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ABSTRACT

SHREYASHI SHUKLA. Short Term Peak Timing Forecasting. (Under the direction
of DR. TAO HONG)

Peak load forecasting is crucial for reliable and effective grid operation. The day-to-
day operation of the power grid requires load scheduling and dispatches of different
energy resources including Energy Storage System and Demand Side Management
programs. An effective implementation of these peak-shaving strategies relies heavily
on when the peak demand occurs. Hence, forecasting the timing of peak load is as
important as forecasting its magnitude.

A review of relevant literature indicates that there is no inclusive study on the topic
of peak timing forecasting. This research aims to bridge the gap between industry
requirements and academic research by addressing some key questions. First, the
study defines the different forms of peak timing problems that can benefit grid oper-
ation. Next, we investigate the problem of how we measure the peak timing forecast
errors. The research critically reviews error measures used in the literature for peak
timing forecasting. Based on the findings five application-specific error measures are
proposed. The research then focuses on one of the manifestations of the peak timing
problem, that is, forecasting daily peak hours.

We analyzed the accuracy of peak hour forecasts from a state-of-the-art hourly
load forecasting model and set it as the benchmark. The model selection process
using different peak timing errors and load shape errors is investigated. Furthermore,
two novel peak-hour forecasting frameworks are developed and their effectiveness
is empirically demonstrated in two case studies. The first case study comes from
an anonymous medium-sized utility in the U.S., while the second one is publicly
accessible data from ISO New England. The proposed models demonstrate improved

forecast results on the benchmark model by 12-16% in the test years of the two
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case studies. Additionally, when the models are only evaluated on the critical days
with very high demands, they outperform the benchmark by 25-53%. Findings from
this study emphasize the importance of developing explicit models for peak hour
forecasting by analyzing the key determinants that vary with geographical location

and regional factors.
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CHAPTER 1: INTRODUCTION

1.1  Peak Load Forecasting

Peak electric demand forecasting is one of the most critical tasks in electricity sup-
ply and demand management. Generating electricity to meet demand happens very
instantaneously. Utilities face the challenge of meeting electricity demands while
maintaining efficient operations and preventing system failures. A range of generator
types helps keep the supply in balance with demand at various demand levels (Fig-
ure 1.1). Base demand is met by low-cost generators such as nuclear plants, which
have limited ramping capabilities. On the other hand, peak demand must be met
by generators with rapid ramping capabilities to respond quickly to significant varia-
tions in demand. Nevertheless, peak load generators have a very high marginal cost
[1]. Thus, accurate peak load forecasting is vital to maintain a reliable and stable

electricity supply, optimize resource allocation, and prevent blackouts or brownouts.
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Figure 1.1: Levels of daily electricity demand.

Peak load represents the highest levels of electricity demand experienced by a power
system, typically occurring during a specific time of the day, week, month, or year

[2]. The definition of peak load is determined by the data sampling rate and data
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aggregation level. For example, daily peak load is defined as the maximum demand
of a day for an hourly interval or sub-hourly interval. Annual peak refers to the
maximum demand in a year at a specified interval, which could be monthly, hourly,
or sub-hourly. In other words, the peak load of a system, be it an appliance, home,
building, distribution, or transmission network, is its maximum interval demand for

a given period.
1.2 Business Needs and Peak Timing Forecasting

Peak load forecast is leveraged by different stakeholders, including utilities, regula-
tory commissions, and trading firms, for various solutions [3]. The annual peak fore-
cast is needed one to several years ahead for future investment decisions and resource
planning. Overestimation of the peak demand results in excessively high reserves. On
the other hand, under-forecasting may result in blackouts and brownouts. The risk
cost of oversizing or undersizing a power plant is quite high. One study estimated that
a 1% forecast accuracy for a 1-gigawatt peak plant can be valued at $500,000 per year
[4]. Several regulatory authorities also review these long-term forecasts [5]. Utilities
require daily peak demand forecasts a year in advance for maintenance scheduling,
grid planning, and tariff structuring. A seasonal peak load forecast at the trans-
mission system is necessary for a seasonal assessment of the appropriateness of the
resources. Day-ahead peak forecasts are a critical input for daily grid operation. The
task of grid operators is to meet the demand at a minimum cost while satisfying
operation constraints. Furthermore, the day-ahead peak forecast is an essential tool
for electricity pricing and market trading to optimize hedging strategies.

These different applications call for different time frames over which forecasts are
to be made. Using the categorization of the forecast horizon mentioned by [6], the
peak load forecast can be categorized into short-term, medium-term, and long-term.
A forecast horizon of up to two weeks ahead can be categorized as short-term peak

load forecasting, one month to up to 3 years ahead can be classified as medium-
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term peak load forecasting, and several years ahead can be called long-term peak
load forecasting. Figure 1.2 outlines the peak load forecasting categorization and its

applications at different spatial and data sampling levels.
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Figure 1.2: Peak load forecasting use cases.

In recent years, peak load forecasting has become increasingly critical due to the
evolving grid. Factors such as the integration of distributed energy resources (DER)
[7], the drive toward heating electrification [8], and the increasing adoption of electric
vehicles [9] have added complexity to the task of managing peak demands. Moreover,
the industry is aiming to improve the load factor by achieving an even use of electricity
over time. Three key solutions have been initiated: demand-side management (DSM),
energy storage system (ESS) integration [10], and vehicle-to-grid (V2G) integration
[11]. Since the early 1980s, DSM tools have been deployed to accomplish different
load-shaping objectives, such as peak shaving, load shifting, and valley filling. [12].
At the same time, ESS and V2G integration provide auxiliary sources to balance the

grid.



4 Price-Based Demand Response

time-of-use day-ahead rﬁ:ﬁ"r;e
rates hourly pricing pricing(RTP)
N 5,

\\
T
! 1
! 1
T 1 \
|| emergency interruptible | | direct load
| programs programs | control
1
1
T
1
1

1 I

1 1

1 1

177 . . T —

1 | | Capacity /Ancillary | Demand bidding/
| | | services programs \ buyback

1 1 !
1 1

1 T

1 1

1 1

Dispatch
day

System
Planning

Energy
Efficiency
—_—

Incentive-Based Demarld Response
T

J

|
Months ahead Day of Dispatch <15 mins
-_— e R R R R R R

Figure 1.3: Demand side management programs.

Some of the primary tools of DSM are energy efficiency programs, Price-based
demand response, and Incentive-based demand response [13] as depicted in Figure 1.3.
The Demand Response (DR) programs work by load curtailment and load shifting,
as illustrated in Figure 1.4. The DR events are called on days when the demand is
expected to be very high. Some DR programs are dispatchable, where the operators
can control the appliances for a customer in the event of extreme peak demand. Other
DR programs are time-sensitive pricing, and incentive-based event calls that require
customer response. Events are called at specific times of day when peak demand is
likely to occur. Hence, for this purpose, the peak load is not confined to a single
point but spans a period of instances. A suboptimal schedule for calling the event
could lead to peak rebounds due to a shift in demand to the actual peak hours. An
underestimated peak load forecast may under-credit the DR load-reduction benefits
[14]. Therefore, the success of DR deployment depends on forecasting the days of

expected high demand and also the time when it would occur on the day.
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Figure 1.4: Demonstration: DR deployment.

®

Figure 1.5: Demonstration: charging and discharging scheduling of ESS.

With the integration of renewables such as photovoltaic (PV) systems, matching
dynamic electricity demand with intermittent energy production is a major challenge.
Deploying ESS is one solution. However, scheduling of charging and discharging
profiles for ESS necessitates forecasting the peak timing as well as the shape of the
peak period, as shown in Figure 1.5. A poor forecast will undermine the peak shaving
opportunity. It may also lead to substantial loss in battery storage capacity, which
decreases their lifecycle and increases energy costs [15].

Peak load forecasting problem is multi-dimensional. The errors of peak load fore-

casts can be decomposed into magnitude, displacement, duration, and shape errors.



6
The magnitude error reflects vertical deviation in the forecast of peak load level. The
displacement error reflects the horizontal deviation in the timing of the peak fore-
cast. Instead of confining the peak to one point, some business applications require
identifying the period of peak demand. Hence, the third component is the duration
error which refers to the error in the length of the peak period forecast. Peak shape
error refers to deviation in the shape of the predicted load curve during the peak
period. Unlike magnitude error, the shape error is independent of the level of peak
load forecasts. These four dimensions can provide a holistic view to optimize the grid
scheduling in the modern grid.

The peak timing forecasts can be deterministic or probabilistic. A deterministic
forecast would give the hour of day when the peak demand is most likely to occur.
In contrast, a probabilistic forecast would quantify the uncertainties of the forecast
by giving the probability of peak occurrence for each hour or day. Decisions for
applications such as grid scheduling, DSM, ESS scheduling, and day-ahead market
hedging methods are often made a few hours to a few days in advance. Therefore,
for a short forecasting horizon, the forecast should be usable and deterministic, so
that it can be consumed. Nevertheless, probabilistic peak time forecasts are useful for
long-term applications such as tariff designing, maintenance scheduling, and planning
for peak load control programs. This research focuses on the deterministic forecast

of peak timing for the short-term forecasting horizon.
1.3 Dissertation Outline

Figure 1.6 depicts an outline of the dissertation. First, in Chapter 2, we thor-
oughly review the literature to understand the work on peak load and timing fore-
casting. Chapter 3 introduces the case studies used in this research and conducts
some exploratory data analysis. Chapter 4 introduces some fundamental concepts
on techniques used and forecast evaluations. All forecasts require a proper evalua-

tion. Therefore, we also explore the literature for error measures used in peak timing
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forecasting in Chapter 5. In this chapter, we also establish the taxonomy of peak
timing problems. Motivated by our findings from the study, we propose some new
error measures for evaluating peak timing forecasts in the conclusions of the chapter.
In Chapter 6, we present our work on model selection for peak hour forecasting. In
Chapter 7, we propose the two new models we developed for peak hour forecasting,
discussing their test results and evaluating their strengths and weaknesses. Chapter

8 concludes this research.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we will review the representative academic papers on peak load
forecasting providing a conceptual review of different techniques and methods that
have been used. Peak load forecasting is a subdomain of load forecasting with exten-
sive literature, although not as rich as hourly load forecasting. To avoid a verbose
presentation, it is to be noted that the rest of this chapter uses the term "PF" to
refer to "Peak electric load forecasting" or "Peak electric load forecast".

A bibliometric study was performed on Sep 23, 2023, to get an overview of ex-
isting research in peak load forecasting using the well-established and recognized
Web of Science (WoS) database. The query used to retrieve the records is as fol-
lows: "TS=("peak load forecast" "peak demand forecast" ) and Article (Document
Types)". Figure 2.1 depicts the number of journal articles on peak load topics from
1990 onwards. There have been 326 publications since 1990. Hence, PF has been a
topic of study for at least half a century, and yet no literature review focusing on the

subject has been published yet.
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Figure 2.2 shows the publications in the fields of PF compiled according to the

forecasting horizon. Short-term PF has been the focus of most published work with

an increasing trend. However, long-term and medium-term forecasting has also been

stepped up in recent decades. Most of the work on long-term peak forecasting is

probabilistic, presenting PF in density, quantiles, or intervals.
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2.1  Peak Load Forecasting
2.1.1  Methodologies

From the literature review, we find that PF methods are broadly divided into
two categories. From the literature, we find that PF methods are broadly divided
into two categories. The first method is “Derived Peak Forecasting”, which involves
forecasting the demand for each time step (hourly/sub-hourly) within a period and
then identifying the highest value among all these forecasts as the peak forecast. For
example, the daily peak forecast can be derived from the 24 hourly load forecasts.
This method can be used to forecast the magnitude as well as the time of peak
demand from the same model. The second approach is “Direct Peak Forecasting”.
It is a time-independent method, where a model directly forecasts the magnitude
without specifying the exact hour when the peak will occur. It can also forecast peak
timing without determining the magnitude of peak demand. Such models may only

require low-resolution data, such as daily frequency samples. Figure 2.3 shows an
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example demonstrating the two forecasting frameworks. A similar classification of

peak forecasting methodology was adopted by [16].
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Figure 2.3: An example of the two peak load forecasting methods.

Most publications on peak load forecasting are based on the Direct forecasting of
peak load. However, in practice, PF are mostly generated from hourly load fore-
casts. Using the higher resolution data to derive the peak forecasts has some ad-
vantages. There is no loss of information arising from temporal aggregation. Using
low-resolution data to forecast annual or monthly peaks would result in a small sam-
ple size and limited information. Therefore, the bottom-up approach is a popular
way to get peak forecast distributions [2], [17], [18], [19], [20]. However, since the
hourly load data is noisy, this approach has some drawbacks too. A study was car-
ried out to understand how the maximum of hourly forecast compared to the peak
load forecast from direct models [21]. The paper concluded that the aggregated peak
forecasts from the hourly forecasts were negatively biased, and the peak load forecasts
obtained directly were closer to the actual peak. This is one of the few studies that

have compared the peak load forecasts obtained from the derived model with the one
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obtained from the direct model.

Not all the papers that have reported peak forecasting accuracy, were devoted to
peak load forecasting. In such studies, the proposed hourly load forecasting model was
additionally evaluated for peak forecast by comparing the maximum forecast value for
a period with actual maximum value (22|, [23], [24]. Assuming the peak is typically
observed at a certain time, some studies have evaluated the accuracy of forecasts at
that time [25]. A Neural Network model was developed to forecast next-hour load
using historical temperature and historic load from the Wisconsin Electric Power
Company. The peak load was evaluated at a specific hour (7 PM) when the actual
peak was usually observed. In another study, the proposed wavelet decomposition-
based model was evaluated for a five hour period representative of peak and off-peak
hours [24]. In another study, the models were evaluated at the time of actual peak
occurrence [26].

Irrespective of the focus of the study, this research reviews the academic papers
that have evaluated peak hour or peak timing forecasts. In the following subsections,
we will review representative literature on PF to understand how temperature and

other explanatory variables have been used for derived as well as direct PF.
2.1.1.1  Temperature Effect

Of all meteorological factors, the temperature has the strongest impact on electric-
ity demand [27] and [28|. Besides, it is also the most predictable and easily available
data at hourly intervals, of all the weather variables. Most studies that forecast the
daily peak load using direct PF models employ either of the three aggregated forms of
hourly temperatures: daily average temperature, daily maximum temperature, and
daily minimum temperature. Table 2.1 presents a summary of the temperature fea-
tures used by some representative papers. The most widely used among these is the
daily maximum temperature together with the daily minimum temperature. Using

only the daily average or daily maximum temperature is another common approach.



14
Hence, the effects of temperature on the daily peak load are often captured using
the statistics of the daily temperature curve. In practice, weather forecasts beyond
two weeks are typically not very accurate [29]. Hence, temperature features used
in medium-long forecasting horizons are modeled by generating scenarios. We shall
review the methods adopted to model temperature effects grouped by forecasting

horizon.

Table 2.1: Summary of temperature variables used in direct peak load forecasting in
literature.

Daily Daily
Maximum Minimum References
Temperature Temperature

Daily Average
Temperature

[25], [30], [31], [32],
1 Y [33]. [34], [35], [36].
[37], [38],[39]

[40], [41], [42], [43],

2 Y [44], [43]. [46]. [47]

3 Y Y [48], [49]. [50]. [51]

[52]. [53]. [54]. [55].

4 Y Y (el Genl fel (o]
[64]

5 Y Y Y [65], [66], [67], [68]

(A) Short-term forecasting

Some earlier research reported using Cooling Degree Days (CDD) and Heating
Degree days (HDD) [21], [30]. CDD and HDD are obtained by calculating the depar-
tures of daily average temperature values from the baseline temperature.The baseline
temperature for CDD and HDD can be determined by analyzing historical load-
temperature correlations and physical considerations [21]. The statistical analysis
of various regression-based models concluded that adding the CDD and HDD sig-

nificantly reduces the bias and standard error of the daily peak forecasting model
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116].

In another approach, new temperature variables were developed to represent the
non-linear relationship between temperature and peak load. A transformation func-
tion was proposed to model the temperature to treat heating and cooling loads on
the same regression plane [30]. The function was designed to factor in the seasonal
load changes as well as the latest weather-load characteristics. The new transformed

variables were then used in the regression framework to forecast the daily peak load.

The accumulation effect of temperature due to sustained high temperatures on hot
summer days was modeled by feature engineering [31]. The modified temperature
variable was formed as a function of the daily maximum temperature of the current
day, the maximum temperature of the previous three days, and the average daily
maximum temperature of the last 30 days. The function parameters were optimized
through a Genetic Algorithm (GA) to maximize the co-variance of the daily peak

load and the modified temperature.

Temperature effect can be modeled by splitting the temperature range into intervals
and developing a different local model for each interval [32|. Hence, based on the
maximum temperature of the forecast day, the model is chosen. This approach could
help deal with the uncertainty of temperature forecasts because it is not necessary
to know the exact next day’s temperature. However, the impact of a temperature
forecast that is off by more than one interval from the actual temperature range was

not examined.

The effect of hourly temperature on daily peak has not been investigated so far
in any studies. The typical approach is using the daily temperature features in the
Direct PF. The hourly temperatures preceding the peak demand can be key deter-
minants. However, not knowing the timing of peak demand, it is not realistic to

get these features. Exploring the relationship between the timing of peak demand
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and the timing of the day's maximum or minimum temperature could help in un-
derstanding how can we leverage the sequence of hourly temperatures preceding the
peak demand in the forecasting model. An alternative approach could be a multi-
resolution approach [33]. The proposed framework included the vector of half-hourly
temperatures as model input to forecast the daily electrical load peak magnitude and
timing directly. Hence, instead of explicit feature engineering of hourly temperature,
they are treated via functional smooth effects in the Generalized Additive Model.
This approach could avoid losing any information and yet retain the parsimony of the

low-resolution approach.

In practice, the actual observed temperature is not available for the future. The
models estimated with actual temperatures do not account for temperature fore-
cast errors. Some studies propose techniques to reduce the model’s sensitivity to
temperature forecast errors. These include adding a noise component to the actual
temperature series to simulate temperature forecasts [21] or forecasting the day-ahead

temperature by fitting low-order autoregression to the daily temperature series [16].

