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ABSTRACT

VINIT AMRUTLAL KATARIYA. Advancing Highway Safety: Embedded-edge AI
for Real-time Applications. (Under the direction of DR. HAMED TABKHI)

This dissertation presents the systematic design and development of datasets, al-

gorithms, and an AI pipeline specifically curated for real-time trajectory prediction

and anomaly detection in highway environments. These innovations are meticulously

optimized for embedded-edge systems, ensuring timely outputs for safety and surveil-

lance applications.

First, the dissertation presents DeepTrack: Lightweight Deep Learning for

Vehicle Path Prediction in Highways, a deep learning model tailored for edge

systems. This model uniquely employs Agile Temporal Convolutional Networks

(ATCNs) rather than the traditionally-used Long Short-Term Memory (LSTM) net-

works to encapsulate vehicle dynamics. Not only does DeepTrack boast equivalent

or superior accuracy to leading trajectory prediction models, but it also shines in its

diminished model size and reduced computational intensity, making it ideal for em-

bedded edge systems. Distinctly, vehicle interactions are interpreted through ATCNs

instead the frequently-associated LSTM in time series analysis. A hallmark of ATCN

is its depthwise convolution, which significantly curtails model complexity in compari-

son to LSTMs, both in size and operational demands. Experimental results show that

DeepTrack cuts Average Displacement Error (ADE) by 12.23%, reduces the Final Dis-

placement Error (FDE) by 2.69%, and also decreases both the number of operations

and the model size by approximately 21.67% and 43.13%, respectively, compared to

then State of the Art (SotA) trajectory prediction algorithm.

Subsequently, Carolina Highway Dataset (CHD), a unique highway trajectory

dataset captured from two distinct Points Of View (POVs) â high-angle and eye-

level is introduced. While numerous vehicle trajectory datasets exist, most lack the
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diversity of driving scenes that capture various highway designs, merging lanes, and

configurations. CHD, however, stands out by offering data from 1.6 million frames

and 338,000 vehicle trajectories recorded in highway videos, encapsulating both eye-

level and high-angle perspectives from eight strategically selected locations across the

Carolinas. These locations, accompanied by meticulous timing and camera angles,

ensure a comprehensive representation of road geometries, traffic trends, lighting

variations, and diverse driving behaviors.

Additionally, PishguVe â a SotA vehicle trajectory prediction architecture that

uses attention-based graph isomorphism and convolutional neural networks is pre-

sented next. When tested, PishguVe excelled by outperforming pre-existing SotA

algorithms across bird’s-eye, eye-level, and high-angle POV trajectory datasets. No-

tably, on the NGSIM dataset, it achieved a commendable improvement of 12.50% in

Average Displacement Error (ADE) and 10.20% in Final Displacement Error (FDE)

compared to the current SotA. Against the top-performing models on CHD, PishguVe

demonstrated superior results, reducing the ADE and FDE on eye-level as well as

high-angle data.

The final contribution details VegaEdge: A Confluence AI Approach for

Video Anomaly Detection at the Edge in Real-Time Highway Safety. It

commences with the introduction of the Carolinas Anomaly Dataset (CAD),

aiming to fill the prevalent void in datasets specifically designed for highway anoma-

lies. The significance of vehicle anomaly detection is underscored, emphasizing its

pivotal role in various highway safety applications, including accident prevention,

rapid response, traffic flow optimization, and work zone safety. In alignment with

this vision, a novel lightweight technique for vehicle anomaly detection is put forth,

harnessing the prowess of trajectory prediction. The proposed methodology adeptly

spots vehicles that deviate from anticipated paths, pinpointing potential highway

risks across diverse camera perspectives, and utilizing real-world highway datasets.
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Further, the edge detection framework, VegaEdge is introduced. It represents a

refined AI confluence that strategically chooses agile algorithms and techniques. This

selection is adept at tasks ranging from detection and tracking to trajectory predic-

tion and anomaly identification in real-time, catering to contemporary security and

surveillance needs in modern highways via edge-focused IoT-embedded platforms. In

addition, VegaEdge, when deployed on an embedded IoT platform, efficiently pro-

cesses 738 trajectories per second in standard highway environments, illustrating its

adaptability and efficiency.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Modern transportation systems, driven by Intelligent infrastructure and smarter

vehicles, are constantly moving towards safer and more efficient highways. As the

emphasis on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) commu-

nications grows, the quest for an end-to-end predictive solution for highway safety

becomes paramount. While there have been significant advances in communication

systems and trajectory prediction, alarming statistics still underscore the severity of

highway-based accidents [3]. Highway-based accidents and fatalities remain a serious

concern for transportation agencies and the public. In 2019, the United States re-

ported 36,096 fatalities on its roadways [3, 4]. The National Highway Traffic Safety

Administration documented another surge to 42,000 fatalities in 2022, with significant

proportions of these accidents taking place on highways [5]. Amidst these alarming

statistics, there is a noticeable void in the field of end-to-end predictive solutions

tailored for highway safety.

A closer inspection into the domain revealed a distinct lack of vehicle trajectory

datasets with a specific focus on highways. The majority of available datasets pro-

vided constrained perspectives like bird’s-eye views or low-resolution high-angle videos

[1, 2, 6, 7, 8, 9, 10]. A deep dive into the existing literature and systems reveals that

while vehicle trajectory prediction models have seen incremental growth in accuracy,

reaching up to 90% for short-term predictions. Such models might not directly extrap-

olate to the peculiarities and unique requirements of highway systems. Furthermore, a

majority of the prediction algorithms were dedicated to pedestrians or complex urban

scenarios characteristic of autonomous driving, leaving a discernible gap in models
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tailored for highway conditions [11, 12, 13, 14].

In a concerted effort to bridge this noticeable gap, DeepTrack was proposed as a

novel solution designed specifically for real-time safety-critical applications. Deep-

Track can provide precise Time-to-Collision (TTC) predictions, crucial for accident

avoidance on highways. DeepTrack not only showcases high accuracy but does so with

reduced computational complexity, making it apt for embedded systems at the edge,

a necessary advancement for real-time applications [15, 16]. The introduction of Agile

Temporal Convolutional Networks (ATCN) in DeepTrack offers a promising solution

to the complexities associated with traditional LSTM-based models, marking a signif-

icant stride in trajectory prediction for highway safety. Additionally, understanding

the importance of having a multi-perspective, comprehensive dataset for highway sys-

tems, the Carolinas Vehicle Dataset (CHD) was introduced. The CHD encapsulates

a myriad of trajectories under different lighting and weather conditions, giving re-

searchers a valuable resource to develop better predictive algorithms [17, 18, 19]. It

also marks a step forward, offering a comprehensive repository capturing naturalistic

highway driving behaviors from varied points of view [20, 21]. Such datasets can be

pivotal in developing Intelligent Transportation Systems (ITS) tailored specifically

for highway surveillance and safety.

Taking a step further into the interconnected world of the Internet of Things (IoT),

there’s a pressing need to harness real-time analytics from the massive influx of data

from highway cameras. With the rising incidents, especially within work zones, the

existing surveillance infrastructure demands the power of edge-based AI frameworks

[22, 23]. Current anomaly detection systems, majorly tailored for urban setups, of-

ten do not cater to the specificities of highway scenarios [24]. Addressing this defi-

ciency, we introduce the Carolinas Anomaly Dataset (CAD) for real-world highway

anomalies, coupled with VegaEdge, a groundbreaking AI solution tailored for real-

time highway applications [25]. VegaEdge not only offers rapid detection but also
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scales to provide efficient highway monitoring, heralding a transformative approach

to road safety and management. By operating on embedded edge devices, VegaEdge

promises rapid detection while optimizing computational resources, ensuring safety

in the ever-evolving highway environment.

In conclusion, the journey towards a safe and efficient highway system demands an

intricate weaving of precise prediction models, comprehensive datasets, and agile edge-

based AI solutions. With advances such as DeepTrack, CHD, CAD, and VegaEdge,

we are progressively inching closer to this ideal, ensuring that our highways become

safer conduits of transport for all.

1.2 Contributions to the Body of Knowledge

In the broader context of advancing highway safety and vehicular technologies, this

dissertation delineates the major contributions that augment the existing literature

in the following ways:

• Introduced a deep learning model specifically tailored for highway trajectory

prediction, achieving high accuracy and reduced computational complexity. In-

corporated Agile Temporal Convolutional Networks (ATCN) to overcome tra-

ditional LSTM-based model limitations. The model serves as a lightweight

trajectory forecasting tool, predicting the vehicle of interest’s location up to

5 seconds in the future. A novel encoder design was implemented, decreasing

the complexity and size of the overall network by at least 22% and 12% re-

spectively, in comparison to state-of-the-art trajectory prediction models, while

maintaining comparable accuracy. An extensive analysis of the proposed net-

work’s design was provided, emphasizing the influence of various components

on performance.

• This work presents a comprehensive dataset CHD capturing naturalistic high-

way driving behaviors. CHD, is a robust vehicle trajectory dataset sourced
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from multiple POVs, capturing diverse vehicle maneuvers on highways, rang-

ing from varied geometries to lane mergers. This dataset fills a critical niche

by offering high-quality data for highway environments and aids in the devel-

opment of Intelligent Transportation Systems (ITS) with a focus on highway

safety. Complementing this, CHD provides 1.6 million high-resolution images

enriched with annotation data, facilitating advanced detection and tracking

applications. Alongside this, is presented PishguVe, a cutting-edge trajectory

prediction network grounded on attention-based convolutional and graph iso-

morphism networks. PishguVe secures a best-in-class error rate across multiple

datasets, showcasing its adaptability for real-time trajectory prediction across

various POV scenarios. The utility and effectiveness of both CHD and PishguVe

are highlighted by offering a detailed comparison of the trajectory datasets. Fur-

thermore, an exhaustive evaluation of trajectory prediction algorithms, trained

and evaluated in NGSIM and CHD, reinforces our claim of superiority and

relevance in the field.

• To bridge the gap in highway-based anomaly datasets, the Carolinas Anomaly

Dataset (CAD), is introduced to bolster research efforts in real-world high-

way settings. This dataset has 22 videos of real-world highway anomalies with

vehicles deviating from the lanes, vehicles approaching the camera, and vehi-

cles stopping in front of the camera. In conjunction, we propose a distinctive

anomaly detection method that detects anomalous driving behaviors from pre-

dicted trajectories by calculating angle-based and displacement errors. The

method’s efficacy is proved using both adversarial and real-world trajectories

across specific datasets. By doing this it highlights the effects of adversarial

anomalies versus real-world anomalies with varying prediction windows. To

further the cause, this dissertation also introduces VegaEdge, an avant-garde

AI-driven IoT solution, adept at anomaly detection in vehicles, specifically en-
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gineered for edge-based embedded systems. This system excels at pinpointing

vehicles that stray from expected paths, serving as an early warning system for

potential highway threats.

• VegaEdge, alongside our proposed anomaly detection methodologies, undergo

rigorous evaluations spanning multiple platforms and scenarios. The outcome

attests to its versatility and unmatched prowess in both actual and simulated

conditions. VegaEdge’s real-time processing of real-world anomalies is presented

by calculating throughput for varying traffic densities on Nvidia Jetson Orin

AGX and Jetson NX boards. Furthermore, its effectiveness is underscored,

especially in enhancing work zone safety, as we present the changing buffer

time with the prediction window used by the anomaly detection model.

In summation, this dissertation charts the evolution of trajectory prediction from

its nascent stages, harnessing the power of ATCN and attention-based methodologies,

to the culmination of a holistic AI solution dedicated to highway safety. This jour-

ney was marked by several key contributions, including the introduction of authentic

real-world datasets and the development of state-of-the-art trajectory prediction al-

gorithms. These incremental advancements, superior to prior efforts, created a new

route for devising highway safety applications. Notably, the emphasis on embedded-

edge devices acting in real-time has the potential to be transformative, heralding a

future where countless lives and injuries can be safeguarded on our roads.



CHAPTER 2: DEEPTRACK: LIGHTWEIGHT DEEP LEARNING FOR

VEHICLE TRAJECTORY PREDICTION IN HIGHWAY

2.1 Introduction

With the advent of high-speed communication systems and unprecedented im-

provements in trajectory predicting, we are closer to implementing a fully connected

(vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)) and fully-aware trans-

portation system than ever before. The increasing push towards autonomous driving

and thrust for designing the best in class crash-avoidance systems at the edge has

resulted in development of trajectory prediction algorithms with better than 90% ac-

curacy for up to 5 seconds in the future. The use of such high accuracy models in

safety-critical systems for crash avoidance and accident prediction can result in pre-

cise time-to-collision (TTC) prediction [26], which can prove instrumental in avoiding

accident-related injuries and saving many lives.

Fast and effective prediction of future paths of surrounding vehicles and conse-

quently making automated adaptive decisions will improve the safety and efficiency

of autonomous vehicles and driving assistance systems, especially in complex and

less predictable scenarios caused by major contributors to accidents. Agile and ac-

curate trajectory predictions will also improve the decision-making of autonomous

vehicles towards enhancing ride comfort, energy consumption, and traffic congestion

[27, 28]. In 2019, there were 36,096 fatalities on roadways in the United States [3, 4].

NHTSA (2019) also estimates that 11.9% of them involved a vehicle maneuvering in

a manner that may be unpredictable to the other drivers (i.e., turning left or right,

stopping or slowing in traffic, merging/changing lanes, or passing another vehicle).

Such crashes at highway speeds, given the short TTC and limited distance range,
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cannot be prevented with vision-based systems alone [29].

Real-time trajectory prediction on-spot is a quite challenging task due to the un-

certain and dynamic nature of roadways. We often observe many non-linearities

on vehicle trajectories, stream from nearby vehicles or the number of available lanes

(environmental factors), or individual decisions or preferences (intrinsic factors). Pre-

dicting multiple possible trajectories for an active subject in the scene [16, 27] is a

common practice. These trajectories are ranked based on the probability distribution

of the prediction model, which makes them inherently less practical in real-time sce-

narios. Some recent approaches also consider the interactions of the nearby vehicles

to successfully predict the path of a moving vehicle [15, 16]. However, they often have

a relatively large model size and high computational complexity. A larger model size

translates to higher storage requirements and higher system cost [30]. Smaller model

size translates to faster performance and low memory requirement. Data storage and

compression mechanisms are also crucial to reducing the system size and cost in V2X

infrastructure.

This article proposes DeepTrack as a novel deep learning algorithm with com-

parable accuracy to best-in-class trajectory prediction algorithms but with a much

smaller model size and lower computational complexity. DeepTrack encodes the ve-

hicle dynamics with the aid of Temporal Convolutional Networks (TCN) instead of

well-established mainstream Long-Short-Term Memory (LSTM) units. TCN, with its

depthwise convolution as its backbone, can shrink the complexity of models and boost

gradient flow for a more generalized trained model compared to LSTM-based solu-

tions. We also augment DeepTrack with time attention modules to enhance the ro-

bustness against the noise and provide higher accuracy with minimum computational

overhead. For the experimental results and comparison, this article uses datasets

provided by the Federal Highway Administration (FHWA) under Next Generation

Simulation (NGSIM) program.
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Compared to CS-LSTM [27], DeepTrack reduces Average Displacement Error (ADE)

by 12.23%, Final Displacement Error (FDE) by 2.69%, and also reduces the number

of operations and model size by about 21.67% and 43.13%, respectively. CF-LSTM

[31] is outperformed by DeepTrack by 2.43% in terms of ADE while operations and

model sizes are reduced by 22.37% and 43.75%, respectively. The DeepTrack model

reduces the number of operations and model size by 22.84% and 12.61%, respectively,

over STA-LSTM [28], while ADE is lower by 5.97% (around maximum of 15 cm) and

FDE is lower by 2.77%.

