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ABSTRACT 
RODNEY ITIKI. Methods for Spatiotemporal Power Profile from Marine Hydro-kinetic 

Energy and Wind Energy for a Proposed U.S.-Caribbean-South America Super Grid 
under Hurricanes. 

(Under the direction of DR. MADHAV MANJREKAR) 
 
 

Global warming and climate change keep causing a catastrophic impact on the 

natural, social, economic, and political environment in many parts of the world. The 

urgency for the transition to a low-carbon economy through CO2 emissions reduction calls 

for innovative methods to harvest renewable energy sources to displace unsustainable fossil 

fuel power in North America. This work presents proposed methods for marine 

hydrokinetic and solar renewable power generation. On another front, since addressing the 

causes of global warming and climate change is not timely enough, this author proposes 

technologies to minimize their effects, which manifest through extreme weather events. 

Since renewables harvesting generates variable power profiles during extreme weather 

events, this work investigates high voltage interconnectors to smooth the total power 

variability of wind power farms far distant between themselves under hurricane events. In 

summary, the proposed methods and high voltage enforcements address the causes and 

effects of climate change and global warming on the existing and future power grids. 

Furthermore, the proposed methods and enforcements lay the foundations for future studies 

on large-scale renewable multi-source super grids, with a consequential impact on reducing 

greenhouse gas emissions and improving power resilience in North America. 
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CHAPTER 1: INTRODUCTION 

Global warming and climate change continue to infringe catastrophic damage to the 

natural, social, economic, and political environment. The urgency to mitigate the impact of global 

warming and climate change calls for a strategy that addresses their causes and effects. 

The causes of global warming are very known by the scientific community. First, 

greenhouse gas emissions must decrease. This necessity can be carried out by the massive 

expansion of renewable energy sources (RES) in the power sector and a fast transition to low-

carbon energy sources, such as solar, wind, and maybe marine hydrokinetic energy.  

The effects of climate change on the power sector are felt by an increase in the intensity of 

extreme weather events threatening the integrity of transmission, distribution, and generation 

assets. Extreme events such as tropical cyclones (hurricanes, typhoons, tropical storms, tropical 

depressions), heatwaves, wildfires, flooding, and severe drought are becoming more intense, as 

projected by the technical literature [1], [2], [3]. The impact of these events may cause the collapse 

of transmission towers, short-circuit of lines, the unexpected peak of power consumption during 

heatwaves, interruption of power transmission to minimize unintentional wildfires in forested 

parks, destruction of aerial power distribution by mudslides, an abnormal decrease in power 

capacity of hydropower plants due to depletion of water resources during severe seasonal drought 

[4]. On top of that, extreme weather events also cause severe power variability in renewable energy 

sources, limiting the optimum performance of the same technology (renewable power plants) that 

addresses the causes of global warming and climate change. 

The electric grid is vulnerable to various threats such as geomagnetic storms, 

electromagnetic pulses (EMP), cyberattacks, and extreme weather events. In particular, wind 

energy variations can cause uncertain impacts on resource potential in electricity generation. High 
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ambient air temperatures can reduce transmission efficiency and available transmission capacity 

in power lines. Wildfires and storm events, including ice storms, can increase the risk of physical 

damage and decrease transmission capacity in transmission and distribution systems [4]. 

This dissertation addresses variations in wind patterns that lead to uncertain impacts on 

resource potential (e.g., variability caused by hurricanes). 

It becomes clear that environmental systems modeling, weather forecasting included, 

should be taken into consideration for renewable power system studies. Since extreme weather 

events occur in geographical space and in a certain period, the simulation of the power system 

must also be sensitive to the spatiotemporal variability of renewable sources in normal and extreme 

weather conditions. This work covers this significant gap in the power system simulation literature, 

which generally circumvents the computational cost by assuming simplified equivalent models or 

simulations with a small number of generators. [5] 

This work proposes methods to assess marine hydrokinetic, solar, and wind energy in a 

spatiotemporal domain to investigate the potential for large-scale expansion of renewables in 

North America, a region recurrently impacted by extreme weather events. The investigation of the 

expansion of renewables tackles the causes of global warming and climate change.  

This work is organized as follows. Chapter 2, entitled “Literature Review”, presents the 

methods of renewable energy assessment in the technical literature. Also, it introduces the systemic 

representation of the North American power grid. Chapter 3, entitled “Proposed Method for MHK 

Energy Assessment”, presents a proposed algorithm for MHK assessment and a case study with 

the simulation of an MHK farm in North Carolina to demonstrate the functionalities of the 

proposed method. Chapter 4, entitled “Proposed Method for Wind Energy Assessment”, presents 

a proposed algorithm and simulation of an offshore wind farm hit by a hurricane. Chapter 5, 



3 

entitled “U.S-Caribbean Super Grid with MHK, Wind Power and extension to South America”, 

investigates the strategy of hybridization of marine power and offshore wind, coupled with 

interconnecting wind capacity outside the hurricane’s corrido to obtain lower power profile 

variability even on extreme weather events. Chapter 6, entitled “Discussions”, presents the 

implications of the proposed methods to a multitude of disciplines. It also offers a reflection on 

potential topics for future research derived from the proposed methods. Finally, the conclusions of 

this work are presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter investigates the recent advances in renewable energy assessment methods in 

searching for potential gaps for further research. Starting from marine hydrokinetic energy (MHK), 

i.e., the energy from moving waters from oceans, this review also investigates onshore PV solar 

and offshore wind under extreme weather events. Finally, this review investigates architectures of 

large-scale interconnectivity to systemically smooth the impact of power variability of renewables 

before injection to the traditional power grids. 

2.1 Methods for Marine Hydrokinetic Energy Assessment 

Marine Hydro-Kinetic (MHK) is renewable energy in the moving waters of the oceans. 

However, harvesting MHK is not as technically and economically simple as other types of 

renewables. For this reason, MHK power generation is in the initial stage of prototype 

development, testing, and validation worldwide. 

In 2020, Nachtane et al. investigated the MHK turbines with the highest technology readiness 

level in the U.S. and the U.K. [6]. Despite such development of prototypes, scaling up the turbine’s 

aggregation into MHK farms hits the reality that the MHK resource is not equally distributed and 

constant everywhere in the ocean. It is thus necessary to quantify how much power, in 

instantaneous time, an MHK farm can potentially harvest. 

In 2016, He et al. characterized the spatiotemporal variability and power density of MHK 

energy resources in North Carolina [7]. They measured the seawater speed off the coast of North 

Carolina using an Acoustic Doppler Current Profiler (ADCP), and they calculated the average 

mean seawater speed in the upper layers of the Gulf Stream. The annual profile of MHK power 

density shows high variability ranging from 0 to values in excess of 3 kW/m2 for the same month 
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[7]. A mismatch of 200 W/m2 is observed between their proposed model of the Gulf Stream and 

the value from the ADCP speed measurements. 

The power density was calculated by the theoretical equation [7]:  

    𝑃௜௡ =
ଵ

ଶ
𝜌𝑆ଷ     (1) 

where 𝜌 is the water density in Kg/m3, and 𝑆 is the instantaneous water speed in m/s. Using the 

water speed data from the ADCP and applying (1), Hu et al. derived the power density profile and 

calculated its annual average power density (1,016 W/m2). According to Hu et al., some published 

studies suggest that around 40% of the power in the ocean current is the maximum that is 

reasonable to expect [7]. 

This research partially investigates how much power can be collected instantaneously by a pre-

selected distribution of turbines located in an oceanic stream. The water speed profile, although 

instantaneously measured by the ADCP, is averaged for the specific location. Additionally, the 

calculated power based on (1) is the kinetic energy density of the water flow in front of the turbine. 

The kinetic energy left in the water after the blades, and losses from the shaft, gearbox, electrical 

generator, power converter, are not discounted in the calculation. In other words, the final and 

useful product of a turbine is the electrical output power. Also, Hu et al. observed an error of 17% 

between their proposed model and the power profile calculated from the water speed profile [7]. 

In 2017, Chawdhary et al. reformulated the theoretical power equation, adding more parameters 

to account for the turbine design specifications [8]:  

    𝑃௜௡ =
ଵ

ଶ
𝜌𝐴𝐶௣𝑆ଷ     (2) 

where 𝐶௣ is the power coefficient of the turbine, typically around 0.35 to 0.4 [9], 𝜌 is water 

density, 𝐴 = 0.25𝜋𝐷ଶ is the area intercepted by the turbine, 𝐷is the diameter covered by the 

rotational blades, and 𝑆 is the incoming fluid velocity. Tested MHK turbine prototypes operate 
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within cut-in (minimum) and cut-out (maximum) speed range [10] [11] [12]. Equation (2) does not 

account for these limits. 

The power generated by each MHK turbine can be more precisely estimated by considering time, 

each location, and the curve of speed versus output power obtained from MHK turbine testing. It 

should also be calculated using the measured water speed data instead of model-generated data to 

eliminate the propagation of modeling error into the MHK power estimation. These gaps are the 

focus of this work. 

 

2.2 Methods for Wind Energy Assessment. 

Modeling is applied to several issues involving hurricanes—the distribution of hurricane 

counts [13]; the prediction of hurricane track [14], intensity [15] and structure [16]; the prediction 

of landfalling hurricanes [17] and the economic damage caused by these landfalls [18]. 

There are also models that ponder the economic savings of waiting for improved forecasts 

to avoid unnecessary preparations and the higher risks of reducing the lead time to take the 

preparation measures for an oncoming hurricane [19]. 

Modeling is also used to predict hazards caused by rainfall, winds, and surge [20], as well 

as, to predict the rainfall itself [21], the sea-wave parameters [22], and the maximum wind speeds 

[23], [24], profiles [25] and fields [26]. This work, though, intends to focus on the interaction of 

hurricanes and electrical power. Some relevant aspects regarding electrical-energy generation 

structures submitted to extreme wind conditions are reviewed below. 

Ahmed and Cameron (2014) present a review of the economic, social, and technical 

challenges to the steady growth of wind power generation. For onshore wind turbines, fauna and 

flora impacts, as well as visual and noise pollution, are relevant issues [27]. 
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For offshore wind turbines, these impacts may be reduced at the expense of additional 

technical challenges and costs [27]. Furthermore, due to climate changes, there might be an 

increase in the incidence of cyclones, which corroborates the importance of the present study. 

Foley and colleagues (2012) advocate the importance of wind-power forecasting. Some 

forecasting approaches use historical data, while others apply the outputs of a numerical weather 

prediction model as inputs to wind-power forecasting methods [28]. A suitable weather model 

depends on the definition of the geographical region to be modeled and the spatial resolution, the 

forecast horizon and the time resolution, and the accuracy or the time constraint for the numerical 

simulation [29]. In order to reduce the influence of initial conditions and systematic errors, 

ensemble weather forecasting may be used. This ensemble prediction could be obtained by either 

different initial conditions and parameter values on a single weather-prediction model or even by 

multiple weather prediction models [29]. 

Wang and collaborators (2021) proposed a parametric model to estimate wind speed in 

hurricanes. The model’s parameters are obtained from cross-polarization synthetic aperture radar 

(SAR) images [30]. The model’s estimates are then validated by comparison to wind-speed 

measurements and direct estimates from three hurricanes [30]. The relatively simpler model has 

shown outstanding performance in representing wind distribution asymmetries, except for the 

hurricane eye area [30]. 

Wang and colleagues (2015) proposed a sophisticated statistical technique to model and 

accurately estimate extreme wind speeds. These estimates were validated by the historic wind 

record of the 23-year interval between 1990 and 2012. They were also comparable to the results 

provided by other statistical methods described in the literature [31]. Nevertheless, a method used 

to model 10 to 22-year old data may not be adequate to forecast current extreme events. Indeed, 
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the modeling should be updated with recent extreme weather events since there might have been 

an increment in their intensity due to climate change, particularly influenced by the increasing 

global warming. Another limitation is that the model was based on site selection—certain 

hurricane-prone areas were discarded from the modeling. However, in order to design hurricane-

proof turbines and explore wind energy in hurricane-prone areas, it would be important to consider 

these extreme-weather condition areas [32]. 

According to Murthy and Rahi (2017), wind characteristics determine which wind-turbine 

technology is suitable for a specific site. The turbine type, in turn, defines if that prospective 

location is economically feasible. Consequently, it is important to assess the wind-power potential. 

Besides a review of installed capacities, estimated potentials, and wind-turbine technologies, 

Murthy and Rahi also present the technologies for wind resource assessment. These encompass 

the mathematical modeling of conifer-tree deformation due to wind speed and the fitting of 

Weibull distribution to the wind-speed measurements. Data could be recorded by instruments 

mounted on masts and should preferably be collected over a 10-year period with a 10-minute 

sampling interval. Besides it, the estimation of wind energy output is also presented in that review. 

For the hourly, monthly, or annual estimations, several input variables could be considered, 

including the historic seasonal variations of wind-power availability and the frequency distribution 

of wind speeds [33]. 

Hashemi and collaborators (2021) developed a method to assess the structural integrity of 

the monopile jacket substructure under extreme wind and wave loads. The study was directed to 

Rhode Island and Massachusetts, as they were considered potential sites for future offshore wind 

farms. To analyze the issue of structural integrity, a computer simulation synthesized hurricane 

wind fields based on a parametrical model previously described in the literature [34], [35]. This 
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simulation provided not only wind speeds and hurricane trajectories but also the spatial distribution 

of wave heights. These simulated variables were then input to an open-source wind-turbine 

simulation software that provided the response variations of a typical turbine monopile jacket 

substructure. [36]. This method could be extended to other hurricanes besides the two specific ones 

that were modeled in the study. 

In 2019, Muhs and Parvania developed a tool for the generation of hurricane events, 

simulation of scenarios, and analysis of the spatiotemporal impact of hurricanes on power grid 

resilience. The spatiotemporal hurricane-simulation module generates a wind-speed profile 

according to Weibull’s distribution. Besides it, this module is used for a thousand hurricane paths. 

Each path depends on randomly selected values of normal-distributed approach angle and landfall 

location, as well as lognormal-distributed translation velocity, whose mean and standard deviation 

values are defined by historical data. The second module determines the distance of each grid 

component to the hurricane eye, the wind speed curve, and the correlation between wind speeds 

and the fragility curve to assess the impact on the specific line or pole. According to Muhs and 

Parvania, one possible improvement is that their method uses a straight-line trajectory for 

hurricane movement, and a non-linear hurricane path could be explored in the future [37]. 

In 2020, Watson and Etmadi proposed a hurricane-wind damage model dedicated to 

renewable and non-renewable power plants. The inputs of the modeling are the historical hurricane 

speed data from a private company (Risk Management Solutions, Inc.) for hurricanes Ike and Rita 

and a government agency (NOAA) for hurricane Harvey.  Their method is based on ArcGis (a 

software that finds the intersection of a wind gust speed map with the grid elements) and Hazus 

(Hurricane Loss Estimation Methodology developed by FEMA, the U.S. Federal Emergency 

Management Agency). The output assesses damage to overhead transmission lines, poles, and 
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power plants based on nuclear, gas, coal, solar, and wind and restoration costs caused by hurricanes 

[38].  

It is important to pinpoint that, in these two latest studies, hurricanes are seen as a source 

of damage and cost for the power infrastructure.  

In contrast with these two previous works, this research considers hurricanes not 

exclusively as a source of damage and restoration cost but also as a source of electrical power 

profile variability, potential carbon abatement, and revenue for utility companies. Furthermore, the 

trajectory of historical hurricanes is not linear, and this work derives the equations for parabolic 

trajectory, which is more adherent to the historical hurricane trajectories. 

Moreover, the super grid proposed in the case study of this research is built on submarine 

power cables. In contrast to overhead transmission lines, submarine cables by virtue of deep-water 

columns, naturally protect the cable against the impact of hurricanes  [39]. 

Submarine cable has been a long-time solution for interconnectivity of the wind power 

farms, mostly in Europe [40] [41], but also in China [42], Japan [43], South Korea [44], Taiwan 

[45], Vietnam [46], and the northeastern offshore coast of the U.S. [36] [47]. 

However, despite being a hurricane-proof solution for interconnectivity, submarine power 

cables have hardly been considered along the Caribbean Sea and the Gulf of Mexico, a region 

well-known as the front-end of the hurricane alley of North America [32]. The Caribbean super 

grid built on submarine cables, as proposed in this research, is a very opportune case for 

investigation. 

Another two critical components of the power grid resilience under a hurricane are the 

mechanical structure to support the wind turbine and the turbine itself. The design reinforcements 

on the mechanical structure supporting the wind turbine to withstand hurricanes are on the large 
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suction caissons, long piles for monopiles [48], or in the jackets [49] [50]. As the wind turbine by 

itself is a concern, the literature shows many advances to turn the turbines more resilient to 

hurricanes [51] [52] [53], for example, turbines with either an extended cut-out speed [54], or a 

soft cut-out at high speed [55]. 

To the best knowledge of this author, most of the literature regarding the impact of 

hurricanes on energy generation is concerned with either the mechanical effect of hurricanes on 

wind turbine substructures and overhead transmission lines or the averaged energy resource 

characterization. The electrical impact of hurricanes on an offshore wind farm's power profile has 

not been well covered by the literature [32]. This work intends to fill this research gap. 

2.3 North American Power Grid 

The technical literature on power system simulation of the power grid in North America 

assumes simplified equivalent models or a limited “n” number of buses and generators in typical 

IEEE n-buses systems or newly proposed ones [56] [57] [58]. FIGURE 2.1 shows an example of 

a newly proposed North American power grid topology presented in [58].  
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For power system simulations, a fragment of the energy sources dataset is normally 

collected from databases of historical measurements or just assumed to be constant in different 

levels of renewable penetration. Then, a proposed new control scheme of a power electronics 

converter is modeled, simulated, and compared against a reference benchmark [59] [60] [61] [62] 

[63]. This approach is computationally doable for a small number of generators and a fragment of 

a historical dataset of energy resource profile as input. However, scaling up the simulation with 

hundreds of renewable generators and associating variable energy sources to each generator 

demands expensive supercomputing platforms and a large dataset of historical energy resource 

measurements. The data acquisition may take measures from each second, minute, hour, month, 

FIGURE 2.1: Topology of proposed North American SG [58] (© 2020 IEEE).
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season, and year. A hybrid combination of two or more resources, e.g., offshore wind and wave 

energy, may complement each other from an average seasonal perspective but not instantaneously. 

Not rarely the location of the renewable generator is not correctly associated with any physical 

location (latitude and longitude). The renewable power system, in this case, is studied disconnected 

from the meteorologic conditions. However, in real-world conditions, the renewable energy 

resources intensity varies significantly for each location. This is another gap in the literature on 

power system simulation. 

The proposed methods for renewables assessment based on environmental system 

modeling can generate a short-term day-ahead power flow profile. In other words, the proposed 

methods and tools use renewable energy forecasting, modeling, and spatial distribution to estimate 

renewable power generation. This work explores the temporal and spatial variability of renewable 

resources to generate spatiotemporal power generation profiles. 

In 2019, Itiki et al., recognizing the importance of the variability of renewable resources, 

conceptualized a generalized architecture for offshore power systems incorporating environment 

subsystems onto the traditional elements of a power system [39]. 

In 2020, Itiki et al., during their investigation of the benefits of large-scale power 

interconnectivity schemes between countries, called super grids, realized the importance of the 

modeling of environmental systems to analyze the large-scale dynamics of power variability of 

super grids [64] [32]. Most of these discoveries are presented in the following sections of this 

dissertation. A comprehensive understanding of power system dynamics under weather events is 

developed in the next chapters of this dissertation.  
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CHAPTER 3: PROPOSED METHOD FOR MHK ENERGY ASSESSMENT 

In 2021, Itiki et al. proposed a method for MHK assessment based on seawater speed data 

from high-frequency radar [65]. The proposed method estimates the total MHK energy harvested 

by turbines spatially distributed in the ocean current. The MHK energy is variable in time and 

space. The method represented by an algorithm is implemented in MATLAB. It reads hourly 

measurements of seawater speed to estimate the power profile of the generated MHK farms. In the 

U.S., some speed measurements from high-frequency (HF) radars in coastal areas are publicized 

on the internet by the National Oceanic and Atmospheric Administration (NOAA). The algorithm 

functionality is demonstrated in a case study with the NOAA radar measuring the seawater speed 

of the Gulf Stream off the coast of North Carolina. The peak value of the power profile sets a 

reference for the sizing of the MHK platform equipment and cabling. The algorithm is also useful 

for planning renewables expansion of utility companies, selection of offshore sites with high power 

output, techno-economic feasibility studies, and subsequent engineering steps for a proposed MHK 

farm project [65]. 

The method for MHK assessment is categorized as an intelligence system of a proposed 

architecture of an offshore power system with interconnection with the onshore grid. FIGURE 3.1 

depicts the MHK power generation and interacting components of the architecture of the offshore 

power system [39]. 
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3.1 Proposed algorithm for MHK assessment based on High-frequency radar. 

FIGURE 3.2 shows the proposed algorithm for estimating the MHK power generation 

profile. The algorithm is structured in blocks: Block-1 creates the coordinates of the array of 

turbines of the MHK farm and the hub according to the user-defined reference coordinates. Block-

2 gets the coordinates and speed data from the HF radar file, which is available online by the 

NOAA [66]. Block-3 interpolates the characteristic curve of power versus speed of the turbine 

provided by the turbine manufacturer or the technical literature [67] [10] [11] [12]. Blocks-4, 5, 6, 

and 7 calculate and aggregate the power-time profile of each turbine into the MHK farm hub. 

 
 

FIGURE 3.1: Architecture of Offshore Power System, adapted from [39].  
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Blocks-8 and 9 store the power-time profiles of turbines on the MHK farm. Block-10 plots a map 

with the turbine arrays created in Block-1. Block-11 plots the location of the HF radar 

measurements captured by Block-2. Block-12 plots the total power-time profile and the mean 

water speed in the MHK farm [65]. 

 

 

 

 
 

FIGURE 3.2: Proposed algorithm for MHK power profile [65]. (©2020 IEEE). 
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The conversion of seawater speed to power by the MHK turbines involves mechanical 

rotation of blades, gearbox, electric generator, and power electronic converter. For modeling and 

calculation purposes, such energy conversion is obtained by accessing the water speed versus 

power curves to generate the water speed profile of each MHK turbine. The turbines are distributed 

in an array of microgrids, each collecting the power of a matrix of MHK turbines populated in a 

parallelogram-shaped distribution over the offshore map. The proposed algorithm is 

mathematically represented by the following equation [65]: 

𝑃௢௨௧(𝑡௞) = ෍ ෍ ෍ 𝑃௧ ቂ𝑡௞ , 𝑠ௗ ቀ𝑇௜௝௞ − 𝑆(𝑡௞)ቁቃ

௖

௥ୀଵ

௟

௝ୀଵ

௠

௜ୀଵ

 (3) 

where 𝑚 is the number of microgrids per hub; 𝑙 is the number of lines in each microgrid; 𝑐 is the 

number of columns in each microgrid; 𝑃௧ is the power profile of each turbine, derived from the 

power versus water speed curve; 𝑡௞ is the iteration step from 1 to 24 hours; 𝑠ௗ is the water speed 

data, measured by the NOAA HF radar at the point 𝑆(𝑡௞), which is the closest geographical 

coordinates to the point 𝑇௜௝௞  (the MHK turbine position in the offshore map); 𝑃௢௨௧ is the electrical 

output power delivered at the terminals of the turbine set. 

The implementation of the algorithm in MATLAB script is detailed in APPENDIX A. 

FIGURE 3.3 shows the cross-section with the components of the proposed MHK farm. The 

method aggregates the power profile of each turbine into the hub. The hub and the cable capacity 

between the hub and the onshore substation should withstand the peak value of the MHK farm 

power profile. 
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Following the presentation of the details of the proposed algorithm to calculate the power profile 

of MHK farms, this work demonstrates its functionalities by a case study. 

3.2 Simulations of MHK for Gulf Stream off the coast of North Carolina. 

This case study applies the method to proposed MHK farms in the Gulf Stream, off the coast 

of North Carolina. 

FIGURE 3.4 shows the MHK turbine characteristic curve of power versus water speed for the 

case study. The MHK turbine curve is from the technical literature [68]. The shape of the curve 

depends on the design of each MHK turbine prototype. In the future, it is expected turbine 

manufacturers will provide this type of curve after performance tests in real and outdoor conditions. 

Some manufacturers have already succeeded in validating the prototype performance curve for cut-

in (minimum) water speed of 0.7 m/s (IHI) [10] 1.0 m/s (Verdant Power) [12], and 1.2 m/s 

(Magallanes Renovables) [11] 

 
 

FIGURE 3.3: Cross-section of MHK power farms [65]. (© 2020 IEEE) 
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FIGURE 3.5 shows dark blue dots arranged in a parallelogram-shaped distribution, representing 

the MHK farms. The power of 270 turbines in the northern farm is collected by three microgrids 

and dispatched to hub-1. In the southern farm, six microgrids collect and dispatch the power of 540 

turbines to hub-2. Each turbine capacity is 2 MW, totaling a generation capacity of 540 MW in hub-

1 and 1080 MW in hub-2. The yellow dots indicate high values of water speed from the HF NOAA 

radar [65]. The upper 50 meters below the sea surface is an appropriate location for MHK turbines 

 
 

FIGURE 3.4: Curve of power versus water speed [65]. (© 2020 IEEE) 

 
 
 

FIGURE 3.5: MHK farms off the coast of North Carolina [65]. (© 2020 IEEE) 
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because the kinetic energy is higher, and the water speed is similar to the superficial water speed 

[7]. 

FIGURE 3.6. shows the resulting hourly profiles of power and mean water speed in Hub-1 and 

2. Hub-2 (southern MHK farm) yields 150 – 470 MW, i.e., it produces significantly more power 

than Hub-1 (2 – 19 MW) [65].  

 

The poor performance of Hub-1 in harvesting power from the northern farm can be credited to 

three factors. First, Hub-1was allocated with half the number of turbines of Hub-2. Second, the 

 
 

FIGURE 3.6: MHK power profile from simulations [65]. (©2020 IEEE) 
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northern farm, as seen in FIGURE 3.5, is located in a region with low water speed (cyan dots) as 

compared to the southern farm, which is over a high water speed region (yellow dots). Cyan dots 

represent water speed measurements below 1 m/s, whereas yellow dots represent water speed 

exceeding 1 m/s. Finally, as seen in FIGURE 3.4, water speed over 1 m/s generates exponentially 

more power than water speed below 1 m/s. Indeed, water speed below the cut-in speed of 0.5 m/s 

does not generate any power. FIGURE 3.6(b) confirms that the mean water speed profile, on 

average, rarely exceeds 0.5 m/s. Thus, the proposed northern farm is not well located in a region 

with higher potential MHK energy than the southern farm [65]. 

The 470 MW peak power shown in FIGURE 3.6(c) defines the power station capacity of the Hub-

2 platform. The average capacity factor of the southern farm fluctuates around 14% and 46%. The 

water speed data refers to Sept-19, 2020, limiting the time range of the simulations. Nevertheless, 

this case study for the Gulf Stream off the coast of North Carolina demonstrates some functionalities 

of the proposed method for assessing the power profile for proposed MHK farms [65]. 

The method for estimation of MHK power profile delivers the following functionalities [65]: 

 The peak value on the power profile determines the total capacity of the hub platform, the 
onshore substation, and the cable between them. The power capacity determines the capital 
expenditure (CAPEX), whereas the power profile, the revenue for the energy sale to the 
grid, and thus the Levelized Cost of Energy (LCOE). 

 The coordinates of the MHK turbines over the map generated by the method determine the 
area of concern for environmental impact studies and ship navigational safety. 

 The fluctuation in the power profile determines the amount of energy storage and non-
critical flexible loads needed to do peak shaving and valley filling to smooth the overall 
power variability. 

 
For these reasons, a comprehensive multidisciplinary and systemic discussion of the broader 

implications of the method and the proposed MHK power farm is relevant [65]. 
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3.3 Comparison of proposed MHK power profile estimation method and other methods.  

In 2019, Fiorentino et al. investigated methods for water speed measurements on the top 

30 meters of the water column within the Gulf Stream since the literature is neither conclusive 

about the accuracy of capturing water speed data by bottom-mounted ADCPs nor HF radar. They 

proposed a submerged 300 kHz Acoustic Doppler Current Profiler (ADCP) measuring water speed 

to the upward position. The speed measurements buoy was installed at 40.75 km east of Cape 

Hatteras, North Carolina, to capture the waters of the Gulf Stream [69].  

In 2021, Itiki et al. proposed a method for MHK power profile estimation using HF radar 

data [Itiki et al.]. The application of this method for a case study with simulations of two MHK 

Hubs (Hub1 and Hub2) off the coast of North Carolina was presented in the previous subsections. 

In 2022, Muglia et al. proposed a method for seawater speed assessment off the coast of 

North Carolina based on HF radar data from NOAA [70].  

FIGURE 3.7 shows the graphical differences in methods, sensors, and installations used 

for seawater speed measurement used in the literature. FIGURE 3.7(b) shows an ADCP facing up 

to the sea surface, according to the described settings of NOAA 300 kHz ADCP. [69].  

FIGURE 3.7(a) shows an ADCP facing downward to the seabed, according to the described 

settings of the CSI 150kHz ADCP. Both have local coverage for water speed measurement. 

FIGURE 3.7(c) shows the wide-area coverage for water speed measurement by a NOAA HF radar, 

whose data were used by the Itiki in 2021 [65]. In 2022, Muglia et al. also used HF radar data for 

seawater speed assessment in NC [70]. 
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TABLE 3.1 compares four methods of water speed and power estimation utilized off the 

coast of North Carolina. 

 

 
 

FIGURE 3.7: Methods for seawater speed measurements and estimation. 
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           TABLE 3.1: Water speed measurements by ADCP and HF radar off the coast of North Carolina. 

Measuring device 
(sensor) 

NOAA 300 kHz 
ADCP installed in 
buoy off the coast of 
NC 

CSI 150 kHz 
ADCP 

NOAA HF radar 
data available on 
the NOAA website 

NOAA 5 MHz 
HF radar 

Area coverage of 
the water speed 
sensor 

Local coverage 
around latitude & 
longitude 35.1374 N, 
75.0940 W 

Local coverage 
around 20 mi 
south and closer 
to shore 
(40.75 km) 

Wide-area 
coverage of Hub2 
and Hub1 off the 
coast of NC 
 

Wide-area 
coverage of Hub2 
and Hub1 off the 
coast of NC 

Time of the 
measurements 

May to October 2017 Starting in May 
2017 

One-day time 
period (Sept-19, 
2020) in hourly 
resolution. 

November 2014 
with daily 
resolution 
(filtered).  

The actual 
installation of the 
sensor device 

ADCP is installed in 
submerged buoy 
target to 125 m in 
depth and facing up 
to the surface 

ADCP is 
installed on a 
surface floating 
buoy facing 
down to the 
seabed 

HF radar is 
installed onshore at 
high elevations and 
up in a tower. 

HF radar is 
installed onshore 
at high elevations 
and up in a tower. 

Intended 
measurement 
depth 

0 - 50 m depth 0 – 250 m depth Around 2.7 m 
depth 

Around 2.7 m 
depth 

Actual 
measurement 
depth  

ADCP depth ranges 
from 65m to 125m 
below the sea 
surface, occasionally 
160 m depth. 

10 – 250 m 
depth 

Around 2.7 m 
depth 

Around 2.7 m 
depth 

Peak current 
speed 

As high as 3 m/s. 2.05 m/s at the 
surface 

1.7 m/s in Hub2, 
0.62 m/s in Hub1 

1.217 m/s; 
0.783 m/s 

Normal current 
speed 

Ranging 1.5 m/s to 2 
m/s 

1.54 m/s from 5 
m to 100 m 

1.4 m/s in Hub2;  
0.48 m/s in Hub1 

0.962 m/s;  
0.668 m/s 

Current speed at 
few occasions 

0.5 m/s - 1.1 m/s in Hub2; 
0.35 m/s in Hub1 

0.707 m/s; 
0.553 m/s 

Reference Fiorentino et al, 
2019 [69] 

Fiorentino et al, 
2019 [69] 

[Itiki et al.], 2021 
[65]. 

[Muglia et al.], 
2022 [70]. 

Research focus Seawater speed 
profile 

Seawater speed 
profile 

MHK turbine 
power profile 

Seawater speed 
profile 

 

3.4 Comparative analysis of seawater speed measurements 

The comparison of methods of energy assessment takes into consideration common 

features of methods. For this reason, measurements from ADCP, which measures just a specific 

moored point in shallow waters, cannot be comprehensively compared with HF, which covers a 

vast area of measurements, also including deep waters.  
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The measurements by the method for MHK based on HF radar proposed in this dissertation 

by Itiki et al. in 2021 [65] are thus compared with the method proposed by Muglia et al. in 2022 

[70]., which is also based on HF radars. 

TABLE 3.2 shows the percent error of water speed measurement by Itiki's method over 

Muglia's method. The case study applying Muglia's method covers a longer period of time (30 

days), which allows the indication of the speed with standard deviation to represent daily 

variability. Itiki's method covers measurements with 1 hour sample time over 24h period.  

           TABLE 3.2: Comparison of water speed based on HF radar data off the coast of North Carolina. 

Location Method Itiki et al. (Sept 
19, 2020) [65]. 

Muglia et al.  
(Nov 2014) [70]. 

Error 
(%) 

 Peak current 
speed 

0.62 m/s 0.783 ±0.149 m/s  -21% 

Hub1 is close to the 
coverage of HF radar 
HATY 87 over edge 

Average current 
speed 

0.48 m/s 0.668 m/s -28% 

 Minimum current 
speed 

0.35 m/s 0.553 ± 0.146 m/s -37% 

 Peak current 
speed 

1.7 m/s 1.217 ± 0.233 m/s 40% 

Hub2 is close to the 
coverage of HF radar 
CORE 72 over jet axis. 

Average current 
speed 

1.4 m/s 0.962 m/s 46% 

 Minimum current 
speed 

1.1 m/s 0.707 ± 0.289m/s 56% 

 
In Hub1, the water speed daily values from Itiki's method ranges from 0.35 to 0.62 m/s, 

while in Muglia's sample, considering the standard deviation on the peak and minimum speed 

values, the overall seawater speed ranges from 0.407 to 0.932 m/s. The hourly samples excursion 

range used on Itiki's method is mostly within the excursion range of the measurements of Muglia's 

method. The average current speed of Hub1 using Itiki's method is 28% lower than using Muglia's 

method. Hub1 is mostly positioned over the shallow waters off the coast of NC, but not much in 

the direct path of the Gulf Stream as in Hub2. Both methods indicate lower water speed in Hub1 

on average than in Hub2. Both methods thus show consistent average speed numbers. 
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In Hub2, the water speed daily values from Itiki's method ranges from 1.1 to 1.7 m/s, while 

in Muglia's sample, considering the standard deviation on the peak and minimum speed values, 

the overall seawater speed ranges from 0.418 to 1.45 m/s [65] [70]. The hourly samples excursion 

range used on Itiki's method is mainly within the excursion range of the measurements of Muglia's 

method. The average current speed of Hub2 using Itiki's method is 46% higher than using Muglia's 

method. Since Hub2 is located mostly over the Gulf Stream path, it is expected that the water 

current in September being faster than in November. MHK energy peaks in summers and slows 

down in winter [71]. For this reason, the water speed values estimated by Itiki's method are 

relatively consistent with Muglia's method and the expected seasonal variability of the Gulf Stream 

speed. 

The error of speed estimation from Itiki's method for September 19, 2020, is compared and 

calculated on the basis of the average current speed values of Muglia's method, which is derived 

from samples of November 2014. Unfortunately, Muglia et al. in 2022 applied the method over 

samples of 2014, while the Itiki et al. article published in 2021 applied the method over samples 

of 2020. For this reason, the multi-year variability caused by the effects of global warming on the 

available MHK energy in the Gulf Stream is not possible to assess in this analysis. The multi-year 

variability of large-scale weather systems such as El Nino, La Nina, or global warming is also not 

captured in this analysis. In other words, this comparison assumes that the large-scale weather 

variability between 2014 and 2020 is negligible. Itiki's method uses speed data of a selected day, 

as made available by the NOAA's website [65]. In contrast, Muglia et al. analyze the Gulf Stream 

MHK over an entire month, with hourly variability (assumed to be speed data noise) partially 

eliminated by a 24h low pass filter. Despite such limitations, this comparative analysis is presented 

at least under the supposed similarity of area (off the coast of NC) and the same sensor technology 
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(HF radar, not ADCP). The resimulation using Itiki's method using NOAA's HF data of 2014 is 

not feasible because the time window in the NOAA's webpage is restricted to the most recent daily 

data. 

With the characteristic curve of MHK turbines, shown in FIGURE 3.4, with the average 

water current speed values from Muglia's method in TABLE 3.2, it is possible to estimate the 

power generated by 270 turbines of Hub1 and 540 turbines of Hub2. Such estimation allows a 

comparison of power generation between Itiki's and Muglia's methods [65] [70].  

