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ABSTRACT

JOHN R. PATTERSON. Development of Structural Informatics Method for
Binding Peptides. (Under the direction of DR. DONALD JACOBS)

In the continuous pursuit of advanced therapeutics, the field of bioinformatics has

innovated tools that allow unprecedented control over the proteome, profoundly shap-

ing our understanding and manipulation of biological domains. Computational ap-

proaches to protein design grapple with the intricacies of protein behavior, encom-

passing everything from interaction dynamics to stability challenges. Methods in

structural bioinformatics for peptide design typically hinge on the datasets of struc-

tures that have statistics applied to ascertain the effectiveness of protein design and

modulation. When dealing with proteins that are poorly resolved, disordered, or

niche, this task usually falls to experts in structural biology and often requires signif-

icant laboratory resources.

This thesis discusses an automated pipeline, devised to integrate remote sequence

homology, structural modeling, and binding simulations of peptides to disordered

proteins. Significant design and testing underpin this pipeline, aiming to generate

binding peptides to any sequence, sidestepping the absolute requirement for an expert

or a tedious process to produce leads. The utility of this pipeline is assessed across

a diverse set of protein systems to refine its methodology. With the recent rise of

machine learning-driven predictive or generative models, we explore their potential

when integrated with our pipeline in attempt to address challenges in the computation

of peptide binder design.
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CHAPTER 1: Structural Bioinformatics Applied to Proteins and Peptides

1.1 Background

Proteins are fundamental to the function of living organisms. They play an essen-

tial role in various biological processes, such as catalysis, signaling, transport, and

provide structure. Even before the tetravalence of carbon, developed by Kekulé, in

the mid 1700s albumin, fibrin, and gelatin were recognized protein substances due to

their characteristic reactivity towards heat and acid [1]. Wide adoption and under-

standing of proteins being essential for life had propagated throughout the scientific

community being foundational to modern dietetics [2]. Formal eponymous discov-

ery of proteins in the 19th century when the chemists Mulder and Berzelius first

identified that living organisms were composed of a variety of substances, including

water, lipids, and nitrogen-containing compounds all sharing the empirical formula

C400H620N100O120P1S1 [3]. However, the exact chemical nature of these compounds

remained unclear for several decades until the early 20th century when scientists

began to unravel the chemical nature of polypeptides.

As biochemist Archibald Garrod unraveled the mysteries of alkaptonuria in 1902,

he introduced the pioneering concept of "inborn errors of metabolism", implicating

the inability to metabolize aromatic amino acids like tyrosine and phenylalanine. This

failure led to the accumulation of byproducts such as homogentisic acid. While Gar-
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rod’s work elucidated the metabolic roles of these amino acids, it also alluded to the

potential enzyme malfunctions as their root cause [4]. In a stroke of historical syn-

chronicity, the same year witnessed the unveiling of the peptide bond by both Franz

Hofmeister and Emil Fischer [1,5]. Fischer’s ensuing endeavors encompassed the con-

ceptualization of the lock-and-key model for enzyme functionality and a collaborative

synthesis of the first optically active peptides with Otto Warburg [5, 6].

While these revelations illuminated the rudiments of protein composition and func-

tion, the precise architecture of proteins remained unknown. The limelight shifted

to Frederick Sanger when he decoded the sequence of insulin, heralding sophisticated

sequencing techniques for the future. Further pushing the frontiers, J.B. Sumner

achieved a monumental feat by crystallizing the enzyme jackbean urease [7, 8]. Con-

currently, Pauling’s theoretical musings on the secondary structures of proteins, such

as the α-helix and the β-sheet, set the stage for the empirical determination of pro-

tein structures by 1958 [9]. In a major contribution, Max Perutz and John Kendrew

unraveled the structure of myoglobin, highlighting unforeseen complexities in protein

structures [10].

Exploiting the power of X-ray crystallography and ancillary techniques, the scien-

tific community resolved the three-dimensional structures of proteins. It was discerned

that tertiary structures derived their stability from hydrophobic and hydrogen bond

interactions. With their evolved surfaces and functional pockets proteins are adept at

executing diverse roles in native environments [11, 12]. Christian Anfinsen’s research

established protein structure was encoded within its amino acid sequence [13].

Better understanding about protein conformations and dynamics took root [14,15]

as experimental techniques became more sophisticated. The need to disseminate

this vast knowledge beyond traditional academic journals became paramount. Thus

emerged repositories, consolidating structural data for open access and analysis [16].

As this field evolved, discernible patterns in protein folds, their functionalities, and
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structural encapsulations began to emerge. The expansive structural databases cou-

pled with versatile experimental tools unveiled the immense structural diversity of

proteins [17–19].

Protein structural diversity can be exploited to guide research in engineering novel

functions via rational design. Pioneering studies demonstrated that, in some cases,

only the functional sites of proteins were essential for their activity. This led to

the simplification of full-length proteins down to their bare essentials for functional-

ity [20,21]. However, this approach had its limitations, as evidenced by the enduring

challenges in enzyme design today [22]. Advancements in the field eventually enabled

de novo design, where the designed sequences are not identifiable in any homologi-

cal sequence searches, not necessarily implying wholly unique structures. An early

triumph in this realm was the creation, expression, and characterization of 3-helix

bundles, marking the onset of an applied field dedicated to functional peptidic poly-

mers [23, 24].

Structural bioinformatics has emerged as an indispensable tool for the creation

of innovative therapeutics and materials. Protein 3D structural information is cap-

tured through experimental methods such as: X-ray crystallography (XRC), nuclear

magnetic resonance (NMR), cryo-electron microscopy (cryo-EM), each with its ad-

vantages and disadvantages [25, 26]. Other experimental methods to characterize

protein structures include SAXS, CD, FRET, and Raman spectroscopy [27]. These

methods facilitate high-resolution mapping of large macromolecular structures, ush-

ering in fresh possibilities for structural exploration that is leveraged in medicinal

applications.

1.2 Proteins

While proteins exhibit a rich diversity of structures, they are governed by the un-

derlying physics and chemistry that determine enthalpic and entropic contributions of

their folded conformations [13]. In living organisms, a vast array of molecular interac-
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tions orchestrate chemical reactions, guided by the principles of thermodynamics and

kinetics. Proteins have evolved to adopt conformational ensembles that align with

both thermodynamic and kinetic stabilities that ensure functionality, particularly in

their native chemical environments [28]. The specificity inherent to protein function is

partially encoded in its primary structure, as the three-step progression of sequence,

structure, and function in proteins.

Figure 1.1: The fundamental units of protein structures are depicted on the left.
These structures progress from primary to secondary, and then to tertiary levels,
creating the protein polymer’s folds. Folded proteins can then bind to themselves
(5WPA), another protein (4CRY), and can bind together with many other proteins to
form very large nanoscale structures (7QNA). Proteins are modifiable even after being
folded or bound to others via post translation modifications, such as the phosphate
on a serine of 5NVG.

The sequence-structure relationship is a hierarchical relationship that is catego-

rized into primary, secondary, and tertiary structural levels. The primary structure is

the linear amino acid sequence in a polypeptide chain. Secondary structure pertains

to the local spatial conformation along the backbone, introducing topological com-

plexity. The tertiary structure describes the three-dimensional folded arrangement of
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the secondary structures, which causes buried and exposed residues [15]. Quaternary

level structures are assemblies of folded domains from separate polymer chains.

The dynamics of protein compositions play a direct role in influencing their func-

tions [29–31]. As illustrated in Figure 1.1, the fundamental components of protein

structures span from secondary to tertiary and quaternary levels. Other factors that

modify the dynamics of proteins are post-translational chemical modification and

interactions with solutes including higher order protein-protein interactions. The

conformational states of proteins can be altered by various factors, including molecu-

lar cofactor interactions and environmental conditions such as temperature and pH.

However, the true essence of a functional protein lies in its stabilizing elements that

determine its native conformational state. Factors like hydrophobic interactions, hy-

drogen bonding, disulfide bonds, and salt bridges are crucial for maintaining protein

stability. Typically, proteins demonstrate functionality in their native folded states,

even if such functions aren’t immediately evident [32,33].

Analyzing the folded states of proteins has spurred the growth of databases like

the RCSB Protein Data Bank (PDB). Techniques such as X-ray diffraction (XRD),

electron microscopy (EM), and nuclear magnetic resonance (NMR) spectroscopy fa-

cilitated this [34]. Modern advancements include neutron scattering data. While

some methods reveal fixed protein conformations, like XRD or neutron diffraction,

others like NMR or circular dichroism methods showcase an ensemble of structures

in a solution state.

Protein structures are commonly categorized into fold families and sheds light on

evolutionary protein relationships, even when hard to discern from sequences. Rec-

ognized databases in this domain include SCOPe, CATH, and ECOD, among oth-

ers [35,36]. Recent studies have employed unsupervised machine learning to expedite

the identification of obscure structural relationships in proteomes [37]. Notably, struc-

tural conservation, more than sequence, is observed in proteins performing identical
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functions across different species [38, 39].

Protein structures are complicated and derive specific activity from evolution. This

structure-activity relationship (SAR) is a century-old principle in structural biology,

pivotal in developing major pharmaceuticals [40]. However, SAR alone sometimes

only offers a superficial understanding, failing to encapsulate the dynamics defining

biological systems [41]. By integrating known dynamics and mathematical correla-

tions, quantitative structure–activity relationships (QSAR) can formulate hypotheses

for biological functionalities [42,43].

1.2.1 Protein Stability and Dynamics

Figure 1.2: Protein stability depicted as states of mechanical properties. Native
states of proteins undergo a free energy transition to unfold states. Demonstrated
in network flexibility, shown here in yellow and red, as determined by covalent and
hydrogen bond network.

The challenge of correctly folding tertiary protein structures, especially larger ones,

is well-recognized [44]. Most long protein chains, exceeding 100 residues, do not

quickly attain their native folded state. Outside of the cellular environment where

they are synthesized, proteins can be notoriously difficult to fold. Once removed far

from their native environments, these molecules easily denature. Stability is a con-
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textual category for proteins where function, structure, and robustness can each have

different definitions. Proteins are often denoted as stable if their tertiary structure

can be isolated, structurally characterized, and can be folded readily outside native

biological expression. Proteins can be stable over a range of different conditions, with

robust proteins spanning a wide range, especially once folded.

The stability of proteins is directly related to the conformation, this can be viewed

as a constraint network defined by covalent bonds or other strong interactions, like

hydrogen or ionic bonds. When framed as a mechanical network problem flexible and

rigid clusters can be identified in protein structures, as depicted in Figure 1.2. These

networks consist of stable sub-components that interact to stabilize the protein in its

environment. Factors such as temperature, pH, salt concentration, and the presence of

certain small molecules or other proteins can interact with these constraint networks;

perturbing the conformation in response. [45–47].

Exemplified in Figure 1.3, the resolved conformation of a protein is usually a static

point in a large space of conformations. However, on time scales relevant to their

function or the instruments used for measurements, proteins in solution explore an

ensemble of conformations. Early protein computational methods primarily empha-

sized the role of side chain rotamers, to aid in predicting protein stability [48]. This

provided a limited accuracy as protein stability involves not just the configurations

of the side chains but also the protein backbone structure.
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Figure 1.3: Protein function and dynamics occurs on time scales that span many
orders of magnitude depending on the process of interest. Left to right: bond vi-
brations, dihedral torisons, backbone dynamics, protein dynamics, and a complex of
proteins interacting dynamically.

1.2.2 Motifs and Molecular Recognition Features

Protein motifs are defined by conserved regions present in both three-dimensional

structures and amino acid sequences. Segments of conserved residues provide evo-

lutionary insight into the functionality of a protein over time. Often these motifs

are named for their function, like a Zinc Finger motif, or the conserved one-letter

protein sequence might be used for the name. In many cases motifs have a limited

set of residues that will allow the function or structure. For instance, the alpha helix,

a quintessential secondary structure, derives its stability primarily adjacent residue

backbone hydrogen bonds in addition to capping residues. Multiple alpha helices can

assemble to produce stable structural arrangements in solution [23,49].

Intrinsically disordered proteins (IDPs) are proteins, or specific regions within, that

remain in a transient state lacking a defined structure that is characterizable. Never-

theless, their functional importance is underscored by their critical roles in signaling,

transcription, and translation mechanisms [50–52]. A subset of IDPs contain molec-

ular recognition features (MoRFs). Characterized by their secondary structure inside



9

a disordered domain, these segments often initialize a transition from a disordered

state to an ordered conformation upon binding to specific interacting entities [53].

Notably, a significant percentage of proteins, especially within eukaryotes and sig-

naling pathways, exhibit extended disordered regions. Generically, MoRFs facilitate

biological processes that often instigate additional signaling cascades [54–56].

A demonstrative example is provided by the conserved MoRFs, as illustrated in

Figure 1.4. Comprehensive sequence alignments spanning diverse evolutionary tra-

jectories delineate characteristic residues typically found within protein segments clas-

sified as disordered. These residues, emphasized by their grey shading, play a pivotal

role in interaction mechanisms or chemical reactions, thereby necessitating their con-

servation to ensure functional integrity. A case in point is the N-terminal domains

of DELLAs, intrinsically unstructured under physiological parameters [57]. Within

these disordered domains a MoRF initializes the transition between disorder to order

upon binding with partner proteins and sometime co-factors, such as GID1 in the

presence of a Gibberellin ligand.
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Figure 1.4: Top, cartoon of the MoRF site of GAI disordered N-terminal, from PDBID
2ZSH. Bottom, alignment of GAI homologs denoting the conserved MoRFs (DELLA,
VHYNP) [57].

1.3 Short Peptidic Polymers

Peptides are short chains of amino acids that are distinct from proteins in terms

of their size, structure, and function. The terminology derives from Emil Fischer’s

dipeptid, tripeptid, and polypeptid (1902–1903), and defines a molecular compound

which has a polymeric amide bond with at least two monomers. While proteins
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are composed of long chains of amino acids, peptides typically consist of fewer than

ca. 50 amino acids. Biologically, peptides are multifunctional, acting as hormones,

neurotransmitters, and signaling molecules [58]. Additionally, they have therapeutic

potential as antibiotics, antiviral agents, tools for cellular engineering, and critical

components in immune responses [59–62]. Several peptide-based drugs are currently

in use or in development. The peptide drug Exenatide, used to treat type 2 diabetes, is

among several Glucagon-Like Peptide-1 (GLP-1) analogs that have gained popularity

for off-label weight loss. The discovery of these drugs has been made possible by

advances in peptide synthesis and production techniques, which have made it possible

to create a wide range of peptide structures.

1.3.1 Peptides in Nature

Figure 1.5: A) Cyclosporin, a calcineurin inhibitor used as an immunosuppressant
medication. B) Vancomycin, a glycopeptide antibiotic medication. C) Hyaluronic
acid, a glycosaminoglycan gel-like, polymer found in skin tissues. D) Oxytocin, the
amorous hormone, is a peptide hormone and neuropeptide.
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Peptides play pivotal roles in various biological functions found in nature. Their

diverse range includes unique post-translational modifications resulting in di-peptide

conjugates, such as insulin, and cyclized structures like oxytocin and cyclosporin.

Some natural peptides undergo extensive modifications, deviating substantially from

their original structure, as illustrated in Figure 1.5. For instance, triceptides can be

so transformed that their structures structures look more complex than compounds

like vancomycin or glycosaminoglycans [63].

While peptides exhibit significant structural diversity, they naturally possess traits

that render them valuable in drug development. Their generally small size and inher-

ent flexibility position them well for engaging with specific molecular targets. With

rapid synthesis and degradation rates, peptides routinely facilitate regulation of bio-

logical activity. The therapeutic potential of peptides is increasingly acknowledged,

with several peptide-based drugs, such as the Glucagon-Like Peptide-1 (GLP-1) for

type 2 diabetes and the antimicrobial peptide Daptomycin, now in clinical prac-

tice [64, 65]. Beyond their direct therapeutic roles, peptides are being explored as

vehicles for targeted drug delivery, aiming to enhance the efficiency and safety pro-

files of established medications [66, 67].

1.3.2 Peptides in Biotech and Medicine

As nature demonstrates, peptides are versatile tools to control proteins with spe-

cific characteristics to be useful signalling agents. Given that most pharmaceuticals

modulate signaling mechanisms within the body, it is not surprising that peptide-

based drugs have a long history in medical applications. One of the earliest and most

celebrated instances is the discovery and therapeutic use of insulin, first isolated in

the early 1900s [68]. This groundbreaking achievement was followed by its lifesaving

administration to children with diabetes, garnering a Nobel Prize in 1923. Peptide-

based drugs have had a multitude of applications such as the human growth hormone,

the biomimetic peptide Enfuvirtide for human immunodeficiency virus (HIV), or the
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recent surge in GLP-1 based peptide drugs.

As pharmaceuticals, peptides prove indispensable for several applications [69–71].

They facilitate enzyme activation [72,73], and are paramount in modulating protein-

protein interactions [62,74]. Peptide inhibitors halt biological processes ranging from

cell signaling to viral propagation. Advanced methods now allow for large-scale pep-

tide synthesis and efficient integration of peptides into living organisms [75]. Design-

ing peptides for specific applications often entails drawing parallels with biological

references to achieve optimal interactions with protein or other molecular targets.

However, crafting a peptide with desired interaction attributes remains an endeavor,

especially when aiming to interact with difficult or uncharacterized targets.

1.4 Computational Methods for Protein Design

Historically, plasmid insertions gave biochemists the ability to deduce functional

sites and facilitate molecular engineering [76,77]. Early computational methodologies

developed for protein design primarily hinged on the concept of rational design. Ap-

proaches ranged from augmenting hydrogen bonds to solidify particular protein folds,

fortifying stability via covalent disulfides, to even grafting entirely new functional

domains onto recognized structured domains [24,78]. Computationally, proteins were

designed using intervals of known possible rotations to define the backbone conforma-

tions and sidechain repacking algorithms to design the sequence that fit the desired

structure [79, 80]. Achievements of these methods included folding a small protein,

repacking proteins, small binding peptides, eventually leading to the first ever de

novo, from the beginning, designed protein [21,81,82].

As applications scaled to large proteins, implementations were made to crowd

source the computational demand [83]. With the development of the internet and

digital repositories for empirically collected structural and sequence data, knowledge-

based design emerged as the more feasible approach. Pioneering contributions from

renowned teams like those of Baker, Khulmann, Karlplus, and Zhang [84, 85, 85–87].
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These strategies, complemented by improving computational capabilities, were em-

ployed to tailor-make proteins with bespoke attributes, novel folds, or enzymatic

properties [88–90]. Concurrently, biological methodologies, like directed evolution,

for protein design were deployed in many sectors of research and industry with rea-

sonable efficacy; still heavily research due to byproducts, contaminants, and a variety

of other living cell related issues [91, 92]. Processes like these are exemplified by

the works of Anfenson and Arnold, harnessing the rapid evolutionary capabilities of

organisms like bacteria or yeast [13, 93]. Directed evolution, another facet, remod-

els existing proteins genetically to enhance or innovate their functionalities utilizing

the rapid evolution of bacteria or yeast to generate new protein sequences with de-

sired properties. This method has been used to generate novel enzymes for industrial

applications, among other achievements [94].