(B) Medium-term & Long-term Forecasting

As weather forecasts for more than two weeks ahead are often unavailable and quite
uncertain [29], the approach of using temperature for medium-term and long-term
forecasting differs. Some studies have also presented approaches that do not include
any weather variables in the modeling. A Support Vector Machine (SVM) model was
developed to forecast daily peak load for a month ahead [34|. The proposed method-
ology was the winning solution of the EUNITE 2001 competition, where temperature
data for the forecast period was not provided. Instead of estimating the temperature,
the time series modeling scheme was used. In a similar approach an Artificial Neural
Network (ANN) based model is approached to forecast month-ahead daily peak load

using lagged values of daily peak load and calendar variables as input variables [35].



17
In another approach annual maximum temperature was used to forecast the annual
peak [36]. The study used the historical annual data from 1981 to 2000 to forecast

the annual peak load of Taiwan for the years 1997 to 2000.

Most studies on long-term and medium-term peak load forecasting, however, use
simulated temperatures for the forecasting period and generate probabilistic forecasts.
A probabilistic model was proposed to generate one year ahead daily peak load dis-
tribution for the winter season in Central England and Wales [37]. Weather forecasts
were generated for the next year by fitting a Bayesian model based on multivariate

normal distribution generated from 17 years of historical weather.

A novel seasonal bootstrapping method was proposed to generate temperature
simulations [2]. The proposed methodology was empirically demonstrated using a
case study from the South Australian region to generate probability distributions of
half-hourly peak demand for up to ten years. The distributions of annual and weekly
peak demand forecasts were then derived. Regression splines were also used to model

the impact of temperature in the proposed semi-parametric model.

Temperature scenarios were generated by using data from 30 years of history to
generate the probabilistic forecast of monthly peak load [5]. The base, aggressive,
and conservative macroeconomic scenarios were assumed for the test year generating
90 scenarios. The median, 10th, and 90th percentile of the monthly peak forecast
were obtained and evaluated against the actuals. The proposed method was verified

using a case study from one of the largest electric generation cooperatives in the U.S.

Simulated weather data was used to generate probabilistic forecasts of both the
timing and magnitude of the annual peak demand in a province of the Netherlands
[19]. Simulated weather data were produced by constructing surrogates of the original
temperature, wind speed, and luminosity using Fourier transformation. A 1000 sim-

ulation runs generated the distribution of electricity demand forecasts for each day
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between 1995 and 2000. The forecast errors were compared with the ex-post forecast

eITors.

The uncertainties of future daily maximum temperature were modeled by cali-
brating the physics-based climate models [38]. The data collected from this climate
model projection were re-adjusted to account for regional changes by employing the
generalized extreme value (GEV) distribution. The methodology was proposed for
long-term daily peak load forecasting for the region of Texas. The model was val-
idated by comparing the load densities forecast with actual histograms for the test

data.

A probabilistic annual peak demand forecasting methodology based on summer
months data from South Australia was proposed [39]. The proposed half-hourly
demand model incorporated both deterministic and stochastic components. The de-
terministic component included modeling the cyclic features of time series, and the
relationships with current temperature. The stochastic part included the error com-
ponent, which was further modeled with autoregressive moving average (ARMA)
processes. Annual peaks were generated by taking the highest half-hourly value from
each of the 500 generated summers. The empirical CDF of this variable gave the

distribution of the annual peak.

2.1.1.2  Other Explanatory Variables

Even while daily energy use may not change much, peak demand varies depending
on when the energy is being used. Hence, human activities substantially impact
peak load, resulting in yearly, monthly, and daily cycles. A majority of research has
modeled these patterns by employing dummy variables for hours of the day, days of
the week, months of the year, weekends, and public holidays. Besides, some studies
have used the calendar variables to subgroup the data. A smooth function estimated

with cubic regression spline was used to model the summertime effect [2]. A separate
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model was fitted for the data from each half-hourly period. Different models for
different days of the week in every season were developed [40]. Data resampling
based on different weekdays was done to train five different models [41].

Various socioeconomic information, such as a forecast of GDP and demographics,
have also been incorporated for long-term forecasting. Economic and demographic
variables such as GSP chain volume estimates and average electricity price were con-
sidered in the long-term forecasting model [2]. The authors modeled these effects as
a linear term with the same coefficient for each period since economic relationships
are typically weak and change slowly. These annual effects were later combined with
the half-hourly models. The long-term GSP forecasts and pricing scenarios were as-
sumed. The model generated the density forecast for yearly and weekly peaks for
up to 10 years using simulated temperatures, known calendar effects, and simulated
residuals.

Socioeconomic variables that affect the future demand for electricity, such as GVA
(Gross Value Added) by sector and the number of households were modeled to gen-
erate long-term forecasts of hourly electricity demand [17]. Macroeconomic scenarios
were created and then converted into annual growth possibilities for electricity de-
mand. These annual values were then transformed into daily values using the Boot-
Feibes and Lisman (BFL) disaggregation method. Temperature simulations were
added to the model along with calendar effects. Annual peak loads, peak loads in
winter and summer, and monthly peak loads were recorded for each scenario to create
density forecasts.

Long-term forecasting problems caused by any influence or disruption of peak load
value, such as peak reduction tariff system and load transfers were addressed in a
study [42]. The proposed methodology included weather normalization and modeling
peak load reduction by S-curve. With the increasing adoption of various peak-shaving

measures, backcasting curtailed load is another challenge added to the load forecasting
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problem.
2.1.1.3  Feature Selection

With the vast pool of variables to select for modeling, many authors have report-
edly used feature extraction and feature selection algorithms. Feature extraction is
the process of transforming high dimensional data to lower dimension by changing
the representation of the original data in a way that maximizes the variance of the
data in the new dimensional representation. The process yields a new set of dimen-
sions called principal components, removing the redundancy of data but also losing
interpretability. Feature extraction on 28 variables, including weather variables and
calendar variables, was performed using the Principal Component Analysis to extract
11 factors [40].

In contrast to dimension reduction methods, the feature selection process reduces
the number of features, by choosing only relevant features and identifying redundant
or non-relevant features. A cross-validation approach was used for feature selection
[2]. After separating the data into training and validation sets, the input variables
are chosen based on the features giving minimum prediction errors on the validation
period. The Pearson correlation index was used to select input features that were
highly correlated to peak load and independent of one another [43|. Various feature
selection methods were examined on different models [44]. Some of them included
utilizing the lasso penalty and ridge penalty to penalize the highly correlated predic-
tors, mutual information-based feature selection method, and inference on different
permutations of features.

The joint distribution of load and exogenous variables were analyzed to determine
the upper tail dependence [45|. The peak load indicative variables were obtained from
the bivariate distribution to increase the peak load forecasting. The Random forests
algorithm was used to examine the candidate parameters in terms of their influence

on the prediction response using the method [22|. The model was trained with dif-
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ferent permutations of variables and analyzed for errors to assess the importance of
variables in terms of their impacts on the prediction response. The selected features
were the time indicator, the HVAC operation schedule, outdoor air temperature, and
relative humidity. In another study, the backward feature elimination algorithm was
used to perform the input variable selection [46]. The model was first trained using
all candidate variables to compute the variable importance for all the variables. Sub-
sequently, the variable with the lowest rank was removed. This was done until the
model performance stopped improving. A fuzzy-based feature selection was used to
select only relevant features [47]. Gaussian membership function was chosen for the
proposed fuzzy-based feature selection method.

Changes in lifestyle, such as the adoption of EVs, up-gradation of household ap-
pliances, changes in the HVAC system, etc., change the magnitude and timing of
peak demand. Although daily energy use may stay relatively similiar, peak demand
fluctuates depending on when the energy is being used. The changes in load profile
at lower-level aggregates impact the load profiles at higher levels. These trends are

difficult to model due to the scarcity of training data.
2.1.2  Techniques

With time, various techniques and their combinations have been tried out for peak
load forecasting, broadly categorized into (a) statistical methods, including Multiple
Linear Regression (MLR), time series models, distribution fitting, and Bayesian esti-
mation; (b) Artificial Intelligence (AI) models including neural networks (NN), fuzzy
systems, SVM, deep learning networks; and (c) hybrid methods. Figure 2.4 shows
the numbers of some notable journal papers using different techniques in different
forecasting horizons. Most of the existing research in this area has primarily focused
on short-term load forecasting using Al. For long-term forecasting, however, most of
the representative papers have used statistical methods such as distribution fitting

and MLR. This could be because long-term forecasts are often derived in the form
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of probabilities by generating numerous scenarios. Training so many Al models is

computationally difficult.
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Figure 2.4: Publications compiled over techniques used across different forecasting
horizons.

2.1.2.1  Statistical

In statistical models, the relationship between dependent and independent variables
is estimated. These models broadly fall into two categories: univariate models (such
as exponential smoothing, ARMA, ARIMA, etc.) and multivariate models (such as
MLR, additive models, etc.). Univariate models use past values of time series and,
sometimes, historical values of the error term to forecast future values. With the
multivariate models, the relationship between the dependent variable and other inde-
pendent variables is estimated. These techniques are data-driven, easier to interpret,
and typically less computationally expensive than Al

MLR analysis is one of the earliest and most widely applied techniques for short-
term load forecasting [48]. A short-term forecasting model based on a linear regression-

based model, implemented in the Pacific Gas and Electric Company was detailed out
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[21]. Temperature effects, calendar factors, and holiday effects were modeled in the
proposed regression model with weighted least square estimation. The weights were
calculated using the forecast errors of training data to make the model robust against
outliers. The paper also described the direct peak load forecast model based on linear
regression.

A statistical diagnosis of various regression models to forecast the daily peak load
applied was presented [16]. The variables were systematically added to the model, and
the diagnostic tests were examined to evaluate the effectiveness of different variables
using a case study from a utility in Michigan. An MLR-based model developed for a
real-time forecasting competition organized by Puget Sound Power and Light Com-
pany was described [49]. They developed hour by hour model to forecast hourly load.
The morning peak forecasts and evening peak forecasts were derived by aggregation.
The regressors used in their model were calendar variables, holiday effect variables,
temperature variables, and the previous day’s load variables. They further tested
an adaptive version of their model, where the forecasts were exponentially smoothed
based on the previous day’s forecast errors.

A transformation function of temperature to model the non-linear relationship
between maximum temperature and peak load was proposed using MLR technique
[50]. The model captured the baseload growth and weather-sensitive load growth for
forecasting daily peak load. The proposed method was tested using the Tokyo Electric
Power Company’s actual load data. [30] proposed two methods based on MLR for
same-day and next-day peak load forecasting. Both approaches used the training data
from a similar period in previous years. The first approach models the relationship
between the daily peak load and the morning reference load for same-day forecasting
and removes the trend. The de-trended load is regressed against the weather variable
to get the forecast. In the second approach, the trend part was explicitly modeled in

an MLR model. The variable transformation was used to estimate changes in load
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characteristics for past years relative to the forecast year.

A functional linear regression model was proposed using a case study from Spain
for heating demand [51]. The proposed short-term PF model used the load curve of
the previous day as the regressor to forecast the daily peak load. Furthermore, the
training data was clustered into groups using the k-means algorithm. Thus, a family
of functional regression models was obtained.

Time series analysis is also commonly used for PF, as peak load is sequential data
with correlated values. An ARIMA model was proposed for the daily peak load
time series [20]. The author extended the ARIMA model to incorporate exogenous
variables such as temperature and an initial estimate from the operator. A time
series model was proposed using a case study from the Great Britain National Grid
[52]. The weekly cycle of daily peak load time series was mapped into the polar
coordinates to form the elliptic-orbit model. Many studies have also applied Time
Series decomposition. The load series was decomposed to get the non-linear trend
of the hourly loads via polynomial fit [20]. The single Value Decomposition (SVD)
method was applied to the de-trended series to extract the cyclic and the random
components. The latter was fitted to a normal distribution of zero means.

Generating peak load probabilistic forecasts by fitting a distribution is another
statistical approach in the literature. Exponential distribution was assumed to gen-
erate peak load probability density function [53|. Later, the study was extended
by assuming multiple distributions such as univariate gamma, beta, and triangular
distributions [18]. In another work, the lognormal distribution probability density
function was used to abnormal peak load [54] to develop a probabilistic load forecast-
ing model for a building. Normal peak load and abnormal peak load were identified.
Probabilistic peak forecasts for normal peak load were generated by considering un-
certainties in weather forecasts. Long-term peak load growth of a distribution network

was represented by the S-curve [55]. The historical data was fitted to an S-curve at
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different spatial levels. The hierarchical forecasting modules reconciled the forecasts
at different levels using bottom-up and top-down allocation.

A short-term electrical load forecasting scheme based on Bayesian estimation was
described [56]. The model relied on the recursive use of Bayes’ rule to generate a
forecast. A Bayesian approach was also presented for estimating half-hourly load
with separate regressions for each half-hour [24]. The Markov Chain Monte Carlo
(MCMC) algorithm was developed to obtain the forecast distribution of hourly load
and daily peak load from the posterior distributions of the parameters. Using a radial
basis, they used the functional form of a bivariate temperature and humidity effect.
The trend was captured using a quadratic trend variable. They also modeled the
error using a first-order vector auto-regression exploring the intra-day autocorrelation

structure of the errors.
2.1.2.2  Artificial Intelligence

Unlike statistical models, AT models, such as ANN and SVM, do not require explicit
specification of the relationship between input and output variables. These models
are learning algorithms that try to replicate the human brain. Hence, instead of
exploring causal inference, these models learn by minimizing a cost function. As a
result, the models are more expensive to compute as they require a longer learning
history. Furthermore, these "black-box" models are difficult to comprehend, and
tuning the architecture and hyperparameters of the model is not an easy task.

Nevertheless, since the 1990s, ANN models have been widely used in load forecast-
ing. The literature survey for peak load forecasting also reveals that this method is
most frequently used. Various algorithms have been proposed to enhance the learning
method of ANN architecture. The performance of ANN models with different vari-
ations of the conjugate gradient backpropagation (CGBP) learning method was dis-
cussed [57]. In the conjugate gradient algorithms, a search was performed along con-

jugate directions, producing faster convergence than the steepest descent directions.
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They found that the Powell-Beale CGBP (PBCGBP) method performed the best,
while the Fletcher-Reeves CGBP (FRCGBP) performed the worst. An improvement
of the ANN architecture by tuning the weights obtained from Levenberg-Marquardt
(LM) learning algorithm was proposed using an evolutionary algorithm [35]. A uni-
form search obtained a new generation of weights. The weights were updated if the
child had less validation error than its parent. Instead of using a fixed learning rate,
[58] discussed the adaptive learning rate backpropagation method, where the learning
rate varies per the performance improvement in each iteration.

Many different search algorithms have been tried to address the key challenge of
finding the optimum parameters of networks. Clonal Selection Algorithm (CSA) was
introduced to find optimal weights and bias coefficients of ANN architecture [47]. A
stochastic search technique for the ANN model was proposed that combined Differ-
ential Evolution, Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and
Simulated Annealing algorithms [35]. In addition, the overfitting problem has been
addressed using the Bayesian regularization of parameters. The Bayesian framework
constrains the convergence of parameters to a set of weights and biases with smaller
values by considering a probability distribution over the weight space.

A recurrent ANN (RNN) to estimate four weeks ahead daily peak load [59] . In
the preprocessing step, load values of special days and weeks were replaced with
artificially processed normal data. Since the proposed algorithm recurrently used the
daily peak forecast as input data for the next day, it was prone to accumulation errors.
However, the author reported that the weekly pattern learned by the RNN helped to
prevent the increase of accumulated errors. The performances of the proposed RNN
were verified on load data of South Korea.

A Neural Network Weighted Least Squares (NNWLS) model was developed with
a weighted least squares procedure for training [60]. The objective function of the

network was to minimize the weighted least square errors. The weights reflected the
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cost of error, which was actually the marginal cost of the hour. The hourly load
forecast was evaluated for the on-peak period.

SVM is another common Al technique. The winning entry solution to the EUNITE
2001 competition, based on SVM, was described [34]. The results of this work helped
elevate SVM to prominence in load forecasting. Like ANN, one of the key challenges
of SVM is tuning the hyperparameters such as cost of error, the width of the tube,
etc. The authors in this paper found the parameters based on the evaluation of the
validation period.

Several research studies have used soft computing algorithms to search for the
optimal parameters of the SVM. A chaotic genetic algorithm-simulated annealing
algorithm (CGA-SA) was proposed to determine the hyperparameters for SVR-based
monthly peak load forecasting model [61]. The CGA part evaluated hyperparameters’
initialized population to find the best individual. The next step was to use the chaotic
mutation procedure to find the better parameters in the neighborhood. [50] used
the Grey Wolf Optimization algorithm to optimize the regularization parameter and
radial basis function parameter of the SVM.

A two-step hybrid optimization algorithm to determine the best parameters of
SVR was proposed [26] . In the first step, a grid traverse algorithm (GTA) was
used to narrow the parameter search area. In the second step, PSO was used to
determine the best parameters in the local parameter space using results from the
first step. In another approach, peak load series and meteorological variable series
were decomposed using the MEMD algorithm [62]. The extracted inputs were fed to
an SVR model, and the hyperparameters were optimized using the PSO.

As computer speed and processing power increase, Deep Learning (DL) techniques
are becoming more common. The use of DL in peak load forecasting has seen meteoric
growth in the number of published works in recent years. Deep belief networks were

used for the day-ahead hourly load forecasting problem [63]. The methodology was
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tested on two distribution networks from Macedonia and evaluated for daily peak
load forecast.

Long short-term memory (LSTM) recurrent neural was used to decompose the
load series into five views to identify trends and variations of load series [64]. The
LSTM neural network is a gated recurrent neural network that memorizes the new
information selectively. The decomposed features and calendar variables were then
used to train the radial basis function neural networks (RBFNN).

[65] also proposed a forecast model based on LSTM. A dual-attention-based encoder-
decoder was used to enhance the LSTM. The feature attention mechanism selected
the relevant features, while the temporal attention mechanism integrated the fea-
tures from different time nodes. [83| proposed a hybrid convolutional neural network
(CNN) to generate the week-ahead daily peak load forecast. The hyperparameters
such as kernel size, size of the pooling layer, number of kernels, and dropout ratio of
the CNN were optimized by GA.

