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ABSTRACT

DAVID VUTETAKIS. Online Robot Exploration and Perceptual Coverage of
Large-Scale Unknown Environments: Scalable Optimization and Generalized

Software Framework. (Under the direction of DR. JING XIAO)

This dissertation addresses the problem of non-myopic online exploration and visual

sensor coverage of large-scale unknown environments using an autonomous robot. We

introduce a novel perception roadmap, referred to as the Active Perception Network

(APN), that represents a connected configuration space over a concurrently built spa-

tial map. The APN is modeled by a hierarchical topological hypergraph that equips

a robot with an understanding of how to traverse throughout a concurrently built

spatial map, and facilitates predictive reasoning on the expected visible information

of the environment from untraversed regions of the map.

As new information is added to the map during exploration, the APN is iteratively

updated by an adaptive algorithm entitled Differential Regulation (DFR), which ap-

plies difference-aware strategies to constrain the complexity of each update relative

to the size of changed map information, independent of its total size. DFR employs a

view sampling-based strategy to expand and refine traversability knowledge as map

knowledge increases, using a novel frontier-based approach to evaluate information

gain and guide the sampling and pruning of views within the APN. The APN serves

as a knowledge model which can be applied for graph-based exploration planning. An

evolutionary planner, designated as APN-P, leverages the hierarchical representation

of the APN to perform non-myopic exploration planning that dynamically adapts to

the changing map and APN states.

This dissertation further presents a software development framework, Active Per-

ception for Exploration, Mapping, and Planning (APEXMAP), that addresses the

unique and non-trivial software engineering challenges inherent to online exploration

and active perception tasks. APEXMAP provides a generalized modular framework
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for these challenges, which is made open source for the benefit of the research com-

munity.
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CHAPTER 1: INTRODUCTION

For mobile robots, such as micro aerial vehicles (MAV) or unmanned ground vehi-

cles (UGV), a model of the operational environment is essential to the navigation and

planning tasks involved in nearly any autonomous application. However, for many

practical applications, the robot must operate in an unknown environment, for which

an a priori model of the environment is unavailable or unreliable. This includes appli-

cations related to search and rescue, 2D terrain surveying [1, 2], 3D object modelling

[3, 4], infrastructure modeling and inspection [5, 6, 7], and many others [8].

When an environment model is unavailable before operation, it must be built from

sensor information acquired online by the process referred to as map learning, or

simply mapping. This is an incremental task in which onboard sensors are used to

perceive parts of the environment surrounding the robot, using the robot pose to

geometrically align and integrate these measurements into a consistent global map

model. Environment mapping is considered a passive process which is only concerned

about how to build the map given the immediate input sensor data, but does not

consider the navigation and control of the robot that dictates the information content

of the particular inputs.

In contrast, autonomous mapping requires the integration of navigation and con-

trol to the map building process. This is formulated as a decision-making process

which attempts to predict the new information expected to be added to the map

upon execution of a particular control action. The optimal action is determined ac-

cording to criteria related to the cost of the action (e.g. time or distance traveled), the

expected increase of total map knowledge from the sensor measurements produced

by the action, and potentially subject to additional application-specific objectives or
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constraints. This task has been described in the literature by many names including

active exploration [9], adaptive exploration [10, 11], active mapping [12], informative

path planning (IPP) [13, 14], or simply robot exploration [15] in addition to many

others. For clarity, this dissertation will primarily adhere to the term online explo-

ration in reference the general process where autonomous decision-making is applied

for the purpose of online environment exploration and map learning.

Most early research for online exploration was applied to Unmanned Ground Vehi-

cles (UGV), but recent advancements of lightweight and low-cost Micro Aerial Vehi-

cles (MAV) has made aerial systems increasingly practical for these purposes. How-

ever, MAV systems also introduce a number of additional challenges, such as lim-

ited power and payload capacity that leads to restrictive flight time and constrained

computational and sensing resources. They are also inherently unstable and require

robust control systems for safe and accurate operation. Methodologies designed for

ground vehicles often cannot be effectively adapted or extended to aerial vehicles,

given the increased problem dimensionality and complexity combined with reduced

onboard computation resources. While significant research progress has been made

using MAVs for online exploration in a short timeframe, less works have concentrated

on applications for MAVs compared to ground vehicles, and there are a variety of

unsolved or understudied challenges that remain in general.

1.1 Online Sensor Coverage Planning (OSCP) Problems

In its general form, the goal of online exploration is to maximize some measure

of environment knowledge, or information gain, using a minimal amount of time or

energy. However, different tasks or applications may impose additional objectives,

constraints, or termination criteria.

For example, subterranean exploration tasks may seek to maximize knowledge of

all traversable free-space of an underground cave or tunnel system. A search and

rescue application seeks the same information, but may allow termination once a
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predetermined target is located. In contrast, a structural modeling application seeks

maximum information regarding the visible surface geometries or features to support

3D modeling tasks, terminating once maximum surface coverage is reached without

regard to the free-space coverage. In general, the differences between formulations

can be classified according to the particular features of interest (e.g. free space or

surfaces), and the termination conditions that define successful completion.

This dissertation specifically focuses online exploration applications for the pur-

pose of dense 3D modeling of an a priori unknown structure or environment using a

resource-constrained MAV or other mobile robot. This problem will be referred to as

online sensor coverage planning (OSCP). The robot is assumed to be equipped with

a spatial depth sensor able to perceive the 3D surface geometry of the environment,

where a surface point is considered covered once it has been observed by the sensor.

The OSCP objective is to achieve maximum visual surface coverage of a bounded

volume, subject to time or energy constraints. Thus, the features of interest are the

visible surfaces, and the termination conditions specify maximum observation of these

features.

Naturally, OSCP cannot be solved directly or offline due to the lack of a priori

knowledge, and can only be solved online in an incremental fashion. This leads to

the distinction between the global coverage problem and the incremental exploration

problem, where the global problem corresponds to the discrete goal state where max-

imum coverage is achieved, and the incremental problem corresponds to the means

of achieving this. The incremental problem represents an iterative action selection

problem: given the current incomplete knowledge, determine the optimal control ac-

tion expected to most efficiently lead to completion of the global objective. Hence,

the global coverage state is determined by the cumulative sensor observations ac-

quired over the traversed path, and a path that maximizes the global coverage state

represents a solution to the global coverage problem.
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A general problem model can be formulated using a partially observable Markov

decision process (POMDP), which are known to be highly intractable other than

for very small problem sizes [16]. Consequentially, approaches seek practical solu-

tions with reasonable quality sufficient for the targeted application. Still, most exist-

ing approaches rely on problem simplifications, operational assumptions, and greedy

planning strategies, and are unable to achieve acceptable performance for many ap-

plications or conditions. Further research is needed for scalable and efficient planning

methods that are practical for a broader range of applications, particularly in large-

scale and complex environments.

1.2 Dissertation Overview

The remaining chapters of this dissertation are organized as follows: Chapter 2 pro-

vides a literature review of the various components involved in an online exploration

system, as well as key approaches towards the problem. A formalized description and

formulation of the problem addressed by this dissertation is contained in Chapter

3, and an overview of the presented approach in Chapter 4. Chapters 5, 6, and 7

present the primary aspects of the methodology, and a detailed performance analysis

and comparison is provided in Chapter 8. Finally, a software development framework,

APEXMAP, is described in Chapter 9, with details regarding its role in the imple-

mentation of our methodology. Conclusions and contributions are given Chapter 10,

with a description of potential future work.
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CHAPTER 2: LITERATURE REVIEW

Online exploration belongs to the more general class of problems referred to as

active perception, where intelligent control strategies are applied to the process of re-

mote sensing and data acquisition [17]. The intuitive motivation for active perception

is derived from the limited capabilities and noisy measurements inherent to physical

sensors. Remote sensing technologies such as depth cameras or LiDAR can only cap-

ture a limited amount of information about the environment from a static pose, due

to intrinsic properties of the sensor like limited field-of-view and range of measure-

ment, or perspective occlusions by obstacles in the environment. The purpose of an

actuated robotic system is to overcome sensor limitations and occlusions by allowing

the position and orientation of the sensor to be dynamically moved throughout the

environment. Thus, online exploration problems must be addressed in the context

of both the sensing modality and the robot platform on which they are mounted,

including all other aspects needed to for robot motion planning and control.

Figure 2.1: Primary hardware and computational components comprised by online
exploration systems.

The following sections of this chapter will provide a review of the relevant back-

ground theory related to the functional components needed for active perception and
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online exploration, which are summarized by the depiction in Figure 2.1. This in-

cludes a review of the different hardware components necessary for a robotic system

to perform active perception tasks, provided in Section 2.1 and 2.2, respectively.

A review of mapping methodologies and other approaches for storage of perception

knowledge is contained in Section 2.3, and relevant theory related to localization and

odometry in Section 2.4. A review of key works and the current state-of-the-art for

online exploration tasks is provided in Section 2.5, followed by a summary of current

limitations and challenges that warrant further research.

2.1 Autonomous Agent

The autonomous agent describes the integrated robotic system which is deployed

in the operational environment for an exploration application. It is comprised of the

electromechanical components for sensing and locomotion in the environment, and

computing resources for data processing and autonomous operation. In the context

of this research, typical classifications of the agent include unmanned ground vehicles

(UGV) [18], unmanned aerial vehicles (UAV) [19], unmanned surface vehicle (USV)

[20, 21], and autonomous underwater vehicles (AUV) [22], while heterogeneous sys-

tems have also been considered [23]. In this work we focus on applications involving

aerial vehicles, but the underlying principles and methodologies can be effectively

generalized to other vehicular systems.

2.1.1 Micro Aerial Vehicle (MAV)

A Micro Aerial Vehicle (MAV) is class of small and lightweight UAV, typically

made to be man-portable. These include commonly consumer available multirotor

configurations like quad-rotors, colloquially referred to as drones. These are versatile

class of robots capable of precise maneuvering in 3D space and deployment in a wide

range of environments. These characteristics make them a particularly attractive

solution for exploration and volumetric reconstruction, but are also characterized by
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many unique constraints. These constraints often introduce unique challenges not

experienced by other robotic systems such as mobile ground vehicles.

The nature of airborne operation results in highly restricted payload capacities

and limited flight times. This drastically reduces the available onboard computa-

tion and sensing hardware. Sensors must be both lightweight and low-power. The

quality of these sensors is significantly reduced compared to their ground-based coun-

terparts. The reduction of computing resources further limits the ability to process

large amounts of sensing data in real-time. One approach is to wirelessly transmit

data to a ground station with more computing power, but communication bandwidth

and latency can introduce further challenges. This option also may not always be

available if prior access to the environment is not permissive.

2.2 Sensing Modalities

Sensing technologies provide the ability of the agent to measure and interpret phys-

ical stimuli from the environment or regarding the agents own dynamic state. Sensors

can be classified as either interoceptive or exteroceptive, according to the source of

their stimuli [24]. Interoceptive sensors measure parameters of the agents inertial

state, such as linear acceleration or angular velocity. Exteroceptive sensors mea-

sure parameters related to the external environment. The following subsections will

provide a brief overview of these classes of sensing and their usage for exploration.

2.2.1 Interoceptive Sensing

Interoceptive (also referred as proprioceptive) sensors provide information regard-

ing the vehicles inertial state which is essential for tasks like motion control and

state estimation. Multiple sensor modalities are typically packaged together in an

integrated sensor suite known as an Inertial Measurement Unit (IMU), or Inertial

Navigation System (INS). These include a multi-axis accelerometer which measures

linear acceleration along each orthogonal axis of the agents body frame of reference.
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A multi-axis gyroscope similarly measures angular orientation and angular rate of

each axis. These measurements can be mathematically integrated over time to re-

solve additional measurement units like velocity and displacement, which can be used

to approximate the position by a technique known as dead-reckoning. However, small

integration errors quickly accumulate over time which makes this approach ineffective

for accurate positioning over extended time periods.

2.2.2 Exteroceptive Sensing

Exteroceptive sensing receives stimulus from the external environment such as vis-

ible light or sound, and allow perception of the scenes visual or geometric charac-

teristics. The most common exteroceptive sensors employed on a lightweight MAV

include cameras, laser scanners (LiDAR), RGB-D, ultrasonic, and optical flow [24].

Cameras may be either monocular or a stereo pair. These are passive sensors, mean-

ing they only measure preexisting stimuli from the environment (i.e. light). They are

generally lightweight, consume low power, and are able to discern textures and other

visual features from the environment. Similarly, optical flow sensors measure emitted

light from the environment, but rather than store images, they use the relative change

in visual data over time to resolve image velocities or displacement.

LiDAR, RGB-D, and ultrasonic sensors are considered active devices - they in-

troduce stimuli to the environment to measure its interaction [24]. LiDAR emits a

focused a laser in a scanning motion, measuring the time of flight (ToF) to resolve

distance. These sensors generally have the highest weight and consume the most

power, but obtain very dense and accurate measurements. Similarly, RGB-D sensors

emit infrared lasers on the scene, but do not directly measure distance. Instead, a

structured light pattern is produced, which is observed by a camera sensor. The

relative dispersion of the pattern can be used to resolve depth, which is combined

with the RGB image data. Lastly, ultrasonic rangefinders emit sound waves, mea-

suring the distance to obstacles using the ToF technique. These generally consume
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the lowest power and are very lightweight. A major disadvantage results from the

dispersion of the sound wave, which is unable to resolve accurate point measurements

- the distance reading could come from anywhere within its cone of reception.

For the purpose of collecting data to be used for volumetric exploration, the most

useful sensors are cameras, LiDAR, and RGB-D [24]. Cameras can provide rich color

and texture information about the environment which is often desired for realistic

scene modeling, making them a popular option for data collection. However, they

often have limited resolution and high computational loads associated with image

processing. LiDAR data does not contain visual information like color or intensity,

but may be used if only the geometric structure of the scene is required. In such

cases, the weight and power consumption remains a drawback compared to camera-

based methods. RGB-D sensors can capture both visual and structural information

independently, but have significantly reduced measurement range compared to both

LiDAR and camera-based implementations. As a result, sensor implementations are

often designed to minimize these trade-off characteristics, dependent on the specific

conditions of a particular application. This often results in solutions that do not

robustly generalize to different conditions.

2.3 Spatial Mapping

A spatial map model refers to any means of representing the environments spatial

and geometric characteristics. For online tasks, these are dynamic data structures

that store an organized memory representation of spatial information collected by the

agents sensors over time, allowing efficient memory and recall of prior observations.

This is essential for state estimation, motion planning and control, and enables fur-

ther reasoning and inference needed for informed decision making. Key challenges for

this problem relate to efficient data representation and storage, updatability, scaling

complexity, and uncertainty handling [25]. An IEEE standard for 2D map representa-

tion which indicates the maturity of 2D mapping approaches [26]. A similar standard
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for 3D map representations has yet to be established due to its increased difficulty

and lack of generalized solutions.

A variety of map models have been presented in the literature, most of which can be

classified as metric maps, topological maps, or semantic maps [27]. A tradeoff exists

in each representation between its informativeness and space-complexity, introducing

both advantages and disadvantages of each type depending on the task they are

used for. In general, no map representation has been developed which is optimal for

all functionality requirements, resulting in performance tradeoffs or the adoption of

multiple map representations for a single application [27]. The following subsections

will provide an overview of each map category and their tradeoffs. Additionally, a

comparative analysis of several mapping techniques can be found in [28], and a survey

on 3D maps in the context of SLAM can be found in [27].

2.3.1 Metric Map

Metric maps model the geometric space of the environment and are considered

the most informative map representation. However, the increased informativeness

comes at the cost of higher storage requirements and time complexity. Some of the

most commonly used metric maps include occupancy grid maps, signed distance fields

(SDF), mesh models, and feature maps. Multiresolution occupancy maps have been

developed which contain variably-sizes voxels rather than a single fixed size, which

can greatly reduce memory requirements and complexity.

Occupancy grid maps densely partition all space within a bounded volume into a

discrete set of cubic volumes known as voxels. Each voxel can then be used to store

useful properties of their contained volume, such as its occupancy state as either

unknown, free, or occupied. The occupancy state can be represented as a discrete

value, or as a probabilistic value which can account for sensor uncertainty. Given a

map M, discretized into a set of voxels v ∈M modeled as a binary random variable,

the map is initialized by assinging each voxel a prior probability value (a value of 0.5
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is common practice). When a new sensor measurement z1:t is received, the probability

P (v|z1:t) of a voxel v to be occupied given the sensor measurement is computed as

shown below [29].

P (v|z1:t) =
[
1 +

1− P (v|zt)
P (v|zt)

1− P (v|z1:t−1)

P (v|z1:t−1)

P (v)

1− P (v)

]−1

(2.1)

Conceptually, this formulation can be understood simply that as the occupancy

probability of a voxel v given a new measurement zt is dependant on the prior prob-

ability P (v) and the previous estimate P (v|z1:t−1). Each voxel is classified as one of

three possible values according to:

• occupied: occupancy probability > prior probability

• unknown: occupancy probability = prior probability

• free: occupancy probability < prior probability

An obvious drawback to fixed-resolution occupancy maps is the large memory re-

quirement to explicitly store each voxel, especially as the environment scale increases.

An attractive alternative is through multi-resolution maps which allow the size of each

voxel to vary when all of its neighbors share the same occupancy state, replacing them

with a larger single voxel. It is generally true that the majority environments consists

mostly of free space which can be more compactly represented using this structure.

In practice, this can be implemented using efficient data structures such as quadtree

[30, 31], R-tree [32], or octree [33, 34, 35].

Two particularly noteworthy open-source implementations of octree maps is through

OctoMap [29] and Point Cloud Library (PCL) [36]. A brief comparison of the two

frameworks is provided in [37], showing that each offer O(1) complexity for random

access and are capable of multiresulution queries. However, a key difference is that

PCL focuses efficiency on compression needed for streaming, while OctoMap is opti-
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mized for robot navigation and exploration. This is clearly evidenced in the literature

as an increasing number of robotics applications choose to incorporate OctoMap.

SDF maps are conceptually similar to occupancy maps in that they densely par-

tition volumetric space. The key difference is that each voxel in a SDF map stores

a distance metric corresponding to the distance to the nearest obstacle. This metric

can be much more computationally expensive to update, but can also significantly

decrease the complexity of subsequent queries operations like collision checking.

Feature maps utilize a sparse representation of geometric space, in contrast to

occupancy grids or SDF maps. They store a sparse set of salient geometric features

extracted from the sensor data. Intuitively, the features should be invariant to changes

in viewing perspective, illumination, and other disturbances, allowing them to be

uniquely queried. Some of the more commonly used features descriptors are shown

below, while many others exist.

• Scale-Invariant Feature Transform (SIFT)

• Speeded Up Robust Features (SURF)

• Features from Accelerated Segment Test (FAST)

• Binary Robust Independent Elementary Features (BRIEF)

• Oriented FAST and Rotated BRIEF (ORB)

A representation of a feature map is through the use of vocabulary trees [38], which

efficiently query very large datasets. The motivation behind this approach is to help

reduce the memory demands for mapping large-scale environments by only storing

the most significant and useful information about the scene. In general, selection of

an appropriate feature descriptor is a trade-off between invariance and robustness to

computational cost.
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2.3.2 Topological Map

Topological maps can be conceptualized as a graph structure where the nodes store

some high level semantic understanding of the world, and edges represent relative

relationships between these. These maps are useful for identifying the connectivity

of different regions, but do not explicitly model the geometry. Semantic maps store

a hierarchical structure of semantic elements such as objects or rooms, and also omit

explicit geometric modeling. These can be difficult to construct and often require

large computational resources that are restrictive for online applications.

2.3.3 Semantic Map

Semantic maps provide the ability to store qualitative or quantitative knowledge

and relationships about the environment, often in a more human-understandable

form. A formalized model was presented in [39], and further refined in [40]. Given

a mathematical description of the environment E and task domain D, a semantic

map can be defined by the tuple Msem = ⟨M,L,A⟩, where M is a set of maps for

E, and L is a set of links. A is a structure representing the knowledge about D,

which allows for inference. In general, A can be arbitrarily defined with respect to a

particular applications, and is generally represented using a graph-based structure, or

an ontology [39]. Semantic maps are generally referenced, or anchored, to a geometric

map, overlaying conceptual or abstracted knowledge such as objects or rooms [40].

