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ABSTRACT

LONNIE BAKER. Neural Network and Random Forest Based Eukaryotic Gene
Prediction Methods. (Under the direction of DR. DONALD JACOBS)

Gene prediction, a fundamental task in genomics, plays a pivotal role in deciphering

the functional elements of genomes. However, accurate gene prediction remains a

challenging endeavor, especially when dealing with non-model organisms that often

lack extensive phylogenetically similar training data. Current methods which produce

highly accurate results on small samples of DNA from model organisms routinely fail

to achieve the same level of accuracy in non-model organisms. This dissertation

presents two innovative ab-initio gene prediction methods based on neural networks

and random forests, addressing the need for improved accuracy and reduced data

requirements. Accurate predictions of coding sequences across whole chromosomes

will be demonstrated by these methods even when trained on small amounts of data

from un-related organisms. Prediction accuracy will also be compared to other lead-

ing methods on a highly diverse range of non-model organisms. It will be shown that

these methods not only reduce the reliance on extensive training data but also ele-

vate the accuracy of gene prediction, outperforming several existing techniques. As

genomics continues to expand its scope to encompass a broader array of species, the

contribution of these methods holds promise in advancing our understanding of the

genetic landscapes of non-model organisms.
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CHAPTER 1: Dissertation Chapter One

1.0.1 Gene Prediction

The genome of an organism contains a vast amount of information. Its sequence,

written in a molecular chain known as deoxyribonucleic acid (DNA), exerts control

over every aspect of life from guiding growth to determining behavior and responses

to internal and external stimuli.

The development of the Sanger process in 1977 revolutionized the field of biology

by allowing the precise sequences of nucleotides in samples of DNA to be determined

experimentally. While accurate, the cost of this process was prohibitive in terms of

both time and material. In 2005, new methods known as next generation sequenc-

ing (NGS) methods were introduced which dramatically reduced the cost and time

required to sequence DNA. Sequencing technology has since advanced rapidly[2].

It has long been known that specific regions of DNA known as genes play a domi-

nant role in an organisms growth and development. Long before the chemical struc-

ture of DNA was determined, it was observed that the inheritance of biological traits

followed rules that could be observed but without any clear mechanism of action.

The term gene was used to describe the as yet unidentified unit by which hereditary

traits were passed from parent to offspring. As advances in molecular biology allowed

for greater insight, the usage of the word gene became more precise.

The most relevant and current definition of a gene is a segment of DNA which serves

as a template for the creation of a specific sequence of ribonucleic acid (RNA) through

the process of transcription. The resulting RNA molecule may code for proteins, in

which case it is known as messenger RNA (mRNA), or it may serve a variety of other

purposes in which case the transcribed RNA is known as non-coding RNA (ncRNA).
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The prevalence of ncRNA in nature and the full range of functions which it performs

is currently unknown but is currently a very active area of research[3, 4]. The focus

of this work is the identification of genes which code for proteins.

Regions of DNA which code for proteins are known as coding sequences and are

usually abbreviated as CDS. In the process of translation which follows transcrip-

tion, mRNA serves as a template which guides the assembly of specific amino acids

into chains known as peptides or proteins. Given their important role in biological

function, identifying the locations and sequences of genes which code for proteins is

a critical step in understanding the sequenced genome of an organism. While genes

can be located using purely experimental methods, these methods have a high cost

in terms of time and resources.

The human genome project (HGP) was a massive research endeavor which had

the dual goal of fully sequencing a human genome and locating all genes within that

genome. Begun in 1990 and completed in 2004, the HGP required an enormous

level of funding and human labor[5]. During the project, many advances were made

in sequencing technology and experimental gene locating methods. Despite these

advances it was clear that research projects on the scale of the HGP could not be

performed for every organism. As the speed and cost of sequencing has improved,

experimental methods of gene discovery have indeed proven far too slow to analyze

the enormous amount of sequence data being generated. Computational methods

have evolved to serve this purpose.

In eukaryotic organisms, genes are composed of alternating sequences of DNA

known as exons and introns. Transcription is an enzymatic process by which the ex-

ons and introns forming a gene are copied, with modification, into a molecule known

as pre-messenger RNA (pre-mRNA). A subsequent process known as RNA splicing

removes some combination of transcribed exons and introns from the pre-mRNA to

produce a second molecule known as messenger RNA (mRNA). Genes which have
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only a single exon are a subset of the structure described above where the number of

introns is zero. Prokaryotic organisms differ significantly from eukaryotes in that all

of their genes are composed of single exons.

As introns are removed from transcribed RNA before the process of translation,

only the sequences found in exons encode the information which specifies protein

composition. The methods developed in this research focus on the prediction of

coding sequences found in the DNA of eukaryotes. These sequences also referred to

as coding sequences or with the abbreviation CDS.

The term CDS is often confused with the term exon. The technical difference

between these terms is the presence of untranslated regions (UTRs). The first com-

ponent of a gene is the 5’ untranslated region (5’UTR). This region is the location of

the initial binding site of the RNA polymerase enzyme and also may contain addi-

tional regulatory binding sites. Despite being a part of the completed mRNA strand,

UTR sequences are not translated into amino acids in the following translation step.

Figure 1.1: An exon is a coding sequence plus any adjacent UTRs if they are present.

The first exon in a gene is composed of a 5’UTR plus an adjacent CDS. The final

exon is a gene is composed of a CDS followed by an adjacent 3’UTR. Internal exons

which are neither first nor last in a gene are not bounded by UTRs and these internal

exons are equivalent to CDS regions. The CDS regions which compose a gene are

equivalent to its exons minus any UTRs. This distinction must be clear as the specific

goal of this research is to develop methods which can locate CDS regions in unlabeled

DNA.

At the end of the 5’UTR which borders the first exon in a gene, a specific codon
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known as a start codon is located. In virtually all organisms, this codon is represented

by the letters ATG. While technically, the term start codon refers to the equivalent

translated mRNA sequence AUG, the DNA codon ATG will be referred to as a start

codon in this work. This codon also codes for the amino acid methionine in almost

all organisms. The start codon marks the beginning of DNA which codes for protein

in a particular gene and the codon immediately following the start codon will be the

first amino acid in the translated protein.

The process of gene prediction in prokaryotes is much less difficult than in eukary-

otes due to the lack of splice sites. When a gene is composed of a single exon, the

start codon which bounds the gene must lie within the same reading frame as the

stop codon. The term open reading frame refers to a reading frame which contains

a start and stop codon that are separated by n nucleotides. Where n is an integer

multiple of three. In prokaryotes, a gene must always lie inside a single open reading

frame. This greatly narrows the search for possible gene locations. This is not true in

the case of eukaryotic DNA where start and stop codons may lie in different reading

frames prior to RNA splicing. The methods shown here are designed to locate CDS

regions in eukaryotic DNA. However, only small modifications would be required to

optimize them for prokaryotes.

1.0.2 Homology and ab initio Methods

When a gene is expressed, it must first undergo the process of transcription. This

necessarily generates strands of mRNA which can be sequenced. By sequencing

mRNA strands, experimental evidence can be collected indicating the precise se-

quence of a gene. Using sequence alignment methods, this data can be used to locate

genes in some circumstances. Beyond several dozen nucleotides, the probability of

finding a segment of DNA which perfectly matches an equivalent mRNA strand is ex-

tremely low. If such a sequence is found in the genome of an organism, it is therefore

very likely that the location of a gene has been found.
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In addition to locating genes with sequences identical to known mRNA strands,

numerous homology based methods have been developed which attempt to locate

genes which have similar sequences to those stored in mRNA sequence databases.

These methods include GenomeScan [6], GeneWise [7] and Augustus [8]. Homology

based methods can be very accurate in locating genes which are not too dissimilar

from known RNA sequences. There are however, many limitations to the use of

mRNA sequence data for gene location.

First, a gene which is not being expressed does not generate any mRNA at all. The

database of known mRNA stands therefore theoretically has missing data, the amount

of which is difficult or impossible to measure. Second, the sequence homology between

most genes drops off dramatically when comparing genes from organisms which are

not closely related and even in closely relates species the homology can be very low.

These factors are significant hindrances to homology based methods. Evidence of this

was recently shown when several current homology based methods were tested using

the ORForise framework[9].

The ORForise framework is a system of metrics which can be used to assess the ac-

curacy of gene prediction methods in prokaryotes. When compared using this frame-

work, several commonly used homology-based gene prediction methods gave results

which were highly unpredictable given the proximity of model and test organisms.

In one very clear example, the gene prediction method AUGUSTUS[10] was able to

detect 20.53% of genes in the bacterium S.aureus when given access to homology data

from the S.aureus bacterium itself. But when given access to H. sapiens homology

data, AUGUSTUS was able to detect 78.01% of S.aureus genes. While homology

based methods were able to make good predictions in some cases, the authors of [9]

found that it was not reliably the case regardless of the source of homology data.

A second class of gene prediction methods exist which do not rely on sequence

homology at all. Known as ab initio methods, they have proven in many situations



6

to be superior to homology based methods. In the study cited above, many of the ab

initio methods tested were able to locate 99% of S.aureus genes. As the accuracy of

predictions is compared between homology based and ab initio methods on a case by

case basis, no one clear winner emerges. As a result, both types of methods continue

to be developed.

A wide range of Ab initio gene prediction methods exist which are based on sta-

tistical measures which differ to some extent between coding and non-coding se-

quences. Many of these methods are derived from well known problems in the field

of signal processing[11, 12]. Measures such as mutual information[13, 14, 15], auto-

correlation functions[16], wavelet transforms[17, 18], Fourier transforms[19, 20], dig-

ital filters[21, 22, 23, 24], random walks[25], and power-law correlations[26, 27] have

proven to have definite correlations with the locations of genes. While the authors

of these algorithms always provide some measure of their accuracy, none of them are

perfect gene predictors on their own or else the problem of gene prediction would be

solved. The methods developed in this research aim to combine multiple Ab initio

algorithms using machine learning in an attempt to construct a method which has

superior accuracy. The feature space in which this method operates is defined by the

collection of algorithms employed.

1.0.3 Machine Learning

With the amount of sequence data being generated and the relatively limited num-

ber of classes which segments of DNA can belong to, machine learning (ML) algo-

rithms immediately appear suited to the task of gene prediction. Perhaps as a result

of this, virtually every type of ML algorithm has been applied to this problem. Ex-

amples include neural networks (NNs)[28], random forests (RFs)[29], support vector

machines (SVMs)[30, 31], soft computing methods[32] and hidden Markov models

(HMMs)[33, 34, 35, 10, 36].

Gene prediction methods based on HMMs are currently perceived as the best meth-
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ods. This can be seen in comparative studies such as [37] which only compared HMM

based methods due to them being the most popular, or the EGASP study in which

the highest scores were clearly dominated by HMM based methods[38]. However, the

success of neural networks and random forests in many other tasks has inspired this

research with a goal of further exploring the potential of NN and RF based methods.