Overall, the key contributions of this article are:

• A lightweight trajectory forecasting model to precisely predict the location of

vehicle of interest up to 5 sec. in the future.

• A novel encoder design based to reduce the complexity and size of the over-

all network by at least 22% and 12% compared to state-of-the-art trajectory

prediction models with comparable accuracy.

• An extensive analysis on the design of the proposed network highlighting the

effect of various components on the performance.

2.2 Related Work

Networks that predict vehicle trajectories can be broadly grouped into three cat-

egories: models based on physics, those that focus on maneuvers, and models that

are interaction-aware [26]. While models rooted in physics adhere to physical laws,

maneuver-centric models prioritize driver intentions. On the other hand, interaction-

aware models emphasize the roles of surrounding vehicles and their interplay in

forecasting motion and path. Historically, such interaction-focused models didn’t

gain much traction. Most older models either employed Dynamic Bayesian meth-

ods [32, 33] or were based on prototype trajectory designs [34]. Recent advances,
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however, have seen a surge in models that leverage environmental context for better

predictions. A significant number of these architectures incorporate Long Short-Term

Memory (LSTM) neural networks [35, 28, 36] to assimilate details about nearby ve-

hicles. Notably, in Deo et al.’s contribution [16], vehicle data is synthesized into a

singular tensor, followed by convolutional and max-pooling stages to enhance adapt-

ability. This data, combined with the LSTM encoding of the primary vehicle, feeds

into a maneuver-focused LSTM decoder, elucidating multiple possible trajectories.

The study by Mercat et al. [37] adopts a similar LSTM-based structure but sidesteps

predefined maneuver classifications. The model has intermediary self-attention lay-

ers that receive time-specific encoded details of each vehicle, ensuring a consistent

input size regardless of vehicle count variations. This central segment formulates

an attention matrix, leveraging features from the encoder, culminating in the de-

coder outlining path likelihoods for each vehicle. Notably, the LSTM-driven model in

[37] outperforms many leading trajectory prediction algorithms. Nonetheless, Graph

Neural Networks (GNN) have displayed superior accuracy in trajectory predictions

in certain studies [31, 38].

Xie. et al. [31] introduced a GNN-based model [39] termed the teacher-student

approach, which boasts enhanced accuracy in trajectory predictions compared to

its predecessors. This model integrates a frame-wise graph reflecting agent positions,

coupled with a Graph Convolutional Network encoder-decoder for generative learning

and a Gaussian mixture model for congestion pattern creation. An LSTM-centric

encoder-decoder in the student model refines trajectory predictions by aligning with

the teacher model’s congestion patterns.

Much of the contemporary literature underscores the progressive decrease in error

rates for deep learning models in vehicle trajectory predictions. Our approach achieves

commendable error rates, mirroring leading algorithms, but with a more streamlined

model structure and reduced size. Our unique ATCN encoder captures vehicle posi-
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tions over a recent three-second span, contrasting with contemporary LSTM encoders

[31, 37]. After processing the encoder output, we utilize 2D convolution to distill past

vehicle interactions. This data then informs our LSTM Trajectory predictor, fore-

casting a context-aware path for the target vehicle over the upcoming five seconds.

Our model’s training and validation leveraged the US Highway 101 [2] and Interstate

80 Freeway [1] datasets from the Federal Highway Administration’s (FHWA) Next

Generation Simulation (NGSIM) initiative.

2.3 Motivation: Applications of Real-time Trajectory Prediction in Highways

Predicting vehicle trajectories on the highway offers a variety of safety applications,

particularly where points of conflict increase between road users. There are expected

V2I applications to aid active traffic management systems to divert traffic away from

predicted conflicts through lane-use control signals, dynamic hard shoulder running,

and variable speed limits [40, 41]. Leveraging predictions to calm traffic through

speed reductions or divert upstream traffic away from high conflict zones would be ex-

pected to reduce the potential for other vehicles to be impacted by potential collisions

or constrain traffic flow. Moreover, such predictions may also reduce the likelihood

of "secondary crashes" occurring in the aftermath of primary crashes [42], which are

estimated to account for up to 15% of all freeway crashes [43]. In congested freeway

platooning conditions, free-flowing traffic is at risk of propagating increasing braking

responses upstream due to downstream hard braking, close-call, or collision events.

The increased braking responses, paired with slow response times, propagated up-

stream risk rear-end collisions. Providing real-time traffic control to upstream traffic

based on downstream traffic predictions of safety-critical events may offer the poten-

tial to dampen the effects of traffic instability by reducing time lags in response [44].

Further, there are expected V2X applications which may reduce the risk of pre-

dicted vehicle trajectories into high-risk areas such as work zones or roadside emer-

gency work areas by providing advanced alerting to on-duty workers to seek safety [45].
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Emergency responders are at risk of being struck by vehicles while conducting traffic

stops or attending to a crash. Often these crashes occur due to distracted or impaired

drivers unintentionally leaving their lane of travel [46]. Secondary crashes are also

a risk for emergency responders when traffic is not properly controlled around and

upstream from the scene [47]. Providing predictions of vehicle trajectories near the

roadside, on-duty workers may also help to guide better traffic management through

Portable Changeable Message Signs (PCMS) to alert drivers to risks in addition to

emergency alerting to the workers themselves.

2.4 DeepTrack Design

This section discusses the DeepTrack architecture in detail.

The inputs of DeepTrack are defined as:

Xego =

[
l
t−h
e l

t1−h
e · · · lt0e

]
, (2.1)

Xnbr =



l
t−h

0 l
t1−h

0 · · · lt00
...

... . . . ...

l
t−h

j l
t1−h

j · · · lt0j
...

... . . . ...

l
t−h

N−1 l
t1−h

N−1 · · · lt0N−1


, (2.2)

where lti = 〈xti, yti〉 is the position of vehicle i at time t, h is number of seconds of the

past trajectory used for prediction, Xe is the car of interest, Xnbr is neighbour cars,

and N is the number of vehicles. The shape of Xnbr is shown in Fig. 2.1. In a similar

way, the output can be defined as follows:

Ŷ =
[
lt1 , lt2 , · · · , ltf

]
. (2.3)
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2.4.1 Model Architecture

We present the proposed DeepTrack architecture in Fig. 2.2. It consists of an

encoder, a Vehicular Interactive Aware Convolution (VIAC), and an LSTM trajec-

tory encoder. In the following sections, we explain the design and working of each

component.

2.4.1.1 DeepTrack Encoder

Inspired by the generic TCN architecture, we propose an encoder to reduce model

complexity and memory footprint. Fig. 2.1 shows the structure of a single Deep-

Track encoder block. The DeepTrack encoders embed vehicles’ path histories, both

neighbors and target vehicles, into higher dimensions to capture their past trajectory.

As opposed to previous works [31, 16], DeepTrack does not require dense layers to

embed input features as needed for the LSTM encoder. Encoder convolutional oper-

ators capture and map the sequence of lt by applying K = [2, k] as a kernel, where

k ∈ N|k ≤ h. As a result, DeepTrack has less model complexity, and better gradients

flow from output to input during optimization.
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Figure 2.1: Structure of TCN based DeepTrack encoder.
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2.4.2 Preliminaries and Problem Formulation

Traditional Convolutional Neural Networks (CNN) are used in computer vision

applications due to their success in capturing spatial features within a two-dimensional

frame. Recently, research has shown that specialized CNNs can recognize patterns in

data history to predict future observations. This gives researchers interested in time-

series forecasting options to choose other options over RNNs, an established DNN for

time-series predictions. In one such case, TCN achieved the state of the art accuracy

in sequence tasks, e.g., polyphonic music modeling, word and character-level language

modeling, and audio synthesis [48, 49, 50].

TCNs are designed around two basic principles: 1) the convolutional operations

are causal, i.e., predictions are made based only on current and past information; 2)

the network receives an input sequence of arbitrary length and maps it to an output

sequence of the same length. The use of causal convolutions in WaveNets [51] showed

that it allowed for faster training as compared to LSTM based networks as they do

not rely on recurrent connections. However, as the causal convolution needs large

number of layers to increase the receptive field, WaveNet uses dilated convolutions

to address this problem. In Dilated convolutions, the kernel is stretched to cover a

larger part of the input. This is achieved by inserting holes (zeros) between the kernel

elements. The level of enlargement is determined by dilation rate, which defines the

number of spaces inserted between the kernel elements. Generally, d-1 spaces are

inserted for dilation rate of d.

Simple causal convolutions have a dilation rate of 1, but other researchers incor-

porate dilated convolutions to scale the receptive field exponentially. The dilated

convolution of F on element s of a sequence X is given as:

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i, (2.4)
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where X ∈ Rn is a 1-D input sequence, ∗d is dilated convolution operator, f :

{0, ..., k − 1} ∈ R is a kernel of size k and d is the dilation rate [51]. Also recep-

tive filed of a dilated convolution can be calculated by:

rf = 1 +
L∑

j=1

[k(l)− 1]× d(l), (2.5)

where j ∈ {1, 2, 3, ..., L} is the layers, k is the kernel size, and d(j) is the dilation rate

at layer j. This means that as the depth of the network increase, so does the receptive

field. To address the issue of vanishing gradients resulting in exponentially expanding

receptive fields with increasing network depth, TCN replaces standard convolutional

layer in the residual block [52]. This is a widely used approach for convolutional

architectures as it provides a path for information to pass through the layers. A

residual block can be represented as:

y = Fi(X) +X (2.6)

where, y is the output of residual block, and Fi represents the operations such as,

convolutions layers , non-linearity, and normalisation applied to input X at each layer

i. The residual block helps the network in learning the modifications applied to input

at each layer [51].

DeepTrack uses two different encoders. There is one shared by all neighbors, shown

by the shaded box in Fig. 2.2, which maps their dynamics to higher dimensions so

that the VIAC can comprehend their interdependencies. The other encoder maps

only the ego dynamics, as illustrated by the red box in Fig. 2.2.

Since we have a padding unit in each encoder to make sure the input and output

of standard and depthwise convolution will be the same (second principle of TCN
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Figure 2.2: The path prediction model workflow. The location of the neighbors (gray
triangles) and car of interest (solid red triangle) is shown at t0 in Vehicle trajectory
data (extreme left) block and Trajectory prediction (extreme right) block. Triangles
denoting semi-transparent red in Vehicle trajectory data block, and semi-transparent
blue in Trajectory prediction block represent observed history paths, and model out-
put respectively. The observed history paths of neighbours (for past 3 seconds) are
used by the model but not shown in the figure to avoid confusion.

architectures), the 2p zeros are added symmetrically, where p is given by:

p = d(o− 1)× s+ (k − 1)× (d− 1)− i+ k

2
e, (2.7)

where o is the output size, i is the input size, s is the stride, k is the kernel, and d

is the dilation. According to Eq. 2.7, if we increase the kernel size or dilation, more

zeros should be padded to the input. The addition of excessive zeros to the input has

two main disadvantages: 1○ it degrades the model’s performance due to redundant

zeros, and 2○ it increases the model computational complexity. As a result, we set

the dilation and kernel size of the DeepTrack encoders for different models as shown

in Table 2.2, both DeepTrack encoders have three hidden layers; however, the output

dimensions differ.

Each DeepTrack encoder has a three-layered structure with a padding block to

ensure that the input and output sizes are the same, followed by a convolutional block.

Layer H0 uses standard convolution (d = 1). As a widely accepted practice in the deep

learning community, batch normalization [53] layer is added after each convolution to
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speed up and stabilize the model training followed by a ReLU activation. We have

intentionally not shown Batch Normalization (BN) and ReLU activation in Fig. 2.1

for simplification of the diagram.

For DeepTrack, Swish, as well as ReLU activation, were tested after BN. Swish is

very similar to ReLU but does not abruptly change its direction. However, we use

ReLU activation for DeepTrack to provide marginally better results. BN and ReLU

are not shown in Fig. 2.1 for simplification.

In the subsequent layers (H1-H2), a padding block is followed by a pointwise (PW),

depthwise (DW), and PW convolutions instead of a CNN to reduce the model com-

plexity. As Layers H1 and H2 are identical, details of H2 are not shown in Fig 2.1.

BN and ReLU activation is applied to the output of the last PW convolution before

adding it to the input of the residual block [52] as expressed by Eq. 2.6.

To the best of our knowledge, we are first to present a deep learning algorithm with

a modified generic TCN architecture for trajectory prediction.

2.4.2.1 Attention Mechanism

Attention mechanisms have been used to better interpret the model and extract

the significant information. It has also been used in multiple trajectory prediction

applications as shown in [54, 55].

In this architecture, additive attention mechanism [56] for both DeepTrack encoders

to guide decoders are used to predict the trajectory based on the importance of

features, similar to the work by Lin et al. [28]. In order to get the importance of the

encoded output, the first associated weight score vector, −→ω , should be calculated by:
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−→ω = tanh(WD), (2.8)

D =


lt00 lt10 · · · lts0
...

... . . . ...

lt0J−1 lt1J−1 · · · ltsJ−1

 , (2.9)

where D is the DeepTrack encoder output, s is the encoder output length size set to

h, J is the last output channel size, andW is trainable parameter. The final attention

score is then given by:

fatt = σ(−→ω ), (2.10)

Dfinal = DTfatt, (2.11)

where σ is Softmax function. Fig. 2.3 illustrates the attention mechanism. The

output of softmax, fatt is the importance heatmap, and it will be again multiplied

with the encoded data. Based on the focused data, the VIAC and LSTM trajec-

tory decoder can figure out the vehicle interactions and generate the final prediction

effectively.

2.4.2.2 VIAC

Analyzing the interaction between the ego and its neighbors is necessary to predict

the future trajectory for the vehicle of interest. Despite capturing individual behavior,

the DeepTrack encoder is unable to comprehend the entire scene. Social pooling

proposes a solution by pooling encoded data around a specific target [57]. The task

is accomplished by defining a spatially correlated grid f × g × N regarding the car

of interest. Similar to Social Pooling [16], we set f and g to 13 and 3, respectively.

The structure of the 3× 3 grid that masks the encoder output is shown in the VIAC
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Figure 2.3: Additive Attention. The output of softmax is multiplied with DeepTrack
encoder output to lead the next layers on essential features.

block of Fig. 2.2.

DeepTrack comprehends the interdependencies of the vehicle by applying convolu-

tions to embed information. The neighborhood dynamics are encoded and mapped

to the lower dimension using the two-layer convolution and a pooling unit. The con-

volutional layers help extract the local features from the spatial grid around the ego

vehicle. The use of convolutional-social pooling in the VIAC shows lower performance

degradation as compared to fully connected social pooling, as shown by Deo et. al in

[16].

The additional dense layer dedicated to the dynamic encoding of the ego vehicle is

fully connected. The dense layer also remaps the DeepTrack encoder output of ego

to have the same feature size so that it can be concatenated with the result of VIAC

as shown in Fig. 2.2. The concatenated output is then passed through the LSTM

Trajectory Prediction block.
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2.4.2.3 LSTM Trajectory Prediction

Only at the final stage, DeepTrack uses an LSTM-based encoder to predict the

future trajectory, Ŷ . We have not used TCN based encoder as the final stage because

TCN can map the temporal information only to a higher output channel. Similar

to what is accomplished by the DeepTrack encoder at the first stage. LSTM is only

used to map and decode the VIAC and Dense layer’s concatenated output to the final

output prediction.