           TABLE 3.3: Comparison of power based on HF radar data off the coast of North Carolina. 

Location Method Itiki et al. 
[65]. 

Muglia et 
al. [70]. 

Variability 
(%) 

 Peak power 20 MW 49 MW -59% 
Hub1 is close to the 
coverage of HF radar 
HATY 87 over the edge 

Average power 11 MW 32 MW -66% 

 Minimum power 2 MW 13.5 MW -85% 
 Peak power 475 MW 389 MW 22% 
Hub2 is close to the 
coverage of HF radar 
CORE 72 over the jet 
axis. 

Average power 275 MW 189 MW 46% 

 Minimum power 150 MW 81 MW 85% 

 
Muglia's method corroborates the results of Itiki's method by associating lower average 

current speed in Hub1 than Hub2. Considering that the cut-in speed of an MHK turbine is 0.5 m/s, 

the power output in Hub1 can be expected to be negligible compared to Hub2, as shown in TABLE 

3.3. The average current speed by Muglia's method indicates 0.67 m/s in Hub1 and 0.96 m/s in 

Hub2. Only the seawater speed values that exceed the cut-in speed of 0.5 m/s produce some power 

on the MHK turbine. 

Also, the peak power variability in TABLE 3.2 increases not linearly as compared with 

peak speed variability in TABLE 3.3. This is consistent with the nonlinear increment of power 

over current speed derived from the characteristic curve of the MHK turbine. Within the range 

between the cut-in and cut-out speeds of the turbine, the power curve shape increases exponentially 
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(cubicle 3), as expected by theoretically-derived Equation (2). In other words, the percent 

variability of power is higher than the percent variability of speed. This evidence leads to another 

conclusion on the non-appropriateness of using the average speed of Muglia's method for direct 

estimation of power profile. 

Itiki's method estimates the daily MHK turbine power profile with an hourly resolution, 

while Muglia's focuses on water speed under a multi-days time window. The cut-in and cut-out 

speed, which represent the friction and stress of the turbine, should be applied instantaneously (or 

at least with hourly resolution) for estimation of the power profile under real-world turbine 

mechanics. In other words, the engineering limitations of the power harvesting efficiency of MHK 

turbines are not reflected in Muglia's method., which is more concerned with water speed 

estimation. Turbines do not operate with averaged filtered speed data. Turbines in the real world 

convert instantaneous water speed into power. Despite TABLE 3.3 showing average power 

estimated from the average water speed obtained from Muglia's method, power profile estimation 

using average speed is not conceptually exact. 

Another observation of this research is that Muglia's method indicates that MHK energy is 

majorly located in deeper waters, e.g., in the jet axis, which coincides with the location proposed 

by Itiki et al., which shows higher power output for Hub2 located in deep waters than for Hub1 

located in more shallow waters. In this regard, Muglia's method corroborates the findings of Itiki's 

method because both indicate that Hub2 has a much higher potential (around six times) for power 

production than Hub1. Thus, both methods indicate that location and the characteristic curve of 

the selected MHK turbine, including the cut-in speed, matter a lot in the productivity of an MHK 

farm. 
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Finally, Muglia's method also corroborates Itiki's findings that the average water speed in 

the Gulf Stream off the coast of NC (0.668 m/s in Hub1 and 0.962 m/s in Hub2) is far lower than 

other high-potential sites in the world, such as Scotland (over 3 m/s) [65]. 

The comparative analysis of the power and speed results from both methods demonstrates 

that the method for MHK power profile estimation proposed by Itiki in this dissertation does not 

show inconsistent results and numbers compared to the method proposed by Muglia et al. in 2022 

[65] [70]. 

3.5 Validation of the method for MHK assessment. 

The validation of the MHK method is carried out in two parts:  

 Validation of the HF radar as an adequate sensor to estimate MHK power profile. 

 Validation of speed using same dataset on Muglia’s method of average speed. 

The validation of the HF radar as an adequate sensor to estimate MHK power profile is 

executed by a literature survey.  

In 2021, Itiki et al. proposed to estimate instantaneous MHK power profile with HF radar 

(instead of ADCP) to cover a wide area of the Gulf Stream in North Carolina [65]. The proposed 

method for estimation of MHK power is presented in Chapter 3. It is worth noting that Itiki et al. 

did not calculate average density of MHK energy, which is not useful information for power 

system studies. Itiki et al. calculated instantaneous (not average) power profile of a specific number 

of turbines (540 and 270) distributed in specific latitude and longitude off the coast of North 

Carolina. 

In 2022, Muglia et al. corroborated the appropriateness of using HF radar data by similarly 

proposing to estimate MHK power with HF radar in the Gulf Stream in NC [70]. ADCP is not an 

appropriate sensor for MHK assessment in wide areas [69]. For this reason, the research of Muglia 
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et al. published in 2022, validates by corroboration the appropriateness of using HF radar sensor 

for MHK power assessment in the precedent research of Itiki et al, published in 2021 [65].  

The second part of the validation is carried out by comparative analysis of both methods 

using the same input dataset. This validation of Itiki et al. method with Dr. Muglia’s method is 

proven by application in Hub 1 (low water speed location) and Hub 2 (high water speed location). 

Since Muglia et al. method does not assign a specific location and quantity of turbines off 

the coast of North Carolina, the estimation of power profile is obtained by assessment of the spatial 

average of water speed values on the proximity of the study area for each time step, estimation of 

averaged power density and multiplication by the same number of turbines considered on the Itiki 

et al. method. 

FIGURE 3.8 (a) shows the water speed profile resulting from the proposed Itiki et al. 

method varying from 0.35 m/s to 0.61 m/s, mostly within the incursion of manually calculated 

power profile obtained from manual filtering of the same NOAA HF radar dataset and application 

of Muglia et al. method.  Both profiles show short periods of water speed exceeding the turbine 

cut-in speed of 0.5 m/s, barely producing power. The mean average in FIGURE 3.8 (a) is 0.48 m/s 

and in FIGURE 3.8 (b) is 0.37 m/s, representing an error of 29%. The profile tendency of both is 

upward. Hub 1 (NC North) is very poor in MHK Energy. 

 
 

FIGURE 3.8: Hub-1 water speed by (a) Itiki and (b) Muglia method. 
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TABLE 3.4 shows the difference of water speed profile of Itiki et al. and Muglia et al. 

method for Hub 1. It should be noted that an MHK turbine does not produce any power at all for 

its cutout speed of 0.5 m/s. The water speed estimated by using Muglia et al method also 

corroborates that, as already predicted by Itiki et al. method in the Subsection 3.2, Hub 1 is not 

located on an area with high-density of MHK energy.  

                                    TABLE 3.4: Difference of Hub-1 water speed in Itiki and Muglia. 

Time [h] Itiki et al. [m/s] Muglia et al. [m/s] Difference [m/s] 

0 0.42 0.36 0.06 
5 0.55 0.26 0.29 
10 0.35 0.26 0.09 
15 0.61 0.54 0.07 
20 0.51 0.41 0.1 
23 0.45 0.28 0.17 
Mean 0.48 0.35 0.13 
Max 0.61 0.54 - 
Min 0.35 0.26 - 

 
FIGURE 3.9 (a) shows the water speed profile resulting from the proposed Itiki et al. 

method varying from 1.07 m/s to 1.70 m/s in Hub-2, mostly within the incursion of manually 

calculated power profile obtained from manual Excel filtering of the same NOAA HF radar 

dataset.  Both profiles show water speed exceeding the turbine cut-in speed of 0.5 m/s, producing 

power for a long period of the day. Mean average in FIGURE 3.9 (a) is 1.35 m/s and in FIGURE 

3.9 (b) is 1.01 m/s, representing an error of 34%. The profile tendency of both figures is downward. 

 
 

FIGURE 3.9: Hub-2 water speed by (a) Itiki and (b) Muglia method. 
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Hub 2 (NC South) is rich in MHK energy. Both profiles show long periods of water speed 

exceeding the turbine cut-in speed of 0.5 m/s. 

TABLE 3.5 shows the difference of water speed profile of Itiki et al. and Muglia et al. 

method for Hub 2. It should be noted that an MHK turbine produces power for most of the time 

since the cutout speed is 0.5 m/s. The water speed estimated by using Muglia et al method also 

corroborates that, as already predicted by Itiki et al. method in the Subsection 3.2, Hub 2 is located 

on an area with high-density of MHK energy.  

                                    TABLE 3.5: Difference of Hub-2 water speed in Itiki and Muglia. 

Time [h] Itiki et al. [m/s] Muglia et al. [m/s] Difference [m/s] 

0 1.7 1.05 0.65 
5 1.55 0.79 0.76 
10 1.33 0.56 0.77 
15 1.25 0.8 0.45 
20 1.07 0.68 0.39 
23 1.2 0.71 0.49 
Mean 1.35 0.77 0.58 
Max 1.7 1.05 - 
Min 1.07 0.56 - 

 
FIGURE 3.10 shows the power profile of (a) Hub-1 on Itiki et al. method, (b) Hub-1 on 

Muglia et al. method, (c) Hub-2 on Itiki et al method, and (d) Hub-2 on Muglia et al method. 

 
 

FIGURE 3.10: Hub-1 and 2 power by Itiki and Muglia methods. 
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Both methods show declining power profile in 24 hours in Hub-1 and 2.  Muglia’s method 

also shows that Hub-2 produces much more power (400 MW) than Hub-1 (22 MW). The curves 

are in the same order of magnitude. 

TABLE 3.6 shows the numeric difference observed on the water speed and power 

estimated by Itiki et al. and Muglia et al method. A difference of water speed and average power 

from both methods exists and was quantified. A percentual error of only 11% was observed in the 

validation of results of Hub-2. In Hub-2, most of the MHK turbines operate at a water speed in 

excess of 0.5 m/s, resulting in lower difference in the power values obtained for both methods. In 

contrast, Hub-1 operates with most turbines not generating any power at all because the measured 

water speed is below the minimum cut-in speed of the turbine. This fact introduces a high 

variability of results in the power assessment by using Muglia et al. method.   

    TABLE 3.6: Validation points of Itiki et al. method based on Muglia et al. method. 

Parameter Itiki et al. [m/s] Muglia et al. [m/s] Difference 

Input data One-day period NOAA 
HF radar dataset 

One-day period NOAA 
HF radar dataset 

None 

Number of 
turbines 

Hub1: 270 turbines 
Hub2: 540 turbines 

Hub1: 270 turbines 
Hub2: 540 turbines 

None 

Water speed 
[m/s] 

0.48 ± 0.13 in Hub 1; 
1.35 ± 0.35 in Hub2 

0.35 ± 0.19  in Hub1;  
0.77 ± 0.28  in Hub 2 

0.13 m/s (37%) in Hub 1; 
0.58 m/s (75%) in Hub 2 

Power 
[MW] 

8.7 ± 5.7 in Hub1; 
283 ± 108 in Hub 2 

11.5 ± 10 in Hub1;  
255 ± 125 in Hub 2 

-2.8 MW (-24%) in Hub 1; 
28 MW (11%) in Hub 2 

 
Despite the water speed dataset being the same for both methods, Itiki et al. method screens 

only those data near a MHK turbine, while this screening in Muglia et al method is not as precise 

because the data acquisition is based on collection of all data in a region surrounding the turbines, 

even if not the closest one. The Muglia et al. method neither assigns a fixed number of MHK 

turbines nor a latitude and longitude to them. The power profile in Muglia et al. method is 
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multiplied by the same number of turbines adopted on the case study of Itiki et al. to allow a 

tentative comparison and validation. To obtain the power profile in Muglia et al. method, the 

calculated spatial density of energy is multiplied by the number of turbines. The utilization of 

spatial average of water speed may not be precise because values below minimum cut-in speed do 

not produce any power in a MHK turbine, and for those data above cut-in speed, the power output 

is not linearly proportional to water speed. The simplification assumptions embedded on the 

Muglia et al. method introduce errors that make it questionable if Muglia et al. method is an 

adequate benchmark for validation of Itiki et al. method, which is based simply on direct 

association of the closest data to each turbine. Future alternative methods for MHK power profile 

estimation in wide-area coverage, possibly with other innovative sensors, such as satellite data, 

can open the perspective of a comprehensive cross validation of methods in the future.  

The validation points obtained from this analysis are:  

 In Hub-2, with high MHK energy resources, a discrepancy of 11% is observed on 

average power estimation using Itiki et al. method as compared to Muglia et al.  

 Both methods point out that Hub-2 produces around 22 to 32 times more power 

than Hub1.  

 Most of the range of incursion of power profile of Hub1 and Hub2 estimated using 

Itiki et al. method is within the range of the power profile using Dr. Muglia’s 

method. 

3.6 Conclusions about the method for MHK assessment. 

The proposed method for estimating the MHK power generation profile based on HF 

NOAA radar was successfully implemented in MATLAB script coding. A case study in North 

Carolina demonstrates the algorithm's functionalities for the planning and design of MHK farms 
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[65]. The simulations of two proposed MHK farms show that the power profile is highly sensitive 

to the selected location, with significant implications for the economic feasibility. The southern 

MHK farm in the Gulf Stream off the coast of North Carolina shows a more robust power profile 

as compared to the northern MHK farm. Regarding the short time sensitivity, within the one-day 

time-window simulation, it is possible to conclude that the capacity factor of the MHK turbines 

varies significantly for one day period. More studies with a large water speed dataset are needed 

to evaluate the seasonal and multi-year power variability. The case study demonstrated the 

proposed method implemented in MATLAB script was able to simulate MHK farms with a very 

high number of turbines without high computational cost. The case study script processed the 

power profile of 540 MHK turbines in less than 5 minutes in an off-the-shelf notebook with an 

Intel Core i7 processor. This method fills a gap of the traditional power system algorithms, which 

usually circumvents the computational cost by assuming simplified equivalent models of MHK 

farms or simulations with just a handful of electric generators. Also, the merit of this work is the 

realistic approach to processing HF radar data for power system studies. In other words, the 

proposed data analytics method directly transforms offshore weather data into valuable power 

system information. The implications of the proposed method on the natural, economic, social, 

and political environment open the perspective of a multitude of topics for future multidisciplinary 

research [65]. 
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CHAPTER 4: PROPOSED METHOD FOR WIND ENERGY ASSESSMENT AND U.S.-

CARIBBEAN SG. 

Kinetic energy from wind depends on the dynamics of the weather systems and, more 

broadly, on the environmental system. As overviewed in previous sections, the technical literature 

vastly covers the assessment of wind in normal conditions. This proposed method for wind energy 

assessment focuses instead on wind power in extreme weather events, e.g., hurricanes, which are 

expected to gain intensity due to most likely two degrees Celsius anthropogenic warming [72]. 

Since hurricanes originate in the hot waters of the oceans, this proposed wind energy assessment 

method can be understood within the context of an offshore power system (OffPS) architecture.  

FIGURE 4.1 shows the context of the proposed method for generating wind power profiles 

as part of the intelligence system (I) of an OffPS. This architecture encompasses the interaction of 

the proposed wind assessment method with the offshore generation (G), transmission (T), 

distribution (D), consumption (C), and environmental (E) systems.  

 

FIGURE 4.1: Architecture for offshore wind power system, adapted from [39]. 
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In the following subsections, this work presents the details of the proposed method and a 

case study demonstrating its functionalities. 

Under this multidisciplinary context and motivations, the method of this research was 

developed by successive iterations of simple elements, e.g., modeling of a characteristic curve of 

wind power versus speed, parametric modeling of a static hurricane by Holland’s equations [73], 

the addition of linear movement to a hurricane model, integration of the wind turbine model hit by 

a moving hurricane, the generation of the power profile of a single turbine, the addition of multiple 

turbines by an iterative loop. Such a bottom-up approach to the development of a system led to a 

formal representation of the algorithm, which was necessary to control the complexities of 

successive incremental iterations. But the algorithm by itself was not enough for the practical 

objectives of this research as a tool for wind power profile generation and electrical power system 

studies. Given that the modeling of hurricanes by equations depends on numerous parameters and 

the recognition of patterns associated with the location of each turbine and the moving hurricane, 

the formalization of the steps of the investigation was needed to keep track of all patterns. Finally, 

the research aims at supporting the estimate of wind power flowing in expansions of high voltage 

power transmission systems, i.e., super grids. In this step, a conceptual design of a super grid was 

necessary to propose locations of wind turbines realistically in the Caribbeans. In summary, the 

method builds up into an algorithm for wind power profile calculations, a collection of patterns for 

modeling, and a brief conceptual design of a super grid for a realistic positioning of wind turbines 

and simulation. The details of each component of the method are so described in the following 

subsections. 
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4.1 A proposed algorithm for wind power under hurricanes. 

The proposed algorithm for wind power under hurricanes calculates the aggregate power 

profile generated by a set of wind turbines spatially distributed in an offshore site in close 

proximity to the trajectory of a hurricane. The algorithm aims to characterize the worst-case 

scenario, which tends to become recurrent in times of climate change and global warming. This 

worst-case scenario provides the reference for the design of the components of the renewable 

power system [32].  

In 1980, Holland and Georgio et al. formulated the classical equation of hurricanes wind 

speed (𝑉௚) [73], [74]: 
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where: 𝑉௚ is the 1 min averaged gradient wind speed at a distance (𝑟) from the eye of the hurricane; 

𝐵 is the Holland parameter; 𝜌 is the air density; 𝑅௠௔௫ is the maximum radius of the hurricane; 𝑟 

is the distance from the eye of the hurricane; 𝑃௡ is the ambient pressure; 𝑃௖ is central pressure; 𝑉௧௥ 

is hurricane translation speed; 𝜃௧௥ is the angle between hurricane direction and a line connecting 

the center of the hurricane and a particular site; 𝑓௖ is the Coriolis parameter. Typical values of 

parametric values are: 𝐵 = 0.8 to 1.7 [75]; 𝜌 = 1.225 𝑘𝑔/𝑚ଷat 15௢C; 𝑅௠௔௫ = 19 to 85 km (19 km 

for hurricane Andrew in Florida in 1992 [75], 𝑃௡ = 1008 milibar (between 1,005 and 1,008 mbar) 

[73], and 𝑃௖= 922 milibar for hurricane Andrew [76]. 𝑅௠௔௫can be obtained directly from the 

measurements of NOAA [66] or calculated by the equation [76], [75]: 

  𝑅௠௔௫ = 2.63 − 0.000508(𝑃௡ − 𝑃௖)ଶ + 0.0394𝜑 + 𝜖ோ      (5) 
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where: 𝜑 is the latitude of the hurricane eye and 𝜖ோ is an error term (km). In this present study, 

similar to Andrew [76], [77], 𝜖ோ = 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.40) at all latitudes. 𝐵 can be calculated by the 

equation Andrew [76], [77], [75]: 

  𝐵 = 1.38 + 0.00184(𝑃௡ − 𝑃௖) − 0.00309𝑅௠௔௫     (6) 

𝑉௚ can be empirically converted into the average speed 𝑉௪(𝑟) at 90m wind turbine height by the 

following equation [78]: 

           𝑉௪(𝑟) = 0.923 𝑉௚(𝑟)      (7) 

The average airspeed 𝑉௪(𝑟) passing through a wind turbine changes as the hurricane moves 

towards the turbine. The change of speed in each turbine of the wind farm is reflected in the overall 

power flow profile of the super grid. 

Another consideration for hurricane modeling is its trajectory. The authors are assuming, 

by simplification, that the hurricane follows a parabolic trajectory from point A (𝑋஺,𝑌஺) to Vertex 

(𝑋௩௘௥௧௘௫,𝑌௩௘௥௧௘௫), with the eye of the hurricane moving at a translational speed 𝑉௧௥.  

FIGURE 4.2 depicts the proposed algorithm that estimates the wind power profile of 

offshore wind farms or arrays under the approach of a hurricane. The algorithm is represented by 

a diagram with eight processing blocks [32].  

Block-1 receives the input data of the latitude and longitude of each wind turbine, the 

hurricane trajectory, and the edges of the map covering the turbines and the hurricane. Also, the 

input data include the translational velocity, maximum radius, maximum speed, and the time of 

the hurricane movement.  

Block-2 sets the parametric hurricane modeling based on the classical equation of hurricane 

speed. 
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Block-3 proceeds with the modeling of the wind turbine by a technique of equation fitting 

on the characteristic curve of the wind turbine. This technique interpolates discreet points of the 

power versus airspeed curve by a fitting equation to facilitate the power estimation processing. 

Block-4 initializes the iterative loop in which the coordinates of the eye of the hurricane moves in 

small steps. For each step, the distance between each turbine and the eye of the hurricane is 

calculated. In Block-5, with these distances, the calculation of the power harvested by each turbine 

is proceeded by accessing the fitting equation of the power versus airspeed curve. Block-6 

proceeds the collection and storage of each calculated power value for each turbine over the entire 

extent of timesteps, i.e., the power profile of each turbine. Block-7 generates a map of the area of 

concern depicting the location of each turbine and the trajectory of the eye of the hurricane. Block-

 

FIGURE 4.2: Algorithm for wind power profile under hurricanes [32]. 
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8 aggregates the power profile of each turbine into the total wind power profile during the hurricane 

passage. It also searches the speed profile of the turbine experiencing the maximum peak of 

airspeed over the trajectory of the hurricane. Block-8 also calculates the total mean average 

airspeed profile from the airspeed profile of each turbine [32]. 

Block-5 and Block-6 of the proposed algorithm calculate the power profile based on the 

estimated wind speed hitting the turbines. This research considers two types of wind turbines: 

turbines with typical cutout speed, i.e., a speed above which the turbine stops generating power 

(typically around 25 m/s), and turbines specially designed for high cutout speed, producing power 

up to 40 m/s. For short, this work designates and simulates these two types as typical and special 

turbines, respectively [32]. 

FIGURE 4.3 shows the output characteristic curve of a typical turbine. In this curve, the 

power output saturates at a constant value if the airspeed varies from 14 m/s to 25 m/s. The turbine 

power output goes to zero for mechanical protection for airspeed exceeding the cutout speed of 25 

m/s [32]. FIGURE 4.4 shows the power curve of a special turbine with a cutout speed of 40 m/s. 

This type of turbine is being tested on a 10 kW reduced scale. However, this research extrapolates 

this characteristic curve to a 10 MW scale to compare its performance of power profile variability 

during hurricanes with a typical turbine in the simulations [32]. Special turbines are commercially 

 
FIGURE 4.3: Curve of power versus airspeed for a 10 MW typical wind turbine 

[32]. 
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available for cutout speed of 32 m/s [32]. The reason for the extrapolation is to conduct a sensitivity 

analysis if special wind turbine with extra-high cutout speed in hurricane-prone countries is highly 

beneficial in smoothing power variability [32].  

 

These two types of turbines generate two comparative scenarios of simulations.  

The algorithm is implemented in MATLAB code programming to explore the practical 

functionalities of the proposed algorithm.  

The implementation of the algorithm in MATLAB script is detailed in APPENDIX B. 

A case study investigates the power profile curves of wind power under the spatiotemporal 

translational movement of a hurricane hitting different parts of the U.S. The case study 

geographically covers the contiguous U.S., offshore zones, and some countries and territories in 

the Caribbean region. 

Before engaging in simulations, this work establishes the basis for wind power capacity 

estimation and projection. Later, the work investigates the patterns of hurricane trajectory to 

establish limited but relevant cases for simulation.  

 
FIGURE 4.4: Curve of power versus airspeed for a 10 MW special wind turbine 

[32]. 
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4.2 Spatial distribution of current and future wind power capacity in the U.S. 

The most significant amount of wind power capacity in the U.S. territory is listed in 

TABLE 4.1. The values are aggregated into two macro-regions: Great Plains and West Coast. The 

reason for this aggregation is to facilitate the distribution of turbines over the U.S. map. 

                          TABLE 4.1: Wind energy capacity (MW) in the top 10 Wind Energy States in U.S. 

Regional Power Grids State Installed Capacity (MW) 

Great Plains 
(50.7 GW). 

Texas 21,450 

Iowa 6,974 

Oklahoma 6,645 

Kansas 5,110 

Illinois 4,026 

Minnesota 3,499 

Colorado 3,029 

West Coast 
(11.6 GW) 

California 5,561 

Washington 3,075 

Oregon 3,213 

Source: Data of 2016, adapted from [79] 

 
The case study realistically sets the same proportion of 50:11 turbines between the Great 

Plains and the West Coast. The East Coast is populated with offshore turbines to represent the 

future OWF sites auctioned by the BOEM (Bureau of Ocean Energy Management) [80]. 

TABLE 4.2 shows the distribution of wind turbines for the simulation. 

                                                     TABLE 4.2: Wind turbine's spatial distribution for simulation. 

Region Installed Capacity (MW) 

Great Plains 50 

West Coast 11 

East Coast 10 

Total 71 

Source: [32]. 

 
The simulations keep the proportionality of power capacity in these regions to produce 

meaningful results even with a reduced scale. The results for the wind power profile of the reduced 
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but well proportion scale can thus be extrapolated for the analysis of the full gigawatt-scale of the 

North American power grid. 

4.3 Framing of hurricane trajectory patterns for cases study 

According to the National Oceanic and Atmospheric Administration (NOAA) in its 

webpage "Historical Hurricane Tracks” from 1842 to 2021, only two hurricanes made landfall as 

category-5 in the U.S. territory from 2000 to 2021: Michael in 2018 and Maria in 2017 [66]. 

FIGURE 4.5 shows the trajectories of the eyes of these two category-5 hurricanes [32]. 

The trajectories of these two hurricanes are very peculiar. Maria passed through Puerto 

Rico, followed off the East coast of the Dominican Republic, and turned right to the North Atlantic. 

Michael hit the Western part of Florida, headed North toward Georgia, South Carolina, North 

Carolina, Virginia coast, and waned away in the cold waters of the North Atlantic [32]. 

The following patterns can be observed from the trajectories of the hurricanes making 

landfall as category-5 from 2000 to 2021: 

 
 

FIGURE 4.5: Trajectory of category-5 hurricanes from 2000 to 2021 [66]. 
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 One out of two hurricanes run closely parallel to the Puerto-Rico-Cuba corridor. 

 The east coast of the U.S. was not directly hit by category-5 hurricanes.  

 None of the two hurricanes made landfall on the West Coast (California, Oregon, and 

Washington State); 

 There is no visual correlation between the hurricane trajectory in parallel to the Puerto Rico-

Cuba corridor and the location where the hurricane hits the continent after passing the Gulf of 

Mexico. For example, Hurricane Maria did not pass on the Gulf of Mexico. 

Also, according to the same NOAA hurricane track webpage [66], five hurricanes from 

2000 to 2021 hit the U.S. coast as category-4: Laura (2020), Harvey (2017), Irma (2017), Katrina 

(2005), and Charley (2004). 

FIGURE 4.6 shows the trajectories of hurricanes making landfall as category-4 from 2000 

to 2021 [66]. Hurricanes Michael and Maria are shown as category-4 again, even classified 

previously as category-5 hurricanes because, in some parts of their trajectories, their speeds were 

 
FIGURE 4.6: Trajectory of category-4 hurricanes from 2000 to 2021 [66]. 
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of category-4. 

Looking for trajectory patterns in preparation for relevant scenarios for simulation, the 

hurricanes tracked by NOAA present the following characteristics in common [32]: 

 Four out of five category-4 hurricanes made landfall in the contiguous U.S. territory from the 

Gulf of Mexico and headed toward the U.S. Northeast; 

 Four out of five hurricanes follow a trajectory in parallel to the corridor Puerto Rico-Cuba; 

 The pattern of category-4 hurricane trajectories is not much different from the category-5 ones. 

Category-4 hurricanes hit the Southern States mainly by the Gulf of Mexico, e.g., Texas and 

Louisiana; 

FIGURE 4.7 shows the trajectories of hurricanes category-3, 2, and 1, from 2000 to 2021 

[66]. Hurricanes category 5 and 4 are shown as category-3, 2, 1 again because in some period 

along their trajectory, they slowed down to category-3, 2, and 1 speed [32].  

Some hurricanes of category-3, 2, and 1 show unique trajectories [32]: 

 Five hurricanes lingered over the offshore U.S. East Coast: Mathew (2016), Isaias (2020), 

Arthur (2014), Irene (2011), and Dorian (2019);  
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 A very unusual trajectory is shown on the East Coast. Hurricane Florence (2018) hits the East 

Coast at a perpendicular angle. However, since this event was sporadic, i.e., not a pattern, it 

will be neglected in this work. 

Based on the recognition of patterns, the following scenarios can be framed for the 

simulations of wind power profile generation [32]: 

 The first part of the hurricane trajectory, which runs in parallel to the Puerto Rico-Cuba 

corridor, is decoupled from the trajectory from the Mexico Gulf toward the U.S. Northeast. 

For this reason, the first part is studied apart from the second part of the hurricane trajectory; 

 Category-4 and 5 hurricanes can be simulated indistinctly. In other words, a wind farm hit by 

a category-4 can also be hit by a category-5; 

 Wind farms located in all States on the west side of New Mexico, Colorado, Missouri, Illinois, 

Indiana, Ohio, Pennsylvania, New York, and Vermont are not in the path of hurricanes 

category-4 and 5. Wind farms located off the coast of California, Oregon, and the Washington 

 
FIGURE 4.7: Trajectory of category-3, 2 and 1 hurricanes from 2000 to 2021 [66]. 
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States are not typically subjected to hurricanes, except Hawaii State and Guam island territory. 

The simulated trajectory of a hurricane passing over these islands is not of interest to this work 

because of the absence of power interconnectivity. The wind power capacity of Hawaii and 

Guam are not interconnected to the contiguous U.S. power grid. 

Hurricanes of category-3, 2, and 1 show a unique pattern of trajectory lingering along the 

offshore East Coast. The U.S. East Coast presents a high potential for offshore wind power 

exploration [80]. 

FIGURE 4.5, FIGURE 4.6, and FIGURE 4.7 show a distinct pattern associated with the 

latitude of the hurricane trajectory. Hurricane airspeed intensity slows down from latitude 35o 

(North of Mississippi) and depleted above latitude 45o (Maine). For this reason, a linear decaying 

of central pressure is empirically applied in this onshore latitude range [32].  

Hurricanes making landfall above latitude 35o, e.g., Florence (2018), are not included in 

this work. These cases should investigate specific pattern considerations since their associated 

central pressure at landfall cannot be affected by the linear decaying adjustment before the landfall. 

Hurricanes making landfall above latitude 35o are extremely rare, as shown in FIGURE 4.5, 

FIGURE 4.6, and FIGURE 4.7 [32]. 

The trajectory of hurricanes of category-5, 4, 3, 2, and 1 can be approximated by a pattern 

of the second-order polynomial equation [32]: 

𝑦 = 𝑎. 𝑥ଶ + 𝑏. 𝑥 + 𝑐    (8) 

where: y is the longitude of the hurricane eye, x is the latitude of the hurricane eye, and a, b, and c 

are constants.  

The second-order polynomial equation was chosen because its first-order derivative can be 

analytically formulated for the trajectory of the hurricane at a constant speed. 
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Deriving (8) into 𝑥, then [32]: 

     
ௗ௬

ௗ௫
= 2𝑎𝑥 + 𝑏     (9) 

Assuming that the vertex point (𝐿𝑎𝑡, 𝐿𝑜𝑛𝑔)௩௘௥௧௘௫ is known, and that the derivative is null 

at the vertex, the parameter 𝑏 is obtained as [32]: 

     𝑏 =  −2𝑎. 𝐿𝑎𝑡௩௘௥௧௘௫    (10) 

By substituting (10) into (8), and assuming that a second point (𝐿𝑎𝑡, 𝐿𝑜𝑛) in the hurricane 

trajectory is also known, the value of parameter 𝑎 is given by [32]: 

     𝑎 =  
௅௔௧ି ௅௔௧ೡ೐ೝ೟೐ೣ

(௅௢௡ି ௅௢௡ೡ೐ೝ೟೐ೣ)మ
    (11) 

Having calculated 𝑎, and 𝑏 by (10) and (11), respectively, and knowing the second point 

(𝐿𝑎𝑡, 𝐿𝑜𝑛) , 𝑐 can be calculated by using (8) as [32]: 

     𝑐 = 𝐿𝑎𝑡 − 𝑎. 𝐿𝑜𝑛ଶ − 𝑏. 𝐿𝑜𝑛   (12) 

Assuming that the translational speed of the eye of the hurricane is known by the hurricane 

forecasting, and the position of the hurricane moves at fixed angle step ∆𝑠𝑡𝑒𝑝, corresponding to a 

time period of one hour, then the latitude after a fixed angle step can be approximated by [32]: 

    𝐿𝑎𝑡௞ାଵ =  𝐿𝑎𝑡௞ +  ∆𝑠𝑡𝑒𝑝. sin 𝜃     (13) 

where: 𝜃 = 90 −  tanିଵ ௗ௬

ௗ௫
, and 

ௗ௬

ௗ௫
 is known by (9), and ∆𝑠𝑡𝑒𝑝 is the angle step of 1 hour on the 

surface of the Earth. 

By knowing the values of 𝐿𝑎𝑡௞ାଵ from (13), constant 𝑎 from (11), constant 𝑏 from (10), 

constant 𝑐 from (12), and applying these values to (8), the longitude of the next time-step iteration 

is [32]: 

    𝐿𝑜𝑛௞ାଵ = 𝑎. 𝐿𝑎𝑡௞ାଵ
ଶ + 𝑏. 𝐿𝑎𝑡௞ାଵ + 𝑐   (14) 
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The hurricane trajectory at a fixed 1-hour step can be iteratively calculated by the 

simulation algorithm by (13) and (14). 

Also, by visual inspection of the hurricane trajectories of FIGURE 4.5, FIGURE 4.6, and 

FIGURE 4.7, the parabola vertex location can be located approximately in the latitude 30o along a 

hurricane corridor from longitude -95.5o (Houston, TX) to longitude -79.66o (offshore coast of 

Jacksonville, FL). A second point of the parabola can be assumed to be located in the Caribbean 

Sea, in the corridor between points (10.17 o, -56.56 o) and (14.1 o, -47.79 o) [32].  

TABLE 4.3 shows the second point of the parabola and the vertex point for ten simulated 

tracks of hurricanes [32]. 

 

 
                                    TABLE 4.3: Coordinates of the parabola for hurricane trajectory modeling. 

Track 
Origin  

Latitude 
Origin  

Longitude 
Vertex  

Latitude 
Vertex  

Longitude 

1 8.87 -53.34 30 -95.5 

2 9.45 -52.72 30 -93.74 

3 10.03 -52.11 30 -91.98 

4 10.61 -51.49 30 -90.22 

5 11.19 -50.87 30 -88.46 

6 11.78 -50.26 30 -86.7 

7 12.36 -49.64 30 -84.94 

8 12.94 -49.02 30 -83.18 

9 13.52 -48.41 30 -81.42 

10 14.10 -47.79 30 -79.66 

Source: [32] 

 
Recognizing trajectory patterns allows the modeling and framing of multiple scenarios for 

simulations.  
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FIGURE 4.8 shows the definition of some parabolic trajectories in preparation for the 

spatiotemporal assessment of the impact of hurricanes on wind power profile [32]. 

 

The synthetic trajectories in FIGURE 4.8 resemble the historical patterns of hurricanes 

from 2000 to 2021, shown in FIGURE 4.5, FIGURE 4.6, and FIGURE 4.7. 

4.4  Patterns of hurricanes intensity 

Hurricanes can be classified into five numerical categories according to the Saffir-Simpson 

scale [81]. TABLE 4.4 shows the association of each category with physical damage [32].  

 

 

 

 
FIGURE 4.8: Scenarios of synthetic trajectories of hurricanes [32]. 
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                           TABLE 4.4: Earlier Saffir-Simpson Hurricane Scale included hurricane damage. 

Hurricane category Winds [km/h] Surge [m] Damage 

5 > 250 > 5.5 catastrophic 

4 210- 250 4 – 5.5 extreme 

3 178 - 209 3 - 4 extensive 

2 154 - 177 1.8 – 2.4 moderate 

1 119 - 153 1.2 – 1.5 minimal 

Source: [81] 

The modeling of hurricanes by the Holland equation requires previous knowledge of 

physical parameters as input for numerical calculation. These parameters, e.g., central pressure 

and the radius of maximum speed, are not in a one-to-one relationship with the classification based 

on categories [32].  

TABLE 4.5 shows some of the parameters of hurricanes measured or estimated by the U.S. 

National Hurricane Center (NHC) since 2000 [32]. 

                                    TABLE 4.5: Wind turbine's spatial distribution for simulation. 

