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ABSTRACT

NING ZHOU. Hierarchical learning of discriminative features and classifiers for
large-scale visual recognition. (Under the direction of DR. JIANPING FAN)

Enabling computers to recognize objects present in images has been a long standing

but tremendously challenging problem in the field of computer vision for decades.

Beyond the difficulties resulting from huge appearance variations, large-scale visual

recognition poses unprecedented challenges when the number of visual categories

being considered becomes thousands, and the amount of images increases to millions.

This dissertation contributes to addressing a number of the challenging issues in

large-scale visual recognition.

First, we develop an automatic image-text alignment method to collect massive

amounts of labeled images from the Web for training visual concept classifiers. Specif-

ically, we first crawl a large number of cross-media Web pages containing Web images

and their auxiliary texts, and then segment them into a collection of image-text pairs.

We then show that near-duplicate image clustering according to visual similarity can

significantly reduce the uncertainty on the relatedness of Web images’ semantics to

their auxiliary text terms or phrases. Finally, we empirically demonstrate that ran-

dom walk over a newly proposed phrase correlation network can help to achieve more

precise image-text alignment by refining the relevance scores between Web images

and their auxiliary text terms.

Second, we propose a visual tree model to reduce the computational complexity of

a large-scale visual recognition system by hierarchically organizing and learning the
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classifiers for a large number of visual categories in a tree structure. Compared to

previous tree models, such as the label tree, our visual tree model does not require

training a huge amount of classifiers in advance which is computationally expensive.

However, we experimentally show that the proposed visual tree achieves results that

are comparable or even better to other tree models in terms of recognition accuracy

and efficiency.

Third, we present a joint dictionary learning (JDL) algorithm which exploits the

inter-category visual correlations to learn more discriminative dictionaries for image

content representation. Given a group of visually correlated categories, JDL simul-

taneously learns one common dictionary and multiple category-specific dictionaries

to explicitly separate the shared visual atoms from the category-specific ones. We

accordingly develop three classification schemes to make full use of the dictionaries

learned by JDL for visual content representation in the task of image categoriza-

tion. Experiments on two image data sets which respectively contain 17 and 1,000

categories demonstrate the effectiveness of the proposed algorithm.

In the last part of the dissertation, we develop a novel data-driven algorithm to

quantitatively characterize the semantic gaps of different visual concepts for learning

complexity estimation and inference model selection. The semantic gaps are estimated

directly in the visual feature space since the visual feature space is the common

space for concept classifier training and automatic concept detection. We show that

the quantitative characterization of the semantic gaps helps to automatically select

more effective inference models for classifier training, which further improves the

recognition accuracy rates.
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CHAPTER 1: INTRODUCTION

1.1 Contexts

Our daily activities (e.g ., walking, driving, reading, social interaction, etc.) depend

on our inherent and excellent visual recognition capabilities: we humans can effort-

lessly detect and categorize visual objects from among tens of thousands of classes

[36] within a fraction of a second [143, 144], despite the tremendous variations in

appearance of an object. Building computational systems to emulate our own visual

recognition abilities is a long-standing goal in artificial intelligence which is dated

back to the 1960s. Needless to say, solving this problem will have a huge impact on

the human society as it can lead to many revolutionary applications such as intelli-

gent robots, autonomous driving and image semantically understanding, to name a

few. A few decades later, enabling computers to understand and interpret images as

accurate as humans remains unreachable. Albeit, there are quite a few success and

encouraging stories, such as optical character recognition (OCR), face detection in

consumer cameras, and pose estimation in Microsoft Kinect.

The difficulty of visual recognition is partly explained by the fact that each object

in the world can be captured into an infinite number of different 2-dimensional images

since its position, pose, lighting, and background may vary relative to the viewer [120],

and the number of different objects in the visual word is enormous. Furthermore, there
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exist a huge intrinsic diversity in the appearances of instances within the same class.

The visual appearances of individual instances belonging to an object category usually

vary greatly due to the changes of viewpoint and lighting, the deformation of non-

rigid objects, the variability of poses and etc. The visual ambiguity, two semantically

different concepts can have a similar appearance, presents other difficulties as well.

In the field of computer vision, visual recognition is often casted as a learning

problem which tries to relate the visual contents of images to the previously defined

labels. In principle, the labels can correspond to any semantic pattern, e.g ., an

object(flower), a part of an object(horse leg), a group of objects(person sitting on

a bike), an action (person drinking), or even the whole scene (a basketball match).

Also, the task of visual recognition varies in the level of detail, ranging from naming

the objects present in an image (image categorization/classification), to localizing

them with coarse spatial information (object detection), to outlining them out by

estimating a pixel-level map of the named foreground objects and the background

(object segmentation). In this dissertation, we study the problem of visual recognition

in the context of large-scale image categorization. In particular, a number of unique

and challenging issues in large-scale visual recognition have been investigated when

the number of categories is in the order of thousands and the amount of instances is

in the scale of millions.

1.2 Challenges

The key to address the problem of visual recognition is to unveil the mapping from

image pixels to semantic patterns, e.g ., category name, object identity, etc. The
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Figure 1: The state-of-the-art image categorization pipeline follows the paradigm of
machine learning.

mapping itself is, however, infinite and extremely complex to model, which rules out

the straightforward option of designing a set of rules. Instead, the machine learning

paradigm currently prevails in state-of-the-art visual recognition methods since it

provides a principle way to learn the mapping between low-level image pixels and

high-level semantic abstractions from the seen data. Taking image classification as

an example, the most advanced approaches which achieve state-of-the-art results are

developed in the machine learning framework (See Figure 1). It mainly includes

three components: feature extraction, model training and prediction. While effective

feature extraction requires significant expertise from computer vision, the success of

classifier training and prediction relies greatly on machine learning technical advances.

Visual recognition research along this line has made a great progress in the past

decade, and accomplished promising results, especially on the data sets of moderate

sizes. For example, to the best of our knowledge, the top results on the Caltech101

image database [51], a pioneer benchmark data set containing 101 categories, have

reached up to 82.5% [15] with only 30 images per class being used as training data.

The results on the Caltech256 data set[64] which is of similar nature as Caltech101
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except that it is substantially larger, have evolved from around 30% [61, 165] to

about 50% [15] if 30 images per category are used for training. Higher recognition

rates are consistently reported in the literature if more training samples are available.

However, these benchmarking data sets are still too small to be used to learn a real-

world visual recognition system. The shortage is twofold: the number of categories

and the amount of instances per class. Towards making a visual recognition system

workable in practice, one has to recognize about 30K visual categories [12], and to

cover the tremendous visual diversity of a particular visual category, thousands or

even hundreds of thousands images are demanded.

Large-scale visual recognition which tries to recognize thousands of categories

and process millions of images, has recently attracted vision researchers great at-

tention [116, 32, 9] because it will pave the way for tons of potential applications.

In the meanwhile, however, many unprecedented challenges emerge and need to be

addressed as the data volume increases enormously. This dissertation focuses on ad-

dressing a number of the challenges, including the collection of training data, the

efficiency of classifier learning and prediction, the effectiveness of visual features and

the estimation of the learning complexities of visual concept classifiers.

1.2.1 Collection of Labeled Image Data

The performance of a visual recognition system hinges on the quality of the labeled

training data. For example, the breakthrough in face detection [126, 151] was made

after a large number of labeled face images were readily available. In the early vision

research, training data was often manually labeled by users. While carefully labeled
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data is usually reliable and of high quality, but the labeling process is known to be

tedious and labor intensive. In large-scale visual recognition, a large volume of labeled

data is desired because: (1) the number of visual categories is very large, from several

thousands to tens of thousands; (2) the appearance diversity within a visual category

is tremendous which requires a large variety of instances to express. Obviously, it is

prohibitively expensive to manually label millions of images from among thousands

of visual categories for large-scale visual recognition.