A three-layer gated recurrent neural network was used [66]. In another study,
a CNN model with an attention network was used for residential short-term load
forecasting at the meter level. The variables used in the model were calendar variables,
voltage levels, current intensity, reactive power, and energy sensor measurements
for different household appliances. The paper empirically demonstrated that the
proposed model was able to capture the peak-time load better when compared to the
other models.

Another critical issue with Al techniques is over-fitting, leading to poor out-of-
sample results. Many studies have addressed this problem by employing clustering
to create smaller subsets of similar time series from training data. A widely used
clustering algorithm for peak load forecasting is the Self-Organizing Map (SOM)
network. It is an unsupervised learning approach in which the clustering centers

(called neurons in this context) are initially given random weights. The weight of the
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'winning neuron’ is then adjusted in each iteration after an input sample is examined
for proximity to the neurons. Other neurons’ weights are changed based on their
proximity to the winning neuron. Each clustered subset is then trained using an Al
approach, yielding a family of trained models. The model for test data is chosen based
on some criteria, such as the distance of the test sample from the cluster centers.

The SOM network was applied in the first stage to cluster the input training dataset
into the regular and anomalous segments by analyzing the dynamic features of the
time series [30]. SVR models were fitted on the two subsets to forecast day-ahead daily
peak load. The algorithm was tested on the ISO New York dataset. Another study
used the SOM network to cluster the training data into two subsets for one month
ahead of daily peak load forecasting on EUNITE dataset [43]|. Each clustered training
subset was fitted to an SVR model. Since the input vector for the SOM comprised of
the past seven day’s peak load, the forecasted peak load values were used in distance
evaluation. This approach has the potential problem of error accumulation that has
not been addressed in the paper. In a similar approach, SOM network was used to
cluster the training data into five subsets [67]. Then, a feed-forward neural network
(FFNN) model was developed for each data cluster to forecast the daily peak load.

Other algorithms have also been used to find similar days in history. A k-nearest
neighbor (kNN) with a 1-norm distance was used on the temperature variable to find
similar days in a 2-week neighborhood around the target day [23]. A typical load
curve for a commercial building was generated using the hierarchical agglomerative
clustering technique [68]. The load curve was separated into four phases, and the
mean power demand for each period was utilized as the clustering algorithm’s input.
The peak load of the day was forecasted using the estimated load curve, and the
actual demand at 6 AM.

Similar days of the week were grouped by using correlation factor resulting in

three clusters for each season [69]. Another method used Dynamic Time Warping
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(DTW) to establish a similar daily peak load sequence from the historical data [66].
DTW dynamically allows optimal mapping between two time series to represent the
similarity between the two series. Peak load segments (a sequence of daily peak
loads of the last seven days) were obtained from autocovariance analysis of the daily
peak load series, which was then matched to the segments in the historical data using
DTW. The rule was that if the two segments were similar, the following corresponding
segments would be similar too. The matched segment was then fed into the Gated
Recurrent Unit (GRU) along with calendar and temperature variables. The EUNITE

dataset was used to evaluate performance.
2.1.2.3  Hybrid Models

Integrating statistical analysis and machine learning in a model is a common ap-
proach. These hybrid models tend to perform better since different models are able
to capture diverse aspects of load patterns. Typically the load series is broken into
different components, where each component is modeled separately. Wavelet decom-
position of clustered daily load data was done to break it down into high-frequency
and low-frequency series [69]. The day-ahead low and high-frequency peak loads were
forecasted using the two ANN models. Finally, the forecasted peak load signal was
obtained by reconstructing the predicted low and high-frequency components.

A hybrid model using fuzzy logic (FL) and ANN for the day-ahead peak load fore-
cast was proposed [70]. The FL model yielded a value representing the expected
change in the peak load from the previous day’s peak load. The output of the FL
module was used as an input to the ANN module, along with calendar and tem-
perature variables. Fuzzy Neural network (FNN) exploits the learning capability of
ANN to solve the problem represented by fuzzy logic [41]. The FNN-based model was
proposed to forecast the day ahead peak load. FNN can be viewed as a three-layer
feed-forward network, with an input layer where inputs are classified into fuzzy mem-

berships (fuzzification), a hidden layer corresponding to the individual fuzzy rules
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modified adaptively, and a final fuzzy output layer of load forecasts (defuzzification).
In another application, the FNN model was proposed to forecast noon peaks and
evening peaks [71|. The fuzzy model used here was rule-based, consisting of if-then
rules. The output of each rule was a function of independent variables. The Recursive
Least Squares Estimation method was employed to calculate the rule of consequent
parameters. The model was trained using a GA.

Instead of integrating different approaches into one model, a forecast combination
brings together the forecasts from individual models from different techniques. The
core idea is to leverage the information underlying individual forecasts. Combining
forecasting approaches empirically provides more robust and accurate forecasts than
individuals [72]|. A weighted averaging approach was proposed, where the two forecast
series were combined to generate the final forecasts [45]. One approach was based on
decomposing time series into sub-series, where each subseries was modeled using a
Deep Belief Network (DBN). The second approach used aggregation of multiple out-
puts from DBN network developed on peak load indicative variable for each exogenous
variable. built An ensemble model by combining eight base models using different
techniques(MLR, SVR, RF, MLP, BT, MARS, ARIMA, and kNN) was built [38]. GA
was used to optimize the weights of eight base models in the final ensemble model.
A hybrid forecasting model involving models based on ARIMA, Logistic Regression
(LR), and ANN, was developed to predict whether the next day would observe the

peak demand of the month [73].
2.2 Peak Timing Forecasting

The literature focusing on peak timing forecasting is scarce. One of the first studies
to examine load forecasting models for peak timing accuracy was conducted by [19].
The paper proposed their methodology to determine the probability of the occurrence
of peak demand. The case study was from a province in the Netherlands for years

between 1995 and 2000. The analysis showed that cold temperatures and the holiday
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season led to peak day occurrence in the weeks leading up to Christmas. Using
weather simulations, the model estimated the probability of the peak load day on
different days in December.

“PELD” (Peak Electric Load Day) was defined as the day when the high demand
occurs [73]. The z-score of the distribution of the daily peak load of a month was
computed to define if a day is PELD or not. Month-ahead PELD forecasting models
were developed from two approaches. One of the tracks was a two-step process with
monthly-threshold-based forecasting models. First, a monthly threshold value was
obtained from a daily peak forecasting model using an elastic net regression analysis.
Next, day-ahead load forecasts at 30-minute intervals were generated and the monthly
threshold was used to determine whether or not a day qualified as PELD. The second
approach used a binary classification forecasting model to directly classify a day as
PELD or non-PELD. Finally, a hybrid model was proposed wherein the forecasts from
the two were combined. The study was extended to evaluate the effect of “Behind the
meter Renewable Energy Generation” on the performance of the proposed algorithm
[74].

A Bayesian approach to generate the forecast distribution of half-hourly load for
long-term and short-term horizons [24]. The proposed method generated a predictive
distribution of the time of the daily peak. The study also noted that seasonal factors
contribute strongly to the distribution of daily peak hours. Another study evaluated
the performance of their proposed short-term peak load forecasting model for magni-
tude, and also the ability of the model to forecast the occurrence of daily peak hours
[75]. They compared the distribution of actual peak hours and forecasted peak hours
by the Kolmogorov-Smirnov test. The results showed that larger time displacements
between the forecasted and actual values of the peak hour were less frequent than
smaller displacements, as most of the displacements were within three hours. The

case study used in the experiment came from the Colorado State University campus.
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The forecast of timing of daily peak load for commercial and industrial customers
was analyzed in [76]. Contrary to residential loads, industrial loads do not exhibit any
short-term seasonality. Hence, a model using stochastic analysis of the demand was
developed. The peak time was forecasted by comparing the logarithmic rate of change
between the data and the historical references. The methodology was tested on three
case studies with different sampling rates of one hour or 15 minutes. The results
were analyzed for accuracy, and the study concluded that the methodology could not
distinguish spikes from actual peaks in higher sampling rate data. In another study,
abnormal peak load was defined as the hourly load with significant and positive
deviation from its neighboring loads in magnitude [54]. They used the historical
probability of each hour to observe the peak demand to forecast the occurrence of
abnormal peak load for every month.
Evidently, the study on the timing aspect of peak forecasting is very limited in the
literature. The primary focus of PF has been on magnitude to date. The peak timing
aspect has received little attention. Due to a lack of comprehensive research on the

topic, there are some open questions:
1. How do we measure the peak timing forecast accuracy?

2. How do the load forecasting models developed for the entire load profile perform

for peak timing forecasting?

3. Are models specifically developed for peak timing forecasting more accurate?



CHAPTER 3: CASE STUDIES

3.1  Case Study 1: MeSU

Our first case study is based on data from an anonymous medium-sized U.S. power
utility, that we call MeSU. The load time series consists of 8 years (2012-2019) of
hourly load data from three adjoining supply areas within the utility’s service territory
(3.1) and the aggregate zone. The aggregated level is called the top level, which is an
aggregate of three supply areas named SA1, SA2, and SA3, and a small-sized supplier.
However, we only used the load data from the three largest supplier areas as separate
load zones for the experiment. Table 3.1 provides an overview of the statistics of load
data for each of the four zones for the eight years. Data shows that SA1 is the largest

supply area, while SA3 is the smallest.

Table 3.1: Summary statistics of load data (in MW) for MeSU

Mean Std. Min Max

Top Level 1534.8  552.6 429.7 4712.8
SA1 1118.1 3704  507.6 3204
SA2 233.1 82.7 101.2 553.1
SA3 1476 47 58 375.6

Weather data is available from 28 weather stations that are located within or
near the three supply areas. The weather data consists of historical observed hourly
temperature data and day-ahead hourly temperature forecast data for the period of
the given load history. The temperature forecast is released at 7 a.m. and covers the

following 40 hours. The hourly temperature records from the 28 weather stations for
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a day from 2016 (06/14/2016) are plotted in Figure 3.2. We see a lot of variations in

the readings, and hence selecting weather stations for each zone is an essential task.
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Figure 3.1: Load history of Top Level under MeSU.
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Figure 3.2: Temperature series from 28 weather stations under top level of MeSU.

Figure 3.3 shows the histogram of daily peak hours for each month of the year 2016.
We see seasonality in the timing of peak demand. Summer months see extended long
periods of peak demand in the evening. Months with mild weather such as April
and October, the peak hours are distributed between morning and evening peaks. In

winter months, days with morning peaks dominate over days with evening peaks.



36

January February March April
251
20
154 1 1 1
104 1 1 1
May June July August

251
20
15
10+

54

0

September October November December

25
20
15 1 1 1
10 1 1 1

: | | |

o ’ ’ 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Hour Hour Hour Hour

Figure 3.3: Peak hour distribution for top level of MeSU in different months of the
year 2016.

3.2 Case Study 2: ISONE

The second case study is publicly available data from ISO New England, which
serves the six states in the northeast U.S. including Connecticut (CT), Massachusetts
(MA), Maine (ME), New Hampshire (NH), Rhode Island (RI), and Vermont (VT).
MA is dissected into three load zones, namely Northeastern MA and Boston (NE-
MASS), Southeastern MA (SEMASS), and Western Central MA (WCMASS). Each
of the other five states is considered a load zone. The aggregated zone is named
ISONE. Figure 3.4 shows the eight load zones of ISO New England [77|. The sum-
mary statistics of the nine zones are shown in Table 3.2, where zones are arranged in
the order of the average load statistics.

In this paper, we use six years of hourly load and temperature data published by
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ISO New England from 2014 to 2019 to conduct the case study. The observed tem-
perature data from weather stations corresponding to each load zone is also given.
However, the historical temperature forecast is not archived. Recently, the European
Centre for Medium-Range Weather Forecasts (ECMWF') published the historical nu-
merical weather prediction (NWP) [78]. This dataset contains four years of historical
weather forecast history (2017-2020), and 14 weather forecast variables at a spatial
resolution of 0.5°x 0.5°grid, covering most of North America. We leverage this data to
get the real temperature forecast for all the zones by mapping the coordinates of the
weather station corresponding to each load zone, to the closest grid point. Hence, we

get the hourly temperature forecasts for three years (2017-2019) for this case study.

Wholesale
Load Zones in
New England
ME
Maine
VI \
Vermont
NH
MNew Hampshire
WCMA * NEMA
Western/ —- Northeast Mass.
Central Mass.
SEMA
cT Southeast Mass.
Connecticut
RI
khode Island
Source: 150 New England

Figure 3.4: Load zones under ISONE.
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Table 3.2: Summary statistics of load data (in MW) for ISONE.

Mean Std. Min Max
ISONE 14211.7  2828.9 7892.0 27707.0
CT 3409.5  762.9 1372.0 7219.0
NEMASSBOST 2830.1 563.8 1665.8 5658.0
WCMASS 1922.1 3728 739.0 3650.0
SEMASS 1659.1  385.2 875.0 3645.0
NH 1316.7  262.1  521.0 2433.0
ME 1303.3 2059 T711.6  2135.0
RI 916.3 204.3  365.0 1967.0
VT 627.5 110.7  178.1  985.0

The peak hour distribution across months for ISONE is depicted in Figure 3.5.

Unlike the first case study, the peak hours in summer are scattered between morning

and evening, while in winter, the system dominantly peaks in the evening only.
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Figure 3.5: Peak hour distribution for ISONE in different months of the year 2016.



CHAPTER 4: THEORETICAL BACKGROUND

4.1  Multiple Linear Regression

MLR is a traditional statistical approach that models the relationship between the

independent variables and the response variable. The model can be presented as:

Yi =00+ 081 Xit+ o Xop+ B3 Xap+ ... By Xy + & (4.1)

The most commonly used estimator is the Ordinary Least Squares (OLS), which
works on the basic principle of minimizing the Sum of Square Error (SSE). For a

sample size of N, SSE term can be presented as:

N
SSE = Z (Y;‘/ - ﬁO - ﬁlxl,t - /82X27t — ﬁng’t e ﬁkavt)Q (42)

t=1

The model coefficients can be estimated by solving the closed-form matrices or
using gradient descent techniques, the latter is beneficial when dealing with huge

datasets.
4.2  Recency Effect

An MLR-based model, popularly named Tao’s Vanilla Benchmark model, was pro-

posed [48]. This model is represented by Equation 4.3.

Et = Bo+ 1 Trend, + B Dy + 3 Hy + By My + BsHi D, + f (13) (4.3)

The observed load at time t is represented as as L;, the load forecast is presented
as Et. The Trend is an increasing natural number to represent the linear trend of
the load history. Calendar variables are modeled as class variables. The hour of

day is represented by H; with 24 levels. Week of the day is represented by D; with
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seven levels, and the calendar month is represented by M; with 12 levels. The non-
linear relationship between the temperature and load is captured by using up to third
order temperature polynomials in the model. The seasonal change in temperature
is modeled by the interaction of temperature terms with the months of a year. To
model the human activities related cycles, temperature terms interact with the hours

of a day, and the hours of a day interact with the days of a week.

F(T) = BTy + BT + BTy + BoHiTy + BroH/Ty* + B HiTi*+ (4.4)

BioM, T, + BisM,T* + BiaM,T,*

The impact of lag temperatures, or the temperatures from the previous hours,
on the current hour’s demand is referred to as the Recency effect [48]. Further,
[79] investigated the number of lagged hourly temperatures and lagged daily moving
average temperatures that yield the best forecast accuracy. The approach deploys
lagged hourly temperatures (T;_,, h = 1, 2, . . ., 72) and daily moving average
temperatures of previous d days. The daily moving average temperature of each d*®

day can be represented as:

- | 2
Tiq = 21 Z Tin (4.5)

h=24d—23
, where d= 1, 2, . . .,7. Then, Tao’s Vanilla benchmark model can be extended to

accommodate the Recency effect as:

Et =By + By Trend, + B2 Dy + B3 Hy + By My + BsH, D,

__ 4.6
+ (M) + D f(Ta)+ Y f(Tion) 0

This model is called the Recency Effect model. The modeling approach requires
finding the best d-h pair on validation data. For the GEFCom2012 dataset, this model
has demonstrated superiority above Tao’s Vanilla benchmark model(Hong, 2010) by

an average of 12 to 15 percent [79].
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4.3  Logistic Regression

Logistic Regression is a specific regression analysis approach applied to predict an
outcome in probability, and hence, is often used for classification problems. Logis-
tic regression, like linear regression, is a parametric model in which the coefficient
values are estimated in order to predict the output [80]. In contrast to linear regres-
sion, logistic regression transforms the output using a logistic function to predict the

probability of the default class. The logistic regression model is expressed as follows:

IOg (1 ptp ) = 00 + 61 Xt71 + 02 Xt,g + ... Qk Xt,k + & (47)
Mt

, where p; denotes the conditional probability of success, given the explanatory vari-
able [X;1, Xto. .. Xt

Maximum Likelihood Estimator (MLE) is used to estimate the parameters of Lo-
gistic regression. MLE gives the values of parameters that, out of all the possible
values for #, maximize the likelihood of the observed data. If 1, represent the true

label, the cost function is given as follows:

> wdog(pr) + (1 —yp)log(1—py) (4.8)

The peak timing forecasting problem can be formulated as a binary or a multi-level
classification problem. With binary classification, the instance of the occurrence of
peak demand can be labeled as an event, indicated by 1. The peak hour forecasting
problem can also be formulated as a multi-level classification problem. The different
probable peak hours can be the nominal classes of the model. Once the event state
is established, the actual or forecast value of peak demand is no longer relevant; only

the event status is used to calculate metrics.
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4.4  Forecast Evaluation
4.4.1  Error Measures for Load Forecasting Problems

Different types of error measures are used to evaluate hourly load forecasts. Due to
its interpretability and scale independence, mean absolute percentage error (MAPE)
is one of the most frequently used error metrics in the domain of load forecasting.
However, a significant disadvantage of employing MAPE is that it gives a heavier
penalty when the actual value is smaller, and hence it will become invalid for actual
values of zero or close to zero. MAE and RMSE are scale-dependent, and hence, they
cannot be used across different data sets. In addition, RMSE is sensitive to outliers

as it gives a higher penalty for large errors.

N
1

Mean Absolute Percentage Error (M APE) = N Z (4.9)

N
Mean Absolute Error (MAE) = S Z L, — L (4.10)
N - t t .

