MMC d
Q

MTF d

 

 
=




. (3.4) 

 

 ( ) ( ') ( )DLMMC Q MTF  .  (3.5) 

 

In Figure 3-2 below, we calculate the MMC and Q′ from the MSF example in Figure 3-

1. Using Eq. (3.4), we calculate Q′ = 0.69 and then use Eq. (3.5) to estimate the MMC. We 

see that Q′ better estimates the performance impacts of the MSF error on this lens because 

it captures the oscillations in the MTF.   

 

Figure 3-2: MMC and Q′ predictions of optical performance impacts of MSF errors 

from Figure 3-1. 
 

3.4 Convergence of Performance Estimates Between Random and Deterministic MSF 

Error Distributions 

The examples in Section 3.3.1 illustrate differences in optical performance predictions 

for random and deterministic MSF error distributions. We now consider use of the relative 

optical modulation M to investigate the convergence of performance estimates between 

random and deterministic cases. As described in [32], M is a multiplicative factor to the 

MTF that captures information on the MSF error distribution. Under the assumptions of a 
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symmetric PDPD, small drops in relative modulation, and an MSF error surface at the exit 

pupil, the 2nd and 4th PDPD moments can be used to estimate the relative modulation as 

shown in Eq. (3.6): 

 

2 4

2 2 4 4
( , ) ( , )

( , ) 1 ( ) ( )
2! 4!

C x y C x y

x y

H H
M k n k n

   
   −  +  . (3.6) 

 

In Eq. (3.6) the pupil shift vector i is a generalization of image space spatial frequency 

and is used to describe the location of the PDPD moment value in the PDPD moment map 

[32]. For PDPD moment maps shown in this work, x ranges from –D to D, and y ranges 

from 0 to D. Note that the negative axis is not shown for y to avoid redundancy in the 

PDPD moment maps [32,46]. 

We now use Eq. (3.6) to compare performance estimates between surfaces with random 

and structured MSF error distributions. We start by assuming the PDPD has a zero-mean 

pupil-difference for all pupil shifts, as was done for the area structure function [46]. We 

then expand out the 2nd PDPD moment terms, as shown in Eq. (3.7):  

 

 2 2 2( , ) ( , ) ( , ) 2 ( , ) ( , )c x y x y x yH h x y h x y h x y h x y     = + − − − − − . (3.7) 

 

When the height distribution h(x,y) is stationary [46,47], the first and second terms are 

equivalent and the 2nd PDPD moment can be approximated as:  

 

 2 2 2( , ) 2 ( , ) 2 ( , ) ( , ) 2 2 ( , ) ( , )c x y x y x yH h x y h x y h x y h x y h x y       − − − = − − − . (3.8) 

  

This shows that the 2nd PDPD moment is proportional to 2 and an autocovariance term. 

The autocovariance term can oscillate from -2 (perfectly anti-correlated) to +2 (perfectly 

correlated) and will tend towards zero at small pupil-shifts for random surfaces [29].  

To further illustrate this point, we calculate the 2nd PDPD moments for the raster 

sinusoidal MSF error and random Gaussian surface used in Section 3.3.1. The 2nd PDPD 
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moments of the Gaussian and structured MSF are calculated using the procedure defined 

in [32] and are shown in Figures 3-3(a) and 3-3(b), respectively. We then take the cross-

sections of the 2nd PDPD moments along the +x direction from zero to D at y = 0 for both 

cases, as shown in Figures 3-3(c) and 3-3(d). From Figure: 3-3(c), we see that the 2nd PDPD 

moment of the Gaussian surface lies close to the mean of 22. From Figure 3-3(d), we see 

that the 2nd PDPD moment oscillates around the mean of 22 and peaks at twice the mean 

due to the deterministic structure of the raster MSF error. This description holds well until 

we reach the edges of the 2nd PDPD moment due to a decreasing number of data points in 

the PDPD.  It is clear that the 2nd PDPD moment amplitude for random surface errors with 

little correlation will lie close to 22, and for structured raster MSF the 2nd PDPD moment 

amplitude will oscillate around the mean of 22 up to a maximum of twice the mean.  

 

 
Figure 3-3: (a) 2nd PDPD moment of Gaussian surface error, (b) 2nd PDPD moment 

of Structured MSF, (c) cross-section along the +x, direction from zero to D at y = 0 

of 2nd PDPD moment from Gaussian surface, and (d) cross-section of 2nd PDPD 

moment along +x, from zero to D at y = 0 from the structured MSF example.  
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To see how Eq. (3.6) relates to the Strehl ratio associated with random surfaces, we 

consider only up to the second term of Eq. (3.6) and substitute 22 in the second term, 

which is the 2nd PDPD moment result for random surfaces. In this case, the estimated 

relative modulation, shown in Eq. (3.9), is approximately equal to the first two terms in a 

Taylor series expansion of the Strehl ratio from Eq. (3.2), which is valid under a weak 

aberration scenario [37].  

 
2 2 2( , ) 1 ( )uncorrelated x yM f f k n S −   . (3.9) 

 

 

If the same k, n, and system from Section 3.3.1 are used with Eq. (3.9), then Muncorrelated 

 0.84, which is the same result that was reached using Eqs. (3.1) and (3.2). 

This implies that the Strehl ratio is a good measure of optical performance impact when 

surface errors are random. This result is supported by previous works that assume Gaussian 

statistics of surface errors to estimate the impact on the transfer function [18,29]. However, 

we note here that (unlike previous works) the use of the PDPD moments makes no 

assumption of Gaussian statistics to relate the surface specification to optical performance.  

Applying a similar process for the structured MSF case, we have an upper bound 

estimate of the 2nd PDPD moments impact on the relative modulation, shown in Eq. (3.10). 

Once again, using the same k and n, we estimate Mcorrelated  0.67 which is closer to the 

Q′ estimate in Section 3.3.2. 

 
2 2 2( , ) 1 2 ( ) 'correlated x yM f f k n Q −   . (3.10) 

 

 

Note that the slight deviation between the Q′ from Section 3.3.2 and Mcorrelated is attributed 

to the truncation of the series used to derive Eq. (3.10). We see clearly from this analysis 

that Strehl ratio can be a poor estimate of optical performance for structured MSF errors 
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and that the use of PDPD moments can facilitate better performance predictions in such 

cases. 

Up to this point, we have only shown how the 2nd PDPD moment relates to  and how 

the relative modulation (up to the 2nd term) converges to the Strehl ratio under a random 

surface assumption. A logical next step would be to consider a similar process including 

the 4th PDPD moment. To do so we would need to assume that Gaussian moment theorem 

[47] could be applied to the higher-order terms in the 4th PDPD moment expansion. 