Computational protein design has witnessed steady advancements in recent decades,

evolving from rudimentary rational designs using coarse grained modelling to sophis-

ticated computational methods. Pioneering contributions include the development of

the Rosetta software suite by David Baker’s group, which facilitated the design of

proteins with unprecedented functions. Notably, Kortemme and Baker’s exploration

into the computational design of protein-protein interfaces stands as a testament to

these advances [95,96].

Recently classical computational approaches have been increasingly supplanted or

augmented by machine learning models. Given the large amount of empirical data

now available, machine learning techniques offer an regressive and predictive model-

ing. Generically it can be stated that machine learning is expected to impact on fields

such as medicine, structural bioinformatics, and protein design [97,98]. By generative

design and predictions trained from the decades of existing work and empirical data,

these algorithms are making the design process more streamlined and accurate, with

respect to characterization ability [99,100].
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1.4.1 Molecular Dynamics

The basics of MD simulations regardless of detail level or implementation are: given

initial positions and velocities for each elementary object (atom or group of atoms) in

the system, all resultant positions and velocities are calculated at some time interval

later. For an all-atom MD simulation, the molecular interactions are modeled by

potential energy functions given by Equation 1.1. In computational chemistry often

a single molecule has the formal bonding and valence electrons minimized using a va-

riety of techniques and foundational algorithms to approximate the multi component

systems. This can be used to calculate a variety of properties of a molecule and even

be used to calculate transition states of intramolecular interactions [101]. Everything

above the dynamics of electrons are typically mimicked in the simulation [102]. Key

aspects of stability and packing characteristics of a protein are determined by van

der Waals interactions, electrostatic interactions, hydrogen bonds, and various tor-

sion movements [103]. These independent considerations can be summed to simulate

the nanoscale molecular environment. All of these calculations are implemented into

software that can perform them using clever calculation schemes on a range systems

sizes and force fields [104,105].

Bond Stretching Potential Energy:

Ubond(r) =
1

2
kbond(r − req)

2 (1.1a)

Bond Angle Potential Energy:

Uangle(θ) =
1

2
kangle(θ − θeq)

2 (1.1b)
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Dihedral Angle Potential Energy (for torsional angles):

Udihedral(ϕ) =
1

2
Vn[1 + cos(nϕ− δ)] (1.1c)

Van der Waals (Lennard-Jones) Potential Energy:

UvdW(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(1.1d)

Electrostatic (Coulombic) Potential Energy:

Uelec(r) =
1

4πϵ0

q1q2
r

(1.1e)

Hydrogen Bonding Potential Energy:

Uhbond(r, θ) = − A

r12
+

B

r6
+

C

r
+ kangle(θ − θeq)

2 (1.1f)

Modern MD has achieved many feats, including simulating entire cells with a com-

bination of computational details [106, 107]. Meta dynamics enhances molecular dy-

namics by guiding simulations to explore underrepresented regions in the free-energy

landscape, allowing for extremely long time scales or to investigate some manifold of

dynamics like unfolding [108–110]. The burgeoning interest in these exascale simula-

tions is likely being driven by their pharmaceutical implications [111]. With correct

considerations MD can recreate a variety of information about drug-protein inter-

actions including estimating kinetic properties [43, 111]. Investigations have demon-

strated the potential to estimate drug properties or determine entire mechanisms

through MD based experiments, facilitating the rational design of drugs and pro-

teins [108,112–115].
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1.4.1.1 Molecular Dynamics in the Context of Protein Design

Molecular dynamics (MD) simulations play a pivotal role in protein design, offering

valuable insights into protein stability, dynamics, and function [116,117]. The applica-

tion of MD to proteins began in in the late 70s with the dynamics of bovine pancreatic

trypsin being simulated using a CHARMM force field; when the most common pro-

cessor was a 8-bit 2MHz MOS Technology 6502 [118]. These simulations, rooted in

classical mechanics, facilitate the study of molecular behavior over time. A common

approach is to consider an all-atom model where the equations of motions for each

atom is solved within the system that is comprised of the molecule(s) of interest and

solvent atoms. Such detailed explorations can elucidate conformational changes dur-

ing processes such as small molecular, a.k.a. ligand, binding, enzyme catalysis, or

other dynamic events.

Predicting the stability of specific protein sequences stands as a formidable chal-

lenge within protein design [119]. Nevertheless, MD simulations can estimate the

free energy changes upon mutation or ligand binding states and discern changes in

stability in response to such events [120, 121]. Such insights are invaluable in guid-

ing the design of novel proteins boasting enhanced stability. Beyond the confines

of stability and ligand binding, MD simulations extend their utility to the study of

protein-protein interactions to pinpoint crucial binding interfaces and determine the

residues that are important to a given function [108]. Generically, the state of simu-

lation lacks chemical dynamics and heterogeneous system accuracy. This coupled to

computational resources required to simulate biological systems and timescales limits

MD applications outside of case studies.

1.4.2 Protein Sequence Alignment

Protein sequence alignments are a pivotal component of the field of bioinformatics,

providing critical insights into the relationships between biological sequences. Multi-
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ple Sequence Alignments (MSAs) quantify the degree of variability, or conservation,

within DNA, RNA, and protein sequences facilitating the elucidation of evolution-

ary connections, functional motifs, and essential biological information [122]. Most

alignments utilize some flavor of Needlman and Wunsch global dynamic program-

ming alignment algorithm, often paired with divide and conquer strategies [123]. In

a correct MSA, aligned residues, letters, should be maximally similar according to

some appropriate metric, in some cases an expectation value is used. For evolution-

ary reconstruction, the residues must be homologous, meaning they correspond to

the same residue from the last common ancestor of the analyzed sequences. Thus,

making the alignment to a homolog statistically significant compared to a random

sequence. Various metrics exist to measure accuracy of alignment that implement

direct calculations, utilize the sum of weights of mutations in the sequence tokens, or

other heuristics to pass some objective function for alignment [124].

MSA can identify conserved domains, functional motifs, and structural elements;

elucidating the nuanced relationship between protein structure and function. Sev-

eral databases and tools augment the analysis of protein sequences. The UniProt

database, encompassing curated protein sequences, along with the NCBI Protein

Database and the Protein Data Bank (PDB) containing structural and sequence in-

formation, are pivotal resources. Among the toolkit, the Basic Local Alignment

Search Tool (BLAST) offers versatile comparisons of protein and nucleotide sequences

against diverse databases to identify homologous regions and infer functional or evo-

lutionary relationships [125]. Similarly, programs such as MAFFT, Clustal Omega,

HMMER, Muscle, and T-Coffee, extend diverse alignment methodologies catering to

both nucleotide and protein sequences [122].

Within the realm of sequence similarity search, the pursuit of more diverse out-

comes, rather than exclusively top-similar results, becomes particularly relevant in

cases where the goal is to identify all functional domains within a query sequence or



19

to understand evolution. The scope of such diversification extends to identifying pro-

teins with disparate functions, yet share sufficient similarity with the query sequence.

Instances of diversifying sequences directly from a single sequence are scarce [126].

But alternative to protein BLAST, which operates by direct sequence similarity,

Position-Specific Iterative (PSI)-BLAST harnesses profiles constructed through the

consideration of evolutionary relationships, facilitating the detection of distant pro-

tein relatives. Although the notion of diversification remains niche within the context

of biological sequence searchs, parallels can be drawn from the realms of information

retrieval and recommendation systems, where diversity and novelty are desired.

1.4.3 Docking

An important aspect of design and function is understanding if proteins will inter-

act with other proteins [127]. For example, an interaction with certain immunological

proteins can induce an immunological response, which can be troublesome if medic-

inal utility is desired. There has classically been a strong interest in docking small

molecules to proteins, to characterize or predict binding sites in proteins, and esti-

mate binding affinities computationally [128]. However, predicting protein–protein

interactions is particularly difficult because of the innate flexibility and size of bind-

ing regions on proteins, creating a high dimensional problem. This topic represents

a current challenge in computational biology. Considering the possibly multiplicity

of protein interactions to form large quaternary structures, it is likely the field as

a whole is only scratching the surface of possible arrangements and structures that

protein–protein interactions can achieve as assemblies [129].

Docking is divided into flexible and rigid docking, largely. Similar in implementa-

tion to MD, flexible docking allows movements consistent with molecular properties,

but require calculations to find reasonable interactions. Rigid docking an be fast,

but is limited by the conformation problem. Neither of these methods can provide

free energy values or kinetic properties of these interactions. Most docking software



20

for proteins are focused on finding where a small molecule will fit onto or inside the

protein. Some example programs are AutoDock, SwissDock, Schrodingers’ GLIDE

program are classic small molecule docking to proteins. Many scientists rely on struc-

ture information being present for a interface of interest, or a close homolog to work

from. On the scale of possible proteins the structural information currently present,

ca. 200,000, is absurdly limited. For specifically protein protein interactions, which

can include peptides, there is a sparse amount of software. HADDOCK is a partially

flexible docking system, and can reveal extremely high detail of interactions and their

near bound state dynamics [130]. This method requires a reasonable starting state

for the docking, in other words it is not ab inito and requires a good initial approxi-

mation to a final state. Full structure docking is only tractable at a coarse grain level

of detail between proteins. ZDOCK is a rigid docking method that was been used

widely for its fast Fourier transform calculation used to arrive at interaction scores,

similar in spirit to PatchDock [131,132]. Typically these kinds of methods utilize ad-

ditive metrics to arrive at a score that optimizes the true positive from some dataset

derived from the PDB. Recently MEGADOCK was released as another method di-

rectly implemented based off ZDOCK, but utilizing faster GPU hardware to perform

the calculations [133].

1.5 Peptide Design

Peptides are versatile molecules that can specifically bind to receptors, even tar-

geting sites that were once considered undruggable by small molecules. Entire books

have been written on both the design of peptides for medicinal use [134,135]. Peptides

can be used to interrupt biological processes ranging from cellular signaling to viral

infection vectors industrial chemistry, or consumer use in cleaning agents, cosmetics

and food preservatives [70,73,136–140]. The utility of peptides to promote biological

functions is well established1 [58, 72, 136, 141]. There has been great effort to design

peptides for a variety of applications, particularly in medicine [61].
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Instead of small molecule virtual libraries, often deployed in small molecule drug

development, bioinformatic approaches are typically used to derive peptide libraries

based on known information from the receptor and known binding partners. By

leveraging structural homology and the propensity of certain amino acid sequences

to form secondary structures, design provides a manageable subset of sequence space

from millions, typically 20n where n is the length of the peptide) to thousands of

sequences [74, 142–145]. For the sake of clarity, an octamer peptide is over 1 billion

possible sequences, 2.56e+10. This also excludes non-canonical amino acids, which

are theoretically endless in number as the classical chemistry tool box is available

offering literally endless possibilities [146]. In practice they can impart a variety of

interesting effects are are widely used in circulating pharmaceuticals [147].

There are multiple works related to automated small protein and peptide design

that involve the docking problem as a primary driving for the process. DynaRock,

Rosetta FlexPepDock, and PepCrawler represent popular software for peptide mod-

elling/docking [148–150]. More recently there has been an uptick in research regarding

tools where the focus is seemingly a dichotomy of determining the binding affinity

or generating the peptide [151–154]. Baker’s group recently devised a backbone ab

initio method in Rosetta for peptides that designs them and evaluates affinity [155].

Unfortunately, this method produces a limited set of peptides and requires intensive

ab inito modelling.

1.5.1 Rational or De Novo?

Given a rigid structure the classic Rosetta tool set can identify collisions and im-

proper angles in structural interactions. This is approximated using a series of em-

pirically determined distributions of various protein related variables, like side chain

rotamer spacing. Unfortunately for peptides, the conformation issue proves a extreme

issue, which Rosetta has classically been weak towards [156]. Major limitations in-

clude the presence of multiple binding modes, plasticity in the receptor, large confor-
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mational changes in the binding molecule, highly charged systems, and comparison

across different series of compounds

Rational design for peptides has demonstrated significant success in drug discov-

ery, resulting in a plethora of marketed drugs that have emerged from this process.

Notable examples include GLP1-based drugs, where the systematic exploration of the

SAR of the GLP1 peptide has led to the development of effective treatments for di-

abetes [40]. The optimization of the GLP1 peptide and its receptor interactions has

paved the way for innovative therapies targeting glucose regulation and metabolic

disorders. Heparin, a widely used anticoagulant dominating pharmaceutical market

for many years, showcases the impact rationally designed peptide-based drugs could

have [157]. By elucidating the SAR of its binding interface with coagulation factors,

researchers have been able to tailor heparin derivatives with improved efficacy and

safety profiles. Another prominent example is Enfuvirtide, marketed as Fuzeon, which

targets the HIV-1 virus by disrupting its fusion with host cells. The study by Chong

et al. (2018) detailed the development of a novel T-20 sequence-based lipopeptide,

exhibiting broad-spectrum activity against various HIV strains and related viruses,

including those resistant to existing treatments [145]. Their comprehensive character-

ization of the SAR of T-20 derivatives highlighted the potential of rational design in

utilizing peptide structural insights for advanced antiviral therapeutics. Novel mem-

brane fusion inhibitors against HIV and other enveloped viruses is highly important

in terms of the peptide drug T-20, which remains the only one for clinical use, even

if it is limited by large dosages and resistance.

De novo design of peptides has classically been difficult. Successful works include

tunable set of heterodimeric peptides that form coiled coils and based on the peptide

sequence, have an array of different functions, from cellular localization to transcrip-

tional activation. These peptides were used to construct a CRISPR-Cas9 transcrip-

tional activator, which increased the cellular response to certain light and chemical
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stimuli [158]. Designs of peptides capable of binding to RNA, which focused mainly on

structure based peptidomimetics [144]. Peptide designs meant to mimic the sequence

and structure of proteins known to interact with RNA. Using stable well-known sec-

ondary structures like β-hairpins and α-helices to provide a backbone structure that,

when combined with energetically favorable sidechains lead to greater binding affin-

ity. Chevalier et al. published a study where they designed and tested 22,660 de

novo mini protein binders and 6,286 control sequences [159]. The mini proteins were

37–43 residues in length, contained multiple hydrophobic residues and were designed

to bind influenza haemagglutinin and botulinum neurotoxin β. The study identified

2,618 high affinity binders that are stable at high temperatures. Various groups have

been using de novo designed peptides to both study the function of this virus as well

as develop peptides that can interfere with the attachment of the spike protein to

angiotensin 2 [160].



CHAPTER 2: Review of Machine Learning in Computational Biology

2.1 Machine Learning Paradigms and Applications to Proteins

Machine learning (ML) seeks to train models to accomplish specific tasks or actions.

Methods rooted in discriminant analysis, formulated within the field of statistics,

paved the way for modern ML techniques [161, 162]. Other functions of ML algo-

rithms cover areas such as clustering, binary or multi-class classification, regression,

generative modeling, natural language processing (NLP), and dimensionality reduc-

tion (DR). In contemporary computational studies, ML techniques can be broadly

classified into three primary paradigms: unsupervised, supervised, and reinforcement

learning. Unsupervised learning aims to identify patterns in data without predefined

categorization. In contrast, supervised learning uses category labels, during training

phase to to learn distinguishable, often nonlinear, characteristics and relationships.

Reinforcement learning, on the other hand, adopts a distinct, agent-driven iterative

approach. Here, the agent refines its actions based on a reward feedback system,

tailoring responses to unique environmental cues. These three archetypes define a

wide swath of the machine learning field, without going into model architecture and

training. Only specific methods used in this work will be discussed at this level of

detail. Table 2.1 provides an overview of current ML algorithms and their placement

within the extensive ML landscape. It is also important to note that many models can
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be trained to accurately predict known data, then applied to predict various values

from unknown data.

Table 2.1: Abbreviations of commonly used machine learning models.

Method Task Paradigm Abbreviation

k-Means clustering Unsupervised -

Agglomerative Clustering clustering Unsupervised -

Spectral Clustering clustering Unsupervised -

Self-Organizing Maps clustering Unsupervised SOM

Principal Component Analysis DR Unsupervised PCA

Time-Lagged Independent Component Analysis DR Unsupervised tICA

t-Distributed Stochastic Neighbor Embedding DR Unsupervised t-SNE

Supervised Projection Learning for Orthogonal Completeness clustering/classification/DR Supervised SPLOC

Naive Bayes classification/regression Supervised NB

Support Vector Machines classification Supervised SVM

Random Forest classification/regression Supervised RF

Gaussian Mixture Model classification/regression Supervised GMM

Artificial Neural Network classification/regression/NLP Supervised ANN

Deep Neural Network classification/regression/NLP Supervised DNN

Convolutional Neural Network classification/regression/NLP Supervised CNN

Recurrent Neural Network classification/regression/NLP Supervised RNN

Autoencoder DR/generative modeling Supervised -

Variational Autoencoder DR/generative modeling Supervised VAE

Generative Adversarial Network classification/generative modeling Supervised GAN

Message Passing Neural Network classification/regression/DR Supervised MPNN

Graph Neural Network classification/regression/DR Supervised GNN

Graph Convolutional Neural Network classification/regression/DR Supervised GCNN

Methodological advancements have been steady across various ML subfields, re-

cently being applied to computational biology. However, the deployment of ML tech-

niques in computational biology presents unique challenges. Typically, a significant

constraint in building ML models is the requirement of extensive datasets for training.

As the volume of data and variables escalates, algorithmic efficacy often diminishes,

dubbed the curse of dimensionality [163]. Other prevalent issues include over-fitting,

where the model becomes overly tailored to training data fluctuations, or under-fitting

from insufficient sampling, such as when training samples possess reduced variance
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relative to the entire population.

2.1.1 Large Language Models

Large language models (LLMs) are a subset of NLP techniques utilized for sequence

analysis and generation tasks, including text analysis, speech recognition, and AI-

driven chatbot models. Initially relying on recurrent models like LSTM for sequence

analysis, the advent of transformer networks, exemplified by models like Generative

Pre-trained Transformers (e.g. GPT-3) and Bidirectional Encoder Representations

from Transformers (BERT), has driven substantial progress in text generation by

enabling contextual learning [164–166]. Transformer networks incorporate attention

mechanisms that facilitate understanding input order, yielding valuable context and

long-range correlations. These advancements have been particularly instrumental

in the realm of natural language processing in computational biology, aiding in the

analysis of protein and DNA sequences. Typical large language models train either

by masking tokens and fill in or reinforcement learning on tasks.

The training objective involved in a masked language modeling, where input se-

quences are corrupted by substituting amino acids with a designated mask token.

