
OPTIMAL MANAGEMENT AND CONTROL OF RENEWABLE ENERGY BASED
GENERATION RICH INTEGRATED TRANSMISSION AND DISTRIBUTION

ELECTRIC GRID

by

Olalekan Olasunkanmi Ogundairo

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2023

Approved by:

Dr. Sukumar Kamalasadan

Dr. Valentina Cecchi

Dr. Abasifreke Ebong

Dr. Badrul Chowdrury

Dr. Srinivas Akella



ii

©2023
Olalekan Olasunkanmi Ogundairo

ALL RIGHTS RESERVED



iii

ABSTRACT

OLALEKAN OLASUNKANMI OGUNDAIRO. Optimal Management and control of
Renewable Energy Based Generation Rich Integrated Transmission and Distribution

Electric Grid. (Under the direction of DR. SUKUMAR KAMALASADAN)

Renewable energy resources advancement and offerings are steadily increasing, a major

factor leading to its global fast adoption. The connection of these resources to the elec-

tric grid, however, needs to be studied to ensure efficiency both from an operational and

regulatory standpoint. The IEEE 1547 has been used to establish standards for grid inter-

connection of some renewable energy resources (RERs). In this dissertation, the operations

of RERs connected to the grid with respect to their control, management, and optimization

are studied. It is of note that RERs are intermittent in nature and this can have effects on

the power quality metrics or utility objectives on either transmission, distribution network

separately or collectively. For instance, the stability of the grid can be affected due to the

low inertia of these resources, which can impact the voltage or the grid frequency. A novel

adaptive controller was developed to damp the oscillations caused by these RERs, the con-

troller was initially tested with RERs in one network architecture, and it offers advantages

such as dynamically responsive support to the grid to control the frequency, a frequency

spectrum was used to determine the amount of support required in an adaptive manner.

The architecture was then expanded to a network model that has both transmission and dis-

tribution networks integrated together with the interconnection of multiple RERs connected

to the grid, the capabilities of the proposed architecture were evaluated with different test

cases with different grid events. The architecture had the capability to control multiple

generators as well as damp the oscillations observed during the test cases and simulations

performed, by adaptively updating the gain of the power system stabilizers (PSS). On the

management side, A new technique was developed with grid-connected RERs that provide

real-time visibility of two integrated networks during operation. Presently, the operations

don’t offer such capabilities as the transmission system operator (TSO) is often times blind

to the distribution system operator (DSO). Our technique makes it possible for the trans-

mission network to adjust itself in real-time in case of sudden changes in the distribution

network with RERs connected, A stochastic linear optimization technique; Linear decision

rule (LDR) that establishes the relationship between the generators in the transmission net-

work and the RERs in the distribution network was implemented, the technique addresses

one of the major issues with integrated T&D IEEE networks which is boundary mismatch

caused by the reverse power flow from the distribution network, in addition to offering the

operational advantages required by most utilities like minimization of voltage deviation, and

minimization of cost of operation, as it eliminates the need for curtailing RERs which is
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the current implementation used by most utilities, the technique theorem proof was also

discussed and The performance of the technique was evaluated using different integrated

T&D IEEE networks, with different grid penetration levels of the RERs. Furthermore, Grid

Connected RERs are multiperiod in nature, it is therefore imperative to study their behavior

at each time interval, the optimization framework was extended to such studies to handle the

reverse power flow operation due to the irradiance daily curve, and the optimal power flow

formulation was transformed to multiperiod optimal power flow MPOPF. The effectiveness

of the proposed architecture was tested with an irradiance curve, and a typical residential

load curve, it demonstrated the capability to reduce the boundary mismatch while ensuring

the grid objectives for each network were achieved. Finally, the impact of electric vehicle

charging was studied and a management approach was developed, electric vehicles (EVs)

adoption is also increasing impacts of the distribution network on the transmission network

with respect to grid penetration, we developed a two-stage stochastic linear optimization in

the integrated T&D to handle the uncertainty with electric vehicle charging and compared

with effective EV charging management technique that was developed. A novel approach

to handle the uncertainty with EV charging by providing an optimal set-point to charging

charging was designed and evaluated, to assist utilities with operational planning.
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CHAPTER 1: INTRODUCTION

1.1 Background

Recent trends in electricity generation include the interconnection of several resources with

the traditional power grid. Amongst the new resources, renewable energy resources (RERs)

are gaining fast adoption, because of their economic, environmental, and sustainability ben-

efits. In addition, many policies are major drivers for the adoption of RERs [2, 3]. The

electricity delivery frequency determines the point of interconnection for these resources, de-

pending on the type of RER. For instance, wind turbines are connected to the transmission

layer. At the same time, small-scale or residential solar systems can be connected to the dis-

tribution layer, which can be referred to as distributed generation (DG). Studies show there

are 12 million DG units across the United States with a total capacity of 200GW [4]. RERs

can be operated in both a grid-connected mode and an off-grid mode. In a grid-connected

mode, the traditional grid is transformed from a unidirectional flow into a bidirectional flow,

which increases the network complexity. In most RERs, power generation varies due to the

intermittency/variability of the source. For example, wind speed variability results in wind

turbine frequency and power output fluctuations [5]. This variability can have a significant

impact on the grid. These impacts can be more severe, depending on the level of renewable

energy penetration. Some of these impacts result in violation of power quality standards,

such as the voltage ANSI value (0.95-1.05pu) or the frequency, which should be kept be-

tween 59.5-60.5Hz, so the system does not lose stability. Power quality is assumed to be

good if the aforementioned metrics remain at an acceptable, steady value of voltages and

frequency, with a smooth sinusoidal waveform. This showcases the need for effective control

and management strategies.

1.2 Motivation

Renewable energy has led to a lot of cutting-edge innovation and the advent of new

technological devices in the energy industry, The resources making this feasible are unique

in their operations and are largely dependent on their sources. For instance, a wind turbine’s

power output is largely influenced by the wind speed, and so is the sun irradiance determining

the amount of power a Solar PV can produce. double fed induction generators (DFIG) is one

the major types of wind turbine generators used owing to their operational efficiency, with

two back-to-back PWM converter. Even though wind turbines have low or no inertia, the

increased penetration of wind turbines can offer great benefits and disadvantages for both
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power system damping and sensitivity modes of the system. WTG don’t produce inertia

response during grid disturbances and hence with high penetration levels of wind turbines,

the impacts might be severe. Solar PV’s operations are similar to that of wind turbines with

respect to low inertia support, the efficiency can also be influenced by AC/DC converters.

Since these resources offers a lot of advantages, both economically and environment, there

is a need to evaluate the control and management technology needed to achieve a smooth

operation. On the control, most of the existing architecture doesn’t account for the fast-

changing nature of RERs and there makes it difficult to adequately reduce such impacts

which can cause frequency oscillation. Another major challenge with grid-connected RERs

is their management in an integrated T&D framework, the existing grid architecture doesn’t

provide the transmission network insights into the distribution network where most RERs

are connected. With the increasing penetration of these resources, there is a need for this

visibility into both networks, so the generating resources can readjust themselves quickly to

avoid grid quality issues.

A lot of research work has been done on integrated T&D power flow, However, utilities

still have specific grid objectives to achieve and hence the need for an optimal power flow

framework, to satisfy this objectives.

1.3 Main Contribution of the Dissertation

• An adaptive damping controller which exhibits superior performance during dynamic

grid conditions when compared to conventional vector control, due to its adaptive

tuning capability.

• Battery integrated control architecture that ensures improved secondary response char-

acteristics, based on a damping controller requirement.

• An optimal damping controller that can augment generator controllers and/or PSS,

which can effectively damp the oscillations in transmission and distribution networks.

• Optimal controller architecture that can dynamically adjust the gain values based on

linear optimization that modulates the generator excitation to effectively damp the

oscillation.

• A linear decision rule LDR that addresses the challenges with reverse power flow of

an integrated transmission and distribution network and reduces the boundary bus

voltage mismatch.

• An Extension of the LDR for integrated T&D in a receding time horizon optimal power

flow, with multiple RERs and uncertainties.
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• A charging management technique using setpoints control form optimal power flow to

manage uncertainty with EV charging.

1.4 Intellectual Merit and Broader Impact

The intellectual merit of this work is

1. The project provides a technique that is used to offer damping support to the grid

in a real-time manner, the technique is adaptive to the changes occurring in the grid

either natural or sudden. The project uses a spectrum to identify the torque needed to

reduce the frequency oscillation. The approach was evaluated with different scenarios

to test its effectiveness.

2. This project provides a novel architecture with observability and controllability ca-

pabilities while using an optimal sharing strategy for multiple generating resources

to provide damping support to the grid, this was evaluated in an integrated T&D

framework. A mathematical optimization to dynamically change some of the static

parameters of the resources is implemented.

3. One of the major drawbacks of integrated T&D with huge penetration of renewable

energy resources is intermittency or reverse power flow, which is currently being ad-

dressed through the curtailment of these resources, a new technique is developed that

provides real-time insights of this resources to the generators on the integrated network,

to observe and adjust accordingly.

4. The operation of the power grid is in a multi-period framework, which involves optimal

power flow solutions solved at defined intervals, the capabilities of the stochastic linear

optimization for an integrated T&D is then extended to multiperiod OPF to establish

the versatility and capability to operate efficiently at different intervals with other

resources.

5. The possibility of several intermittent resources interacting with the grid is the fun-

damental of smart-grid, a novel approach is developed to handle the uncertainty by

several of these interconnected resources and keep the grid operating smoothly within

its boundary conditions.

6. Electric vehicle charging is a major issue for utilities due to the uncertainty with respect

to charging, a new methodology was developed to assist utilities in providing setpoints

to charging stations to assist with planning and other objectives.

The broader impact of this work
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1. Control systems and architecture can be designed to be adaptive in nature to accom-

modate the changes by RERs which can lead to fast or sudden changes in the grid.

2. PMU’s data can be used as a source for a real-time controller, providing a damping

torque for grid oscillation.

3. Distribution system operator (DSO) with several resources can provide insights to

the Transmission system operator (TSO) in real-time to handle the changes before

scheduling intervals.

4. The maximum offerings of grid-connected RERs can fully be exploited on every occa-

sion reducing the need to curtail or isolate these resources.

5. Utilities can improve their planning efforts, as well as grid-stability issues with respect

to the uncertainty of EV charging.

1.5 Dissertation outline

In Chapter 2 a comprehensive literature review on the state-of-the-art of control methods

that are used to address the dynamic changes caused by RERs was analyzed, we compared

the performance of the existing controls and identified their shortcoming,. We studied the

implementation of three different widely used approaches and their offerings, we also tested

the approach with different scenarios to validate our hypothesis on the need for better control

implementation. Furthermore, we also explored the management of grid-connected RERs by

reviewing some of the approaches that are been used and clearly identified the need for the

technique to improve operational efficiency.

Chapter 3 an adaptive damping controller was developed which ensures that the dynamics

from RERs are adequately managed to avoid deviations with respect to frequency or voltage

on the grid. The controller was further extended into an integrated T&D system with

different RERs and different grid resource conditions.

In Chapter 4 a management technique for an integrated T&D, which enables the sys-

tem to operate efficiently despite the sudden change due to RERs eliminating the need for

curtailment of DERs which led to cost efficiency and minimization of voltage deviation. A

linear decision rule (LDR) technique was used to establish the relationship between the two

networks and provide insights into the distribution network to the transmission network, In

Chapter 5 The new architecture of our LDR technique for an integrated T&D, to a mul-

tiperiod framework, which is time-receding horizon and larger networks to further test the

versatility of our approach. Chapter 6, The number of uncertainties in the integrated T&D

was increased and extended the scope of the newly proposed methodology to handle multiple

uncertainties and different time intervals.
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Finally, the conclusion about our work is presented in Chapter 7, while in Chapter 8,

future work to be done were discussed.



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The modernization of the power grid involves a lot of new technologies interplaying at

all the layers involved in the generation of electricity to the point of consumption. These

new technologies are been implemented at generation, transmission, distribution, and even

consumption. The technological advancement though offers numerous benefits ranging from

sustainability, cost, and environmental benefits. This is also transforming the distribution

network into a more complex interconnected network, the traditional unidirectional flow of

electricity has now been replaced with bidirectional flows due to the advancements. The new

technologies coupled with the existing traditional grid are commonly referred to as Smart

Grid. Smart grid comprises distributed energy resources (DERs) which are rapidly increasing

in penetration with the existing grid and have led to distributed generation.

Recent studies revealed that there are 12 million distributed generation DG units across

the united states with a total of 200 GW [6, 7]. The growth of the distributed energy re-

sources DERs can be attributed to climate change and the declining cost of DERs, some of

these DERs technologies include distributed generation e.g. solar PVs, wind generation, or

battery storage systems like electric vehicles, flywheels, or demand response is referred to as

DERs which can interplay at any of the levels in the electricity chain (Generation to con-

sumption). The Grid integration of these resources can however have significant effects on

important power quality metrics in distribution such as voltages and frequency. These issues

are from the variability nature of the sources of most DERs, for instance, wind speed can

vary the amount of power generated by the wind turbine and can impact the grid frequency,

concurrently overvoltageâs and Undervoltage can be caused by the varying irradiance profile.

The level of impact can be adverse if the penetration level of the DERs is high, which there-

fore necessitates a need for efficient control and management techniques for Grid-connected

DERs. [6, 8]The IEEE 1547 standards form the basis of the interconnection of DGs with

the distribution network. In accordance with these standards, a parameter such as voltage

should be kept within the limits of the ANSI value (0.95-1.05pu), the frequency should also

be within the limits be 59.5-60.5 Hz. The optimal coordination and management of the

smart grids is an imperative action to implement to maximize the benefits DERs proposes

in terms of cost, sustainability, and resiliency.

Due to the volume of DERs been integrated into the grid, their management should be

done at the device levels, and they can receive instruction in groups for efficient management.
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The group-level management can be done by the DSO which communicates to the DERMS

which coordinates at the device level. The most advanced method of managing DERs is

the DER aggregator which makes use of an alternating direction method of multipliers

(ADMM) for distributed controls but has the limitation of not having access to the accurate

system model and are completely unaware of the system constraints, these limitations are

the propositions that the distributed energy resource management systems offer, as it an

intelligent platform that enables all the capabilities of the system without violating the

constraints, as well utilizing the resources to solve already violated constraints and return

the system to stability.

The distribution network include resources transforming the grid into an active network

(ADNs)[9],[10] leading to a reverse power flow to the TN, These resources are dynamic,

and can lead to a sudden change or transient operation [11] if not well captured in a day

ahead forecast due to their nature. Their level of penetration [12] in the grid can have some

significant effects which influences key power quality metrics of the grid (voltage, frequency,

and many more) during such times of variations. The optimal power flow (OPF) computation

can be performed within specified intervals or a day ahead schedule for efficient planning.

However, with the recent trends the solution seems not efficient [13] any more due to the

increase in the number of resources (distributed generation) [14], inter-playing and controls

on the DN. This studies enable us to ensure that the transmission system operator (TSO)

and distribution system (DSO) operators are not been almost blind to each other controls

or coordination [15], especially during these dynamic operations [16]

These all call for new architectures to balance the real-time generation and demand effi-

ciently and to ensure proper coordination due to the new relationship existing between the

generators, customers, and network operators, and provide optimal benefits.[17]. The exist-

ing controls and management approaches currently being used to achieve a smooth operation

of the integrated grid is discussed in this chapter.

2.2 Benefits and Challenges of Grid Connected RERs

Most of the Grid-connected RER issues discussed above can be managed using a DERMS

platform. Even though DERs integration offers many benefits to the existing grid infrastruc-

ture which will be discussed it is important to discuss some power quality issues [18] that

occur due to the integration of RERs needs to be discussed extensively as well.

2.2.1 Advantages of Grid Connected RERs

Grid-connected DERs have general benefits to utilities and electricity consumers such as

generation operation Cost reduction, environmental friendly, sustainability, Grid resiliency.

However, a further look into its benefits to utility DERs are used for grid ancillary services,
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Figure 2.1: Several RERs grid connection to the grid

some of which are discussed below:

2.2.1.1 Volt-Var Optimization

The voltage levels from the feeder in the network can be optimized especially in a situation

where the loads are voltage sensitive loads and this is done to ensure that the voltages can

be maintained within the service level limits of (0.95-1. 05p.u), which can help reduce the

amount of power been consumed and directly lower the cost of generation. DERs smart

inverters coordinate with existing legacy devices capacitor banks, load-tap changers, and

voltage regulators to perform this function. The Volt Var optimization (VVO) optimizes the

set points of the legacy devices and the DERs smart inverters using real-time measurement

of the grid from the DERMS. Apart from the objective of using the VVO to reduce the

power consumption of the feeder which is known as conservative voltage reduction, it can

also perform objectives as loss minimization and regulate feeder voltages. Before the imple-

mentation of VVO, existing approaches such as Volt var control (VVC)[19–21]and integrated

volt var control (IVVC)[22] could only optimize the operation of legacy control devices, but

the increasing penetration of DERs and integration of distributed generation which com-

prises smart inverters employ the joint optimization of all the devices in a framework known

as VVO. [23] VVO has been evaluated through a bi-level approach with two optimization

techniques was combined was used. Level 1 which uses mixed-integer linear programming

(MILP ) optimization technique objective was to minimize the power consumption for the

feeder by controlling the legacy devices such as the voltage regulators, capacitors banks, and

smart inverters and providing a setpoint, Level 2, therefore, uses a Nonlinear programming

technique (NLP) with the set points in Level 1 to perform a power flow solutions, which can

vary only the smart inverter setpoints obtained from the previous level, while ensuring that
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the setpoints for both the capacitor banks and voltage regulators are constant. The bi-level

approach ensures that each system is optimized at each node, to reduce the computational

burden and reduce the risk of single-point failure for centralized control. An improved per-

formance was observed when the VVO approach was used as Conservation voltage reduction

(CVR) concerning the power reduction consumed and losses.

2.2.1.2 Peak demand management

The demand profile for most electricity consumers varies frequently, and one important

as well as a critical phase to plan for is the peak demand period[24]. Even though these do

not occur for a long duration, if not properly managed can cause have significant adverse

effects on the grid. Hence, even though most utilities have baseload consumption, genera-

tion, studies have shown that capacity planning is based on the peak load demand. This

also impacts the costs of electricity generation from the perspective of high-ramp power gen-

eration, also the generation components as generators, transformers, switchgear, protection

systems need to plan for in terms of peak demand requirements which leads to an increased

cost. DERs can be used to support peak demand requirements, the generation support from

the DERs will have a competitive cost advantage rather than increasing existing generation

sources and supporting equipmentâs capacity. Peak load management is done using DERs

such as PVs, battery, and Electric vehicles and has been evaluated by several studies [25–29],

in [24] where a commercial load management algorithm was implemented that combined a

scheduling algorithm of EVâs, to optimally provide peak management support with PVâs

and batteries combined.

2.2.1.3 Service Restoration during faults

Fault occurrence can lead to the outage on the grid and can pose a significant effect on

the grid, as well as damages to electricity consumers downstream to the grid, who might

also have some critical loads. Faults can also distort the frequency on the grid, and lead to

instability issues. Fault occurrence is often high-impact low probability events know as Grid

resilience. Outages experienced in the US costs the economy 18 to 33 billion per year[30].

Even though, their lots of devices to help reduce the effects such as switches, reclosers, and

circuit breakers, during fault occurrence, can still lead to a significant number of outages,

Most times a new feeder can be reconnected and reconfigured to reduce the number of

outages. Grid-connected DERs and smart switches can be coordinated together and used

for restoration. The feeder is reconfigured such that the customers experiencing the outage

are connected to a neighboring DER(s) and are restored. A lot of studies have been written

to improve grid resilience using DERs and microgrids but didnât include post-restoration

failures. The studies carried out by [31, 32] use a spanning tree algorithm to restore critical
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loads and maximize the duration time.[33] The distribution system is sectionalized into a

self-sustained microgrid to supply power after a service. An approach was proposed by[34]

where a distributed service restoration algorithm is used to reduce the number of outages

after fault occurrence occurs in a large feeder network.

2.2.2 Disadvantages of Grid Connected DERs

We have discussed some advantages of Grid-connected DERs in the previous section.

This interconnection leads to some power quality issues. High penetration levels of for in-

stance by solar PVs can lead to overvoltages, wind energy conversion systems generation is

also intermittent and non-dispatchable which can lead to high fluctuations caused by wind

turbine[35][36]. The power supply is said to be of good quality if it remains constant at ac-

ceptable steady-state voltage values and frequency with smooth sinusoidal waveform[37][38].

Power quality affects the overall reliability of power grids which are power fluctuations,

frequency fluctuations, voltage fluctuations, and harmonic distortions[39–43] and some mit-

igation techniques[41, 42]. have been reviewed in the literature. However, two of the major

issues that are mostly caused by grid-connected DERs include voltage distortion and fre-

quency imbalance.

2.2.2.1 Voltage level

Increasing penetration of DERs in the Grid has significant impacts on the voltage level on

the grid. This impact can be more severe in networks with high DER penetration, in other

for loads to properly, voltage has to be within the service limit of 0.95-1. 05p.u. Hence, the

need for voltage management impediment in grid-connected DERs, Voltage management

devices such as capacitor banks, voltage regulators, and load tap changers still offers the

advantages of controlling the voltage level on the grid, however, the intermittent nature

of DERs, like irradiance with solar PVs can vary suddenly and cause overvoltageâs if it

increases suddenly and Undervoltage when the irradiance level is very low. Capacitors banks

even though majorly serves the purpose of reducing losses on the system, can also improve

the voltage profile on the grid, and several other new devices such as the smart inverters

with volt-var, volt-watt control mechanisms are been used to improve the voltage levels, by

controlling reactive power or active power from the DERs. Battery banks are connected with

inverters to improve the voltage profile on the grid. Several control architectures are used

for voltage management.[44] an optimal online voltage management algorithm, that makes

use of a combination of battery energy storage, PV active power curtailment, controllable

loads, and voltage regulators. [45] authors propose the use of static var compensators and

smart inverters to address the overvoltage and under-voltage problem. Figure (a) below

shows the different operating regions of the grid voltage from over-voltage, allowable limits,
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Figure 2.2: (a) voltage service level limits (b) voltage variation due to the intermittency of renewable
resources

and Undervoltage. While figure (b) shows the voltage levels with DERs connected to the

grid and if not properly managed can lead to grid voltage level issues as shown Fig.2.2.

2.2.2.2 Frequency distortion issues

Frequency stability is a major requirement in the operation of the power grid, this challenge

often time arises as a result of the imbalance between power supply and power demand.

Grid frequency is an important metric to access the health of the grid[46, 47]. Synchronous

generators have a huge amount of inertia from the rotating mass can assist in reducing the

rate of change of frequency (ROCOF), thus inertia helps to prevent frequency extortion

issues and can serve as the first means of control. The primary control then assists after the

inertia, has been tried, and another layer of control that helps mitigate this is the secondary

control. Primary frequency control actions are initiated by the synchronous generators, while

the secondary frequency control can be from the grid operators which can employ the use

of devices such as batteries. In the primary control, the actions are taken based on the

deviation in the speed, by measuring the local frequency from the generator itself, while the

second is based on the data collected through telemetry systems. The figure below shows the

interaction of the control mechanism. M is the inertia constant, ∆W represents the change

in local frequency measurements, B is the frequency bias, R is the droop coefficient of the

generator, D is the load damping constant, ∆Ptie is the change in power from one area to

another, ∆PL is the load change, ∆Pm is the generator output changes, ∆Pb is the change

in DERS such as a battery, Tch and Tg are the time constants of the prime mover and speed

governor. ACE is the area control error that provides a notification of the deviation from the

nominal frequency. All the interaction and time of response for different control mechanism

is shown below as shown Fig.2.3.
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Figure 2.3: Frequency curve and control levels

Figure 2.4: RERs Grid integration operation techniques

Other issues experience in grid-connected RERs include Power fluctuations which have

been widely mitigated using energy storage systems like batteries, ultracapacitors [48–50] and

non-energy storage systems[51, 52] such as pitch angle control and DC link voltage control

methods in the wind turbines[53, 54]. Another issue is harmonics which is the distortion of

voltage and current waveforms caused by nonlinear loads, this issue is mitigated by filters

which kind either be passive or active filters or by using virtual impedance method[55] to

shape the control impedance through harmonic compensation[56]

2.3 Conventional Control methods for Grid-connected RERs

In this section, some control techniques used in grid-connected renewable energy resources

Fig.2.4 shows the classification of some of the techniques implemented for controls and man-

agement of these grid-connected resources.
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Figure 2.5: Schematic of a damping controller

2.3.1 Damping controllers

Grid-connected RERs are susceptible to issues such as frequency distortion. frequency

oscillation issues are caused mostly by variations in the active power. Since the power gen-

erated by RERs varies based on their sources of generation the likelihood of the occurrence

of this kind of issue is high. For instance, wind power generation varies with wind speed

leading to frequency distortion which can lead to a major grid disturbance if sustained for

a long duration. Fault occurrences are also known to cause frequency distortion. A couple

of studies have been done to assist with the mitigation of this issue, frequency scanning

methods have been used to analyze the relationship between frequency and impedance of

the compensation network, to further improve grid stability, grid-connected DFIG damping

strategies are implemented to control DFIG with and without batteries. Battery energy

storage system (BESS) and advanced control management are critical enablers for grid an-

cillary support. Damping Controllers operate by providing an additional source of power to

the converters, which might be supplied as additional current, to damp the oscillation on

the grid by reducing the rate of change of frequency to disturbance. This is implemented by

measuring the deviation in the frequency on the grid, as an input into a controller to provide

an additional current to the converters of the Grid Connected RERs. A lot of methods can

be implemented with the damping techniques such as adaptive damping controller[57], and

some work has also been done using fuzzy logic.

2.3.2 Harmonic Resonance

RERs uses converter systems to interface with the grid, the output side of the filter

(LCL) of these converters can interact with the impedance on the line, which can lead to

negative increment impedance [58] causing stability issues concerning the frequency and
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Figure 2.6: Impedance methods schematic for harmonics mitigation

can cause a major challenge (subharmonics or Harmonics). Various studies and approaches

have been carried out on how to mitigate these issues. [59] Impedance based approach

predicts the system stability at the point of interconnection based on the ratio of output

impedance to equivalent system impedance, a more straightforward stability analysis using

frequency domain, it is however limited to small-scale power electronics system and neglects

network dynamics and cannot adequately estimate the system impedance.[60,61] Component

Connection method is a form of state-space model, where the state matrix can be estimated

using eigen properties, the interaction of components and critical system parameters can be

easily determined, but the challenges of this method is the complexity in relating the system

and component. Output impedance reshaping can also be done by using a virtual impedance

lossless circuit for harmonic compensation sharing between multiple DERs[62].