However, we emphasize that MSF error distributions may not be Gaussian. Rather than 

making assumptions on the surface statistics, we propose a procedure that utilizes the 

generality of the PDPD moments to predict the impacts of MSF errors on optical 

performance regardless of their correlation.  

 

3.5 Optical Performance Predictions from PDPD Moments 

3.5.1 Standard Error in PDPD Moments  

Before estimating the optical performance using the PDPD moments, the influence on 

regions in the PDPD moment maps with few data points must be considered. Figure 3-4 

shows that the number of data points changes from many to few as the pupil shift varies in 

the PDPD calculation, and each instance of the PDPD has a finite amount of data points 

from which to calculate the moments, as shown in Figure 3-4(c). 
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Figure 3-4: (a) PDPD using many points, (b) PDPD using few points, (c) map of 

number of data points used in each PDPD pupil shift instance.  

 

To assess the amount of error due to the discreteness of calculating PDPD moment data, 

we propose use of the standard error [48]. The standard error can be thought of as the 

variance in calculating a moment from a limited data set. Not all moments have easy-to-

express relationships to standard error. However, the 2nd moment has a tractable form and 

does not make statistical assumptions in its formulation. As defined by Rao, the standard 

error of the 2nd moment (the variance) is shown in Eq. (3.11) [48] where m is the number 

of points in the distribution, 2 is the variance, and  is the 4th moment. We must rewrite 

Eq. (3.11) as a function of pupil shift to apply this method to the 2nd PDPD moments. The 

standard error of the 2nd PDPD moment is shown in Eq. (3.12). The normalized standard 

error (NSE) can then be calculated by dividing through by the 2nd PDPD moments, as 

shown in Eq. (3.13). Note that the NSE is undefined for a 2nd PDPD moment of zero value 

(which occurs at zero pupil-shift).  
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A similar process can be performed for the 4th PDPD moment, but the expression is less 

tractable. The standard errors for specific 4th moment values can be calculated by 

bootstrapping or jackknifing approaches [49], but this is outside the scope of the present 

work.  

With the normalized standard error map, a particular threshold can be applied (for 

example, 1%), and then a mask of all the 2nd PDPD moments with a normalized standard 

error less than 1% can be multiplied by the 2nd PDPD moment map to exclude those values 

from assessment, as shown in Figures 3-5 and 3-6, respectively. The same mask should 

also be applied to the 4th PDPD moment map since those pupil shift locations won’t be 

considered in the 2nd PDPD moment map. 

 
Figure 3-5: Normalized standard error map for structured MSF example from Figure 

3-1(b) with a 1% threshold. 
 

 

 
Figure 3-6: Example masking out points in the 2nd PDPD moment with normalized 

standard errors greater than 1%. 
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3.5.2 PDPD moments relationship with Q′ and estimating the MMC 

To connect the PDPD moments to Q′, we start at Eq. (3.6). We note that Eq. (3.6) 

captures the full range of relative modulation. From the form of Eq. (3.6) it is clear that the 

minimum relative modulation will be found for the condition in which the 2nd PDPD 

moment is a maximum. The 4th PDPD maxima also follows this trend. As a result, we assert 

that Q′ can be estimated by using the PDPD moment maxima in Eq. (3.6) to obtain:  

  

 

2 2 2 4 4 4

' max max
( ) ( , ) ( ) ( , )

1
2! 4!

c x y c x yk n H k n H
Q

    
 − + . (3.14) 

 

The MMC can then be estimated from Eq. (3.5). It should be noted that the maxima in 

the 2nd and 4th PDPD moments may not always occur at the same pupil shift values, in 

which case Eq. (3.14) may lose some accuracy. In this case, we suggest looking for the 

relative modulation’s lowest value, estimated from Eq. (3.6), and then reporting 2nd and 4th 

PDPD moment values at that particular pupil shift to better estimate the MMC. To account 

for this point and the standard error of the PDPD moments, we propose the following 

process:  

1) Calculate the 2nd and 4th PDPD moments from the MSF surface error. 

2) Calculate the standard error of the 2nd PDPD moments. 

3) Apply a chosen threshold to the normalized standard error and crop out 2nd and 

4th PDPD moments for all pupil shift values above that threshold. 

4) Apply Eq. (3.6) to estimate the relative modulation. 

5) Find the lowest relative modulation from Eq. (3.6) and calculate the 2nd and 4th 

PDPD moments for those pupil shift values. 

6) Estimate Q′ using Eq. (3.14).  
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7) Apply Eq. (3.5) to estimate the MMC.  

We use the MSF example from Section 3.2.1 with the same n and k values as before to 

illustrate the workflow, as shown in Figure 3-7. The estimate of Q′ 0.68 is within 1% of 

the estimate from Eq. (3.4).  

 

 
Figure 3-7: Workflow for example MSF surface from Section 3.3.1 (a) cropped 2nd 

and 4th PDPD moments, (b) estimate of Q′ from PDPD moments maxima, (c) 

estimated MMC using Eq. (3.5).  

 

3.6 Examples: Estimating Optical Performance of Different MSF Distributions 

We now compare specification and performance predictions for several different MSF 

surface error distributions (Figure 3-8) using the general procedures outlined in Section 

3.5.2 and the procedures for random surface errors.  

 

 
Figure 3-8: (a) Radial sinusoidal MSF; (b) Azimuthal sinusoidal MSF; (c) 

Experimental raster MSF. 
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We also include the results from the earlier raster and Gaussian surfaces in this analysis for 

additional comparison. The  for all examples differ slightly due to their periodicity and 

distribution but are all ~70 nm.  

To compare the procedure in Section 3.5.2 to the procedures for random surfaces, we 

do the following: (1) Tabulate the maxima of the 2nd and 4th PDPD moments following 

Section 3.5.2; (2) Calculate 22 for each surface. These values are included to show that 

performance estimates from Section 3.5.2 and random surface methods converge when the 

2nd PDPD moment peak value is close to 22; (3) Calculate Q′ values from the MMC (Eq. 

(3.4)) and PDPD moments (Eq. (3.14)); and (4) Calculate the Strehl ratio from the MTF 

(Eq. (3.1)) and from  (Eq. (3.2)), all using the same n and k values from Section 3.3.1. 

A summary of these results is shown in Table 3-1. 