Primitive artificial neural networks can be traced back to the early 1940s when

the concept of artificial neurons was first proposed by Warren McCulloch and Walter

Pitts[39]. They presented a mathematical model of artificial neurons that could mimic

the currently understood basic functions of biological neurons. However, it wasn’t

until the late 1950s and early 1960s that significant progress was made in the field.

Frank Rosenblatt’s invention of the perceptron, a single-layer neural network capable

of learning and classifying patterns, marked a major milestone[40]. The perceptron

demonstrated the potential of neural networks for solving complex problems and

sparked widespread interest in the field. Since that time the development of NNs has

generally left behind its biological inspirations.

While Neural networks have been applied in many ways to the problem of gene

prediction[41, 42, 43, 44, 45], and were considered competitive in the past with meth-

ods such as GRAIL[28], they have since been outpaced by hidden Markov model

(HMM) based methods in terms of accuracy. As NNs are constantly evolving how-

ever, it seems logical to continue research into their usefulness with regards to this

problem.

Random forests are a highly developed evolution of simple decision tree meth-

ods. The minimal computation time and deterministic behavior of decision trees

lend themselves to ensemble learning methods. A random forest is composed of a

large number of decision trees which vary from each other in terms of semi-random

hyper-parameter permutations. The method was first introduced by Leo Breiman

and Adele Cutler in 2001 as an ensemble learning method[46]. The idea behind a
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RF is to combine multiple decision trees to create a robust and accurate predictive

model. Each decision tree in the forest is constructed using a different random subset

of the training data and a random subset of the features. By averaging the predictions

of all the trees, RFs can provide more accurate and stable predictions compared to

individual decision trees.

The concept of the RF builds upon earlier work on decision trees and bagging.

Decision trees are powerful models for classification and regression tasks, but they

can suffer from overfitting and instability when applied to complex datasets. Bagging,

short for bootstrap aggregating, was proposed as a solution to these issues. Bagging

involves creating multiple bootstrap sub-samples from an original training dataset

and building decision trees on each sub-sample. A final prediction is obtained by

averaging the predictions of all the trees, usually by means of a vote. RFs extend this

idea by introducing random feature selection during the tree construction process,

which further reduces correlation between the trees and enhances the diversity of the

ensemble. This randomness in feature selection and data sampling helps to improve

the generalization performance of an RF, making it a popular choice for various

machine learning tasks.

As with NNs, RFs have been applied to the problem of gene prediction with some

success[25]. As in the case with NNs however, these methods do not currently rank

in the top performing methods. As RFs have proven highly successful in other areas,

further research into their use in gene prediction seems warranted.

1.0.4 Performance of current methods

While many gene prediction methods report very high levels of accuracy on curated

datasets extracted from the genomes of model organisms, accuracy on non-model

organisms is far less impressive. This observation has been made by many unbi-

ased researchers and has been noted from the earliest days of computational gene

prediction[47] and continues to be made in the current era[37].
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A curated dataset is one that is composed of small sub-samples of DNA as opposed

to whole chromosomes. A good example is the EGASP dataset[38]. The accuracies

of gene prediction methods evaluated on curated datasets from model organisms is

often high. For example, the reported nucleotide level accuracies of three top gene

prediction methods in terms of sensitivity(Sn) and precision(PPV) on EGASP were:

AUGUSTUS Sn= 79% / PPV= 75%, GENEID Sn= 77% / PPV= 76% and GEN-

SCAN Sn= 84% / PPV= 61%.

However, datasets from non-model organisms may serve much better to test gene

prediction methods. The creation of such datasets is highly labor intensive partially

due to the cost of accurately verifying the location of genes in non-model organisms.

Nevertheless, some good curated, non-model organism datasets have been developed.

G3PO [37] is a recently developed benchmark dataset which we have used extensively

to evaluate the performance of out methods relative to other state of the art methods.

When tested against this dataset, the nucleotide level Sn and Sp values for the three

methods above were given as: AUGUSTUS Sn= 51% / PPV= 58%, GENEID Sn=

38% / PPV= 52% and GENSCAN Sn= 50% / PPV= 57%. Far lower than what was

reported on EGASP. This is not to say these methods are not good. They are in fact

considered to be among the top performing methods available.

The true state of gene prediction performance methods as a whole is perhaps de-

batable due to differences such as the ones illustrated above. In this work we have

chosen to assume that state of the art methods in gene prediction perform at the level

indicated by results from broad datasets which include both model and non-model

organisms such as G3PO. The range of species and extensive testing performed in the

construction of this particular dataset make it a logical choice for use as a comparison

tool between our method and other current methods.



CHAPTER 2: Research Methods

2.0.1 Method Overview

Two distinct gene prediction methods are described here. The first method is based

on neural networks (NN). The starting point for the design of this method was an

early neural network based gene prediction method developed by Uberbacher and

Mural which was published in 1991[48]. This method was later expanded into the

method known as GRAIL[28]. Although GRAIL had early success, it is currently

not regarded as being a leading gene prediction method. The NN based method

shown here borrows some ideas from [48] related to feature extraction methods while

differing significantly in all other aspects.

This method was designed to be trained on DNA from a single organism. When

presenting gene prediction results, NNs trained on DNA from different organisms are

compared with each other. A primary goal of this method was to develop a prediction

method which would require only small amounts of sample DNA as training but would

be able to make accurate predictions when shown DNA from organisms which were

not necessarily closely related to the training organism. The intended use of this

method would involve a researcher selecting a NN which was trained on an organism

which was as close as possible to the organism being researched.

The second method is based on random forest (RF) classifiers. This method was

designed to combine models trained on DNA from different organisms into a single

universal gene prediction method. A user of this method would not be required to

select a training organism but would simply apply the fully trained model on whatever

organism they wish. While this may sound like a difficult task, the reality is that

a significant fraction of organisms currently being studied have no closely related
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organisms which have been annotated well enough to serve as a closely related training

organism.

2.0.2 Feature Extraction

In order to locate CDS regions, this method begins by classifying each nucleotide

in a sequence as either coding or non-coding. Coding nucleotides being those which

are located inside CDS regions. To do this, each nucleotide must be represented by a

vector of numerical features. Feature extraction is the process by which a vector of

numerical values is assigned to each nucleotide in a sequence.

Each vector represents a single nt and is a sample which can be used to train or

test classification algorithms such as NNs or RFs. The numerical values which are

extracted have been selected due to either known or theorized correlations with coding

regions of DNA. An example of the feature extraction process for a single nt is given

below. Explanation of all features will be given in the following sections.

Suppose that we wish to extract the GC content of DNA as a feature. We begin by

selecting a single nucleotide N in the sequence. From the surrounding nts we count

the number of Gs and Cs. If, for example we chose to look at a window of 99 nts,

this would mean that 44 nts on either side of N would be considered. If 33 of the nts

inside this 99nt window were either G or C, the GC content would be 33
99

= 0.333.

For the region surrounding nucleotide N, the GC content is 0.333. This number then

becomes the value of the GC content feature associated with N. This is what is meant

by the extraction of numerical features from DNA. All algorithms which are used to

extract features in this research follow this pattern of operation.

For each type of feature that is extracted from a sequence, a different algorithm is

employed which extracts numerical values from sequences of DNA. These algorithms

have been referred to as sensors by some authors such as Uberbacher[48]. Some of

the feature extraction(sensor) algorithms below have previously been described in the

manuscript[49].
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2.0.3 Nucleotide Periodicity

In the process of translation, specific amino acids are added to a peptide chain one

at a time. The resulting protein serves a function which is entirely determined by this

sequence. The specification of amino acids is stored within a DNA sequence using

a system of three letter words known as codons. All amino acids without exception

are associated with a specific set of three letters. A result of this is a detectable

periodicity of 3 in the occurrence of bases inside coding regions which is not observed

in non-coding sequences. Periodicity refers to the occurrence of repeated patterns or

cycles at regular intervals within a dataset.

Autocorrelation functions are widely employed in various fields to study the pres-

ence of periodicity in data. In the context of time series analysis, autocorrelation

functions can identify and quantify the degree of correlation between a sequence and

its lagged versions. By calculating autocorrelation functions, researchers can detect

and measure the strengths of these periodic patterns. This information is particularly

valuable in the field of signal processing, where the identification of periodic signals

is crucial for making predictions and extracting meaningful insights.

In DNA analysis, autocorrelation functions have been used to identify periodicity

and repetitive patterns within nucleotide sequences. DNA sequences exhibit various

levels of periodicity, ranging from short repeats, such as dinucleotide or trinucleotide

repeats, to longer repetitive elements, such as transposable elements or gene duplica-

tions. By computing the autocorrelation function of a DNA sequence, scientists can

uncover the presence of these periodic motifs, which can have significant biological

implications. The level of periodicity in DNA sequences can help researchers studying

gene regulation, functional elements, and even the evolutionary history of species.

Autocorrelation functions of nucleotide occurrence can be used to measure the

period-3 signal which occurs in coding regions. This method was used by Fickett in

his gene prediction algorithm[50]. The formula used in this method is borrowed from
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his work:

A1 = number of A nts at positions 1, 4, 7...

A2 = number of A nts at positions 2, 5, 8...

A3 = number of A nts at positions 3, 6, 9...

Sac = Aautocorrelation =
Max(A1, A2, A3)

Min(A1, A2, A3) + 1
(2.1)

An alternate method of measuring the period-3 signal of a sequence is a discreet

Fourier transform (DFT). Several DFT based gene prediction methods have been

developed which aim to utilize this periodicity[11, 24, 51].

To calculate nucleotide periodicity using DFT, the four bases {A,T,G,C} which

comprise a sequence must be translated into a mathematical representation using an

encoding scheme. Many encoding schemes have been explored in previous research[22,

52, 19]. While some encoding schemes have been shown to result in gene prediction

accuracy differences, these differences have always been very minor.

DFT periodicity sensors utilize a binary encoding scheme. DNA sequences are

transformed into arrays of binary sequences highlighting the locations of specific bases

using the following mapping: A→ [1000]T , T → [0100]T , G→ [0010]T , C → [0001]T .

Given the stacked binary string x(j) of four rows, the output for the j-th stacked row

is given as:

Sdftk

[
x(j)

]
=

∣∣∣∣∣
W−1∑
n=0

x(j)
n e−i2πn

k
W

∣∣∣∣∣ (2.2)

where x(j)
n is the binary value of the element of the string x at position n for stack j.