2.4.3 Algorithm

Algorithm 1 represents a step-by-step working of the DeepTrack prediction network.

Input Xnbr has dimension (N − 1) × (h + 1), and Xego has dimension 1 × (h + 1).

Expected output, Ŷ , is given by eq. 2.3.

2.4.3.1 Encoder Functions

There are two encoder functions in Deeptrack, Encodernbr and Encoderego. Both

Encoder functions have three hidden layers represented by blocks H0, H1, and H2 in

Fig. 2.1. H0 uses standard convolution, but H1 and H2 use point-wise, depth-wise,

point-wise convolutions. All the convolution operations are followed by appropriate

padding, normalization, and activation. Number feature sizes for each block are as

shown in Table 2.2.

First, Encodernbr and Encoderego functions is applied to input vectors Xnbr and

Xego respectively. Next, to incorporate the attention mechanism, Softmax function

is applied to tanh activation of the dot product of Encoder outputs Dnbr, and Dego

with Wnbr, and Wego respectively. W represents trainable attention weight vectors,

and σ represents Softmax function. The attention mechanism is a part of encoder

blocks in Fig. 2.2. The output of attention block is then passed to VIAC.
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2.4.3.2 VIAC, Dense Layer and LSTMdecoder Functions

VIAC and Dense Layer (DS) functions are applied to the dot product of the trans-

posed output of Encoder functions and attention mechanism for neighbor and ego

vehicles. VIAC first combines the tensors for every grid with a car to form a single

tensor. Next, a couple of convolutional layers are applied to this tensor, followed by

a pooling layer. Simultaneously, the decoded state tensor of the ego vehicle is passed

through a fully connected layer represented by DS [16]. DS translates the inputs into

a feature size that is concatenated with VIAC output to produce a comprehensive

encoded trajectory, Yfinal. Concatenation is represented by ‘||’ in the algorithm.

Finally, LSTMdecoder function is applied to Yfinal. The decoder has two softmax

layers with outputs concatenated to predict the final trajectory of the ego vehicle, Ŷ .

Algorithm 1 DeepTrack prediction model pseudo code
Input Neighbour: Xnbr = all rows except row l from metrics in eq. 2.2

Input Ego: Xego = row l from metrics in eq. 2.1.

Output:Ŷ = output as shown in eq. 2.3 Initialize encoder layers, kernels, dilation

Dnbr = Encodernbr(Xnbr)

fatt_nbr = σ(tanh(WnbrDnbr))

ynbr = V IAC(DT
nbrfatt_nbr)

Dego = Encoderego(Xego)

fatt_ego = σ(tanh(WegoDego))

yego = DS(DT
egofatt_ego)

yfinal = yego || ynbr

Ŷ = LSTMDecoder(yfinal)

2.5 Evaluation

The performance of DeepTrack is evaluated using NGSIM’s widely used I-80 [1]

and US-101 [2] vehicle trajectory datasets. A rate of 10 Hz is used for sampling
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the vehicle’s trajectory for 45 minutes. Each dataset includes three segments of 15

minutes long of mild, moderate, and congested traffic. Similarly to [31, 37, 28], we

divided the dataset into three parts: training, validation, and testing. The dataset

provides around 8 million data entries divided into 70% training data, 10% validation

data, and 20% test data. As discussed in CS-LSTM [16], DeepTrack also uses a

stationary frame of reference.

The direction of motion of the vehicles is defined by the head of the triangle as

shown in Fig. 2.2. Lanes immediately next to the ego vehicle are considered for track-

ing the neighbors’ position. This helps capture the effect of movement of immediate

neighbors on the ego vehicle as they have maximum influence on its future trajectory.

The area around the ego vehicle is converted into a 13×3 size grid, with each grid

cell 15 feet long and width equal to lane width. The ego vehicle is assigned the center

cell, whereas each neighboring vehicle in the 13×3 grid is assigned a cell based on the

position of its front bumper around the ego.

Based on the work of [16], each trajectory is also segmented into 8 seconds, where

the first three seconds are used as a path that was observed, and the model will predict

the following five seconds. Previous works downsampled each second by two [31, 37] to

reduce the complexity of the LSTM encoder. While we are not limited to this fact, we

also downsampled the inputs for a fair comparison. In the following subsections, we

discuss the DeepTrack implementation environment, the effect of various components

Table 2.1: DeepTrack Variants (Transposed)

Features Convolution Activation Optimizer

DT ∗0 [16, 32, 64] Separated Swish ADAM
DT1 [32, 16, 64] Separated ReLU6 ADAM
DT2 [32, 16, 64] Separated Swish ADAM
DT3 [32, 16, 64] Normal Swish SGD
DT4 [32, 16, 64] Normal Swish ADAM
DT5 [16, 32, 64] Normal Swish ADAM
DT6 [16, 32, 64] Normal ReLU6 ADAM
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on the design, quantitative results by comparing with contemporary models, and

qualitative prediction analysis for various scenarios. All models proposed in this

paper are implemented using the PyTorch package, an open-source machine learning

library. The training was performed on Nvidia Tesla V100 GPU for 30 epochs using

the ADAM optimizer with a default learning rate of 0.001.

2.5.1 Evaluation Metrics

A comparison of DeepTrack against off-the-shelf algorithms on the NGSIM dataset

was conducted to provide a comprehensive comparison. Root Mean Square Error

(RMSE), Average Displacement Error (ADE), and, Final Displacement Error (FDE)

are used as a measure of prediction accuracy and performance of the system. As

DeepTrack is designed with edge-based real-time applications in mind, the number of

MACs and parameters of the models are also compared to state-of-the-art models to

present a perspective on model complexities. The RMSE at time t is given by:

RMSEt =

√√√√ 1

N

N∑
i=1

(Y t
i − Ŷ t

i )
2
, (2.12)

where Y is the ground truth, Ŷ is predicted output, and N is the number of sam-

ples. Average Displacement Error (ADE) and Final Displacement Error (FDE) are

also calculated to compare the average RMSE over 5 seconds and error in the final

predicted position.

ADE refers to the mean square error (MSE) overall estimated points of every

trajectory and the actual points, and FDE is the root mean square error distance

between the final predicted trajectory points and ground truth. These evaluation

parameters are used in the following sections to compare and analyze the performance

of DeepTrack.
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2.5.2 DeepTrack Models and Comparisons

This section helps in understanding the impact of various components on the per-

formance of DeepTrack. Different variants of DeepTrack were designed and evaluated

to analyze the influence of each alteration on the network’s overall performance.

2.5.2.1 Variant Models Design

The variant models were designed by changing or removing one of the following

components from the network: attention-mechanism, optimizer, activation function,

convolution type, and neighbors output feature sizes. The attention mechanism helps

in grasping the effect of the neighboring vehicles on the ego trajectory. A DeepTrack

model without an attention mechanism was designed, and the results are discussed

here. In this study, ADAM and Stochastic gradient descent (SGD) optimizers were

utilized to adjust model parameters to reduce the training loss. Swish and Rectified

Linear Unit (ReLU) were used as an activation function for all the layers in DeepTrack

analysis. Separated and normal convolution-based networks were designed and tested

to reduce the complexity and compare performances of the network. Table ?? shows

seven different variants of DeepTrack each varying from other in at-least one of the

above mentioned aspects. The model with superscript ∗, e.g.,DT ∗0 , denotes an absence

of the attention-mechanism.

Table 2.2: ATCN encoder configuration for ego vehicle and neighbors.

ATCN Encoder

Configurations
(H0, H1, H2)

Output feature dimensions Dilation rate Kernel size

Neigbours [16, 32, 64] [1, 1, 1] [2, 2, 2]
Ego [8, 16, 32] [1, 1, 1] [2, 2, 2]

As a part of the ablation study, several different designs of TCN-based trajectory

prediction networks were studied. However, only seven models based on their effect on

the overall system’s performance are presented in this study. First three models DT ∗0 ,

DT1, and DT2 use separated convolution with a combination of different activation
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functions, Attention-mechanism layer, and neighbour output features. Next four

models DT3 DT4, DT5, and DT6 used normal convolution with a combination of

other parameters. All the models were trained with a data split similar to [16]. The

hidden layers, dilation rate and kernel sizes of various model encoders are shown in

Table 2.2, DTi represents models DT1 to DT6 as the encoder parameters are fixed

models with attention mechanism to limit excessive padding.

2.5.2.2 Performance Comparison and Model Complexities

Table 2.3 shows the performance of DeepTrack variants in three areas, mean error

at the end of each second in meters (RMSE) , final and average displacement errors

calculated in meters (FDE, ADE), and model complexity (number of MACs and

Parameters).

DT2 and DT5 have the best performance in terms of RMSE. DT2, DT5 and DT6

have best ADE values, whileDT5 andDT6 have the best performance in terms of FDE.

There is only a 1.25% (0.04 m) difference in the FDE of DT2 and the best performing

models. Models DT1 and DT2 prove to be best in complexity-based performance,

which is one of the most important aspects of this study. Hence, it can be concluded

that DT2 with attention mechanism, ADAM optimizer, ReLU activation, separated

convolutions, and output features of [32, 16,64] is has the best overall performance

Table 2.3: Performance comparison of DeepTrack variants based on Root mean square
error, Displacement errors, and Computation.

Model RMSE (m) FDE ADE Complexity

1s 2s 3s 4s 5s MACs Params

DT ∗0 0.45 1.13 1.90 2.84 4.03 3.34 2.07 2.91M 171K
DT1 0.46 1.07 1.84 2.78 3.93 3.23 2.02 2.80M 109K
DT2 0.47 1.08 1.83 2.75 3.89 3.25 2.01 2.80M 109K
DT3 0.44 1.14 1.92 2.86 4.01 3.27 2.07 3.22M 125K
DT4 0.46 1.12 1.89 2.82 3.96 3.24 2.05 3.03M 118K
DT5 0.46 1.08 1.84 2.76 3.90 3.21 2.01 4.14M 125K
DT6 0.45 1.09 1.85 2.77 3.9 3.21 2.01 3.22M 125K
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among all the DeepTrack variants considered in this study.

The model with SGD optimizer, Swish activation, and standard convolution, DT3,

and one without attention mechanism, DT ∗0 , have the worst RMSE except for the

first second. DT ∗0 has the worst FDE and ADE performance, making a solid case for

the use of ADAM optimizer. DT5 has the worst performance in terms of complexity

with 32.4% higher MAC count than DT2 and a joint highest in number of Parameters

with DT6. Other models have similar performances in terms of RMSE, FDE, and

ADE, but the difference can be observed when the complexity of the algorithms is

analyzed. As expected, the models using standard convolutions show higher complex-

ity when the number of multiply-and-accumulates (MACs) and model parameters are

compared. The number of MACs and parameters are lowest for DT1 and DT2 as they

use separated convolutions resulting in lower complexity than all the models using

standard convolution.

It can be concluded that using separated convolutions helps in reducing the com-

plexity of a model. Comparison of models DT1 and DT4 shows that the introduction

of separated convolution helps reduce the number of MACs by 7.5% and the number

of parameters by 8.1%. The attention mechanism also helps improve overall perfor-

mance, as shown in the comparison of DT ∗0 and DT1. The use of ADAM optimizer

is also justified by analyzing the mediocre performance of DT3 with SGD optimizer.

The analysis of effect of various factors on performance of DeepTrack continues as we

present the effect of different amount of training data on the model performance in

the next part.

2.5.2.3 Generalization Study

Table 2.4 summarises the error-based performance of DT2 as it is the best perform-

ing DeepTrack variant. Column 1 in table 2.4 shows the data split ratios as Tr:Val:Ts

representing train : validation : test set ratios respectively. The data-split of 70:10:20

is same as used in [16] for fair comparison with other models discussed in next section.
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The results of data split of 80:10:10 as compared to 70:10:20 shows a possibility

of over-fitting as the error is higher for larger training dataset. Other datasets with

60% and 50% training data-split also show an increase in root mean and displacement

errors for DT2.

Table 2.4: Performance comparison of best DeepTrack variant DT2 based on different
data splits of NGSIM dataset. RMSE, FDE, ADE are in meters.

Dataset split RMSE horizon
FDE ADETr:Val:Ts 1s 2s 3s 4s 5s

80:10:10 0.46 1.1 1.9 2.88 4.09 3.37 2.06
70:10:20 0.47 1.08 1.83 2.75 3.89 3.25 2.01
60:25:15 0.5 1.2 1.98 2.92 4.07 3.34 2.13
50:30:20 0.56 1.25 2.06 3.03 4.22 3.47 2.22

2.5.3 Comparison Against Existing Approaches

We compare the results of DeepTrack against the four prominent recently in-

troduced models. (1) Convolutional-social-LSTM (CS-LSTM) [16]: It is based on

Social-LSTM [57], an algorithm used for human trajectory detection. CS-LSTM

is an encoder-decoder-based model using a social pooling layer to extract the fea-

tures from the interaction of vehicles in every input sample. (2) CF-LSTM [31]: A

student-teacher network introduced for trajectory prediction. In this network, the

LSTM Encoder-Decoder-based model is used for student algorithm and the convo-

lutional graph network for teacher algorithm. (3) Spatiotemporal attention-LSTM

Table 2.5: Prediction and Model complexity comparison of DeepTrack with Trajec-
tory forecasting models based on NGSIM dataset.
Models RMSE (m) FDE ADE Complex.

1s 2s 3s 4s 5s MACs/Params

CS-LSTM [16] 0.61 1.27 2.09 3.10 4.37 3.34 2.29 3.58M/191K
CF-LSTM [31] 0.55 1.1 1.78 2.73 3.82 - 2.06 3.61M/193K
SAAMP [37] 0.51 1.13 1.88 2.81 3.98 - 2.06 -/-
STA-LSTM [28] 0.37 0.98 1.71 2.63 3.78 3.16 1.89 3.63M/124K
(DT2) 0.47 1.08 1.83 2.75 3.89 3.25 2.01 2.80M/109K
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(STA-LSTM) [28]: As the name suggests, STA-LSTM uses spatial and temporal in-

formation with an attention mechanism to explain the effect of historical trajectories

and neighboring vehicles on the ego vehicle. (4) Social Attention Multi-Modal Pre-

diction (SAAMP) [37]: This model used an LSTM-based encoder-decoder structure

with attention layers in the middle to incorporate real-time interactions. It utilizes

a multi-head attention mechanism and fuses the long-range attention for joint and

multi-modal forecasts.

The performance of DeepTrack and all the models mentioned in section 2.5.3 are

listed in Table 2.5. We compare the error and complexity of DeepTrack to state-of-the-

art algorithms in vehicle trajectory prediction using NGSIM datasets. As DeepTrack

aims to provide best-in-class trajectory forecasting with a low error rate, the following

sections analyze the performance in terms of RMSE up to five seconds, FDE, ADE,

and complexity of the DeepTrack with other networks.

2.5.3.1 Error-Based Analysis

Compared to CS-LSTM, CF-LSTM, and, SAAMP, DeepTrack can reduces ADE

by 12.23%, 2.43% and 1.47% respectively as shown in Table 2.5. DeepTrack also

excels for all the steps of RMSE comparison to CS-LSTM and SAAMP. The better

performance of DeepTrack is since it has higher gradient stability due to the use of a

TCN-based encoder that it is better able to generalize solutions. However, CF-LSTM

is better than DeepTrack at 3rd, 4th, and 5th second, and STA-LSTM outperforms

DeepTrack. STA-LSTM gives 5.97% and 2.77% better ADE and FDE performance

than DeepTrack. Thus, DeepTrack under-performs when compared with STA-LSTM

with a small margin.