Hurricane 
Category  
at landfall 

Maximum speed  
at 10m  [km/h] 

Central pressure  
(𝑃஼) at landfall 

[mBar] 

Radius of 
maximum winds 

RMW  
(𝑅ெ஺௑) [km] 

Reference 

Michael (2018) 5 259.28 919 27.78 [66] 

Maria (2017) 5 250.02 920 27.78 [66] 

Laura (2020), 4 240.76 937 27.78 [66] 

Harvey (2017) 4 212.98 937 27.78 [66] 

Irma (2017), 4 212.98 931 25.928 [66] 

Charley (2004) 4 240.76 941 37.04 [66] 

Katrina (2005) 3 203.72 923 55.56 [66] 

Wilma (2005) 3 194.46 950 55.56 [66] 

Zeta (2020) 3 185.2 970 46.3 [66] 

Rita (2005) 3 185.2 937 37.04 [66] 

Delta (2020) 2 157.42 970 37.04 [66] 

Ike (2008) 2 175.94 950 55.56 [66] 

Sally (2020) 2 175.94 965 37.04 [66] 
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For the same category of hurricanes, it is possible to recognize some patterns for 

simulation. For example, category-5 hurricanes can be simulated assuming the parameters of 

hurricane Michael (2018), which is similar to hurricane Maria (2017). The largest radius of 

maximum winds of category-4 hurricanes is 37.04 km, corresponding to hurricane Charley (2005). 

For category-3, hurricanes Katrina (2005) and Wilma (2005) show the largest radius of maximum 

winds (55.56 km). However, Katrina (2005) is a very atypical category-3 hurricane with a central 

pressure lower than category-4 Charley (2005). Wilma (2005) is a better candidate for category-3 

hurricane simulations, keeping a crescent order of central pressure between hurricane categories 

[32]. In summary, the parameters of hurricanes Michael (2018), Charley (2004), and Wilma (2005) 

present the largest radius of maximum wind in the category-5, 4, and 3, with a crescent central 

pressure order, respectively. The parameters of these three hurricanes are used as patterns of 

category-5, 4, and 3 hurricanes for the spatiotemporal wind power flow simulations [32].  

The central pressure of hurricanes and the radius of maximum speed increase their 

magnitude after making landfall [32].  

FIGURE 4.9 shows the pattern of variation of central pressure and maximum wind radius 

based on the location of the hurricane eye. This pattern is a simplified derivation of the original 

 
FIGURE 4.9: Patterns of central pressure and maximum radius of hurricanes [32]. 
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curves of central pressure and maximum wind radius reported by NOAA [66]. The latitude 36.55o 

corresponds to the northern limit of North Carolina State. Above this latitude, the hurricanes start 

to wane in intensity and maximum wind radius, based on the pattern in FIGURE 4.5, FIGURE 4.6, 

and FIGURE 4.7 [32].  

TABLE 4.6 shows the values of central pressure and the maximum radius of the three 

hurricanes selected for simulations. These data are obtained from the central pressure and 

maximum radius profiles reported by NOAA [66]. High values of hurricane wind speed are 

associated with low central pressure, small maximum wind radius, and offshore trajectory in low 

latitude (< 28.5o). These parametric values complement the patterns of the hurricane eye position 

shown in FIGURE 4.8 [32]. 

 

                                    TABLE 4.6: Patterns of central pressure and maximum wind radius of hurricanes. 

Hurricane name 
Michael 
(2018) 

Charley 
(2004) 

Wilma 
(2005) 

Hurricane category at landfall 5 4 3 

Low Central Pressure [mbar] 919 941 950 

Small maximum wind radius [km] 64.82 18.52 18.52 

High Central Pressure after landfall [mbar] 970 975 980 

Large maximum wind radius after landfall [km] 240 55.56 37.04 

Translational speed at landfall [m/s] 9.722 12.5 13.333 

Source: [32] 

 
The difference between TABLE 4.5 and TABLE 4.6 is that TABLE 4.5 is valid 

instantaneously at landfall only, while the parameters in TABLE 4.6 are average values more 

appropriate for onshore and offshore trajectories [32]. 

The central pressure and maximum wind radius patterns are essential for the dynamic 

representation of the wind speed intensity and the spatiotemporal power profile simulation along 
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the hurricane trajectory [32]. The translational speed of the eye of hurricanes varies along the 

trajectory. For comparison purposes, since hurricanes are simulated along the same parabolic 

trajectory, the translational speed for all cases is set at the same 9.722 m/s translational speed of 

hurricane Michael (2018) [32].  

4.5 Patterns of airspeed in wind turbines before the impact of a hurricane  

Wind turbines are spread in the U.S. in regions with different average wind conditions. The 

average minimum airspeed is associated with each turbine based on its location. These values set 

the initial wind speed conditions for the power flow calculation before the impact of the 

approaching hurricane [32].  

FIGURE 4.10 shows the airspeed in pre-hurricane conditions, based on a simplified pattern 

recognition of the annual average wind speed values in the United States assessed by the National 

Renewable Energy Laboratory [82]. 

Such wind speed patterns are dominant in the wind power profile simulations if the 

calculated hurricane speed in each turbine location does not exceed these minimum values. 

 
FIGURE 4.10: Patterns of airspeed in pre-hurricane conditions, simplified from [82]. 
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4.6 Patterns of the radius of minimum wind of hurricanes  

According to the National Hurricane Center, a tropical-storm-force wind can stretch as far 

as 300 miles (482 km) from the center of a large hurricane [83]. In other words, a hurricane's speed 

ranges from 17.5 to 32.7 m/s (tropical-storm speed) for a 482 km distance from its eye. However, 

a wind turbine operates from a cut-in speed of approximately 4 m/s up to 25 m/s for typical 

turbines, or 40 m/s for special turbines, as previously shown in FIGURE 4.3 and FIGURE 4.4. For 

power profile calculation on wind turbines under hurricanes, it is necessary to estimate the radius 

of minimum wind, i.e., the radius in which the airspeed starts to pick up due exclusively to its 

force. For simulation purposes, this minimum speed corresponds to the patterns of airspeed in pre-

hurricane conditions, shown in FIGURE 4.10. For example, a hurricane in the Gulf of Mexico 

starts to pick up speed if the hurricane speed exceeds 7.01 m/s at 120 m height, as shown in 

FIGURE 4.10. In order to establish an external boundary for the simulated hurricane by a radius 

of minimum speed, this research applies a linear interpolation over the curve of gradient balance 

wind speed [m/s] versus the distance from the hurricane eye presented at [84]. For the linear 

interpolation, three parameters are needed: the pressure profile parameter B, pre-calculated by 

equation (3); the radius of maximum speed (RMW), obtained from NOAA [66]; and the pre-

hurricane airspeed as shown in FIGURE 4.10.  

TABLE 4.7 shows the linear interpolation results obtained from these three parameters that 

were applied to the curve of gradient balance wind speed versus distance according to [84]. The 

radius of minimum speed is calculated for offshore and onshore hurricane trajectories [32]. 
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                                    TABLE 4.7: Patterns of the radius of minimum wind for the selected hurricanes. 

Hurricane name 
Michael 
(2018) 

Charley 
(2004) 

Wilma 
(2005) 

Hurricane category at landfall 5 4 3 

Radius of Maximum Wind (RMW) for offshore [km] [66]. 64.82 18.52 18.52 

B before landfall (offshore), calculated by Equation (3) 1.34 1.45 1.43 

Wind speed in offshore [m/s], according to FIGURE 4.10 7.01 7.01 7.01 

Ratio of the radius of minimum wind per RMW for offshore 15.1 14.4 14.5 

Radius of minimum speed [km] in offshore 981 267 269 

RMW for onshore [km] [66]. 74.08 55.56 37.04 

B after landfall (onshore), calculated by Equation (3) 1.22 1.27 1.32 

Wind speed in onshore [m/s], 
according to FIGURE 4.10 

5.5 5.5 5.5 

Ratio of the radius of minimum wind per RMW for onshore  19.0 16.7 15.8 

Radius of minimum speed [km] for onshore 1408 927 585 

Source: [32] 

 
These estimates of the radius of minimum speed for offshore and onshore cases are used 

in the simulation to establish an external boundary for the hurricane calculated by equation (1) and 

the pattern for a pre-hurricane airspeed of FIGURE 4.10 [32].  

4.7 Conceptual design of the Caribbean super grid 

In this scenario, this research investigates the technical feasibility of a proposed submarine 

power interconnector between the Caribbean islands and the contiguous U.S. power grid. After the 

analysis of the technical feasibility of the physical trajectory, a series of simulations assess the 

benefits of the interconnectivity for the reduction of power variability [32]. 

A conceptual design of the proposed trajectory for a submarine power interconnector 

should meet some technical requirements. One of them is the maximum water depth for cable lying 

down in the seabed. According to the technical literature, 3,000 m seems to be a reference for the 
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maximum depth for the installation of the submarine cable [85], [86]. Another requirement is the 

length of the interconnector segment, which should not exceed 879 km, a circuit length feasible in 

existing submarine interconnector projects [87]. Lastly, the trajectory should maximize the social 

benefit by interconnecting islands with a high population. On the other hand, the trajectory should 

interconnect islands with a large fossil fuel power generation capacity to maximize the 

environmental benefits with the displacement of fossil fuel [32]. 

TABLE 4.8 shows the proposed submarine power interconnector segments. Initially, the 

research investigated a segment interconnecting Caicos Islands and the Dominican Republic. 

However, this alternative is rejected because these islands are separated by a deep trench called 

Western Hispaniola Trough, with an average water depth of 4,200 m [88] [89]. The Western 

Hispaniola Trough is 2500 m in depth at Silver Spur [89]. However, the large population of Cuba 

makes it more attractive than Caicos Islands as a route for the submarine cable. For this reason, 

the proposed Caribbean super grid interconnects Florida, the north and western islands of The 

Bahamas, Cuba, Haiti, Jamaica, Dominican Republic, Puerto Rico, U.S. Virgin Islands, and the 

British Virgin Islands [32].  
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                                    TABLE 4.8: Segments of the proposed Caribbean super grid. 

Segments Distance 
(km) 

Maximum 
water depth 
(m) 

Reference 

Florida (West Palm Beach) to the Bahamas 
(Freeport) 

142 800 [90] 

The Bahamas (Freeport) to Cuba 564 680 [91] 

Cuba to the Haiti/Dominican Republic 639 2,000 [88] 

Haiti to Jamaica (over Navassa Ridge, Formiga 
Bank, and Homes Bank) 

537 2,500 [92]  

Dominican Republic to Puerto Rico 381 1,100 [93] 

Puerto Rico to the U.S. Virgin Islands (Saint 
Thomas) 

179 79 [94] 

Puerto Rico to U.S. Virgin Islands (Saint Croix) 194 2,507 [94] 

Source: [32] 

 
TABLE 4.9 shows the population of some Caribbean islands. In order to maximize the 

social and environmental benefit of renewable power distribution and consumption, the proposed 

interconnector should provide power supply services to the most highly populated Caribbean 

islands. Cuba, Haiti, Dominican Republic, Jamaica, and Puerto Rico have the largest populations 

in the Caribbean region. In the column of installed power capacity, this research assumes that only 

three Bahamas islands are partially supported by the interconnector since the remaining islands are 

separated by deep trenches, irregular seabed topography, and scarps. All islands shown in TABLE 

4.9 are highly dependent on fossil fuels for power supply. The average fossil fuel dependency of 

these islands for the power supply was extremely high (89 %) in 2016. The installed power 

capacity per capita indicates a significant energy consumption gap among islands. The proposed 

power interconnectivity scheme between Caribbean islands can bridge this economic and social 

gap [32]. 
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             TABLE 4.9: Population, power capacity, and fossil fuel dependence of Caribbeans. 

Country or territory 
Population 
(million in the 
year) 

Population 

Reference 

Installed 
power 
capacity 
[MW] 
(estimated in 
2016) [95]  

Total 
installed 
capacity 
driven by 
fossil fuel, 
and estimated 
in 2016) [95] 

Installed 
power 
capacity per 
capita.  

[MW / 
million 
people] 

The Bahamas  0.4 x 22.3% = 
0.089 in 2021 

[96] [97] 577 x 22.3% 
= 129 

100%  1443 

Cuba  11.3 in 2021 [96] 6,998  91%  619 

Haiti 11.5 in 2021 [96] 332  82%  29 

Dominican Republic 11 in 2021 [96] 3,839  77%  349 

Jamaica 3 in 2021 [96] 1,078  83%  359 

Puerto Rico 2.8 in 2021 [96] 6,294  94%  2248 

U.S. Virgin Islands (St. 
Thomas and St. John) 

0.0557 in 
2020 

[98] 325 x  53% = 
172 

98%  3088 

U.S. Virgin Islands 
(Saint Croix) 

0.0506 in 
2020 

[98] 325 x 47% = 
153  

98%  3024 

The British Virgin 
Islands 

0.030 in 2020 [99] 45  97%  1507 

Total 39.825 
around 2020 
and 2021 

[96], [98], 
[99] 

19,040  89%  478 

 
TABLE 4.10 shows a comparison between the population and power capacity both in the 

U.S. and the Caribbean islands, which are the two regions under consideration in this research. 

The installed capacity driven by fossil fuel is 19% higher in the Caribbean islands than in the U.S. 

The relatively lower participation of fossil fuels in the U.S. can be explained mainly by the support 

of nuclear power (9% of total installed capacity in 2017) and hydroelectric plants (7% of total 

installed capacity in 2017), according to [95]. Vertical analysis of the installed capacity per capita 

shows that, on average, North Americans are supported by 6.8 times more power capacity than the 

residents of the selected Caribbean islands. This comparative analysis provides some important 

numbers illustrating the gap between two different worlds. This gap in the power supply 

availability can be shortened by the proposed interconnector between the power grids of the 

contiguous U.S. and the selected Caribbean islands [32]. 
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             TABLE 4.10: Population, power capacity, and fossil fuel dependence in the U.S. and some selected 
Caribbean islands. 

Country 
Population 
(million in the 
year) 

Referenc
e 

Installed power 
capacity (2016 
est.)  

[MW] [95] 

Total installed 
capacity driven by 
fossil fuel, and 
estimated in 2016) 
[95] 

Installed power 
capacity per 
capita 
[MW/million 
people] 

United States of 
America 

334.998398  

(July 2021 est.) 

[95] 1,087,000 70%  3,245 

Caribbean islands, 

indicated in TABLE 
4.9 

39.825 around 
2020 and 2021 

[96], 
[98], [99] 

19,040 89%  478 

 
FIGURE 4.11 shows the proposed route of the power interconnector in the islands of the 

Caribbean region. Despite such opportunities for wealth distribution and humanitarian support, 

this research notes essential data shown in TABLE 4.10, i.e., the installed power capacity of the 

selected Caribbean islands of 19.04 GW. From this 19.04 GW capacity, 89% of power capacity 

driven by fossil fuel corresponds to 17 GW [32].  

 
FIGURE 4.11: Proposed Caribbean SG with interconnector in Florida [32]. 
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To structure a case study for further simulation and analysis, it is necessary to estimate the 

renewable power capacity.  

The selected Caribbean islands have two global benchmarks for their renewable programs: 

Germany and the United Kingdom. According to 2017 estimates in Germany, the total installed 

power capacity from hydropower was 2%, from other renewable sources was 52%, and nuclear 

fuel was 5% [95]. The total non-carbon power capacity corresponds to 59%. Similarly, the 2017 

estimates in the United Kingdom, the total installed power capacity from hydropower was 2%, 

from other renewable sources was 39% and from nuclear fuel was 9% [95]. The total non-carbon 

power capacity corresponds to 50%. 

For this reason, this research makes the following assumptions [32]: 

 The selected Caribbean islands would follow the highly successful examples of Germany and 

the U.K. and set a target of around 50% of renewables. In the case of the Caribbean islands, it 

is assumed that all the renewables in the selected islands would be based exclusively on wind 

farms, not solar power associated with battery energy storage. Under such assumptions, 50% 

of the total power capacity (19.040 GW) corresponds to 9.52 GW wind power capacity 

operating resiliently in normal weather or hurricane conditions. 

 The wind turbines are hurricane-proof. 

 The high voltage interconnector is mostly implemented by submarine cable and high voltage 

direct current (HVdc) technology with controlled bidirectional power flow. The high voltage 

interconnectivity scheme of these selected islands is called in this research as the Caribbean 

super grid.  
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For simulation purposes, by keeping the same proportionality of 1 GW of real wind power 

capacity to one simulated turbine of 10 MW, the selected Caribbean islands can be associated with 

ten wind power turbines of 10 MW [32]. 

4.8 Analysis of power profiles of offshore wind farms under hurricanes. 

This work investigates ten synthetic trajectories to emulate the hurricane alley, typically 

stretching from the Caribbean Sea, the Gulf of Mexico, the Great Plains, and reaching the U.S. 

East Coast. Hurricanes can also be of five categories of intensity, and for simplification purposes, 

this work selected the highest ones (category-5, 4, and 3). This research also investigates the impact 

of an interconnection between the local Caribbean power grids and the contiguous U.S. power 

grid, generating two sets of simulations, i.e., with and without the Caribbean super grid. Finally, 

the characteristic curve of power versus airspeed of turbines [32]. 

TABLE 4.11 summarizes the multitude of simulation cases in different hurricane 

trajectories. 

                                                                    TABLE 4.11: Cases for simulation 

The Caribbean super 
grid WITH 
interconnection to 
the contiguous U.S. 
power grid 

Typical turbines 
(cutout speed 25 
m/s) 

Hurricane category-5 Trajectory #1 to 10 
Hurricane category-4 Trajectory #1 to 10 
Hurricane category-3 Trajectory #1 to 10 

Special turbines 
(cutout speed 40 
m/s) 

Hurricane category-5 Trajectory #1 to 10 
Hurricane category-4 Trajectory #1 to 10 
Hurricane category-3 Trajectory #1 to 10 

The Caribbean super 
grid WITHOUT 
interconnection to 
the contiguous U.S. 
power grid 

Typical turbines 
(cutout speed 25 
m/s) 

Hurricane category-5 Trajectory #1 to 10 
Hurricane category-4 Trajectory #1 to 10 
Hurricane category-3 Trajectory #1 to 10 

Special turbines 
(cutout speed 40 
m/s) 

Hurricane category-5 Trajectory #1 to 10 
Hurricane category-4 Trajectory #1 to 10 
Hurricane category-3 Trajectory #1 to 10 

Source: [32] 

 
The purpose of this multitude of cases is to investigate the positive and negative impact of 

hurricanes on a proposed Caribbean super grid dedicated to wind power, the benefits of wind 
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turbines with higher cutout speed, the differences of hurricane categories in the power system, and 

the influence of different trajectories in the power peak and duration of a hurricane. The collection 

of all simulated cases later supports a comprehensive comparative analysis of the case study [32]. 

4.9 US-Caribbean SG with typical turbines, category-5 and trajectory #1 

The hurricane crosses the Caribbean Sea very close to Jamaica, reaches the Gulf of Mexico, 

makes landfall in Texas, and crosses significant portions of the Great Plains [32]. 

FIGURE 4.12 shows the trajectory of the hurricane model hitting the U.S. South Coast and 

the geospatial distribution of wind power capacity [32]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.13 shows the total power profile generated by the hurricane's movement, the 

average mean airspeed experienced by all turbines, and the maximum airspeed profile experienced 

by a turbine with the highest airspeed peak. The power profile shows two waves. The first one 

corresponds to the hurricane movement in the Caribbean Sea in the period between 20 h to 110 h. 

 
FIGURE 4.12: Map of trajectory #1 of a hurricane category-5 [32]. 
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This wave is mild because the hurricane trajectory is distant from the turbines of the Caribbean 

super grid. The second wave, after time 155 h, is robust and corresponds to the movement of the 

hurricane over the Great Plains [32]. 

 
 

4.10 US-Caribbean SG with typical turbines, category-5 and trajectory #5 

FIGURE 4.14 shows hurricane trajectory #5. The hurricane crosses the Caribbean Sea on 

the southern coast of the U.S. Virgin Islands, Puerto Rico, Dominican Republic, Haiti, and Cuba 

before reaching the Gulf of Mexico. It makes landfall on the border of the Mississippi and 

Alabama, crosses the eastern portions of the Great Plains, and the offshore coast of Maine [32]. 

 
FIGURE 4.13: Profiles for category-5 hurricane in trajectory #1 [32]. 
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FIGURE 4.15 shows the total power profile generated by the passage of the hurricane on 

trajectory #5 [32].  

The first wave of hurricane wind power is very mild. Most generated power occurs on the 

second wave over the Great Plains. The mean airspeed faced by all turbines is higher in the inland 

segment because the radius of maximum speed increases significantly after running over the land 

[32].  

 

 

 

 
FIGURE 4.14: Map of category-5 hurricane in trajectory #5 [32]. 
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4.11 US-Caribbean SG with typical turbines, category-5 and trajectory #7 

FIGURE 4.16 shows a hurricane in trajectory #7 hitting the Caribbean super grid, moving 

toward the Gulf of Mexico, making landfall on the west coast of Florida, crossing the Southeast 

region, and returning to the Atlantic Ocean in New Jersey [32]. 

 
FIGURE 4.15: Power profile for category-5 hurricane in trajectory #5 [32]. 
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FIGURE 4.17 shows the total power profile of the hurricane. Soon after the landfall, the 

hurricane radius of maximum speed increases, extending the hurricane wind coverage over some 

turbines of the Great Plains and the Southeast coast. After its return to the Atlantic Ocean, the 

hurricane loses strength, and less power is produced in the offshore Northeast coast wind farms. 

Also, FIGURE 4.17 shows the mean average airspeed experienced by all turbines and the 

maximum airspeed profile experienced by a turbine with the highest airspeed peak [32].  

 

 
FIGURE 4.16: Map of category-5 hurricane in trajectory #7 [32]. 
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4.12 US-Caribbean SG with typical turbines, category-5 and trajectory #9 

FIGURE 4.18 shows hurricane trajectory #9 passing over the northern coast of Puerto Rico, 

Dominican Republic, Haiti, Cuba, The Bahamas, and the U.S. East Coast [32].  

 
FIGURE 4.17: Power profile for category-5 hurricane in trajectory #7 [32]. 
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FIGURE 4.19 shows the total power profile, the mean average airspeed experienced by all 

turbines, and the maximum airspeed profile experienced by a turbine with the highest airspeed 

peak. From time 50 h to 65 h, the hurricane approaches many turbines in Puerto Rico, which 

produces the first power wave in the Caribbeans. The hurricane produces a second wave from time 

70 h to 150 h, which corresponds to the Southeast Coast of the U.S. The hurricane, from time 125 

h to 132 h, moves back temporarily to the sea, reduces its radius of maximum speed, and limits 

the delivery of kinetic energy to distant turbines. As soon as the hurricane reentries the land after 

time 135 h, the power profile increases [32]. 

 
 
 
 
 

 
FIGURE 4.18: Map of category-5 hurricane in trajectory #9 [32]. 
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The combinations of all possible cases would result in 120 individual cases for simulations. 

The compression and grouping of scenarios are necessary to facilitate the analysis [32]. The 

grouping of scenarios is presented in four cases. These four cases correspond to the simulation 

framing shown in columns 1 and 2 of TABLE 4.11. 

4.13 US-Caribbean super grid with typical turbines, category-5, 4, and 3 over synthetic 

trajectories #1 to 10 

The interconnection of the Caribbean super grid with the contiguous U.S. power grid by a 

submarine power cable between the Bahamas and Florida grid aims at balancing the peak of locally 

produced wind power boosted by a hurricane with distant centers of baseload stable wind power 

generation. Such centers are located on the U.S. West Coast and the western areas of the Great 

Plains. These areas are not normally hit by hurricanes [32].  

 
FIGURE 4.19: Power profile for category-5 hurricane in trajectory #9 [32]. 
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Also, even in areas along the hurricane corridor, because of the long extent of the corridor 

in comparison to the diameter of the hurricane, the first impact of the hurricane in one end of the 

corridor can be absorbed by steady wind power production in the other end. So, the submarine 

interconnector in Florida Strait distributes the peak impact of a hurricane in a vast wide 

spatiotemporal base of steady wind power production [32].  

FIGURE 4.20 shows the power profiles of the selected category-5 hurricane hitting the 

integrated Caribbean super grid and the contiguous U.S. power grid [32]. 

 

 
FIGURE 4.20: Profiles of US-Caribbean SG for category-5 [32]. 
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FIGURE 4.21 shows the power profiles of the selected category-4 hurricane hitting the 

integrated Caribbean super grid and the contiguous U.S. power grid [32]. 

 

FIGURE 4.22 shows the power profiles of the selected category-3 hurricane hitting the 

integrated Caribbean super grid and the contiguous U.S. power grid. FIGURE 4.22(a) and (b) show 

increased variability of power and mean wind speed profile in the turbines under the selected 

category-3 hurricane. Due to a smaller radius of maximum and minimum speed, a category-3 

hurricane has less capability of delivering kinetic energy to a large pool of distant wind turbines 

 
FIGURE 4.21: Profiles of US-Caribbean SG for category-4 [32]. 
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along its trajectory. This shortage of residual power reflects the power variability of low-category 

hurricanes [32]. 

 

The interconnector between the Caribbean super grid and the contiguous U.S. grid shows 

a percental power variability for the selected category-5, 4, and 3 hurricanes. In the sequence, the 

effect of not installing the submarine power interconnector is investigated [32]. 

 

 
FIGURE 4.22: Profiles of US-Caribbean SG for category-3 [32]. 
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4.14 US-Caribbean super grid with special turbines, cat-5, 4, and 3 over synthetic trajectories 

#1 to 10 

This scenario is similar to the last one but with a wind turbine with an expanded cutout 

speed of 40 m/s, i.e., much higher than the cutout speed of a typical turbine (25 m/s). A speed 

above these cutout limits forces an intended shutdown of the turbine power for mechanical 

structural protection [32]. 

FIGURE 4.23 shows the power profile for the selected category-5 hurricane in ten 

trajectories over the interconnected Caribbean super grid with special turbines [32].  

 
FIGURE 4.23: Profiles of US-Caribbean SG with special turbines for cat-5 [32]. 
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FIGURE 4.24 shows the power profile for the selected category-4 hurricane in ten 

trajectories over the non-interconnected Caribbean super grid with special turbines. FIGURE 

4.24(b) shows that a hurricane in trajectories #8, 9, and 10 spatially moves over the Caribbean 

super grid and causes a robust increment of the mean speed from 40 h to 80 h, compared to 

trajectories #5 and 6. However, this increment of kinetic energy is not fully converted into power 

due to the turbine characteristic curve due to the power cap and cutout speed [32]. 

 
 

 
FIGURE 4.24: Profiles of US-Caribbean SG with special turbines for cat-4 [32]. 
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FIGURE 4.25 shows the power profile for the selected category-3 hurricane in ten 

trajectories over the interconnected Caribbean super grid with special turbines. The power 

variability around 40 h to 100 h, i.e., over the Caribbean super grid, is strongly dependent on the 

hurricane geometry (with a small radius of maximum and minimum speed), the high spatial density 

of wind turbines in small islands, and frequent entries of the category-3 hurricane eye in the islands, 

which changes its geometry and central pressure. Over the Great Plains, from 100 h to 210 h, the 

power profile of the selected category-3 hurricane on trajectories #1 to 5 is smoother than the 

trajectories #7, 8, and 9 over the Caribbean super grid [32].  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4.25: Profiles of US-Caribbean SG with special turbines for cat-3 [32]. 
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4.15 Standalone Caribbean super grid with typical turbines, cat-5, 4, and 3 over synthetic 

trajectories #1 to 10 

In this scenario, this research investigates the Caribbean super grid but disconnected with 

the contiguous U.S. power grid. The interconnector between the Bahamas and Florida grid is not 

present in this scenario. From the perspective of the Caribbean power system, even with integration 

between local islands, the purpose is to analyze how the local wind power capacity would absorb 

the impact of hurricanes. In other words, this scenario assesses the power variability without 

interconnection in comparison with the previous scenario with interconnection. This comparison 

evaluates the magnitude of the technical benefits of anchoring a relatively small local wind 

capacity, even in a local super grid, in a large wind capacity of the contiguous U.S. power grid 

[32]. 

The local Caribbean super grid is tested by the simulated impact of category-5, 4, and 3 

hurricanes in ten trajectories. The shape of the trajectories is the same parabolas as previous ones.  

FIGURE 4.26 shows the wind power profile and the mean average speed in the wind 

turbines exclusively located in the Caribbean super grid under the impact of a category-5 hurricane 

in ten trajectories [32].  
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The eye of the hurricane passes close to Puerto Rico around time 40 hours and physically 

leaves the Bahamas and Cuba around time 100 hours. A significant share of kinetic energy from 

winds between time 50 to 70 hours, observed in the average mean speed profile, does not convert 

into electrical power due to the speed of power cap (14 m/s) and cutout speed (25 m/s). But two 

aspects are relevant for the final analysis of the results. Firstly, the initial pre-hurricane power level 

is just 20 MW. In this scenario, the wind power from the contiguous U.S. is not computed because 

they are not interconnected. Secondly, the hurricanes come as a wave with an initial steep power 

ramp, reaching its peak at 66 MW, i.e., three times the initial power, and wanes down more slowly, 

 

FIGURE 4.26: Profiles of standalone Caribbean SG for category-5 [32]. 
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recapturing part of the energy coming even after the landfall in the continent due to the enlargement 

of the radius of maximum speed (RMW) in the inland segment. Despite some power fluctuations 

caused by the several entries of the eye of the hurricane over the islands of the Caribbean, there is 

some rationale for the shape of the curves [32]. 

FIGURE 4.27 shows the wind power profile and the mean average speed in the same wind 

turbines under the impact of a category-4 hurricane in the same ten trajectories [32]. 

FIGURE 4.27, compared to FIGURE 4.26, shows much more power variability, lower 

energy harvesting between 50 to 100 hours, and a power tailgate ending at time 145 hours, shorter 

than the 185 hours of FIGURE 4.20. In this case, the power variability is exclusively caused solely 

 

FIGURE 4.27: Profiles of standalone Caribbean SG for category-4 [32]. 
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by the characteristics of the category-4 hurricane since the trajectories are the same as the previous 

one. The selected category-4 hurricane has a smaller radius of minimum speed offshore (267 km) 

compared to a category-5 hurricane (981 km), which partially explains why category-4 is less 

generous in distributing kinetic energy to the wind turbines reflecting eventually in a lower power 

profile. Also, as indicated in TABLE 4.7, the radius of the minimum speed onshore is much 

extended for the selected category-5 (1,408 km) than for the category-4 (927 km), which explains 

the larger tailgate of category-5 blowing minimum winds from the continent to the northern part 

of the Caribbeans even exceeding time 145 hours. Soon after the landfall, the increase of the 

onshore radius of hurricane minimum speed boosts distant wind power generation, even crossing 

some offshore zones. Just the outer band of minimum wind speed, i.e., not exceeding 25 m/s in the 

selected wind turbine model of this simulation, produces any power. The larger the radius of 

minimum speed is, the more extensive the zone of contact of this outer band with wind power 

turbines [32].  

FIGURE 4.28 shows the wind power profile and the mean average speed in the same wind 

turbines under the impact of a category-3 hurricane [32]. 
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The power profile of this category-3 hurricane is even more modest, both in peak 

magnitude and duration. Although the offshore radius of minimum category-3 hurricane speed is 

modestly larger than the category-4, the onshore radius (858 km) is significantly lower than of the 

category-4 (927 km), diminishing the extension of the tailgate by post-landfall power recovery. As 

indicated in TABLE 4.7, the central pressure (980 mbar) of the category-3 hurricane is more robust 

than the selected category-4 hurricane (975 mbar), producing lower delta pressure, reducing the 

hurricane strength, and leading to low power profile magnitude. The power peak of the selected 

category-3 hurricane (44 MW) is smaller than category-4 (70 MW), as shown in FIGURE 4.21 

and FIGURE 4.22 [32]. 

 

FIGURE 4.28:. Profiles of standalone Caribbean SG for category-3 [32]. 
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Over the pre-hurricane wind speed conditions, the power peak variability is 65 MW peak 

over 20 MW, 70 MW peak over 20 MW, and 44 MW peak over 20 MW, i.e., an increment of 

225%, 250%, and 120%, for category-5, 4, and 3, respectively. The instantaneous power variability 

is relatively low in category-5 and increases substantially in hurricanes category-4 and 3 [32]. 

These numbers of power variability are very high without the power interconnection of the 

Caribbean super grid with the contiguous U.S. power grid through a Florida submarine 

interconnector. A future power interconnector is highly beneficial to draining the local excessive 

peak and fluctuations of wind power generation in the Caribbean region under hurricanes to the 

massive power consumption of the North American power grid. Stand-alone or locally integrated 

wind power generation does not cope with the seasonal impact of hurricanes [32].   

4.16 Standalone Caribbean super grid with special turbines, cat-5, 4, and 3 over synthetic 

trajectories #1 to 10. 

This scenario is similar to the last one but with a wind turbine with an expanded cutout 

speed of 40 m/s. For comparison, a typical turbine cutout speed is around 25 m/s. A speed level 

above these cutout limits forces an intended shutdown of the turbine power for mechanical 

structural protection [32]. 

FIGURE 4.29 shows the power profile for the selected category-5 hurricane in ten 

trajectories over the non-interconnected Caribbean super grid with special turbines [32]. 
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FIGURE 4.30 shows the power profile for the selected category-4 hurricane in ten 

trajectories over the non-interconnected Caribbean super grid with special turbines. This selected 

category-4 hurricane produces more wind variability, causing high variability in the generating 

power profile than the selected category-5 hurricane [32]. 

 

FIGURE 4.29: Profiles of standalone Caribbean SG in cat-5 with special turbines 
[32]. 
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FIGURE 4.31 shows the power profile for the selected category-3 hurricane in ten 

trajectories over the non-interconnected Caribbean super grid with special turbines. Compared to 

category-5 and 4, the selected category-3 produces even more wind variability, causing extremely 

high variability of power profile in a disconnected Caribbean super grid [32]. 

 

FIGURE 4.30: Profiles of standalone Caribbean SG in cat-4 with special turbines 
[32]. 

 



86 

 
 
 

4.17 General comparative analysis 

This section presents a comparative analysis of the simulation results. The first analysis 

compares the difference in the performance of typical and special turbines in a Caribbean super 

grid interconnected to the contiguous U.S. grid. The second analysis compares typical and special 

turbines in a disconnected Caribbean super grid. The last analysis investigates the power variability 

with interconnection and disconnection of the Caribbean super grid. The purpose of these 

comparisons is to investigate the advantages of special turbines over typical ones and the benefits 

 

FIGURE 4.31: Profiles of standalone Caribbean SG in cat-3 with special turbines 
[32]. 
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of the Caribbean super grid interconnection to the contiguous U.S. power grid in reducing the 

power variability under hurricanes. 

4.18 Comparison of special and typical wind turbines on the US-Caribbean SG. 

Hurricanes hitting the Caribbean super grid interconnected to the contiguous U.S. power 

grid generate a power profile with two waves. The first wave has a modest power peak because it 

aggregates the power from the Caribbean super grid with ten turbines, and the second wave is more 

robust due to a large number of turbines in the Great Plains and the U.S. East Coast. Moreover, in 

the onshore segment of the trajectory, the hurricane radius increases compared to the offshore 

segment, covering an even larger area of the U.S. continent during its movement [32]. 

This work investigates the differences in the power profile if the turbines are changed from 

typical to special ones. As previously characterized in FIGURE 4.4, this research assumes a special 

turbine that can generate power even for high airspeed from 25 m/s to 40 m/s. TABLE 4.12 

summarizes the comparison of the power profiles with typical and special turbines [32]. 
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  TABLE 4.12: Analysis of power variability in the U.S.-Caribbean super grid with different types 
of turbines. 

Interconne
ction  

U.S.-Caribbean Super Grid Interconnected U.S.-Caribbean Super Grid Interconnected 

Turbine 
type  

Typical turbine with cutout speed of 25 m/s. Special turbine with cutout speed of 40 m/s. 

Category-5 
hurricane 

FIGURE 4.20:  

The peak power from the Caribbean turbines is 
the same (245 MW). 

The peak power from the Great Plains with 
typical turbines is lower (510 MW) than with 
special turbines, as shown in the next column. 

From 56 to 58 h, the power drops to 205 MW 
(severe power drop), but it is still above the 
pre-hurricane level of 200 MW. 

Trajectory #1 shows a power drop to 202 MW 
from 110 and 115 h, but it is still above the 
pre-hurricane level of 200 MW. 

FIGURE 4.23:  

The peak power from the Caribbean turbines 
is the same (245 MW)  

The peak power from the Great Plains with 
special turbines is higher (540 MW) than 
typical turbines, as shown in the previous 
column. 

From 53 to 56 h, the power drops to 210 MW 
(minor power drop), but it is still above the 
pre-hurricane level of 200 MW. 

Trajectory #1 shows a power drop to 202 
MW from 110 and 115 h, but it is still above 
the pre-hurricane level of 200 MW. 

Category-4 
hurricane 

FIGURE 4.21: 

The peak power from the Caribbean turbines is 
low (250 MW). 

The peak power from the Great Plains is low 
(390 MW). 