2.3.3 Operational mode

DERs can operate in both grid forming mode and grid feeding mode[63]. The transitioning

of the grid-connected inverters during these modes can create some frequency, voltage, or

current disturbances, A couple of control schemes have been implemented to assist with these

transients and to aid smooth transition[64–66]. Phase-locked Loop PLL and virtual resistors

are used to mitigate this disturbance, the major challenge with a phase-locked loop is that

it deals with the outer power loop and synchronization, however, some issues can still occur

because of internal current or voltage loops which is not accounted for by the approach.

2.3.4 Frequency control

Unlike traditional synchronous generators which have a large amount of inertia to mit-

igate frequency disturbance, most RERs have little or no inertia, this means that small

disturbances can increase the rate of change of frequency ROCOF and may lead to load
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Figure 2.7: Operational modes of grid-connected RERs

Figure 2.8: Synchronverters and Inducverter

shedding to maintain a balance. A lot of control approaches as been used to provide in-

ertia so that issues caused by the disturbance can be minimized. A conventional method

is to use Superconductive Magnetic Energy Storage (SMES), which has a superconducting

coil that stores energy in a magnetic field created by the DC to minimize output frequency

fluctuation[67], the major challenges with implementing SMES is the high capital cost[54].

The virtual inertia approach is also, Synchronverters[67, 68] this mimics the Synchronous

Generators (SG), Use a control algorithm to behave like a synchronous generator, it uses

mathematical equations to form a PLL which makes it capable of maintaining synchronism

with the terminal voltage, the issues with synchronverters frequency levels distortion is a

bit steeper with respect to nadir frequency, even though it has faster settling. [69]Virtual

synchronous generators (VSG) are more suitable for grid operations and provides better

minimum frequency deviation, higher energy exchange due to higher settling time, various

implementation of VSG concept is explained in [70–74]. VSG can also be further optimized

with particle swam optimization[75] where the voltage angle deviation VAD is kept within

the limit of operation to maintain stability. Inducverter [76,77] A new control topology that

mimics induction generator behavior in power systems, helps auto-synchronization with the

grid without information about the grid voltage, it also eliminates the need for synchroniza-

tion units and PLL.

2.4 Conventional management methods for Grid-connected RERs

In this section, some management techniques used in grid-connected renewable energy

resources were discussed, as shown in Fig.2.4.
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Figure 2.9: Grid-Connected Battery

2.4.1 Battery

Batteries help to avoid waste and any deficit between generation and demand which can

result in delayed delivery of power to loads. The battery allows intermittent renewables

to substantially contribute to the energy mix for our national grid. Therefore the need for

a dispatchable generation and storage devices, these storage devices offer benefits such as

providing spinning reserve, correcting frequency, or provision for new transmission and or

generation capacity. In some situations, the battery is connected to the converters of the

Renewable energy resources.

2.4.2 Smart-Inverter

Smart inverters have been proposed as a solution[78, 79] for most voltage problems that

could arise from the integration of DERs into distribution grids. The several functionalities of

smart inverters are a testament to their versatility. A report published by the Electric Power

Research Institute (EPRI) groups functionalities of smart inverters into different categories

based on control drivers and the purpose of each functionality [8]. However, for voltage-

related issues the most commonly implemented functionality is the volt-var and volt-watt

functions of the smart inverter are been implemented to ensure that the grid-network voltage

level at all locations is within the acceptable limits of operation.

Volt-watt and volt-var functionalities of smart inverters have been widely considered for

solving voltage problems due to high DER penetration levels. The volt-watt function enables

control of the DERâs active power output as a function of the bus voltage being observed

while the volt-var function enables reactive power control, each of the functions can either

inject or absorb reactive/active power depending on the functionality been implemented. Ac-

cording to the EPRI smart inverter functions report, both functions are classified under the

autonomous function category meaning that once the desired control actions have been con-

figured, the smart inverter responds on its own based on observed grid conditions. Typically,

volt-watt curves and volt-var curves are used to specify the desired performances for smart
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inverters operating in these modes. It is worth mentioning that the volt-watt curve used in

the study is quite aggressive. However, this is not a major concern in this study as desired

settings can be configured for real-world smart inverters to meet specified requirements.

A study was carried out on overvoltage correction in active distribution grids using the

smart inverter (SI). The volt-var curve used for the smart inverter are is as shown in fig.

6.4, for some more adverse scenarios that reactive power support from SI couldnt handle,

we enabled the volt-watt functionality. The voltage values for the volt-var curve were set

following guidelines specified in the IEEE 1547 standards [9]. For the volt-var curve, the

Deadband region was set between 0.99 p.u. and 1.01 p.u. When the voltage goes out

of this range, the smart inverter starts injecting or absorbing reactive power as required.

Although both volt-var and volt-watt functions are enabled, the generation of active power

takes precedence over the generation or absorption of reactive power. Hence, active power is

curtailed when reactive power absorption is unable to mitigate the overvoltage problem. An

investigation was done on a IEEE 13Bus network, analysis was performed first to see which

bus location is better to connect the smart inverter to mitigate the issue.[80] The smart

inverter operates by monitoring the voltage at the point of interconnection (VPOI) of the

DERs with the grid. If VPOI > 1.05, the smart inverters absorb reactive power, thereby

correcting over-voltage conditions. Likewise, if the VPOI < 0.95, reactive power is injected

to improve the under-voltage condition. As shown in Figure 2, the capacitive region is used

when absorbing reactive power and the inductive region while supplying reactive power.

The reactive power being absorbed or injected is a function of the amount of reactive power

available which is calculated using equation (1).

Kvaravailable =
√
(KV Arating)2 − (KWpresent)2 (2.1)

Figure 2.10: Schematic diagram of volt-var curve of smart inverter.

Smart inverters are capable of other functionalities like the dynamic reactive current func-

tion, fixed power factor function, maximum generation limit function. Dynamic current
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function differs from volt-var because its mode of operation is dynamic unlike the volt-var

whose operations is at steady-state which infers that the decision factor is the change in

voltage rather than the change in voltage level, it operates by providing capacitive reactive

currents. Fixed power function makes the smart inverters perform the role of been a voltage

regulator, while the maximum generation limits function limits the amount of power the PV

can supply to the grid.

Apart from the functions of a smart Inverter, there are also certain features that they

possess to demonstrate its intelligent capabilities. Five features have been identified by some

literature, and are discussed below:

• Plug and Play: Enable easy communication and seamless integration with the grid[81–

84].

• Adaptability: Should be able to operate during fault occurrence [85–88] in certain

conditions especially when critical loads are involved. They should be able to detect

islanding mode operation of DERs[89–91].

• Self-Awareness: Smart inverter self-awareness features is divided into three concepts[79,

92, 93], they can perform diagnostics to know where issues during operation are orig-

inating from, they can also carry out prognosis to estimate when a fault is going to

happen and finally, they should also have condition monitoring capabilities to know

the health and status of the component.

• Autonomy: Smart inverters should be able to operate by switching their mode of

operation from grid forming to grid feeding modes[63], it should also aid controls that

assist with the sharing of power based on the ratings of the inverter when we have

multiple inverters.

• Cooperativeness: Smart inverters have the capabilities to assist in reactive power-

sharing, this has been discussed in some of the functions of the smart inverters. They

also possess the capability to assist with ramp rate control.

2.4.3 DERMs

Grid-connected DERs management and coordination are achieved with advanced dis-

tributed management systems (ADMS). ADMS is a software platform that offers a couple

of advantages over the DMS as it combines the capabilities of existing distribution man-

agement software (DMS), Supervisory control and data acquisition (SCADA), geographical

information system, output management system (OMS), meter data management system.

DMS is used to manage legacy voltage regulating devices such as the capacitor banks, trans-

former taps, and voltage regulators, while the ADMS platform incorporates distributed PV
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Figure 2.11: Operational modes of grid-connected RERs

generation and other inverter-based resources. A conventional DMS performs power flow

analysis frequently to determine the setpoints and optimal settings of legacy voltage regu-

lating devices based on the utilities need at a particular point, while the ADMS under which

distributed energy resource management (DERMS) platform falls categorically, incorporates

the services of DERs with algorithms to help that provides a better optimal solution. DMS

makes use of sensors on the power systems to know the operational status, and limits and

compare itâs with operational goals and priorities at any given time. Some DMS are DERMS

ready and hence a communication link is made available as seen in fig. 2.11, DMS is then

defined to determine what services are requested while DERMS provides the services as re-

quested or alternatively, DMS carries out grid-level service functions, DERMS performs the

device-level function capabilities

2.4.4 PowerSharing

The increasing penetration of RERs has led to the interfacing of several inverters to the

grid, this has lead to the need for a control method to share active and reactive power

efficiently amongst the resources.[94–96] A droop control method has been widely used to

enable active power-sharing between parallel-connected inverters[97–101], which has advan-

tages over master-slave control method as it eliminates the need for a communication link,

and also over active current distribution control where a current reference is provided for

each inverter but faces the challenges of the failure of one inverter leading to an entire system

failure, the shortcomings of the droop-control method is that reactive power is not shared

adequately, and the harmonic current.[62] A virtual impedance loop is used to enable the

sharing of reactive power between the inverters, this employs the use of virtual impedance

loops to compensate for the inverter output and line impedance unbalances, since the reac-
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Figure 2.12: Droop control for power sharing

tive power sharing is dependent on the impedance of DG feeders and output side impedance

of L-C-L filters, the shortcoming of this approach is that large of impedance can be required

which can degrade the voltage quality especially in weak islanded Grid.[102–104]

2.5 Conventional Integrated T&D optimization method

Before discussing some of the optimization methods of conventional Integrated T&D.

methods, we need to look at the advancement in the modeling of the integrated T&D.Alot

of techniques have been developed for the modeling of the techniques which are discussed

below.

2.5.1 Unified Modeling

Unified modeling is such that the same framework is used for the modeling of both net-

works and a common model is developed which has all the measurements of both networks

either from energy management systems (EMS), supervisory control and data acquisition

(SCADA), A couple of techniques has been discussed like Graph trace analysis, or using

a synthetic distribution system model combined with the transmission system using a top-

bottom approach. A global power flow method based on the master-slave technique has also

been deployed where the computation is done iteratively, to improve the efficiency of the solu-

tion a contingency selection is performed, DC power flow approximation, and approximation

of the distribution system network. Alternatively, the transmission system network can be

modeled as a positive sequence network and the distribution is modeled as a three-phase

network, in which an NR solver can be used for its solution.

2.5.2 Co-Simulation Modeling

Co-simulation offers the advantages of some visibility and explores the economic benefits

of the DGs connected to the network, co-simulations allow for special domain tools while

exchanging time-synchronized boundary variables. Integrated grid modeling system(IGMS)
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is one of the tools that is used for co-simulation that uses a python-interface to communicate

between two controllers for the transmission system in MATPOWER and the distribution

system in GridLAB-D.Another tool is the Hierarchical Engine for Large Scale Infrastructure

Simulation (HELICS), which is used for both transmission and distribution networks as well

as the communication protocols and control interface, finally a co-simulation tool used for

transactive energy applications is the Framework for network co-simulation (FNCS).

For the optimal power flow solutions of integrated T&D, a direct idea for solving the

problem is to use centralized optimization, which may encounter some practical difficulties

for current power systems: a) As stated in the characteristics of DGs differ from those of

transmission generators because they are more dispersed throughout the network in a larger

number thus, they are difficult to centrally control on a transmission level. b) Because

a transmission system operator (TSO) and distribution system operator (DSO) function

independently, the parameters of the network and generators of the transmission and dis-

tribution network are currently always non-observable to each other; thus, it is difficult to

establish a centralized TDCED model for current power systems. Only the information at

the boundary buses, such as the power values and LMPs, can be mutually observable. Thus,

a centralized TDCED solution may not be computationally efficient for current practical

applications. Another idea is the use of decentralized optimization to solve TDCED. One

possible method is the direct adoption of existing algorithms that are developed for solving

coordinated regional transmission systems (RTSs). The algorithm used can be classified into

two: the Lagrangian relaxation family (LR-F) and the optimality condition decomposition

family (OCD-F). The LR-F primarily includes traditional LR the auxiliary problem principle

(APP) alternating direction of multipliers (ADMM) and analytical target cascading (ATC)

Generally, the drawbacks of the LR-F algorithms are the low convergence rate and an in-

convenient parameter tuning process the OCD-F primarily includes a synchronous iteration

that was proposed by Conejo et al. and extended in and an asynchronous iteration ver-

sion proposed by Biskas et al. The synchronous version has a better convergence property,

whereas the asynchronous version is easier for practical implementation and has been tested

in the Balkan system as the two typical OCD algorithms are aimed at the coordination of

RTSs with similar characteristics, their decomposition formats are homogeneous, that is, the

messages passed among the subsystems have similar components. Specifically, as shown in

the figure below, each subsystem with the same boundary information is called homogeneous

decomposition. Each computational unit sends its boundary voltage angles and multipliers

to the connected subsystems and receives others’ boundary voltage angles and multipliers

in each iteration. However, unlike the interaction characteristics of interconnected RTSs,

those of the transmission and distribution networks are âheterogeneousâ: from the transmis-
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Figure 2.13: Comparison of homogenous and heterogenous integrated networks

sion perspective, the distribution is usually regarded as load injections at boundary buses;

conversely, from the distribution perspective, transmission is usually regarded as a virtual

source generating at the price of LMPs. Therefore, it is helpful to know whether there might

be a new algorithm to take full advantage of the heterogeneous qualities.

2.6 Summary

In this chapter, grid-connected RER is reviewed. The advantages as well benefits of

grid-connected RERs are discussed as pertaining to their utilization to achieve certain grid

objectives. The challenges associated with grid-connected RERs in regard to power qual-

ity metric issues were also evaluated. Furthermore, some of the conventional control and

management techniques to handle the challenges of RERs being connected to the grid are

discussed, and the shortcomings of the techniques and limitations are also discussed.



CHAPTER 3: A NOVEL ADAPTIVE DAMPING CONTROLLER FOR GRID

CONNECTED RERS

3.1 Introduction

The upsurge in renewable energy generation has led to the modernization of electric power

distribution systems, and the integration of renewable energy resources into the grid is chang-

ing the operation of the grid with respect to controls and management. Renewable energy

sources, such as wind farms are often more reliable but are also prone to power quality

problems such as frequency distortion, and voltage variations, during grid operations, which

occur during overloading conditions, intermittency, and fault occurrences. The stability and

resiliency of the network grid are also impacted due to the nature of these resources, the

interconnection of these resources will make the grid experience decreased inertia. Numerous

research studies have focused on improving grid damping, including the lack of inertia, due

to the integration of renewable energy resources.

3.2 Online Adaptive Damping Controller for Wind Integrated Power Grid

In recent years, most utility companies have been exploring renewable energy generation

to improve the resiliency and reliability of their networks. The integration of these renewable

resources into the grid has, therefore, changed certain operational requirements for power

systems, despite the advantages of reduced cost in the long run by the distributed energy

resources (DERs), some power quality challenges are faced with the integration, such as

frequency variation, voltage issues during load changing dynamics and fault occurrence.

Wind energy is at the forefront of renewables, due to its economic advantages over other

resources[105]. The major challenges in the time past with wind energy have been the

operation of wind energy conversion systems (WECS) with variable speed as opposed to

fixed wind speed. The variability of the wind speed causes fluctuation in the power output

of the wind turbine and its frequency.[5]. Fixed wind speed also causes instability during

the short circuit condition in connecting networks due to the high level of reactive power

absorbed.

The application of a doubly-fed induction generator (DFIG) wind generation system has

been widely used to solve these challenges owing to its reduced robustness in the converter

system, which leads to minimum power losses. It also offers a much better generation sys-

tem than the other WECS. Besides, DFIG has advantages such as high energy efficiency and

controllability for the variable speed wind turbine. [106]. Various control techniques have
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been implemented to control the doubly-fed induction generation in grid-connected mode

and islanded mode of operation. A cyclo-converter-based control for decoupled control of

active and reactive power for the DFIG was proposed in [107]. Some studies based on fre-

quency scanning methods have also been used to analyze the relation between frequency and

impedance of compensation network [108]. To further improve the stability, grid-connected

DFIG damping control strategies are implemented to control DFIG, with and without bat-

teries [109–113]. Battery energy storage systems (BESS) and advanced control management

are critical enablers for grid ancillary support [18,57,114]. BESS in some studies is integrated

into the Vdc link of the PWM back-to-back converters to improve the power quality issues.

The main drawback associated with these architectures is that they cannot adaptively damp

the frequency oscillations. In this chapter, a method is proposed to adaptively damp the

oscillations based on an online controller. This is accomplished by dynamically changing and

tuning the damping controller parameters by measuring the frequency at every interval. The

proposed controller is implemented both in the grid-side control of the DFIG and the battery

system connected to the DC-link. The controller performance is then evaluated for scenarios,

such as during faults, varying wind speed, and load dynamics. Major contributions of this

work include:

• An online adaptive frequency damping controller.

• The proposed architecture exhibits superior performance during dynamic grid condi-

tions compared to conventional vector control, due to its adaptive tuning capability.

• Battery integrated control architecture that ensures improved secondary response char-

acteristics.

3.2.1 DESIGN AND MODELING OF ENERGY SOURCES

The modeling and design of the three main energy sources used in the test system are

discussed in this section. It includes a synchronous generator, DFIG, and battery system.

3.2.2 Synchronous Generators

The test system has two main synchronous generator types, the slack Generator, and

the PV Generator. The PV generator is connected to bus 692, which supplies the loads

downstream to the point of interconnection (i.e., loads at bus 692 and 675, while the slack

generator is responsible for supplying the remaining power demand on the grid and manage-

ment of the grid frequency. The steam turbine governor is used for the control of the active

power, while the excitation control is used for voltage management. The active power is con-

trolled (maintained constant) by the steam turbine governor, which controls the frequency

and the speed of the generator, while the grid voltage is controlled using the exciter.
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(3.1)

The steam turbine governor control ensures the stability of the power reference for the syn-

chronous generators and gives an output of Pm, the mechanical power input to the generator,

while the excitation controller provides the generator with the field voltage reference. A volt-

age stabilizer is used as well to improve the voltage on the grid according to the IEEE-DC4B

and IEEE-STIA. The dynamic equations guiding the synchronous generator model are shown

in (3.1).

Vf = kA(Vref + Vpss − Vr)

Vfmin ≤ Vf ≤ Vfmax

(3.2)

Vfmin

Ka

≤ VPID ≤ Vfmax

Ka

(3.3)

VPID = (Vref + Vpss − Vt −
Kf

Tf
[Vf − Vstab]) (3.4)

where Vref is the reference voltage,Ka is the exciter gain, Vf is stabilizer emf, Vstab is the

stabilizer voltage, Vpss is the output reference of the power system stabilizer, Kf is the

stabilizer gain, and Vr is the input filter emf.

3.2.3 Double Fed Induction Generator Model

The voltage equations of DFIG in the synchronous rotating (d − q frame) model are

described below:



26

vqs = −rsiqs + weψds + pψqs (3.5)

vds = −rsids + weψqs + pψds (3.6)

vqr = −rriqr + (we − wr)ψdr + pψqr (3.7)

vdr = −rridr + (we − wr)ψqr + pψdr. (3.8)

where vds/r, ids/r and vqs/r, iqs/r are the stator side and rotor side voltage and current in the

d− q frame, respectively.

Grid side converter (GSC): The GSC controls the DC-link voltage constant. It is also

used to regulate and provide reactive power support to the grid, which is done through

the implementation of stator voltage-oriented control. The q-axis component of the stator

voltage is set to 0, while the d-axis component is aligned to the stator voltage, for control

of the reactive power. The equations for control of the GSC in the d − q frame are shown

below:

 vd

vq

 = R

 id

iq

+ Lρ

 id

iq

+ Lwe

 −iq

id

+

 vd1

vq1

 (3.9)

The active and reactive power from the GSC controller are given as:

 P

Q

 =

 vqiq

vqid

 (3.10)

where id and iq are the d − q axis currents from the inverter, vd and vq are the d − q axis

grid voltages, and vd1 and vq1 are the d− q axis output voltages of the inverter.

Rotor side converter (RSC): The main objective of the RSC is to control the speed of

the turbine to ensure that the machine operates at maximum power point tracking (MPPT),

even during varying wind speeds. The rotor side converter also ensures that the active power

and reactive power track their reference, which is accomplished by controlling the excitation

voltage. Vector control of RSC is based on stator flux oriented frame (ψqs = 0, vqs = vs).

The equations governing the control of the converter outer loop and inner loop control are

presented below,

The stator active and reactive power in terms of the rotor current are stated as,

Ps = vqs ∗
Lm

Lrr

iqr (3.11)

Qs = vqs ∗
Lm

Lrr

iqr + ψds. (3.12)
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with rotor voltage equations as,

vqr = v∗qr + (we − wr)(σLrridr +
Lm

Ls

ψds) (3.13)

vdr = v∗dr − (we − wr)(σLrriqr). (3.14)

where Lrr and rr represents the rotor inductance and resistance and σ = 1− L2
m

LsLr
.

3.2.3.1 Battery system

The battery system is connected to the DC link of the two PWM converters, where the

energy storage system acts to mitigate power fluctuations and consequently power quality

problems. It operates by measuring the dc-link voltage, which is kept constant, but the

current flowing through the battery varies, hereby, changing its mode of operation for either

charging or discharging. The battery is designed with filter parameters (e.g., inductance

Lin, input capacitance Cin, and output capacitance Cout). The controller is implemented to

function in a buck-boost mode of operation. It has two cascaded controllers. The inner loop

acts to control the current and provide the duty cycle reference for the generating switching

pulses, whereas the outer loop control is responsible for maintaining the Vdc constant, where

Vpcc is the per unit value of the Vdc constant. The battery control equation is show in (3.33):

Pbatt =


Pdisch Vpcc < 1

0 Vpcc = 1

Pch Vpcc > 1

(3.15)

where Pbatt is the status of the battery, Pdisch indicates discharging, and Pch represents charg-

ing.

Vpcc =
Vdc
Vbase

Vbase = 1128V (3.16)

3.2.4 Mathematical Model of Proposed Damping Controller

The objective of the proposed architecture is to damp the grid frequency oscillations by

modulating the active power output from the DFIG. As explained in Section 3.2.3, the GSC

(operating under the voltage oriented reference frame) utilizes the quadrature axis current

component to control the active power output, thereby maintaining the DC-link voltage

constant. Hence, the proposed GSC damping control loop is designed to modulate the

quadrature axis current reference (using Igscdamp
, as shown in Fig. ??) to the GSC control

considering the frequency deviation. Thus, the proposed GSC control modulates the active
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power to damp the oscillation utilizing the energy stored in the DC-link capacitor. In order

to enhance the performance and operating region of the proposed control and overcome the

limited available power from DC-link for modulation, a battery control is integrated into

the architecture that can modulate the power output from the battery using Ibattdamp
. This

ensures excellent damping capability and improved secondary response.

The equation governing with the implementation of the proposed damping control loop

for active power/dc-link control with the GSC is represented by,

vd1 = Rid + æLid + igscdamp
− !eLiq + vd (3.17)

Figure 3.1: Schematic of the proposed damping controller

where R and L are the line inductance and resistance, respectively. Additionally, !e is the

angular frequency of the supply voltage, id and iq are the d-axis and q-axis currents from the

inverter, vd1 and vq1 are the d− q axis output voltages of the inverter, vd and vq are the d− q

axis grid voltage and ρ = d
dt

. Similarly, the battery control equation with the proposed loop

is shown in (3.18), where Ibattdamp
and Igscdamp

are the supplementary current control signals.

Fsw =
1

H

Vdc
Vbatt + Vdc

.− V 2
batt

RC(Vbatt + Vdc)
+ 4

Idc
ts

(3.18)


discharge mode Idc > 0

standby mode Idc = 0

charge mode Idc < 0

Idc = Ic + Ibatt + Ibattdamp
(3.19)

3.2.4.1 Frequency Spectrum based tuning of supplementary damping control loop gains

The control gains of the proposed damping controller are tuned dynamically based on

the oscillation frequency of the closed-loop system. A frequency spectrum-based analysis is
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performed to identify the oscillation frequency of the system and then modify the controller

gain values to perform optimal desired damping. The associated steps for the proposed

tuning method are depicted in Algorithm 8 and Fig. 3.2.

Figure 3.2: FFT based proposed controller gain tuning

Algorithm 1: Controller Gain Tuning
1 -
2 Compute the speed/frequency deviation signal, x[n] = ∆ω.
3 Compute the frequency spectrum of the frequency signal, X[k] (via the FFT (6.33)),

then obtain the spectrum magnitude P [k] via (3.21) and corresponding frequencies
[fx, P [k]].[115–117]

4 Calculate damping coefficient of X[k] using logarithmic decrement method per (3.22)
and (3.23).

5 Desired change in damping coefficient is calculated per (3.24), respectively.
6 Desired change in controller gains is calculated per (3.25) and (3.26), considering the

identified oscillation frequency and desired change in damping.
7 Calculate the final control gains per (3.27) and (3.28)

The proposed frequency spectrum-based tuning includes the following steps.

3.2.4.2 Calculate the DFT of the measured ∆ω signal and identify the natural frequency

of oscillation

Let us consider the frequency representation of measured ∆ω be represented as x[n]. The

Fast Fourier Transform (FFT) is performed on the measured input signals to determine its

frequency spectrum. The FFT of the input x[n] gives the frequency spectrum X[k] per

[118,119].
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X[k] =
N−1∑
n=0

x[n] · exp
(
−i2πkn
N

)
0 ≤ k ≤ N − 1

(3.20)

The spectrum magnitude P [k] is shown in (3.21), where N is the length of X[k]. The

energy signal frequency spectrum X[k] can then be expressed in terms of frequency (fx) and

corresponding magnitude (P [k]), such that X[k] → [fx, P [k]].

P [k] =
2 · |X[k]|

N
(3.21)

The frequency (fx) corresponding to the maximum peak of (P [k]) represents the dominant

oscillation frequency calculated at that instance.