The magnitude of the resulting DFT signal at a frequency of k = W
3

is the period-3

signal. The DFT sensor output is given as:
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Sdft =
4∑
j=1

∣∣∣∣∣
W−1∑
n=0

x(j)
n e−i

2
3
πn

∣∣∣∣∣ . (2.3)

2.0.4 K-mer Frequency Occurrence

This sensor has been described in previous work[49]. The frequencies of occurrence

of specific nt words or k-mers in coding regions are known to be different than those

in non-coding regions [53, 31, 54]. Sliding one base at a time within a window,

each k-mer is associated with two frequency weight factors, where their ratio is used

to differentiate different types of regions. At any location along the sequence, the

frequency weight factors of k-mer k inside the coding and non-coding regions are

respectively given by p1(j|k) and by p0(j|k). Here j runs from 1 to 4k representing a

distinct k-mer. The ratio of these frequency weight factors for the j-th k-mer within

a window is given by:

Sk(j) = − ln

(
p1(j|k)
p0(j|k)

)
(2.4)

For a window of size W nt and a k-mer size of k, a feature is calculated as the sum of

all Sk(jn) where jn specifies the specific k-mer found along the sequence at position

n:

SKk =
W−k−1∑
n=1

Sk(jn) (2.5)

where five k-mer sensors are implemented, requiring k = {2, 3, 4, 5, 6} to be calculated.

Statistical weights are estimated from DNA sequences in the training sets. To

achieve 1000 to 1 statistics, a number of sequences containing a total of 4k×k× 1000

bases is extracted from both coding and non-coding regions of the training set. The

probabilities p1(j|k) and p0(j|k) are calculated by the total number of the k-th k-

mer divided by the total number of bases within the extracted sequences. When
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calculating SKk of test sequences, the values of p1(j|k) and p0(j|k) from the training

sequence are used.
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Figure 2.1: An example of the differences in log likelihood of occurances of all kmers
of size k=3 in Drosophila melanogaster Chromosome 2L.

Greater k-mer sensor effectiveness should occur when k-mer distributions of training

and test species genomes are very close. However, even when this is not the case,

strong signals can be extracted form k-mer frequency analysis. Evidence of this will

be seen in the results section where k-mer sensors are reliably the best predictors of

coding nucleotides across many species.

2.0.5 GC Content

The GC fraction of a segment of DNA is known to correlate with many properties

of the DNA such as parent species or location in a genome. Higher GC content has

also been shown to have a greater propensity for coding regions [55, 56, 30, 41]. The

GC content algorithm calculates the GC content of a sequence, denoted as Sgc. Let
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the numbers of each base inside a window be given by nA, nT , nG and nC , then GC

content is given by

Sgc =
nG + nC

nA + nT + nG + nC
. (2.6)

2.0.6 Nucleotide Content

The nucleotide content of a sequence refers to the fraction of the sequence which

belongs to a particular nucleotide {A, T,G,C}. The content of each nt has been

shown to differ by a small amount between coding and non-coding sequences[50].

By itself, nucleotide content is only a weak indicator of CDS versus nonCDS status.

However, as part of a collection of features is can be shown to make a measurable

difference in accuracy[50].

Nucleotide content algorithms calculate the fraction of x nts in a sequence where

x = {A, T,G,C}, denoted as Sx. Let the numbers of each base inside a window be

given by nA, nT , nG and nC , then x content is given by

Sx =
nx

nA + nT + nG + nC
. (2.7)

2.0.7 Start and Stop Codon Proximity

This sensor has been described in previous work[49]. Within a segment of DNA

containing a gene, start and stop codons are located at natural boundaries between

coding and non-coding regions. Moving in the forward direction from 5’ to 3’, a start

codon marks a division point with non-coding sequence to the immediate left and

coding sequence to the immediate right. Similarly, a stop codon marks a division

point with coding sequence to the left and non-coding sequence to the immediate

right. It stands to reason that there could be a statistically significant difference in

the sequence composition of DNA which lies to the left or right of these codon motifs.
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Four features are defined that take into consideration the nt distance on either side

from the query nt to the nearest start and stop codon motifs. For a window size of

W nt and distance D nt from the center of the window to the nearest start or stop

codon motif, the feature output is given by

Sdis = max
(
W

2
−D, 0

)
. (2.8)

Note that the identified motifs within a window are used to determine the distance D,

but they are generally not actual start and stop codons. Four start and stop codon

features are generated for each sample base: one to indicate the distance to the right

of the nearest start codon, one to indicate the distance to the left of the nearest start

codon, one to indicate the distance to the right of the nearest stop codon and one

to indicate the distance to the left of the nearest stop codon. Furthermore, when no

start/stop codon motif is found, Sdis = 0.

2.0.8 Splice Site Proximity

The same method as the start/stop codon distance algorithm is applied to the

nearest canonical splice sites. More than 98% of CDS subregions produced by splicing

are bounded by canonical "AG" acceptor sites on their left edges and canonical "GT"

donor sites on their right edges. Four algorithms are implemented to track the left

and right sides of the “AG” acceptor site and the “GT” donor site.

2.0.9 Entropy

This sensor has been described in previous work[49]. It has been shown that coding

regions have less entropy than non-coding regions [57, 58, 59]. A window of nucleotides

can be viewed as an emitter for a random sequence. Neglecting correlations, the naive

entropy per base of this emitter is calculated as
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Sent =
−1
W

∑
b

nb P (b) logP (b) (2.9)

where P (b) is the probability of base b with b = A, T,G,C. The values of P (b) are

calculated by counting the occurrence of each base inside the window. For example,

P (A) = nA/W . Unlike k-mer sensors, the statistical weights for P (b) are determined

based on the numbers of nucleotides observed within the window.

2.0.10 Classification Methods

The sections above define the feature space used in this method. Below is a descrip-

tion of the two ML methods that operate inside this space. A brief overview of some

basic hyper-parameters used by the NNs and RFs will be given here. An advantage

of this method is its modular design such that changes to NN or RF configuration

can be implemented independently of modifications to the sensors or feature space.

2.0.11 Neural Network Classifiers

All neural networks were implemented in TensorFlow. The results presented here

all feature dense, fully connected architectures. All neuron use Scaled Exponential

Linear Unit (SELU) activation functions[60]. This activation function has proven

highly successful in other fields an some initial experimentation showed that it gave

better results than other activation functions although a highly detailed analysis

of alternate activation functions was not conducted. Training loss functions were

determined using sparse categorical cross entropy from logits. All NNs were trained

using the Adam optimization algorithm[61].

Five fold cross validation was implemented by dividing each training set into fifths

and training five separate NNs, each on a different 80% subset of the total training

set. In each case the 20% of training data left out served as a validation set. All

NNs were trained using 200 epochs although a final stable value of the validation loss

function was always observed very early in training. After many tests, no additional
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gain was ever observed in terms of validation loss functions beyond about 100 epochs

depending on the parameters of the model being trained. The choice of 200 training

epochs more than exceeds the point of zero gain in all cases.

2.0.12 Random Forest Classifiers

Random forests were implemented in R using the randomForest() package. The

number of variables RFs were trained by minimization of the Gini impurity index at

each branch:

Gi =
N∑
i=1

p(i) ∗ (1− p(i))

where N is the number of possible classes and p(i) is the fraction of that class in the

predictions as each branch. A branch which has only members of a single class would

have a Gini impurity of zero because for the given class p(i) = 1 and 1 − p(i) = 0

while for all other classes p(i) = 0. The branch then has a ’pure’ separation of classes

and would allow for perfect classification of samples which arrive on that branch of

the decision tree.

Five fold cross validation was not implemented for RF methods here. Many training

runs using different sets of randomly selected nucleotides quickly showed what was

also observed with the NN based method. When fully trained, RFs with identical

architectures would always converge to virtually the same accuracy values on a given

validation set. For this reason, it was deemed unnecessary to implement five fold

cross validation.

One advantage of RF methods is their ability to clearly illuminate the importance

of each feature in the sample space. Each time a branch is created within a decision

tree, a value is determined which splits the data into two categories based on a single

feature and minimizes the Gini impurity index of both branches combined. If, over

the course of training a large number of decision trees, a particular feature is shown
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to have very little impact on reducing the Gini index, that feature can be considered

less important. This feature of RFs was used to adjust the types of sensors in the

final models due to certain sensors low contribution to accuracy.

2.0.13 CDS Prediction Algorithm

In eukaryotic organisms, with few exceptions, the CDS regions that make up genes

are bounded by highly conserved motifs. Vast amounts of experimental evidence has

been collected which indicates that the identities of nucleotides immediately adjacent

to a CDS region are not free to take on any values. Currently this method only

takes into consideration canonical start, stop and spice sites. Many studies have been

conducted which show that these sites account for over 98% of all sites [62, 63, 64].

2.0.14 Determination of potential CDS regions

A description of this process has been published in[49]. A gene composed of a single

CDS begins with an ATG start codon followed by an integer number of three letter

codons, and ends with one of the three canonical stop codons, {TAG, TAA, TGA

}. All prokaryotic genes belong to this single CDS form. The genes of eukaryotic

organisms are usually composed of several CDS regions, which are combined by splic-

ing before translation. A multiple CDS gene consists of three types of CDS regions,

referred to as "start," "internal" and "stop" CDS regions. A "start" CDS begins

with an ATG start codon, followed by a number of bases and usually terminating in a

canonical GT donor splice site. A typical "internal" CDS is bounded by the canonical

AG acceptor and GT donor splice sites. An "end" CDS begins with an AG acceptor

site and terminates with a stop codon.

A search for all start (ATG) and acceptor (YAG) site motifs is conducted across

the entire sequence. When a start or acceptor motif is found, a secondary search for

downstream stop {TAG, TAA, TGA } or donor (GT) motifs is conducted. When

a downstream stop/donor motif is found, the region between the start/acceptor and
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stop/donor is considered a potential CDS and the site coordinates are added to a list

of all potential CDS regions. The search for downstream stop or donor motif sites

continues until a user defined number of motif sites have been passed. This number

serves to limit the maximum length of potential CDS regions.

Limiting this length is mostly done to reduce computing time as this process gen-

erates a very large number of potential CDS regions through combinatorics and ex-

tremely long CDS regions become extremely rare past a certain point. Studies of exon

length distributions across many species have been conducted such as this one by

Hawkins[65]. These studies in combination with potential user knowledge of individ-

ual organisms is used to determine a good estimate for maximum CDS consideration

length.

An earlier implementation of this method used a set number of nts to limit max-

imum CDS consideration length. However it was found that counting downstream

stop/donor motifs was consistently more accurate(see results). An alternative method

was proposed which would set a limit on CDS lengths by counting the number of ac-

cepetor (YAG) sites instead of donor (GT) sites. However, the total number of YAG

sites was extremely close to the total number of GT sites for any given CDS length

(figure 2.3).

The number of stop or donor motifs which are found within CDS regions but are

not true splice sites was found to be species dependent. For example, in textitD.

melanogaster chromosome 2L, slightly more than 5% of CDS regions contained more

than 50 GT sites which were not true splice sites but in textitH. sapiens chromosome

21 less than 0.6% of regions contained this many non-splice GT sites. This observation

is related to the known differences in mean CDS length between species. The number

of stop/donor sites to consider which lie downstream from each start/acceptor site

is a user defined parameter. In practice, an accurate setting is not required as no

difference in accuracy is observed across a very wide range of values once the total
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D. melanogaster

Figure 2.2: A distribution of CDS lengths for all CDS regions in textitD. melanogaster
chromosome 2L which contained 36 or more GT motifs.

number of sites to consider exceeds about 30 GT or stop motifs. This make sense

as limiting the maximum length too much would prevent the method from locating

long CDS regions while overestimating the limit poses no inherent problem beyond

increasing computation time.