The network is then trained to predict the masked tokens based on the corrupted

sequence. This objective is formalized as:

LMLM = Ex ∼X EM

∑
i

−log p(xi|xM) (2.1)

Where the loss for learning, LMLM , is calculated from predicting tokens, or char-

acters, for masked, or removed, tokens from the input. The input sequence, x, is

measured characterise-wise across the masked positions for accuracy to known cor-

rect token, and a probability calculated inside the logarithm. The summation is

performed over all positions i in the set M of masked positions in the sequence, cre-

ating a type of entropy measurement for bad predicted masked tokens. Recently there
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has been wide adaption of these kinds of models for generative tasks, such as learning

sequences that can represent proteins.

2.1.2 Machine Learning Applications for Proteins

Protein functionality is both designed for and depends on the folded topology.

Accurate protein structure prediction (PSP) offers designing novel protein functions

or enriching our understanding of mechanisms through simulation and experimen-

tation. Until recently, the common computational approaches for PSP have been

template-based and template-free modeling. Template-based modeling operates on

the principle that amino acid sequences with similarities will exhibit analogous folds

[97, 167, 168]. Consequently, empirically determined structures become templates to

model unknown protein configurations, a process termed homology modeling. Often

a single protein will have structures determined in the presence of a ligand, while

others are derived without a ligand association. This reveals various structure con-

formations, some time multiple conformations with each being ligand-specific. This

empirical data serves as a pivotal foundation for the refinement and testing of docking

software, essential in drug design [169].

The critical assessment of methods of protein structure prediction (CASP) is a

biennial contest where participants, through a double-blind process, receive amino

acid sequences of structures already determined experimentally but not yet public.

Competing research teams are expected to submit predicted models using their unique

method of determination. Structures are evaluated using the Z-scores of backbone

conformational similarity using multiple measures for accuracy. ML methods such as

AlphaFold and AlphaFold2 have produced substantially better results than previous

years of CASP. Many other groups have build similar sequence to structure models,

like Baker and Zhang groups. As seen, ML has made great strides in the field of PSP,

but there are competitive methods like Feig-R2, which used physics-based refinement

through MD simulations [170]. The complexity of implementation and resources often



28

dictates practical usage, however.

Design applications involve mutating residues to modify protein function or achieve

a specific molecular property. Historically, biochemists first had to deduce functional

sites to facilitate molecular engineering by allowing the organism to mutate in a

directed fashion to some functional goal [76, 77]. Computationally assisted protein

design has used combinatorial approaches, threading along backbones, and statistical

knowledge-based methods have dominated the field [93, 171–177]. Early attempts to

apply ML to design applied dimension reduction techniques, SVM, or Random Forest

to predict mutation effects [178–180]. To assess protein stability empirical muta-

tional databases, like ProTherm, catalogue mutations with attributes such as ∆∆G

and changes in melting temperature. Various strategies, including naive Bayes clas-

sifier, K nearest neighbor, partial least squares, artificial neural networks, and deep

neural networks have shown reasonable predictive power on this dataset [181–183].

However, the majority of these models exhibit limited accuracy on new sequences, pri-

marily due to their sensitivity to the distinct characteristics of proteins in the dataset,

predominantly lysozyme. Training datasets over-representing specific protein families

leads to poor generalization to other families. It has been noted that generalizing a

mutational stability model must be done with great care, as protein families may

express many methods of stabilization [184].

Advancements in predicting mutation induced stability changes of a protein in-

clude hallucinations of diffusion models applied to protein structures [185]. These

were found empirically to generate novel composite single and multi-domain globular

proteins. Improving stability of structural space from the relationship to sequence

space was performed using a message-passing neural network, with empirically de-

duced success [186]. Methods that minimize the number of mutations needed to shift

stability are available, which can also predict solubility factors [187, 188]. Methods

using ML in conjunction with methods such as alphafold, Rosetta, or MD simulation
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evaluation to assist in finding possible realistic folding proteins [189]. Even empirical

characterization methods are assisted by ML. A Gaussian Mixture Model that ap-

proximates the electron density map, which correlates to atom probability, produced

from cryo-EM which can detect distributions of conformations of structures [190].

2.1.3 Machine Learning for Functional Dynamics

Protein function analysis often deals with high-dimensional data and low statistics;

a difficult situation for any method. With increasing hardware capability the data

sizes generated are hitting a transition to a convergence between ML and computa-

tional biology. Application towards MD is a natural step in research.

To maintain reliability in the dynamically changing network of chemical reactions,

proteins evolved to maintain a functionally relevant conformational ensemble that

satisfies thermodynamic and kinetic stability conditions [28]. While protein proper-

ties inherently depend on their environment, focusing on intrinsic properties is often

effective, as most Earth-bound life operates under similar molecular constraints, re-

gardless of extremities like hot springs or deep-sea conditions. This can be observed

for a given family of proteins from organisms living in diverse environments that share

the same biomolecular function [191]. It is likely that these family members also share

some dynamic processes that are inherently caused by the structure they inherit.

At its core, ML intertwines deeply with statistics, leveraging automated procedures

for statistical inferences. For instance, the principle of projection pursuit underpins

a vast array of ML methods, such as principal component analysis (PCA), inde-

pendent component analysis (ICA), factor analysis, and linear discriminant analysis

(LDA). Clustering is another crucial facet of ML, with numerous methods designed

based on varying objectives. Presently, numerous ML techniques are intertwined with

statistical analyses, optimizing automated processes to derive meaningful statistical

insights [192,193]. Unsupervised machine learning methods have played an important

role in the analysis of MD trajectories. Principal component analysis (PCA) applied
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to MD data provides dimension reduction (DR) which can characterize the essential

dynamics of macromolecules such as proteins [194–196] while reducing the degrees

of freedom (df) for the data matrix. PCA identifies large-scale motions that are as-

sumed critical to function; consequently, functional motions will be misidentified as

noise if the dynamics have a smaller variance than what is contained in the top PCA

modes [197]. Clustering algorithms are often combined with DR and feature extrac-

tion techniques, such as PCA, in order to identify key conformations that facilitate

molecular function [198, 199]. Supervised machine learning is capable of identify-

ing functional dynamics by associating experimental and simulation data [200] in

binary classification. In literature, supervised ML techniques for discriminant analy-

sis [201,202] such as linear/quadratic discriminant analysis (LDA/QDA), SVMs, and

gradient-based NNs have perform poorly on MD data. As such a method that focus

on streams of data and separating entire modes of motion might perform better at

classifying functional proteins from dynamics.

2.2 Generative Machine Learning for Proteins

ML approaches have been widely applied in the field of medicinal protein biologics.

Typically these methods use pattern recognition algorithms to discern relationships

between empirical observations, such as protein secondary structure prediction, drug

repositioning, and drug design [203]. These methods have garnered considerable

interest from computational and medicinal chemists, many reviews related to the

applications of ML or deep learning in drug design and discovery have been published

[204–212].

Popular generative models currently include generative adversarial networks, dif-

fusion DNNs, and variational autoencoder (VAE) [213]. Essentially, these methods

discerns patterns from the training data and subsequently predict novel data points

from learned relationships embedded in the network weights. One of the most impact-

ful applications for these generative ML models are sequence to structure predictions.
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Template-free modeling generates protein structures without the use of homologs in

the PDB [214]. This method typically relies on physics-based energy functions and is

much more computationally intensive than template-free modeling. Knowledge-based

approaches dominate the field, yielding deterministic designs for stable proteins or

homology-based structural predicts [173, 215, 216]. Of course, there are algorithms

that combine the these approaches. Template-based and template-free modeling have

become more seamless, and combinations of the two approaches are more common-

place [97, 217]. It is worth noting that many proteins cannot be crystallized because

they have intrinsically disordered regions [218]. But with structures to work from

mechanisms of action can be explored using computational methods allowing rapid

therapeutic development, also known as computer-aided structure-based drug discov-

ery (SBDD) [219–222].

2.2.1 Sequence to Structures

Debuting at the Critical Assessment of protein Structure Prediction (CASP)-Round

XIV, in 2021, AlphaFold2 from DeepMind has raised the bar by achieving prediction

accuracy near the experimental limits, far better than their competitors [223]. Al-

phaFold2 is a completely reworked model of the AlphaFold method presented at

CASP13 [224, 225]. The success of AlphaFold2 comes from the unique implementa-

tion of deep neural networks and MSA derived evolutionary history [217,223,226–228].

The introduction and promise of the success of AlphaFold2 has elicited similar works

such as RoseTTAfold, a “three track“ neural network based off the N-C-C backbones

of proteins [229] or an AlphaFold reproduction using popular libraries like PyTorch,

such as Openfold [230]. Still many areas of improvement are needed, such as ac-

counting for the role of the environment or predicting structures without the need for

multiple sequence alignments (MSAs), as seen in OmegaFold [231]. There are many

ML inspired protein structure related works appearing. Using ML models to guide

physics based modelling or to predict realistic structures from rapid diffusion based
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ML models are a drop in the continuous research being produced by this applied

niche.

2.2.2 Structure to Sequences

Original methods for structure to sequence prediction seem to have boiled down to

empirically testing new sequences either via inferring from mutation scanning or just

trial and error with expression and characterization. Computational methods were

limited to sequence based methods or atomistic simulations of mutated structures. An

early adopter of this process was the method GREMLIN, where a statistical model of a

protein families attempted to interpret both conservation and co-evolution patterns to

predict residue–residue contacts using evolutionary covariance information. However,

these methods require large numbers of evolutionarily related sequences to assess the

extent of residue covariation, and the larger the protein family, the more likely that

contact information sufficient [232]. Once again, reinforcing the structure bias present

in a variety of databases.

There are multiple ML based structure to sequence models, typically trained fea-

tures are either sequence based or structure based, but the output is always possible

homological sequences for the given structure. ProteinMPNN is a message passing

neural network (MPNN) that predicts protein sequences in an autoregressive man-

ner from N to C terminus using protein backbone features, distances of Ca-Ca atoms,

relative backbone frame orientations, and a variety of other geometric properties. Re-

cent work with ProteinMPNN has also shown the ability to rescue de novo designs as

well as allowing the design of complex self organizing oligomers that form nanoscale

structures [186,233]. Recently there has been a rise in large language models (LLMs),

partly due to advances in model architectures like transformers with attention [234].

Many researchers have attempt to modulate sequence to sequences [235], some also

include structure in this consideration. The Evolutionary Scale Model (ESM) is a

LLM trained on protein sequences, and can achieve inverse folding using a sequence-
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to-sequence transformer with invariant geometric input processing layers. Reported

native sequence recovery on masked backbones and buried residues are better than

compared methods in sequence generation [236]. The ESM model also generalizes

to a variety of more complex tasks including design of protein complexes, partially

masked structures, and binding interfaces. [237]

2.2.3 Full Designs

The computational biology underpinnings of in silico structural based platforms

that proceed the current state of protein design have been detailed and largely dealt

with pseudo physics or homology centered approaches [93, 171–177]. Computational

fixed backbone designs have typically lacked predictive power for design, possibly due

to dynamics or flexibility of the protein [95]. Early attempts to solve this problem

applied dimension reduction techniques or SVM [178,179]. Application of ML models

to the curated ProTherm dataset, empirical mutational database that includes the

attributes of ∆∆G and changes in melting temperature, have obtained fair predictive

power for the dataset, when compared to naive Bayes classifier, K nearest neighbor,

partial least squares, and an ANN [181, 182]. A deep neural network predictor of

∆∆G using this same training dataset outputs ∆∆G values for mutated sequences,

as determined by multiple sequence alignments [183]. This model works well for rep-

resented families, but poorly for unseen protein families, unsurprisingly. Optimizing

protein interfaces through mutagenesis has been successfully achieved using a Ran-

dom Forest approach [180], which compared favorably to other mutagenesis predictors

such as SKEMPI. Unfortunately, most results to date use training datasets that over-

represent specific protein families, which leads to poor translation to other families.

It has been noted that generalizing a mutational stability model must be undertaken

with great care for each specific problem addressed [184].

Most recent advancements in predicting stability changes of a protein due to muta-

tion include hallucinations via diffusion models applied to protein structures, language
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models, or geometrical CNNs [185, 187, 188, 238]. Pipelines are being developed that

piece together ML packages with evaluation methods such as alphafold, Rosetta, or

MD simulation to find possible realistic folding proteins, some open sourced like Co-

labDesign [189]. There are a few groups that focus entirely on design application.

Baker group has created two variations of design using ML that hinge on sequence

to structure models and fully design sequence and structure. A sequence based CNN

that hallucinates and refines sequences, trRosetta [239]. Then a more formalized and

classic Rosetta style RFDesign using RoseTTAFold [185]. Most recently, a fashion-

able diffusion method implemented in RFDiffusion [240]. Which can be combined

with structure to sequence models to generate a variety of candidates. Furthermore,

the generated sequences can be passed into classification models based off sequences

to refine the outputs and increase success rates of empirical testing [241]. Full design

methods also extend to entirely sequence based, such as the progen model [235].



CHAPTER 3: pepStream

3.1 Motivation

The pepStream software is a pipeline of bioinformatics methods and analysis that

produce peptide candidate that bind to a protein targets. The original proposal for the

software came from a cooperative effort between UNCC and Plant and Food research

in New Zealand. In their research they had come to find a need for binding peptides for

a specific target. Their target, however, lacked a robust set of structural data due to

being a MoRF inside a disordered segment of this protein. The structural signature

of a MoRF within protein-protein interaction is often a crucial step in controlling

important biological functions [56]. Therefore, the development of a peptide to bind

to a target MoRF is hypothesized to be an effective way to interfere with certain

protein-protein interactions through competitive binding.

3.1.1 A Beta-Strand Library

The initial inspiration for pepStream was the work from the Vendruscolo lab, where

a pipeline of designed beta-strand motifs were generated from a library of beta strand

sequences. This library was constructed simply from from the PDB with a 90%

identity threshold, then taking the DSSP labeled beta-sheet components and creating

a library of sequence pairs that could be searched against the target subsection [242].
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Antibodies are Y-shaped proteins with variable regions at the tips of their arms, where

loops, called variable loops, specifically recognize and bind to foreign substances like

pathogens. These beta-sheet sequences were subsequently mutated into binding loops

of antibodies where the beta-strand motif was design against a particular segment of

a protein. They showed that this library approach worked for making a specifically

targeting interaction to the loop of the target. In a full size antibody a small segment

of protein forming a beta-strand to a target can be stabilized by the rest of the

structure, as antibodies tend to have large interaction surface areas at their binding

domains. These large binding domains and structures can enable tight binding, micro

to pico-molar affinities, and low immunogenicity that make antibodies effective [243].

A few logical shortcomings were found in this methodology. Beta-sheets are almost

always found in buried segments of protein, and in beta-barrels there is a dichotomy

between the inner facing residues of the beta-sheets and the outside. Intrinsically

these kinds of secondary structures rely on stabilizing interactions to the side chains

to keep the backbone interactions stable, and are long range with respect to sequence

and become more stable with longer lengths. For a binding peptide, it was thought

that this constraint would make it difficult for the peptide to bind to. Additionally,

restricting peptide structures to beta-strands only seemed difficult to generalize to

any binding target on a protein. For example, a local substructure that forms an

alpha helix has enthalpy in it’s nearby secondary structure and will maintain this

structure for relatively long time spans, even without any flanking residues [49, 244].

Perhaps the most salient issue; there was a lack of sufficient information to reproduce

the library created for this process nor was the library provided in the published work,

a common issue in bioinformatics.

So taking the fundamental approach, the core functionality behind this library was

basically looking for deep sequence homology in multiple structures. In the case of

the beta-strand library, a small subsection of the target is used to search for a portion
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found in a beta-strand secondary structure, where the complement strand is used to

create the binding segment. This is performed multiple times over a window to create

the full length binding segment of interest. If considered as a search problem, in this

instance the target sequence is used to inform the search for a set of residues that is

complimentary to the subset, combining all the subsets to form a final binding motif

as a straightforward problem [242]. The most obvious difficult challenge to generalize

this kind of approach is creating a library of all kinds of secondary structures, or

lack-thereof, to perform this kind of operation over seemed infeasible.

3.1.2 Approach of pepStream

Many design strategies struggle dealing with sequences distantly related to human

proteins. The initial stage of peptide design rests heavily on accurate structure predic-

tion, a feat that often necessitates multiple crystal structures to discern the intricate

conformations of proteins. Historically, the foundational tools for protein design like

MODELLER operated on direct homologous mapping, while others like Rosetta and

I-TASSER used threading approaches. These tend to lack accuracy for proteins that

diverge from the PDB. Although tools like Rosetta offer a myriad of capabilities, they

come with their own set of challenges, such as their commercial restrictions, heavy

reliance on initial structures for design, known complexities with peptides, and the

imperative need for specialized knowledge to adapt the tool to novel challenges.
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Figure 3.1: The WW domain is expressed widely in the proteome and is often found
at the interface between monomers. A) Very distantly related sequences can still hold
same function shape, shown by no sequence identity match in the 4U85 structure, but
the WW domain is aligned and functions. B) Example of a distant homolog (PDBID
6J1X), which would not align well, having a protein–protein interaction not present
in the original structure (PDBID 1JMQ).

Figure 3.1 graphically shows that a structure can be similar in conformation and

functionality to another with low sequence identity. In both cases the distant homolog

looks nearly identical in terms of fold, but lacks sequence characteristics conserved in

the majority. A fragment in contact with the distant homolog likely interacts favor-

ably, at least in the native protein. Taken out of context there is still a possibility that

the fragment could bind to the original target. And given the hypothesis that these

fragments might bind, as evolution tends to find the optimal binders, by predicting

the sequence fragments as a peptide and then attempt an analysis to assay which are

best. Computational protein docking is reasonable to test the hypothesis.

In the knowledge base approach from Vendruscolo et al., the entire database must

be searched for every sequence window that is searchable for the target. This creates

an increasing complexity as the target itself becomes larger, leading to a limiting be-

havior dependant on the time to search a single window and any subsequent blending
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of the resultant sequences. Instead, the target sequence itself could be turned into

homological subunits to be used for searching inside an empirical database. This is

particularly helpful for the cases where the target has little or no structural informa-

tion itself, which tends to occur for disordered proteins. This approach postulates

that exploring distant homolog targets in sequence space might unveil evolution de-

sign sequence that bind to a specific segment of protein. Data mining these distant

targets in sequence space and searching for related structures allows simple peptide

generation that can offer a reasonable binding to the target segment.

3.1.3 pepStream Version 1 Tests

A comprehensive peptide prediction process was developed using an integrated

pipeline, predominantly implemented through Linux and Python, which automates

the generation of peptides for various target sites on proteins through scripts that

manage tool usage, data formatting, and analysis. The pipeline utilizes publicly avail-

able software such as BLAST, I-TASSER, and ZDOCK as well as custom-designed

approaches to extract fragments of proteins that interact with particular regions

with similarity to our target sites from protein structural databases. This predic-

tion pipeline typically results in hundreds of possible binding peptides and therefore

a mechanism to filter these peptides by ranking them was required to make work-

flows manageable. Collation of the resultant data on the candidate peptides enable

the implementation of a ML approach to improve peptide binding ranking predictions

for the multi-classification.