N

Root Mean Square Error (RMSE) = Z (L — Lt (4.11)
=1

In our case studies, we hardly encounter loads that are close to zero. Hence, in this

study, we use MAPE as the error measure to evaluate hourly load forecasts.
4.4.2  Error Measures for Classification Problems

Classification problem with binary outcomes is best described using a confusion
matrix as in Fig. 9. True Positive (TP) refers to the count of true events detected,
and False Positive (FP) refers to the false events detected. True Negative (TN) is
the count of true non-events detected, while False Negative (FN) is the count of false

non-events detected.
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Predicted True Predicted False

Actual True TP FN
Actual False FP TN
Sensitivity or Recall or True Positive Rate(TPR) — ——© (4.12)
ensitivity or Recall or True Positive Rate = TPTFN .
True Negative Rate(TNR) — —-% (4.13)
rue Negative Rate = INLFP .
Precision or Positive Predictive Value(PPV) P (4.14)
recision or Positive Predictive Value = ——— .
TP+ FP
TPR+TNR
Balanced accuracy(BA) = + (4.15)
2 xTP
F = 4.16
LT = X TP)+ FP 1 FN (4.16)
TP
I = 4.1
¢5 TP+ FP+ FN (4.17)

True Positive Rate (TPR), defined in Equation 4.13, gives the ratio of the number
of the events identified to the number of actual events. Precision, defined in Equation
4.14, gives a ratio of the number of events identified to the total number of events
identified. This metric accounts for FP and a higher FP would lower the Precision.
However, the metric ignores the missed events, that is, the FN. Another metric given
by Equation 4.16, known as the F1 score, combines TPR and Precision. Equation
4.15 gives the Balanced Accuracy, which is the average of TPR and TNR. Another
common metric is the Critical Success Index (CSI), given by Equation 4.17, also
known as the threat score. The formulation of CSI is very similar to F1 score, with
TN removed from both the numerator and denominator. This could be useful for the

evaluation when the number of true negatives is dominantly large.



CHAPTER 5: ERROR MEASURES FOR PEAK TIMING FORECAST

5.1 Literature Review

The literature on peak timing forecasting mainly gives two problem sets - forecast-
ing daily peak load instances and forecasting the days with peak demands. In this
section, we will look at the error measures used by the prior studies for measuring
the forecast errors for the two problems.

Peak timing forecasts have been evaluated by comparing the distribution of peak
hour forecast with the actual distribution [54|, [75]. This method provides a visual
indication of the goodness of the forecast models. However, it does not quantify the
errors. [76] formulated peak timing forecasting problem as a binary classification
problem, and employed classification problem error measures such as TPR, FPR,
Sensitivity, and F1l-score. Balance Accuracy (BA) was used to evaluate PELD fore-
casts |73] and [74]. The probability of peak demand occurrence on different days in
a month was generated using forecasts generated by different long-term temperature
scenarios [19]. The paper simply compared if the actual day of peak demand falls on
a date with a relatively high probability of peak demand.

A new error metric was developed to evaluate sub-hourly forecasts at the meter
level [81]. A set of forecasts was created by shifting the forecast series by a few
intervals. Then each set was evaluated with actual load series using the absolute
p-norm with p = 4. The minimum error over the set of all permutations was taken
as the final error to allow for some flexibility in the timing of the forecast. Using the
4-norm errors, the authors tried to associate large errors with missed peaks, which
might not be true as a large error could also correspond to non-peak hours.

Some studies have innovated with application-specific error measures. Domain Bias
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Percentage Error (DBPE) based on Granger’s ’linlin’ function was proposed in [82].
It allows different penalties for over-prediction and under-prediction. Further, they
configured the constraint to favor either under-prediction or over-prediction. In most
applications related to a peak demand of smart grid, under-prediction of forecasts is
more deleterious. Although the metric is intended to address peak demand error, the
proposed error measure does not specifically measure the peak timing error.

An error metric was introduced to evaluate load forecasts used for optimizing the
charging and discharging schedule [83]. The metric only evaluated evening hours
and was named time series shape error. The 6 PM load was used as the reference
hour load, and the difference between the forecast at time t and at 6 p.m. and the
difference between the actual load at time t and at 6 p.m. were then evaluated with

RMSE formulation. The formulation is given in equation 5.1.

3
€= (ZETT) ,where
t

Err = [(F,— Fspar) — (Le — Lepu))

, where t € ESS discharge hours (i.e., 5 p.m. to 8 p.m.), F; is the load forecast of
hour t, Fgpys is the load forecast at 6PM, L; is the actual load of hour t, Lgpys is
the actual load at 6 p.m. This weighted sum of the time series shape error and the
mean square error was used as the loss function for forecasting load. The proposed
method was implemented in the winning entry of the Western Power Distribution
(WPD) Presumed Open Data (POD) competition, where the task was to generate
the charging and discharging profile of ESS. Although the metric is implementable,
it is biased towards the error of the reference hour load, as shown in Table 5.1. Case
1 and Case 2 have the same absolute errors in adjoining hours of the 6 p.m. and ¢ is
9 for both cases. In Case 3, the reference hour load has the same error, however, this

time ¢ is quite high at 37.
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Table 5.1: Demonstration: time series shape error.

Case 1 Case 2 Case 3

A|F Err A | F Err A | F Err

16:00 | 8 | 11 9 8 8 0 8 8 9
17:00 | 12 | 12 0 12 | 12 0 12 | 12 9
18:00 | 14 | 14 0 14 | 14 0 14 | 17 0
19:00 | 13 | 13 0 13 | 10 9 13 | 15 1
20:00. | 12 | 12 0 12 | 12 0 12 | 12 9
21:00 | 11 | 11 0 11 | 11 0 11 | 11 9
€ 9 9 37

Another recent study proposed Relaxed accuracy for measuring the daily peak
timing for half-hourly data [33]. The measure is similar to TPR but with some
flexibility. It gets the value of 1 if the peak load instance is within two instants away

of the actual peak, and 0 otherwise.
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Figure 5.1: Demonstration: scenarios with different peak timing errors but same

d-RMSE.

The paper also proposed a new error measure d-RMSE which is based on the
difference of actual load at the predicted peak time L; and actual load at actual

peak time L,,, in other words, actual peak load.

1 n
d-RMSE = — 1> (Lpn — Ly )’ (5.2)

i=1
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The authors argued that if the two are very close, then the peak timing error has
no effect operationally. This may not hold true as demonstrated in Figure 5.1. In
case (a), the DR event would be triggered in the incorrect time window, resulting in
a missed peak-shaving opportunity. In case (b), where the timing error for the peak
is small, the time of day during which the DR event is triggered is close to the true
peak hour. However, the d-RM SFE is the same in both cases. Therefore this error
measure is not able to differentiate the two cases and does not help in measuring the

displacement error of peak timing.

Table 5.2: Summary of error measures used in literature for peak timing forecasting.

Error Measure Reference

Peak Load Days | TPR, BA [73],[74]

Peak Hours Comparing distributions, Dis- | [54],[75],|76],[33]
placement error, TPR, R-
accuracy, d-RMSFE

on-Peak period | Timeseries shape error [84]

Table 5.2 summarizes the error measures used in prior studies pertaining to peak
load timing. As we have seen, there has been little research on peak timing, and
there is no standard method or error metric to quantify how well a model performs in
forecasting peak timing. Therefore, we looked into error measures used in some other
fields for the event detection problem. In the discipline of meteorology, several studies
have been done on the metrics for evaluating event detection models. [85] examined
verification approaches that have been investigated and established in the meteoro-
logical realm. One of the sections emphasized the issues related to the verification
of extreme events. In terms of binary choices, "extreme" is not as black-and-white
as it may seem. The extreme events can be defined by selecting values exceeding a

pre-defined threshold, also known as peaks over the threshold, or selecting maximum
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value over a long period, such as annual maxima. For extreme events, it is desirable to
generate probabilistic forecasts [86]. Brier Score is a popular score adopted to assess
probabilistic forecasts of binary outcomes [87|. It measures the Euclidean distance
between the actual outcome (o; ) and the forecasted probability (f;) assigned to the

outcome for each observation as shown in equation 5.3.

> (fi — Ot)2
=N (5.3)

[88] discussed common metrics used to verify event detection models such as Accu-
racy, CSI, F1 score, and also, skill scores such as Heidke skill score (HSS), Peirce skill
score (PSS), and Gilbert skill score (GSS) in the research of magnetospheric physics.

Skill scores compare performance against a reference model.

Skill Score — MEtTiCmoder — MEIT1Cref

(5.4)

METICper fect — MELTICref

A skill score of 0 indicates that the new model has the same skills as the reference
model, and a skill score of -1 indicates that the new model has inferior skills to the
reference model. The reference model could be a persistent model or even a random
chance.

Some studies have developed error measures for a specific application. An optical
flow-based verification method was first published in [89]. The method breaks down
the forecast error into components: displacement, amplitude, and residual errors. A
similar idea was coined by [90] to quantify spatial differences between the forecast
and observation fields using an image-matching algorithm. The authors developed
Displacement Error (DIS) and amplitude error (AMP) to quantify how accurately
features are predicted in position and amplitude. These two errors are normalized
and summed to get a displacement-amplitude score (DAS). Such forecast verification
methods can be relevant for the verification of peak timing problems.

In the lack of adequate research on the peak timing forecasting problem, there are
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some fundamental questions that remain unanswered.
1. What are the different application-specific forms of peak timing problems?

2. Are the traditional load forecasting error measures and the classification prob-
lem statistics suitable for the operational requirement of peak timing forecast-
ing?

3. Finally, can we leverage error measures used in other domains to verify peak

timing forecasting?

In the next sections, we will explore these questions by first defining different forms of
peak timing problems, critically examining traditional metrics, and finally proposing

error measures for peak timing problems.
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5.2 Taxonomy of Peak Timing Problems
5.2.1 Peak Load Day

The first problem of Peak timing forecasting is identifying the days when the peak
demand of a month or a season is likely to occur, which we will call Peak Load Day
(PLD). Customers under a demand charge structure are charged for the peak load
consumed during their billing period [91]. Monthly PLDs are the days when the
demand is considerably higher than the average demand for the month. Customers
can effectively plan and implement demand response activities to reduce peaks and
avoid high demand charges if they have information on the PLDs in advance. Seasonal
PLDs are the days when the system load is considerably higher than the average
demand in a year. The operators need to know the seasonal PLDs in advance to plan
for DSMs such as calling DR events and maintenance activities. Because the number
of DR events that may be called in a season is limited, calling PLD on the wrong day
is disadvantageous. For the purpose of this study, we only analyze seasonal PLDs,
and henceforth seasonal PLDs will be referred to as PLDs. The number of PLDs in
a year is determined by the threshold or limiting load that is used to classify a day
as PLD. One way to determine the PLDs is from the load duration curve. A load
duration curve is simply sorted load data ordered from highest to lowest values. The
load duration curve helps visualize the number of hours during which a given load
has prevailed (Figure 5.2). The vertical dash lines indicate the load levels from 95%
of the annual peak to 5% of the annual peak. For example, demand up to 90% of the
annual peak, which is represented by the second vertical line, occurs only for 2% of
8760 hours in the year. Demand less than 30% of annual peak demand is observed

at all hours and hence, it is the base load of this system.



52

Load Duration Curve
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Figure 5.2: Load duration curve.

We can define a threshold for PLD by choosing the percentage of load hours from
the Load duration curve. However, this definition would require knowledge of the
generation capacity of different power plants and other operation details. Therefore
in this research, we have used a threshold based on the statistics of hourly load
distribution over a year. If p is the mean of hourly loads in a year, and o is the
standard deviation of hourly loads in the year, then the z-score of daily peak load (P,)
is Z; as in equation 5.5. The z-score of daily peak load can be used against a threshold
to classify a day PLD or not. The threshold can be chosen from the operational view
or electricity market view of terming ‘abnormal demand’. For instance, a threshold
of 2 was used to define electricity price spike [92], and to classify PELD [73].

The probability of obtaining a z-score of 2 or larger for a normally distributed test
statistic is p < 0.023(1 — 0.9773). Z; greater than 2, implies that the P, is more than
two standard deviations above the mean (u). Using a z-score of 2 as the threshold
would yield between 8 and 201 PLDs in a year. If we define a binary variable PD to
indicate if a day is a PLD or not, then PD is defined in the 5.6.

z,— bz (5.5)

o
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1, if Z, >2

PD = (5.6)
0, otherwise

Figure 5.3 visualizes the count of PLDs in the two case studies. The number of

PLDs ranges between 30 to 90 days per year.
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Figure 5.3: Number of PLDs in the top level of the two case studies.

5.2.2  Peak Hour

Peak hour is the instant the highest demand is observed during a period. The
definition also depends on the frequency of the data (hourly or sub-hourly). In this
research, we are working on the hourly data and hence peak hour is the hour when
the peak demand of a day occurs. Daily peak hours of PLDs for ISONE have been

plotted for the nine zones of ISONE in Figure 5.4.
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Figure 5.4: Peak hours on PLDs in different zones of ISONE .

5.2.3  On-peak Period

Peak shaving strategies are deployed in a time window on PLDs. For example, DR
events are called for a few hours on the anticipated PLD. Missing the actual peak
hours by calling DR during the wrong window would jeopardize the peak shaving
opportunity as shown in Figure 5.5 (a), where the DR is deployed after the actual
peak hour. On the other hand, calling DR much earlier than the actual peak hour
would shift the demand to the true peak hours, raising the true peak demand even

more (Figure 5.5 (b)).
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Figure 5.5: DR-deployment demonstration: a) event called earlier than the actual
peak period, b) event called later than the actual peak period.

Similarly, for the use case of scheduling charging and discharging ESS, it is very
important to know the best discharging hours for the optimum peak shaving. Hence,
it is imperative to know the “on-peak period”, which can be defined in different ways.

Most of the utilities fix the on-peak period during the evening time to schedule
the discharge of the PV-powered ESS [93]. Utilities also choose on-peak periods from

the load profile to design tariff structures. Because the peak occurs at different times
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during the summer and winter, this is done separately for each season. Overall, in
practice, a broad window of hours where the peak is most likely to occur is selected
as the on-peak period. As long as peak demand is within the defined window, the
cost of misclassification is trivial.

In this research, we define the on-peak period (@) as the time window extending
2 hours before and 2 hours after the peak hour, where hourly load exceeds 90% of
the daily peak load (P,), as shown in Figure 5.6. Hence, the on-peak period can
span between one hour and five hours. This definition of "on-peak period" focuses
on a specific time of day that varies every day. It may be complicated for seasonal
tariff designing, but it is crucial for the implementation of dispatchable peak-shaving

techniques and real-time pricing strategies.

On-peak period

Load

L J

Figure 5.6: On-peak period demonstration.

5.2.4  Peak Shape

Regardless of magnitude, the shape of the load profile during the on-peak period is
especially relevant for the efficient deployment of DR programs and scheduling ESS
discharging profile. We demonstrate this by an example of scheduling the discharge
of an ESS that has a limited capacity. The ESS discharge profile defines how much
energy is to be discharged in each time interval of the discharging period. The op-

timum peak shaving is achieved when the discharge profile follows the load profile
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exactly. The challenge is to create a discharge schedule without knowing the future
demand.

In Figure 5.7, we show two situations (a) and (b). The evening peak of actual
demand is to be reduced between 16:00 and 21:00 hours by discharging an ESS. The
green line is the ideal shaved load profile that can be achieved if the load forecast
perfectly matches the actual load. In scenario (a), the peak hour forecast is consistent
with the actual peak hour, but the load shape forecast during the evening hours differs
significantly from the actual shape. The realized shaving load, shown by the red line,
is obtained by optimizing the ESS discharge schedule using load forecast. We can
see that due to forecast error, the full potential of peak shaving is not realized. In
scenario (b), the demand is underestimated, but the shape forecast fits the actual
load shape. Even though the forecast error is large in this case, we are still able to
achieve optimal peak shaving. As a result, while selecting a load forecasting model
for this problem, it is essential to select a model that closely tracks the load shape

rather than a model with a lower MAPE or perfect peak hour forecast.
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Figure 5.7: Demonstration: load shape forecast for generating ESS discharging profile.

5.3  Evaluating Peak Timing Forecasts with Traditional Error Measures

This section will employ traditional error measures to evaluate the peak timing
forecasts. Peak timing forecasts can be derived from hourly load forecasts. In Chapter
3, we learned that the hourly load forecasts are commonly evaluated using MAPE.
The measure evaluates how closely hourly forecasts match up with the actual load.
The obvious question is whether a lower MAPE also translates to a superior peak

timing forecast. We ran an experiment on the aggregated level of both case studies
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to investigate if days with a lower MAPE correspond to a higher TPR and vice versa.
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Figure 5.8: Daily MAPE vs. TPR.

In the experiment, we deployed the MLR-based Recency Effect model with d=1
and h=1, thereon called R;;. We evaluated the hourly forecasts from R;; by daily
MAPE, which is obtained by aggregating the absolute percentage error (APE) for
each day in the validation year. Peak timing forecasts from R;; are evaluated with
daily TPR. Figure 5.8 presents the distribution of MAPE when TPR = 1 and TPR
= 0. Although the median of daily MAPE is slightly lower on days when TPR = 1
than when TPR = 0, the two groups are not statistically different. The p-value from
t-test was found at 0.97 and 0.72 for MeSU and ISONE case studies, respectively.
There are several days with low MAPE and zero TPR, and several days when MAPE
is quite high but TPR is 1. The plots in the first two rows of Figure 5.9 demonstrate
some days when daily MAPE was considerably high, yet the peak hour forecast was
matched with the actual. The third and fourth rows are the plots with examples when

MAPE is low, yet the peak hour forecast is mismatched by more than two hours.
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Figure 5.9: Examples when daily MAPE and peak hour forecast accuracy are contrary.
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The traditional error measures of load forecasts, such as MAPE, penalize mismatch
of the peak load magnitude. However, they also measure off-peak period forecast
error. Since these measures are aggregated over a day or a month or a year, the
measures do not give a true picture of the peak period. Therefore, the hourly forecast
error measures do not explicitly quantify peak load characteristics.