From 49 to 53 h, the power drops to 195 MW; 
from 53 to 70 hours, 190 MW; from 75 to 105 
h, 195 MW; from 121 to 135 h, 185 MW; from 
135 to 157 h, 187 MW; from 162 to 167 h, 185 
MW, totaling 92 h of power drop, i.e., the 
profile shows a severe and long-lasting power 
drop in relation to the pre-hurricane power 
level of 200 MW. 

FIGURE 4.24: 

The peak power from the Caribbean turbines 
is high (260 MW). 

The peak power from the Great Plains is 
higher (400 MW).  

From 64 to 66 hours, from 75 to 78 h, from 
83 to 88 h, from 97 to 102 h, from 129 to 134 
h, and from 142 to 145h, the power drops to 
195 MW for 23 hours total in relation to the 
pre-hurricane power level of 200 MW, i.e., 
the profile shows a moderate and short-time 
power drop in relation to the pre-hurricane 
power level of 200 MW. 

Category-3 
hurricane 

FIGURE 4.22: 

The peak power wave from the Caribbean 
turbines is the same (222 MW). 

The peak power wave from the Great Plains is 
small (300 MW). 

The power drop ranges from 183 MW to 195 
for 60 hours, i.e., the profile shows a severe 
and long-lasting power drop in relation to the 
pre-hurricane power level of 200 MW. 

FIGURE 4.25: 

The peak power wave from the Caribbean 
turbines is the same (232 MW). 

The peak power wave from the Great Plains 
is small (305 MW). 

The power drop stays 196 MW for a total 29 
hours, and from 133 to 137 h, it reaches 192 
MW, i.e., the profile shows a moderate and 
short-time power drop in relation to the pre-
hurricane power level of 200 MW. 

Source: [32]. 
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In most categories (3 and 4), a special turbine with a cutout speed of 40 m/s increases the 

peak power production during the hurricane [32]. 

Special turbines cause a less severe and shorter time of power drop in relation to the pre-

hurricane level because they produce power even at high speeds (> 25 m/s and < 40 m/s). 

The turbine type is not the primary cause of power variability. However, a turbine with 

high cutout speed minimizes the severity and time duration of the power drop by producing power 

even at high airspeed. The specific hurricane radius of maximum and minimum speed, and the 

numerous inland entries and offshore departure of the hurricane eye alter the parameters of the 

hurricane, causing significant power variability in the profile. The power profile ripple of the Great 

Plains is lower than the Caribbeans because the turbines are well equidistantly distributed over a 

larger area than the Caribbeans [32]. 

 

4.19 Comparison of special and typical turbines on standalone Caribbean SG 

TABLE 4.13 compares wind power variability of typical and special turbines in the 

proposed Caribbean super grid without interconnection with the contiguous U.S. power grid [32]. 
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 TABLE 4.13: Analysis of power variability in the Caribbean super grid without interconnection. 

Interconnection  U.S.-Caribbean Super Grid  

Not Interconnected 

U.S.-Caribbean Super Grid  

Not Interconnected 

Turbine type 
Typical turbine with cutout speed of 25 
m/s. 

Special turbine with cutout speed of 40 
m/s. 

Category-5 
hurricane 

FIGURE 4.26:  

The peak power is the same 65 MW. 

The power tailgate ranges from the 
same period (130 to 185 hours). 

Between 50 to 70 hours, the power 
drops to 28 MW (a very severe drop). 

FIGURE 4.29:  

The peak power is the same 65 MW. 

The power tailgate ranges from the 
same period (130 to 185 hours). 

Between 50 to 70 hours, the power 
drops to 38 MW (less severe drop). 

Category-4 
hurricane 

FIGURE 4.27: 

The peak power is low (72 MW). 

The power tailgate is indistinguishable, 
and the total power profile variability 
ranges from the same period (35 to 145 
hours). 

Between 50 to 70 hours, power drops to 
12 MW (very severe 40% power drop 
from pre-hurricane level). 

FIGURE 4.30: 

The peak power is high (81 MW). 

The power tailgate is indistinguishable, 
and the total power profile variability 
ranges from the same period (35 to 145 
hours). 

Between 50 to 70 hours, power drops to 
17 MW (less severe 15% power drop 
from pre-hurricane level). 

Category-3 
hurricane 

FIGURE 4.28: 

The peak power is low (44 MW). 

The power tailgate is indistinguishable, 
and the total power profile variability 
ranges from the same period (35 to 130 
hours). 

Between 65 to 105 hours, power drops 
to 9 MW (very severe 55% power drop 
from pre-hurricane level). 

FIGURE 4.31: 

The peak power is high (54 MW). 

The power tailgate is indistinguishable, 
and the total power profile variability 
ranges from the same period (35 to 130 
hours). 

Between 65 to 105 hours, power drops 
to 18 MW (less severe 10% power drop 
from pre-hurricane level). 

Source: [32]. 
 

In most categories, a special turbine with a cutout speed of 40 m/s increases the peak power 

production during a hurricane [32]. 

Special turbines cause a less severe drop in power profile from the pre-hurricane level 

because they keep capturing power even at high speeds (> 25 m/s and < 40 m/s). 

The type of turbine is not the major cause of power variability, although a turbine with high 

cutout speed minimizes power drop by pushing power even at high airspeed. The specific hurricane 

radius of maximum and minimum speed, and the numerous inland entries and offshore departure 
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of the hurricane eye alter the parameters of the hurricane, causing significant power variability in 

the profile [32]. 

4.20 Comparison of power variability of Standalone Caribbean SG and US-Caribbean SG 

This comparison analyses the power variability in two scenarios: with and without the 

submarine interconnector between Florida and The Bahamas [32].  

Some indicators are proposed to facilitate the comparison. The power variability between 

the maximum and minimum values can be calculated by [32]: 

 

∆௠௔௫=  
௉೘ೌೣି௉೘೔೙ 

௉೘ೌೣ
      (15) 

where: 𝑃௠௔௫ and 𝑃௠௜௡ are the maximum and minimum values in the power profile curve. 

The power minimum variability over pre-hurricane conditions can be calculated by [32]: 

∆௠௜௡=  
௉೚ି௉೘೔೙ 

௉೚
             (16) 

where: 𝑃௢ and 𝑃௠௜௡ are the pre-hurricane and minimum power values in the power profile 

curve. 

TABLE 4.14 shows the wind power variability caused by a hurricane hitting the proposed 

Caribbean super grid with and without interconnection with the contiguous U.S. power grid [32]. 
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TABLE 4.14: Analysis of power variability with and without Caribbean super grid interconnection. 

Caribbean super grid with 
interconnection with the 
contiguous U.S. power grid 

Interconnected Not interconnected 

Turbine type Typical (cutout speed of 
25 m/s) 

Typical (cutout speed of 
25 m/s) 

Total number of turbines 
81 interconnected 

10 turbines in the 
Caribbeans isolated from 
71 in the contiguous U.S. 

Power profiles FIGURE 4.20, FIGURE 
4.21, and FIGURE 4.22 

FIGURE 4.26, FIGURE 
4.27, and FIGURE 4.28 

Pmax (Peak power in the 
Caribbean side) [MW] for 
category-5, 4, and 3 

245 / 250 / 222 65 / 72 / 44 

Pmin (Minimum power) [MW] 
for category-5, 4, and 3 

205 / 185 / 183 28 / 12 / 9 

Po (Pre-hurricane power) 
[MW] for category-5, 4, and 3 

200 / 200 / 200 20.5 / 20.5 / 20.5 

∆𝒎𝒂𝒙 (Maximum power 
variability) for category-5, 4, 
and 3 

16.3% / 26% / 62.6% 132% / 500% / 388% 

∆𝒎𝒊𝒏 (Minimum power 
variability) for category-5, 4, 
and 3 

-2.5% / 7.5% / 8.5% -36.6% / 41.4% / 56.1% 

Source: [32]. 

 
The power variability in the Caribbean is significantly reduced if the Caribbean super grid 

is interconnected to the contiguous U.S. power grid [32]. 

4.21 Validation of the proposed method and existing literature. 

The validation of the spatiotemporal method is conducted in 3-parts: 

 Validation of the hurricane wind speed as predicted by the model. 

 Validation of the algorithm to compute the mechanical-electrical power conversion 

of a single turbine. 
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 Validation of the aggregation of power profiles of all turbines into total power 

profile of the Caribbean grid.  

In 2016, Kim et al. investigated hurricane Ike (2008), making landfall in Texas. Before 

landfall, the wind speed was estimated at two points over the waters of the Gulf of Mexico. Points 

A and B were located 60 km on the right and left sides of the hurricane trajectory, respectively. 

Both points were perpendicular to the hurricane trajectory [100].  

The trajectory of Ike approaching close to Texas from the Gulf of Mexico is similar to the 

synthetic trajectory 1, simulated in this dissertation. FIGURE 4.32 shows the comparison of wind 

profiles in the Kim et al. studies and the profile of the maximum speed in a turbine generated for 

the method proposed in this dissertation. The profile of trajectory 1 refers to a turbine located in 

Texas. A hurricane, after landfall, changes its characteristics of maximum speed and size due to 

changes in its parameters, such as central pressure, maximum radius, and maximum wind speed. 

Such changes can be observed by the offshore profile shown in green color (trajectory 7) and blue 

color (trajectory 1). In addition, the peak speed in the hurricane eye border reduces significantly 

after landfall. 

 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 4.32(a) is adjusted by a factor of 1.203 to estimate the wind speed at 90m height 

since the original data refers to 10 m height. FIGURE 4.32(a) and (b) peaks 48m/s, validating the 

 
FIGURE 4.32: Comparison of Kim et al. [100] and spatiotemporal methods. 
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proposed method by Itiki et al with existing literature of Kim et al. The profile does not have a 

steep drop in speed at time 111 h because the onshore turbine is not close enough to capture the 

low-speed zone within the hurricane eye.  

The wind speed profile of the turbine receiving the impact of the hurricane over trajectory 

1 (in blue color) captures the low-speed eye zone at time 111 h because of the turbine's proximity 

to the hurricane trajectory. This onshore turbine absorbs a hurricane originally coming as category-

5 from the sea but slows down soon after landfall. The dark blue wind speed profile is consistent 

with the patterns of hurricanes after landfall.  

This comparative analysis demonstrates the consistency of the wind speed profiles 

generated by the spatiotemporal method based on parametric hurricane modeling proposed in this 

dissertation. Furthermore, this analysis corroborates the applicability of the parametric hurricane 

modeling based on Holland and Georgio's equations, already validated by numerous existing 

technical literature in the scope of weather science [73] [74]. 

The second part is the validation is the algorithm to compute mechanical-electrical power 

conversion of a single turbine. In this part, the focus is on the correct calculation of instantaneous 

power of one turbine based on the estimated wind speed profile from hurricane. The reference 

basis for this is FIGURE 4.33, the characteristic curve of turbine provided by manufacturers or 

obtained from the technical literature. 

 

 

 

 

  
FIGURE 4.33: Characteristic curve of a wind turbine 
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For wind speed between 14m/s to 40 m/s, the output power is capped in 10 MW, as shown 

in FIGURE 4.33. And for wind speed exceeding 40 m/s in special turbines, the power drops to 

zero, as also shown in FIGURE 4.33. 

FIGURE 4.34 shows the conversion of wind profile (b) into power profile (a). Like the 

characteristic curve of the turbine, for wind speed between 14m/s to 40 m/s, the output power 

profile is capped in 10 MW and for wind speed exceeding 40 m/s, the power drops to zero.  

 

 

 

 

 

 

 

 

 

These checking points validate the correctness of the algorithm for conversion of wind 

speed into power in a single turbine. 

The third part of the validation aims at certifying that the power profiles of each turbine 

are correctly aggregated into the overall power profile of the super grid.  

FIGURE 4.35 shows the aggregated power profile of standalone Caribbean super grid hit 

by category-5 hurricane over trajectory #7. This profile was obtained by the spatiotemporal method 

proposed in this research. 

 

 
FIGURE 4.34: Power profile (a) obtained from wind profile estimation (b). 
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Standalone Caribbean super grid is proposed with ten turbines. By running the 

spatiotemporal algorithm for each turbine, it is possible to obtain the individual power profile of 

ten turbines in text format file. Using a time-series power flow software, such as Sincal, it is 

possible to model the standalone Caribbean super grid with ten buses, and inject in each bus the 

profile generated by the proposed spatiotemporal method. For simplification purposes, the 

modeling of the standalone Caribbean super grid can be carried out by high voltage alternating 

current, and isolated cables to emulate the submarine interconnectors of the super grid. After power 

flow simulation, it is possible to obtain the time-series power flow from Bahamas to Florida, by 

considering the contiguous US power grid as a infinite bus consuming all power from the 

Caribbeans, and verify the consolidation of the aggregation of power generated by the standalone 

Caribbean super grid. These possibilities are explored in this research in order to validate the 

aggregation algorithm developed in MATLAB coding. 

 
 

FIGURE 4.35: Power profile of standalone Caribbean super grid. 
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FIGURE 4.36 shows the single line diagram of the US-Caribbean super grid which is 

modeled and simulated in Sincal. The U.S. Grid is modeled as a swing bus and consumer of all 

power generated by wind turbines on the Caribbean super grid. On each bus of the Caribbean super 

grid the synchronous generator capacity has the same power of the load, letting all power generated 

by wind turbines on the Caribbean super grid to be drained to the U.S. Grid. 

 

 

 

in Fig 4 (spatiotemporal method) as compared to Fig. 5 (power flow run in Sincal). The  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
FIGURE 4.36: Single line diagram of US-Caribbean super grid. 
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FIGURE 4.37 shows the simulation results with the injection of power profile by each wind 

turbine on the super grid.  

 

 

 

 

 

 

 

 

 

 

 

Comparing FIGURE 4.35 and 4.37, the shape is similar, and the peak power in 4.37 is a 

slightly lower than FIGURE 4.35 because Sincal accounts line losses, resulting in lower power 

flow in the Bahamas-Florida interconnector. 

TABLE 4.15 shows the percentual power error between the proposed spatiotemporal 

method, shown on FIGURE 4.35, and the time-series power flow using Sincal, shown in FIGURE 

4.37. The percentual error does not exceed 5% and can be credited to transmission losses in the 

interconnectors of the Caribbean super grid. The spatiotemporal method consolidates the power 

profile of each wind turbine. Sincal simulation presents the time-series power flow profile in the 

interconnector between the Bahamas and Florida, indicated as “Breaker FL-Bah” on FIGURE 

4.36. The input data for the Sincal simulation is the power profile of each wind turbine, obtained 

 
 

FIGURE 4.37: Power profile using time-series simulator Sincal. 
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from the spatiotemporal method. The low percentual values of error between the methods 

demonstrates that with the same input, the output value in both methods is very similar. Thus, the 

loop of MATLAB coding of the spatiotemporal method carrying out the aggregation of power 

profile of each turbine is validated by the power flow simulation in Sincal.  

                  TABLE 4.15: Error between spatiotemporal and load flow methods. 

Time  

[hours / date] 

Spatiotemporal  

[MW] 

Sincal 

[MW] 
Error 
[%] 

30 h / Sept 16 plus 6 h 20.5 20 2.5% 

50h / Sept 17 plus 2 hours 52 50 4% 

62 / Sept 17 plus 14 hours 64 62 3.2% 

79h / Sept 18 plus 7h 57.5 56 2.7% 

89h / Sept 18 plus 17h 55 53.5 2.8% 

100 h / Set 19 plus 4h 46.5 45 3.3% 

130 / Sept 20 plus 10h 23 22.5 2.2% 

133 / Sept 20 plus 13h 32.5 32 1.6% 

150 h / Sept 21 plus 6h 28 27.6 1.4% 

174 h / Sept 22 plus 6h 20.5 20 2.5% 

 

This proposed method of spatiotemporal wind speed and power profile estimation does not 

propose to compete with weather science. In other words, this proposed spatiotemporal method 

neither pursues an improvement of fitness of the Holland and Georgio's equations with datasets 

from weather measuring stations nor tries to compete with high-performance supercomputing 

machines for weather forecasting, which is undoubtedly the traditional scope of weather science.  

From a systemic perspective, this proposed method for spatiotemporal wind speed and 

power profile estimation aims to bridge the gap between weather and power systems, which are 

apparently disconnected in the existing literature. By proposing to cover a research gap 

characterized by a vacuum of scientific knowledge in an interdisciplinary space, the single-part 

validation of the proposed bridging method by comparison with existing methods is not quite 



100 

feasible because of the shortage of literature on the gap and because the power profile is dependent 

on a specific spatial distribution of wind turbines in the Caribbean. Alternatively, this 3-parts 

validation shows evidence that the proposed method for spatiotemporal wind speed profile 

estimation produces results consistent with some existing weather science or mechanical 

engineering literature covering hurricane speed estimation, such as Kim et al. [100], and 

aggregation loops of the coding do not generate results inconsistent with load flow method. 

The existing literature about the impact of hurricanes on power systems focuses on 

assessing damage and reconstruction costs instead of wind power generation profiles.  

TABLE 4.16 gives more details on the differences and similarities of spatiotemporal 

methods to evaluate the impact of hurricanes on power grids. The method proposed in this research 

covers all the extent of the hurricane translational movement, i.e., from the Caribbeans to the U.S 

Midwest, being thus more adequate for estimation of power generation profile of wind capacity 

supported by wide-area transmission systems such as super grids. 
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  TABLE 4.16: Comparison of methods for estimating the impact of hurricanes on the power systems. 

Method 
description 

Spatiotemporal linear 
trajectory with 
parametric hurricane 
modeling and 
probabilistic parameters. 

Spatiotemporal multi-segments 
trajectory with hurricane modeling 
by historical geospatial speed data 
from NHC GISlibrary. 

Spatiotemporal parabolic 
trajectory with parametric 
hurricane modeling and fixed 
onshore and offshore 
parameters 

Authors John W. Muhs and 
Masood Parvania 

E. B. Watson and A. H. Etemadi. R. Itiki, et al. 

Reference, 
year 

[37], 2019  [38], 2020 [32], 2022 

Purpose Estimation of damage to 
distribution lines. 

Estimation of damage to 
transmission, substations, coal, gas, 
nuclear, solar plants, and non-
hurricane-proof wind turbines 

Estimation of power profile 
generated by hurricane-proof 
wind turbines for power 
simulations  

Hurricane 
category 

Historical probabilistic 
distribution 

Category 4 only (Harvey) Categories 5, 4 and 3 

Radius of 
maximum 
speed 

Rmax is estimated by an 
empirical equation. 

Non-applicable. Average Rmax is measured by 
NOAA NHC. 

Earth 
curvature 

Neglected Possibly considered. Considered 

Scenarios 1,000 trajectories hitting 
one point 

Years 2017; 2050 with 50% 
renewables; and 2050 with 80% 
renewables 

10 trajectories offshore and 
onshore, with/without 
interconnection of US-
Caribbean super grid. 

Impacted 
area 

Point of impact: Houston The state of Texas. Caribbeans, Gulf of Mexico, 
and North America 

Impacted 
component 

Overhead distribution 
line with fragility curve 

Typical 2 MW  wind turbines, solar, 
coal, gas, and nuclear plants, and 
overhead transmission. 

81 units of 10 MW hurricane-
proof wind turbines, with and 
without high cutout speed. 

Impacted 
system 

Local distribution system Local transmission and generation. Wide area transmission and 
generation 

Simulation 
time 

24 h (1 day) < 12 h 240 h (10 days) 

Software 
Platform 

Not informed. ArcGIS, and HAZUS (developed by 
FEMA) 

MATLAB 2017 only. 

Source: [32]. 

  

4.22 Discussions 

The development of the method for generating wind power profiles under hurricanes and 

the proposed Caribbean super grid addresses practical problems of electrical power system 

engineering. This section discusses how the comparison of power profiles provides valuable 

information for power system analysis and stakeholders [32]. 
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4.23 The importance of the method for power system stakeholders 

The proposed method is a tool for planning and preliminary design of the expansion, 

duplication, and reinforcement of the high voltage power grid, including interconnected super 

grids, such as the proposed Caribbean super grid. For instance, the value of peak power generated 

in the Caribbean super grid is a parameter for designing a series of electrical equipment and 

materials. The proposed cable that interconnects Florida to the Bahamas should be sized to transmit 

the worst-case scenario of the power profile. The peak power of the Caribbean super grid sets the 

reference for the engineering decision on the maximum level of allowable curtailment of wind 

power generation in hurricanes event, which ultimately leads to the final parameter of ampacity 

for the cable sizing and its installation. In other words, a submarine cable sized for average 

conditions of wind speed and power of the Caribbean super grid, i.e., the pre-hurricane power of 

20 MW in this research, will undoubtedly not withstand the peak power of the worst-case trajectory 

of a hurricane, i.e., 63 MW according to the simulations. It is important to point out that the 

simulations are conducted on a reduced scale, where 20 MW and 63 MW correspond to 2 GW and 

6.3 GW in full scale. Also, on both ends of a power interconnector, costly equipment requires 

sizing, specification, acquisition, and installation. Such assets are typically switchyards, high 

voltage circuit breakers, power transformers, and high voltage direct current (HVdc) converters. 

In the initial phases of engineering, the proper sizing of equipment and cabling defines the capital 

expenditure, which, in this case, is highly dependent on the peak power profile [32].  

During the detailed engineering phase, a professional engineer should stamp technical 

responsibility for the proper cable and equipment sizing and specification, no matter if the 

hurricane is stochastic and complex to mensurate, forecast, model, and simulate. Based on 
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simplified patterns and with the perspective of further evolution, this method fills and raises 

awareness in the science of a significant gap between meteorology science and power engineering. 

From the perspective of the high voltage power grid operator, the second power profile 

wave shown in FIGURE 4.20 to FIGURE 4.25 represents an opportunity for temporarily 

decreasing the dispatch of fossil fuel power generation while surfing in the clean wave of the 

hurricane. The reduction of dispatch of fossil fuel plants is not just because the wind power delivers 

clean energy, but because an excessive injection of power generation in the grid without balance 

with the demand can potentially cause oscillation in the grid frequency and overvoltage. Moreover, 

the simulations show different power profiles for each synthetic trajectory and hurricane category. 

Supposing a fully operational Caribbean super grid, the power grid operator in charge of the power 

transmission to Florida would require a set of specific operational procedures and training for each 

forecasted synthetic trajectory and category of hurricanes. The existing power system must 

accommodate the injection of different power profiles according to the hurricane trajectory and 

category. The development of a tool for wind power profile forecasting under hurricanes thus again 

proves necessary for power system operation [32]. 

From the perspective of wind power plant owners, investors, and wind turbine 

manufacturers, this research shows that wind turbines with high cutout speed, although not 

commercially available on MW-rating scale yet, have a positive effect on reducing the power 

variability. The comparative analysis of the power profile with typical and special turbines 

provides the quantification of the value added by extra-power obtained by high cutout turbines. 

The mathematical integration of the extra-power profile over the period (145 hours in the 

simulation with special turbines) results in an amount of energy exclusively brought by high cutout 

speed characteristics in special wind turbines. This energy from the hurricanes can be associated 
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with carbon emissions abatement and revenue for companies. However, the assessment of return 

over investment on 40 m/s cutout speed characteristics is yet to be seen since the MW-rating scale 

turbines with such features are not commercially available [32]. 

For energy policymaking and transmission system planning, the simulation shows that 

islands are relatively more impacted by high instantaneous fluctuations of power during hurricanes 

than vast extensions of land such as the contiguous U.S. territory. A hurricane radius of minimum 

speed can easily cover an island and cause severe disturbance to weather-dependent wind power 

generation. The wind power capacity in the West Coast and the western part of the Great Plains, 

located outside the hurricane alley, minimizes the overall power variability by injecting more 

stable wind power flow into the aggregate power supply. This physical reality faced by islanded 

countries is a strong point for policymakers to expand the interconnectivity schemes between 

islands and large countries for cross-border power-sharing. The interconnectivity facilitates adding 

the wind power capacity in the face of systemic risks of hurricane-induced power variability. It 

opens the door for peak power transmission to remote areas of the grid with a more stable power 

profile. The comparative analysis in TABLE 4.14 shows that a Caribbean super grid has lower 

power variability (16.3%, 26%, and 62.6% for hurricane category-5, 4, and 3, respectively) while 

interconnected to the contiguous U.S. power grid than isolated (132%, 500%, and 388% for 

hurricane category-5, 4, and 3, respectively) [32]. 

From the perspective of power system analysis, systemic risks caused by hurricanes need 

future assessment. To the author's knowledge, it is unknown if the low-frequency harmonics within 

the wind power profile during hurricanes may potentially induce wide-area or inter-area low-

frequency oscillations in the power grid. These oscillations, without proper damping, may lead to 

the risks of future grid collapse of the contiguous U.S. power grid after low-frequency power 
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injection of wind power in the existing power grid. A modal analysis in the frequency domain of 

the power grid under hurricanes is a prolific topic for future research [32].  

From the perspective of power system protection, the high variability of operational power 

profile from 20 MW in pre-hurricane conditions to 63 MW after hurricane landfall suggests that 

the overload protection (relay ANSI 51) should be adjusted in two different groups of settings to 

protect the cable against abnormal overloading. The ramp of electrical current up to three times 

from the pre-hurricane condition during a hurricane becomes a second temporary new normal 

reference for protection. An interconnector scheme for overload protection should not mistakenly 

detect an increment of current reference due to a hurricane by an overloading event caused by a 

fault. The hurricane became a new temporary normal for operation and protection schemes, and 

this normal power profile should be known [32]. 

Finally, from the perspective of the weather sciences, the practical necessities of 

information from wind power system engineering are detailed, motivating the continuous 

improvement of parametric modeling of hurricanes [32]. 

The proposed methods up to this chapter capture the expected power variability of MHK, 

and wind energy under hurricanes, supporting the planning, design, and operation of power 

systems with high penetration of renewables. However, climate change and global warming 

potentialize extreme variability of power profile beyond normality. An extension of the U.S.-

Caribbean super grid to South America integrating wind power capacity of areas outside the 

hurricane corridor of the Caribbeans and Gulf of Mexico is a potential proposition to smooth power 

variability in areas prone to hurricanes. This hypothesis is investigated in the following chapter. 
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CHAPTER 5: U.S.-CARIBBEAN SUPER GRID FOR MHK, WIND POWER AND 

EXTENSION TO SOUTH AMERICA 

In the previous chapters, two methods for spatiotemporal power profile estimation were 

proposed and implemented in MATLAB: one dedicated to assessing MHK power based on 

superficial water speed data measured by a HF radar and another for wind power estimation during 

hurricanes by parametric modeling. The simulations in both chapters generated individual maps 

and estimated MHK profile of turbines off the coast of North Carolina (Gulf Stream) and wind 

power profiles under hurricanes in the Caribbeans. 

Despite the algorithms for MHK and wind power profile estimation being segregated, this 

Chapter 5 elaborates a procedure to integrate the results of MHK power profile into the U.S.-

Caribbean super grid, thus making possible to investigate the performance of the super grid in 

smoothing the power variability of both MHK and wind power under hurricanes. Such integration 

is possible by exporting the MHK power profile estimation from MATLAB matrix to a text file 

(*.txt) framed in comma-separated values (csv format). Then, using MATLAB, it is possible to 

incorporate some additional commands on the algorithm that estimates wind power profile to read 

the file containing the MHK power profile in txt format.  

FIGURE 5.1 shows the flowchart on the integration of these algorithms with the generation 

of text files for data exchange. The MHK estimation code should be run first to disclose the power 

profile data in text file format for further reading and aggregation into the wind power profile 

estimation. The same functionalities are kept the same, with options to run the Caribbean super 

grid standalone, with interconnection with the contiguous U.S. and with the extension to South 

America. Also, the wind power estimation can be conducted assuming category-3, 4, and 5, in ten 

different trajectories. The quantity and allocation of wind turbines is also selectable by the user.   
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With the implementation of MATLAB coding of such integration of a MHK data-driven 

algorithm with a parametric wind power algorithm, the next subsections investigate the multitude 

of scenarios of hybridization of these two renewable energy sources.  

FIGURE 5.2 illustrates the type of hybridization and simulation scenario this research is 

focused on. The power generation profile derived from both renewable energy resources is merged 

 

FIGURE 5.1: Integration of algorithms for MHK and wind power assessment. 

 

FIGURE 5.2: Hybridization of MHK and wind power. 
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to investigate the combined power variability of the US-Caribbean super grid.  

5.1 Standalone Caribbean SG with MHK and wind power. 

The hurricane will be simulated in trajectories 1 and 7.  

Trajectory 1 was selected because it is the most impactful trajectory for the wind turbines 

located in the US Midwest and it is the closest to the wind power turbines in South Caribbean and 

South America.  Despite not being accounted on the power aggregation of the standalone 

Caribbean super grid, it is relevant as a base reference for a comparative analysis in future 

scenarios with U.S. interconnection.  

Trajectory 7 is of interest because it is the most impactful for most wind turbines allocated 

off the coast of the Caribbean islands.  

FIGURE 5.3 shows the simulation results from the algorithm integrating MHK and wind 

power profiles from hurricane on trajectory 1. MHK introduces ripple in the power profile due to 

spatiotemporal water speed variability during the same day. The MHK power profile is estimated 

from water speed measured by high-frequency radar data made available by NOAA. The MHK 

algorithm executes electromechanical conversion of water speed into power as studied in Chapter 

3, sections 3.2, and the profile extended to a hurricane period of 14 days to allow the analysis of 

MHK and hurricane in a same time base. The top water layers of the ocean streams do not deliver 

constant kinetic energy resources, causing such power ripples. The wind power profile (in red) is 

for standalone Caribbean super grid (with 10 wind turbines only), where standalone means without 

interconnectivity neither with the contiguous U.S. nor the South America power grid. 
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FIGURE 5.4 shows the simulation results from the algorithm integrating MHK and wind 

power profiles. In this scenario, the hurricane moves on a synthetic parabolic trajectory 7, 

impacting the Caribbeans for a long period (from 70 h to 225 h) as compared to the trajectory 1, 

(from 70 h to 180 h). The reason for this long period is that the hurricane is passing through a large 

population of wind turbines allocated along the coast of most of the Caribbean islands.  

 

 

FIGURE 5.4: Profile of MHK plus wind under hurricane trajectory 7 over standalone 
Caribbean SG. 

 

FIGURE 5.3: Profile of MHK plus wind under hurricane trajectory 1 over standalone 
Caribbean SG. 
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5.2  U.S.- Caribbean SG with MHK and wind power. 

A category-5 hurricane is simulated moving on trajectories 1 and 7. With the 

interconnection of Caribbean Super Grid with the contiguous U.S. power grid, the power profile 

presents two humps: one in the Caribbeans, and another in the U.S. contiguous states.  

FIGURE 5.5 shows MHK adding ripple in the power profile, but its effect is relatively 

minor as compared to the profile with standalone Caribbean super grid shown in FIGURE 5.3 and 

FIGURE 5.4. The overall number of turbines in the super grid increased from 10 turbines in 

standalone Caribbean Super Grid to 85 turbines with interconnection to the contiguous U.S. power 

grid, creating a high pre-hurricane power level that turns MHK ripple comparatively negligible.  

 

 

FIGURE 5.6 shows MHK power adding ripple in the overall profile, but its effect is 

relatively minor. From time 120 h to 170h, trajectory 7 produces more sustained power in the 

Caribbeans than trajectory 1 because the hurricane passes closer to most of the Caribbean islands 

before reaching Florida. Trajectory 1 crosses a void of turbines in the center of the Gulf of Mexico 

 

FIGURE 5.5: Profile of MHK plus wind under hurricane trajectory 1 over U.S.-
Caribbean SG. 
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making the power profile to drop sharply even with high hurricane winds. The turbines are 

allocated offshore but close to the shallow waters along the coastal areas. In contrast, trajectory 7 

generates lower peak power in the US Southeast (480 MW) than in the US Midwest (560 MW) 

because of the lower spatial density of turbines in Southeast area as compared to the US Midwest.  

 

 

5.3 U.S.- Caribbean-South America SG with MHK and wind power. 

The category-5 hurricane is simulated in trajectories 1 and 7. With the interconnection with 

both the contiguous U.S. power grid and South America, the power profile presents two humps: 

one in the Caribbeans, and another in the U.S. Midwest or U.S. Southeast. The hurricane corridor 

does not pass over South America. For this reason, a high level of pre-hurricane power is expected, 

making the power variability even more accommodated. 

FIGURE 5.7 shows MHK power adding ripple in the overall power profile, but its effect 

is relatively negligible as compared to the standalone Caribbean super grid. The overall number of 

turbines in the doubled-interconnected U.S-Caribbean-South America super grid increased from 

 

FIGURE 5.6: Profile of MHK plus wind under hurricane trajectory 7 over U.S.-
Caribbean SG. 
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10 in standalone to 113 turbines with extension to Brazil, creating a strong pre-hurricane quasi-

baseload level, particularly from wind turbines located in Brazil, outside the hurricane’s corridor, 

and not generating any power humps.  

 

 

FIGURE 5.8 shows MHK power adding ripple in the overall power profile, but its effect 

is also relatively minor as compared to standalone Caribbean super grid. Trajectory 7 produces 

more sustained power in the Caribbeans (400 MW from time 120 h to 170 h) than trajectory 1, 

which shows a power drop between time 120 h to 170 h. The peak power in the US Southeast (600 

MW at time 200 h) in FIGURE 5.8 is lower than in the US Midwest (700 MW in time 260 h) in 

FIGURE 5.7.  

 

FIGURE 5.7: Profile of MHK plus wind under hurricane trajectory 1 over U.S.-
Caribbean-South America SG. 
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To understand the differences of peak power on the second hump of FIGURE 5.7 and 

FIGURE 5.8, it is necessary to analyze the spatial allocation of turbines in the hurricane’s corridor. 

The super grid interconnectivity of local power grids improves smoothness of the overall power 

profile, but other factors also play an important role in power variability. Keeping constant spatial 

distribution of the wind turbines in the trajectory of the hurricanes results in lower power profile 

variability. 

5.4 Comparison of power variability in Caribbean SG with MHK plus wind. 

In this Chapter 5, the simulations cover scenarios of standalone Caribbean super grid, U.S.-

Caribbean super grid, and U.S.-Caribbean-South America super grid.  

FIGURE 5.9 shows the wind turbines allocation, the impacted countries, and the submarine 

cable route in the Caribbeans and South America. 

 

FIGURE 5.8: Profile of MHK plus wind under hurricane trajectory 7 over U.S.-
Caribbean-South America SG. 



114 

FIGURE 5.10 shows trajectory 7 of the hurricane. Each trajectory makes the hurricane hit 

the wind turbines from different distances, generating different shapes of power profiles, and, 

consequently, different values of power variability.  

 

 

FIGURE 5.10: Proposed U.S.-Caribbean-South America SG [115] (©2023 IEEE). 

 

FIGURE 5.9: Hurricane over trajectory 1 and 7 [115] (© 2023 IEEE). 
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TABLE 5.1 summarizes important performance indicators for the analysis of power 

variability. 

  TABLE 5.1: Comparison of power variability in the proposed super grid. 

Super grid Standalone 
Caribbean U.S.-Caribbean U.S.-Caribbean-South 

America 

Number of 
turbines 10 (North Caribbean) 

75 (U.S.), and 10 (North 
Caribbean) 

75 (U.S.), 10 (North Caribbean), 4 
(South Caribbean), and 24 (South 

America) 

Power profiles Fig. 5.3 and 5.4 
(trajectory 1 and 7) Fig. 5.5 and 5.6 (trajectory 1 and 7) Fig. 5.7 and 5.8 (trajectory 1 and 7) 

Location of peak: Caribbeans Caribbeans Caribbeans 

Pmax [MW] 82 and 79 240 and 245 400 and 370 

Pmin [MW] 21 and 21 198 and 198 335 and 335 

∆𝒎𝒂𝒙  74.39% and 73.42% 17.50% and 19.18% 16.25% and 9.46% 

Location of peak: - 
U.S. Midwest or Southeastern 

states 
U.S. Midwest or Southeastern 

states 

Pmax [MW] - 557 and 456 693 and 590 

Pmin [MW] - 198 and 198 335 and 335 

∆𝒎𝒂𝒙  - 64.45% and 56.58% 51.66% and 43.22% 

 

The numbers presented in TABLE 5.1 supports the following analytical conclusions: 

 Power variability reduction: The interconnection of the Caribbean Super Grid with the 
United States and South America leads to a notable reduction in power variability. This 
means that with this interconnection, the fluctuations in power generation are minimized, 
resulting in a more stable and reliable energy supply. 

 Benefits of extending the super grid: The extension of the U.S.-Caribbean super grid to 
South America offers substantial benefits, particularly for the Caribbeans. In trajectory 7, 
which represents a worst-case scenario where the Caribbeans are directly hit by a hurricane, 
the power variability sharply decreases from 19.18% to 9.46%. This reduction in variability 
signifies a more consistent and stable power supply for the Caribbeans. Additionally, the 
U.S. Midwest and Southeastern states would also experience benefits from this extension, 
although to a lesser extent, with power variability decreasing from 64.45% to 51.66% in 
trajectory 7. 

