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ABSTRACT

SEPEHR SABETI. Advancing Safety in Roadway Work Zones with Worker-Centred
Augmented Reality: Assessing the Feasibility, Usability, and Effectiveness of
AR-Enabled Warning Systems. (Under the direction of DR. OMIDREZA

SHOGHLI)

In recent years, there has been a concerning increase in serious injuries and fatal-

ities within highway work zones, deviating from a previously declining trend. While

innovative technologies offer potential for improving safety, the specific needs of the

highway work zone community have often been overlooked, resulting in a lack of

essential information for designing user-centered safety systems. Current safety prac-

tices primarily rely on reactive technologies that may not provide timely responses to

intrusions and environmental risks. To bridge this gap, there is a need for transfor-

mative technologies that integrate real-time predictive safety systems and extensive

user research to develop worker-centered Augmented Reality (AR)-based safety sys-

tems specifically tailored for highway work zone safety. This dissertation aims to

address these challenges and outlines our efforts in designing such a worker-centered

AR-based safety system.

Chapter 2 explores the feasibility, requirements, and challenges associated with

integrating AI capabilities into AR systems to enhance the safety of highway work

zones. This chapter delves into the feasibility, requirements, and challenges associated

with incorporating AI capabilities into the AR system to develop a predictive safety

system that can proactively identify potential hazards and issue timely warnings to

workers. The outcomes of this chapter indicate that the real-time communication

latency and AI execution latency meet the tight timing constraints of a real-time

safety system. The early user research demonstrates positive reception and acceptance

of the proposed safety framework and interface by highway maintenance and operation

professionals across multiple states in the US.
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Chapter 3 focuses on conducting a mixed-method usability investigation of the

proposed AR-based safety system using a high-fidelity prototype. The investigation

assesses aspects such as user interface design, interaction patterns, and user feedback

to evaluate the overall usability and effectiveness of the technology in enhancing road-

way work zone safety. The findings indicate that participants rated the usability of

the system above average in both indoor and outdoor settings and perceived a rea-

sonable level of mental effort. Perceived trust was found to be significantly correlated

with usability, underscoring its importance in user experience.

Chapter 4 examines the impact of different sensory modalities on worker reaction

times in augmented reality warnings within roadway work zones. The analysis of data

from experiments provides insights into the effectiveness of various warning modal-

ities, including visual, audiovisual, haptic visual, and combined haptic audiovisual

cues, in improving worker reaction times. The findings indicate that the haptic vi-

sual design triggered the fastest response on average among the participants, and its

performance was statistically comparable to that of the audio haptic visual design.

Furthermore, both of these designs demonstrated significantly faster reaction times

compared to visual and audiovisual warnings. The results also indicate that reaction

times to augmented reality warnings in real-world outdoor scenarios were generally

longer and exhibited greater variability compared to baseline desktop warnings and

simulated AR in virtual reality. Surprisingly, VR simulated warnings did not show

statistically significant shorter reaction times compared to their real-world counter-

parts. These observations suggest that simulating AR in virtual reality may not

accurately replicate the reaction times observed in real-world situations.

Collectively, the results from these chapters demonstrate the usability, perceived

safety benefits, and potential for timely notifications offered by the proposed AR-

based safety system. This research also contributes to establishing best practices

for designing time-sensitive safety systems, prioritizing situational awareness, and
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implementing worker-centered design principles in AR safety systems. Ultimately,

the findings have the potential to significantly enhance the safety of highway workers

and the broader workforce operating in roadway work zones.
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CHAPTER 1: INTRODUCTION

Highway work zones are vital for inspecting, maintaining and upgrading transporta-

tion infrastructure. However, a hazardous combination of factors, including speeding

and careless driving, night shifts, and limited maneuvering space, poses significant

risks to the safety of workers. The Centers for Disease Control and Prevention reports

that between 2003 and 2017, 1844 workers lost their lives at road construction sites,

averaging 123 fatalities per year [1]. These incidents not only result in death, but also

cause severe injuries and mental or physical health issues for many workers due to

intrusions by drivers. Current safety practices in highway work zones primarily rely

on basic measures such as portable signs, flaggers, alarms, lights, and rudimentary

intrusion alert systems. Unfortunately, these reactive technologies are activated after

or just before an intrusion occurs, providing insufficient reaction time for workers to

respond adequately to imminent dangers [2, 3]. As a result, workers remain vulnerable

to intrusions and their associated risks.

Recent advances in Augmented Reality (AR) have presented unique opportunities

to address safety challenges in various domains, including the construction industry

[4, 5, 6]. However, there exists a disparity in the research landscape, with the high-

way work zone community being underrepresented, limiting the availability of crucial

information for the development of user-centered system designs [2, 7, 8]. This lack

of focus on the highway work zone community hinders the progress of innovative so-

lutions with potential impacts on acceptance models and future applications [9, 10].

Therefore, it is imperative to address this gap and recognize the importance of study-

ing the community of the highway work zone to drive advances in safety technologies

and practices.
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Figure 1.1: System design of the proposed technology and its major components

This dissertation documents our comprehensive efforts in conceptualizing, design-

ing, prototyping, and researching an innovative AI-enabled Augmented Reality safety

system specifically tailored for highway work zone safety. The proposed system ar-

chitecture is depicted in Figure 1.1. In this context, the term "worker" encompasses

various individuals involved in highway work zones, such as road inspectors, law en-

forcement personnel, and first responders. The backend of the system incorporates

an AI bundle comprising a camera and an embedded GPU, responsible for process-

ing real-time traffic feeds and detecting potential intrusions or hazardous maneuvers

in advance and from a distance. In the front-end, the system comprises two com-

ponents: AR smart glasses and a smartwatch. Each worker is equipped with this

package, which facilitates a real-time multimodal notification mechanism designed

to effectively alert workers within the challenging and noisy environment of highway

work zones.

The subsequent sections of this dissertation provide a detailed account of our com-

prehensive efforts in designing, developing, and researching the AR safety system
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for highway work zone safety. The objectives outlined in this document guide our

exploration and investigation of various aspects related to the proposed technology.

The first objective, as detailed in Chapter 2, focuses on studying the feasibility

and addressing the technical challenges associated with implementing the AI-enabled

AR/WT safety system. We delved into the intricate details of the system’s architec-

ture and consider its practical implementation. This chapter provides a holistic view

of the framework, examining its technical aspects, potential limitations, and the steps

taken to mitigate any challenges that arise. In this chapter, our objectives were:

• Defining the functional and technical requirements of an AI-enabled Augmented

Reality (AR) system to enhance the safety of highway workers.

• Developing a holistic design framework that integrates real-time AI processing

and edge communication with AR user interface design to provide multimodal

notifications to highway workers.

• Demonstrating the feasibility of AI-enabled worker-in-the-loop technologies in

improving the safety of highway work zones through a proof-of-concept model.

In Chapter 3 of this dissertation, our focus shifts to user research and usability

testing, aiming to quantify the usability of the AI-enabled AR safety system while

documenting user experience benchmarks. To facilitate this evaluation, we developed

a high-fidelity prototype of the technology, which serves as a crucial tool for con-

ducting a comprehensive usability study. The usability study was administered in

both indoor and outdoor settings to provide a comprehensive understanding of the

system performance. Adopting a mixed-method approach, we delved into the per-

spectives of end-users and seek insights and feedback regarding the system’s usability.

Specifically, we collaborate with 13 participants who are members of the Minnesota

Department of Transportation (MnDOT), ensuring that their expertise and experi-

ences are effectively captured. To further assess the usability of the technology, we
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conducted a thorough experiment in a temporary work zone environment. This envi-

ronment mimicked the real-world conditions encountered during the maintenance and

operation of highway work zones. Participants were assigned specific tasks that are

commonly performed in such scenarios, allowing us to evaluate their interactions with

the system and collect valuable data on usability, efficiency, and user experience. To

measure usability, we employed the System Usability Scale (SUS), a widely recognized

tool for evaluating the usability of interactive systems. Additionally, we utilized trust

measurements to assess user perception and confidence in the system’s performance

and reliability. These measures provide us with valuable quantitative data to gauge

the effectiveness of the AI-enabled AR and WT safety system and establish bench-

marks for future comparisons and improvements. In specific, our research objectives

were:

• Evaluating the usability of the proposed AR system by incorporating the per-

spectives of highway workers in both indoor and outdoor settings.

• Establishing usability benchmarks and identifying factors that contribute to

the user experience, informing the development of future AR solutions for the

highway workforce.

• Gathering in-depth feedback from experienced highway workers regarding their

use of the proposed technology.

Chapter 4 of this dissertation delves into the quantification of reaction times to

multimodal AR warnings within the context of highway work zone safety. Our study

adopts a comprehensive mixed-method research framework that includes a high-

fidelity prototype of the AR system, virtual reality simulations to emulate real-world

scenarios, and the Wizard of Oz methodology for synchronized user journeys during

experiments. To assess reaction times, we employed two distinct methods: the sim-

ple reaction time (SRT) approach and a vision-based metric that leverages real-time
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pose estimation and upper body joint displacement. The primary objective of our

research was to comprehensively evaluate the impact of multimodal design on users’

reaction times across various environments. Furthermore, we aimed to investigate the

potential of VR simulations in replicating real-world settings by comparing reaction

times obtained from both VR and real-world scenarios. By subjecting users to various

combinations of these stimuli, we can analyze their reaction times and evaluate the

system’s effectiveness in delivering timely and appropriate warnings.

• Evaluating the reaction time to different multimodal AR warning designs and

determining which design triggers the fastest reaction time.

• Comparing the reaction times between VR-simulated AR warnings and real-

world AR warnings in an outdoor environment to determine if they show sta-

tistically similar response times.

• Investigating the feasibility of using real-time pose estimation as an indicator

of the reaction time to AR warnings.

Throughout this document, our research journey unfolds systematically, addressing

different aspects and stages of the project. By undertaking these investigations, we

aim to contribute to the field of highway work zone safety and lay the foundation for

future advancements in AI-enabled AR applications. Our work strives to improve the

safety and well-being of workers in these critical environments, promoting innovation

and driving progress in the domain.



CHAPTER 2: TOWARD AI-ENABLED AUGMENTED REALITY TO

ENHANCE THE SAFETY OF HIGHWAY WORK ZONES: FEASIBILITY,

REQUIREMENTS, AND CHALLENGES

2.1 Abstract

Highway work zones are considered among the most hazardous working environ-

ments. In 2018 alone, 124 workers lost their lives to fatal accidents. The lack of

predictive safety systems that notify workers of upcoming dangers in advance is a

major reason to blame in the highway maintenance and operation community. This

article presents an integrative design framework for bringing recent advances in Aug-

mented Reality (AR) and Artificial Intelligence (AI) to enhance the safety of high-

way workers through real-time multimodal notifications on-spot. To this end, this

article conceptualizes and co-designs three major pillars: (1) AR user interface de-

sign for multimodal notification, (2) real-time AI at the edge for vehicle detection/

classification from distance, and (3) real-time wireless communication in work zone

setting to enable latency-aware operation between AI and AR components. Our early

results demonstrate that we can achieve 24.83 FPS end-to-end execution latency on

the Xavier AGX Jetson board with 48.7% on BDD100K dataset, and a real-time

communication covering 120 meters with an average latency of 5.1 milliseconds at

the farthest distance. Our mixed-method user research also reveals an acceptable

level of excitement and engagement from the body of highway workers toward both

the proposed technology and the designed user interface. Overall, this article provides

a proof-of-concept toward AI-enabled AR safety systems in highway work zones.
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2.2 Introduction

Highway work zones are considered among the most hazardous working environ-

ments. In 2018 alone, Federal Highway Administration (FHWA) reported that 124

workers lost their lives at road construction sites [11]. In the meantime, previous

studies documented that the annual average fatality rate of highway workers between

2016 and 2018 was around 135. Moreover, a total of 158,000 crashes and 42,000 cor-

responding injuries were reported in work zones in 2016. FHWA also highlighted that

every 15 hours, one fatality in highway work zones took place in the US [11]. With

the growing potential of massive investments in infrastructure in the coming years,

it can be only assumed that highway workers will be even more exposed to these

fatal risks due to the forthcoming increase in the number of work zones. Therefore,

securing safety of highway work zones is one of the most pressing challenges that the

highway construction, maintenance ,and operation community is facing [2, 12].

In the past years, researchers have developed new technologies to mitigate some of

the fatal risks and severe injuries that highway workers encounter. However, the ma-

jority of the developed technologies are reactive, meaning that they are triggered only

after intrusion or when threats are in a close proximity of work zones [2, 13, 14, 15].

These reactive aspects limit the ability of workers in showing a timely and propor-

tional reaction to the extent of upcoming safety risks. At the same time, recent tech-

nological advances in Artificial Intelligence (AI) have enabled researchers in different

disciplines to leverage visual analytic in solving some of the safety-oriented problems

[16, 17]. However, the majority of the previous research efforts related to the safety

of construction workers were mainly centered around building construction discipline,

and highway construction has only received marginal attention [2]. Furthermore, the

nature of risk factors in building and highway constructions are inherently different.

For instance, highway workers are required to be present near high-speed traffic, and

their working environment offers less space for maneuvering, which makes their needs
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different from that of building construction workers [18, 19, 20].

One major challenge in developing safety systems for workers is designing a notifi-

cation mechanism with appropriate modalities that could play out well in the noisy

and distracting environment of highway work zones. To this end, recent studies have

unveiled the leverage of multimodal over unimodal cueing in risk communication [21].

Several researchers also reported that the reaction time to a visual cue combined with

auditory or vibratory stimuli were shorter than each modality alone [22, 23]. This

growing evidence has encouraged researchers to design their warning mechanisms

around multimodal notification mechanisms in different contexts [24, 25]. With this,

visual cue coupled with auditory and vibratory modalities through Augmented Real-

ity (AR) smart glasses will help workers to better handle a specific situation or task

in a more informed fashion with minimal vision obstruction [26]. Such devices also

provide hands-free interactions and can overlay information on what users naturally

see, which makes them suitable for many applications [27, 28, 29]. These attributes

have made AR a desirable technology to be leveraged in assisting workers in different

contexts [30, 31, 5]. However, designing context-aware and user-centered interfaces

that maximize the benefits of this technology have been proven as a critical step in

increasing end users’ engagement [32, 33].

This chapter proposes a novel framework that incorporates the benefits of real-time

AI and AR to enhance the situational awareness of highway workers by providing a

real-time communication infrastructure. The proposed framework has three major

pillars: (1) AR user interface design for multimodal notification, (2) real-time deep

learning for vehicle detection/classification from distance, and (3) real-time wireless

communication between AR and AI hardware components. Figure 2.1 provides a

holistic view of the proposed framework and illustrates two examples of its applica-

tions. The worker in this context is a broad term that represents individuals involved

in highway work zones (e.g. road inspectors, law enforcement, and first responders).
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Figure 2.1: Holistic View of the Proposed Framework - its Application in (a) Law
Enforcement, (b) Highway Work Zones

Figure 2.1(a) demonstrates how this framework can be used for securing the safety of

law enforcement in highways. Figure 2.1(b) also visualizes how the proposed frame-

work functions in a highway work zone setting. Within this framework, a camera

(1) that is wired to the embedded Graphics Processing Units (GPUs) (2) provides

real-time information about the potential threats. Workers (4) are equipped with a

pair of smart glasses (5) for receiving notification enabled by a local WiFi network (3)

within the work zone area and across the utilized smart devices. With the aim of de-

veloping a user-centered technology, this chapter also presents the results of an early

mixed-method user research that investigates highway workers’ perception toward

the proposed framework through a devised mixed-method user research methodol-

ogy based a low-fidelity prototype, which includes a semi-structured interviews and

a quantitative questionnaire.

In summary, the results of this chapter demonstrate that the trained AI model

achieved 48.7% mAP for detecting vehicles from distance with 24.83 Frame Per Sec-

onds (FPS) execution latency on a Nvidia Jetson Xavier embedded platform. The



10

outcomes also indicate that the real-time end-to-end wireless communication latency

between the embedded board and a pair of AR smart glasses combined with the AI

execution latency is within 46 milliseconds margin, which provides a reliable founda-

tion for meeting the tight timing constraints of a real-time safety system. The early

mixed-method user research also reveals that the proposed safety framework and the

conceptualized interface are positively welcomed by the body of the highway main-

tenance and operation community. Participants were selected from multiple states

in the US, which provides a reasonable and cross-regional understanding of work-

ers’ perception toward the proposed technology, and also fuels future worker-centered

developments.

Overall, in addressing the identified research gaps, our contributions to the body

of knowledge are:

• This chapter is the first research work that conceptualizes and formalizes func-

tional and technical requirements of an AI-enabled Augmented Reality (AR)

system to enhance the safety of highway workers.

• This paper also is the first research effort that presents a holistic design frame-

work integrating real-time AI processing and communication at the edge with

AR user interface design for multimodal notification to highway workers.

• This chapter provides a proof-of-concept model for AI-enabled worker-in-the-

loop technologies in increasing the safety of highway work zones.

• The outcomes of the user research of this chapter also help future designers

in developing worker-centered technologies and customizing user experience for

highway workers and broader worker-in-the-loop safety systems.
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2.3 Related Work

In this section, we are exploring the related works of this paper from the literature.

First, we will explore the existing technologies in highway work zones safety. Then, we

will go through the background of user research and its importance in the successful

development of the technology. Next, we will move on to the history of deep learning

for vehicle detection/classification in highways. Finally, we will conclude this section

by exploring the application of AR in the context of safety.

2.3.1 Highway Work Zone Safety and Technology

Highway work zone safety is one of the major concerns in transportation agencies.

The job description of maintenance and construction highway crew mostly requires

their presence near or adjacent to traffic flow, which fuels the risk of a fatal envi-

ronment for both workers and road users [14]. Several studies in the literature tried

to identify the major roots of risks in highway work zones. For instance, in a com-

prehensive work, [20] analyzed the major risk factors in highway work zones. They

identified that besides at-fault drivers, lighting condition and vehicle types also play

a significant role in causing risks in highway work zones. In another study, [34] in-

vestigated the significance of lighting condition by comparing nighttime and daytime

crashes. Finally, [35] developed an Ordered Probit Model to identify the factors that

affect severity of work zone crashes under weather adverse condition.

Even though the risky environment of highway work zones have been highlighted in

several research studies, the safety practice is yet to rise to this challenge by enriching

the current practice of highway work zone safety by implementing new technologies.

Several research studies have suggested that the current safety technologies used in

highway work zones are still limited to portable signs, automated flagger, directional

alarms, warning lights. They have also cited the fact that the current intrusion

systems are mainly reactive, meaning that the triggering mechanism only fires after
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intrusion or when the intruding objects are in a close proximity of work zones [36, 12,

37, 38]. On the contrary, the dynamic environment of highway work zones accentuates

the need for more robust and adaptive safety systems that can quickly adapt to the

changes in the working environment of highway workers.