2.4 Localization and Odometry

Localization is the general problem of determining the pose of the robotic agent with

respect to a fixed reference frame of its operational environment. When operating

in an unknown environment, particularly indoors, external systems like GPS that

provide absolute pose estimation are often unavailable or unreliable. In these settings,

localization must be performed relatively from onboard sensor data using the process

of Simultaneous Localization and Mapping (SLAM). Conceptually, this involves using



14

relative sensor measurements Z to build a geometrically consistent map M while

concurrently computing the agents pose x with respect to the map [41]. Due to

various sources of noise and uncertainty, this is modeled probabilistically as the joint

posterior of the agent state x and map M at time instance k according to:

p(xk,M |Z0:k, U0:k, x0) (2.2)

where x0 is the initial known state, Z0:k = {z0, z1, z2, ..., zk} is the set of prior mea-

surements, and U0:k = {u1, u2, u3, ..., uk} is the set of prior state transitions according

to some odometry model [42]. The solution to this problem requires a motion model

p(xk|xk−1, uk) which represents the probability distribution of the agents pose xk given

the previous pose estimate xk−1 and the previous state transition uk. An observation

model p(zk|xk,m) is also necessary which describes the probability distribution of a

measurement zk given the agents pose xk and the measurements location in M .

Indirect methods, also known as feature-based methods, extract visual or geomet-

ric features (also known as landmarks) from the raw sensor measurements. Direct

methods have also been proposed which use the raw sensor measurements directly,

but these are often too computationally expensive for online use and are less effec-

tive than feature-based methods [41, 43]. Solutions are typically derived using the

recursive Bayes rule [44], with the most common approaches based on Kalman Filters

(KF), Particle Filters (PF), and graph-based frameworks. Detailed surveys for SLAM

based on filtering approach can be found in [45, 46].

One of the most difficult aspects of SLAM is the correspondence problem, or data

association problem [41]. This is the problem of identifying corresponding features

between different observations. Incorrect data association can corrupt the map and

often results in catastrophic localization failure [47], and is particularly difficult for

ambiguous or non-unique features, and for repeating feature patterns [44]. Without

absolute reference information, finding true correspondences is not always feasible and
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introduces large uncertainties. Data ambiguities and outliers are often handled using

techniques such as Random Sample Consensus (RANSAC) and Maximum Likelihood

Estimation SAmple and Consensus (MLESAC) [48].

Noise and uncertainty inevitably accumulate with each update, causing unbounded

increases of uncertainty and errors to the map and localization estimates over time.

However, the relative error between features is often highly correlated, and this cor-

relation has been shown to increase with repeated observations [42]. This correlation

is a fundamental principle to formulating SLAM as a single joint estimation problem.

It can be used to infer that despite high uncertainty in the absolute location of a fea-

ture, the relative relationship between features can often be known with significantly

greater accuracy. Further, relative uncertainty between features can be monotonically

reduced through increasing reobservation of known features, allowing non-divergent

probability estimation over time [42].

To reduce absolute estimation errors, loop closure is a well known and effective

technique. A loop is a sequence of states such that the beginning and end of the loop

contain a corresponding set of feature observations. Errors accumulated over the loop

result in inconsistent estimates of the features between the two terminal states. The

relative correlation principle allows this error to be measured and corrected using bun-

dle adjustment (BA), which jointly refines the map and localization state estimates

within the loop [49]. However, since the uncertainty growth is unknown, robust loop

detection or place detection approaches are needed for data association, which can

be quite challenging. Accurate loop detection is critical, as a false positive can com-

pletely corrupt the integrity of the map [50]. Loop closures and reobservations are

both critical components to bound the growth of error over time [51, 52], but various

unsolved challenges remain in the literature.
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2.5 Active Perception for Online Exploration

A taxonomy of existing approaches to online exploration can be determined ac-

cording to several key facets of their formulation:

• Action representation: how actions are mathematically represented

• Search space: how candidate actions are generated

• Decision metrics: how candidate actions are evaluated and optimized

• Geometric horizon: geometric extent of available knowledge considered for de-

cision making

• Temporal horizon: forward-time depth of decision evaluation

• Temporal coherence: dynamic maintenance and reuse of the search space over

time

• Action commitment: whether actions can be abandoned before completion if a

better one is found, or are required to be fully executed before selecting a new

one

2.5.1 Frontier-based Exploration

Frontier-based exploration was first introduced by B. Yamauchi [53], where the

exploration problem was formulated as: "Given what you know about the world,

where should you move to gain as much new information as possible?" [53]. To

solve this problem, Yamauchi introduced the concept of frontiers, defined as the

boundary regions between free space and unknown space within the partially built

map. Frontiers help to identify specific locations where the adjacent free-space can be

safely traversed to observe the adjacent unknown space, which in turn will increase

perception knowledge and extend the respective frontier boundaries. This is repeated
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in an iterative fashion until no frontier regions remain, implying the environment has

been fully observed and mapped.

Early implementations of classical frontier exploration were presented mostly for

2D exploration tasks involving UGVs [54, 55, 56, 57, 11]. Given a 2D occupancy grid

map, a greedy closest frontier (CF) search strategy was applied which computes the

nearest frontier to the robots current position as the navigation goal. A path is then

planned that leads towards the frontier, while monitoring for potential collisions as

the path is executed.

Extensions from 2D to 3D exploration for aerial vehicles introduced significant chal-

lenges due the increased computational complexity and memory demand for building

and planning on 3D maps, and given the constrained onboard resources. This forced

early approaches to make a variety of simplifying assumptions. A technique was

used in [58] that reduced each iteration of the exploration from 3D to 2D by using

a fixed-altitude for exploration and motion planning, which was perhaps the first

demonstration of an autonomous aerial system capable of exploring and navigating a

completely unknown environment [59]. The vehicle was equipped with a laser scan-

ner, stereo camera, and IMU which were used in an EKF sensor-fusion approach to

perform keyframe SLAM. The map was reduced to a 2D floorplan representation,

allowing the direct use of the frontier-based approach in [53]. Experimental results

demonstrated the capability of the system to perform localization and stable flight,

autonomously exploring various unknown environments for distances of 44.6m and

flight times of around 6 min. These results were a milestone in the development of

autonomous MAVs, but were far from solving the general problem. Decoupled verti-

cal and horizontal motions prevents optimal path planning, and assumes a building

layout with consistent floor and ceiling geometries. A relatively low-clutter environ-

ment was used which allowed for relaxed planning and control techniques. Further,

complete coverage was not achieved, as only the 2D floor plan layout was of interest.
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It was discovered that frontier-based exploration suffered in large open areas due

to the lack of adequate surface information. One mitigating approach was to use

wall-following strategies in such conditions, which helped ensure the vehicle remained

near the target surfaces to be mapped. In the approach of [33], nearby walls were

detected using RANSAC to perform geometric plane fitting. The point on the wall

closest to the current position is selected as p1, and a point p2 is computed at the

same altitude as the MAV at a distance d from p1 along the wall. These points

are then used to compute the next waypoint p3, which is perpendicular to the wall

plane with a distance equal to the distance between p1 and the current position of

the MAV. Although experimental results indicated an improvement over the frontier-

based strategy, a user command was required to determine when to switch to the

wall-following strategy. Further, though mapping was performed in 3D, exploration

was limited to two-dimensional planes, resulting in over-simplified exploration paths.

To compensate for limited onboard computation, a compact frontier exploration

strategy was implemented in [59]. This strategy was based on the Sensor-Based

Random Tree (SRT) frontier approach, SRT-Star, developed in [60]. The approach

utilizes the characteristics of a 2D laser range scanner to significantly reduce the com-

putational demand. The underlying idea was that a command velocity (−→v cmd) was

composed of contributions from frontier velocity (−→v fr) and a wall-following velocity

(−→v wf ) according to:

−→v cmd =
−→v wf +

−→v fr (2.3)

The SRT-Star approach operates by dividing a laser scan beam into sectors con-

taining a left-point, right-point, and mid-point. These sectors are used to identify

the location of frontiers. If all sectors are completely free, the mid-point is declared

the frontier. If large discontinuities exist between adjacent sectors, then the corre-

sponding left-point or right-point are declared frontiers. If any number of frontiers
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are detected, a waypoint is generated within the sector that produced the frontier.

Otherwise, the vehicle is commanded to the previous waypoint visited. Although

autonomous operation was demonstrated, the results were limited and suffered from

similar drawbacks as [59].

The work of [34] proposed a more efficient 3D extension of frontier exploration.

The efficient OctoMap framework was incorporated, reducing the complexity involved

with extension to 3D. A cost function was implemented to evaluate and select the

best frontiers, rather than arbitrarily selecting the closest for exploration, similar

to the method proposed in [61]. A novel contribution was a more efficient frontier

extraction approach that only evaluated frontiers each iteration for state-changed

voxels, rather than naively evaluating the entire map each iteration. To compute the

optimal frontier, they introduced the utility function:

cf = w1 ×
Nunknown

Nall

− w2 × |Pf − PO| (2.4)

where cf is the cost of the frontier cell candidate, Pf is the frontier cell coordinate,

PO corresponds to the current position, and w1 and w2 are relative weights to balance

the evaluation towards either maximizing coverage, or maximizing exploration. The

terms Nunknown and Nall correspond to the number of unknown and all cells around

the frontier within a spherical radius R.

Experimental results were provided, primarily evaluated in terms of processing

time. A test environment of size 12.6m × 7.8m required less than 5 minutes to

completely explore. The integration of new observations to the OctoMap required

an average of 0.5s process, while frontier clustering and evaluation was in the order

of milliseconds. These results clearly demonstrated the computational feasibility of

their approach using limited computational resources. However, a measure of coverage

completeness, accuracy, or quality was not provided in the results.

A variant of the classical frontier strategy was presented in [62], motivated by the
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high demands on computation and memory for dense representation of occupied, free,

and unknown space. This approach did not require explicit, dense representation of

free space in an occupancy map. Using the assumption that unstructured or unclut-

tered regions of the map generally correlate with unexplored regions, a Newtonian

dynamics-based particle model was implemented in which the particles are dispersed

based only on interaction of occupied space in the spatial map. The motion of these

particles is governed by a stochastic differential equation (SDE), where obstacles in-

duce forces on the particles, causing them to disperse until coming to rest in unknown

areas (free of obstacle-generated forces). The final resting positions in unknown space

are then defined as frontier regions, providing candidate locations for further explo-

ration. As a result, motion planning is performed in 3D and is efficient enough to

operate using only onboard processing.

A significant drawback of classical frontier exploration is that frontiers indicate

only the existence of adjacent unknown space, but not the quantity or quality. Using

a frontier location directly as the navigation goal ignores sensor’s measurement range,

thus causing inefficient and wasteful motions. Furthermore, a frontier location near

surfaces generally do not represent a feasible goal for a robot due to collision with the

surface obstacle, making their direct use in this way ineffective for surface coverage

tasks.

2.5.2 Sampling-based and Information-theoretic Methods

Exploration can be effectively modeled as an extension of the Next-Best-View

(NBV) problem introduced by [63], which can overcome several of the drawbacks

associated with classical frontier-based approaches. Here, a view refers to a hypothet-

ical pose of the sensor apparatus used to predict and analyze the spatial information

expected to be visible if the real sensor were to be placed at this pose. The expected

visible information is then said to be covered by the view.

The classical NBV problem assumed full prior knowledge of the target object is
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given to facilitate the search and evaluation of NBVs, where the objective was to

find a minimum set of views that maximizes coverage of the known surfaces of the

object model. This premise can be adapted for online exploration tasks by instead

evaluating views according to currently unknown parts of the environment model,

rather than the known parts.

NBV-based exploration methods typically utilize a generate-and-test paradigm

which apply sampling techniques necessary to discretize the continuous configura-

tion space into a finite set of candidate views for analysis [64]. The quality of a view

is evaluated according to some measure of its information gain (IG), which quantifies

the new spatial information potentially observable from the view [65, 66, 67, 68]. A

cost metric is additionally used to evaluate the expected effort for the robot to visit

the view (e.g. time or energy). Most critical differences between existing NBV ap-

proaches occur within the sampling strategy for generating view candidates, and the

formulation of metrics for analyzing and comparing candidates for goal selection.

Information gain is commonly computed volumetrically by finding the expected

amount of unknown space visible from a view [69, 70, 71]. This necessarily involves

checking for occlusions within the known space using techniques like raycasting, which

incurs high computational complexity that can rapidly increase with various factors

like map resolution, sensor field of view, and sensing range. This limits the number

of distinct views that can be practically evaluated within a given time period. The

high complexity also make it difficult to analyze overlapping or mutual information

between views, such that most approaches treat the gain as an independent value

that prevents an understanding of the unique gain contributions of each view within

a group.

An early formulation of such methods can be found in [72]. In this approach,

flight paths are computed by simultaneously considering navigation integrity and ex-

ploration gain. They reason that undesirable performance may occur as a result of
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inaccurate state estimates caused by low information, or from filter instability from

incorrect data association. The accuracy of the navigation estimate was represented

by the amount of entropic information in the probability distribution of these es-

timates. The entropy H(x) of a multivariate Gaussian probability distribution of

navigation estimates, using covariance matrix P, can be represented as:

H(x) =
1

2
log[(2πe)n|P|] (2.5)

This represents the compactness of the distribution, i.e. the information quantity in

vehicle state estimation. The mutual information I[x, z] was defined as the difference

between the entropy of the distributions before and after making an observation.

They used this principle to formulate a utility function U representing the total

utility for traveling to a viewpoint as a weighted sum of the vehicle pose estimate and

information gain:

Udest = wvI[xv, z] + wmI[xm, z] (2.6)

where z is the observation, and wv and wm are pose and map information weights.

The first half of this equation causes the algorithm to prefer vehicle states which min-

imize state estimation uncertainty by maximizing the number of previously observed

features in view. The second half favors exploration of new, unobserved portions

of the map. The weights wv and wm can be tuned to balance these effects. This

formulation contrasts the utility functions described in Section 2.5.1, which generally

balance exploration gain with distance traveled. However, its performance is subject

to tuning of these parameters.

Simulation results indicated the approach was effective at selecting paths with high

information gain and achieved good localization over the course of a 200s flight. Sev-

eral loop closures were observed during this flight, directly attributed to the ability
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of the utility function to favor paths with lower vehicle state uncertainty. However,

no baseline or comparison to other approaches was provided, making the results dif-

ficult to interpret. As the results were performed only in simulation under controlled

conditions, the real-world performance is difficult to assess. Further, the proposed

solution demonstrated only a planning approach, and not a complete system.

A hybrid approach was presented in [61] attempts to simultaneously plan for both

rapid exploration and detailed coverage. This method aimed to explore as much of the

environment as possible in a minimum amount of time, while observing the complete

surface of an environment, given viewing angle and distance constraints, such that

the reconstructed model is complete and distortion-free. The proposed algorithm first

searches for goals located near frontier boundaries. These views are then assigned a

cost corresponding to the expected information gain weighed exponentially by the

cost to reach the view, selecting the single lowest-cost view as the goal. A path

is then planned to reach the goal which also attempts to maximize sensor coverage

during execution of the path.

Using a vehicle configuration of [x, y, z, ϕ], assuming zero roll and pitch, a state

lattice L discretized the 4D state space into a regular 3D grid pattern with yaw

angles discretized non-uniformly. A set of candidate goals G were constructed by

including all of the states located on frontiers. For a candidate goal sg ∈ G, the

information gain I(sg) was defined as the number of unexplored, non-occluded voxels

in the viewing frustum of sg. Given the current MAV state a ∈ L, the candidate goal

is selected which maximizes the utility function:

U1(sg) = I(sg)e
−λlmin(a,sg) (2.7)

where λ is a parameter to balance between rapid-exploration and detailed coverage,

and lmin is the cost of the shortest path from a to sg. Simulation results for an

apartment-sized world were provided with a comparison to traditional frontier-based
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planning. The proposed method observed around 90% of the voxels with a path length

of 136.1m, while the frontier approach observed around 74% of the voxel surfaces and

produced a total path of length 98.4m.

One simplifying assumption of this work to reduce computation was through pre-

computed motion primitives. This restricted the available motions of the vehicle,

reducing optimality. It also introduces potentially unsafe maneuvers not handled by

the limited set of motion primitives, and does not effectively handle vehicle dynamics.

A remaining challenge for the work was performing loop closures for SLAM, to which

they argued that no real-time CPU-based methods existed at the time.

To improve the efficiency of frontier exploration with the presence of large open

space, some approaches used the concept of surface-frontiers. These are defined as the

location that occurs at the intersection of occupied, free, and unknown space. This

formulation is useful for large-scale scenes, where the majority of space is usually rep-

resented as unoccupied, leading to inefficient exploration, or wasteful computation in

the evaluation of many views with little information. Surface frontiers ensure that the

candidate exploration points are near the surfaces of interest for the reconstruction,

rather than the free-space.

Surface frontiers were first introduced in [73], which were combined with an NBV-

based approach. Each planning iteration, a region of interest is defined as R ⊆ W ,

where W ⊆ R3. Surface frontiers were detected within this region, which were evalu-

ated using a similar utility function to [34] and [61]. This utility function evaluated

a view’s information gain and the cost to reach the view. A tuning parameter was

applied to balance the score between these two terms.

An experimental evaluation was performed on a 50m bridge structure. The explo-

ration was completed in approximately 6 min, and resulted in a 5 million point model

of the structure. These results were compared to the performance of a skilled human

pilot, qualitatively performing as good or better than the pilot. The results of the
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planning algorithm were a milestone in terms of scale and efficiency. Although the

process was performed completely autonomous, it relied on GPS for localization and

did not require any SLAM techniques. The performance of the approach would likely

suffer significantly if required to perform SLAM, reducing the available computational

resources. The effect of vehicle and map uncertainty on the overall performance would

also need to be further analyzed.

A more recent approach is the Receding Horizon Next-Best-View planner presented

in [74]. This approach utilizes a sampling-based path planning strategy to generate

admissible paths that maximize exploration.

Assume a mapM, vehicle configuration ξ = (x, y, z, ϕ)⊤ constrained by maximum

velocity vmax and maximum yaw rate ˙phimax, and a target configuration for motion

tracking σkk−1 = sξk + (s − 1)ξk−1, with s ∈ [0, 1]. A finite-iteration random tree

is grown within known free space using an RRT-based approach [75]. Admissible

samples ξ are connected which satisfy vmax and ˙phimax, and assigned a connection

cost according to the Euclidean distance between the configurations. Each branch is

also evaluated for information gain in terms of the number of unmapped voxels able

to be observed by the sampled views. For a node k, the information gain Gain(n) is

described as:

Gain(nk) = Gain(nk−1) + Visible(M, ξk)e
−λc(σk

k−1) (2.8)

Visible where λ is a tuning factor designed to penalize high path costs. The

term Visible(M, ξk) determines the amount of new information observable from

configuration ξk, using λ to penalize high path costs. The information gain of each

view is propagated through the branch. After a defined number of iterations, the

branch with the highest information gain is selected as the motion path, but only

the first edge of the branch is executed. This process is iteratively repeated until

no positive gain can be found. Conceptually, this results in execution of local paths
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determined from global exploration gain estimates. This allows paths which may

not have the most immediate exploration gain, but are predicted to eventually lead

towards areas of maximum exploration.

Simulation results were obtained and compared to a frontier-based approach. For

an apartment-scale exploration scenario, the frontier planner was able to complete the

exploration around 32s faster, but did not observe as many voxels. In a larger scale

exploration of a bridge, the proposed planner required 43.8min, where the frontier

planner was manually terminated after 1670.1min. These results indicate the receding

horizon planner scales well, and suggests the evaluated frontier-based implementation

is not suited for large-scale, more complex scenes.

The approach in [76] was recently proposed as follow-up work to the method de-

scribed in [74]. This approach built on the Receding Horizon Exploration planner,

adding uncertainty-aware constraints in a two-step planning paradigm. The first layer

of the planner functioned similar to the base approach of [74]. This generates a way-

point to use as the next target for exploration. The novel contribution is the addition

of a second planning layer, which attempts to plan a new trajectory to reach the

waypoint while attempting to minimize uncertainty in localization. This is achieved

through a modification of the utility function of (2.8). Assume a mapM, vehicle con-

figuration ξ, admissible path σ, and occupancy probability P (m) of a voxel m ∈M.