 Impact of turbine concentration: The analysis reveals that regions with a higher 
concentration of turbines experience an increase in peak power production when a hurricane 
strikes. Specifically, the U.S. Midwest and Southeastern states generate more peak power 
compared to the Caribbeans. This is attributed to the significantly larger number of turbines 
in these regions (85 turbines in the contiguous U.S.) compared to the Caribbeans (10 
turbines). Concentration of many turbines in just one place is not recommended. 

 MHK power variability is diluted with the increasing number of wind turbines. 
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In summary, the analysis derived from the numbers presented in TABLE 5.1 highlights the 

positive effects of interconnecting the Caribbean Super Grid with the United States and South 

America. It emphasizes the role of turbine concentration in peak power production during 

hurricanes and underscores the significant benefits of extending the super grid to South America 

for the Caribbeans, as well as the U.S. Midwest and Southeastern states. 
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CHAPTER 6: DISCUSSIONS 

This chapter elaborates on the merits of the proposed methods of renewables assessment 

and high voltage enforcements for the transition of the current North American power grid to a 

low-carbon renewable future. The future of the North American power grid lies not exclusively on 

the causes of global warming, i.e., GHG emissions, but on enforcing the power grid for the new 

future with frequent extreme weather events. Such endeavor is constrained by many challenges 

and conflicting interests in the environmental system. This chapter also discusses these challenges 

in a systematic approach. 

Firstly, it is important to understand the context of the proposed methods for weather-

driven energy sources in the North American power grid.  

FIGURE 6.1 gives a comprehensive integration of the partial architectures developed in 

previous chapters into the North American power grid architecture. The methods encompass all 

parts of the North American power grid, thus laying the foundation for a comprehensive 

spatiotemporal perspective of the impact of climate change and global warming on the power 

system operations. 
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The methods for the assessment of weather-driven energy sources have a multitude of 

applications and create other multidisciplinary implications, which are discussed in the following 

subsections. 

 
FIGURE 6.1: Architecture of North American Power Grid integrated with U.S.-Caribbean 

SG, adapted from [39] and [32].  
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6.1 Method and tool for spatiotemporal MHK power profile generation 

The proposed method for estimating the MHK power generation profile based on HF 

NOAA radar was successfully implemented in MATLAB script coding [65]. A case study in North 

Carolina demonstrates the algorithm's functionalities for the planning and design of MHK farms. 

The simulations of two proposed MHK farms show that the power profile is highly sensitive to the 

selected location, with significant implications for the economic feasibility. The southern MHK 

farm in the Gulf Stream off the coast of North Carolina shows a more robust power profile as 

compared to the northern MHK farm. Regarding the short time sensitivity, within the one-day 

time-window simulation, it is possible to conclude that the capacity factor of the MHK turbines 

varies significantly for one day period. More studies with a large water speed dataset are needed 

to evaluate the seasonal and multi-year power variability case study demonstrated the proposed 

method implemented in MATLAB script was able to simulate MHK farms with a very high 

number of turbines without high computational cost. The case study script processed the power 

profile of 540 MHK turbines in less than 5 minutes in an off-the-shelf notebook with an Intel Core 

i7 processor. This method fills a gap in the traditional power system algorithms, which usually 

circumvents the computational cost by assuming simplified equivalent models of MHK farms or 

simulations with just a handful of electric generators. Also, the merit of this work is the realistic 

approach to processing HF radar data for power system studies. In other words, the proposed data 

analytics method directly transforms offshore weather data into valuable power system 

information [65]. The implications of the proposed method on the natural, economic, social, and 

political environment open the perspective of a multitude of topics for future multidisciplinary 

research. In this work, the implications of the method for the environment system classify into four 

categories: natural, economic, social, and political [39] [65].  



120 

6.1.1 Natural Environment 

The planning and design of large-scale MHK farms must consider the risk of impact on the 

local marine ecosystem [101]. The typical effects of submarine cabling and offshore fixed 

platforms are well known from the environmental impact assessments carried out on the offshore 

wind industry in Europe [102] [103] [104]. The major risk of ocean energy comes from the sound 

and electromagnetic fields from MHK devices that can disturb the marine biota [101] [105] [106]. 

However, the same renewables that jeopardize marine biota also positively impact the 

environmental system. Ocean energy produces far less CO2 than power from coal or natural gas 

[101]. TABLE 6.1 shows the comparison of ocean energy with other sources of energy [65]. 

                     TABLE 6.1: CO2 Emissions by Sources. 

Unit 
Energy sources [101] 

Coal Natural Gas Ocean Energy 
g CO2eq/kWh 1,689 930 23  

Source: [65] (© 2020 IEEE) 
 

A mechanism for reconciling trade-offs between ocean renewables and the protection of 

marine biota is needed. In 2021, Booth et al. proposed compensatory conservation schemes [106]. 

6.1.2 Economic Environment 

Despite promising environmental performance in CO2 emissions mitigation, MHK power 

competes with other well-mature renewable technologies [65]. TABLE 6.2 shows the projection 

of the Levelized Cost Of Electricity (LCOE) of variable renewables to 2030 [107] [68]. MHK 

power generated from ocean current turbines, e.g., MHK turbines, is not cost-competitive as other 

renewable technologies, and a breakthrough performance innovation is needed to reverse this 

trend. The LCOE of the ocean current turbine indicated in TABLE 6.2 refers to the cost for MHK 

in the Gulf Stream off the coast of Florida, which has a water speed higher than in North Carolina 

[68] [108]. The MHK LCOE in North Carolina is expected to be higher than the value indicated 
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in TABLE 6.2. Photovoltaic (PV) solar, e.g., has low LCOE and is not susceptible to the high 

seasonal variability of renewable sources such as MHK power. The PV's low variability can also 

be adequately smoothed by battery or power management [109] [110]. MHK power competes with 

other renewables in North Carolina [65].  

      TABLE 6.2: LCOE of Renewables.  

Unit 

Renewable sources 
Wind  
Onshore in 
2030 
[107] 

Offshore 
Wind in 2030 
[107] 

Solar in 
2030 
[107] 

Tidal Stream 
in 2030 
[107] 

Ocean Current 
Turbine  
[68]. 

$/kWh 0.089–0.146 0.178–0.229 0.093–0.128 0.351–0.756 
0.150 – 0.200 
for 100 units 

Source: [65] (© 2020 IEEE) 
 

North Carolina nuclear and coal power plants are aging, considering future 

decommissioning and local economic losses. On the other hand, delays in the local expansion of 

renewable power capacity open the door for the importation of the abundant and more affordable 

Midwest onshore wind power through the high voltage transmission lines, potentially resulting in 

economic losses to North Carolina. With LCOE lower than MHK power, offshore wind is a 

competing alternative for North Carolina to minimize overdependence on renewables importation 

by keeping some local power generation and revenue [65]. 

6.1.3 Social Environment  

Even in the early stages of a proposal for an MHK farm, the potential social impact is 

resultant from environmental protection, locals' reluctance to renewables close to their properties, 

and economic interests [65]. A proposal for MHK farm has a social impact on stakeholders (e.g., 

fishermen, local community, scientists, and investors). In 2018, Chamorro et al. investigated the 

impact of MHK on the human dimension and focused on public perceptions, social acceptability, 

public conflicts, and stakeholder participation [111]. The public perception of the potential positive 
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or negative social impact of the MHK farm on stakeholders reverberates into the political 

environment [65]. 

6.1.4 Political Environment  

The incentives for the expansion of renewables depend on political decisions. The Paris 

Agreement, which institutionalizes the global commitment to mitigate global warming and GHG 

emissions, is an example of the role of the political system [64]. In addition, renewables tax 

incentives and subsidies passed by local lawmakers impact the LCOE of renewables [112] [113] 

[114].  

FIGURE 6.2 summarizes the implications and the interactions of the method for estimation 

of MHK power with the multisystemic environment. For this reason, it creates a multitude of new 

topics for multidisciplinary research in the renewable energy domain [65]. 

 

 

FIGURE 6.2: The proposed MHK method and the multidisciplinary research on 
renewable energy [65] (© 2020 IEEE).  
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6.2 Method for spatiotemporal wind power profile under hurricanes 

The research on wind power generation under hurricanes delivers a multitude of practical 

engineering and scientific results [32]. First, it proposes a spatiotemporal method for the generation 

of power profile curves of wind farms during hurricane events. In this work, the parametric 

modeling of hurricanes has been applied iteratively over space and time for power system 

applications. The trajectories are parabolic, more adherent to the historical hurricane trajectories. 

The traditional techniques of power systems simulate the grid under electrical disturbances, e,g., 

short-circuit, harmonics, and disconnection of transmission lines. This novel approach 

complements the traditional power system simulations with extreme weather-driven disturbances, 

such as hurricanes. For this reason, this research is important in the analysis of the impact of 

climate change and global warming on the future site selection of turbines forming an electrical 

power grid. The choice for modeling hurricanes using equations proved to be computationally 

efficient. The method was adequate for purposes of power system simulation and implemented in 

MATLAB script, not demanding expensive resources of supercomputing [32].  

Besides it, this research proposes a super grid of the Caribbean islands and interconnection 

to the contiguous U.S. power grid. The proposed scheme is investigated regarding its technical 

feasibility. The segments of submarine power cable between islands do not exceed the maximum 

length and installation depth limits known from existing projects reported in the technical literature 

[32].  

Furthermore, implementing the proposed method for generating power profiles in 

MATLAB and carrying the simulations on the proposed Caribbean super grid shows that the 

interconnectivity with the contiguous U.S. power grid is beneficial for reducing the variability of 

wind power in the Caribbean islands during hurricane seasons. Large-scale power 
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interconnectivity eliminates the restrictions on the expansion of wind power capacity in the 

Caribbean region, making transitioning the region to a low-carbon economy easier. This would 

result in lower dependence on fossil fuels [32]. 

6.3 Extension of the U.S.-Caribbean Super Grid to South America 

The proposed extension of the U.S.-Caribbean Super Grid to South America was investigated in 

Chapter 5 from the electrical perspective. It was demonstrated that super grid causes smoothness 

effect on the wind power variability when the peak surplus power in the Caribbeans is drained to 

the super grid interconnections. The scope of this 6.3 subsection is to discuss the implications of 

the wind power smoothness effect on the economic and natural environment. In other words, the 

focus of this subsection is on the opportunities for cost reduction and positive outcome on 

reducing GHG emissions.  

6.3.1 Economic Environment 

In 2023, Itiki et al formulated the procedure to evaluate the opportunity cost of temporarily 

reducing the dispatch of natural gas power plants in open cycle and exploring the peak power 

surplus generated by wind power on the U.S.-Caribbean Super Grid [115]. The simulations 

generated wind power profile estimations with and without the extension to South America. 

Natural gas, a fossil fuel resource, was selected as a cost reference because open cycle power 

plants have fast response in load-following mode and is typically used by utility companies to 

supply extra power during peak demand. Based on the surplus peak wind power from hurricane 

forces, it is possible to assess the total energy harvested by the wind turbines during hurricane by 

[115] :  

𝐸௛ =  ∫ ൫𝑃௧ − 𝑃௣௛൯𝑑𝑡
௡௧

௧ୀଵ
    (17) 
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where, 𝑃௣௛ is the power in pre-hurricane conditions excluded from the assessment, 𝑃௧ is the 

estimation of aggregated power profile of the U.S.-Caribbean-South America Super Grid, and 𝑛𝑡 

is total hours. The generated energy accounted for the hurricane excludes the energy that would 

otherwise be harvested if there were no hurricane, i.e., in pre-hurricane conditions. This peak 

energy harvested from the hurricane can substitute the dispatch of fossil-fire generation.  

Assuming that the power profile is estimated in time steps of 1 hour, equation (17) can be 

simplified to: 

𝐸௛ =  ∑ ൫𝑃௧ − 𝑃௣௛൯௡௧
௧ୀଵ      (18) 

 

where 𝑃௧  is the power profile values in [MW] estimated and 𝑃௣௛ is the minimum value of the 

power profile, corresponding to the pre-hurricane power level.   

 The energy harvested from the hurricane reduces the fossil fuel cost can be calculated by [115]: 

𝐶ℎ = 𝐸ℎ  × 𝐿𝐶𝑂𝐸     (19) 
 

where: 𝐸௛ is the energy harvested by wind turbines during the hurricane in [MWh] and LCOE is 

the levelized cost of energy with reduction of dispatchable fossil-fired generation. For instance, 

the LCOE of an open cycle power plant was typically $175 per megawatt-hour in 2019 [116].  

 

6.3.2 Natural Environment 

In 2023, Itiki et al also formulated the procedure to assess the potential reduction of carbon 

emissions if the dispatch of gas power plants was decreased during the surplus peak power 

generated by the hurricane [115].  The total mass of carbon dioxide is estimated by [115] :  

𝑀𝐶𝑂2 = 𝐸ℎ  × 𝐶𝑂2     (20) 
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where: 𝐸௛ is the energy harvested by wind turbines during the hurricane and 𝐶𝑂2 is the carbon 

dioxide emissions rate with a dispatchable fossil-fired generation. For instance, on average, an 

open cycle power plant using natural gas emits approximately 0.8335 Tons of carbon dioxide per 

MWh of electricity generated [117]. 

The implementation of the equations for assessment of economic and natural environment 

impact of wind power production in the U.S. and Caribbean region under hurricanes is carried 

out by processing the power profile estimated in MATLAB as input data. The result of such 

simulation is presented on TABLE 6.3.  

 

TABLE 6.3: Economic opportunities and CO2 emissions during Hurricanes. 

U.S.-Caribbean super grid Standalone Without extension to 
South America 

With extension to 
South America 

Number of 2 MW MHK 
turbines in reduced scale 270 270 270 

Number of 10 MW wind 
turbines in reduced scale 10 85 113 

Trajectory #1 and 7 #1 and 7 #1 and 7 

MHK plus wind Energy in 
full scale [GWh] 262 and 295 2,696 and 1,460 2,892 and 1,538 

Natural gas savings in full 
scale [$ millions] 46 and 52 472 and 255 506 and 269 

CO2 reduction in full scale 
[tons] 218,030 and 246,090 2,247,000 and 1,216,900 2,410,690 and 

1,282,100 

 

The simulations were conducted on a reduced scale where each 10 MW turbine corresponds to 1 

GW wind power capacity. In full scale, the energy, cost, and tons shown in TABLE 6.3 is 

multiplied by 100 times scale. Despite the scientific merit of quantifying the economic and 

environmental opportunities and impact of a hurricanes on hurricane-proof wind turbines, the 

proposed U.S.-Caribbean-South America super grid in conjunction with a large-scale expansion 
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of wind power capacity in these regions, is conceived to operate in non-extreme weather 

conditions. The impact of the proposed super grid was motivated by reduction of GHG emissions 

in a region with abysmal dependence on fossil fuel. TABLE 6.4 gives a detailed understanding 

of the challenges faced by South Caribbean islands and South American countries to transition to 

low carbon energy.  

    TABLE 6.4: Population and Energy in South Caribbean and South America. 

Country or territory Population Installed capacity 
[MW] 

Installed capacity 
driven by fossil fuel 

Anguilla  19,079  26 96.2% 

Montserrat 5,440 5 91% 

Guadeloupe 411,507 551.2 68.9% 

Dominica 74,629 42 74.8% 

Martinique 361,225 438.1 85.1% 

St Lucia 167,122 92 99.1% 

St Vincent and the Grenadines 100,969 49 73.5% 

Grenada 113,949 55 98.3% 

Trinidad & Tobago 1,405,646 2,123 99.9% 

Guyana 789,683 380 97.4% 

Suriname 632,638 542 40.5% 

French Guyana 327,000 281.2 45.3% 

Brazil 217,240,060 199,037 11.8% 

Total 221,648,947 203,621 13.4% 

Note: Population and power data from [115]. (© 2023 IEEE) 

 

TABLE 6.4 indicates that the islands in the South Caribbean, including Trinidad & Tobago, are 

strongly dependent on fossil power, whereas South American countries, except Guyana, are 

much more independent. The interconnection of Caribbean islands to the U.S. and South 

America is not just an opportunistic technological proposition to smooth power variability during 

hurricanes, but also an important opportunity to fast-speed and facilitate the expansion of 

renewable power in the Caribbeans. The expansion of renewable power for either normal or 
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extreme weather conditions is imperative in the global strategy to address global warming and 

climate change. From one side, hurricanes cannot be used as an excuse by local governments for 

not expanding renewable wind power in the Caribbeans. On the other side, the large-scale 

contiguous US and South America power grids have a major opportunity to facilitate the carbon 

transition to renewables in the Caribbeans by absorbing sporadic surplus peak power generated 

by hurricanes.   
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CHAPTER 7: CONCLUSIONS 

This dissertation is motivated by the causes and effects of global warming and climate 

change on renewable power generation. FIGURE 7.1 summarizes the rationale behind the 

development of this research, showing the interactions of effects, necessities, proposed methods, 

tools, and systems to support the expansion and diversification of renewable energy in North 

America, the Caribbean, and South America. Some effects of global warming and climate change 

are characterized by extreme weather events. Hurricanes are expected to become more intense with 

global warming, impacting wind power generation on a spatiotemporal dimension. This research 

concludes that the proposed U.S.-Caribbean super grid and its extension to South America is a 

possible solution to smooth the power variability caused by hurricanes since it allows for a 

geospatial diversification of wind power capacity. The expansion of weather-dependent 

renewables also calls for a diversification of types of energy resources to capture the temporal 

complementarity of variable energy resources. Marine hydrokinetic is a non-traditional renewable 

energy source and a strong candidate for energy diversification. This research developed a method 

and tool for forecasting the MHK power profile with HF radar data. This method was later 

integrated to the algorithm for wind power profile estimation to obtain the overall power profile 

forecast with hybridization of MHK and wind power in the same proposed super grid. 

The main conclusions of this dissertation can be categorized into four subtopics of research 

achievements.  
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From the perspective of the proposed method for MHK power profile, the implementation 

of the algorithm for profile estimation shows that it is perfectly possible to estimate the MHK 

power profile of a proposed MHK farm with around 400 turbines distributed over the surface off 

the coast of North Carolina, if water speed data are made available by the NOAA´s webpage. The 

application of the proposed estimation tool for MHK power profile is also possible since the HF 

radar network of NOAA covers other vast portions of the U.S. in the West Coast, East Coast and 

 

FIGURE 7.1: Context and merits of the proposed methods and Caribbean SG to the 
expansion of renewables in the Americas. 
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Puerto Rico. Specifically, in North Carolina, the conclusion is that the simulation results show 

high power variability on the estimated power profile from a proposed MHK farm. This suggests 

that hybridization of renewable sources and energy storage in North Carolina are needed to 

minimize the power peaks and valleys brought by the fast and variable speed waters of the Gulf 

Stream and ultimately maintain high levels of reliable power supply service to customers. More 

broadly, the proposed MHK assessment method developed into a MATLAB-based tool is useful 

for the planning and design of reinforcements to existing power infrastructure in consideration for 

the future expansion of MHK farms in North America and the world.  

From the perspective of wind power simulations under hurricanes, the conclusions are that 

special turbines withstanding high-speed operation, e.g., up to 40 m/s, minimize the severity and 

time-duration of power drop under hurricane conditions. However, despite the benefits of special 

turbines, the simulation shows that the primary cause of extreme power variability is the 

hurricane's spatiotemporal variability, not the type of turbines. Under the proposition of a U.S.-

Caribbean super grid, the simulations show that the percentual wind power variability in the 

Caribbean is reduced more than five times with the interconnection of the Caribbean super grid 

with the contiguous U.S. power grid. Later proposition and simulation of the extension of the US-

Caribbean super grid to South America shows that power variability can be reduced even more. 

With the super grid extension to South America, the power variability can be reduced 19.18% to 

9.46% in the Caribbeans, and from 64.45% to 51.66% in the US Midwest and Southeastern states.   

The methods, tools, simulations, and analysis of these research topics address some key 

necessities originating from the effects of global warming and climate change. Renewable energy 

sources are even more variable on a spatiotemporal basis, which reflects the dynamics of the 

renewable power generation profile. The massive expansion of renewables in North America to 
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support the transitioning of the power sector from dispatchable fossil fuel to weather-dependent 

energy sources creates the need for power grids capable of spatiotemporally, actively, and 

intelligently controlling the power variability. To do that in real-world conditions, the electrical 

power grid, which is traditionally studied in its components of generation, transmission, 

distribution, consumption, and intelligence (i.e., automation, protection, and control), should also 

incorporate modeling of environmental system. The research topics of MHK and wind power 

under hurricanes encompass some methods and tools for environmental modeling for power 

system analysis in realistic conditions. 

The specific contributions of this research on MHK and wind to power system area can be 

summarized in three main aspects: input for load flow simulation, power variability, and 

computational efficiency for simulation with high number of turbines. 

The first contribution is that the two methods generate input data for power system studies 

in realistic conditions. This input data is the power profile of MHK turbines or hubs, wind turbines 

and super grids under hurricanes. These data are critical to simulations of time-series power flow 

tools, such as Sincal, in realistic conditions. It should be noted that the power profile generated by 

the MHK algorithm is valid for any assumed quantity of MHK turbines (e.g., 270 or 540 units as 

studied), in any offshore location under coverage of the HF radar network of NOAA. As for the 

wind turbines, the method generates power profile of wind turbines in any location along the 

hurricane corridor of the Caribbeans, Gulf of Mexico, U.S. Southern States, and the U.S. East 

Coast. The profile can also be estimated for any combination of three categories of hurricanes (cat-

5, 4, and 3), in typical or high cutout special turbines, in any of the ten-trajectories band. This 

results 60 available options for the user to select the type of hurricane and turbine scenario it 
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intends to generate. Such flexibility and availability of options is a handful tool for power system 

research intending to simulate power systems in realistic conditions. 

Another contribution is the power variability assessment. The proposed spatiotemporal 

methods are tools for studies on the reduction of power variability on large-scale systems such as 

super grids. Differently from load flow tools, which is based on temporal algorithm, the proposed 

spatiotemporal method is capable to address power variability concerns related to the planning of 

physical distribution (latitude and longitude) of future MHK and wind power capacity. For 

example, in Chapter 3, the MHK method allowed the identification that Hub-2 is a better place to 

install MHK turbines than Hub-1 off the coast of North Carolina, and quantify the magnitude of 

power variability. Power variability assessment is needed to determine the amount of curtailment 

or energy storage capacity necessary to smooth the power profile by peak shaving and valley 

filling. Another example, in Chapter 4, the spatiotemporal wind power estimation method 

supported the identification of an interconnectivity scheme that reduces power variability. It was 

concluded on Chapter 4 that the standalone Caribbean super grid produces lower power variability 

if connected to the U.S. power grid. On Chapter 5, the method supported the conclusion that 

extending the U.S-Caribbean super grid to South America reduces even more the power variability 

because the location of turbines in South America outside the hurricane corridor increases the pre-

hurricane power level without generating an additional power hump in the super grid power 

profile. Spatiotemporal methods support some power allocation planning (latitude and longitude 

of turbines) that temporal methods, such as load flow, do not.  

The third contribution of the research is the efficiency of the proposed algorithms in 

processing weather data for simulation of high number of turbines. For example, in Chapter 4, it 

was simulated 540 individual MHK turbines. On Chapter 5, the simulation involved 81 wind 
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turbines. In Chapter 6, the simulation was carried out on 270 MHK turbines in hybridization with 

113 hurricane-proof turbines. The proposed spatiotemporal methods are iterative but do not 

involve convergence of results. This makes a huge difference as compared to load flow methods, 

because the proposed spatiotemporal method may take more processing time with additional 

turbines to reach to the result (the map and the power profile curve), but they do not stop running 

in a state of non-convergence of results, as possible on some load flow algorithms. For this reason, 

the spatiotemporal methods are appropriate for studies of large-scale power systems, such as super 

grids. 

Despite the significant contributions of this research to the power system area, a myriad of 

new challenges was discovered during the scientific investigation on the macro theme of the effects 

of global warming and climate change on the power grid. Such new challenges are registered 

herein for future works.  

7.1 Future works 

The effects of global warming and climate change lead to a multitude of necessities not 

entirely covered by this research.  

A hurricane, for example, wraps a massive volume of humid air and sustains a gigantic 

opaque disk of clouds around its eye. The capacity of PV generation would be temporarily unable 

under the shading of the cloud disk induced by the hurricane during daytime.  

Also, the atmosphere is under extreme wind forces during a hurricane, which, on average, 

boosts the wind power profile. The power variability of wind power under hurricanes is highly 

variable. However, the same cannot be said about the underwater currents, which are protected by 

a dense seawater column under a hurricane. If the power profile of an MHK farm under hurricane 

conditions would deliver a steadier power supply for critical loads, e.g., hospitals, communication, 
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and water treatment facilities in the Caribbean, it is yet to be investigated in future studies. 

However, it should be noted that the water speed measurements of NOAA HF radars do not cover 

a major part of the Caribbeans, including Puerto Rico and the U.S. Virgin Islands. The other 

countries of the Caribbean also do not have online HF radar seawater speed measurements 

available to feed into a comprehensive study of the MHK resources to plan a proposed U.S.-

Caribbean super grid. Future studies involving the installation of HF radars in these areas would 

result in valuable information about the real MHK resource assessment of the Caribbeans. 
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APPENDIX A: MATLAB SCRIPT OF MHK ALGORITHM 

 
% MHK Power assessment  
% https://hfradar.ndbc.noaa.gov/tab.php?from=2020-09-18+11%3A00%3A00&to=2020-09-

18+12%3A00%3A00&uom=cms&p=1&lat=34.01069740217323&lng=-
77.59897611733172&lat2=36.69829665135132&lng2=-73.2044448673329 

clear all 
dirpath=['C:\Users\Rodney\Desktop\PhD Dissertation\MatPower\matpower7.0\']; 
T = readtable('hfradar-20200919040246.txt','Format','%f %f %f %f %s %d %s') 
% Mostra=T(1,:)  % not necessary to delete first row 
% T(1,:) = [];   % not necessary to delete first row 
% MatLab is smart enough to not readtable the following description as numerical data: 
% lat long speed angle year month day hour% 
% summary(T); 
 
%% 1. POPULATE MICROGRIDS IN A MAP 
% Populate Array of offshore hubs and microgrids 
gis1=[]; % substation: number, location; 
        % hub = number, location; 
        % microgrid = number, location;  
        % turbines = number, location; 
         
%%%%% gis1 stores in column 4, 5 and 6 the number of hubs and location 
gis1 = [1  36.066694 -75.7006   1 36.191795 -75.438944; 
        2  34.748318 -76.803354 2 34.622449 -76.207997   ]; 
%       3  34.225444 -77.828277 3 34.191408 -76.543872; eliminating NewBern 
%        3  33.959798 -78.010995 3 33.539845, -77.955730]; % no speed data 
%%%%% gis2 stores in column 1, 2 and 3 the number of hubs and location 
%%%%% and in columns 4, 5 and 6 the number of microgrids and location  
gis2 = [1  36.066694 -75.7006   1 36.408817 -75.385789; 
        1  36.066694 -75.7006   2 36.129606 -75.215667; 
        1  36.066694 -75.7006   3 35.770395 -75.085544; 
        2  34.748318 -76.803354 1 35.248312 -75.242194;    
        2  34.748318 -76.803354 2 35.04426 -75.446246;   
        2  34.748318 -76.803354 3 34.840208 -75.650298; 
        2  34.748318 -76.803354 4 34.636156 -75.85435; 
        2  34.748318 -76.803354 5 34.479531 -76.016005; 
        2  34.748318 -76.803354 6 34.275479 -76.225204];    
 
 
% hub microgrid turbines  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% hub = 1 
gis_Lat = [];  
gis_Lon = []; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% Hub 1  has 3 microgrids 
Lat_1m1=36.488817 -0.1; 
Lon_1m1=-75.345789 + 0.2;   % shifting 0.1 degrees 
Lat_1m5=35.770395 -0.1; 
Lon_1m5=-75.085544 + 0.2;   % shifting 0.1 degrees 
Lat_m=[]; 
Lon_m=[]; 
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spacing = 0.09;          % in longitude spacing between turbines ( = 1 km ) 
spacingLat=(Lat_1m1 - Lat_1m5)/(9*3);  % hub1: 3 microgrids within latitude range 
spacingLon=(Lon_1m1 - Lon_1m5)/(10*3); 
for lin=1:10*3                 % in latitude (3 microgrids within range) 
    for col=1:9                % in longitude (9 turbines in same latitude) 
        gis_Lat(lin,col+2) = Lat_1m1 - spacingLat*(lin-1); 
        gis_Lon(lin,col+2) = Lon_1m1 + spacing*(col-1) - spacingLon*(lin-1) ; 
    end 
gis_Lat(lin,1)=1; 
gis_Lon(lin,1)=1; 
if (lin < 11)  
    gis_Lat(lin,2)=1; 
    gis_Lon(lin,2)=1;     
end 
if (lin >= 10)&(lin<20)  
    gis_Lat(lin,2)=2; 
    gis_Lon(lin,2)=2;     
end 
if (lin >= 20)&(lin<31)  
    gis_Lat(lin,2)=3; 
    gis_Lon(lin,2)=3;     
end 
end 
gis_Lat; 
gis_Lon 
[m1,n1]=size(gis_Lat) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% hub = 2 
% Hub 2  has 6 microgrids 
gis_2Lat = [];  
gis_2Lon = []; 
Lat_2m1=35.023462 + 0.2 + 0.2; 
Lon_2m1=-75.493303 + 0.2 + 0.2 + 0.2 + 0.2 + 0.1;   % shifting 0.1 degrees 
Lat_2m5=34.005069 + 0.2 + 0.2;   
Lon_2m5=-76.629577 + 0.2 + 0.2 + 0.2 + 0.2 + 0.1;   % shifting 0.1 degrees 
 
Lat_m=[]; 
Lon_m=[]; 
spacing = 0.09;          % in longitude spacing between turbines ( = 1 km ) 
spacingLat=(Lat_2m1 - Lat_2m5)/(9*6);  % hub2: 6 microgrids within latitude range 
spacingLon=(Lon_2m1 - Lon_2m5)/(10*6); 
for lin=1:10*6                 % in latitude (6 microgrids within range) 
    for col=1:9                % in longitude (9 turbines in same latitude) 
        %gis_2Lat(lin,col+2) = Lat_2m1 - spacingLat*(lin-1); 
        %gis_2Lon(lin,col+2) = Lon_2m1 + spacing*(col-1) - spacingLon*(lin-1) ; 
        gis_2Lat(lin,col+2) = Lat_2m1 - spacingLat*(lin-1); 
        gis_2Lon(lin,col+2) = Lon_2m1 + spacing*(col-1) - spacingLon*(lin-1) ;         
         
         
    end 
gis_Lat(lin,1)=1; 
gis_Lon(lin,1)=1; 
if (lin < 11)  
    gis_2Lat(lin,2)=1; 
    gis_2Lon(lin,2)=1;     
end 
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if (lin >= 10)&(lin<20)  
    gis_2Lat(lin,2)=2; 
    gis_2Lon(lin,2)=2;    
end 
if (lin >= 20)&(lin<31)  
    gis_2Lat(lin,2)=3; 
    gis_2Lon(lin,2)=3;     
end 
if (lin >= 30)&(lin<41)  
    gis_2Lat(lin,2)=4; 
    gis_2Lon(lin,2)=4; 
end 
if (lin >= 40)&(lin<51)  
    gis_2Lat(lin,2)=5; 
    gis_2Lon(lin,2)=5; 
end 
if (lin >= 50)&(lin<61)  
    gis_2Lat(lin,2)=6; 
    gis_2Lon(lin,2)=6;     
end 
end 
gis_2Lat 
gis_2Lon 
[m2,n2]=size(gis_2Lat) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% hub = 3 
%gis_3Lat = [];  
%gis_3Lon = []; 
% Hub 3  has 3 microgrids 
%Lat_3m1=33.456317 + 0.2; 
%Lon_3m1=-77.722631 + 0.2 + 0.2;   % shifting 0.1 degrees 
%Lat_3m5=33.269779; 
%Lon_3m5=-77.889654 + 0.2;   % shifting 0.1 degrees 
%Lat_3m=[]; 
%Lon_3m=[]; 
%spacing = 0.09;          % in longitude spacing between turbines ( = 1 km ) 
%spacingLat=(Lat_3m1 - Lat_3m5)/(9*3);  % hub1: 3 microgrids within latitude range 
%spacingLon=(Lon_3m1 - Lon_3m5)/(10*3); 
%for lin=1:10*3                 % in latitude (3 microgrids within range) 
%    for col=1:9                % in longitude (9 turbines in same latitude) 
%        gis_3Lat(lin,col+2) = Lat_3m1 - spacingLat*(lin-1); 
%        gis_3Lon(lin,col+2) = Lon_3m1 + spacing*(col-1) - spacingLon*(lin-1) ; 
%    end 
%gis_3Lat(lin,1)=1; 
%gis_3Lon(lin,1)=1; 
%if (lin < 11)                  % assignment of microgrid number 
%    gis_3Lat(lin,2)=1; 
%    gis_3Lon(lin,2)=1;     
%end 
%if (lin >= 10)&(lin<20)  
%    gis_3Lat(lin,2)=2; 
%    gis_3Lon(lin,2)=2;     
%end 
%if (lin >= 20)&(lin<31)  
%    gis_3Lat(lin,2)=3; 
%    gis_3Lon(lin,2)=3;     
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%end 
%end 
%gis_3Lat 
%gis_3Lon 
%[m3,n3]=size(gis_3Lat) 
 
%% 2. OPEN, UPLOAD AND MANIPULATE DATA FROM RF RADAR  %%%%%%%%%%% 
T(:,6:7)=[];  % delete column 6 and 7 not need in the algorithm, to freed memory. 
C1=T(:,1:4); 
C1to4 = table2array(C1); 
clear C1; 
C1to4(:,3) = 0.01 *C1to4(:,3);  % to convert 1 cm to meters/s 
C5=T(:,5); 
C5table=C5; 
C5= table2array(C5); 
 
C5arraysplited=split(C5); 
S=size(C5arraysplited); 
C5arraysplited=erase(C5arraysplited,'"'); 
ano=(year(C5arraysplited(:,1))); 
mes=(month(C5arraysplited(:,1))); 
dia=(day(C5arraysplited(:,1))); 
hora=(hour(C5arraysplited(:,2))) 
Cadd = [ano mes dia hora]; 
Ctotal = [C1to4 Cadd];  %% Ctotal contains the wind speeds by lat and long 
clear T; 
clear C1to4; 
clear Cadd; 
clear ano; clear mes; clear dia; clear hora; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 6.2. MODELING OF MHK TURBINE (Power versus tidal speed) 
     clear x; 
     clear y; 
     x = [0, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,  1.7,  1.8,  2.3,  2.4,  2.5,  2.8,  2.9,  3.0, 

3.001,3.002, 3.01,3.25, 3.5, 3.75, 4]; 
     y = [0,   0,  20,  70, 100, 150, 215, 275, 360, 460, 580, 720, 865, 1000, 1000, 1000, 1000, 1000, 1000, 

1000, 1000,    0, 0,     0,   0,    0,   0, 0]; 
     y = y/1000;     % in [MW] 
     %[ref] Vincent S. Neary, Mirko Previsic, Richard A. Jepsen, 
     %      Michael J. Lawson, Yi-Hsiang Yu, Andrea E. Copping, 
     %      Arnold A. Fontaine, Kathleen C. Hallett, Dianne K. Murray. 
     %      SANDIA REPORT, SAND2014-9040, 2014,  
     %      Methodology for Design and Economic 
     %      Analysis of Marine Energy Conversion 
     %      (MEC) Technologies,  
     %      Ps.: (originally 2 rotors of 2 MW in each point coordinate) 
     cs = pchip(x,y); 
      
    Anok = 2020; 
    Mesk = 09; 
    Diak = 18; 
    Horak = 22; 
    ano=2017; mes=0; dia=0; hora=0; 
    [m,n]=size(Ctotal);%% Ctotal contains the wind speeds by lat and long     
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% 
% ITERATIONS START BE HERE  
 
%%% 3. Start loop for calculation of sum of power profile of all hubs into the offshore backbone.  
    Ctotal(:, 9)=0;  
for hub=1:3   
    if (hub == 1)    % track hub 1 only 
        nmicro=3; 
        for i=1:m1   % track all longitude of turbines of hub 1      
            for j=3:n1    % track all latitude of turbines of hub 1      
                % it start with 3 because 1 and 2 are index numbers for hub and microgrid 
                LakMHKT = gis_Lat(i,j); 
                LokMHKT = gis_Lon(i,j); 
                %%% 6. Start loop for calculation of power profile of each MHK turbine  
                %%%  6.1 FINDING THE SPEED (24h) FOR TURBINES (LakMHKT and LokMHKT)  
                for ii=1:m            % m = total elements of Ctotal (all speed measurements) 
                    dist=sqrt((LakMHKT-Ctotal(ii,1))*(LakMHKT-Ctotal(ii,1))+(LokMHKT-