2.0.15 CDS/nonCDS voting threshold

A description of this process has been published in[49]. Within each potential

CDS region, the initial predictions are counted. If N1 equals the number of positive

initial predictions (coding nts) inside the potential CDS and N0 equals the number
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Figure 2.3: The number of YAG acceptor sites passed inside all CDS regions is
strongly correlated wit the number of GT sites passed. This plot represents combined
data from all model organisms used in this study.

of negative initial predictions then a ratio N1
N0

can be assigned to every potential

CDS region. To generate a set of adjusted predictions, a user defined CDS/nonCDS

threshold is chosen. All potential CDS regions for which N1
N0

is above this threshold are

adjusted so that all nts within the potential CDS are converted to positive predictions.

Potential CDS regions for which N1
N0

is below the threshold are converted to zeros. All

predictions for regions which lie outside a potential CDS are also converted to zeros. In

other words, a potential CDS is predicted to be a true CDS if the following condition

is met inside the CDS region:

Positive predictions

Negative predictions
> Threshold
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XXXAGXXXXXXXXXXGTXXX

00010110111011100001

00000111111111100000

Splice site
Potential CDS colored in REDDNA sequence

Initial predictions (from NN)

Adjusted predictions if N1/N0 > Threshold:
00000000000000000000
Adjusted predictions if N1/N0 < Threshold:

N1: number of positive ‘1’ initial predictions inside potential CDSN0: number of negative ‘0’ initial predictions inside potential CDS

Splice site
A

B

C

D Potential CDS length L = 10 nt
Figure 2.4: CDS prediction algorithm. [A] The location of splice site motifs indi-
cates a potential CDS. [B] Initial NN predictions classify each nt as either coding
1 or non-coding 0. Within a potential CDS, the number of initial coding predic-
tions is N1 and the number of non-coding predictions is N0. [C] If N1

N0
is above the

current CDS/nonCDS threshold, all nts inside the potential CDS become positive 1
predictions. [D] If N1

N0
is below the threshold, all nts inside the potential CDS be-

come negative 0 predictions. Nts which do not lie between valid splice site motifs are
automatically converted to negative 0 predictions.

The CDS/nonCDS threshold affects sensitivity and specificity. As the CDS/nonCDS

threshold increases, the number of positive initial predictions inside a potential CDS

required to mark that CDS as true increases and fewer potential CDS regions will

meet the threshold. This causes the number of false positives to decrease but unfor-

tunately will also inevitably reduce the number of true positives as some true CDS

regions may not meet the higher threshold. The converse applies to both true and

false negtives with both decreasing as the threshold increases. The result of this is a

decrease in sensitivity and increase in specificity at higher thresholds.

The trade off between sensitivity and specificity is not always equal however and

there is always a range of CDS/nonCDS thresholds which give superior results in
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terms of balanced accuracy (BA). Balanced accuracy is the mean of sensitivity and

specificity:

BA =
Sn+ Sp

2
(2.10)

As a single metric, BA gives an incomplete picture of how good a set of predictions

is. However it has proven a useful way of comparing results when increases in Sn are

accompanied by decreases in Sp or the reverse.

2.0.16 Setting the CDS/nonCDS voting threshold

Calculating Sn and Sp from predictions on a known dataset gives insight into how

the CDS/nonCDS threshold behaves. However, when attempting to locate genes in

a new organism it is impossible to calculate these numbers. A system of setting the

optimal CDS/nonCDS threshold without access to known labels must therefore be

employed. One statistic that can always be calculated without any knowledge of the

species being studied is the total fraction of DNA which was predicted to be coding

by the method.

The fraction of DNA which codes for proteins in the genomes of many organisms

can be estimated from similar organisms. In humans, a mean coding fraction of

2.07% has been estimated for the whole genome[1]. Variation exists between chromo-

somes. Coding fractions of chromosomes 18, 19, 21 and 22 are 1.2%, 6.2%, 1.2% and

2.5% respectively. Most other mammals also have a similarly low coding faction of

their genome. For example, estimates of some mammalian species fractions of cod-

ing DNA are given by:H. sapiens : 2.07%, M. musculus : 2.55% and Pan troglodytes

2.27%. This contrasts to estimates of the following single celled yeast organisms: Sac-

charomyces cerevisiae: 72.45%, Candida glabrata: 64.95% and Schizosaccharomyces

pombe 57.70%.

Our results have shown that the predicted fraction of coding DNA can be used to
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estimate an optimal CDS/nonCDS threshold without any reference to labeled data.

A sweep over CDS/nonCDS thresholds is carried out, starting low and gradually

increasing. At each iteration, all potential CDS regions are evaluated as either true

or false. The total fraction of test DNA predicted as coding is then calculated by

dividing the total number of nucleotides inside true CDS regions and dividing by

the total number of nucleotides in the test sequence. If this fraction is significantly

above the expected level, the CDS/nonCDS threshold is increased again and the

process repeats. Once a set of CDS predictions are made for which the fraction of the

predicted coding nucleotides is below a user defined estimate, the process is complete

and the current predictions are accepted.

For example, if the fraction of coding DNA on H. sapiens chromosome 21 was

predicted to be above 0.25 or 25%, it would be obvious that the method is generating

far too many false positives. By increasing the CDS/nonCDS threshold, a higher

level of evidence is required before predicting each CDS region. This results in fewer

predicted CDS regions and a lower predicted fraction of coding DNA. When predicting

CDS regions in H. sapiens chromosome 21, the CDS/nonCDS threshold was increased

until less than 10% of the nts in the chromosome where predicted as coding.

After this threshold is set, Sn, Sp and other metrics are calculated. Plots of ac-

curacy metrics as functions of threshold value or predicted coding fraction will be

shown in the results section which will give insight into the threshold setting pro-

cess. More examples of settings currently used in this research include the fruit

fly D. melanogaster and flatworm C. elegans with coding fractions below 0.17 and

0.28 respectively. In the case of D. melanogaster chromosome 2L, the CDS/nonCDS

threshold was increased until less than 20% of the nts in the chromosome where pre-

dicted as coding. In C. elegans chromosome I, the results shown were found when

below 40% of nts were predicted as coding (also shown in results).
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2.0.17 Unassembled sequences

Test sequences from unassembled or partially assembled reads or may not have a

fraction of coding nucleotides representative of a parent species. For example, many

datasets consist of short DNA sequences which are selected to contain single genes

such as the EGASP dataset[38]. Due to the removal of vast amounts of intergenic

DNA, the coding regions in this dataset may occupy significantly more than 3% of

each sequence. In this case, the above strategy is not applicable and an estimate

must be made when setting a CDS/nonCDS threshold. Extensive testing has shown

strong patterns regarding the best values of this parameter which will be shown in

the results section.

2.0.18 Adjustable threshold

For the CDS regions of any given organism, there is a mean length. Deviations

from this mean become increasingly rare as the distance from the mean increases.

A potential way to reduce the prediction of false positive CDS regions is to increase

the threshold for potential CDS regions which a longer or shorter than the expected

mean CDS length. As the mean length of CDS regions is fairly similar between

closely related organisms, an estimate of the expected mean can often be made for

an un-annotated genome.

When implemented however, adjusting the CDS/nonCDS threshold in this way had

a large and definite negative impact on accuracy with over 0.1 drop in F1 score on

the G3PO dataset. Further analysis was not conducted on this method. One possible

reason for this result is that the initial predictions which were recorded before the

CDS prediction step were innately accurate enough to limit the occurrence of overly

long or short CDS regions. In other words, very long and very short potential CDS

regions were not a source of false positives to begin with. Adding an additional barrier

to these long or short regions merely resulted in the loss of true positives instead of
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Figure 2.5: A potential method of restricting prediction of overly large or small CDS
regions was to increase the voting threshold required for potential CDS regions which
differed in length from a predicted mean value. This method was found to reduce
accuracy significantly.

false positives.

2.0.19 Overlapping potential CDS regions

Start and stop codon motifs as well as splice site motifs such as YAG and GT are

very likely to occur by chance in both intergenic and intronic regions of DNA. When

generating a list of all possible CDS regions which are defined by these motifs, a large

number of overlapping potential CDS regions are found. In nature however, true

CDS regions which overlap are virtually non-existent. Several strategies for handling

these overlapping regions have been explored with varying degrees of success. Three

methods will be outlined in this section with data presented in the results section.

These methods are referred to as overlapping, best CDS score and non-overlapping.

The most basic strategy and the one which was first implemented was to rely com-

pletely on the CDS/nonCDS voting threshold. In this method, any and all potential
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CDS regions which encompassed a sufficient number of nts with positive class pre-

dictions was considered a true CDS region. If the initial predictions generated by

the NN or RF were accurate enough, then there should theoretically be a proper

CDS/nonCDS voting threshold which would separate overlapping CDS regions in

such a way as to eliminate improper overlaps. This method performed well as has

essentially outperformed other, more complex methods. This is called the ovelapping

method.

The second method is to look at each family of overlapping potential CDS regions

and choose only the only which has the highest CDS/nonCDS ratio. While seemingly

logical, this method did not perform well. This is called the best CDS score method.

A third method is to set a minimum intron length and then reduce the search space

for potential CDS regions by disallowing potential CDS regions which lie downstream

from a previous potential CDS region unless the distance between the previous and

current potential CDS regions is greater than the minimum intron length. This is

called the non-overlapping method. A comparison of different methods of handling

overlapping potential CDS regions is shown in the results section.

2.0.20 Alternate threshold definition

An alternate threshold definition was implemented for the latest RF based results.

In the previous method, the CDS/nonCDS threshold at which a potential CDS was

predicted as a true CDS was simply a ratio of the number of predicted coding nts

inside a potential CDS versus the number of predicted non-coding nts. The alternate

definition relates the fraction of positive predictions inside a potential CDS to the

fraction of positive predictions in the entire sample:

Positive fraction (potential CDS)

Positive fraction (entire sequence)
> Threshold

When dealing with whole chromosomes, the positive fraction of the entire sequence
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is the total number of positive nt predictions divided by the total length of the

chromosome. In situations where small samples of DNA are being studied such as the

G3PO dataset, the positive fraction of the entire sequence is the number of positive

predictions divided by the total length of the sample sequence. This modification of

the voting threshold was found to give a mean increase in F1 score of approximately

0.1 on the G3PO test dataset. This modification has only been applied to the RF

based method.

2.0.21 Training Dataset Preparation

Training dataset formats for both NN and RF methods are identical. Each training

dataset is composed of an Nfs ∗Ns array where Nfs is the number of feature sensors

employed and Ns is the number of nucleotide samples. Every nt in the training set is

assigned a label of ’1’ if it belongs to a known CDS region and ’0’ if it does not. Nts

which belong to CDS regions which are only sometimes part of a completed mRNA

due to splicing are considered coding for both training and testing purposes.