The updated exploration gain ExplorationGain(nE) of tree node nE can then be

formulated as:

ExplorationGain(nEk ) = ExplorationGain(nEk−1)+

VisibleVolume(M, ξk)e
−λc(σk

k−1)+

ReobservationGain(M,P , ξk)e−λc(σ
k
k−1)

(2.9)

The addition of the term ReobservationGain(M,P , ξk) serves to increase reob-

servation of previous map data integrating occupancy map probabilities P at a view
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ξk. Conceptually, this increases the score of views with larger numbers of voxels with

a occupancy probability.

An experimental evaluation was performed in an environment with dimensions 12

x 6.5 x 2m, using an arrangement of small boxes to represent geometric structures

within the space. The planner was able to completely explore the target environment

and produce a visually appealing 3D model. By observation, the paths selected were

characterized by low navigation uncertainty. Several iterations of the experiment

indicated repeatable results. However, no quantitative analysis was provided with

regard to the exploration time, or indication of optimality. More evaluation under

different conditions would be needed to validate the effectiveness. Additionally, no

comparison to alternative approaches was provided, making it difficult assess any

performance improvements over other existing techniques in terms of exploration

efficiency, accuracy, or robustness to different environment conditions.

2.5.3 Tree-based Exploration

Tree-based methods organize sampled views as vertices in a geometric tree where

directed edges between vertices represent feasible paths between views. The RH-

NBVP approach of [77, 78] applies rapidly-exploring random tree (RRT) to grow a

tree rooted at the robots current position. Each node in the tree is weighted according

to their predicted information gain based on how much unknown space lies within

the view. Cost weights are aggregated along each branch, and the leaf node with the

highest value is used to identify the best branch to explore, iteratively repeating the

process in a receding horizon fashion. This has become a well-known approach and

is often used as a baseline for comparative analysis [79, 80, 81].

A hybrid approach that combines both frontier-based and NBV-based techniques

was introduced by [79], referred to as AEP. It combines the RH-NBVP strategy for

local planning, while switching to frontier-based planning for global search when local

planning fails to find informative views. FFI [80] is also a hybrid approach that uses
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an efficient frontier clustering strategy to guide view sampling.

A significant drawback of tree-based planning is the difficulty in preserving the

previously computed tree structure as the robot navigates to each goal. The RH-

NBVP approach builds a new tree each iteration, discarding the previously built

structure that may still contain useful knowledge. Other approaches attempt to

transfer as much of the previous tree structure as possible by rewiring its edges to

initialize the construction of a new tree. Since tree-based methods are rooted at the

robots position, they tend to become increasingly inefficient over larger distances,

making it difficult to handle dead-end or backtracking cases.

2.5.4 Graph-based Exploration

Various approaches have utilized graph structures that can overcome some of the

limitations and drawbacks of trees. The approach of [82] builds a history graph

that stores previously visited positions and their edge connections. These are used

as potential seed points for RRT, which allows a tree to be grown from different

positions across the map, rather then just from the robot position. An approach

using Rapidly-Exploring Random Graphs (RRG) was presented in [70] for exploration

of subterranean environments. A Probabilistic Roadmap (PRM) strategy was used

by [83] to build a graph of feasible configurations and paths over the map as it is

explored.

2.5.5 Topological Map-based Exploration

Topological maps have been applied by recent works which aim to reduce the

planning complexity through the compact representation provided by a topological

map. Topological maps can be considered as an extension to graph-based methods,

where vertices represent some volumetric sub-map, or place, and edges represent the

adjacency or reachability between places. This coarse and abstracted representation

is more efficient for handling large-scale environments, which can become intractable
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to explore online using alternative approaches. However, they usually lack sufficient

metric knowledge for direct use in navigation.

[84] used a topological map for exploration of underground mines using a ground

robot. The regions of intersection between passageways were represented as nodes,

and exploration was planned along the edges between nodes. A more recent approach

proposed by [85] also uses a topological map for subterranean exploration. Convex

polyhedrons are used to estimate distinctive exploration regions (DER-s) which are

added as graph nodes to the map. Each DER represents an enclosed 3D volume of the

map like an enclosed room or corridor, providing the planner with knowledge of high-

level intent such as moving between distinctive rooms or regions. Other approaches

have applied segmentation algorithms to identify the separation of distinct exploration

regions like rooms of a building [86].

2.5.6 Myopic greedy planning

The majority of existing methods compute navigation goals using myopic planning

strategies that greedily optimize the cost of the next single planning decision [87, 80],

or within a limited planning horizon [77, 79]. Some works allow planning over the

full map, but still use greedy search for the decision making. These are sometimes

referred to as global planning methods, but we clarify they are still considered myopic.

Myopic strategies bias exploration toward regions with high information gain, while

ignoring small gains even if they are closer. This bias can frequently create regions

of incomplete coverage when a high gain goal leads the exploration away from the

current region before it is fully mapped. This can also result in frequent back-and-

forth oscillation between goals, or require re-visitation of these regions after the robot

has traveled a significant distance, backtracking over potentially large distance. This

greatly reduces efficiency, and can result in sparse coverage gaps or failure to fully

explore an environment within an allowed time limit, especially over large-scales.

A relatively small number of works have recently attempted to overcome the draw-
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backs of greedy planning using non-myopic planning strategies. This has been formu-

lated using the Traveling Salesman Problem (TSP) [88, 89], but often relies on prior

map knowledge [90, 91].

A sector decomposition approach was presented by [89], which partitions the map

into a set of convex sectors used to compute a TSP sequence. However, the sector

decomposition method is computationally expensive, especially for finer map resolu-

tions, which can greatly decrease the update rate of the map and planning. Addition-

ally, sectors form an exact partitioning of the space, which can make the geometric

properties of the resulting sectors difficult to control. This can result in too many

or too few number sectors that may not be effective for large-scale and complex

environments.

2.5.7 Environment and task-specific approaches

Simplifying or restrictive assumptions are sometimes made on the operational envi-

ronment. This can include indoor operation, or reliance on certain regular geometric

features, e.g. room structures used for segmentation. Some applications are intended

to operate in relatively obstacle-free environments, such as outdoors or underwater

[92], which contain an abundance of free-space that greatly simplifies collision check-

ing and other sub-tasks. Assumptions can significantly restrict the practicality of

many approaches for general use, or require fine tuning of parameters between differ-

ent environments to achieve their rated performance.

2.6 Critical Analysis

This section provided a review of the two main categories of exploration planning:

frontier-based and information-theoretic methods. Frontier-based methods initially

struggled to overcome the computational complexity for 3D planning and SLAM

given computational constraints, resorting to simplifying assumptions such as fixed-

altitude planning, reactive planning based on wall-following, and simplistic, small-
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scale environments. The introduction of OctoMap as an efficient mapping framework

was a critical turning point that reduced the computational load and facilitated new,

more sophisticated approaches to become computationally feasible with less software

engineering effort.

State-of-the-art information-theoretic approaches are generally formulated using

a utility function to evaluate a set of candidate views according to an information

gain metric, path cost metric, and any other sub-utilities needed. Different meth-

ods may introduce minor contributions and optimizations, but the overall planning

search strategy of many recent approaches do not drastically differ. Many approaches

also remain dependent on restrictive assumptions that are often violated in different

conditions, e.g. clutter-free environments. They are also dependent on tuning of

parameters, which can significantly impact performance, and may vary between en-

vironmental conditions.

Some of the key factors contributing to limitations of existing approaches are out-

lined in Figure 2.2, and a summary of significant limitations is as follows:

• greedy and myopic planning strategies that focus on the incremental exploration

objective, but fail to consider the global one,

• non-generalized approaches that are limited to small-scale environments, or spe-

cialized for specific environments or conditions (e.g. subterranean or building-

like structures),

• most approaches succumb to high computational costs:

– they do not scale well with respect to environment size or map resolution,

– the ability to quickly replan on added knowledge diminishes, where a sub-

optimal plan is fully executed before replanning,

– reduced velocities are often required to compensate for low planning rates,
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– frequent stop-and-go motions can occur.

We observe that there is not sufficient attention to the underlying data management

issues of the general OSCP problem in the robotics research community, which could

be due to limited research funding and development cycle where data infrastructure

was not a focus. There is also a lack of open-source software to help reducing efforts

that researchers have to put into developing a good data management system. The

aforementioned limitations of existing approaches are the results of that. However,

for many realistically large-scale OSCP tasks, it is critical to have smart and sophisti-

cated data management systems, requiring careful conceptual, algorithmic, and data

structure designs and efficient software engineering solutions.

Figure 2.2: Summary of key problem challenges.
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CHAPTER 3: PROBLEM FORMULATION

We assume exploration is performed using an MAV equipped with an onboard

depth sensor (e.g. stereo-visual, RGB-D, or LiDAR) to perceive 3D space, noting

that other systems such as mobile ground robots could also be utilized without loss

of generality. The following section will formulate the key constituents of the OSCP

problem we address.

3.1 Operational Environment

Let W ⊂ R3 represent the bounded 3D space of the operational environment,

referred to as the world. The material structures and objects of the world repre-

sent occupied space Wocc ⊂ W , while the remaining volume is defined as free-space

Wfree ⊂ W , such that W ≡ Wfree ∪ Wocc. Occupied space is assumed to be rigid

such that contact by the agent would cause a collision, and free-space is considered

to be collision-free and visually transparent.

The intersection boundaries between occupied and free-space define the surface

manifolds, S ⊂ R2. Surface manifolds are assumed to be visually opaque, and a

surface point is considered optically visible from a point x ∈ Wfree only if no occupied

space lies between the surface and x. Otherwise, the surface is considered to be

occluded from x.

3.2 Environment Map Model

A spatial occupancy map M is used to store environment knowledge as it is

discovered from sensing. We assume the use of a 3D grid-based occupancy map

M = {m0, . . . ,mm}, though other map models could also be used without loss of

generality (e.g. Signed Distance Field (SDF) [93]). The map partitionsW by a set of
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non-overlapping cubic volumes m ∈ R3, known as voxels. The minimum edge length

of a voxel dictates the map resolution, rM.

To account for measurement uncertainty, each voxel has an associated occupancy

probability m 7→ [0, 1] defined over its volume that is updated from sensor observa-

tions. Higher probability values indicate higher confidence that some occupied space

lies within the voxel volume, and lower values indicate the voxel volume contains only

free-space. An occupancy state classifier O(m) ∈ {ounk, oocc, ofree} is used to evaluate

the discrete probability state according to an upper and lower probability threshold,

where ounk indicates the state is unknown when its probability does not exceed the

thresholds. As sensor measurements are integrated the state is classified as either oocc

or ofree to indicate, respectively, whether the voxel is believed to contain occupied or

free space. The set of occupied voxels are given as Mocc = {m | O(m) = oocc}, the

set of free voxels is given by Mfree = {m | O(m) = ofree}, and the set of unknown

voxels is given by Munk = {m | O(m) = ounk}, with the initial map state given as

M init
=Munk.

Spatial frontier boundaries occur within M wherever unknown voxel and a free

voxel share a common border, as shown in Figure 3.1. The location of a frontier

feature f ∈ M corresponds to the unknown voxel of the frontier boundary, with the

set of frontier features defined by:

F =

m ∈Munk |
∑

mk∈m⊕K̂

[
m ∈Mfree

]
> 0

 (3.1)

where [·] is the Iverson bracket. m ⊕ K̂ represents the adjacent voxel neighbors

about m, where K̂ = {m̂i} is a structuring kernel that defines the connected voxel

neighborhood basis and ⊕ is the Minkowski sum operator. K̂ is structured from the

set or subset of the normalized 27-connected voxel neighbors, taken with respect to

m by the Minkowski sum operation. Each neighboring voxel is checked to determine
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Figure 3.1: Visual depiction of frontier boundaries within the occpupancy map. Free
voxels are shown by the semi-transparent blue cubes, and occupied voxels are shown
by the gray cubes. Frontier features are overlayed in red at the boundaries between
unknown space.

if the frontier condition is met, where K̂ can be differently structured to mask some

of the neighbors if desired, for example to exclude corners from being evaluated.

3.3 Robot Model

The robot agent is modeled by a rigid body with pose configuration qagent(t) =

(x,a), q ∈ SE(3) at time t, where x ∈ R3 is the position vector and a = {φ, ϑ, ψ} is

the orientation vector represented by roll, pitch, and yaw Euler angles, respectively.

Additional parameters vmax and ψ̇max are used to specify the maximum allowable

velocity and yaw rate, respectively.

A spherical volume Bsafe centered at x with radius dsafe is defined, where dsafe

specifies the minimum obstacle separation distance for safe operation. A point within

the map is considered collision-free, or feasible, if the volume Bsafe centered at the

point contains only free space, otherwise it is considered to be in collision (i.e. infea-
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sible).

3.4 Sensor Model

The robot’s depth sensor is modeled by the parameter vector [Rs, αs, d
sense
max ]. αs =

[αh, αv] ∈ (0, 2π] is the maximum angular field of view (FoV) on the horizontal and

vertical dimensions of the sensor, and Rs = [Rsx, Rsy] is the maximum spatial reso-

lution. dsensemax ∈ R is the maximum effective sensing range that surface points can be

accurately detected by the sensor. This value corresponds to the physical limitations

of the sensor, where distances greater than dsensemax either cannot be measured, or are

rejected due to loss of accuracy.

The sensor parameters can be combined with a pose q to form a projection model

λ ∈ Λ, referred to as a viewpose. The projected space from λ is described by the

subset of rays that pass through the view’s origin x, constrained by the intervals

[ϑ ± αv/2] and [ψ ± αh/2] of the unit-sphere. The length of each ray is constrained

by dsensemax . The projected space defines the view volume of a viewpose, and a location

within the view volume is considered visible if there are no occlusions between it and

the origin. This provides the basis for making visibility queries and predictions on

the expected information gain.

3.5 Reachable Configuration Space

The reachable configuration space, X ⊂ R3, is a metric space defined by all ad-

missible configurations path-connected to the robot’s initial position, xagent0 . As a

precondition, a configuration is considered admissible if it does not intersect any oc-

cupied space within distance dsafe. It is then considered reachable if there exists a

simply-connected path of admissible configurations from xagent0 . The distance between

two reachable points is quantified by a metric value L ∈ R.
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3.6 Goal Space

The surfaces that can possibly be covered at any point during exploration is in-

herently restricted to a subset Svis ⊆ S for which some viewpose λ able to observe

the surface exists within the reachable configuration space. The goal space ΛG ⊂ Λ is

then defined as the set of all such feasible configurations that contribute some amount

of coverage of Svis, quantified by a gain metric, γ ∈ R.

3.7 Information space

The information space, Ω, refers to the time-varying knowledge of the environment,

together with any additional knowledge derived from the map through inference meth-

ods. In this way, the information space includes the spatial map, M, together with

any additional knowledge derived fromM, such as spatial frontiers F , the reachable

C-Space X , and goal space ΛG.

3.8 Non-myopic planning

A planning strategy operates by searching the information space for the optimal

goal qg ∈ ΛG for navigation, where the myopicity corresponds to the extent of its

planning horizon. A myopic strategy typically uses greedy search techniques which

treats each goal or action as independent of the others, greedily selecting the best one.

They may also constrain the search to only some local sub-region of the map, rather

than considering its full extent. Myopic strategies use greedy search to find the an

action that provides the best balances the immediate information gain with the cost to

acquire it. This often biases actions towards the largest regions of information, while

leading the robot away from nearby smaller regions of incomplete coverage that can

be much more costly to revisited. Further, if the search strategy only considers local

neighborhoods near the robot, rather than searching globally, these sparse coverage

gaps may never be revisited at all, making these approaches incomplete.

In contrast, a non-myopic strategy searches globally over most or all of the available
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map, and additionally considers the long-term cost dependencies between selected

actions. In general, this involves searching for ordered sequences of actions, rather

individual actions, to evaluate and compare their long-term quality. While the search

is performed over sequences of actions, typically the output of the planner is only

a single action, corresponding to the first action of the optimal sequence. This is

because the involved evaluation metrics are state-dependent with the robot pose and

information space, both of which will changes once the first action is executed and

necessitate replanning.

An important consideration is that the individual actions of a globally optimal

plan can be locally suboptimal, such that the robot may need to execute suboptimal

actions expected to lead to increased global optimality. However, since these metrics

are state-dependent, the frequency of replanning becomes critical to prevent continued

execution of a suboptimal action once it is no longer globally optimal with respect to

the dynamically changing state information. In this way, the computational efficiency

and frequency of each replanning iteration can directly impact the long-term costs of

the exploration path that is executed.
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CHAPTER 4: APPROACH OVERVIEW

This dissertation addresses the OSCP problem by first recognizing the represen-

tation and construction information space serves as a key computational bottleneck

to any planning approach. Thus, we factorize our approach into three distinct sub-

problems, outlined by the iterative control flow model depicted in Figure 4.1. These

include the subproblems regarding how to model the information space, how to update

the information space, and how to apply non-myopic planning using the information

space [94].

Figure 4.1: Approach execution control flow model.

The goals of the approach are such that the model of the information space, Ω,

should be generalizable to different environments with varying sizes, complexities,

and geometric characteristics. Dynamically updating Ω should be efficient to ensure

its latest state accurately represents the latest map state for planning. Updates must

also be scalable such that Ω can be maintained over the full extent of the spatial

map as it is built, a necessary condition for globally informed planning. Finally, non-
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myopic planning operates on the latest state of the information space and should also

be efficient and scalable to remain tractable over its increasing scale and complexity.

To achieve these goals, we first introduce a novel graph-theoretic information struc-

ture named the Active Perception Network (APN) to model the exploration state

space data, detailed in Chapter 5. The APN is highlighted in green in Figure 4.1 as

the representation of the information space. A key feature of the APN is a hierarchi-

cal representation over its configurations that helps to reduce its size complexity and

enables variable-resolution planning as the map increases in scale. Another focus of

the APN is the storage and organization of the contained data, such that dynamic

changes can be efficiently made to any of its contents as its size increases, while also

maximizing the low-level efficiency for search and query operations. Some of these

details are related to software, data structures, and other implementation challenges,

which discussed later in Chapter 9.

We additionally introduce the process of Differential Regulation (DFR) in Chapter

6, which operates on the APN to modulate its state with respect to the increasing

map knowledge, as indicated in Figure 4.1. DFR consists of sampling-based methods

for increasing knowledge of the goal space and reachable space. A novel approach

for information gain analysis is utilized that enables the individual and mutual infor-

mation gain of the APN to be efficiently computed, which is leveraged to accelerate

informative view sampling, pruning, and refinement.

DFR exploits the incremental nature of map building where each sequential map

update induces changes that occur only within a relatively small local region of

bounded volume, independent of the total map size. With this insight, these incre-

mental changes are tracked and cached using difference-awareness and memoization

strategies to greatly reduce the computational overhead necessary to update the APN.

This allows more discrete updates to be performed in a given time period, increasing

the completeness and accuracy of each update. The ability to quickly perform each
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update is also critical to ensure the size of the map changes remain small, since the

complexity of each update scales with the size of the changes.

An anytime exploration planner is presented in Chapter 7, which demonstrates

the use of the APN to efficiently compute non-myopic global exploration sequences,

and is also outline in Figure 4.1. The hierarchical representation of the APN is

leveraged to first compute a global topological exploration plan over the full map.

The beginning of the global plan is then locally optimized at a higher-resolution.

Similar to the difference-aware approach used by DFR, sequential changes to the

APN typically occur within locally bounded regions which are leveraged to initialize

new planning instances from previous results. This allows optimizations to achieve

faster convergence despite the increasing size of the map and APN.

The iterative update pipeline is illustrated in Figure 4.2, which consists primarily of

two asynchronous processing loops. The first loop is dedicated for spatial mapping to

allow continuous integration of the sensor measurement data, Zt, at high frequency.

Frontier detection is performed after each map update, which operates only on the

state-changed voxels that resulted from the update. This minimizes the complexity

required to maintain the global frontier set, and provides a constant upper complexity

bound that remains independent of the total map size. The second loop concurrently

performs DFR to update the APN, which then serves as the input for replanning the

current exploration solution. Further details of each DFR subroutine will be provided

in Chapter 6.
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Figure 4.2: Mapping, frontier detection, and Differential Regulation process pipelines
used to update the APN.
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CHAPTER 5: ACTIVE PERCEPTION NETWORK

The Active Perception Network (APN) serves as a topological roadmap that stores

the unified knowledge of the dynamically changing information state space. Its fun-

damental structure is represented by a hypergraph

G = (V , E , C), (5.1)

where V = {vi}i=1,...,n is the set of graph nodes and E = {eu,v}u,v∈[1,n] is the set of

traversal edges between nodes. The nodes have a bijective mapping to a codomain

of viewposes, V ↪→ Λ, where the terms node and viewpose may also be referred to

interchangeably.