3.2.4.3 Identify the desired damping

The controller gains should be adjusted to damp these oscillation frequencies. For that, the

existing damping coefficient is identified from the measured ∆ω signal using the logarithmic

decrement method [120,121]. This method identifies the damping ratio using the amplitude

information of adjacent peaks of an underdamped system. Logarithmic decrement is obtained

as the natural log of the ratio of amplitudes of two successive peaks.

δ =
1

n
ln

xi − xf
xi+n − xf

(3.22)

where n represents the nth peak after the first peak, xi and xi+n represent the amplitude

of the ith peak and the (i + n)th peak, and xf represents the final steady state value. The

damping ratio is then calculated from the logarithmic decrement as,

ζ =
1√

1 + (2π
δ
)2

(3.23)

Thus, from (3.23) current damping ratio is obtained. Now the goal is to improve this damping

to an ideal desired value (i.e., 0.8 is considered in this work) and is obtained as,

∆ζdesired = ζdesired − ζ (3.24)
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3.2.4.4 Calculate the gains for the proposed damping controller

Using this desired change in damping, ζ and identified oscillation frequency, the desired

change in controller gains are calculated as,

∆Kp = 2 ∗∆ζdesired ∗ ωn (3.25)

∆Ki = 2π(∆ωn)
2 (3.26)

where ∆ωn represents the change in the identified oscillation frequency from the previous

instant. The new controller gains are modified by accommodating the required change in

controller gains as shown,

Kp[k] = Kp[k − 1] + ∆Kp (3.27)

Ki[k] = Ki[k − 1] + ∆Ki. (3.28)

3.2.5 Discussions and Performance Evaluation

The simulations were done in MATLAB/SIMULINK using the IEEE 13 Bus system (mod-

ified to consider as a sub-transmission network), with three-phase loads across the load buses

(Fig. 3.3). The test system includes a DFIG at Bus 634 via a transformer, a slack generator

at bus 650 (to maintain the grid frequency), and a PV Generator at bus 692 (to feed the local

loads at buses 692 and 675). The PV generator is modeled such that it supplies only the

power demand by the loads that are local to it. In our system design, the power demanded

is at bus 675 and 692 of the test system shown in Fig.3.3. The power reference for the PV

generator is, therefore, obtained from the measurement of the total power demanded at the

bus 675 and 692.

The simulations were performed for different conditions, while implementing the proposed

controller and the grid frequency were observed during different system dynamic conditions.

The grid frequency, measured at bus 632, was observed to be uniform across all the buses

on the grid.

3.2.5.1 Case A: Performance during a grid fault

This test scenario validates the performance of the proposed damping controller during a

three phase fault applied at 7s for a duration of 150ms at bus 671 of the test system.
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Figure 3.3: IEEE modified 13 Bus system

(a) (b)

(c) (d)

Figure 3.4: Case A (a) Speed deviation during grid fault, (b) PCC voltage during grid fault,
(c) Oscillation frequency identified from frequency spectrum during grid fault, (d) Controller gain
calculated based on oscillation frequency during grid fault.
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Fig. 3.4a shows the improvement in frequency deviation with the proposed control. Fig. 3.4a

depicts the superiority of the proposed control in damping the oscillations and faster settling

time. A 33% improvement in damping and 11% improvement in settling time was observed

with the proposed control approach. Fig. 4.6 shows the superior ability of the proposed

control to regulate the voltage to the nominal value after the fault when compared to the

scenario without control. The identified oscillation frequency and the online tuning of the

controller gains (based on the frequency) are shown in Fig. 4.7 and Fig. 4.8, respectively.

3.2.5.2 Case B: Performance during variable wind speed profile

This test scenario validates the performance of the proposed damping controller during

a variable wind speed profile. The wind profile used for testing is shown in Fig. 3.5a.

The ability of proposed control to maintain the frequency tightly to the nominal value by

providing the necessary damping is depicted in Fig. 3.5b. The derived controller gains,

corresponding to the identified oscillation frequency, are shown in Fig. 3.5c and Fig. 3.5d.

Fig. 3.6 shows a comparison of the frequency spectrum for this case with and without the

damping controller. The dominant frequencies identified in the configuration without the

controller are damped when the proposed damping controller is included.

(a) (b)

(c) (d)

Figure 3.5: Case B (a) Variable wind speed profile, (b) Speed variations during variable wind speed
profile, (c) Proportional gain derived based on oscillation frequency, (d) Integral gain derived based
on oscillation frequency.

3.2.5.3 Case C :Performance during a Sudden Load Change

This test scenario validates the performance of the proposed damping controller during a

sudden load change initiated at 7s for a duration of 2s at bus 634 of the test system. A 50%

improvement in frequency deviation was observed during 7s to 9s, as shown in Fig. 3.7a.

The identified oscillation frequency and the derived controller gains are shown in Fig. 3.7b
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Figure 3.6: Case B: Comparison of frequency spectrum with and without damping control.

and Fig. 3.7c, respectively.

(a) (b)

(c) (d)

Figure 3.7: Case C (a) Speed deviation during load change, (b) PCC voltage during load change,
(c) Oscillation frequency identified during load change, (d) Proportional gain derived based on
oscillation frequency.

TABLE 3.1: Comparison of Test Results

Parameter No Proposed
Control(NC) Control

Case A: % of ∆f 2% 1%
Case A: Settling time 1.45s 2.15s

Case A: % improvement in Vpcc - 6% compared to NC
Case B: % of ∆f 5% 0.05%
Case C: % of ∆f 0.1% 0.05%

3.3 Oscillation Damping of Integrated Transmission and Distribution Power Grid with

Renewables Based on Novel Measurement-Based Optimal Controller

Recent trends in electricity generation include the interconnection of several resources

with the traditional power grid. Amongst the new resources, renewable energy resources

(RERs) are gaining fast adoption, because of their offered economic, environmental, and

sustainability benefits. In addition, many policies are major drivers for the adoption of
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RERs [2, 3]. The electricity delivery frequency determines the point of interconnection for

these resources, depending on the type of RER. For instance, wind turbines are connected

to the transmission layer. At the same time, small-scale or residential solar systems can be

connected to the distribution layer, which can be referred to as distributed generation (DG).

Studies show there are 12 million DG units across the United States with a total capacity of

200GW [4]. RERs can be operated in both a grid-connected mode and an off-grid mode. In

a grid-connected mode, the traditional grid is transformed from a unidirectional flow into a

bidirectional flow, which increases the network complexity. In most RERs, power generation

varies due to the intermittency/variability of the source. For example, wind speed variability

results in wind turbine frequency and power output fluctuations [5]. This variability can have

a significant impact on the grid. These impacts can be more severe, depending on the level

of renewable energy penetration. Some of these impacts result in violation of power quality

standards, such as the voltage ANSI value (0.95-1.05pu) or the frequency, which should be

kept between 59.5-60.5Hz, so the system does not lose stability. Power quality is assumed to

be good if the aforementioned metrics remain at an acceptable, steady value of voltages and

frequency, with a smooth sinusoidal waveform. This showcases the need for effective control

and management strategies.

Battery energy storage devices are one of the approaches that have been widely imple-

mented for load frequency control (LFC) [122]. Batteries are also being used for smoothing

of RERs, which can be connected to the DC-link of solar PVs or the DC-link capacitance

of a wind turbine. Despite the advantages of the interconnection of batteries by charging

and discharging, the fast-changing behavior of ambient sources and the capacity of the bat-

tery plays a major role in addressing these issues. During the short circuit condition that

occurs while connecting networks, fixed wind speeds can also result in instability, because

of the high level of reactive power that is absorbed. Other methods to mitigate frequency

fluctuation include superconductive magnetic energy storage systems (SMEs). Despite the

advantages of higher long life and density, this solution is quite expensive to implement.

Lack of inertia is another major challenge with the interconnection of these resources and

the reason that they are susceptible to frequency fluctuations.

In terms of power generation, wind energy is harvested using wind energy conversion

systems (WECS). Unlike conventional plants that use synchronous generators, WECS uses

different generators, such as squirrel cage induction, doubly-fed induction, and permanent

magnet synchronous generators. A doubly-fed induction generator (DFIG) offers improved

performance concerning the variability of wind sources, leading to minimized power losses. It

also provides generation system improvements over other WECS. Furthermore, DFIGs has

several benefits for use with variable speed wind turbines, such as high energy efficiency and
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controllability [106]. To control DFIG based generation in both grid-connected and islanded

modes of operation, several different control techniques have previously been implemented.

For example, a cyclo-converter-based control approach was proposed in [107] for decoupled

control of DFIG active and reactive power. To analyze the relation between frequency and

impedance of compensation networks, some studies have been based on frequency scanning

methods [108]. Grid-connected optimization and control approaches for supporting the grid

both with and without batteries, to provide additional stability improvement are reported

in [112, 123–125]. For grid ancillary support, a battery energy storage system (BESS) with

advanced control management is key [114]. In some studies, to improve power quality, the

BESS is integrated with the Vdc link of the PWM back-to-back converters. However, the

main disadvantage associated with these control architectures is that they cannot adaptively

damp the frequency oscillations.

Power system stabilizers (PSSs) are overviewed as supplementary controllers to damp

system oscillations. The highly nonlinear and dynamic nature of the power grid impacts the

performance of conventional PSSs. Hence, some advanced PSS control architectures based

on adaptive neural and fuzzy-based control logic have been discussed by many researchers.

An adaptive neuro-fuzzy-based adaptive PSS control is discussed in [126]. The dynamic

behavior of the plant is identified and the input link weights of the neural network are

adaptively adjusted. While a conventional PSS uses generator speed as the local power signal

to damp the oscillations, the idea of improving the observability of the PSS by employing an

additional signal is discussed in [127]. A similar approach of a modified PSS to effectively

damp the oscillations is presented in [128,129]. While [128] makes use of a recursive gradient

algorithm for the adaptive PSS design, the architecture in [129] is based on an inherent

dead-band adaptive tune architecture, which can track the system operating modes without

any strict prerequisites, as demanded by most architectures.

3.3.1 Main contribution

Major contributions of this work compared to the state-of-the-art are as follows:

• An adaptive damping controller is proposed that can damp oscillations in multiple

generators considering variations in both transmission and distribution power grids

that include RERs.

• The proposed architecture is based on an optimal control theory, so multiple devices

can be controlled with this damping control architecture.

• The approach uses resources considering both centralized and distributed generators

in both the transmission and distribution systems.
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TABLE 3.2: Location and rating of DERs in IEEE 123-bus system

PV Rating BESS Rating NodeIDs
2MVA 1.2MWh 48

• The performance of the proposed control architecture is superior during dynamic grid

conditions, as compared with the performance of a conventional approach, because of

its adaptive tuning capability and the approach is field implementable.

Moreover, compared to earlier work in [130], advantages of the proposed work include:

• An optimal damping controller that can augment generator controllers and/or PSS,

which can effectively damp the oscillations in transmission and distribution networks.

• The architecture can dynamically adjust the gain values based on linear optimization

that modulates the generator excitation to effectively damp the oscillations.

• Unlike the previous work, which relies on active power modulation from a DFIG and

additional power from a battery for damping, the proposed work can efficiently co-

ordinate the generators, thereby efficiently utilizing the available power from nearby

generators to damp the oscillations under dynamic grid conditions.

3.3.2 DESIGN AND MODELING OF ENERGY SOURCES

Some of the energy sources that were discussed in the previous section, had their modeling

as the same and were implemented such as synchronous generators, and doubly fed induc-

tion generators (DFIG). The network architecture is different as it includes synchronous

generators, a DFIG, an AC microgrid, and a battery system. It is designed to simulate an

interconnection of a transmission and distribution network. The transmission system is a

Kundur two-area network, with a wind turbine connected at the tie lines, while the distri-

bution network is an IEEE 123-bus system, which has a solar PV connected to one of its

buses.

3.3.3 RER Integrated Power Distribution System

A large RER is connected to the distribution system, IEEE 123-bus system, where the

RER is comprised of a PV farm, battery, and inverter system, as shown in Fig. 3.8. The PV

farm is located at bus 48. The PV penetration level capacity is provided in Table 3.2. The

RER also has a battery system connected to the DC link bus, which is interconnected with

an AC inverter.

3.3.3.1 PV farm

The PV system generates 2MW at the maximum power of operation. The system com-

prises several solar panels and controllers, such as MPPT to ensure that maximum power is
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Figure 3.8: PV and load areas in IEEE 123-bus system.

obtained from the resources. The PCC, which can be referred to as the DC-link, has DC

power connected to the inverter. The state space representation of the PV system is shown

below.  i
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In these equations, Vpv is the input side voltage, io is the output side current, L, C, and

D are the inductance, capacitance, and the duty cycle for buck operation of the converter.

Dmpp is the duty cycle input to the converter for boost operation. Additionally, i, Vg, and

V are the inductor current, input voltage, and output voltage, respectively.

3.3.3.2 Battery Model

The battery control system is similar to that of the PV system. The major difference is

that, unlike the PV system that does not include a buck mode of operation, the battery can

operate in both buck and boost modes for its converter, which depends on the battery mode

(i.e., in a mode of discharging or charging). The battery is also responsible for maintaining

the DC-link voltage. The battery control system functions as follows. The dc-link voltage,

which is maintained as a constant, is measured. However, the current flowing through the

battery varies. This results in the battery operation mode changing to either charging or

discharging, accordingly. The filter parameters for the battery (e.g., inductance Lin, input

capacitance Cin, and output capacitance Cout) are included in the design. The controller,

implemented as two cascaded controllers, provides function in a buck-boost operation mode.

The inner loop controls the current and provides the duty cycle reference for the generating

switching pulses. Whereas, the outer loop control maintains a constant Vdc value. The
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battery voltage can be represented as,

Vbat = Eo −K
Q

Q− it
it−Ri+ Ae−B

∫
idt −K

Q

Q− it
i∗ (3.31)

where Vbat is the internal battery voltage (V), E0 is the battery voltage constant (V), K is

the polarization constant (V/Ah), K is the polarization constant (V/Ah), Battery capacity

(Ah), A is the exponential zone amplitude (V), R is the internal resistance of the battery,∫
idt is the actual battery charge (Ah), i is the battery current (A), and i∗ is filtered current

(A).

The transfer function for the DC-DC converter is given by,

Ii
d
=
S Vo

L
+ Vo

RLC
+ ILD

′

LC

S2 + 1
RC
S − D2

LC

(3.32)

Pbatt =


Pdisch Vpcc < 1

0 Vpcc = 1

Pch Vpcc > 1

(3.33)

where Pbatt is the status of the battery, Pdisch indicates discharging, and Pch represents

charging.

Figure 3.9: PV and load areas in IEEE 123-bus system.

3.3.3.3 Inverter Model

The inverter type has an L filter, referred to as L inverter, where the d − q equations

guiding its operations are below,

Vdl = Linv
did
dt

− wLinviq + Vd (3.34)

Vql = Linv
diq
dt

− wLinvid + Vq (3.35)
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where Vdl,Vql are d-axis and q-axis voltages across inductor Linv, ω is the supply voltage

angular frequency, L is the inductance of the L-type filter, id, iq and Vd, Vq are the d-axis

and q-axis inverter output current and voltages, respectively. The active and reactive power

output when connected to the grid are given by,

P = Vdid (3.36)

Q = Vqiq. (3.37)

The state space representation of the inverter equation in a grid connected mode is shown

below. If Vd (grid voltage) is kept constant, then id and iq can be used to control the active

and reactive power.

 id
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ω 0
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3.3.4 Mathematical Model of Proposed Damping Controller

Considering the power grid models designed in Section II. A finite horizon optimal control

framework can be developed if we have a model that relates to a state-space representation

of the system as xk+1 = Axk +BUk.

With the system model in state-space, we can define an optimal control framework by

minimizing,

Jobj =
1

2

N∑
k=0

[
(xk)

TQcxk + (uk)
TRcUk

]
(3.40)

where Qc and Rc are symmetric positive (semi-) definite matrices, xk are the states, uk is

the control input per the control law (e.g., Uk = Kkxk).

With an optimization convergence threshold, ϵ, we can get an optimal solution for this

framework with a maximum principle H such that,

H = (xk)
TQcxk + (Uk)

TRcUk + λ(Axk +BUk) (3.41)

where λk+1 − λk = (∂H
∂x

)T = Qcxk + ATλk and Uk = −R−1
c BTλk.

Minimizing (3.41) is equivalent to minimizing (5.24). We can see from the above that

(∂H
∂x

)T = Qcxk +ATλk, (∂H∂λ )
T = Axk +BUk, and ∂H

∂u
= RcUk +λTB. Therefore, to minimize

H, we should find, A, B, λ, xk and Uk iteratively and solve each of the derivatives.
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3.3.4.1 Measurement Based Optimal Damping Controller Design

Consider two measurements from each generators ∆ωi and ∆VSi with,

∆ωi = ωm
i − ωo

i (3.42)

∆VSi = V m
Si − V o

Si (3.43)

wherem and o represent the measured and observed values, respectively. The observed signal

is represented as the steady state moving average value from normal operation conditions.

Consider an optimal controller gain for each generator as KPSS,i, then this gain can be

presented from classical equations as,

KPSS,i =

{(
p(∆VS,i)(1+pT2)

1+pT1
+

(∆VS,i)(1+pT2)

Tωi(1+pT1)

)
∗ 1

p∆ωi

(3.44)

where p = d
dt

. With the deviations in speed and voltage represented as in (3.42) and (3.43)

we get,

KPSS,i =

(
p(∆VSi) +

∆VSi
Tωi

)
∗ 1

p∆ωi

. (3.45)

where T is the time constant. To discretize, first, we need to rewrite the deviation of the

speed and the control input of the stabilizer per (4.32) and (3.47).

Y2,i = ∆ωi (3.46)

Y1,i = ∆VS,i (3.47)

Each of the stabilizer equations then becomes,

KPSS,i =

(
p(Y1,i) +

Y1,i
Tωi

)
∗ 1

pY2,i
. (3.48)

Discretization of these equations produces the following,

KPSS,i =
∆Y1,i + bY1,i

∆Y2,i
(3.49)

∆Y2,i ∗KPSS,i = ∆Y1,i + bY1,i (3.50)

where b = ∆t
∆Tω1

.

Then rewrite (3.50) as,

∆Y1,i = −bY1,i +KPSS,i ∗∆Y2,i. (3.51)
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Algorithm 2: Proposed Adaptive Damping Controller
1 -
2 Identify all the devices in the network (e.g., generators, wind turbines, and solar PVs)

and measurement points.
3 Initialize the system parameters and Kpss, Kpss

U , Kpss
L, ∆Y2U , ∆Y2L and ∆Y1 for all

the controllable generators.
4 Compute the speed/frequency deviation signal, ∆ω, as shown in (3.42).
5 Obtain the measure ∆ω for each generator, n, and set the value for ϵ.
6 From step 3, calculate ∆ωT , as ∆ωT =

∑N
i=1∆ωi.

7 for k = 1 : N do
8 while i ≤ n
9 Calculate the A, B, xk, and Uk using (3.52) and (3.53)

10 if ∆ωT ≥ ϵ then
11 Minimize ∆ωT using (3.41). For this
12 Find Kk

pss,i using (4.12)-(3.57)
13 Calculate Pk and λk using (3.58)
14 Update Uk using (3.53)
15 Calculate ∆ωT using (3.52)
16 else
17 if ∆ωT < ϵ then
18 Kk

pss,i = Kk−1
pss,i

19 end
20 end
21 end

For multiple generators, (3.51) can be written as (3.52).

xk+1︷ ︸︸ ︷
∆Y1,i

...

∆Y1,n

 = −

A︷ ︸︸ ︷
b1
...

bn



xk=∆ωi︷ ︸︸ ︷
Y1,i
...

Y1,n

+

B︷ ︸︸ ︷[
I

]
Uk=KPSS,i∆Vi︷ ︸︸ ︷
KPSS,i∆Y2,i

...

KPSS,n∆Y2,n

 (3.52)

From the above, it can be seen that with the help of measurements we can find A, B, xk,

and Uk iteratively. Thus, (3.42) can be written as min
x1,...xT

∆ωT =
∑N

i=1 ∆ωi, where H = ∆ωT .

3.3.4.2 Framework to Calculate Uk, λ, and KPSS

For this control application, (3.52) can be substituted in (3.42). Derivatives for minimizing

(3.42) can be calculated only if we can find λ and Uk. From (3.52) it can be seen that,

U i
k = ∆Y2,i ∗KPSS,i. (3.53)

However, we have to calculate KPSS,i from U i
k. To solve this, considering an upper and lower

limit for KPSS,i as KU
PSS,i and KL

PSS,i and for ∆Y2,i as ∆Y2,i
U and ∆Y2,i

L we can apply four

additional McCormick constraints to (3.42) considering,

U i
k+1 ≥ KL

PSS,i ∗∆Y2,i +KPSS,i ∗∆Y2,iL −KL
PSS,i ∗∆Y2,iL (3.54)
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U i
k+1 ≥ KU

PSS,i ∗∆Y2,i +KPSS,i ∗∆Y2,iU −KU
PSS,i ∗∆Y2,iU (3.55)

U i
k+1 ≤ KU

PSS,i ∗∆Y2,i +KPSS,i ∗∆Y2,iL −KU
PSS,i ∗∆Y2,iL (3.56)

U i
k+1 ≤ KPSS,i ∗∆Y2,iU +KL

PSS,i ∗∆Y2,i −KL
PSS,i ∗∆Y2,iU (3.57)

where i represents damping controller identification number. Therefore, the bilinear terms

for the McCormick envelope are (KPSS,i, Y2,i). From these constraints U i
k can be found

from existing and previous values of KPSS,i and ∆Y2,i, where KPSS,i
L = min

x1,...xT

KPSS,i and

∆Y2,i
L = min

x1,...xT

∆Y2,i from the last ten samples. Similarly, we can find the KPSS,i
U and

∆Y2,i
U with maximum values of the previous samples.

Finally, λk is calculated as,

λk = −Pkxk (3.58)

where Pk is the solution of the Riccati equation for the k-step = Qc + KT
PSS,iRcKPSS,i +

(A+BKPSS,i)
T Pk−1 (A+BKPSS,i). For the simulation, we used four power system stabi-

lizers hence, i = 1...4. Using the equations above, the gains of the damping controller, KPSS,

are updated at each time interval, based on the deviations seen on the grid. A flowchart

of the proposed optimal damping controller algorithm is provided in Fig. ?? and the corre-

sponding optimal adaptive algorithm that dynamically adjusts the gains of the PSS is shown

in Algorithm 8.

Figure 3.10: Flowchart for the proposed optimal damping controller.
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Figure 3.11: Field implementation framework of Integrated transmission and distribution system
with dynamic models of generators and proposed damping controller.

3.3.5 TestSystem:Modified IEEE 123-Bus Test System, Kundu Two Area, Solar PV and

WindTurbine

The proposed optimal oscillation damping controller is tested under different scenarios

and the frequency is measured at each of the points, as shown in Fig. 3.11, to validate the

performance. Three test cases scenarios are discussed. Case 1 analyzes the performance of

the proposed approach for a fault. Case 2 analyzes the response during dynamic variations

of the irradiance profile and wind speed profile. Case 3 analyzes the performance for a

sudden load change. Case 4 shows the operational performance during a harmonic load

change. The system architecture involves the modeling and design of the four main energy

sources. It includes synchronous generators, a DFIG, an AC microgrid, and a battery system.

The network architecture is designed to simulate an interconnection of a transmission and

distribution network. The transmission system is a Kundur two-area network, with a wind

turbine connected at the tie lines, while the distribution network is an IEEE 123-bus system,

which has a solar PV connected to one of its buses

3.3.5.1 Scenario: Fault

In Case 1, performance of the proposed adaptive PSS architecture is tested for a three

phase to ground fault triggered at 10s at different locations of the test system for a duration

of 250ms.

3.3.5.2 Case 1A

In this case, the performance of the proposed adaptive PSS architecture is tested for a

three-phase to ground fault triggered at Area 1. The frequency of the generators correspond-
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ing to the test scenario is shown in Fig. 3.12. The results showcase the ability of the proposed

controller to provide faster damping of oscillations following a disturbance, as compared with

the conventional control approach. The performance of the corresponding dynamic control

gain derived by the optimization algorithm for this test case is detailed in Fig. 3.13. With a

fault at Area 1, the contribution of the generators in Area 1 is similar, while the contribu-

tions between area generators are different. Also, the control gains for Area 2 are changing

more dynamically, even though the magnitude is lower. Fig. 3.13 depicts the contribution of

the algorithm that dynamically adjusts the control contributions from each of the generators

following the event at 10s.

Figure 3.12: Case 1A: Grid frequency measurements for fault occurrence at Area 1.

Figure 3.13: Case 1A: Dynamically changing gains.
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3.3.5.3 Case 1B

In this case, the fault occurrence is on the tie-line. The damping action for all four

measurement points shown in Fig. 3.11 is depicted in Fig. 3.14. It can be seen that the

damping is similar in all the parts of the grid, which is expected due to the reason that

the areas are balanced in power transfer, with an overall improvement of around 1%. The

dynamic gains generated by the algorithm in Fig. 3.15 show that all generators participate

equally towards maintaining the grid frequency when the fault is located at the tie-line.

Figure 3.14: Case 1B: Grid frequency measurements corresponding to fault occurrence at tie-line.

Figure 3.15: Case 1B: Dynamically changing gains.
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3.3.5.4 Case 1C

In this case, a fault scenario is developed in the distribution system and the controller per-

formance for a fault located at the distribution system is detailed in Fig. 3.16 and Fig. 3.17,

respectively. With the proposed control, the contributions from the generator are dynam-

ically adjusted contrary to the conventional PSS, as shown in Fig. 3.17, resulting in faster

damping of oscillations, as shown in Fig. 3.16.

Figure 3.16: Case 1C: Grid frequency measurements corresponding to fault occurrence in distribu-
tion system.

Figure 3.17: Case 1C: Dynamically changing gains.
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3.3.5.5 Scenario: Varying wind speed and irradiance scenario

3.3.5.6 Case 2

In this scenario, the output from solar PVs and the wind turbine is assumed to be varying,

due to the variation in irradiance and wind profile, respectively as shown in Fig. 3.18. The

corresponding frequency deviations are showcased in Fig. 3.19 and the controller gains are

illustrated in Fig. 3.20. The results show the ability of the proposed control architecture to

tightly maintain the grid frequency to the nominal value, even during highly dynamic input

profiles. The larger size of the wind farm shows a much wider low-frequency oscillation

in transmission system areas (M1 −M4). It can be seen that when the PV irradiance is

varied (at 10s), the frequency starts oscillating. With the proposed damping controller the

frequency deviation is close to zero indicating a stable system.