Fully annotated chromosomes from the following model species were used to con-

struct training datasets: textitDrosophila melanogaster (assembly BDGP6.32) Chro-

mosome 2L, Homo sapiens (assembly GRCh38) chromosome 21, Mus musculus (as-

sembly GRCm39) chromosome 19, Caenorhabditis elegans (assembly WBcel235) chro-

mosome I, Arabidopsis thaliana (assembly TAIR10.54) chromosome 1 and Saccha-

romyces cerevisae (assembly R64-1-1.54) chromosome IV. All FASTA and GFF files

used in datasets are available at https://ftp.ensembl.org/pub/release-103/fasta/ and

http://ftp.ensembl.org/pub/release-103/gff3/.

Fully annotated chromosomes specify the locations and boundaries of all known

CDS regions. The coding or non-coding status of every nt can therefore be deter-

mined and the chromosome is referred to as a ’labeled’ chromosome. Each training

dataset is generated by randomly selecting Ns labeled nucleotides from a single la-

beled chromosome. First, all CDS labeled (assigned 1) nucleotides are grouped and
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N1 of these are randomly selected without replacement. Second, all nonCDS labeled

(assigned 0) nucleotides are grouped, and N0 of these are randomly selected with-

out replacement. No distinction between intergenic or intron regions are made for

nonCDS labels. Note that Ns = N1 +N0.

Training on imbalanced sets of coding versus non-coding samples was observed to

increase sensitivity at the expense of specificity (or vice versa), but these trade-offs

were deemed a net loss in general. Therefore, in this work N1 = N0 = Ns/2. If the

situation ever arises where a researcher specifically needs to increase Sn or Sp, the

option to skew training data is effective.

In this work, each NN training set has ten million nts, or Ns = 106. Each set

is further divided into fifths to generate five balanced training-validation sets. Each

model is therefore trained on 8, 000, 000 nucleotides with 2, 000, 000 nucleotides used

as validation. Data from NNs trained on 1 million nts is also included in some cases

to serve as evidence that more training data most likely offers little advantage.

2.0.22 Model Organism Test Datasets

Each of the fully annotated chromosomes specified above serves as a test dataset.

NNs or RFs which are trained on samples from one organism are used to predict all

nts in each chromosome of the non-training organisms. Zero overlap between training

and test organisms is present in these results.

2.0.23 G3PO Test Dataset

The use of ’standard’ datasets against which gene prediction methods can be tested

is well established. Unfortunately, the number of these datasets in existence makes

them far from standard. In addition many well known datasets suffer from a lack

of organism diversity. This becomes apparent when methods which perform well on

simple datasets immediately lose accuracy when presented with more complex test

sets. An common occurrence which has been noted by many authors[47, 37].
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A highly diverse and well researched dataset known as the G3PO benchmark

dataset was constructed in 2020[37]. It is composed of 1793 experimentally veri-

fied genes from 147 non-model eukaryotic organisms. The range of species is very

broad and includes members of every eukaryotic kingdom. Accurate annotation was

extensively researched by the authors. Each sequence in the dataset represents a sin-

gle gene that includes all exons and introns, augmented by short segments of flanking

DNA.

The G3PO dataset was constructed to serve as a bechmark test set to evaluate gene

prediction methods on DNA from non-model organisms. The original paper compared

the performance of five well known ab initio gene prediction methods: Genscan [66],

GlimmerHMM [67], GeneID [68], Snap [69] and Augustus [10].

Mean nt level sensitivities(Sn) and precisions(PPV) across all species in the G3PO

dataset were reported as: Genscan (Sn:0.50, PPV:0.57), GlimmerHMM (Sn:0.74,

PPV:0.43), GeneID (Sn:0.38, PPV:0.52), Snap (Sn:0.38, PPV:0.45) and AUGUSTUS

(Sn:0.51, PPV:0.58). Each method was run with default settings using organism

specific models that are phylogenetically similar to each gene. These results are clear

indication that the field of gene prediction has much room for improvement.

2.0.24 Evaluation of Performance: Sensitivity and Specificity

For the purposes of gene prediction, all nucleotides belong to one of two classes.

The positive class includes nts which are inside a region of DNA which codes for

protein. These regions are referred to as CDS regions. Some genes can be spliced in

alternative patterns. Nucleotides within CDS regions which are only translated some

of the time are still considered coding. Nucleotides which belong to regions of DNA

which are never translated into protein are members of the negative class.

In evaluation of performance, the following definitions are therefore relevant. A

true positive (TP) is a nucleotide which is known to belong to a CDS region and

which is predicted to be in the positive class by the classifier. A fale positive (FP) is
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a nucleotide which does not belong to a CDS region and which is predicted to be in

the positive class by the classifier. A true negative (TN) is a nucleotide which does

not belong to a CDS region and which is predicted to be in the negative class by the

classifier. A false negative (FN) is a nucleotide which does belong to a CDS region

and which is predicted to be in the negative class by the classifier.

The technical definition of the term accuracy is the number of samples which are

correctly classified versus the total number of samples. For samples which belong to

only two classes:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.11)

Accuracy is not generally considered a useful metric in gene prediction due to the

highly unbalanced ratio of coding to non-coding nts in most genomes. In unbalanced

datasets such as these, very high accuracy can often be obtained trivially. For exam-

ple, a method which simply predicts all nts as non-coding would achieve an accuracy

of over 96% on human chromosome 21 which is composed of less than 3% coding nts.

For this reason, other metrics are considered much more relevant.

The most common metrics for evaluating gene prediction performance are sensi-

tivity (Sn) and specificity (Sp):

Sn =
TP

TP + FN
(2.12)

Sp =
TN

TN + FP
(2.13)

The arithmetic mean of Sn and Sp is known as balanced accuracy or BA. BA is not

a commonly used metric of performance. In many situations however, a large number

of results must be compared which have similar but slightly different values of both

Sn and Sp. In these situations the BA is often a convenient metric (equation 2.10).
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2.0.25 Evaluation of Performance: Precision and F1 score

The value of specificity as a measure of gene prediction accuracy has been debated.

The designers of the EGASP gene prediction dataset argued that the large numbers of

non-coding nucleotides present in most DNA made specificity a less relevant measure

due to the large number of true negative classification results [47]. They argue that

precision (PPV) is a more useful metric:

PPV =
TP

TP + FP
(2.14)

In some cases, the mean between sensitivity and precision is a useful comparison

tool. We refer to this metric as MSP:

MSP =
Sn+ PPV

2
(2.15)

The F1 score has been proposed and used by some authors as a single value mea-

surement of gene prediction performance. The F1 score is defined as the harmonic

mean of sensitivity(sometimes referred to as precision) and precision:

F1 = 2 ∗ Sn ∗ PPV

Sn+ PPV
(2.16)

F1 =
TP

TP + 1
2
(FP + FN)

(2.17)

However, the F1 score has been criticized as a metric due to its known dependency

on the class balance of test data. Specifically, a test dataset which has a high pro-

portion of negative class samples produces significant downward pressure on the F1

score[70]. The assessment of accuracy in gene prediction methods is highly dependent

on the test dataset. It is common for methods to report their Sn and Sp values on

small sets of curated DNA sequences. These datasets eliminate a large amount to
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non-coding intergenic DNA. This re-balancing of test data in the direction of positive

samples is exactly what the authors of [70] suggested would cause an increase in F1

scores. For this reason, the F1 score, like other single number metrics of accuracy, is

considered non-ideal.



CHAPTER 3: Results

3.0.1 Neural Network Results

One of the original goals of the NN based method was to achieve high cross species

accuracy. A common flaw in gene prediction methods is that they learn patterns

which are species specific. While this may be an advantage if an organism being

studied has a closely related model organism which can provide training data, often

the organism being studied is not closely related to any organisms with well annotated

genomes. The ability to make accurate predictions when trained on species that are

not closely related to the test organism is what we refer to as cross species accuracy.

The results in this section reflect this goal and in each case both test species and

training species are indicated in order to ascertain cross species results. An extreme

case is explored when NNs trained on DNA from single organisms are applied to

ever gene in the G3PO dataset. Despite not selecting phylogenetically close training

organisms, high accuracy was achieved on this dataset.

3.0.2 Neural Network: Training Results

Initial training consisted of a standard five fold validation process. Each training

set was divided into five equal parts. Five neural networks were then trained on

subsets of the training set which consisted of 4/5 of the total training set with the

remaining 1/5 held in reserve for validation. It was found that the loss function

values on the validation sets quickly dropped to a low value then leveled off. When

comparing the validation set accuracies from all models after training, the mean was

found to be 0.814 with a standard deviation of 0.016. This low SD implies that the

choice of sample nts used to train the models does not significantly affect their final
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state.

The five fold validation process results in a total of 20 trained neural networks

available for evaluation. All 20 of these models are evaluated on the test sets.

Training sets with greater than 1 million samples were found to give very little

gain in accuracy. To demonstrate this point, results from NNs trained on both 800

thousand and 8 million samples are compared in this section. These numbers derive

from the fact that only 80% of nts selected in a training set are every used at one

time to train a given NN due to five fold cross validation (20% is always removed for

validation. The mean increase in BA from 8 million training samples as opposed to

800 thousand samples was only 0.01. According to a paired t-test this increase was

not significant with p > 0.1.

Some experimentation was conducted which used NNs trained on an uneven ratio

of positive and negative samples. Over many trials it was found that an even ratio,

where the number of positive and negative training samples were equal, gave the best

results. As expected, the number of true positive increased when training data was

skewed towards more positive samples but this was virtually always accompanied by a

more significnt increase in false positives. An example of this is show for NNs trained

on C. elegans chromosome I. For this reason, the results presented here are only for

models trained on an equal number of positive and negative samples.
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Figure 3.1: An example of the extremely predictable trade off between true and false
positives as a function of the ratio of positive and negative samples from C. elegans
chromosome I used to train a NN. A similar effect was found in NNs trained on all
other species.
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3.0.3 Neural Network: Model Organisms

These values each report the mean taken over five NNs, each trained on a different

80% subset of a 1 or 10 million nt training set. The standard deviations in Sn and Sp

are low, almost always below 0.02. This fact was observed without exception and is

evidence that the specific nts selected as training samples is relatively un-important.

Table 3.1: Accuracy results from a NN trained on 8 million sample nts. These results
were produced without the CDS prediction algorithm in order to compare them to
results from a NN trained with more data. Mean values for all results: Sn = 0.72, Sp
= 0.72, BA = 0.72.