We then investigated evaluating peak timing error using some basic classification
error measures (TPR and PPV), and some other common statistics such as F1-score,
CSI, and BA. We chose a case with a class ratio of 5:25, which is a suitable example
for peak hour forecasting as well as PLD forecasting problems. We also employed
two skill scores, Heidke Skill Score (HSS) and Pierce Skill Score (PSS), also known
as Hanssen-Kuipers or True Skill Statistic (TSS), as calculated by Equations 5.7 and

5.8 respectively.

2 (ad — bc
HSS = ( ) (5.7)
(a+c)(c+d)+(a+b)(b+d)
ad — be
Tsg = —(ad=b) (5.8)
(a+c)(b+d)
where a= TP, b = FP, c= FN, d= TN.
Table 5.3: Demonstration: different scenarios of TP and FP.
Truth Truth
Case | p | non- | TP | FP [ FN | TN | TPR | PPV | F; | CSI | BA | HSS | TSS
event
1A s |1 o | o 25 | 100 100 | 100 100 | 100 100 | 1.00
1B 5| 3| o | 22 | 100 063 |077] 063 094]| 071 | 088
1C 5| s | o 20 |100| 05 |067] 05009 | 057 | 080
1D 5 25 3 1o | 2| 25 |o60| 100 |075] 060 08 | 071 | 060
1E 31 s | 2| 20 | o060 | 038 |046| 030 070 | 032 | 040
IF 0| s 5 | 20 | 0oo | 000 | 000 000 | 040 | -020 | -020
1G o | 10| 5 15 | 000 | 000 | 000 | 000 | 030 -020 | -0.40
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Table 5.3 shows the seven scenarios with different true positives and false positives.
In the first three cases, the TP = 5, that is all 5 events have been detected, while FP
varies between 0 and 5. TPR ignores any effect of FP. All other six error measures
aptly differentiate the cases giving heavier penalties when FP is high. In cases 1D
and 1E, only 3 of the 5 events have been detected. PPV still gives a perfect score
when FP = 0, while the TPR score is the same for both cases ignoring the effect of
FP. Hence, both TPR and PPV do not tell the complete story and are not suitable
for the task. Cases 1F and 1G both have a TP of 0, but case 1G has a higher FP.
The two skill scores and BA respond appropriately, however, F1 and CSI could not
distinguish between high and low FP when TP is 0. As per the definition of PLDs,
there could be months with no PLD, hence F1 score and CSI scores are not applicable
for this application.

Next, we compared how the two skill scores and BA change with different ratios
of TPR and TNR. Figure 5.10 shows how the scores change with different values of
TNR under a fixed TPR. They all converge to 1 when TP = 1 and FP = 0, but the
BA is the least responsive to increases in FP of the three. For example, when TPR
= 1, the BA ranges from 0.8 to 1, with different TNR, whereas the HSS ranges from
0.3 to 1. When TP is held constant, we find that both TSS and BA change linearly,

while HSS changes non-linearly.
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Figure 5.10: Comparing BA, HSS, and TSS for different combinations of TPR and
TNR.

Since the number of PLDs in a month may range from 0-10 days, we also tried to
understand how the class ratio can influence the evaluation using these three scores.
A demonstration with three cases is shown in Table 5.4; case 2 has a class ratio of
10:20, case 3 has a class ratio of 5:25, and case 4 has a class ratio of 2:28. For all the
cases the TPR is 1, however, TNR is different. The same number of days have been
misclassified in each case. Intuitively we expect that scores would penalize heavier
when the perfect TPR is achieved at the cost of misclassifying more events than the
true events. However, both BA and TSS ignore the cost of misclassification, awarding
higher scores to cases 3 and 4. As a result, BA and TSS are skewed toward the class
ratio. A biased error measure would risk the model selection process when validating
a model on different months with different class ratios. Of the three, HSS seems to
be the most suitable error to differentiate classification accuracy under varying class

ratios.
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Table 5.4: Demonstration: different class ratios.

Truth Truth
Case non- TP FP FN ™ | TPR | TNR | BA HSS | TSS
Event
event
2 10 20 10 5 0 15 1.00 { 0.75 | 0.88 | 0.67 | 0.75
3 5 25 5 5 0 20 1.00 | 0.80 | 0.90 | 0.57 | 0.80
4 2 28 2 5 0 23 1.00 | 0.82 | 0.91 0.38 | 0.82

We have thus analyzed the traditional error measures used in load forecasting and
binary event classification problems. Error measurements that have hitherto been
used to evaluate load forecasts were found insufficient for the peak timing problem.
Common error measures for classification problems have their own limitations, and

therefore cannot be applied directly to peak timing errors.
5.4  Proposed Error Measures for Peak Timing Forecasting

In this section, we propose five error measures for evaluating the four different
aspects of the peak timing problems; Peak Load Day, Peak Hour, On-peak period,
and Peak Shape. We seek application-specific error measurements that can be easily

generalized.
5.4.1  Skill Score

The forecast of PLDs is generally required a few weeks or a month ahead. The
count of PLDs varies from month to month. There could be months with 5-10 PLDs
or months with no PLD. It is crucial to penalize misclassification of days as PLDs,
that is, false positives, since there is a limit on calling the DR events. DR programs
are labor-intensive and frequently involve actions that may affect a customer’s level of
comfort, such as modifying thermostat settings. As discussed in the previous section,
the skill score HSS seems to be the most reliable statistic for a problem such as this.

Theoretically, the score ranges from —oo to 1, where a negative score means that the
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forecast is worse than a random guess, while 1 indicates a perfect score. However, for
this application, the score will not go beyond -0.20. Table 5.5 presents some scenarios
and corresponding HSS scores with 10 true PLDs in a month of 30 days. However, it
should be noted that HSS, unlike BA, is not intuitive and is hard to infer easily from

the confusion matrix.

Table 5.5: HSS for different cases with 10 true PLDs in a month.

Scenarios | TP | FP | FN | TN | HSS
1 10 |0 0 90 | 1.00
2 8 2 2 88 | 0.78
3 d 5 5 85 | 0.44
4 10 {20 | O 60 | 0.40
) 5 10 |5 70 ] 0.31
6 0 10 {10 | 80 |-0.11
7 0 20 | 10 |70 |-0.15

5.4.2  Displacement Score

Instead of categorizing the detection of the peak hour as black or white, we can
quantify the accuracy of a peak timing forecasting model in terms of the displacement
of the peak hour forecast from the actual peak hour. We will call this peak displace-
ment error. The peak displacement error of a day is denoted by de as in equation 5.9,

where PH is the actual peak hour and PH is the peak hour forecast of the day.

de = |PH — PH (5.9)

The displacement error defined above is the horizontal displacement measure of
peak load. However, it may be irrelevant to measure if the displacement error ex-
tends beyond a few hours. For example, a displacement error of 10 hours is equally

detrimental for DR deployment as a displacement error of 5 hours. Moreover, a high
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displacement error from a few days could skew the overall metric when aggregated
for some days. Therefore, we can choose to cap the displacement error if de is more
than a certain number of hours. From the perspective of this reasoning, we define a
new score, the Displacement Score (DS). If [ is the length of the displacement that

we intent to quantify, then DS is represented by equation 5.10

DS(de,l) = max {0, : —lde} (5.10)

If we consider [ = 5, then the values DS vary from 1 to 0 with steps of 0.20 as
shown in Table 5.6. The DS gives step scores with each step equally spaced. It is
an interpretable score that is, scale-free, and adaptable. A higher score indicates a
better forecast.

Table 5.6: DS values for different values of de when [ = 5

de DS
0 1
1 0.80
2 0.60
3 0.40
4 0.20

>=5| 0

5.4.3  Weighted Displacement Error

DS imposes a linear penalty on error increments. However, we might consider
applying a more stringent penalty to higher displacements, rather than just reduc-

ing the score linearly. Hence, we propose another error measure named Weighted
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Displacement Error (wDE), which is defined as:

, de’
wDE(de,l) = min ( [, e (5.11)

, where de is the displacement error defined by equation 5.9. The larger displace-
ments are punished severely because of the exponential of de. The error measure is
capped to the [ number of displacements that is intended to be quantified. Beyond
the displacement of [ hours, the error is capped to a value of [. Figure 5.11 compares
the DS and wDE for [ = 5. Unlike DS, a lower wDE indicates a better forecast. wDE
values for [ = 5 vary nonlinearly between 0 and 5, getting steeper with increasing de.
The larger span of the error distinguishes different displacements evidently. On the

other hand, as discussed earlier, DS varies linearly between 0 and 1.

—8—DS ——wDE

Value

de

Figure 5.11: Comparing wDE values with DS values for [ = 5.

5.4.4  Balanced Accuracy

Forecasting of the on-peak period (@) is crucial for the effective implementation of
peak-shaving strategies. It is important to identify all on-peak hours, even at the risk
of misclassification. In other words, missing an hour is worse than detecting it at the
cost of misclassification. Furthermore, by definition, the maximum number of false
positives allowed is 5. Since the class ratio variation for this problem is not huge, we

propose to use BA as the error measure for the on-peak period detection problem.
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Table 7 shows some of the scenarios with 5 actual on-peak hours and their respective

RA and BA scores. For the maximum of 5 FP, BA would range from 0.37 to 1.0.

Table 5.7: BA scores for scenarios with three hours on-peak period.

Scenarios | on-peak period | TP | FP | FN | TPR | TNR | BA
1 3 2 0 1 0.7 1 0.83
2 3 3 2 0 1 0.9 |0.95
3 3 3 1 0 1 0.95 | 0.98
4 3 3 0 0 1 1 1
5 3 0 5 | 16 0 0.76 | 0.38
5.4.5  Peak Shape Error

To measure the shape forecast of the on-peak period, we first define the shape of

the load profile. Load shape is obtained by normalizing the hourly load (L;) of the

on-peak period (@), with respect to the daily peak load (P;). Similarly, load shape

S, is obtained by dividing the hourly load forecasts L, with the daily peak forecast

~

P,.

(5.12)
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. L
Sy == (5.13)
P,

Then, the peak shape error (PSFE) of a day is the sum of the absolute error of the

shape forecast for the on-peak period, S.

PSE=Y" ‘(st ~ ) (5.14)

To summarize, we have proposed five error measures for the four forms of peak
timing problems as shown in Table 5.8. Two of these errors are adapted from other
domains, while Peak hour and Peak Shape error measures are novel in concept and

formulation.

Table 5.8: Summary of proposed peak timing error measures.

Error Measure Definition
_ T 2 (ad — bo)
Peak Load Day Skill Score (SS) T @+oc+d)+@+b)b+d

where, a= TP, b = FP, c= FN, d= TN

[ —de
Displacement Score (DS) DS = max [0, 7 ]
Peak Hour

Weighted Displacement de?
Error (wDE) wDE = min {l, T]

TPR + TNR
A= — =

On-Peak period ~ Balanced Accuracy (BA) >

Peak Shape Peak Shape Error (PSE) PSE = ;}l(st_ S0



CHAPTER 6: PEAK HOUR FORECASTING BASED ON HOURLY MODELS

Peak hour forecasting is normally a day-ahead task. Traditionally, peak timing
forecasts are derived from hourly load forecasts. In this chapter, we will evaluate the
peak timing forecasts obtained from the state-of-the-art hourly load forecasting model.
The following section will introduce the framework of the forecasting process adopted
in this research. We would then describe the benchmark model and investigate some

new model selection methodologies relevant to peak timing forecasting.
6.1 Methodology
6.1.1  Benchmark

In this study, the Recency effect model proposed in |[79] serves as the benchmark
model. The complexity of the model depends on values of the parameters h and d
which are determined by investigating the forecasting accuracy of the validation year.
The model with the lowest MAPE values in the validation year is selected to forecast
the test period. We will explore 100 different models by varying A and d from 0 to
24, and 0 to 3, respectively. For day-ahead forecasting, we augment the model by
introducing a lagged load variable. Since in practice, the forecast for the next day
is generated in the morning of the current day, the lagged 24 hours of load data is
not available for all hours of the next day. Hence, we would use the actual load
information 48 hours before the forecast hours. The adopted forecasting framework
is similar to the one setup in [94]. By adding the lagged dependent variable (L;_43),
the Recency Effect model turns into an Auto-Regressive Recency Effect model (AR-
Recency). Equation 6.1 represents the AR-Recency model. We will refer to this

model from now on as MO.
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Ly =Bo + By Trend, + By Dy + Bs Hy + B4 My + s H,D;

. (6.1)

+ f(T) +Bis Leeas+ Y f(Toa)+ > f(Tios)
d h

, where f(7}) and f;d have been described in equations 4.4 and 4.5 respectively.

From the load forecast values, we derive the peak hour of the day. If I:t,j is the daily

peak load forecast of day j, then the peak hour forecast of the day, P/H\M, is given

by Equation 6.2.

P/]_[\t,j: {Ht,j | j—Jt7j: Ptvj} (62)

6.1.2  Forecasting Framework

In the first step, load and temperature data are cleansed and weather stations
are selected for each load zone. The process of weather station selection has been
followed in accordance with [101]. The next step is data partitioning. The recent
three years of the data (2017-2019) are held out for the out-of-sample test for both
case studies. The year preceding the test year is designated as the validation year
for model selection. For example, for the test year 2018, the year 2017 would be the
validation period. The training data length is a fixed two-year period. The model
selected from the validation period is retrained on the data from the two years prior
to the test year and forecasts generated from the test year. The process is rolled over

until we generate forecasts for all three years from 2017 to 2019.

Training Validation Selected Model Training Test
\ 1

o ! !
2014 2015 2016 : 2015 2016 2017

Rolling =3 < 2015 2016 2017 : 2016 2017 @ 2018
2016 2017 2018 : 2017 2018 2019

Figure 6.1: Rolling window for three test years.

It is worth noting that we fixed the length as well as the origin of the training
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period for each rolling window. That is, the model is trained once in each rolling
window to generate day-ahead forecasts (6.1). However, we do leverage the recent
load information as per the AR-Recency modeling approach explained in the previous
section. Figure 6.2 displays the day ahead load forecasting framework that is deployed

in this research.

Training Period
I

Dec Dec

Jan 2015 - Dec 29, 2016 30, 31.

2016 | 2016

Test Year
|
[ 1
Test
Jan Jan Jan Dec Dec Dec
= 1 & 3, 28, 30, 31,
2017 | 2017 | 2017 2017 | 2017 | 2017
'y
Less i Test
Jan Jan Jan Dec Dec Dec
1, 2, 3. 29, 30, 31,
2017 | 2017 | 2017 2017 | 2017 | 2017
Liss H

Test
Jan Jan Jan Dec Dec Dec
1. 2, 3, 29, 30, 31,
2017 | 2017 | 2017 2017 | 2017 | 2017

Figure 6.2: Framework for day-ahead load forecasting.

Load forecasting can be ex-ante forecasting or ex-post forecasting, depending upon
the kind of information used in the modeling. Ex-post forecasting uses the actual
temperature of the test period, which would not be available for the future. Ex-
ante forecasting, on the other hand, mimics the real forecasting scenario by using the
forecasted temperature for the test period. Thus, ex-post forecasting is a retrospective
analysis while ex-ante forecasting predicts future outcomes. The state-of-art approach
in the academic literature is based on ex-post forecasting as the temperature forecast
data for load zones are not easily available. In this research, however, not only do we

have observed readings from weather stations but also the temperature forecast data
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for MeSU. Based on weather station selection, the day-ahead temperature forecast
from selected weather stations is used for ex-ante load forecasting. The day-ahead
temperature forecast data has minimal missing values (less than 0.005%). The actual
temperatures are used to fill in these missing values. For ISONE, we have mapped
each load zone to the weather forecast available in the data archive maintained by
the European Centre for Medium-Range Weather Forecasts (ECMWF)[102]. We were
able to get the temperature forecasts for all nine zones of ISONE for three years (2017-
2019). Therefore, unlike most prior studies, we will be able to analyze the outcomes

of peak timing forecasting using both ex-post and ex-ante methodologies.
6.2  Evaluation of Peak Hour Forecasts

We begin with a thorough analysis of the peak timing forecast outcomes from the
benchmark model across both case studies. The forecasts for a test year are gener-
ated a) with actual weather data (ex-post forecasting), and b) with the temperature
forecast (ex-ante forecasting).

The hourly forecasts from MO are used to get the daily peak hour forecasts. We
analyzed the displacement error (de) of the forecasts from M0. Table 6.1 presents the
number of days with de < 1 and de > 5 for the ex-post forecasting. For MeSU, we
find that 86-89% of days, MO forecasts are accurate to within an hour. In the case of
ISONE, MO forecasts deliver 69% to 83% of days with de less than one hour. However,
the true business case depends on ex-ante forecasting performance. As demonstrated
in the tables, the percentage of days with de within an hour declined significantly for
ex-ante forecasting.

Ex-ante forecasting results only on PLDs are shown in Table 6.2. These are the
critical days when the peak hour forecast accuracy could help make strategic decisions
in the DR program implementation and save millions. As we see there are very few
PLDs in the year when the M0 peak hour forecast is displaced by more than five

hours from the actual. However, a substantial number of PLDs see a displacement of
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2-4 hours which could be deleterious. Deploying DR in the wrong timeframe could
lead to rebounds in peak demand that are even higher than the original peak.

Figure 6.3 displays the MO wDE values for ex-post and ex-ante forecasting along

with the best wDE values that may be attained theoretically using the global optimum

Recency effect model. This further demonstrates the scope for improvement of peak

timing forecasts. In this research, we will use wDE as the error measure to evaluate

the peak hour forecasts.

Table 6.1: Peak hour displacement errors of the benchmark model.

MeSU ex-post MeSU ex-ante
# Days # Days % Days # Days # Days % Days
Year . . . . . .

2016 with with with with with with

de =5 de <1 de <1 de =5 de<1 de <1
Top Level 17 326 89% 24 277 T6%
SAl 17 325 8904 22 242 66%
SA2 21 313 86% 32 274 75%
SA3 20 314 86% 35 228 62%

ISONE ex-post ISONE ex-ante
. # Days # Days % Days # Days # Days % Days
Year . . . . . .