Figure 3.18: Case 2: Varying wind speed and irradiance profile.

Figure 3.19: Case 2: Grid frequency measurements corresponding to change in irradiance and wind
profile.
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Figure 3.20: Case 2: Dynamically changing gains.

3.3.5.7 Scenario: Sudden load change scenario

3.3.5.8 Case 3

In this scenario, the controller performance was tested for a sudden load change initi-

ated at Area 2. The grid frequency observed at each measurement point is showcased in

Fig. 3.21. The proposed optimization could tightly maintain the frequency around 1p.u.

shortly following the dynamic event. The ability of the proposed optimization algorithm to

dynamically adjust the gain following the load change event at 10s is showcased in Fig. 3.22.

A 47% improvement settling time is observed with the proposed approach compared to the

conventional approach.
3.3.5.9 Scenario: Harmonic loads

3.3.5.10 Case 4

In this case, a harmonic fault scenario has been tested with the proposed controller. To

this end, second-order harmonic conditions are created at 12s during the simulation. The

load model is as follows.

Vload = VS − I1ZSsin(ω1t+ θ1)− ...Insin(nω1t+ θn)(R + jnX) (3.59)

This was initiated by bringing a load online that operates at a different frequency than the

grid frequency. The frequency deviation, as observed from the grid, is shown in Fig. 3.23.

It can be seen that at 12s, the frequency deviations occur due to the switching of these

loads. Also, it can be noted that with the proposed damping controllers the oscillations in

the frequency are reduced. Table 3.4 and Table 3.5 quantitatively summarizes the effect of



50

Figure 3.21: Case 3: Grid frequency corresponding to sudden load change.

Figure 3.22: Case 3: Dynamically changing gains.



51

the proposed controller.

Figure 3.23: Case 4: Grid frequency measurements corresponding to harmonic loads.

Figure 3.24: Case 4: Dynamically changing gains.

3.3.6 Discussions and Performance Evaluation

As seen from the results provided Table 4.11, Table 3.4, and Table 3.5, performance of

our previous damping controller in [130] and the conventional controller (state-of-the-art) are

similar. However, with the proposed damping controller, significant improvements in terms of

frequency oscillations and settling times have been noticed. Power system stabilizers have the

advantages of improved damping and stability of the system by providing additional action to

the excitation controller to damp electromechanical oscillations but have the disadvantages of
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TABLE 3.3: Relative Comparison of Grid Frequency Deviations Corresponding to Different Test
Cases

Case Measurement Non-Adaptive Adaptive % Error
Case 1A M1 1.060 0.994 6.23%

M2 1.091 0.989 9.35%
M3 1.015 1.00 1.48%
M4 1.013 1.00 1.28%

Case 2 M1 0.9985 0.9998 0.13%
M2 0.999 0.9995 0.13%
M3 0.995 0.999 0.4%
M4 0.9985 0.9998 0.14%

Case 3 M1 1.0012 0.9999 0.13%
M2 1.001 0.9998 0.12%
M3 1.003 0.998 0.3%
M4 1.0015 0.999 0.25%

TABLE 3.4: Comparison of Test Results With and Without Proposed Control: Grid Frequency

Cases CC PC % Improvement
Fault Case 1 1.0900 0.9895 7.50%
Fault Case 2 1.01 1.001 0.90%
Fault Case 3 0.9751 0.9878 1.28%

Varying Wind-Solar Profile 0.9985 0.9998 0.13%
Load Change 1.0015 0.9998 0.15%
Harmonic load 0.996 0.998 0.21%

Notes: CC is conventional control with only PSS
PC is PSS + Proposed Control

TABLE 3.5: Comparison of Test Results With and Without Proposed Control: Settling time

Cases CC PC % Improvement
Fault Case 1 17s 25s 15.0%
Fault Case 2 16s 16.8s 4.76%
Fault Case 3 11.8s 14.9s 20.81%

Varying Wind-Solar Profile 12.2s 14.2s 14.08%
Load Change 10.7s 14.4s 25.7%
Harmonic load 12.7s 13.5s 5.93%

Notes: CC is conventional control with only PSS
PC is PSS + Proposed Control

a longer settling time attributed towards apriori modeling and tuning. The main significant

advantage of the proposed architecture is that it can be implemented online, auto-tunes,

and can be applied to multiple generators considering both transmission and distribution

dynamics.

3.4 Summary

An optimal damping control framework is designed and implemented on an integrated

transmission and distribution system with bulk power and distributed renewable-based gen-

eration. The major contribution and goal are to develop a methodology that can manage

the frequency oscillation in an integrated transmission and distribution network, with inter-

connected renewable energy resources. The approach relies on an optimal damping control

architecture that is adaptive and at the same time optimal. In addition, an optimization
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technique is implemented to help ensure optimum performance of the controller, while min-

imizing the deviation of the grid frequency. The approach is implemented on synchronous

generators that can be used to augment the existing stabilizers or other damping controllers.

Also, a field implementation methodology is discussed in this chapter. The results from

simulations on real-life feeders validate the superiority of the proposed control method, as

compared with a conventional control approach, to provide an improved grid frequency re-

sponse for a range of anticipated dynamic conditions (e.g., wind speed variations, faults,

and load changes). Overall a 10% improvement in damping and settling time is observed.

Future work will focus on the implementation of the proposed method with the integration

of other renewable sources (e.g., energy storage devices, such as supercapacitors, battery

banks, and impacts of electric vehicles charging and discharging on the grid) will also be

addressed using the proposed approach to keep the grid operation in normal operating con-

ditions. Finally, the hardware implementation of this proposed controller will be performed

using the real-time simulator



CHAPTER 4: MANAGEMENT TECHNIQUE: INTEGRATED TRANSMISSION AND

DISTRIBUTION NETWORK OPTIMAL POWER FLOW.

4.1 Introduction

The modernization of the grid involves many resources interplaying at different layers of

the grid, most of these resources have gained significant adoption because of their advantages

and the need to achieve a clean and sustainable environment. Several enabling policies and

technological advancements, including improved performance and reduced costs of comput-

ing, connectivity, and communication technologies, are providing the benefits of maximizing

the potential of these resources. Renewable energy resources are one of the major devices

amongst these resources either as SolarPVs, wind turbines, battery banks, or electric vehicles.

Beyond providing power to the immediate resource owners, these resources are capable of

supplying power to the grid hereby providing an alternative source of income to the resource

owner as well as decarbonizing the grid. The grid is an interconnected system with mainly

two networks, the transmission and distribution network, the endpoint electricity consumer is

connected to the distribution network, and this where most of the RERs are been connected

to the grid, although some resources can be connected to the transmission network based on

their capacity. Recent experiences are showing that these resources can have an impact on

the transmission network due to their increasing capacity, and penetration levels with the

grid. This can affect power quality parameters on the grid such as voltage or the boundary

bus of interconnection of the transmission and distribution network. Interconnection of the

grid is an established phenomenon and can be easily modeled for two networks that have the

same boundary variables, however, their complexity increases when the boundary variables

of exchange are different, this is shown in the figure below. Visibility is one of the major

challenges utilities are facing with this interconnection, as the transmission network is not

visible to the operation of the distribution where most of the renewable energy resources are

behind the meter. Despite improved load forecasting models, used in power flow simulations

by utilities, the stochastic of renewable energy resources is a major thing to consider these

days, especially with the interaction of humans which is difficult to model, or control which

might have offered better solutions. In this chapter, we studied the impact of renewable en-

ergy resources on the grid and developed a new technique to address some of the challenges

that the uncertainty and reverse flow from the distribution network due to renewable energy

resources can cause to the grid.
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Figure 4.1: Types of the interconnected network with different boundaries

4.2 Integrated Transmission and Distribution Optimal Power Flow Simulation Using

Linear Decision Approach

The distribution network include resources transforming the grid into an active network

(ADNs)[9],[10] leading to a reverse power flow to the TN, These resources are dynamic,

and can lead to a sudden change or transient operation [11] if not well captured in a day

ahead forecast due to their nature. Their level of penetration [12] in the grid can have

some significant effects which influences key power quality metrics of the grid (voltage,

frequency, and many more) during such times of variations. The optimal power flow (OPF)

computation can be performed within specified intervals or a day ahead schedule for efficient

planning. However, with the recent trends the solution seems not efficient [13] any more

due to the increase in the number of resources (distributed generation) [14], inter-playing

and controls on the DN. This studies enable us to ensure that the transmission system

operator (TSO) and distribution system (DSO) operators are not been almost blind to each

other controls or coordination [15], especially during these dynamic operations [16]. Several

frameworks including Framework for Network Co-Simulation (FNCS)[131], Integrated Grid

Modeling System (IGMS)[132, 132, 133], HELICS [134] have been developed to facilitate

T&D simulations. IGMS is a power system modeling platform for integrated T&D analysis

through a co-simulation approach. The frameworks have issues of loosely performing the

coupling of T&D systems while exchanging the boundary variables once and not intuitively

allowing for convergence at every time step.
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A lot of research work has been done on the power flow simulations of integrated T&D

networks [135], when compared with OPF. For OPF, the objectives of each network may

differ, for instance TN objective might be economic dispatch or loss minimization, whereas

often times the primal objective of the DN is loss minimization. The benefits of developing

a technique for integrated T&D is to efficiently manage the operations of distributed gen-

eration in the interconnected network rather than curtail DG [136] to prevent issues such

as transformer overloading (TFO), voltage violation,which could have offered benefits like

cost minimization and voltage correction. Relaxation techniques is used when solving OPF

due to the non-linearity of powerflow equation. In this chapter we used the SDP framework,

the method can be deployed as a branch flow method (BFM) mostly used for the DN, or

bus injection method (BIM) for TN. The SDP technique operates based on rank solution

method, which is exact when there is no duality gap. The SOCP method uses branch flow

methods, and performs its relaxation using a cone for the non-linear terms in the constraint

[137]. In this chapter we have developed a technique that simulated the integrated T&D

OPF, which ensures each network objective is achieved while ensuring the TN networks

operate efficiently with reverse power from DN.

4.2.1 Main contribution

The main contribution of this section includes the following:

• An integrated model T&D that considers the interaction of the transmission and dis-

tribution, including their control devices and load models.

• A linear decision rule LDR was implemented to help the co-simulation address the

heterogeneous relationship between the transmission and distribution system.

• An LDR technique can be used to ensure that DGs are utilized optimally for an eco-

nomical operation.

4.2.2 Model Description: General model

The integrated T&D has a general model known as master-slave structure [138, 139] as

shown in Fig. 4.2. All the devices and components in the TN aside from the boundary

bus are referred to as the master system, while all the devices and components in the DN

including the boundary bus are referred to as the slave system. The boundary bus is the

interconnecting bus between both networks, since, the variables exchanged at the boundary

are different the integrated network can be referred to as a heterogeneous network. The

model that involves independent transmission OPF and independent distribution OPF is

known as the TDOPF. The objective functions is (1), operational constraints for TN are in

(2), (3), (5) and for DN are in (6), (7). The boundary bus power flows are in (8), (9), and



57

(10).

Objfunction : min CM(UM , UB, XM , XB) + CS(US, XB, XS) (4.1)

subject to

fM(UM , XM , XB) = 0 (4.2)

gM(UM , XM , XB) ≥ 0 (4.3)

fB(U
B, XS, XMXB) = 0 (4.4)

gB(U
B, XB) ≥ 0 (4.5)

fS(U
S, XB, XS) = 0 (4.6)

gS(U
S, XB, XS) ≥ 0 (4.7)

Boundary bus power balance

PB + fpMB(X
M , XB) = fpBS(X

B, XS) (4.8)

fMB(U
B, XM , XB) = yBS (4.9)

yBS = fBS(X
B, XS) (4.10)

Figure 4.2: Integrated T&D model with master-slave approach

U represents vector of the control variables, for instance the active and reactive power

control from devices such as generators, voltage regulators, shunt capacitor, X is the vector

of state variables which is voltage magnitude and angles. where f is the equality constraints

such as power flow and the g is the inequality constraints that establishes network constraints

such as bus voltages and line flows.

At PCC, the voltage of the transmission (boundary) bus is the feeder voltage (magnitude
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and angle) for the distribution network uabc0

uabc0 = V abc
pcc (4.11)

The TDOPF optimality conditions can be rewritten using the Lagrangian multiplier.

A = −λTMfM − wT
MfM − wT

MgM − λTMB(fMB − yBS) (4.12)

B = cM + cs − wT
BgB − λTSfS − wT

S gS − λTBS(yBS − fBS) (4.13)

L = A+B (4.14)

4.2.3 Transmission Network OPF model

The technique used for solving the transmission network OPF is a bus injection method

[140]. The objective of the OPF is to reduce the cost of generation and minimize losses. The

one-line representation of the transmission network is shown Fig. 4.3.

Figure 4.3: Transmission network - One line

The Non - Convex AC OPF equations are below

min fk(PGK
) = ck2P

2
Gk

+ ck1PGk
+ ck0 (4.15)

The constraints are below

Powerbalance : SGK
− SDK

= diag ¯(Vk)Ȳk
∗
busV̄k

∗ (4.16)

Lineflow : ȲklineV̄k ≤ Iline,max (4.17)

Apparentflow : QkV̄k ≤ Iline,max (4.18)

GenActivePower : Pmin
k ≤ PGk

≤ Pmax
k (4.19)

GenReactivePower : Qmin
k ≤ QGk

≤ Qmax
k (4.20)

V oltagelimits : V min
k ≤ Vk ≤ V max

k (4.21)
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The equations are then re-written with SDP relaxation.

∑
kϵG

Ck2(TrYkW + PDk
)2 + Ck1(TrYkW + PDk

) + Ck0 (4.22)

The constraints are below

Pmin
k ≤ TrYkW ≤ Pmax

k (4.23)

Qmin
k ≤ TrȲkW ≤ Qmax

k (4.24)

(V min
k )2 ≤ TrMkW ≤ (V max

k )2 (4.25)

−Pmax
lm ≤ TrYlmW ≤ Pmax

lm (4.26)

TrYlmW
2 + TrȲlmW

2 ≤ (Smax
lm )2 (4.27)

(4.28)

The auxiliary variables used in the equations above are obtained as follows

Ylm = (ȳlm + ylm)ele
T
l − (ylm)ele

T
m (4.29)

Yk = eke
T
k Y (4.30)

Yk =
1

2

 Re(Yk + Y T
k ) Im(Y

T
k − Yk)

Im(Yk − Y T
k ) Re(Yk + Y T

k )

 (4.31)

Ylm =
1

2

 Re(Ylm + Y T
lm) Im(Y

T
lm − Ylm)

Im(Ylm − Y T
lm) Re(Yk + Y T

k )

 (4.32)

Ȳk =
−1

2

 Im(Yk + Y T
k ) Re(Yk − Y T

k )

Re(Y
T
k − Yk) Im(Yk + Y T

k )

 (4.33)

Mk =

 eke
T
k 0

0 eke
T
k

 (4.34)

Applying the Schur’s complement

 ck1Tr(YkW )− αk + ak
√
ck2Tr(YkW ) + bk

√
ck2Tr(YkW ) + bk − 1

 ≤ 0 (4.35)

Such that ak = ck0 + ck1PDk
bk =

√
c_k2P_D_k
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Algorithm 3: Transmission network BIM-SDP OPF
1 -
2 Determine the total number of buses nb and branches nbr in the network
3 Identify all the devices in the network (Generators, transformers)
4 Initialize all the sdpvar variables (lij,ui,Sij)
5 Develop a Ybus of the network and find the auxiliary variables using system

parameters.
6 for x = 1 : nb do
7 if if x is a bus,then then
8 Formulate the bus constraint using the equation 9&10.
9 else

10 if if branch x is a voltage regulator, then then
11 Formulate the branch constraint using the equation 23
12 end
13 end
14 end
15 Solve the BIM SDP OPF using MOSEK solver.
16 for x = 1 : nbr do
17 if if rank = 1 ,then then
18 W is positive semi-definite.
19 else
20 if if rank > 1, then then
21 W is not a positive semi-definite.
22 end
23 end
24 end

4.2.4 Distribution Network OPF model

SDP branch flow method (BFM) [141] was used for simulation analysis at the DN, with the

OPF objective being loss minimization. The formulation accommodates different numbers

of bus-phases in the network and the interconnection and the representation of the network

as one line is shown in the figure 4.4 below.

Figure 4.4: Distribution network- One line

Vi = [V a
i , V

b
i , V

c
i ]

T (4.36)

Vj = [V a
j , V

b
j , V

c
j ]

T (4.37)

The assumption is that bus i and j both have 3-phases which might not be in some cases.
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Minimize
∑

real(zijlij) (4.38)

∑
diag(Sij − zijlij) + sj + yjuj =

∑
diag(Sjk)

ϕj (4.39)

uj = u
ϕij

i − (Sijz
H
ij + SH

ij zij) + zijlijz
H
ij (4.40)

ui <= diag(ui) <= ui (4.41)

u0 = V ref
0 (V ref

0 )H (4.42)

Positive semidefinite (PSD) constraint

 u
θij
i Sij

SH
ij lij

 ≥ 0 (4.43)

PSD is set to be equal to 1.

4.2.5 Co-Simulation using Integrated optimization engine(IOE) with LDR

The proposed approach ensures integrated T&D network operates efficiently, the trans-

mission network readjusts itself to the total power consumed at the distribution network and

there is no need or curtailment of DG. The TOPF is therefore re-written to accommodate

for the changing dynamics in the distribution network leading to the reverse power flow in

the transmission network, k is a constant, which is power from DG and undispatchable. The

equation is written below

TOPF = min CM(UM , UB, XM , XB, KS
DG) (4.44)

The objectives of each of the networks are written below

TOPF = min (ak(P
2
Gk) + bk(PGk) + Ck) (4.45)

DOPF = min Re(Sij − ZijI
2
ij) (4.46)

The active power from the generators is a combination of loads PD, the losses Ploss in the



62

Algorithm 4: Distribution network BFM-SDP OPF
1 -
2 Determine the total number of buses nb and branches nbr in the network
3 Identify all the devices in the network (Generators, regulators, transformers)
4 Determine the total number of phases in each branch and buses in the network
5 Develop a Ybus of the network based on the parameters
6 Initialize all the sdpvar variables (lij,ui,Sij)
7 for x = 1 : nbr do
8 if if branch x is a line,then then
9 Formulate the branch constraint using the equation 23.

10 else
11 if if branch x is a voltage regulator, then then
12 Formulate the branch constraint using the equation 23
13 end
14 end
15 end
16 for x = 1 : nb do
17 Formulate the bus constraint using the equation 23
18 formulate other boundary constraints
19 end
20 Solve the BFM SDP OPF using MOSEK solver.
21 for x = 1 : nbr do
22 if if equation 27 is satisfied,then then
23 The solution is local optimum.
24 else
25 if if equation 28 is satisfied, then then
26 global optimum is the solution.
27 end
28 end
29 end

Algorithm 5: Steps for Integrated Optimization engine
1 Initialize the interconnected network by setting the system parameters for

computation
2 while tol > ϵ do
3 forall t ∈ TN do
4 solve the transmission network OPF.
5 obtain the system parameters. (Voltage and angle)
6 Check if power quality parameters are violated
7 if yes, apply LDR. Use the parameters as setpoints for the DN feeder at PCC
8 end
9 forall d ∈ DN do

10 solve the distribution network OPF.
11 obtain the total load demand with losses at the distribution network
12 update the load at PCC of the T&D network.
13 end
14 Obtain the new tolerance error using equation 23
15 Check for convergence.
16 end
17 end

transmission network, and the reverse active power PRP

nb∑
k=1

PGk =

nb∑
k=1

PM
k,D +

nbr∑
k=1

PM
km +

nbr∑
k=1

PM
km,loss −

nb∑
k=1

PM
k,RP (4.47)
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The reverse power flow into the TN is obtained as thus.

SM
k,RP = SS − SPV (4.48)

PM
k,RP = Re(SM

k,RP ) (4.49)

Initialization : S
M(0)
B = Sload

S (4.50)

V abc
pcc = uabc0 (4.51)

Minimize ∆Se
B = S

M(0)
B − SS (4.52)

SS = Sload
S + Slosses

S − SPV (4.53)

SM = SG
M + Sload

M + Slosses
M (4.54)

The model of the solar PV is below

S2
PV = P 2

PV +Q2
PV (4.55)

A linear decision rule is used to provide the TN insights into the DN. Several analysis was

obtain to establish the relationship between TN generators and DN solar PVs as written in

the form below. The general implementation of the Linear decision rule.

Y = a+ bX (4.56)

where Y is the PPG active power from the generators in the transmission system, X is the

PPV active power generated by the solar PVs.

Gen(i) : PG(i) = a+ bPPV (4.57)

Where i is the generator number.

4.2.6 OPF Remarks

The detailed proof of the global optimality and the exactness of the SDP-OPF model in

transmission network is discussed in this section.

Pinjk = XTYkX (4.58)

Pinjk = Tr[X
TYkX] (4.59)
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Applying the trace operator multiplicity property

Pinjk = Tr[YkXX
T ] (4.60)

Introducing the W matrix

W = [XXT ] (4.61)

for equ (12) the unit operator Kth basis vector was implemented.

eke
T
k = 1 (4.62)

The W matrix can be decomposed into the following

W = [R{V }I{V }]T [R{V }I{V }] (4.63)

W = XXT (4.64)

This approach works for rank(W) = 1 and 2 only.

For rank(W)=2, eigen decomposition using Molzahn approach.

Wopt = ρ1E1E
T
1 + ρ2E2E

T
2 (4.65)

Xopt =

√
ρopt1 Eopt

1 +

√
ρopt2 Eopt

2 (4.66)

Where E1 and E2 are Eigenvectors, and ρ_1, ρ_2arethefirstandsecondlargestabsoluteeigenvalueofW.

Finally, we applied Schur’s complement, which is used to transform polynomial constraints

into quadratic constraints and that the semi-definite constraints equal quadratic constraints.

Such that H ∈ Sn

H =

 X Y

Y T P

 (4.67)

S = P − Y TX−1Y (4.68)

The Schur complement of X in H

• H > 0 if and only if X > 0 and S > 0

• X > 0 then H ≥ 0 and S ≥ 0

The apparent branch flow constraint equations (10e)
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
−(S̄lm)

2 Tr(Y lmW ) Tr(Ȳ lmW )

Tr(Y lmW ) − 1 0

Tr(Ȳ lmW ) 0 − 1

 ≤ 0 (4.69)

Applying the multiplicity trace operator

Tr(Y lmW ) = (−1)Tr(Y lmW ) (4.70)


S̄l2m Tr(Y lmW ) Tr(Ȳ lmW )

Tr(Y lmW ) 1 0

Tr(Ȳ lmW ) 0 1

 ≥ 0 (4.71)

Comparing this with equation (50)

 1− Tr(Y lmW )2

Sl2m

Tr(Ȳ lmW )Tr(Y lmW )
Sl2m

Tr(Ȳ lmW )Tr(Y lmW )
Sl2m

1− Tr(Y lmW )2

Sl2m

 ≥ 0 (4.72)

S̄l2m − Tr{Y lmW 2} − Tr{Y lmW 2} ≥ 0 (4.73)

4.2.7 Discussion and Performance Evaluation

Our approach was tested on the interconnection of IEEE 9bus and IEEE 13bus as shown

in the Fig. 4.5. The results were first benched-marked with IEEE test cases simulation

MATPOWER results. To increase the penetration level of the solarPV in DN to TN, the

system was modified such that 20 times the base load values of the DN was connected to

the TN. As seen in the integrated system inFig. 4.5 the boundary bus is bus 4. A base case

simulation was done, after which the system was tested with different penetration levels.

The LDR relationship between each of the generators on the TN and the solar PV’s

Gen(1) : PG(1) = 89.80− 0.45 ∗ PPV (4.74)

Gen(2) : PG(2) = 134.32− 0.07 ∗ PPV (4.75)

Gen(3) : PG(3) = 94.19− 0.25 ∗ PPV (4.76)

4.2.7.1 Case 1

In this scenario, the penetration level of the solarPVs with respect to the DN was 25%,

the simulation was performed on different irradiance levels of 0.5p.u, 0.9p.u and 1.0p.u

respectively,this enables us to see how the TN parameters was influenced by the solar PV.

The impacts was observed on the grid voltages and the cost of power generation.
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Figure 4.5: Integrated T&D model for IEEE 9bus and IEEE 13bus

Figure 4.6: Case A: 25% penetration level

4.2.7.2 Case 2

The penetration level of the solarPVs with respect to the DN was 60%, the simulation

was performed on the same irradiance levels in case 1, this enables us to see how the TN

parameters was influenced by the solar PV. The impacts was observed on the grid voltages

and the cost of power generation

Figure 4.7: Case B: 60% penetration level
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4.2.7.3 Case 3

In this scenario, the penetration level of the solarPVs with respect to the DN was 80%, the

simulation was performed on the same irradiance levels in case 1, It was seen that at a higher

penetration level of 80% and increased irradiance level to 1.0, the voltage was closer to the

nominal value of 1.0 p,u, and the cost of generation reduced significantly in case B and case

C. As compared with 25% penetration level and 1.0p.u irradiance level, cost of generation

dropped from 3,790 $/MWh to 3153 $/MWh as well as the bus with worse voltage from

1.575p.u to 1.044p.u. The minimum deviation is at 80% penetration at bus 2, while the

maximum is at 25% penetration at bus 6. Please refer to Figs. 4.6, 4.7, 4.8.