This was performed in the following way: in addition to developing the more spe-

cific docking scores developed directly from our pipeline, a series of other predicted

biophysical properties were also calculated for each of the subset of selected predicted

peptides including factors such as solubility, stability, charge at neutral pH and the

isoelectric point (pI) of the peptide. Multiple dimensions of clustering were then per-

formed with all of this data using principle component analysis in an unsupervised ML
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exploration of candidate peptides. By plotting both wet-lab “successes” (specific in-

hibition) and the different types of “failures”,non-specific binding and non-inhibition,

onto these multi-dimensional frameworks we implemented supervised ML method

to learn and predict peptide functionality classification in the output, Figure 3.2.

Multiple systems were evaluated using this method. In both systems the target(s) of

interest were usually MoRFs in disordered domains of signalling hub proteins DELLA,

p53, and partners of p53.

Figure 3.2: A) the raw pepStream output for the predicted peptides plotted in three
dimensions to demonstrate the predisposition of separation in the dataset. B) A single
dimension projection of a trained OMP model on the same dataset. C) Accuracy as
the training set is increased during training of the OMP model for classifying the
predicted peptides.

3.2 Methods

Casting the peptide design problem into a homology problem connected the con-

cept of the twilight zone of sequence homology [245–247]. There are some instances

of proteins having the same fold with as little as 20% sequence identity. In some

instances the interactions that allow a fold to stabilize might be shared, affording

a reasonable peptide interface to a different homolog target. While it may not al-

ways be the case, it is an easier search than the exhaustive combinatorics 20n for all

possible sequences of a protein length n. This also allowed the problem of finding

a binding peptide to an arbitrary protein target to become an inverse problem, as

possible answers are in the PDB but which is best is unknown. Alleviating the need
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to create an additional database of some sort to produce binding peptides.

3.2.1 MSA to Diversify Target Sequence

Typically, directed evolution experiments deal with trying to evolve a protein

against some manufactured pressure. To do so, a sequence library gets created by

generating a large number of mutations in the protein sequence, which results in a

diverse population of protein variants [248,249]. This library is then screened for vari-

ants with improved function or desired properties, allowing for the selection of the

best-performing variants. To maximize the results only certain parts of a protein are

allowed to mutate, while the other parts are kept fixed. Determining these mutation-

allowed regions is commonly performed by producing MSAs of the protein, identifying

conserved and variable regions, then targeting the variable regions for mutation.

Considering physio-chemical similarities when mutating amino acids, the natural

mutation range in protein sequences is used to identify a diverse set of homologs in

structural databases. This approach has proven useful when applied to protein ho-

mology. In particular, a 30% sequence similarity is often sufficient to maintain similar

secondary structures [245–247, 250]. The twilight zone of the sequence-structure re-

lationship points to a transition region where sequence-structure relationships begin

to fail. Although there is no reason to expect the sequence-structure relationship ex-

hibited in proteins to apply to peptide versions, we wanted to investigate whether or

not these distant homolog motifs will reveal complimentary interface structures and

conserve favorable interactions. Therefore, the diversification of the query sequence is

performed using open tool set BLAST, Basic Local Alignment Sequence Tool, along

with specified libraries of protein sequences. This expands the input by many folds,

allowing a wider sequence search space.

A limiting factor was finding enough diversity to escape the target sequence itself.

In the initial trails of this running MSA with reasonable settings produced a low

diversity of sequence for the high conserved MoRF. Sensibly, this is by design, the
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probability of matching to distant sequences is low when the MSA protocol is opti-

mizing closeness of the sequences by identity or bit-wise likelihoods, like e-values in

BLAST. Naturally the next step was to raise the allowable matches, in BLAST this is

done using the e-value threshold. Typically this value is quite small to generate better

than random matches. But performing this sort of search, only on a small subsection

of a protein, created difficulties producing hits. I overcome this by providing BLAST

an absurd e-value of 100-1000. It was found that running this over an entire sequence

created long run times and produced fewer sequences than expected simply due to

the difficulty for bit-wise matching of a longer sequence to any other sequence, even

with a higher cut off. So using a small 20 to 40 residue target window was tested,

effectively treating the target as if it were a protein structural domain, like the WW

domain.

To assist in escaping the local sequence space of the target sequence a set of sub-

sequences are generated. These footprints are described by a portion of the target

sequence, selected from bifurcating the sequence recursively until a minimum length

is reached. These footprints are used to assist in the creation of a mutational library

for the target sequence, which will be used for structural searching. While a sliding

window across the original target sequence was considered, creating an algorithm to

stitch this together in the mutation stepped proved difficult to justify. So simple

bifurcation of the sequence was applied to generate enough sequence diversity of mu-

tant sequences from the original target sequence. All of these footprints have an MSA

applied from returned hits, and then any gap in alignments filled with the original

sequence. Effectively it has been observed that this expands a target sequence from

what would be a shallow alignment of maybe a few hundred sequences to thousands

or more. In the computation of creating a mutant sequence, a ad-hoc entropy can

be calculated from the position specific scoring matrices, PSSMs, that come from

position specific iterative (PSI) BLAST. This creates a metric to show clearly that as
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the sequences are generated farther from the base footprint they are more random.

Understandably, only an upper portion of the sequences are used, typically something

below 100,000 sequence.

Figure 3.3: Plot of typical mutant footprint match to actual input structure RMSD
versus the score, Σ-log(Probability of sequence), of the mutant sequence.

After taking the mutated sequences and retrieving aligned hits from the PDB,

each matched distant homolog can be superpositioned to the original target sequence

structure. This provides a metric to asses how close they are in secondary structure.

To quantify sequence divergence, a simple score can be computed using the formula:

Σ-log(Probability of sequence), where the probability is derived from the transition

weights in the PSSM during the diversification phase. Observably there is a weak to no

dependence of RMSD with respect to the scoring function for distance of the sequence

to the original target sequence, Figure 3.3. The interpretation of this result is broken

down into two considerations. Firstly, the expansion of the sequences yields similar

structures across the distribution of mutated footprints. While these sequences gain
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more variance as the free energy of the sequence increases, or the sequence diverges

from original input, similar structures are found that would otherwise have been

missed without this expansion. This null relationship is discernible by the unique

structures at the higher x-axis value keeping roughly similar RMSD in Figure 3.3.

Secondly, this is complicated by possible low conserved areas or just a longer length

of the input target sequence. This methodology is limited in sequence length for the

input. For all targets tested in this diversification, the expansion allowed for two

orders of magnitude more structural matches than what can be extracted by running

the original sequence into BLASTp. As a result of this diversification, analogous

structures suitable for contact mining peptides are generated.

Once the target sequence was expanded to a large number of related but distance

sequences it was straightforward how to apply the inverse search. Given the mutated

target, can a structural match be found? If so, then the protein residues around

that match can be mined for potential binding peptides. A protein BLAST of all

the mutated footprints was applied to only the sequences of PDB structures. Hits

were pulled into a simple neighbor searching protocol to look for protein residues

around the searched footprint-match only. Effectively this portion would be a distant

homology, and the protein residues around it are fragments that could be binding

peptides. Initially a size minimum of 9 residues was used to find potential binding

peptides, or complimentary MoRF peptides; dubbed cMoRFs.

3.2.2 Generating Possible Peptides

Evolution favours combinations of molecular interactions that support biological

function while simultaneously satisfying physical constraints that make the interac-

tions possible. As such a search of interacting segments of protein from structures

of interest has become a common practice in rationally designing peptides and is

often effective [75, 152, 153, 155, 251]. Obtaining the interacting fragment from em-

pirical data is the first step. Using the python package Biopython, a routine is
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employed that captures segments of amino acids that interact with a given reference

of residues [252]. Thresholds to identify various levels of intermolecular interactions

inside proteins incorporate user-defined cutoffs for finding contacts. There are oppor-

tunities to incorporate a process in this particular code to interpolate missing atoms,

remove repeat region candidates, or create longer peptides.

Figure 3.4: Automated peptide selection diagram from described python code in
pepStream.

In Figure 3.4 an illustration of the output is given. Essentially the matched sub-

section, distant homolog, is the core for a n2 neighbor search at heavy atom level.

A radial algorithm returns all atoms interact with the matched sequence in a given

structure. There are two variables that modulate detection of an interfacial interac-

tion. The distance at which an atom will be included as being a contact and interface

distance is a buffer distance to expand from contact atoms to capture backbone atoms

or lengthen predicted peptides. Once the lists of interacting atoms are made the cor-

responding residues are then found, as highlighted in orange within Figure 3.4. The

selected residues are then analyzed for contiguous length requirements, those that are

long enough are passed as potential peptides as seen far left in Figure 3.4. At this
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point the sequence of the potential peptide is recorded.

3.2.3 Predicting Peptides and Docking

The tertiary interactions within proteins often stabilize specific conformations of

small segments. When isolated from the larger protein context, these segments might

adopt different conformations, or they may retain their original structure. The out-

come is unpredictable. Therefore, when attempting to design a peptide based on

such a segment, modeling its potential conformations becomes essential. Peptides are

known to fluctuate in conformation, unfolding and folding rapidly in solution [244].

When modelling, more conformations is always be better. Typically this is best

accompanied by some method to ensure the conformations are relevant to the free

energy landscape or score function of interest.

For each contiguous peptide derived from the previous step a multi component

modelling effort is automatically performed. The I-TASSER software has the advan-

tage of both compute time and ease of input allows for a highly parallelized process,

taking advantage of an HPC environment. The input is a fasta format file, defined

from the empirical peptide found from the previous step. While smaller proteins tend

to be more disordered, some conformations may be longer lived than others; account-

ing for conformation diversity during docking is important to ascertain an accurate

binding affinity to the target binding site. Docking small molecules to proteins is a

major research field, however open tools that can dock peptides to a target site on a

protein are limited due to degrees of freedom between the pair can incur high cost of

the calculation. In addition, a docking routine for multiple conformations interact-

ing with a flexible interface is necessary, which often is not done in docking routines

barring those that include MD. Instead, we used the I-TASSER software is used to

create multiple structural models of the peptides, which constitutes all or part of the

conformation sampling in the proposed approach. I-TASSER also offers variables to

control for similarity or homology threading in the software’s predictions. While this
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is a shallow exploration of conformational space, it is sufficient for early investigations

and to demonstrate the pepStream workflow.

Docking a peptide against a protein is a complicated task that has been attempted

by a few different studies. In Rosetta FlexPepDock a full conformational simulation

is used to ascertain docking potential, at the cost of time. In the beta design of

pepStream we decided ZDOCK was a suitable docking software to apply the routine

described below [131,139,253]. This was largely due to the computation time and the

combinatorics sizes of targets against predicted peptides. Each model of peptide is

docked against each model of the target structure. While this work is focused on the

computational design and characterization of the binding peptides, the target struc-

tures can be provided and design by the user, or even taken directly from empirical

structures. To overcome the rigid docking multiple models are used of both the whole

structure of interest and the peptide predicted to bind to the target.

Accounting for unspecific binding is performed by docking peptides to the target

proteins at added off-target binding sites for the ZDOCK simulations. In this effort

a simply set of scores can demonstrate if the peptide of interest has a higher than

normal affinity to the target residue subset versus a random segment elsewhere on the

protein. This physical filter is performed on two levels of specificity. One running over

the entire target to test for overall binding, performed against all output peptides as

an initial sweep. This affords a ranking for top candidates, which are then used in a

specific docking study. The next step breaks the target protein into segments and runs

docking over each subsection to effectively generate a comparative map to identify

relevant and non-relevant sections. This encompasses the entiretly of the physical

filter portion of the pipeline. Ranking the best binding peptides to the target and

testing the hypothesis that the candidate will bind specifically.

The initially implemented pepStream algorithm is shown below, Figure 3.5.
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Figure 3.5: The original flowchart for pepStream pipeline. Software is primarily a mix
of python and bash. *) filters are applied to any found sequences to avoid modeling
issues.

(1) A binding target is specified as a sequence of residues input in fasta format. This

is the initial footprint for the binding target. The inputted target sequence is

partitioned multiple times before developing a sequence profile.

(2) PSI-BLAST with variable e-value thresholding and database is used to gener-

ate the mutant sequences and a position specific scoring matrix (PSSM). The

mutant sequences, footprints, are a combination from actual hits with any gaps

filled in with the original residue.

(3) These mutated footprints will be queried in BLAST against the PDB, or any

specified subset of it.

(4) Structural hits will be analyzed in a routine to locate relevant sequences that

interact with the matched footprint.

• Auxiliary filtering criterion based on sequence properties, length, and other

problem dependent factors can be performed here.

(5) Sequences from structural interaction fragments are modeled in I-TASSER suite.

The peptides structures are then docked onto the target structure using ZDOCK
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against all unique pairs of generated unperturbed target structures and candi-

date peptides.

3.3 Results

3.3.1 Results on DELLA

Focus on applying a variety of methods to understand the dynamics of the 2ZSH

structure, a complex of GID1A, in the apo and holo states, and DELLA protein

interaction domain from a GAI family protein. This work included MD, mDCM,

dimensional reduction and subsequent clustering, and then the modelling of peptides

interacting with the disordered DELLA domain. There was mutual interest in using

small peptides to induce a conformational change and disrupt the GID1A interaction.

Similar endeavors have been highlighted in various studies, including research on a

peptide binding to COVID [40,136,254].

The 2ZSH system, which is a protein complex consisting of GID1A with GA3

bound, and the DELLA segment of the GAI protein, exhibits a conformational space

that is considerably larger than anticipated. The GAI protein is disordered, observ-

able from various simulation, and even the ordered DELLA segment is extremely

flexible. Careful modelling of the disordered protein was done for initial binding ex-

periments by running multiple simulations from different initial conformational states.

The cohort offered a set of experimentally characterized peptides in terms of binding

towards the DELLA segment of GAI. Early results in ensembles of docked structures

found rank-ordered scoring outputs that were closely aligned with binding affinities,

thereby justifying quantification of potential peptide candidates in silico.

A series of peptides were predicted by the peptide pipeline. Using the original

designed peptides with known classification as training, a ML method to predict pep-

tide functionality classification in the output was trained. It was rapidly noticed that

the feature space of the binding scores to the target protein segregated the peptide

candidates. This was largely factored by the biophysical properties of the peptides.
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In Figure 3.2 taking the dataset and training a projection pursuit model called or-

thogonal matching pursuit a low dimensional representation of the classification in a

subset of the data can be used to project the entirely of the data into a classifier.

At this point a set of the peptides screened through pepStream were selected to

test their bioactivity in vitro. Previous research had developed an antibody that can

specifically bind to the target motif within the DELLA protein. The antibody is

attached to a Biacore chip, and the chip can then measure the binding of the DELLA

target to this antibody with a Biacore X surface plasmon resonance biosensor. A pep-

tide that can bind to the same region should inhibit the antibody-DELLA binding

reaction. The assay measures the ability of a ten-fold excess, by molarity, of supplied

peptides to out-compete ,inhibit, the binding of the antibody to the DELLA protein

motif. This biophysical data was used to develop the classification of the peptides

as either non-inhibiting, non-specific binding, or specific inhibiting peptides. Sur-

face plasmon resonance binding data was collected for the 10 top predicted peptides

from pepStream and 3 bottom. It was shown that seven of then ten top candidates

specifically bound, or successfully inhibited, and the other three seemed nonspecific

binding. The three lowest scoring predicted peptides were found to be nonbinding.

Experiments were performed to explore how these same peptides might affect plant

systems in vivo. For the exogenous peptide application assay 15 random leaf discs

approximately 2 mm in diameter excised from fully expanded, non-senescent Ara-

bidopsis thaliana rosette leaves were incubated under constant darkness followed by 2

days standard growth room conditions (16 hr light / 8 hr dark) prior to total chloro-

phyll extraction using acetone. The leaf discs were immersed in 450 µL of 10 µM

synthetic peptide solution using HBS-N buffer as the diluent. A solution with GA3

was used as the positive control which promotes leaf senescence in A. thaliana via

the GA-DELLA-GID1 complex was prepared to a working concentration of 10 µM

using 100% EtOH followed by a final dilution using HBS-N buffer. Senescence of the
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leaf material was determined by measuring the total concentration of chlorophylls

a and b post incubation with and without the small inhibiting peptide candidates.

Essentially a refined solution of each well was measured spectroscopically, shown in

Figure 3.6. Qualitative comparisons of the peptides to the control case made it clear

that multiple peptide candidates inhibited the senescence in the leaflets.

Figure 3.6: Experimental set up of exogenous peptide application to excised A.
thaliana leaf discs to measure effect upon leaf senescence of peptide inclusion. Per-
formed and pictured by Dr. Marion Wood of PFR.

3.3.2 Designing Interfering Peptides for p53 and Binding Partners

In continuation of developing the pepStream method a new model system was

selected. The human tumor suppressing and transcriptional hub protein [251, 255,

256], an IDP also called p53, and has a significant effect on multiple types of human

cancers and some virus infections [257]. The p53 protein has several MoRF sites that

regulate different cell growth mechanisms for different protein-protein interactions,

as shown in Figure 3.12. Published results for peptides binding to p53 demonstrates

the feasibility of a peptide-based drug [251, 258]. Over-expression of any partner of

p53 or having a misfunction, in either p53 or its partners, leads to various cancers.
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In this project, mouse double minute 2 human homolog (MDM2) and the human

deacetylase transcription regulation protein called sirtuin (SIRT) will be studied as

well. The p53-MDM2 interaction is related to oncogenesis. The MDM2 protein

inactivates p53 either by physical inhibition at the N-terminal, ubiquitination, or

export from the nucleus. The signaling protein SIRT1 are ancient proteins found in

most cellular life; recently gaining popularity as possible anti-aging targets due to

their control of DNA repair. These proteins participate in essential pathways that

lend themselves as targets for peptides that interfere with p53-MDM2 and p53-sirtuin

interactions. Various methods for synthesizing peptides and introducing peptides into

living organisms are available [59, 75]. A successful outcome was considered as the

design of three or more peptides that inhibit each of the four target binding sites,

12+ peptides in total, involving two MoRF-mediated interfaces.

The hub protein p53 has 393 residues, with 37% intrinsically disordered mainly near

the N-terminal transactivation and C-terminal regulatory domains [259–261]. The N-

terminal partner MDM2 and the C-terminal partner SIRT1 have sufficient parts of

their structure crystallized regarding the binding of p53, and are successfully used in

silico and in vitro studies [251,262]. Thus, focus was placed on the binding sites of p53-

MDM2 and p53-SIRT1, which have sufficient structural coverage for docking methods.