2017 with with with with with with

de =5 de =1 de =1 de =5 de =1 de =1
CT 20 296 81% 27 281 T7%
ISONE 21 302 83% 25 284 T8%
ME 70 252 69% 67 249 68%
NEMASSBOST 42 263 7204 49 248 68%
NH 41 283 T8% 41 268 T3%
RI 33 293 800% 42 265 T3%
SEMASS 13 321 88% 16 326 89%
VT 36 301 820%% 35 303 83%
WCMASS 25 295 81% 24 283 T8%
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Table 6.2: Peak hour displacement errors of the benchmark model for PLDs.

MeSU
# Days # Days # Days
Year 2017 | #PLD with with with
de=5|4<de<2 | de<1
Top 81 2% 17% 80%
SAl 61 2% 52% 46%
SA2 86 1% 24% 74%
SA3 58 3% 52% 45%
ISONE
#PLD | # Days # Days # Days
Year 2017 with with with
de=5]| 4<de<?2 de <1
CT 47 0% 40% 60%
ISONE 41 0% 44% 56%
ME 27 19% 19% 63%
NEMASS 40 3% 33% 65%
NH 36 3% 33% 64%
RI 53 0% 43% 57%
SEMASS 55 0% 11% 89%
VT 48 4% 2% 949%
WCMASS 39 3% 23% 74%
Top Level SA1 SA2 SA3
532 251 256 —
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Figure 6.3: wDE values from ex-ante forecasts vs. wDE values from ex-post forecasts
vs. theoretical best wDE values from Recency effect framework.
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6.3  Model Selection for Peak Hour Forecasting

In this section, we will examine model selection methods for peak timing forecasting
using the AR-Recency model. By varying the d-h pair, we have 100 different models to
choose from. In the first subsection, we will use different peak timing error measures to
select a model. The test results are evaluated for ex-post as well as ex-ante forecasting
by comparing them with the test results of M0. The analysis additionally evaluates
the test results exclusively on PLDs. In the second subsection, we further explore
selecting a model based on performance on PLDs only and selecting a model on

ex-ante forecast analysis.
6.3.1  Model Selection with Peak Timing Error Measures

Traditionally, model selection is done by evaluating the forecasts of the validation
period using MAPE of the hourly load forecast. For peak hour forecasting models,
we may try to select models using the peak hour error measure, i.e., wDE. Hence, we
will generate forecasts from two tracks. Track 1 is the traditional way adopted for
the benchmark MO, where d-h pair is selected with the lowest MAPE of all hours.
Track 2 selects d-h pair based on the lowest wDE values for the validation period.

Figure 6.4 displays how d-h pair selected on peak timing error measure differs from
d-h pair selected on MAPE for the year 2016. Models chosen based on MAPE are

simpler than those chosen based on peak timing errors in both case studies.
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Figure 6.4: Comparing d-h pairs selected with MAPE and d-h pair selected with
wDE.

Table 6.3 shows the wDE and MAPE values from different AR-Recency models for
2016 of top level. A cooler color in the background of the cell indicates a lower error.
Similarly, Table 6.4 shows the wDE and MAPE of values from different AR-Recency
effect models for 2016 for ISONE. In both case studies, the convergence of wDE value
to the local optimum value is not smooth, as the difference in wDE values between
two neighboring models is abrupt. For example, wDE value for d-h pair (3,7) is
140, which increases to 151 with (3,8) and again reduces to 130 with (3,9). Due
to the nature of the problem, wDE is a discrete score. Therefore, we do not see a
progressive convergence to a local minimum for peak timing scores, unlike MAPE,

where the convergence to local minima is apparent.
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Table 6.3: MAPE and wDE values for top level (MeSU) on the validation data (year
2016).

MAPE wDE
h/d h/ d
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14 162 160 145 143
15 15
16 16
17 17
18 18
19 19
20 20
21 4.90 21
22 22
23 23
24 24
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Table 6.4: MAPE and wDE values for ISONE on the validation data (year 2016).

MAPE wDE
h/d 0 1 2 3 h/d 0 1 2 3
0 2.93 2.55 2.62 3.01 0 158 158 153 172
1 2.81 2.52 2.60 2.97 1 195 182 202 211
2 2.73 2.50 2.59 2.95 2 201 195 184 186
3 2.66 2.48 2.58 PA9S 3 226 179 203 180
4 2.60 2.47 2.57 291 4 236 205 214 210
5 2.56 2.47 2.57 291 5 220 194 206 196
6 2.54 2.47 2.59 2.92 6 205 190 194 184
7 2.53 2.49 2.60 2.94 7 222 169 178 174
8 2.53 2.50 2.62 2.94 8 203 163 178 175
9 2.53 2150 2.62 2.94 9 193 158 167 162
10 2.53 2.52 2.64 2.95 10 184 | 152 161 168
11 2.53 2.53 2.65 2.97 11 188 160 159 168
12 2.52 2.54 2.66 2.97 12 189 167 163 166
13 2.52 2.56 2.67 2.98 13 165 156 164 168
14 2.52 2.58 2.69 2.99 14 148 149 166 162
15 2.53 2.60 2.70 2.99 15 169 154 162 167
16 2.53 2.61 2.72 3.01 16 156 160 153 168
17 2.54 2.63 2.74 3.01 17 155 172 164 157
18 2.56 2.65 2.75 3.02 18 151 170 167 177
19 2.58 2.67 2.77 3.04 19 174 183 178 189
20 2.60 2.69 2.79 3.06 20 173 174 194 194
21 2.63 2.71 2.82 3.08 21 169 178 183 192
22 2.65 2.73 2.84 3.10 22 181 184 184 182
23 2.67 2.75 2.86 3.12 23 178 188 186 177
24 2.69 2.76 2.87 3.13 24 190 194 187 190

Since peak timing error measures did not seem robust for model selection, we
additionally explored some other error measures that are continuous and relevant to
peak timing. The following seven tracks were created using different error measures

for selection described below:

d-h pair selected with the lowest MAPE of daily peak load forecast (Track 3),

d-h pair selected with the lowest MAPE of load forecast for peak hour + /-2

hours (Track 4),

d-h pair selected with the lowest MAPE of load forecast at the actual peak hour

and forecasted peak hour (Track 5),

d-h pair selected with the lowest Shape Absolute Error (SAE) of shape forecast

for peak hour +/-2 hours (Track 6),



80
e d-h pair selected with the lowest SAE of shape forecast for actual peak hours
(Track 7a),

e d-h pair selected with the lowest SAE of shape forecast for the actual and

forecasted peak hours (Track 7b),

e d-h pair selected with exponential SAE of shape forecast for all hours (Track
8).

Tracks 3, 4, and 5 are based on the MAPE of the load forecasts at the peak hours.
Tracks 6, 7a, and 7b are based on the shape forecast errors at the peak hours. Track
8 is based on the shape error of the entire load profile raised exponentially. The idea
is to methodically undervalue the off-peak hours and evaluate only peak hours. Since
the shape error values belong to interval [0,1], the exponential of a number between 0
and 1 diminishes lower values while amplifying values close to 1. In this experiment,
we have used 16" exponent.

Along with Track 1 and 2, we get nine models selected for each zone. However, the
models selected from Track 7a and Track 7b are the same for all zones in both case
studies. Therefore, we present their results as Track 7. Table 6.5 presents the wDE
values from Track 0, which is also MO.

The results from the seven tracks are shown as percentage changes in wDE values
in reference to M0’s wDE values for each zone. The % values are color-coded for easy
reading with green font indicating a reduction in wDE errors by > 5%, which denotes
significantly improved results. The red font indicates that the wDE values increased
by more than 5%, that is, the forecasts worsened significantly. While the yellow font
indicates a neutral effect where the difference in wDE values is between + 5%. We

will be following a similar format of depicting results henceforth in this chapter.
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Table 6.5: wDE values from MO, and their comparison with those from the seven
tracks on the validation data (year 2016) of MeSU.

Ex-post forecasting

Zone (“l:;[)(;g) Track? | Track3 | Track* | Track® | Track®é | Track? | Track®
Top Level 161 -23% -8% -19% -10%
SAl 140 -14% | -10% | -10% | -10% | -10% | -14%
SA2 138 -9% -9% 6%
SA3 156 -11% 14% 14% 9%

Ex-ante forecasting
Zone MO Track? | Track3 | Track* | Track® | Track®é | Track? | Track®
Top Level 276 -10% 6% 6% 6% -10% 6%
SAl 283 6%
SA2 330 -14% 19% 18% | -14% | -28% 22% -27%
SA3 347 11% 13% 11%

Table 6.5 presents the validation results of MeSU. The ex-post forecasting results
from Track 2 are the theoretically best outcomes because the track selects the optimal
d-h pairs based on wDE values. The results from Track7 and Trackb look promising.
However, the ex-ante forecasting validation results are contradictory. Even with Track
2, the peak timing errors do not show any improvement on the M0 except for a small

improvement in the SA1 and SA3 zones.
6.3.1.1  Results for MeSU

Table 6.6 displays the test results for ex-post forecasting for MeSU. We also an-
alyzed the performance of models on PLDs exclusively as these are the days when
the accuracy of forecasting peak timing matters the most. Overall, the model se-
lection approach using the different tracks does not outperform the MO for ex-post
forecasting. When analyzing results for PLDs only, we see significant improvement
in the test year 2017 for top level and SA2 with shaped error-based Tracks. We also
see improvement in the year 2019 for SA1 with Track2. However, none of the tracks

demonstrate consistent improvement year on year for any zone. The ex-ante forecast-
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ing results also have similar conclusions as shown in Table 6.7. For top level PLDs,

we see consistent improvements from some of the tracks such as Track 2, Track 3,

and Track 7 on all test years. However, no track shows consistent improvement in all

test years and for all zones.

Table 6.6: Performance of models selected from the seven tracks for ex-post forecast-
ing on test data for MeSU.

Ex-post forecasting
Test MO 5 y 5
Zone year (wDE) Track? | Track? | Track* | Track® | Track® | Track’ | Track®
T 2017 134 10% 15% 15% 15% 10% 9% 15%
Le?fil 2018 | 125 12%
2019 151 -7% -9% -8% -9% 17% -8%
2017 139 13% 15% 15% 15% 14% 13%
SAl 2018 133 17% 7% 20% 14%
2019 145 11% 11%
2017 161 -13% -13% -18% -6% -14%
SA2 2018 131 -11% -7% 15%
2019 243
2017 170 10% 6% 15% 10%
SA3 2018 189 6% 6%
2019 140 6% 6% 32% 8%
Ex-post forecasting for PLDs only
Zone gzi (ul:g)(;i) Track? | Track® | Track* | Track® | Track® | Track? | Track®
2017 22 38% 16% -6%
Top o 0 o ry o
[evel 2018 8 -21% 9% 8% -8% 8%
2019 8 -14% -12% -18% | -12% | -12%
2017 6 -35% -30% -30% -30% -35% -33%
SAl 2018 13 6%
2019 10 27% 12% 12% 12% 24% 10% 22%
2017 13 47% 7% 589% -7% -16%
SA2 2018 12 18% 12% 61% 12% 10% 67%
2019 17 -11% 11% 11%
2017 18 11% 11% 39% 7%
SA3 2018 21 35% 18% 41% 18% 41% 32%
2019 9 -9% -9% 56% 40%




Table 6.7: Performance of models
ing on test data of MeSU.

Ex-ante forecasting
Test MO
Zone Track? | Track3 | Track* | Track® | Track® | Track” | Track®
Year | (WDE)
Top 2017 | 222 8% 8% 8% 8%
2018 207 -21% 9% 8% 9% 994
Level - - -
2019 214 -10% -24% -20%
2017 | 251 13% 9% 9% 9% 13%
SAl | 2018 302 -8% 6%
2019 302
2017 | 256 22% 16% -12% 23%
SA2 | 2018 248 21% 16% 13%
2019 358 -10% -8%
2017 | 336 -11% | -11% 14% 9%
SA3 | 2018 366 6%
2019 | 332 21% | -16% | -22% | -22% -30% | -16%
Ex-ante forecasting for PLDs only
Zone | Year | MO Track? | Track3 | Track? | Track® | Track® | Track” | Track®
Top 2017 33 -1% -13% —13‘!-.'6 —13‘!-.'6 34% —139-.'6
Level 2018 40 -13% -38% 11% 12% 19% -13% 11%
2019 39 -33% -41% -58% | -55% | -41%
2017 45 15% 12% 15% 7%
SAl | 2018 35 61% 9% 27% 40%
2019 51 -28% 6% -28% 6% 6% 27% 8%
2017 37 10% 24% 22% 10% -9% 42%
SA2 | 2018 43 13% 40% 13% 36% -7% 30%
2019 47 -26% 10% 6% 26% | -19% | -26% 14%
2017 52 7% -26% -26% 9%
SA3 | 2018 54 14% 14% 41%
2019 54 10% 20% | -28% | -12% | -24% | -19%
6.3.1.2  Results for ISONE
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selected from the seven tracks for ex-ante forecast-

Based on the model selection on the validation period, Table 6.8 shows the wDE

values on the test data (2018-2019) for ISONE. The improvement in wDE values for

the MO model is colored green while red color indicates that the wDE values have

worsened. The conclusion is similar to the MeSU case study, we do not find any track

giving consistent improvement.
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Table 6.8: Performance of models selected from the seven tracks for ex-ante forecast-
ing on test data of ISONE.

Ex-ante forecasting
Zone Year (“D:‘II)%) Track? | Track? | Track* | Track’ | Tracks | Track” | Track?®
2018 188 11% 7% -T% 9%
ISONE 2019 142 10% 14% -9%
CT 2018 244 -8%
2019 191 7% 7% 8% 7% 7%
2018 383 11% 10%
ME
2019 399 -11% 7%
NH 2018 297
2019 194 32% 18% 6% 20% 10% 18% 18%
RI 2018 333 -12% -6% -6% -6%
2019 234 -6% -6%
2018 211 7% -6%
VT
2019 240 -8% -129% 7% -129%% 8% 7%
2018 140 -14% -10% -16% | -18%
NEMASS
2019 86 18% 6% -6%
2018 285 12% 12% 8% 6%
SEMASS 2019 252 10% 10% 8% 16% 2% 8%
2018 254 -11% -8%
WCMASS
2019 190 8% 11% 11%
Ex-ante forecasting for PLDs only
Zone Year (“Dg;‘) Track? | Track? | Track* | Track’ | Tracks | Track” | Track?®
2018 132 35% -14% -14% 50% 35% 50%
[SONE 2019 72 47% 8% -8% 25% -17% 14%
2018 | 174 9% -31% -249%
CT
2019 28 -19% -19%
ME 2018 272 52% 43% 21% 28% 43% -12% 29%
2019 | 248 23% 32% T% 23% 18%
NH 2018 194 -29% -26% -22% -25% -15% -15% -15%
2019 204 16% 15% 12% 15% 11%
RI 2018 | 262 24% 50% 25% 13% 25%
2019 | 358 -17% | -17% 6% -6% -6%
2018 | 352 26% 11% 13%
VI 2019 | 192 21% 9% 21% 106% 25%
2018 | 174 22% 47% -8% 32% 26% 29%
NEMASS 2019 98 29% 37% 96% 45% -10%
2018 276 13% -T% -23% -14% -37% -27%
SEMASS
2019 | 138 30% 7% T% 16% 16% 16%
2018 | 314 -38% -10% 12% -26% 12%
WCMASS 2019 176 25% 33% -13% 33% 13%
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6.3.1.3  Discussion

As we have seen none of the model selection methods using peak timing error
measures outperform the benchmark model M0. Figure 6.5 plots the best d-h pair
found for the year with MAPE, wDE, Peak MAPE and SAE. While d-h pairs found
on MAPE stay close by over the years, the d-h pairs on wDE, Peak MAPE and SAE
are spread out over the test years. By nature of the problem, all these peak timing
error measures work by selecting the errors of specific hours. The selection of hours
is a thresholding process. Using a threshold that changes for each day makes the

selection process fragile.

Track 1 Track 2 Track 3 Track 6
15
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<
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0 1 2 0 1 2 0 1 2 0 1 2
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Figure 6.5: d-h pairs selected for each year for top level of MeSU by different tracks.

Secondly, the peak timing problem is a horizontal displacement problem, whereas
the goal of any curve-fitting model is to minimize the vertical displacements between
the actuals and predictions. If the vertical displacements are minimized, the horizon-
tal displacement error will be lowered as well (Figure 6.6). However, it does not hold
true otherwise. When we try to select a model based on peak timing error, we select
a model that gives the minimum horizontal displacement. Since the curve fitting
models work on vertical displacement, the model selection does not guarantee that
the selection would work best for out-sample horizontal errors. Therefore, choosing
the model that minimizes vertical displacements, i.e., choosing based on MAPE, is

the pragmatic approach.



86

Y. &,= vertical error
de = horizontal error

2.4

—— Actual
2.3 4 —@— Forecast

2.2 A

2.1 A

12,01
1.9 A
1.8 |

1.7 1

Peak hour forecast

Actual peak hour

00-00 03-00 06-00 09-00 12-00 15-00 18-00 21-00 00-00

Figure 6.6: Vertical displacement errors and horizontal displacement error on a day
under top level of MeSU (1/13/2017).

6.3.2  Model Selection based on Ex-ante Forecast Errors

Practitioners use ex-ante forecasts to make decisions [94]. Hence, we will try an-
other approach of model selection based on the ex-ante forecasts analysis of the val-
idation period. In this framework, we will use the temperature forecasts for the
validation year instead of the actual temperatures. The idea here is to eliminate any
obscured effect of temperature forecasting errors on the model selection. It is impor-
tant to note that we do not use temperature forecasts for model fitting since the noise
in the temperature forecast may lead to biased parameter estimation. The topic is
reserved for future investigation and is beyond the scope of this thesis.

Method A is the state-of-the-art approach using ex-post forecast for model selection,
the benchmark model M0 uses the same method in this research. Method B uses the

temperature forecast for the validation period.

1. Method A: Selecting Model on forecasting accuracy of all days of validation

year using actual temperature (MO).

2. Method B: Selecting Model on forecasting accuracy of all days of validation year
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using temperature forecast.

6.3.2.1 Results and Discussion

The evaluation of peak hour ex-ante forecasts from the two methods is done on the
three test years (2017-2019) for MeSU. Since, in the case of ISONE the temperature
forecast data is only available for the period 2017-2019, Method B can only be vali-
dated for two years. Hence, for ISONE we have two test years (2018-2019). Table 6.9
displays the outcomes of the three test years from MeSU. Method B performed better
than Method A in all zones except for SA1 in 2018. However, overall the forecasts
are not very different leading to an average improvement of 5%. The test results of
ISONE as shown in Table 6.10. Similar to MeSU, the forecasts from the two methods
are similar for most of the zones, but overall, the peak hour forecasts from Method

B are slightly worse than those of Method A.