As the digital photo capturing devices and mass storage systems become ubiquitous,

the proliferation of user contributed images on the Internet has provided potential

ways to effectively collect a massive amount of training data for visual recognition.

The Web images are often accompanied by a form of description, ranging from high-

level annotations provided by users, to structured surrounding text contributed by

webpage creators. The text descriptions associated with those weekly-labeled images

contain rich information about the semantic meanings of the images, which can in

turn be exploited as a reliable source of training data for many vision tasks, such as

image annotation [179] and classification [163].

It is non-trivial to leverage weekly-labeled Web images for visual recognition since

the accompanied text (e.g ., tags, captions, surrounding text, etc.) is only weekly re-

lated to the visual contents of the images. The key is to find an effective and affordable

way to reliably establish the relations between the Web images and the text descrip-

tions. One way to cleans the weekly-labeled images is to resort to human supervision

via crwodsourcing [140, 127, 33]. However, it is very difficult to scale crowdsourcing to

web-scale image data, and recent interest on attribute-based methods for representa-
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tion [77, 50] and fine-grained object recognition [158, 114] make the annotation tasks

even more expensive, defeating many advantages of crowdsourcing. The challenge is

to find an effective and efficient way to harvest large-scale weekly-labeled images on

the Web as training data for vision tasks.

1.2.2 Efficiency of Classifier Training and Testing

Statistical learning models (e.g ., support vector machine (SVM), logistical regres-

sion, etc.) are often used in modern visual recognition systems to learn a mapping

from image pixels to semantic patterns with the hope to generalize it to unseen data.

In large-scale visual recognition, the massive amounts of categories and images poses

tremendously computational challenges for traditional machine learning algorithms.

First, it is prohibitively expensive, if not impossible, to load the training data all

at once into the random access memory (RAM) to fit the designed learning models

in the traditional batch-training manner. For example, the visual features extracted

from the 1.2M images in the ILSVRC2010 data set typically amounts to 200GB or

even more than 1,300GB [90] depending on the types of visual features. Second, the

time for classifier training and inference significantly increases if a flat approach (e.g .,

multi-class SVM with one-vs-rest schema) is simply adopted. To reduce the train-

ing time, it is very attractive to exploit the relatedness between different category

classifiers to speed up the learning by training them jointly. The inter-category cor-

relations which can be used as surrogates to measure the relatedness are of particular

interest in this dissertation. The computational cost of inference in a flat approach

grows linearly with the number of image categories, which prohibits its practical use
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in many applications with real-time or near real-time requirements.

One way to reduce the computational cost of large-scale visual recognition systems

is to hierarchically organize the categories in a tree structure by exploiting their inter-

category relations. In [9], Bengio et al . proposed a label tree model for supporting

efficient large-scale categorization, where each node is associated with a subset of the

label set of its parent node and as well as a predictor used to determine the best-

matching child node to follow at the next level. Each of the leaf nodes represents

a single category. The classification (label prediction) for a test image is performed

as traversing from the root to one certain leaf node. This often leads to sub-linear

time complexity in terms of the number of categories since only a limited number of

possible node predictors are needed to be evaluated. A classification confusion matrix

was used in [9] to construct the label tree structure, motivated by the observation

that putting the classes which are easily confused by classifiers into the same set (i.e.,

the same tree node) makes the classifiers associated with that tree node to be easily

learnable [9]. To obtain the confusion matrix for learning the label tree structure,

one has to train many one-versus-rest (OVR) classiers in advance. When the OVR

classiers and confusion matrix are reliable, the label tree method tends to assign

visually correlated categories into the same node. However, training a large number

of OVR classiers is computationally expensive, and often suffers from the problem

of huge sample imbalance. Therefore, the challenge here is to find an efficient and

reliable method to hierarchically organize image categories in a tree structure for

reducing the computational complexity of a large-scale visual recognition system.
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1.2.3 Effectiveness of Visual Content Representations

Image content representation plays a critical role in visual recognition as the recog-

nition accuracy depends largely on the discrimination power of visual content rep-

resentations. It is generally agreed that distinguishing a large number of categories

(e.g ., several thousands) is more difficult than distinguishing only a few (e.g ., less than

a hundred). When the number of image categories increases to several thousands, an

effective and yet efficient scheme for visual feature extraction is highly demanded to

achieve better recognition results.

Among various approaches explored in the literature, the bag-of-visual-words (BoW)

model has been widely used in many vision tasks, and achieved remarkable results,

such as object recognition [62, 160], image classification [85, 79] and segmentation

[176]. The idea of the BoW model was borrowed from the information retrieval com-

munity, where text documents contain some distribution of words, and thus are often

represented by their word counts. This is known as a bag of words model [129] for text

documents. An image can be analogically considered as a sort of document contain-

ing the local features as visual words. BoW model quantized the high-dimensional,

continuous-valued local descriptors into a collection of visual words, called codebook

or dictionary. The visual content of an image or object is then simply represented

by a dictionary-based histogram. By taking advantage of the invariance properties

of the local descriptors, BoW model provides great tolerance to viewpoint or pose

variation, which makes it an effective visual representation scheme in many applica-

tions. Another particular convenience of the BoW representation is that it translates
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a set of high-dimensional local descriptors (the number of the local features varies

across different images) into a fixed-length vector representation for all images. This

is desirable in many machine learning algorithms that by default assume the input

feature space is vectorial.

Unfortunately, there is no off-the-shelf visual dictionary available for general vi-

sion tasks. As a result, a visual dictionary has to be learned from data. Learning

codebooks with strong discrimination power is of particular interest since it is es-

sentially related to the discrimination of the dictionary-based visual representation.

However, the discrimination of a dictionary learned through unsupervised learning is

intrinsically limited as it is optimized for reconstruction but not for classification.

Many supervised dictionary learning approaches have been recently proposed to

learn more a discriminative universal dictionary. Specifically, in [103, 102] the dic-

tionary learning and classifier training are combined in a single objective function.

The discrimination of the dictionary to be learned is boosted by solving the unified

optimization. However, the optimization is of high complexity, and often approxi-

mated by iteratively solving the constitutive sub-problems. In addition, to express

the complex visual signal of a large number of image categories, the number of visual

words of a universal dictionary should be large enough. However, learning a universal

dictionary of a large size (e.g ., tens of thousands) is challenging in practice. Besides,

many works have advocated learning multiple category-specific dictionaries [102, 122]

to enhance the discrimination. However, learning category-specific dictionaries inde-

pendently prevents them from sharing common visual atoms across different classes.

What is desired is a new algorithm which can learn more discriminative dictionaries
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in an effective but yet computationally affordable way.

1.2.4 Learning Complexity of Visual Concept Classifiers

In large-scale visual recognition, statistical models are used to relate low-level im-

age features to high-level semantic labels. The labels are semantically oriented as

the ultimate goal of a visual recognition system is to help humans on managing, or-

ganizing, indexing and understanding visual data. It is generally agreed that one of

the reasons for the limited success of current visual recognition systems is because

there is a difference between low-level image similarity which is computed based on

some distance measures of low-level visual features and high-level similarity that is

the perceived image similarity by the human users. Two images that are measured as

very similar based on some low-level similarity measures can in fact look very differ-

ent. This inconsistency between low-level image similarity and high-level perceived

subjective image similarity is often referred to as the semantic gap [138].