In a comprehensive study, [2] systematically reviewed 147 work zone safety technology-

related articles and identified that the idea of departing from old-fashioned tech-

nologies toward smart automated technologies have exponentially grown In the past

years. The emergence of more advanced sensing and wearable technologies have also

energized more researchers in the pursuit of this trend. For instance, [3] designed

a proximity-based alerting system leveraging only tactile cue as the sole mode of

communication with users. However, highway work zones are noisy and taxing, and

the job description of highway workers is demanding, which could weaken the effec-

tiveness of this system in alerting workers. In another research effort, [39] proposed

a wearable-based hazard proximity warming system for increasing the awareness of

construction workers, which still relies on proximity-based triggering mechanisms. In

yet another study, [40] developed a novel system based on AR in alerting workers

of the orientations and the proximity of potential hazards. Despite the promising

potential of this system, given the fact that it generates warnings only based on the

Field-of-View (FOV) of workers, it may not be efficient in preventing hazards that

are not within the visual scope of workers.

2.3.2 User Research and Successful Technology Adoption

User acceptance is one of the most crucial factors in technology development.

Whether the intended users of a technology accept it or not plays an important role in

the ultimate success of a product [41]. With the overflow of new technologies in recent

years, workers are poised to witness a revolution in the way they work [42]. Even

though researchers have been struggling to maximize the benefits of new technologies

for workersâ safety and health, several studies showed that it is not uncommon for the
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end-users to resist adopting new technologies regardless of their benefits. Therefore,

before forcing and massively investing in new technologies, it is of utmost importance

for the developers to always take account of potential technology resistance and user

acceptance while developing a new technology [43]. To this end, a few researchers

investigated how construction workers react to new technologies. For instance, the

authors of [44] proposed an extended Technology Acceptance Model (TAM) that is

capable of reflecting the possible changes in the attitude of workers in time. In an-

other study, [45] studied the factors that impact the implementation of a mobile-based

computing device systems in the construction industry from usersâ perspective. The

authors extended the TAM model to better understand the relationship between user

satisfaction and pierced performance of the devices. In yet another similar study,

[46] explored the general perception of occupational groups in construction compa-

nies toward the use of Information and Communication Technology (ICT) and how

it impacts the post-adoption stage of the management process. In summary, it is

critical for us to investigate early on the perception of our users (highway workers)

toward our proposed system. While our main goal in this paper is not to come up

with an extensive Technology Acceptance Model for highway workers, we wanted to

obtain a preliminary idea about their perception toward the proposed framework and

designed interface early on.

2.3.3 Deep Learning for Vehicle Detection in Highways

With swift progress in recent years, AI has enabled researchers to expand their

capabilities to new horizons that sounded far-fetched years ago. Deep neural networks

and particularly, Convolutional Neural Networks (CNN) have demonstrated near-

human and in some cases even beyond-human capabilities in object detection and

classification [47]. VGGNet, GoogleNet, and ResNet are some of the algorithms

that have been widely used in feature extraction, creating objectsâ bounding box and

object classification [48, 49, 50]. Such algorithms have been recently utilized in a wide
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range of vehicle detection and challenging challenges. For example, Wang et al. [51]

used Restricted Boltzman Machine, which is a type of deep neural network to detect

vehicles using online transfer learning. Authors in [52] use Inception network [53] with

a multiscale feature fusion network to achieve good accuracy for vehicle detection. In

[54], Yolov3 [55] was used to detect vehicles on the UA-Detrac [56] dataset, achieving

good results. Arinaldi et al. in [57] used Faster R-CNN [58] object detector to detect

vehicles. Authors in [59] also adopted Faster R-CNN with an anchor proposal network

outperforming existing object detectors in terms of accuracy. In [60], Rujikietgumjorn

et al. further divided vehicle classes in UA-Detrac into sub-classes and used Faster R-

CNN. Zhu et al. in [61] used Faster R-CNN with a computationally efficient method

for feature extraction while getting highly accurate results on the UA-Detrac dataset.

[62] also employed Faster R-CNN with a feature fusion module to get state-of-the-art

results on the UA-Detrac dataset.

In the context of vehicle tracking, earlier works like [63] used classical methods like

background and foreground subtraction for vehicle detection and tracking. Authors

in [51] used HOGs with adaboost gradient for vehicle localization and classification

respectively. They applied kalman filter [64], which is a simple generative model, to

track these detected vehicles. Peng et al. [65] used R-CNN [66] to detect vehicles

and a gaussian distribution for tracking them. Zou et al. in [67] used Yolov3 as their

detection framework with a CNN based siamese network to re-identify them. Markov

decision process was used to track the vehicles using pre-defined policies.

2.3.4 Augmented Reality for Safety Benefits

The idea of smart wearable devices has a long history [68]. The recent advances

in machine learning, deep learning and visual analytic have energized scientists and

industry leaders for new generation of smart wearable devices to enhance the cognitive

capability and situational awareness of humans and assisting them in decision making

[69, 70]. The benefits of smart glasses with real-time visual feedback are many -
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from training and education, to manufacturing and maintenance and information

assistance [29]. Scientists have already demonstrated the benefits of AR smart glasses

systems for military training [71], oil refinery training [72], nuclear plant maintenance

[73], equipment status check for industrial services [74], facility management [75]

asset management [76], enhancing surgeons’ vision [77], and step-by-step guidance

for assembly and manufacturing [78, 79, 80].

In recent years, the research community has witnessed a growing interest in using

AR in safety-related issues. As an example, the authors of [81] used an in-vehicle head-

up display to notify car drivers of any possible collision with pedestrians in advance .

Authors in [82] investigated the applicability of AR in enhancing occupational safety

workers in industrial environments. They concluded that AR provides a suitable

and effective platform for offering instructions at industrial workplaces. In another

similar study, a few researchers in [83] studied the perspectives and challenges of

AR in industry workplaces for workersâ safety and health. They conducted multiple

interviews with actual workers and reported that their interviewees believed that AR

could potentially contribute to their safety and health.

We also have identified a trend of using AR smart glasses in construction work

zones with different applications. Some examples include integrated smart glasses

into helmets for augmented reality safety applications [84], underground infrastruc-

ture positioning and layout display [85, 86]. Several other applications of augmented

reality in the construction safety domain are studied with the purpose of safety risk

identification, training, and inspection [87, 88]. Finally, [89] presented a research

agenda for AR in construction. They provided vital information for practitioners and

researchers about possible directions and trends of AR in construction industry in

near future.
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Figure 2.2: Our Designed Methodology for Investigating the Pillars of the Proposed
Framework

2.4 Methodology

In this section, we will explain our methodology in investigating the main research

pillars of our proposed framework which are (1) AR user interface design for multi-

modal notification, (2) real-time vehicle detection/classification from distance, and

(3) real-time wireless communication. Furthermore, we will also present our mixed-

method user research approach for studying end users’ perspective toward the de-

signed framework and interface. Figure 2.2 demonstrates the taken steps in this

study.
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2.4.1 AR User Interface Design for Multimodal Notification

In the first step, we need to conceptualize and design the AR user interface. To this

end, we first defined some guidelines to be used in the design process. For this purpose,

we followed the usability heuristics provided by [90] when pertinent. These heuristics

have been traditionally used in designing and evaluating UIs in different disciplines

[91]. Furthermore, we set the MUTCD manual [92] as the reference for choosing the

colors and signs to be used in the design to increase the familiarity of users with the UI

following the "consistency and standards" heuristic. In addition, we tried to include

the effectiveness of prewarning in our design [93]. Finally, we decided to aggregate

different risks into one parameter, which will be called "Risk Score" hereinafter. RS

specifies the severity of the current safety threat to the workers, aggregates all risk

Figure 2.3: Designed Interface for Multimodal Notification Mechanism for the AR
Smart Glasses
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origins, such as traffic, weather, etc. This value determines transition among the

layouts. RS varies between 0 (not any risk at all) to 10 (definite intrusion in a few

seconds), which is calculated in the backend and is sent to the frontend in real-time.

After brainstorming and preparing our preliminary sketches, we improved our ini-

tial design through expert group reviews and came up with the layouts shown in Fig-

ure 2.3. The proposed interface consists of four different layouts: Low Risk, Medium

Risk, High Risk, and Lethal Risk. The occurrence of each layout depends on the

value of RS. One of the strengths of the proposed framework is its adaptability. The

utilized checkpoints in the framework specify the severity of the identified risk on

workers, and in turn, the corresponding layout. These checkpoints could customize

the framework based on the different types of work zones. For instance, the Low Risk

interval in a short-duration work zone could be less than that of a permanent work

zone, allowing the framework to go in High Risk margin sooner.

It should be also noted that in Figure 2.3 we considered a square display for the

smart goggles, and the background shows a hypothetical user view in a hypothetical

work zone. In Low Risk, Medium Risk, and High Risk layouts, we are using an RS

bar on the bottom right to show the current status of the user, under the "visibility

of system status" heuristic. Within the proposed framework, we envisioned the High

Risk layout to work as the prewarning stage in our UI. In the first two layouts, the

ratio of the occupied display is so much less than the last two ones, where the whole

display is occupied. Therefore, we design the High Risk layout to be the prewarning

stage that facilitates drawing users’ attention to the to-go-off warning. Also, Figure

2.3 schematically illustrates the transparency of the designed UI as well. While in the

first two layouts, the display is completely transparent, it becomes partially opaque

in the last two ones so that the effectiveness of warming increases. Figure 2.3 also

demonstrates that we leveraged multimodal cueing consisting of visual, vibratory and

auditory modalities in the proposed mechanism. Depending on the phase, different
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tools would be used within this framework. In this context, different message contents

could also be sent to the users. Therefore, any other special update that requires

the immediate attention of the workers, such as weather advisory, could also be

communicated with the users in different scenarios. Therefore, the application of the

designed interface is not just limited to intrusions into the work zones. Yet, it can go

beyond that and reflect other scenarios as well.

2.4.2 Real-time Deep Learning for Vehicle Detection/Classification from Distance

In this section, we introduce our deep learning framework for vehicle detection and

classification from distance in highways. First, we will explain our the network model

and the training framework based on YoloV4 [94]. Then, we will go into the details

of fine-tuning our baseline model for custom vehicle detection/classification dataset.

This includes enhancing the accuracy of the vehicle detection from distance based on

data augmentation and transfer learning.

2.4.2.1 Vehicles Localization

This part aims to briefly introduce the architecture of the model utilized to detect

and locate objects in a frame. Based on the needs we identified in this research,

we customized YoloV4 structruce [94] as shown in Figure 2.4. The YoloV4 network

architecture consists of backbone, neck, and the head. The main task of the back-

bone network is to extract the essential features from the input image. The back-

bone of YoloV4 can be selected from CSPResNext50 [95], CSPDarknet53 [95], and

EfficientNet-B0/B7 [96]. In line with the work of [94], we used the CSPDarknet53

as a backbone. This is because it has equal or higher accuracy than the other two

networks while having lower operational complexity. Cross Stage Partial (CSP) [95]

strategy, applied to the CSPDarknet53, concatenates the previous output features

from the previous layers and passes them on to the next layers. A CSP-based net-

work architecture lessens vanishing gradients problem in deep networks, and it also
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Figure 2.4: Baseline Model for General Object Detection/Classification

minimizes network parameters by reusing previously extracted features.

The task of the neck is to aggregate features with different resolutions from the

backbone. YoloV4 uses the Feature Pyramid Networks (FPN) method to have the

prediction at different scales. YoloV4uses the features from the top-down stream and

adds them to the next neighbor in bottom-top stream. YoloV4 also uses a modified

version of Path Aggregation Network (PANet) [97] in its neck to flow the information

in the neck layers. Contrary to the original PANet, YoloV4 uses a concatenation

layer rather than reduction to create a new vector. As a result, spatial information

from the features will be better preserved by the network.

In the final stage, the head makes predictions about objects and their location based

on features received from the neck. YoloV4 uses the same header used in YoloV3.

The output of the head is the confidence per each class and its location in the form

of ⟨x, y, w, h⟩, where ⟨x, y⟩ is the center of the object and w, h are width, and height

of the object from its center, respectively.

2.4.3 Real-time Wireless Communication Latency

Real-time communication latency is one of the most important pillars that needs

to be considered within the proposed framework. This latency refers to the time

that takes for any decision inferred by the backend to be sent to frontend of the

proposed framework. For measuring this latency, we first designed a Server-Client

software pattern illustrated in Figure 2.5. In this context, Round Trip Time or RTT
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is the time that takes for the server to send a message to the client and receive the

same message back, divided by two. Therefore, RTT is the average time from a back

and forth communication between the server and the client, and is considered as the

average communication latency [98]. We also desisgned this pattern around Transfer

Control Protocol (TCP). TCP is a connection-oriented transition protocol, which is

capable of sending payloads in multiple packets and replicating the process at the

receiving end. This enables TCP to be able to support large payloads [99].

In the designed pattern, the server first initializes a server socket and starts listening

on a port (e.g. 8888). Next, using the IP address given to the server through the

access point, the client tries to connect to the server. Upon the establishment of

the connection, the server awaits sending a message to the client. In the meantime,

the client awaits receiving this message in full. As soon as the data is completely

received, the client sends the same message back to the server and awaits for that to

be delivered. Server, in turn, awaits for the message to be fully received. Finally, the

client will close the socket.

Finally, we developed an Android application to be run on the AR smart glasses

using ServerSocket and Socket classes in Android [100, 101] based on the designed

methodology. We also used the Socket class in Python to develop another software

for the embedded GPU [102]. In order to collect reliable data, we measured the

communication latency 500 times in an iterative manner, and recorded the results.

In the end, we used 1.5∗IQR (interquartile range) rule to identify and remove outliers

in our dataset, and removed all observations with a value more than Q3 + 1.5 ∗ IQR

or less than Q1− 1.5 ∗ IQR [103].

Now that we have a methodology for measuring the latency, it is time to investigate

what type of messages should be sent to the end-users from the board in a real

scenario. According to [104] and [105], presenting full sentences to the users might

increase the cognitive workload. The physical activities of highway workers are taxing
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Figure 2.5: Round Trip Time (RTT) Concept for Measuring Wireless Communication
Latency

and it makes sense to reduce the load as much as possible. Therefore, we designed a

concise pattern of "Context, Command, Time" for the messages that will be sent to

the users from the board. For instance, "Possible intrusion, Run, 2 seconds".

2.4.4 Mixed-method User Research and Analysis

To investigate the perception of our end users toward the proposed framework and

the designed UI, we devised a mixed-method user research approach. Due to the

unique needs of highway workers and as the qualitative part of our mixed methodol-

ogy, we first conducted an in-depth interview with an experienced highway mainte-

nance worker to have his initial input about the proposed framework and the designed

UI. Our interviewee was a senior and former member of a state Department of Trans-

portation (DOT) with more than 20 years of experience. He was directly involved in

the division of maintenance and operation of a state DOT during his tenure. Our in-

terview was semi-structured. We started with a typical set of demographic questions

and had an open discussion about the proposed concept and its pros and cons. Our

interviewee believed that the proposed framework can be efficient in highway work

zones.

In the next step and for investigating users’ idea about the proposed framework



23

and designed UI, we leveraged a quantitative questionnaire coupled with a cognitive

walkthrough. Cognitive walkthrough is a well-known and widely used methodology

in the literature that is usually utilized in the early stages of product development

[106, 107]. Based on the results of our interview, we decided to separate the partici-

pants of our questionnaire into two different groups: highway maintenance crew and

affiliated participants. The first group only includes workers, and the latter includes

state DOT members, private consultants and managers, researchers, and other affil-

iated members who are often present in highway work zones. The reasons behind

these categorizations are: (1) highway maintenance crew are more frequently present

in a work zone than other members due to their job description, and (2) highway

maintenance crew might have a different set of expectations from safety systems than

affiliated members. As an example, financial aspects might not be an influencing

factor for workers, whereas it is an important factor for the management team. It

should be noted that hereinafter and for the sake of brevity, we only will be using

the terms "maintenance crew" and "affiliated participants" to refer to the considered

groups in the survey, respectively.

We used Google Forms 1 for hosting and performing a survey. The survey started

with some demographic questions. We asked our participants to report their working

districts, age, experience, and the frequency of their presence in highway work zones.

Then, we asked the participants to watch a video uploaded on YouTube2. In this

video, we walked the participants through our proposed technology and debriefed

them about how the framework would work in a real-world application. We tried to

provide a comprehensive yet concise video in order to minimize the number of drop-offs

from our participants. After watching the video, we asked our participants to answer

the three designed Likert-scale questions about (i) the practicality of the proposed

framework (Question (a)), (ii) the likelihood of them using this framework (Question
1https://forms.gle/sReS6h1CM4DJ2qj98
2https://www.youtube.com/watch?v=Rtih3rh1q0s
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(b)), and (iii) and the likelihood of them recommending this framework to others

(Question (c)). As the final question, we asked the participants to share with us their

concerns about the proposed technology. We asked them to select from "impractical

for operation in highway work zones, unpleasant experience with devices", "influence

on the performance such as vision obstruction", "slow and painful adaptation to the

technology as a routine", "the unreliability of the devices in identifying potential

dangers", "repetitive false alarms and loss of your trust in devices", and "none".

They also had the option to select multiple options from the provided list.

Finally, we used another prerecorded video uploaded on YouTube3 as part of our

qualitative research to survey our participants’ opinion about the designed UI. In this

video, we briefly discussed the interface design procedure. We also used an animated

low-fidelity prototype of the UI to further describe how the UI would work in a real-

world application. After watching the video, the participants were asked to report

their first impression of the UI (Question (d)). Finally, we also asked them to share

with us their thoughts on strengths and weaknesses of the designed UI.

2.5 Results and Evaluation

Here, we are reporting the early results and exploration of our proposed system.

Below, we will start first by explaining our experiment setup, the devices and the

other material that we used in this study. Then, we will move on to explaining our

results from the defined pillars.

Figure 2.6: Our Experiment Setup

3https://www.youtube.com/watch?v=pEVSS2aRLaA
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2.5.1 Experiment Setup and Specification

Experiment Design In a real work zone setting, we envision the access point to stay

in the vehicle (truck) of the deployed team, as visualized in Figure 2.1. In addition,

we already mentioned that the board would be installed next to the camera and set

up at the beginning of the work zone. Therefore, in order to create the worst-case

scenario, we assumed that the worker, wearing the glasses, would be on the other side

of the work zone. That leaves us with an experiment in which the access point is

centered between the board and the glasses as the length of the work zone expands.

While the length of work zones vary case by case, we measured the latency over

multiple distances to investigate how the real-time communication latency differs as

the distance between end nodes grows. We also ran our experiment in an outdoor

environment and next to the traffic flow to mimic the environment of a work zone and

the possible impact of moving objects on the magnetic field. We considered different

distances between the end points and the router (X in Figure 2.6), ranging from 10

meters to 60 meters with an increasing 10-meter interval.

Smart Glasses Among the abundance of advanced and modern options available in

the market, we used Vuzix Blade [108]. Vuzix Blade smart glasses are a see-through

display that supports Android as their operating system (OS) and offers an auto-

focus 8-megapixel camera, built-in stereo speakers, and advanced voice control. Its

right eye monocular optic display provides a platform for removing distractions and

minimizing vision occlusion. It is also equipped with a 2.4 GHz bandwidth Wi-Fi

module that enables wireless communication with other devices. One of the benefits

of this technology is its compatibility with the American National Standards Institute

(ANSI) Z87.1 certification that makes it a viable option for industry usage.