Table 6.9: Performance of models selected based on temperature forecast on test data

of MeSU.

Zone Test Year Wleiiss o=l Method B
(WDE)
2017 222 -16%
Top Level 2018 207 -10%
2019 214 -16%
2017 251
SAl 2018 302 6%
2019 302 -6%
2017 256
SA2 2018 248
2019 358
2017 336
SA3 2018 366
2019 332
Total 3394

Table 6.11 compares the Recency effect parameters from the two methods for the
Top Level of MeSU and ISONE. For MESU, the parameters for Method A are very

similar to those of Method B in the validation years 2017 and 2018. The models
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selected by method B are simpler and the year-on-year variation is also minimal.

However, for ISONE, the parameters chosen from Method B are very different from

those chosen from Method A.

Table 6.10: Performance of models selected based on temperature forecast on test

data of ISONE.
Zone Test Year Meth&?D‘lE; MO Method B

2018 244

¢t 2019 191 -9%
2018 188

ISONE 2019 142 10%
2018 383

ME 2019 399 -8%
2018 285
NEMASS 2019 252
2018 297

NH 2019 194 22%
2018 333

RI 2019 234 10%
2018 140

SEMASS 2019 86 9%
2018 211
VI 2019 240

i e s
Total 4263

Table 6.11: d-h pairs selected from the two methods for the validation year 2016.

Top Level (MeS1T)
Method A Method B
d h d h
0 12 1 2
1 3 1 2
1 4 1 3

ISONE
Method A Method B
d h d h
0 11 - -
1 5 11
2 13 12

We further investigated the temperature forecast errors, to understand the differ-

ence in two case studies. Figure 6.7 plots the temperature forecast errors (7Tp,,.) of
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the two case studies for each of the three years. We find that temperatures are un-
derestimated for ISONE, resulting in a bias in the T,,. While, for MeSU, the median
T, stays close to zero. Moreover, T, for MeSU appears to be a stationary series,
while for ISONE, T,,, shows seasonality (Figure 6.8). Because of the inherent bias
in the T,,, in the case study of ISONE, parameters selected from Method B are very
different when compared to those selected from Method A. Hence, model selection
for the Recency effect framework using ex-ante forecasts analysis on the validation

period can lead to better peak hour hours if the temperature forecast errors are not

biased.
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Figure 6.7: Boxplot of temperature forecast errors for (a) MeSU, and (b) ISONE.
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Figure 6.8: Time series of temperature forecast errors for (a) MeSU, and (b) ISONE.



CHAPTER 7: PROPOSED MODELS FOR PEAK HOUR FORECASTING

This chapter explores two different frameworks we propose for peak hour forecast-
ing. The first framework is based on Direct Peak hour forecasting using a binomial
classification model. The second framework is a two-stage process built on the hourly
load forecasting model. We will only be focusing on short-term ex-ante peak hour
forecasting. Furthermore, temperature forecast data will be used for the validation
year to select a model. We will use Weighted Displacement Error (wDE) as the error
measurement for peak hour forecasts, which is described in section 5.4.3. Since, for
ISONE, we have temperature forecast data only for three years (2017-2019), data
from 2017 will serve as the validation period for the case study. For MeSU, models
will be selected by validating on the year 2016. In the third section, we will analyze
how the two proposed models perform in comparison to the benchmark model MO.
Test results from 2017-2019 will be analyzed for MeSU, while results from 2018-2019
will be analyzed for ISONE.

7.1  Peak Hour Forecasting: a Classification Approach

The Peak hour forecasting problem can be formulated as a binary classification
problem. The event is the occurrence of daily peak demand. As a result, there are
two classes: peak hour and non-peak hour. The Logistics Regression model described
in Section 3.3 will be used as the classifier. To implement this model, a new binary
variable PK; is generated that takes the value of 1 if the hour ¢ of a day is peak hour
otherwise, it is set to 0. PK, is the target variable of the model. It is also worth
noting that the model is not constrained to find one event per day. Therefore, there

could be several hours with a high probability of observing peak load in a day, or a
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very low probability for all hours of a day. To address this issue, we would take the
hour of the day with maximum predicted probability as the peak hour forecast. This

model is hereafter referred to as M2.
7.1.1  Modeling for MeSU
(A) Base Model

Figure 7.1 shows the heatmap of the distribution of peak hours over a year for the
top level of MeSU. The darker shade indicates hours with higher demand in a day.
The peak hours are observed at different times of day in different seasons. In the
summer, the peak hours occur between 4 p.m. and 7 p.m. In the winter, some days
the peak hour is observed in the morning and the other days it is observed in the
late evening. During the spring and fall seasons, the occurrence of daily peak hours

is random. The timing of the daily peak load is, thus, seasonal.
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Figure 7.1: Heatmap showing the peak hour distribution over a year, with darker
shade showing the high demand hours of a day (top level of MeSU, year 2016).

The Vanilla Benchmark model, which can model this seasonality, inspired the base-
line model (LR-T3) given by equation 7.1. Here, p; is the probability of an hour to
observe peak load, i.e., p, = Pr(PK; = 1). The hour of the day is denoted by H;, rep-

resenting the Hour of day, the week of the day is represented by D;, and the calendar



93

month is represented by M;. T; represents the temperature of the hour t.

log (1 ptp > —0+ 0, D, + 0y H,+ 03 H,D, + 0y M, + 05 T, + 0 T,M, + 6; T, H,
- Mt

+0s T)* + 0y T, Hy + 619 T, My + 011 T,% + 612 T,°H,y + 613 T,° M,
(7.1)
It is worth noting that because the target value is a binary variable rather than
a continuous variable like Load, adding polynomials of temperature may be unnec-
essary. However, including temperature polynomials helps in modeling the extreme
temperature effect. To test this hypothesis, we also tried the model with linear tem-
perature variables (LR-T'1), and the model with up to second order of temperature

polynomials (LR-T2), as given by equations 7.2 and 7.3 respectively.

log( P ):90+91 D+ 0y H, + 05 HD, + 0, M, + 05 T,

I=p (7.2)

+ 06 Ty M, + 07 T, H,

log< ptp):eowl Dy + Oy Hy + 05 H,D, + 0, M, + 65 T, -
7.3

+ 0 TiM; + 07 Ty Hy + 03 T, + 09 Ty M, + 010 T,° H,

The validation results comparing the three models are given in Table 7.1. LR-T'3
works better for PLDs that usually are seen on extreme weather days. However,
overall, the model LR-T2 gives slightly better results. Since PLDs are critical and
the overall improvement from LR-T'1 is slight, we selected LR-T'3 as our base model.

This base model would hereby be called LRO0.
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Table 7.1: M2 base model validation results, MeSU.

All Days PLDs
LR-T1 | LR-T2 | LR-T3 | LR-T1 | LR-T2 | LR-T3
Top Level 340 301 343 37 27.6 22.4
SA1 391 358 367 29.2 29.6 30
SA2 339 332 339 20.2 18.4 18.4
SA3 403 420 434 36 35.8 30.8
Total 1473 1411 1483 1224 | 1114 | 101.6

(B) Training on Probable Peak hours

The analysis of the hours that are most likely to observe the peak load of the day
is shown in Figure 7.2. These hours are analyzed for all the zones of MeSU for 2016.
The hours that observe greater than 1% of peak hours in the year are marked as the
probable peak hours Ul, denoted by Equation 7.4. Similarly, the hours that observe

greater than 2% of peak hours in the year are marked U2, denoted by Equation 7.5.

Ul={H,: H, € [1,8,9,10,15,16,17,18,19,20,21,22]} (7.4)

U2={H,: H, € [7,89,16,17,18,19,20,21]} (7.5)

Figure 7.3 investigates the peak hours for just PLDs for three years in top level.
We observe a similar seasonal pattern of peak hours every year. This indicates that
we may confine training the model only on the probable peak hours, which might
enhance the training process by removing redundant data. Table 7.2 shows the results
of the model trained only on hours in Ul and U2, which are called LR0y; and
L ROy, respectively. When compared with results from LRO, L R0y brings significant

improvement overall as well as on PLDs. Hence, we choose the model LRO;.
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Figure 7.2: Probable peak hours of top level of MeSU (year 2016)
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Figure 7.3: Heatmap showing the peak hours for PLDS for the three years of top level
of MeSU.
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Table 7.2: M2 validation results based on models trained on probable peak hours
only, MeSU.

All days PLDs

Zone LRO LROUl LROUQ LRO LROUl LROU2

Top Level | 343 313 328 224 224 224

SA1 367 343 350 30 20 19.6
SA2 339 327 329 18.4 18.4 18.4
SA3 434 428 438 30.8 30.8 30.8

TOTAL 1483 | 1411 1445 | 101.6 | 91.6 91.2

(C) Add-on: Daily temperature features

We also explored adding low-resolution temperature features. The effects of daily
average temperature (T'a), daily maximum temperature (7'z), and daily minimum
temperature (Tn) were investigated by adding the following three functions to the

baseline model LR0y :

g(Ty) = 614 T} + 615 TL M,y + 616 T H, (7.6)

The validation year results for the three models developed with daily temperature
features are shown in Table 7.3. Clearly, LR0y;+g(Ta) gives the best results of the

three and also improves L R0 results. We will this model as LR1 hereon.
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Table 7.3: M2 validation results with daily temperature features added, MeSU .

All days PLDs

Top | SA1 | SA2 | SA3 | Total | Top | SA1 | SA2 | SA3 | Total

L ROy 313 | 343 | 327 | 428 | 1411 | 224 | 20 | 184 | 30.8 | 91.6

LROy1+(a) | 280 | 300 | 251 | 394 | 1224 | 22 | 15.2 | 182 | 26 81

LROy,+(b) | 320 | 367 | 298 | 466 | 1451 | 18.6 | 19.2 | 15.4 | 49.4 | 103

LROy1+(c) | 293 | 355 | 305 | 409 | 1362 | 20.8 | 28.2 | 15.8 | 42.4 | 107

(D) Add-on: Timing of Daily Maximum & Minimum Temperature

We also investigated if the timing of highs and lows of the diurnal temperature
curve are the driving factors in determining the peak hour of a day. Figure 7.4 (a)
plots the hour of daily maximum temperature vs. peak hours for summer months
(T'a>T75). The hours with daily maximum temperature and peak hours are not co-
incident. However, on most days, the peak hour occurs after the occurrence of the
day’s maximum temperature. Hence, the effect of the timing of daily maximum

temperature cannot be overlooked.
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Figure 7.4: Scatterplots of a) timing of maximum temperature of day vs. peak hours
in summer, b) timing of minimum temperature vs. peak hours in winter (top level of

MeSU, year 2016)

Figure 7.4(b) plots the hours of daily minimum temperature vs. peak hours for
winter months (Ta < 50). Again, the hours with daily minimum temperature and
peak hours are not coincident. The peak hour occurrence in winter is a combined
effect of increased human activities with a drop in temperature during dusk and dawn.
Peak hours do not necessarily follow the minimum temperature hours. Hence, the

effect of the timing of the day’s minimum temperature cannot be substantiated.

To model the timing of daily maximum temperature hours, we defined a binary
variable, M X;. The value of 1 denotes that the hour observes the maximum temper-
ature of the day and the value of 0 denotes vice-versa. We then tried the following
three add-ons. If M X, ; denote the lagged variable of M X; by one hour, M X, ,
denote the lagged variable of M X; by two hours, then the three candidate models

are denoted in 7.7.
LRyo = LR1+ 607 MX,
LRy = LRyo+ 618 M X, (7.7)

LRyy =LRy1 + thg MX; 5
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Table 7.4: M2 validation results with the indicator of daily maximum temperature
hour added, MeSU.

Sum of wDE values from all 4 | Sum of wDE values from all 4
zones for all days in the year zones for PLDs in the year
2016 2016
LR1 1218 81
LRy,0 1216 78.8
LRy,4 1214 87
LRy, 1262 84

Table 7.4 displays the validation results for MeSU for the three models. The model
LRy improves the LR1 results slightly for PLDs as well as for all days. Hence, the

final M2 model selected for MeSU is presented in the equation 7.8.

IOg( i >—80+91 Dt+ 82 Ht—i‘eg HtDt+04 Mt+85ﬂ+96 EMt—f-‘g'zﬂHt

+0s Ty + 09 T2Hy + 019 T2 M, + 01y Ty + 010 T2 Hy + 6013 T,° M,

+ g (Tat) + 617 MXt
(7.8)

7.1.2  Modeling for ISONE

For ISONE;, the daily average temperatures in the region are unlikely to go beyond
80°F as shown in Figure 7.5. The peak hours occur mostly between 5 p.m. and 8
p-m. Even though the region sees frigid temperatures, morning peaks are very rare.
This is because the primary fuel of space heating in ISONE is non-electric. The
recent heating electrification share is only 12-13% [95]. Although the timing of peak
demand seems to be less dependent on the temperature conditions, on really hot and
cold days, it occurs primarily at 5 p.m. We followed a similar step-by-step validation

approach as for MeSU.
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Figure 7.5: Scatterplot of daily average temperature vs. peak hour for ISONE (year
2017).

(A) Base Model

The three base models; LR-T1, LR-T2, and LR-T3 were evaluated. For PLDs,
LR-T?2 gives the best results of the three, while for all days LR-T'3 performs best as
shown in Table 7.6. Since the accuracy of PLDs is more important, we chose LR-T2

as the base model, hereon called LRO.

Table 7.5: M2 base model validation results, ISONE.

All Days PLDs
Region LR-T1 | LR-T2 | LR-T3 | LR-T1 | LR-T2 | LR-T3
CT 290 252 259 10 9.6 9.6
ISONE 266 259 239 7 6.8 6.4
ME 499 481 470 13.8 13.8 14
NEMASSBOST | 348 355 343 74 6.4 8.4
NH 311 270 271 9.8 8.4 8.4
RI 363 345 307 38.6 28.2 31
SEMASS 214 168 172 8.6 9.2 12.4
VT 246 256 261 14.6 16 16.4
WCMASS 287 248 253 7.8 6.6 8.8
Total 2824 2634 | 2575 | 117.6 105 1154
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(B) Training on Probable Peak Hours

We also analyzed the probable peak hours for all the zones of ISONE for 2017
Figure 7.6. The probable peak hours that observe greater than 1% of peak hours in
a year are marked as a set, referred to as N1, and denoted by equation 7.9. Similarly,
Set N2 for hours with greater than 2% of peak hours in the year is denoted by equation
7.10.

N1={H,: H, € [7,10,11,12,13,14,15,16,17,18,19,20]} (7.9)
N2 ={H,: H, € [10,11,13,16,17,18,19,20]} (7.10)

Models LROy; and LROyy are created by training the LRO on hours from N1
and N2, respectively . The validation results for both LR0y; and LROyo are not
compelling as seen in Table 7.6. Therefore, we chose to train base model LR0 using

all hours for training.
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Figure 7.6: Probable peak hours of ISONE (year 2017).
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Table 7.6: M2 validation results based on models trained on probable peak hours
only, ISONE.

All days PLDs

Zone LRO LRONl LRON2 LRO LRONl LRONQ

CT 252 250 254 9.6 9.6 9.6

ISONE 259 260 251 6.8 6.8 6.8

ME 481 485 490 13.8 13.8 13.8

NEMASS | 355 355 341 6.4 6.4 6.4

NH 270 267 272 8.4 8.4 7.6

RI 345 355 346 28.2 | 284 31.4

SEMASS | 168 167 168 9.2 9.2 9.2

VT 256 254 265 16 16 16

WCMASS | 248 255 258 6.6 6.6 6.6

TOTAL | 2634 | 2650 2646 105 | 105.2 107.4

(C) Add-on: Daily Temperature Features

The effect of daily average temperature (T'a), daily maximum temperature (7T'z),
and daily minimum temperature (7'n) were investigated. Table 7.7 presents the sum
of wDE values from all nine zones of ISONE from the three candidate models for the
validation period. As in MeSU, adding the term g (T'a) gives the best improvement

over the base model.
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Table 7.7: M2 validation results with daily temperature features added, ISONE.

All days PLDs
LRO 2634 105
LRO + g(Ta) 2523 100.4
LRO + g(Tx) 2520 128
LR0O + ¢g(Tn) 2576 129.4

(D) Add-on: Timing of Daily Maximum & Minimum Temperature

We also investigated the effect of the timing of daily maximum and minimum

temperature on the timing of peak hour in Figure 7.7. Evidently, the effect of timing

of daily minimum temperature is non-determinant as the heating load is majorly

non-electric. Also, there is no strong influence of the timing of the daily maximum

temperature on the daily peak hour. It seems that human activities are the primary

drivers of peak timing.
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Figure 7.7: Scatterplots of a) timing of maximum temperature of day vs. peak hours
in summer, b) timing of minimum temperature vs. peak hours in winters for ISONE
(year 2017).
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Therefore, the final M2 model selected for ISONE is given by the equation 7.11.

kg( Pt ):%+ﬂ1DFk%}ﬂ+83me+&Aﬂ+

L=n (7.11)

05 T,* + 0 T,2M,; + 0, T, H, + g (Ta,)
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7.2 A Two-Stage Peak Hour Forecasting Model

The second proposed modeling framework is a two-stage modeling process, built
upon an hourly load forecasting model with a secondary post-processing stage. The
first stage (Stage 1) employs an hourly load forecasting model that outputs the fore-
casts of the daily load profile, or what we call daily shape forecasts. The second stage
(Stage 2) is a post-processing phase where the model learns the relationship between
the daily shape forecasts from Stage 1 and the actual daily peak hour to give the final
peak hour forecast. This model is hereafter referred to as M3.

In Stage 1, a state-of-the-art hourly load forecasting model is used to get the hourly
load forecasts. In this research, we will use the MO model for the first stage. We also
need to generate the in-sample hourly load forecast, that is, the load forecasts for the
training period. From the hourly load forecast, we derive the shape forecast for the

training and test periods. The shape forecast S, is given in the equation 7.12 :

Sy == (7.12)

, where FA’t is the daily peak load forecast and L, is the hourly load forecast. In
Stage 2, a classification model is developed to forecast the daily peak hour using the
shape forecast, calendar variables, and daily temperature variables as predictors. The

process flow is demonstrated in Figure 7.8.
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Figure 7.8: Framework of the model M3.