To bridge the semantic gap, a myriad of sophisticated machine learning models

have been proposed to learn the visual concept classifiers from large amounts of

labeled training images (i.e., learning non-linear mapping functions between low-

level visual features and the high-level visual concepts). However, it is not a trivial

task because the learning complexities of concept classifier could significantly vary

across different visual concepts. In other words, some visual concepts (e.g ., grass,

tree) may have lower learning complexities since their semantic gaps are smaller; on

the other hand, some other concepts (e.g ., town, running and living room, etc.) may

have higher learning complexities with respect to concept classifier training because
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their semantic gaps are larger.

Relating the semantic gap to the complexity of learning a visual concept classifier

provides a potential way to estimate the learning complexity before the classifier

being trained. It would greatly help us to more effectively learn the visual concept

classifier. Thus, a quantitative analysis of the semantic gap is beneficial for estimating

the complexities of learning different visual concept classifiers, and ultimately helps

effectively training the classifiers. However, such an analysis is currently missing in

vision research.

1.3 Contributions

In this dissertation, we contribute to large-scale visual recognition in many aspects

by tackling the challenges elaborated in Section 1.2. The main contributions are

structured in four chapters. In this section, we briefly describe the main contributions

of each chapter.

• Chapter 3 In this chapter, we consider the task of collecting a large number of

labeled images from the Web for classifier training. In particular, this is achieved

by developing an automatic image-text alignment algorithm to align Web images

with their most relevant auxiliary text terms or phrases. First, a large number

of cross-media Web pages which contain Web images and their auxiliary texts are

crawled and segmented into a set of image-text pairs (i.e., informative Web images

and their associated text terms or phrases). Second, near-duplicate image cluster-

ing is used to group large-scale Web images into a number of clusters according

to their visual similarity, and each of them consists of near-duplicate images. Per-
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forming near-duplicate image clustering can significantly reduce the uncertainty on

the relatedness between the semantics of Web images and their auxiliary text terms

or phrases. Finally, random walk is performed over a phrase correlation network to

achieve more precise image-text alignment by refining the relevance scores between

Web images and their auxiliary text terms or phrases. The work in this chapter

was partly published in [181, 183].

• Chapter 4 In this chapter, we consider reducing the computational complexity of

large-scale image categorization by hierarchically organizing the image categories

with a tree structure. Specifically, a visual tree is constructed without using a cost-

intensive classification confusion matrix which requires training a large number of

classifiers in advance. The visual tree model is more computationally efficient to

be constructed comparing to other tree models because it is built solely based on

the visual correlations between image categories. We empirically show that the

performance of the proposed visual tree model is comparable to that of other tree

models in terms of recognition accuracy. The work in this chapter was submitted

to IEEE Transactions on Image Processing.

• Chapter 5 In this chapter, we consider learning discriminative dictionaries for

image content representation. Specifically, we present a joint dictionary learning

(JDL) algorithm which exploits the inter-category visual correlations to learn more

discriminative dictionaries. Given a group of visually correlated categories, JDL

simultaneously learns one common dictionary and multiple category-specific dictio-

naries to explicitly separate the shared visual atoms from the category-specific ones.

The problem of JDL is formulated as a joint optimization with a discrimination
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promotion term according to the Fisher discrimination criterion. The visual tree

method described in Chapter 4 is used to cluster a large number of categories into a

set of disjoint groups, so that each of them contains a reasonable number of visually

correlated categories. The process of image category clustering helps JDL to learn

better dictionaries for classification by ensuring that the categories in the same

group are of strong visual correlations. Also, it makes JDL to be computationally

affordable in large-scale applications. We develop three classification schemes to

make full use of the dictionaries learned by JDL for visual content representation in

the task of image categorization. The work in this chapter was published in [182],

and extended in [180].

• Chapter 6 In this chapter, we consider quantitatively characterizing the semantic

gap for learning complexity estimation and inference model selection. In particular,

a novel data-driven algorithm is developed to quantitatively compute the semantic

gaps directly in the visual feature space since the visual feature space is the com-

mon space for concept classifier training and automatic concept detection. The

main purpose of quantitatively characterizing the semantic gaps is to automati-

cally select more effective inference models for concept classifier training. This is

achieved by (1) identifying the image concepts with small semantic gaps (i.e., the

isolated image concepts with high inner-concept visual consistency), and training

their one-against-rest SVM concept classifiers independently; (2) determining the

image concepts with large semantic gaps (i.e., the visually-related image concepts

with low inner-concept visual consistency), and training their inter-related concept

classifiers jointly; and (3) using more images to train the classifiers for the visual
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concepts of large semantic gaps. This work was published in [46].

Before presenting our contributions in Chapter 3, 4, 5 and 6, we first review the

mostly related works to ours in Chapter 2. Finally, we conclude this dissertation in

Chapter 7.



CHAPTER 2: RELATED WORK

As discussed in Chapter 1, the work of this dissertation is closely related to the

efforts on labeled image data set construction, large-scale classifier training and or-

ganizing, image content representation and semantic gap modeling. In this chapter,

we briefly review currently prevailing approaches to these problems.

2.1 Image Data Set Construction

Reliable and unbiased data sets are indispensable for computer vision research.

In fact, data sets have been the main factor for the considerable progress in visual

recognition, not just as sources of training data, but also as means of benchmarking

different competing algorithms. However, constructing a data set of a large volume

of labeled images requires significant efforts, either through human or automatic su-

pervisions.

2.1.1 Manually Labeling

A number of manually labeled data sets have been widely used for evaluating

current vision algorithms. Some remarkable examples are Caltech101 [51], Cal-

tech256 [64] and PASCAL VOC [41], among others. However, the number of cat-

egories of them is only ranging from dozens (20 in PASCAL VOC) to a few hundreds

(256 in Caltech256), which is far away from that is demanded by a large-scale visual

recognition system. Unfortunately, labeling millions of images from among thousands
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of possibilities is inhabitant.

Recently, crowdsourcing have drawn significant attention from vision researcher

with its increasing accessibility. Von Ahn et al . [152] proposed collecting labeled

images through a computer game. In the game, two users are automatically matched

as partners. The paired partners do not know each other’s identity, and they cannot

communicate. Their task is to agree on a word that would be a possible label for

the image shown to both of them in a limited time. Millions of image have been

labeled through this game. However, the labels are usually of limited information

with respect to the image contents since users are inclined to use general labels (e.g .,

dog) other than specific ones (e.g ., poodle) to describe the images. Sorokin and

Forsyth [140] made the first attempt at labeling image through crowdsourcing at low

costs using platforms such as Amazons Mechanical Turk (AMT). Deng et al . have

created the ImageNet [33] using AMT which have collected 14M labeled images for

22K categories. Although AMT have made the possibility to collect large amounts

of annotations in a cost effective manner, the quality of the annotations is hard to

verify. Furthermore, creating detailed instructions and user interfaces can take the

same order of time as manually labeling the images, defeating the advantages of

AMT [105].

2.1.2 Automatic Approach

The TinyImage database [146] is the most popular benchmarking data set created

via an automatic way. A total of 53,464 nouns were submitted to Google’s Image

Search and other engines to collect relevant images for each of them. There are
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about 80M images in total with an average of 1K images per noun, among which

10-25% are estimated to be accurate images with respect to each noun. Many other

interesting techniques have recently been developed to leverage Internet images or

social images, such as user-tagged images from Flickr, for image understanding tasks.