The set of hyperedges C = {H} ∈ P(V), represents a hierarchical decomposition

of V , where P is the power set. Each hyperedge H ⊆ V contains a unique subset of

V , where the set of hyperedges collectively provide a topological structuring over the

underlying nodes.

5.1 Graph Nodes

Each node vi ∈ V corresponds to a viewpose information structure that consists of

the tuple

vi = {qi, γi, 1
open
i }, (5.2)

where qi is its pose which has an associated viewpose qi 7→ λi, and γi ∈ R is a

reward metric that quantifies the expected information gain available from λi. The

node’s visitation state is stored by a Boolean indicator 1openi : vi 7→ B, corresponding

to whether the robot has visited the pose of vi. A true value indicates the node
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(a) Visualization of the APN graph in terms of its node classifications (see figure
legend) and traversal edges (blue lines).

(b) APN hyperedge clusters, visualized by a bounding box enclosing the contained
nodes. Each cluster forms an induced subgraph over the intra-cluster edges (orange
lines).

Figure 5.1: Depictions of the APN composition.
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is unvisited, also referred to as open, and is otherwise referred to as closed if it has

already been visited. This is used to discriminate between the open set of nodes Vopen

which can represent goal candidates, and the closed set Vclosed of nodes which have

already been visited.

Several important classifications are defined over V based on their properties. These

provide an increased understanding of how the network can serve different tasks.

These are depicted in Figure 5.1a and are summarized as follows:

• Terminal nodes: the robot’s initial pose qagent0 is used to define the home

state, represented by a unique node vhome that remains fixed over the lifetime of

the APN. This is depicted by the black colored node in Figure 5.1a. A unique

node vagent ∈ V , referred to as the agent node, is used to represent the robot

and is dynamically updated with the robot pose as it changes over time. This is

indicated in yellow in Figure 5.1a. These represent the terminal poses between

the start and endpoints of the explored path.

• Keyframe nodes: the previously traversed path of the robot is represented by

a path-connected set of keyframe nodes, qagent0:t 7→ {vkf0:k} ∈ Vkf , rooted at the

home state, vkf0 = vhome. Keyframe nodes are added in intermediate intervals

once the robot has traveled a minimum distance from the last keyframe. These

encode the intermediate poses between the terminal nodes, and ensure a direct

path to the home state is always known.

• NBV nodes: unvisited nodes with positive information gain are classified as

candidate NBV nodes, represented by the set Vnbv = {v ∈ Vopen : γ(v) > 0}.

Each NBV node represents a candidate subgoal for for navigation and planning

that is expected to increase map knowledge.

• Traversal nodes: any node not classified as an NBV node is considered a

traversal node, VX = V \ Vnbv. These represent configurations only useful for
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traversal purposes, but are not expected to increase map knowledge if visited.

Figure 5.2: Visual depiction of the APN graph edges within a partially built map,
where edges are shown as blue lines connecting between nodes to indicate the existence
of a collision-free path.

5.2 Graph Edges

Graph edges are depicted in Figure 5.2 within a representative example of a par-

tially built map. Each edge eu,w ∈ E corresponds to the pair of nodes ⟨vu, vw⟩, and

stores various analytical information of the traversal space between the pair as follows:

eu,w = {dx, dψ, L,OBB, lO,pobs}, (5.3)

where dx and dψ are the Euclidean distance and the orientation angle distance, re-

spectively, between (vu, vw). L is the evaluated cost metric value to traverse the edge
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given the maximum velocity vmax and yaw rate ψ̇max, defined by:

L(eu,w) = max

(
dx(eu,v)

vmax
,
dψ(eu,v)

ψ̇max

)
. (5.4)

Each edge also stores the Oriented Bounding Box (OBB) enclosing the endpoints,

and the collision state of the space contained in the OBB is stored by lO : OBB →

{free, unk, obs}. pobs is used as a memory cache that stores any uncertain voxels

found from previous collision checks. This allows for lazy evaluation during future

checks by first checking if these discrete voxels have changed, rather than the full

OBB volume, to greatly reduce complexity.

5.3 Graph Hyperedges

The set of hyperedges C = {H} ∈ P(V) are used for the purpose of providing a

reduced resolution representation of the underlying graph G according to a topological

decomposition. This allows a cluster of nodes, {v} ⊆ V , to be represented by a single

hyperedge element, H ∈ C, and a single topological edge between different hyperedge

clusters can be used to replace the dense pairwise edges between their underlying

nodes. This serves as a topological approximation of the underlying graph structure

with greatly reduced size and complexity. This allows graph operations like search

and traversal to be performed more efficiently at low-resolution at the global scale,

while still allowing such operations to be performed at high-resolution locally within

each cluster. Each hyperedge is modeled by the following:

Hi = {VC
i ,Ai, Bi,xi}, (5.5)

where VC
i is the set of nodes belonging to Hi, with the centroid of the contained

nodes given by xi and its bounding volume given as Bi. Ai = G[Hi] is the vertex-

induced subgraph formed by each cluster containing the clustered nodes v ∈ H and

the induced edges (eu,w ∈ E : vu, vw ∈ VC
i ) with both endpoints belonging to Ai. A
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basic example of two clusters is illustrated in Figure 5.3.

Induced edges of a cluster E [Hi] are referred to as its interior edges, shown in Figure

5.3a, while the remaining edges E \ E [Hi] that connect different cluster groups are

referred to as exterior edges, shown in Figure 5.3b. The efficiency of global search

queries and traversal through G can greatly increased by traversing between subraphs

using their exterior edges, using the interior edges of the subgraphs to perform local

operations as needed.
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(a) Interior cluster edges.

(b) Exterior cluster edges.

Figure 5.3: Illustration of hyperedge clusters and their induced subgraphs. Clusters
are indicated by the colored bounding boxes enclosing its contained nodes. The
interior edges are shown in (a) connecting between nodes of same cluster, and exterior
edges are shown in (b) connecting nodes between different clusters.



50

CHAPTER 6: DIFFERENTIAL REGULATION

The APN is incrementally built by the process of Differential Regulation (DFR),

which manages how information is added, removed, or modified in the APN with

respect to the concurrently built spatial map. DFR evaluates the APN according to

a set of objectives and constraints conditioned on the current map, and executes a

set of modifying procedures on the APN as needed to ensure they remain satisfied as

the map evolves.

A diagram of these procedures is shown in Figure 4.2, and detailed in the following

subsections. Their broad purpose is summarized as follows:

1. re-evaluate analytical variables that were computed with respect a prior map

state to ensure their continuity (e.g. information gain)

2. add node and edge elements to increase the extent and completeness of the

network

3. minimize overall size complexity by pruning unnecessary or redundant nodes

and their edges

4. recompute the topological clustering to reflect changes made to the graph com-

position by the other update procedures

6.1 Reconditioning

Each DFR cycle i begins at a time t with the latest spatial map Mt(i), frontiers

Ft(i), and robot pose qagentt(i) . The first task is to determine the local differences of these

variables to their states from the previous cycle t(i−1). Each incremental map update

reports the set of state-changed voxels, which are accumulated in a local cache ∆M
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with its bounding volume ∆B. This is defined as the local difference neighborhood

and is used to inform various APN update procedures about where state-changes have

occurred, described further in the next subsections.

Each regulation cycle then begins by updating the pose of the agent node vagent and

its local edges. The length of the local path is then checked and compared against a

keyframe threshold distance. If the threshold is exceeded, a new keyframe view vkf

is created from vagent and added to the keyframe set Vkf , with an edge connection

to the previous keyframe to ensure a connected path to the home location is always

maintained.

6.2 View Analysis and Coverage Sampling

Vnbv represents the set of NBV subgoal candidates expected to observe currently

unknown voxels, such that map coverage will be increased if a subgoal is visited

by the robot. To support the purposes of non-myopic planning, Vnbv should be

sufficiently distributed to provide maximum coverage of the unknown map space.

Additionally, maximum coverage should be achieved using a minimal size of Vnbv to

reduce the eventual planning complexity that rapidly increases with the number of

views considered.

A sampling-based approach is used to incrementally build Vnbv to maintain maxi-

mum coverage as the map evolves. To efficiently and scalably achieve the aforemen-

tioned characteristics desired of Vnbv, we introduce an approach using a frontier-based

heuristic to evaluate information gain and also guide the sampling of additional views.

6.2.1 Frontier-based Information Gain

A classical approach in the literature to evaluate the expected information gain of

a viewpose is by projecting a dense set of raycasts from the origin of a view, tracing

the voxels intersected by each ray within its FoV, as depicted in Figure 6.1a. This has

a high computational cost that can become prohibitive when evaluating many views
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and as the map resolution increases. Sparse raycasting methods have also been used

to reduce the complexity, shown in Figure 6.1b, by only considering a reduced subset

of raycasts within the FoV. However, this approximation can overlook information

that lies in between adjacent rays.

(a) Dense raycasting (classical ap-
proach)

(b) Sparse raycasting (classical ap-
proach)

(c) Frontier-based information gain (d) Mutual information

Figure 6.1: Visualization of frontier-based information gain measurement.

Additionally, the resulting information gain is usually encoded and stored as a

single numeric quantity, which excludes the specific voxels involved in its computation.

This makes it impossible to determine the overlapping mutual information between

different views, such that only the independent information gain of each view can be

known. This increases the complexity of non-myopic planning, since the information
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gain of each view in a sequence can depend on the information gain already visible by

the previous views in the sequence, and a separate optimization is needed to handle

this.

To mitigate these drawbacks, we directly use the frontier voxels within a view’s

FoV to constrain the evaluation of information gain, illustrated in Figure 6.1c. Total

information gain for an individual raycast corresponds to the number unknown voxels

intersecting the ray, conditioned that they are not occluded by any occupied voxels

that were previously intersected. To satisfy the visibility conditions, the first unknown

voxel visible along a ray must always be preceded by free voxels. Then, any subsequent

voxels can only be preceded by either a free voxel, or another unknown voxel, to be

considered visible.

The initial unknown voxel visible along a ray naturally corresponds to a frontier

boundary since must be preceded by a free voxel. Therefore, any raycast will always

cross a frontier boundary before it passes through any additional unknown voxels

that represent its information gain. Using this insight, the frontiers within the FoV

correspond exactly to the potential "entry points" into larger regions of information

gain. In other words, if a dense raycasting operation were performed, only the subset

of rays that pass through frontier voxels are capable of discovering information gain.

Raycasts can thus be directed towards only these locations, safely ignoring evaluation

of other directions without loss of precision.

A visibility map Γ : V → F is used to store the visible frontier features of each

viewpose, as depicted in Figure 6.2, which is formulated according to:

Γ(λ) = {f ∈ F : V is(mf , λ)}, (6.1)

where mf is the voxel associated to f , and V is is an indicator function returning true

if mf is visible from λ. An inverse visibility map Υ : F → V represents the preimage

of Γ storing the viewposes from which each frontier is visible as
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Υ(f) = {λ ∈ Λ : V is(mf , λ)}. (6.2)

Figure 6.2: Visualization of the frontier visibility map, where green arrows indicate
the APN views, and frontiers are indicated by red points. Yellow lines correspond
to visible frontiers by a view, purple lines indicate the frontier is visible only from a
unique view, and black lines indicate the frontier is occluded.

The individual gain, K, of a view λ refers to the independent amount of unknown

space visible from the view. This measure can be lower bounded by the number of

visible frontiers K : Λ 7→ |Γ(λ)|, since each frontier corresponds to an unknown voxel

location. The joint gain, J , refers to the unique information collectively visible from

a set of views. These can be respectively formulated as follows:

K(λ) = |Γ(λ)|, (6.3)

J (Λ) = |
⋃
λ∈Λ

Γ(λ)|. (6.4)

The exclusive gain, I, of a view λ refers to its unique contribution to the joint

gain, or, in other words, the exclusively information visible by λ that is not visible by
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any other view in Λ. I can be determined according to the visible frontiers of Γ(λ)

that are only observed by λ. This can be efficiently computed in linear time on the

number of visible frontiers by:

I(λ) = |{f ∈ Γ(λ) : |Υ(f)| = 1}|. (6.5)

6.2.2 View Sampling for Coverage Maximization

An iterative objective of DFR is to ensure maximum coverage of the current un-

known space is maintained. Υ supports evaluation of the coverage completeness of

the unknown map space by the current views Λ. Let F cvr represent the set of covered

frontiers, where a frontier is considered covered if it has at least one covering view

able to observe it according to Υ. The residual set is represented as F cvr = F \F cvr,

and the global coverage completeness is evaluated by the fraction of covered frontiers,

F cvr/F . The iterative coverage maximization objective can be formulated as:

max
|F cvr|
|F|

= max|
⋃
f∈F

{f | ∃λ ∈ Λ, V is(mf , λ)}|. (6.6)

A frontier-guided sampling strategy is presented to perform the maximization of

(6.6) by iteratively sampling viewposes to observe the non-covered frontiers. This

effort is concentrated within ∆B which contains the most recent changes to the fron-

tier distribution. Given the high complexity potentially involved in the sampling

procedure, a performance tuning parameter pλlocal ∈ (0, 1] is provided, representing

a probability threshold used to select a random subset of the frontiers in ∆B to be

considered for sampling in the current cycle.

A second parameter pλglobal ∈ (0, 1] is provided which serves a similar purpose as

pλlocal, but is applied to any non-covered frontiers that lie outside of ∆B. This is to

account for possible frontiers that were not successfully covered in a finite number
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of attempts during previous DFR cycles, which can result when large amounts of

occupied or unknown space exist near a frontier. The difficulty in finding a feasible

viewpose can greatly increase for these cases, and in some cases one may not exist

with the available map knowledge. Given the increased difficulty, pλglobal is given a

lesser value than pλlocal, allowing the search effort to persist between DFR cycles but

with lower priority. In effect, this offers a degree of probabilistic completeness as the

likelihood of finding a valid sample, if one exists, can continually increase over time

while reducing the individual search effort per DFR cycle.

The sampling procedure is given in Alg. 1, which begins by calling recondition-

V isibility to update the visible information of existing views withing the changed

volume. Between cycles, the frontier boundaries are often pushed back by only a

small amount, but remain visible within the many of the same view as the previous

cycle. This step ensures these differences are updated, so sampling is only needed

when frontiers are pushed beyond visibility of all existing views.

Next, a frontier queue F̂ is initialized containing the selected subsets from F cvr.

For each fi ∈ F̂ , a sampling subspace Bfi is computed from which fi can potentially

be observed given the sensing parameters. For a maximum of Nattempt
nbv attempts,

viewposes are randomly sampled using getCoverageSample and checked by isV alid-

Sample to determine if a valid sample has been found. A sample is considered valid

only if it is collision-free and successfully observes the current frontier target, fi.

Upon finding a valid sample, it is used to add a new node to the network, and all of

its visible frontiers are computed to update the visibility map. If any of these frontiers

are contained in F̂ , they are removed since they have been already covered by the

current sample. This can greatly reduce the number of samples, since in practice a

single view will often be able to observe many nearby frontiers.
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Algorithm 1: Frontier-guided view sampling for information gain maximiza-
tion

1 reconditionV isibility(G,∆B)

2 F̂ ← frontierQueueInit(F cvr,∆B, pλlocal, pλglobal)
3 while F̂ ̸= ∅ do
4 fi ← extractNext(F̂)
5 Bfi ← getSamplingV ol(fi, d

sense
max , αs)

6 success← false, n← 0

7 while n < Nattempt
nbv & ¬success do

8 q̄ ← getCoverageSample(Bfi)
9 if isV alidSample(q̄) then

10 λj = addNode(q̄,G)
11 Fvisλj

← computeV isible(λj, fi)

12 updateV isibility(λj,Fvisλj
)

13 F̂ = F̂ \ Fvisλj

14 success← true

15 end
16 n = n+ 1

17 end
18 end

6.3 Pruning and Refinement

The growth rate of the network is reduced by pruning unnecessary views that no

longer provide any individual gain contribution, or redundant views with little or no

exclusive information gain. These conditions naturally occur as the robot progresses

its exploration of the map and observes the previously unknown space within each

view. They also occur as a result when new view samples are added to the network

which overlap with the pre-existing views, decreasing their exclusive gain.

The goal of pruning is to identify the views that can be removed from the network

without loss of the overall joint gain, which is equivalent to finding the minimum

subset of views needed to cover the current unknown space. This is formulated as

a submodularity maximization problem, supported through the use of the joint gain

and exclusive gain measures. Given an initial set of views Λ, pruning can be described

as follows:
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argmin
Λ∗⊆Λ

(Λ∗),

s.t.

J (Λ)− J (Λ∗) ≈ 0.

(6.7)

To solve (6.7), a set of pruning candidates is found by searching for views that have

negligible individual or exclusive information gain. Given the local difference neigh-

borhood ∆B, the search is restricted to the views located within visible range dsensemax

of ∆B, corresponding to the views with visibility information that was potentially

effected by the map changes. The candidates within this region are further evaluated

for their edge connectivity. Any candidate found to have a cut-edge is preserved to

maintain the graph connectivity, while the remainder are deleted.

Once the pruning stage is complete, the coverage views of Vnbv represent the supre-

mal set that maximizes map coverage using a minimal number of views. Not only

does this help to reduce the total size, but it minimizes redundant coverage to help

simplify the planning problem. Since each NBV has some positive amount of exclusive

gain after pruning, they represent an exact set of targets that a planner must deter-

mine how to optimally visit, without the need to evaluate their redundancy during

its search.

6.4 Reachability Update

The reachability knowledge represented by E is updated each iteration to account

for new map knowledge and any state changes in V . Additional nodes are also sampled

during this stage to increase the overall node density and uniformity in VX . This

accounts for the non-uniformity of coverage view sampling, which is biased towards

the frontier boundaries. Since the purpose of VX is primarily to increase the network

connectivity, only the position of these samples is needed, while the visible information

and pose orientation attributes can be ignored.
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Algorithm 2: Reachability expansion algorithm.
1 B̂ ← getSearchV olume(∆B, dsampletraversal)

// Stage 1: increase node density
2 i, n← 0

3 while i < Nattempt
traversal & n < N sample

traversal do
4 xi ← generateReachabilitySample(B̂)
5 xnear ← findNearest(xi,Λ)

6 if distance(xi,xnear) > dsampletraversal then
7 addNode(G,xi)
8 n = n+ 1

9 end
10 i = i+ 1

11 end
// Stage 2: increase edge density

12 Elocal ← getUncertainEdgePairs(B̂, peupdate)

13 for ei ∈ Elocal do
14 OBB, lO,pobs ← computeEdgeState(ei)
15 if lO= free then
16 addEdge(G, ei)
17 else if lO= unk then
18 cacheUncertainEdge(G, ei, OBB, lO,pobs)
19 else if lO= occ then
20 cacheCollisionEdge(G, ei)
21 end
22 end
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The pseudocode for the reachability update procedure is shown in Alg. 2, which

contains two primary stages. The first stage samples traversal nodes to increase the

distribution density within the graph, and the second stage increases the total edge

density.

In the first stage, collision-free positions are uniformly sampled from B̂, for a max-

imum of Nattempt
traversal attempts, or until a threshold of N sample

traversal samples are accepted.

Each sample is evaluated according to the distance of its nearest neighbor in Λ, and

compared against a threshold distance, dsampletraversal. dsampletraversal serves as a density con-

straint to prevent too many samples from being added in close proximity, which would

unnecessarily increase the size complexity of the graph while adding little or no ad-

ditional reachability knowledge. A sample is accepted if its nearest neighbor distance

is greater than dsampletraversal, and a new node is added to the graph using the sampled

position.

The second stage begins by extracting the local set of candidate edge pairs Elocal

using the function getUnknownEdgePairs. This procedure searches B̂ to find the

set of node pairs (vu, vw) such that the collision state of the corresponding edge eu,w

is either null or unknown. Here, a null edge indicates the edge does not exist (i.e. has

not been evaluated in any DFR cycle), while unknown refers to an edge found with

an uncertain collision state from a previous DFR cycle. A parameter peupdate ∈ [0, 1)

is used to specify a random probability threshold of whether to evaluate a candidate

node pair (vu, vw). This helps to limit the number of edge evaluation operations that

occur per cycle, similar the parameter pλlocal used for coverage view sampling.