2.5.3.2 Model Complexity Analysis

DeepTrack outperforms every algorithm in terms of the number of MACs and

Parameters, as shown in Table 2.5. Analyzing and comparing the MAC operations
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Figure 2.4: Congested traffic
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Figure 2.5: Lane-keeping
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Figure 2.6: Maneuvering - Passing from
left
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Figure 2.7: Maneuvering - Passing from
right

Figure 2.8: Congested traffic scenario: the location of the neighbors (gray triangles) is
shown at t0. Triangles denoting red, green, and blue respectively, represent observed
history paths, ground truth, and model output.

and the size of the model parameters for the approaches mentioned in section 2.5.3, we

anticipated the difference. Deeptrack undercuts STA-LSTM in terms of complexity

by 22.84% fewer MACs count and 12.61% better parameter count. It also provides

21.67% better MACs performance, 43.13% fewer parameters than CS-LSTM, and

outperforms CF-LSTM by 22.37% and 43.75% in terms of the number of MACs and

parameters, respectively. We could not compare its model complexity with DeepTrack

and DeepTrack-ATT with SAAMP as the source code was not available publicly.

2.5.4 Qualitative Results

The analysis of DeepTrack output for different scenarios are discussed in this sec-

tion. In Fig. 2.8-2.11, the location of the neighbors (gray triangles) are shown at

t0. Triangles denoting red, green, and blue represent observed history paths, ground

truth, and model output. The model predicted output for four scenarios is shown

as an aid to understanding the model behaviour: 1○ congested traffic (Fig. 2.4), 2○
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Figure 2.9: Congested traffic
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Figure 2.10: Multiple lane changing

Figure 2.11: Two instances where the model could not accurately predict the trajec-
tory due to erratic driver behavior. The legend remains consistent with Fig. 2.8

lane-keeping (Fig. 2.5), 3○ maneuvering and passing a car from left lane (Fig. 2.6),

3○ maneuvering and passing a car from right lane (Fig. 2.7), and 4○ cases where the

model failed to predict the trajectory precisely (Fig. 2.11). The three types of the

path shown in red, green, and blue triangles represent path history, ground truth,

and predicted trajectory for the designated vehicle. The location of the neighbors

(gray triangles) is also shown at t0. For the sake of simplicity, we did not show the

neighbors history path.

The comparison of Fig. 2.4 and Fig. 2.5 shows that the model can accurately

estimate the velocity of the interest car based on the ego history. The model correctly

predicted that vehicles would travel less distance as a result of congested traffic. The

vehicle in the lane-keeping scenario travels farther, and DeepTrack has interfered with

the same behavior. Figures 2.6 and 2.6 illustrate how DeepTrack performs when a

car of interest passes its front vehicle from either the left or the right lane. Fig. 2.11

shows the scenarios in which DeepTrack was not able to predict the trajectories due

to uncertainty in driver behavior. In the congested scenario (Fig. 2.9), although the

driver slowly drove his car until t0, the vehicle stopped for the entire next five seconds,

while the model predicts it would come close to the front car.
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2.6 Conclusion and Future Works

DeepTrack is a deep learning model with comparable accuracy to best-in-class tra-

jectory prediction algorithms but with a smaller model size and lower computational

complexity. The vehicle dynamics are encoded using a TCN-based encoder instead of

LSTM units in DeepTrack, and TCN utilizes depthwise convolution, thereby reduc-

ing the complexity of models in terms of size and operations compared with LSTMs.

The results indicate that DeepTrack reduces the model size and complexity by at

least 21.67%, and 43.13% compared to CS-LSTM, 22.37%, and 43.75% compared to

CF-LSTM, and 22.84%, and 12.61% than STA-LSTM. The RMSE and displacement

errors for DeepTrack are better or comparable to most state-of-the-art trajectory

prediction algorithms using NGSIM dataset used in this manuscript.
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CHAPTER 3: A POV-BASED HIGHWAY VEHICLE TRAJECTORY DATASET

AND PREDICTION ARCHITECTURE

3.1 Introduction

Intelligent Transportation Systems (ITS) have become integral to modern trans-

portation networks, leveraging various technologies to improve road safety and effi-

ciency. One key aspect of ITS is using trajectory prediction networks, which can

accurately forecast the movements of vehicles, pedestrians, and other road users

[11, 12, 13, 14]. In recent years, advancements in technology, such as accident de-

tection systems [18, 19], traffic surveillance systems [58], and lane departure warning

systems [59] have shown great potential in reducing accidents and saving lives on the

road. However, highway safety has historically received less attention and innovation

than other areas, possibly due to high costs and regulatory hurdles.

The National Highway Traffic Safety Administration reported 42,000 fatalities in

2022 [?] due to highway-related motor accidents. In addition, 857 fatalities were

reported in 2020 [60] in work zone accidents, with a 4% increase in the death toll

over the past two years [61]. These statistics demonstrate a significant scope for

improvement in ITS applications related to highway surveillance and safety.

Vehicle trajectory datasets are essential for studying traffic behavior and ana-

lyzing macroscopic traffic data[18, 20]. However, most available datasets provide

only bird’s-eye or dashcam views [1, 2, 6, 7, 8, 9] or low-quality high-angle view

videos[21, 17]. These perspectives may be insufficient for highway safety and surveil-

lance applications[62], mainly when the environment is subject to variation. Eye-level

and high-angle views of highway traffic with merging lanes are particularly impor-

tant for highway-based safety applications, such as work zone safety[63], collision
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avoidance[?] and lane departure warning systems[59], as well as surveillance applica-

tions, such as traffic monitoring and incident detection[18]. However, they are not

typically found in trajectory datasets. High-angle view data, for example, can be used

for incident detection and response, traffic monitoring[64, 17] and analysis[17, 65, 66],

which can be challenging to obtain in real-time with bird’s-eye view data. Similarly,

Eye-level view data can be helpful for real-time pedestrian and worker safety and

alarm applications[67, ?, 63] for work zones and highway management.

While many trajectory datasets have served as crucial benchmarks in their respec-

tive focus areas, they often lack multiple POVs of incoming traffic. They rarely exam-

ine the vehicle dynamics during lane merges which is essential in comprehending the

naturalistic driving maneuvers close to the real-world worksite. This leaves a blind

spot for research on highway-based edge ITS applications involving transportation

safety and AI.

In light of this, we propose the Carolinas Vehicle Dataset (CHD), a comprehensive

trajectory dataset capturing naturalistic highway driving behavior from multi-POVs.

CHD consists of 338,000 unique trajectories with five highway vehicle categories, vary-

ing geometries, and lane mergers. It also provides 1.6 million high-resolution frames

with high traffic density recorded during varying lighting and weather conditions.

Thus, CHD includes annotations and trajectory information for highway vehicles,

making it a valuable resource for ITS and computer vision applications to advance

the development of safer and more efficient transportation systems.

We also introduce PishguVe, a trajectory prediction architecture that leverages

attention for graph isomorphism and convolution neural networks to achieve SotA

performance across datasets with multiple POVs. PishguVe provides a solution to

overcome the limitations of POV-based trajectory prediction approaches, enabling

more generalizable models for real-world applications. Compared to existing ap-

proaches evaluated on widely used NGSIM dataset, PisguVe surpasses current SotA
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Table 3.1: Comparison of existing trajectory datasets with CHD. T and BB in the
Annotation column stand for Trajectories and Bounding Boxes (BB) respectively.
FPS stands for Frames Per Second. BE stands for Bird’s-eye-view, DC stands for
Dashcam view, HA and EL stand for High-angle and Eye-level view respectively.

Dataset Length
(h)

Frames BB FPS Lanes Areas
Cov-
ered

Annot. POV

NGSIM 1.5 11.2K - 10 Yes 2 T BE
HighD 16.5 - - 25 Yes 6 T BE
Agroverse2 Fore. 763 - - 10 No 2 T DC
AppolloScape 100 93K 81.8K 10 No 4 T DC
Lyft 118 232K 1.3M 10 No 1 T DC
WAYMO 5.5 1M 12M 10 No 3 3D

BB,
T

DC

nuScenes 5.5 1.4M 1.4M 2 No 2 3D
BB,
T

DC

CHD (Ours) 7.5 1.6M 1.39M∗ 5, 60 No 4 2D
BB,
T

HA,
EL

∗Bounding boxes in CHD’s trajectory data.

[68] with 12.50% and 10.20% improvement over ADE and FDE, respectively. It also

outperforms existing approaches in ADE and FDE by 14.58% and 27.38% when eval-

uated on CHD eye-level and by 8.3% and 6.9%, respectively, on CHD high-angle POV

dataset.

In summary, the contributions of this article are:

• We introduce the CHD, a vehicle trajectory dataset from multiple POVs captur-

ing vehicle maneuvers on highways with varying geometries and lane mergers.

CHD also provides 1.6 million high-resolution images with annotation data for

detection and tracking applications.

• We introduce PishguVe, a SotA trajectory prediction network based on attention-

based convolutional and graph isomorphism networks. PishguVe achieves a
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best-in-class error rate when evaluated on multiple datasets, making it well-

suited for real-time trajectory prediction in different POV scenarios.

• To verify the effectiveness of CHD and PishguVe, we present a comprehensive

comparison of the trajectory dataset and assessment of trajectory prediction

algorithms trained and evaluated on NGSIM and CHD in this manuscript.

3.2 Related Works

3.2.1 Vehicle Tracking and Trajectory Datasets

NGSIM dataset [1, 2] is one of the most extensive available datasets recorded in

a bird’s-eye view angle. This dataset is collected from two freeways, namely I-80

and US-101. This dataset provides trajectories extracted at a rate of 10Hz. HighD

dataset [6] is recorded in six locations on German highways using drones at the bird’s-

eye POV. However, the original videos are not provided; only the extracted trajecto-

ries using computer vision algorithms are available. Agroverse 2 Motion Forecasting

dataset [7] provides trajectory data for different classes of vehicles and pedestrians

extracted from videos recorded in six cities. All the mentioned datasets are collected

from a bird’s-eye POV. However, most of the time, bird’s-eye view videos are unavail-

able in real-world scenarios since traffic cameras are usually mounted on top of the

traffic lights. Another group of datasets, such as ApolloScape Trajectory [69], Lyft

[8], WAYMO [9], and nuScenes [10] are specifically designed for autonomous vehicle

applications and are recorded from a dashcam POV. These datasets are useful as

benchmarks for trajectory prediction for several applications. However, their appli-

cability to real-world highway safety applications is limited due to the properties of

the data, such as moving cameras and viewpoints. Table 3.1 shows a detailed dataset

analysis.

For vehicle detection/tracking, some existing datasets with high-angle POV are

listed in 3.2. The TRANCOS [70] dataset is recorded at the high-angle POV and is
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a vehicle counting dataset captured using publicly available surveillance cameras in

Spain. Unlike bird’s-eye POV datasets, in TRANCOS, vehicles are highly overlap-

ping and close to real-world scenarios. TRAF object tracking dataset [71] provides

videos in high-angle and dashcam POVs. The UA-DETRA dataset [72, 73, 74] is a

challenging real-world dataset captured from a high-angle point of view. It consists

of videos captured from 24 locations in China and is manually annotated. Although

the dataset is introduced for multi-object tracking and detection, it can also be used

as a benchmark for trajectory prediction.

Furthermore, a set of datasets mainly focused on accident and traffic behaviors.

TCP [75] introduces a high-angle POV dataset, capturing a four-way intersection at

different times of the day. It uses an object detector for labeling the vehicles, and it

has hand labels for when the vehicle enters the intersection. CADP [21] is another

interesting dataset on car accidents. This dataset is made of videos from YouTube1.

Because the type of collection inherently consists of various qualities, such as weather

conditions and time of day, a two-step labeling including hand-extracted start and

end time and performing a spatiotemporal annotation using VATIC [76] creates the

annotations. CAD-CVIS [18] is another dataset collected from video-sharing websites.

It uses LabelImg [77] to localize the accident in the frames of the videos.

3.2.2 Vehicle Trajectory Prediction Algorithms

Earlier models for trajectory prediction mostly used Recurrent Neural Networks

such as Gated Recurrent Unit (GRU) or Long-short-term Memory (LSTM) for mod-

eling the time dimension. CS-LSTM [16] has an LSTM-based encoder-decoder struc-

ture for embedding the vehicles’ previous motions. On top of that, for modeling

the interdependencies between vehicles, it uses a convolutional social pooling mech-

anism. GRIP++ [78] uses graphs to model the interactions between vehicles, and,

using an LSTM encoder-decoder, it predicts the future trajectory. Later, attention
1www.youtube.com
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Table 3.2: Comparison of existing camera view vehicle detection and tracking datasets
with CHD. In the function column, D is for Detection, TP is for Trajectory Prediction,
AD is for Accident Detection, and T is for Tracking. FPS stands for Frames Per
Second. BE stands for Bird’s-eye-view, DC stands for Dashcam view, HA and EL
stand for High-angle and Eye-level view respectively.

Dataset Area Len. No of
Frame

2D
BB

Class POV Resolution FPS Aim

TRANCOS 9 - 1244 46.8K - HA 360p - D
TRAF 20 39m 12K 19.9K 7 HA,

DC
720p 10 TP

CADP - 5.2h 518K - 6 HA Various - AD
CAD-CVIS 24 - 228K - - HA Various - AD
UA-DETRA 24 10h 140K 1.2M 2 HA 540p 25 D,T
CHD (Ours) 8 7.5h 1.6M 33.5M∗ 5 EY,

HA
1080p 60 TP,

D, T
∗Bounding box annotations across all the recorded data in CHD.

mechanisms found their way to trajectory prediction; using the Spatial-temporal At-

tention mechanism and LSTM units, STA-LSTM [79] improved the performance and

explainability of trajectory prediction models. Trajectron++ [80] also has a recurrent

structure based on LSTM and uses spatiotemporal graphs to model the input trajec-

tories for vehicles and pedestrians. Like Trajectron++, Social-STGCNN [81] takes

advantage of spatiotemporal graphs, but instead of the recurrent neural networks,

it uses a convolutional structure and is primarily designed for pedestrian trajectory

prediction.

DeepTrack[?] focused on real-world trajectory prediction applications such as traffic

management and introduced a lightweight and agile model capable of real-time infer-

ence. Unlike previous methods, DeepTrack uses Temporal Convolutional Networks

(TCNs) for modeling the time dimension. With Cyber-physical Systems (CPS) ap-

plications in mind, Pishgu [68] presents an efficient universal network architecture for

trajectory prediction in different domains using Graph Isomorphism Networks (GINs)

and convolutional attention mechanism. It is conventional for probabilistic trajectory

prediction models to predict N number of possible future trajectories and pick the
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best one [16, 81]. However, multiple predicted trajectories per subject in real-world

scenarios are not very effective. Thus, more recent models such as [78, 79, 80, ?, 68]

primarily focus on single future trajectory prediction.

SC NC

Figure 3.1: Spatial distribution of all the eight recording locations on the highways
of NC and SC included in CHD.

3.3 Carolinas Highway Dataset (CHD)

CHD is a comprehensive collection of vehicle highway trajectories extracted from

videos recorded across North Carolina and South Carolina from two distinct POVs:

eye-level and high-angle. CHD also provides annotations for multi-vehicle detection

and tracking. Fig. 3.1 shows the spatial map of all the recording locations with

high-angle POV images of each site. The videos were recorded in full HD (1080p)

resolution between 9 AM and 7 PM at eight locations within different localities.

The recording locations were selected to capture different traffic flows, vehicle be-

haviors, naturalistic driving patterns on highways with different road geometries, and

varying lengths and structures of merging lanes. The videos were recorded at different
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times of the day to capture various lighting conditions, traffic patterns, and volume.