Li et al . [89] have developed an interesting technique for tag re-ranking by identifying

the most relevant social tags for image semantics interpretation. Tang et al . [142]

have developed a label propagation technique for image and tag cleansing, where

both social images and web images are used for algorithm evaluation. Fan et al . [49]

and Schroff et al . [136] have combined text, meta-data and visual information for

image and tag cleansing with the aim to harvest large-scale image databases from

the Internet. Many researchers have adopted relevance re-ranking tools to improve

image/video search by fusing multiple modalities of web images/videos [94, 70, 69,

75, 95, 153, 96, 75], where the goal for relevance re-ranking is well-defined, e.g .,

identifying the relatedness between the semantics of returned images/videos and the

text terms or phrases given by a specific query.

2.2 Multiclass Classifier Learning and Organizing

Visual recognition via classification is a typical multiclass classification problem,

and consequently demands a multiclass classifier. Regarding the multiclass classifier

learning and organizing, there exists two main approaches: flat and hierarchical.

2.2.1 Flat Approach

The flat classification approach treats each category or class separately, thus in

effect flattening the class structure. In particular, a myriad of efforts have been
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made to enable support vector machine (SVM) on multiclass classification, including

dividing the problem into a number of binary problems and directly casting it into a

single multiclass learning problem.

Suppose there are L classes of interest, a commonly used division strategy is to

learn L one-versus-rest (OVR) SVMs [150] which is also referred to as one-versus-all

(OVA) SVMs. Another strategy is to build L(L−1)
2

one-versus-one (OVO) SVMs [76].

In contrast, the directed acyclic graph support vector machine (DAGSVM) proposed

in [121] trains L(L−1)
2

binary SVMs as the OVO method dose, but uses a rooted binary

DAG containing L(L−1)
2

internal nodes and L leaves, to make inference. Weston et

al . have proposed a multiclass SVM in [159] where L two-class decision functions

are constructed, and the decision boundary determined by the ith function separates

the samples of the ith class from the others. The hyper-parameters are learned by

solving a single optimization. In [27], Crammer et al . casted the multiclass SVM as

a constrained optimization problem with a quadratic objective function.

Training SVMs for large-scale visual recognition with flat approaches mentioned

above is challenging because the number of categories could be thousands, and the

training samples could be millions (e.g ., the ImageNet data set [33] contains 14M

images for 22K categories). The computational complexity of the flat approaches

grows at least linearly with the number of classes but super-linearly with the number

of training samples, given as

QOV R
train = L · O(N c), c > 1, (1)

where N is the number of training samples of all the classes, and L is the number
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of categories. The term O(N c) denotes the average training complexity of a binary

SVM for a single class. For prediction, we need to feed the novel instances to all the

L classifiers. Therefore, the complexity is

QOV R
test = L · O(1), (2)

where O(1) denotes the average complexity for a single SVM to predict a testing sam-

ple. Assuming the training samples are uniformly distributed over all the categories,

the training and testing complexities of the OVO SVM are given as

QOV O
train =

L(L− 1)

2
· O

((

N

L

)c)

, c > 1, (3)

QOVO
test =

L(L− 1)

2
· O(1). (4)

The computational complexity of the multiclass SVMs implemented by solving a

single optimization is even higher which makes them inferior to the OVR and OVO

strategies on large-scale classification in practice. The memory complexity is another

critical issue when all the training samples can not be loaded into the memory at

once. While bagging [19] is a trade-off between memory complexity and classification

performance, more elegant techniques are recently proposed, e.g ., stochastic gradient

descent [16] and block minimization [169], to seek for better performance.

2.2.2 Hierarchical Method

The flat classification methods mentioned above ignore the hierarchical structure

of the visual categories which exists naturally in a large number of visual categories

[125]. Furthermore, as the number of visual categories increases to thousands, the
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computational complexity of the flat approaches is prohibitively high, which forms a

tremendous obstacle to adopting it in practice. Recently, computer vision researchers

have advocated using a taxonomy to organize the categories hierarchically in a tree

structure, aiming to reduce the computational complexity of visual recognition sys-

tems. A number of semantic taxonomies (e.g ., WordNet [52]) have been used for

image classification [45, 43, 32]. It is worth noting that it is more reasonable to use

the visual information to learn a category hierarchy because the visual space is the

common space for classifier training and image classification [48, 46]. Specifically,

Sivic et al . [137] automatically discovered a hierarchical structure from a collection

of unlabeled images by using a hierarchical latent Dirichlet allocation (hLDA) model.

In [6], Bart et al . adopted a completely unsupervised Bayesian model to learn a tree

structure for organizing large amounts of images. Griffin et al . [65] and Marszalek et

al . [107] constructed visual hierarchies to improve the classification efficiency. Bengio

et al . [9] proposed a label tree model for the same purpose, and Deng et al . [34]

further extended it by simultaneously learning the tree structure and the classifiers

associated with the tree nodes.

2.3 Image Content Representation

In this section, we first briefly review a myriad of visual features which have been

widely used in the computer vision community including global descriptors and lo-

cal descriptors. Also, we describe the bag-of-visual-words (BOW) model in details.

Finally, we survey a number of prevailing dictionary learning methods for learning a

visual dictionary which is a key ingredient of the BOW model.
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2.3.1 Global Descriptors

To construct holistic features to capture the visual cues in an image or a region, the

simplest way is to describe the pixel intensities or color values in either an ordered

or an orderless way. Given an image or region, we can directly concatenate the

pixel intensities into a single feature vector in a specific order, e.g ., from top to

bottom and left to right. The feature vector is often optionally processed by subspace

learning methods, such as Principle Component Analysis (PCA) [115] and Fisher

Linear Discriminative Analysis (LDA) [38], to seek for a more compact representation.

A limitation of the ordered intensity concatenation method is that it often assumes

the images or regions of interest are well aligned, otherwise a trivial pixel position

shift would result in very different representations.

We can alternatively construct a simple global description of the image pixels with

the distribution of its color values or intensities. This is the so-called color histogram.

We can use any color space for partition, for example, RGB, Lab, etc. Being order-

less, a color histogram gives some tolerance for positional shift and partial occlusions.

However, as the colors within a certain category usually greatly varies, the effective-

ness of color histogram is intrinsically limited. The initial effort to adopting color

histogram for object recognition was proposed by Swain and Ballard [141], and a

recent extension along this line can be found at [149].

Aside from raw pixels, contrast-based descriptors are generally used to describe the

visual content of images partly due to their invariance to illumination changes and

color variations. The gradients of image pixel intensities which capture edges and
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texture patterns are of particular interest. Two remarkable examples of making use

of gradients to form a holistic image representation are the Histogram of Oriented

Gradient (HOG) [29] and GIST [112]. Beyond the appearance-based features above,

the shape feature is another widely used global descriptor which describes objects’

outer boundaries and as well as interior contours. A formal discussion on the shape

representations and shape matching problem is beyond the scope of this dissertation,

and the interested readers can refer to [173] for details.

2.3.2 Local Descriptors

While global descriptors provide holistic representations of an image or object,

various local descriptors have been invented to obtain repeatable and distinctive

image patches for more effective visual representation. Local invariant descriptors

are initially proposed for specific object recognition, and have been successfully ex-

tended to generic object detection and recognition with promising performance (e.g .,

in [62, 79, 165, 166]).