Stage 2 is a post-processing stage where the model learns the pattern of shape
forecast and its relationship with the calendar variables to get the target peak hour
of a day. Since the shape forecast value ranges between 0 to 1 for every day, it is
easier for the classifier to learn the chronology of daily peak timing.

We have used Logistic Regression as the classifier for Stage 2, hereafter called TS.
Our experiment will use model MO to get the shape forecast from Stage 1. Similar to
the implementation approach of M2, a new binary variable PK; is generated where
PK,; €0,1. PK, is the target variable of TS. The hour of the day with the maximum
predicted probability from TS will be taken as the peak hour forecast.

It is easy to see that the shape forecast and hour of day are major determinants in
the T'S model. In addition, since the effect of shape forecast is not independent of the
effect of the hour of day, we will add their interaction term also. Since the pattern
of peak hours varies every month, we also add the term. H;M; to model the effect of
the hour that is not independent of the effect of the month. Hence, the formulation

of TS is given by the equation below :
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lOg( - ):ao+a1 H, +ay My + o3 St + asH,; gt+a5Ht M, (7'13)

We further explored training the model only for probable peak hours, as discussed
in section 7.1. The two variants of the model TS, obtained by training the model on
Ul and U2 (denoted by equations 7.4 and 7.5 ) are referred to as 7'S1 and 7°'S2. The

validation results for the MeSU are shown in Table 7.8.

Table 7.8: M3 validation results, MeSU.

wDE for all Days wDE for PLDs

Zone MO | TS | TS1 | TS2 | MO TS |TS1| TS2

Top Level | 268 | 273 | 254 | 246 | 59 | 52.6 | 51.4 | 39.4

SA1 300 | 319 | 308 | 280 |47.6 | 52.8 | 52.8 | 39.2

SA2 343 | 329 | 320 | 316 | 41.6 | 256 | 18.2 | 16.6

SA3 350 | 343 | 333 | 289 | 51 | 448 | 386 | 24

Total 1267 | 1263 | 1215 | 1131 | 199 | 175.8 | 161 | 119

The Model T'S2 clearly performs better and gives a unanimous improvement over
the Stage 1 wDE values. Hence, T'S2 is chosen for Stage 2 for MeSU. The selected
model for the proposed methodology is hereby called M3.

A similar model selection approach is adopted for ISONE. T'S1 and T'S2 are the
models trained on N1 and N2, respectively. The validation results from TS, T'S1, and
T'S2 are shown in Table 7.9. The model T'S1 improves M0 results for PLDs as well
as for all days in a year. T'S2 slightly gives better for PLDs, but worse for all days
when compared with 7'S1. Hence, we chose T'S1 for Stage 2 of ISONE as the final
M3 model.



Table 7.9: M3 validation results, ISONE.

wDE for all Days wDE for PLDs
Zone MO | 7S | TS1 | TS2 | MO | TS | TS1 | TS2
ISONE 236.2 | 203 190 189 | 33.6 | 25.4 | 254 | 194
VT 231.8 | 219 199 209 | 15.2 | 124 | 124 | 124
ME 439.8 | 288 | 295 | 302 | 34.6 | 14.6 | 144 | 14.4
cT 248 220 215 221 | 28.6|16.2|16.2 | 14
RI 313.8 | 264 266 274 |1 364 | 37.2 | 36 | 454
NH 303.8 | 235 235 238 1246 |19.2]19.2 | 20
SEMASS | 131 | 119 | 114 | 113 | 94 |10.2 | 10.2 | 9.2
WCMASS | 223 194 192 201 | 20.2 | 11.8 | 11.8 | 7.4
NEMASS | 370.6 | 281 282 287 29 6.4 | 64 | 64
TOTAL 2498 | 2023 | 1988 | 2034 | 232 | 153 | 152 | 149

7.3  Results and Discussion

108

The test results from the two proposed peak timing forecasting models as discussed

in the preceding sections of this chapter are presented in this section. The M0 model is

the benchmark model in this research. The model M2 is the classification peak hour

forecasting model described in section 7.1. The M3 model is the two-stage model

described in section 7.2. All three models are evaluated for all days of the test years

as well as explicitly for PLDs for the two case studies.



Table 7.10: wDE values for ex-ante forecasts on test data of MeSU.
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All Days PLDs only
Year Zone MO M2 M3 Year Zone MO M2 M3
Top Level | 222 | 286 | 207 Top Level | 33 | 23.2 | 23.6
SA1 251 | 307 | 200 SA1 454 | 18 | 224
2017 2017
SA2 256 | 249 | 234 SA2 37 | 176 | 17
SA3 336 | 300 | 283 SA3 51.8 | 24.8 | 26
Top 207 | 233 165 Top 396 | 23 | 274
SAl 302 | 251 249 SA1l 34.8 | 20.2 | 23
2018 2018
SA2 248 | 237 | 209 SA2 42.8 112.6 | 214
SA3 366 | 254 | 279 SA3 54 10 28
Top Level | 214 | 238 | 189 Top Level | 38.6 | 12.2 | 214
SA1 302 | 258 | 254 SA1 50.8 | 28.4 | 334
2019 2019
SA2 358 | 352 344 SA2 47 | 23.2 | 22
SA3 332 | 329 | 230 SA3 54 | 254 | 20
Total 3394 | 3296 | 2845 Total 529 | 239 | 286

Table 7.10 lists the wDE values obtained from the three models for the four zones

of MeSU. M3 significantly improves peak hour forecasts over M0 for all days of the

test year and PLDs. M3 gives an improvement of 16% on all days of the year and

46% on PLDs. However, overall, the wDE values of M2 are trivially better than

those of MO. But on PLDs, M2 improves the forecast by 55%, outperforming M3

also. Furthermore, both M2 and M3 show improvement in all zones for all three test

years for PLDs.
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Table 7.11: wDE values for ex-ante forecasts on test data of ISONE.

Test results : All days

2018 2019

Zone | MO M2 M3 MO M2 M3

CT | 244 | 266 | 213 | 191 | 201 | 166

ISONE | 188 | 221 | 165 | 142 | 154 | 121

ME | 383 | 429 | 419 | 399 | 335 | 314

NEMASS | 285 | 294 | 265 | 252 | 268 | 231

NH | 297 | 271 | 265 | 194 | 259 196

RI'| 333 | 320 | 287 | 234 22 164

SEMASS | 140 | 157 | 113 86 125 83

VT | 211 | 191 | 172 | 240 | 234 | 196

WCMASS | 254 | 269 | 204 | 190 | 207 | 164

Total | 2336 | 2419 | 2103 | 1930 | 2008 | 1635

Test Results : PLDs

2018 2019

Zone | MO M2 M3 MO M2 M3

CT | 174 ] 126 | 8.4 28 9.6 14

ISONE | 13.2 | 124 5 72 | 136 | 3.8

ME | 27.2 | 30.8 40 | 24.8|23.6 | 25

NEMASS | 276 | 18 18 13.8 | 9.8 | 126

NH | 194 | 11.4| 132 | 204 | 178 | 12.4

RI'| 262 | 10.2 | 26 35.8 | 16.8 | 21.8

SEMASS | 17.4 | 20.2 25 9.8 9.2 9.4

VT | 352 |17.6 | 30 19.2 | 17.8 | 12.2

WCMASS | 314 | 164 | 14.4 | 17.6 | 248 | 184

Total | 215 | 150 | 180 177 | 143 | 130
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Table 7.11 shows the wDE values for ISONE test years from the two proposed
models and M0. M3 outperforms MO on all days of the year, giving an overall im-
provement of 12% on both test years. M3 also improves M0 peak timing forecasts for
PLDs by 21%. Although M2 apparently does not give any improvement over MO for
all days, it performs best for PLDs, giving an overall improvement of 25% over MO
for the two test years.

Thus, it is evident that M2 is able to forecast the peak timing of PLDs better
than MO and even M3. However, due to worse performance on non-PLDs, the overall
performance of M2 is worse than M0. We compared the temperature profiles of PLDs
and non-PLDs to figure out why M2 is effective on PLDs but not on all days of the
year. Figure 7.9 plots the maximum and minimum temperatures of day vs. peak
hour for the top level. For PLDs, we notice that when the minimum temperature of
day falls below 40°F, there is a high probability of a morning peak at 7 a.m. or 8
a.m. Additionally, for these days if the day’s maximum temperature is below 40°F,
we observe a late evening peak from 7 p.m. to 9 p.m. During the summer, the system
mostly peaks between 4 and 6 p.m. However, for non-PLDs, it is not easy to draw a
definite pattern. On cold days, the system may peak in the evening even when the
temperature falls below 40°F. Besides, the peak hour distribution in summer spreads
wider between 3 to 9 p.m. Therefore, without hourly load information, M2 is not

able to reliably predict the peak hour for non-PLDs.
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Figure 7.9: Scatterplots of daily maximum temperature vs. daily minimum tempera-
ture grouped by peak hours for (a) PLDs and (b) non-PLDs (top level of MeSU, year

2016).

It is important to understand how the peak timing forecasts from M2 and M3

differ from MO forecasts. Table 7.12 displays the distribution of displacement error

(de) from the three models for PLDs. For each case study, the values shown are the

percentage days of PLDs from all zones with the respective de. For instance, with

MO model, 21% of PLDs from all 4 zones in the three test years of MeSU had zero

de.
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Table 7.12: Comparing the distribution of de on PLDs from the three models.

MeSU PLDs ISONE PLDs

MO M2 M3 MO M2 M3
de=0 21% 57% 39% de=0 42% 53% 53%
de=1 39% 32% 41% de=1 34% 31% 29%
de=2 30% 6% 1% de 13% ™% 9%
de=3 9% 1% 1% de=3 7% 4% 4%
de = 1% 1% 1% de = 2% 2% 3%
de>5 1% 3% 0% de>5 2% 2% 2%

I
N

M2 and M3 both bring drastic improvement in peak timing forecasts by increas-
ing the matched peak hours and reducing the number of days with displacement in
peak hour forecasts. For example, the days with zero displacement error for MeSU
increased from 21% with MO to 57% with M2 and 39% with the M3 model. The
percentage of days with de > 3, lowers to 5% with M2 and 2% with M3. A similar
trend is evident in ISONE, where, with M2 and M3, the count of days with matched
peak hours increases to 53%. The count of days with 1 < de < 3 reduces to 42%
from 54% of MO0. The count of days with de > 4 from M2 and M3 does not show any
improvement. It should be noted that displacement errors of up to three hours are
decisive in jeopardizing DR implementation. Hence, this is a significant improvement.

We also compared the ex-post forecasting results of the models M2 and M3 with
MO. Table 7.13 (Top) displays the sum of wDE values for all test years across all
zones for MeSU for ex-post and ex-ante forecasting. For ex-post forecasting, neither
M2 nor M3 outperformed M0O. Hence, with the actual temperature for the forecast
period, MO forecasts are quite robust. However, MO forecast accuracy deteriorates
significantly from ex-post to ex-ante forecasting. On the other hand, ex-ante forecasts

for M2 remain quite close to M2 ex-post forecasts. For example, wDE values from
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Table 7.13: Sum of wDE values from ex-post forecasting, and sum of wDE values
from ex-ante peak hour forecasting for the test data of the two case studies.

Sum of wDE values for all test years of all zones - MeSU
All Days PLD

M2 MO M2 M3
Ex-post 161
Ex-ante 286

Sum of WDE values for all test years of all zones - ISONE
All Days PLD

MO M2 M3

Ex-post | 4189

Ex-ante | 4263

MO increased by 82% and 235% for all days and PLDs respectively. While for M2 the
values increased by only 17% and -2% for all days and PLDs respectively. For M3
the wDE value increase is 36% and 79% respectively. This suggests that M2 forecasts
are less sensitive to temperature forecast errors than M0 and M3.

Table 7.13 (Bottom) displays results for ISONE. M3 provides better results than
MO even for ex-post forecasting, while M2 forecasts are worse for ex-post. When we
compare the ex-ante peak timing forecasts with the ex-post forecasts for ISONE, we
find that the difference in wDE values from the same model is not as large as it is for
MeSU. For example, the wDE values from MO for all days increased by only 2% with
ex-ante forecasting. The influence of temperature forecast error on peak time forecast
error appears to be less for ISONE. This is because, unlike MeSU, ISONE is a colder
region with temperatures rarely rising above 90°F, as seen in Figure 7.10. Also, it is
predominantly a non-electric heating region; hence winter peaks are also not much
affected by temperature. Therefore, the primary determinants of the occurrence of
daily peak hours are related to human activities for ISONE.

From the test results of both case studies, we gather that M2 is a simple yet
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Figure 7.10: Scatterplot of load vs. temperature for a) MeSU, b) ISONE (year 2016).

robust model for ex-ante forecasting of peak hour for PLDs. It outperformed the

MO as well as the M3 for PLDs and is least sensitive to temperature forecast errors.

Notably, M2 does not use any lagged load variable. Hence, M2 could be a valuable

approach for short to medium-term ex-ante forecasting of peak hours. Model M3 also

outperforms MO in ex-ante forecasting for PLDs, and additionally, it improves the

peak timing forecast for all days of the year. Empirical evidence demonstrates the

strong performance of the M3 for day-ahead peak hour forecasting.



CHAPTER 8: CONCLUSION

Peak load forecasting is crucial in the power industry. With the imperative of
consistently meeting demand, generators dispatched for peak demand typically have
a very high marginal price. Most of the prior studies on peak forecasting are focused
on the magnitude of peak load. As the industry gears up for more efficient and cleaner
ways, forecasting the peak timing is increasingly becoming critical. Various peak
shaving strategies necessitate the prior knowledge of ‘when’. With the integration of
DER and ESS, optimization of the load scheduling is highly reliant on the timing and
shape of peak demand. And yet, there is a huge gap in the academic literature on
the subject of forecasting and measuring the timing and shape of peak demand.

This dissertation aims to bridge this gap by focusing on a) defining the taxonomy
of peak timing problems, b) proposing error measures to evaluate peak timing fore-
casts effectively, c¢) evaluating the peak hour forecast from traditional hourly load
forecasting models, d) proposing novel methods of short-term peak hour forecasting
and e) ex-ante forecast analysis.

We have defined the taxonomy of peak timing problems into four types specific to
the business application: Peak Load Day (PLD), Peak hour, on-peak period, and Peak
Shape. We have critically examined the error measures used in existing literature on
peak timing forecasting. We also explored traditional classification error measures
employed in practice and common metrics used for event detection problems in other
domains. Based on the study, we have proposed five easily implementable error
measures for the four classes of peak timing forecasting problems.

In the aspect of the model development for peak timing forecasting, this research

has focused on the short-term peak hour forecasting problem. In practice, daily peak
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hour forecasts are obtained from the models developed for hourly load forecasting.
However, there is no study to evaluate how good these forecasts are. This research
assessed the state-of-art hourly load forecasting framework based on the Recency
effect model [79]. It was also set as the benchmark (MO) in this study. Peak hour
forecasts from MO were evaluated using the proposed error measure to understand
the model’s performance to forecast the peak hour. For one of the case studies, the
ex-post forecast analysis revealed that the peak hour forecasts from the MO lie within
one hour of the actual peak hour for 88% of days in a year; however, with ex-ante
forecast analysis, the accuracy comes down to 70%.

We also explored the model selection for peak hour forecasting using the Recency
effect forecasting framework. Instead of the traditional method of selecting a model
on MAPE, several discrete and continuous error measures related to peak load, peak
timing, and peak shape were used. With extensive experiments, the research con-
cluded that with hourly load forecasting models, choosing a model by measuring the
errors of the entire profile is a more robust method than picking certain hours for
evaluation. However, the study also revealed that selecting a model based on ex-ante
forecast analysis of the validation period can be beneficial for peak hour forecasting.

This dissertation also explored developing direct forecasting models for the problem
of peak hour forecasting. Two models are proposed. Model M2, based on the classi-
fication approach, explicitly forecasts the daily peak hour. The model is very simple
in complexity and computation. The model is interpretable because it was developed
by understanding the factors contributing to peak occurrences. Compared to MO,
the model demonstrated exceptional performance on PLDs, giving an improvement
of 25-55% on peak hour forecasting accuracy. It also proved resilient to tempera-
ture forecast error, making it ideal for ex-ante forecasting on short to medium-term
forecasting horizons.

Model M3 is a two-stage forecasting framework that utilizes the hourly load fore-
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casts from MO in the first stage. For the second stage, the shape forecasts are derived
from the first-stage forecasts and passed to the second-stage classification model to
get the final peak hour forecast. The model empirically demonstrated to improve the
MO results by 12-16% for all days in a year and 21-46% for only PLDs. This ap-
proach can be highly instrumental in optimizing load scheduling and market hedging
techniques by enhancing the day-ahead forecast of peak hours.

Post-analysis of results revealed that each data set is unique due to its geographic
characteristics; hence, peak timing patterns and their determinants differ. Under-
standing these drivers is critical for good modeling practice. It is worth highlighting
that a model, like M2, exhibiting lower overall accuracy in peak hour forecasting, may
paradoxically excel in the forecast of just PLDs. In conclusion, peak timing problems
require specialized models and evaluation metrics. By understanding the strengths
and applications of M2 and M3, researchers and practitioners can make informed
choices to address diverse challenges of peak timing forecasting.

This detailed research on the topic of peak timing forecasting opens up exciting
avenues for future research. As part of model development, we have only taken on
the problem of peak-hour forecasting. The study can be expanded to include other
peak timing problems, such as month-ahead forecasting of PLDs, day-ahead on-peak
period, and peak shape forecasting. In this research, we have evaluated the peak
hour forecasting models on the actual PLDs. It is intriguing to see how the model
selected on forecasted PLDs performs. The research can also be extended to prob-
abilistic forecasting for quantifying uncertainty for long-term forecasting purposes.
Hence, there are numerous open questions on this subject. Hopefully, the proposed
framework will serve as a foundation for developing more sophisticated models and

addressing emerging real-world grid operation challenges.
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