CHD captures data from multiple POVs, providing a diverse perspective of incoming

traffic.
3.3.1 Annotations and Trajectory Extraction

One of the unique features of the proposed dataset, CHD, lies in the use of generated

annotations, which reflect the annotations available in real-world applications where

hand annotations are often unavailable [82]. Generated annotations may contain some

noise or inaccuracies, but they provide a more realistic representation of annotations

used in the real world. Using generated annotations, CHD can more accurately

reflect the challenges in real-world applications, such as occlusions, varying lighting

conditions, and other factors affecting detection and tracking accuracy.

CHD employs bounding box annotations to identify vehicles in each frame and

spatially locate them. To generate high-quality bounding boxes, the CHD utilizes

YOLOv5 [83]. Specifically, the YOLOv5x6 model has been trained on the BDD100k

dataset [84] to identify different types of vehicles.

These bounding boxes provide crucial information that the tracking model uses to

assign a unique identification number to each vehicle across multiple frames. CHD

uses ByteTrack [85], in combination with YoloV5 tracks multiple vehicles in a frame.

ByteTrack, with a bounding box as a basic tracking unit, uses data association to

match the vehicles in different frames assigning them a unique ID.

In addition to utilizing the bounding box annotations to identify and locate vehicles

in a given scene, the center of the bounding box is used to determine the position of

each vehicle in the scene. This information is used to generate trajectories, which refer

to the path followed by the object over a period of time. Specifically, in the context

of vehicle tracking in CHD, the trajectories were generated by tracking the vehicle’s

position in successive video frames, using a unique ID assigned to each vehicle by

ByteTrack as a unique trajectory in the dataset.
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Extracted raw trajectory data was processed to improve the quality and accuracy of

the data and to remove noise, outliers, or irrelevant information and to ensure that the

analysis is based on the most relevant and reliable information. Unique trajectories of

a minimum duration of four seconds and above were included in the dataset, enabling

CHD for real-world models with smaller input and output windows. Additionally,

stationary vehicles and vehicles moving away from the camera were filtered out, as

the focus was on incoming traffic. False detections were also manually filtered out

whenever possible to eliminate additional noise in the data.

3.3.2 CHD Statistics and Format

CHD consists of 338,000 trajectories extracted from 16 videos, with a total of

1.6 million frames. This is outlined in Table 3.1, demonstrating the scale of CHD

comparable to that of well-known trajectory datasets. Regarding the number of

bounding boxes for trajectory data, CHD aligns with widely used datasets, as shown

in Table 3.1. Along with trajectory data, it includes raw videos and bounding box

annotations for all the recorded videos. The 33M bounding box annotations reported

in Table 3.2 showcase its high traffic density of recording environments.

In addition to the vast number of frames, CHD benefits from high-quality (1080p

resolution) image data recorded at the frame rate of 60 fps, which exceeds others,

as demonstrated in Table 3.2. As summarized in previous sections and Tables 3.1

and 3.2, CHD is among the few datasets with multiple POVs of incoming vehicles

trajectory.

Ensuring consistency with commonly utilized trajectory prediction models [?, 68,

78], the trajectory data in CHD is extracted at a frame rate of 5 fps that was uniformly

distributed with 70% assigned to the training set, 20% to the validation set, and 10%

to the test set. The trajectory data are also extracted at 60 fps to facilitate research

at higher frame rates. This dataset consists of five different classes of vehicles, and

the distribution of different classes across different sets is presented in Fig. 3.2. It
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Figure 3.2: Vehicle distribution in the CHD trajectory data across test, train, and
validation sets.

can be seen that CHD has around 90% cars, and the rest 9% is divided between bus,

truck, bike, and motor category.UA-DETRAC[86] high-angle dataset from Tabel 3.2,

exhibits similar distribution with around 87% of cars and remaining 13% distribution

of other vehicles. Whereas, HighD[87] and NGSIM[1, 2] trajectory datasets from

Tabel 3.1, has about 70% and 96% of cars.

CHD comprises several components for each recording, including raw videos, anno-

tation data, and extracted trajectories. The annotation data file includes details such

as the frame number, vehicle identification number, vehicle type, and bounding box

coordinates. The vehicle trajectory data files contain frame and ID information and

X and Y coordinates. Overall, the high frame rate, a large number of high-quality

images and multiple POVs, and a comprehensive collection of real-world data make

CHD a suitable benchmark for various ITS applications.

3.4 PishguVe

Vehicle trajectory prediction aims to forecast where an individual vehicle will be

in the future, T time steps ahead, based on their past positions. The proposed

model considers intrinsic and extrinsic factors influencing a vehicle’s trajectory to

achieve high accuracy while being efficient in real time. Using observed trajectories

of all vehicles in a given scene, the model can accurately predict future positions by
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Figure 3.3: PishguVe architecture overview. Input trajectory vector, Vi (where i ∈ (1
to n)) and relative trajectory vector ,∆Vi (where i ∈ (1 to n)) with x and y coordinates
and input time window of Tin are concatenated and inferenced through the fully
connected layer. The output of the fully connected layer, Ni, and neighbor aggregation
vector ∆Ni is utilized by Attentive GIN in two separate branches for aggregating the
node and neighbor features for detailed representation. The spatiotemporal attentive
CNN is then used to predict the future trajectories of all vehicles up to Tout time
steps ahead.

incorporating temporal and spatial dependencies between the vehicles.

In this study, we distinguish various elements of vehicle trajectory prediction as

follows: The past trajectories of vehicles are represented by a set of absolute co-

ordinates, denoted as Vi, and a set of relative coordinates, denoted as ∆Vi. The

absolute coordinates are defined as Vi = (xti, y
t
i), where t = 1, ..., Tin, i ∈ 1, 2, ..., n

representing the index of the vehicle and xti and yti are x and y coordinates of the

center of bounding box of vehicle i at time t. The relative coordinates are defined as

∆Vi = (xti − x1i , yti − y1i ).

The study’s objective is to predict the future trajectories of each vehicle, Ŷi, using

its past trajectories as input. The predicted future trajectories are represented as

Ŷi = (xti, y
t
i), where t = (Tin + 1), ..., Tout and i ∈ 1, 2, ..., n, are generated as a set of

coordinates for each vehicle, indicating their positions for future time steps. These

predictions are evaluated by comparing them with the ground truth future trajecto-

ries, denoted as Y .
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3.4.1 Network Architecture

The overall architecture of Pishgu-Ve can be seen in Fig. 3.3. In the first step, the

absolute and the relative coordinates are concatenated together and passed through

a fully connected layer to transform into the latent space:

Ni = f (W1.(Vi ‖∆Vi) +B1) (3.1)

Where Ni, f , W1, and B1 stand for the embedded representation of the ith vehicle

in the scene, the Leaky ReLU activation function, and the corresponding weights

and the biases of the fully connected layer accordingly. Vi and ∆Vi are absolute

and relative trajectories, and || represents concatenation. The absolute coordinates

show the global position of each vehicle. In contrast, the relative coordinates provide

information about how each vehicle moves with respect to its past trajectory, and the

single fully connected layer integrates both into a latent representation.

Ni is then fed to the Graph Isomorphism Network (GIN) for capturing the inter-

dependencies between available vehicles in the scene. Each vehicle is represented as a

node in a fully connected graph. The graph is chosen to be fully connected to remove

predefined biases and allow the network to decide how much data should be incor-

porated into the output in the message-passing process. On the other hand, having

a fully connected graph enables PishguVe to combine features across all nodes in a

single graph operation which helps with the efficiency of the architecture. Similar to

[68], we adopt two separate networks for aggregating the node and neighbor features

to create a richer presentation. For the node features, we utilize a fully connected

network with one hidden layer:

G′i = W3.(W2.(1 + θ)Ni +B2) +B3 (3.2)
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Figure 3.4: The Linear Attention Dropout (LAD) Block. LAD is integrated into GIN
for feature aggregation using channel and spatial attention. Dropout layers are added
after linear and attention layers to minimize overfitting.

Where G′i is the ith node aggregated features, W2, B2, W3, and B3 are the param-

eters of the two consecutive fully connected layers and θ is a learnable parameter.

In contrast to [68], for neighbor aggregation, we define a new block called Linear

Attention Dropout.

Linear Attention Dropout or LAD block is designed explicitly for neighbor

feature aggregation. Fig. 3.4 shows the details of the LAD block. LAD consists

of a linear layer followed by attention layers for highlighting the most informative

neighbor features to construct a richer representation. We adopt channel, and spatial

attention from [88] to integrate attention efficiently into the GIN. Also, to avoid

overfitting, we leverage two dropout layers. Two back-to-back blocks of LAD are used

for neighbor aggregation for extracting higher-level features. The LAD operation can

be summarized as follows:

F ′j = LAD(Nj) =MLP1(Poolavg(W4.∆Nj +B4)+

MLP1(Poolmax(W4.∆Nj +B4))

(3.3)
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Where W4 and B4 are the parameters of the linear layer, MLP1 is a shared Multi-

layer Perceptron with one hidden layer, and F ′j is the output of the LAD block. The

final output of GIN will be constructed by the sum of outputs of the node aggregation

and neighbor aggregation networks, which can be described as:

GIN(Ni) = G′i +
∑
j∈V(i)

LAD(F ′j) (3.4)

Where V(i) represents the set of neighbors for the ith node.

In the next step, the enriched feature maps are concatenated with relative coor-

dinates again to emphasize the relative movement compared to previous time steps

and fed to an attentive CNN for the final trajectory prediction. CNNs have shown

great capacity for extracting powerful feature maps. On top of that, we again use an

efficient channel and spatial attention mechanism to improve the capability of finding

more influential features. Keeping efficiency in mind, PishguVe has three convolu-

tional layers followed by attention blocks and a last 1 × 1 convolutional layer for

forming the final output. The first convolutional layer has a kernel size of 2 × 2 for

capturing the low-frequency patterns, and the following two convolutional layers have

a kernel size of 2× 1.

3.5 Evaluation and Experiments

PishguVe is evaluated on the widely used NGSIM dataset [2, 1] and CHD dataset

proposed in this manuscript. Similar to previous works[16, 78, 89], the 8 million data

entries of the NGSIM were distributed 70% training, 10% validation, and 20% testing

sets. All models evaluated on CHD use a the data split discussed in Section 3.3.2. All

experiments were carried out on a Workstation equipped with a Threadripper Pro

3975WX processor with 32 cores clocking at 3.50 GHz and three A6000 GPUs.
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3.5.1 Evaluation Metrics

Root Mean Square Error (RMSE), Average Displacement Error (ADE), Final Dis-

placement Error (FDE), and the number of model parameters are used as a measure

of prediction accuracy and performance of the models. The error definitions are illus-

trated in Fig. 3.5, visually representing the concepts under consideration. The figure

assists in understanding each definition’s nuances and highlighting their similarities

and differences.

Root Mean Square Error (RMSE) is commonly used to evaluate the accuracy

of a predictive model that estimates the trajectories of vehicles in a scene. At a given

time point, t, the RMSE is calculated as the square root of the mean square error

between the predicted path (Ŷ ) and the ground truth path (Y ) of the n subjects of

interest in the scene:

RMSEt =

√√√√ 1

n

n∑
i=1

(Y t
i − Ŷ t

i )2 (3.5)

Samples 1 2 3 4 5 6 7 8 9 10

RMSE 1s → Root Mean of (Samples 1 to 5) 2s → Root Mean of  (Samples 6 to 10)

ADE Overall average of all the 10 samples 

FDE 1s 2s

1st second 2nd second

Figure 3.5: Error matrices visualization for two seconds time window and a data rate
of five samples/second.

Average Displacement Error (ADE), in the context of predicting the trajecto-

ries of vehicles in a scene, is an evaluation metric that measures the distance between

the predicted (Ŷ ) and the ground truth coordinates (Y ) over all Tout predicted time

steps and all subjects of interest (n) in the scene:
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Table 3.3: Performance comparison of vehicle trajectory prediction approaches on
NGSIM datasets[1, 2].

Model ADE
(m)

FDE
(m)

1s 2s 3s 4s 5s Params
(K)

CS-LSTM[16] 2.29 3.34 0.61 1.27 2.09 3.1 4.37 191
GRIP++[78] 2.01 3.25 0.38 0.89 1.45 2.14 2.94 -
STA-LSTM[79] 1.89 3.16 0.37 0.98 1.71 2.63 3.78 124
DeepTrack[?] 2.01 3.21 0.47 1.08 1.83 2.75 3.89 109
Pishgu[68] 0.88 1.96 0.15 0.46 0.82 1.25 1.74 132
PishguVe (Ours) 0.77 1.76 0.11 0.37 0.70 1.09 1.55 133.5

ADE =
1

n ∗ Tout

n∑
i=1

Tout∑
t=1

∣∣∣Y t
i − Ŷ t

i

∣∣∣
2

(3.6)

The |·| 2 notation denotes the L2 norm, which calculates the Euclidean distance be-

tween the predicted and actual coordinates. The ADE measures the average displace-

ment error between the predicted and actual coordinates of the subjects of interest

in the scene. A lower ADE indicates better accuracy of the predictive model.

Final Displacement Error (FDE) is an evaluation metric that measures the

L2 distance between the predicted coordinates (Ŷ ) and the ground truth coordinates

(Y ) of the last predicted time step for all subjects of interest (N) in the scene:

FDE =
1

n

n∑
i=1

∣∣∣Y Tout
i − Ŷ iTout

∣∣∣
2

(3.7)

Parameters refer to the weights and biases of a neural network learned during

training. The number of parameters affects models’ performance and generalization

ability.
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Table 3.4: Average and final displacement error-based performance of PishguVe with
varying dropout probabilities.

Attention Dropout Linear Dropout ADE FDE
0.03 0.020 17.84 63.14
0.10 0.020 17.53 62.14
0.20 0.020 17.74 63.01
0.25 0.020 16.81 57.71
0.40 0.020 17.36 61.90
0.25 0.025 17.44 61.46
0.25 0.15 17.86 62.22
0.40 0.15 17.82 62.59
0.40 0.30 18.78 68.51

3.5.2 Hyperparameter Search

In this work, we extend the Graph Isomorphism Network (GIN) by adding attention

mechanisms to improve performance. To evaluate the effectiveness of our approach,

we conducted ablation studies and experiments such as adding attention at the node

level in the Attentive GIN block, adding the LAD block at the node level, the relative

nodes level, and both levels together. As expected, the best performance improvement

was achieved by adding attention to the relative node level, which was missing a

learnable parameter. However, overfitting was observed when the model was trained

over a few epochs, as testing errors (i.e., ADE and FDE) kept rising with decreasing

training errors. To overcome the overfitting, dropout layers were applied, as shown

in Fig. 3.4. Table 3.4 shows the training ADE and FDE for PishguVe with different

dropout probabilities. The tests were performed using the CHD High-Angle data and

then extended to other datasets. Table 3.4 only shows the tests performed on the

CHD High-Angle dataset, as it best represents the behavior of varying dropout values

on PishguVe.

The optimal dropout probabilities of the attention and linear layers were deter-

mined through experimentation, with the best ADE and FDE performance for prob-

abilities of 0.25 and 0.02, respectively. The placement of dropout layers is shown
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Table 3.5: Performance comparison of vehicle trajectory prediction approaches on
CHD eye-level POV data.