Figure 4.8: Case C: 80% penetration level

TABLE 4.1: Parameters Comparison with different PV penetration Levels

Penetration Irradiance
level

Solar PVs Power
Flow(MW)

Generation
Cost($/MWh)

25% 0.5 8.33 4.027
0.9 14.50 3.901
1.0 16.66 3.857

60% 0.5 20.00 3.790
0.9 38.00 3.446
1.0 50.00 3.229

80% 0.5 27.21 3.649
0.9 48.96 3.248
1.0 54.40 3.153

4.3 Stochastic Optimization of Integrated Transmission and Distribution Network

Considering Distributed Generation With Uncertainties

The electricity grid value chain from generation to consumption has two networks, these

networks Transmission network (TN) and distribution network (DN) are physically coupled

together. To meet the growing need for a sustainable environment and address global climate

change challenges, policies are calling for more renewable energy resources to be connected

to the grid and used as sources of energy. RERs also offer numerous advantages to the grid

and to the utilities [142],[143]. The democratization of these resources makes it permissible
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TABLE 4.2: Voltage Comparison with different PV penetration Levels

Penetration Bus No Voltage level
no Solar PVs

Voltage level
Irrad 1.0 p.u

% Deviation
from 1.0 p.u

25% 2 1.042 1.039 3.9%
3 1.052 1.048 4.8%
6 1.060 1.058 5.8%
7 1.046 1.044 4.4%
8 1.056 1.054 5.4%

60% 2 1.042 1.025 2.5%
3 1.052 1.036 3.6%
6 1.039 1.034 3.4%
7 1.046 1.031 3.1%
8 1.056 1.042 4.2%

80% 2 1.042 1.023 2.3%
3 1.052 1.034 3.4%
6 1.060 1.044 4.4%
7 1.046 1.029 2.9%
8 1.056 1.039 3.9%

TABLE 4.3: Boundary Bus mismatch voltage deviation

Parameter Scenario 1 Scenario 2 Scenario 3
Reverse Power
Flow (MW) 0 10.57 17.50
Voltage at PCC
with LDR(p.u) 1.041 1.029 1.049
Voltage at PCC
without LDR(p.u) 1.041 1.051 1.065

Figure 4.9: Boundary bus mismatch reduction with LDR

for them to be integrated at different layers of the network i.e. either at the customer side or

utility scale. On a wider scale based on the number of resources, most RERs are connected to

the distribution network and this integration is transforming the grid into an active network

(ADNs),[10], [144]. ADNs often causes reverse power flow to the TN. RERs are dynamic,

despite planning using accurate forecasts they are still susceptible to a sudden change [11],

[145], due to their intermittent nature.

This stochasticity in operations in large-scale couple T&D networks can cause boundary

mismatches and impact the security analysis performed by the distribution system operator.

Additionally, when a sudden change occurs based on their penetration level with regards to
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the integrated grid [146], [147] some significant power quality metrics of the grid[148] can

be affected such as grid frequency, harmonics, voltages, and many more. The simulation

for the grid network’s optimal power flow (OPF) performed at defined time intervals during

the day or a day ahead condition for efficient planning. RERs are also a major factor when

considering the tightness of this simulation due to their stochastic nature as increasing the

number of resources (distributed generation) [14], inter-playing with several controls on the

DN, these ultimately calls for more automation devices, There is always a need for net-

work reconfiguration that is dependent on the root node complex voltages, which despite

being estimated with phasor measurements units (PMU) can be prone to errors due to the

opening and closing loop if the characteristics of the transmission network aren’t properly

considered. For example, it is reported that the high penetration of DGs in California will

create difficulties for TSO due to their separate management structure. An incident in 2011

Arizona southern California outage event, was reported by the Federal Electricity Regula-

tory Commission (FERC) and North America Electric Reliability (NERC) as an occurrence

due to a lack of coordination between TSO and DSO. Therefore the need for studies to

enable us to ensure that the TSO and DSO are not almost blind to each other controls or

coordination [15], especially during these dynamic operations. Thus a coordination between

TN and DN has become mandatory in current grid operation. Current tools that perform

the coordination demonstrated by various entitites [149] such as Hierarchical Engine for

Large-scale Infrastructure Co-Simulation (HELICS), Framework for Network Co-Simulation

(FNCS), Integrated Grid Modeling System (IGMS)[132], and GridSpice[150] are either not

performing TN and DN in real-time and/or optimized together.

Power flow simulations of integrated T&D networks [151] have been extensively studied,

when compared with OPF. However, for OPF [152], each network has different objectives set

by utilities. DN networks are widely known to have an objective of loss minimization while

TN objective might be cost efficiency coupled with loss minimization. The challenge RERs

cause due to their stochastic nature is not allowing utilities to maximize their benefits, as

the utility tries to account for scenarios such as transformer overloading (TFO), and voltage

violation, the current technique has been used is the curtailment of distributed generation

[136] to prevent such occurrences. The intermittent nature of RERs which makes them

uncertain requires stochastic optimization [153], and the integrated T&D are a two-stage

stochastic program due to the power generated by the RERs and generators in TN. It has

been proven that for a feasible variable of reverse power flow, the generator power output

can be determined using a linear decision rule[154],[155].

In this section, focus was on the maximum allowable reverse power flow from the DN

into the TN, which indicates that power is exchanged over the distribution transformer in
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a bidirectional manner. AC Power flow equations are non-linear [156], [157] hence the need

for relaxation techniques to obtain a feasible solution. Amongst the different relaxation

techniques, SDP framework is used [158]. Specifically, for the distribution network we used

the SDP branch flow method (BFM), while for the transmission network, we used the SDP

bus injection method (BIM). Another known relaxation technique is the SOCP method which

uses branch flow methods and performs its relaxation using a cone for the non-linear terms

in the constraint [137]. The SDP technique operates based on the rank solution method,

the solution is feasible and exact when there is no duality gap. For integrating TN and DN,

a stochastic linear optimization is implemented in an integrated optimization engine that

performs the objective of each network and has its own objective of minimizing boundary

errors. The linear optimization constraint (LDR) is used as an additional constraint to

ensure that the uncertainties with RERs are managed especially reverse power flow from the

distribution network to the transmission network

4.3.1 Main contributions

The main contributions of SILP with state-of-the-art include:

• An optimization technique that co-simulates integrated T&D with heterogeneous bound-

ary variables and ensures each network objective is achieved.

• A technique that handles the boundary variables impact of integrated transmission

and distribution network due to uncertainties by RERs.

• The technique is based on stochastic linear optimization which uses a complete recourse

formulation to develop the constraint.

• A management approach that uses the linear decision rule constraints to provide the

transmission network and its resources insights into the distribution network opera-

tions.

As compared to our work in the previous section, the main advantages of this section

includes the following:

• The theorem proof for stochastic linear optimization used for the integrated T&D

co-simulation is discussed.

• Unlike our previous work that considered only the voltage profile deviation in the TN,

the technique handled the voltage profile deviation in the TN and the boundary bus

voltage violation during reverse power flow into the TN.

• The impacts of RERs curtailment and no curtailment on the integrated T&D network

with and without our developed technique is discussed.
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• The stochastic linear optimization proposed is able to handle larger networks of inte-

grated T&D models.

4.3.2 Overview of existing model

Presently grid-coupled networks have two major entities controlling their operations using

effective management and co-ordination strategies. The transmission system operator(TSO)

coordinates the TN while the distribution system operator coordinates the DN, The inte-

grated T&D has a general model known as master-slave structure [138,139] as shown in Fig.

4.10 and the system is referred to as an heterogeneous network since the boundary variables

exchanged are different otherwise it would have been a homogeneous network. The master

system is a collection of all the devices and components existing in the transmission net-

work aside from the boundary bus. On the other hand, the slave system comprises devices

and components interplaying in the distribution network. The point of common coupling

(PCC) is the bus of interconnection of the transmission network and the feeder head bus

of the distribution network, this bus is referred to as the boundary bus. The two variables

exchanges include voltages for the DN feeder and total power demand by the DN. A general

representation of independent transmission OPF and independent distribution OPF is known

as the TDOPF [138], the model has an objective function as shown in (4.77), operational

constraints for TN are in (4.78), (4.79), (4.81), and for DN are in, (4.80), (4.82), and (4.83)

respectively. The boundary bus power flows are in (4.84), (4.85), and (4.86).

min
∑

cM(UM , UB, XM , XB) + cS(US, XB, XS) (4.77)

subject to

fM(UM , XM , XB) = 0 (4.78)

gM(UM , XM , XB) ≥ 0 (4.79)

fB(U
B, XS, XMXB) = 0 (4.80)

gB(U
B, XB) ≥ 0 (4.81)

fS(U
S, XB, XS) = 0 (4.82)

gS(U
S, XB, XS) ≥ 0 (4.83)
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PB + fpMB(X
M , XB) = fpBS(X

B, XS) (4.84)

fMB(U
B, XM , XB) = yBS (4.85)

yBS = fBS(X
B, XS) (4.86)

Figure 4.10: Schematic diagram of an integrated T&D system.

The TDOPF network comprises a vector of control U and state X variables. The con-

trolled devices are generators, voltage regulators, and shunt capacitors whose active and

reactive power can be controlled, while the states are voltage magnitude and angle. f(*) is

the equality constraints such as power flow and the g(*) is the inequality constraints that

establish network constraints such as bus voltages and line flows. The optimality condition

for the independent model using Lagrangian multiplier is shown in (4.87).

A = −λTMfM − wT
MfM − wT

MgM − λTMB(fMB − yBS) (4.87)

B = cM + cs − wT
BgB − λTSfS − wT

S gS − λTBS(yBS − fBS) (4.88)

L = A+B (4.89)

At the bus of interconnection, the transmission (boundary) bus voltage is the feeder voltage

(magnitude) for the distribution network uabc0

uabc0 = V B
k (4.90)
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4.3.3 Transmission Network

The technique used for solving the transmission network OPF is SDP bus injection method

(BIM) [140], with the representation diagram shown in Fig. 4.11 . The objective of the OPF

is to reduce the cost of generation. In a given network graph G =(N , E), where N is the

number of nodes in the network such that k ∈ N is the node in the network, E represents

the branches in the network connecting an ordered pair of buses (k,m), addition L is used

for scenarios where the branches are duplicated, i.e. (k,m) ∈ E = (m,k),(k,m) ∈ L. The

admittance for the node k is Yk.

Figure 4.11: One line diagram of the transmission network.

The non-convex AC OPF equations can be represented as

min cTPGc
TPG = ck2P

2
Gk

+ ck1PGk
+ ck0 (4.91)

subject to

SGK
− SDK

= diag ¯(Vk)Ȳk
∗
busV̄

∗
k (4.92)

ȲkmV̄k ≤ Ikm,max (4.93)

V̄kȲkmV̄
∗
k ≤ Skm,max (4.94)

0 ≤ PGk
≤ Pmax

k (4.95)

Qmin
k ≤ QGk

≤ Qmax
k (4.96)

V min
k ≤ Vk ≤ V max

k (4.97)

Rewriting (4.91) and (4.92)-(4.97) using SDP formulation gives

∑
kϵG

Ck2(TrYkW + PDk
)2 + Ck1(TrYkW + PDk

) + Ck0 (4.98)
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subject to

Pmin
k ≤ TrYkW ≤ Pmax

k (4.99)

Qmin
k ≤ TrȲkW ≤ Qmax

k (4.100)

(V min
k )2 ≤ TrMkW ≤ (V max

k )2 (4.101)

−Pmax
lm ≤ TrYlmW ≤ Pmax

lm (4.102)

TrYlmW
2 + TrȲlmW

2 ≤ (Smax
lm )2 (4.103)

Obtaining the auxiliary variables Ylmand Yk using the following

Ylm = (ȳlm + ylm)ele
T
l − (ylm)ele

T
m (4.104)

Yk = eke
T
k Y (4.105)

Yk =
1

2

 Re(Yk + Y T
k ) Im(Y

T
k − Yk)

Im(Yk − Y T
k ) Re(Yk + Y T

k )

 (4.106)

Ylm =
1

2

 Re(Ylm + Y T
lm) Im(Y

T
lm − Ylm)

Im(Ylm − Y T
lm) Re(Yk + Y T

k )

 (4.107)

Ȳk =
−1

2

 Im(Yk + Y T
k ) Re(Yk − Y T

k )

Re(Y
T
k − Yk) Im(Yk + Y T

k )

 (4.108)

Mk =

 eke
T
k 0

0 eke
T
k

 (4.109)

Finally, applying the Schur’s complement

 ck1Tr(YkW )− αk + ak
√
ck2Tr(YkW ) + bk

√
ck2Tr(YkW ) + bk − 1

 ≤ 0 (4.110)

such that

ak = ck0 + ck1PDk
(4.111)

bk =
√
ck2PDk

(4.112)

4.3.4 Distribution Network

The distribution network optimal power flow is modeled using SDP branch flow method

(BFM) [141] relaxation technique, with the representation diagram shown in Fig. 4.12 and

the objective is to minimize the overall loss in the distribution system. The formulation



75

accommodates for different number of bus-phases in the network and the interconnection.

In a given network graph G =(N , E), where N is the number of nodes in the network such

that i ∈ N , j ∈ N are the nodes in the network, E represents the branches in the network

connecting an ordered pair of buses (i, j), addition L is used for scenarios where the branches

are duplicated, i.e. (i, j) ∈ E = (j, i),(i, j) ∈ L. The line admittance yij=gij + jbij, (i, j)

∈ L. The apparent power and current flowing from bus i ∈ N to j ∈ N is Sij and Iij

respectively. Other representations used for second-order decision variables are ui = ViV
H
i ,

lij = IijI
H
ij , where Φij is the set of phases of the line ij,H is the hermitian transpose. The

details are presented using Fig. 4.12.

Figure 4.12: One line diagram of the distribution network

Vi = [V a
i , V

b
i , V

c
i ]

TVj = [V a
j , V

b
j , V

c
j ]

T (4.113)

The assumption is that bus i and j both have 3-phases which might not be in some cases.

min
∑

real(zijlij) (4.114)

∑
i:i−→ j

diag(Sij − zijlij) + sj + yjuj =
∑

k:j−→ k

diag(Sjk)
ϕj (4.115)

uj = u
ϕij

i − (Sijz
H
ij + SH

ij zij) + zijlijz
H
ij (4.116)

ui <= diag(ui) <= ui (4.117)

u0 = V ref
0 (V ref

0 )H (4.118)

Considering a positive semidefinite (PSD) constraint

 u
θij
i Sij

SH
ij lij

 ≥ 0 i −→ j (4.119)

Rank-1 criteria can be defined as  u
θij
i Sij

SH
ij lij

 = 1 (4.120)
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Algorithm 6: Stochastic Linear Optimization
1 -
2 Initialize IOE input SS

load, other TN and DN data
3 Initialize the variables for LDR
4 Run several simulations of the integrated network with different irradiance levels
5 Use a regression model to obtain the constants a and b
6 Add the LDR constraints to the TN OPF
7 while tol > ϵ do
8 forall t ∈ TN do
9 Solve the transmission network OPF.

10 Extract the system parameters.(Voltage and angle)
11 Check if V m

k is violated
12 If step 6 is yes, apply LDR in equation(40)
13 Else use equation(33)
14 end
15 forall d ∈ DN do
16 Solve the distribution network OPF.
17 Extract the total load demand with losses at the DN
18 Update the boundary variables at PCC with new demand.
19 end
20 Obtain the new tolerance error using equation (36)
21 Check for convergence.
22 end
23 end

4.3.5 Stochastic optimization with LDR

Stochastic linear optimization is utilized for the proposed co-simulation with details dis-

cussed in Appendix B. The proposed approach is operated within an integrated optimization

engine (IOE) which is represented in Fig. 4.13. A global optimization algorithm is used to

solve each network based on its objective, which then converges to a bidirectional set point

for each of the networks based on the integrated optimization engine. In the IOE the TN

has real-time insights to the DN and it is able to readjust itself based on the linear deci-

sion rule constraints. To enable the insights of both networks, the TOPF is re-written to

accommodate for the changing dynamics in the distribution network leading to the reverse

power flow in the transmission network, k is a constant, due to the power from DG and

nondispatchable. With the addition of k the TOPF is modified as

TOPF = min CM(UM , UB, XM , XB, KS
DG) (4.121)

Considering this, the objective of each network is redefined as

TOPF = min

NG∑
g=1

(b2(P
g
k )

2 + b1(P
g
k ) + b0) (4.122)

DOPF = min Re(Sij − ZijI
2
ij) (4.123)

For a specific bus k the generator active power P g
k as shown below is an arithmetic of Pk,D
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which is the load connected, the line losses Pkm,loss, and the reverse active power Pk,RP from

the DN.

P g
k = PM

k,D +
∑

m:k−→ m

PM
km +

∑
m:k−→ k

PM
km,loss + PB

k,RP (4.124)

With this the reverse power flow into the TN is obtained as

PB
K,RP = Re(SB

K,RP ) (4.125)

The integrated optimization engine uses the following set of equations:

Initialization : S
B(0)
K,RP = S

S(0)
load (4.126)

V abc
pcc = uabc0 (4.127)

uabc0 = 1.0p.u (4.128)

Objective :Min ∆Vpcc (4.129)

∆Vpcc = V B
K − Vpcc (4.130)

SB
K,RP =

nb∑
i=1

[
SS
i,D +Re(

∑
j:i−→ j

(Sij − ZijI
2
ij))− SS

i,pv

]
(4.131)

Distributed Energy Resource (DER) considered is solar PV with a general representation as

S2
pv = P 2

pv +Q2
pv (4.132)

Figure 4.13: Integrated optimization engine

A linear decision rule (LDR) technique is implemented using the theorem discussed in

appendix B. The stochastic nature of renewable energy resources is accounted for by ensuring

the Transmission network has insight into the operations of the distribution network. Using

different irradiance levels analysis was performed to derive the linear relationship between
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TN generators and DN solar PVs in the form written below.

Y = a+ bX (4.133)

In (6.14, Y represents transmission network generators’ active power for a specific bus k

Pg
k, and X is the Ppv active power generated by the solar PVs. The representation to

accommodate several generators and several RERs can therefore be written as the equation

below. For this study, our RERs is solar PV. k is the bus the generator is connected to in the

TN while i is the bus the solar PV is connected to in the DN, where a and b are constants.

Thus,

P g
k = a+ bPi,pv (4.134)

4.3.6 LDR Theorem Proof

In this section, the proof of the LDR- model is discussed.

A stochastic model can be formulated as below:

min c′x+ E(Q(x, z̄))

s.t. Ax = b

x ≥ 0

(4.135)

with the x as vectors and other bold lower case, x̃ as a random variable, bold upper case

such as A are the matrices.

where,

Q(x, z) = min f ′w

s.t. T(z)x+Ww = h(z),

wi ≥ 0, ∀i ∈ I ⊆ {1, ....n2}

(4.136)

Additionally, c, f and b are known vectors in ℜn1 , ℜn2 and ℜm1 , T(z̃), h(z̃) are assumptions

for affine data dependency.

T(z̄) = T0 +
N∑

k=1

Tkz̃k, h(z̃) = h0 +
N∑

k=1

hkz̃k (4.137)
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ZSTOC = min c′x+ E(f ′w, (z̄))

s.t. Ax = b,

wi(z̃) ≥ 0, ∀i ∈ I,

x ≥ 0

w(z̃) ∈ Y

(4.138)

Translating into LDR

w(z̄) = w0 +
N∑
k=1

wkz̄k (4.139)

The stochastic model approximation is then written in the LDR

ZLDR = min c′x+ f ′w0

s.t. Ax = b,

Tkx+Wwk = hk ∀k ∈ {0, ....N},

wi(z) ≥ 0 ∀z ∈ W,∀i ∈ I,

x ≥ 0,

w(.) ∈ L

(4.140)

wi(z) ≥ 0 ∀Z ∈ W

w0
i ≥

N∑
j=1

(zjsj + z̃jtj)
(4.141)

If the solution at equation(62) is feasible, then it will be in equation(60), ZSTOC ≤ ZLDR

, with W = [-z, z̃]. for some s,t ≥ 0 satisfying sj-tj = wj
i . Relating the above variables and

uncertainties to our integrated T&D model, the variable w is the PPG, the variable x is the

Pk,RP , while the uncertainty Z̃ is the PPV

4.3.7 Results and Discussion

Different distribution test cases have been simulated and analyzed of which two test sys-

tems are presented. Test system 1 is IEEE 57 bus TN integrated with IEEE 34 bus DN. Test

system 2 is IEEE 118 bus TN integrated with IEEE 123 bus DN. The detailed method is

modeled and simulated using the MATLAB platform’s YALMIP optimization toolbox [159].

The YALMIP toolbox used the MOSEK [160] solver to solve the optimization models. For

the regression models with LDR, python package was used. The three-phase unbalanced

model was implemented for the distribution network and the positive sequence model for

the transmission network.
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4.3.8 Test system I: IEEE 57 TN and IEEE 34 DN

First, the proposed SILP is tested on an integrated network with the transmission network

as IEEE 57bus and the distribution network as IEEE 34bus. The coupled system is illustrated

in fig.4.14.

Figure 4.14: Integrated T&D model for IEEE 57bus and IEEE 34bus

Three cases are performed on this realistic network to discuss the advantages of the pro-

posed SILP.

4.3.8.1 Case 1-Integrated Model Analysis without Solar PV

In this case, the proposed integrated SILP model is simulated with the objective of cost

minimization for the TN and loss minimization for DN. The optimization model is com-

pared with the conventional NLP models that are run separately for TN and DN. For the

conventional NLP modeling MatPower software (used in the field as a state-of-the-art) is

utilized.

Fig. 4.15 illustrates the comparison between the TN part of the proposed integrated SILP

model and a stand-alone conventional NLP model. It can be seen the voltage profile almost

matches with the conventional NLP which shows the exactness of the SILP.

Similarly, Fig. 4.16 illustrates the comparison between the DN part of the proposed

integrated SILP model and a stand-alone conventional NLP model. It can be seen the

voltage profile almost matches with the conventional NLP which shows the exactness of the

SILP showing the exactness.

Further, the substation power and the objective functions are compared with the state-of-

the-art for this case as illustrated in Table 4.4. It can be seen that the generation cost for the

proposed SILP is lower when compared the TN and DN simulation performed separately.
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Figure 4.15: Voltage profile for IEEE 57 bus TN compared to the state-of-the-art

Figure 4.16: Voltage profile for IEEE 34 bus DN compared to the state-of-the-art

Also the power loss is lower as well when compared to the state-of-the-art bu around 5%.

TABLE 4.4: Substation Active and Reactive Power Output and Cost and Loss Comparisons

Psub(MW ) Qsub(MV ar) Ploss(MW ) Gencost
IEEE 57-bus test case

NLP-OPF 1311.40 285.91 20.735 43,583.41
Proposed-SILP 1310.345 286.10 19.685 43,550.60

IEEE 34-bus test case
NLP-OPF 45.625 5.88 5.25 -

Proposed-SILP 45.860 5.80 5.46 -

4.3.8.2 Case 2- Integrated Model Analysis with Solar PV

To demonstrate the impact of the sudden changes by the solar PV located at DN on the

TN, the penetration level of the DN to TN was modified such that 20 times the base load value

of the DN was connected to the TN at the boundary bus, bus 22. Test cases with different

irradiance and penetration levels was performed and discussed in Table 4.5. The solar PV

was connected to bus 824 of the distribution network with a capacity of 50MVA. After
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TABLE 4.5: Parameters Comparison with different PV penetration Levels

Penetration Irradiance
level

PVs Power
Flow(MW)

Generation
Cost($)

P(MW)
@PCC

Q(MVAR)
@PCC

25% 0.5 6.063 43,349 34.798 6.10
0.9 10.913 43,118 29.948 6.05
1.0 12.125 43,061 28.735 5.98

60% 0.5 14.550 42,947 26.310 5.95
0.9 26.190 42,410 14.670 5.88
1.0 29.100 42,276 11.760 5.86

90% 0.5 21.825 42,610 19.035 5.90
0.9 39.285 41,814 1.575 5.85
1.0 43.650 41,617 -2.79 5.80

running several simulations with different irradiance levels, the linear relationship between

the solar PVs and each generator in the transmission network was obtained. The summary of

the parameters obtained using a linear regression method done in python. The relationship

is as seen in Table 4.6. The IEEE 57bus system has 7 generators, so the relationship was

obtained for each generator as

Gen(i) : PG(i) = a(i) + b(i)PPV (4.142)

Table IV illustrates the generation cost and the losses in both TN and DN with the proposed

TABLE 4.6: LDR relationship between the TN generator and Solar PVs

Generator Bus No a b
1 1 106.312 -0.561
2 2 99.989 -0.296
3 3 56.895 -0.280
4 6 65.476 0.168
5 8 410.465 1.164
6 9 100.021 -0.069
7 12 420.504 -5.794

SILP and the conventional NLP. It can be seen that the proposed SILP have a better cost

value compared to the NLP.

TABLE 4.7: Substation Active and Reactive Power Output and Cost and Loss Comparisons with
solar PV

Psub(MW ) Qsub(MV ar) Ploss(MW ) Gencost
IEEE 57-bus test case

NLP-OPF 1,280.06 273.72 17.504 42,276
Proposed-SILP 1,279.55 273.25 17.250 42,225

IEEE 34-bus test case
NLP-OPF 11.76 5.86 1.31 -

Proposed-SILP 11.77 5.79 1.35 -
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4.3.8.3 Case 3- Integrated Model Analysis with Solar PV During Reverse Power Flow

Condition

The scenario with reverse power flow was performed and its impact on the boundary

variables was observed. For the proposed system, this scenario was only possible with the

penetration level of the DN to be 90% of the TN and the irradiance level of the solarPV was

also set to be 1.0 p.u (See Table 4.5).

Table 4.8 shows the boundary bus voltage deviation with the proposed SILP for all three

cases. It can be seen that with the proposed SILP the voltage deviation at the boundary

bus (DN integrated substation) is less than 5 %. The technique also offered a comparative

TABLE 4.8: Boundary Bus mismatch voltage deviation

Parameter Case 1 Case 2 Case 3
Reverse Power
Flow (MW) 0 0 2.79
Voltage at PCC
with LDR(p.u) None None 1.012
Voltage at PCC
without LDR(p.u) 1.015 1.013 1.060
% Voltage
deviation at PCC 0 0 4.53%

advantage with respect to the cost of generation, since it eliminates the need for curtailing

solar PV during reverse power operation the cost of generation dropped from $41,738 to

$41,617 as shown in the Fig. 4.17.

Figure 4.17: Generation cost comparison with SILP, no LDR, and with no DERs connected

The voltage profiles during the reverse power is illustrated in Fig. 4.18. It can be seen

that with the proposed SILP the voltage profile is within the limit when compared to the

state-of-the-art but violations can be seen when the state-of-the-art model is used.
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Figure 4.18: Voltage profile for IEEE 57bus system

TABLE 4.9: Substation Active and Reactive Power Output and Cost and Loss Comparisons with
reverse power flow

Psub(MW ) Qsub(MV ar) Ploss(MW ) Gencost
IEEE 57-bus test case

NLP-OPF 1,267.31 270.56 16.513 41,737.79
Proposed-SILP 1,264.31 269.87 16.299 41,617.20

IEEE 34-bus test case
NLP-OPF - 2.79 - - -

Proposed-SILP - 2.79 - - -

4.3.9 Test system II: IEEE 118 TN and IEEE 123 DN

Our approach was further implemented on the interconnection of IEEE 118bus and IEEE

123bus as shown in Fig.4.19. As seen in the integrated system the boundary bus is bus 38.