 

Table 3-1: Surface statistics and optical performance metrics for example MSF surfaces  
Surface 2nd PDPDmax 

(nm2) 
22 

(nm2) 

4th PDPDmax 
(nm4) 

Strehl  
(Eq. (3.1)) 

Strehl 

(Eq. (3.2)) 

Q′ 

(Eq. (3.4)) 

Q′PDPD  

(Eq. (3.14)) 

Raster 2.07x104 1.01x104 6.48x108 0.84 0.84 0.69 0.68 

Radial 1.40x104 1.01x104 3.64x108 0.84 0.84 0.84 0.78 

Azimuthal 1.99x104 1.00x104 5.87x108 0.84 0.85 0.84 0.69 

Experimental 1.51x104 1.00x104 7.15x108 0.85 0.85 0.82 0.78 

Gaussian 1.07x104 1.00x104 3.58x108 0.85 0.85 0.84 0.84 

 

 

From Table 3-1, we note that cases with a 2nd PDPD maximum close to 22 tend to be 

appropriately specified by , and its performance will be closely estimated by the Strehl 

ratio. The 2nd PDPD maximum of the example Gaussian surface is closest to 22, and we 

observe that performance in this case is well predicted by the Strehl ratio. A general trend 

can be observed that larger deviations between the 2nd PDPD maxima and 22, correspond 

to larger deviations between the Strehl ratio performance estimates and Q′. Results are also 
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shown in Figure 3-9 for each case through plots of the diffraction-limited performance, the 

MTF estimated from Eq. (3.3), the MMC, and the MMC estimated by Eq. (3.5).  

 

 
Figure 3-9: MMC comparisons with diffraction-limited case and Strehl estimate of 

MTF for (a) Raster MSF surface example, (b) Radial MSF surface example, (c) 

Azimuthal MSF surface example, (d) Experimental MSF surface example, and (e) 

Gaussian surface example.  
 

An additional observation from Table 3-1 is that the MMC calculation of Q′ does not 

always closely match the Q′ estimate from Section 3.5.2. This is because the PDPD 

moment maxima are calculated from the lowest relative modulation value, while the MMC 

calculation of Q′ comes from the average of the lowest 2D MTF values. This nuance is best 

visualized in Figures 3-9(b) and 3-9(c), where we see the MMC estimated by Section 3.5.2 

methods only touches one point on the MMC, at the point of lowest relative optical 

modulation.  

 

3.7 Summary and Discussion 
 

We have demonstrated a procedure using the PDPD moments of MSF surface errors to 

predict reductions in optical performance and shown that the 2nd and 4th PDPD moments 



 

 

 

40 

can be utilized to estimate the optical performance impacts of both random and 

deterministic MSF surface errors. For random surfaces, the estimates using PDPD 

moments converge to estimates using the Strehl ratio with random surface errors. We 

showed that optical performance is well predicted using methods based on the Strehl ratio 

for surfaces for which the 2nd PDPD moment maximum is close to the mean. However, we 

also saw a large variation in optical performance predictions for the range of MSF surface 

error distributions presented. As a result, we saw it valuable and necessary to utilize the 2nd 

and 4th PDPD moment procedures for most cases. Use of PDPD moments as proposed 

herein enables improved predictions of the impacts of generalized MSF errors on optical 

performance in imaging systems at the cost of increased calculation complexity. Ultimately 

a decision must be made on how precisely the optical performance must be predicted to 

determine if it is necessary to utilize the PDPD moments. 

We note a limitation in that the moment maps can have large standard errors when used 

with low-resolution height maps. It is recommended to use surface height maps that are 

nominally of the size of (at least) 1000 x 1000 pixels if possible. Using smaller height maps 

may not properly resolve the MSF errors and may also produce large errors in optical 

performance predictions. A separate challenge is that the PDPD moment maps can be 

challenging to interpret due to the multi-dimensional nature of the statistics. We utilize the 

maxima of the moment maps in the current work, but note that additional information 

regarding the surface errors is also contained, such as period [46] and slope [50]. 

With the above limitations in mind, we provide this work to help readers gauge if a 

given MSF error distribution can be adequately specified using  or if the additional 

information provided by the PDPD moments is needed for their specific case. We also note 
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that the maxima of the PDPD moments provide single-value metrics that can be reported 

with little interpretation of the moment maps as a whole. This result suggests that the 

calculation of the maxima could be automated, and the values used as straightforward 

pass/fail criteria for specification and acceptance testing. 

Lastly, we note opportunities for future expansion of this work. As discussed in [32], in 

cases where the 3rd PDPD moment is non-zero, the complex component of the relative 

modulation will also be non-zero, and the estimate from Section 3.5.2 may not be valid. 

We plan to extend this work to include the analysis of the 3rd PDPD moment and provide 

additional procedures that consider a complex component to the relative modulation. In 

addition, we note that the aberrated 2D MTF can be estimated by multiplying Eq. (3.6) by 

the 2D diffraction-limited MTF. This approach could help to facilitate defining optical 

performance over specific band limits in image space and enable quantifying the impacts 

of MSF surface errors at targeted image space spatial frequencies. 
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CHAPTER 4: A WORKFLOW FOR MODELING OF GENERALIZED MID-SPATIAL 

FREQUENCY ERRORS IN OPTICAL SYSTEMS 

 

4.1 Abstract 

In this work, we propose a workflow to model generalized mid-spatial frequency (MSF) 

errors in optical imaging systems. This workflow enables the identification, filtering of 

bandlimited signatures, propagation of MSF to the exit pupil, and performance prediction 

that differentiates performance impact due to the MSF distributions. With this workflow, 

we model the performance impact of MSF for both transmissive and reflective imaging 

systems that are near diffraction-limited. 

 

4.2 Introduction 

Sub-aperture manufacturing of optical components leaves residual mid-spatial 

frequency (MSF) surface errors as byproducts [1]. MSF errors have spatial frequencies that 

fall between ‘low frequency’ form and ‘high frequency’ roughness errors, with ambiguous 

boundaries [2]. MSF errors can have significant detrimental impacts on the optical 

performance of imaging systems [3–6], which makes robust and widely available modeling 

procedures and capabilities highly desirable to the optics community. To date, three 

primary methods have been used for optical modeling of MSF surface errors: (1) statistical 

transfer functions; (2) perturbation theory; and (3) MSF “phase skins.” We now briefly 

consider each of these three methods and their capabilities and limitations. 

Statistical transfer functions use simple statistical values such as variance and 

autocorrelation to predict optical performance when multiplied by the optical transfer 

function (OTF) [7]. Use of statistical transfer functions has evolved from turbulence 
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modeling [8–10] and surface scattering theory [11,12] over multiple decades with similar 

results under the assumption of random phase screens or random surface errors, 

respectively. The first use of statistical transfer functions for optical modeling of MSF 

errors was presented by Noll [13], with similar ideas later presented by Harvey [3]. 

However, both approaches are limited to MSF error distributions that can be described by 

Gaussian statistics. This requirement limits the applicability of such methods, as many 

types of MSF error distributions are highly structured and deterministic, and thus may not 

follow Gaussian statistics [14–16]. 