Model ADE
(pix-
els)

FDE
(pix-
els)

1s 2s 3s 4s 5s Params
(K)

Social-STGCNN[81] 24.33 95.22 4.32 9.15 15.93 29.05 68.32 7.4
GRIP++ [78] 44.27 129.58 4.42 12.86 24.31 35.04 145.17 -
Pishgu [68] 37.99 123.69 4.98 13.58 26.61 50.31 106.45 132
PishguVe (Ours) 20.75 69.33 3.21 8.24 15.55 28.46 57.88 133.5

in Fig. 3.4, and the performance of PishguVe with varying dropout probabilities is

outlined in Table 3.4.

All subsequent evaluations and comparisons of PishguVe presented in this manuscript

were performed using the earlier probabilities for attention and linear dropout. These

probabilities were selected to strike a balance between reducing overfitting and pre-

serving the accuracy of the proposed model.

3.5.3 Results

This section evaluates the proposed PishguVe model against existing approaches

on multiple datasets. Firstly, PishguVe is evaluated on the NGSIM dataset, including

analysis and comparisons with existing approaches, as shown in Table 3.3.

Next, performance PishguVe is also accessed on the proposed Carolinas Highway

Dataset, with eye-level and high-angle POV data. This assessment excludes explicit

models using lane number as one of the features as it is representative of real-world

applications while still achieving best-in-class results.

3.5.3.1 NGSIM-based trajectory prediction

This section assesses the performance of PishguVe, by comparing its accuracy with

several current vehicle trajectory prediction models on the NGSIM datasets [1, 2]. The

first model we compare with is the Convolutional-Social LSTM (CS-LSTM)[16], an

encoder-decoder model that captures vehicle interactions to predict multiple trajecto-
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ries for the ego vehicle. GRIP++[78] is a graph-based approach that leverages vehicle-

environment interactions to generate more accurate trajectory predictions. Another

model we consider is the Spatiotemporal Attention-LSTM (STA-LSTM)[79], which

incorporates both spatial and temporal information and uses an attention mechanism

to weigh the influence of historical trajectories and neighboring vehicles on the ego

vehicle. The DeepTrack[?] model is a temporal convolution networks-based encoder-

decoder architecture that uses attention to predict a single trajectory for the ego

vehicle. Finally, Pishgu[68] is a GIN-based vehicle trajectory prediction model that

employs an attentive CNN for prediction. The following sections present a thorough

comparative analysis of PishguVe’s performance against these models.

Table 3.3 shows that PishguVe performs better than all the selected models and

achieves the lowest RMSE (at 1,2,3,4 and 5th seconds), ADE, and FDE values. How-

ever, DeepTrack has the least parameters, with STA-LSTM being the close second.

PishguVe performs 12.50% and 10.20% better in ADE and FDE than the current

SotA, Pishgu. It also performs better in terms of RMSE at each time step. Finally,

we note that PishguVe has slightly more parameters (133.5K) than Pishgu (132K)

but fewer parameters than CS-LSTM and GRIP++. This indicates that PishguVe

achieves superior performance with a reasonable number of model parameters, mak-

ing it an attractive choice for practical applications. PishguVe also achieves a minor

but significant improvement over the Pishgu model. These results highlight the ef-

fectiveness of the proposed PishguVe architecture for vehicle trajectory prediction on

the NGSIM dataset.

3.5.3.2 CHD for trajectory prediction pov

For trajectory prediction on the CHD datasets, we evaluated the performance of

PishguVe against three contemporary models that do not utilize lane number as an

input feature, GRIP++ [78], Pishgu [68], and Social-STGCNN [81]. The exclusion

of lane number as a feature is motivated by challenges faced by real-world systems,



50

Table 3.6: Performance comparison of vehicle trajectory prediction approaches on
CHD high-angle POV data.

Model ADE
(pix-
els)

FDE
(pix-
els)

1s 2s 3s 4s 5s Params
(K)

Social-STGCNN [81] 31.87 98.46 9.74 21.83 29.01 42.34 82.14 7.4
GRIP++ [78] 36.32 100.89 3.40 6.67 14.32 28.02 123.04 -
Pishgu [68] 18.33 61.92 4.04 7.48 13.99 24.30 51.51 132
PishguVe (Ours) 16.81 57.71 3.52 7.12 12.64 22.93 48.60 133.5

such as inaccuracies and errors in lane detection propagating to system output and

sensitivity of lane detection approaches to external factors such as weather.

GRIP++ and Pishgu were also used for comparisons on the NGSIM dataset. The

Social-STGCNN is included here due to its extremely low complexity and best-in-

class performance in pedestrian trajectory prediction. It is used for modeling the

spatiotemporal patterns of human movements in social groups. Each model was

trained multiple times for several epochs on eye-level and high-angle datasets to obtain

the best results. By comparing PishguVe’s performance against these models, we

aim to demonstrate the effectiveness of the proposed model in improving trajectory

prediction accuracy while reducing the reliance on lane identification.

CHD Eye-Level POV. Table 3.5 outlines the performance of the aforementioned

models on the CHD Eye-Level dataset. PishguVe outperforms all other models with

an ADE of 20.75 pixels and an FDE of 69.33 pixels, respectively. Specifically, com-

pared to the second-best model, Social-STGCNN, PishguVe achieves a 14.58% lower

ADE and a 27.38% lower FDE.

Regarding prediction accuracy at different time horizons, PishguVe outperforms

all other models, achieving the lowest RMSE values. Compared to Social-STGCNN

achieves 25.74%, 10.09%, 2.40%, 18.48%, and 15.85% lower RMSE values at 1s, 2s,

3s, 4s, and 5s, respectively. These results suggest that PishguVe is more accurate and

effective for predicting vehicle paths than other SotA models for eye-level and birds-
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eye-view datasets. However, PishguVe reports the highest number of parameters,

133.5K, marginally behind the second-best model Pishgu with 132K parameters.

CHD High-Angle POV. The proposed PishguVe model was also trained on the

CHD High-Angle dataset, and the performance results presented in Table 3.6 were

obtained using this dataset. PishguVe achieves an ADE of 16.81 pixels and an FDE

of 57.71 pixels, which are lower than the other models. The second best model for

ADE and FDE is Pishgu, with an ADE of 18.33 pixels and an FDE of 61.92 pixels.

PishguVe achieves an 8.3% improvement in ADE and a 6.9% improvement in FDE

over the second-best model.

PishguVe also performs well in terms of RMSE for certain time thresholds. It

achieves the lowest error rates for 3s, 4s, and 5s and is slightly lower than GRIP++ for

1s and 2s. Compared to the second-best model, Pishgu, PishguVe achieves a 13.9%,

5.1%, 0.7%, 9.6%, and 5.8% improvement for 1s, 2s, 3s, 4s, and 5s, respectively.

Furthermore, PishguVe outperforms the Social-STGCNN model, which has rela-

tively fewer parameters but struggles in generalizing results. The ADE and FDE

performance of PishguVe in the High-Angle POV dataset is 89.36% and 70.94%,

respectively. Moreover, for root mean square error (RMSE) comparisons to Social-

STGCNN, PishguVe performs better by 178.29%, 206.52%, 129.10%, 84.74%, and

68.99% for 1s, 2s, 3s, 4s, and 5s, respectively.

3.6 Conclusion

This paper presents the Carolinas Highway dataset (CHD), which consists of over

338,000 vehicle trajectories captured from 1.6M high-resolution images recorded at

eight highway locations from two distinct POVs. The proposed dataset provides a

unique benchmark for evaluating trajectory prediction and various highway-based

applications in ITS.

We also introduce PishguVe, a SotA trajectory prediction architecture that utilizes

graph-based attention and an attentive neural network to extract essential features
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and produce real-time results. It creates graphs of all vehicles in a scene to learn

their dependency and behavior in different driving conditions. Our experiments on

the NGSIM and CHD have demonstrated that PishguVe sets a new state-of-the-art for

vehicle trajectory prediction in bird’s-eye, high-angle, and eye-level POV, achieving

better performance compared to existing approaches. The proposed architecture and

dataset can facilitate the development of more advanced driver safety and assistance

systems, intelligent transportation systems, and traffic analysis and surveillance tools,

significantly improving road safety and efficiency.



CHAPTER 4: VEGAEDGE: EDGE AI CONFLUENCE ANOMALY DETECTION

FOR REAL-TIME HIGHWAY IOT-APPLICATIONS

4.1 Introduction

In today’s digital age dominated by the Internet of Things (IoT), camera-based

infrastructure has become an integral part of our interconnected world. With urban-

ization intensifying, our highways face increasing congestion and unpredictable driving

patterns. Although current highway cameras offer surveillance, their true potential

to harness real-time analytics remains largely untapped. Integrating edge-based AI

frameworks with these cameras can revolutionize traffic management and safety [63].

This integration not only promises rapid detection and response to anomalies but

also increases bandwidth efficiency, lowers latency, and scales highway monitoring,

marking a transformative approach to road safety and management.

The AI-based edge applications can help with real-time detection of erratic driving

behaviors that can help tackle the distressing surge in accidents, especially within

work zones. From 2003 to 2020, worker fatalities rose, with 135 deaths in 2019 and

117 in 2020 [22, 23]. The Federal Highway Administration’s 2021 report highlighted

106,000 work zone accidents, resulting in 42,000 injuries and 956 fatalities [5, 90].

While traditional safety mechanisms in these zones are primarily reactive [91], often

leading to late interventions, integrating AI at the data’s edge ensures timely decision-

making crucial for highway safety, surveillance, and traffic analysis applications.

Anomaly detection for roadways mainly focuses on the complexities of autonomous

driving [24] in urban settings, where interactions among vehicles, infrastructure, and

pedestrians are intricate. Influenced by factors like intersections and diverse road

alignments, urban trajectories are notably unpredictable. In contrast, highway travel,
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Figure 4.1: Example demonstration of VegaEdge implementation on an IoT platform
for real-world highway scenarios.

designed for longer distances, exhibits more predictable behaviors [92, 93, 94, 95].

For effective AI in highway settings, models need training on specific datasets dif-

ferentiating normal from abnormal driving. Many existing datasets, however, lack

resolution and relevance. Addressing this, we present the Carolinas Anomaly Dataset

(CAD) with real-world highway anomalies. Moreover, real-time anomaly detection is

crucial for edge-based safety applications prioritizing nimbleness. CAD emphasizes

identifying vehicle trajectories that deviate from standard paths, especially those mov-

ing outside of their lanes. While many anomaly detection methods exist [96, 97, 98],

they’re not highway-specific and require significant computational power. Overall,

there is a clear deficiency in real-world highway anomaly datasets and corresponding

algorithms, leading to a void in AI frameworks for real-time anomaly detection in

practical applications.

In this context, we introduce VegaEdge, an edge AI confluence tailored for real-
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time highway IoT applications operating on embedded edge devices using lightweight

anomaly detection. Fig. 4.1 shows how VegaEdge can monitor highway traffic and

detect anomalies at the edge at various locations on embedded platforms. Our eval-

uations on real-world datasets confirm VegaEdge’s effectiveness and its performance

with real-world video detection will be detailed in subsequent sections. In this pa-

per, we also introduce a lightweight method that uses ground truth and trajectory

prediction for quick anomaly detection, promoting enhanced highway safety. This

method seamlessly integrates with the State-of-the-Art (SotA) trajectory prediction

[25] integrated with VegaEdge providing swift real-world anomaly detection.

We extensively evaluated VegaEdge across three distinct platforms, two of which

are edge-based, low-power devices, underscoring its versatility. Tests were conducted

to validate its robustness using real-world and simulated videos, demonstrating Veg-

aEdge’s capability to function with digital twins and across varying traffic densities.

Furthermore, we examined its performance specifically for highway work zone safety,

analyzing the impact of diverse prediction windows on the buffer times afforded to

workers during potential hazards. The efficacy of our anomaly detection is showcased

through evaluations on both adversarial and real-world datasets. These tests un-

derscore the pronounced differences between adversarial-generated trajectories and

real-world scenarios, emphasizing the imperative of employing real-world videos in

authentic system deployments. We also perform extensive power analysis on an em-

bedded to provide insights into the power consumption of VegaEdge in different power

modes that can be utilized based on the desired application.

The main contributions of this paper are summarized as follows:

• We introduce Carolinas Anomaly Dataset (CAD), a new real-world anomaly

dataset for highway applications. This dataset empowers researchers to validate

anomaly detection techniques within genuine highway contexts.

• We present a novel anomaly detection technique that foresees anomalous driving
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behaviors out of the predicted trajectories by extrapolating angle-based and

displacement errors. Its effectiveness is demonstrated with adversarial and real-

world trajectories on select datasets.

• We introduce VegaEdge, a cutting-edge AI-powered IoT solution for vehicle

anomaly detection designed for edge-based embedded systems. It is adept at

identifying vehicles that diverge from their anticipated route, indicating possible

hazardous intrusions on highways in real-time.

• We subject VegaEdge and proposed anomaly detection techniques to exhaus-

tive evaluations across multiple platforms and scenarios. The results showcase

its adaptability and superior performance in real-world and simulated environ-

ments. We also demonstrate its effectiveness, emphasizing its application in

work zone safety.

4.2 Related Works

Efforts have been made to adapt anomaly and vision models for IoT devices.

[99] presents an IoT-focused video surveillance system, primarily analyzing human-

related events. [100] explores vision model applications in IoT, while [101] investi-

gates anomaly detection in time series data for domains like smart cities. Recently,

there’s been increased focus on highway safety. [102] introduces a trajectory predic-

tion framework for dense traffic, utilizing LSTMs and CNNs. [103] uses road geometry

for vehicle counting, speed estimation, and classification. [104] suggests a real-time

flow estimation system based on pairwise scoring for vehicle counting. MultEYE

[105] is an aerial viewpoint vehicle tracking system, leveraging segmentation for de-

tection accuracy in edge devices and IoT applications. Nevertheless, a notable gap

persists within AI-based solutions for highway applications, primarily due to the lim-

ited availability of real-world datasets and dedicated frameworks tailored specifically

to highway-based edge applications with real-time processing capabilities.
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Anomaly detection in vehicle frameworks has been explored in various studies. [96]

proposes an IoT system detecting abnormal driving using semantic analysis, vehicle

detection, and 5G communication. [106] employs re-identification and multi-camera

tracking with Gaussian Mixture Models (GMMs) to analyze vehicles. Anomalies are

identified based on foreground-background changes. [97] offers a tracking algorithm

for anomaly detection in road scenes. [107] enhances vehicle anomaly detection ac-

curacy by integrating road geometry with movement predictions. [98] presents a

multi-granularity design combining various tracking levels for vehicle anomalies. Us-

ing clustering, [108] introduces a probabilistic framework for anomaly detection via

vehicle trajectories.

Several studies, such as DSAB [24], focus on the vehicle anomaly detection problem

individually. DSAB reconstructs vehicle social graphs using the Recurrent Graph

Attention Network. [109] employs Graph Convolutional Networks (GCNs) with a

contrastive encoder for feature extraction, with the features later used in an SVM

classifier. They also explore unsupervised methods using an Adversarial Autoencoder.

While there’s a scarcity of comprehensive vehicle datasets in highway safety due to

data gathering challenges, AI City Challenge offers a benchmark [110, 111]. Still, its

alignment with highway safety is limited. The Carolinas Highway Dataset (CHD) [25]

provides videos from multiple viewpoints, ideal for highway safety. Given the rarity

of anomalous driving behaviors, [112] suggests an adversarial framework to generate

anomalies on existing datasets. Recent studies like [109] are utilizing this approach

for more exhaustive anomaly detection evaluations. This lack of resources and use

of adversarial approaches underscores the urgency of developing and advancing real-

world datasets and AI-based IoT-edge solutions that capable of handling the unique

challenges and anomalies of highway safety and surveillance.
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4.3 CAD: Carolinas Anomaly Dataset

Building upon discussions from prior sections, the absence of dedicated highway-

based trajectory anomaly datasets presents a challenge in validating our anomaly

detection methodologies. To circumvent this limitation, we adopt the recent advance-

ments in adversarial anomaly generation as a testing bed for our proposed approach.