D. mel. H. sap. M. mus. C. ele.
(test) (test) (test) (test)

D. melanogaster Sn:0.78 Sn:0.83 Sn:0.75 Sn:0.47
(training) Sp:0.84 Sp:0.53 Sp:0.65 Sp:0.9

BA:0.81 BA:0.68 BA:0.7 BA:0.68
H. sapiens Sn:0.63 Sn:0.94 Sn:0.67 Sn:0.73
(training) Sp:0.78 Sp:0.61 Sp:0.78 Sp:0.65

BA:0.7 BA:0.77 BA:0.73 BA:0.69
M. musculus Sn:0.85 Sn:0.45 Sn:0.75 Sn:0.65
(training) Sp:0.64 Sp:0.95 Sp:0.82 Sp:0.75

BA:0.74 BA:0.7 BA:0.78 BA:0.7
C. elegans Sn:0.74 Sn:0.84 Sn:0.65 Sn:0.84
(training) Sp:0.72 Sp:0.46 Sp:0.66 Sp:0.75

BA:0.73 BA:0.65 BA:0.66 BA:0.8

After obtaining initial nucleotide level predictions from the NN, CDS regions are

predicted by increasing the CDS/nonCDS threshold until the predicted coding frac-

tion is below an estimate of the known coding fraction of a similar species. The

coding fraction is the fraction of nucleotides which belong to coding regions inside a

sequence. For the results in Table 1 the target coding fractions are: D. melanogaster :

0.2, H. sapiens : 0.1, M. musculus : 0.1 and C. elegans : 0.4. Table 3 lists Sn and Sp

when trained and tested using all training/testing combinations of the four species.

The CDS algorithm gives a small mean gain in BA beyond the raw NN predictions.

However, according to a paired t-test, this gain is not significant on average with
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Table 3.2: Accuracy results from a NN trained on 800 thousand sample nts. These
results were produced without the CDS prediction algorithm in order to compare
them to results from a NN trained with more data. Mean values for all results: Sn =
0.77, Sp = 0.65, BA = 0.71.

D. mel. H. sap. M. mus. C. ele.
(test) (test) (test) (test)

D. melanogaster Sn:0.9 Sn:0.85 Sn:0.79 Sn:0.52
(training) Sp:0.69 Sp:0.51 Sp:0.61 Sp:0.88

BA:0.8 BA:0.68 BA:0.7 BA:0.7
H. sapiens Sn:0.56 Sn:0.93 Sn:0.55 Sn:0.58
(training) Sp:0.85 Sp:0.56 Sp:0.88 Sp:0.78

BA:0.7 BA:0.75 BA:0.72 BA:0.68
M. musculus Sn:0.96 Sn:0.78 Sn:0.93 Sn:0.9
(training) Sp:0.39 Sp:0.75 Sp:0.51 Sp:0.48

BA:0.68 BA:0.76 BA:0.72 BA:0.69
C. elegans Sn:0.78 Sn:0.86 Sn:0.69 Sn:0.8
(training) Sp:0.68 Sp:0.49 Sp:0.62 Sp:0.77

BA:0.73 BA:0.68 BA:0.66 BA:0.78

p > 0.1. It was observed that the majority of cases where BA decreased were instances

where M. musculus was used as either training or test organism. The potential gain

in accuracy from the CDS prediction algorithm is only part of its purpose as this step

also results in biologically sound predictions which are properly bounded by start,

stop and splice site motifs.

A high CDS/nonCDS threshold will cause Sn to decrease while a low threshold will

cause Sn to increase. Sp is affected in the reverse direction. For any CDS/nonCDS

threshold the overall gain outweighs the overall loss. In many instances, an increase

in Sn is accompanied by a decrease in Sp. In these situations the balanced accuracy

(BA) is a useful way of determining if the net overall change is a gain or loss.
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Table 3.3: Accuracy results from a NN trained on 8 million samples with CDS
algorithm processing. CDS/nonCDS thresholds at which results were measured are
given. Mean values for all results: Sn = 0.73, Sp = 0.74, BA = 0.74.

D. mel. H. sap. M. mus. C. ele.
(test) (test) (test) (test)

D. melanogaster Sn:0.82 Sn:0.78 Sn:0.61 Sn:0.78
(training) Sp:0.87 Sp:0.71 Sp:0.81 Sp:0.73

BA:0.84 BA:0.74 BA:0.71 BA:0.76
Th: 10 Th: 18 Th: 29 Th: 1

H. sapiens Sn:0.66 Sn:0.77 Sn:0.58 Sn:0.76
(training) Sp:0.83 Sp:0.75 Sp:0.88 Sp:0.68

BA:0.74 BA:0.76 BA:0.73 BA:0.72
Th: 4 Th: 10 Th: 4 Th: 2

M. musculus Sn:0.88 Sn:0.61 Sn:0.93 Sn:0.76
(training) Sp:0.56 Sp:0.92 Sp:0.5 Sp:0.67

BA:0.72 BA:0.76 BA:0.72 BA:0.72
Th: 29 Th: 24 Th: 29 Th: 23

C. elegans Sn:0.63 Sn:0.73 Sn:0.46 Sn:0.89
(training) Sp:0.84 Sp:0.62 Sp:0.81 Sp:0.71

BA:0.74 BA:0.68 BA:0.64 BA:0.8
Th: 21 Th: 29 Th: 25 Th: 5
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Figure 3.2: Sn and Sp curves as functions of CDS/nonCDS threshold. Each column
represents a single test species. For each test species, predictions from NNs trained
on different species DNA were compared indicated by different colors.
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3.0.4 Neural Network: Alternative architectures

The method presented here is based on a dense neural network. However, many

attempts were made to construct a method based on recurrent neural network (RNN)

architecture. The networks used LSTM nodes in place of standard fully connected

neurons. The results from these experiments showed promise, but had an unpre-

dictable tendency to suddenly become an all or nothing classifier. Some trained RNN

models would simply predict all nts were coding or all nts were noncoding. This

resulted in extreme values for sensitivity or specificity. This phenomenon was not

predictable beforehand. Several RNNs trained on the same data would not all be-

come trapped in this way. For this reason it was decided to direct attention away the

RNN based models.

Figure 3.3: Results from a small, two layer RNN. While some results are good,
there are clearly some intances where the RNN became trapped in an over or under
predicting mode. This can be seen in some of the results which have extremely low
Sn or Sp values.
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3.0.5 Neural Network: G3PO Test Dataset

We applied the same 20 distinct trained NNs from above to every gene in the G3PO

dataset. For each set of five NNs which were trained on the same species (see Neural

Network: Training Results above) we predicted coding or non-coding status of every

nt in each sample gene. Results are separated by training species.

An optimal CDS/nonCDS threshold could be not be set for each gene using the

predicted coding fraction method. This inherently puts our method at a disadvantage.

For reasons given above, the method being developed here relies on an estimate of

the coding fraction in sample DNA. In practice, this estimate can be made when the

sample DNA is a complete chromosome. In this case, CDS predictions are evaluated as

the CDS/nonCDS threshold is varied from 1/3 to 15. At each iteration, the threshold

is held fixed to observe the mean results at that threshold across the whole dataset.

As already stated, our method requires a complete chromosome to make esti-

mates of an optimal CDS/nonCDS threshold by observing the predicted coding frac-

tions. Yet even in a situation where no estimate can be made, there is a range of

CDS/nonCDS thresholds for which Sn and Sp values are equal to or higher than those

produced by many the other ab initio methods tested in [37].

At a fixed threshold of 0.7, NNs trained on H. sapiens and M. musculus were able

to clearly outperform methods GeneID, GlimmerHMM and Snap while only trailing

slightly behind methods AUGUSTUS and Genscan. This can be seen in the table of

results presented in this section.

As shown in figure 3.4, across all genes, the mean Sn decreases and mean PPV in-

creases as the CDS/nonCDS threshold increases. This figure shows a clear trend that

high threshold values are not ideal on average. Low threshold values were consistently

found to be, on average, superior in terms of Sn and PPV. To further examine this,

distributions were generated which tracked the best threshold values in terms of F1

score and balanced accuracy for each gene in the dataset. It can clearly be seen that
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high fixed thresholds are not ideal.
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Figure 3.5: Distribution of CDS threshold values which maximize balanced accuracy
and F1 score per gene.
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When dealing with whole chromosomes, an estimate of the true CDS fraction allows

the CDS/nonCDS threshold to be set with much greater confidence. As this was not

the case when using a single, fixed threshold across all genes, the mean values of Sn,

PPV, MSP and F1 score are below what could be expected when better estimates

could be made on a per organism basis. To gain some insight into how well this method

could perform on a broad range of species in situations where superior estimates could

be made, we have included the mean maximum F1 scores and MSP values which are

obtained on the G3PO dataset. These values were calculated by scanning the results

of each gene individually and selecting the threshold which maximized either F1 score

or MSP. The mean of these maximum scores across all genes gives an upper bound

estimate which could be obtained with individual threshold settings. These numbers

show that with correct threshold settings, this method has the potential to outperform

other methods.

Table 3.4 is a summary of accuracy metrics over the G3PO dataset. Values for

the five comparison methods are taken from[37]. Rows which are labeled by a species

name followed by the word FIXED are results for a single fixed threshold value applied

to every gene in the dataset. Rows labeled MSP or F1 show values when thresholds

are selected on a per gene basis which maximise either the mean of Sn and PPV

(MSP) or the F1 score. For these rows, the mean threshold which was chosen is given

as well as the standard deviation of these threshold values. In all cases low values

were observed to have the best mean performance.

With fixed thresholds, none of the NNs were able to defeat all five competing

methods in terms of F1 score. However, models trained on H. sapiens or M. musculus

DNA were both able to achieve F1 scores of 0.47 which is greater than the F1 scores

of methods GeneID, GlimmerHMM and Snap. When allowed to vary threshold values

in order to maximize F1 scores these models were able to achieve higher mean F1

scores than all five competing methods.
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Table 3.4: Summary of Sn, PPV, MSP and F1 on the GP3O dataset for the
five top performing methods and the sensor-NN method for three cases: when the
CDS/nonCDS threshold is fixed at 0.7 or set to maximize MSP or F1 scores. The
mean CDS/nonCDS threshold required to maximize the target metric and the stan-
dard deviation of these threshold values are also reported.

Sn PPV MSP F1 Th SD
AUGUSTUS 0.51 0.58 0.55 0.52 NA NA
Genscan 0.50 0.57 0.54 0.51 NA NA
GeneID 0.38 0.52 0.45 0.40 NA NA

GlimmerHMM 0.74 0.43 0.56 0.45 NA NA
Snap 0.38 0.45 0.42 0.39 NA NA

D. melanogaster MSP 0.69 0.50 0.59 0.47 1.75 4.88
D. melanogaster F1 0.67 0.54 0.60 0.51 3.41 5.73

D. melanogaster Fixed 0.60 0.45 0.53 0.43 0.7 0
H. sapiens MSP 0.84 0.48 0.66 0.53 2.11 5.34
H. sapiens F1 0.71 0.53 0.62 0.54 3.75 5.85

H. sapiens Fixed 0.74 0.44 0.59 0.47 0.7 0
M. musculus MSP 0.80 0.48 0.64 0.52 2.36 5.84
M. musculus F1 0.83 0.42 0.63 0.55 5.31 6.71

M. musculus Fixed 0.74 0.44 0.59 0.47 0.7 0
C. elegans MSP 0.71 0.50 0.61 0.47 1.48 4.47
C. elegans F1 0.66 0.54 0.60 0.49 2.93 5.36

C. elegans Fixed 0.60 0.46 0.53 0.41 0.7 0
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3.0.6 Random Forest Results

The design goal of the RF based method was slightly different than that of the NN

based method. Rather than attempting to achieve cross species accuracy, the goal was

to obtain universal accuracy. A combination of several RF classifiers were combined.