A second modeling method utilizes a combination of perturbation theory [17,18] and 

statistical optics [10]. Perturbation theory assumes that the amplitude of the perturbations 

are small and that the directions of the perturbed rays are approximately equal to those of 

the unperturbed system. Thus, the added optical path lengths from the perturbations are 

approximately equal to the differences in path lengths between the nominal and perturbed 

systems [19]. Perturbation theory has previously been used to investigate, for example, the 

impacts of tilt, displacement, and form errors [17,18]. Youngworth and Stone first 

proposed the use of perturbation theory to estimate the projection of MSF errors to the exit 

pupil of an optical system, where the variance of the MSF wavefront error is used to 

estimate the Strehl ratio [19]. Recent studies have quantified the validity of the perturbative 

approach for the propagation of MSF to the exit pupil [20,21]. This approach is limited by 

assumptions that (1) the MSF error distribution within an individual surface is random, and 

(2) the MSF error distributions on different surfaces in the system are uncorrelated. 

Consequently, this approach can give misleading results when applied to structured MSF 

errors with different distributions but the same RMS error statistics [16,22].  
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Another common modeling approach treats the MSF error like a “phase skin” 

superimposed onto a nominal surface; the MSF surface error can be thought of as a shallow, 

conformal grating. This approach has been applied to both synthesized [6,14,15,22–30] 

and experimentally measured MSF height maps [5,31–33]. While methods to superimpose 

MSF phase skins onto optical surfaces and apply ray-based or wave-based propagation 

methods exist within commercial software [5,6,25,26,34,35], previous efforts have largely 

made one or more of the following limiting assumptions: (1) the modeled optical system 

consists only of the phase skin superimposed onto a single element at the aperture 

stop  [22,29,31]; (2) the workflow assumed rotationally symmetric or random MSF error 

distributions [30,32,33]; or (3) the pre-processing of the phase skin does not address the 

decomposition of MSF errors  [5,25,26], which can be of importance because the MSF 

error may be composed of multiple distributions [36,37]. 

An additional, recently introduced method uses the Wigner functions to propagate 

partially coherent light in optical systems containing MSF errors [38]. This approach gives 

a local description of MSF spatial frequencies at the cost of increasing the dimensionality 

of the propagation which increases computation time and complexity. To date, only 1D 

descriptions of MSF errors have been demonstrated with this method [38] and, while the 

methods provided could be adapted to 2D descriptions, it would further increase the 

challenges.  

With the above modeling approaches, capabilities, and limitations in mind, we now 

consider desirable features and characteristics of a comprehensive workflow for modeling 

of MSF errors in optical systems. For example, such a workflow would ideally: 
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1. Be applicable to generalized MSF error distributions (from completely random to 

highly structured) without a need to change modeling assumptions [39]. 

2. Provide the ability to identify characteristic constituent MSF signatures (ie, 

radial, raster, azimuthal) within complex MSF error distributions [36].  

3. Provide an ability to filter and de-couple different constituent signatures and 

bandlimited spatial frequency ranges from complex MSF error distributions to 

determine their individual impacts on optical system performance [40,41]. 

4. Be capable of modeling optical systems with MSF errors using either ray-

based [32,33] or wave-based [6,25,34] propagation (as appropriate to balance 

accuracy and computational load). 

5. Generate useful optical performance measures and metrics without assumptions 

of MSF error distribution geometry or symmetry [16]. 

6. Leverage commercially available software packages where possible to facilitate 

broader usage within the optics community [34,35]. 

 

In this work, we propose and demonstrate a general workflow with the above 

capabilities and characteristics. The commercial software packages MATLAB™ and 

CODE V™ are used for purposes of this demonstration. Section 4.3 presents a high-level 

overview of the proposed workflow and its implementation within MATLAB™ and CODE 

V™. In Section 4.4, each step in the workflow is considered in more detail, using a complex 

experimental MSF error distribution within a transmissive Cooke Triplet system for 

illustration. In Section 4.5, we demonstrate the application of the workflow to a reflective 

three-mirror anastigmatic (TMA) telescope system [42] with partially correlated MSF 
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surface errors. Finally, we discuss challenges with the provided methods and propose 

future applications.   

 

4.3 Overview of Modeling Workflow for MSF Errors 

With the desirable characteristics listed above in mind, the proposed workflow starts 

with a complex MSF distribution that may be a superposition of multiple simpler 

distributions (e.g., radial and raster). The workflow provided does not make assumptions 

as to the statistics of the MSF error distributions (i.e., random vs structured) or their 

symmetry. The commercial software packages MATLAB™ and CODE V™ are widely 

available and leveraged for this workflow demonstration, but the proposed procedures 

could be adapted to other packages. This workflow will be of value to optical designers 

and manufacturers because it enables the features highlighted earlier for an ideal workflow 

for modeling generalized MSF errors. A summary list of the workflow steps is provided 

below along with a flow diagram as shown in Figure 4-1.  

 

(1) Identification and classification: The first step uses MATLAB™ to identify what 

MSF error distributions are present over a spatial frequency range by utilizing the 

polar areal power spectral density (PAPSD) [36,43].  

(2) MSF error decomposition: With the distributions and relevant bandwidth identified, 

we use MATLAB™ to fit the MSF surface error with an orthogonal basis set over 

desired spatial frequency bandlimits. We use the Rapidly Decaying Fourier (RDF) 

series for demonstration purposes [44,45].  

(3) Bandlimited filtering of MSF errors: The orthogonal basis then enables bandlimited 

filtering and de-coupling of specific MSF distributions which enables examination 
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of individual MSF components from within an otherwise complex MSF 

distribution [40,41]. 

(4) Importation of MSF errors into optical software: Complete or filtered MSF error 

maps are then imported into CODE V™ using an interferogram file [35], and 

superimposed onto the relevant surface as a phase skin. 

(5) Propagation to system exit pupil: In this work, we choose to utilize beam synthesis 

propagation (BSP) within CODE V™ to propagate MSF errors to the exit pupil 

[34], but ray-based methods could also be considered in some situations [46]. 

(6) Calculate exit pupil metrics: We next export the exit pupil phase map to 

MATLAB™ for analysis. Traditional analysis methods such as determining the 

wavefront variance or decomposition of the wavefront error into base aberrations 

can be performed, but in this work we focus on calculating the Pupil Difference 

Probability Distribution (PDPD) moments and their maxima and demonstrate their 

use in differentiating between MSF error distributions with otherwise similar 

statistics [16,39].  

(7) Optical performance measures: System performance can be quantified using 

traditional approaches with, for example the point spread function or 1D 

modulation transfer function (MTF). In this work we demonstrate use of the PDPD 

moments and their maxima to estimate optical system performance within CODE 

V™. This method is not dependent on assumptions regarding MSF error 

distribution or system symmetry [22,29,39]. 
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Figure 4-1: Outline of workflow used to model the performance of an optical system 

with generalized MSF errors.  
 

We note that this workflow as presented assumes an MSF error distribution on a single 

surface. In cases of systems with MSF error distributions on multiple surfaces, steps 1-4 

are repeated for each surface before continuing with step 5 and after. The individual steps 

in the workflow are considered in more detail and demonstrated for an example refractive 

optical system in Section 4.4. 