Zhang et al. [112], introduce an adversarial attack-based technique designed to craft

realistic anomalous trajectories by perturbing standard trajectories within a dataset.

While adversarial approaches have made significant strides in improving the fidelity

of generated results, they still fall short of perfectly mirroring real-world scenarios.

Although the disparity between machine-generated anomalies and actual real-world

anomalies has diminished, it has not been completely eradicated. In light of the

challenges inherent in evaluating highway anomalies and the existing gap in relevant

datasets, we present the "Carolinas Anomaly Dataset (CAD)". This dataset, derived

from the Carolinas Highway Dataset (CHD) [25], encompasses 22 videos, each exhibit-

ing at least one anomalous driving trajectory. These videos are captured from two

distinct vantage points: high-angle and eye-level, offering a versatile tool for surveil-

lance and road safety applications. Specifically, CAD is composed of one-minute video

segments, evenly split between the two perspectives, showcasing variety of anomaly

behavior.

In this context, anomalous behavior pertain to the atypical movement patterns

exhibited by vehicles, including actions such as vehicles deviating from their des-

ignated lanes on the highway, abruptly halting in front of the camera’s view, or

vehicles that approach the camera while diverging away from their designated lane.

These unusual and non-standard behaviors have the potential to pose significant risks

to nearby structures, infrastructure, and, most critically, to the safety of workers,

particularly within the dynamic and often high-speed environment of highway work

zones.Designed to enable the evaluation of various anomaly detection methodologies,
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CAD serves as an invaluable resource for researchers focused on innovating highway

safety through anomaly detection algorithms.

4.4 Anomaly detection Methodology

In this section, we present our methods for anomaly detection using predicted tra-

jectories. For anomaly detection, the trajectory prediction output is used to evaluate

the error and angle-based approaches. The goal was to evaluate both methodolo-

gies for detecting anomalous behavior in trajectory and video datasets. Through

this methodology, we allow the detection of unusual vehicle behaviors, such as sud-

den lane changes, erratic driving, or potential security threats in desired applications

with minimum computation.

4.4.1 ADE-based Anomaly Detection

Average Displacement Error (ADE) based Anomaly Detection is a method of com-

puting the average error from the predicted trajectory to assess the accuracy of tra-

jectory predictions for vehicles and comparing it against a threshold (TADE
anomaly) as

per the application. It computes the average Euclidean distance between predicted

trajectories (F̂ ) and actual trajectories (P ) overall predicted time steps (Tpred) and

subjects (n) in a scene. The ADE in predicted trajectory from last Tpast seconds is

compared with the desired ADE threshold, TADE
anomaly as:

1

n ∗ Tpast

n∑
v=1

Tpast∑
t=1

∣∣∣F̂ t
v − P t

v

∣∣∣
2
> TADE

anomaly, (4.1)

where t = 1, ..., Tin is time and, v ∈ 1, 2, ..., n representing the index of the vehicle.

By setting a threshold, a criterion is set to identify anomalous trajectories. Value

exceeding the threshold indicates a significant disparity between the predicted and

ground truth trajectories, resulting from unexpected driving behavior, going off the

lane, etc. As PishguVe is designed to predict the normal trajectory of the ego vehicle,
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the ADE for any vehicle that exceeds the threshold is marked as an anomaly.

4.4.2 Angle-based Anomaly Detection

Angle-based Anomaly Detection calculates the angle between the predicted future

trajectory vector, F̂v and the actual trajectory vector, Pv of the ego vehicle and com-

pares it with a threshold according to the application. Given the x and y coordinates

of F̂v and Pv for past few seconds tpast, we can compute the direction vectors:

DPv =

xtpastv,p − x0v,p

y
tpast
v,p − y0v,p

 DF̂v
=

xtpastv,f − x0v,f

y
tpast
v,f − y0v,f

 (4.2)

, here x0v,f and x0v,f are the position of vehicle a frame before the start of predic-

tion. The angle between these direction vectors DPv and DF̂v
is compared with the

threshold, TAngle
anomaly as:

arccos

(
DPv ·DF̂v

‖DPv‖‖DF̂v
‖

)
> TAngle

anomaly, (4.3)

where DPv ·DF̂v
is the dot product of DPv and DF̂v

, and ‖DPv‖ and ‖DF̂v
‖ are their

respective magnitudes.

4.5 VegaEdge Design

VegaEdge is an integration of high-performing AI models to empower IoT-embedded

edge devices. Specifically designed to enhance real-time safety and surveillance on

highways, its core capabilities encompass vehicle detection, tracking, and trajectory

prediction, all converging toward the final goal of anomaly detection. Fig. 4.2 provides

a step-by-step visual representation, illustrating how the entire VegaEdge system op-

erates in a union. The high-level pseudocode of VegaEdge is also shown in Algorithm
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2.

As shown in Fig. 4.2 at a high level, VegeEdge detects vehicles within an image

and subsequently tracks them across consecutive frames on a frame-by-frame basis.

Following this, the system filters and accumulates the trajectories of distinct vehicles

identified in the prior phase. Lastly, leveraging the gathered vehicle data from the

past 3 seconds, it projects the trajectories for the upcoming five seconds, utilizing

this foresight for effective anomaly detection. In the following subsections, we discuss

our design choices and the working of each step shown in Fig. 4.2.
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Algorithm 2 High-Level Workflow of VegaEdge
Require: RGB image
Ensure: Detected anomalous vehicle trajectories
1: Initialize: Detection, tracking, and prediction AI models
2: Warm-up for 3 seconds for vehicle detection and ReID
3: loop
4: if frame is available then
5: Detect vehicles in frames
6: Assign unique IDs
7: Ensure consistent IDs for previously identified vehicles
8: else
9: Read the next frame

10: end if
11: Set inference_flag to 0
12: for each unique vehicle ID in frame do
13: Remove vehicles moving away from the camera
14: Remove IDs with less than 3 sec (15 frames) trajectory
15: if vehicles available for inference (3 sec trajectory) then
16: Set inference_flag to 1
17: end if
18: end for
19: if inference_flag == 1 then
20: PishguVe (Predict trajectory for next 5 seconds)
21: if trajectory available for anomaly then
22: for each Vehicle ID available do
23: if Anomaly Criteria > Tanomaly then
24: Flag anomaly detected for specific vehicle ID
25: end if
26: end for
27: end if
28: end if
29: end loop
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4.5.1 Vehicle Detection

For efficient and rapid vehicle detection for edge-integrated IoT devices, we opt

for the YOLOv8l [113] model and trained it on the BDD100k vehicle dataset [114].

Our decision was influenced by the system’s overall performance, such as latency,

accuracy, and memory requirements.

Model size and performance are critical in edge deployments, particularly for IoT

devices. YOLOv8l addresses this by being 35.9% smaller than YOLOv8x [113], mak-

ing it ideal for resource-limited embedded-IoT devices. Despite its reduced size, its

mean Average Precision (mAP) is a competitive 52.9%, only 1% less than the 53.9%

of YOLOv8x.

4.5.2 Vehicle Tracking

Multi-object tracking (MOT) is fundamentally concerned with the identities of

objects within video sequences. ByteTrack [85] uses an innovative association method

that considers every detection box. Detection boxes with lower scores are processed by

comparing their similarities with existing tracklets to accurately identify true objects

while filtering out unwanted detections.

Within this context, the VegaEdge employs the ByteTrack algorithm, renowned

for its efficient and robust tracking capabilities. ByteTrack’s architecture uses deep

association techniques, ensuring consistent tracking across frames, even for challenges

like occlusions and complex interactions. Its performance ia shown in Table 4.1 on

datasets like BDD100K and MOT20. Furthermore, ByteTrack boasts an impres-

sive running speed without compromising on accuracy, making it an ideal choice for

real-time applications such as VegaEdge. As discussed in [85], ByteTrack achieves

metrics of 80.3 MOTA, 77.3 IDF1, and 63.1 HOTA on the MOT17 test set, all while

maintaining a 30 FPS running speed.
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4.5.3 Data Conditioning

The output from detection and tracking is rigorously cleaned to ensure precise

input, as the quality of the input directly dictates the accuracy of trajectory forecasts

in the next step. To obtain precise vehicular trajectories, we’ve performed targeted

data filtration and smoothing:

1. Class-specific Inclusion: To eliminate potential noise from extraneous vehicular

types, we selectively retain only cars, buses, and trucks.

2. Unidirectional Movement: To focus on the flow of incoming vehicles, we ex-

clude the vehicles operating in non-targeted directions, thereby standardizing

the directional flow and reducing complexity.

3. Temporal Presence Validation: Vehicles with transient appearances can intro-

duce data anomalies. This validation process sets a minimum frame threshold,

below which vehicular entries are deemed non-contributory and are subsequently

removed.

4. Trajectory Continuity: Despite thorough validation in previous steps, some

trajectories may have missing frames. We fill such gaps through interpolation

techniques, ensuring continuous and complete trajectories.

In summary, the data cleansing and validation processes outlined above are crucial

in ensuring the integrity and precision of vehicular trajectories used by VegaEdge’s

downstream tasks. By emphasizing class-specific inclusion, standardizing directional

flow, validating temporal presence, and ensuring trajectory continuity, we lay the

foundation for subsequent trajectory forecasts. This approach mitigates potential in-

accuracies and fortifies our framework’s reliability, positioning it to deliver consistent

and high-quality results in real-world applications for which VegaEdge will be used.
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4.5.4 Trajectory Prediction

We focus on highway-centric performance in the framework of VegaEdge’s IoT ap-

plications. To meet this need, VegaEdge integrates the SotA PishguVe[25] trajectory

prediction algorithm on highway datasets, ensuring fast and accurate results without

straining the device.

PishguVe was selected for its ability to make predictions at the pixel level, as

shown in Table 4.1, its proven track record of state-of-the-art accuracy on multiple

datasets [2, 1, 25], and its efficient memory footprint. Table 4.1, CHD-HA and CHD-

EL represents CHD-High Angle and CHD-Eye-level trajectories from CHD dataset

respectively. Built on a fusion of graph isomorphism, convolutional neural networks,

and attention mechanisms, PishguVe [25] can forecast future vehicle positions with

a model size of only 133K parameters. The input to PishguVe is past trajectories

of vehicles are represented by a set of absolute coordinates, denoted as Pv, and a

set of relative coordinates, denoted as ∆Pv. The absolute coordinates are defined

as Pv = (xtv,p, y
t
v,p), where t = 1, ..., Tin, v ∈ 1, 2, ..., n representing the index of the

vehicle and xtv,p and ytv,p are x and y coordinates of the center of bounding box of

vehicle v at time t for past trajectory denoted by p. The predicted future trajectories

are shown as F̂v = (xtv,f , y
t
v,f ), here t = (Tin + 1), ..., Tpred, f denotes future trajectory,

and v ∈ 1, 2, ..., n, are generated as a set of coordinates for each vehicle in the image.

4.5.5 Prediction-based Anomaly Detection

VegaEdge uses the trajectory prediction-based anomaly detection approach dis-

cussed in section 4.4 of the paper, utilizing ADE and angle-based anomaly detection

techniques. These methods offer a straightforward and efficient approach to detecting

anomalies. This streamlined process makes our proposed method well-suited for in-

tegration within VegaEdge’s IoT-based framework, which operates on hardware and

time-constrained embedded IoT platforms. This efficiency allows for quick anomaly
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detection, enhancing the overall performance and responsiveness of the system. The

performance of both approaches on two different datasets is demonstrated in the

upcoming section.

4.5.6 VegaEdge Performance Benchmarking

VegaEdge’s performance was evaluated across multiple platforms to understand

its versatility and efficiency. Our testing platforms comprised a server with an Intel

Xeon Silver 4114 CPU, Nvidia’s V100 GPU, and Nvidia’s Jetson Orin and Xavier NX

boards. We chose the server setup as a reference point to contrast the performance

metrics of the Jetson boards. These Jetson boards are designed for real-world tasks

and are notable for their power efficiency, with Orin operating at 50W and Xavier NX

at just 20W. Their efficiency and AI capabilities position them as ideal candidates

for a wide range of IoT applications requiring edge computing.

Transitioning from the hardware evaluation, Table 4.1 shows the performance met-

rics of three algorithms VegaEdge utilizes for crafting its workflow, as shown in Al-

gorithm 2 and Figure 4.2. In the domain of Object Detection, YOLOv8l achieves an

mAP of 52.9 on COCO and 57.14 at mAP50 on BDD100K. It further scored 34.50

at mAP50-95. The Tracking algorithm, ByteTrack performs at a MOTA of 77.8 on

the MOT20 dataset. Lastly, in trajectory prediction, the PishguVe algorithm was as-

sessed on three distinctive datasets. It registered a Pixels/ADE of 20.75 and 16.81 on

Table 4.1: Accuracy comparison of each algorithm.

Task Method Performance Dataset

Object Detection YOLOv8l [113]
52.9 (mAP) COCO [115]

57.14 (mAP)@mAP50 BDD100K [116]
34.50 (mAP)@mAP50-95 BDD100K [116]

Tracking ByteTrack [85] 77.8 (MOTA) MOT20 [117]

Path Prediction PishguVe [25]
20.75 (Pixels/ADE) CHD-EL [25]

16.81 (Pixels/ADE) CHD-HA [25]
0.77(m/ADE) NGSIM [2, 1]
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Figure 4.5: AUC-ROC with varying detection windows for ADE-based anomaly de-
tection method on NGSIM dataset. (a) Shows plot from 0s to 1s with time-step of
0.2 s (b) Shows plot from 1s to 5s with time-step of 1.0 s

CHD-EL and CHD-HA, respectively, and a commendable m/ADE of 0.77 on NGSIM.

4.6 Results

4.6.1 Anomaly detection on NGSIM Dataset:

In this section, we evaluate our anomaly detection methodology on adversarial

trajectories. These trajectories are derived using the NGSIM dataset with bird’s

eye camera-view of the trajectories, following the adversarial attack approach [112],

adopted by [109]. Our evaluation encompasses both the ADE and angle-based anomaly

detection techniques. Our tests include both adversarial generated trajectories [112]

and actual real-world data from the NGSIM test dataset, similar to the study in [118].

The ADE-based anomaly detection method study revealed a distinct pattern re-

garding the Area Under the Receiver Operating Characteristic curve (AUC-ROC).

The ADE-based anomaly detection method consistently performed best at an AUC-

ROC of 0.91 for an ADE window of 0.2s, as visualized in Figs. 4.5 and 4.3. The

angle-based approach initially outperformed the ADE-based method for short pre-
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Figure 4.8: AUC-ROC with varying detection windows for angle-based anomaly de-
tection method on NGSIM dataset. (a) Shows plot from 0s to 1s with time-step of
0.2 s (b) Shows plot from 1s to 5s with time-step of 1.0 s
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Figure 4.11: EER plots for anomaly detections with 1s trajectory window for
NGSIM dataset adversarial trajectories: (a) ADE-based anomaly, and (b) Angle-
based anomaly.
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Table 4.2: EER for various Time Thresholds using ADE-and Angle based Anomaly
on NGSIM Adversarial trajectories

Time-step EER

(s) ADE-based Angle-based

0.2 0.16 0.02
0.4 0.17 0.05
0.6 0.19 0.10
0.8 0.19 0.15
1.0 0.20 0.19
2.0 0.22 0.38
3.0 0.24 0.56
4.0 0.25 0.69
5.0 0.26 0.77

diction windows, as seen in Fig. 4.6, but its efficacy declined with larger windows,

evident in Fig. 4.7. Such behavior in the angle-based approach may stem from how

anomalies are generated by applying constrained perturbations to real-world trajecto-

ries, making anomalies challenging to discern over more extended prediction periods.