To extract local descriptor, we typically go through two main steps: (1) key or in-

terest points detection; and (2) descriptors extraction from the neighbor pixels of the

detected key points. A variety of interest point detectors have been proposed in the

past decades to seek for specific invariant properties, such as scale and affine invari-

ance. Specifically, the Hessian detector [8] computes the matrix of second derivatives

(the Hessian), and searches for locations that exhibit strong derivatives in two or-

thogonal directions determined by the determinant of the Hessian. Another popular

corner-like feature detector is the Harris detector [58] which finds the locations whose
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second-moment matrix has the two largest eigenvalues. Although Harris and Hessian

detectors are particularly robust to image plane rotations, illumination changes and

noise [133], they are vulnerable to large photometric and geometric variations. To

detect scale invariant features, automatic scale selection has been proposed, and im-

plemented using either the Laplacian-of-Gaussian (LoG) detector or the Difference-

of-Gaussian (DoG) detector. LoG [92, 91] detect blob-like features, and automatically

determine the scale by searching the extrema in the scale space produced by a series of

scale-normalized Laplacian of Gaussians. While LoG achieves very robust detection

result, the computational cost of the Laplacian is high. Lowe in [97] proposed using

the DoG to approximate the LoG, and DoG is computed using the difference of two

Gaussians of adjacent scales. In practice, DoG usually obtains very similar results as

LoG dose. For more details of local invariant detectors, we refer to the comprehensive

survey paper [148].

The scale-invariant detectors mentioned above are particularly effective for specific

object recognition by detecting only a sparse set of key points due to their repeatabil-

ity and distinctiveness. However, for generic visual recognition, such a sparse set of

local features is often insufficient. Instead, many works [165, 166, 17] have empirically

shown that a regularly dense sampling strategy results in better recognition perfor-

mance since it ensures that the objects of interest have better coverage. In practice,

dense sampling commonly utilizes a regular grid of multiple scales to produce a set

of image patches.

Once a number of interest points have been detected from an image, a collection

of corresponding descriptors are extracted to encode their content. The most popu-
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lar local descriptors are the Scale Invariant Feature Transform (SIFT) and Speed-up

Robust Feature (SURF) descriptors. The SIFT descriptor [97, 98] encodes the image

gradient distribution in a localized set of gradient orientation histograms to achieve

robustness to lighting changes and small positional shifts. The descriptor computa-

tion is performed on the Gaussian image with the closest scale to that of the detected

key point. A regular grid of 16 × 16 pixels centered on the key point is sampled as

the interest region, and is further divided into sixteen 4 × 4 grids. For each grid, a

gradient orientation histogram of 8 orientation bins is computed, and weighted by

the corresponding pixel’s gradient magnitude. The sixteen 8-bin gradient orientation

histograms are concatenated to form a 128-dimension descriptor vector. The SURF

descriptor [7] is an efficient alternative to SIFT. It adopts simple 2D box filters which

can be efficiently evaluated using integral images [28, 151] instead of Gaussian deriva-

tives for interest point detection. The SURF descriptor divides the feature region

into 4 × 4 grids which is similar to that of SIFT descriptor. However, instead of

constructing a gradient orientation histogram for each cell, SURF only summarizes

the statistics of the filter responses to form the feature vector.

2.3.3 Bag-of-Visual-Words

The Bag-of-Visual-Words (BoW) model, a.k.a. Bag-of-Features (BoF), is in some

sense a hybrid (global pooling plus local patches) of the global and local representation

styles [63]. It encodes the occurrence of the local feature descriptors within a region

of interest. Considering an image or object as a document, BoW simply compute

a dictionary-based histogram as the image’s signature. It consists of three major
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Figure 2: Schematic illustration of the standard pipeline of the Bag-of-Words model
used in many vision tasks.

steps as illustrated in Fig. 2. The first step involves the local feature detection and

extraction where any detector and extractor mentioned in Section 2.3.2 are applicable.

Second, each local descriptor is encoded using one or multiple visual words from a

visual dictionary. Third, the occurrence of the visual words are pooled to form a

image-level signature of fixed dimensionality.

After a set of local features being extracted from an image or region, each of them

is quantized to the space partitioned by the visual dictionary. This process is often

named as feature encoding or visual word assignment. A myriad of encoding methods

have been proposed in the literature which can be categorized into two types: hard

assignment and soft assignment. Hard assignment encodes a local feature only using

the closest visual word to the feature based on some distance metric. On the other

hand, multiple visual atoms are used to represent the local feature in soft assignment.

Encoding algorithms along this line include kernel codebook encoding [61, 119], Fisher

encoding [117], super vector encoding [184], locality-constrained linear encoding (LLC)

[155] and sparse coding [113] (a.k.a. Lasso [145] or basis pursuit [23]). For the

details and comparison of feature encoding methods, we refer to an comprehensive

comparison in [22].
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The final step which aggregates the codes of local features to form the vectorial

representation for an image or region is often referred to as feature pooling. Let

the encoding response of local features {xi}
M
i=1 be {ai}

M
i=1, where ai ∈ RK . Feature

pooling essentially maps the feature codes to some statistic that summarizes the joint

distribution of the codes over a region of interest. There are two main pooling types:

average pooling [81, 82] and max pooling [123]. Let v be the statistic representation,

and f be the pooling operator. The average pooling is essentially equivalent to the

histogram pooling, mathematically given as

v = f
(

{ai}
M
i=1

)

=
1

M

M
∑

m=1

am. (5)

The max pooling inspired by the mechanism of the primary visual cortex area V1

[120] which computes v using a max operator, given as

v[j] = max{|a1[j]|, . . . , |aM [j]|}, (6)

where v[j] is the j-th component of v. A theoretical analysis of the two pooling

methods in visual recognition can be found at [18], and a thorough comparison has

been done in [17]. The max pooling generally results in better performance in visual

recognition as it is more robust to noise than the average pooling. More recently, a

so-called lp-norm pooling is proposed in [53] which is tailored for the class-specific

feature spatial distribution.

The BoW representation is completely orderless which means great flexibility al-

lowed with respect to viewpoint and pose changes. However, it also loses the spatial

layout of the visual words which is important for visual recognition. To incorporate
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the positional information into the BoW model, Lazebnik et al . [79] proposed using

a spatial pyramid to partition the image plane, and then computes and concatenates

the BoW features in the bins of the pyramid. Spatial pyramid representation is sensi-

tive to translations, making it most appropriate for scene-level recognition or images

containing only primary objects with some regular backgrounds.

2.3.4 Visual Dictionary Learning

A key ingredient of the BoW model, the visual dictionary, has to be learned from

data since there are no off-the-rack ones for general vision tasks. Current prevailing

approaches to dictionary learning can be divided into two main groups, unsupervised

and supervised dictionary learning.

Unsupervised dictionary learning algorithms usually train a single dictionary through

minimizing the residual errors to reconstruct the original signals. In particular,

Aharon et al . [1] have generalized the k-means clustering method and proposed the

K-SVD algorithm to learn an over-complete dictionary from image patches. Lee et al .

[83] treated the problem of dictionary learning as a least squares problem, and solved

it efficiently by using its Lagrange dual. Wright et al . [161] used the entire set of

training samples as the dictionary for face recognition and achieved very competitive

results. In [165], Yang et al . proposed the ScSPM model which combined sparse cod-

ing and spatial pyramid matching [79] for image classification, and the dictionary was

trained using the same method as in [83]. The dictionaries learned via unsupervised

learning are often lack of discrimination because they are optimal for reconstruction

but not for classification.
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Most existing supervised dictionary learning methods can be roughly categorized

into three main categories in terms of the structure of the dictionaries. In [103, 174,

167, 166], one single dictionary is learned for all the classes. To enhance the discrim-

ination of the dictionary, the processes of dictionary learning and classifier training

are unified in a single objective function. Many other works have advocated learning

multiple category-based dictionaries, and tried to enhance their discrimination by ei-

ther incorporating reconstruction errors with the soft-max cost function [102, 104] or

promoting the incoherence of different class dictionaries [122]. Although the sparse

coefficients embody richer discriminative information than the reconstruction errors,

the classification decision in [102, 104, 122] still solely relies on the residual errors.