Ctotal(ii,2))*(LokMHKT-Ctotal(ii,2))); 
                    Ctotal(ii, 9)=dist;      %%% colum 9 store distance to turbine 
                end 
                c=min(Ctotal(:,9))           % c is the minimum distance 
                [cvalue,cindex]= min(Ctotal(:,9)); 
                cindex=cindex 
                Ctotal=sortrows(Ctotal,[7 8]);    %** hour ascending sort 
                kk=0; % Time hour loop 
                for iii=1:m     % m is the total rows of Ctotal   
                   if (Ctotal(iii,9)==c  &  Ctotal(iii,5)==Anok & Ctotal(iii,6)==Mesk & Ctotal(iii,7)==Diak & 

Ctotal(iii,8)==kk); 
                       kk=kk+1; 
                       %c=min(Ctotal(:,9))           % c is the minimum distance 
                       Cpoint(kk,:) = Ctotal(iii,:);  % Cpoint is the speed (24h) for minimum distance to turbine 
                       Sp_kMHKT(i,j,kk)=Ctotal(iii,3);  % Matrix column 3 is speed [m/s]  *                        * 
                       Power_kMHKT(i,j,kk)= ppval(cs,Sp_kMHKT(i,j,kk)); % Power of each MHKTurbine *                                             
                       Time_kMHKT(i,j,kk)=Ctotal(iii,8);  % hour time for shortest distance c  *    
                       Ctotal(iii,9)=99999; 
                   end 
                end 
                 
                 
                c=min(Ctotal(:,9))           % c is the minimum distance 
                [cvalue,cindex]= min(Ctotal(:,9)); 
                cindex=cindex 
                Ctotal=sortrows(Ctotal,[7 8]);    %** hour ascending sort 
                kk=0; % Time hour loop 
                for iii=1:m     % m is the total rows of Ctotal   
                   if (Ctotal(iii,9)==c  &  Ctotal(iii,5)==Anok & Ctotal(iii,6)==Mesk & Ctotal(iii,7)==Diak & 

Ctotal(iii,8)==kk); 
                       kk=kk+1; 
                       if Sp_kMHKT(i,j,kk)==0 
                            %c=min(Ctotal(:,9))           % c is the minimum distance 
                            Cpoint(kk,:) = Ctotal(iii,:);  % Cpoint is the speed (24h) for minimum distance to turbine 
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                            Sp_kMHKT(i,j,kk)=Ctotal(iii,3);  % Matrix column 3 is speed [m/s]  *                        * 
                            Power_kMHKT(i,j,kk)= ppval(cs,Sp_kMHKT(i,j,kk)); % Power of each MHKTurbine *                                             
                            Time_kMHKT(i,j,kk)=Ctotal(iii,8);  % hour time for shortest distance c  *    
                       end 
                   end 
                end                
                                 
                Cpoint=sortrows(Cpoint,8) %Cpoint is the speed (24h) for minimum distance to turbine  *  
                [mm,nn]=size(Cpoint); 
                %MLong=mode(Cpoint(:,1)) 
                %MLat=mode(Cpoint(:,2)) 
                                
                %if mm ~= 24 
                %   h = msgbox('24 hours NOT ok') 
                %end 
                 
                %%% 6.3. FINDING THE POWER PROFILE FOR A TURBINE IN(LakMHKT and LokMHKT)  
                %%%      BASED ON THE SPEED PROFILE Cpoint(:,3)    (24h period) 
                power=ppval(cs,Cpoint(:,3));    %[p.u. value] 
                Power = []; 
                Power = power  %*Tpower;  % [MW], each turbine 2 MW 
                %%% gis_Power is for Kity Hawk 
                gis_Power(i,j,:)=Power;  % columns 1 and 2 are zeroed (j from 3 ...)  
                gis_Time(i,j,:)=Cpoint(:,8); 
                gis_Speed(i,j,:)=Cpoint(:,3); 
                 
            end % j loop of latitude of each turbine of hub1 
        end % i loop of longitude of each turbine of hub1 
         
    % filling missing measurements in space and time 
          for i=1:m1   % track all longitude of turbines of hub 1      
            for j=3:n1    % track all latitude of turbines of hub 1 
              for kk=1:24 
                  if Sp_kMHKT(i,j,kk)==0 
                       Sp_kMHKT(i,j,kk)=mean2(nonzeros(Sp_kMHKT(:,:,kk)));  % Matrix column 3 is speed 

[m/s]  *                        * 
                       Power_kMHKT(i,j,kk)= ppval(cs,Sp_kMHKT(i,j,kk)); % Power of each MHKTurbine *   
                       Time_kMHKT(i,j,kk) = mean2(nonzeros(Time_kMHKT(:,:,kk))); 
                  end 
              end 
            end 
          end 
    Sp_kMHKT(i,j,kk)=Sp_kMHKT(i,j,kk) 
     
    end % loop of hub1 only 
     
       Ctotal(:, 9)=0;  
       if (hub == 2)     % track hub 2 only 
           nmicro=6; 
           for i=1:m2   % track all turbines of hub 2        
                for j=3:n2    % it start with 3 because 1 and 2 are index numbers for hub and microgrid 
                LakMHKT = gis_2Lat(i,j); 
                LokMHKT = gis_2Lon(i,j); 
                %%% 6. Start loop for calculation of power profile of each MHK turbine  
                %%%  6.1 FINDING THE SPEED (24h) FOR TURBINES (LakMHKT and LokMHKT)  
                for ii=1:m 
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                    dist=sqrt((LakMHKT-Ctotal(ii,1))*(LakMHKT-Ctotal(ii,1))+(LokMHKT-
Ctotal(ii,2))*(LokMHKT-Ctotal(ii,2))); 

                    Ctotal(ii, 9)=dist;      %%% colum 9 store distance to turbine 
                end 
                c=min(Ctotal(:,9)) 
                kk=0 
                for iii=1:m 
                   if (Ctotal(iii,9)==c  &  Ctotal(iii,5)==Anok & Ctotal(iii,6)==Mesk & Ctotal(iii,7)==Diak & 

Ctotal(iii,8)==kk); 
                   kk=kk+1;  
                   Cpoint(kk,:) = Ctotal(iii,:);  % Cpoint is the speed (24h) for minimum distance to turbine 
                   Sp_2kMHKT(i,j,kk)=Ctotal(iii,3);  % Matrix column 3 is speed [m/s]  * 
                   Power_2kMHKT(i,j,kk)= ppval(cs,Sp_2kMHKT(i,j,kk)); % Power of each MHKTurbine *                                             
                   Time_2kMHKT(i,j,kk)=Ctotal(iii,8);  % hour time for shortest distance c  *    
                   Ctotal(iii,9)=99999; 
                   end 
                end 
                c=min(Ctotal(:,9)) 
                kk=0 
                for iii=1:m 
                   if (Ctotal(iii,9)==c  &  Ctotal(iii,5)==Anok & Ctotal(iii,6)==Mesk & Ctotal(iii,7)==Diak & 

Ctotal(iii,8)==kk); 
                   kk=kk+1;  
                     if Sp_2kMHKT(i,j,kk)==0 
                       Cpoint(kk,:) = Ctotal(iii,:);  % Cpoint is the speed (24h) for minimum distance to turbine 
                       Sp_2kMHKT(i,j,kk)=Ctotal(iii,3);  % Matrix column 3 is speed [m/s]  * 
                       Power_2kMHKT(i,j,kk)= ppval(cs,Sp_2kMHKT(i,j,kk)); % Power of each MHKTurbine *                                             
                       Time_2kMHKT(i,j,kk)=Ctotal(iii,8);  % hour time for shortest distance c  *    
                     end 
                   end 
                end 
                Cpoint=sortrows(Cpoint,8) %Cpoint is the speed (24h) for minimum distance to turbine 
                [mm,nn]=size(Cpoint); 
                %%% 6.3. FINDING THE POWER PROFILE FOR A TURBINE IN(LakMHKT and LokMHKT)  
                %%%      BASED ON THE SPEED PROFILE Cpoint(:,3)    (24h period) 
                power=ppval(cs,Cpoint(:,3));    %[p.u. value] 
                Power = []; 
                Power = power  %*Tpower;  % [MW], each turbine 2 MW 
                %%% gis_Power is for Morehead 
                gis_2Power(i,j,:)=Power;  % columns 1 and 2 are zeroed (j from 3 ...)  
                gis_2Time(i,j,:)=Cpoint(:,8); 
                %gis_2Speed(i,j,:)=Cpoint(:,3);        
            end % loop of latitude of each turbine of hub2 
        end % loop of longitude of each turbine of hub2 
         
      % filling missing measurements in space and time 
          for i=1:m2   % track all longitude of turbines of hub 1      
            for j=3:n2    % track all latitude of turbines of hub 1 
              for kk=1:24 
                  if Sp_2kMHKT(i,j,kk)==0 
                       Sp_2kMHKT(i,j,kk)=mean2(nonzeros(Sp_2kMHKT(:,:,kk)));  % Matrix column 3 is speed 

[m/s]  *                        * 
                       Power_2kMHKT(i,j,kk)= ppval(cs,Sp_2kMHKT(i,j,kk)); % Power of each MHKTurbine *   
                       Time_2kMHKT(i,j,kk) = mean2(nonzeros(Time_2kMHKT(:,:,kk))); 
                  end 
              end 
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            end 
          end 
          Sp_2kMHKT(i,j,kk)=Sp_2kMHKT(i,j,kk)    
          Power_2kMHKT(i,j,kk)= Power_2kMHKT(i,j,kk) 
    end % loop of hub2 only 
           Ctotal(:, 9)=0;  
%       if (hub == 3)  
%           nmicro=3; 
%           for i=1:m3   % hub 3 = Brunswick (Duke)      
%                for j=3:n3    % it start with 3 because 1 and 2 are index numbers for hub and microgrid 
%                LakMHKT = gis_3Lat(i,j); 
%                LokMHKT = gis_3Lon(i,j); 
                %%% 6. Start loop for calculation of power profile of each MHK turbine  
                %%%  6.1 FINDING THE SPEED (24h) FOR TURBINES (LakMHKT and LokMHKT)  
%                for ii=1:m    %Não seria LakMHT(i,j)? 
%                    dist=sqrt((LakMHKT-Ctotal(ii,1))*(LakMHKT-Ctotal(ii,1))+(LokMHKT-

Ctotal(ii,2))*(LokMHKT-Ctotal(ii,2))); 
%                    Ctotal(ii, 9)=dist;      %%% colum 9 store distance to turbine 
%                end 
%                c=min(Ctotal(:,9)) 
%                kk=0 
%                for iii=1:m 
%                   if (Ctotal(iii,9)==c  &  Ctotal(iii,5)==Anok & Ctotal(iii,6)==Mesk & Ctotal(iii,7)==Diak); 
%                   kk=kk+1;  
%                   Cpoint(kk,:) = Ctotal(iii,:);  % Cpoint is the speed (24h) for minimum distance to turbine 
%                   Sp_3kMHKT(i,j,kk)=Ctotal(iii,3);  % Matrix column 3 is speed [m/s]  *                        * 
%                   Power_3kMHKT(i,j,kk)= ppval(cs,Sp_3kMHKT(i,j,kk)); % Power of each MHKTurbine *                                             
%                   Time_3kMHKT(i,j,kk)=Ctotal(iii,8);  % hour time for shortest distance c  *                    
%                   end 
%                end 
%                Cpoint=sortrows(Cpoint,8) %Cpoint is the speed (24h) for minimum distance to turbine 
%                [mm,nn]=size(Cpoint); 
%                %%% 6.3. FINDING THE POWER PROFILE FOR A TURBINE IN(LakMHKT and LokMHKT)  
%                %%%      BASED ON THE SPEED PROFILE Cpoint(:,3)    (24h period) 
%                power=ppval(cs,Cpoint(:,3));    %[p.u. value] 
%                Power = []; 
%                Power = power  %*Tpower;  % [MW], each turbine 2 MW 
                %%% gis_Power is for Brunswick (Duke) 
%                gis_3Power(i,j,:)=Power;  % columns 1 and 2 are zeroed (j from 3 ...)  
         
%            end % loop of latitude of each turbine of hub3 
%        end % loop of longitude of each turbine of hub3 
%    end % loop of hub3 only 
 
end; 
%%%   4. Start loop for calculation of power profile of microgrids agregated by each hub 
 
%%%       for micro=1:nmicro   
 
%%%     5. Start loop for calculation of power profile of MHK turbines agregated for each microgrid 
%%%        for turbine=1:10*9   % each micro with 10 rows and 9 columns of MHK   
 
     
      
   %%% 7. Calculate and store the power profile of MHK turbines agregated for each microgrid 
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  %%% 8. Calculate and store the power profile of microgrids agregated by each hub 
  %%% end % of for   
 %gis_Power(:,:,:);   %%% 3D=[longitude rows, latitude columns, time]   
  
  
 %%% 9. Calculate and store the sum of power profile of all hubs into the offshore backbone.  
 %%% end % of for     
      
 
  
  
  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 

 %%%% 10.1 PLOT MHK TURBINE CURVE (Power versus tidal speed) 
 figure(); 
 [m,n]=size(y); 
 %%% Ploting the curve of MHK turbine (speed [m/s] versus Power [MW]) 
 clear xq1; 
 clear power; 
 Tpower=2;   % 2 [MW] according to  
 xq1 = 0:0.1:4; %mm; 
 plot(x,y,'ks',xq1,ppval(cs,xq1),'-k','linewidth',2);   % plot once outside iteration in black (k) 
 xlabel("water speed [m/s]",'fontname','times','linewidth',2,'FontSize', 16); 
 ylabel("MHK turbine electrical power [p.u.]",'fontname','times','linewidth',2,'FontSize', 16); 
 grid on 
 grid minor 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%  

   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%% 
%%%% 10.2 Plot over the map of North Carolina Coast, the location of  
%%%%    substations, hubs, microgrids, and MHK turbines 
%%%%    Map of USA East Coast - Cape Hatteras - North Carolina                        
   figure 
   title('USA East Coast, North Carolina - Cape Hatteras') 
   %ax = usamap({'NC','RI'}); 
   %ax = usamap({'NC','VA'});   
   ax = usamap({'NC'});      
   set(ax, 'Visible', 'off') 
   latlim = getm(ax, 'MapLatLimit'); 
   lonlim = getm(ax, 'MapLonLimit'); 
   %lonlim = [-80 -70] 
   states = shaperead('usastatehi',... 
           'UseGeoCoords', true, 'BoundingBox', [lonlim', latlim']); 
   geoshow(ax, states, 'FaceColor', [0.5 0.5 1])  
    
   lat = [states.LabelLat]; 
   lon = [states.LabelLon]; 
   tf = ingeoquad(lat, lon, latlim, lonlim); 
   textm(35.825853, -77.8,'North Carolina','fontname','times','FontSize', 14) 
   textm(35.5,-77,'Cape Hatteras','fontname','times','FontSize', 12) 
   %textm(34.1, -76.225204,'microgrid','fontname','times','FontSize', 12);   
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   textm(34.1, -76.85,'microgrid','fontname','times','FontSize', 12,'Color', 'r');   
   textm(34.1, -75.8,'MHK turbines','fontname','times','FontSize', 12,'Color', 'b');      
   % textm(LakMHKT,LokMHKT,'x MHK','HorizontalAlignment','left','VerticalAlignment','middle','Color', 

'r') 
    
    
   % Plot hub platforms in the map  
   for i=1:2 % 3          % no speed data in hub 3             
       textm(gis1(i,5),gis1(i,6),'h','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')        
   end    
    
   % Plot microgrid platforms in the map  
   for i=1:9 % 12          % no speed data in hub 3                 
       textm(gis2(i,5),gis2(i,6),'m','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')        
   end 
    
   % Plot RF radar speed measurement points in the map 
   [n,m]=size(Ctotal); 
    for ii=1:n 
        if Ctotal(ii,3)>0.4 
            textm(Ctotal(ii,1), Ctotal(ii,2), 

'.','HorizontalAlignment','center','VerticalAlignment','middle','Color','y'); 
        end 
        if  Ctotal(ii,3)<=0.4     
            textm(Ctotal(ii,1), Ctotal(ii,2), 

'.','HorizontalAlignment','center','VerticalAlignment','middle','Color','c'); 
        end 
    end 
    
    
   % Plot substations and areas of shallow waters in the map    
   %Kitty Hawk (PJM)  
   LatSub=36.066694;  
   LonSub=-75.7006; 
   textm(LatSub,LonSub,'Hub1 o','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'k','fontname','times','FontSize', 13); 
   LatCluster=36.495252; 
   LonCluster=-75.717171; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')   
   LatCluster=36.488817; 
   LonCluster=-75.345789; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster=35.770395; 
   LonCluster=-75.085544; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster=35.754636; 
   LonCluster=-75.277815; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')   
   LatCluster=35.877476; 
   LonCluster=-75.334136; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')  
   LatCluster=35.921332;    
   LonCluster=-75.252759;  
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster=36.095911; 
   LonCluster=-75.380747; 
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   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')  
   LatCluster=36.004839; 
   LonCluster=-75.491449; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r') 
    
   % Plot the MHK turbines in the map 
   for i=1:m1              
       for j=3:n1    % it start with 3 because 1 and 2 are index numbers for hub and microgrid 
           textm(gis_Lat(i,j),gis_Lon(i,j),'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'b') 
       end 
   end 
       
   %New Bern (Duke)  
   %LatSub=35.1413;  
   %LonSub=-77.1235; 
   %textm(LatSub,LonSub,'s2 (< 5GW) o','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'r')    
    
   LatCluster=35.088664; 
   LonCluster=-75.688311; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')    
   LatCluster=35.023462;   
   LonCluster=-75.493303; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')      
   LatCluster=34.751881;     
   LonCluster=-75.746240; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')      
   LatCluster=34.911128; 
   LonCluster=-75.991056; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')   
   
   %Morehead (Duke)  
   LatSub=34.748318;  
   LonSub=-76.803354; 
   %LatSub= 35.1467;  
   %LonSub=-76.8397;   
   textm(LatSub,LonSub,'Hub2 o ','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'k','fontname','times','FontSize', 13) 
       
     
   LatCluster=34.393527; 
   LonCluster=-76.138750; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')      
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')      
   LatCluster=34.536190; 
   LonCluster=-76.372210; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')    
    
   
   LatCluster=34.307040; 
   LonCluster=-76.370903; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster=34.163834; 
   LonCluster=-76.255423; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
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   LatCluster=34.005069; 
   LonCluster=-76.629577; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster=34.341373; 
   LonCluster=-76.715032 ; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')    ,  
   for i=1:m2             % Plot the MHK turbines in the map 
       for j=3:n2 
           textm(gis_2Lat(i,j),gis_2Lon(i,j),'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'b') 
       end 
   end 
    
 
%textm(Lat_2m1,Lon_2m1,'2m1','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')    
%textm(Lat_2m5,Lon_2m5,'2m5','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')       
   
    
   %Wrightsville (Duke)  
   %LatSub=34.225444;  
   %LonSub=-77.828277; 
   %textm(LatSub,LonSub,'s3 o','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r') 
   
   %Brunswick (Duke)  
   LatSub=33.959798;  
   LonSub=-78.010995; 
   textm(LatSub,LonSub,'Hub3 o','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'k','fontname','times','FontSize', 13)  
    
   LatCluster= 33.663471; 
   LonCluster=-77.967339; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')  
   LatCluster= 33.456317; 
   LonCluster=-77.722631; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')  
   LatCluster= 33.269779; 
   LonCluster=-77.889654; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')     
   LatCluster= 33.453076; 
   LonCluster=-78.085809; 
   textm(LatCluster,LonCluster,'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 'r')  
    
   % Plot the MHK turbines in the map 
%  for i=1:m3              
%      for j=3:n3 
%           textm(gis_3Lat(i,j),gis_3Lon(i,j),'.','HorizontalAlignment','right','VerticalAlignment','middle','Color', 

'b') 
%       end 
%   end   
 
% 11. Plot the rectangle of the maximum lat and long of measurements 
   LaMax=max(Ctotal(:,1)); % to draw rectangle limits of measurements 
   LaMin=min(Ctotal(:,1)); 
   LoMax=max(Ctotal(:,2)); 
   LoMin=min(Ctotal(:,2)); 
   delta = 0.001; 
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   textm(LaMax, LoMax, '.','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(((LaMax+LaMin)/2), LoMax, '.'); 
   textm(LaMin, LoMax, '.','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(LaMax, ((LoMax+LoMin)/2),'.'); 
   textm(LaMax, LoMin, '.','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(((LaMax+LaMin)/2), LoMin, '.'); 
   textm(LaMin, LoMin, '.','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(LaMin, ((LoMax+LoMin)/2),'.'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
%%% 12. Plot the power profile of MHK turbines 
    % for ti=Cpoint(:,8)                      % 1:mm  (hour time) 
    %        Cpoint(:,9)=Tpower*ppval(cs,ti); % column 9 is power [MW] 
    % end 
    % Cpoint; 
      
hub=1; 
    %%% Agregate power profile by hub  
 if hub==1 
     [m,n,p]=size(Sp_kMHKT) 
      
     Sp_kMHKT=Sp_kMHKT; 
     Power_kMHKT=Power_kMHKT; 
     Time_kMHKT= Time_kMHKT; 
     for kk=1:p   % p = 24 hours 
       meanSp(kk)=mean2(nonzeros(Sp_kMHKT(:,:,kk)));   % mean speed profile in hub1=  * 
       sumPower_kMHKT(kk)=sum(sum((Power_kMHKT(:,:,kk))));   % sum of power profile in hub1 * 
       %sumPower_kMHKT(kk)=sum(Power_kMHKT(:,:,kk));   
       %time_kMHKT(kk)=mean2(nonzeros(Time_kMHKT(:,:,kk))); % hour time for shortest distance c   
       if kk==1  
           time_kMHKT(kk)=mode(mode(Time_kMHKT(:,:,kk))); % hour time for shortest distance c   
       else 
           time_kMHKT(kk)=mode(mode(nonzeros(Time_kMHKT(:,:,kk)))); % hour time for shortest distance 

c      
       end 
     end 
      
      
     %hub1_result=[meanSp sumPower_kMHKT time_kMHKT]; 
     %hub1_result=sortrows(hub1_result,3); 
     %meanSp(:,1) = hub1_result(:,1); 
     %sumPower_kMHKT(:,1) = hub1_result(:,2); 
     %time_kMHKT(:,1)= hub1_result(:,3); 
 
    [im,jm,km]=size(gis_Power) 
    Paux=gis_Power;          %% gis_Power is for Kitty Hawk 
                            %%% Paux is 3D matrix  
    %%% [MHK rows in hub, 9 turbines in same latitude, 24h time] 
    aux=sum(Paux,2);         %% group power by row  
                             %%% 2D [MHK rows in hub, 24h time]     
    aux=sum(aux,1);  %% [sum power of all rows (hub), time]= Power profile        
    [s,t]=size(aux); 
    Power=aux(:); 
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     %Power = gis_Power(:,10,:);   %%% sum of all microgrid in hub 1 
     GEN_power=Power; 
     GEN_time=Cpoint(:,8) % gis_Time(i,j,:)? valid only for same day!!! different day does not work! 
 
    [mt,nt]=size(GEN_power) 
    Anokstr = num2str(Anok); 
    Meskstr = num2str(Mesk); 
    Diakstr = num2str(Diak); 
    %fig_Title=strcat('MHK power assessment in',{' '},Diakstr,'/',Meskstr,'/',Anokstr); 
    figure(); 
    subplot(4,1,1) 
    %subplot(2,1,1)   
    %plot(GEN_time,GEN_power); 
    plot(time_kMHKT(:),sumPower_kMHKT(:));       %* hub1 Power profile  
    grid on 
    set(gca,'FontSize',8) 
    axh=gca; 
    set (axh, 'GridLineStyle','-'); 
    grid minor; 
    title('(a) Power profile [MW] of hub-1 vs time [h]','FontName', 'Times','fontsize',9) 
    %xlabel('time [hour]') 
  
    subplot(4,1,2) 
    %subplot(2,1,2)   
    %plot(GEN_time,Cpoint(:,3)); 
    plot(time_kMHKT(:),meanSp(:));                 %* hub1 Speed profile    
    grid on 
    set(gca,'FontSize',8) 
    axh=gca; 
    set (axh, 'GridLineStyle','-'); 
    grid minor; 
    title('(b) Seawater mean speed [m/s] vs time [h]','FontName', 'Times','fontsize',9) 
    %xlabel('time [hour]') 
     
    %suptitle(fig_Title); 
 end 
  
 hub=2; 
 if hub==2 
     [m,n,p]=size(Sp_2kMHKT) 
     for kk=1:p  
       mean2Sp(kk)=mean2(nonzeros(Sp_2kMHKT(:,:,kk)));   % mean speed profile in hub1  * 
       %sumPower_2kMHKT(kk)=sum(sum((Power_2kMHKT(:,:,kk))));   % mean power profile in hub1 * 
       sumPower_2kMHKT(kk)=sum(sum(Power_2kMHKT(:,:,kk)));   % mean power profile in hub1 * 
         
       %if Time_2kMHKT(:,:,kk)==0 
       %    Time_2kMHKT(:,:,kk)=0.0000000001; 
       %end 
       %time_2kMHKT(kk)=mean2(nonzeros(Time_2kMHKT(:,:,kk))); % hour time for shortest distance c   
       if kk==1  
           time_2kMHKT(kk)=mode(mode(Time_2kMHKT(:,:,kk))); % hour time for shortest distance c   
       else 
           time_2kMHKT(kk)=mode(mode(nonzeros(Time_2kMHKT(:,:,kk)))); % hour time for shortest 

distance c      
       end 
     end 
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     %hub2_result=[mean2Sp sumPower_2kMHKT time_2kMHKT]; 
     %hub2_result=sortrows(hub2_result,3); 
     %mean2Sp(:,1) = hub2_result(:,1); 
     %sumPower_2kMHKT(:,1) = hub2_result(:,2); 
     %time_2kMHKT(:,1)= hub2_result(:,3);  
     
     [im,jm,km]=size(gis_2Power) 
    Paux=gis_2Power;          %% gis_Power is for Morehead 
                            %%% Paux is 3D matrix  
    %%% [MHK rows in hub, 9 turbines in same latitude, 24h time] 
    aux=sum(Paux,2);         %% group power by row  
                             %%% 2D [MHK rows in hub, 24h time]     
    aux=sum(aux,1);  %% [sum power of all rows (hub), time]= Power profile        
    [s,t]=size(aux); 
    Power=aux(:) 
     
      
     %Power = gis_Power(:,10,:);   %%% sum of all microgrid in hub 1 
     GEN_power=Power; 
     GEN_time=Cpoint(:,8) % gis_Time(i,j,:)? valid only for same day!!! different day does not work! 
 
    [mt,nt]=size(GEN_power) 
    Anokstr = num2str(Anok); 
    Meskstr = num2str(Mesk); 
    Diakstr = num2str(Diak); 
    %fig_Title=strcat('MHK power assessment in',{' '},Diakstr,'/',Meskstr,'/',Anokstr); 
 
    subplot(4,1,3) 
    %figure(); 
    %subplot(2,1,1)   
    %plot(GEN_time,GEN_power); 
    plot(time_2kMHKT(:),sumPower_2kMHKT(:));       %* hub2 Power profile  
    grid on 
    set(gca,'FontSize',8) 
    axh=gca; 
    set (axh, 'GridLineStyle','-'); 
    grid minor; 
    title('(c) Power profile [MW] of hub-2 vs time [h]','FontName', 'Times','fontsize',9) 
    %xlabel('time [hour]') 
  
    subplot(4,1,4)  
    %subplot(2,1,2)   
    %plot(GEN_time,Cpoint(:,3)); 
    plot(time_2kMHKT(:),mean2Sp(:));                 %* hub2 Speed profile   
    grid on 
    set(gca,'FontSize',8) 
    axh=gca; 
    set (axh, 'GridLineStyle','-'); 
    grid minor; 
    title('(d) Seawater mean speed [m/s] vs time [h]','FontName', 'Times','fontsize',9) 
    %xlabel('time [hour]') 
     
    %suptitle(fig_Title); 
 end 
  
 %hub=3; 
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 %if hub==3 
 %    [m,n,p]=size(Sp_3kMHKT); 
 %    for kk=1:p  
 %      mean3Sp(kk)=mean2((Sp_3kMHKT(:,:,kk)));   % mean speed profile in hub1  * 
 %      sumPower_3kMHKT(kk)=sum(sum((Power_3kMHKT(:,:,kk))));   % mean power profile in hub1 * 
       %if Time_3kMHKT(:,:,kk)==0 
       %    Time_3kMHKT(:,:,kk)=0.0000000001; 
       %end 
%      time_3kMHKT(kk)=mean2(nonzeros(Time_3kMHKT(:,:,kk))); % hour time for shortest distance c   
%    end  
%    hub3_result=[mean3Sp sumPower_3kMHKT time_3kMHKT]; 
%    hub3_result=sortrows(hub3_result,3); 
%    mean3Sp(:,1) = hub3_result(:,1); 
%     sumPower_3kMHKT(:,1) = hub3_result(:,2); 
%     time_3kMHKT(:,1)= hub3_result(:,3);      
 
%     [im,jm,km]=size(gis_3Power) 
%    Paux=gis_3Power          %% gis_3Power is for Brinckewich 
                            %%% Paux is 3D matrix  
    %%% [MHK rows in hub, 9 turbines in same latitude, 24h time] 
%    aux=sum(Paux,2);         %% group power by row  
                             %%% 2D [MHK rows in hub, 24h time]     
%    aux=sum(aux,1);  %% [sum power of all rows (hub), time]= Power profile        
%    [s,t]=size(aux); 
%    Power=aux(:) 
     
      
     %Power = gis_Power(:,10,:);   %%% sum of all microgrid in hub 1 
%     GEN_power=Power; 
%     GEN_time=Cpoint(:,8) % gis_Time(i,j,:)? valid only for same day!!! different day does not work! 
 
%    [mt,nt]=size(GEN_power) 
%    Anokstr = num2str(Anok); 
%    Meskstr = num2str(Mesk); 
%    Diakstr = num2str(Diak); 
%    fig_Title=strcat('MHK power assessment in',{' '},Diakstr,'/',Meskstr,'/',Anokstr); 
%    figure(); 
     
%    subplot(2,1,1)   
    %plot(GEN_time,GEN_power); 
%    plot(time_3kMHKT(:),sumPower_3kMHKT(:));       %* hub3 Power profile  
%    grid on 
%    axh=gca; 
%    set (axh, 'GridLineStyle','-'); 
%    grid minor; 
%    title('(a) Total MHK turbine power profile [MW] of hub-3') 
%    xlabel('time [hour]') 
  
%    subplot(2,1,2)   
    %plot(GEN_time,Cpoint(:,3)); 
%    plot(time_3kMHKT(:),mean3Sp(:));                 %* hub3 Speed profile   
%    grid on 
%    axh=gca; 
%    set (axh, 'GridLineStyle','-'); 
%    grid minor; 
%    title('(b) NOAA HF radar measurement of Gulf Stream surface water speed [m/s]') 
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%    xlabel('time [hour]') 
     
%    suptitle(fig_Title); 
% end 
 
[m,n]=size(Ctotal); 
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APPENDIX B: MATLAB SCRIPT OF THE US-CARIBBEAN SG 

 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         % 
%       Rodney Itiki - PhD Dissertation Research Project (2023)           %        
%       Hurricane modeling and U.S.-Caribbean Super Grid proposition      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
clc; 
clear all; 
close all; 
feature('accel','on') 
r= 6371008.8;   %[meters]    
verbose = 1; 
region = "USA"      
%region = "Japan" 
%alternative = 1;  % Hurricane/Typhoon modeling by fitting   
alternative = 0;  % Hurricane/Typhoon modeling by Holland 
%trajectoryType = "Straight"; 
trajectoryType = "Parabole"; 
if trajectoryType == "Parabole" 
    alternative = 0; 
    %set(0,"DefaultFigureVisible","off");  % Figuras invisíveis pois lento 
end 
 
     hurricaneCategory = 3;   %4 or 3; 
     PR=[5 4 3;     % Michael (2018) Charley (2004) Wilma (2005) 
         919 941 950; 
         18.52 37.04 55.56; 
         970 975 980; 
         55.56 55.56 57.412];     
     jp = 10;   % select the trajectory of hurricane from 1 to 10  
 
turbineType = 'typical'; % select typical for cutout 25 m/s or 'special', 40 m/s  
 
caso = 21;  % case 1  is Taiwan landfall,  
           % case 2  is in Kyushu,  
           % case 3  in Philippines,  
           % case 4  interconnector and hitting TWN 
           % case 5  interconnector and hitting JPN            
           % case 6  interconnector and hitting PHP  
           % case 7  spare 
           % case 8  spare 
           % case 9  spare 
           % case 10 spare 
           % case 20 is USA WITH interconnection to Caribbean Supergrid 
           % case 21 is USA WITHOUT interconnection to Caribbean Supergrid           
co = [   0,    0.4470,    0.7410; 
    0.8500,    0.3250,    0.0980; 
    0.9290,    0.6940,    0.1250; 
    0.4940,    0.1840,    0.5560; 
    0.0000,    0.0000,    0.0000; 
    0.3010,    0.7450,    0.9330; 
    0.6350,    0.0780,    0.1840; 
         0,    0.5000,         0; 
    0.7500,         0,    0.7500; 
    0.2500,    0.2500,    0.2500]; 
    trajectColor=co(jp,:) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                   POPULATE TURBINES IN A MAP                            % 
%  Populate Array of offshore wind turbines                               % 
if region == "USA" 
   % Coordinates in front of Cappe Hateras [35.159081, -75.359408] 
   % Coordinates in from of Jacksonvile FL [30.303634, -80.710187] 
   LaC=35.159081; 
   LoC=-75.359408; 
   LaD=30.303634; 
   LoD=-80.710187; 
    
                              % Array 2    
   LaE= 41.439191;         % Rodhe Island 
   LoE= -70.674311; 
   LaF= 37.222078;         % Virginia 
   LoF= -75.805868;  
    
                            % Array 3    
   LaG= 47.755556;          % Washington - (North) 
   LoG= -124.680542; 
   LaH= 34.611117;          % California - Morro Bay (South) 
   LoH= -120.647408;   
       
                           % Array 4    
   LaI= 32.290339;         % Texas - North 
   LoI= -100.417739; 
   LaJ= 41.000219;         % Amami City Omaha - Amami Oshima island 
   LoJ= -84.492314;      
    
   %LaK=;   % Caribbean 
   %LoK=; 
   %LaL=; 
   %LoL=;   
%   n = 5;          % number of turbines in array in NC (ok) 
%   n2= 15;         % Rodhe Island 
%   n3= 11;          % California - Morro Bay (North) 
%   n4= 5;          % Texas - North 
     
end 
 
if region == "Japan"   % Coordinates C:  Array 
   if (caso == 1)     % Taiwan hit 
   %LaC= 30.9958661; % Kyushu 
   %LoC= 130.6457063; 
   %LaD= 24.4656195; %Hatoma Island - Japan (close to Ishigaki Island)   
   %LoD= 123.8001116; 
                              % Array 1   
   %LaC=  28.3316642;        % Kikajima JPN (Amani island) 
   %LoC=   129.9210169; 
   %LaD= 24.451915;          % Western point of JPN 
   %LoD= 122.9320186;  
   LaC=  28.3316642;        % Kikajima JPN (Amani island)(Joker)  
   LoC=   129.9210169; 
   LaD= 24.451915;          % Western point of JPN 
   LoD= 122.9320186;   
    
                               % Array 2 (Joker - just 1 turbine)  
   LaE= 22.4284448;         % Green Island - South Taiwan 
   LoE= 120.9759741; 
   LaF= 9.467899;           % Palanan - Philippines 
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   LoF= 126.533833;  
      
                               % Array 3    
   LaG= 34.6062689;         % Iki Island SouthWest JPN  (Joker)  
   LoG= 129.701097; 
   LaH= 45.0316192;         % Hishiri Island Hokkaido JPN 
   LoH= 141.0141986;       
                            % Array 4    
   LaI= 34.2781138;         % Tsushima JPN South West Island (Joker)  
   LoI= 129.3639537; 
   LaJ= 28.433371;         % Amami City Omaha - Amami Oshima island 
   LoJ= 129.456680;    
   
    
   n = 1;          % number of turbines in array 
   n2= 1; 
   n3= 1; 
   n4= 1; 
 
   end 
    
   if (caso == 2)    % Array 
   %LaC= 33.5768705;  % Wakayama - Honshu JPN 
   %LoC= 135.0501018; 
   %LaD= 24.4656195;    
   %LoD= 123.8001116;   
                             % Array 1 
   LaC=  28.3316642;        % Kikajima JPN (Amani island) 
   LoC=   129.9210169; 
   LaD= 24.451915;          % Western point of JPN 
   LoD= 122.9320186;   
    
                               % Array 2 (Joker - just 1 turbine)  
   LaE= 22.4284448;         % Green Island - South Taiwan 
   LoE= 120.9759741; 
   LaF= 9.467899;           % Palanan - Philippines 
   LoF= 126.533833;  
      