Figure 4.19: IEEE 118bus and IEEE 123bus Integrated T&D model

4.3.9.1 Case 1-Integrated Model Analysis without Solar PV:

Simulations were performed without the interconnection of solar PVs and the results were

first benched-marked with conventional NLP performed using MatPower. The results shown

below are a comparison of simulations with the proposed SILP and the MATPOWER(NLP)

of the transmission network voltages and cost both approaches had the same objective of

cost minimization. Fig. 10 illustrates the TN comparisons and Fig. 11 illustrates the DN
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comparisons. It was observed that the voltages were closely matching in both scenarios.

Figure 4.20: Voltage profile comparisons for IEEE 118 bus network

Figure 4.21: Voltage profile comparisons for IEEE 123 bus network

4.3.9.2 Case 2- Integrated Model Analysis with Solar PV

To increase the penetration level of the solar PV in DN to TN, the system was modified

such that 20 times the base load values of the DN were connected to the TN. A base case

simulation was done, after which the system was tested with different penetration levels as

shown in 4.11. The solar PV was connected to bus 56 of the distribution network and it

had a capacity of 100 MVA. Similarly, the linear relationship was obtained for each of the

generators in the TN and the solar PVs, the IEEE 118bus has 54 generators connected to

the network.

4.3.9.3 Case 3- Integrated Model Analysis with Solar PV During Reverse Power Flow

Condition:

The scenario with reverse power flow was created and its impact on the boundary variables

was observed. This was only possible with the penetration level of the DN to be 90% and
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TABLE 4.10: Parameters Comparison with different PV penetration Levels

Penetration Irradiance
level

PVs Power
Flow(MW)

Generation
Cost($)

P(MW)
@PCC

Q(MVAR)
@PCC

25% 0.5 11.88 132,103 60.13 25.38
0.9 21.38 131,701 50.63 24.88
1.0 23.75 131,621 48.25 24.75

60% 0.5 28.50 131,420 43.50 24.50
0.9 51.30 130,499 20.70 23.30
1.0 57.00 130,259 15.01 23.00

90% 0.5 42.75 130,859 29.25 23.75
0.9 76.95 129,449 -4.95 21.95
1.0 85.50 129,102 -13.50 21.50

the irradiance levels of 0.9p.u and 1.0p.u (see Tale VII). The LDR technique was effective

as seen in the table and the boundary voltage mismatch as shown in Table VIII.

The steepest variations was seen when irradiance is at 1.0p.u and 90% penetration level.

Since our technique also eliminated the need for curtailing solar PV the cost of generation

dropped from $129,660 to $129,102 as shown in the Fig. 4.22. The reduction in voltage

boundary bus mismatch is also achieved through the LDR technique shown in Table 4.12.

Fig. 13 illustrates that without SILP, the voltage violation occurs at the boundary bus.

Figure 4.22: Generation cost comparison with SILP, and conventional NLP.

4.4 Summary

The proposed methodology for the co-simulation of an integrated T&D system ensures

that the transmission system can adequately capture the changes occurring in the distri-

bution system due to the RERs and operate optimally. Our framework ensures that the

grid objectives are achieved for both networks, the formulation can also be implemented in

power flow simulations. With this technique, the boundary mismatch challenges in the inte-

grated grid are minimized, which can therefore allow for safe and reliable operations without

the need for curtailing the resources. The methodology ensures that the boundary voltage
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TABLE 4.11: LDR relationship between generator and Solar PVs

Generator Bus No a b
1 1 28.76 -0.03
2 4 3.03e−5 8.75e−8

3 6 2.03 -2.5e−2

4 8 2.84e−5 7.62e−8

5 10 403.71 -0.026
6 12 86.10 -0.0041
7 15 25.02 -0.058
8 18 16.75 -0.05
9 19 25.21 -0.051
10 24 2.96e−5 9.71e−8

11 25 194.57 -0.011
12 26 280.95 -0.017
13 27 11.85 -0.027
14 31 7.27 -2.8e−4

15 32 16.96 -0.03
16 34 17.92 -0.18
17 36 22.31 -0.161
18 40 55.27 -0.08
19 42 43.68 -0.04
20 46 19.12 1.13e−3

21 49 193.95 -0.009
22 54 49.63 -0.001
23 55 33.70 -0.022
24 56 34.24 -0.024
25 59 150.13 -0.006
26 61 148.91 -0.007
27 62 1.61e−5 -5.95e−8

28 65 353.65 -0.02
29 66 350.11 -0.018
30 69 455.14 -0.02
31 70 8.54e−5 -1.4e−7

32 72 9.52e−5 -1.25e−7

33 73 1.33e−4 -4.78e−7

34 74 18.35 -0.02
35 76 24.02 -0.016
36 77 1.96e−6 7.23e−8

37 80 432.02 -0.017
38 85 8.76e−6 -3.83e−8

39 87 3.63 -7.3e−5

40 89 502.5 -0.01
41 90 1.14e−6 4.96e−8

42 91 1.04e−5 4.54e−8

43 92 8.14e−6 4.54e−8

44 99 1.46e−6 6.11e−8

45 100 231.6 -0.004
46 103 38.28 0.046
47 104 2.24e−4 6.97e−7

48 105 5.67 -7.00e−3

49 107 29.291 -3.72e−3

50 110 7.318 -4.1e−3

51 111 35.25 -1.4e−4

52 112 36.622 -0.002
53 113 1.57e-4 -3.9e-7
54 116 9.89e−6 -3.99e−8
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Figure 4.23: Bus voltage profile IEEE 118bus network.

TABLE 4.12: Boundary Bus mismatch voltage deviation

Parameter Scenario 1 Scenario 2 Scenario 3
Reverse Power
Flow (MW) 0 4.98 13.50
Voltage at PCC
with LDR(p.u) None 1.015 1.016
Voltage at PCC
without LDR(p.u) 1.014 1.070 1.075
% Voltage
deviation at PCC 0 % 5 % 5.5 %

is tightened, and other voltages in the network which are easily susceptible to change are

within allowable limits and the need for several iterations for convergence is eliminated. In

the future, the scope of our work will be extended to a larger time window and add other

renewable energy resources to the network, as well as evaluate other grid objectives.



CHAPTER 5: MULTI-PERIOD INTEGRATED TRANSMISSION AND DISTRIBUTION

OPTIMAL POWER FLOW SIMULATION USING LINEAR DECISION APPROACH

5.1 Introduction

The recent developments in the electric grid introduced some changes to steady state so-

lution of the optimal power flow and created the need for a multiperiod optimal power flow

(MPOPF) solution. These changes are due to the progressive increase in load and intro-

duction of renewable energy resources into the grid which has led to the deregulation of the

electric energy system. Hence, the modern grid has a lot of varying devices operating at each

interval. Utilities still have a major objective to operate the grid in a cost-efficient manner,

which is achieved through optimal power flow simulations (OPF). OPF solutions provide

the optimal operating point for the electric grid based on specified objectives which can

either be cost or loss minimization. The solutions can be solved on a day ahead where the

utilities make use of known models and provided or needed data to compute the OPF, these

simulations is performed for each iteration within a defined interval based on the variations

of the devices connected to the network, however, to operate efficiently real-time OPF is

also performed by most utilities to address the sudden changes that can occur on the grid.

Real-time OPF is performed within 15mins intervals by most utilities, though some of the

occurrences by renewable energy resources are sudden and occurs before within each interval.

MPOPF asides from achieving the utility objectives must satisfy the technical constraints of

the grid such as power-flow equations, active and reactive powers, limits on the generators,

line flow limits, MPOPF are also needed because the current grid comprises time coupled

devices and for planning purposes. In situations where the size of these resources is large,

a reverse power flow into the TN can occur and if not adequately planned for can have

significant effects on the power quality metrics in the transmission network such effects can

be on the voltage, frequency, and other metrics. Some of the techniques used to address the

intermittency of renewable energy resources are the use of grid-storage devices which comes

with a few challenges of cost, and operational efficiency. OPF algorithm has been extensively

established using different techniques and relaxations dues its non-convexity, such as Linear

programming, Non-Linear programming Newton-Raphson, quadratic programming, and in-

terior point method, cite. The introduction of time into the optimal power flow equations

increases the simulation computational burden, several techniques have been utilized such

as combining receding horizon with different power flow models like DC power flow, SDP

relaxations, standard solutions strategies for MPOPF adopting general purpose nonlinear
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programming (NLP) methods, usually employed for the solution of non-convex optimization

problems, the computational time for solving MPOPF is spent in the solution of Karush-

Kuhn-Tucker(KKT). The devices connected to the grid leading to the need for MPOPF are

mostly introduced at the distribution networks and they are transforming the integrated

grid into an active network[9],[10]. Some research work has been done to extend the OPF

work to multiperiod framework, Warrington et all [161] used the Lagrangian decomposi-

tion method to solve MPOPF with storage and ramp constraints, Gayme and Topcu [162]

considered OPF problems with storage by extending the work of Lavaei and Low. The ba-

sic applications in the tools used for simulations with Transmission system operators and

Distribution system operators are power flow, and a couple of other techniques and tools

have been developed for the co-simulation of the integrated network such as Framework for

Network Co-Simulation (FNCS)[131], Integrated Grid Modeling System (IGMS)[132, 132],

HELICS [?,?], the uncertainty of the boundary variables due to renewable energy resources

makes the solutions not tight. The differences in the device types also make it difficult to

coordinate the coupled network from a single operator, additionally, the only information for

both networks is provided at the boundary bus such as power demand, voltage magnitude,

voltage angles, and locational marginal prices [163,164]. Some decentralized approaches have

been implemented for the integrated networks also which are classified as either Lagrangian

relaxation (LR) and Optimality condition decomposition (OCD), the LR involves the use of

the alternative direction of method multipliers (ADMM) [165], analytical target cascading

(ATC), the shortcomings of the LR approach is the low convergency rate and complex pa-

rameter tuning process. The OCP can be deployed either as a synchronous iteration[166] or

asynchronous iteration[167]. The synchronous has the advantage of better convergence while

the asynchronous is simpler in its implementation. The major challenges for the OCD ap-

proach are the inability to work with the exchange of variables with different characteristics.

The co-simulation of integrated T&D considering the heterogenous characteristics have also

been studied [168,169], the solutions are however still complex. These issues are why the in-

tegrated T&D OPF are not been implemented yet, in addition to helping prevent challenges

arising as transformer overloading (TFO), grid voltage violation due to the reverse power

flow into the TN, and eliminating the need to curtail DG [136], which also offers benefits

with regards to cost. This chapter is a further expansion of our work where we implemented

our approach for steady-state operations of the integrated network [170]. The relaxation

techniques implemented is semidefinite programming (SDP) branch flow method (BFM)and

bus injection method (BIM) for the non-linear terms in the constraint [137], The static OPF

equations were modified to operate as MPOPF, while ensuring that in each interval the TN

devices provide optimum operating points to achieve the grid objectives, using the LDR
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methodology to have insights to the DN operations

5.1.1 Main contribution

The main advantages of the technique discussed in this chapter

• Eliminating the need to curtail DERs during uncertainties.

• Providing transmission network insights of distribution network operations at every

time.

• Ability to achieve multiple grid objectives within each network and ensure no violation

of grid quality metrics.

The main contribution our work in this section includes :

• An technique that co-simulates integrated T&D network considering all the time-

varying parameters connected to the grid.

• An approach that minimizes boundary voltage mismatch due to reverse power flow

from DN especially at times when the irradiance level of the solarPV is high.

• A linear decision rule LDR is utilized to maximize the cost benefits and voltage man-

agement offerings of DERs at each time interval of operation.

5.2 Previous and Current Model Challenges

In most electricity value chain, the management and co-ordination of the operations of

the grid is done seperately, the TN is managed by the TSO while the DN is managed by

the DSO, The TSO can co-ordinate the voltages exchanged in the boundary power injection,

while the DSO regulates the power injection based on the boundary voltage. Most of the

techniques available involve similar exchange variables and they are computationally com-

plex. Furthermore, since the variables exchanged at the boundary of integrated T&D are

different the network can be referred to as a heterogeneous network. The integrated T&D

has a general model known as master-slave structure [138, 139] as shown in Fig. 5.1. All

the devices and components in the TN asides from the boundary bus are referred to as the

master system, while all the devices and components in the DN including the boundary bus

are referred to as the slave system. The boundary bus is the interconnecting bus between

both networks, since, the variables exchanged at the boundary are different the integrated

network can be referred to as a heterogeneous network.

At PCC, the boundary voltage is the transmission bus voltage which is the feeder voltage

(magnitude and angle) for the distribution network uabc0

uabc0 (t) = V abc
pcc (t) (5.1)
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Figure 5.1: A schematic of Integrated T&D model with master-slave approach

5.2.1 Transmission Network MPOPF

Considering the general model of transmission network with the optimal objective of

reducing the cost of generation. For a given network graph G =(N , E), where N is the

number of nodes in the network such that m ∈ N is the node in the network as shown in the

figure below, E is used to represent the number of branches in the network. Depending on

the bus number m or n, Vm is voltage of m ∈ N . The active power and reactive power of the

generation and load are represented as P g
m,Qg

m and P d
m,Qd

m respectively. The approach used

for the solution in the transmission network is a semi-definite relaxation (SDP) bus injection

method [140], the one-line representation is as shown in Fig. 5.2.

Figure 5.2: Transmission network - One line

The non-convex AC OPF equations are below

min

Tt∑
t=1

(cm2 (P
g
m(t))

2 + cm1 P
g
m(t) + cm0 ) (5.2)
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subject to

P g
m(t)− P d

m(t) = x(t)TYmx(t) (5.3)

Qg
m(t)−Qd

m(t) = x(t)TYmx(t) (5.4)

Pmn(t) = x(t)TYmnx(t) (5.5)

Qmn(t) = x(t)TYmnx(t) (5.6)

Pmin
m ≤ P g

m(t) ≤ Pmax
m (5.7)

Qmin
m ≤ Qg

m(t) ≤ Qmax
m (5.8)

(V min
m )2 ≤ x(t)TMmx(t) ≤ (V max

m )2 (5.9)

P 2
mn(t) +Q2

mn(t) ≤ (Smax
mn )2 (5.10)

x(t)TMmnx(t) ≤ Lmax
mn (5.11)

SDP relaxation is written below

min
Tt∑
t=1

(ai)(t) (5.12)

s.t W(t) ≥ 0 (5.13) amo(t) am1(t)

am1(t) − 1

 ≤ 0 (5.14)

Pmin
m ≤ P g

m(t) ≤ Pmax
m (5.15)

Qmin
m ≤ Qg

m(t) ≤ Qmax
m (5.16)

P g
m(t)− P d

m(t) = Tr(YmW(t)) (5.17)

Qg
m(t)−Qg

m(t) = Tr(YmW(t)) (5.18)

(V min
m )2 ≤ Tr(MmW(t)) (5.19)

Tr(MmW(t)) ≤ (V max
m )2 (5.20) Tr(MmnW(t))

Tr(MmnW(t))

 ≤ Smax
mn (5.21)

Tr(MmnW(t)) ≤ Lmax
mn (5.22)

Where (43), after applying the Schur’s complement becomes

am0(t) = cm0 + cm1 P
g
m(t)− am(t), am1(t) =

√
cm2 P

k
m(t) (5.23)
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The equation above is for the primal formulation, the dual formulation is thus

s.t Z(t) (5.24) 1 r1m(t)

r1m(t) r2m(t)

 (5.25)

[
λPm(t) λPm(t)

]
(5.26)[

λQm(t) λQm(t)

]
(5.27)[

αm(t)

]
(5.28)[

βm(t)

]
(5.29)[

λVm(t)

]
(5.30)[

λVm(t)

]
(5.31) Tr(MmW(t))

Tr(MmW(t))

 ≤ Smax
mn (5.32)

[
µmn(t)

]
(5.33)

The auxiliary variables used in the equations are based on lavei and low as well as repre-

senting em as the k-th basis vector.
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Ym = eme
T
mY (5.34)

Ymn = (ȳmn + ymn)ele
T
l − (ymn)ele

T
mn (5.35)

Ym =
1

2

 Re(Ym + Y T
m ) Im(Y

T
m − Ym)

Im(Ym − Y T
m ) Re(Ym + Y T

m )

 (5.36)

Ymn =
1

2

 Re(Ymn + Y T
mn) Im(Y

T
mn − Ymn)

Im(Ymn − Y T
mn) Re(Ymn + Y T

mn)

 (5.37)

Ȳmn =
−1

2

 Im(Ymn + Y T
mn) Re(Y

T
mn − Ymn)

Re(Ymn − Y T
mn) Im(Ymn + Y T

mn)

 (5.38)

Ȳm =
−1

2

 Im(Ym + Y T
m ) Re(Ym − Y T

m )

Re(Y
T
m − Ym) Im(Ym + Y T

m )

 (5.39)

Mmn =

 (em − en)(em − en)
T 0

0 (em − en)(em − en)
T

 (5.40)

Mm =

 eme
T
m 0

0 eme
T
m

 (5.41)

5.2.2 Distribution Network MPOPF

Similarly, as the transmission network for any given distribution network graph G Let us

assume that G = (N, E) for a radial distribution network such that N denotes the set of all

vertices and E is the set of all branches. The network model comprises the branch variables

such as branch current, branch active, and reactive power flow. Let, Vi is the voltage of

node i, Sij and Iij is the complex power and current flown through branch i â j, In this case,

the SDP approach used for solving the OPF of the distribution network makes use of the

branch flow method (BFM) [141]. the one-line representation is as shown in Fig. 5.3.

Figure 5.3: Distribution network- One line
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Algorithm 7: Optimization steps in the TN
1 -
2 Determine the total number of buses nb and branches nbr in the network
3 Obtain the input data for from bus (fb) and to bus (tb),fb,tb ∈ N
4 Identify the network devices (generators, transformers, boundary bus)
5 Initialize the sdpvar variables (Vm,Sg

m)
6 Develop the Ybus matrix of the network and obtain the auxiliary variables.
7 for x = 1 : nb do
8 if if x is a bus, then
9 Formulate the bus constraint using the equation 9&10.

10 else
11 if if branch x is a voltage regulator, then
12 Formulate the branch constraint using the equation 23
13 end
14 end
15 end
16 Solve the OPF using BIM SDP technique.
17 for x = 1 : nbr do
18 if if rank = 1 , then
19 W is positive semi-definite.
20 else
21 if if rank > 1, then
22 W is not a positive semi-definite.
23 end
24 end
25 end

The current equation for the branch flow model and the complex power flowing across the

branch are shown in the equation below respectively.

Vi − V j = zijIij (5.42)

Sij = ViI
∗
ij (5.43)

Distribution system modeling can have a different number of phases depending on the nodes,

node i below has three-phase lines while node j has two-phase lines.

Vi = [V a
i , V

b
i , V

c
i ]

T (5.44)

Vj = [V a
j , V

b
j ]

T (5.45)

If the equation for current and complex power flow is combined together, it will lead to the

second-order decision variables which are represented as ui = ViVH
i , li = IijIHij which is

the squared magnitude of voltage and current respectively.

The objective function is written below as equ(23)

Minimize
∑

real(zijlij(t)) (5.46)
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Algorithm 8: Optimization steps in the DN
1 -
2 Determine the total number of buses nb and branches nbr in the network
3 Obtain the input data for from bus (fb) and to bus (tb),fb,tb ∈ N
4 Identify the network devices (generators, regulators, transformers,DERs)
5 Determine the total number of phases in each branch and buses in the network
6 Develop the Ybus matrix of the network.
7 Initialize all the sdpvar variables (lij,ui,Sij)
8 for x = 1 : nbr do
9 if if branch x is a line, then

10 Formulate the branch constraint using the equation 23.
11 else
12 if if branch x is a voltage regulator, then
13 Formulate the branch constraint using the equation 23
14 end
15 end
16 end
17 for x = 1 : nb do
18 Formulate the bus constraint using the equation 23
19 formulate other boundary constraints
20 end
21 Solve the OPF using SDP BFM model.
22 for x = 1 : nbr do
23 if if equation 27 is satisfied, then
24 The solution is local optimum.
25 else
26 if if equation 28 is satisfied, then
27 global optimum is the solution.
28 end
29 end
30 end

All the constraints are then written as below

∑
diag(Sij(t) − zijlij(t)) + sj(t) + yjuj(t) =

∑
diag(Sjk(t))

ϕj (5.47)

uj(t) = u
ϕij

i(t) − (Sij(t)z
H
ij + SH

ij(t)zij) + zijlij(t)z
H
ij (5.48)

ui(t) ≤ diag(ui(t)) ≤ ui(t) (5.49)

u0 = V ref
0 (V ref

0 )H (5.50) ui(t)
θij Sij

SH
ij lij

 ≥ 0 (5.51)

PSD is set to be equal to 1.

5.2.3 Case studies

We performed a snapshot analysis of the integrated system to see the impact of the lack

of adequate information sharing between both TSO and DSO, on the cost of generation and

the voltage profile of the buses in TN. The test was carried out on an integrated system

with IEEE 9 & 13 bus system, the reverse power flow led to the increase in voltage levels
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in the TN as shown in Fig. 5.6. The modifications done on the system includes; a large

solar PV system of capacity 100MVA was connected to the 13bus distribution network, the

DN load was multiplied by 18 times to increase the impact levels of its changes seen at the

transmission network.

Figure 5.4: IEEE 9bus voltage levels

The approach frequently used to mitigate against the voltage violation Section 6.2.2 in-

volves curtailment of DER, after curtailment the voltage levels were returned to normal

operating conditions but the cost of generation was affected.

Figure 5.5: Cost and irradiance levels before&after curtailing the SolarPVs

As shown in the fig. ??, the airrad = 0.5p.u is the irradiance level before the sudden change

at time tsc to birrad = 0.9p.u, the solar PV was then curtailed at tcu and the changes on the

cost of generation was observed to reduce from bCG to aCG.

5.3 Proposed Integrated optimization engine(IOE) architecture

Our architecture ensures that the grid objectives are achieved, this is made possible by

providing the TN insights into the DN at every time while accounting for the heterogeneous
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Algorithm 9: Optimization steps for IOE
1 -
2 Initialize the network data for both integrated systems required for computation.
3 Obtain the parameters tp for TN and dp for DN
4 while tol > ϵ do
5 forall t ∈ 24 do
6 forall tp ∈ TN do
7 Solve the TOPF using SDP-BIM.
8 Extract the simulation results. (Voltage and angle)
9 Check if any bus voltage in TN is violated

10 if yes, apply LDR, else
11 Use the boundary bus parameters as setpoints for the DN feeder
12 end
13 forall dp ∈ DN do
14 Solve the DOPF using SDP-BFM.
15 Extract the total demand with losses at DN
16 Update the DN load demand at PCC of the integrated network.
17 end
18 end
19 Obtain the new tolerance tol, using equation 23
20 Check for convergence.
21 end

nature of exchanged boundary variables. The generators on the TN are able to readjust them

using our technique in case of a sudden change with the DERs in the DN. Our technique

uses a linear decision rule which is a stochastic optimization method, we train the model on

the relationship between the active power of the TN generators and active power from the

Solar PV in the DN, and we then develop a linear expression of the relationship which has

a constant and variable parameter. The expression is then added as a constraint to the TN

and provides the generators on the TN insights to the DN, which eliminates the need for the

curtailment of the DG at each time. The step-by-step process of our technique is shown in

the algorithm table 11. The primary TDOPF model in [139] is modified while ensuring all

the conditions for TDOPF optimality and boundary bus power balance are satisfied as shown

in the set of equations below. We ensure that the new entity Z which is a representation

of the reverse power flow into The TN is added in the TOPF. It is important to note the

characteristic of Z as undispatchable and is a constant once the variable active power from

solarPV is generated using the principle of complete recourse stochastic optimization.

The transmission objective is written to accommodates for the new parameter Z.

min cM(UM(t), UB(t), XM(t), XB(t), ZS
DG(t)) (5.52)



100

The TOPF and DOPF objectives equation are written below

TOPF =
Tt∑
t=1

NG∑
g=1

(c2(P
g
m,t)

2 + c1(P
g
m,t) + c0(t)) (5.53)

DOPF = min
Tt∑
t=1

Re(Sij(t)− ZijI
2
ij(t)) (5.54)

In the transmission network, active power generated is a combination of power flowing in

the lines in the network Pmn, the line losses Ploss
mn , and the reverse active power PM

m,RP from

DN through the boundary bus p.

P g
m(t) =

∑
n:m−→ n

PM
mn(t) +

∑
n:m−→ n

PM
mn,loss(t) + PM

m,RP (t) (5.55)

From the distribution system slave network, the reverse power is obtained as below

SM
m,RP (t) = SS(t)− Spv(t) (5.56)

PM
m,RP (t) = Re(SM

m,RP (t)) (5.57)

SS(t) = Sload
S (t) + Slosses

S (t) (5.58)

Note that if PM
m,RP (t) > 0 then it is an active power demand and not a reverse power flow.

Initialization : S
M(0)
m,RP = S

load(0)
S (5.59)

DNfeedervoltage : uabc0 = 1.0 (5.60)

Min ∆Vpcc(t) = V pcc
m (t)− uabc0 (t) (5.61)

Solar PV using its apparent, real, and reactive power is modeled as shown in equ(6).

S2
pv(t) = P 2

pv(t) +Q2
pv(t) (5.62)

The steps for the algorithm TOPF and DOPF are discussed in the paper [170].

5.3.0.1 Linear decision rule

A linear decision rule LDR relationship was obtained by running an analysis on the in-

tegrated optimization engine with different irradiance data set. After the analysis, a rela-

tionship was established between the changing power from the SolarPVs and the response

of the generator power in the transmission system. The data sets were divided into training

and test data to validate the accuracy of the model. The relationship is then added as an
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additional constraint to the integrated optimization engine, to ensure that the output from

the generator adjusts to the reverse power flow into the TN due to changing nature of the

resources on the DN. The integrated optimization engine has an objective to minimize the

deviation errors "boundary bus mismatch" voltage.

The formulation of the Linear decision rule.

Y (t) = a+ bX(t) (5.63)

The Pg
m(t) at each time t is the active power from the generators in the TN which represents

the Y term in the LDR, X is the Ppv active power generated by the solar PVs connected at

the DN.

P g
m(t) = a+ bPpv(t) (5.64)

5.3.1 OPF Remarks

The detailed proof of the global optimality and the exactness of the SDP-OPF model in

transmission network is discussed in this section.