Embedded GPU In 2017, the leading manufacturer of Graphics Processing Units

(GPUs), Nvidia, manufactured Jetson TX2. In 2018, it released Jetson Xavier, which
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is the state-of-the-art embedded GPU for mobile processing. Xavier is a System-

On-Module(SoM) device with a 512 core volt GPU, 8 ARM cores, 16 GB memory

and consumes 30 Watts of power at most. We used this device because it offers all

computational capabilities required for executing object detection algorithms while

keeping up with the real-time output expectations. Besides, it is a low-power and

light-weight device that can be easily mounted on a tripod, which makes it a suitable

candidate.

Wi-Fi Access Point We built our Wi-Fi network using a 2.4 GHz bandwidth router

by TP-Link. This access point offers communication in compliance with IEEE

802.11n/b/g standard and advanced wireless technology for delivering wireless com-

munication speed up to 300 Mbps [109].

The Summary of the Community Participation in the Survey At the time of prepar-

ing this manuscript, we received 76 responses from the maintenance crew and 52

from affiliated participants with the body of highway work zone community. Almost

half of our participants were at least 45 years old. Moreover, we realized that our

participants were fairly experienced with 71 percent of them having at least 10 years

of experience in the field. 68 participants from the maintenance crew group men-

tioned that they are present in highway work zones on either daily or weekly basis.

Furthermore, 82.7 percent of affiliated participants reported that they have been to

a highway work zone at least 50 times. It should be noted that the results provided

here are part of a larger survey that was performed.

Dataset for Vehicle Detection we selected BDD100K [110] dataset due to its direct

view-point. The dataset was collected in four different areas: San Francisco, Berkeley,

Bay Area, and New York. The object localization segment of the dataset consists of

ten objects: bike, bus, car, motor, person, rider, traffic light, traffic sign, train, and

truck. For our study, we removed traffic light and traffic signs categories from the
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dataset. Table 2.1 summarizes the distribution of each class in both validation and

training segments of the customized dataset. The car class has the highest distribution

and it comprised approximately 83% of both training and validation subsets. We also

visualized the distribution of each class for each subset based on its area in Figure 2.7.

We used COCO [111] dataset evaluation metrics for defining the size of the objects.

The COCO (Common Objects in Context) dataset is a widely used large-scale dataset

for object detection, segmentation, and captioning tasks in computer vision research.

It provides a comprehensive collection of images with detailed annotations, making

it valuable for training and evaluating algorithms related to visual recognition tasks.

Based on COCO dataset evaluation metrics, an object with an area of fewer than 322

pixels is small, between 322 and 962 pixels is medium, and any area larger than that

is referred to as large objects.

Table 2.1: Breakdown of the customized BDD100K

Subsets Bike Bus Car Motor Person Rider Train Truck
Train 0.84% 1.36% 82.83% 0.35% 10.61% 0.52% 0.02% 3.48%
Val 0.81% 1.29% 82.84% 0.37% 10.72% 0.52% 0.01% 3.43%
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Figure 2.7: Distribution of area scale per each category for training and validation
sets.

2.5.2 Real-time Deep Learning for Vehicle Detection/Classification from Distance

In this section, we will provide the accuracy of YoloV4 on the customized BDD100K

dataset and their network latency on the Xavier platform.
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2.5.2.1 Accuracy

We analyzed our model’s performance using the mean Average Precision (mAP)

metric. The mAP of a network over queries, Q, is given by: mAP =∑|Q|
i=1AP (qi) |Q|,qi∈QAP (q)= 1

TPgt

∑|G|
j

TPdetected
j

where TPgt is the number of ground truth

true positives, and TPdetected is the number of true positives detected by the network.

Following the PASCAL-VOC [112] standard for object detection, we calculated the

mAP when Intersection-over-Union (IoU) is higher than 50%. It means that an IoU

of 0.5 or higher between detection and the actual ground-truth of the object would

result in a positive detection. We also provide the mAP of different categories at

different area scales. Table 2.2 summarized the mAP of all objects and per each cat-

egory for the input size of 608×352 pixels. In our case, the model provides the mAP

of 48.7% for all classes at different area sizes. The accuracy of the model increases

as the objects get closer to the camera (larger area). Therefore, for medium and

large objects, the mAP stands at 52.7% and 73.3%, respectively. For car objects, the

model shows the highest mAPof 74.9%, as it has the highest portion of the training

dataset. Bus and truck objects have the next highest accuracy (∼59%), as they are

typically larger than the other categories. We also provided some qualitative results

in Figure 2.8. These images are sampled from different resources, including YouTube,

videos taken from the industry partners and the validation portion of the BDD100K

dataset. These qualitative results illustrate the capability of our AI model in detect-

ing and classifying vehicles/incoming vehicles in highway/urban settings. However, it

should be noted that our AI model, as is, does not perform any velocity/acceleration

and traffic status measurements.

2.5.2.2 Execution Latency

In comparison with three different power modes, we analyzed the latency of pro-

cessing every single frame on the Xavier embedded GPU in Table 2.3. Our results
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Table 2.2: Mean Average Precision (mAP) of defined classes at different area scales

Category mAP[0.5] mAPsmall[0.5] mAPmedium[0.5] mAPlarge[0.5]
All 48.70% 20.90% 52.70% 73.30%
Bike 46.40% 14.50% 51.20% 78.80%
Bus 58.90% 17.80% 48.30% 81.00%
Car 74.90% 49.20% 88.60% 97.60%

Motor 41.90% 20.30% 48.20% 63.00%
Person 58.40% 33.70% 78.00% 88.90%
Rider 43.90% 10.60% 54.20% 86.70%
Truck 58.30% 20.70% 53.20% 78.80%

Figure 2.8: Results of the Trained Model
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demonstrate that we achieved the highest end-to-end FPS of 24.83 while burning

25.83 Watts in MAXN power mode. The Xavier reaches to highest energy efficiency

for 15W power mode when it processes 13.63 images per second by consuming 10.11

Watts; therefore, its energy efficiency stands at 1.35 FPS/Watts.

Table 2.3: Execution latency, power consumption, and energy efficiency of Yolov4 on
Xavier Jetson AGX board

Power
Mode

Pre-Processing
(ms)

Inference
(ms)

Post-Processing
(ms)

End-to-End
(ms)

End-to-End
(FPS)

Power
(W)

Energy Efficiency
(FPS/Watts)

MAXN 10.2 24.1 6 40.3 24.83 25.83 0.96
15W 18 45.6 9.8 73.4 13.63 10.11 1.35
10W 23.7 92.2 10.3 126.2 7.92 7.77 1.02

2.5.3 Real-time Wireless Communication Latency

In the following, we present the communication RTTs between the embedded GPU

and the smart glasses using the wireless network through the utilized access point

and developed standalone softwares. We considered four different message contents

to be sent to the highway workers in our experiment and measured the corresponding

RTT latencies that we measured outdoor in 38 degrees Fahrenheit in an outdoor

environment. These contents are provided in Table 2.4. It should be noted that the

message contents that we used mimicked multiple scenarios in which the workers can

be informed via our framework, whether that is a possible intrusion or a weather

advisory condition.

In order to better analyze the data, we first used a two-way ANOVA test to inves-

tigate the impact of distance and message size on the RTT latencies. We considered

distance and size without any interaction as our inputs to the test. The obtained

p-values reported in Table 2.5 demonstrate that only distance plays a statistically

important role in the variation of RTT latencies. Therefore, we aggregated the col-

lected data regardless of the message size, cleaned them using the 1.5 IQR rule, and

visualized them in Figure 2.9.

In our experiment, we were able to cover up to 60 meters of distance between each
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Figure 2.9: Round Trip Time (RTT) Latencies Over Different Distances

end point (smart glasses and the board) to the router, or 120 meters between end

points. However, we were not able to establish a stable connection between end nodes

when they were placed farther than 60 meters from the router. In addition, during

our experiment, we also noticed that RTT latencies were noticeably impacted by the

battery level of the smart glasses, weather temperature, and heavy moving objects.

Measuring actual impacts of these obstacles require further investigation. However,

we ensured that the RTTs were collected under similar condition, when the smart

glasses were not in low-battery mode.

Table 2.4: The Considered Message Contents and Their Corresponding Memory Size

Message Memory Size (Bytes)
Danger , run, now ! 68

Strong storm coming , pack up and leave , 5 minutes 100
Barrier removed , fix it , now ! 81

Staying too close to the border, move, now ! 93

Table 2.5: Two-way Anova Test on Collected RTT Latencies

Sum of Squared Degree of Freedom F-Statistic p-value
Distance 10685.44 1 6142.193 0.000

Size 2.04 1 1.1728 0.278

Our results demonstrate that we received an acceptable real-time communication
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latency between the embedded GPU and the smart glasses through an 2.4 GHz band

access point. The 120-meter coverage distance with an average of 5.1 milliseconds

at the farthest scenario gives us a promising coverage area for highway work zones.

In addition, Table 2.5 suggests that in our context, as long as the designed pattern

(i.e. Context, Command, Time) is utilized, the size of the message content should

not play a statistically significant role in RTT latencies, leaving the distance as the

most important factor. However, Figure 2.9 indicates that as the distance between

Figure 2.10: Participants’ Response to the Questions of (a) Practicality of the frame-
work (b) Likelihood of Them Using the framework and (c) Likelihood of Them Rec-
ommending the framework to Others (d) Their First Impression of the Designed UI
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Table 2.6: Our Participants’ Concerns about the Proposed framework

Concern Maintenance Affiliated
Crew Votes Participants Votes

Impractical for operation in highway work zones 12 12
Unpleasant experience with devices 4 5

Influence on the performance such as vision obstruction 18 21
Slow and painful adaptation to the technology as a routine 8 8
Unreliability of the devices in identifying potential dangers 25 24

Repetitive false alarms and loss of your trust in devices 23 29
None 24 7
Other 6 13

two endpoints increased, the IQR and the average of RTTs increased. It means that

in farther distances, the latencies are seemed to become both less effective and less

reliable. However, the collected RTTs within the 120-meter coverage distance provide

a promising foundation for a timely notification to workers from the board in highway

work zone setting.

2.5.4 Mixed-method User Research and Analysis

The collected responses from our participants to questions a to d are summarized in

Figure 2.10. Moreover, Figure 2.11 visualizes the opinions of our participants about

the strengths and weaknesses of the designed interface. Finally, their concerns about

the proposed technology are summarized in Table 2.6. For better representing the

collected data, Table 2.7 provides some central tendency parameters for questions a

to d. Since the collected data in these questions are ordinal, we assigned numeric

values to each category from 1 to 5, each one corresponding to a category from the

farthest left category to farther right category in order. Then, we identified the first

quartile (Q1), median (Q2), third quartile (Q3), and interquartile variability (IQR)

of the collected data from both groups, separately.

In the next step, we investigated whether (1) the sample data come from a pop-

ulation with a uniform distribution over the considered categories and (2) affiliated

participants and maintenance crew always show different views. To this end, we used

both goodness of fit and independence versions of Chi-square test[113]. The results
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Table 2.7: Statistical Summary of Responses from our Participants to the Questions
a to d

Question Group Mode Q1 Median (Q2) Q3 IQR
Maintenance Crew Neutral 3 3 4 1

Practicality of the framework
Affiliated Participants Practical 3 4 4 1

Maintenance Crew Neutral 3 3 4 1
Likelihood of using the framework

Affiliated Participants Practical 3 3 4 1
Maintenance Crew Neutral 3 3 4 1

Likelihood of recommending the framework
Affiliated Participants Practical 3 3 4 1

Maintenance Crew Neutral 3 3 4 1
First impression of the UI

Affiliated Participants Practical 3 4 4 1

of these tasks are summarized in 2.8.

Table 2.6 indicates that affiliated participants’ main concern about our proposed

technology is repetitive false alarms whereas maintenance crew are more concerned

about the unreliability of devices. In addition, the participants who chose Others in

Table 2.6 mentioned that they were mostly concerned about the durability, comfort,

integrity and cost of the technology. They also iterated that they had some concerns

Figure 2.11: Strengths and Weaknesses of the Designed UI - (1) The Percentage of
Maintenance Crew Votes (2) The Percentage of the Affiliated Participants Votes (3)
Total Number of Votes
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Table 2.8: The Results of Chi-square Test in Questions a to d

Question Groups Goodness of fit p-value Independence p-value
Maintenance Crew 4.17x10−13

a 0.0061
Affiliated Participants 0.00018

Maintenance Crew 4.68x10−9

b 0.384
Affiliated Participants 5.55x10−6

Maintenance Crew 6.96x10−16

c 0.13
Affiliated Participants 0.00016

Maintenance Crew 1.32x10−15

d 0.023
Affiliated Participants 1.47x10−7

toward the reliability of the proposed framework in emitting timely notifications and

whether it could successfully notify them in a timely manner when they are engaged

in labor-intensive tasks such as drilling. They also highlighted their lack of prior expe-

rience with such technologies and technical challenges such as federal and state level

safety requirements and prescription glasses as other challenges and concerns of theirs.

Moreover, Table 2.7 demonstrates that the IQRs in responses are relatively low. In

other words, the responses from both groups are fairly cluttered around the median.

Furthermore, Table 2.8 shows that for questions a to d, we have enough statistical

evidence to conclude that the null hypothesis of the goodness of fit Chi-square test is

rejected. This means that the samples do not come from uniformly-distributed pop-

ulations, and the differences between the number of responses in different categories

are statistically significant. On the other hand, the test of independence reveals that

while affiliated participants and maintenance crew have statistically different opinions

about the likelihood of them using and recommending the framework to others, they

might have dependent opinions in terms of the practicality of the framework and their

first impression of the designed UI. This negates our first assumption in separating

the responses of affiliated participants and maintenance crew in question a and d.

Therefore, we re-performed the IQR and the Chi-square goodness of fit test for the

cumulative responses of both groups for questions a and d. In this case, we again
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found a relatively low IQR of 1 with the mode and median of "Neutral" in both ques-

tions. In addition, the results of Chi-square goodness of fit tests in these questions are

9.11 ∗ 10−13 and 5.99 ∗ 10−19, respectively. It means that the null hypothesis of the

goodness of fit Chi-square test is still rejected in both questions and the differences

between the number of votes in each category are statistically significant.

Overall, our results show that the highway maintenance and operation community

seems to be fairly interested in this framework and the designed interface. Consid-

ering the results of Chi-square test and the central tendencies in samples, we can

conclude that in almost all of the questions, the majority of maintenance crew seem

to feel neutral about the framework and the affiliated participants feel more positively.

When we couple these results with the concerned mentioned in Table 2.6, it can be

discussed that our end-users’ major problem is with their perception about the relia-

bility and functionality of the technology, rather than its practicality. Our results also

demonstrate that affiliated participants are more likely to use our technology while

maintenance crew staying neutral. This can be attributed to either their technology

resistance or lack of prior experience with such devices.Figure 2.11 also indicates that

even though the number of votes for choices were not identical, a similar trend was

observed in both groups regarding the strengths and weaknesses of the designed in-

terface. In specific, both groups believed that utilized signs and colors, multimodality

of the designed notification mechanism, and different layouts for different risk levels

are the major strengths of the proposed UI. These results prove that our considered

guideline to set MUTCD as a resource for choosing colors and signs was on point, and

this document can be considered as a suitable starting point for leveraging metaphors

in the design in order to increase the level of familiarity of the end-users with the

interface.
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2.5.5 Overall Latency Measurement

Based on early results and evaluation, the proposed framework seems to be able

to meet the tight latency requirements of emitting timely and effective notifications

in highway work zones. The work by Sternberg [114] suggested that the reaction

time of human beings under normal condition varies between 0.5 up to 1.5 seconds.

Under the assumption that the anomalous cars travel at the speed of 70 MPH and

90 MPH, detecting cars every 30 and 50 feet, and a 10-second notification time for

the highway workers, the FPS latency only varies between 2.05 and 4.4 FPS. That

leaves us with the need of detecting cars from 1320 feet ahead of the work zone.

Our results show that the execution latency of the developed AI model was 40.3 ms

on a Xavier AGX Jetson embedded board. In addition, we measured the real-time

end-to-end communication latency between the embedded platform and AR smart

glasses to be 5.1 ms at the farthest distance. With that and given the aforementioned

assumptions, we can conclude that our framework provides promising results in terms

of real-time vehicle detection and communication. Comparing the given 10 seconds

for workers to respond and the calculated RTT latencies, we also can conclude that

the framework can emit multiple timely notifications to workers seconds ahead of the

intrusion if needed. Workers, needing 1.5 seconds for reaction, can, in turn, respond

to the danger properly.

2.5.6 Risk Assessment

As discussed earlier in this chapter and also highlighted by [115], multiple factors

could contribute to causing risks to highway workers. This includes (1) vehicle’s type,

speed, and distance from the work zone, (2) accelerating characteristics of approach-

ing vehicles, (3) vehicles’ trajectories including drifting, swerving, and weaving, (4)

maneuver pattern of vehicles before and around work zones, (5) work zone type, and

(6) weather and lighting conditions. The proposed vehicle detection from the distance
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approach enables identifying and estimating risks associated with the incoming traffic.

However, the extracted information should be augmented by the real-time feed from

other contributors such as the real-time location of workers, geometrical properties of

the work zone, and weather conditions. In this chapter, we primarily focused on the

foundations of worker-in-the-loop safety systems for highway work zones. The risk

estimation will be part of our future work which demands additional data collection

from work zones with diverse properties. This also includes further research work for

improving the current AI model for an accurate risk estimation with respect to the

different types and number of incoming vehicles and corresponding traffic status.

2.6 Conclusion

This article conceptualizes and co-designs an integrative framework levering Artifi-

cial Intelligence (AI) and Augmented Reality (AR) to address the highway work zone

safety concern. To this end, it presents and investigates three major pillars of the pro-

posed framework which are: (1) AR user interface design for multimodal notification,

(2) real-time deep learning for vehicle detection/classification from distance, and (3)

real-time wireless communication. This article also presents the results of an early

mixed-method user research that investigated end users’ perception toward the pro-

posed framework and the conceptualized interface through a cognitive walkthrough

using a low-fidelity prototype. Overall, the early results demonstrate that the trained

AI model achieved 48.7% mAP for detecting vehicles from distance with 24.83 Frame

Per Seconds (FPS) execution latency on Nvidia Jetson Xavier embedded platform.

The outcomes also indicate that the real-time execution and communication laten-

cies combined are within 46 ms margin on average, which provides the foundation

for emitting on-spot notification to highway workers and enabling them to show a

timely reaction to the identified dangers. The early user research also reveals that

the proposed safety framework and the designed interface were positively welcomed

by the body of the highway maintenance and operation community.



CHAPTER 3: MIXED-METHOD USABILITY INVESTIGATION OF ARROWS:

AUGMENTED REALITY FOR ROADWAY WORK ZONE SAFETY

3.1 Abstract

The emergence of novel technologies has provided promising safety applications.