 

 

4.4 Detailed Workflow Steps and Demonstration with an Example Refractive Optical 

Systems 

4.4.1 Identification and Classification 

To characterize MSF distributions, we first window the surface with a circular 

Blackman window [47]. The Cartesian areal PSD of a circular surface error is calculated 

using Eq. (4.1) [43]  
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where D is the diameter of the surface, Px and Py are the number of pixels in the x and y 

directions, fx and fy are the surface spatial frequencies in x and y, and H is the Fourier 

transform of the surface. The Cartesian areal PSD is then transformed to a polar 

representation in surface radial spatial frequency (fr) and angle () that facilitates analysis 

of the MSF error distribution [36]. 

Figure 4-2(a) shows a complex MSF distribution with a Peak-Valley (PV) = 388.12 nm 

and a root mean square error  = 59.46 nm. The cartesian areal PSD and polar areal PSD 

of this MSF error distribution are shown in Figures 4-2(b) and 4-2(c) respectively. 

 

 

Figure 4-2: (a) Complex MSF error distribution containing both radial and raster 

MSF signatures. (b) Cartesian areal PSD of this MSF distribution, (c) Polar areal 

PSD of this MSF distribution. The radial and raster signatures are highlighted. 

 
 

In Figure 4-2(c), the raster MSF surface errors are observed at 60 deg and 240 deg from 

approximately 0.1 cyc/mm to 16 cyc/mm. In addition, Figure 4-2(c) shows a radial MSF 

contribution across all angles from approximately 0.1 cyc/mm to 2.5 cyc/mm. In the MSF 

error decomposition step in Section 4.4.2, as a demonstration we will focus on the 

bandlimited raster error component as raster MSF errors tend to have larger performance 

impacts than radial MSF errors [22]. 
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4.4.2 MSF Error Decomposition 
 

Due to the potential complexity of experimental MSF signatures such as the example 

shown in Figure 4-2(a), the ability to separate constituent signatures (such as the 

superimposed raster and radial MSF errors in this example) is desirable. Separation of the 

signatures enables their impacts on performance to be considered separately, which can 

facilitate identification and mitigation of the aspect of the manufacturing process giving 

rise to each constituent pattern. MSF error decomposition splits the overall distribution into 

a weighted summation of orthogonal polynomials and has previously been demonstrated 

using several different orthogonal basis sets [31,40,45,48]. The weighting coefficients cm
n 

are then placed in a coefficient map as a function of their indices [31,40,49]. In this work, 

we utilize the Nb = 1 solution of the RDF series [44] due to the ability of this basis to define 

sharp bandlimits [45].  The Nb = 1 solution to the RDF is defined in Eqs. (4.2) – (4.4), 

where Eq. (4.2) describes the weighted sum of the basis, Eq. (4.3) is the radial component, 

and Eq. (4.4) is the azimuthal component. In Eq. (4.3), R is the surface radius, and m
n  

identifies the zero crossings. In this basis, n is the radial index term and m is the azimuthal 

index term. 
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To determine the bandlimited range needed to capture the raster error, we leverage 

previous work that fitted the whole MSF distribution to a small residual error. In previous 
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work, the polar areal PSD was integrated over fr and its total angular extent to calculate the 

contribution to s per number of cycles.  At Nc = 90 cycles across the part,   = 59.36 nm 

for the surface error, which is within 0.1 nm of the total   for the surface [45]. Using Eq. 

(4.5) for D = 14 mm, we can use Nc to determine the corresponding surface radial spatial 

frequency fr = 6.42 cyc/mm. 

 c
r

N
f

D
=  (4.5) 

 

Therefore, we choose our bandlimited range to be from the lowest resolved spatial 

frequency of 0.1 cyc/mm to the upper bound of 6.42 cyc/mm to capture the majority of the 

raster error [47].   

To fit up to previously identified upper bandlimit of 6.42 cyc/mm for both radial and 

raster MSF distributions, we utilize relationships from a previous work that relates the RDF 

n and m index terms to surface radial spatial frequency fr, [45]. For the number of n terms, 

we use the approximation that n is approximately equal to Nc as shown in Eq. (4.6) [45]. 

The number of m terms can be estimated using the linear relationship between m and n 

shown in Eq. (4.7) [45]. 

 c rn N Df =  (4.6) 

 

 m n  (4.7) 

 

The resulting fitting range of 1  n  90 and -283  m  283 forms a triangular 

coefficient map, as shown in Figure 4-3. 
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Figure 4-3: RDF coefficient map of surface from Figure 4-2(a) 

 

4.4.3 Bandlimited Filtering of MSF Errors 

The raster and radial components in the complex MSF error distributions are separated 

by subtracting the m = 0 column to filter out the radial MSF distribution. Figure 4-4 shows 

the filtered coefficient map, the filtered height map, and the residual height map calculated 

by subtracting the filtered height map from the original height map. As can be seen, the 

filtered MSF surface is majority raster error, and the residual surface is purely radial.   

 

 
 

Figure 4-4: (a) Filtered RDF Nb = 1 coefficient map, (b) filtered height map, (c) 

residual height map.  
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4.4.4 Importation of MSF Errors into Optical Software 

 

The filtering process described above was implemented as a CODE V™ macro that 

collects user inputs that are then exported as a text file that is passed to MATLAB™. 

MATLAB™ then runs the filtering calculations and the resulting filtered MSF distribution 

is saved as an interferogram file that is returned to CODE V™. The interferogram file is 

then superimposed onto a chosen optical element surface as a surface deformation [35]. 

The user interface for the macro is shown in Figure 4-5(a), and the surface deformation of 

the .int file is shown if Figure 4-5(b). 

 

 
Figure 4-5: (a) Macro user interface, (b) filtered MSF error distribution after import 

to CODE V™. 

 

As an example, we choose a near-diffraction limited Cooke triplet with on-axis 

illumination at 546.1 nm, shown in Figure 4-6. Lenses 1 and 3 are made of SK16_SCHOTT 

glass and lens 2 is made of F4_HOYA glass. The first-order properties of the system were 

calculated with the FIRABCD macro using matrix multiplication methods [50], as shown 

in Table 4-1 where all parameters are units of millimeters.  

 

 



 

 

 

60 

Table 4-1: First order properties of the Cooke triplet example (all units in millimeters). 