The Equal Error Rate (EER) plot in Fig. 4.11 shows the EER value obtained by

plotting False Negative and False Positive Rate for ADE and Angle anomaly methods

for 1 second of predicted trajectory. Table 4.2 presents the EER for two anomaly de-

tection methods on NGSIM adversarial trajectories across different time-step thresh-

olds. The Angle method outperforms the ADE approach at shorter thresholds, such

as 0.2s and 0.4s. However, as the time threshold grows, their performance converges.

By 5.0 seconds, the EERs are 0.26 for ADE and 0.77 for the Angle method, indicating

a faster performance drop for the Angle approach over extended time steps.

4.6.2 Anomaly detection on CAD

In this section, we evaluate our anomaly detection approach on real-world trajecto-

ries sourced from CAD consisting of high-angle (CHD-HA) and eye-level (CHD-EL)

camera-view of highway vehicles, as introduced in section 4.3. To offer a comprehen-

sive view of the results, the AUC-ROC values for both fine and coarse grain time
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Figure 4.14: AUC-ROC with varying prediction windows for ADE-based anomaly
detection method on CAD. (a) Shows plot from 0s to 1s with a time-step of 0.2 s.
(b) Shows plot from 1s to 5s with time-step of 1.0 s.

steps are graphically represented in Fig. 4.14 for the ADE-based anomaly detection

method and in Fig. 4.17 for the angle-based method.

Expanding on the earlier analysis, Table 4.3 provides a breakdown of the Equal

Error Rate (EER) performance for various time thresholds, contrasting the ADE and

angle-based anomaly detection methods on CAD’s data. It is clear that the Angle

approach consistently outperforms the ADE method across all examined time steps.

Starting from an EER of 0.48 at the 0.2s mark, the angle method demonstrates

a steady improvement, with an EER of 0.12 at the 5s threshold. In contrast, the

ADE-based method initiates with an EER of 0.58 at 0.2s and gradually improves to

0.32 at 5s. These metrics show the superior efficacy of the angle-based approach,

especially since the prediction windows are elongated, making it a more robust choice

for anomaly detection in the context of the CAD.
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Figure 4.17: AUC-ROC with varying prediction windows for Angle-based anomaly
detection method on CAD. (a) Shows plot from 0s to 1s with a time-step of 0.2 s.
(b) Shows plot from 1s to 5s with time-step of 1.0 s.

4.6.3 Real-world vs Adversarial Anomaly Trajectories

Intriguingly, the real-world trajectories demonstrate an inverse trend compared to

the results of the adversarial anomaly dataset. Specifically, the AUC-ROC values for

the ADE anomaly detection method peak at a 4 and 5-second prediction window,

recording the area of 0.80 for a 4s window as shown in Fig. 4.13. This suggests

a higher sensitivity of the ADE method to longer prediction windows when applied

to real-world data. Similarly, in Fig. 4.16 the angle-based method exhibits stellar

performance with an AUC-ROC of 0.94 for the same 5s window. Such observations

indicate that while synthetic or constrained trajectory datasets may favor short pre-

diction windows, real-world trajectories might inherently contain more distinguishable

anomalies in longer prediction intervals.

Comparing the EER values from the real-world CAD trajectories (Table 4.3) with

those from the adversarial NGSIM trajectories (Table 4.2), several striking differences

emerge. The NGSIM adversarial trajectories exhibit substantially lower EER values
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Figure 4.18: ADE-based
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Figure 4.20: EER plots for 4s anomaly detections for CAD dataset: (a) ADE-based
anomaly, and (b) Angle-based anomaly.

in the initial time steps, especially for the angle-based approach. For example, at

the 0.2-second mark, the NGSIM data record a notably lower EER of 0.02 for the

angle-based method than 0.48 for the CAD dataset.

A potential reason for this marked divergence might be the inherent nature of

the datasets. The NGSIM adversarial trajectories, being synthetically generated,

likely present more pronounced and discernible anomalies that the detection methods

can more readily identify, especially within shorter prediction windows. In contrast,

the CAD real-world trajectories, a genuine reflection of real-world driving behaviors,

might be embedded with subtler and more intricate anomalies. These nuances could

pose more significant challenges in detection, resulting in higher EER values, espe-

cially in the shorter time-step intervals. Moreover, the complexities and variances

found in real-world driving behaviors could introduce a wider array of anomalies,

making distinguishing between normal and anomalous patterns more intricate for the

detection methods when applied to the CAD.
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Table 4.3: EER for various Time Thresholds using ADE and Angle based Anomaly
on CAD

Time-step EER

(s) ADE-based Angle-based

0.2 0.58 0.48
0.4 0.55 0.43
0.6 0.50 0.35
0.8 0.46 0.28
1.0 0.41 0.24
2.0 0.34 0.22
3.0 0.30 0.17
4.0 0.30 0.14
5.0 0.32 0.12

4.6.4 VegaEdge Performance

In our evaluation, we primarily focus on the performance of VegaEdge on the Jetson

platforms. With its superior computational capabilities, the server platform serves

as a benchmarking reference to underscore the efficiency and feasibility of deploying

VegaEdge in more constrained environments.

4.6.4.1 Performance on Jetson Platforms

Table 4.4 delineates the throughput of VegaEdge across different road scenarios

and traffic densities. On Jetson platforms, VegaEdge’s performance showcases its

adaptability and efficiency, particularly given the embedded nature of these devices.

For the 3 lanes high traffic density scenario, the Jetson Orin processes 758 trajec-

tories every second, with 140 unique vehicles detected per second and the intricate

nature of merging scenarios. This throughput ensures real-time processing capabili-

ties essential for many applications. Meanwhile, the Xaview NX, while trailing with

243 trajectories per second, still provides a usable metric for less time-sensitive tasks

or preliminary data-gathering efforts.

The 2 lanes with workzone with low traffic density scenario provides a different
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Table 4.4: Throughput (processed trajectories per second) comparison of VegaEdge
on the three platforms across different road types and traffic densities (expressed as
vehicle trajectories processed per second)

Road Type Throughput

(Traffic Density) Server Jetson Orin Xaview NX

3 lanes and merger (140) 1770 758 243
2 lanes with workzone (18) 2868 132 47

2 lanes (simulated video) (13) 1050 92 31

challenge, simulating a common urban environment with traffic modulations due to

work zones. In this context, the Jetson Orin delivers a performance of 132 trajectories

per second, making it ideal for surveillance and alert systems in smart city setups.

This reduced throughput is attributed to the fewer vehicles present in the scene,

not the capability constraints. Meanwhile, the Xavier NX offers 47 trajectories per

second, which may be apt for tasks requiring less frequent monitoring.

4.6.4.2 Digital Twin Systems

Another aspect of our evaluation is the 2 lanes (simulated video) (13) scenario.

The Jetson Orin’s capability to process 92 trajectories per second in a simulated

environment underscores its potential utility in digital twin systems. Digital twin

systems, which mirror and simulate real-world environments, are important in pre-

dictive maintenance, system optimization, and various simulation-driven tasks. The

ability of VegaEdge to run efficiently on simulated data on the Jetson Orin emphasizes

its versatility and readiness for such advanced applications.

4.6.5 Highway Workzone Safety Application

In highway work zones, safeguarding workers from oncoming vehicles is a primary

concern. Through trajectory prediction combined with anomaly detection, VegaEdge

detects trajectories that may pose threats and alerts workers. To achieve this objec-

tive, the proposed design must demonstrate real-time performance on edge devices.
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Table 4.5: Comparison of Anomaly detection Prediction Windows, Buffer Times
(Excluding 3s Input Trajectory), and Vehicle Distances from Camera at 60 mph.

Error Detection Buffer Distance
Window (s) Time (s) (m)

0.2 8.8 235
1.0 8 213
3.0 6 160
5.0 4 107

The efficacy of VegaEdge, particularly when implemented on Jetson Orin, is exem-

plified in Table 4.5.

Given an error detection window of 0.2s, VegaEdge provides a buffer time of 8.8s,

corresponding to a 235m distance from a camera for a vehicle moving at 60 mph.

As the detection window widens, the buffer diminishes but remains noteworthy, with

1s, 3s, and 5s windows yielding buffer times of 8s, 6s, and 4s, respectively. A clear

trade-off emerges between larger buffer windows and heightened accuracy, as noted

in the anomaly detection results for CAD in section 4.6.2.

In hazardous highway work zones, these buffer times are beneficial and vital. Even

minor increments in warning time can significantly alter outcomes. VegaEdge’s ability

to grant these buffers, particularly on Jetson platforms, underscores its practicality

in real-world scenarios and its role in bolstering worker safety.

Table 4.6: Comparison of VegaEdge Power consumption and Throughput ((Trajecto-
ries processed per second) on Jetson Orin Power Modes for real word highway (∼ 140
Vehicles detected per second across 30 frames.). Power is measured in Watts.

Power Total GPU CPU Throughput
Mode Power Power Power

MAXN 18.14 3.66 8.80 758
30W 11.44 3.09 3.72 477
15W 8.43 2.82 1.3 214
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4.6.6 VegaEdge Power Analysis on IoT Platform

In this subsection, we conduct a comprehensive power consumption analysis of the

Nvidia Jetson Orin platform with the primary objective of assessing the practical

utility and performance of VegaEdge across various power modes. We report the

total power consumed across all the channels (PTotal) calculated using the following

equation:

PTotal = PGPU + PCPU + PIOs + PAO (4.4)

Where PGPU is the total power consumed by the GPU and SOC cores, PCPU is the

power consumed by the CPU and CV cores, and PIOs is the power consumed by the

system’s 5V rail for various input and output ports, respectively on one of the power

monitors [119]. PAO stands for power consumed by Always On (AO) power rail on

another power monitor [119].

In Table 4.6, VegaEdge’s power consumption and throughput on the Jetson Orin

are evaluated across different power modes for a real-world highway scenario. At

the MAXN (40W) setting, the system processes 758 trajectories per second, consum-

ing 18.14W, and reducing the power mode to 30W and 15W results in decreased

throughputs of 477 and 214 trajectories per second, respectively, with corresponding

reductions in power consumption. Despite the higher power demands compared to

typical IoT devices, VegaEdge on Jetson Orin showcases a valuable trade-off between

power consumption and high-throughput processing, making it a viable solution for

edge applications requiring rapid data processing.

4.7 Conclusion

In this work introduced a minimalist anomaly detection approach based on pre-

dicted trajectories and showcased its effectiveness across various prediction windows

on adversarial and real-world anomalies. We presented VegaEdge, a real-time high-
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way safety solution optimized IoT-edge applications utilizing our anomaly detection

method, achieving a throughput of up to 758 processed vehicle trajectories per second

in high-traffic conditions. Furthermore, our application of VegaEdge demonstrated

its ability to adapt buffer times for workzone personnel, highlighting the trade-off

between buffer time and accuracy for such applications. The introduction of the

Carolinas Anomaly Dataset (CAD) as a dedicated resource for real-world highway

anomaly detection, combined with our innovative approach, highlights the potential

of IoT and AI in advancing highway safety.



CHAPTER 5: CONCLUSIONS

In this dissertation, we presented a series of pivotal contributions to the intersection

of artificial intelligence and edge-centric intelligent transportation applications. These

contributions, namely DeepTrack, CHD, CAD, PishguVe, and VegaEdge, showcase

the field’s breadth and depth of advancements. Accompanying these is a streamlined

anomaly detection method optimized for real-time operations, leveraging trajectory

prediction. These elements together represent a big change, making AI-powered trans-

portation systems even safer and more efficient on highways.

The initial contribution of this work DeepTrack emerged as an example of efficient

deep learning. Designed for efficiency in the domain of deep learning, DeepTrack

doesn’t merely maintain commendable accuracyâit redefines it, with a marked reduc-

tion in model size and computational complexity. This deems it suitable for embedded

edge systems. The decision to pivot from traditional LSTM units to ATCN for en-

coding vehicle dynamics, particularly through depthwise convolution, has shown to

be both innovative and effective. This move offers the dual advantage of minimizing

the model’s footprint and its operational intricacies. Furthermore, our rigorous evalu-

ations showcase DeepTrack’s superiority, particularly when benchmarked against the

CS-LSTM and CF-LSTM on the NGSIM dataset. It surpassed the then-leading CS-

LSTM, reducing prediction errors by 9.09% and 11.56% and concurrently trimming

the model’s operations and size by 10.49% and 18.5% on the NGSIM dataset. In a

head-to-head comparison with CF-LSTM using ADE as a metric, DeepTrack mirrored

its performance but achieved a noteworthy reduction in both its operational footprint

and model size, by 10.49% and 18.5% respectively. Its promise in both enhancing per-

formance and optimizing resource utilization sets a precedent for subsequent models
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and research in the field.

Following our exploration of DeepTrack, another cornerstone of this dissertation is

the introduction of the Carolinas Highway dataset (CHD). This dataset, assembled

from over 1.6M high-resolution images, encapsulates more than 338,000 vehicle tra-

jectories sourced from eight distinct highway locations, providing varied perspectives.

It stands as a unique benchmark, vital for gauging the efficacy of trajectory prediction

models and enhancing various applications within Intelligent Transportation Systems

(ITS).

Furthermore, in pursuit of higher prediction accuracy as it is directly related to

safety in critical applications, the research introduced PishguVe. Harnessing graph-

based attention and an attentive neural network, PishguVe distills critical features

from complex traffic scenarios, delivering real-time results. Constructing graphs of

vehicles within a scene captures the interdependencies and behaviors characteristic

of diverse driving conditions. Empirical evaluations, particularly on the NGSIM and

CHD datasets, confirm PishguVe’s superiority. Not only does it set a new benchmark

for vehicle trajectory prediction across multiple perspectives, but it also is betters

than other SotA models. For instance, on the NGSIM dataset, PishguVe registers

improvements of 12.50% in ADE and 10.20% in FDE over the existing state-of-the-art.

Similarly, its performance on the CHD reaffirms its prowess, with marked enhance-

ments in ADE and FDE metrics.

Concluding our narrative on the advancements within this dissertation, we delve

into the realm of anomaly detection. We introduce the Carolinas Anomaly Dataset

(CAD) crafted from CHD, is a collection of highway-based videos with atypical driv-

ing behaviors for real-world highway anomaly detection. Our research also presents a

streamlined anomaly detection paradigm, grounded in predicted trajectories. Its effi-

cacy stands tested across a number of prediction windows, handling both adversarial

and real-world anomalies. Further elevating the discourse is VegaEdge, a dedicated



80

real-time highway safety mechanism tailored for IoT-edge applications. By harnessing

the power of our proposed anomaly detection technique, VegaEdge can process 758

vehicle trajectories per second under high-traffic scenarios. It showcases the need to

balance the buffer times for work zone personnel while balancing prediction accuracy.

The confluence of our pioneering anomaly detection methodology with other vision-

based detection, tracking and prediction algorithms underscores the transformative

potential of IoT and AI in sculpting the future of highway safety.

As this dissertation concludes, it’s evident that the collective contributions lay a

solid foundation and direction for researchers, practitioners, and policymakers in the

rapidly evolving landscape of artificially intelligent transportation systems.
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