However, in the context of highway work zone safety, there is a need for user research

to facilitate designing usable, worker-centered technologies. This paper investigates

the usability of AI-enabled Augmented Reality (AR) and Wearable Technology (WT),

and documents design opportunities and challenges in worker-centered AR/WT de-

velopment of such technologies for the highway workforce. To this end, we designed

a mixed-method approach and leveraged a high-fidelity prototype mimicking the in-

teraction that a designed AR/WT-based framework offers. At the same time, we

used different measurements to quantify usability and document some other perti-

nent design metrics. Our results suggest strong worker acceptance and perceived

safety benefits of the AR/WT-backed system and highlight a critical need for de-

veloping novel technologies that secure workers’ safety while accommodating their

unique needs. Moreover, participants rated the usability of the technology as slightly

above average while requiring reasonable mental effort. The outcomes demonstrate a

significant correlation between perceived trust and usability, reinforcing the need for

worker-centered design guidelines.

3.2 Introduction

Highway work zones play a critical role in inspecting, maintaining, and upgrading

roadway infrastructure. However, speeding and careless driving, night shifts, and

limited maneuver space have long created a dangerous situation that makes workers
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vulnerable to serious and fatal injuries. According to the Centers for Disease Con-

trol and Prevention, between 2003 and 2017, 1,844 workers lost their lives at road

construction sites, averaging 123 causalities per year [1]. Furthermore, many workers

have suffered life-changing severe injuries and other mental or physical health issues

attributed to drivers intruding into their working environment. The current prac-

tice of safety in highway work zones is typically limited to portable signs, flaggers,

directional alarms, warning lights, and reactive alert technologies [2, 3]. Such sys-

tems usually activate only after an intrusion has happened or is imminent and do

not provide enough reaction time for workers to properly respond to the upcoming

dangers, leaving workers vulnerable to intrusions. Meanwhile, the latest technologi-

cal advances in Augmented Reality (AR) and Wearable Technology (WT) have paved

the way for tackling complex real-world safety problems. In recent years, the work-

force safety domain has witnessed transformative efforts toward developing the next

generation of safety systems by leveraging AR and WT in different contexts and

applications [4, 5, 6]. However, the majority of previous studies - especially in the

highway construction, maintenance, and operation sector - have mainly focused on

how such technologies can be designed in a holistic view with limited attention to

user experience. These studies often lack accompanying user research outcomes and

usability benchmarks that contextualize users’ preferences and perspectives on the

proposed systems [116, 117]. This has resulted in user experience and usability being

less investigated across products and services for this domain, which has contributed

to the slow progress of AR/WT for worker safety in the transportation industry de-

spite its documented potential and benefits in safety research [118, 119, 120]. Limited

user research on workers-AR/WT interaction coupled with restricted user information

that stems from few user studies conducted on highway workforce could potentially

hinder future AR/WT-backed innovations [2, 7]. At the same time, recent trends

in Human-Computer Interaction have further highlighted the importance of human-
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centerd technology design and how it contributes to the future of interactive systems

[121, 122]. Therefore, extensive user research that facilitates designing worker-centerd,

usable, and practical solutions and promotes workers’ unique needs has become fur-

ther critical to the future of work and safety systems [9, 123]. In response, this paper

chronicles our efforts in studying the end-to-end usability and functionality of AR-

ROWS â Augmented Reality for Roadway Work Zone Safety â and documents design

opportunities and user experience contributors from workers’ perspectives. For this

purpose, we designed a two-step mixed-method methodology to study the usability

of the safety system proposed by the authors [124]. We designed this approach to

both quantitatively and qualitatively study usability, and identify the key contribu-

tors to usability, user experience, and trust. To this end, we leveraged the Wizard of

Oz technique in our research approach to create a "wizardâ and supplemented that

with a high-fidelity prototype to emulate the end-to-end interaction of the system for

participants. Our methodology featured two complimentary experiments that were

conducted in two different settings, indoor and outdoor. The indoor experiment was

centerd around qualitative data collection and was administered in one of the truck

stations of the Minnesota Department of Transportation (MnDOT) with participa-

tion from 13 experienced highway workers. The outdoor experiment was designed

around quantitative data collection and was conducted in a temporary work zone

where 30 participants actively engaged in a routine highway maintenance task. In

both steps, the user journey included direct interaction with the AR and WT hard-

ware components of the designed prototype through a pre-devised mock-up scenario

executed through our programmed "wizard". The participants were then asked to

express their perspectives through standard usability measurements such as System

Usability Scale (SUS) [125], Rating Scale Mental Effort (RSME), and trust ques-

tionnaires that we used to benchmark usability, study user experience, and identify

design opportunities and challenges. This study contributes to the body of knowl-
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edge in several ways. Primarily, it stands out as one of the first studies to examine

the usability of an innovative AR/WT-backed system specifically designed for safety

in highway work zones, integrating the perspectives of highway workers. The de-

veloped system, Augmented Reality for Roadway Work Zone Safety (ARROWS), is

at the forefront of safety solutions for highway work zones. It leverages low-latency

connections to proactively communicate safety risks to workers through multimodal

notifications enabled by AR and WT. By providing usability benchmarks and iden-

tifying user experience factors, this paper offers valuable and user-centerd insights

for those intending to implement AR/WT solutions for the highway workforce. This

was made possible by executing a robust two-step mixed-method research plan that

includes both indoor and outdoor settings. In addition, the qualitative feedback ac-

quired from experienced highway workers regarding their use of ARROWS reveals

the unique and often overlooked needs of highway workers. These findings could fuel

further innovations in AR/WT applications within the transportation infrastructure

maintenance and operation industry. Ultimately, this study promotes further explo-

ration and improvement in advanced worker-centerd safety systems, bringing us closer

to creating safer and more accommodating work environments for highway workers.

3.3 Background and Context

This section begins with exploring the related works by looking at the history

of advanced technologies in the context of safety and highway workers. Then, we

investigate the importance of usability studies in technology development and how

the Wizard of Oz approach has been utilized in similar studies.

3.3.1 Highway Workers, Wearable Technology and Augmented Reality

In recent years, research communities across disciplines have witnessed a flow of

efforts in developing new technologies that could solve some of their complex unan-

swered problems [126, 127, 128, 129]. Safety has been among the topics that have
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attracted a great deal of attention from researchers and practitioners in different do-

mains. To this end, the application of AR/VR has been studied in different contexts,

and topics from fire safety to the safety of cyclists [130, 131, 132]. Similarly, building

construction safety has been among the disciplines that researchers have focused on

in recent years, where researchers investigated how AR and WT technologies can be

leveraged in reducing environmental risks imposed on workers [133, 134, 135, 136].

However, developers and practitioners in highway maintenance and construction do-

mains have not kept up with other disciplines and have been left behind in terms of

technological advances and research efforts.

Recently, some research activities have targeted the application of AR in high-

way construction, with a greater focus on infrastructure and management [137, 138].

However, safety has still been underrepresented in the literature, especially for the

maintenance and operation section. To this date, the current safety of practice in

highway work zones is only limited to reactive technologies, and the lack of advanced

and predictive systems is quite noticeable [36, 12, 38]. After systematically reviewing

147 papers, [2] highlighted the importance of departing from old-fashioned technolo-

gies toward smart advanced technologies and modernizing the safety practice of high-

way work zones. To this end, in recent years, the community has seen new research

efforts that have proposed novel technologies for highway work zone safety [117, 139].

However, what they lack is appropriate user research that investigates the interaction

between highway workers and AR/WT technologies, identifies the unique needs and

preferences of workers, and highlights design guidelines and directions for worker-

centered technology design. Such information will be vital in the smooth transition

and adoption of these technologies in the future [140, 141].

3.3.2 Usability Test and Technology Development

Usability has been established as a focal factor in product development. Although

usability alone is not enough to guarantee/strengthen the user-product relationship,
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it is widely accepted as an important player in the success of a product or interface

[142]. Usability has traditionally been defined as a quality feature that examines how

easy it is to use a given product. The word "usability" itself refers to the mechanisms

that could improve ease of use during the product design process [143, 144, 145]. The

importance of early and often iterative usability tests in discovering potential bugs

and continuous improvement of the product has long been highlighted in different

studies [146, 145, 147]. To this end, several researchers and practitioners have pub-

lished their efforts to evaluate the usability of their novel products [148, 149, 150].

With the rapid evolution of AR and WT and their current widespread application,

several researchers have studied the usability of such devices in different populations

to address the growing need for user-centered design guidelines and best practices for

such technologies [151]. For example, [152] conducted a usability study to examine

the feasibility and best practices of AR for Basic Life Support (BLS) and Defibrilla-

tion training purposes. In another study, [153] explored how different types of head

mounted display (HMD) and user interface designs could affect perceived workload,

usability, visual discomfort, and job performance of workers during a simulated ware-

house job. In yet another study, [147] leveraged a mixed-method usability test to

provide a series of principles that can elevate the design of AR applications based

on interactive mobile applications to learn basic English in early childhood. The

same trend can also be observed in the WT landscape and other novel technologies

[154, 155].

3.3.3 Wizard of Oz Methodology

The Wizard of Oz (WOZ) technique is and has been one of the most widely used

tools in the toolkit of Human Computer Interaction researchers. In this methodology,

a person or a predefined experimenter remotely takes control of the system and its

real-time performance, creating the illusion of a working system [156]. In recent

years, this methodology has been widely used in different disciplines and topics. For
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example, Faas et al. [157] studied the application of an external human-machine

interface that displays the automated driving mode and how it affects the response

of pedestrians to different types of drivers (attentive, tinted and distracted) using the

WOZ methodology. In another study, Palmeiro et al. [158] investigated pedestrian

crossing decisions in the presence of an autonomous vehicle compared to a traditional

vehicle using WOZ and a within-subject experiment. This technique has also been

used in several studies in the context of AR and WT. For example, Alce et al. [159]

provided a pilot study of a wearable AR interaction framework that simulates an

AR city tour. The authors in the pilot study used WOZ to collect 21 participants’

data to analyze precision, relevance, responsiveness, technical stability, visual fidelity,

general user experience, and human operator performance of their designed system.

In another study, Billah et al. [160] explored the application of using off-the-shelf and

available smartwatches that are paired with smartphones to help visually impaired

people read and write papers and checks. For this purpose, they devised a WOZ

experiment that included different custom interactions and documented their results.

3.4 Methodology

This section will begin by explaining the prototype design that will be utilized

in the upcoming usability test. Following that, we will delve into the details of the

designed surveys, procedures, and other specifications of the conducted usability test.

3.4.1 Design and Functionality of ARROWS

3.4.1.1 System Functionality

The comprehensive functionality of the ARROWS involves the integration of a cam-

era and a GPU edge device, powered by deep learning. This combination actively

monitors incoming vehicles, assesses their speed, predicts their trajectory, and deter-

mines their proximity to the work zone. The system leverages this data to predict

potential work zone intrusions and assigns a risk score accordingly. This score then
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Figure 3.1: The elements of the utilized high-fidelity prototype of ARROWS and its
corresponding user interface design

triggers the generation of real-time safety notifications appropriate to the identified

risk level. Workers within the work zone will be equipped with a pair of AR glasses,

which serve as the interface for delivering visual notifications and audio warnings.

In addition, the system employs a smartwatch to deliver haptic notification, which

varies in intensity based on the assessed level of risk. The connection between the

AR glasses, smartwatch, and the backend GPU is facilitated through a local network.

This framework uses three distinct modes of notifications to intuitively convey the

level of risk to the workers: Normal Interface Warning Interface, and Danger Inter-

face, as shown in Figure 3.1, Each layout is triggered based on the risk score value.

For instance, a vehicle approaching above the speed limit and on a trajectory pre-

dicted to intrude into the work zone would trigger a Danger Interface. Through a

comprehensive combination of visual, auditory, and haptic notifications, ARROWS

is designed to enhance safety within work zones, ensuring workers are consistently

aware and responsive to potential hazards.
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3.4.1.2 Prototype Design

Conducting a comprehensive evaluation of a concept is an essential and funda-

mental step that should be undertaken before initiating the process of prototyping.

This step serves as a critical foundation to ensure that the concept is thoroughly

assessed, analyzed, and understood from various perspectives. This process involves

conducting in-depth analyzes to assess the concept’s feasibility, viability, and potential

limitations from technical standpoints. For this purpose, a comprehensive evaluation

of ARROWS technical requirements and challenges has been conducted before this

study [124]. This included exploring communication protocols and evaluating latency

benchmarks, creating an AR/WT interface that minimizes vision obstruction for end-

users, selecting appropriate technologies that adhere to safety requirements, and ac-

tively involving potential end-users to obtain preliminary feedback. Engaging with

end-users throughout the design and development stages allowed for a deeper under-

standing of their needs, preferences, and pain points. This constant communication

has resulted in multiple rounds of improvements and conceptual design refinement in

ARROWS [124]. After finalizing the design, we developed a high-fidelity prototype

of ARROWS and used the Wizard of Oz methodology in lieu of AI backend to mimic

comprehensive coverage of ARROWS’ capabilities during the testing phase, particu-

larly under conditions of unlikely intrusion. By adopting this approach, we success-

fully developed and implemented the complete end-to-end functionality of ARROWS,

which was then subjected to rigorous testing in this study. This includes the entire

process of transmitting notification commands from the backend, receiving them in

the frontend, and visualizing the corresponding risk scores using the ARROWS inter-

face based on the received risk score. For this purpose, we programmed a "wizard"

to take over the backend and create an end-to-end functionality of ARROWS. The

programmed wizard enabled the prototype to emulate the intelligence and features

of the real-world AI-powered backend in the controlled environment where this study
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was performed. We used NVIDIA Jetson AGX Xavier as the wizard hardware in this

study . We programmed a server script using TCP/IP protocol in Python program-

ming language for this hardware, alongside the mock-up scenarios, and leveraged this

for the communication between the server and frontend. The frontend of the system

consists of a pair of AR smart glasses and a smartwatch, as illustrated in Figure 3.1.

The Vuzix Blade AR smart glasses and Galaxy smartwatch were utilized as the fron-

tend hardware for this prototype. They operate in conjunction to provide real-time

multimodal notifications, which include vibration through the smartwatch, and audio

and visualization through the AR glasses. These notifications are based on the pre-

programmed scenarios and the instructions provided by the wizard in real-time. We

selected the Vuzix blade because of its compatibility with the ANSI Z87.1 certificate,

prescribed glasses/shades friendliness, and built-in audio modules, which make it a

favourite option for industrial applications. We incorporated our design of real-time

notifications in the display located on the right lens of the Vuzix Blade AR glasses

with a marginal impact on the workers’ natural vision. As shown in Figure 3.1, the

AR glasses only contain a display on the right lens, and the left lens is completely

see-through. In our user interface design, the three first examples that represent nor-

mal and warning notifications (normal and warning interfaces) feature a transparent

background. However, the danger notification has a semi-transparent background to

increase the effectiveness of the warning. This danger warning will only appear in less

likely dangerous situations and will maintain sufficient transparency, allowing users

to navigate without obstructing their vision. Because of this user interface design

and AR glasses configuration, the end-user will constantly engage with a fully trans-

parent background on the left lens, and in most cases, they will also interact with a

completely transparent display on the right lens, without their natural visions being

obstructed. We used TCP/IP protocol for real-time communication and developed

the pertinent software in Android. For the smartwatch, we developed the required
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software in the .NET framework and implemented similar communication protocols

and software patterns.

3.4.2 Experiment Design

Our study was driven by three primary objectives: (i) quantifying the usability

of ARROWS, (ii) identifying the major factors affecting user experience from the

worker’s perspective, and (iii) exploring the significant pain points of integrating

ARROWS in the everyday practice of highway workers. Our experimental strategy

was designed with the aim of acquiring a comprehensive understanding of the chal-

lenges and requirements associated with designing AR/WT-focused solutions for the

highway workforce. Moreover, by engaging workers from diverse backgrounds and

experiences within the construction industry, we aimed to establish a robust founda-

tion for usability. This inclusive approach allows us to gather data-driven insights

while exploring and studying the user experience of ARROWS for highway work zone

safety applications.

To achieve our defined goals, we developed a research strategy that utilized a dual-

experiment mixed-method design. This approach involved conducting two separate

experiments, each with its own unique objectives, and carried out in indoor and

outdoor settings. The indoor experiment was designed to have an increased focus on

collecting qualitative data from experienced highway workers who had extensive back-

grounds in highway maintenance and operation. Its primary objective was to identify

the unique safety needs of highway workers and conduct a rigorous thematic analysis

using high-quality data from end-users with an extensive field background. The pur-

pose of the outdoor experiment was to create an additional quantitative platform for

conducting usability testing in an outdoor setting that resembles real-world highway

work zones, with participants actively involved in maintenance activities. Our goal

was to broaden participation by including individuals with construction backgrounds.

The outdoor experiment also provided additional data points for numerical analysis
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and benchmarking of the technology’s usability, RSME, and trust score.

3.4.3 Indoor Experiment

3.4.3.1 Test Procedure and Participants

We conducted the indoor experiment in partnership with the Minnesota Depart-

ment of Transportation (MnDOT). Overall, 13 individuals (N = 13), 12 male and

one female, participated in the experiment. The sample size in this study provides a

suitable basis for an early usability test and is in line with domain-specific usability

experiments conducted in the literature [90, 161]. The average age of the participants

was 50.83 (SD = 11.12) years old. It should be noted that one participant did not

disclose their age, and the missing data point was replaced with the average of other

values. In addition, on average, our participants had 9.50 (SD = 6.01) years of main-

tenance work experience. The test involved the participation of workers with various

job titles, such as general laborers, sign maintenance personnel, traffic controllers,

and transportation experts. The methodology of the indoor experiment consisted

of three main steps: Pre-Experiment Surveys, the Wizard of Oz Experiment, and

Post-Experiment. When applicable, we used 6-scale Likert questions throughout our

surveys. The study protocol was also reviewed and approved by the Institutional Re-

view Board (IRB No. 21-0357) of the University of North Carolina at Charlotte. The

usability test was conducted at a MnDOT truck station located in the Minneapolis

metro, and the duration of each test ranged from 45 minutes to an hour. In the

following sections, we will provide a detailed description of each step involved in the

testing process.

3.4.3.2 Pre-Experiment Survey

The initial survey was developed to gather basic background information about the

participants before the test. This survey consisted of (1) age, (2) work experience,

(3) self-reported tech-savviness, (4) level of safety concerns in highway work zones,
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(5) perceived helpfulness of the current safety systems, (6) perceived practicality of

AR/WT in highway work zones and (7) likelihood of using AR/WT for safety pur-

poses. These features have been proven to be important in accepting new technologies

and improving usability [161, 162, 163, 164, 165].