More recently, a structured dictionary, whose visual atoms have explicit correspon-

dence to the class labels, was proposed in [73, 168]. Specifically, Jiang et al . [73]

integrated the label consistent constraint, the reconstruction error and the classifi-

cation error into one single objective function to learn a structured dictionary. A

K-SVD-like algorithm was used to solve the optimization. Yang et al . [168] also

adopted the Fisher discrimination criterion and proposed the Fisher discrimination

dictionary learning (FDDL) algorithm to train a structured dictionary.

2.4 Semantic Gap Modeling

The semantic gap between the low-level visual features and the high-level semantic

concepts has become fundamental barrier in developing learning method for visual

recognition. The semantic gaps are actually not uniformly distributed across different

visual concepts. That is, the semantic gaps may significantly vary across the image
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concepts. In the last decade, many machine learning approaches have been developed

to bridge the semantic gap by training more reliable concept classifiers (i.e., the

mapping functions from low-level visual features to high-level semantic concepts) [37,

66, 101, 178, 44]. However, no previous works focus on quantitative characterization

of the semantic gap directly in the visual feature space.

There are some existing researches on leveraging various information sources to

bridge the semantic gap [37, 66, 101, 178, 44, 40, 154, 139, 131, 124, 109]. Specifi-

cally, Enser et al . [40] have provided a comprehensive survey of the semantic gap in

image retrieval. Zhao et al . [178] have integrated latent semantic indexing (LSI) to

negotiate the semantic gap in multimedia web document retrieval. Hare et al . [66]

have developed both bottom-up and top-down approaches to bridge the semantic gap

for the purpose of multimedia information retrieval. Ma et al . [101] have developed a

two-level data fusion framework to bridge the semantic gap between the visual con-

tent of social images and their tags. Wang et al . [154] have developed an effective

distance metric learning approach to reduce the semantic gap in web image retrieval

and annotation. Fan et al . [44] have developed a hierarchical approach to bridge the

semantic gap more effectively by partitioning the large semantic gaps into four small

and reachable gaps. Snoek et al . [139] have presented a semantic pathfinder architec-

ture to bridge the semantic gap for generic indexing of multimedia archives. Santini

et al . [131] have integrated human-system interactions to bridge the semantic gaps,

and deal with emergent semantics interactively. Rasiwasia et al . [124] have combined

query-by-visual-example with semantic retrieval to bridge the semantic gap. Natsev

et al . [109] have constructed a model vector to bridge the semantic gap by supporting
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compact semantic representation of the visual content of the images.

Recently, Lu et al . [100, 99] have developed an interesting approach for deter-

mining the high-level image concepts with small semantic gaps. To the best of our

knowledge, it is a pioneer attempt for determining the high-level visual concepts with

small semantic gaps by assessing the consistency between the visual similarity and

the semantic similarity. However, good consistency between the two may not al-

ways indicate that the corresponding concepts have small semantic gaps, and many

auxiliary text terms for the images are weakly-related or even irrelevant with their

semantics because of huge tag uncertainty (spam tags, ambiguous tags, loose tags, ab-

stract tags, etc. [49]). Hauptmann et al . [68] also pointed out what kind of high-level

video concepts are most important for supporting semantic video retrieval, and they

have also examined how many high-level video concepts are needed and what kind of

high-level video concepts should be selected for supporting semantic video retrieval

[67]. Deselaers et al . [35] have done a pioneering work on evaluating the relationship

between the semantic similarity among the labels and the visual similarity among the

relevant images in ImageNet [33] image set.

As the inner-concept visual diversity may change with the depth in a concept

hierarchy, concept ontology may provide a good environment for identifying the image

concepts with smaller semantic gaps. For example, the image concepts at the leaf

nodes may have smaller semantic gaps because they may have strong limitation on

their semantic senses and their relevant images may have good inner-concept visual

consistency. Some pioneering work have been done recently by incorporating the

concept ontology for organizing large-scale image/video collections according to their
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inter-concept semantic contexts [108, 33, 52]. Schreiber et al . [134] and Fan et al . [44,

43] have integrated the concept ontology for achieving hierarchical image annotation.

It is worth noting that having good inner-concept visual consistency is just one

criterion for semantic gap modeling, and there is another important criterion for sup-

porting quantitative characterization of the semantic gaps: the visually-related image

concepts. Their relevant images often share some common or similar visual proper-

ties, may have large semantic gaps because they may not be visually separable, and

their concept classifiers may have significant overlapping in the visual feature space.

For examples, even the relevant images for the object classes “sea water” and “blue

sky” may have good inner-concept visual consistency, the object class “sea water”

may be detected as “blue sky” because they share some common or similar visual

properties. Based on these observations, both the inner-concept visual consistency

(i.e., inner-concept visual homogeneity scores) and the inter-concept visual correla-

tions (i.e., inter-concept discrimination complexity scores) should simultaneously be

considered for supporting quantitative characterization of the semantic gaps directly

in the visual feature space.

Recently, some remarkable works have been done by using Flickr distance [162]

and KL divergence [43] to measure the inter-concept visual correlations directly in

the visual feature space. However, the image distributions are very sparse and het-

erogeneous in the high-dimensional visual feature space. Thus the KL divergence

between the sparse image distributions cannot characterize their inter-concept visual

similarity contexts accurately. To avoid this problem, visual clustering and latent

semantic analysis have been used to generate visual ontology for automatic object
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categorization [137, 107, 106, 65, 6, 2]. More recently, both the visual similarity

contexts and the semantic similarity contexts are integrated for concept ontology

construction in [87, 43].

Multi-task learning and structural learning are two potential solutions for address-

ing the issue of huge inter-concept visual similarity by modeling the inter-concept

correlations explicitly and training multiple inter-related classifiers jointly [43, 147,

42, 14]. One open problem for multi-task learning and structural learning is that they

have not provided good solutions for determining the inter-related learning tasks di-

rectly in the visual feature space [44]. Torralba et al . [147] proposed a multi-task

boosting algorithm by leveraging the inter-task correlations for concept detection,

where the inter-task correlations are simply characterized by various combinations

of the image concepts. Simply using concept combinations for inter-task relatedness

modeling may seriously suffer from the problem of huge computational complexity:

there are 2n potential combinations for n image concepts. In addition, not all the im-

age concepts are visually-related and combining the visually-irrelevant image concepts

for joint classifier training may decrease the performance rather than improvement

[43].



CHAPTER 3: AUTOMATIC IMAGE-TEXT ALIGNMENT

In this chapter, we present our work on harvesting large-scale training images

from the Web which aims to collect training data for large-scale visual recognition.

Specifically, we developed an automatic image-text alignment algorithm to prepare

large-scale labeled training images by aligning web images with their most relevant

auxiliary text terms or phrases.