A similar situation occurs in the DELLA IDP, where only the first 110 residues

are modeled, with the rationale that the targets have characteristics of the MoRFs

previously studied, which are known to be activated by peptides. The abundance of

research on these proteins, together with the relative ease of purchasing p53 and many

of its binding partners, form the basis for why the p53 protein was identified as a model

system with its binding partners. Moreover, mutant variants can be considered for

future studies aimed at extending specificity requirements. Specific mutated targets

that can be controlled are an essential aspect of personalized medicine, and the p53

system can also be used to explore these ideas.
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This work aims at obtaining potential peptide-based drug candidates that will

disrupt certain out of control protein-protein interactions involving p53. Promoting

pepStream as a platform capable to rationally design peptide-inhibitors interfering

with a specified protein-protein interaction. The protein p53 is a cellular hub protein

in humans that regulates the function associated with p53 binding to many binding

partner proteins, which tend to control cell growth. Importantly, p53 and its cellular

partners are found in cancers in nearly every cell type. Rescuing mutated p53 activity

or blocking certain signaling interactions with p53 have been reported as an effective

paradigm for setting up treatable targets for several cancers [51, 257,258,263].

Figure 3.7: Disorder prediction for human p53. Residues with score above 0.5 are
predicted to be disordered while those below are structured, which can be MoRFs.
Those confirmed to be MoRFs have their associated interactions shown in grey.

The p53 protein has other protein binding partners and a DNA binding site, Fig-

ure 3.12, to design peptides for. Interference with other interactions, such as cyclin

A, replication protein A or general control non-depressor 5 (tcgn5) at specific sites
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on p53 can be achieved. The p53 protein has multiple MoRF sites that regulate a

variety of cell growth mechanisms through various protein-protein interactions as il-

lustrated in Figure 3.12. There are several publications on inhibition of MDM2 and

sirtuin proteins [51, 262, 264]. These proteins participate in essential pathways and

make excellent targets for designed peptides to interfere with p53-MDM2 and p53-

sirtuin interactions. The p53 IDP is known to bind to peptides, and its counterparts

have also been shown to bind to peptides. Often crystal structures of MDM2 are

stabilized with snippets of p53 or peptides that offer high tumor cell proliferation

suppression [265]. Our previous success with an analogous system and this literature

review give us confidence that our proposed computational approach is appropriate

to apply to p53 and MDM2.

3.3.2.1 Results of SIRT2 and MDM2 Modeling

Experimental structure 4ZZJ was used as a reference for the binding of p53 to

SIRT2. The actual binding site is discontinuous across the structured core of SIRT.

As such, the longer component, residues 410-421, were selected as the target for

these design runs. The scores from ZDOCK were found to mildly scale with size

of interactions. The scores were normalized by the length of the binding site to

help compare binding results between the target and alternative docking sites on the

target protein, Figure 3.8. An ideal outcome would show the target site, used for

the sequence diversification and subsequent peptide creation, would have the highest

scores. Observably in SIRT2 a portion of the flexible N-terminal (site 3), has the

highest scores for all but the highest ranked candidate peptides where they are similar.

While specificity of binding is considered when ranking the predicted peptides, this

particular site is actually near the target binding site, determined from the p53 peptide

in 4ZZJ. Considering a portion of the real binding site was excluded from the docking

measurements in Figure 3.8, it is likely that affinity of these peptides to the binding

site are good. There is also reasonable separation between these scores and the other
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subsections selected as alternate sites from across the structured SIRT2 core. Meaning

in three dimensional space these peptide prefer binding to the area intended.

Figure 3.8: Docking score normalized by target length for each site. Data sorted on
score for Site 2, the binding site for p53 to SIRT2. The cartoon of 4ZZJ show SITE
2 and SITE 3 along with the p53 peptide (cyan).

Experimental structures 4HFZ was used as a basis for the binding of p53 to MDM2.

The MDM2 binding site for p53 is found along a MoRF section in a disordered seg-

ment. As such, rigid docking will rely on a correct conformation. This proved difficult

for I-TASSER to model. To yield initial structures for the pipeline AlphaFold2 was

used to generate full length structures of human MDM2, uniprot P04637.

The computation yielded fewer candidate peptides than previous runs. The bind-

ing site selected was residues 14 to 28. It could be this segment of sequence was too

well conserved throughout the sequences used for the structure search. As before,

scores are normalized by the length of the subsection being targeted during dock-

ing. Figure 3.9 shows the target site has higher mean score than most of the other

sites tested. The site tested with the highest mean score for all (Site 4) is the first 14

residues of the protein that lead up to the binding site, but not including it. The pep-

tides generated did show some selectivity over the C-terminus (site 3), and reasonable

specificity to the structured components of MDM2.
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Figure 3.9: Docking score normalized by target length for each site. Data sorted on
score for Site 5, the binding site for p53 to MDM2.

The disorder nature of MDM2 implies that rigid docking is likely insufficient for

ascertaining bind ability. Recently it has appeared that AlphaFold2 multimer model

has reasonable ability to predict protein–peptide conformations which can even pre-

dict binding affinity in certain cases [266–268]. Simple direct bound conformation,

competition assays between known and unknown binders, as well as foundational

benchmarking have been done for this model. All indications suggest this is a reason-

able orthogonal method to ascertain possible interactions. Limitations of this method

include precise backbone conformations being reproduced, as determined from solid

states structures. So this is potentially a bias in the empirical data. Regardless, a

wide variety of peptide structure and protein–peptide interactions can be predicted

using alphafold in either a single sequence mode, relying on recycling the structure

embedding during prediction to arrive at a solution, or the normal MSA mode.

Utilizing this methodology MDM2 was tested against p53 in a competitive binding

assay, Figure 3.10. The MDM2 sequence from the 4HFZ structure was used, the p53

sequence from the same structure, and the predicted peptide sequence. This exper-

iment shows a variety of classifications for the resultant bound states, Figure 3.11.
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In some cases the p53 peptides was predicted nearly identical to the 4HFZ structure,

with the peptide binding poorly or not at all. Successful cases that predicted the

peptide to supplant the p53 peptide specifically at the binding site. And unspecific

binding where the predicted peptide is clearly binding, but to a random part of the

structure. Running the multimer prediction with just the peptide and MDM2 showed

a correlation between the competitive predictions and mean distance of the single in-

teracting predictions. This variation of the experiment can only demonstrate binding

ability, without the clarification of specific or unspecific binding.

Figure 3.10: Mean Distance, Cα-Cα, between peptide and receptor for MDM2–p53
binding site top peptides.
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Figure 3.11: Example structures from the AlphaFold multimer prediction. Typucially
three classes of binder appear: specific, unspecifc, and nonbinding. In magenta, the
native p53 peptide that binds to MDM2, cyan, similar to the nonbinding pose. In
green, the predicted peptide from pepStream.

This orthogonal analysis was helpful to add a selection criterion for corresponding

binding measurements, where a small number of peptide will be tested initially for

practical reasons. Table 3.1 shows an example of the raw data being used to evaluate

which candidates. Practical considerations of laboratory resources requires a sub-

selection of candidates to test initially. The N terminal of MDM2 can be limited to the

first 100 residues for this binding experiment, as the disordered segment will undergo

a rapid conformation change to bound state and will prevent possible false positives.

Poorly soluble peptide will likely require co-solvents or extremely low concentrations,

so trying to select reasonable peptides for the aqueous experiment is also a reasonable

requirement. To refine the top peptide set the overall docking score to the target site

from ZDOCK, the predicted gravy scores, and the mean distance predicted between

the peptide and the N-termini of MDM2 were used to select peptides to perform MST

on.
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Table 3.1: Docking Scores and Peptide Characteristics

Name Sequence Docking Score Docking Score Gravy AF2 Mean Dist.
Mean Std. Dev. (- is soluble) to Target

cMoRFs_1_6P8I SDGDLTLIYFGGD 597.9841 4.399017 0.030769 21.896299

cMoRFs_0_2MPS GGTTFEHLWSSLEPD 585.2565 8.029428 -0.64 23.045256

cMoRFs_0_2BMB WKLVPLPYRSG 565.1265 4.846744 -0.29091 21.624031

cMoRFs_0_5WTS DLFGVPSFSVK 562.6523 3.746744 0.618182 23.014660

cMoRFs_0_4MZD AGQYLMISGSYDDG 562.4132 3.688369 -0.27857 21.562941

cMoRFs_0_6A4M FPQLTDVSFQSQNHTWDTVV 541.1369 3.746615 -0.42 22.176880

cMoRFs_1_1Z1M HIVYCSNDLLG 528.0161 5.063502 0.554545 20.689459

cMoRFs_0_2HES LQEHSQDVKHVIW 515.2622 4.150987 -0.71538 28.208982

cMoRFs_0_3FM0 AWAPSGNLLA 507.834 8.470817 0.58 20.059511

cMoRFs_0_2X7P VKSPLLWAVSTGSNRD 503.2997 2.212397 -0.225 22.161436

cMoRFs_0_2Z72 KVVALSDVHGQYDVL 501.3251 4.276782 0.406667 21. 73202

cMoRFs_1_3FM0 CCATLEGHESTVWSLAFDPSGQ 486.0306 3.415333 -0.05 21.989141

3.3.2.2 Results of p53 MoRF Peptide Designs

In the p53 MoRF designs, identified experimental targets on the p53 alpha human

sequence are depicted in Figure 3.12. Interestingly, some of these targets encompass

either parts or entire other targets. Such overlaps were ascertained from a multitude

of structural data derived from the p53 MoRFs [51]. One primary aim of this approach

was to assess the precision with which the pepStream process could pinpoint specific

peptides when comparing extensive segments of the same interaction. The selection of

these targets was informed by their significance in cancer signaling and the fact that

they are not situated on the structured DNA binding domain of p53. This criterion

ensured that the chosen targets were disordered, making them ideal for pepStream.

There are several recognized drugs and binding peptides associated with the DNA

domain of p53. However, it was decided to exclude this region from our design efforts.

The reasons for this exclusion are threefold. Firstly, this region is structured, making

it less suitable for our primary focus. Secondly, though our pipeline could feasibly be

applied to it, this was not the primary interest. And lastly, the binding interface in

this domain is expansive and fragmented in terms of sequence space. This latter point
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highlighted a prominent limitation in our software, which became evident during the

SIRT2 designs.

Figure 3.12: Model of p53 with targeted MoRFs shown in colors corresponding to
the colored blocks on the sequence above. Each MoRF site is correlated to a known
binding interface, deduced largely from empirical structural data.

The results from running the pepStream pipeline over the p53 MoRFs selected are

shown in Figure 3.13. Run-time for each MoRF was elongated to 3 to 4 weeks as

the returned candidate peptide was many multiples larger than expected, slowing

down the initial pass of the docking simulations. For MoRF 2 this was particularly

difficult as the size created an extremely large number of mutant sequences, over

106, requiring implementation of cut off for the sequence diversification. The p53

structure, as with the MDM2 structure, was predicted from AlphaFold2. This large

structure is heavily disorder, creating a very large surface area. The docking method

is a FFT method that will likely scale with surface area, rather than strictly sequence

legnth of a protein. There is a significant trend that all peptides were found to bind

to the MoRF 1, N terminal MDM2 interaction site (site 2 in figures). In fact there
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is no re-ordering in any of the p53 MoRF design runs. For MoRF 1 it could be

concluded that the pipeline generates a large gap in binding ability to the target

designed for. With juxtaposition to other MoRF results it is clear there is either a

failure to generate a diversity in sequence of peptides, resulting in consistent results,

or some segments of p53 can bind to peptide more effectively than others. In the

MoRF 5 results, Figure 3.13, there is a significant increase in the top ranked binding

ability compared to the bulk of top results. However, this is mirrored in binding score

to MoRF 1.

Figure 3.13: Mean of the MoRF length normalized docking scores from ZDOCK for
each of the target sites on the disordered segments of p53 plotted against the rank
ordered peptides for the given MoRF site of p53, denoted in bottom right corner.
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3.3.2.3 Analysis of Candidate Peptides

As done with MDM2, using AlphaFold2, a computational competition simulation

was conducted to predict the structures of receptors when paired with two peptides.

Without knowing a precise bound conformation that p53 should take, a RMSD to a

known structure is not possible. Instead 3.14, a simple mean of the distance between

Cα of the two chains are taken for qualitative assessment. Notably, the greatest

variation in average structural distance was observed in MORF 3, while sub-optimal

binding, having the largest mean distance approximated at 30 Å, was exhibited by

MoRF 5. Conversely, the most promising binding predictions were seen in MoRFs 3

and 4, with instances revealing mean distances close to 20 toward the p53 N and C

termini. However, challenges were faced due to a marked lack of specificity, discerned

from docking measurements, and the pronounced issue of conformation induction in

p53 when interacting with binding partners—a complexity that the current iteration

of pepStream was found to struggle with.
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Figure 3.14: Mean Distance, Cα-Cα, between the peptide and the respective termini,
first or last 100 residues, of the given MoRF target.

To explore the generic trends of the predicted peptides a simple biophysical pre-

dictions of the resultant peptides for each of the targets shown for the p53, MDM2,

and SIRT2 systems. This sequence based prediction is plotted in Figure 3.15 was

performed using Biopython. Observably there is little clustering of any of the pep-
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Figure 3.15: Biophsyical properties top 20 sequence of each system tested using pep-
Stream v2. Properties calculated from the sequence alone using Biopython [252].

tides. There is a preference for peptides to hold a charge, as denoted by the gap of

pI around 7. A small favouring of flexible peptides for MDM2, MoRF4, and MoRF2

seems to be present as well. Both gravy and hydrophobicity deal with solubility of

these peptides, which seems to have been selected randomly in these metrics.



CHAPTER 4: pepStream Advancements and Machine Learning

4.1 Motivation

The advancements in ML in the last four years have reshaped the definition of

cutting edge practices in protein simulations, structural prediction, design, and other

facets of structural bioinformatics. The early success of pepStream can likely be

attributed to two pivotal aspects. Firstly, our cohort had streamlined the problem

to a granularity that made it manageable. Secondly, past failures had prompted our

cohort to explore alternative design strategies. This afford both the interest and acute

level details needed to address the particular problem.

4.1.1 pepStream version 2

The original architecture of pepStream was grounded in dated software. This

predicament is not uncommon in computer science projects and is resonant with the

notion of "technical debt". Technical debt generally refers to the future costs of

rectifying the limitations of choosing a simpler solution over a comprehensive one

that may initially be more time-consuming. In this case a short turn around time

framed by funding also prevented using untested methods, thus slightly older software

comprising the original pepStream. The unavailability of the original raw code for

recompilation further exacerbates the challenges associated with this debt.
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Recognizing these challenges and buoyed by the synergy between hardware ad-

vancements and software evolution, especially those leveraging GPUs or ML, the

pepStream pipeline was upgraded. This redesign was driven primarily due to techno-

logical advancements that either improve traditional approaches, like rigid docking, or

obsolete them with new methodology. There was also a desire to improve the pipeline

in technical details like file handling, attempt to reconcile the current technical debt

for new debt, and explore new methodology in the bioinformatics software ecosystem.

Particularly, structure prediction being dominated by machine learning tools was of

paramount interest to incorporate in some efficient manner.

4.1.2 pepStreaML: pepStream Refashioned Using a LLM

The emergence of AlphaFold inspired machine learning applications that could

go into pepStream, as seen in pepStream version 2. Recently, multiple language

based models for protein sequences appeared, implemented for a variety of different

purposes, but usually the sequence input relationship being learned to some output.

In the previous verion, the PSP usage of sequence to structure was limited to a one

time prediction which then would be utilized for coarse grain docking simulations.

There was no feedback involved with the peptide and the structure prediction; the

classic conformation problem.

A structurally responsive pipeline could be implemented. The enhanced func-

tionalities of pepStream involve a systematic exploration of sequence homology to

identify conserved motifs within the target sequence. These motifs are subsequently

subjected to diversification, enabling the localization of analogous sequences within

different protein contexts. Using a machine learning model to facilitate the expan-

sion of sequences and the subsequent generation of peptides, as well as the prediction

of potential peptide-protein structural interactions affords a comprehensive pipeline

consolidated within a singular software package. This enables the seamless execution

of all stages, effectively streamlining the entire process for peptide design.
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4.1.3 Retrospection of pepStream

The original version of the pipeline suffered from both poor encapsulation of the

core runtime code and in the ability to predict structures quickly. Unification of

the entire code base and turning the process into a single executable was a large

improvement to the pepStream pipeline, warranting a clear distinction in version.

User interface to the pipeline was reduced to a single run script that uses a parameter

text file to run. The usage of a input file offers reproducibility, ease of explanation for

new users, and easier exploration of important variables in the pipeline. Version 2 also

benefits from building a conda environment, a language agnostic management tool

that manages dependencies needed to run software. Transferring the software was

also a major issue in the first iteration of the platform, largely due to complexities

of installing third party software which rarely has software support. Building in

easily deployed environment allows a single file produced from the developed conda

environment to duplicate the same packages and software on any computer. Removal

of knowledge based structure prediction I-TASSER and replacement with a machine

learning structure prediction model was a heavily desired upgrade shortly after the

public release of AlphaFold2. This lead to the development of an entirely ML based

version of the pipeline as well.

4.2 Methods

4.2.1 pepStream version 2 Methods

The protein structure prediction pipeline AlphaFold was experimented with as a re-

placement, however the run times were longer than desired. An alternative Omegafold

uses a large language model based off the PaLM language model [269] trained on

protein sequences in tandem with a geometrical transformer to produce a protein

structure prediction. Omegafold offers extremely fast structure prediction, with rea-

sonable accuracy, even for large structural predictions above 1000 residues. One issue
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with Omegafold is there is only 1 output structure, without rerunning and changing

the model parameters for the artificial MSA.

To compensate a framework rigidity optimized dynamic algorithm (FRODA) pro-

cess is applied to generate lots of conforms, then refine down to a manageable num-

ber [194, 270]. FRODA is a constraint-based geometric simulation technique that

speeds up the search for native like topologies by accounting only for geometric re-

lationships between atoms instead of detailed energetics like in MD. This creates a

large number of conformations. These are reduce to a sparse set of representative

points, preserving as much of the original structure or variance as possible. This

is achieved by an interesting application of dimensional reduction and simple radial

basis functions and math.

The algorithm is as follows:

For each point i not previously categorized, the distances between that point and

all other points are computed.

dij = |xi − xj| (4.1)

These distances are then squared and inversed (u) to create a measure of how close

or far other points are from point i.

d2ij = dij × dij (4.2)

uij =
1

d2ij
(4.3)

A summation of the largest spread of these inverted squared distances is stored in

a(i). It can be inferred that larger values of a(i) imply that point i is central to many

other points.

ai =
∑

j∈ top m closest to i

uij (4.4)

{xi : ai > T} (4.5)
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The four closest points to point i are temporarily marked to prevent their im-

mediate removal. Points are sorted based on their importance values (a) and least

important points are marked for removal. After each iteration, temporary markers

are reset allowing reconsideration of any point. These expanded conformations, typ-

ically a set of 10, are further refined by performing an energy minimization using

GROMACS to ensure the generated peptide conformations represent physically real-

izable structures. The minimization occurs in explicit TIP3P solvent, with Na and Cl

ions added to neutralize the net charge inside the simulation box. The minimization

uses steepest descents for 20000 steps or until the maximum force on the protein is

less than 500 kJ/mol. Lastly, MEGADOCK is a implementation of ZDOCK that

utilizes GPU processing to speed up the FFT-grid-based docking with MPI [133].