3.4.3.3 Wizard of Oz User Journey

As specified earlier, we leveraged WOZ methodology to mimic the real-world in-

teraction of the proposed system in a controlled environment based on a mock-up

scenario programmed in the backend (i.e., the wizard). Each participant interacted

with the technology for 3-5 minutes. During this interaction, a series of notifications,

as illustrated in Figure 3.1, were sent to the frontend, and participants were asked

to think aloud and share their experience with the administrator. The interaction

started with the normal interface for 50 seconds. As illustrated in Figure 3.1, this

interface consists of a triangle on the bottom right and a checkmark on the top right

corner of the AR display. Then, the first warning interface with the textual content

of "Traffic Increasing - Be Careful" showed up for 5 seconds and was accompanied by

a light vibration stimulus on the smartwatch. In this interface, a yellow warning sign

was rendered on the top right corner of the display and the color of the bottom right

triangle changed to yellow. Next, the normal interface for the next 20 seconds was

displayed. Then, the second warning interface with the textual interface of "Weather

Advisory - 10 Minutes" with a light vibration stimulus was delivered for another

5 seconds. The display went back to the normal interface for another 20 seconds.

Finally, the danger interface with the textual content of "Danger - Careful - Now"

appeared and that was combined with both strong vibratory and auditory modal-

ities for 5 seconds. In this interface, the background color of the display changed

to transparent red, and a large red warning sign was also rendered in the center of

the display. The normal interface was used for the remainder of the user journey.

Moreover, participants were asked to highlight the pros and cons of the system, as
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well as its appropriateness for the context and their inputs on the utilized devices

(smart glasses and smartwatch) as the interaction went on. The scenario was simi-

larly executed for all participants. We also included a cognitive walkthrough in this

step where the research team explained to participants how the concept of this system

would use AI for detecting and predicting safety risks in highway work zones when

fully developed.

3.4.3.4 Post-Experiment Surveys

Following the interaction, we administered the Rating Scale Mental Effort (RSME)

to measure the subjective mental workload. First introduced by Zijlstra and Van

Doorn [166] and Zijlstra [167], RSME has been considered one of the widely used

subjective tools in measuring mental workload [168, 169]. Next, we used System

Usability Scale (SUS) to quantify the usability of the proposed technology. SUS was

first introduced by Brooke [125] and ever since has been used in numerous studies

for a quick and easy assessment of the usability of a given product or service [170,

171, 145, 172]. We also included a subjective trust questionnaire to benchmark the

perceived trust of participants. We also collected the likelihood of using AR/WT

technologies after the experiment to conduct a statistical comparison to determine if

there was a significant change in their attitudes toward these technologies after the

usability test.

3.4.4 Outdoor Experiment

3.4.4.1 Test Procedure and Participants

We created a short-duration work zone on the University of North Carolina at

Charlotte campus to carry out the outdoor experiment. For this purpose, we followed

the specifications of this type of work zone as provided by the Manual on Uniform

Traffic Control Devices (MUTCD) [92]: a temporary working area for maintenance

activities that takes less than an hour according to the. We also designed a real-
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world routine maintenance task commonly performed by highway workers in short-

duration work zones and included that in the experiment. The task involves removing

leaves from drop inlets. This routine maintenance activity helps prevent flooding

and facilitates drainage. The setup and experiment specifications are illustrated in

Figure 3.2. Of the 34 participants who participated in the study, 4 were unable to

complete the experiment due to unexpected circumstances, including unexpected fire

drills and internet outages which disrupted the data collection process. Therefore,

the study analyzed data from 30 participants (N = 30), 20 men, and 10 women, who

completed the experiment. These participants had an average age of 25.93 (SD =

5.20) years. On average, they reported having 2.58 (SD = 2.70) years of experience

in the construction industry. Participants also rated their self-reported tech savviness

on average at 5.03 (SD = 0.74) on a 6-point Likert scale in response to a question

about their tech proficiency. The test process lasted between 30 and 45 minutes

for each participant, during which they were instructed to wear AR glasses and the

smartwatch and perform the leaf blowing task to clean a drop inlet within the work

zone, as shown in Figure 3.2. The experiment was carried out under regular lighting

conditions between 11 am and 4 pm. We kept both the weather and the lighting

conditions in a similar range throughout the experiment. Similarly to the indoor

experiment, the outdoor experiment was also divided into three main stages: The

Pre-Experiment Survey, the Wizard of Oz Experiment, and the Post-Experiment

Survey. The study was carried out with the approval of the institutional review

board (IRB No. 21-0357) of the University of North Carolina at Charlotte.

3.4.4.2 Pre-Experiment Survey

Similar to the indoor experiment, we collected (1) age, (2) experience, (3) safety

concerns, and (4) self-reported tech-savviness as part of the pre-experiment data

collection in the outdoor experiment.
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Figure 3.2: Details of the outdoor experiment: (a) temporary work zone configuration
(b) the designed physical activity included in the outdoor experiment (c) prototype
in action during the outdoor experiment

3.4.4.3 Wizard of Oz User Journey

We used a similar user journey that was used in the indoor experiment. Each

participant interacted with the technology for 3-5 minutes. At the same time, par-

ticipants were also instructed to engage in the physical activity that we designed as

well as shown in Figure 3.2 The interaction started with the normal interface lasting

for 50 seconds. Next, the first warning interface displaying the textual content of

"Traffic Increasing - Be Careful" was delivered for 5 seconds, accompanied by a light

vibration on the smartwatch. Next, the normal interface for the next 20 seconds was

displayed and was followed by the second warning interface with the textual interface

of "Weather Advisory - 10 Minutes" with a light vibration stimulus for another 5

seconds. The screen went back to the normal interface for another 20 seconds. Fi-

nally, the danger interface carrying the textual content of "Danger - Careful - Now"

appeared on the display in synchrony with both strong vibratory and auditory cues

for 5 seconds.
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3.4.4.4 Post-Experiment Surveys

Similarly to the indoor experiment, we used RSME, SUS, and Trust to quantify

usability and study user experience. After the experiment was ended, we immediately

administered the questionnaires and instructed the participants to fill them out.

3.5 Results and Discussion

In this section, we will analyse the results of our experiments. We will first explore

the necessity and challenges associated with augmented reality technologies. We will

then focus on the implications of usability, mental load, and trust on user experience

design, highlighting the importance of these factors in ensuring the successful adoption

and use of these technologies. Finally, we will conduct a correlation analysis to

examine the link between usability, trust, and mental load, shedding light on the

interplay between these attributes. Through these discussions, we aim to provide

valuable insights for researchers, practitioners, and policymakers seeking to enhance

the effectiveness and usability of AR/WT-based safety technologies.

3.5.1 Necessity and Challenges of AR/WT-based Safety Technologies

Figure 3.3 summarizes the responses to the questions asked in the Pre-Experiment

Surveys of the indoor experiment. As shown in Figure 3.3(a), the results suggest

that our participants were quite concerned with their safety in highway work zones.

Furthermore, when asked what their concerns were in specific, our participants high-

lighted speeding traffic, and careless and distracted drivers as their major issues.

They also gave the helpfulness of current safety strategies in highway work zones on

average a score of 4 out of 6, as illustrated in Figure 3.3(b). Furthermore, the par-

ticipants in the indoor experiment also expressed their concerns about the existing

safety mechanisms in highway work zones and pointed out the need for improved and

updated safety technologies in this context. Our qualitative data, as quoted in the

following, points out the same trend:
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Table 3.1: Participants’ concerns toward the application of AR/WT in highway work
zones expressed in the indoor experiment

Concern Percentage of Participants
Incompatibility with tasks and environment 69%
Affecting movement and performance 61%
Lack of Trust 30%
Poor Usability 30%
Other (Dependability) 7%
Other (Adverse Weather) 7%

P1: "The more we could have for safety, I am all for it. You know, and I like

to still make it home to them." P3: "The best thing that we ever found to help us

above and beyond the crash trucks was having a state trooper sitting there with their

flashing lights on. That seemed to get everybody’s attention. But without that, all bets

are off."

P8: "And there’s really no safety systems in place on work, so well, our cones,

that’s the only thing out there is. Well, we got lights, two lights flashing, and cones.

So yeah, something has got to enhance our system."

Negative perception and limited prior experience with these technologies seem to

be two possible obstacles to the acceptance of AR/WT-based safety systems for this

group. On average, indoor experiment participants rated their self-reported tech-

savviness to be 4.23 on a 6-score Likert question with a median of 4 on the same

score. Moreover, as shown in Table 3.1, when asked about their concerns in specific,

9 participants mentioned the incompatibility of such devices with their tasks and

working environment as their major issue. Eight participants also mentioned the

potential impact on their mobility as another major barrier to such technologies in

the context of highway work zone safety. This was followed by a lack of trust and poor

usability with four votes. It shows that customizing the AR and WT user experience

to be compatible with the harsh outdoor environment while meeting the unique needs

of workers coupled with easing usability are broader issues in the eyes of end-users in

deploying AR and WT technologies in this context.
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Figure 3.3: Participants’ responses to the questions asked prior to the indoor usability
test

3.5.2 Implications of Usability, Mental Load, and Trust on User Experience

Design

3.5.2.1 Usability

Figure 3.4(a) illustrates that the average SUS score collected from the first round

of this study was 75, with a SD of 14.47. In 2016, Sauro and Lewis [173] provided an

alternative Curved Grading Scale (CGS) based on 446 SUS studies for interpreting

SUS results. According to this scale, our system’s usability is above the average (i.e.,

68) and is given a B grade, while the traditional usability scale gives this technology

a C. While this grade highlights some room for improvement, it also provides en-

couraging potential toward the application of AR/WT in highway work zone safety,

given the novelty of the system and the fidelity of the prototype. Moreover, Figure

3.4(d) also demonstrates the SUS scores that we collected in the second round of the

experiment in the outdoor setting. The collected SUS scores add up to an average

of 67 (SD = 17.85). While the average score of outdoor SUS scores is less than the

indoor experiment, the t-test results reveal that with a p of 0.13, these averages are

not statistically different, and the indoor experiment resulted in statistically similar

usability results. Moreover, the average of the outdoor usability metrics is around
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the average of 68, which indicates fairly acceptable usability. Some participants still

cited their concerns about the potential incompatibility of AR/WT to their working

environment after interaction with the system in our qualitative data collection as

follows:

P2: "These are probably not safety glasses. They don’t wrap around, they don’t

cover the sides of our eyes. So as nice as this part is, it has a screen that’s really

pretty cool. But you would have to design it so that it wraps around, you know, we

have to protect all sides of our eyes because we’re cutting and we got flying metal, We

got all kinds of stuff. And so you got gaps underneath here."

P4: "My biggest concern is whether they fall off. When we’re moving around and

we are bent over doing something and then they fall off."

P5: "You get the heat, you got the humidity and then you got your body heat. So

it is just about what you are wearing. I try not to wear my safety glasses too much

because it fogs up because it is a concern where I cannot see."

P9: "The watch was probably one of the best because you can really feel the vibration.

But also, like I said, there could be kind of hiccups with that. If you’re going through

and using power equipment and you don’t feel that vibration because your hands are

already in motion."

Therefore, our results suggest that worker-centred technologies that offer cus-

tomized user experience and enhanced integration with already existing safety gears

would be critical for the broader deployment of AR/WT in sensitive contexts such

as safety. In recent years, there have been some research efforts toward utilizing

more advanced AR hardware such as HoloLens 2 that is specifically manufactured for

labour-intensive contexts. However, there remain some questions in assimilating such

technologies with the everyday tasks of workers given its cost and impact on Field

of View (FOV) and depth perception. In addition, even though the Vuzix Blade AR

glasses that we used here comes with an ANSI Z87.1 certificate and are compatible
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Figure 3.4: Summary of the usability (0-100), trust (0-100), and mental load (0-150)
responses in indoor (a-c) and outdoor (e-f) experiments

with safety regulations in industrial settings, some of the participants still raised some

concern about the suitability of replacing existing safety glasses with AR technologies.

3.5.2.2 Mental Load

Mental load is a critical factor with a significant potential impact on usability

and user experience. Figures 3.4 (b) and (e) illustrate the RSME values that we

received in our indoor and outdoor experiments. As shown in Figure 3.4(b), the

results indicate that the average RSME is 34.62 (SD = 31.06). This suggests that

the system did not cause a noticeable mental burden on participants in our indoor

experiment. Moreover, the average RSME score in our outdoor experiment, as shown

in Figure 3.4(e), is 28.93 (SD = 23.56), which is on par with indoor results, indicating

a reasonable mental load on our participants. However, the quite large SD of this

metric in both settings suggests that there could be a potential need for individual
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adjustments to support inclusive technology developments in terms of interaction and

user interface design, given the diversity among workers in terms of task descriptions

and demographic. Additionally, a t-test between these data collections in the RMSE

indoor and outdoor settings shows that there is no statistically significant difference

between the indoor and outdoor measurements with a p of 0.562.

3.5.2.3 Trust

We used a trust questionnaire that consisted of 8 questions and asked participants

to rate their level of agreement with the questions on a 1-100 scale. In response to

this questionnaire that is provided in the appendix, Figure 3.4(c) and (f) illustrate

the trust scores recorded in indoor and outdoor experiments, respectively. As illus-

trated in Figure 3.4(c), our results suggest that our participants rated their trust in

the designed technology on average to be around 69.25 (SD = 12.45) in the indoor

experiment. This points out that our participants fairly seemed to be receptive to

the proposed technology. While the general perception is that broader labour seems

to view new technologies negatively, our participants quite welcomed this proposal.

However, we still observed some differing perspectives toward AI among our partici-

pants and how it impacts their acceptance. During the indoor experiment, we asked

our participants if they had heard of AI and what was their perception of it; our

participants responded:

P7: "Well, personally, I would say it depends on what kind of program you are

using for that AI. I mean, some people, they just think of it as a machine trying to

take over the world from movies and such. But it is deeper than that. It depends on

what kind of programming you use and how it’s coded and what its primary function

is."

P12: "Oh, just computers. You know, becoming more intelligent is the big thing

with artificial intelligence kind of computers being able to almost think like a human

being."
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P13: "It is good and bad. It has its good sides, obviously, because it’s always

continually trying to think of new ways to fix things, but I don’t know, maybe, maybe

it’s paranoia in me like everybody else, but it seems like the algorithms on your phone

pick up what you are saying. It’s like, who is really listening? And, you know, I don’t

know if that’s exactly where we’re going with it, but I mean, the concept is good."

At the same time, as shown in Figure 3.4(f), participants in the outdoor experiment

rated their trust in the technology on average 82.29 out of 100 (SD = 16.08). The

results of a t-test between trust scores in indoor and outdoor experiments suggest that

these two means are statistically different, with a p of 0.007. The results indicate that

participants had a higher level of trust in the technology in the outdoor experiment,

which better simulated the context compared to the indoor experiment. This differ-

ence can be attributed to factors such as age, experience, or personal preferences, but

no conclusive statements can be made based solely on the collected data.

Figure 3.5: Correlation analysis between usability, mental load, trust, and demo-
graphics results collected in the (a) indoor and (b) outdoor experiments
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Figure 3.6: Comparison analysis between the collected likelihood of using wearable
and augmented reality technologies among participants in the indoor experiment (a)
before and (b) after the usability test and (c) the average and standard deviation of
results

Table 3.2: Correlation and regression analysis between SUS, Trust, and RSME in
indoor and outdoor experiments

Indoor Experiment
Variable 1 Variable 2 Coefficient Correlation Standard Error t-Stat p Lower 95% Upper 95%
Trust SUS 0.71 0.61 0.27 2.56 0.021 0.1 1.32
Experience RSME -3.05 -0.59 1.25 -2.43 0.033 -5.81 -0.29
Outdoor Experiment
Variable 1 (X) Variable 2 (Y) Coefficient Correlation Standard Error t-Stat p Lower 95% Lower 95%
Trust SUS 0.46 0.42 0.19 2.42 0.024 0.07 0.85
SUS RMSE -0.49 -0.37 0.23 -2.09 0.044 -0.96 -0.01
Tech-savviness Trust 9.33 0.58 2.47 3.76 0.000 4.26 14.41

3.5.2.4 Link Between Usability, Trust, and Mental Load:Correlation and

Statistical Analysis

To better understand the dynamic between SUS, trust, and RSME, we conducted

a correlation analysis between the collected metrics for both indoor and outdoor ex-

periments. The results are visualized in Figure 3.5. Our results suggest that Trust

and SUS are highly and positively correlated in both indoor and outdoor settings.

This dynamic has already been identified in different contexts and concepts in the

literature [174, 175, 176]. Therefore, one of the areas that could potentially increase

the usability and acceptance of AR and WT among general labour is increasing their

trust in advanced technologies such as AR/WT and AI. Table 3.2 also summarizes
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the regression analysis on the metrics with high correlation. The results suggest that

SUS and Trust correlation is significant in both settings, backing up our hypothesis

(i.e., SUS and Trust implications) in both indoor and outdoor settings. Table 3.2

also demonstrates that trust and tech-savviness are positively correlated, and their

correlation is statistically significant. This further highlights the role of workforce

education that could result in higher acceptance of technologies as noted in other

studies as well [177, 178, 179]. Therefore, increasing investments in public outreach,

education, and other means of community engagement - that could potentially elevate

workers’ perception by increasing awareness about the application and usefulness of

advanced technologies - could also increase the usability of AR and WT technologies

in this context [180]. Moreover, Figure 3.6 indicates that the average likelihood of us-

ing AR/WT technologies for safety purposes among our participants after conducting

the indoor usability test increased. Table 3.3 provides the results of a paired t-test

on the collected values before and after conducting the indoor usability test. The

outcomes of this analysis suggest that this increase is statistically significant (p =

0.02). Therefore, it can be concluded that more interaction and exposure to novel

technologies could potentially result in higher acceptance among workers. While this

alone cannot completely justify the increase in trust, nor guarantee acceptable usabil-

ity, a combination of investment in public outreach and facilitating more interaction

and education among workers on this topic could potentially increase the trust of the

workforce in novel technologies and increase usability and acceptance.

3.5.3 Limitations and Future Directions

The proposed technology has great potential when it comes to improving acces-

sibility and inclusion for highway maintenance workers and construction laborers

operating in highway work zones. With the help of augmented reality technology,

digital overlays are created that are particularly useful for some individuals with dis-

abilities. The proposed multimodal notification system can assist individuals with
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Table 3.3: Paired t test between the collected likelihood of using AR/WT technologies
before and after usability test in indoor experiment

Pre-Usability Test Step Post-Usability Test Step
Mean 4.69 5.23
Variance 1.23 0.69
Observations 13 13
Correlation 0.71
Degree of Freedom 12
t-Statistics -2.50
P(T<=t) two-tail 0.02
t-Critical two-tail 2.17

disabilities in reacting more promptly and navigating safely to secure locations. Even

though no specific disabled groups were included in this study, it is recommended for

future studies to broaden the participation by including disabled and other minority

groups to further analyse the impact of disruptive technologies such as AR/WT in

the broader highway workforce community. Another direction for future studies is

studying the impact of learning curves. Users who are not familiar with advanced

technologies such as AR may struggle with the learning curve, which can affect their

willingness to adopt and utilize the technology. In this study, we solely focused on

usability, and how mental load and perceived trust could impact user experience.

However, investigating the dynamic between the learning curve and usability is one

of the interesting topics recommended for future studies. A different intriguing future

direction involves examining the effects of fatigue and ergonomic factors on usability.