 
 

 

We then superimposed the bandlimited MSF signature shown in Figure 4-5(b) onto 

surfaces 1 (S1) and 5 (S5). We modified the amplitude of the MSF signatures by using the 

ISF command and used the IRO command to scale the orientation [51]. For this example, 

the MSF signatures on S1 and S5 were rotated to make the orientations perpendicular to 

each other, and the amplitudes of both MSF signatures were doubled. As shown in Figure 

4-6, we also added a dummy surface at the exit pupil of the system with a radius of 

curvature that matches its distance to the image plane. As discussed in the next section, this 

curved dummy surface will serve as a reference sphere to remove the nominal curvature of 

the wavefront in the exit pupil and facilitate quantification of the resulting wavefront error. 

 

 
Figure 4-6: MSF surfaces and exit pupil (EXP) dummy surface added to Cooke 

Triplet. 
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4.4.5 Propagating to System Exit Pupil 

 

For this demonstration, we use the BSP procedure in CODE V™ to propagate the MSF 

surface errors in the Cooke triplet to the exit pupil [34]. BSP is a “mixed” model of rays 

and waves that traces rays with beamlets propagating parallel to the rays. BSP is used 

because it is compatible with the interferogram files containing the MSF data, and 

diffraction from the MSF errors is accounted for in the wavefront propagation. However, 

we note that it may also be possible to use ray-based methods [19,32,33] in some cases, 

which can reduce computational load and decrease simulation time. 

To ensure proper sampling for BSP it is necessary to determine the number of beamlets 

needed at the entrance of the system. The number of beamlets is dependent on the number 

of rings (NRI) across the aperture used in the initial fit of the field at the system entrance, 

as shown in Eq. (4.8) [34].  

  # _ 3 (1 ) 7of beamlets NRI NRI= + +  (4.8) 

 

 

The first step is to find the NRI that results in an acceptable wavefront error per beamlet, 

where less than /10 is ideal [34]. In the current case, this was achieved at NRI = 90.  

The next step is to check the beamlet width on each surface. The default BSP procedure 

states that the beamlet width should be less than one-tenth of the aperture of each 

surface [34]. In the case where MSF errors are considered, the beam width criterion should 

nominally be sufficient to capture the highest spatial frequency present in the MSF 

distribution. In the current example, the highest frequency is 6.42 cyc/mm; using the 

sampling criterion above, this means that the beamlet width on S1 should not exceed 0.16 

mm. However, it is also necessary to check the beamlet widths on all the other surfaces. 

The minimum MSF period for the Nth surface is found by multiplying the MSF period on 
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surface 1 by Dn/D1, where Dn is the diameter of the Nth surface and D1 is the diameter of 

the first surface. This approximation assumes that the minimum MSF period is either 

magnified or demagnified based on the first-order calculations of the system [25]. Table 4-

2 summarizes the beamlet maxima half-widths and the minimum MSF period for each 

surface and shows that NRI = 90 provides adequate sampling on all surfaces. 

 

Table 4-2: Summary of minimum MSF period and maximum beamlet width 

at each surface. 
Surface 

# 

Diameter 

(mm) 

Minimum MSF 

Period (mm) 

Max Beamlet Max 

Width (mm) 

1 14.00 0.16 0.08 

2 10.88 0.12 0.08 

3 8.98 0.11 0.06 

4 8.87 0.10 0.06 

5 13.00 0.14 0.07 

6 9.8 0.11 0.07 

7 11.63 0.12 0.08 

 

 

With the sampling determined, the incident wavefront containing the MSF is propagated 

through the imaging system and MSF error distributions to the curved dummy surface in 

the exit pupil (S7) and the phase is calculated and unwrapped [34], as shown in Figure 4-

7. The resulting phase distribution is then passed to MATLAB™ as a text file for additional 

processing, as discussed in more detail in the following section. 

 

 
Figure 4-7: Exit pupil residual wavefront error for the Cooke triplet example. 
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4.4.6 Calculation of Exit Pupil Metrics 

 

The wavefront error distribution in the exit pupil of an imaging system serves as the 

basis for quantifying and understanding the system performance. For example, it is a 

common procedure to decompose the exit pupil wavefront error distribution into 

components to understand and quantify astigmatism, coma, distortion, and other 

fundamental aberrations [52]. It is also common to calculate the variance of the wavefront 

phase in the exit pupil (phase) as a simple, single value metric to quantify the exit pupil 

wavefront error [19].  

We note that the proposed workflow as presented to this point makes no assumptions 

about the characteristics of the MSF error distributions, so it is still possible to apply the 

standard methodologies as discussed above. This approach could be quite useful, for 

example, for better understanding of the impacts of MSF errors on distortion in imaging 

systems [4,27]. However, as discussed in Section 4.2, the use of simple exit pupil metrics 

like phase can result in misleading predictions of optical performance for systems 

containing structured MSF error distributions [16,22].  

With this limitation in mind, we briefly review our recent work on the use of PDPD 

moments for analysis of the impacts of generalized MSF error distributions [16,39]. We 

have previously shown that the 2nd and 4th PDPD moments of and MSF error distribution 

can be used to predict optical performance for generalized MSF errors [16,39]and are 

consistent with earlier methods of predicting performance for random surface errors  [39].  

In Eq. (4.9), Wdif is the pupil difference used to calculate the PDPD [14,16], W(x,y) is 

the exit pupil phase map, x and y are spatial coordinates, and x and y are the pupil shift 

vectors, which can be related to image space spatial frequency [39]. 
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 ( , , , ) ( , ) ( , )dif x y x yW x y W x y W x y   = − − −  (4.9) 

 .  

The Nth moments of the PDPD are then calculated from Eq. (4.10):  
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 (4.10) 

 

Note, here we have adapted the variables to calculate the PDPD moments of the phase 

as opposed to the height [16,39]. In Eq. (4.10) PDL is the diffraction limited exit pupil which 

assumes unit amplitude and zero phase error as in previous work [16,53]. 

Using the exit pupil phase passed from CODE V™ (Section 4.4.5), the 2nd and 4th PDPD 

moments are calculated and cropped to 1% normalized standard error in MATLAB™, as 

shown in Figure 4-8, following the procedures outlined in [16,39]. 

 

 
Figure 4-8: Cropped 2nd and 4th PDPD moments of exit pupil phase for Cooke triplet 

example as a function of pupil shift. 
 

 

We then find the maxima of the cropped 2nd and 4th PDPD moments for use in the next 

section for optical performance predictions [39]. The 2nd PDPD moment maxima, 2
max, is 

0.90 rad and the 4th PDPD moments maxima, 4
maxx, is 2.25 rad. We note that the maxima 

units are in radians in this case because the moment maps are calculated from the exit pupil 

phase instead of surface height as was done in previous work [16,39].  
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4.4.7 Optical Performance Measures and Metric(s) 
 

A standard method of modeling optical performance is to propagate the wavefront to 

the image plane and take its modulus squared to get the point spread function (PSF) as 

shown in Figure 4-9. 

 

 
Figure 4-9: PSF of Cooke Triplet example in log scale. Note that the PSF is not 

radially symmetric due to the presence of the MSF errors on S1 and S5. 