Beyond dropping some calculation for their energy score the software and outputs

are identical, but can perform thousands of docking calculations in a few minutes.

In Figure 4.1 the outline of the updated pepStream version 2 pipeline is shown.
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Figure 4.1: Diagram of the improved pepStream, version 2. The entire pipeline is run
from a single script, and no prior data beyond sequence of target protein is needed
to run. Typically runs fit on a single GPU of 10+ Gb VRAM.

4.2.2 pepStreaML Methods

As with previous versions of pepStream, a user defined target on a protein has a

peptide optimized against it. In pepStreaML this is done utilizing features generated

from structures predicted and sequences generated in an optimization loop. It was

found a single python package, fair-esm, contained most of the needed prediction or

generative models needed to performed a guided optimization of a peptide [271]. The

python package Biotite was used to measure various aspects of predicted structures

to generate quantitative data to optimize peptides for binding properties to the user

defined target [272].
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4.2.2.1 Evolutionary Scale Model

Encapsulating biological properties from sequence data is a logical step toward gen-

erative and predictive ML for biology. Using 250 million sequences from the UniParc

database, a deep contextual language model with unsupervised learning to sequences

spanning evolutionary diversity can be performed. The Evolutionary Scale Model

(ESM) finds without prior knowledge, information emerges in the learned representa-

tions on fundamental properties of proteins such as secondary structure, contacts,

and biological activity [271]. Embedded representations are useful across bench-

marks for remote homology detection, prediction of secondary structure, long-range

residue–residue contacts, and mutational effect. Protiogenic protein sequences use a

small vocabulary of 20 canonical elements, the modeling problem is more similar to

character-level language models than word-level models. Like natural language, pro-

tein sequences also contain long-range dependencies, motivating use of architectures

that detect and model distant context, like BeRT [165].

The BERT model uses unsupervised learning to train deep neural networks to

model contextual language, originally for language applications. When trained on

protein sequences the learned representations capture multiscale patterns, reflecting

various levels of biochemical properties and remote homology across proteins. The

representations also encode information about secondary and tertiary protein struc-

tures, which can be discerned through linear projections. Self-attention facilitates

representation learning on the sequences by incorporating context from across the

input sequence, making the architecture adept at representing residue–residue inter-

actions as well as it represents word-word relationships in NLP applications.
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Algorithm 1 Pseudocode of the pepStream ESM based workflow. Classes for the
design mode, target or whole, and the inverse folding process are called and operate
over input handled from the core run code.

procedure main

Initialize Parameters and Parse Command Line Options

if not binding_site provided then

exit program

end if ▷ Input structure handeling for uniprot or PDB IDs

Prepare Output Directory

Save user options as JSON ▷ Section 1: ESM-IF diversify structure

Initialize ESM Inverse Folding

if Inverse folding results exist then

Use existing results

else

Perform inverse folding

Calculate relative threshold for sequence identity

Return N sequences per temperature

end if

Plot Results of ESM-IF

Get Conserved Positions ▷ Section 2: Run time design using ESMFold

for i in range(number of designs requested) do

Initial Sequence Generation: using only target sub–sequence to predict peptide

Convert the best found peptide to new design object

Optimize the sequence using Simulated Annealing

end for ▷ Section 3: Outputs csv and pdb files

end procedure

END

The pepStream ESM based pseudocode is shown above, referred to as pepStreaML.

Replacement of the diversification steps using the BLAST sequence database with a

inverse folding process from ESM-IF offers a faster and more portable diversification

method. This process was optimized for conservation of sequence by simply adding a

threshold for the sequence identity produced from the structure to sequence predic-

tion. This eliminates the need for any sequence searching performed via a database.

A major limitation was the relative cut off, some structures cannot generate 50%

sequence recovery using this method. As such a relative sampling routine was done

on a batch of sequence generation before anything is saved. These are measured for

the mean sequence identity produced to guarantee that the filter will not prevent the

generation of the minimum number of new sequences, passed in by the user.
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Figure 4.2: ESM Inverse Folding on MDM2 (PDBID 4HFZ) embedded with real
MDM2 sequence produced from BLAST alignment.

From this, conserved residues likely important for binding events are known and

alternative sequences for the target sequence could be derived easily. To generate a

peptide simply applying the core ESM language model would fill in a set of masks

attached onto the input sequence. It was obvious that this is a deterministic prediction

unless gradient and drop outs are enabled for the model. These conditions would

still converge rapidly. Sequence space was found to optimize poorly for structure

space. Obviously an optimizer was needed to relate the goodness of the sequence

to a relevant metric, i.e. binding of the peptide to the protein. Work affiliate with

the original ESM research published an open source protein programming language

that included a metropolis Hastings based Monte Carlo Markov Chain (MCMC)

optimization that could use non-differentiable measurements during optimization time

[237]. So instead of a gradient descent on properties that might be directed during

prediction time, the optimizer will sample in a semi random fashion over the allowed
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mutations of a given encapsulated protein sequence. The properties are referred to

as energy functions and include things like globularity, hydrophobic content, RMSD

to reference, distances, among other structure based measurements. As optimization

occurs it would be detrimental to continuously allow large portions of a sequence

to change, as such a computational annealing method is applied to the sequence

prediction as a temperature. This scales down during the optimization based off

a defined rate, affecting both the number of residues mutated and the mutation

prediction by ESM.

At this point a peptide could be optimized for a given protein interaction, as the

ESMFold process can handle multi-chained complexes, being based off Openfold.

This offered a simple path for measuring goodness of interaction between peptide

and target. Approach design with the whole protein and hope target arrives, or only

model sub domain with a reference constraint and allow peptide to design. It could

also be the case that a structure should be deformed upon binding, so remove target

structure restrictions is easily done. Getting the best initial peptide start became

an obvious limitation for optimization during early trials. It was observed that poor

initial sequences essentially have no optimization plane. During annealing the rapid

mutation narrowing secludes the bad sequences into a useless optimization routine.

To capture a reasonable optimization run, the initial peptide is calculated by running

the sub–target only. After sampling this sequence space a best initial structural start

is selected and the peptide sequence is swapped into a full model, if run in whole

protein mode. This affords two design strategies: quick and local, target mode, or

slower and global, whole protein mode.

4.3 Results

4.3.1 Results of pepStream version 2

During testing of the pipeline, reliable execution and base functionality were con-

sistently achieved. It quickly became evident that the docking scores exhibited a
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strong correlation between length and score. To address this, raw docking scores

are normalized by the length of both the target and the peptide being scored. Four

protein systems have been initial tested as exploratory results for the new pipeline.

Both MDM2 and the MoRFs for MDM2 and SIRT2 on p53 are extensions of the core

work with pepStream version 1. The addition of a WW domain protein is to begin

benchmarking the method as a peptide binding motif is known.

The NMR structure 1JMQ was used for a target sequence. Running the method

on default setting required one GPU and approximately 24 hours of compute, a

large speedup from the previous version. It was found that 20 percent of the inital

fragments from distant homologs yielded the motif known to bind, PPXY or PPX in

some cases [273]. The MDM2 sequence is selected from the 4HFZ structure again,

restricting the target receptor to just the 100 residues from the crystal. For p53 MoRF

1 and 4 were selected for their importance to MDM2 and SIRT2 partners, should any

of the outputs be of interest to test experimentally. These sequences are selected as

before, and the entire human p53 sequence is used, as previous run from pepStream

v1. The alternative binding sites selected for this trial are the remaining p53 MoRFs

from previous computations described for this system. This likely will cause some

issue with specificity as portions of the sequences are shared.

Using cross-site binding specificity scores, it is possible to measure the binding

affinity to specific sites through restricted site docking, as done in ZDOCK. Docking

scores typically have scores in the 1000’s and a standard deviation in the single digits.

This is because ten conformations of each partner are input into each docking pro-

cedure, leading to 100 docking pairs for every peptide and running 1,000 interaction

poses for each pair. While specificity is achievable, certain targets, like the MDM2

run, can be especially challenging. To streamline the analysis, it’s advisable that

alternate docking sites don’t overlap any residues with the primary target. Unlike

what is done here for p53. Despite this, numerous instances have yielded successful
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outcomes based on specificity. This suggests that this version of the pipeline is capa-

ble of achieving specificity. However, it is worth noting that no empirical tests have

been conducted on any of the results so far.

Figure 4.3: Affinity plotted against specificity of predicted peptides for various sys-
tems. The Affinity score is directly calculated from the docking scores. The specificity
scores is calculated as a quotient of the target binding to alternate site binding, nor-
malized by lengths of interaction protein segments.

Figure 4.3 shows the results of four different systems. It is clear that high scoring

binders, determined from the docking scores, do not necessarily imply the specificity.

In the previous iteration of pepStream the only cross comparison for specificity was by

inspecting the docking scores for the various alternate sites on the protein of interest,

as seen in Figure 3.13.

Binding affinity is described above, and specificity is calculated as the difference

between the max alternate docking score and the target score. In Figure 3.13 only
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the WW domain run generated specifically binding peptides, as determined from

these two metrics. For MoRF 1 of p53 the specificity calculated was negative, but

this was determined to come from the MoRF 2 scores exclusively. Meaning MoRF 1

and MoRF 2 had the highest docking scores, showing that the peptide bound to the

termini of interest with some specificity. In reality specificity is likely dominated by

kinetic factors, meaning generated peptides can still be practically effective if they

hold the correct biophysical attributed needed to interact correctly.

The previous version of pepStream produced low biophysical diversity in the pep-

tides predicted from the method. Predicted peptide sequences produced from this

version seem to show biophysical attributes preferences by the targets, Figure 4.4.

For WW domain there is a strong preference for longer flexible peptides, which is

interesting as the primary binding sit is a narrow gap between two alpha helices. The

lowest scorer mdm2 seems to have a mild preference to low pI, and like the rest of

the peptides, more rigid than flexible. The p53 MoRFs 1 and 4 had the higher target

binding scores than the other two systems. Peptides with a low pI were preferred for

for the MoRF 4, showing the highly charged nature the p53 segment. For MoRF 1

there is some abundance of neutral charged peptides, with pI around physiological

pH, or perhaps with the spread across pI there is a different factor than just charge

that selects for these peptides.
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Figure 4.4: Biophsyical properties top 20 sequence of each system tested using pep-
Stream v2. Properties calculated from the sequence alone using Biopython [252].

As before, an orthogonal computational analysis was desired for the candidates

produced from version 2 of pepStream. Structural prediction of the complexes were

done using AlphaFold2 from the ColabFold package [274].A single example from the

WW domain peptide predictions shows a the top ranked pepStream peptide candi-

date modeled against the 1JMQ sequence, Figure 4.5. This exemplifies the specific

binding capability from the predicted peptide for WW domain, seemingly a well be-

haved system for this methodology. Comparing multiple conformation show a similar
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pattern of interaction to the WW domain between the native and designed peptides.

Figure 4.5: Top ranked peptide from pepStream v2 was modelled against WW domain
sequence from PDBID 1JMQ. Juxtaposed are the 20 states of 1JMQ, left, aligned
and the 5 states predicted from AlphaFold2 for predicted peptide, right. Each system
as the peptide sequence printed below. Superposition calculated from first frame of
each ensemble using Pymol.

The results derived from applying the AlphaFold2 multimer prediction to the top

set of peptides across all systems are presented in Figure 4.6. The disparities between

these predictions and those from the first version are noteworthy. The current predic-

tions typically manifest shorter distances. Additionally, certain predictions display

extremely limited variance, reflecting a high degree of confidence by AlphaFold2 in

the predicted conformations. Furthermore, these results offer visual affirmation of

the correct binding sites being identified. As a specific example, considering the WW

domain, the native mean distance of 1JMQ is 17.19 Å. The predicted peptides offer

numerous instances that are within 1 Å of this mean distance, including an instance

with a measured distance of 17.45 Å.
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Figure 4.6: Top ranked peptide from pepStream v2 predicted in complex with respec-
tive target proteins, or termini from the protein in p53 targets.

4.3.2 Initial Set of Results for pepStreaML

The running speed for the design for sub 100 residues in total, sum of sequence

length in target and peptide, on consumer hardware runs in less than a few minutes

per design at hundreds of optimization steps. This affords rapid alpha testing and

evaluation of possible protein–peptide prediction problems that the design method

will arrive at known solutions. A variety of control cases were selected, where not

just a structure of a protein peptide was known, but some general information about

the peptide motifs that successfully bind. All design runs were performed against 1

structure from the PDB, unless otherwise stated. For each protein the target was

determined from residues within 4 Angstroms of the native peptide interaction, and

ten peptides designed. For the larger structures sub-targets were used to initially

design peptides, then the whole protein was used during the design stage.
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4.3.2.1 Method Validation Using Model Systems

Premise of each test is to get an idea on systematic runs on known peptide-protein

systems. For each 10 sequences are predicted using the full 3B sequence model then

refined for 300 steps using the default optimization parameters, described above. In

all cases the two step process of local sequence related peptide prediction followed

by an entire protein peptide structural optimization process. Success of a design

is determined by conformation induction, motif presence in designed sequence, or

binding mode specifics derived from empirical examples. In Figure 4.7 some different

designs for known protein–peptide systems are shown.

The WW domain protein used for these designs was from PDBID 1JMQ YAP65

in complex with GTPPPPYTVG peptide. Typically WW domain proteins bind to

peptides with polyproline sequences, often motifed as PPXY though some outliers

can occur [273]. In this design the entire structure was given to the target mode

so conserved residues would be used for score, to improve optimization. Resulting

designs all were bound roughly to the known binding cite, within 2 Å of the 1JMQ

peptide. Multiple sequences were found with polyproleins of either PPX or PPXY, 5

of 10 runs.

PDZ domain protein used in this design was PDBID 1BE9, bound to partially

resolved peptide KQTSV. The binding mode involves a ionic interaction between

the conserved carboxylates on the loop of the PDZ domain and the anchor site for

aliphatic residues, like leucine or valine. The known [RK]-XXX-G-θ-G-θ motif, where

X is any amino acid residue and θ is hydrophobic residues is typical for PDZ binding

peptides. As always some variation in literature exists for exact make up or pattern

[275]. In this computation some number of designs were actually designed off target,

a common issue as there is no way to force the structural prediction model to place

the peptide. Of the 10 designs 4 were offsite and 6 contained a reasonable binding

motif.
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Figure 4.7: Design peptides and the known receptor peptide interactions. Each design
was run for 300 steps of design using default weights on the optimization scores. Top
of figure, exact matches to WW Domain peptide were generated showing exact match
and near match that mimics native binding pose. Middle of figure, the PDZ domain
binds to positive charged sequences that are followed by hydrophobic segments. In this
case a near match is found for sequence, but the binding interaction that uses valine
as an anchor is duplicated. Bottom of figure, calmodulin is a double EF hand motif
protein that has significant conformation change upon binding to native peptides.
Both correct peptide motifs and induction of bound conformation are generated from
the design process.
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Calmodulin is a primarily a calcium binding protein featuring dual EF hand motifs,

typically involved in Ca2+ regulation of a wide range of physiological processes. This

domain can also bind to peptides with or without its ion ligands. When this particular

protein binds to a peptide, a very distinct conformation change occurs [276]. Of the 10

designs generated for this receptor 9 generated the bound conformation in calmodulin

used from the PDBID 4LZX structure. It was noticed that the energy functions had

steep drops during training time, suggesting the correct peptide sequence induced the

conformation change. A factor that aids in this guidance is utilizing weighting on the

RMSD of the receptor protein. For these designs this conformation of reference was

in a bound position, meaning a sudden conformation change from open to closed,

relative to bound to peptide, is positively scored.

Beta Lactamase and major histocompatibility complex (MHC) class I were dif-

ficult cases, partially. An important observation is that conformation or sequence

really matters when utilizing this design process. The inability to capture relevant

interactions, arrive at a known conformation, or overly compete ruins the design pro-

cess. As such multiple conformations and sequences for target proteins might be a

wise idea to incorporate in future developments. The method scheme was kept the

same as previous test systems, favouring the reference conformational state.

MHC class I molecules present peptides derived from cytosolic proteins, the path-

way of MHC class I presentation is often called cytosolic or endogenous pathway. This

affords a passive immune system antigen presentation of proteins in the environment.

The proteins have evolved to gregariously bind to peptide segments. Multiple studies

have tried to evaluate a peptide motif, seemingly structure activity relationships only

yield that certain segments of the peptide MHC interface must be anchored with

peptide residues, at the boundaries of the helix interface. These proteins have two

protein interfaces in practice. Typically they are crystallized bound to a microglob-

ulin, a relatively small globular protein, Figure 4.8. The peptide interface is nested
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between two helices along the anterior surface of the MHC monomer, relative to the

interface with microglobulin. It seems this has created a off target design interface

when using the ESM model to generate peptides. Observably in the first set of 10

designs, using structure 2XPG, none were positioned at the normal peptide–protein

interface. Instead all were designed at the interface with the microglobulin. The MHC

I family has an abundance of structures, using 5AD0 instead of 2XPG designs were

found to be at the correct peptide site, shown in Figure 4.8. Only two of 10 peptides

were found off peptide interaction site. Overall, disordered extended peptides might

be the hardest thing to design, which is sensible given the conformational variance.

Figure 4.8: Designs for MHC Class I receptors. A) Breakdown of peptide interface on
the family, zones A and F are generally considered the most important binding sites.
B) Cartoon of 5DA0 chicken MHC class I (Green) bound to a beta-2-microglobulin
(cyan) and 11mer peptide (magenta). C&D) Designs from pepStream for 4REX and
5DA0, respectively.

Beta Lactamase is a famously model protein system, the class A enzymes are

probably the best-studied β-lactamase family with the description of TEM-1 dating
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back to the 1960s [277]. While there are no known structures of peptide bound to

one of these proteins, the globular protein can serve as an example case for a truly

unknown outcome. Generically designs did not extend to designated dynamic targets

on the protein surface, determined from recent work identifying dynamic allosteric

sites to the functional modes of these enzymes [278]. A single output of interest during

the targeting of residue 90-120 of 1XPB showed a possible binding mode utilizing an

disordered long interface, shown in Figure 4.9. The outlier result was passed into

AlphaFold2 multimer prediction, Figure 4.9, where a near identical conformation

between the protein and peptide, 0.2 Å RMSD, was predicted for this peptide and

the 1XPB structure. Beta Lactamase is a soluble and highly globular protein, as such

it is difficult to bind to the surface as there is a large penalty to enthalpy of solvation.