Past studies have emphasized the importance of including fatigue and ergonomics

when introducing new products to ensure they do not cause undue discomfort [181].

Specifically, the impact of fatigue on usability has been investigated in the context of

Augmented Reality applications in different contexts [182]. Therefore, a compelling

direction for future research would be to assess the impact of fatigue and ergonomics

on the usability and user experience of AR and WT technologies in the context of

highway work zone safety.
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3.6 Conclusion

The focus of this paper was to examine the usability of a new safety system that

leverages Augmented Reality (AR) and Wearable Technology (WT) in the context

of safety of highway work zones (ARROWS). The study aimed at identifying key

factors that contribute to user experience as perceived by workers and documenting

major pain points in including ARROWS in the operation of the highway work zone

industry. For this purpose, we devised two complementary experiments in indoor and

outdoor settings using the Wizard of Oz technique. A high-fidelity prototype of AR-

ROWS was utilized to study usability, research user experience, and highlight design

implications and future directions of AR and WT technologies in highway operation

discipline through the lens of user-centred design best practices. The mixed-method

outcomes of this study provide a series of usability benchmarks and user experience

contributors that can be leveraged in customizing AR/WT technologies for the high-

way workforce. Our examination of the collected qualitative insights and responses to

the pre-experiment questions of the surveyed workers demonstrate that participants

rated their perception of the practicality of AR/WT solutions as 4 on a scale of 1 to 6

and cited their openness to trying novel technical solutions that address their safety

challenges. This suggests that participants recognized the potential of AR/WT tech-

nologies in enhancing safety and are receptive to adopting such technologies. Working

under strict time constraints and direct exposure to traffic differentiate highway work

zones from other work environments. Consequently, there is a need for safety solutions

that are both usable and functional within these specific limitations. Our findings

exhibit participantsâ consensus in recognizing the critical need for novel technologies

that enhance workersâ safety with a strong emphasis on the accommodation of their

unique needs in the field through customized user experience. This includes incorpo-

rating design strategies that adjust haptic intensity to match the specific characteris-

tics of highway maintenance activities, account for potential external impacts on the
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operation of the technology such as excessive heat and cold, and tailor functionality of

the technology for addressing the diverse working conditions encountered by highway

workers. Furthermore, participants rated the usability of ARROWS above average in

both indoor and outdoor settings while reporting a reasonable mental effort during

the end-to-end functionality that the high-fidelity prototype offered. It is anticipated

to see similar trends in the early stages of research and development of other novel

AR/WT technologies for highway workforce safety. The outcomes also point out a

significant correlation between perceived trust and usability. This association high-

lights the importance of leveraging trust to enhance the usability and user experience

of multimodal augmented reality in highway work zone safety applications.



CHAPTER 4: AUGMENTED REALITY WARNINGS IN ROADWAY WORK

ZONES: EVALUATING THE EFFECT OF MODALITY ON WORKER

REACTION TIMES

4.1 Introduction

The economic growth and prosperity of nations are heavily reliant on the presence

of robust and efficient transportation infrastructure. In this regard, roadway work

zones play a critical role in the inspection, maintenance, and upgrading of roadways to

ensure their effectiveness, facilitate their development, and maintain continuous op-

eration. However, these work zones pose significant dangers and risks to workers due

to various factors, including direct exposure to traffic, extended work hours, and lack

of adequate safety technologies [183]. As a result, they are recognized as one of the

most hazardous work environments, globally. An examination of workplace fatalities

and injuries around the world underscores the severity of the hazardous environment

in work zones. According to the Centers for Disease Control and Prevention (CDC),

between 2003 and 2017, a staggering 4,444 deaths were reported at road construction

sites in the United States alone, with an average of 123 fatalities per year [1]. Fur-

thermore, the US Bureau of Labor Statistics reported 135 work-related fatalities in

2019, further highlighting the ongoing dangers associated with this line of work [184].

Similarly, Great Britain also experienced significant challenges in workplace safety

within roadway construction areas. In 2022, accidents involving workers being struck

by moving vehicles ranked as the second most common cause of fatal accidents in

workplaces, underscoring the critical need for enhanced safety measures in this sector

[185]. Further, the transportation and storage sector accounted for 15.0% of fatal

accidents in the European Union, highlighting the broader European context and the
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urgency of addressing safety concerns in this industry [186].

In parallel with the growing recognition of the dangers inherent in work zones,

there has been a notable surge in investments directed toward the construction of

efficient transport infrastructure. These investments, guided by initiatives such as

Infrastructure and Investment Jobs Acts in the US and the multi-bilion Euro projects

in the European Union under strategic plans for investment in sustainable, safe and

efficient transport infrastructure, are projected to result in a substantial increase in

the number of roadway work zones in various countries [187, 188]. As the expansion

of work zones becomes an imminent reality, there arises an urgent and critical need

to prioritize the improvement of safety systems within roadway work zones. This

imperative stems from the recognition that workers in these zones face numerous

risks, including intrusion by passing vehicles and exposure to other safety hazards.

To address these pressing concerns, concerted efforts must be made to strengthen

the existing safety measures in place. It is paramount to improve and implement effec-

tive safety systems that can mitigate the risks faced by workers in work zones. To this

end, in recent years, there has been an increasing emphasis within the roadway work

zone community on utilizing technology to mitigate safety concerns [2, 3, 189]. To

address this objective, limited studies have explored the potential of warnings, focus-

ing on evaluating how different designs can contribute to improving safety measures

for workers [190, 139, 191]. The design of an effective warning is crucial in ensur-

ing worker safety by alerting workers to potential hazards and quickly disseminating

critical information. A well-designed warning system should be able to capture the

attention of workers and convey information clearly and effectively. However, most of

these technologies primarily concentrated on delivering haptic signals through wear-

able devices [117, 3].

Meanwhile, AR has gained traction in numerous industries as a powerful tool to im-

prove safety and productivity by superimposing virtual information on the real-world
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environment [82, 192]. AR technology has already begun to penetrate the trans-

portation and construction industry [193, 5]. Therefore, this technology is expected

to continue to expand its impact and influence on the safety domain of roadway

work zones in the near future. Yet, current understanding of the impact of different

warning designs in augmented reality systems on worker reaction times is limited.

Previous research studies have not thoroughly examined the effects of different mul-

timodal designs of AR warnings on worker response, particularly within the context

of safety systems. The design of safety systems for roadway work zones cannot rely

solely on general reaction time assumptions. The distinctive characteristics of these

work zones, including the cognitive load associated with physical activities and the

sensory taxing environment, can have a substantial impact on workers’ reaction time

performance. Therefore, it is essential to consider these factors when developing time-

critical safety warnings, taking into account the unique challenges faced by workers

in roadway work zones. Therefore, this knowledge gap has significant implications

for the development of efficient real-time warning designs in roadway work zones.

Roadway work zones have also distinct characteristics that distinguish them from

other construction areas, mainly due to their exposure to traffic and limited maneuver

space [34, 194]. Exposure to traffic introduces an additional layer of complexity

in roadway work zones [14]. Workers must not only manage their tasks, but also

navigate and interact with moving vehicles [195]. Furthermore, the limited space for

maneuvering in roadway work zones restricts workers’ mobility and may affect their

reaction times to warnings [196]. Meanwhile, the complex nature of replicating work

zone environments has presented significant challenges in conducting high-fidelity

experiments to assess reaction times. Such experiments often require substantial

resources, involve intricate setups, and carry inherent risks [197]. Simultaneously,

Virtual Reality (VR) has emerged as a viable alternative to recreate scenarios that

are costly and logistically challenging to replicate. In the context of roadway work
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zone safety, VR has been used in different studies to investigate worker behavior

in different contexts and technological settings [198, 197, 199]. In particular, AR

simulation in VR is one of the research directions that researchers have considered in

different applications, such as healthcare and military [200, 201, 202, 203]. However,

a crucial question that still needs to be addressed is whether VR-simulated AR can

effectively simulate the complexities of real-world dynamics and accurately capture

reaction times in the context of safety in roadway work zones. This is an essential

consideration for future simulation-based training applications, as it directly impacts

the reliability and validity of using virtual reality simulations to train workers in

real-world scenarios.

This paper documents our research endeavors to evaluate the reaction time for mul-

timodal Augmented Reality-based warnings within the domain of roadway work zone

safety. To achieve this, we developed an integrative research framework that incor-

porates an innovative concept of an AR-based system proposed by the authors [124].

The designed methodology is rooted in three key elements: a high-fidelity prototype

of the AR system, virtual reality that simulates the functionality of the AR system in

its context, and the Wizard of OZ methodology that synchronizes the user journeys

across different experiments. Furthermore, our methodology employs two approaches

to quantify the reaction time: (i) a simple reaction time (SRT) methodology, and (ii)

a vision-based strategy that we devised. In the SRT approach, we designed two mech-

anisms using physical interfaces, including a keyboard and VR controllers, to capture

participants’ reactions. These interfaces provided intuitive means for participants to

respond by pressing keys or buttons when prompted by stimuli. In the vision-based

approach, we used a pose estimation model to examine whether warnings commu-

nicated through the simulated AR system in VR elicited any observable physical

responses to cumulative joint displacement of the participants’ upper body. By ana-

lyzing the speed of the movements and positions of the participants’ pose, we aimed



71

to detect any changes or patterns that could indicate a physical response triggered

by the warnings. We then developed a mixed-method approach that incorporated

both between-subject and within-subject designs to investigate the impact of differ-

ent conditions on reaction times and assess the effectiveness of AR-based warnings.

Our study involved conducting five experiments, including an outdoor experiment

using a real-world prototype in a temporary work zone, as well as multiple indoor

experiments utilizing a simulated version of the prototype within a virtual reality

environment. Using this integrated approach, we were able to gather comprehensive

data on the performance of different multimodal warning designs in both real-world

and controlled environments. In our experimental design, our aim was to address the

following research questions as described below:

• RQ1. Which multimodal AR warning design generates the quickest reaction

time in real-world setting?

• RQ2. Does the reaction time to VR-simulated AR warnings statistically match

that of the outdoor environment?

• RQ3. Can real-time pose tracking serve as an indicator of the reaction time to

AR warnings?

Our study holds significant implications for enhancing safety in roadway work zones

through the incorporation of AR-based warning systems and vision-based reaction

time measurement. It provides a comprehensive range of reaction time metrics and

benchmarks specifically tailored to roadway work zone safety, serving as a valuable

reference for the development of real-time safety systems that utilize AR technology.

This study represents a pioneering effort in quantifying reaction times to multimodal

AR-based warnings in the context of roadway work zone safety. Furthermore, our re-

search contributes to the existing body of knowledge by shedding light on the use of

virtual reality as a simulation tool for AR and its application in reaction time safety
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research. By establishing a benchmark to compare the reaction time of VR-simulated

AR with real-world multimodal AR scenarios, we improve our understanding of the

feasibility and effectiveness of using VR simulations to measure reaction times within

AR safety systems. Furthermore, this study offers information on the design of multi-

modal warning mechanisms for safety and evaluates their efficacy in triggering timely

responses. This investigation increases our understanding of the impact of warning

mechanisms on workers’ reaction times, which, in turn, facilitates the optimization of

safety systems, particularly when integrating AR technology. Furthermore, the intro-

duction of the vision-based reaction time measurement strategy brings forth exciting

possibilities for utilizing innovative data acquisition techniques to monitor safety haz-

ards and responses in roadway work zones. By capturing and analyzing visual data,

we can obtain valuable insights into the reactions and response times of workers when

they encounter different safety hazards within roadway work zones. What makes this

approach particularly advantageous is that it can be implemented in a non-intrusive

manner, respecting the natural work environment and minimizing disruptions to the

workers’ tasks. Overall, by establishing reaction time benchmarks and laying the

foundations for further research, our study paves the way for the development of

advanced real-time safety systems for roadway workers.

4.2 Related Work

Reviewing previous work, we first evaluate safety measures in roadway work zones,

then investigate trends in warning design and methods of measuring reaction times.

Finally, we explore the role of virtual reality in simulating augmented reality across

multiple fields.

4.2.1 Safety Measures in Roadway Work Zones

Despite acknowledging the risks associated with roadway work zones in various

studies, the implementation of new technologies to improve safety in these environ-
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ments has been limited. Existing safety measures primarily rely on reactive ap-

proaches, triggering alarms or alerts only after an intrusion occurs or when intruding

objects are in a close proximity [36, 12, 37, 38]. However, there is a growing shift

toward smarter and more proactive safety systems in roadway work zones. A system-

atic review conducted by Nnaji et al. [2] highlighted the growing need for adopting

smart automated technologies and a departure from traditional approaches, a shift

further propelled by the emergence of advanced sensing technologies.

One example of recent innovative research studies in this field is the work by

Sakhakarmi et al. [3], who developed a proximity-based alerting system that uti-

lizes tactile cues as the primary mode of communication with users. However, the

effectiveness of this system in roadway work zones can be compromised due to the

high levels of noise and cognitive demands placed on workers. In another study, Chan

et al. [39] proposed a wearable-based hazard proximity warning system to improve

the awareness of construction workers. Although this system relies on proximity-

based triggering mechanisms, it still shares the limitations of reactive systems that

only activate warnings when hazards are in close proximity. Similarly, Kim et al. [40]

developed a novel system using AR to alert workers about potential hazards based on

orientation and proximity. However, the functionality of this system may be limited

to hazards within the workers’ field of view, overlooking hazards outside their vi-

sual scope. Furthermore, Kim et al. [204] proposed an IoT-based proximity warning

system that alerts workers when they are in close proximity to heavy equipment

These studies highlight ongoing efforts to develop advanced safety systems for work

zones on roads. However, there are challenges to address, such as the noisy and de-

manding nature of these work environments. Future research should aim to overcome

these limitations and strive for comprehensive solutions that take into account mul-

tiple modes of communication and multimodal warning, incorporate real-time data,

and effectively address the unique challenges and demands faced by workers in the
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work zones.

4.2.2 Warnings Modality and Design

Warnings are signals generated by a device in the form of visual, auditory, or

haptic stimulus, which are designed to attract users’ attention and provide proactive

information [205]. Warnings facilitate an interactive process between users and a

device or system, encouraging them to react, respond, and take specific actions based

on the content and delivery of the warning warnings [206, 207]. Previous studies have

highlighted that the presentation and delivery of warnings play a crucial role in their

effectiveness [208, 207]. Research suggests that effective presentation and delivery

of warnings depend on various factors, including user characteristics, task at hand,

device being used, and the surrounding environment [209].

Although there is a wealth of literature on digital warnings in general, research

specifically addressing warning delivery in the AR technology, particularly in the

context of real-time safety systems, is limited [207]. The majority of previous studies

have focused mainly on in-vehicle AR warnings, leaving a gap in understanding how

to effectively design AR warnings for workers and other vulnerable road users [210,

211, 212, 213]. However, recent studies have started to explore AR-based warnings in

different contexts related to VRU. For example, Matviienko et al. [214] investigated

the safety enhancement of e-scooters with unimodal warnings, including AR warnings,

vibrotactile feedback on the handlebar, and auditory signals, to prevent collisions with

other road users. Similarly, Von et al. [215] explored potential approaches for AR

applications to enhance cyclist safety and conducted a pilot study. These studies have

considered multimodal designs, which incorporate visual, audio, and haptic feedback

in warnings. However, there is still a lack of enough research to specifically address the

effects of AR-based warnings on roadway workers and their reaction time in different

settings and contexts.
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4.2.3 Reaction Time: Measures, Influences, and Applications to Roadway Worker

Safety

Reaction time measurement has been an important tool in psychology and neu-

roscience for more than a century [216]. RT measurements have been widely used

by researchers to explore a diverse range of cognitive processes, study perception,

and examine how quickly individuals can detect and interpret sensory stimuli from

their environment [217, 218, 219]. To this end, Simple Reaction Time (SRT) task is

widely recognized as the most common method to measure reaction time [220]. In

this approach, participants are instructed to respond as rapidly as they can to a single

stimulus. The stimulus can take various forms, including visual cues, auditory signals,

or somatosensory stimuli. Participants typically execute their response by pressing

buttons, pressing keys, or performing vocal reactions [221, 222, 223]. The review of

literature suggest that reaction time can be influenced by various factors such as age

[224], sex [225, 226, 227], attention [228], fatigue [229], arousal levels [230], and task

complexity [231].

Meanwhile, understanding workers’ reaction time to safety warnings plays a vital

role in the development of effective alert technologies. This significance is particularly

accentuated in the context of roadway work zones, where the complex environment

and the presence of fast-moving vehicles necessitate timely and fast response from

workers in case of intrusions [41]. To this end, several studies have been conducted

to investigate workers’ reaction time in various systems and working environments

related to roadway work zones. For example, Thapa et al. examined the optimal

configuration of a work zone intrusion alert technology and explored the relationship

between sensor placement and alerting modules, considering workers’ naturalistic re-

action [232]. In another research work, Nnaji et al. provided guidelines for adopting

different commercially available work zone technologies for roadway work zones, tak-

ing into account workers’ reaction time and response rate as essential metrics in their



76

framework [41]. In another study, Awolusi et al. quantified the reaction time of

roadway workers to two commercially available intrusion alert technologies specifi-

cally designed for roadway work zones [14]. Finally, in a recent study, Yang et al.

[191] conducted three experiments to assess the viability of using vibrotactile signals

as warnings for road workers. The experiments aimed to assess the perception and

performance of the generated signals at different body locations and to examine the

usability of various warning strategies. Our review suggest that the existing literature

does not provide sufficient evidence to provide insights into reaction times specifically

related to AR-based warnings in this particular field.

4.2.4 Virtual Reality Simulations for Evaluation of AR Warnings

The rapid development and widespread adoption of AR technology have propelled

it to the forefront of various domains and industries, offering a multitude of applica-

tions and possibilities [5, 233]. However, the accelerated growth of AR has created

a demand for efficient methods to prototype and evaluate AR interfaces and interac-

tions in a timely manner [234, 235]. Traditional approaches such as wire-framing and

paper sketching, while useful in certain design contexts, often fall short of capturing

the true essence of the user experience in AR. These methods struggle to convey the

immersive and context-sensitive aspects of AR applications, making it challenging

to evaluate user interactions and gather meaningful feedback on usability and func-

tionality. To overcome these limitations, researchers and practitioners have turned to

alternative approaches that take advantage of virtual environments, specifically VR,

for AR prototyping and evaluation. Using virtual reality simulations, designers and

developers can create virtual representations of AR interfaces and interactions that

closely mimic the real-world user experience. This immersive and interactive envi-

ronment allows for more realistic user testing and evaluation, allowing stakeholders

to gain a deeper understanding of the usability, effectiveness, and user satisfaction of

AR applications.
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In order to achieve this specific objective, several studies have been conducted. For

example, in the field of surgical applications, Hettig et al. used VR simulations to

mimic AR environments and investigated individual parameters for surgical proce-

dures [200]. By simulating the AR experience, they were able to explore different

scenarios and optimize the application of AR technology in this novel context. In

another study, Terrier et al. focused on the impact of registration errors between vir-

tual and real objects in AR [236]. They used VR simulations to control experimental

conditions and examine the effects of registration errors. In the realm of public safety

applications, Grandi et al. proposed a framework that used virtual reality to evaluate

AR interfaces in traffic stops and firefighting search and rescue scenarios [237]. Using

virtual reality simulations, they were able to simulate realistic situations and gather

feedback to improve the design and effectiveness of AR interfaces in these critical

public safety contexts. Furthermore, Zaman et al. conducted a study focused on the

usability of AR technology in combat missions. They used virtual reality simulations

during subterranean operations to investigate the usability aspects of AR interfaces

[202]. Finally, Burova et al. [238] used VR AR simulation along with gaze tracking

to evaluate the effectiveness of AR guidance and safety awareness features for ele-

vator maintenance. Through an iterative development-evaluation process, industry

experts participated in testing and providing feedback on the AR simulation and gaze

tracking system. The study also included a survey that used actual gaze data from

the evaluation to collect comments and insights from industry experts regarding the

usefulness of the AR simulation and gaze tracking approach.