Each edge is evaluated by computeEdgeState to determine its collision state data,

which leverages previously cached results if available. Since edges may be evaluated

between any nodes over any distance within B̂, the cached collision data can sig-

nificantly reduce the update complexity. If an occupied collision is found, the edge

is added to the cache of collision edges to prevent future evaluation, as illustrated
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in Figure 6.3. For unknown voxel collisions, the edge is added to the cache of un-

certain edges along with the intermediate collision data results to accelerate future

re-evaluation. Otherwise, the edge is added to the graph by addEdge which computes

and stores its associated cost information according to (5.3) for efficient lookup by

other procedures and planning.

Figure 6.3: Visual depiction of cached collision edges used to reduce redundant com-
putations.

6.5 Topological Clustering

The graph nodes are decomposed into a set of subgraph regions represented by

the hyperedges C, as illustrated in Figure 5.1b. C serves as a topological hierarchy

over G to reduce its size complexity. This representation can be utilized to increase

the efficiency for search, traversal, and other operations. A tradeoff occurs where

greater reductions in size complexity also result in reduced level of detail (LoD), i.e.

resolution.
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To compute the hyperedges, we use a density-based clustering approach based on

[95, 96], extended to leverage both the geometric and reachability knowledge already

present in the APN. The algorithm uses two parameters, Dc and ρc, where Dc defines

neighborhood distance threshold, and ρc defines a density threshold for the neighbor-

hood.

Let a node vp be defined as a core node if it has at least ρc edge-connected neighbors

within distance Dc. A node vq is then defined as a reachable node from vp only if

there exists an edge connection between vp and vq, and vq is within distance Dc

from vp. Given a core node vp, a cluster is formed by all nodes reachable from vp.

Any remaining nodes that are neither core nodes nor reachable from a core node are

assigned as singleton clusters.

This approach allows clusters to form more naturally by additionally considering

the edge connectivity between points. They are also not required to be geometrically

convex as with other clustering approaches. This enables fewer clusters to be formed,

since they can be better fit to the nodes over arbitrarily shaped space. Explicit

constraints on the maximum number of clusters or their size are also not necessary,

such that clusters can conform to the map with variable size and density, which can

effectively handle environments where different regions may have different geometric

characteristics and complexities.
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CHAPTER 7: NON-MYOPIC EXPLORATION PLANNING

The iteratively updated APN provides a graph-theoretic model that aggregates the

total information space needed for planning. It can then be utilized by any graph-

based planning strategy for global and local planning. In this chapter, we present a

non-myopic exploration planning approach referred to as the APN Planner (APN-P),

which is responsible for planning and replanning the optimal navigation goals for

exploration. It receives each updated APN state as its input to perform non-myopic

planning based on evolutionary optimization, and outputs the updated navigation

plan. Additionally, the output plan is used as feedback to initialize the subsequent

replanning iterations, allowing prior optimization efforts to be reused to offset the

increasing problem size over time.

The underlying planning objective is to find the optimal sequence of NBVs to

maximally observe the current unknown space, which is formulated as a Fixed-Ended

Open Traveling Salesman Problem (FEOTSP). The APN and DFR help to simplify

this problem by the application of pruning, which ensures that each NBV contributes

some amount of unique information. As such, all NBVs are required to achieve

maximum coverage, and planning must only consider the motion cost when searching

for their optimal sequence order.

The FEOTSP problem is NP-hard, which can be prohibitive for online operation as

the number of NBVs increase. To reduce the computational complexity and increase

the scalability of planning, the hierarchical decomposition of the APN is leveraged

to separate planning into multiple stages that operate at different levels of detail. A

visualization of this procedure is displayed in Figure 7.1.

In the first stage, the global plan is coarsely estimated by finding the optimal
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Figure 7.1: Visual depiction of the hierarchical planning strategy. The first stage
computes the global path (yellow arrow path) using the hyperedge clusters, with the
start fixed to the robot location and the end fixed to the home location. The second
stage optimizes the NBV sequence (depicted using blue arrows) within the first cluster
of the global sequence (green bounding box).

sequence order to visit each topological subgraph region, shown as the yellow arrow

path in Figure 7.1. The solution to this stage effectively finds the relative ordering

between each cluster of nodes, without specifying the particular order within each

cluster. The second planning stage then operates on the global plan to optimize the

local ordering of the views within a cluster. This only needs to be performed for the

first cluster of the global sequence in order to determine the next navigation goal.

7.1 Adaptive Evolutionary Path Optimization

Each planning stage models a distinct problem instance of the FEOTSP, both of

which are solved using mimetic evolutionary optimization [97]. A population of Pn

candidates, or individuals, are initialized by randomized permutations of Π̂. For

a maximum of Ng generations, the population is optimized using a pairwise swap
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mutation and partially mapped crossover (PMX) [98]. The procedure terminates

once Ng generations is exceeded, or an improved solution cannot be found after Nstall

generations.

The optimized sequences of each stage are preserved by a data cache, allowing them

to be reused in subsequent planning cycles. The previous solution is first cleaned to

remove any nodes that were removed from the APN after its update, preserving the

relative order of the remaining elements, and new APN nodes are inserted using local

search optimization to determine their initial positions.

Typically, only a locally bounded region of the solution will be effected by this

process, while much of it will stay the same. Over time, the unchanged parts of

the solution will approach an optimal convergence, which in effect can allow the

optimization efforts to focus on the smaller parts that are frequently changing. This

helps constrain the complexity growth despite the increasing number of nodes as the

environment is explored.

7.2 Topological Global Planning

Let JH ⊂ N be an index set that enumerates the clusters C. A cost matrix mH is

computed by finding the shortest path between the centroids of each pair of clusters.

Given the pairwise cost s(u,w) ∈ mH between cluster indices u,w ∈ JH, the global

planning objective is to find the minimum cost permutation ΠH ∈ Sn(JH) of the

indices JH, where Sn(JH) is the symmetric group of JH.

7.3 Local View Path Planning

View path planning is similarly formulated to global planning, with only minor

changes needed regarding how the input data is initialized. Given the first cluster VC
0

of ΠH, its induced subgraph G[VC
0 ] specifies the NBV targets applied for local planning.

Given an index set JΛ ⊂ N enumerating the NBVs {λ} ∈ G[VC
0 ], a pairwise cost matrix

mΛ between index pairs u,w ∈ JΛ can be obtained directly from the existing edge
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costs. The view path planning objective is then to find the minimum cost permutation

Πλ = (vagent, λJΛ
0
, · · · , λJΛ

n
), which begins at the current robot configuration vagent and

visits each NBV node of the target cluster.

7.4 Navigation Goal Selection

Once the exploration plan optimization is complete, the first view of the local

sequence represents the navigation goal, λg. If this goal is different from the previous

goal, the cost of their respective sequences is compared to determine whether to accept

or reject the new goal, penalizing significant changes in the direction of motion. Once

the appropriate goal is selected, its trajectory is computed with a variant of RRT

[99], using the APN to find the shortest path to initialize the trajectory planner.

Exploration terminates once no frontiers remain, or no further feasible views can be

found to observe any remaining frontiers.
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CHAPTER 8: EVALUATION

The APN and APN-P were evaluated through ROS-based simulations using Gazebo

[100] and the RotorS MAV simulation framework [101]. The AscTec Firefly MAV

model provided by RotorS was used to simulate the robot dynamics and control

systems, and was equipped with a stereo depth sensor for visual perception. The

simulations and all algorithms were executed using a single laptop computer with Intel

Core i7 2.6 GHz processor and 16 GB RAM. The test results were used to analyze

the computational performance and planning efficiency of the proposed approach.

Exploration was tested using several different 3D structure models with various

scales as displayed in Figure 8.1, with a visual comparison of their relative scales

shown in Figure 8.1e. In addition to varying sizes, each environment provides different

characteristics for evaluation, such as obstacle density, narrow spaces opposed to open

space, dead-ends, and overall geometric complexity.

To account for the stochastic nature of the approach, each scenario was run 5

times and statistical analysis was computed over a variety of performance metrics,

summarized in Table 8.1. The average total exploration runtime required to complete

the exploration task is denoted as T , and tc refers to the average computational

time required per update and planning cycle. A maximum exploration time limit of

Tmax = 14min (840s) was imposed, which is the maximum rated flight time for the

AscTec Firefly. If this threshold is exceeded, exploration immediately terminates and

failure is reported.

The total map coverage is given as the ratio ϑM of the number of surface voxels

Mocc discovered during exploration with respect to a ground truth set M̂occ of all

visible surface voxels. M̂occ was determined by manually guiding the robot through
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(a) Apartment (b) Maze

(c) Industrial Plant (d) Warehouse

(e) Relative environment scale comparison

Figure 8.1: Visualization of each evaluated world scenario. The relative scale of
each scenario is depicted in 8.1e according to their bounding box dimensions, where
red represents the Apartment (slightly offset from the origin for visual clarity), blue
represents the Maze, grey represents the Industrial Plant, and green represents the
Warehouse.
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Table 8.1: Summary of performance analysis metrics.

Symbol Description

T average total exploration runtime (s)

tc average computational time per cycle (ms)

ϑM final map surface coverage ratio (%) as Mocc/M̂occ

ηM average voxel discovery rate (m3/s)

ηMocc average surface voxel discovery rate (m3/s)

ϑV avg. number of nodes per unit of map volume (1/100m3)

ϑE avg. ratio of known edges |E| to possible edges
(|V|

2

)
each world scenario, carefully ensuring every observable surface was covered by the

sensor. The total volumetric exploration rate is given as ηM, which is the average

volume of new information gain per second in m3/s. Since the objective is to achieve

complete surface coverage, a more useful metric is ηMocc which refers to the rate of

occupied information gain in m3/s.

The APN is evaluated according to its average node density ϑV and edge density

ϑE . Here, node density refers to the number of nodes within a standard unit of

volume, normalized as the number of nodes per 100m3 of the mapped free space.

Edge density refers to the ratio between the known edges |E| and the total edge

capacity of a complete edge set over the nodes,
(|V|

2

)
. ϑV and ϑE are given as the

average over all cycles of the test scenario.

Table 8.2: Summary of common configuration parameters.

Scenario

Param Apt. Maze Ind. Plant Warehouse

rM {0.1, 0.2, 0.4} {0.1, 0.2} {0.2} {0.4}
dsafe 0.75m

vmax 1.0m/s 2.0m/s 2.5m/s 3.0m/s

ψ̇max 0.75rad/s

dsensemax 5m 6m 7m 9m

αv, αh [60◦, 90◦] [60◦, 90◦] [75◦, 115◦] [75◦, 115◦]

The following baseline approaches were used for comparative analysis with the

APN-P:
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• RH-NBVP [78]: A receding horizon method that finds informative view paths

using RRT-based expansion within a local region of the robot.

• AEP [79]: An approach that extends the strategy of RH-NBVP, using RH-

NBVP for local planning and frontier-based planning for global search when

local planning fails to find informative views.

• FFI [80]: A hybrid frontier-based and sampling-based approach that uses an

efficient frontier clustering strategy to guide the sampling of views.

• Rapid [81]: An extension of frontier-based planning designed to maintain the

fastest allowable velocity by guiding towards frontiers within the sensors current

field of view, and using classical frontier planning when no visible frontiers are

available.

A summary of common parameters for the different scenarios is shown in Table 8.2,

which were selected as consistently as possible to the baseline approaches. The map

resolution rM was varied between the values {0.1, 0.2, 0.4}m to analyze its effects on

performance scalability. The maximum linear velocity vmax and yaw rate ψ̇max were

assigned based on the common values used in the comparative approaches, along with

the sensing parameters dsensemax and (αv, αh).

Coverage view sampling parameters related to Alg. 1 were set as pλlocal = 0.8,

pλglobal = 0.1, and Nattempt
nbv = 30 for each scenario. The reachability update parameters

for Alg. 2 for each scenario were commonly set to N sample
traversal = 3, peupdate = 0.7, and

dsampletraversal = 2.0m.

8.1 Apartment Scenario

The apartment scenario in Figure 8.1a is a relatively small scale interior space with

the dimensions 20×10×3(m3), used as a baseline for comparing the larger and more

complex scenarios. An example map reconstruction by APN-P is shown in Figure
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(a) Reconstructed map and exploration path.

(b) APN reachability roadmap.

Figure 8.2: Exploration results for the Maze Scenario. (a): The explored path is plot-
ted in red, with intermediate keyframe configurations represented by yellow points.
(b): The APN nodes and edges overlayed in blue.

8.2a with the traced exploration path, and the APN roadmap is shown in Figure

8.2b. The average distance traveled was 76.5m, and a surface coverage completeness

of ϑM = 100% was consistently achieved at each evaluated map resolution.

Figure 8.3a shows an example of the explored map volume over time using resolu-

tion 0.2m for reference. The surface coverage rate ηMocc was 1.5m3/s and 2.6m3/s for

the respective map resolutions of 0.1m and 0.2m. Since there are multiple dead-end

regions for this scenario, some amount of backtracking is unavoidable, where the ef-

fects of backtracking correspond to the periods in Figure 8.3a where the map growth

briefly stagnates (e.g. around the 30s timestamp).
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(a) Apt.,
rM = 0.2m

(b) Maze,
rM = 0.2m.

(c) Ind. Plant,
rM = 0.4m.

(d) Warehouse,
rM = 0.4m.

(e) Apt., ϑV = 17.1,
ϑE = 0.58.

(f) Maze, ϑV = 16.0,
ϑE = 0.20.

(g) Ind. Plant, ϑV =
3.8, ϑE = 0.25.

(h) Warehouse, ϑV =
2.7, ϑE = 0.42.

Figure 8.3: Representative results of the exploration progress over time. (a) - (d):
explored map in terms of total voxels and their volume. (e) - (h): corresponding APN
size in terms of its nodes (red) and edges (blue), with the respective node density (ϑV)
and edge density (ϑE).

The size growth of the APN over time shown in Figure 8.3e. Compared to the

map scale in Figure 8.3a, the APN is significantly smaller and its growth over time

is non-monotonic due to iterative pruning and refinements. The final state of the

APN roadmap is shown in Figure 8.2b, which can be seen to expand throughout the

reachable free-space at a sufficient density for planning and navigation.

Figure 8.4a shows representative results of the computation times per cycle, using

map resolution 0.2m as reference. The time taken for DFR remains fairly consistent

over time despite the increasing map size. This demonstrates the effectiveness of the

difference-aware update procedures at constraining the complexity as the map grows.

A statistical boxplot of the respective procedures executed per cycle is shown in Fig-

ure 8.4e. The majority of computation time per cycle was spent on view planning,

which had a median value of 13.6ms. The time spent on global cluster planning was

negligible due to the relatively small size and complexity of this environment. The
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APN contained an average of only 1.2 clusters, resulting in a trivial instance of cluster

sequence optimization. The computation times for all differential regulation proce-

dures were minimal compared to planning, given the relatively simple environment.

The time performance with the compared methods is summarized in Table 8.3. At

the lowest map resolution of 0.4m, the APN-P achieved an average total exploration

time of T = 52.9s± 4.3s, and average computation time per iteration of tc = 14.0ms.

Using a map resolution of 0.2m, the average exploration time was 57.9s with 18.9ms

per cycle. At the highest map resolution of 0.1m, the average exploration time was

69.4s with average 28.9ms per cycle.

The RH-NBV approach required the highest total exploration time of 501.9s, with

an average computation time per iteration of 153ms. For AEP, the total exploration

time for each resolution was reported to take approximately 200s on average (exact

quantities were not specified), with an average computation time per iteration of

98ms. FFI reported the fastest exploration time of the compared methods, with a

total time of 80s and 151s for the respective map resolutions 0.4m and 0.1m. It should

be noted that this approach was terminated once 95% exploration was reached, rather

than full coverage.

The APN-P performance demonstrated a significant improvement over the com-

pared state-of-the-art implementations in terms of both total exploration time and

per-iteration computation times. Compared to FFI, APN-P achieved complete cov-

erage while the exploration time was reduced by 34% using resolution 0.4m, and 54%

using resolution 0.1m. Additionally, the percent improvement between resolutions

indicates better scalability to higher resolution mapping.

8.2 Maze-like Scenario

A maze-like environment is presented in Figure 8.1b with the dimensions of 20 ×

20×2.5(m3). This scenario was tested using map resolutions of 0.1m and 0.2m; higher

resolutions were not evaluated since there are narrow passageways that require lower
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(a) Apt. (b) Maze (c) Ind. Plant (d) Warehouse

(e) Apt. (f) Maze (g) Ind. Plant (h) Warehouse

Figure 8.4: Timing performance for each exploration scenario. (a)-(d): depict the
processing time taken per cycle. (e)-(h): display the median statistical boxplot of the
DFR and planning computation times per cycle.

Table 8.3: Time performance comparison in terms of total exploration runtime T and
computation time per cycle tc, averaged over 10 runs.

APN-P FFI AEP NBVP Rapid

Scenario rM[m] T [s] tc[ms] T [s] tc[ms] T [s] tc[ms] T [s] T [s]

Apt.

0.4 52.9 14.0 80 122 200 92 501.9 -

0.2 57.9 18.9 - 156 200 - - -

0.1 69.4 28.9 151 68 200 129 - -

Maze
0.2 145.1 26.1 177 155 - - - -

0.1 212.6 48.0 330 238 - - - -

Ind. Plant 0.2 353.1 186.8 > 1000 152 941 − 2104 582

Warehouse 0.4 268.1 121.3 - - - - - -
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resolutions to admit collision-free paths (as also noted in [80]). This scenario was

primarily compared against FFI, as this scenario was not evaluated in the original

works of the other approaches.

A representative example of the mapped environment after exploration is shown

in Figure 8.5a with the executed exploration path overlayed in red. The path shows

that very few redundant motions were executed and progresses smoothly throughout

the maze passages, with an average total path length of 208.9m.

Figure 8.3b shows the map construction over time. An average coverage value of

ϑM = 100% was reached at each map resolution, and the surface coverage rate ηMocc

was 0.5m3/s and 1.4m3/s for the respective map resolutions of 0.1m and 0.2m. The

APN size growth over time was plotted in Figure 8.3f, and visualized in Figure 8.5b.

The average node density per 100m3 was ϑV = 16.0 ± 1.3, with an average edge

density of ϑE = 0.20± 0.12.

The computation times per cycle are plotted in Figure 8.4b with a statistical anal-

ysis of the computation time taken per procedure shown in Figure 8.4f. For this

scenario, most of the computation time went towards APN regulation, with coverage

view sampling requiring the most time of 15.8ms due to the prevalence of obstacles

and occlusions. Despite the high obstacle density, the computation times for reach-

ability updates remained relatively small, while still maintaining sufficient node and

edge densities to facilitate planning. This demonstrates the effectiveness of the local

difference-awareness and efficient data caching strategies that minimize wasteful or

redundant processing.

Table 8.3 summarizes the exploration efficiency of the compared approaches with

respect to total exploration time and computation time per cycle. Note that as pre-

viously mentioned, exploration time for FFI was reported when 95% coverage was

achieved, rather than 100%. The APN-P completed the exploration with 100% cov-

erage in an average time of 145.1s and 212.6s for map resolutions 0.2m and 0.1m,
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(a) Reconstructed map and exploration path.

(b) APN reachability roadmap.

Figure 8.5: Exploration results for the Maze Scenario. (a): The explored path is plot-
ted in red, with intermediate keyframe configurations represented by yellow points.
(b): The APN nodes and edges overlayed in blue.
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respectively. These are significant improvements over the results of FFI, while the

processing time per cycle was also reduced by around 80% and had much less vari-

ability. Additionally, the total exploration time for FFI increased by 86% between

the two map resolutions, while the respective increase for the APN-P was 45%. This

further demonstrates the performance scalability for higher mapping resolutions using

larger and more complex environments.

8.3 Industrial Plant Scenario

The Industrial Plant scenario shown in Figure 8.1c is an outdoor environment

based on the Gazebo Powerplant model, truncated to the approximate dimensions of

33×31×26(m3). It represents both a large-scale and complex exploration task due to

intricate structural geometries with many auto-occlusions. It was tested using a map

resolution of 0.2m and maximum velocity of 2.5m/s, consistent with the compared

approaches.

An example of the explored map is shown in Figure 8.6a, with the explored volume

over time plotted in Figure 8.3c. A high surface coverage rate of ηMocc = 3.2m3/s was

achieved, which was consistently maintained as shown in Figure 8.3c. The average

total coverage was 98.7%, due to a few small regions with high surrounding occlusions,

where coverage sampling failed to find a feasible viewpose. This could be overcome

by selecting more aggressive sampling parameters, which was not done for these tests

for parameter consistency between scenarios.