Pinjk = XTYkXPinjk = Tr[X
TYkX] (5.65)

Applying the trace operator multiplicity property

Pinjk = Tr[YkXX
T ] (5.66)

Introducing the W matrix

W = [XXT ] (5.67)

for equ (12) the unit operator Kth basis vector was implemented.

eke
T
k = 1 (5.68)

The W matrix can be decomposed into the following

W = [R{V }I{V }]T [R{V }I{V }]W = XXT (5.69)

This approach works for rank(W) = 1 and 2 only.
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For rank(W)=2, eigen decomposition using Molzahn approach.

Wopt = ρ1E1E
T
1 + ρ2E2E

T
2 (5.70)

Xopt =

√
ρopt1 Eopt

1 +

√
ρopt2 Eopt

2 (5.71)

Where E1 and E2 are Eigenvectors, and ρ_1, ρ_2arethefirstandsecondlargestabsoluteeigenvalueofW.

Finally, we applied Schur’s complement, which is used to transform polynomial constraints

into quadratic constraints and that the semi-definite constraints equal quadratic constraints.

Such that H ∈ Sn

H =

 X Y

Y T P

S = P − Y TX−1Y (5.72)

The Schur complement of X in H

• H > 0 if and only if X > 0 and S > 0

• X > 0 then H ≥ 0 and S ≥ 0

The apparent branch flow constraint equations (10e)


−(S̄lm)

2 Tr(Y lmW ) Tr(Ȳ lmW )

Tr(Y lmW ) − 1 0

Tr(Ȳ lmW ) 0 − 1

 ≤ 0 (5.73)

Applying the multiplicity trace operator

Tr(Y lmW ) = (−1)Tr(Y lmW ) (5.74)


S̄l2m Tr(Y lmW ) Tr(Ȳ lmW )

Tr(Y lmW ) 1 0

Tr(Ȳ lmW ) 0 1

 ≥ 0 (5.75)

Comparing this with equation (50)

 1− Tr(Y lmW )2

Sl2m

Tr(Ȳ lmW )Tr(Y lmW )
Sl2m

Tr(Ȳ lmW )Tr(Y lmW )
Sl2m

1− Tr(Y lmW )2

Sl2m

 ≥ 0 (5.76)

S̄l2m − Tr{Y lmW 2} − Tr{Y lmW 2} ≥ 0 (5.77)

5.3.2 LDR Theorem Proof

In this section, the proof of the LDR- model is discussed and the theorem is proof is shown:
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A stochastic model can be formulated as below:

min c′x+ E(Q(x, z̄))

s.t. Ax = b

x ≥ 0

(5.78)

with the x as vectors and other bold lower case, x̃ as a random variable, bold upper case

such as A are the matrices.

where,

Q(x, z) = min f ′w

s.t. T(z)x+Ww = h(z),

wi ≥ 0, ∀i ∈ I ⊆ {1, ....n2}

(5.79)

Additionally, c, f and b are known vectors in ℜn1 , ℜn2 and ℜm1 , T(z̃), h(z̃) are assumptions

for affine data dependency.

T(z̄) = T0 +
N∑

k=1

Tkz̃k, h(z̃) = h0 +
N∑

k=1

hkz̃k (5.80)

ZSTOC = min c′x+ E(f ′w, (z̄))

s.t. Ax = b,

wi(z̃) ≥ 0, ∀i ∈ I,

x ≥ 0

w(z̃) ∈ Y

(5.81)

Translating into LDR

w(z̄) = w0 +
N∑
k=1

wkz̄k (5.82)
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The stochastic model approximation is then written in the LDR

ZLDR = min c′x+ f ′w0

s.t. Ax = b,

Tkx+Wwk = hk ∀k ∈ {0, ....N},

wi(z) ≥ 0 ∀z ∈ W,∀i ∈ I,

x ≥ 0,

w(.) ∈ L

(5.83)

wi(z) ≥ 0 ∀Z ∈ W

w0
i ≥

N∑
j=1

(zjsj + z̃jtj)
(5.84)

If the solution at equation(62) is feasible, then it will be in equation(60), ZSTOC ≤ ZLDR

, with W = [-z, z̃]. for some s,t ≥ 0 satisfying sj-tj = wj
i . Relating the above variables and

uncertainties to our integrated T&D model, the variable w is the PPG, the variable x is the

Pk,RP , while the uncertainty Z̃ is the PPV

5.4 Discussion and Performance evaluation

OOur multiperiod implementation was tested on two different networks, and for a 24hr day

interval, the same daily load profile and irradiance profile was used for each of the integrated

networks, this is as shown in the Fig. 5.6

Figure 5.6: irradiance and Load demand profiles for 24hr

5.4.1 Test system IEEE 9 and IEEE 13

We evaluated our technique first on the integrated IEEE 9 & 13 bus system, the system

architecture is as shown in Fig. 5.7, with the boundary bus as bus 4. Static OPF analysis
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was performed to benched-mark the SDP BIM model with MATPOWER OPF simulation

results. The system was modified to enable the changes in the DN to have a significant

impact on the TN. A modification was performed on the DN such that 20 times the base

load value was connected to the TN, table5.1 shows the linear decision rule relationship after

training with over 1000 data sets. The base case simulation with no solarPV connected TN

voltages is shown in Fig. 5.8, After the connection the generation cost, boundary voltage

error, and the voltage profiles were observed as shown Fig. 5.10, Fig. 5.9 and Fig. 5.11

respectively.

Figure 5.7: Integrated T&D model for IEEE 9bus and IEEE 13bus

Figure 5.8: 24hr TN bus voltage profiles with no solar PVs connected

The solarPVs were connected to the DN and several simulations were performed on the

integrated network, to establish the LDR relationship between the uncertain variables in the

network.
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Figure 5.9: Total demand in TN and Total Solar active power

Figure 5.10: Generation cost comparison with and without curtailment

TABLE 5.1: Boundary Bus mismatch voltage deviation

Parameter Scenario 1 Scenario 2 Scenario 3
Operating hour (hr) 12 13 14
Reverse Power
Flow (MW) 43.16 23.48 13.34
Voltage at PCC
with LDR(p.u) 1.039 1.038 1.048
Voltage at PCC
without LDR(p.u) 1.065 1.060 1.052

5.4.2 Test system IEEE 57 and IEEE 34

Our second test system was integrated IEEE 57 & 34 bus system, the system architecture is

as shown in Fig. 5.12with the boundary bus is bus 22, Our static OPF analysis was performed

as well to benched-mark the SDP BIM model with MATPOWER OPF simulation results.

The system was modified to enable the changes in the DN have a significant impact on the

TN. A similar modification on the DN as in the previous case was performed such that 20

times the base load value was obtained was connected to the TN. The Linear decision rule
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Figure 5.11: Boundary bus mismatch reduction with LDR

parameters were obtained and the constants are shown in the table 5.2. The analysis after

integration of the PVs, with respect to generation cost is as shown in Fig. 5.13 and the

minimization of boundary voltages mismatch in Fig. 5.14.

]

Figure 5.12: Integrated T&D model for IEEE 57bus and IEEE 34bus

]

Figure 5.13: Generation cost comparison with and without curtailment

5.4.3 Test system IEEE 118 and IEEE 123

Finally, we evaluated the capabilities of our technique on a larger integrated network

which is integrated IEEE 118 & 123 bus system, the system architecture is as shown in Fig.
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TABLE 5.2: Boundary Bus mismatch voltage deviation

Parameter Scenario 1 Scenario 2 Scenario 3
Operating hour (hr) 12 13 14
Reverse Power
Flow (MW) 21.03 9.73 4.41
Voltage at PCC
with LDR(p.u) 1.021 1.016 1.040
Voltage at PCC
without LDR(p.u) 1.060 1.055 1.052

Figure 5.14: Boundary bus mismatch reduction with LDR

5.15with the boundary bus is bus 37, Our static OPF analysis was performed as well to

benched-mark the SDP BIM model with MATPOWER OPF simulation results. The system

was modified to enable the changes in the DN to have a significant impact on the TN. A

similar modification on the DN as in the previous case was performed such that 20 times the

base load value was obtained was connected to the TN. The Linear decision rule parameters

were obtained and the constants are shown in the table 5.3. The analysis after integration

of the PVs, with respect to generation cost is as shown in Fig. 5.17 and the minimization of

boundary voltages mismatch in Fig. 5.18.

]

Figure 5.15: Integrated T&D model for IEEE 118bus and IEEE 123bus

5.5 Summary

The versatility of our stochastic linear optimization using the Linear decision rule frame-

work to handle the intermittent nature of renewable energy resources capable of affecting
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]

Figure 5.16: Generation cost comparison with and without curtailment

]

Figure 5.17: TN Generation power comparison with and without curtailment

TABLE 5.3: Boundary Bus mismatch voltage deviation

Parameter Scenario 1 Scenario 2 Scenario 3
Operating hour (hr) 12 13 14
Reverse Power
Flow (MW) 21.03 9.73 4.41
Voltage at PCC
with LDR(p.u) 1.021 1.016 1.040
Voltage at PCC
without LDR(p.u) 1.060 1.055 1.052

grid quality metrics due to their penetration level at any time was further demonstrated. Our

LDR technique ensures that the grid objective for each of the coupled networks is achieved

while fully utilizing the offerings of the RERs. Furthermore, it ensures that the TSO now has

insights into the operations of the DSO. Allowing more reverse power flow to the transmission

network reduces the cost of generation and the proposed approach also shows improvement

in the reduction of boundary mismatch errors, by ensuring that the power generated at each

interval by the generators in TN adapts to the power generated by the solarPvs with the
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Figure 5.18: Boundary bus mismatch reduction with LDR

linear constraint. Our work will be expanded by adding more uncertainties from other DERs

to the integrated grid



CHAPTER 6: TIME REECEDING OPTIMIZATION OF GRID-CONNECTED RERS

WITH MULTIPLE UNCERTAINTIES(PVS & ELECTRIC VEHICLES)

Several renewable energy resources are connected to the grid at different intervals, and

most of these resources are stochastic in their operations, Electric vehicle is one of the

resources that is gaining a lot of traction in the global transportation scene. Plug-in-Electric

Vehicles (PEVs) are capable of impacting the grid and a lot of advancements have occurred

with electric vehicles such as the Vehicle to grid(V2G), Vehicle to home (V2H) to offer other

benefits to utilities for services such as peak shaving, frequency regulations. The impacts of

electric vehicle charging need to be studied on networks, and in a large combined manner on

the transmission network. Electric vehicles are capable of causing peak-to-peak phenomena

or pressure on the grid, during coincidence charging which can have significant impacts on

the power grid.

6.1 Management and Coordination of Multiple Grid-Connected Renewable Energy

Resources

In this section, a methodology that coordinates the charging of electric vehicles and uses

a stochastic optimization framework to manage uncertainties with EV users and other re-

newable energy resources is developed. The new technique is an extension of our linear

optimization work in the previous chapter and an addition of a new variable (new uncer-

tainty), this proof is also shown and discussed in the chapter.

6.1.1 Introduction

The grid now has several resources interacting together with several controls and man-

agement techniques. Renewable energy resources (RERs) are one of those new technologies

gaining a lot of increasing penetration and traction in the grid. These new technologies

are been implemented at generation, transmission, distribution, and even consumption. The

technological advancement though offers numerous benefits ranging from sustainability, cost,

and environmental benefits.The new technologies coupled with the existing traditional grid

are commonly referred to as Smart Grid. Smart Grid comprises distributed energy resources

(DERs) which are rapidly increasing in penetration with the existing grid and have led to

distributed generation. In [171] studied how the operations EVs can be effectively integrated

and how they can play a crucial role in reducing other system impacts and become great

resources for smart grid infrastructure. One common phenomenon about these renewable

energy resources is their uncertainty or sudden change which can be due to their sources or



112

the unpredictable nature of humans who have direct control over them and whose decision-

making process cannot be accurately forecasted into models or planning by the utilities. The

challenges of this occurrence are lately known to have significant effects on the grid, owing

to their penetration levels.

Utilitiesâ major goal is to operate the grid in a smooth and reliable manner while meet-

ing the demands of their consumers. However, increasing RERs adoption will influence the

demand profile for each distribution network [172–174], posing challenges to its robust op-

eration and infrastructural integrity. For instance, with electric vehicles (EVs) intermittent

charging patterns induced by the stochastic operations of several EV users will create load

variations and imbalances in the grid components or if several EVs recharge their batteries at

the same time, the power grid load impact induced by EV charging scenarios could be outside

safe boundaries. Considering these stochastic charging events, the consumption pattern of

EV users will have an impact on the energy requirements from the grid causing disruptions,

especially with a large number of fleets. In [175] studies were carried out on the infras-

tructure impact of EV, including system modeling, power flow studies, and demonstration

activities utilizing the USC Distribution System as a test system. Since EVs are considered

as distributed energy resources this type of mobile energy demand is highly influenced by

several factors. These include EV battery State of Charge (SOC), battery type and capac-

ity, charging duration with charge preferences, etc. EVs can be recharged at home or any

public charging station with low operational cost given market incentives and regulations.

Residential EV charging demand is fairly predictable in nature as the average userâs driving

pattern could be identified on a regular basis. However, public EV re-charging scenarios are

stochastic and difficult to predict because they are influenced by EV user decisions. Driver

behavior is a key factor that determines the energy usage of an EV which is elemental on

weather conditions, traffic density, acceleration rate, and maintaining a minimum safe dis-

tance between following vehicles. Aside from charging, EV can also supply electricity back

to the grid in what we refer to as V2G. V2G is the most promising opportunity to adopt

EVs in power systems because of its specific features of feeding energy back to the electric

power grid It increases the reliability of power systems and lowers system costs. [176,177]

Some work has been done to manage the charging of EVs, in [178] an on optimal charging

strategy using particle swam optimization(PSO), this focuses more on predicting the charging

patterns of EV users, not how to address the uncertainty in charging which is still inherent

in EV operations.[179], considered a coordinated charging operation with the status of the

charging stations can either be 0 or 1, this is not effective as prevents electric vehicle users

from being unsatisfied especially if they need to charge their vehicles urgently. Some of

these techniques to coordinate the charging of electric vehicles are complex when there are
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to multi-extreme variables or constraints to consider. [180–182]

Determining the Spatial-Temporal Model (STM) of EV charging load across the LV net-

work is critical in the optimal operational efficiency of the entire distribution network. The

challenges of large-scale EV integration in the power grid are manifold. First, due to un-

controlled charging schemes adopted by EV users, the power load might increase during

peak hours. This can be a source of possible grid failures due to voltage instability, power

losses etc. Second, due to the power capacity constraints, the charging stations might not be

able to fulfill all EV recharge requests when several EVs recharge at the same time. These

interactions between TN and DN pose a complex challenge to the real-time operation and

dependencies between the two systems with a higher level of EV penetration, Including the

charging load impact of EVs in DN within the mathematical modeling of TN, through co-

ordinated control of coupled networks could improve the operational integrity of the overall

system.

Unplanned peak demand issues account for most of the outage issues experienced at the

distribution network and since most of these RERs operate as behind-the-meter devices, vis-

ibility is important to balance the economic advantages with utility reliability. The economic

and sustainability benefits of renewable energy resources are currently been utilized largely

by utilities so several strategies are used to ensure an efficient operation of the modern grid.

Some legacy devices such as voltage regulators, capacitor banks, smart inverters, and smart

switches are currently been used to address the challenges of operating a grid connected with

different RERs. Another is the curtailment of RERs during such scenarios when they are

posing challenges on the interconnected grid which is typically known as islanding.

Wang et al. in [183] optimized the level of electric vehicle charging station directly, and

the coordinated scheduling of wind power and electric vehicle charging is studied in this

chapter, however, the established model only constrains the node voltage and transmission

power, no constraint considering charging time or charging capacity. Other studies have in-

vestigated the effects of large-scale EV integration on power systems. Studies have been done

Integrated simulation-based approach to model road traffic and EV battery charging using

Multi-agent systems. However, more emphasis has been made on EV agentâs characteristics

and behavioral modeling rather than the interrelation between TN and DN. Details of dis-

tributed charging station services are not included in the electricity grid. We try to bridge

the research gap by considering several aspects of stochastic EV agent behavioral profiles

and coupling TN with DN. Moreover, for calculating the cost function of travel time based

on traffic flow in transportation network modeling, the current state-of-the-art research in

optimal operation of interdependent transportation-power network systems is based on a

graph network approach where nodes and edges are represented as the interlinking elements.
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The functional characteristic metrics of both TN and PDN are measured by considering

methods of network analysis.

Utilities make use of either power flow or optimal power flow (for specific objectives)

simulations to keep the grid operating in an efficient manner, to improve the performance

of an integrated network that has heterogenous boundary elements visibility is important.

This chapter is a further extension of our work [170] where we considered only one RERs,

we have extended our work to handle multiple resources and demonstrated the benefits of

ensuring that the generators on the transmission network have insights into the real-time

solar PV power output and charging dispatch for the charging stations.

6.1.2 Main Contributions

The main advantages the technique developed in this section include

• Coordination of Electric vehicle charging in the grid.

• Minimization of generation cost due to increased demand by multiple RERs.

• Co-simulation of transmission and distribution network and ensuring no violation of

grid power quality metrics.

The main contribution of this section includes the following:

• A technique that selects the optimal dispatch control for charging stations.

• Minimization of voltage boundary errors in an integrated T&D model.

• Management of the stochastic nature of several grid-connected renewable energy re-

sources in an integrated T&D network.
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6.1.3 Previous and Current Model Challenges

Presently, most utilities perform coordination of the transmission network and distribution

network separately, in some of our previous work we have established a simulation technique

that offers the capabilities to co-simulate both networks and ensure adequate sharing of

information. in [138,139] we considered a steady state simulation analysis, while in [138,139],

the simulation was performed in a multiplied framework. Most of this previous work isn’t

capable of accommodating multiple renewable energy resources that are stochastic in nature,

especially with the introduction of electric vehicles. Additional utilities are looking for active

ways to control the charging of electric vehicles to manage their stochastic load demand and

reduce the operation cost incurred by utilities to meet the growing demand for electricity,

as well as reduce the strain on the grid. Here is a structure of what the grid now looks like

with many renewable energy resources interplaying[138,139] as shown in Fig. 6.1.

Figure 6.1: Grid integration of Electric Vehicles with RERs

6.1.3.1 Case study Architecture

The architecture comprises of agents; which can either be the EV agent which collects the

information of the EV like the battery size and state of charge SOC, also the scheduling agents

which determine the decision of integrated T&D optimal power flow, lastly the charging agent

which determines the flow of energy when charging.

The load curve is based on INL electric vehicle charging curve for a residential consumer,

which provided us with the peak charging time of most electric vehicle users in a 24-hour

period.

First, we determine the aggregate charging bus in the distribution network and apply the

constraint shown in the equation below.
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Figure 6.2: Proposed Architecture with Agents

Figure 6.3: INL Electric Vehicle residential daily load curve

∀ t = {1, ....24}, Pagg(t) ≤ min

k∑
n=1

Pcn (6.1)

Pagg(t) = min

ev∑
t=1

Pev(t) (6.2)

6.1.4 LDR technique with multiple RERs

A stochastic linear optimization technique that allows the transmission network assets to

adjust itself to the operations of the distribution network was developed. Our formulation is

based on a two-stage complete recourse model, for the purpose of this work two renewable

energy resources (solarPV and electric vehicles) are considered.

The objectives of each network are written below and the proof is detailed in the appendix,

the TN has the objective of minimizing the cost of generation while the DN is to minimize

the losses in the system.
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Algorithm 10: Optimization steps for IOE
1 -
2 Initialize the data for all the devices in the integrated network.
3 Determine the EVs aggregate bus in the distribution network.
4 Obtain the parameters tp for TN and dp for DN
5 while tol > ϵ do
6 forall t ∈ 24 do
7 forall tp ∈ TN do
8 Solve the TOPF using SDP-BIM.
9 Extract the simulation results. (Voltage and angle)

10 Check if any bus voltage in TN is violated
11 if yes, apply LDR, else
12 Use the boundary bus parameters as setpoints for the DN feeder
13 end
14 forall dp ∈ DN do
15 Solve the DOPF using SDP-BFM.
16 Extract the total demand with losses at DN
17 Update the DN load demand at PCC of the integrated network.
18 end
19 end
20 Obtain the new tolerance tol
21 Check for convergence.
22 end

TOPF = min
Tt∑
t=1

NG∑
g=1

(f(P g
m,t)) (6.3)

where, f(P g
m,t) = c2(P

g
m,t)

2 + c1(P
g
m,t) + c0(t) (6.4)

DOPF = min

Tt∑
t=1

Re(Sij(t)− ZijI
2
ij(t)) (6.5)

In the transmission network, active power generated is a combination of power flowing in

the lines in the network Pmn, the line losses Ploss
mn , and the power PM

m,RP from TN to DN

through the boundary bus.

P g
m(t) =

∑
n:m−→ n

PM
mn(t) +

∑
n:m−→ n

PM
mn,loss(t) + PM

m,RP (t) (6.6)

From the distribution system slave network, the reverse power is obtained as below

SM
m,RP (t) = SS(t) + Sagg(t)− Spv(t) (6.7)

PM
m,RP (t) = Re(SM

m,RP (t)) (6.8)

SS(t) = Sload
S (t) + Slosses

S (t) (6.9)

Note that if PM
m,RP (t) > 0 then it is an active power demand and not a reverse power flow.
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Initialization : S
M(0)
m,RP = S

load(0)
S (6.10)

DNfeedervoltage : uabc0 = 1.0 (6.11)

Min ∆Vpcc(t) = V pcc
m (t)− uabc0 (t) (6.12)

Solar PV using its apparent, real, and reactive power is modeled as shown in equ(6).

S2
pv(t) = P 2

pv(t) +Q2
pv(t) (6.13)

A linear decision rule (LDR) technique is one of the frameworks for stochastic optimization,

this is a set of rules obtained after performing several analysis of the RERs in an integrated

OPF, and a multilinear regression model (MLR) is then developed based on the sample

results to obtain the relationship below.

Y = a+ bX +mC (6.14)

In (6.14, Y represents transmission network generators’ active power for a specific bus k

Pg
k, and X is the Ppv active power generated by the solar PVs, while Pagg is the charging

capacity demand by all the electric vehicles. The representation to accommodate several

generators and several RERs can therefore be written as the equation below. For this study,

our RERs used are solar PV and electric vehicles, the uncertainty with these resources can

either be with the sources of the resources or individual customer action. k is the bus the

generator is connected to in the TN,i is the bus the solar PV is connected to in the DN,

while i is the bus in which the charging station aggregator is connected. Furthermore, a, b

and m are constants in the equation deduced after several sampling. Thus,

P g
k = a+ bPi,pv +mPj,agg (6.15)

6.1.5 Results and Discussion

An analysis was performed on two different integrated networks with, and for a 24hr

day interval, the load profile as shown below was implemented, irradiance profile, and EV

charging curve were used for each of the integrated networks.

6.1.6 Test system IEEE 9 and IEEE 13

The LDR technique with multiple resources was evaluated first on the integrated IEEE 9

& 13 bus system, the system architecture is as shown in Fig. 6.5, with the boundary bus

on the TN as bus 4. The integrated system was modified to enable the changes in the DN
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Figure 6.4: irradiance and Load demand profiles for 24hr

to have a significant impact on the TN. A modification was performed on the DN such that

20 times the base load value was connected to the TN. The base case simulation was done

with no solarPV and electric vehicles connected to the integrated network and the power

generated is shown in Fig. 6.8, After the connection the generation cost, total demand, and

boundary voltage error were observed as shown Fig. 6.9, Fig. 6.10 and Fig. 6.13 respectively.

Figure 6.5: Integrated IEEE 9bus and IEEE 13bus T&D model

First, we needed to validate our formulation with the conventional NLP OPF for each

network using our formulation, by performing static OPF analysis was performed to benched-

mark the SDP BIM model with MATPOWER OPF NLP simulation results.

Fig. 6.6 illustrate the comparison between the TN part of the proposed integrated SILP
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Figure 6.6: Voltage profile for IEEE 9 bus TN compared to the state-of-the-art

model and a stand alone conventional NLP model. It can be seen the voltage profile almost

matches with the conventional NLP which shows the exactness of the SILP.

Figure 6.7: Voltage profile for IEEE 13 bus DN compared to the state-of-the-art

Similarly, Fig. 6.7 illustrate the comparison between the DN part of the proposed inte-

grated SILP model and a stand alone conventional NLP model. It can be seen the voltage

profile almost matches with the conventional NLP which shows the exactness of the SILP

showing the exactness.

The solarPVs were connected to the DN to the bus 633, while the electric vehicle aggre-

gator was connected to bus 684 on the DN, and several simulations were performed on the

integrated network, to establish the LDR relationship between the uncertain variables in the

network as seen in table6.1 shows the linear decision rule relationship after training with

over 1000 data sets.

Finally, we observed the sudden change in the behavior of charging an electric vehicle and

its impact on the grid, the changes in the behavior of charging occurred when the Solar PVS

was operating at its optimum capacity leading to a higher reverse power flow. The LDR
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Figure 6.8: 24hr TN bus power demand with no DERs connected

TABLE 6.1: LDR relationship between the TN generator, Solar PVs, and EV charging aggregator

Generator Bus No a b m
1 1 109.53 -0.117 0.023
2 2 155.67 -0.131 0.065
3 3 109.12 -0.091 0.042

Figure 6.9: Generation cost comparison with and without RERs connection

technique was able to provide the generators with insights into the charging operations and

output capacity which led to the reduction in boundary bus mismatch.

6.1.7 Test system IEEE 57 and IEEE 34

We extended the LDR technique with multiple resources to another integrated network

IEEE 57 & 34 bus system, the system architecture is as shown in Fig. 6.14, with the boundary

bus on the TN as bus 22. The integrated system was modified to enable the changes in the

DN to have a significant impact on the TN. Similarly, a modification was performed on

the DN such that 20 times the base load value was connected to the TN as well as a base

case simulation with no solarPV and electric vehicles connected to the integrated network,
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Figure 6.10: Total generation in TN with and without RERs connection

Figure 6.11: EV charging profiles expected and sudden

Figure 6.12: Total demand in TN before and after sudden operations

the power generated is shown in Fig. 6.17, After the connection the generation cost, power

generation, and boundary voltage error were observed as shown Fig. 6.18, Fig. 6.19 and Fig.