Each RF was trained on a different model species. The combined RFs were then

tested against several whole chromosomes from each model organism. Chromosomes

used for training were not used as test chromosomes.

An expanded set of model organisms were chosen to serve as training and test

organisms for the RF based method in an attempt to make the method more universal.

New organisms include Arabidopsis thaliana and Saccharomyces cerevisae. These

introduce genomes from plant and fungal kingdoms which were not present in the

NN results. The decision was made to remove M. musculus DNA from both training

and test sets. It was found that despite the mouse being a model organism, its genome

was not nearly as well annotated as the other model organisms being used.

3.0.7 Random Forest: Training Results

Five random forests were trained on DNA from different model species. These

species and the chromosomes used to generate the training sets include: textit-

Drosophila melanogaster (assembly BDGP6.32) Chromosome 2L, Homo sapiens (as-

sembly GRCh38) chromosome 21, Caenorhabditis elegans (assembly WBcel235) chro-

mosome I, Arabidopsis thaliana (assembly TAIR10.54) chromosome 1 and Saccha-

romyces cerevisae (assembly R64-1-1.54) chromosome IV. All FASTA and GFF files

used in datasets are available at https://ftp.ensembl.org/pub/release-103/fasta/ and

http://ftp.ensembl.org/pub/release-103/gff3/. As before, nts which lie inside a known

CDS region according to the GFF files are labeled as coding regardless of whether or

not the CDS belongs to a gene which optionally transcribes the CDS due to alternative

splicing.
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Each RF consisted of 2 thousand decision trees and was trained on 100 thousand

randomly selected sample nts. A 50/50 split between coding and non-coding nts was

chosen to train each RF. Training of each tree used the maximum branch purity

method which minimized Gini index at each branch. 100 thousand samples was

deemed sufficient as gains in accuracy beyond this point were virtually zero. A table

of values is shown below which compares several accuracy metrics from RFs trained

on 25, 50 and 100 thousand samples. The results are convincing evidence that using

more training data is of minimal value.

The 16 sensors used in the NN method above were used to train several RF clas-

sifiers. The variable importance calculation results indicated that some sensors were

far more useful to the RF when fitting the training data than others. The k6 sensor,

which indicates the preference of 6-letter k-mer word usage inside each nucleotide

window was shown to be the most important determinant of RF accuracy by far. All

eight of the least important sensors were those which indicated the proximity to start,

stop or splice site motifs. Based on these observations some changes were made to

the range of sensors used in the RF based method.

The eight least important sensors as indicated by mean Gini index decrease were

removed from the RF model. In addition, the GC sensor was removed and replaced by

four sensors which each measured the content of a single base A, C, G or T. The DFT

L3 sensor which measures periodicity three signal was replaced by four independent

auto-correlation sensors. These changes were made due to observations of Fickett in

his gene prediction method[50]. This set of sensors is referred to as the ’14 sensor’

model, while the previous set of sensors used in the NN results above is referred to

as the ’16 sensor’ model.

As a side note, experiments were performed which used NNs trained on the 14

sensor model but a consistent slight decrease in accuracy was observed relative to the

16 sensor model and further experimentation with NNs using this combination was
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Figure 3.6: LEFT: 16 sensor feature importance in order of mean Gini index decrease.
V1) DFT L3 sensor, V2) GC content sensor, V3) k6 sensor, V4) k5 sensor, V5) k4
sensor, V6) k3 sensor, V7) k2 sensor, V8) Donor splice site sensor right, V9) Acceptor
splice site sensor right, V10) Start codon sensor right, V11) Stop codon sensor right,
V12) Donor splice site sensor left, V13) Acceptor splice site sensor left, V14) Start
codon sensor left, V15) Stop codon sensor left, V16) Entropy sensor. RIGHT: 14
sensor feature importance in order of mean Gini index decrease. V1) A content sensor,
V2) C content sensor, V3) G content sensor, V4) T content sensor, V5) k6 sensor, V6)
k5 sensor, V7) k4 sensor, V8) k3 sensor, V9) k2 sensor, V10) Entropy sensor, V11)
A auto-correlation sensor, V12) C auto-correlation sensor, V13) G auto-correlation
sensor, V14) T auto-correlation sensor

not pursued. This is not a strange result as the methods by which RFs use to classify

data are dramatically different than NNs. A RF trained by Gini index reduction may

have no use for certain features while a NNs may be capable of finding some hidden

correlation with other features.
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3.0.8 Random Forest: Model Organisms

Sensitivity (Sn), specificity (Sp), balanced accuracy (BA) and F1 scores are given in

the table below. Four chromosomes from each model species are shown. The predicted

CDS fraction (CDSF) is also shown to as this is a primary source of feedback which

can be used to select a proper threshold. As threshold values are increased, all of these

numbers are affected. From the more detailed analysis which follows, it will be seen

that the best values for the threshold always fall in a zone which makes predictions

such that the CDSF is close to the known fraction of coding DNA. This table gives

an overview of results at specific values of the threshold in order to give an overview

of results.

Table 3.5: RF results over four chromosomes from each model species.

Chromosome Sn Sp BA F1 CDSF Th
D. melanogaster 2R 0.75 0.88 0.82 0.5 0.18 3.3
D. melanogaster 3L 0.72 0.9 0.81 0.49 0.15 3.7
D. melanogaster 3R 0.73 0.9 0.82 0.52 0.16 3.5
D. melanogaster 4 0.69 0.87 0.78 0.45 0.18 4.6
H. sapiens 18 0.63 0.85 0.74 0.03 0.15 4.3
H. sapiens 19 0.6 0.85 0.72 0.13 0.16 3.1
H. sapiens 20 0.68 0.85 0.76 0.06 0.16 3.5
H. sapiens 22 0.77 0.83 0.8 0.06 0.17 3.7
C. elegans II 0.8 0.8 0.8 0.53 0.28 3.0
C. elegans III 0.8 0.85 0.82 0.58 0.24 3.5
C. elegans IV 0.78 0.84 0.81 0.53 0.24 3.5
C. elegans V 0.67 0.83 0.75 0.48 0.24 3.5

S. cerevisae VII 0.95 0.63 0.79 0.75 0.6 1.2
S. cerevisae XII 0.89 0.57 0.73 0.47 0.52 1.6
S. cerevisae XIII 0.88 0.71 0.8 0.73 0.5 1.7
S. cerevisae XV 0.89 0.59 0.74 0.51 0.51 1.7
A. thaliana 2 0.76 0.8 0.78 0.48 0.27 3.2
A. thaliana 3 0.73 0.82 0.77 0.51 0.26 3.2
A. thaliana 4 0.75 0.8 0.78 0.5 0.27 3.1
A. thaliana 5 0.77 0.81 0.79 0.53 0.28 3.1

In the next section, a more detailed analysis of accuracy measures is given for each

model species. An important observation is that maximum values for BA and F1
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scores sometimes occur when predicted CDSF values are above or below the known

coding fraction of the test species. In cases such as H. sapiens where the true

coding fraction of the chromosomes lie between 0.01 and 0.06, the maximal values

of BA an F1 score occur when predicted CDSF is above the known fraction. This

is due to the fact that DNA which has very a low fraction of coding nts present far

more opportunities for false positives than it does for true positives. Increasing the

threshold reduces both true and false positives. Is cases such as S. cerevisae , which

have over 0.7 known coding fraction, the best results occur at thresholds which give

under 0.5 or 0.6 predicted CDSF for the inverse reason.
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3.0.9 Random Forest: D. melanogaster
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Figure 3.7: Sensitivity, Specificity and balanced accuracy as function of predicted
CDS fraction for D. melanogaster chromosomes. The known CDS fraction of the
D. melanogaster genome is 0.17[1].
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Figure 3.8: F1 score and ROC curve as function of predicted CDS fraction for D.
melanogaster chromosomes. The known CDS fraction of the D. melanogaster
genome is 0.17[1]. Shown on the ROC curve are some values of predicted CDSF
which lie close to the known coding fraction.

Several alternative methods of dealing with overlapping potential CDS regions were
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explored (See methods section). A clear pattern was observed which indicated that

allowing the model to predict overlapping CDS regions gave the best overall accuracy.

The exact reason as to why this was observed is not clear but several possible reasons

exist. A figure below compares the F1 score on a single D. melanogaster chromosome

which demonstrates this result.
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Figure 3.9: F1 score comparison between different methods of handling overlapping
potential CDS regions on D. melanogaster chromosome F3R. The plot on the left
is from a method which allows overlapping CDS regions to be predicted. The plot
on the right does not allow overlapping CDS regions and forces a minimum distance
between adjacent CDS regions.

One possible reason is that the distribution of positive predictions inside some

potential CDS regions is not perfectly even. Is situations were small sections of

a larger CDS region have false negative ’holes’, multiple overlapping CDS regions

will look better to the CDS prediction algorithm. If overlapping CDS regions are

eliminated, the it is possible that multiple overlapping regions which look like true

CDS regions will be replaced with a single large CDS regions which does not look like

a true CDS region. Limited but inconclusive evidence for this reasoning was seen in

the drop in true positives which accompanied all attempts to eliminate overlapping

CDS regions. In all cases observed so far, allowing overlapping regions was found to
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give the best results.

3.0.10 Random Forest: H. sapiens
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Figure 3.10: Sensitivity, Specificity and balanced accuracy as function of predicted
CDS fraction for H. sapiens chromosomes. The known CDS fraction of the H.
sapiens genome is 0.02[1].