 
 

One common optical performance measure is the modulation transfer function (MTF), 

which can be calculated as the modulus of the Fourier transform of the PSF or equivalently 

as the modulus of the autocorrelation of the exit pupil wavefront [54]. While the 2D MTF 

contains information about both magnitude and orientation of image contrast as a function 

spatial frequency, historically it is more common to plot a 1D cross-section of the 2D MTF. 

This simpler representation is accurate for cases with radial symmetry and/or random MSF 

error distributions, but can give misleading results in cases with structured error 

distribution [22]. Similarly, Youngworth and Stone [19] previously showed that, for 

random MSF error distributions, the Strehl ratio S and the aberrated MTF (MTFAB) can be 

estimated using phase of the exit pupil and the diffraction-limited MTF (MTFDL), as shown 
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in Eqs. (4.11) and (4.12). For the current Cooke triplet example, phase = 0.68 rad and 

S=0.63 from Eq. (4.11): 

 

 2exp ( )phaseS   −   (4.11) 

 

 ( )AB DLMTF S MTF  (4.12) 

 

As discussed in Section 4.2, the assumption of random MSF error distributions can give 

misleading results when applied to structured MSF errors [16,22]. In previous work our 

group has reported on additional metrics for quantification of the impacts of structured 

MSF error distributions, specifically the minimum modulation curve (MMC) [29] and the 

metric Q′ [22] which is analogous to the Strehl ratio. We have recently [39] showed that 

Q′ can be estimated from the maxima of the PDPD moments as shown in Eq. (4.13), and 

that the MMC can be estimated as shown in Eq. (4.14) [22]. For the current Cooke triplet 

example, and using the PDPD maxima calculated in Section 4.4.6 with Eq. (4.13), we get 

Q′ = 0.64. 

  

 
2 4

max max' 1
2 24

Q
 

 − +  (4.13) 

 

 ( ) ' ( )DLMMC Q MTF   (4.14) 

 

A CODE V™ macro was created and used to calculate the minimum modulation curve 

(MMC) following the procedure from Aryan et al. [29]. The MMC is used in this process 

because it has been shown to assess the performance impacts of generalized MSF surface 

errors [22]. For the current Cooke triplet example, Figure 4-10 shows and compares the 

diffraction-limited MTF with the MMC, the MTF estimated using Eq. (4.12), and the MMC 

estimated using Eq. (4.14). 
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Figure 4-10: Comparing MMC from Cooke Triplet example with performance 

estimates using Strehl ratio and Q′. 
 

 

Figure 4-10 shows that use of Q′ and Strehl ratio give very similar predictions for the 

current example.  The performance predictors converging to similar values is due to the 

MSF surface errors being orthogonal, which weakens the correlation of the MSF in the exit 

pupil.  This result is consistent with the assumptions made by Youngworth and Stone [19]. 

We also note that for the current case, 2
max (0.90 rad) is approximately equal to 22

phase 

(0.92 rad). The similarities in performance estimates resulting from Eqs. (4.11)-(4.14) are 

consistent with earlier analysis that showed equivalence when 2
max = 22

phase  [39]. In our 

next example, we examine a case where the MSF errors are more correlated which results 

in a larger variation in the performance predictions. 

 

4.5 Example: Reflective Imaging System with Correlated MSF Errors 
 

In this example we apply the same MSF signature from Section 4.4.4 to a three mirror 

anistigmat (TMA), [42] shown in Figure 4-11, at  = 587.56 nm. We first scale the 
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amplitude of the MSF errors on surfaces S1-S3 by factors of 0.75, 0.5, and 0.5 respectively. 

We then rotate the MSF signature on S1 and S2 to be orthogonal, and the signature on S3 

at 45 degrees relative to S1 and S2. Having this MSF signature at this angle will cause 

stronger correlations between the three surfaces since the orientation of the MSF errors on 

the third mirror has components in the x and y directions that are aligned with the MSF 

errors on both S1 and S2. 

 

 
 

Figure 4-11: TMA example system with partially correlated MSF error distributions. 

 
 

 

We applied the previously discussed workflow steps to the example reflective system. 

It was necessary to increase NRI to 110 for the BSP propagation and to tilt the reference 

sphere to account for tilt present in the exit pupil. The exit pupil residual wavefront error 

is shown in Figure 4-12(a) and the cropped 2nd and 4th PDPD moments are shown in Figure 

4-12(b). 
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Figure 4-12: For TMA example system; (a) Exit pupil residual wavefront error, (b) 

cropped 2nd and 4th PDPD moments of exit pupil phase. 
 

 

The maxima of the 2nd PDPD moment is 2
max = 1.47 rad, the maxima of the 4th PDPD 

moment is 4
max = 6.50 rad, and phase = 0.69 rad. We again utilize Eqs. (4.11) and (4.13) to 

estimate S = 0.63 and Q′ = 0.53, respectively. Eqs. (4.12) and (4.14) are again used to 

estimate the aberrated MTF and the MMC as shown in Figure 4-13. Compared to the MMC 

calculated directly for this case, we see that use of Q′ (Eq. (4.14)) better estimates the 

performance. This result is consistent with the observation that 2
max (1.47 rad) is 

significantly greater than 22
phase (0.95 rad), which further validates previous results 

regarding correlated structured MSF errors [39] and demonstrates that when MSF errors 

from individual surfaces are correlated with one another, the results deviate from 

predictions that assume uncorrelated errors [19].  
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Figure 4-13: Comparing the MMC from the TMA example with performance 

estimates using Strehl ratio and Q′. For this case with correlated MSF errors, use of 

Q′ provides a better performance estimate than the Strehl ratio. 
 

 

4.6 Discussion and Conclusions 

We have proposed and implemented a workflow for identification, bandlimited 

filtering, propagation, and prediction of the performance impacts of generalized complex 

MSF surface errors in optical systems. The proposed procedures do not assume random 

error distributions as was common in prior work, but instead make use of the PDPD 

moments of the errors to enable optical performance estimates for both structured and 

random error distributions. Two presented examples demonstrate the usage and results of 

the workflow, and also demonstrate how the correlation between MSF errors on different 

surfaces in the system can impact optical performance predictions. The workflow was 

demonstrated in MATLAB™ and CODE V™. Implementation using commercial software 

packages should facilitate accessibility of such procedures to the broader optics 

community.  

Several challenges arise with the added generality of the proposed approach. One 

challenge is that the procedures for filtering complex bandlimited MSF errors may not 
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always be clear. Raster, azimuthal, and radial MSF error signatures are common, however, 

there can be MSF distributions that do not fall into these cases. In these scenarios, 

identifying the patterns in the coefficient maps to isolate the desired distribution using the 

presented procedures may be challenging. Another challenge is that the PDPD moments 

themselves can be time-consuming to calculate. However, we note that the maxima of the 

PDPD moments have the potential to serve as simple ‘single valued’ metrics or acceptance 

criteria to connect generalized MSF distributions to performance requirements.  