Finding a structure that not only binds stably but also covers the enzymatic pocket

is a promising result.
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Figure 4.9: Designed peptide for 1XPB, targeting loop between helix 9 and 10,
residues 90-120. A) the ESMFold predicted structure for the TEM-1 β Lactamase
(green) and peptide (cyan) for a single design found to bind into the structure near
the target site (magenta). B) AlphaFold2 multimer model v3 predictions for the
1XPB sequence and the designed peptide. Superposition with the original output in
A (white) from pepStream.

Once again the disordered signalling hub protein p53 and disordered partner MDM2

are considered as interesting design targets. MDM2 has many peptide bound struc-

tures and even known motif, FXXXWXXL with synonymous variations [279]. Method

set up was change partially to account for the conformation change in these systems;

due to their inherent IDP nature this can be predicted to be a major factor of in-

teraction. Only the termini of p53 and mdm2 were used, first or last 100 residues

depending. In the MDM2 results observably some peptides were designed off target,

but 80% designed to within 3 Å of the binding position of the p53 peptide in 4HFZ.
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Figure 4.10: MDM2 alpha (uniprot P04637) designed peptides in cyan superimposed
to PDBID 4HFZ, which has MDM2 in white and the bound peptide from p53 in
magenta.

The p53 N-terminal is very infrequently folded in known structures. Under a con-

formation hypothesis, like DELLA there might be a specific conformation that we

can target. If this is utilized as the initial conformation in the program perhaps this

can overcome the disordered aspect, if that conformation is given as a constraint to

the optimization. Using the PDBID 6XRE structure a segment of p53 near the N-

terminal can be found folded and bound to RNA polymerase II (Pol II) Figure 4.11.

Pol II, one of the three nuclear RNA polymerases in eukaryotes, is responsible for

transcribing the genetic program, including protein-coding mRNAs and certain small

non-coding RNAs. The transactivation domain of p53 N-ter binds the surface of Pol

II’s jaw in contact with DNA. Simply put, p53’s functional domains directly regulate

DNA binding activity of Pol II to mediate transcription.

Purposefully utilizing a “bound” conformation from 6XRE, we can see a clear struc-
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Figure 4.11: Designed peptide for p53 N-ter domain (MoRF1 - MDM2 interaction).
A) PDBID 6XRE with the folded p53 N-ter in cartoon. The loop of the p53 structure
is denoted for reference. B) A design from pepStream where the loop has been
opened by a peptide interaction; the conformation induction can be seen occurring
in the plotted meta data from the design process underneath by the sheer drops in
the overall energy (green). C) Superposition of 6XRE N-ter and designed peptide
complex of the same p53 residues.
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ture interactions predicted. Importantly, some of these actually specifically seems to

mimic the bound state of 6XRE. An anchored Beta-sheet formation of the peptide

opens loops of TAD, preventing fit into Pol II shown in Figure 4.11. This peptide

could feasibly bind into the bound state, as it is bound to Pol II receptor. It is notable

that a large piece-mill drops in the optimization energy is likely from exporing other

conformations possible between the p53 N-terminal and the designing peptide.

Figure 4.12: Demonstration of the diverse set of results obtained from predicting
binding peptides (cyan) to the p53 N-terminal (MoRF1 – MDM2 interaction and
TAD), shown in green.

Many possible interaction conformations are predicted in response to the peptide

candidate, Figure 4.12. Utilizing structure to sequence methods a set of different

interaction mode peptides could produce a large number of lead sequences to interact

with the p53 N-termini. This kind of data would be applicable to expression systems

for directed evolution experiments, where a diversity in initial sequences yields better

successful outcomes [248].

There are not any bound or folded structures for the p53 C-terminal that were found
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in searching the PDB, barring examples of the tetramerization domain complexes.

The interactions site of interest, denoted MoRF 4 previously, interacts with SIRT

signaling proteins. From the design runs with the N-terminal a conformation change

was desired, but no reference to direct it existed. So alteration to the core scoring

methods inside the optimization of pepStream was done to remove the initial receptor

conformation as a bias. The p53 C terminus was allowed to be designed freely,

optimizing by prediction likelihoods and metrics like distance between peptide–protein

interface.

Figure 4.13: A) Uniprot P004637 p53 alpha canonical sequence. B) Example designed
peptide anchored via β-sheet formation with the p53 monomer.

There were fewer successful examples of design for this site of p53 (5/10), deter-

mined by degree of folded p53 in the interaction. However, without the bias towards

initial conformation rational binding peptides, Figure 4.13, were designed from a

disordered predicted structure (Uniprot P004637). Notably, a similar signal in the

optimization energy is found in the meta data plots produced from design of the

successfully designs as the successful p53 and calmodulin designs.
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4.4 Future and Ongoing Related Work

The ESM based pepStreaML can handle: discontinuous binding interfaces, large

induced conformational changes, a variety of possible design rules, multi-design op-

tions, as well as immediately understandable outputs that can be passed into other

structural analysis like MD or a Rosetta routine. There are benefits and draw backs

to this method, such as inability to force a specific location for a peptide. Improve-

ments to pepStreaML could be built directly from the ESM embeddings, or combine

other models to improve the designs. For example ProteinMPNN could be used to

guide the mutation process, a ML based MD simulation could be performed, but the

inclusion of physics informed models will be of utmost importance to work towards

a full chemical modeling of these biomolecules. In the coming years it is likely even

more sophisticated architectures for machine learning will be devised, such as the for-

ward forward model from Hinton that learns local objective functions during training

time [280], that will shift levels of accuracy, implementation, or even trivialize certain

issues discussed here. There is more work to be done in the computational structural

biology field as a whole.

4.4.1 Refining the ESM Guided Design

The design of the classes within the pipeline facilitates mutability within encap-

sulated object types. Extending the energy functions is straightforward, involving

the addition of relevant methods to generate metrics. Incorporating valuable energy

functions like hydrophobic contacts and hydrogen bonding between the peptide and

the target protein, with potential weighting of conserved residue interactions to en-

hance their significance in design, can be seamlessly integrated. Implementing these

calculations is made easy through the utilization of a structural analysis package such

as MDTraj. Additional energy functions, such as dipole moment and contact calcu-

lations, can be incorporated using the MDTraj package for precise measurements.
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Tying in electrostatics for a design process likely would improve successful enzyme

design, were this desired, or improve Columbic driven peptide interactions [281].

Currently two design modes are enabled and run in tandem, depending on user

commands. Adding new epochs for design could be achieved by varying the weights

of energies at different epochs, reinforcing various singular aspects during design. This

could look like initializing a design to a local area, then apply against whole protein

with only hydrogen bond scores, then introduce shape and probability scores, then

end with purely pLDDT for structural accuracy maximization. Constant or variable

size of the peptide is another design consideration that could be included easily to

modulate outputs, particularly if a mutational library is desired for displays or other

biological work. Passing in other references for design constraints would be easy to

modulate a design mode with. And interesting design mode might include playing a

game of predicting a peptide, using ESM-IF on the peptide, to reposition the sequence

landscape being optimized. It could also be interest to cross seed a receptor using

ESM-IF to generate a peptide that can bind to conserved aspects of the protein,

similar in spirit to how antibodies are matured for influenza virus, targeting most

conserved protein segments.

Conformation will always be a primary driving force of peptide interactions. Adding

alternative steps, like FRODA, MD, or maybe diffusion based model step to the prob-

lem trying to account for conformation could benefit. In some cases flexibility infor-

mation could be gleaned from the dynamics modelling, potentially offering estimates

for entropy of the binding event. The only hindrance would be speed of calculation.

Both diffusion based and mechanical based, like FRODA, could offer rapid enough

calculations to add dynamic considerations to the predicted interface.

There are a variety of optional outputs that could be of interest to expose to the

user such as saving a trajectory of designs or even logging the meta data associated

with the design optimization more so that current is done; which only saves the
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energy values currently. With some work running on laptop level resources could be

demonstrated for this version of pepStream, which would effectively bring this tool to

any interested parties. Often in the software community sharing of python code can

be done by sharing both the code and the environment using specialized tools like

the anaconda software, which the entire pepStreamL software is developed in. While

distribution is fairly easy, a higher end consumer grade GPU is required to generate

the predictions. Not all researchers have access to recent hardware locally or via a

HPC like resource. It maybe be feasible to scale down parts of the model, such as the

core sequence model being used to score and predict the peptide sequence, to reduce

local runtime demands. The openfold library can modulate computational demands

using normal resource detection, this is the core software of the structure prediction

being performed inside ESMFold [282,283].

The original pepStream took over a week to run, the second version can run much

faster and on fewer resources, but the ESM pepStream pipeline can run in minutes on

a single GPU. There are great reasons to use a explainable pipeline like pepStream

version 2, people tend to like to track how everything was selected and possibly use

that information for further development. But the speed and possible elimination of

major conventional issue, like induced conformations, is too tantalizing not to develop

both generative ML and classical algorithm method. More so, due to the speed and

ease of running pepStreaML multiple baseline tests could be conducted, which clearly

show a degree of accuracy in terms of design ability that was not demonstrated before

in the pipeline. The ML adaption does show real promise, but the best path forward

will likely be a fusion of ML with classical techniques like MD and docking.

4.4.2 Models Building Models

Interesting aspect of a large unsupervised model is that there are hidden relation-

ships in the embedding space of a 3 billion parameter model, unsurprisingly. High

dimensional univariate vectors can be generated from sequences using the model,
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subsequently these can be used to train other kinds of models on a variety of prob-

lems. The original authors demonstrated this with the beta-lactamase classification

problem from sequences alone [284]. This process is simple as the PCA of the em-

bedding output itself can be used to train smaller models, such as a Random Forest

model, that can achieve reasonable accuracy due to the embedding space spreading

the functional components over many variables, instead of stuck in a string of letters.

The ESM model can embed sequences into a coherent high dimensional space.

This is performed by dropped the final output layer and simply storing the last hidden

layer values for the respective sequence. Zero-shot transfer is an interesting capability

of large scale language models, and represents a major point of departure from the

unsupervised learning methods that are the basis for current state-of-the-art inference

of protein structure and function. The capability for zero-shot transfer implies that

a model can be trained once and then applied to perform inference for many tasks

[284].One of the most salient features of good drugs is solubility in standard biological

conditions, which could be trained in a variety of ways based off the existing model in

the pipeline. Similar to work performed using the ESM language model to predict two

objectives, solubility and practical usability for purification of proteins in Escherichia

coli, which claims to obtain state-of-the-art performance. [285]. Additionally, this

could be done for synthesis outcomes, or a variety of other important factors.

Understandable not to provoke an immune response and is generally considered

to be an undesirable physiological response. Immunogenicity is an undesired trait of

any drug, particular those that are protein based. Work utilizing the ESM-1b model,

trained on UniRef50, ed that general protein language models can efficiently evolve

human antibodies by suggesting mutations that are evolutionarily plausible, despite

providing the model with no information about the target antigen, binding specificity

or protein structure. Using this method they improved the binding affinities of four

clinically relevant antibodies [286]. This would be another example of synergistic
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design feature in situ, enabled by the underlying foundational model used.



CHAPTER 5: Conclusions

The core of this work is to apply methods to problems that reside between com-

puter science and other disciplines. Designing proteins is based off the fundamental

hypothesis that they will interact in a predictable way, based off the rules of chemistry

and physics. Fully representing this in silico is rather difficult. With advancement

in computer science finally percolating up in the media, it is likely bleed over from

popular methods will continue to drive developments in the structural bioinformatic

field. This will extend to other complicated biological polymers like RNA, which

already have shown such high value with mRNA vaccines. The value of being able

to process, analyze, and create design hypotheses about these kinds of systems will

likely become a more reliable and abundant technique.

5.1 Summary on pepStream and Peptide Design

The initial pipeline was thoughtfully rationalized and tested. The present ver-

sions incorporates theoretical advancements that remain to be validated, a promising

prospect currently in progress. Initial DELLA experiments with pepStream worked

quite well, for a design project. Essentially the tested peptides returned with a 70%

specific binding classification. While it could not be determined if this was a more

potent binding than previous peptides, it offers new scaffolds to modify using ratio-

nal design. Success can be attributed to having experts on hand that helped rapidly
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arrive at the minimal necessary interaction needed. Observably, pepStream version

1 had great success with a disordered protein that had no real structural informa-

tion, particularly for near homologs that show any kind of protein protein interaction.

Relating the physical filter to known empirical measurements from the PFR cohort

inspired confidence leading to attempt to design for p53 signalling system.

Results from MDM2 peptide generated from the pepStream showed competitive

predicted interaction as compared to the native p53 peptide, showing a variety of

possibly close binding peptide. The laboratory experiments will begin with MDM2

and a few carefully selected peptides to provide the best possible initial outcomes for

successful outcomes. This will be iterated as results are generated from our cohort.

It is interesting to note that some overlap of exact sequence in the version 2 MDM2

matched with original outputs, only 5 peptides though. Additionally, pepStream

version 2 was developed and run against the key MoRFs of p53 that interact with

MDM2 and SIRT2. In the next round of MST experimentation it is likely some of

these candidates will be tested. In attempt to baseline the accuracy of pepStream,

predictions were performed on a WW domain protein, a popular model domain for

peptide designs as the binding motif is well documented. Using the 1JMQ structure

is was determined that 93 of the 3196 possible candidates contained a diproline,

PP, in the sequence. In the final result set of 319 peptides only 11 contained a PP

in the sequence and 1 contained the canonical PPXY motif. Degenerate solutions

to interfaces can exist, which seem to be the case as observed from predicting the

pepStream version 2 WW domain peptide against the 1JMQ receptor. There are

a variety of internal process that could recover the exact peptide motif of the WW

domain, this will be a focus on improvements for this version of the pipeline. Using

AlphaFold2 multimer prediction, predicted peptides from the first version and the

second version of the pipeline against two MoRFs of p53. The second version on

average had closer interfaces and candidates had biophysical properties that separated
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depending on the target given, which is expected for specifically binding peptides.

A machine learning embodiment of the pepStream pipeline was developed using

the ESM, pepStreaML. The unsupervised LLM can be deployed to both predict se-

quences given structures as well as structures from sequences; and can optimized a

peptide sequence against a protein target. Designs performed in this newest version

included a range of protein–peptide interactions with known peptide motifs. The

outputs captured successful results for all of the experimental systems tested, only

partially failing to produce peptides with a unknown binding to the target protein

for β Lactamase. Even for this difficult case the method produced a single feasible

binding peptide, as determined by complex prediction using AlphaFold2. These re-

sults demonstrates an interesting potential solution to the limitation of the classical

computational methodology for design; conformation induction. It was found that

given correct initial conditions, a conformation induction in the target protein of a

successful peptide design can occur. There are a few additional processes that should

be added to this simplistic framework that has been implemented. Building simplistic

models on top of the sequence prediction model used could add a rapid refining to the

optimization and adding physics informed ML methods would greatly improve opti-

mization. The optimization itself will be an important improvement, other algorithms

and mixing with design epochs will be tested.

5.2 Additional Work

2023 Biophysical Society Annual Meeting 2023 Spring [poster] " Evolution Inspired

Design of Binding Peptides for p53 in an Automated Workflow: pepStream."

2021 Biophysical Society Annual Meeting 2021 Spring (Virtual) [poster] “A tale of

two binding pathways: Molecular dynamics study of the GID1A-GA-GAI system”

2019 Gibberellins 2019 (Olomouc, The Czech Republic) [poster] “Computational

elucidation of the binding dynamics in the GA-GID1-DELLA complex”

2019 Biophysical Society Annual Meeting 2019 Spring (Baltimore, Maryland) [poster]
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“Using QSFR to ascertain Beta Lactamase family functionality”

National Institutes of Health under award number 1R15GM146200-01. "Computa-

tionally designing peptides to interfere with p53-MDM2 and p53-sirtuin interactions"

The New Zealand MBIE (Ministry of Business, Innovation, and Employment) En-

deavour programme grant C11X1804 to Erik Rikkernik October 2019

Bioinformatics Association of Students (BiAS) service (Vice president 2018, Trea-

surer 2019)
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APPENDIX A: Additional Computational Biology Contributions

A.1 Molecular Dynamics on GID1A to Investigate Ligand Binding

Using randomly accelerated molecular dynamics (RAMD) method simulations of

the dynamics and characteristics of small molecules binding to a protein dimeric

complex were investigated [43,287].

Gibberellin (GA) is a prominent growth hormone in plants with over a hundred

variants. This study reexamines the traditional classification of GA into active and

inactive forms by probing the GA-GAI-GID1A complex and its binding mechanisms

[288]. Here, GID1A stands for the Gibberellin Insensitive Dwarf 1 receptor, and

GAI represents the DELLA family disordered signaling protein, highlighted by a

highly conserved residue set that contributes to its Molecular Recognition Feature

(MoRF) [289]. The study aimed to discern how the GID1A-GA-DELLA system reacts

to varied GA variants and the role DELLA plays in these variants’ binding. The GAI

protein, one of five in Arabidopsis, functions as a growth-inhibiting regulatory protein

within the gibberellin response pathway [290]. The renowned ‘Green Revolution’ in

dwarfed high-yield varieties is attributed to DELLA family mutations, which disrupt

the interaction between the GA receptor GA-Insensitive Dwarf1 (GID1) and a DELLA

protein, making them "master regulators of growth and development" [291, 292]. A

pivotal advance by Hao et al. previously revealed a channel in the GAI-GID1A

complex, enabling GA to bind without opening the GID1A lid [293]. Using molecular

modeling, Hao et al. revised the suggested capping mechanism by the GID1A N-

terminal lid, uncovering a channel allowing GA’s ingress and egress from the binding
130
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pocket. Examination of 12 GA variants and probes the impact of DELLA on the

binding process. MD simulations combined with τRAMD, the dissociation pathways

of these GA variants are analyzed, synthesizing a complete model of the GID1A-

GA-DELLA and GID1A-DELLA complexes from the Arabidopsis Thaliana crystal

structure. With over 1.6 terabytes of molecular dynamics trajectory data, a dual

binding pathway narrative surfaces, suggesting a regulatory molecular mechanism

akin to a transistor. The τRAMD method, implemented in the NAMD MD simulation

software, calculates a ligand’s residence time within a binding pocket and, in this

context, explores the egression pathways GA adopts across various DELLA-GID1

con formations.