4.3 Methodology

4.3.1 Study Overview

To achieve the objectives of this study, we incorporated a multi-faceted approach to

measure reaction times across distinctive setups. Each of these setups was designed to

gauge different aspects of reaction time and to evaluate the efficacy of various modes
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of warnings. For this purpose, we conducted a desktop-based simple reaction time

measurement which served as our baseline. In this experimental setup, participants

were instructed to respond as quickly as possible to a multimodal warning, with the

visual sign presented on a computer monitor. The objective here was to create a

standard benchmark against which we could compare the reaction times observed in

other scenarios. Next, we conducted a real-world test in a controlled outdoor work

zone setting. Here, participants were equipped with AR glasses that delivered warn-

ings about potential intrusions or hazards. The aim was to evaluate the impact of

different sensory modes of AR warnings on the reaction time of workers in a realistic

environment. Finally, we conducted a series of experiments within an immersive vir-

tual reality environment that mimicked a roadway work zone. The intent of this setup

was twofold. Firstly, we sought to validate the fidelity of our VR work zone simula-

tions by comparing the participants’ reaction times in the VR environment with those

from the real-world test. Second, we used this setup to measure reaction times using

vision-based pose-tracking algorithms by capturing and analyzing the movements of

the participants in response to the simulated warnings. In this section, we will detail

Figure 4.1: Overview of the Augmented Reality-Based Safety Technology and Its
Warning Interface Features
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our methodological framework, discuss the AR and VR technologies used, explain the

design and execution of our experiments, and elaborate on other significant aspects

integral to addressing the research questions. Table 4.1 also provides comprehen-

sive information on the details, specifications, apparatus, and warning designs of the

experiments conducted in this study.

4.3.2 Experimental Apparatus and Setup

4.3.2.1 Utilized Augmented Reality Technology

This study utilized an innovative AR warning technology, conceptualized and devel-

oped by the authors’ team, as detailed in our previous work [124]. This technology,

shown in Figure 4.1, consists of two main components: the AI-powered back-end,

which processes real-time video data to predict potential intrusions in the work zone,

and the front-end, which uses a multimodal AR interface to alert workers in real

time about immediate risks. This AR warning interface incorporates visual, audi-

tory, and haptic cues and provides workers with timely warnings regarding possible

intrusions or hazards, improving their situational awareness, and facilitating quick

and appropriate responses to ensure worker safety. In this study, we used the Wizard

of Oz methodology (WOZ) to replicate the functionality of the back-end component

without using an actual AI module. We replaced the role of AI with a pre-definied

scripted "wizard" written in Python that runs on the edge device. We adopted this

approach to focus on specific intrusion scenarios that activate the warning interface

within a controlled environment, as these occurrences are infrequent in real-world

situations. Using this methodology, we could iteratively record participants’ reaction

times and responses to AR warnings. Additionally, the approach ensured that par-

ticipants encountered similar and synchronized scenarios with consistent triggering

points across multiple experiments. The back and front ends were connected within

a local network facilitated by a router.

Figure 4.2(b) provides an overview of the hardware and software components of AR
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Figure 4.2: Proposed Framework for Quantifying Reaction Time to Multimodal AR
Warnings: Experimental Setup, Hardware and Software Development, and Utilization
Mechanisms

technology used in this study. We used Vuzix Blade AR smart glasses and a Galaxy

smartwatch for this particular front-end design. We selected Vuzix Blade as they

comply with ANSI Z87.1 standards and can be comfortably paired with prescription

eyewear or shades. Featuring built-in audio modules and a display located on the

right lens, these glasses ensured minimal obstruction of natural vision while being

suited for industrial applications. The glasses, which operate on the Android OS,

facilitated the programming of the networking software and the design of our study-

specific warning layout, shown in Figure 4.2(b). In terms of audio cues, we employed

Bluetooth-connected earbuds in tandem with AR glasses to deliver audio cues directly

to workers’ ears. For haptic cues, the Tizen framework was utilized to develop the

relevant software for the Galaxy smartwatch, enabling the delivery of haptic cues

within the prototype’s ecosystem. As a Samsung-specific platform, Tizen facilitated

programming networking functionalities and other necessary algorithmic elements for

seamless back-end and front-end communication in augmented reality glasses.
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4.3.2.2 Virtual Reality Simulation

The development of this simulation was centered on assessing the suitability of vir-

tual reality as a means to simulate AR warnings. For this purpose, the virtual reality

simulation was designed to closely resemble the AR prototype developed. Similar

layout design, visual cues, and audio frequency were implemented in the VR simula-

tion to maintain consistency with the AR interface. We used the Oculus Quest 2 VR

headset shown in Figure 4.2(c) in the VR simulation. Oculus Quest 2 provided an

immersive and interactive VR experience for participants. Unity was utilized to de-

velop pertinent software. Unity is a popular game development engine that supports

VR development and provides a wide range of tools and resources for creating virtual

environments and interactions. Furthermore, we employed the identical smartwatch

component from the AR prototype in the VR simulation. During the simulation,

users were able to simultaneously observe the virtual smartwatch on the screen while

wearing the physical smartwatch on their wrist.This allowed us to simulate the exact

interactions and user experience as those offered by AR technology.

Figure 4.3: Multimodal Warning Design Specifications and Delivery Means of Visual
Cue in Different Setups

4.3.2.3 Desktop-based Setup

In addition to the AR and VR settings, we also developed a desktop-based replica

of the AR warning to quantify the reaction times to provide a baseline for comparison

with the AR and VR interfaces. Using the software developed for the VR simulation

in Unity, we made the necessary adjustments to create a desktop version of the AR
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warning mechanism. Figure 4.2(a) illustrates the hardware and software setup for this

desktop replica. The main difference between the desktop interface and the AR/VR

settings is that visual and audio cues are delivered through the desktop display and

speaker, rather than the AR glasses or VR headset. Algorithmic designs, developed

software, and haptic feedback through the smartwatch remained exactly the same as

in AR and VR technologies.

4.3.3 Study Design

In this section, we will outline the design and details of the experiments conducted.

A total of five experiments were carried out. These experiments can be categorized

into two distinct groups on the basis of the reaction time measurement strategies. The

first group, consisting of experiments A to D, aimed to quantify the reaction time

to the designed warnings in various settings and conditions using a simple reaction

time approach. However, experiments E used a vision-based metric combined with a

naturalistic task design to quantify the reaction time. The task was carefully designed

to simulate real-world scenarios and capture naturalistic reactions of the participants.

Further details of each set of experiments are provided in the following. This study

was conducted with the approval of the institutional review board (IRB No. 21-0357)

of the University of North Carolina at Charlotte.

4.3.4 Warning Design

Figure ??(a) depicts the schematic representation of the various multimodal warn-

ing designs utilized in the study, namely Visual (V), Audio Visual (AV), Haptic Visual

(HV), and Haptic Audio Visual (HAV) designs. Table 4.1 provides further informa-

tion on each design, specifying the visual, audio, and haptic cues that were used

synchronously in each warning design. To ensure consistency in different settings,

the layout of visual stimuli in all setups was intentionally designed to be identical, as

illustrated in Figure ??(b). This uniform layout implementation aimed to minimize
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any potential variations or confounding factors introduced by differences in visual

presentation across the different environments and experiments. Haptic stimuli were

implemented using the Tizen Native API framework, leveraging a predefined pattern

available in the API [239]. This framework facilitated the generation of haptic cues

synchronized with the other modalities. For the audio component, a high-pitched

beep with a frequency of 44100 Hz and a duration of 0.2 milliseconds was used as

the auditory signal. It is important to note that all warnings were intentionally de-

signed to trigger simultaneously, without any intentional delays, upon activation by

the back-end system. This simultaneous triggering ensured that participants experi-

enced the multimodal warning stimuli in a synchronized manner, allowing consistent

evaluation of their reaction times in different designs.

4.3.5 Experiment Procedure and Specifications

A consistent WOZ scenario was designed and executed in experiments A through D

to ensure uniformity in the study. The duration of the scenario was set to 45 seconds,

during which five iterations of the warning trigger occurred. The scripted scenario was

standardized and followed in all experiments, incorporating the five iterations of the

SRT task. The trigger points for the warnings remained constant across all designs,

guaranteeing consistency across the experiments. Experiment B was the first one

conducted, while the order of conducting Experiments A, C, and D was randomized

to minimize the impact of a learning curve. Additionally, to address potential bias

or confounding factors, the measurement order of reaction times for each design in

experiments A to D was also randomized. This randomization ensured a fair and

unbiased assessment across the board. For instance, participant X had their reaction

times measured in order AV, V, HAV, HV, while participant Y had their reaction

times quantified in order V, AV, HV, HAV.

Experiment E was conducted as the final experiment primarily for logistical rea-

sons. A WOZ-programmed scenario was carefully designed and executed consistently



85

for all participants. The scenario had a duration of 1 minute and consisted of two iter-

ations where the warning was triggered. The trigger points for the warning remained

constant throughout the experiment. In particular, for Experiment E, the HAV warn-

ing design was used exclusively. Figure 4.2 offers a comprehensive overview of the

experiments conducted in this study, providing a visual representation of the different

configurations and designs used.

In the following, we provide further details and specifications of the experiments

conducted.

4.3.5.1 Experiment A: Desktop-based Baseline

This experiment was carried out using the developed desktop-based interface. The

participants performed the experiment on a 21-inch display, sitting at a distance of 20

inches from the display, which was placed in front of a black background. A total of

32 participants (N = 32) completed the study, with an average age of 28.7 years (SD

= 5.5) and an average experience of 3.4 years (SD = 0.9) in the construction industry.

Among the participants, 20 identified as male and 12 as female. The experiment was

carried out in the Advanced Infrastructure Management Lab at UNC Charlotte.

4.3.5.2 Experiment B: AR Warnings in the Real World

This experiment was carried out outdoors and in a temporary work zone that was

specifically created for this study on the campus of UNC Charlotte. The design of the

work zone followed the guidelines outlined in the Manual of Uniform Traffic Control

Devices (MUTCD) for short-duration work zones. A total of 34 participants (N = 34)

participated in this experiment, with an average age of 25.9 years (SD = 5.1) and an

average experience of 2.3 years (SD = 2.6) in the construction industry. Among the

participants, 21 identified as male and 13 as female. The duration of the experiment

for each participant ranged from 30 to 45 minutes and was conducted during daylight

hours between 11 am and 4 pm. Efforts have been made to keep the weather and
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lighting conditions consistent throughout the experiment to minimize their impact on

the results.

4.3.5.3 Experiment C & D: VR Testbed W/WO Traffic

Both experiments were carried out using the simulated AR interface developed in

virtual reality. The VR environment was specifically designed to replicate a short-

duration highway work zone based on the guidelines provided by the MUTCD. Figures

4.4(d) provide examples of the design of the virtual work zone used in the experiments.

A total of 32 participants (N = 32) completed the study, with an average age of

28.7 years (SD = 5.5) and an average of 3.4 years (SD = 0.9) of experience in the

construction industry. Among the participants, 20 identified as male and 12 as female.

The study was carried out in the Advanced Infrastructure Management lab at UNC

Charlotte.

Figure 4.4: Examples of the Developed Virtual Reality Environment and Designed
Interactions
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4.3.5.4 Experiment E : Immersive Mixed Reality Task Through VR Simulation

A total of 28 participants (N = 27) participated in the study, with an average

age of 28.7 (SD = 5.6) and an average of 3.4 years of experience (SD = 0.9) in

the construction industry. However, a total of 6 participants in the activity task

encountered technical difficulties, simulation sickness, and other logistical problems

during data collection and were unable to complete the experiment. As a result, the

final count of participants in the experiment was 21 (N = 21), with an average age

of 28.2 years (SD = 5.8) and an average industry experience of 3.1 years (SD = 1.1).

In this experiment, our main goal was to replicate real-world scenarios commonly

encountered in highway work zones. Our focus was specifically on the task of re-

moving obstructions from obstructed drop inlets. To design our study, we considered

the existing literature that discusses the influence of physical activity intensity and

cognitive load on reaction time [240, 241]. Based on this knowledge, we developed

an obstruction removal task that required participants to engage in higher levels of

physical exertion compared to other routine maintenance activities. Our intention

was to simulate a task that is frequently encountered in the maintenance and opera-

tion industry. This task was chosen due to its practical significance and its common

occurrence in the industry, allowing us to recreate real-world scenarios and evaluate

the impact of warnings on participants’ performance.

In order to conduct this study, we developed a virtual work zone that adhered to the

instructions outlined in MUTCD. This virtual work zone, depicted in Figure 4.4(a),

served as the backdrop for our research. To enhance the realism and interactivity of

the study, we adopted a mixed reality interaction approach for executing Experiment

E. This approach allowed participants to engage with both physical objects in the

real world and virtual objects within the virtual environment simultaneously. By

combining elements from both realms, we aimed to create a unique and immersive

experience for the participants.
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One key aspect of the mixed reality approach was the implementation of a leaf

blowing effect within the virtual environment. This effect was designed to simulate the

action of using a leaf blower to clear leaves that obstruct a drop inlet. As participants

entered the simulation, they were equipped with a physical leaf blower in their hands,

mirroring the position and movements of the virtual leaf blower shown in Figure

4.4(d).

The task began with participants activating the leaf blower and directing it towards

the obstructed drop inlet within the virtual environment. As they did so, the virtual

reality environment featured a carefully designed blowing effect that effectively cleared

the leaves positioned on top of the drop inlet. This dynamic and interactive task

continued until all necessary warnings were delivered, and the administrator signaled

the completion of the task.

4.3.6 Reaction Time Measurement

Experiments A through D focused on capturing the reaction time of the participants

using an SRT strategy under various conditions. Each experiment consisted of five

iterations of an SRT task in which participants were required to respond by pressing

keys or buttons, as shown in Figure 4.2(d). However, the objective of Experiment

E was to investigate whether multimodal AR warning, when presented, triggers any

observable physical response that can be captured by pose tracking in a naturalistic

setting, as illustrated in Figure 4.2(e). Our goal was to go beyond the traditional

SRT approach and develop tasks that closely mimic real-world scenarios. By doing

so, we aim to assess the influence of real-time warnings on body motion and analyze

that impact on reaction time. In the following sections, we present a comprehensive

description of the utilized strategies.
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4.3.6.1 Simple Reaction Time

We used two similar approaches to measure reaction time in Experiments A-D. The

methodology consisted of recording the time interval between receiving the warning-

triggering command from the server and pressing the designated capturing button.

For the desktop interface, the designated button was the space button, while for AR

and VR experiments it was the A button of the right controller of the VR headset.

In the context of AR prototype, we enhanced the IoT network infrastructure and

created custom software to facilitate the integration of virtual reality controllers for

the purpose of capturing reaction times. To achieve this, we integrated the VR headset

as an additional end point within the existing network. This configuration allowed

us to utilize the controller in tandem with the AR prototype, facilitating the capture

of reaction times. Communication latency between these endpoints was estimated

to be less than 10 milliseconds [242], which is considerably shorter than the average

reaction time observed in humans [243]. Therefore, the impact of this latency on the

overall accuracy of the measurement was considered negligible.

4.3.6.2 Vision-based Reaction Time

We utilized a Logitech camera, capable of capturing data at a rate of 30 frames

per second (fps), to record the experiment and participants reaction to warnings. To

analyze body pose, we used the pose tracking API of ML Kit, an open source tool

provided by Google [244]. This API offers a lightweight and flexible solution for the

real-time detection and tracking of body poses from video streams and images. It

provides a comprehensive 33-point skeletal map of the entire body, including facial

landmarks, hands, and feet. In our analysis, we focused on the upper body landmarks,

as we hypothesized that significant movement would occur primarily in this region.

This hypothesis was derived from our observations and the relevant literature [245].

Figure 4.5 illustrates the landmarks used in our analysis, where the blue dots represent
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the included landmarks and the red dots represent the excluded ones. These dots

represent landmarks 0 to 24 according to [244].

To quantify the overall upper body movement, we followed several steps. Firstly,

we extracted the raw coordinates of the landmarks from the output of the model

applied to the video recordings. These landmarks were then filtered to select the

desired ones for analysis. Next, using the coordinates of the selected landmarks, we

calculated the total pairwise displacement between consecutive frames. This involved

measuring the distance in the image space between each landmark and its previous

location. By summing all these distances, we obtained the delta displacement, which

provides an indication of the overall movement of the upper body. To determine

the speed of the upper body movement, we divided the delta displacement by the

corresponding frame duration. This calculation yielded the speed in terms of pixel

distance per frame, allowing us to quantify the rate of movement.

Figure 4.5: Examples of the Outcomes of the Utilized Pose Estimation Algorithm on
the Developed Task, and Included (blue) /Excluded (red)Landmarks in the Analysis

After calculating the upper body movement velocity, it was necessary to establish

the reaction time pattern within the time series to identify reaction time patterns. In

our study, we defined the reaction time as the duration between the delivery of the

warning and the onset of the reaction pattern exhibited by the participants. We used

a Gaussian kernel to represent the reaction pattern within the velocity time series of
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subjects. This specific kernel has been used in the literature as an indicator of rapid

reactions in the human body [246, 247, 248]. Equation 4.1 illustrates the Gaussian

kernel that is specifically used in our research. In this equation, K(t) represents the

Gaussian kernel at time t. The parameters µ and σ control the shape and width of

the Gaussian curve. µ represents the mean or center of the kernel, indicating the time

at which the reaction pattern is expected to peak, while σ represents the standard

deviation, which determines the spread or width of the Gaussian curve.

K(t) = amplitude · exp
(
−(t− µ)2

2σ2

)
(4.1)

To analyze the collected time-series data and identify reaction-time patterns in the

recorded body movements, we employed two pattern recognition techniques: convolu-

tion and wavelet analysis. Convolution plays a vital role in pattern recognition tasks

within signal processing. It is commonly utilized to detect and extract patterns or fea-

tures from signals by convolving a signal with a predefined pattern or filter [249]. The

convolution operation highlights regions in the velocity signal where a pattern similar

to the Gaussian kernel is observed, indicating the presence of the reaction pattern.