                               % Array 3    
   LaG= 34.6062689;         % Iki Island SouthWest JPN 
   LoG= 129.701097; 
   LaH= 45.0316192;         % Hishiri Island Hokkaido JPN 
   LoH= 141.0141986;       
                            % Array 4    
   LaI= 34.2781138;         % Tsushima JPN South West Island 
   LoI= 129.3639537; 
   LaJ= 28.433371;         % Amami City Omaha - Amami Oshima island 
   LoJ= 129.456680;   
    
    
   n = 14;          % number of turbines in array 
   n2= 1; 
   n3= 30; 
   n4= 14; 
    
    
   end 
    
   if (caso == 3)      % Array 
   %LaC= 10.9183955;    % Luzon - Philippines 
   %LoC= 122.6521798;    
   %LaD= 16.9969 ;       % Palanan - Philippines 
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   %LoD= 122.4014;  
    
   %LaC= 22.4284448;         % Green Island - South Taiwan 
   %LoC= 120.9759741; 
   %LaD= 9.467899;           % Palanan - Philippines 
   %LoD= 126.533833;   
                               % Array 1 (Joker - not turbine) 
   LaC=  28.3316642;        % Kikajima JPN (Amani island) 
   LoC=   129.9210169; 
   LaD= 24.451915;          % Western point of JPN 
   LoD= 122.9320186; 
 
                               % Array 2    
   LaE= 22.4284448;         % Green Island - South Taiwan 
   LoE= 120.9759741; 
   LaF= 9.467899;           % Palanan - Philippines 
   LoF= 126.533833;    
    
                            % Array 3 (Joker)    
   LaG= 34.6062689;         % Iki Island SouthWest JPN 
   LoG= 129.701097; 
   LaH= 45.0316192;         % Hishiri Island Hokkaido JPN 
   LoH= 141.0141986;       
                            % Array 4  (Joker)     
   LaI= 34.2781138;         % Tsushima JPN South West Island 
   LoI= 129.3639537; 
   LaJ= 28.433371;         % Amami City Omaha - Amami Oshima island 
   LoJ= 129.456680;    
    
    
   n = 1;          % number of turbines in array 
   n2= 21; 
   n3= 1; 
   n4= 1; 
    
   end 
    
   if (caso == 4)      % Three Arrays 
                            % Array 1 
   LaC=  28.3316642;        % Kikajima JPN (Amani island) 
   LoC=   129.9210169; 
   LaD= 24.451915;          % Western point of JPN 
   LoD= 122.9320186; 
   %LaC= 26.2070433;         % Okinawa JPN 
   %LoC=127.6426332;    
   %LaD= 8.2235979;         % Bislig - Philippines   
   %LoD= 126.1165143;       % 17.0208965,122.202 
   %LaD= 16.9969 ;          % Palanan - Philippines 
   %LoD= 122.4014;  
 
                            % Array 2    
   LaE= 22.4284448;         % Green Island - South Taiwan 
   LoE= 120.9759741; 
   LaF= 9.467899;           % Palanan - Philippines 
   LoF= 126.533833;     
                            % Array 3    
   LaG= 34.6062689;         % Iki Island SouthWest JPN 
   LoG= 129.701097; 
   LaH= 45.0316192;         % Hishiri Island Hokkaido JPN 
   LoH= 141.0141986;       
                            % Array 4    
   LaI= 34.2781138;         % Tsushima JPN South West Island 
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   LoI= 129.3639537; 
   LaJ= 28.433371;         % Amami City Omaha - Amami Oshima island 
   LoJ= 129.456680;     
    
   end 
end 
 
if region=="Japan" 
   %n = 30;          % number of turbines in array 
 
   if (caso == 4)      % Array 
   n = 14;          % number of turbines in array 
   n2= 21; 
   n3= 30; 
   n4= 14; 
   end  
 
end 
 
if region=="USA"   % USA has just one case, n should be fixed %%% 
%n = 10;          % number of turbines in array 
      n = 5;          % number of turbines in array in NC 
      n2= 5;         % Rodhe Island 
      n3= 11;          % California - Morro Bay (North) 
      n4= 5;          % Texas - North 
      n5= 11;         % Caribbean Islands 
end 
 
%%%%%% Array 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tpower=10;    % each turbine array is 10 MW  
% Angle between point C and D 
deltaAngle = (distance(LaC,LoC,LaD,LoD));   %angle in [degree] 
% Distribution of n turbines array between point C and D.  
deltadeltaAngle = deltaAngle/n; 
Turb_array=zeros(n, 3);   
for k=1:n 
deltaLa_k = k*(LaD-LaC)/n;  % [delta Latitude degree] 
deltaLo_k = k*(LoD-LoC)/n;  % [delta Longitude degree] 
LakT=LaC+deltaLa_k;    %Latitude of turbine 
LokT=LoC+deltaLo_k;    %Longitude of turbine 
Turb_array(k,1:3)=[LakT LokT Tpower];   
labelLat = LakT; 
labelLon = LokT; 
end 
Turb_array;     %OWF_table = [Lat Lon turbinePower] 
 
%%%%%% Array 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tpower=10;    % each turbine array is 10 MW  
% Angle between point E and F 
deltaAngle = (distance(LaE,LoE,LaF,LoF)) ;  %angle in [degree] 
% Distribution of n turbines array between point C and D.  
deltadeltaAngle = deltaAngle/n2; 
Turb_array2=zeros(n2, 3);   
for k=1:n2 
deltaLa_k = k*(LaF-LaE)/n2;  % [delta Latitude degree] 
deltaLo_k = k*(LoF-LoE)/n2;  % [delta Longitude degree] 
LakT=LaE+deltaLa_k;    %Latitude of turbine 
LokT=LoE+deltaLo_k;    %Longitude of turbine 
Turb_array2(k,1:3)=[LakT LokT Tpower];   
labelLat = LakT; 
labelLon = LokT; 
end 
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Turb_array2;     %OWF_table = [Lat Lon turbinePower] 
 
%%%%%% Array 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tpower=10;    % each turbine array is 10 MW  
% Angle between point E and F 
deltaAngle = (distance(LaG,LoG,LaH,LoH))   %angle in [degree] 
% Distribution of n turbines array between point C and D.  
deltadeltaAngle = deltaAngle/n3; 
Turb_array3=zeros(n3, 3);   
for k=1:n3 
deltaLa_k = k*(LaH-LaG)/n3;  % [delta Latitude degree] 
deltaLo_k = k*(LoH-LoG)/n3;  % [delta Longitude degree] 
LakT=LaG+deltaLa_k;    %Latitude of turbine 
LokT=LoG+deltaLo_k;    %Longitude of turbine 
Turb_array3(k,1:3)=[LakT LokT Tpower];   
labelLat = LakT; 
labelLon = LokT; 
end 
Turb_array3;     %OWF_table = [Lat Lon turbinePower] 
 
 
%%%%%% Array 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tpower=10;    % each turbine array is 10 MW  
% Angle between point E and F 
deltaAngle = (distance(LaI,LoI,LaJ,LoJ))   %angle in [degree] 
% Distribution of n turbines array between point C and D.  
deltadeltaAngle = deltaAngle/n4; 
Turb_array4=zeros(n4, 3);   
for k=1:n4 
deltaLa_k = k*(LaJ-LaI)/n4;  % [delta Latitude degree] 
deltaLo_k = k*(LoJ-LoI)/n4;  % [delta Longitude degree] 
LakT=LaI+deltaLa_k;    %Latitude of turbine 
LokT=LoI+deltaLo_k;    %Longitude of turbine 
Turb_array4(k,1:3)=[LakT LokT Tpower];   
labelLat = LakT; 
labelLon = LokT; 
end 
Turb_array4;     %OWF_table = [Lat Lon turbinePower] 
 
%%%%%% Array 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Tpower=10;    % each turbine array is 10 MW  
Turb_array5(1,1:3)=[26.565417 -78.702523 Tpower];  %Bahamas  
Turb_array5(2,1:3)=[22.511881 -78.638524 Tpower];  % Cuba North 
Turb_array5(3,1:3)=[20.651904 -74.875190 Tpower];   % Cuba East  
Turb_array5(4,1:3)=[19.759219 -72.158172 Tpower];  % Haiti 
Turb_array5(5,1:3)=[18.369845 -69.254780 Tpower];  % Dominican Republic 
Turb_array5(6,1:3)=[17.813980 -77.537822 Tpower];  % Jamaica   
Turb_array5(7,1:3)=[18.467404 -66.231590 Tpower];  % Puerto Rico northeast 
Turb_array5(8,1:3)=[18.509169 -67.128103 Tpower];   % Puerto Rico northwest 
Turb_array5(9,1:3)=[18.385191 -64.745133 Tpower];  % British Virgin Island 
Turb_array5(10,1:3)=[17.695063 -64.760318 Tpower]; % U.S. Virgin (Saint Croix) 
Turb_array5;     %OWF_table = [Lat Lon turbinePower] 
 
 
 
% Populate coordinates of Rectangle OWF. 
if region == "USA" 
   % Block Island close to Rhode Island [41.1894261,-71.6487164] 
   %LaOWF=41.1894261; 
   %LoOWF=-71.6487164; 
 
   % Charleston, West Virginia 
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   LaOWF=38.3433652;           % origin of the rectangle 
   LoOWF=-81.7839763; 
    
   LaOWF_D = 30.888958;        % angular direction AJUSTAR PARA USA 
   LoOWF_D = -100.963295;   
   
   Dir_D= sqrt((LoOWF-LoOWF_D)*(LoOWF-LoOWF_D)+(LaOWF-LaOWF_D)*(LaOWF-LaOWF_D));  
  
end  
 
if region == "Japan"     % OWF. 
   if caso == 1 
   %LaOWF = 23.398352;    % Pengu Island, Taiwan 
   %LoOWF= 119.680246; 
    
   LaOWF =   23.078255;        % Pengu Island TWN 
   LoOWF =   119.455503;  
   LaOWF_D = 25.533403;        % angular direction 
   LoOWF_D = 120.076722;    
   Dir_D= sqrt((LoOWF-LoOWF_D)*(LoOWF-LoOWF_D)+(LaOWF-LaOWF_D)*(LaOWF-LaOWF_D)); 
   end 
   if caso == 2 
   LaOWF = 32.4278423;   % Goto island - Japan  
   LoOWF = 128.4827148;  % close to Nagasaki 
   end  
   if caso == 3 
   LaOWF = 20.2519165;    % Basco island - Phillipines  
   LoOWF = 121.8214398;   % close to Luzon strait 
   end    
   if caso == 4 
   LaOWF =   23.078255;        % Pengu Island TWN 
   LoOWF =   119.455503;  
   LaOWF_D = 25.533403;        % angular direction 
   LoOWF_D = 120.076722;    
 
   %LaOWF = 34.2781138;         %%Tsushima JPN West Island 
   %LoOWF = 129.3639537; 
   %LaOWF_D = 28.433371;        %% Amami City Omaha - Amami Oshima island 
   %LoOWF_D = 129.456680;       %% angular direction    
   Dir_D= sqrt((LoOWF-LoOWF_D)*(LoOWF-LoOWF_D)+(LaOWF-LaOWF_D)*(LaOWF-LaOWF_D)); 
   end       
end  
 
if region=="USA" 
lines = 10;           % Turbo_rect (Midwest) 
columns = 5; 
end 
 
if region=="Japan" 
lines = 15; 
columns = 1; 
   if caso == 4 | caso == 1   % interconnector 
   lines = 15;    % Pengu island - TW 
   columns = 1; 
   end 
end 
 
spacing = 500; % [m], linear spacing between turbines 
Lo_delta=0;  % if not interconnector 
La_delta=0; 
spacing_angle = (360/(2*pi()*r))*spacing; 
   if caso == 4  | caso == 1  % interconnector 
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      spacing = 0; 
      Lo_delta=(LoOWF-LoOWF_D)/lines; 
      La_delta=(LaOWF-LaOWF_D)/lines;       
   end 
    
if region=="USA" 
spacing = 10; 
      Lo_delta=(LoOWF-LoOWF_D)/columns;  %lines, not columns 
      La_delta=(LaOWF-LaOWF_D)/lines;    
end   
    
LaT0=LaOWF; 
LoT0=LoOWF; 
Turb_rect =[0 0 Tpower];  
for li=1 : lines 
   for col=1:columns 
   LaTi = LaT0 - li*spacing_angle-li*La_delta; 
   LoTi = LoT0 - col*spacing_angle-li*Lo_delta; 
   k=k+1; 
   aux = [LaTi LoTi Tpower]; 
   Turb_rect=[Turb_rect; aux]; 
   end 
end 
 
if region=="USA" 
    clear Turb_rect; 
    %Turb_rect =[0 0 Tpower]; 
    LaT0=46; 
    LoT0=-105; 
    k=0; 
    lincolum=6; 
   for lin=0:lincolum 
      for colu=0:lincolum 
      LaTi = LaT0 - lin*2.8; 
      LoTi = LoT0 + colu*3.2; 
      auxUSA = [LaTi LoTi Tpower]; 
      k=k+1; 
      %Turb_rect = [Turb_rect; auxUSA]; 
      Turb_rect(k,:)=auxUSA; 
      end 
   end   
end   
 
%       Group all turbines in an single matrix of size mt x nt            % 
if region=="Japan" 
   if caso == 1 
      TurbTotal = [Turb_rect]; 
   end   
   if caso == 2 
      TurbTotal = [Turb_array; Turb_array3; Turb_array4]; 
   end     
   if caso == 3 
      TurbTotal = [Turb_array2]; 
   end     
   if caso == 4 | caso == 5 | caso == 6  
      TurbTotal = [Turb_array; Turb_array2; Turb_array3; Turb_array4;  Turb_rect]; 
   end   
end 
 
TurbTotal = [Turb_array5];  
if region=="USA" 
    if (caso == 20)  % WITH Caribbean Supergrid 
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       TurbTotal = [Turb_array; Turb_array2; Turb_array3; Turb_array4; Turb_array5; Turb_rect];  
    end 
    if (caso == 21)  % WITHOUT Caribbean Supergrid 
       TurbTotal = [Turb_array5];  
    end     
    %if caso ~= 20 | caso ~= 21 % WITHOUT Caribbean Supergrid 
    %   TurbTotal = [Turb_array; Turb_array2; Turb_array3; Turb_array4; Turb_array5; Turb_rect];  
    %end          
end    
 
   [mtArray,ntArray]=size(Turb_array); % turbines in array are first 
   [mtRect,ntRect]=size(Turb_rect); % turbines of OWF are in the end 
   [mt,nt]=size(TurbTotal);          % TurbTotal has 3 columns 
   mt_global=mt; 
   clear Turb_array;  
   clear Turb_array2;  
   clear Turb_array3;  
   clear Turb_array4;  
   clear Turb_array5;  
%                 End of Turbine population                             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
 
%for jp=1:10 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%           Minimum airspeed before hurricane landfall                  % 
%                                                                       % 
for k=1:mt 
      LakT = TurbTotal(k,1); 
      LokT = TurbTotal(k,2); 
      coast = load('coast.mat');  
      TurbineIsInOnshore = inpolygon(LakT,LokT,coast.lat,coast.long);    
        if (TurbineIsInOnshore ==1) & (region == "USA")  % USA 
                 VminOnshore = 5.5;            % assumption: minimum speed onshore 
                 TurbTotal(k,4)=VminOnshore; 
        else 
                 VminOffshore = 8.51; 
                 TurbTotal(k,4)=VminOffshore; 
        end 
        if (LokT > -102) & (LokT < -95) && (LakT > 31)& (region == "USA")& (TurbineIsInOnshore ==1)  % USA 
                 VminOnshore = 8.5; 
                 TurbTotal(k,4)=VminOnshore;           
        end 
        if (region == "USA")& (TurbineIsInOnshore ==0) & (LakT > 32.5) %~= 1) 
                 VminOffshore = 8.51;  % 7;     % National Renewable Energy Lab 
                 TurbTotal(k,4)=VminOffshore; 
        end 
        if (region == "USA")& (TurbineIsInOnshore ==0) & (LakT < 32.51) %~= 1) 
                 VminOffshore = 7.01;  % 7;     % National Renewable Energy Lab 
                 TurbTotal(k,4)=VminOffshore; 
        end         
        if (region == "Japan")& (TurbineIsInOnshore ==1)  % Japan Onshore 
                 % Hsin-Fa Fang, Wind energy potential assessment for the  
                 % offshore areas of Taiwan west coast and Penghu Archipelago, 
                 % Renewable Energy, Volume 67, 2014, 
                 VminOnshore = 3.5;  
                 TurbTotal(k,4)=VminOffshore; 
        end 
        if (region == "Japan")& (TurbineIsInOnshore ==0)  % Japan Offshore 
                 VminOffshore = 9.5;   % Strait Taiwan/ 



171 

                 TurbTotal(k,4)=VminOffshore;                  
        end    
end 
  TurbTotal(:,4)=TurbTotal(:,4) 
%             End of minimum airspeed before hurricane landfall         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%         Input of Hurricane trajectoryType: Straight or Parabole       % 
%                                                                       %    
Vtr = 9.722; %8 m/s [28.8 km/h] - 9 m/s [32.4 km/h] 20m/s [72 km/h] = translational speed of hurricane eye 
% 8 m/s Andrew , Vtr from 20 to 28 m/s over water of North Atlantic [49],  
% 9.722 m/s Michael2018, 9.722 m/s Charley2004, 13.333m/s Wilma2005landfall 
w = Vtr*360/(2*pi()*r)   %[degree/second] = angular speed of hurricane eye 
 
if region == "USA" & trajectoryType == "Straight" 
   % fprintf("Wait 5 minutes to calculate") 
   % trajectoryType : Straight (points A and B on Earth) 
   % Hurricane trajectory 1    
   % LaA =  24.232543;    %Gulf of Mexico 
   % LoA =  -90.082728; 
   % LaB =   47.955969;    %Lake superior 
   % LoB =  -88.399579; 
 
   % Hurricane trajectory 2      
   %   LaA =   21.802322;  %Cuba (Carebean) 
   %   LoA =   -85.239624; 
   %   LaB =   43.435968;  %Gulf of Maine 
   %   LoB =   -66.781393;  
    
   % Hurricane trajectory 3 
   %  LaA =  29.869451;   %EastCoast 
   %  LoA =  -72.461012; 
   %  LaB =  36.667736;  
   %  LoB =  -80.040129; 
    
   % Hurricane trajectory 4    
   %   LaA = 25;   % Point A: Puerto Rico/San Juan @18.5746314,-66.669562,8.67z 
   %   LoA = -70;  
       LaA =  13.679202;   % Hiting Puerto Rico 
       LoA =  -60.495106; 
       LaB =  38.678683;    %reaching Wichita KS 
       LoB =  -100.100049; 
   %   LaB = 41.8333908;  % Chicago 
   %   LoB = -88.012854;    
end    
 
if region == "USA" & trajectoryType == "Parabole"    
    Lat1=[8.87 9.451111111 10.03222222 10.61333333 11.19444444 11.77555556
 12.35666667 12.93777778 13.51888889 14.1]; 
    Long1 = [-53.34 -52.72333333 -52.10666667 -51.49 -50.87333333 -50.25666667 -49.64 -
49.02333333 -48.40666667 -47.79]; 
    Latmin=  [30     30  30  30 30 30 30 30 30 30  ]; 
    Longmin= [-95.5   -93.74 -91.98 -90.22 -88.46 -86.7 -84.94 -83.18 -81.42 -79.66 ]; 
 
    LaACircle=Lat1(jp); 
    LoACircle=Long1(jp);  
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       LaA =  13.679202;   % Hiting Puerto Rico % just to bypass bug  
       LoA =  -60.495106; 
       LaB =  38.678683;    %reaching Wichita KS % just to bypass bug  
       LoB =  -100.100049; 
end 
 
if region == "Japan"       % typhoon trajectory is assumed always Straight 
   fprintf("Do not select any country, please.")  
   fprintf("Just press CANCEL button in the Figure 1, and wait 5 minutes ...") 
   if caso == 1 
      LaA = 23; % Point A: Pacific Ocean  
      LoA = 140; 
      LaB = 25;  %Point B: Taiwan Strait (close to China Mainland) 
      LoB = 120; 
   end 
   if caso == 2           % typhoon trajectory 
      %LaA = 29.511689;   % Philippine Sea 
      %LoA = 122.8939938; 
      LaA = 15; 
      LoA = 130; 
      LaB =34.5442569;   % South Korea coast 
      LoB = 127.4683968;   
   end 
   if caso == 3          % typhoon trajectory 
      LaA = 5;           % Philippine Sea 
      LoA = 135; 
      LaB = 23.4801656;  % Pengu island - Taiwan  
      LoB = 118.9587459; 
   end  
   if caso == 4          % typhoon trajectory 
      LaA = 23; % Point A: Pacific Ocean  
      LoA = 140; 
      LaB = 25;  %Point B: Taiwan Strait (close to China Mainland) 
      LoB = 120; 
   end     
end  
%     End of input of Hurricane trajectoryType: Straight or Parabole    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
%     Just opening the Map of USA Straight, USA parabole and Japan      % 
%                                                                       %  
   deltaAngle = distance(LaB,LoB,LaA,LoA);  % distance command is in [degree] 
   % Assuming w angular speed of hurricane, then: 
   deltaTime=deltaAngle/w   ;                       % [s] 
   % Distance between points in the Earth surface: 
   arclen = (distance(LaB,LoB,LaA,LoA)); % distance command is in [degree] 
   delta_d=deg2km(arclen)*1000;                       % distance [m] 
 
if region == "USA" & trajectoryType == "Straight" 
   % Map of USA East Coast                        
   figure(1) 
   latlim= [6.54 46];   %[19.54 49.2]; 
   lonlim= [-126.28 -56.87];  % [-126.28 -66.87]; 
   ax = worldmap(latlim,lonlim); 
 
   load coastlines 
   geoshow(ax, coastlat, coastlon,... 
   'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30]) 
   textm(38.94, -101.67,'United States of America','HorizontalAlignment','center','VerticalAlignment','middle'); 
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   textm(27.7264, -105.08,'Mexico','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(25.804782, -78.564135,'Bahamas','HorizontalAlignment','center','VerticalAlignment','middle');    
   textm(21.64, -78.51,'Cuba','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(18.144674, -77.515694,'Jamaica','HorizontalAlignment','center','VerticalAlignment','middle');   
   textm(47.109121, -79.504786,'Canada','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(19.3, -71.605227,'Haiti','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(18.0, -72.305227,'Dominican','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(16.8, -72.305227,'Republic','HorizontalAlignment','center','VerticalAlignment','middle');    
   textm(17.260834, -66.163626,'Puerto Rico','HorizontalAlignment','center','VerticalAlignment','middle');    
   textm(16.060834, -65.163626,'Virgin Islds','HorizontalAlignment','center','VerticalAlignment','middle');   
end  
 
if (region == "USA") & (trajectoryType == "Parabole") 
   figure(1) 
 
   latlim= [6.54 48]; 
   lonlim= [-101 -41];   
   ax = worldmap(latlim,lonlim); 
 
   load coastlines 
   geoshow(ax, coastlat, coastlon,... 
   'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30]) 
   textm(38.24, -95,'USA','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
   textm(45.785316, -79.476563,'Canada','HorizontalAlignment','left','VerticalAlignment','middle','FontSize',12); 
   %textm(27.7264, -105.08,'Mexico','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(17.9, -98,'Mexico','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
   %textm(25.804782, -78.564135,'Bahamas','HorizontalAlignment','center','VerticalAlignment','middle');    
   %textm(21.64, -78.51,'Cuba','HorizontalAlignment','center','VerticalAlignment','middle'); 
   %textm(18.144674, -77.515694,'Jamaica','HorizontalAlignment','center','VerticalAlignment','middle');   
   %textm(47.109121, -79.504786,'Canada','HorizontalAlignment','center','VerticalAlignment','middle'); 
   %textm(19.3, -71.605227,'Haiti','HorizontalAlignment','center','VerticalAlignment','middle'); 
   %textm(18.0, -72.305227,'Dominican','HorizontalAlignment','center','VerticalAlignment','middle'); 
   %textm(16.8, -72.305227,'Republic','HorizontalAlignment','center','VerticalAlignment','middle');    
   %textm(17.260834, -66.163626,'Puerto Rico','HorizontalAlignment','center','VerticalAlignment','middle');    
   %textm(16.060834, -65.163626,'Virgin Islds','HorizontalAlignment','center','VerticalAlignment','middle');   
   textm(15.247465, -85.5,'Honduras','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
   textm(12.738486, -85.265994,'Nicaragua','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
   textm(9.209673, -74.704474,'Colombia','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
   textm(9.088066, -67.285904,'Venezuela','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',12); 
end 
 
if region == "Japan"      % Drawing a Map of Japan-Taiwan-Philippines                        
   figure(1) 
   title('Japan-Taiwan-Philippines  ') 
   latlim= [5 50]; 
   lonlim= [115 150]; 
   ax = worldmap(latlim,lonlim); 
 
   load coastlines 
   geoshow(ax, coastlat, coastlon,... 
   'DisplayType', 'polygon', 'FaceColor', [.45 .60 .30]) 
   textm(36.102910, 138.310039,'JPN','HorizontalAlignment','center','VerticalAlignment','middle'); 
   textm(21.6604142,120.1699955,'TWN','HorizontalAlignment','center','VerticalAlignment','middle');    
   textm(9.043888, 120.814447,'PHL','HorizontalAlignment','center','VerticalAlignment','middle');      
end 
 
for k=1:mt     % Plot ALL turbines over the USA or Japan map 
         if region == "Japan" | (region=="USA"  & trajectoryType == "Straight")  
            labelLat = TurbTotal(k,1); 
            labelLon = TurbTotal(k,2); 
            textm(labelLat, 
labelLon,'.','HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',28,'Color', 'r'); 
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         end 
         if region == "USA"  & (trajectoryType == "Parabole")  
            if  TurbTotal(k,2)> -100 
                labelLat = TurbTotal(k,1); 
                labelLon = TurbTotal(k,2); 
                textm(labelLat, 
labelLon,'.','HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',28,'Color', 'r'); 
            end 
         end 
end  
%                                                                         % 
%   End of opening the Map of USA Straight, USA parabole and Japan        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%  Modeling the characteristic curve of the wind turbine (power vc speed) % 
%  by fitting cs using interpolator function pchip                        %     
%    
   clear x; 
   clear y;  % x = wind_speed [m/s];  y = wind_power [pu] 
   
   if turbineType=="special"   %cutout 40 m/s 
        x = [0, 1, 2, 2.5, 3,    4,    5, 6.5,   8, 9.5,   10, 11.3, 12.5, 14, 14.5, 15, 16, 17, 18, 20, 23, 24.5, 40, 40.001,  40.002, 40.003, 
41, 42, 43, 100, 101]; 
        y = [0, 0, 0, 0,   0, 0.02, 0.03, 0.2, 0.4, 0.6, 0.65,  0.8, 0.95,  1,    1,  1,  1,  1,  1,  1,  1,    1,  1,      0,       0,      0,  0,  0,  0,   0,   
0]; 
   else     %typical cutout speed 25 m/s 
        x = [0, 1, 2, 2.5, 3,    4,    5, 6.5,   8, 9.5,   10, 11.3, 12.5, 14, 14.5, 15, 16, 17, 18, 20, 23, 24.5, 25, 25.001,  25.002, 25.003, 
26, 30, 50, 100, 101]; 
        y = [0, 0, 0, 0,   0, 0.02, 0.03, 0.2, 0.4, 0.6, 0.65,  0.8, 0.95,  1,    1,  1,  1,  1,  1,  1,  1,    1,  1,      0,       0,      0,  0,  0,  0,   0,   
0]; 
   end 
    
   cs = pchip(x,y);    
   x_global=x; 
   y_global=y; 
%  End of modeling characteristic curve of wind turbine (power vc speed)  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%  Modeling the characteristic curve of the hurricane for alternative 1   % 
%  for USA or Japan 
   if (alternative==1) & (region=="USA")   % fitting csH of the hurricane speed [m/s] versus radius [km] 
       distant = [0, 15, 20, 30, 35, 40, 50, 55, 60, 70,  100, 135, 140, 148,  150, 160, 180, 200, 300, 400, 500, 5000]; 
       Vg =[0, 10, 15, 25, 38, 39, 42, 43, 38, 37,   32,  26,  28,  28, 24.5,  24,  20,  20,  15,  10,   5,    3]; 
       csH = pchip(distant,Vg);     
   end 
%  Fitting csH of the Marakot typhoon speed [m/s] versus radius [km] 
%  [ ] Chung-Chieh WANG et al., A Modeling Study on the Impacts of Typhoon Morakot’s (2009) Vortex Structure 
%  on Rainfall in Taiwan Using Piecewise Potential Vorticity Inversion 
   if (alternative==1) & (region=="Japan") 
       distant = [0, 75, 100, 150,  200, 250, 300, 350, 400,  450, 500, 550,  600, 650, 700,  750, 2000]; 
       Vg       =[0, 20,  25,  32, 31.5,  31,  32,  30,  27, 23.5,  20,  18, 16.5,  16,  15, 14.5,    0]; 
       csH = pchip(distant,Vg);     
   end 
% End of modeling the characteristic curve of the hurricane alternative 1 % 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         %    
%             setting of hurricane simulation time                        %                            
if (region == "USA" & trajectoryType == "Straight") 
    hurricane_time = 24*1; %5;   % aprox 120 hours = 5 days 
    textm(LaA, LoA, 'o','HorizontalAlignment','center','VerticalAlignment','middle');  % origin of eye trajectory  
textm(LaB, LoB, 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',4);  % destine of eye trajectory  
end 
if (region == "USA") & (trajectoryType == "Parabole") 
    hurricane_time = 24*10;   % 9 days=216h; 240 hours = 10 days 
end 
if (region == "Japan") 
    hurricane_time = 24*1; %5;  %*5, not divided by 60;   % aprox 1 days 
    textm(LaA, LoA, 'o','HorizontalAlignment','center','VerticalAlignment','middle');  % origin of eye trajectory  
    textm(LaB, LoB, 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',4);  % destine of eye trajectory  
end 
%            End of setting of hurricane simulation time                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         %    
%                 Plot hurricane trajectory &                             % 
%                 Calculation of power profile                            %   
%                                                                         % 
if region == "Japan" | (region == "USA"  & trajectoryType == "Straight") 
aux=0; 
Rmaxmax=0; 
 
landfallTime=0;    % [hours] , i is also in [hours].               % ** 
coast = load('coast.mat');                                         % ** 
for i=1:hurricane_time        % PARA CADA PASSO DE TEMPO DE FURACAO     
   
  ti = i*3600; %3600;    % originally 3600;       % hours = 3600[s] = 60 [min] 
  deltaLa_i=ti*w*(LaB-LaA)/deltaAngle;  % [delta Latitude degree]   STEPSIZE 2s 
  deltaLo_i=ti*w*(LoB-LoA)/deltaAngle;  % [delta Longitude degree]   STEPSIZE 2s 
  Lai=LaA+deltaLa_i;    %Latitude of hurricane after time ti 
  Loi=LoA+deltaLo_i ;  %Longitude of hurricane after time ti 
   
  textm(Lai, Loi, 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',4);  
  if (mod(i,10)==0) 
  iString = num2str(i); 
  textm((Lai+1), Loi, iString,'FontSize',12) 
  end 
 
  for k=1:mt                  % COMPUTE A POTENCIA DE TODAS AS TURBINAS 
     LakT=TurbTotal(k,1);    
     LokT=TurbTotal(k,2);        
     IsInOnshore = inpolygon(Lai,Loi,coast.lat,coast.long);    
 
  if (alternative == 0) & (region == "USA") 
     % Calc of Hurricane speed in each turbine given the instantaneous distance 
     hurricane_Model = 'Holland_and_Georgio';  % Holland and Georgio model 
 
            if hurricaneCategory == 5 
                catCol=1; 
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            end;  
            if hurricaneCategory == 4 
                catCol=2; 
            end;       
            if hurricaneCategory == 3 
                catCol=3; 
            end; 
   
     if  Lai > 41.09 & Lai < 50.35 & Loi <-75.65 & Loi > -93.36 % Great Lakes   
         IsInOnshore =1; 
     end  
     if IsInOnshore == 1  & Lai > 28.5      % if onshore          
         Rmax = PR(5, catCol); 
         Pc =  PR(4, catCol); 
     end 
     if IsInOnshore == 1  & Lai < 28.501    % if onshore but small islands does not change Pc and Rmax          
         Rmax = PR(3, catCol); 
         Pc =  PR(2, catCol); 
     end      
     if IsInOnshore ==0                     % if offshore and Lai < 36.55   
         Rmax = PR(3, catCol); 
         Pc =  PR(2, catCol); 
     end        
     if Lai > 36.55  &  IsInOnshore ==0            % if offshore and Lai > 36.55   
         Rmax = PR(3, catCol); 
         Pc =  PR(4, catCol); 
     end 
     Pn=1008;   % Between 1000 and 1015 %944;    % Pn = 944 milibar for Andrew [44],    
      
     %%%%%%% Linear decaying above North Mississipi to Cleveland %%%%%%%%%% 
     if  Lai > 35 & Lai < 41  % & IsInOnshore == 1; % Decaying from North Mississipi to Cleveland 
         Pc = Pc + (Pn-Pc)*(Lai - 35)/(41-35); 
     end  
 
     if  Lai > 39.9999 % & IsInOnshore == 1;               % Above Cleveland, no hurricane.  
         Pc = Pn; 
     end  
     %%%%%%% Linear decaying above North Mississipi to Cleveland %%%%%%%%%%      
      
      phi = Lai;    % Phi = Lai, latitude of hurricane eye or turbine ? 
      phi2=phi*2*pi()/360;  
    % Rmax = exp(2.636 - 0.00005086*(Pn - Pc)^2 + 0.0394899*phi2);  %[km] 
     if  Rmaxmax < Rmax 
         Rmaxmax = Rmax; 
     end 
       
     B = 1.38 + 0.00184*(Pn - Pc) - 0.00309*Rmax; 
     % B = 1.34 + 0.00328*(Pn - Pc)- 0.00522*Rmax 
     % B = 1.6; % for Andrew [48]  
     % Calc of f = coriolis paramenter if function of latitude [1/s] 
     Omega = 2*pi()/(24*60*60); % [rad/s] - OK, Omega value is right. 
     % Omega is angular velocity of the Earth (7.292 X 10E-5 [1/s] 
 
      phi = Lai;  % supposing latitude 40 degree [degree] 
      f = 2*Omega*sin((phi*2*pi())/360); % where  
      % f = 7.2722e-05 calculated value seems in right magnitude. 
      % In Oklahoma f = 10 x 10E-5 [1/s] 
 
     %%%   Calculation of alpha based on the eye trajectory 
     %https://stackoverflow.com/questions/1560492/how-to-tell-whether-a-point-is-to-the-right-or-left-side-of-a-line 
     % wind speed is calculated on the turbine coordinates  
     LakT;       %=LaC+deltaLa_k;    %Latitude of turbine 
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     LokT;       %=LoC+deltaLo_k;    %Longitude of turbine 
     Lai;        %=LaA+deltaLa_i;    %Latitude of hurricane after time ti 
     Loi;        %=LoA+deltaLo_i;    %Longitude of hurricane after time ti 
     LaB;        % Latitude of hurricane at destination 
     LoB;        % Longitude of hurricane at destination    
 