A.1.1 Methods

Starting from a crystal structure of A. thaliana GA receptor GID1A, together with

a partially resolved N-terminal fragment of DELLA GAI (PDB Accession no: 2ZSH),

the absence of large segments of the disordered N-terminal fragment prevents realistic

simulation of this hormone receptor system. All missing segments were constructed

using I-TASSER (Iterative Threading ASSEmbly) ab-initio and threading method

software [294]. A predicted model was choosen and the DELLA GAI N-terminus was

placed by a structural alignment to the original fragments of the DELLA subunit, the

gDG system. Each GA(x) ligand was aligned to the GA3 ligand in the 2ZSH structure,

before energy minimization for the GA(x)-GAI-GID1A and GA(x)-GID1A systems

was performed. A diverse set of GA(x) that includes GA variants widely referred to

as bioactive and inactive, respectively denoted as GA(a) and GA(i). For bioactive

GA variants, we consider GA1, GA4, GA3, GA7, and the recently reported GA12-

16ox [295]. For putative inactive GA variants, we consider GA8, GA9, GA12, GA34,

GA4MeO and GA4-16/17ox. Among the inactive set, GA4MeO, GA4-16/17ox, and

GA34 are all oxidation products of GA(a) and are of interest to understand the

signaling control in this system.
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The GA ligands were optimized in AMBER using semi-empirical bond charge cor-

rections available inside the Ambertools software and acepype, then the ligands were

aligned with GA3 of the 2ZSH crystal structure before minimizing energy of the sys-

tem in NAMD (3.0). The LEaP Amber tool was used for building a rectangular

simulation box, with a minimum gap of 10 Å. To neutralize the system, Cl and Na

ions were added at the concentration of (NaCl 0.015 M). The protein was protonated

in pymol using pH of 7.2 and dissolved into TIP3P water. In each system, solvent

within 5 nm of the 2ZSH GA3 was kept and placed back into the structure before

energy minimization, as defined in Kokh et al. using ambertools. Each gDG system

was minimized with 500 steps of steepest descent, followed by conjugate gradient min-

imization using 1000 steps. Force constants were used to generate starting replicas

(each 1 ns with force constants 50, 10, 5, and none using the SHAKE algorithm) all

kept at 300K using a Langevin thermostat and constant pressure of 1 atm using a

Berendsen barostate. A cutoff of 10 Å for nonbonded Columbic and van der Waals

interactions is applied, while using periodic boundary conditions with particle mesh

Ewald (PME) method for the long-range interactions. Each replica system (4 per

ligand) was heated in NAMD-3 over 1 ns in steps of 10 K without restraints. The

production run was performed using Langevin thermostat and Nose-Hoover Langevin

pressure controls to maintain the system at 1 atm and 300 K. The final frame for each

40 ns was taken for starting points of a set of 10 RAMD simulations in NAMD-2.

Each set of RAMD was evaluated for residence time statistics using bootstrapping

at 2000 sets. Using a 50% threshold for the standard deviations for the residence

time of a system, systems not meeting this requirement were extended with 5 more

RAMD simulations until this variance criteria was met. Systematic evaluation of

force constants was performed to determine an optimal force of 20 kcal mol-1 Å-1 to

allow egression to a threshold of 30 Å from the docked position in a computationally

tractable time span. Similar force evaluation was performed for the egressions of the
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entire DELLA protein, finding a significantly higher force of 80 kcal mol-1 Å-1 was

needed to reach an egression distance of 30 Å from the original position of DELLA

chain, to break most intermolecular interactions between the proteins.

A.1.2 Results

The residence times from τRAMD were obtained using a previously reported pro-

tocol adapted to MATLAB 2020a using PDFEstimator. Visual Molecular Dynamics

(VMD) analysis of trajectories was performed using in-house designed scripts in TCL.

A cut-off distance of 3.5 Angstrom and an angle of 30°for hydrogen bond counting.

Hydrophobic contacts were defined using known nonpolar residues and a contact cut–

off distance of 3.5 Å for conservative estimates of contacts. These were tabulated into

a text file for further processing. Raw counts of interactions to residues from a defined

reference set were used as samples in statistical analysis. Significance of differences

was selected from a rational p-value threshold of 0.05, Figure A.2. Recurrent residue

sets were identified using the union of logical comparisons between lists of interaction

residues across simulation sets. For recurrent residues in various comparisons, the

active GA subsets were used to create a residue subset, which was then compared to

inactive GA interaction lists.

Regardless of the GA(i) and GA(a) systems monitored, the previously identified H-

bonding residues from Hao et al. are observed to be recurrent. We found that residue

TYR247 interacts with GA(x) C3-OH, where SER116 and GLY115 wrap around the

C7 carboxylate. The TYR31 side chain has interactions with OH groups in GA(x),

which have this moiety around C13, and also interacts with all GA vicinal C16-C17

bonds, supporting pi-pi interactions that help align GA within the GID1A pocket for

most GA ligands. It is notable that most hydrophobic contacts are adjacent to these

residues, but they are additionally highly conserved across the phylogeny of GID1.

The only recurrent residue with large discrepancy between the GA(a) and GA(i) sub-

sets is ASN32. Unlike the pocket residue interactions, the GA(i) and GA(a) interacted
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Figure A.1: Average residence time for each ligand in gDG. Values obtained from
Bootstrapping the 40 egression times in each system then fitting the probability dis-
tribution.
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Figure A.2: KD (from Yoshida et. al 2018 PNAS) plotted against the calculated koff

from τRAMD simulations of the various GA bound to GID1A.
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similarly with channel residues along the egressions. In simulations without the GAI

N-terminus (gG systems), GID1A was found to be flexible enough to allow egression

from this same pathway without a large portion of the interactions reported previ-

ously. The second observed cleft pathway is shown in Figure A.3 in blue. Matching

shape and electrostatic field maps give an indication for a binding pathway, which is

a persistent signature in all simulations. Without the DELLA protein, this pathway

is slightly shorter than the channel, even with dynamical fluctuations considered (6-8

Å for the cleft versus 9-12 Å for the channel). When the DELLA protein is bound to

GID1A, the cleft opening is blocked. Nevertheless, observed in simulation the GA(x)

can egress from the cleft pocket opening even in the presence of the DELLA protein,

albeit in a heavily perturbed pathway.

Figure A.3: Representations of pathways in GID1A system from simulated trajecto-
ries. Bottom DELLA in cyan and GID1A in green, top GID1A. The blue pathway
is a newly discovered GID1 cleft, red is known channel pathway. Middle perspective
looks down alpha helix B of GID1A with N-terminal to the right.
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A dual-pathway binding mechanism in GID1A rectifies bioactive gibberellin forms,

harmonizing with the myriad gibberellin variants observed in plants. These gib-

berellins, ranging from highly bioactive to inactive, facilitate the DELLA binding

to the GA–GID1 complex. Upon DELLA binding, a selective channel pathway fur-

ther promotes major bioactive GA forms within the binding pocket, stabilizing the

entire complex. This three-step mechanism, underscored by the disordered DELLA

signaling hub, maintains cellular homeostasis amidst various GA variants. Data-

driven kinetic models illustrate how gibberellin fosters plant growth by amplifying

the DELLA-GID1 binding, regulating DELLA degradation through two pathways:

an open cleft pathway, accessible without DELLA, and a channel in GID1. Once GA

binds GID1, both bioactive and less active GA forms bolster DELLA-GID1 binding.

The distinctiveness of a bioactive GA is shaped by GID1 pathways and modulated

by DELLA-GID1 interactions in the gDG complex, facilitated by conserved MoRFs

and DELLA’s flexible traits. If an inactive GA binds, a rectification process swaps

it for a bioactive form, with rectification being essential if bioactive forms are in the

minority. Given the binding time-scale differences between GA and DELLA, multiple

GA exchanges can occur before complex dissociation, allowing minor shifts in bioac-

tive GA concentrations to dictate plant growth, obviating the need for significant

concentration differentials between active and inactive forms.

A.2 Other Physics Based Models of Proteins

As discussed, the physical mechanisms underlying protein function can be simulated

computationally. An example of a direct application are mutation studies, where

monitoring changes in dynamics of proteins as certain residues are mutated, usually on

timescales of 1 µs or less, afford screening or comparative analysis [114]. Native state

dynamics also stimulated interest in research dealing with dynamic allostery models

[296]. These capabilities of simulation naturally lead to the development of models

and algorithms for computational protein design and protein stability prediction.
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While MD can simulate molecular physics at short time scales, it is not appropriate

for calculating protein stability. Force–field approximated simulations are unable to

properly generate ensembles large enough to calculate thermodynamic properties,

without incredible resources or meta-dynamics techniques.

To avoid brute force MD simulation, thermodynamic models that assumed addi-

tivity in free-energy components were proposed to rapidly calculate thermodynamic

quantities. Unfortunately, simple additive models failed miserably [297] due to the

non-additivity of conformational entropy [298]. Free energy decomposition methods

classically assume there is additivity in both enthalpy, like Hess’s law, and entropy

components. However, this assumption is only true for systems that can be divided

into independent subsystems [297, 298]. The additivity assumption yields good ap-

proximate estimates for changes in entropy and free energy in small molecular systems

with sterically limited conformational changes, but this breaks down for large polymer

systems like proteins which have long range interactions.

Using rigidity theory, the non-additivity found in conformational entropy can be ac-

curately incorporated using a distance constraint model (DCM) [244,299]. A protein

conformation can be cast into a semi-empirical formula to determine the allowable

space of flexible and inflexible components that allows the given conformation to

unfold and refold on a simplistic free energy surface fitting to a landau function, Fig-

ure A.4. Previous work with DCM accurately described the heat capacity of proteins,

including cold denaturation, because the model accounts for solvent effects [300–302].

A refined version called minimal DCM (mDCM) has been applied to elucidate the nu-

anced context-dependent flexibility in antibody structures and the significant changes

in protein backbone flexibility and cooperativity due to point mutations, particularly

evident in the comparison between human lysozyme and its hen egg white lysozyme

ortholog [300, 302]. This method provides quantitative stability and flexibility rela-

tionships for protein [301], which has been useful for understanding protein evolution
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and helps with protein design [303–305].

It was hypothesized that this DCM model can be used in a protein classification

problem. Beta-lactamase is a protein family responsible for antibiotic resistance in

bacteria. The family is widely studied, understood, and still an applicable problem to-

day. With an reasonable data and known classifications, this seemed like a reasonable

family to investigate using a refined version of DCM, minimal DCM (mDCM).

A.2.1 Using mDCM to Classify Beta Lactamase Structures

In a comprehensive analysis of the structural nuances among class A beta-lactamase

proteins, a key cause of bacterial multidrug antibiotic resistance, we have amassed

a dataset of over 100 structures, encompassing not just present-day variants but

also three ancestral reconstructions reflective of pre-hominid evolution untouched by

contemporary antibiotic-driven selective pressures [306]. The intrigue lies in the para-

dox: why do members of this protein class, with their shared functional sites, global

dynamics, and overarching structural motifs, exhibit such divergent patterns of an-

tibiotic resistance? Our exploration factors in extant pharmacological data, shedding

light on the binding intricacies between the enzymes and their diverse substrates. This

diachronic collection provides an unparalleled window into the evolution of thermody-

namic stability motifs and cooperativity utilizing the mDCM for these enzymes [307],

we quantitatively charted stability/flexibility relationships across the β-lactamase lin-

eage.

To performed the large calculations entire sub-spaces of variable combinations were

samples in large embarrassingly parallelized computing by individually calculating

unique variable combinations for u, v, and Dnat. A graphical example of the struc-

tures’ QSFR is encapsulated in Figure A.4. This investigation, at its core, seeks to

distill functional insights from homological diversity, offering a unique perspective

the antibiotic resistance problem. Grouping these proteins by their local families,

QSFR differences can be observed by mapping the quantitative rigidity values onto
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the three dimensional structures, as seem in Figure A.4, where blue shows rigidity

and red shows flexibility. Notably the rigidity in the core of the Ancient structures

while extant species, like TEM family, have a lack of rigidity. These findings suggest

a dynamics based mechanism behind the ancestral reconstructs promiscuity towards

all generations of antibiotics, making them extended spectrum beta-lactamses.

Figure A.4: Beta Lactamase proteins are a family of hydrolases responsible for a con-
siderable percentage of multi-antibiotic resistance in bacteria (including penicillin).
Flexibility index describes the back bone QSFR character while Flex-Flex represents
probabilities of residue-residue couplings in a flexible or rigid manner. Our dataset
includes ancestral reconstructions of pre-hominid β-lactamase structures2, and about
100 extant Class A β-lactamase structures.

The collected data was also used to distinguish between Bush-Jacobi functional

Class 2b-Type and other variants (namely, 2a, 2e, 2f types) within our dataset Both

Support Vector Machine (SVM), linear hyperplane separation maximizing class sepa-

ration, and logistic regression models were experimented with. This classification was

executed by juxtaposing the computed flex-index of the structures against a sequence

alignment spanning the entire dataset. The extremely small size of these models and
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the limited data offer extremely fast training times. With K-Fold cross validation

multiple replicates can be measured rapidly. One hundred replicated runs of the

SVM model yielded a commendable mean accuracy of approximately 80%, accompa-

nied by a 19% false positive rate, inferred from the receiver operating characteristic

curves. On the other hand, logistic regression trailed slightly with a mean accuracy

of 77% and a higher false positive rate of around 23%.

Despite the preparatory requirements for the mDCM calculation, it’s salient to

highlight that this approach potentially accelerates analysis relative to the time-

intensive task of generating and scrutinizing multiple MD trajectories across all beta-

lactamase structures. The data produced from mDCM gives atomistic level informa-

tion via cooperativity and flexibility of the backbone, which could take 100 to 1000

times longer to collected using MD on modern compute. Encouragingly, our prelim-

inary findings indicate a moderate level of success in classifying resistance profiles

using QSFR data.

A.3 SPLOC

Supervised Projective Learning with Orthogonal Completeness (SPLOC) was ini-

tially developed for molecular function recognition as a projection pursuit (PP) opti-

mized by an NN [308]. However, SPLOC transcends applications as a general purpose

recurrent NN (RNN). a recurrent NN, SPLOC performs a data-driven process for bi-

nary discriminant analysis of data streams. which is a self-directed learning process

that involves the formation and refinement of a working hypothesis as new data is

presented to the machine.

The SPLOC-RNN depicted in Figure A.5 provides discriminant analysis and creates

perception. The PP-based NN was shown to be an effective model [309, 310] in

the 1990s. The process of collapsing high-dimensional data onto a line for a mode

projection represents a tremendous loss of information in exchange for an immense

gain in specificity. Although no information is lost when using a complete orthonormal
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basis, how information is distributed is not unique. Each mode is mapped to a

perceptron which is governed by a rectifying adaptive nonlinear unit (RANU). For

the m-th mode, when S(m) > So this forms a data-driven hypothesis that there is

a difference between functional and nonfunctional data streams. Conditional upon

a statistically significant consensus, the proposed hypothesis is confirmed when the

quality of clustering within the MFSP for a d-mode is positive

Here, several ML strategies are integrated with PP operating on data packets.
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Figure A.5: Schematic of SPLOC as a recurrent neural network and data flow. For p
variables there are p perceptrons, labeled from 1 to p, comprising the input layer that
receives NF functional and NN nonfunctional data packets of n samples. The basis
set is rotated in a search heuristic as the neural network evolves to maximize efficacy.
Upon convergence, the output layer is composed of an orthonormal complete basis
set.

Without required preprocessing of input data and void of hyperparameters, SPLOC-

RNN performs derivative-free optimization within a nonparametric model on high

dimensional data without limit on sample size. Furthermore, mitigation of overfitting

to training data is an automated process that improves with greater observations per

variable (OPV). For efficient hypothesis refinement, a discovery-likelihood is intro-

duced using Bayesian inference for candidate ranking.
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A.3.0.1 Architecture and Application

Unfortunately, results from a NN are often difficult to interpret; by extension, the

underlying biases are difficult to characterize. In contrast, biases can be effectively

controlled with an objective function within projection pursuit (PP) during the ex-

ploration of high-dimensional data [308, 311–314]. Moreover, PP is robust against

statistical estimation errors [163], and perception is interpretable by linear projection

operators that govern dimension reduction.

The objective function is net efficacy (E), which is the sum over the efficacy of

each mode, E(m). For all pairs of data streams, each mode is evaluated for (1)

selection power, S(m), that quantifies signal-to-noise; (2) consensus power, C(m),

that quantifies statistical significance, and (3) quality of clustering within a MFSP.

The conditional selection power, S(m|α, β), associated with two data packets, α and β

respectively representing functional and nonfunctional classes, is calculated for mode

m using the formula:

S(m|α, β) =



√
snr(m,α, β)2 + rex(m,α, β)2 + 1 if < Si√
sbr(m,α, β)2 + rex(m,α, β)2 + 1 if > Sd

So otherwise

(A.1)

Where snr is the signal-to-noise-ratio given by:

snr(m,α, β) = |µ(m|α)− µ(m|β)|/
√
σ(m|α)2 + σ(m|β)2 (A.2)

sbr is the signal-beyond-noise defined by:

sbr(m,α, β) = max [0, snr(m,α, β)− 1] (A.3)
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rex is the excess ratio of standard deviations defined as:

rex(m,α, β) = max

[
σ(m|α)
σ(m|β)

,
σ(m|β)
σ(m|α)

]
− 1 (A.4)

The values of Si and Sd are respectively 1.3 and 2.0 for the upper threshold for

indifference and the lower threshold for discrimination, and So = 1.6125 as their geo-

metrical mean given as So =
√
SiSd. The collection of results for emergent properties

of the data streams obtained for a specific mode, m, must be statistically consistent

across all data stream pairs. The consensus measure C(m) quantifies this consistency

level. If different data stream pairs between functional and nonfunctional classes can-

not reach a statistically significant consensus on whether there exists a difference or

similarity between the two classes, then the information associated with that mode

is set as undetermined.

SPLOC identifies the major differences between functional and nonfunctional molecules,

using dynamics molecular toy datasets, and found that the shared conserved prop-

erties across all labeled molecules are markedly high. When strongly biased views

either dismiss potential differences or similarities, SPLOC cannot validate or refute

them as opposing data is overlooked due to the inherent bias. However, this latent

information is retained in the u-modes that can be extracted to refine the working

hypothesis once supporting data for the contrary view is taken into account [315].

A.3.1 SPLOC Applied to Beta Lactamase

Application using long MD simulation of TEM-1, TEM-2 and TEM-52 where the

dynamics were analyzed to provide alignment over 263 residues involving 789 df.

SPLOC was trained on TEM-1 as “functional” and TEM-52 as “nonfunctional”. The

antibiotic extended spectrum resistant (ESR) TEM-52 and non-ESR TEM-1 represent

the core difficulty with antibiotics that persist in human medicine. The utility of

SPLOC-RNN is established by its ability to differentiate two closely related enzymes
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by functional dynamics, while classifying TEM-2 accurately. The problems with

comparative analyses reported previously [316] entailing laborious effort are removed;

replaced by an automated procedure.

The results suggest that the H10-H11 loop (residues 214-221) are a secondary an-

chor for larger extended spectrum ligands, while the H9-H10 loop (residues 194-202) is

distal from the active site and stabilizes the protein against structural changes. These

secondary non-catalytically-active loops offer attractive targets for novel noncompet-

itive inhibitors of TEM beta-lactamase. [278] This study also found residues known

to play an important role in catalytic activity [317]. These results provide guidance

in designing novel antibiotics to withstand mutation pathways in beta-lactamase that

cause antibiotic resistance.
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