Multiple areas of future work are being considered.  A key area of interest is exploring 

the impacts of field dependence when the MSF surface error is far from the exit pupil. 

Previous work has highlighted that the beam footprint for MSF errors far from the aperture 

stop can vary greatly as a function of field angle [25]. The proposed methods could be used 

to explore the field dependencies in greater depth to inform designers and manufacturers 

how MSF errors over aperture sub-regions may influence performance. We also note that 

the presented procedures facilitate but do not currently address tolerancing of generalized 

MSF surface errors. Such a procedure could be realized by varying the amplitude and 

orientation of bandlimited filtered MSF error distributions, and would allow examination 

of the sensitivity of different optical systems to particular spatial frequencies and MSF 

error signatures.     
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CHAPTER 5: CONCLUSION 

 

5.1 Summary  

In Chapter 2, we reported on the derivation, development, and application of the PDPD 

moments to specify generalized MSF errors and their connections to the relative 

modulation without assumption of the stationarity or distribution of the MSF surface 

error  [10,92]. We also demonstrated that the 2nd and 4th PDPD moments can be used to 

estimate the relative modulation to within 1% for simple MSF structures with symmetric 

PDPDs. Further, use of the 3rd PDPD moment could enable further analysis of MSF error 

distributions that produce skewed PDPDs. 

Chapter 3 builds on the work in Chapter 2 by demonstrating a procedure using the 

PDPD moments of the MSF surface errors to predict reductions in optical performance and 

shown that the 2nd and 4th PDPD can be utilized to estimate the optical performance impacts 

of both random and deterministic MSF surface errors. In the case of random surface errors, 

the performance estimates from using the PDPD moments converged to the Strehl ratio, as 

has been seen using previous methods that assume random MSF error distributions. This 

convergence occurred when the 2nd PDPD moment maximum was close to its mean. 

However, we also saw a large variation in optical performance predictions for the range of 

MSF surface error distributions that were presented. As a result, we believe that it is 

valuable and necessary to utilize the 2nd and 4th PDPD moment procedures for most cases. 

Use of PDPD moments as proposed herein enables improved predictions of the impacts of 

generalized MSF errors on optical performance in imaging systems at the cost of increased 

calculation complexity.  
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Chapter 4 demonstrated the integration and application of areal specification tools with 

MATLAB™ and CODE V™, and a procedure to assess the optical performance impacts 

of MSF errors in imaging systems using areal tools and a mixed ray-wave diffraction 

model. We applied our method to both a transmissive Cooke Triplet and a reflective three 

mirror anastigmatic (TMA) telescope and quantified the performance impacts of MSF 

errors on multiple surfaces. By modifying the orientation of MSF in these examples, we 

demonstrated that raster errors that are aligned in angle from one surface to another can 

result in correlated performance degradation and quantified the performance impacts.  

In summary, this work has proposed, demonstrated, and characterized use of the PDPD 

moments for specifying generalized MSF errors and connecting them to optical 

performance of optical imaging systems. The PDPD moments enable optical performance 

predictions for generalized MSF error distributions that distinguish between cases with 

different distributions but similar statistics, and agrees with previously reported results for 

cases of random MSF error distributions. This work also identified a workflow that enables 

specification and performance predictions for generalized MSF errors at a system level and 

demonstrated its implementation in commercial software packages. This workflow enables 

performance predictions and modeling of high-performance imaging systems with MSF 

errors and should be of broad applicability and interest to the optics community. 

 

5.2 Future work 

1. As discussed in Chapters 2 and 3, we assumed situations in which the 3rd PDPD 

moment is negligible. However, the 3rd moment must be considered for MSF errors 

that cause skewed PDPDs and will add a complex component to the relative 
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modulation. Such cases should be further explored by expanding on the methods 

developed within Chapters 2 and 3. 

2. We note that the aberrated 2D MTF can be estimated by multiplying the relative 

modulation (estimated using PDPD moments) by the 2D diffraction-limited MTF. 

This approach could facilitate definition of optical performance over specific band 

limits in image space and enable quantification of the performance impacts of MSF 

errors at targeted image space spatial frequencies. 

3. Chapter 4 describes methods that could be used to aid in tolerancing MSF errors in 

optical systems, but has not yet demonstrated a tolerancing analysis. Multiple builds 

of bandlimited filtered MSF errors of varying amplitude and orientation could be 

realized to collect PDPD moments statistics over multiple realizations. Such a 

procedure would allow examination of the sensitivity of different optical systems to 

particular spatial frequencies while still enabling distinction of performance impacts 

due to the MSF distributions. 

4. The impacts of off-axis field angles with MSF errors could be explored using the 

workflow developed in Chapter 4. Increasing the field angle can change the footprint 

and angle of incidence of the optical beam on a surface, which can result in MSF 

surface errors that function like different MSF distributions or as form errors [6]. 

Methods described within Chapter 4 could be extended to estimate these changes in 

performance as a function of field angle, which would also aid in the tolerancing of 

MSF errors in optical systems over wider fields of view.  

5. A data library (‘MSFLib’) containing a wide range of experimental MSF surface 

error distributions was developed in collaboration with companies in the Center for 
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Freeform Optics (CeFO)  [12]. This data library could be used with the methods 

presented in Chapter 4 to further explore the impacts of generalized MSF surface 

errors on optical performance. 

6. We utilized the RDF basis in Chapter 4 to filter MSF surface errors, but have not 

yet compared this basis to other basis sets such as Zernike  [86] and Forbes (2D-

Q)  [61] polynomials.  

7. Previous work [36,75] have suggested that Talbot self-imaging of the MSF surface 

errors can occur. To date, the ‘rules of thumb’ of self-imaging for experimental MSF 

errors and how these effects might impact performance predictions have not been 

rigorously studied. Additional investigation into Talbot image formation from 

experimental MSF surface errors could be made utilizing the methods in Chapter 4 

and surfaces from the MSF data library MSFLib [12].  

8. Decomposition of MSF surface errors using an orthogonal basis can be performed 

at the expense of time and challenges with interpretation of the fitted data. If filtering 

out particular MSF distributions is the only desired action, it could be beneficial to 

further explore, for example, rotational averaging of MSF surfaces to filter out 

azimuthal frequencies associated with raster and azimuthal errors [52,93].  

9. The use of experimental surfaces throughout this work has not addressed the impacts 

that the metrology method and platform might have on measured MSF topography. 

The presented work determines performance impacts based on the scaled surfaces 

given from the measurements; further investigations of how metrology methods and 

platforms may impact the measurement data and subsequent performance 

predictions from generalized MSF surface errors should be made. 
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