Analyzing the resulting convolution output allows us to extract relevant features and

information pertaining to the reaction time. Mathematically, the convolution of the

time series with the kernel can be expressed as Equation 4.2:

y(t) =
∫ ∞

−∞
x(t− τ)k(τ) dτ (4.2)

To account for individual differences and ensure a personalized analysis, our study

takes a within-subject approach. This involves determining the duration of each kernel

based on the participant’s prior performance in the HAV warning design recorded in

virtual reality conditions with the traffic scenario. By setting the kernel duration as

the recorded reaction time, we aimed to accurately capture the temporal dynamics
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of each participant’s response, individually. Through this customization, our aim is

to capture the subtle nuances of each participant’s reaction pattern. Additionally, to

account for the anticipated agility in participants’ reactions following the delivery of

the warning, we further refined the kernel by setting its width to be one eighth of the

total duration. This choice results in a steeper pulse shape, allowing us to capture

the anticipated rapid changes in participants’ response immediately after receiving

the warning. The amplitude of the Gaussian kernel was standardized to a value of 1.

Finally, to determine the time that corresponds to the maximum convolution value,

we evaluated the function y(t) over the desired time range and identified the time tmax

that satisfies the condition in 4.3. Using this approach, we can accurately identify the

exact time at which the reaction pattern reaches its maximum intensity. The reaction

time was then calculated as the duration between the delivery of the warning stimulus

and the onset of the observed reaction pattern.

tmax = argmax
t
y(t) (4.3)

In addition to convolution analysis, we also used wavelet analysis to further inves-

tigate patterns in the collected data. Previous studies have suggested the application

of wavelet analysis, specifically the Gaussian wavelet, for analyzing body movements

[246, 247, 248]. Wavelet analysis decomposes a signal into simpler components using

an algorithm similar to Fourier analysis. However, wavelet analysis is particularly

effective in capturing transient behavior and discontinuities commonly observed in

human movement signals. It enables a more accurate characterization of anomalies,

pulses, and other transient events within the signal [250]. The equation for wavelet

analysis is given by Equation 4.4. In this equation, W (a, b) represents the wavelet

transform of the signal f(t) at scale a and translation b. The symbol ψ denotes the

complex conjugate of the mother wavelet function ψ, and ψ(t) represents the complex

conjugate of the scaled and translated wavelet function ψ(t). The integral is com-



93

puted over the entire real line from −∞ to ∞. The scaling factor 1/a ensures the

appropriate normalization of the wavelet transform. In our study, we utilized 2nd-

order Gaussian wavelets, similar to our kernel analysis, with the aim of uncovering

any underlying patterns hidden within the data.

W (a, b) =
∫ ∞

−∞
f(t)Ψ∗

(
t− b

a

)
dt =

1√
a

∫ ∞

−∞
f(t)ψ∗

(
t− b

a

)
dt (4.4)

4.4 Results and Discussions

In this section, we present the results obtained from our experiments, which are

categorized into two main groups. The first group focuses on analyzing the variations

in reaction time observed across different prototypes and experimental conditions.

We explore how factors such as the warning design and the experiment condition

influence the participants’ reaction times. Second, we investigate the reaction time

after the presentation of warnings using our vision-based approach. This analysis

aims to understand how participants physically respond to warnings. We examine

the patterns in the physical responses of participants and statistically analyze the rela-

tionship between vision-based reaction time and simple reaction time across different

subjects.

Table 4.2: Summary of Reaction Times Recorded for Different Warnings Designs
Across Different Conditions (AR: Augmented Reality, VR-WT: Virtual Reality With
Traffic, VR-WOT: Virtual Reality Without Traffic)

AR Baseline VR-WT VR-WOT

V Average 0.597 0.410 0.493 0.489
SD 0.232 0.105 0.177 0.159

AV Average 0.627 0.422 0.477 0.483
SD 0.249 0.122 0.108 0.162

HV Average 0.530 0.359 0.411 0.41
SD 0.245 0.145 0.149 0.184

AHV Average 0.574 0.365 0.438 0.410
SD 0.273 0.149 0.154 0.127
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Figure 4.6: Comparative Analysis of Reaction Times for Different Warning Mecha-
nisms (V: Visual, AV: AudioVisual, HV: Haptic Visual, AHV: Haptic AudioVisual)
across Experimental Conditions (WT: With Traffic, WOT: Without Traffic)

4.4.1 Impact of Warning Design and Experiment Condition on Reaction Time

Figure 4.6 presents the results of experiments A to D, showcasing reaction times to

different warning designs under the experimental conditions defined. Several patterns

and trends can be observed from this graph. The findings suggest that, on average,

the reaction times to AR warnings in the real world exhibited a longer duration and

higher variability compared to the baseline of desktop warnings, which AHVe shorter

duration and lower variability. These results are in line with our expectations, as

the real-world environment involves more dynamic situations and cognitive distrac-

tions compared to the controlled indoor environment. Furthermore, reaction times

to simulated AR warnings in virtual reality, both with and without traffic presence,

exhibited similar patterns. The recorded values fall between the RTs of the real-world

AR and the controlled desktop environment. This suggests that the controlled virtual

environment in VR allows for more efficient and focused interactions than in the real

world, resulting in reduced reaction times compared to real-world scenarios.

Figure 4.7 shows the results of the t-tests conducted to compare reaction times for
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Figure 4.7: The Results of t-test Conducted Between Each Experiment for Different
warning Designs

different warning designs under various conditions. The figure indicates that there

were no significant differences in the reaction time to simulated AR warnings in VR

when traffic was present or absent. This implies that, within the scope of our study,

the presence of traffic did not noticeably affect participants’ reaction times when in-

teracting with AR warnings in the simulated environment. Furthermore, the figure

suggests that the mean values collected under the real-world and simulated environ-

ments are statistically different, indicating that RTs to VR-simulated warnings are

not equivalent to real-world measurements. This highlights the importance of con-

ducting real-world testbeds for evaluating safety-related aspects, as simulation studies

Figure 4.8: The Results of t-test Conducted Between Each Warning Design (V:Visual,
AV:AudioVisual, HV:Haptic Visual, AHV:Haptic AudioVisual) for Different Experi-
ment Conditions
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cannot fully replicate real-world scenarios in terms of reaction time. Furthermore, the

figure demonstrates that, on average, both real-world AR warnings and simulated AR

warnings resulted in higher reaction times compared to the baseline of the desktop

in all types of warning design. Therefore, designing AR-oriented solutions should not

be based on the assumption of similarity between AR and desktop reaction times.

Figure 4.6 also suggests that, on average, HV warnings resulted in lower reaction

times under different conditions. Table 4.2 provides a comprehensive summary of the

reaction time measurements collected in the experiments. Figure 4.8 indicates that

this difference is statistically significant compared to V and AV warnings. However,

there is no significant difference between HV and haptic AV warnings. This suggests

that HV alone can trigger similar response times in participants similar to those of

AHV. This observation is consistent with the overall findings, where AV warnings gen-

erally resulted in longer reaction times compared to other warning designs, including

visual-only warnings, except for the case of virtual reality. Furthermore, the trends

also indicate that, on average, haptic visual warnings lead to lower reaction times in

all different prototypes. This suggests that, in this particular context, the audio com-

ponent may not be as influential in capturing participants’ attention, possibly due to

the noisy environment of highway work zones. However, it should be noted that the

incorporation of additional audio frequencies characteristic of the audio module may

alter this trend and warrant further investigation.

4.4.2 Potential of Vision-based Metric for Reaction Time Analysis

In this section, we present an evaluation of the results obtained from our pro-

posed vision-based approach for quantifying reaction time. We set the duration of

the Gaussian kernel as the reaction time of each participant to the AHV warning

design recorded under the simulated AR condition in VR with traffic in the previ-

ous steps. This choice was made because it closely resembled the conditions of the

current round of experiments. We then applied our convolution analysis approach
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Figure 4.9: Specifications of the Adopted Time-series Analysis in the First warning:
(a) Velocity Time-series of Upper Body Cumulative Joint Movement in Participants,
(b) Magnitude Distribution Per Frequency (c) Convolution Results of Gaussian Kernel
on Time-series and (d) Utilized Individual Kernels for Each Participant Based on the
Recorded Baselines

and summarized the results in Figures 4.9 and 4.10, which depict the outcomes for

warnings 1 and 2, respectively. To calculate the strength of the frequency content

of the velocity time-series, we used Fast Fourier Transform (FFT), and decomposed

the signal into frequency domain, and calculated the magnitude of each frequency

strength. The results are summarized in Figures 4.9(b) and 4.10(b). These figures

highlight a consistent trend in the strength distribution across different frequencies in

Figure 4.10: Specifications of the Adopted Time-series Analysis in the Second warn-
ing: (a) Velocity Time-series of Upper Body Cumulative Joint Movement in Partici-
pants, (b) Magnitude Distribution Per Frequency (c) Convolution Results of Gaussian
Kernel on Time-series and (d) Utilized Individual Kernels for Each Participant Based
on the Recorded Baselines
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the post-warning velocity of upper body movement. Additionally, the results indicate

a similar one-peak convolution distribution among different participants.

Furthermore, we performed wavelet analysis and presented the results in Figures

4.11 and 4.12. These figures illustrate the coefficients of the frequencies, revealing

the similar one-peak distribution in almost all participants with very few exceptions

in both post-warning upper body movement velocity. These findings demonstrate

Figure 4.11: Wavelet Analysis Results on Velocity Time-series of Cumulative Upper
Body Joint Movement in the First warning for Each Participant
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the efficacy of our vision-based approach in capturing and analyzing reaction times

patterns in different participants. The consistent trend observed in the energy dis-

tribution and coefficients across different frequencies and participants supports the

validity of the proposed method.

Figure 4.12: Wavelet Analysis Results on Velocity Time-series of Cumulative Upper
Body Joint Movement in the Second warning for Each Participant

Finally, Table 4.3 provides a summary of the results obtained from our vision-

based approach for quantifying the reaction time. This table presents the average and

standard deviation of the reaction times calculated for each participant in the first
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Figure 4.13: (a) Recorded Reaction Times for Each Participant using the Vision-
Based Metric in the First and Second warning along with the Recorded Baseline and
(b) Box plot of The Recorded Values

and second warning. To validate the effectiveness of our strategy, we performed paired

t-tests between these reaction time values and the reaction time to AHV warnings in

the VR-simulated warnings, which served as our baseline. The results of the t-tests

indicate that the vision-based reaction times are not statistically different from the

baseline, suggesting that our vision-based approach yields results comparable to the

SRT metrics. Furthermore, we performed paired t-tests between the reaction time

measurements in the first and second rounds of vision-based metrics. The results

of these t-tests revealed that our strategy resulted in comparable reaction times in

both rounds. These findings are visualized in Figure 4.13, where the reaction times

collected in the first and second rounds of the vision-based strategy, as well as the

baseline, are presented. It is worth noting that although the standard deviation

of the vision-based metric was higher than the baseline, the average reaction times

were statistically comparable. The consistency of results between the vision-based

metric and the SRT baseline, along with the stability of vision-based measurements

across multiple iterations, further highlights the potential of computer vision and pose

estimation techniques to investigate real-time reaction times. This development has

significant implications for real-time safety monitoring applications in highway work

zones.



101

4.5 Conclusion

This paper presents our research conducted to quantify the reaction time to mul-

timodal augmented reality warnings in the context of highway work zone safety. We

designed five experiments using Simple Reaction Time (SRT) and a vision-based ap-

proach to thoroughly investigate the reaction time triggered by different warning

designs in real-world, indoor baseline, and Virtual Reality simulated settings. Our

rigorous experimentation yielded a series of results that provide insights into the com-

plex relationship between reaction time and multimodal augmented reality warning

design. Specifically, our findings indicate that the haptic visual design triggered the

fastest response on average among the participants and produced measurements com-

parable to those of the audio haptic visual design. Moreover, both of these designs

significantly outperformed visual and audio visual warnings in terms of reaction time.

Our findings also reveal that, on average, the reaction time to augmented real-

ity warnings in real-world scenarios was longer with greater variability compared to

the baseline of desktop warnings and simulated AR in virtual reality. The results

of our statistical comparisons indicated that VR simulated warnings resulted in not

statistically significant shorter reaction times than their real-world counterparts. In-

terestingly, the presence of traffic did not AHVe a significant impact on narrowing the

gap between real-world and simulation measurements. This observation suggests that

simulating AR in VR may not produce comparable reaction times to those observed

in real-world scenarios. Furthermore, we observed a noticeable difference in reaction

times between AR warnings and the baseline desktop version under different design

Table 4.3: Summary of Collected Reaction Times Using Vision-based Metric

First Warning Second Warning
Average 0.49 0.37

SD 0.33 0.22
Paired t-test with Baseline 0.36 0.42

Paired t-test with Each Other 0.19
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conditions. This emphasizes the importance of considering and accounting for this

difference when designing AR-oriented safety systems.

We also developed and proposed a vision-based metric, using real-time pose track-

ing, to quantify the reaction time. Our approach involved applying a Gaussian ker-

nel and analyzing the velocity of cumulative upper body displacement across frames

within a naturalistic task design inspired by the typical operations in highway work

zones. By utilizing the argmax function and individual participant records, we iden-

tified the initiation time of the Gaussian kernel pattern in the participants’ upper

body motion velocity time-series through convolution techniques. We then used a

within-subject approach to compare these results with the baselines obtained from

previous experiments. Our findings demonstrated the statistical comparability of the

vision-based metric with the Simple Reaction Time based metrics at an individual

level.

Overall, the study’s findings offer valuable information on the effectiveness and

efficiency of different warning designs to improve safety within highway work zones.

Through a systematic analysis of the experimental data, patterns, trends, and cor-

relations were identified, providing a comprehensive understanding of reaction time

in multimodal augmented reality scenarios. This research contributes to the field by

presenting a systematic approach to studying reaction time in multimodal augmented

reality, with a specific focus on highway work zone safety. The insights gained from

this study can inform the design and implementation of augmented reality systems in

work zone environments, ultimately improving the safety and well-being of workers

in these crucial settings.

This study has identified limitations and avenues for further research. While it

was found that audio contribution may not be necessary in the warning design, this

conclusion is based on the assumption of a constant frequency for the audio. Fu-

ture studies could explore how variations in the design of the audio module, such
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as different frequencies or patterns, could affect reaction times and user responses.

Additionally, future research can expand on the task design used in this study and

apply it to other common activities or scenarios. This could involve investigating the

relationship between cognitive load, physical engagement, and reaction time in differ-

ent contexts. By exploring these factors, researchers can gain a deeper understanding

of the complex interplay between various variables and their influence on reaction

times.



CHAPTER 5: CONCLUSIONS

Over the past few years, Augmented Reality has garnered increasing attention and

recognition as a promising solution for addressing safety issues in various domains.

The unique capabilities of AR, which overlay digital information onto the real world,

have opened new avenues to enhance safety measures and mitigate risks in different

contexts. An area where AR has shown significant potential is in improving the safety

of roadway work zones. These working environments present numerous challenges and

risks to workers, including traffic hazards, heavy machinery, and the need for effec-

tive communication and situational awareness. Traditionally, ensuring the safety of

workers in these environments has relied on conventional methods such as signage,

barriers, and safety protocols. However, these methods may have limitations in ef-

fectively conveying critical information or addressing rapidly changing and dynamic

situations.

AR technology offers a transformative approach by augmenting the physical envi-

ronment with digital information in real time. By overlaying visual cues and warnings

directly into the worker’s field of view, AR can enhance their situational awareness

and provide timely guidance and alerts. This real-time information can help workers

navigate complex work zones, identify potential hazards, and make informed deci-

sions to mitigate risks. Moreover, AR can leverage the power of Artificial Intelligence

to analyze data from various sources, such as traffic patterns, weather conditions,

and lighting conditions, to provide intelligent insights and recommendations. AI al-

gorithms can process large amounts of data and generate actionable information,

enabling AR systems to provide customized and context-specific safety warnings to

workers. This integration of AI and AR creates a dynamic and adaptive safety system
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that can respond to changing conditions and provide tailored support to each worker.

The development of high-fidelity prototypes and the co-design of AI and AR frame-

works, as mentioned in the previous chapters, are crucial steps in harnessing the

potential of AR for highway work zone safety. By thoroughly investigating the feasi-

bility and technical challenges associated with each pillar of the integrative framework,

this research attempts to provide a holistic understanding of the proposed AR-based

safety concept in highway work zones. This knowledge serves as a solid foundation

for the subsequent phases of the study, including the evaluation of usability and

user experience in real-world and simulated environments. The design and admin-

istration of experiments to evaluate reaction times to different notification designs

further contribute to the understanding of effective safety systems. By employing

a mixed-method research methodology that combines Simple Reaction Time and a

vision-based approach, the approach can gather comprehensive data on participants’

reaction times and analyze the influence of various notification modalities.

Overall, in Chapter 2, the focus of this dissertation is on integrating AI capabilities

into AR systems to enhance highway work zone safety. The chapter explores the

feasibility, requirements, and challenges of incorporating AI to develop a predictive

safety system. The outcomes indicate that real-time communication and AI execution

meet the timing constraints. Early user research shows positive reception by highway

maintenance professionals. Chapter 3 focuses on conducting a mixed-method usabil-

ity investigation of the proposed AR-based safety system. The evaluation considers

user interface design, interaction patterns, and feedback to assess usability and effec-

tiveness. Participants rated the system’s usability above average in both indoor and

outdoor settings, with perceived trust significantly correlated with usability. Finally,

Chapter 4 examines the impact of different sensory modalities on worker reaction

times in AR warnings within roadway work zones. The findings reveal that haptic

visual and audio haptic visual designs elicited faster responses compared to visual and



106

audiovisual warnings. Reaction times in real-world outdoor scenarios were longer and

more variable, with VR simulated warnings showing no significant advantage over

real-world counterparts. These results suggest limitations in replicating real-world

reaction times using VR simulations.

Ultimately, the insights gained from this research effort provide valuable infor-

mation on the usability, effectiveness, and user experience of AR in highway work

zones. By establishing worker-centered design guidelines and highlighting the poten-

tial of new technologies to meet the unique needs of the workforce, this document

contributes to the body of knowledge in the field of roadway work zone safety. The

findings and recommendations presented in this work have the potential to inform

the design and implementation of AR systems in work zone environments, ultimately

improving the safety and well-being of workers in these crucial settings.
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APPENDIX A: System Usability Scale (SUS)
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APPENDIX B: Rating Scale Mental Effort (RSME)
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APPENDIX C: Trust Questionnaire
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1. This system could improve my safety in highway work zones. 
 
 
 
 
 

2. I got familiar with the operation of the system. 
 
 
 
 
 

3. I trust this system. 
 
 
 
 
 

4. The system is reliable. 
 
 
 
 
 

5. The system is dependable. 
 
 
 
 
 

6. The system has integrity. 
 
 
 
 
 

7. I am comfortable with the intent of the system. 
 
 
 
 

8. I am confident that this system would enhance the safety systems already in 
place in work zones. 
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