The APN size over time is plotted in Figure 8.3g, with the final roadmap structure

visualized in Figure 8.6b. The average node and edge density were ϑV = 3.8 and

ϑE = 0.25, respectively. By visual inspection of Figure 8.6b, the extent and density

of the network appear to provide good coverage throughout the map.

The processing time per cycle is displayed in Figure 8.4c, with a statistical boxplot

of the time taken by each subroutine shown in Figure 8.4g. Traversal edge maxi-

mization required the most computation time during differential regulation with an



78

(a) Reconstructed map (colorized by voxel height).

(b) APN reachability roadmap.

Figure 8.6: Exploration results of the Industrial Plant scenario.
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average of 67.2ms due to the large scale and the amount of empty-space surrounding

the structures which is initially unknown. Unknown edges are repeatedly checked

for collision checks until they can be determined as either completely free, or having

an occupied collision after which they are suppressed. The processing time spent on

planning was well-balanced between the hierarchical layers.

A comparison of the timing results to the baseline approaches is shown in Table

8.3. We note that this environment was not originally tested by the authors of RH-

NBVP; instead, the corresponding value of 2104s was obtained from the comparative

analysis performed by [81].

Rapid performed with the fastest total exploration time among the compared meth-

ods, taking 582s with an average total distance of 728m. This was also the only

approach able to finish exploration within the rated time limit Tmax of 840s. This

could be explained because this approach takes advantage of the large amount of free

space to maintain high velocity, which helps to offset the diminished efficiency from

greedy planning. However, this also has the effect of frequently leaving regions that

have only been partially mapped. Coverage gaps can frequently occur that require

large redundant paths to revisit, or otherwise reduce the completeness of the final

map depending on the specific termination criteria.

Additionally, the authors of Rapid note that their implementation can spend a

significant amount of time computing paths over large distances (up to 10 seconds)

using Dijkstras algorithm over the map. These computation times were omitted

from the reported total exploration time to focus evaluation only on the quality of

their flight behavior. Even without this consideration, the APN-P was still able to

reach complete exploration around 65% faster on average with a decrease in distance

traveled of around 10%. This also highlights the importance of the APN efficiency to

prevent such high computation times from occurring in practice.

APN-P exhibited significantly better performance than all compared methods, re-
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quiring an average total exploration time of only 353.1s, with each cycle requiring

an average of 186.8ms. The average total distance traveled was 406.3m, with mean

velocity of 1.9m/s. The MAV was able to maintain higher velocities due to the fast

cycle times, which enabled the system to quickly react to the changing spatial map

and re-plan its exploration path. Often the information gain of the current NBV goal

gets fully observed as the MAV gets closer which can be quickly reflected within the

network, allowing it to maintain its momentum by not needing to completely stop at

each goal.

To evaluate how the larger size of this scenario correlates to the processing time

per cycle, the Ind. Plant was additionally evaluated against the Maze scenario. To

enable more consistent comparison, the map resolution was kept at 0.2m, and the

maximum velocity and sensor parameters were assigned the values used for the Maze

as indicated in Table 8.2. The resulting cycle processing time for the Ind. Plant

decreased by around 58%, with each cycle taking an average of tc = 78.7ms. Within

each cycle, DFR required 46.4ms and planning required 32.3ms.

The effects of map resolution were analyzed by a testing the timing performance

using map resolution of 0.4m. This resulted in a significant decrease in the cycle

processing time, which was reduced to tc = 30.9ms, and the total exploration time

was reduced to T = 220.2s. This indicates the increased cycle processing time at

resolution 0.2 were primarily due to the increased resolution, rather than the larger

environment size directly.

8.4 Warehouse Scenario

The Warehouse scenario is a large-scale indoor environment with the approximate

dimensions 90×30×15 (m3), shown in Figure 8.1d with its exterior shown on the left,

and the interior structures shown on the right. The models exterior structure was

derived from the Powerplant model available from the Gazebo model library, while the

interior was modified by adding a various geometric features and structures to create



81

a more intricate environment for exploration. Since this was a custom built model,

the APN-P was evaluated independently as comparative results were unavailable.

Due to the larger scale of this scenario, the mapping resolution was set to 0.4m,

and the maximum velocity was increased to 3.0m/s. The sensing parameters were

also increased using a maximum range of 9m, with FoV (75◦, 115◦). The larger sensor

view volume results in more information being added to the map per scan and the

higher maximum velocity results in more scans being integrated between cycles, both

resulting in more changed data to process per cycle. This scenario was also used

to analyze variations of the clustering parameters ρc and Dc, which are indicated in

Table 8.4. Unless otherwise noted, these parameters were set to ρc = 4 and Dc = 7.0,

consistent with the previous Industrial Plant evaluation.

A representative example of the reconstructed map results shown in Figure 8.7 and

the explored map volume over time is shown in Figure 8.3d. A minimum coverage

ratio of ϑM = 99.98% was achieved for all test configurations. The APN size growth

is depicted in Figure 8.3h, which contained an average of 346 nodes and 21494 edges,

with an edge density factor of 0.374.

The computation time per cycle is plotted in Figure 8.4d and summarized in Table

8.3. Similar to the Ind. Plant scenario, the time spent on APN regulation remains

within a bounded range despite the increasing size of the map and APN. The explo-

ration time performance results are summarized in Table 8.3, requiring an average

exploration time of T = 268.1s and average planning cycle time tc = 121.3ms. A more

detailed breakdown of the processing times per sub-procedure is shown in Figure 8.4h.

Different clustering parameter variations were applied and the resulting time perfor-

mance is summarized in Table 8.4. The average exploration time was not significantly

changed between parameter variations, indicating the low sensitivity of these param-

eters. The primary effect of the variations was on the per-cycle computation time,

though the differences were relatively minor. Using the values ρc = 4 and Dc = 10.0,
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Figure 8.7: The reconstructed map of the Warehouse scenario colorized by voxel
height. The maximum height of displayed voxels is truncated for visual clarity.

Table 8.4: Timing performance for the Warehouse Scenario according to variations
of the clustering parameters ρc and Dc.

ρc Dc[m] T [s] tc[ms] tcDFR[ms] tcplan[ms]

4 7.0 268.1 121.3 47.4 78.9

4 10.0 270.0 109.7 55.3 54.4

7 10.0 274.9 128.7 49.1 79.7

the cycle time was nearly evenly distributed between differential regulation, tcDFR,

and planning, tcplan. The other parameter combinations increased the planning time,

but only by a small amount.

8.5 Discussions

The experimental results show that our approach has the ability to iteratively

update the APN and replan the exploration path at an average rate of at least 20Hz

for the two smaller scale scenarios (Apt. and Maze), and at least 5Hz for the larger

scales (Industrial Plant and Warehouse). However, the difference between these cycle

rates is not primarily due to the larger environment sizes. Instead, the larger sensor

view volume and higher maximum velocities are the more significant factors, which

result in a larger amount of map data for processing per cycle, but these factors are

not directly related to the environment size. This helps to explain the scalability of

our approach for larger environments.
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For the smaller environments, most of the planning time is spent on local view

planning (see Figure 8.4e and 8.4f), This is due to the relatively few clusters needed to

partition the nodes, resulting in trivial cluster planning instances. However, planning

directly over all NBVs can quickly become intractable as the map size increases,

either resulting in unacceptably large processing times, or would otherwise require

premature search termination that degrades the planning quality.

The hierarchical planning strategy of APN-P helps to mitigate the complexity by

keeping the problem size manageable. Furthermore, planning convergence is further

accelerated by initializing each planning cycle from the partially optimized solution

of the previous cycle. This reduces the need to introduce further problem simplifica-

tions or approximations that would decrease the planning quality. These effects are

demonstrated by the results shown in Figure 8.4d and 8.4h. The distributed plan-

ning time remains relatively low and does not exhibit continually increasing growth,

despite the increasing size of the map and APN as shown in Figure 8.3h, 8.3d.

The frontier-guided information gain and sampling strategy of DFR provides an

effective way to avoid the prohibitively high computation costs for analyzing infor-

mation gain by the existing (compared) approaches and to balance processing time

per cycle and update rates. This enables maximized coverage of the unknown map

regions to be maintained at high update rates, providing the necessary knowledge

needed for non-myopic planning.
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CHAPTER 9: APEXMAP SOFTWARE FRAMEWORK

In this chapter, we introduce a software framework designated Active Perception

for Exploration, Mapping, and Planning (APEXMAP). It was motivated by the in-

herent software challenges related to developing complex real-time dynamic systems

inherent to online exploration and other active perception problems. Such systems

are described as being complex as they can be comprised of many subsystems that

must interact and communicate with each other. They are additionally described as

dynamic as they involve time-varying data models built and managed online from sen-

sor inputs, and execute in real-time and at different temporal rates between different

subsystems.

Developing software for any experimental robotics application generally involves

many non-trivial challenges that can be very time-consuming and may require a high

level of programming expertise which not all researchers may possess. For active

perception applications, the combination of the underlying problem complexity and

real-time operation makes software performance a paramount factor; however, opti-

mizing the performance of software further exacerbates its challenges and increases

development time. Consequently, there is a significant entry-barrier for active percep-

tion researchers, and the rate of related research innovations and advancement over

time can be hindered if the software-related challenges are not effectively addressed.

The essence of online exploration and other active perception problems presents

unique challenges towards software engineering and reusability. These challenges

primarily derive from several aspects inherent to the problem domain, outlined as

follows.

• Global objectives solved incrementally: active perception problems gen-
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erally involve long-term global objectives, which are solved incrementally out

of necessity given that the information needed is initially unknown and must

be acquired online. Due to this, the behavior of particular solution cannot

be meaningfully analyzed from a single iteration, but requires the cumulative

long-term analysis over many iterations.

• Closed-loop feedback operation: a defining characteristic is the closed-loop

process formed by the feedback between sensing, planning, and actions. Since

the inputs to a planner depend on its previous output actions, an explicit process

model is needed that generates the corresponding inputs from the actions. The

dependency between the inputs and outputs precludes the use of offline meth-

ods or fixed datasets for analysis purposes. Instead, each robot action must

be either executed by a real-world system, or through a realistic simulation.

In either case, this necessarily introduces operational dependencies with numer-

ous subsystems for trajectory planning, collision detection, motion tracking and

control, and others. Interactions may be needed between these supporting sub-

systems and other approach-specific subsystems (e.g. trajectory planning and

collision detection depend on the state-varying knowledge of the spatial map),

which increases software coupling to a particular approach.

• Environment simulation and interaction: real-world operation can be im-

practical or costly, especially for initial development and analysis. Physics-based

environment simulation is typically preferred to provide ground truth knowledge

for more accurate and thorough analysis. Simulators also eliminate risks of

damaged equipment and provide complete control over the environments char-

acteristics, where suitable real-world environments may be difficult to find or

create. However, this increases software needed to create the simulation models

and interface between the simulation and the application system.
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• Real-time/online operation: since the robot may be in motion during plan-

ning and decision making processed, the online computational performance can

have a direct effect on the long-term behavior. This makes performance opti-

mization an important factor early on, limiting the practicality of first analyz-

ing the behavioral aspects then focusing on performance optimization later on,

which is a common development approach that helps simplify the initial efforts.

• Concurrent processes with different rates: it is generally desired that

sensing and map building operate at high-frequency concurrent to planning,

rather than sequentially, such that critical sensory information is not "missed"

while other processes or executing.

• Experimental research: the nature of experimental research naturally in-

volves continuous development and innovation over time, which applies both to

the research methodologies and models, and the software requirements speci-

fications to realize the approach by a computational system or to optimize its

functional performance. Software should be considered in the long-term context

of the ongoing research problems, rather than as singular independent solutions

to the immediate problem at hand.

In research contexts, it is common practice to utilize open-source software to accel-

erate development and mitigate the challenges related to generic software engineering

tasks and also to the requirements of a particular problem domain. Open-source soft-

ware represents a form of mass open collaboration, where software is made publicly

available for independent reuse by any number of end-users. The practical reusabil-

ity of software by end-users can depend on several factors, such as the variability

within the problem domains it was design to address. Reusability is also impacted

by the modularity and completeness of the software design in addressing the under-

lying problems. It can also depend on the specific use-case and requirements of the
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end-user, which can be unpredictable.

An extensive and thorough investigation of available open-source software useful for

online exploration and active perception was conducted, finding that the challenges

of this problem domain have not been sufficiently addressed relative to other problem

domains. Existing open-source software can be reasonably applied to solve some of the

subproblems individually, such as generic mathematical operations, motion planning,

or spatial map modeling; however, the system-level integration and communication

between many components can remain a significant challenge. Furthermore, given

the experimental nature of the research field, the approach model and its software

requirements specifications are constantly subject to changes over time. If the system-

level integration of the various software components is tightly coupled, then even

seemingly minor changes to the requirements can cause major software changes to be

needed. However, it is difficult to anticipate future changes and their potential effects

in advance.

An operational environment must also exist to provide the source of the sensor

measurements. From a practical perspective, it is more effective to represent the robot

system and environment using high-fidelity simulation which can provide ground truth

knowledge that facilitates more meaningful and precise performance analysis, and

provides complete control over the test environment and its characteristics. However,

this further increases the required software to include the vehicle dynamics model and

mathematical models to replicate each the functional hardware components such as

sensors and actuators.

In practice, time is a finite and scarce resource that naturally motivates researchers

to prioritize reduced development time at the sacrifice of its maintainability, interop-

erability, and reusability [102]. Given the ongoing nature of research and innovation,

these sacrifices tend to increase the long-term cumulative development time and effort

to handle future design and requirements changes. The focus is placed primarily on
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the immediate approach-specific requirements, which causes strong coupling between

the approach and its software design. Efforts towards reusability, including documen-

tation, are typically only considered as the research reaches maturity, if ever. In fact,

it was discovered by recent studies that less than half of the software from recent AI

conferences were able to repreoduce their results, or even to be run at all, even with

assistance from the original authors [103, 104, 105]

Non-reusable software precludes open collaboration between independent researchers,

such that most or all of the software engineering challenges must be independently

resolved by each research group. Thus, each researcher encounters a large-scale de-

velopment burden and are similarly unlikely to produce reusable software, creating

an entry-barrier cycle that can repeat indefinitely.

The APEXMAP framework was designed to facilitate ongoing active perception re-

search using a modular architecture that facilitates reusability between a independent

researchers and over wide range of requirements specifications, while also promoting

optimized runtime performance. The underlying goal of the framework is to enable

end-users to rapidly develop and test software applications without sacrificing their

computational efficiency. Additionally, the importance of modularity and extensibility

are reflected in the theoretical models of the APN, DFR, and planning methodolo-

gies. In this way, these theoretical models can be reformulated to different problem

objectives and technical approaches, where these reformulated models can then be

efficiently realized using APEXMAP in a complementary fashion.

9.1 Software Engineering

Software engineering (SE) is a fundamental component of any experimental robotics

research, which is the human task to design effective and reliable computer software

by programming its source-code. Robotics programming can be considered a dis-

tinct subfield of software engineering, due to a variety of unique requirements and

challenging subproblems it necessarily subsumes. As outlined in Chapter 2, there
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are numerous components and subproblems that comprise a complete mobile robotic

system including hardware interfaces, robot and sensor modeling, and task-specific

algorithms and mathematical models. It is a non-trivial task both to develop the

software for each subsystem, and their integration into a cohesive application system.

Active perception problems further impose a particularly challenging development

burden on robotics programming due dependencies between various subsystem from

the feedback between sensing, task planning, motion planning, and control, and the

influence this has on the behavior of an autonomous system. Consequentially, plan-

ning algorithms generally cannot be run or evaluated in isolation, but instead require

all components of the full system to be operated together. This is not often encoun-

tered for many other robotics problems, which allows them to be studied with much

less software effort.

For example, when the inputs to an algorithm are independent from its outputs,

fixed datasets or other means of artificially generating the inputs can be utilized

for initial development, analysis, or benchmarking. This is often done for motion

planning, mapping, or SLAM related research since these are considered passive tasks.

However, such approaches are not practical or even feasible for active perception due

to the feedback dependencies between its inputs and outputs.

The programming challenges can not only impede research progress, but they can

also significantly degrade the runtime performance and task effectiveness of the sys-

tem. There are typically tradeoffs that arise between software development time and

the runtime performance and reusability of a program. Designing a program that

optimizes runtime performance consumes more development time, and doing so in

such a way that the code can be efficiently reused or extended is even more difficult

and requires a higher level of expertise.

These aspects are more often sacrificed in favor of reducing the already high de-

velopment time. This results in an effect referred to as technical debt [106], where
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suboptimal software design choices that favor expedience tend make future changes

increasingly difficult or even impossible. As a result, programs with low modularity

or reusability make it difficult and time-consuming to make continued improvements

and extensions to an existing approach. Additionally, low-reusability prevents dif-

ferent researchers from sharing the development efforts, where each must resort to

developing their own software from scratch and repeating the cycle.

A set of design guidelines has been established as a guide for effective software

development [107], describing practices and patterns that facilitate reusability, main-

tainability, and help simplify the design of complex software systems. These are

known by the acronym SOLID, which describes the principles by the following terms:

• Single-responsibility principle: classes should be designed to serve singular

purposes, and should be subject to changes from only a single source. This

encouraged low coupling and high cohesion.

• Open/closed principle: classes should be open to extensions which add capa-

bilities, but closed to modifications that alter its original structure or behavior.

This encourages the use of abstraction through polymorphism or inheritance

techniques.

• Liskov substitution principle: also known as behavioral subtyping, this

principle states that an object should be transparently substitutable with its

derived subtypes.

• Interface segregation principle: large class interfaces should be refactored

into smaller ones, and should avoid unnecessary dependencies coupling to avoid

side effects where a change to one class necessitates changes to potentially many

other classes.

• Dependency inversion principle: high-level interfaces should not have de-

pendencies on the details of low-level interfaces. Instead, both should depend
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on abstractions to avoid tight coupling between multiple interfaces.

Asymptotic time complexity, expressed by the well known big O notation, is useful

and appropriate in many contexts regarding algorithm analysis in terms of its order

of growth, independent from its implement ion. However, since implementation is

the focus of software engineering, additional factors can be considered which may

be hidden from the asymptotic analysis, such as memory management and runtime

execution efficiency. Different implementations of an algorithm can achieve the same

semantic behavior, but factors like memory management can greatly influence its ef-

ficiency on real hardware. This insights must be considered for program optimization

purposes, which help ensure consistency between the theoretical performance and

runtime performance.

9.2 Related Work

Open-source software has been developed to address a wide variety of software

engineering challenges commonly encountered in robotics research. As mentioned

in Section 9.1, active perception is characterized be distinct challenges often not

encountered in other robotics subdomains. This section will briefly introduce relevant

software designed to address overlapping subproblems, and highlight their limitations

to effectively address the domain-specific challenges for active perception.

9.2.1 Generic Software for Robotics

The Robot Operating System (ROS) [108] is a robotics-oriented middleware frame-

work that is perhaps the most widely used and impactful software for robotics. It uses

a centralized process to register and manage an arbitrary number of independently

running distributed processes, termed nodes, and establishes peer-to-peer communi-

cations channels that allow any of the registered nodes to communicate via serialized

messages. A Parameter Server provides a shared database of information that can

be directly accessed by nodes. ROS also consists of a variety of tools for a user that
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simplify configuration, setup, and inspection of running processes.

The design goals of ROS largely focus on handling the variability between the vast

number different robot platforms, sensors, and other related hardware components

in a generic fashion. A large focus is also placed on standardizing the interactions

between processes. ROS provides a means to standardize the overall structure of

a robotic system, the build and development environments, and the related setup

and configuration tasks, while leaving the programs executed within a ROS system

completely open-ended to the user. This is an intentional design to promote a "thin"

architecture, where programs can be developed independent from ROS to facilitate

reusability. ROS also includes a package management ecosystem, where a primary role

of packages is to provide reusable libraries decoupled from the core ROS framework.

A broad variety of different library packages are distributed alongside ROS, with

many others maintained by third party sources, and users can freely create their own

ROS packages as well.