3.1 Introduction

As digital images are growing exponentially on the Internet, there is an urgent

need to develop new algorithms for achieving more effective web image indexing and

retrieval by automatically aligning web images with their most relevant auxiliary text

terms or phrases, and such auxiliary text terms or phrases can be extracted from

the associated web documents [138, 132, 10, 118]. Many potential applications could

be benefited from achieving more accurate alignments between the semantics of web

images and their auxiliary text terms or phrases:

(a) Web Image Indexing and Retrieval: Google image search engine has achieved

big success on supporting keyword-based web image retrieval by simply using all the

auxiliary text terms or phrases to index web images loosely. For each web image, many

of its auxiliary text terms or phrases are weakly-related or even irrelevant with its

semantics because each cross-media web page may consist of a rich vocabulary of text
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terms or phrases for web content description and only a small portion of the auxiliary

text terms or phrases are used to describe the semantics of web images. When all

these auxiliary text terms or phrases are loosely used for web image indexing, Google

Images search engine may seriously suffer from low precision rates and result in large

amounts of junk images [56, 88, 20, 156, 59]. To achieve more effective web image

indexing and retrieval, it is very attractive to develop new algorithms for supporting

more precise alignments between the semantics of web images and their auxiliary text

terms or phrases.

(b) Generating Large-Scale Labeled Images for Classifier Training: Automatic im-

age annotation via classification plays an important role in supporting keyword-based

image retrieval [138, 86, 5, 44, 175, 85, 21], where machine learning techniques are

usually involved to learn the classifiers from labeled training images. The number of

such labeled training images must be large due to: (1) the number of object classes

and scenes of interest could be very large; (2) the learning complexity for some object

classes and scenes could be very high because of huge inner-category visual diversity;

and (3) a small number of labeled training images are insufficient to learn reliable

classifiers with good generalization ability on unseen test images. However, hiring

professionals to label large amounts of training images manually is cost-sensitive and

poses a key limitation on practical use of some advanced machine learning techniques

for image annotation applications. On the other hand, large-scale web images and

their auxiliary text documents are available on the Internet. As web images and

their auxiliary text documents co-occur naturally on the cross-media web pages, the

auxiliary text documents may contain the most relevant text terms or phrases for
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describing the rich semantics of web images effectively. Thus the cross-media web

pages have provided a good source to generate large-scale labeled images for classifier

training.

For each cross-media web page, it consists of two key components: web images and

auxiliary texts. The auxiliary texts may contain a rich vocabulary of text terms or

phrases: some of them are used for describing the semantics of web images but most

of them are used for interpreting other web content. Thus we cannot simply use all

the auxiliary text terms or phrases for web image indexing because most of them

are weakly-related or even irrelevant with the semantics of web images. The highly

uncertain relatedness between the semantics of web images and their auxiliary text

terms or phrases prevent them from being directly used as a reliable source for web

image indexing and classifier training. To collect more labeled training images from

the Internet and achieve more accurate web image indexing, it is very attractive to

develop new algorithms for achieving more accurate alignments between the semantics

of web images and their auxiliary text terms or phrases.

Based on these observations, an automatic image-text alignment algorithm is de-

veloped in this paper for achieving more precise alignments between the semantics

of web images and their auxiliary text terms or phrases. As illustrated in Fig. 3,

our automatic image-text alignment algorithm contains the following components: 1)

web page crawling and segmentation, which crawls large numbers of cross-media web

pages and further partition them into large amounts of image-text pairs; 2) phrase

extraction, which chunks the phrases from the associated texts and computes the pf-

iif (phrase frequency-inverse image frequency) value for each phrase to initialize its
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Figure 3: The schematic diagram of our proposed image-text alignment algorithm for
web images and their associated text terms or phrases.

relevance score with a given web image; 3) near-duplicate image clustering and phrase

aggregation, which groups near-duplicate web images together and aggregates multi-

ple individual phrase lists to form a single phrase ranking list to achieve more precise

interpretation of the semantics for the near-duplicate web images in the same cluster;

4) relevance re-ranking, which re-ranks the relevance scores between the semantics

of web images and their auxiliary text terms or phrases by performing random walk

over a phrase correlation network.

Our experiments are conducted on a large database of image-text pairs which are

generated from large-scale cross-media web pages. Our experimental results have

demonstrated that our proposed unsupervised algorithm is superior to some super-

vised methods on automatic image-text alignment. The rest of this paper is organized

as follows. Section 3.2 describes how to generate a large database of image-text pairs;

In Section 3.3, we presents our automatic image-text alignment algorithm by perform-
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ing near-duplicate image clustering and relevance re-ranking via random walk over

a phrase correlation network; Section 3.4 describes our experiments for algorithm

evaluation; We conclude in Section 3.5.

3.2 Automatic Generation of Large-Scale Image-Text Pairs

In this section, we describe the details for generating a large database of image-

text pairs by performing automatic web page partition. A simple strategy is used

for informative image extraction, a practical technique is developed for text phrase

extraction, and a pf-iif (phrase frequency-inverse image frequency) value is defined

for initializing the relevance score between each web image and its auxiliary text term

or phrase.

3.2.1 Web Page Crawling and Segmentation

The most recent work on learning image semantics from the associated texts con-

centrate on either a specific domain, like BBC News [55] or a small data set [84]. In

order to seek more insights of this problem, we attempt to collect large numbers of

diverse web pages from unrestricted domains. To ensure that each web page (that

is being crawled) hosts semantically meaningful images, the image search engines

are used to collect the URLs (Uniform Resource Locater) of web pages that are be-

ing downloaded. Specifically, we submit 1,000 semantically meaningful query phrases

(single or multiple terms) to Google image search engine and extract the hosted URLs

of the top 500 returned results. In total, 500,000 URLs (some of them are duplicated)

are collected and used to crawl the corresponding web pages.

Modern web pages contain rich cross-media, where the informative web content is
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often surrounded by a bouquet of auxiliary web content, such as navigation menus,

user comments, texts and images for advertisements, snippet previews of the related

documents. Thus it is not feasible to learn the semantics of a web image by using

the whole textual information on the associated web page because only a portion of

its text terms or phrases is relevant to the semantics of web image. To narrow down

the searching scope, one could identify the most relevant surrounding text terms or

phrases by using web page segmentation techniques. The underlying reason is that

most web page creators are likely to select the most relevant images to illustrate the

topics which are discussed in the surrounding text paragraphs and they may place dif-

ferent pieces of web page (text blocks and their relevant images) to make a consistent

appearance of these cross-media pieces according to their coherent correlations.

Most existing methods for web page partition [4, 170] can be roughly grouped

into three categories: rule-based, DOM-based (Document Object Model), and visual-

based approach. The rule-based methods focus on designing the wrappers which

might have good performance on one particular type of web pages but fail when the

web pages are constructed by using different templates. The visual-based approach

[170] treats each web page as a content-rich image and borrows the idea of image

segmentation, which partitions the web pages into a set of blocks according to their

visual layouts rendered by IE (Internet Explorer). While the segmentation results

are promising, applying such visual-based approach on lager-scale collections of web

pages encounter many practical problems, such as computational cost and stability.

In this work, we adopt the DOM-based method to extract the most relevant text

blocks for each web image because it can achieve a good trade-off between the com-
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putational cost and the accuracy rate (Fig. 4). Given a web page, a DOM-tree is

constructed for organizing its HTML document in a tree structure. The nodes on

such DOM-tree contain element nodes (HTML elements), text nodes (the text in

the HTML elements), attribute nodes (HTML attributes) and comment nodes (com-

ments). For a particular image node on the DOM-tree (Fig. 4 (c)), the region growing

algorithm is then employed to extract its most relevant text block(s), where the corre-

sponding image node on the DOM-tree is set as the start point, and a upward growing

search is performed until it reaches any text node. The inner texts embedded in the

text node(s), which have been touched by the region growing search, are extracted

as the text block(s) for this particular web image. In additional to the text blocks,

we also extract meta-data embedded in the HTML tags as side information, which

strongly reflects the semantics of a web image. Four types of meta-data, including

alternate texts, image titles, image file names, and web page titles, are extracted for

generating more meaningful image-text pairs.