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predicted CDS fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 s

co
re

H. sapiens H18
H. sapiens H19

H. sapiens H20
H. sapiens H22

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ue

 P
os

iti
ve

 R
at

e

0.11
0.11
0.1
0.09
0.08

0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

H. sapiens WII
H. sapiens WIII

H. sapiens WIV
H. sapiens WV

Figure 3.11: F1 score and ROC curve as function of predicted CDS fraction for H.
sapiens chromosomes. The known CDS fraction of the H. sapiens genome is 0.02[1].
Shown on the ROC curve are some values of predicted CDSF which lie close to the
known coding fraction.
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3.0.11 Random Forest: C. elegans
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Figure 3.12: Sensitivity, Specificity and balanced accuracy as function of predicted
CDS fraction for C. elegans chromosomes. The known CDS fraction of the C.
elegans genome is 0.28[1].
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Figure 3.13: F1 score and ROC curve as function of predicted CDS fraction for C.
elegans chromosomes. The known CDS fraction of the C. elegans genome is 0.28[1].
Shown on the ROC curve are some values of predicted CDSF which lie close to the
known coding fraction.
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3.0.12 Random Forest: S. cerevisae

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predicted CDS fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Se
ns

iti
vi

ty
 / 

Sp
ec

ifi
ci

ty

S. cerevisiae YVII
S. cerevisiae YXII

S. cerevisiae YXIII
S. cerevisiae YXV

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Predicted CDS fraction

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
al

an
ce

d 
Ac

cu
ra

cy

S. cerevisiae YVII
S. cerevisiae YXII

S. cerevisiae YXIII
S. cerevisiae YXV

Figure 3.14: Sensitivity, Specificity and balanced accuracy as function of predicted
CDS fraction for S. cerevisae chromosomes. The known CDS fraction of the S.
cerevisae genome is 0.72[1].
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Figure 3.15: F1 score and ROC curve as function of predicted CDS fraction for S.
cerevisae chromosomes. The known CDS fraction of the S. cerevisae genome is
0.72[1]. Shown on the ROC curve are some values of predicted CDSF which lie close
to the known coding fraction.
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3.0.13 Random Forest: A. thaliana
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Figure 3.16: Sensitivity, Specificity and balanced accuracy as function of predicted
CDS fraction for A. thaliana chromosomes. The known CDS fraction of the A.
thaliana genome is 0.32[1].
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Figure 3.17: F1 score and ROC curve as function of predicted CDS fraction for A.
thaliana chromosomes. The known CDS fraction of the A. thaliana genome is
0.32[1]. Shown on the ROC curve are some values of predicted CDSF which lie close
to the known coding fraction.
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3.0.14 Random Forest: G3PO Dataset

Accuracy on the G3PO dataset was impacted by the lack of estimated DNA coding

fractions. Nevertheless, good results were obtained when compared to other leading

methods. Many experimental modifications to the method have been made which

were determined to be either good or bad depending on the prediction results on this

dataset. Some of these results are presented in this section.

  

  

Figure 3.18: A comparison of mean F1 scores when using different methods of setting
a maximum CDS length to consider. The left figure shows results from a method
which counts the number of downstream stop/donor motifs. The right figure uses a
method which sets the maximum number of nts. A clear increase in F1 score can be
seen in the method which counts stop/donor motifs. Note that this result uses the
first definition of CDS/nonCDS threshold.

Alternate methods of setting the maximum length of potential CDS regions were

compared. Across many trials, the method which counts the number of GT or stop

codon sites was found to be superior. A figure is shown in this section which indicates

measurable drops in F1 score on the G3PO dataset when using a maximum nt method

versus maximum number of GT or stop codon motif sites.

All the results shown in this section were generated using RF classifiers trained on

100 thousand samples with a 50/50 split of positive and negative samples. It was

found that increases in the number of training samples gave virtually no benefit. In
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the figure below, Sn, PPV, Sp, BA and F1 scores are compared between RFs which

were trained on reduced training sets. It is easily seen that the RFs which were

trained on larger amounts of data (100K samples) barely perform any better than

those trained on less data. This is a possible advantage as small amounts of training

data could potentially be incorporated from non-model organisms.

Table 3.6: Comparison of Sn, PPV, Sp, BA and F1 values on the G3PO dataset
between RFs trained on 25, 50 and 100 thousand sample nts. A threshold of 0.9 was
chosen because it was found to give good mean accuracy over the whole dataset.

Samples Sn PPV Sp BA F1 Th
25K 0.90 0.41 0.16 0.53 0.48 0.9
50K 0.90 0.41 0.16 0.53 0.49 0.9
100K 0.89 0.41 0.17 0.53 0.49 0.9

Below is a table of values which include published results from five leading methods

as well as results from the RF based method with several threshold settings. Raw

results from the RF indicate the accuracy of predictions before the CDS prediction

algorithm has been applied. As before, the fixed threshold indicates means results

taken for a single fixed threshold value. F1, BA and JBA rows give the mean values

of results when the thresholds are slected to maximize the F1, BA and JBA scores of

each gene species individually. The JBA metric is an experimental metric we created

which is equal to:

JBA = BA− |Sn− Sp| (3.1)

From table 3.7, it can be seen that a fixed threshold of 0.9 gives an F1 score of 0.49.

At this threshold the RF based method defeats methods GeneID, GlimmerHMM and

Snap but falls behind AUGUSTUS and Genscan in terms of F1 score by 0.03 and 0.02

respectively. When allowed to select thresholds which maximize F1 score, giving an

upper bound estimate, the RF based method is capable of defeating all five competing

methods with an F1 score of 0.55.
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Table 3.7: Comparison of Sn, PPV, Sp, BA and F1 values on the G3PO dataset when
CDS/nonCDS threshold is chosen to maximize various metrics.

Sn PPV Sp BA F1 Th SD
AUGUSTUS 0.51 0.58 NR NR 0.52 NA NA
Genscan 0.50 0.57 NR NR 0.51 NA NA
GeneID 0.38 0.52 NR NR 0.40 NA NA

GlimmerHMM 0.74 0.43 NR NR 0.45 NA NA
Snap 0.38 0.45 NR NR 0.39 NA NA

RF - Raw 0.44 0.49 0.74 0.59 0.40 NA NA
RF - F1 0.73 0.50 0.48 0.61 0.55 1.6 1.9
RF - BA 0.61 0.48 0.71 0.66 0.46 2.1 1.7
RF - JBA 0.58 0.44 0.57 0.58 0.44 1.5 0.7
RF - Fixed 0.79 0.43 0.31 0.55 0.49 0.9 NA

In figures 3.19 and 3.20, it can be seen that mean F1 score and Sn increase as a

result of the CDS prediction method. However, mean PPV decreases regardless of

the threshold value. This behavior is a strong indication that false positives are an

issue even a very high thresholds. The cause of this is currently undetermined.

Low mean PPV values of the method are a remaining weakness of the method.

Some things to note are that that this mean is over 1793 genes with a single CDS/nonCDS

threshold value. Higher values of both PPV and F1 score, which is related to PPV

can be expected when individual thresholds can be set and this can be seen in the

value of the mean OOV when the best threshold is selected for each gene in table 3.7.

Other methods such as GlimmerHMM and Snap also suffer from low mean PPV on

this dataset, while the methods AUGUSTUS, Genscan and GeneID have higher mean

PPV values at the expense of lower mean Sn. This trade off can be quantified by the

F1 score to some extent. AUGUSTUS and Genscan achieve slightly higher mean F1

scores than the RF method, indicating that the trade off was worth it. However the

other methods appear to sacrifice too much Sn for their gain in PPV as indicated by

lower mean F1 scores.
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Figure 3.19: Mean random forest F1 scores over G3PO dataset with fixed
CDS/nonCDS thresholds. Mean values from competing methods are shown by red
dotted lines:: A) AUGUSTUS, B) Genscan, C) GeneID, D) GlimmerHMM, E) Snap.
A dotted blue line indicates RF results before CDS prediction algorithm.
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Figure 3.20: Mean random forest sensitivities and precisions over G3PO dataset with
fixed CDS/nonCDS thresholds. Mean values from competing methods are shown by
red dotted lines: A) AUGUSTUS, B) Genscan, C) GeneID, D) GlimmerHMM, E)
Snap. A dotted blue line indicates RF results before CDS prediction algorithm.
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3.0.15 Remaining Challenges and Potential Improvements

One of the most difficult problems to solve has been the way in which this method

deals with overlapping potential CDS regions. A true CDS region will always have

overlapping potential CDS regions due to the regular occurrence of splice site motifs

such as YAG and GT which arise by chance and do not actually delineate true CDS

boundaries. Start and stop codon motifs also occur by chance.

When the set of all possible CDS regions (potential CDS regions) is generated, each

potential CDS can represent one of three possible states. In the first state, a potential

CDS region perfectly overlaps a true CDS region. In this case, the boundaries of the

potential CDS perfectly locate the splice sites of the true CDS. In the second state,

the potential CDS overlaps a true CDS but only partially. The third possibility is

that a potential CDS does no overlap a true CDS region at all. The vast majority of

potential CDS regions fall into the second two categories.

A NN or RF which is a perfect predictor in terms of nucleotide level classification

would create a set of predictions in which potential CDS regions which are actually

true CDS regions would be completely filled with positive predictions while potential

CDS regions which overlap true CDS regions either partially or not at all. With such

a perfect predictor, true CDS regions could be easily separated from false CDS regions

because the ratio of true versus false nt level predictions would be much higher in

potential CDS regions which perfectly overlap the true CDS regions.

In practice, no NN or RF tested so far is a perfect predictor. This means that

true and false CDS regions can not always be separated by comparing the ratio of

positive and negative predictions inside each potential CDS region. While precise

exon boundaries are not well predicted by the method as of yet, the high values of Sn

and Sp at the nucleotide level indicate that the majority of wrong exons are actually

overlapping true exons. If this were not the case then Sn and Sp would be lower.



CHAPTER 4: Conclusion

This research project examined the effectiveness of new neural network and random

forest based gene prediction methods, aiming to enhance our ability to locate protein

coding regions of DNA in uncharacterized sequences. Through comprehensive analysis

and experimentation, this work has resulted in the development of methods which

can exceed many current methods in terms of accuracy. This was especially clear

when used on a large number of non-model organisms.

Neural networks demonstrated their proficiency in learning patterns and extracting

meaningful representations from genetic data. With their ability to learn improved

representations of data and to explore the altered feature space, neural networks

exhibited great potential in gene prediction tasks. Through training on relatively

small amounts of data, they acquired deep insights into underlying genetic patterns,

enabling accurate gene annotation and classification.

Random forests, known for their ability to handle noisy data and nonlinear relation-

ships, also demonstrated performance in gene prediction tasks which were measurably

superior to many existing methods. The ensemble-based approach, leveraging mul-

tiple decision trees, allowed for accurate predictions and allowed clear analysis of

feature importance. The random forest based method effectively captured unknown

patterns within gene sequences and yielded accurate predictions of coding regions.

By comparing the performance of random forests and neural networks, this research

project highlighted some differences as well as some shared strengths and weaknesses

in gene prediction. Both NN and RF based methods were able to achieve their results

on relatively small amounts of training data. The overall results in terms of prediction

accuracy were very good compared to other methods in the field. However a consistent
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weakness of both methods was a tendency towards false positive predictions.

Furthermore, this study emphasized the importance of feature extraction and en-

gineering techniques in improving the performance of both random forests and neural

networks. Careful selection and extraction of relevant features played a crucial role

in optimizing the predictive models. The modular design of these methods allows

for rapid implementation of modifications which included the addition of new sen-

sors. Gene prediction algorithms which can serve as feature extraction sensors are

constantly being developed which can be incorporated into this method. Much of the

time spent on this project was research into sensors. In addition, the feature space

extracted by the sensors is in a format which is easily processed by any machine

learning methods.

In conclusion, the research project not only contributed to the advancement of

gene prediction methodologies but also provided further evidence for the potential of

non-HMM based machine learning algorithms, specifically random forests and neural

networks, in deciphering complex biological signals. The findings of this study have

implications in various domains, including genetics, bioinformatics, and personalized

medicine, ultimately moving us a step closer towards a deeper understanding of the

genome and its functional elements.
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