6.22 respectively.
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Figure 6.13: Boundary bus mismatch reduction with LDR

Figure 6.14: Integrated IEEE 57bus and IEEE 34bus T&D model with the interconnection of
solarPV and Electric vehicle aggregator

Fig. 6.15 illustrate the comparison between the TN part of the proposed integrated SILP

model and a stand alone conventional NLP model. It can be seen the voltage profile almost

matches with the conventional NLP which shows the exactness of the SILP.

Similarly, Fig. 6.16 illustrates the comparison between the DN part of the proposed

integrated SILP model and a stand-alone conventional NLP model. It can be seen the

voltage profile almost matches with the conventional NLP which shows the exactness of the

SILP showing the exactness.

The solarPVs were connected to the DN to the bus 828, while the electric vehicle aggregator

was connected to bus 816 on the DN, and likewise, several simulations were performed on

the integrated network, to establish the LDR relationship between the uncertain variables

in the network as seen in table6.2 shows the linear decision rule relationship after training
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Figure 6.15: Voltage profile for IEEE 57 bus TN compared to the state-of-the-art

Figure 6.16: Voltage profile for IEEE 34 bus DN compared to the state-of-the-art

Figure 6.17: 24hr TN bus power demand with no DERs connected

with over 1000 data sets

Finally, we observed the sudden change in the behavior of charging an electric vehicle and

its impact on the grid, the changes in the behavior of charging occurred when the Solar PVS
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TABLE 6.2: LDR relationship between the TN generator, Solar PVs and EV charging aggregator

Generator Bus No a b m
1 1 106.312 -0.561 -0.261
2 2 99.989 -0.296 -0.096
3 3 56.895 -0.280 -0.115
4 6 65.476 0.168 0.09
5 8 410.465 1.164 0.571
6 9 100.021 -0.069 -0.003
7 12 420.504 -5.794 -1.005

Figure 6.18: Generation cost comparison with and without RERs connection

Figure 6.19: Total generation in TN with and without RERs connection

was operating at its optimum capacity leading to a higher reverse power flow. The LDR

technique was able to provide the generators with insights into the charging operations and

output capacity which led to the reduction in boundary bus mismatch.

6.2 Management of Electric Vehicle Charging Impact on an Integrated Transmission and

Distribution Grid

Electric Vehicle is one of the major players in the decarbonization of the grid and tackling

climate change calls for the transformation of public transport into a smart electric trans-
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Figure 6.20: Total demand in TN before and after sudden operations

Figure 6.21: EV charging profiles expected and sudden

Figure 6.22: Boundary bus mismatch reduction with LDR

portation network, EVs use electrical energy to recharge their batteries instead of burning

fossil fuels. Battery technology has grown significantly[177, 184, 185] which has led to the

increased adoption of Electric vehicles (EVs) as one of its main applications. A larger EV
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penetration will require the installation of more charging stations deployed strategically to

meet the demands of EV movement and charging behavior without depleting the EV battery

entirely. Also, when several EVs recharge their batteries at the same time, the power grid

load impact induced by EV charging scenarios could be outside safe boundaries. Presently,

the lack of EV charging station infrastructure is a roadblock to successful EV adoption. In

the future, this might not be the case as more EVs are deployed and integrated into the

smart grid. Thus, it becomes increasingly necessary to investigate and quantify the load

impact by combining mobility needs with the power system infrastructure. Grid operation

solutions known as optimal power solutions, therefore need to consider electric vehicles in

their models as one of the critical issues in power operation. EVs can contribute economi-

cally and enhance the security of the power grid due to their flexibility owing to their energy

storage or charging controls, where they can be used to fill load valleys or for intermittent

generation[186–188]. However, since electric vehicles operate as behind-the-meter devices,

visibility is important to balance the economic advantages with electric system reliability.

Utilitiesâ major goal is to operate the grid in a smooth and reliable manner while meeting

the demands of their consumers. However, increasing EV adoption will add a significant

load to the demand profile for each distribution network, posing challenges to its robust op-

eration and infrastructural integrity. The various influencing factors that could impact the

EV charging load have paramount importance in modeling grid stability[189]. Intermittent

charging patterns induced by the stochastic operations of several EV users will create load

variations and imbalances in the grid metrics [190]. Since EVs are considered as distributed

energy resources this type of mobile energy demand is highly influenced by several factors.

These include EV battery State of Charge (SOC), battery type and capacity, charging du-

ration with charge preferences, etc. EVs can be recharged at home or any public charging

station with low operational cost given market incentives and regulations. Residential EV

charging demand is fairly predictable in nature as the average userâs driving pattern could

be identified on a regular basis. However, public EV re-charging scenarios are stochastic and

difficult to predict because they are influenced by EV user decisions. Driver behavior is a key

factor that determines the energy usage of an EV which is elemental on weather conditions,

traffic density, acceleration rate, and maintaining a minimum safe distance between following

vehicles. When several EVs charge simultaneously, there might be severe consequences on

the power grid as a huge load is drawn from fast charging stations. The likelihood of rapid

EV adoption and the potential shift to an electric transportation system is a major concern

for power systems. Mitigating the peak demand through optimized charging strategies is a

key solution to not overload the power grid. The impact on the distribution systems accounts

for 90% of outages and with the introduction of EV charging load, it will likely increase the
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energy impact hence posing a challenge to the stability of the grid. [191], [192]. Determining

the Spatial-Temporal Model (STM) of EV charging load across the LV network is critical

for the optimal operational efficiency of the entire distribution network. The challenges of

large-scale EV integration in the power grid are manifold. First, due to uncontrolled charg-

ing schemes adopted by EV users, the power load might increase during peak hours. This

can be a source of possible grid failures due to voltage instability, power losses etc. Second,

due to the power capacity constraints, the charging stations might not be able to fulfill all

EV recharge requests when several EVs recharge at the same time. These interactions be-

tween TN and DN pose a complex challenge to the real-time operation and dependencies

between the two systems with a higher level of EV penetration, Including the charging load

impact of EVs in DN within the mathematical modeling of TN, through coordinated control

of coupled networks could improve the operational integrity of the overall system. Thus,

coupled systems play an important role in the smart grid ecosystem energy market. Several

authors have investigated the effects of large-scale EV integration on power systems. Some

studies have been performed on the impacts of electric vehicles on the distribution grid in

[190] demonstrated its impact on the secondary voltage of feeders with short circuit capacity.

Studies have been done Integrated simulation-based approach to model road traffic and EV

battery charging using Multi-agent systems. However, more emphasis has been made on

EV agentâs characteristics and behavioral modeling rather than the interrelation between

TN and DN. Details of distributed charging station services are not included in the elec-

tricity grid. We try to bridge the research gap by considering several aspects of stochastic

EV agent behavioral profiles and coupling TN with DN. Moreover, for calculating the cost

function of travel time based on traffic flow in transportation network modeling, the current

state-of-the-art research in optimal operation of interdependent transportation-power net-

work systems is based on a graph network approach where nodes and edges are represented

as the interlinking elements. The functional characteristic metrics of both TN and PDN are

measured by considering methods of network analysis. We have combined the optimal power

flow solution and an optimization framework to control the charging of EVs, by providing

set points through an aggregate controller which is the charging station, and performed a

comparative analysis on active and passive controls.

6.2.1 Main Contributions

The technique developed in this section has the following advantages

• Ensures that the energy demand required for electric vehicle charging is met daily.

• Reduces the likelihood of stress on the grid caused by electric vehicles.

• Co-simulation of transmission and distribution network and ensuring no violation of
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grid power quality metrics.

The technique main contributions are thus:

• A technique that coordinates the electric charging optimally, to ensure that each electric

vehicle load demand is met daily.

• An optimal setpoint control (Passive/ Active) technique for charging stations that

allows utilities to participate in coordinating the operations of electric vehicle charging

and can assist with integrated resource planning.

• Management of the stochastic nature of EVs charging in an integrated T&D network,

our technique ensures that EV’s sudden charging behaviors are well managed.

6.2.2 Current Approach

Utilities have the responsibility to ensure that demand is met at all times, bearing in

mind the security and stability of the grid. Demand response techniques using customer-

side resources have been one of the measures utilities are using to meet the growing demand

rather than build new power generation plants or run expensive generators. Since electric

vehicles are connected to the distribution network, it is important to develop an integrated

T&D model to study its impacts on both transmission and distribution network resources.

In the previous chapters, we discussed extensively integrated T&D using an optimization

framework (Linear decision rule), using the fundamentals of a heterogeneous network in

[138,139]. Utilities are looking for active ways to control the charging of electric vehicles to

manage their stochastic load demand and reduce the operation cost incurred by utilities to

meet the growing demand for electricity, as well as reduce the strain on the grid. Here is a

structure of what the grid now looks like with respect to EV charging and different controls

interplaying at the device level shown in Fig. 6.24.

6.2.2.1 Case studies

Firstly, an analysis was performed to determine the load profile of a typical residential

customer without and with electric vehicles. The residential electric vehicle charging curve

was obtained from INL [193]. This analysis provided us with the peak demand and EV

charging intervals within a 24-hour period. The analysis compared the impact of electric

vehicles with respect to generation cost and voltages on the transmission network. Before

carrying out the analysis a bus was selected as the aggregate charging bus in the distribution

network. The equation that guides the operations of the aggregate charging status bus is

discussed as seen in (6.16) and (6.17).
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Figure 6.23: A schematic of smart charging infrastructure [1]

Figure 6.24: Typical EV charging curve

Constraints at each interval

∀ t = {1, ....24}, Pagg(t) ≤ min
k∑

n=1

Pcn (6.16)

Pagg(t) = min
ev∑
t=1

Pev(t) (6.17)

6.2.3 Proposed EV charging Management technique

A management technique, that provides setpoints for each charging station is developed.

The technique allows EVs to change optimally and ensure the objectives of the integrated

network are satisfied Two control approaches are been implemented for this management
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Algorithm 11: Optimization steps for IOE with EV Charging Management
1 -
2 Set the tolerance error ϵ
3 Identify and initialize with set parameters all the devices in the integrated network.
4 Choose the station EVs aggregate bus in the distribution network.
5 Select the operational mode of EV charging (active or passive).
6 Obtain the parameters tp for TN and dp for DN
7 while tol > ϵ do
8 forall t ∈ 24 do
9 forall tp ∈ TN do

10 Solve the TOPF using SDP-BIM.
11 Extract the simulation results. (Voltage and angle)
12 Use the boundary bus parameters as setpoints for the DN feeder
13 end
14 forall dp ∈ DN do
15 Solve the DOPF using SDP-BFM.
16 Extract the total demand with losses at DN
17 Update the DN load demand at the boundary bus of the integrated

network.
18 end
19 end
20 Obtain the new tolerance tol
21 Check for convergence
22 Obtain the X(i) for each interval for the specific mode
23 end
24

which include the active and passive management of EV charging.

The objectives of each network are written below and are detailed in the appendix, the

TN has the objective of minimizing the cost of generation while the DN is to minimize the

losses in the system.

TOPF = min
Tt∑
t=1

NG∑
g=1

(f(P j
m,t)) (6.18)

where, f(P g
j,t) = c2(P

g
j,t)

2 + c1(P
g
j,t) + c0(t) (6.19)

DOPF = min

Tt∑
t=1

Re(Spq(t)− ZpqI
2
pq(t)) (6.20)

The active power generated is a combination of power flowing in the lines Pjk, the line

losses Ploss
jk , and where m is the other bus in the transmission asides the boundary bus which

is b.

P g
j (t) =

∑
k:j−→ k

PM
jk (t) +

∑
k:j−→ k

PM
jk,loss(t) + xP d

j (t) + yP d
b (t) (6.21)
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P d
b (t) = P d

j (t) +Re(Sd
DN) +X(i))Pagg,t (6.22)

Tt∑
t=1

24∑
i=1

(X(i))Pagg,t = Pev,tot (6.23)

The objective of the co-simulation engine is to minimize the boundary bus error mismatch

as shown below

Min ∆Vpcc(t) = V pcc
j (t)− uabc0 (t) (6.24)

The transmission network OPF is solved using the objective function and constraints below

min cTPGc
TPG = m2P

2
Gj

+m1PGj
+m0 (6.25)

subject to

SGj
− SDj

= diag ¯(Vj)Ȳj
∗
busV̄

∗
j (6.26)

ȲjkV̄j ≤ Ijk,max (6.27)

V̄jȲjkV̄
∗
j ≤ Sjk,max (6.28)

0 ≤ PGj
≤ Pmax

j (6.29)

Qmin
j ≤ QGj

≤ Qmax
j (6.30)

V min
j ≤ Vj ≤ V max

j (6.31)

The distribution network OPF is solved using the objective function and constraints below

min

Tt∑
t=1

Re(Spq(t)− ZpqI
2
pq(t)) (6.32)

∑
p:p−→ q

diag(Spq − zpqlpq) + sq + yquq =
∑

r:q−→ q

diag(Sqr)
ϕq (6.33)

uq = uϕpq
p − (Spqz

H
pq + SH

pqzpq) + zpqlpqz
H
pq (6.34)

Equation (4) is very important as it provides us with a control variable. X(i) can either

be a binary output in the case of passive control where it can either be 0 or 1, or it can be

an active control where it is a floating value between 0 and 1. The Pagg is the summation of

all the charging power requirements by all the EVs combined together at each interval. The

Pev,tot is the total expected amount of charge requirements by EVs daily. One of the bus in

the distribution network is chosen as Pagg.
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6.2.3.1 Passive control

The operation mode for the charging station aggregator here is an ON/OFF state. When

the x(i) is at position 1, it means the aggregator is in an ON state which means vehicles

can charge at each charging station while it is OFF when x(i) is at position 0. This is an

optimized output dependent on the total energy requirement by all EVs for the 24hr period

of time.

6.2.3.2 Active control

The operation mode for the charging station aggregator here is controlled such that x(i)

take a value between 0 and 1. This is an optimized output dependent on the total energy

requirement by all EVs for the 24hr period of time.

Ultimately both charging management methods operate as a setpoint for the charging

aggregator at each time interval while ensuring that the total demand by electric vehicles

daily is satisfied.

6.2.4 Results and Discussion

Our multiperiod implementation was tested on integrated networks, and for a 24-hour

single-day interval with a daily load profile used as shown below, The EV charging curve as

discussed in the previous section is implemented, We implemented the two charging controls

algorithms on the integrated grid and compared the performance on grid voltage and other

metrics.

Figure 6.25: Load profiles for 24hr

6.2.4.1 Test System with charging management

The new algorithm is evaluated on the integrated IEEE 9 & 13 bus system, the system

architecture is as shown in Fig. 6.26, Our static OPF analysis was performed as well to

benched-mark the SDP BIM model with IEEE test cases MATPOWER simulation results.

The system was modified to enable the changes in the DN to have a significant impact on

the TN. A modification was performed such that 20 times the base load value of the DN

was connected to the TN. As seen in the integrated system in Fig. 6.26 the boundary bus is
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bus 4. We performed an analysis with no EVs connected to the integrated grid and observed

both the cost of generation at each interval and the voltage profiles Fig. 6.27, we then chose

bus 645 as the aggregate bus to connect the demand requirement by the EVs,

Figure 6.26: Integrated T&D model for IEEE 9bus and IEEE 13bus

Figure 6.27: 24hr TN bus voltage profiles

6.2.4.2 Integrated T&D with charging management

After performing the base analysis, the charging management technique is added to the

integrated network, and the impacts on critical grid objectives as detailed below. The Pagg is

the combined aggregate of all the charging stations connected to bus 634 in the distribution
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Figure 6.28: 24hr TN generator active power

network, we used level 2 charger types. The data used for the analysis are shown in the table

below.

Figure 6.29: Dispatch for charging station passive control

Figure 6.30: Dispatch for charging station active control

Applying the active, passive, and no control setpoint obtained as shown in the figures above
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to the integrated T&D simulation the results as seen below, the setpoints were obtained

using the forecasted demand of energy consumed by electric vehicle users daily. We made an

assumption that Electric vehicle users won’t drain their battery from 100% to 0% within a

24-hour period. Our setpoint model was such that each curve determined optimally satisfied

the no-control total energy demand which is base energy demand. The total energy demand

by all the EVs is 180,000kWh as shown in the cumulative result in Figure 10.

Figure 6.31: Energy delivered with different controls

Figure 6.32: Power demand with different controls

TABLE 6.3: Control Comparison

Parameter No control Passive control Active control
Capacity Required (MW) ≥ 397.93MW 406.72MW 395.52MW
Cost (USD) ≥ 518 million 529 million 514 million
EV demand uncertainty Yes No No
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Figure 6.33: Cost impact of different charging controls

The NREL ATB [194] calculator to consider the cost implication of the different charging

management techniques discussed, the active control offers the best cost savings of over 4

million USD, compared to no control where utilities might not be willing to take the risk of

satisfying the base demand due to stochasticity involved in EV charging.

TABLE 6.4: Parameter

S/N Parameter Data
1 No of charging stations 900
2 Each station capacity 20kW
3 Aggregator max Capacity 18MW
4 No of electric vehicles 4500
5 EV battery capacity 40kWh
6 NREL ATB CAPEX 1270.78 $/kW
7 NREL Fixed Cost 30.5 $/kW-yr
8 NREL Capital Cost 133.578 $/MWh

6.3 Summary

A typical charging profile of a residential electric vehicle was implemented, the voltage

profile of the TN was observed and the impacts on the cost of generation were observed

from the amount of power generated, future steps are exploring the uncertainty in charging

by electric vehicle users and comparing a binary variable decision or controlled power con-

sumption when charging. Another direction to be considered in the future direction is to

implement decentralized charging setpoints for the stations using a global and local controller

to ensure optimal operation of the grid.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

This dissertation proposed methodologies for optimal management and control of inte-

grated transmission and distribution electric grid considering distributed renewable energy

resources at the distribution system. In Chapter 3 an adaptive control architecture and an

optimization framework to help manage the grid under renewable rich operational condi-

tions were discussed extensively, two frameworks were discussed one that considered only

the distribution grid, and another that considered both networks and extended the control

capabilities to other resources on the grid to help mitigate oscillations during disturbances

on the grid, caused by fault occurrences, sudden load changes, capacitor switching, or even

the intermittent nature of the energy sources for most renewable systems, considering both

integrated transmission and distribution system.

In Chapter 4, a management technique was developed using an integrated optimization

engine, the proposed technology ensured that the integrated networks had visibility to each

other, and a linear optimization technique was implemented while considering the hetero-

geneous nature of the boundary variables in an integrated transmission and distribution

network. The stochastic integrated linear optimization (SILP) framework is modeled can

help utilities achieve optimum operation based on two key objectives of utilities which are

the cost of operation and minimization of distribution network loss/voltage deviation.

Chapter 5, extends the study of the integrated grid to the time-varying operations of

renewable energy resources, this allows the linear optimization method to be capable of

providing efficient operations at different times of operation of the grid, irrespective of the

renewable energy resources power generation, the linear decision rule was used to provide

the generator real-time outputs of the renewable energy resources, different networks were

explored with huge penetration of RERs, in future studies impact of different location of

renewable energy resources on the LDR constraints can be studied.

Finally, in chapter 6, the grid of the now (smart grid) is discussed which involves different

resources interplaying on the grid, a framework that helps to ensure the grid operates in an

efficient manner is developed, especially with all the uncertainties involved which might due

to human interference or the sources of the RERs. The management technique developed

can accommodate as many renewable energy resources as possible and for the purpose of our

work we evaluated the technique with solar PV resources and electric vehicles, our work also

modeled how utilities can manage the growing demand concerns caused by electric vehicles.
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The main contributions are as follows:

• First an online tuned oscillation damping controller for battery-integrated wind en-

ergy systems is proposed. The approach was tested on a grid-connected system, and

the simulation results validate the superiority of our proposed control to provide an

improved frequency response of the grid during different dynamic conditions.

• Next, an optimal damping control framework is designed and implemented on an inte-

grated transmission and distribution system with bulk power and distributed renewable-

based generation. The proposed methodology can manage the frequency oscillation in

an integrated transmission and distribution network, with interconnected renewable

energy resources. The approach relies on an optimal damping control architecture

that is adaptive and at the same time optimal.

• Third, an optimization technique is implemented to help ensure optimum performance

of the controller, while minimizing the deviation of the grid frequency. The approach

is implemented on synchronous generators that can be used to augment the existing

stabilizers or other damping controllers. Also, field implementation of the proposed

methodology was discussed. The results from simulations on real-life feeders validate

the superiority of the proposed control method, as compared with a conventional con-

trol approach, to provide an improved grid frequency response for a range of anticipated

dynamic conditions (e.g., wind speed variations, faults, and load changes). Overall an

improvement in damping and settling time is observed.

• Fourth, an architecture is illustrated that demonstrates the versatility of a newly for-

mulated stochastic linear optimization to handle the intermittent nature of renewable

energy resources capable of affecting grid quality metrics due to their penetration level

at any time. The proposed methodology helps with the co-simulation of an integrated

T&D system and offers the transmission system capabilities to adequately capture the

changes that occur in the distribution system. With our approach, there will be no

loss of information during operation between the transmission system and distribution

system, and faster action can be performed optimally in case of uncertainties before the

operational windows or intervals that most utilities use. Our technique ensures that

the grid objectives are achieved for both networks, and the formulation can also be im-

plemented in power flow simulations. The versatility of our technique was established

with two different integrated frameworks.

• Fifth, the scope of our stochastic linear optimization (LDR) technique is extended to a

multiperiod optimal power flow framework, the integrated optimization operated each
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network OPF as an MPOPF and ensures that the grid objective for each on the coupled

network is achieved while fully utilizing the offerings of DERs. Our approach offered

economic benefits, like the decrease in the cost of generation and voltage deviation as

well as eliminating the need for curtailing RERs which if not properly managed can

cause variations on the grid.

• Finally, the grid of now was evaluated with several renewable energy resources and

several uncertainties,a technique that is capable of managing this phenomenon was

discussed, and emphasis was on electric vehicle charging management, a technique

which handles the uncertainty of charging and shows significant improvement on the

cost of generation efficiency.

7.2 Future Works

Overall, different methodologies and approaches have been discussed on the control and

management of grid-connected renewable energy resources. These resources will continue

to interact with the grid in much capacity, a few items have been recognized that have the

potential to bring value to this research in the future.

1. Time and Constraint Impacts of LDR technique

The capabilities of the LDR technique to provide the networks with insights into the oper-

ations of renewable energy resources and how to ensure that the generators adjust themselves

accordingly, further work can be done on studying the time of response for the generators to

adjust themselves including constraints like ramp-time and other generator responsiveness

constraints, to validate the swiftness of the technique, this can be studied in a time-scale

domain analysis.

2. Multi-Objective function of the LDR technique

The LDR technique capabilities have a main objective of eliminating the need to curtail

DERs during operations of reverse power flow due to the likelihood of causing challenges on

the grid, the scope of this objective should be extended to accommodate the willingness of

this market participant in the transmission network, which transforms the objective equation

into a multi-objective function.

3. Decentralized setpoints controllers for charging station management

A framework for controlling the charging stations using a centralized controller is devel-

oped, that receives a setpoints after the optimal power flow simulations have been performed.

This can first be evaluated on a hardware simulator and the scope of the work can be ex-

tended to the decentralized controller (local controller), which can have similar or different

objectives to the centralized (global controller) with different similar set points. Ultimately,

this gives utilities the opportunity to participate in EV charging with minimum risk.
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4. Optimal co-ordination or selection between several control and management

frameworks

Several control and management techniques if implemented industry-wide utilities might

find it difficult to prioritize which to use or combine, further studies can be done on which

is most suited for different grid scenarios and when to combine different approaches bearing

in mind the objectives of the utility.
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APPENDIX A: THEOREM PROOF

In this section, the proof of the LDR- model is discussed.

A stochastic model can be formulated as below:

min c′x+ E(Q(x, z̄))

s.t. Ax = b

x ≥ 0

(A.1)

with the x as vectors and other bold lower case, x̃ as a random variable, bold upper case

such as A are the matrices.

where,

Q(x, z) = min f ′w + f ′b

s.t. T(z)x+Ww +Bb = h(z),

wi ≥ 0, ∀i ∈ I ⊆ {1, ....n2}

bi ≥ 0, ∀i ∈ I ⊆ {1, ....n2}

(A.2)

Additionally, c, f and b are known vectors in ℜn1 , ℜn2 and ℜm1 , T(z̃), h(z̃) are assumptions

for affine data dependency.

T(z̄) = T0 +
N∑

k=1

Tkz̃k, h(z̃) = h0 +
N∑

k=1

hkz̃k (A.3)

ZSTOC = min c′x+ E(f ′w(z̄)) + E(f ′b(z̄))

s.t. Ax = b,

wi(z̃) ≥ 0, ∀i ∈ I,

bi(z̃) ≥ 0, ∀i ∈ I,

x ≥ 0

w(z̃) ∈ Y

b(z̃) ∈ Y

(A.4)

Translating into LDR

w(z̄) = w0 +
N∑
k=1

wkz̄k (A.5)

b(z̄) = b0 +
N∑
k=1

bkz̄k (A.6)
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The stochastic model approximation is then written in the LDR

ZLDR = min c′x+ f ′w0 + nf ′b0

s.t. Ax = b,

Tkx+Wwk +Bbk = hk ∀k ∈ {0, ....N},

wi(z) ≥ 0 ∀z ∈ W,∀i ∈ I,

bi(z) ≥ 0 ∀z ∈ B, ∀i ∈ I,

x ≥ 0,

w(.) ∈ L

b(.) ∈ L

(A.7)

wi(z) ≥ 0 ∀Z ∈ W

w0
i ≥

N∑
j=1

(zjsj + z̃jtj)
(A.8)

If the solution at equation(A.7) is feasible, then it will be in equation(A.4), ZSTOC ≤

ZLDR , with W = [-z, z̃]. for some s,t ≥ 0 satisfying sj-tj = wj
i . The variables that are

implemented above can be translated to our operation of the integrated T&D model with

several renewable energy resources connected to the grid. By correlation, the variable w is

the PPG, the variable x is the Pk,RP , while the uncertainty Z̃ is the PPV , the variable b can

be a binary variable which can be a decision of an electric vehicle user to charge or not.
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APPENDIX B: SIMULATION TOOLS

The dissertation was performed using the following system parameters, simulation tools,

and solvers.

1. HP Computer with RAM 16GB, speed 2.7GHz, and storage 450GB windows OS.

2. Simulink and MATLAB R2019-R2022.

3. Python in Jupyter notebook.

4. Mosek, Gurobi and Yalmip solvers.

5. GridAppsD with Linux OS.
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