The Mobile Robot Programming Toolkit (MRPT) [109] is a programming library

consisting of a collection of programming tools, algorithms, and design patterns that

facilitate development of complex systems that can involve many different subprob-

lems. It was motivated by the recognition that many effective libraries exist for

specific tasks, such as image processing, linear algebra, or occupancy mapping. How-

ever, third party libraries generally posses their own unique data types, syntax, and

semantics that are incompatible with others. MRPT intends to serve as the "glue"

that allows different domain-specific libraries to be efficiently interconnected, while

also providing a variety of additional features on its own. MRPT is actively main-

tained in present day, and is effectively utilized by many researchers.

9.2.2 Problem Domain-specific Software

The motivation of domain-specific software is to leverage expert knowledge in a

particular problem domain to assist in making software that is more reusable, efficient,
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and understandable [102]. A domain expert can effectively identify and separate the

common factors within a domain from the variable factors that can differ between

applications [110]. Domain-specific knowledge enables beneficial restrictions on the

anticipated requirements and capabilities, helping to simplify their interactions and

reduce performance losses that can arise from excessively high abstraction. However,

it can be a highly challenging task to design an architectural structure and style that

effectively generalizes over the intended domain in a reusable way. For this reason,

such software tends to focus on smaller problems that have well-defined models and

formulations. Open-source software has been contributed related to various robotics

subdomains, which are outlined within this section.

Spatial maps are a common component shared between many different robotics

applications, which has motivated many open-source software contributions. For

exploration and active perception, it is generally preferable that map models provide

discrimination between free space and unknown space. Two conceptual map models

are utilized by perhaps the majority of existing works, which consist of voxel-based

occupancy grids and signed distance fields (SDF). Many software implementations

have been developed to realize these models, with the more popular approaches being

OctoMap for occupancy grids [25], and Voxblox for SDF maps [93].

An adjacent task to spatial mapping is that of collision checking, which typically

operates in conjunction with a map model. FCL [111] is a popular library that has

been used in many works, and is also natively used by various ROS packages. It

uses a bounding volume hierarchy with flexible configuration options over the type

of collision queries using shape primitives. It is also directly usable with OctoMap

to simplify integration tasks. Collision checking is also possible to be performed

efficiently through SDF maps, which provide an efficient representation for obstacle

distance queries. However, they generally have the tradeoff of being less efficient to

incrementally update.
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The Open Motion Planning Library (OMPL) [99] is a widely-used library directed

at motion planning problems, primarily sampling-based motion planning. It provides

a standardized and flexible approach for defining and configuring different forms of

motion planning problem, which can be solved using a variety of pre-implemented

state-of-the-art planning algorithms.

A significant variety of software has been contributed for problems related to

SLAM, such as RTAB-Map [112], ORB-SLAM [113, 114, 115], and LOAM [116].

Most libraries provide only a distinct implementation approach with little intent for

modularity of the source code, but often can be flexibly reconfigured for different

robots, sensors, or other parameters to facilitate reuse.

9.2.3 Active Perception Software

A relatively small number open-source software have been released for active per-

ceptions tasks like online exploration. A modular framework for volumetric infor-

mation gain-based exploration using a MAV was presented in [117] by the name

mav_active_3d_planning. The primary components of its structure are a Trajectory

Generator module used to expand a tree of trajectories, and a Trajectory Evaluator

module used to evaluate each branch and select the best trajectory segment in a

receding horizon fashion. Here, modularity is achieved by allowing a user to define

how trajectories are generated, evaluated, and selected. However, this structure im-

poses several restrictions on the frameworks usage, including the use of tree-based

methods and MAV platforms, and also is tightly coupled with other libraries, such

as Voxblox [93] used for map building. An extension was presented in [118] given the

name GLocal, which introduces a global search mechanism among other features like

state estimation drift correction and sub-mapping.

The approaches of GBPlanner [119] and GBPlanner2 [120] have also been released

as open-source software. These frameworks provide a higher level of modularity than

the aforementioned, but are still restricted to the general structure of the respective
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approaches. Other authors have released the source code of their approaches [77,

78, 79, 80, 19, 121], which are intended to allow use of the programs "as-is" without

explicit support for modularity or significant functionality changes, limiting their

reusability in other contexts.

9.2.4 Limitations and Drawbacks

ROS provides an effective framework for generically handling peer-to-peer commu-

nications between separate processes. While this approach provides excellent modu-

larity, it can also introduce significant performance overhead due to the use of mes-

sage serialization. ROS, by design, leaves most of the task and application-specific

programming open-ended for generality. Domain-specific libraries can alleviate the

workload for task-specific programming, but are typically designed independent of

any framework or other libraries, which can lead to incompatible interfaces or syn-

tax, particularly when many separate libraries are used within a single program. In

some cases, integration challenges can even make integration of existing software for

a particular task more difficult than implementing it from scratch.

Minimal domain-specific software for active perception has be contributed, none

of which has sufficient modularity or extensibility for use significantly beyond their

original problem models or approach specifications. While ROS and certain domain-

specific libraries can be helpful for certain software engineering tasks, the challenges of

large-scale integration, performance optimization, and reusability beyond a restrictive

problem model still present a significant impediment to research in this domain as a

whole.

9.3 APEXMAP Framework Overview

APEXMAP is a software framework primarily written in C++ which is comprised

of a distributed collection of loosely coupled software libraries designed with a focus

on the SOLID design principles. Using the separation of concerns principle, each
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libraries addresses a distinct subproblem domain or group of related subproblems

pertaining to the common functionalities needed for active perception system. Each

library provides some combination of generic algorithms, data structures, and class

models that modularly support tasks related to their subdomain.

Given the lack of standard form and the high variability that can occur between

applications and their approach details, library components were designed to provide

abstract front-end interfaces to invoke algorithms and behaviors, while hiding how

these are achieved. End-users can redefine the hidden interface without causing side-

effects in other parts of the source code that use the interface, or derive new interfaces

that extend their capabilities for specialized tasks. An end-user can then use these

basic components to efficiently design more complex functional subsystems based

on their particular requirements specifications, and assemble these into a complete

system application.

The basic design goals of APEXMAP consist of the following:

1. rapid development

2. modular and reusable components

3. low coupling, high cohesion

4. efficient component communication

5. dynamic knowledge management

6. benchmarking and performance analysis

The framework structure is composed of several abstract modules that serve as

building blocks for the design of any data structures, algorithms, and control flow of

a program. Any data structures, objects, or interfaces that may need to be accessed

or interact with each other are modeled by the abstract concept Component Entity
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detailed in Section 9.4. Every Component Entity instance is uniquely identifiable

by an immutable unique resource identifier (URID), or by a reconfigurable name

identifier (NameID), and are managed and accessed using the Component Resource

Server (CRS). They are used to abstractly model arbitrary object-based software

components or invokable procedures, which serve as primitives for building larger

and more complex systems and manage its runtime control flow behavior.

To minimize coupling between modules, intermediate concept models can be de-

signed as resource subtypes. A concept model serves as a behavioral prototype that is

to be implemented by an underlying resource. This allows a standardized interface to

be designed that defines a set of abstract capabilities of a model, while still hiding the

implementation details for better modularity. For example, an occupancy map con-

cept model can be designed which specifies a standardized set of well-defined methods

or operations that an implementation is expected to provide, such as returning the

occupancy state given an input query point. The concept model thus provides an

additional abstraction layer that maintains interchangeability with different imple-

mentations. APEXMAP provides a variety of pre-designed concept models for many

subtasks like map and sensor modeling, visibility checking, and collision checking,

and additional models can be freely designed by a user.

The basic capabilities provided by the component entity patterns meet the require-

ments defined by the structured program theorem, in which they are sufficient to

express any computable algorithm [122]. While this provides a strong theoretical

basis for generalizability, in practice certain tasks may be over-complicated or lose

efficiency when restricted to conform to only these idioms. This is mitigated through

subtype polymorphism, which allows resources to be dynamically cast to their un-

derlying interface models. This allows the custom interfaces normally hidden by the

abstraction layers to be directly accessed if needed to directly perform specialized

tasks in a more simplified or efficient fashion. However, this also causes a higher level
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of coupling within the program wherever a custom interface is utilized, which can

decrease its modularity and interchangeability for future development. These design

decisions and their tradeoffs can be independently determined by end-users.

APEXMAP implements an event-based message communication architecture to

further simplify complex interactions between resources and algorithms during exe-

cution, detailed in Section 9.5. An event is simply an abstract data type used to com-

municate information between system components in an indirect manner. These are

similar to the concept of messages used by ROS, but are transported using dynamic

memory rather than serialization, enabling zero-copy communication and preventing

the need for data type conversions. Events can be transmitted via publish-subscribe

or client-server models that allow components to communicate indirectly throughout

a system. This facilitates reactive programming techniques that can automatically

handle dynamic state changes, send status information, or control distributed process

executions.

A key capability provided by APEXMAP is directed at dynamic data management,

detailed further in Section 9.6. This library augments most of the standard data

container types provided by STL to support event-based communication, equipping

them with the ability to broadcast and receive state-change events. The response

behavior upon receiving a state-change event can be independently defined for each

container instance, allowing them to automatically react to state changes according

to a user-defined strategy or purpose. A variety of additional container models with

specialized functionalities are also provided, such as bidirectional maps and Cartesian

product maps, that are also equipped with state-change event communication. This

library can greatly reduce the software design efforts for efficiently managing complex

systems of dynamic data.

Finally, APEXMAP includes a variety of software library packages which con-

tain many data structures, algorithms, and other programming tools that facilitate
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rapid development. Similar to ROS, these packages are designed with minimal in-

terdependence to promote a thin coupling for better reusability. These provide pre-

implemented and validated software components for many common aspects of ac-

tive perception, including dynamic data containers and graphs, perception modeling,

mathematics, geometric representation, motion planning, visualization, data logging

and many others. The support library packages are intended to provide a supportive

role during software development, but their use is optional to minimize restrictions a

programs syntax and semantics. This is also to better support the integration of ex-

isting software into the APEXMAP framework that may without requiring significant

changes to the existing source code structure.

9.4 Component Entity Kernel

To simplify the design of large and complex systems, APEXMAP provides a poly-

morphic object type system that allows systems to be decomposed into smaller

reusable components. A component is a generic concept that can be used to represent

any functional data type, such as containers for storing state variables, subroutines

for invoking algorithms, or complex class interfaces that encapsulate a variety of data

and functions related to a subsystem.

Components are represented abstractly by a common superclass, Component Entity ,

detailed in Section 9.4.2. This class provides the base abstraction layer that hides

the component-specific details, and serves as a progenitor for all other component

subclasses. Component subclasses of any type can be freely defined by extending from

the Component Entity superclass, adding specialized capabilities as needed within the

subclass definition in accordance with the open/closed principle. Object instances

of Component Entity are created using dynamic polymorphism, where each object is

dynamically allocated as a particular component subclass that specifies the underlying

type of the object. The collection of component objects that comprise the system are

managed by the Component Resource Server (CRS) detailed in Section 9.4.1.
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The fundamental tasks and subproblems of the problem domain were decomposed

into a collection of predefined components referred to as Concept Models, detailed

further in Section 9.4.3. These allow component subclasses to be defined by deriving

from other subclasses, and allows them to be organized into multilayer hierarchies

that represent a component interface at variable levels of abstraction. This design

pattern facilitates the SOLID principles, encouraging increased modularity and sub-

stitutability of components, and minimizing the amount of change dependencies that

can propagate throughout the different parts of the system as a result of replacing or

modifying its components. One intended use of Concept Models is to develop generic

design pattern for abstract modeling of common subsystems like sensor models, spa-

tial maps, collision checkers, and visibility checkers.

A generic Concept Model component, Subroutine Components, was designed in this

way to provide generic capabilities that simplify the development of modular high-

level subroutines and behaviors. These are described further in Section 9.4.4.

9.4.1 Component Resource Server (CRS)

The Component Resource Server (CRS) serves as a centralized locale for managing

the system components, with its class interface diagram shown in Figure 9.1. Com-

ponent instances can be dynamically created and added to the CRS, which uses their

abstract base type to allow them to be stored as a homogeneous collection. It provides

a single location for creating and storing components of any type, which simplifies

the abstract composition and assembly of components into a unified system. It also

provides a single entry point that allows components to access and interact with other

components.

An additional functionality of the CRS is to simplify the management of the overall

control flow of a program. The execution of most programs can be effectively factor-

ized into several abstract stages of execution, as shown in Figure 9.1, which mainly

consist of init, setup, start, and stop. Calling these methods on the CRS causes a
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corresponding behaviors to be invoked over all the components. Each component can

have its own distinct behavior that needs to be executed, which helps simplify the

program design and make it easier to manage since these aspect of the code can be

self-contained by each object itself, rather than scattered throughout the execution

control flow.

Figure 9.1: UML partial class diagram of the Component Resource Server interface.

9.4.2 Component Entities

A Component Entity , illustrated in Figure 9.2, represents the highest level of ab-

straction of a component. This class serves as an opaque data type that hides all

aspects of the components subtype, providing a universal basic type for all compo-

nents.

One advantage of using a universal basic type is to allow the heterogeneous com-

ponents to be stored as an abstract homogeneous collection by the CRS, which would

otherwise become dependent on the explicit types of all managed components. Each

Component Entity instance is assigned a unique name identifier, which allows them

to be efficiently organized and accessed from the CRS. They also provides basic func-

tional operations that simplify their configuration and usage, such as querying the

underlying subtypes and performing polymorphic conversions between them.

C++ provides mechanisms for dynamic dispatch using virtual functions, where a
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Figure 9.2: UML partial class diagram of the Component Entities.

function can be declared in a parent class while allowing the behavioral definition of

the function to be overridden by a child class. This allows the behavior of the child

class to be transparently invoked without knowing its type information. Dynamic

dispatch can be used to allow a parent component to declare an abstract interface,

and any child component that satisfies the requirements can be used interchangeably

to realize the interface.

9.4.3 Concept Model Components

Components that address domain-specific tasks and subproblems can be abstractly

represented by a Concept Model. Their intent is to provide a reusable component

model that captures the invariant aspects of the concept in a generic fashion, which
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can then be used to derive more specialized submodels and their orthogonal capabil-

ities. These can be hierarchically organized into multiple abstraction layers, where

each layer defines the common interface methods of all its descendants, and each de-

scendant layer can add increasingly specialized interface methods. Dynamic dispatch

can also be leverage to allow descendant layers to override the interface methods

of parent layers. In this way, other components are only coupled to the particular

interface they utilize.

As a basic example, APEXMAP provides a Spatial Map concept model capable of

representing various maps, which is depicted by the partial class diagram in Figure

9.3. Spatial Map provides a virtual method, getOccupancyState(), which is a capa-

bility required for any derived map model in this context. Two additional concepts,

Occupancy Grid Map and SDF Map, are derived which inherit the common getOccu-

pancyState() method, and add their own concept-specific methods of getProbability()

and getDistance(). Any implementation model that conforms to one of the concept

model interfaces can then be used to realize the interface, where this example depicts

the use of OctoMap and VoxBlox for the respective implementations.

Using this architectural structure, the abstract data type Spatial Map can be used

to declare the map object within the application, and at runtime it is dynamically

instantiated using the desired implementation type. Any tasks that utilize the getOc-

cupancyState(), for example, method can invoke the method directly using the Spatial

Map type without knowing the underlying implementation type, eliminating type de-

pendencies. If specialized methods are needed, such as getProbability(), the map

object can be dynamically cast to the corresponding concept to expose this method,

while still hiding the lower OctoMap implementation layer. In general, any part of

the source code that uses methods of a particular layer is immune to side effects from

changing the lower implementation layers. This helps greatly reduce coupling and

dependencies throughout the system for increased interchangeability and modularity.
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Figure 9.3: Example of Concept Model component hierarchy for spatial maps.

The ideal topology of the decomposition and its granularity is often difficult to

normalize, as there may not be cleanly defined separation boundaries between the

responsibilities of different subsystems, and high variability can exist within subsys-

tems. Thus, the decomposition of concepts is made modular and open-ended, such

that end-user can freely define their own concept models and implementations to

meet specific requirements. Still, APEXMAP provides an extensive collection of pre-
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developed concept models that encompass most of the commonly occurring needs

for active perceptions to reduce the development burden for end-users. Additionally,

concrete realizations of each abstract model are provides that offer read-to-use capa-

bilities to end-users, or alternatively they can develop their own implementations to

conform to any specialized or non-standard requirements.

9.4.4 Subroutine Components

Subroutine Components, as shown in Figure 9.2, are used to model the prototypical

concept of an algorithmic procedure, which is used to invoke high-level behaviors.

They can be used to encapsulate an algorithmic procedure and any components on

which it operates, hiding these details by the abstraction layer. To allow these compo-

nents to be used generically, their syntax was designed to be free of input arguments

or return type to account for the high variability that can occur over these aspects.

Instead, any input input arguments are handled internally by extracting the data from

the components that provide them, and sending any return data to the components

that require it. If unique cases arise where this strategy is undesirable, specialized

subtypes can be easily created by the end-user that conforms to a particular function

signature as needed.

Subroutine Components are factored into several subtypes that elucidate different

orthogonal behaviors. These primarily consist of Inline Procedure, Async Procedure,

and their respective variants class types Dynamic Inline Procedure and Dynamic Async

Procedure. The Inline Procedure class is used to perform a procedure that operates

inline from the point of execution, blocking the current execution thread until the

procedure is complete. These are useful for creating structured sequences of behavior

that execute in a specific order.

The Async Procedure class is used to invoke a non-blocking procedure that runs

asynchronously to the current execution thread. A loop termination condition can

be optionally specified which will cause the procedure to repeat its execution at a
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specified rate until the loop condition is satisfied. This component type is useful for

tasks like map building, which often should be performed continuously and in parallel

to other parts of a system.

The Dynamic Inline Procedure and Dynamic Async Procedure classes both mirror

the behavior of their respective parent components, with the additional capability to

dynamically redefine the subroutine at runtime. One advantage of this capability is

the ability to conditionally reconfigure behaviors without needing to alter the source

code directly. For example, a Dynamic Inline Procedure object could be used to invoke

the sampling stage of DFR described in Section 6.2, and a user may want to design and

test variations of how this stage is performed, using a configuration file to determine

which variation is assigned to the object at runtime.

9.5 Component Communication Kernel

The architecture and style for how components communicate is one of the more

critical design aspects for any framework [102]. Components must frequently commu-

nicate and interact to transfer information, modify data states, or invoke operations

and behaviors. The particular design patterns and protocols that govern such com-

munications unavoidably become integrally coupled throughout many parts of the

software, making later design changes to the communication strategies extremely

difficult. Furthermore, the communication style can impose constraints that limit

flexibility and capabilities available to end-users. The main goal for modularity and

reusability is to allow components to efficiently communicate and interact in an in-

direct fashion, where objects do not require direct access to other objects which they

communicate with. In this way, dependencies between object types and their inter-

faces are eliminated and modularity is increased.

Although communication abstraction is a common need among software across

many different domains and has been extensively addressed by various existing soft-

ware implementations, limitations and drawbacks can arise due to differences in the
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design goals of existing software and APEXMAP. Message passing and similar tech-

niques are most frequently used, with demonstrated effectiveness using ROS mes-

sages, for example. However, a design goal for ROS messages is to enable distributed

communications, which requires message serialization that introduces computational

overhead. Other libraries like Boost MPI are also restricted to serialized message

passing.

Other software like QT [123] and GTK [124] transfer information using signals and

slots, similar to the publisher-subscriber model used in ROS, but allow communi-

cation through dynamic memory, rather than serialization. However, these software

architectures are highly coupled with their target domain of User Interface (UI) de-

sign. Furthermore, they do not support other communication modalities like the

server-client model used in ROS.

Specialized communication tools were developed for APEXMAP to meet its domain-

specific requirements and help overcome certain limitations of existing software. Given

well-demonstrated effectiveness of the message-based communication methods pro-

vided by ROS and its and prevalent usage in research software, the intent was not to

develop a replacement for these methods. Instead, the design goal was to develop a

unified and cohesive approach that easily supports existing ROS-based communica-

tions, while supplementing them with a versatile set of communication methods with

augmented capabilities that offer flexibility and extensibility to end-users.