      
     LaBs=LaB-Lai; 
     LoBs=LoB-Loi; 
     LakTs=LakT-Lai; 
     LokTs=LokT-Loi; 
     Lais=0; 
     Lois=0; 
     LokTs=LokTs-LoBs; 
     LoBs=0; 
     if LokTs == Lois 
         LokTs = LokTs - 0.0000001 
     end 
     if (LakTs > 0)&(LokTs > 0) 
         quadrant = 1; 
     end 
     if (LakTs > 0)&(LokTs < 0) 
         quadrant = 4; 
     end 
     if (LakTs < 0)&(LokTs > 0) 
         quadrant = 2; 
     end 
     if (LakTs < 0) & (LokTs < 0) 
         quadrant = 3; 
     end 
     a = (distance(LakT, LokT, Lai, Loi));  % [deg] 
     b = (distance(LaB, LoB, Lai, Loi));    % [deg] 
     c = (distance(LakT, LokT, LaB, LoB));  % [deg] 
     a = deg2km(a);     %[km] 
     b = deg2km(b);     %[km] 
     if b==0 
         b=0.00000001; 
     end 
     c = deg2km(c);     %[km] 
     angleUpto180 = acos((c*c - a*a - b*b)/(-2*a*b)); 
     if (quadrant==1) | (quadrant==2) 
         alpha = angleUpto180; 
     end 
     if (quadrant==3) | (quadrant==4) 
        alpha = 2*pi() - angleUpto180; % [radians] 
     end 
     
     alphaM(k,i)= alpha; 
     alphadegree = 0; 
     alphadegree = alpha*360/(2* pi()); 
     deltaP = (Pn - Pc); 
     rho = 1.225;   % [kg/m^3]  density of dry air at 20oC 
     rho = 1.096;   % [kg/m^3]  density of humid air and hot air 
     % at 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft³. 
     %%% Georgio´s Hurricane speed equation (Vg) 
     a=a;     % instantaneous distance between eye and turbine kT [km] 
     Vg1 = 0.5*(Vtr*sin(alpha) - f*a); 
     Vg2 = 0.25*(Vtr*sin(alpha) - f*a)^2 + (100*B*deltaP/rho)*((Rmax/a)^B)*exp(-(Rmax/a)^B); 
     % Obs: Cui´s equation is right! [] (It is 100*B*deltaP/rho, not B*delta/rho); 
     Vg = Vg1 + sqrt(Vg2); 
        %%% where: f = Coriolis parameter; r = radial distance from storm center 
        %%% alpha = angle, clockwise positive from translation direction 
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        %%% delta p = delta of pressure at distance r 
        %%% rho = air density 
        %%% VT = storm translation speed 
        %%% p = pressure, at distance r 
        %%% Vgb = mean gradient balance wind speed at (r, alpha). 
        %%% Rmax = radius of maximum winds, 
        %%% B = pressure profile exponent 
        %%% delta p = central pressure difference, 
        % Vw at 10m is 0,71*Vg [Valamanesh et al] 
     Vw = 0.923*Vg;  % Speed Vw at 90m wind turbine height 
     Vwm(k,i)=Vw;     
  end 
   
    if (alternative == 0) & (region == "Japan") 
     % Calc of Hurricane speed in each turbine given the instantaneous distance 
     hurricane_Model = 'Holland_and_Georgio modified for Typhoon Marakot'; 
     % Holland H10 model at Typhoon Marakot hitting Taiwan 
      Pcs=990; %850;     % [hPa] Marakot typhoon. Generically, 990 hPa Marakot, 
      Vms = 3.45*((1010-Pcs)^0.644);           % simplified equation 
      bethaS= 0.3327 ;                       % Marakot (0.1320 for Wipha) 
      Rmax=196;                 % [km] Marakot (10 times more than Andrew!) 
      Rn = distance(22, 118, 25, 120);        % [degree] 
      Rn = deg2km(Rn);                       % [km] 
      aux=((Rmax/Rn)^bethaS)*exp(1-(Rmax/Rn)^bethaS); 
      Vrsn=21.5;                             % [m/s]  
      Xn= (log(Vrsn/Vms))/log(aux); 
      a = (distance(LakT, LokT, Lai, Loi));  % [deg] 
      a = abs(deg2km(a));                         % [km] 
      if a<Rmax 
          X = 0.5; 
      else X = 0.5+(a-Rn)*(Xn-0.5)/(Rn-Rmax); 
      end 
      X=0.5; 
      Vrs = ((Rmax/a)^bethaS)*exp(1-(Rmax/a)^bethaS);    
      Vrs = Vrs^X; 
      Vrs = Vms*Vrs; 
      Vg = Vrs; 
      Vw = 0.923*Vg;  % Speed Vw at 90m wind turbine height 
      Vwm(k,i)=Vw; 
    end 
     
 if alternative==0 & (region == "Japan") % Holland Decaying for Japan only) 
     landfallTime=0;    % [hours] , i is also in [hours].               % ** 
     if IsInOnshore                                                     % ** 
        % decaying model R, alphaTime and Vb 
        % Southern R=0.90  alphaTime = 0.095 [1/hour]  Vb = 26.7 [kt] 
        % above 37 degree latitude is northern of northern hemisphere 
        % Northern R=0.90  alphaTime = 0.187 [1/hour]  Vb = 29.6 [kt] 
        % V(t)= Vb +(RV0-Vb)* exp(-alphaTime*t)[Kaplan and DeMaria, 2000] 
        % reduction factor = 0.9, according to [Kaplan and DeMaria, 2000] 
        if abs(Lai) > 37          % northern of northern hemisphere     % ** 
            alphaTime = 0.187;                                          % **  
        else alphaTime = 0.095;   % southern of northern hemisphere     % ** 
        end                                                             % ** 
        decaymentWindSpeedFactor=0.3+(0.9*1-0.3)*exp(-alphaTime*landfallTime); 
        landfallTime = landfallTime + 1; %[hours] deltaTimeTrajectory=1 hour 
     else decaymentWindSpeedFactor=1;                                   % ** 
     end                                                                % ** 
     Vw=decaymentWindSpeedFactor*Vw;    %[m/s]       
     Vwm(k,i)=Vw;                                                        
  end 
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  if alternative==1  % direct fitting of Hurricane speed [m/s] versus radius from eye [km] 
     xq1 = 0: 1: 5000; 
     plot(distant,Vg,'o',xq1,ppval(csH,xq1),'-'); 
     a = (distance(LakT, LokT, Lai, Loi));  % [deg] 
     a = deg2km(a);            %[km] 
   
     coast = load('coast.mat');                                         % ** 
     IsInOnshore = inpolygon(Lai,Loi,coast.lat,coast.long);             % ** 
     if IsInOnshore                                                     % ** 
        % decaying model R, alphaTime and Vb 
        % Southern R=0.90  alphaTime = 0.095 [1/hour]  Vb = 26.7 [kt] 
        % above 37 degree latitude is northern of northern hemisphere 
        % Northern R=0.90  alphaTime = 0.187 [1/hour]  Vb = 29.6 [kt] 
        % V(t)= Vb +(RV0-Vb)* exp(-alphaTime*t)[Kaplan and DeMaria, 2000] 
        % reduction factor = 0.9, according to [Kaplan and DeMaria, 2000] 
        if abs(Lai) > 37          % northern of northern hemisphere     % ** 
            alphaTime = 0.187;                                          % **  
        else alphaTime = 0.095;   % southern of northern hemisphere     % ** 
        end                                                             % ** 
        decaymentWindSpeedFactor=0.3+(0.9*1-0.3)*exp(-alphaTime*landfallTime); 
        landfallTime = landfallTime + 1; %[hours] deltaTimeTrajectory=1 hour 
     else decaymentWindSpeedFactor=1;                                   % ** 
          landfallTime=0; 
     end                                                                % ** 
     Vw=decaymentWindSpeedFactor*0.923*ppval(csH,a);    %[m/s] 
 
        if (Vw < TurbTotal(k,4)) %VminOffshore)                
            Vw = TurbTotal(k,4);  %VminOffshore;                                         
        end        
     Vwm(k,i)=Vw;      
  end 
      
     %% Calculation of turbine wind power based on wind speed  
     clear xq1; 
     clear power; 
     xq1 = 0:.01:101; 
     plot(x,y,'o',xq1,ppval(cs,xq1),'-'); 
     power=ppval(cs,Vw);    %[p.u. value] 
     Power = power*Tpower;  % [MW], each turbine 10 MW 
     power_Profile(k,i) = Power;  % where i = hurricane time step and k = number of turbines 
     ik=size(power_Profile);    
 
  end  % end of iteration on number of turbines 
 end  % end of iteration of hurricane trajectory time 
end  % Japan or USA Straight 
%                                                                         % 
%      End of power profile calculation for USA Straight and Japan        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         %    
%            Plot hurricane trajectory for USA Parabole                   % 
%                                                                         %   
%                                                                         %   
if region == "USA"  & (trajectoryType == "Parabole") 
       if  jp==10 % for time indication just for hurricane trajectory #10 
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           Lat1(11)=Lat1(10)+Lat1(10)-Lat1(9); 
           Long1(11) =Long1(10)+Long1(10)-Long1(9);   
           Latmin(11)=Latmin(10)+Latmin(10)-Latmin(9); 
           Longmin(11)=Longmin(10)+Longmin(10)-Longmin(9); 
       end    
   for j=jp:jp+1    
       ap = (Long1(j) - Longmin(j))/((Lat1(j)*Lat1(j)-Latmin(j)*Latmin(j))-2*Latmin(j)*(Lat1(j)-Latmin(j))); 
       bp = -2*ap*Latmin(j); 
       cp = Long1(j) - ap*Lat1(j)*Lat1(j) + 2*ap*Latmin(j)*Lat1(j); 
       Lati(1)=Lat1(j); 
       Long(1)=Long1(j);    
     
       for i=1:hurricane_time    
                ti = i*3600;    %3600;              % hours = 3600[s] = 60 [min] 
                if i==round(1) 
                    LatiPreced = (Lati(i)); 
                    LotiPreced = (Long(i)); 
                    Lati(i)= Lat1(j); 
                    Long(i)= Long1(j); 
                    LaA=Lati(i);    
                    LoA=Long(i);    
                else  
                    Vtr=9.722; %8m/s % 9.722 m/s Michael2018, 9.722 m/s Charley2004, 13.333m/s Wilma2005landfall 
                    wKmpH=Vtr*(1/1000)/(1/3600); %km/h 
                    stepAngle=km2deg((wKmpH)*1); %time step is 1h, assuming Earth Great Circle 
                    teta = (90-atand((2*ap*LatiPreced+bp))); 
                    Lati(i)= LatiPreced+stepAngle*sind(teta); %step Angle for 8m/s in 1h = 28.8km 
                    Long(i)=ap*Lati(i)*Lati(i)+bp*Lati(i)+cp; 
                    LaB=Lati(i);    
                    LoB=Long(i);  
                    LaA=Lati(i-1);    
                    LoA=Long(i-1);    
                end 
                    LatiPreced = Lati(i); 
                    LongPreced = Long(i);                                          
                if (i > 3)    & (j==jp) 
                    textm(Lati(i), Long(i), 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',2,'color', 'k'); 
                    %textm(Lati(i), Long(i), 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',8, 'color', 'm'); 
                end 
                if (mod(i,10)==0) & (j==jp)   %+1) 
                     iString = num2str(i); 
                     textm(Lati(i), Long(i), 'o','HorizontalAlignment','center','VerticalAlignment','middle','fontweight','bold','FontSize',6, 
'color','m');  
                end 
 
                auxLa(i)=Lati(i); 
                auxLo(i)=Long(i); 
                if (mod(i,10)==0) & (j==jp+1)  
                         iString = num2str(i); 
                         deltaLati=Lati(i)-auxLa(i); 
                         deltaLong=Long(i)-auxLo(i); 
                         textm(0.2+(0.983)*Lati(i), 0.99*Long(i)-0.027*Lati(i), 
iString,'HorizontalAlignment','center','VerticalAlignment','middle', 'FontSize',11)  
                end                      
 
                if i==1 & (j==jp) 
                     %deltaLati=Lati(i)-auxLa(i); 
                     %deltaLong=Long(i)-auxLo(i);                 
                     textm(Lati(i), Long(i), 
num2str(j),'HorizontalAlignment','center','VerticalAlignment','middle','fontweight','bold','FontSize',12, 'Color',trajectColor); %'r'); 
                     %Lai(i)=Lati(i);  % transfering to Lai, Loi for power calculation (next section) 
                     %Loi(i)=Long(i);                
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                end 
                 if (j==jp)                
                     Lai(i)=Lati(i);  % transfering to Lai, Loi for power calculation (next section) 
                     Loi(i)=Long(i); 
                 end 
 
       end   % hurricane time 
 
   textm(Lat1(j),Long1(j),'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',2); 
   textm(Latmin(j), Longmin(j), 'o','HorizontalAlignment','center','VerticalAlignment','middle','FontSize',2); 
   %hold off    
   end 
end    
%           End of Plot hurricane trajectory for USA Parabole             % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         %    
%              Calculation of power profile for USA Parabole              %   
%                                                                         % 
if region == "USA"  & (trajectoryType == "Parabole") 
   aux=0; 
   Rmaxmax=0; 
   Rmaxmin=10000000000; 
 
   coast = load('coast.mat');   % ** 
   Vwm=zeros(mt, hurricane_time);   
   RmWarray(1:hurricane_time)=500;    
   RmaxArray(1:hurricane_time)=500; 
   IsInOnshoreArray(1:hurricane_time)=0; 
   PcArray(1:hurricane_time)=1000;   
    for i=1:hurricane_time        % PARA CADA PASSO DE TEMPO DE FURACAO     
   
      ti = i*3600; %3600;    % originally 3600;       % hours = 3600[s] = 60 [min 
      IsInOnshore = inpolygon(Lai(i),Loi(i),coast.lat,coast.long);    
      IsInOnshoreArray(i)=IsInOnshore; 
      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
      %     Radius of minimum winds for Map of USA parabole                   % 
      %                                                                       %  
      if hurricaneCategory == 5 & IsInOnshore==1    % Radius of minimum Wind speed 
          RmW = 1408*1.1; 
      end 
      if hurricaneCategory == 4 & IsInOnshore==1    % Radius of minimum Wind speed 
          RmW = 927*1.1; 
      end 
      if hurricaneCategory == 3  & IsInOnshore==1   % Radius of minimum Wind speed 
          RmW = 585*1.1; 
      end 
      if hurricaneCategory == 5 & IsInOnshore==0    % Offshore Radius of minimum Wind speed 
          RmW = 981*1.1; 
      end 
      if hurricaneCategory == 4 & IsInOnshore==0    % Offshore Radius of minimum Wind speed 
          RmW = 267*1.1; 
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      end 
      if hurricaneCategory == 3  & IsInOnshore==0   % Offshore Radius of minimum Wind speed 
          RmW = 269*1.1; 
      end 
      RmWarray(i)= RmW;     % Array of Radius of minimum Wind speed 
      %     End of Radius of minimum winds for Map of USA parabole            % 
      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%  
     if (alternative ==0) & (region == "USA") & (trajectoryType == "Parabole") 
            if hurricaneCategory == 5 
                catCol=1; 
            end;  
            if hurricaneCategory == 4 
                catCol=2; 
            end;       
            if hurricaneCategory == 3 
                catCol=3; 
            end; 
            %IsInOnshore = inpolygon(Lai(i),Loi(i),coast.lat,coast.long);   
            if  Lai(i) > 41.09 & Lai(i) < 50.35 & Loi(i) <-75.65 & Loi(i) > -93.36 % Great Lakes   
               IsInOnshore =1; 
            end   
            if IsInOnshore == 1  & Lai(i) > 28.5      % if onshore          
                Rmax = PR(5, catCol); 
                Pc =  PR(4, catCol); 
            end 
            if IsInOnshore == 1  & Lai(i) < 28.501    % if onshore but small islands does not change Pc and Rmax          
                Rmax = PR(3, catCol); 
                Pc =  PR(2, catCol); 
            end      
            if IsInOnshore ==0                     % if offshore and Lai < 36.55   
                Rmax = PR(3, catCol); 
                Pc =  PR(2, catCol); 
            end        
            if Lai(i) > 36.55   &  IsInOnshore ==0    % if offshore but Lai > 36.55   
                Rmax = PR(3, catCol); 
                Pc =  PR(4, catCol); 
            end 
     end 
      RmaxArray(i)= Rmax;     % Array of Radius of minimum Wind speed    
      PcArray(i)=Pc; 
       end 
   RmWarrayFiltered=filter([1/3 1/3 1/3],1,RmWarray); 
   RmaxArrayFiltered=filter([1/3 1/3 1/3],1,RmaxArray); 
  
 for i=1:hurricane_time        % PARA CADA PASSO DE TEMPO DE FURACAO     
  ti = i*3600; %3600;    % originally 3600;       % hours = 3600[s] = 60 [min 
  %IsInOnshore = inpolygon(Lai(i),Loi(i),coast.lat,coast.long); 
 
  IsInOnshore = IsInOnshoreArray(i); 
  RmW=RmWarrayFiltered(i); 
  Rmax=RmaxArrayFiltered(i);  
  Pc=PcArray(i);  
 
    
     Pn=1008;   % Between 1000 and 1015 %944;    % Pn = 944 milibar for Andrew [44],      
     %%%%%%% Linear decaying above North Mississipi to Cleveland %%%%%%%%%% 
     if  Lai(i) > 35 & Lai(i) < 45 % & IsInOnshore == 1; % Decaying from North Mississipi to Cleveland 
         Pc = Pc + (Pn-Pc)*(Lai(i) - 35)/(45-35); 
     end  
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     if  Lai(i) > 44.9999 % & IsInOnshore == 1;               % Above Cleveland, no hurricane.  
         Pc = Pn; 
     end  
     %%%%%%% Linear decaying above North Mississipi to Cleveland %%%%%%%%%%    
   
    for k=1:mt                  % COMPUTE A POTENCIA DE TODAS AS TURBINAS 
     LakT=TurbTotal(k,1);    
     LokT=TurbTotal(k,2);       
  if (alternative ==0) & (region == "USA") & (trajectoryType == "Parabole") 
     % Calc of Hurricane speed in each turbine given the instantaneous distance 
     hurricane_Model = 'Holland_and_Georgio';  % Holland and Georgio model     
    
      
 
      %Pc=922;    % Pc = 922 milibar for Andrew [44], 
      phi = Lai(i);    % Phi = Lai, latitude of hurricane eye or turbine ? 
      phi2=phi*2*pi()/360; 
      %Rmax = exp(2.636 - 0.00005086*(Pn - Pc)^2 + 0.0394899*phi2);  %[km] 
     if  Rmaxmax < Rmax 
         Rmaxmax = Rmax; 
     end 
     if  Rmaxmin > Rmax 
         Rmaxmin = Rmax; 
     end     
      
     B = 1.38 + 0.00184*(Pn - Pc) - 0.00309*Rmax; 
     %B = 1.6; % for Andrew [48]   
      Omega = 2*pi()/(24*60*60); % [rad/s] - OK, Omega value is right. 
      phi = Lai(i);  % supposing latitude 40 degree [degree] 
      f = 2*Omega*sin((phi*2*pi())/360); % where  
     LakT;       %=LaC+deltaLa_k;    %Latitude of turbine 
     LokT;       %=LoC+deltaLo_k;    %Longitude of turbine 
     Lai(i);        %=LaA+deltaLa_i;    %Latitude of hurricane after time ti 
     Loi(i);        %=LoA+deltaLo_i;    %Longitude of hurricane after time ti 
     u=size(Lai); 
     u = length(Lai); 
     %v=size(Loi); 
     if i==u 
     LaB=Lai(i)+2*(Lai(i)-Lai(i-1));        % Latitude of hurricane at destination 
     LoB=Loi(i)+2*(Loi(i)-Loi(i-1));           
     else 
     LaB=1.5*Lai(i+1);        % Latitude of hurricane at destination (to avoid numerical error) 
     LoB=1.5*Loi(i+1);        % Longitude of hurricane at destination 
     end 
 
     LaBs=LaB-Lai(i); 
     LoBs=LoB-Loi(i); 
     LakTs=LakT-Lai(i); 
     LokTs=LokT-Loi(i); 
     Lais=0; 
     Lois=0; 
     LokTs=LokTs-LoBs; 
     LakTs=LakTs-LaBs;    %%%% 
     LoBs=0; 
     if LokTs == Lois 
         LokTs = LokTs - 0.0000001 
     end 
     if (LakTs > 0)&(LokTs > 0) 
         quadrant = 1; 
     end 
     if (LakTs > 0)&(LokTs < 0) 
         quadrant = 4; 
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     end 
     if (LakTs < 0)&(LokTs > 0) 
         quadrant = 2; 
     end 
     if (LakTs < 0) & (LokTs < 0) 
         quadrant = 3; 
     end 
     a = (distance(LakT, LokT, Lai(i), Loi(i)));  % [deg] 
     b = (distance(LaB, LoB, Lai(i), Loi(i)));    % [deg] 
     c = (distance(LakT, LokT, LaB, LoB));  % [deg] 
     a = deg2km(a);     %[km] 
     b = deg2km(b);     %[km] 
     if b==0 
         b=0.00000001; 
     end 
     c = deg2km(c);     %[km] 
     angleUpto180 = acos((c*c - a*a - b*b)/(-2*a*b)); 
     if (quadrant==1) || (quadrant==2) 
         alpha = angleUpto180; 
     end 
     if (quadrant==3) | (quadrant==4) 
        alpha = 2*pi() - angleUpto180; % [radians] 
     end 
 
     alphaM(k,i)= alpha; 
     alphadegree = 0; 
     alphadegree = alpha*360/(2* pi()); 
     % alpha = pi()/4; 
     %%% page 109 Giorgio, wrong equation Vg=((B/p)*((Rmax/r_h)^B)*(Pn-Pc)*exp(-(Rmax/r_h)^B) + 
0.25*(Vtr*sin(theta_tr)-r_h*fc)^2)^0.5 + 0.5*(Vtr*sin(theta_tr)-r_h*fc) 
     deltaP = (Pn - Pc); 
     rho = 1.225;   % [kg/m^3]  density of dry air at 20oC 
     rho = 1.096;   % [kg/m^3]  density of humid air and hot air 
     % at 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft³. 
     %%% Georgio´s Hurricane speed equation (Vg) 
     a=a;     % instantaneous distance between eye and turbine kT [km] 
     Vg1 = 0.5*(Vtr*sin(alpha) - f*a); 
     Vg2 = 0.25*(Vtr*sin(alpha) - f*a)^2 + (100*B*deltaP/rho)*((Rmax/a)^B)*exp(-(Rmax/a)^B); 
     % Obs: Cui´s equation is right! [] (It is 100*B*deltaP/rho, not B*delta/rho); 
     Vg = Vg1 + sqrt(Vg2); 
     Vw = 0.923*Vg;  % Speed Vw at 90m wind turbine height 
     Vwm(k,i)=Vw; 
      
      
    % if (TurbineIsInOnshore==0) & (Vw < TurbTotal(k,4))   %VminOffshore)   
    
     if (a > 491) & (a <= RmW) & (hurricaneCategory == 5) & IsInOnshore==0  %VminOffshore)            
         VwForma = -0.087620055*a+92.99;     
         Vw = min(VwForma, Vw);    
     end 
     if (a > 133) & (a <= RmW) & (hurricaneCategory == 4) & IsInOnshore==0  %VminOffshore)            
         VwForma = -0.24747395*a+72.99;  
         Vw = min(VwForma, Vw);                       
     end        
     if (a > 135) & (a <= RmW) & (hurricaneCategory == 3) & IsInOnshore==0  %VminOffshore)            
         VwForma = -0.170792398*a+52.99;  
         Vw = min(VwForma, Vw);                      
     end         
     
      
     if (a > 704) & (a <= RmW) & (hurricaneCategory == 5) & IsInOnshore==1  %VminOnshore)            
         VwForma = -0.020603615*a+34.5;  
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         Vw = min(VwForma, Vw);    
     end 
     if (a > 464) & (a <= RmW) & (hurricaneCategory == 4) & IsInOnshore==1  %VminOnshore)            
         VwForma = -0.029112878*a+32.5;  
         Vw = min(VwForma, Vw);                       
     end        
     if (a > 292) & (a <= RmW) & (hurricaneCategory == 3) & IsInOnshore==1  %VminOnshore)            
         VwForma = -0.04275676*a+30.5;  
         Vw = min(VwForma, Vw);                      
     end   
      
     if (Vw < TurbTotal(k,4)) | (a > RmW)  %VminOffshore)            
            Vw = TurbTotal(k,4);                                         
     end    
     Vwm(k,i)=Vw;     
      
  end 
       
     % Calculation of turbine wind power based on wind speed  
     clear xq1; 
     clear power; 
     xq1 = 0:.01:101; 
     plot(x,y,'o',xq1,ppval(cs,xq1),'-'); 
     power=ppval(cs,Vw);    %[p.u. value] 
     Power = power*Tpower;  % [MW], each turbine 10 MW 
     power_Profile(k,i) = Power;  % where i = hurricane time step and k = number of turbines 
     ik=size(power_Profile);    
 
 
  end  % end of iteration on number of turbines 
   
 
  %if i>2 | i<hurricane_time-2 
  %  RmWarray(i)=(RmWarray(i-1)+RmW)/2; 
  %RmWarrayFiltered(i)=3*filter([1/3 1/3 1/3],1,RmWarray(i)); 
  %RmWarrayFiltered(i)= movmean(RmWarray(i),3); 
  %indice=i-1;  %mod((i-2)/1); 
  %RmWarrayFiltered(i)=RmWarray(indice); 
   
  %RmWarrayFiltered(i)=RmWarray(antecedente); 
  %RmWarrayFiltered(i)=(RmWarray(i-2)+RmWarray(i-1)+RmWarray(i)+RmWarray(i+1)+RmWarray(i+2))/5;% 
mean(RmWarray(round(i-2):round(i+2))); 
  %end 
 end  % end of iteration of hurricane trajectory time 
           Vwm(:,hurricane_time)=Vwm(:,hurricane_time-1);   
           power_Profile(:,hurricane_time)=power_Profile(:,hurricane_time-1); 
end  % power profile for USA Parabole    
 
 %RmWarray=RmWarray ;  
 %RmWarrayFiltered=  RmWarrayFiltered; 
 %Dif= RmWarrayFiltered -  RmWarray 
%                                                                         % 
%          End of Calculation of power profile for USA Parabole           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
% Aggregate power profile of each turbine to Total power of all turbines  % 
 
  ki=size(power_Profile) 
  GEN_time=zeros(1,hurricane_time); 
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        for taux=1:hurricane_time 
            GEN_time(taux)=sum(power_Profile(:,taux)); 
        end 
  ki=size(GEN_time) 
%      End of Total power profile of all turbines for all hurricane time  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%   Plot hurricane Circle for USA Straight, USA Parabole, and Japan       % 
%                                                                         % 
if region == "USA"  & (trajectoryType == "Straight") 
      if alternative == 0 
         Rmax3= 3*Rmaxmax*1000;       % 3*91 km in meters 
      end 
      if alternative == 1 
         Rmax3 = 148000;              % 148km radius in [m] 
      end 
end 
 
if region == "Japan" 
    Rmaxmax=169; 
    Rmax3 = 3*Rmaxmax*1000; 
end 
if region == "USA" & (trajectoryType == "Straight") 
    Rmaxmax=169; % Assuming normal speed 7 m/s is 450 km from Andrew´s eye 
       if hurricaneCategory == 5; 
           Rmax3 = 1408000; 
       end 
       if hurricaneCategory == 4; 
           Rmax3 = 927000; 
       end       
       if hurricaneCategory == 3; 
           Rmax3 = 585000; 
       end        
       if hurricaneCategory ~= 5 | hurricaneCategory ~= 4 | hurricaneCategory ~= 3; 
           Rmax3 = 585000*0.85; 
       end 
  
end 
 
if region == "Japan" | (region == "USA" & trajectoryType == "Straight") 
 
       if hurricaneCategory == 5; 
           Rmax3 = 1408000; 
       end 
       if hurricaneCategory == 4; 
           Rmax3 = 927000; 
       end       
       if hurricaneCategory == 3; 
           Rmax3 = 585000; 
       end        
       if hurricaneCategory ~= 5 | hurricaneCategory ~= 4 | hurricaneCategory ~= 3; 
           Rmax3 = 585000*0.85; 
       end 
       if region == "Japan"; 
           Rmax3 = 625000;  % Typhon Marakot 
       end   
        
   RmaxAngle=Rmax3/(2*pi()*r); 
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   RmaxAngle=RmaxAngle*360; 
   for i=1:360 
       La=LaA+RmaxAngle*sin(i);                                      %LaA just initialCircle 
       Lo=LoA-sqrt(RmaxAngle*RmaxAngle-(La-LaA)*(La-LaA)); 
       Lopositive=LoA+sqrt(RmaxAngle*RmaxAngle-(La-LaA)*(La-LaA));   %LoA just initialCircle 
       textm(La, Lo, '.');             %,'Color',trajectColor); 
       textm(La,Lopositive,'.');       %,'Color',trajectColor); 
   end 
end 
 
   %      Plot hurricane Circle for Parabole                              % 
   if region == "USA"  & (trajectoryType == "Parabole") 
       Rmaxmax=169;  
       if hurricaneCategory == 5; 
           Rmax3 = 428000*3; 
       end 
       if hurricaneCategory == 4; 
           Rmax3 = 189000*3; 
       end       
       if hurricaneCategory == 3; 
           Rmax3 = 160000*3; 
       end        
       if hurricaneCategory ~= 5 | hurricaneCategory ~= 4 | hurricaneCategory ~= 3; 
           Rmax3 = 150000*3; 
       end 
         
       RmaxAngle=Rmax3/(2*pi()*r); 
       RmaxAngle=RmaxAngle*360; 
       LaACircle=Lat1(jp); 
       LoACircle=Long1(jp); 
 
        for iCircle=1:360 
            La=LaACircle+RmaxAngle*sin(iCircle);  
            Lo=LoACircle-sqrt(RmaxAngle*RmaxAngle-(La-LaACircle)*(La-LaACircle)); 
            Lopositive=LoACircle+sqrt(RmaxAngle*RmaxAngle-(La-LaACircle)*(La-LaACircle));   %LoA just initialCircle 
            textm(La, Lo, '.','Color',trajectColor); %,'Color',trajectColor); 
            textm(La,Lopositive,'.','Color',trajectColor); %,'Color',trajectColor); 
        end 
   end 
   %      End of plot of hurricane circle for parabole                    % 
 
 
%  End of plot hurricane Circle for USA Straight, USA Parabole and Japan  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         % 
%       Plot legend in the map of USA Straight, USA Parabole and Japan    % 
%                                                                         % 
if region == "USA" & (trajectoryType == "Straigth") 
   textm(27.734257, -123.823609,'Legend','FontWeight','bold','FontSize',11); 
   textm(26.30451, -
123.89390,'...','HorizontalAlignment','left','VerticalAlignment','middle','FontWeight','bold','FontSize',14,'Color', 'r'); 
   textm(26.34451, -121.999390,'Turbines','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
   textm(24.157481, -123.107281,'ooo','HorizontalAlignment','left','VerticalAlignment','middle','FontWeight','bold','FontSize',4); 
   textm(24.557481, -121.5,'Trajectory per','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
   textm(23.557481, -121.0,'hour','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
end 
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if region == "USA"  & (trajectoryType == "Parabole") 
   textm(32.763707, -67.081642,'LEGEND:','HorizontalAlignment','left','VerticalAlignment','middle','FontSize',12); 
   textm(30.753707, -69.1642,'oooooooo','HorizontalAlignment','left','VerticalAlignment','middle','FontSize',2); 
   textm(30.853707, -67.1642,'Trajectory of the eye','HorizontalAlignment','left','VerticalAlignment','middle','FontSize',12); 
   textm(29., -67.401642,'of the hurricane per hour','HorizontalAlignment','left','VerticalAlignment','middle','FontSize',12); 
   textm(27.943707, -69.1642,'.','HorizontalAlignment','left','VerticalAlignment','middle','FontWeight','bold','FontSize',28,'Color', 
'r'); 
   textm(27.043707, -67.351642,'Wind turbine','HorizontalAlignment','left', 'VerticalAlignment','middle','FontSize',12); 
   latLegend=[ 34  26  26  24  32  34 ]; % Interconnector 
   lonLegend=[-69.9 -70 -70 -48  -46.3 -70 ] ;  
   plotm(latLegend,lonLegend, 'Color','k','LineWidth',0.5); 
 
end 
 
if region == "Japan" 
   textm(11,140.5,'Legend','FontWeight','bold','FontSize',11); 
   textm(9.5,140.5,'...','HorizontalAlignment','left','VerticalAlignment','middle','FontWeight','bold','FontSize',14,'Color', 'r'); 
   textm(9,142,'Turbines','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
   textm(7.5,140.3,'oooooo','HorizontalAlignment','left','VerticalAlignment','middle','FontWeight','bold','FontSize',4); 
   textm(7.5,142,'Trajectory per','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
   textm(6.3,142,'hour','FontWeight','bold','VerticalAlignment','middle','FontSize',10); 
end 
%                                                                         % 
% End of Plot legend in the map of USA Straight, USA Parabole and Japan   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
%                                                                         % 
%              Plot Figures with sobplots of                              % 
%              (a) Power profile,                                         % 
%              (b) Average airspeed in all turbines,                      % 
%              (c) Maximum speed profile in a turbine                     % 
%                                                                         % 
%  
%figure('Name','Power profile [MW]'); 
[mt,nt]=size(GEN_time); 
figure(); 
   strCat = num2str(hurricaneCategory); 
   strTrack = num2str(jp);  
   strPowerProfile = strcat("Cat-",strCat," Track ",strTrack," (a) PowerProfile.txt"); 
   title(strPowerProfile) 
subplot(3,1,1)   
plot([1:nt],GEN_time,'LineWidth',1.5); 
grid on 
% ax.XMinorTick = 'on' 
axh=gca; 
set (axh, 'GridLineStyle','-','FontSize',13); 
grid minor; 
%title('(a)') 
%xlabel('                                                                   time [hour]') 
xlabel('                                          (a)                                     time [hour]','fontweight','bold','FontName','Times New 
Roman','FontSize',14); 
ylabel('Power [MW]','fontweight','bold','FontName','Times New Roman','FontSize',14); %,'FontType','Times New Roman')  
 
%pause('on') 
%pause(30)    
 
WindAvg=zeros(1,hurricane_time); 
    for taux8=1:hurricane_time 
        WindAvg(taux8)=sum(Vwm(:,taux8))/mt_global;         
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    end 
    clear taux8; 
 
%pause(30)    
     
     
subplot(3,1,2)  
plot([1:nt],WindAvg,'LineWidth',1.5);     
grid on 
axh=gca; 
set (axh, 'GridLineStyle','-','FontSize',13); 
grid minor; 
xlabel('                                          (b)                                     time [hour]','fontweight','bold','FontName','Times New 
Roman','FontSize',14); 
ylabel('Mean speed [m/s]','fontweight','bold','FontName','Times New Roman','FontSize',14); %,'FontType','Times New Roman') 
 
 
%pause(30) 
 
 
maximum = max(max(Vwm)); 
[x1,y1]=find(Vwm==maximum) 
WindT3=zeros(1,hurricane_time); 
x1=x1(1); 
    for taux=1:hurricane_time 
     WindT3(taux)=Vwm(x1,taux); 
    end 
 
subplot(3,1,3)  
plot([1:nt],WindT3,'LineWidth',1.5); 
grid on 
axh=gca; 
set (axh, 'GridLineStyle','-','FontSize',13); 
grid minor; 
%title('(c)') 
%xlabel('                                                                   time [hour]') 
xlabel('                                          (c)                                     time [hour]','fontweight','bold','FontName','Times New 
Roman','FontSize',14); 
ylabel('Max speed [m/s]','fontweight','bold','FontName','Times New Roman','FontSize',14); %,'FontType','Times New Roman') 
 
fprintf("Turbine maximum speed at 90m from sea level [m/s]:"); 
MaxspeedOnTurbineAt90m=max(Vwm(:)) 
fprintf("Hurricane maximum gradient speed  [m/s]:"); 
HurricaneMaxGradientspeed=max(Vwm(:)/0.923) 
 
clear Turb_array; 
clear Turb_rect; 
clear Vwm; 
clear alphaM; 
clear WindT3; 
clear WindSum; 
%                                                                         % 
%      End of Plot power, mean airspeed and max speed profile curves      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
%        Plot characteristic curve of the turbine (power vs airspeed      % 
%                                                                         % 
 figure(); 
 xq1 = 0:0.01:70; 
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 plot(x_global,y_global,'ks',xq1,ppval(cs,xq1),'-k','linewidth',2);   % plot once outside iteration x,y,'o', -k 
 xlim([0 50]) 
 ylim([0 1.1]) 
 %title(' Wind turbine characteristic curve [10 MW]') 
 xlabel('Wind speed [m/s]','fontweight','bold','FontName','Times New Roman','FontSize',18) 
 ylabel('Power [p.u.]','fontweight','bold','FontName','Times New Roman','FontSize',18) 
 grid on 
 axh=gca; 
 set (axh, 'GridLineStyle','-','fontweight','bold','FontSize',14); 
 grid minor 
 TurbTotal=TurbTotal; 
 clear x_global; 
 clear y_global; 
 clear xq1; 
%                                                                         %  
%    End of Plot characteristic curve of the turbine (power vs aispeed    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
%     Export to txt file the power and mean speed profile curves          % 
%                                                                         %  
if region == "USA" 
   strCat = num2str(hurricaneCategory); 
   strTrack = num2str(jp);  
   strPowerProfile = strcat("Cat-",strCat," Track ",strTrack," (a) PowerProfile.txt"); 
   csvwrite(strPowerProfile,GEN_time.') 
   strTime = strcat("Cat-",strCat," Time",".txt");    
   csvwrite(strTime,[1:nt].')  
   strMeanSpeed = strcat("Cat-",strCat," Track ",strTrack," (b) MeanSpeed.txt");    
   csvwrite(strMeanSpeed,WindAvg.')    
   %clear WindAvg 
else         %Japan" 
   csvwrite('PowerProfile.txt',GEN_time.') 
   csvwrite('time.txt',[1:nt].')  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%  
clear GEN_time; 
 
 
%close all  % close all figures 
%pause(10) 
% end    % end do jp 
 
clear all 
 

------------------------------------------------------------------------------------------ 