Message Events, described in Section 9.5.1, are used as an abstract data type

primitive for information transfer. They utilize dynamic polymorphism in a similar

fashion as the components described in Section 9.4 to enable specialized message

subtypes to be derived for specific purposes. Message Events can be transferred using

several communication modalities, which were designed in part to be supplementary

to the related ROS implementations. These include the Publish-Subscribe model

described in Section 9.5.3 and the Service Server model described in Section 9.5.3.
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9.5.1 Message Events

APEXMAP defines a polymorphic data type primitive, Message Event, shown

in Figure 9.4, that allows different components to communicate analogously to the

message-based communication employed by ROS. A key difference is that Message

Event types are designed for intra-process communication, whereas ROS messages are

generally intended for inter-process communication. Since separate processes cannot

directly access each others program memory, or even may not be running on the same

physical hardware, ROS uses serialization which converts message into a structured

byte stream which is reconstructed upon reception.

Serialization can be very inefficient for large data sizes or messages passed at high-

frequency, and can generally cannot directly represent more complex data structures.

For example, consider a collection of points stored by a k-d tree in one ROS node,

which needs to be accessed by another ROS node. A custom serialization method

may need to be defined for the k-d tree structure, and upon receiving this message,

the tree would need to be completely reconstructed before queries operations can be

called. This would be a very expensive task, especially if only one or a small number

of queries are needed. Other approaches could make this more efficient, but generally

would need to be customized to the intended use-case and data types, reintroducing

coupling between the ROS nodes which messages are intended to eliminate.

In contrast, APEXAMAP allows messages to be transferred using dynamic mem-

ory rather than serialization, which does not require any data conversions or copying,

and can handle data of arbitrary type and complexity. Additionally, they can be eas-

ily adapted to facilitate ROS-style communications by encapsulation of the desired

ROS message. This encapsulation is hidden by the abstraction layer, limiting depen-

dencies on the specific ROS message type apart from the small parts of the program

responsible for interacting with it.
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Figure 9.4: Message event model.

9.5.2 Publish-Subscribe Module

The Publish-Subscribe Module, outlined in Figure 9.5, facilitates one-to-many com-

munications where a publisher can transmit information to an arbitrary number of

subscribers, similar to the role of publishers and subscribers in ROS. The basic func-

tionalities are provided primarily using two base components, the Event Publisher class

and Event Subscriber class, which are derived from Component Entity to equip them

with dynamic abstraction. Event Publisher allows objects to be created that specify

a named communication channel, referred to as its topic, and objects created using

Event Publisher can be attached to the topic to receive its communications. Unlike

ROS, the information transferred on a topic does not require serialization. Instead,

the Message Event class is used to abstractly encapsulate any type of message infor-

mation. Message Event objects provide no information on their own, but are to be

used to derive additional concrete message types for the application.

Using the previous k-d tree example, a Message Event could simply store a pointer

or reference to the original object. Similarly, they could be used to store ROS mes-

sage types, and the corresponding Event Publisher object could encapsulate a ROS
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publisher without exposing these implementation details to external objects.

Figure 9.5: Partial class diagram of the Publish-Subscribe Module.

9.5.3 Client-Server Module

The Service Server Module, illustrated in Figure 9.6, provides communication pat-

terns that allow a behavior, often referred to as a service in this context, to be

defined by a singular server component, and any number of client components can

invoke requests for the service. This capability can be compared to the service-based

communication aspects in ROS. Certain communication tasks are better achieved

using services when common behavior is needed for multiple components, and each

individual component only needs to control when it is invoked. For example, one

component may use a service as a trigger to request a planning process defined in

another component. The requesting component does not need to be aware of which

component provides the service or how it is performed, eliminating coupling between

them.

9.6 Dynamic Knowledge Maintenance and Continuity

A defining constituent of active perception that of dynamic knowledge acquisition.

The environment contains the ground truth, or axiomatic information, that is sought
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(a) Service message interfaces.

(b) Diagram of the service communication components.

Figure 9.6: Partial class diagram of the Client-Server Module elements.

by the agent. This information is acquired by onboard sensor measurements that

are used to build a coherent environment model, generally embodied by the spatial

map model, representing the a posteriori empirical knowledge of the environments

real-world form.

To increase understanding and facilitate planning, inference and reasoning can be

applied to existing knowledge to derive additional forms of analytical knowledge. An-

alytical knowledge can be derived directly from the map model, or can be chained

to derived from other forms of analytical knowledge. For example, viewpose candi-

dates samples from the map represent analytical knowledge derived directly from the

map, but are not considered empirical knowledge since they do not correspond to real

features in the environment. Information gain represents an example of chained ana-

lytical knowledge, since it determined with respect to an existing viewpose element.
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Once knowledge is computed, it is generally desired to store the results in a data

structure that accumulates and preserves the state data for efficient use later on. Since

analytical knowledge is conditioned on the dynamic state of the empirical knowledge,

regular maintenance is required to ensure data continuity is sustained as the empirical

knowledge dynamically changes.

Analytical knowledge facilitates better understanding and can simplify planning

tasks, however, it can have high computational complexity to compute and maintain.

The complexity to maintain the data must be balanced with the intended complex-

ity reductions it facilitates for planning or other tasks. Partial reevaluation can be

facilitated by storing intermediate information that is otherwise not directly useful

for planning, but allows reevaluation to be more efficient, with potential tradeoffs in

memory complexity that must also be considered.

For example, information gain is typically stored as a numerical value resulting from

a series of raycasting operations which are discarded after the computation. Upon

reevaluation, all of the raycasting operations must be fully recomputed, many or all

of which may produce the same result as from the initial evaluation. However, it is

feasible to preserve some of the intermediate raycasting results to reduce or eliminate

wasteful computations, with the tradeoff being increased memory usage to store the

intermediate data.

Figure 9.7: Data state change communication model.
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From a reusable software engineering perspective, the maintenance of dynamic

knowledge presents several challenges. Interface designs should be agnostic to the

data types of the information, and should also be decoupled from the other data

structures that manage or interact with the information. Additionally, the ability

to cache partial computational results and dynamically reapply them is critical to

improving performance, but must also be made modular and generalizable.

To simplify the generic design of efficient dynamic data maintenance strategies,

APEXMAP provides a collective of generic and reconfigurable tools that serve as

building blocks to simplify and expedite the design of more complex models. Firstly,

the design patterns related to abstract component entities and indirect communica-

tion capabilities provide powerful capabilities for designing reactive data structure

components. Reactive components can be designed by utilizing event messages to

communicate any type of dynamically changing information from anywhere within

the system, and any other component can subscribe to this data and implement is

own customized reactive policy.

To further facilitate such designs, an extensive data container library was devel-

oped which provides variants of most standard data container types that have been

adapted to natively provide interfaces to communicate their state changes. A com-

ponent diagram of these design patterns is shown in Figure 9.7, which extends the

Event Publisher and Event Subscriber interfaces to derive the respective interfaces of

Container State Publisher and Container State Subscriber .

These derived communication models provide a standard generic form, where the

class Container State Publisher is used to transmit the state changes induced whenever

a modifying container operation is performed. Container State Publisher is then en-

capsulated in the implementation of a specific container type, and can be subscribed

to by any other container that contains the corresponding Container State Subscriber

interface. The Container State Subscriber interface can also be freely used in any other
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type of component, rather than only container model types. The methods of Con-

tainer State Subscriber can be independently reconfigured to specialize the response

behavior when state change information is received.

9.7 APN-P System Implementation

This section provides a description of how APEXMAP was used to implement the

APN, DFR, and APN-P approaches presented in the previous chapters. Further de-

tails are included on how the various aspects of the program can be efficiently modified

to analyze different behaviors with minimal programming changes. Additional exam-

ples are provided on how APEXMAP can generalize to other existing approaches,

and increase their modularity to handle future development.

Figure 9.8: Robot subsystem component diagram.

9.7.1 Robot Subsystem

The robot subsystem provides the fundamental concept models related to the sens-

ing, control, and other aspect of the robot, depicted in Figure 9.8. Its primary

components handle tasks related to representation of the odometry state and per-

ception models, and provides components for sending motion commands using the

Motion Command Controller , and for receiving localization state information by the

Localization Client component.

Localization Client makes use of the Publish-Subscribe protocols to provide a stan-
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dard communication topic for the localization state, which can be subscribed by

any other system component. This approach decouples the details of how this state is

acquired from the the rest of the system, providing very high modularity and reusabil-

ity. The particular approach can be completely hidden from the external components,

which depend only on the output communication topic, independent from how it is

computed.

For example, localization could be computed and published by a separate ROS

node, in which Localization Client can implement a ROS subscriber to receive the

data and republish it to the system. Alternatively, an existing localization procedure

could be encapsulated and run asynchronously by the Async Procedure class, where

the rest of the system requires only that the output results are published on the

corresponding topic provided by Localization Client.

9.7.2 Mapping Subsystem

The components of the mapping subsystem is shown in Figure 9.7.2. This subsys-

tem is centered around the concept model component Spatial Map, which provides the

abstract interface of the map, and its implementation is realized using the OctoMap

library. The subtask of building the map is divided into several components, which

provide modularity between different data type representations of the map model,

sensor data, and how the sensor data is integrated.

Figure 9.9: Mapping subsystem component diagram.
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The Map Integration Dispatcher component is responsible for receiving the sensor

inputs, decoupling their data types and the mechanisms behind their communication

and reception. In our implementation, sensor inputs are received in the form of a

pointcloud, and the Pointcloud Dispatcher class is predefined component provided by

APEXMAP to handle these.

Upon receiving the sensor inputs, the dispatcher sends them to the Map Integra-

tion Strategy component, which separately handles how they are used to update the

map. Similarly, APEXMAP provides a pre-implemented specialization of this com-

ponent, Pointcloud Integrator , to perform the necessary operations. Map Integration

Dispatcher is modeled as the Async Procedure concept, which allows it to continuously

run concurrent to the rest of the system. This component is responsible for executing

the integration strategy upon receiving each sensor scan. Finally, Mapping Controller

serves as an encapsulation of the other two components, simplifying their setup and

operations.

Two additional concepts are also used, consisting of the Visibility Checker and Colli-

sion Checker components indicated in Figure 9.7.2. These provide generalized abstrac-

tion layers for the common operations involved for visibility checking and collision

checking, allowing the concrete methods to perform them can be hidden from the rest

of the system. In our implementation, visibility checking uses a custom class Raycaster

(included in APEXMAP), and the FCL library is used for collision checking.

9.7.3 APN Subsystem

The structural diagram of the APN subsystem is depicted in Figure 9.10, with

its abstraction model shown in (a) and its implementation in (b). The abstract

representation of the APN is defined by the Graph and Hypergraph interfaces, which

are represented using generic data types independent from any other part of the

system. Instead, the concrete data types needed for the graph are reconfigurable

through associative data structures, primarily consisting of Node Attribute Map and
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Edge Attribute Map. The APN can be reconfigured to have any number of different

attribute types associated with the graph structure.

(a)

(b)

Figure 9.10: APN subsystem component diagram. The abstract model is shown in
(a), and its realization is shown in (b).

An additional interface type, Subgraph Adaptor , is also provided which allows the

basis graph structure to be efficiently represented as subgraph by conditional inclu-

sion/exclusion of its underlying nodes and edges, without needing copy their memory

structure or any of their data associations. This structure is used as the base struc-

ture for efficiently constructing the Hypergraph model, which is derived from the graph
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model, and can be similarly reconfigured to associate its abstract compositional ele-

ments to other concrete data types.

Given the abstract component model, the primary elements of our implementation

are depicted in Figure 9.10b. This diagram shows the use of the associative data

structures to define the various data concepts defined by the theoretical models, such

as viewposes, frontier visibility states, and edge costs.

9.7.4 DFR Subsystem

The overview of the DFR subsystem is similarly depicted in Figure 9.11, with the

abstract model shown in 9.11a. A standardized component type, Regulation Proce-

dure, is defined to represent an individual update process to be applied to the APN,

and encapsulates the relevant data needed for the update. These can be dynamically

defined and added to the component type DFR , which then executes them as a single

linear process.

The specific realization of the abstract DFR subsystem is illustrated for our imple-

mentation in Figure 9.11b, where each subprocess corresponds to those outlined in

Chapter 6. This approach offers high modularity in multiple regards. Each process

represents a task modeled by the generic form of the Procedure interface, which hides

the details over the tasks purpose or how it is achieved. Given an application that

has defined a particular set of tasks, their implementation can be dynamically and

transparently redefined. Furthermore, additional tasks can be defined independently,

then simply added to the DFR procedure sequence to execute their behavior.

9.7.5 Planning Subsystem

The structural diagram of the planning subsystem layer is summarized in Figure

9.12. This layer provides further abstraction and decoupling between the maintenance

of the APN, and how it is applied for planning purposes. The class APN Planner is

modeled using the APN Planner component type, allowing the behavioral semantics
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(a)

(b)

Figure 9.11: DFR subsystem component diagram. The abstract model is shown in
(a), and its realization is shown in (b).

of the planner to have a generic form, hiding its approach details which can be dy-

namically redefined. This component contains a reference to the APN model, and the

openGA library [125] was used to support the base implementation structure of the

evolutionary planner described in Chapter 7.

An additional class, Mission Controller , serves as the high level executive controller



120

Figure 9.12: Planning subsystem component diagram.

over the runtime operation of the system. It receives the planning output of the

APN Planner , and is responsible for the motion planning tasks needed to achieve

the goal using the Trajectory Planner model. Trajectory Planner can be reconfigured

to used different motion planning algorithms, where OMPL was selected for use in

our implementation. The executive controller operates continuously as a concurrent

process to mapping and other subsystems, using Termination Condition to specify the

desired termination conditions for mission completion.

9.7.6 Application Design and Execution

At the uppermost level of control flow of the application, the component-based

object system enables the application to be completely represented by a single homo-

geneous collection of objects. This is depicted by Figure 9.13, which illustrates only

the high-level subsystems containing the objects for conciseness.
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Figure 9.13: Application system diagram.

Each object independently defines its own configuration and setup requirements

which are hidden by their abstraction layers, such that implementation of the run-

time application can be greatly simplified. The Component Resource Server is used

to allocate an object instance for each subsystem component. Then, the runtime

execution control flow is depicted in Figure 9.14, which demonstrates the key stages

of execution. After all objects have been allocated, each stage of operation is called

from the main program using the Component Resource Server , which corresponds to

the entry points of init(), setup(), start(), and stop() in the diagram.

From the diagram of Figure 9.14, it can be seen that none of the implementation-

specific details of our approach are exposed. This is indicative of the ability for

the control flow structure to take a standardized structural form that is application

independent. In this way, once the necessary component classes have been defined,

any application can be quickly built by simply specifying the desired components it

needs, where the rest of their setup, configuration, and operation procedures can be

largely handled in an automated fashion. The modularity of the components then

helps to maximize the reuse of existing components for different purposes, and the

pre-implemented components natively provided by APEXMAP minimize the amount
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of end-user work related to common subproblems. These aspects help to greatly

reduce the amount of time and effort needed from the end-user by reducing much

of the tedious boilerplate code needed throughout development, contributing to the

underlying goals of rapid development.

Figure 9.14: Application control flow diagram.
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CHAPTER 10: CONCLUSIONS

This dissertation has presented the Active Perception Network (APN), serving

as a topological roadmap of the dynamically changing exploration state space, the

differential regulation (DFR) update procedure that incrementally adapts the APN

to the changing environment knowledge, and an exploration planner APN-P, which

leverages the APN to find non-myopic exploration sequences through the APN.

The performance results demonstrated the efficiency of DFR in performing each

cyclic update and its scalability with increasing map sizes. In comparison to several

state-of-the-art approaches, the non-myopic planning approach of APN-P consistently

achieved improved performance in terms of total exploration time and coverage com-

pleteness. The ability to generalize was also demonstrated over a variety of different

environments, both indoor and outdoor, with only minor parameter adjustments be-

tween them.

The APEXMAP open-source software framework was developed to address the soft-

ware engineering challenges inherent to online exploration, many of which generalize

to the problem domain of active perception as a whole. The large-scale and complex

software development tasks creates an entry-barrier to researchers and typically re-

sults in strong coupling with problem formulation and approach-specific requirements,

limiting its applicability. APEXMAP helps to reduce the research entry-barrier and

increase software reusability over a broad range of problems and approaches, which

can accelerate ongoing increase research progress and innovations in this domain.
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10.1 Contributions

This dissertation addressed the problem of online exploration in unknown environ-

ments, which is highly relevant to many applications. Limitations of existing research

is largely driven by the high problem complexity and scalability. The majority of

works focus myopic planning that plan each incremental action using greedy strate-

gies which can be incomplete, and are incapable of providing performance guarantees

for the long-term global objectives. We address these limitations and the performance

quality, complexity, and scalability challenges by the following contributions:

• A novel dynamic multi-layer topological graph designated as the Active Per-

ception Network (APN). The APN serves as a global hierarchical roadmap over

the spatial map that accumulates the incrementally computed knowledge of the

exploration state space. The APN provides a model of the information space

can be efficiently search and queried for planning tasks, and can be dynamically

updated with high efficiency.

• A dynamic update procedure referred to as Differential Regulation (DFR) to

incrementally build and refine the APN as environment knowledge is increased.

DFR leverages the incremental and local nature of map changes minimize the

complexity of updating the APN as its size and the map scale increase. This

achieves increased efficiency and scalability by ensuring the size of the processed

data remains locally bounded, relying less on simplifications of the update pro-

cedures themselves.

• A non-myopic planning approach denoted as APN Planner (APN-P) that demon-

strates how the APN can be leveraged to adaptively compute and refine a glob-

ally informed exploration sequence.

• A detailed performance analysis and comparison to existing approaches among

the state-of-the-art.
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• The APEXMAP software framework was present which plays a vital practical

role in realizing the methodology and its performance efficiency. It provides the

implementation details related to the implementation of the APN, DFR, and

planning methodologies, which are built from a highly modular and efficient

set of underlying software components that allow the framework to effectively

generalize to a wide array of different planning methodologies or to solve for dif-

ferent problems in active perception. APEXMAP is made open-source [126] for

the benefit of the research community and to promote accelerated innovations

through collaborative research.

10.2 Future Work

A variety further research directions have been identified related to addressing

remaining challenges in the problem domain, and potential insights that could be

valuable from further analysis of our methodologies. These were deemed beyond the

scope of this dissertation, but will be briefly discussed in this section.

Further system analysis could provide a more thorough understanding of how each

aspect of the approach contributes to the the overall performance. This may also help

identify any existing functional limitations or weaknesses and how they might be ad-

dressed. Future studies could include parametric analysis, evaluation of stability and

robustness under varying conditions, and ablation studies. A variety of parameters

are used in the approach which are beneficial in controlling its behaviors, but further

analysis is needed to better understand their interactions, sensitivities, and how they

should be tuned to optimize the system performance under different conditions.

Several involved subproblems are able to be approached by families of related al-

gorithms, where the specific choice of algorithm could have unknown effects on the

overall operation. Evaluating the overall system behaviors using varying algorithms

for its subproblems would be beneficial. For example, different clustering methods for

hierarchical decomposition could be worth investigating. The current clustering algo-
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rithm does not constrain the number of clusters formed, which can be advantageous

by allowing them to better conform to the underlying data, rather than imposing

artificial restrictions. However, extremal cases can occur where either a single cluster

is formed that contains all nodes, or each node is assigned its own cluster. Both

are degenerate cases which reduce to a single TSP instance over the complete node

set. While in practice this was not typically observed, it suggests that some optimal

balance may exist between these two extrema.

Several strategies to further improve performance have been conceptualized. There

are potential opportunities to further optimize performance by increasing the amount

of computational reuse between planning iterations. This can involve increasing the

amount of cached data artifacts from sub-processes that can be efficiently reapplied to

reduce redundant computations. This involves a tradeoff where memory is increased

to replace the repetitive computations with a lookup operation of their previous re-

sults. It would be insightful to study how to ideally balance such tradeoffs.

There is significant potential in the generalizability of the conceptual approach

and its modular software implementation to handle further problem variations. This

could be leverage to to consider reformulated problem objectives for different active

perception problems, such as free space exploration rather than surface coverage, or

search and recognition of object targets. Additional reformulations could include

operation using mobile ground robots for 2D exploration tasks.

The evolutionary optimization strategy and its software implementation (using

openGA) can be readily adapted to handle multiobjective optimization problems.

This could allow for consideration of uncertainty as a joint optimization problem

to the exploration objective. The current high computational efficiency provides

excellent latitude to handle the increased problem complexity. This could make the

approach more robust for practical use in GPS-denied environments.

Hardware experiments will be useful to validate the practical feasibility on a physi-
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cal hardware system, and to evaluate the realistic performance in non-ideal conditions

with noise and uncertainty. This is a necessary next step to help advance the method-

ology for practical applications.
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