3.2.2 Informative Image Extraction

In a typical cross-media web page, informative images often co-occur with uninfor-

mative web images, like navigation banners, image icons for advertisements, button

icons, etc. Automatically isolating the informative blocks from the uninformative ones

in the web pages has attracted many attentions from a lot of researchers. For instance,

Debnath et al . [31] represented web page blocks by using some desired features and

trained a classifier to distinguish the informative and uninformative blocks. A similar

idea could be used to isolate the informative images and the uninformative images
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(a) A webpage rendered by IE (b) The HTML document (c) The DOM-Tree

Figure 4: The web page segmentation process for image-text pairs generation: (a)
visual layout of a web page rendered by IE; (b) the corresponding HTML document
where the image node of interest is highlighted with red bounding box; (c) a part of
the DOM-Tree where the image node of interest is in red bounding box.

-<Image Url="http://www.wayfaring.info/images/karnak-temple.jpg">

<Local>./Taj+Mahal/Images/Taj+Mahal_21_6.jpg</Local>

<Width>460</Width>

<Height>320</Height>

<Alt>The Astonishing Temple of Karnak in Luxor, spiritual center of the Ancient Egyptians</Alt>

<Title/>

<Name>karnak-temple</Name>

<Text>Temple of Karnak in Luxor What a breathtaking place it is… This vast temple complex is dedicated 

to god Amon and was spiritual center of the Ancient Egyptians. It now amaze us with it’s really 

impressive architecural achievements and the atmosphere it stills holds.</Text>

</Image>

-<Image Url="http://www.wayfaring.info/images/Ngorongoro_map_crater.jpg">

<Local>./Taj+Mahal/Images/Taj+Mahal_21_7.jpg</Local>

<Width>546</Width>

<Height>354</Height>

<Alt>The natural amphitheatre at Ngorongoro Crater</Alt>

<Title/>

<Name>Ngorongoro_map_crater</Name>

<Text> The Ngorongoro Crater is a natural amphitheatre created about 2 million years ago when the cone 

of a volcano collapsed into itself, leaving a 100 square mile caldron-like cavity. This caldera, 

protected by a circular unbroken 2,000-foot high rim (610-metres), contains everything necessary 

for Africa’s wildlife to exist and thrive. </Text>

</Image>

-<Image Url="http://www.wayfaring.info/images/bali_DewiSri.jpg">

<Local>./Taj+Mahal/Images/Taj+Mahal_21_8.jpg</Local>

<Width>200</Width>

<Height>397</Height>

<Alt>Explore Indonesia's island Bali travel wonders</Alt>

<Title/>

<Name>bali_DewiSri</Name>

<Text> The island of Bali in Indonesia is a traveler’s dream-come-true – and offers visitors an exciting 

variety of things to do and see. Bali’s natural attractions include miles of sandy beaches (many are 

well-known amongst surfers), picturesque rice terraces , towering active volcanoes over 3,000 

meters (10,000 ft.) high, fast flowing rivers, deep ravines, pristine crater lakes, sacred caves, and 

lush tropical forests full of exotic wildlife. </Text>
</Image>

Figure 5: An example of the generated image-text pairs.
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from the web pages. However, the computational cost of this algorithm is high, and

its robustness is unclear, especially when we deal with large-scale cross-media web

pages.

In this work, we adopt a simple method to roughly filter out the uninformative

web images. First, we extract web images by looking at the “IMG” tags in a web

page’s html document. The size and aspect ratio are then calculated to discard the

uninformative web images according to some pre-defined thresholds. Given a web

image I, its aspect ratio ρ(I) and size σ(I) are defined as

ρ(I) =
Iheight
Iwidth

, σ(I) = max(Iheight, Iwidth) (7)

where Iheight and Iwidth are the height and width of web image I. In our current

implementations, the web image I, which matches one of the following conditions,

is discarded automatically: (a) its aspect ratio ρ(I) is lower than 0.2 (ρ(I) < 0.2);

or higher than 5 (ρ(I) > 5) ; (b) its size σ(I) is smaller than 60 (σ(I) < 60), as it

is often a noise image, like advertisement images and navigation banners, according

to our observation. By filtering out the uninformative web images, we have archived

around 5, 000, 000 web images from 500, 000 web pages.

For each web image, a piece of text blocks is produced by using the web page

segmentation method as described in the previous section which we refer as a image-

text pair. We present some example image-text pairs in Fig. 5. Our basic assumption

for generating such image-text pairs, i.e., automatically aligning web images with

their surrounding text blocks, is that most cross-media web page creators are likely

to select the most relevant images to illustrate the topics that are discussed in the
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surrounding text paragraphs and they may carefully place different pieces of the cross-

media web pages to make a coherent appearance of these cross-media pieces according

to their correlations. Such basic assumption may fail in two extreme cases: (a) spam

images; (b) advertisement images.

For spam images, the relatedness between their semantics and their surrounding

text paragraphs (blocks) is very weak and such spam images can be filtered out ef-

fectively by performing near-duplicate image clustering according to their visual sim-

ilarity (See Section 3.3.1). For advertisement images, even they may interleave with

carefully-written web content (i.e., there is a good relatedness between the semantics

of advertisement images and their surrounding text documents), such advertisement

images can be filtered out effectively by our size and aspect ratio filters. Thus it

is reasonable for us to align each informative web image with its surrounding text

blocks.

3.2.3 Text Phrase Chunking and Ranking

After generating a database with five millions of image-text pairs, we attempt

to learn the semantics of web images from their associated texts. For a given web

image, we tackle the problem of text phrase chunking as extracting the words from its

associated texts and ranking them according to their relatedness with the given web

image. Extracting the text terms or phrases from the surrounding texts for image

annotation has recently been investigated by researchers from both natural language

processing and computer vision [55, 84, 135]. Particularly, Schroff et al . [135] applied

stemming on the text pieces from various sources, like HTML-tags and web page
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texts, to form the textual feature vector for image ranking. Feng et al . [55] extracted

keywords from the captions of news images as the labels for image annotation. While

stemming is used in these works, we believe that more rich semantics are conveyed

in the forms of words and collocations, which are named as phrases in the remaining

of this paper. In order to extract the phrases from the texts, a chunker provided

by Antelope1, which is a well-known tool for natural language processing, is used

to extract the phrases from the associated texts. The phrases are restricted to be

n-grams ( n ≤ 4 ). That is, any parsed phrase, whose constitutive items are more

than four, is discarded. A standard list of English stop words is also used to remove

high-frequency words, such as “the”, “to” and “also”. In addition, we only consider

the first 300 tokens if the surrounding texts (the texts embedded in the tag 〈text〉

and 〈/text〉 in Fig. 5) have too many tokens.

For each web image, the rank scores for its chunked phrases are initialized according

to their relatedness with the web image according to their statistical occurrence.

Given a phrase wi, its frequency pf(wi), is calculated as a weighted sum of the number

of its occurrences in the text and meta-data sources, and it is defined as

pf(wi) = pfalt(wi)× 0.5 + pftitle(wi)× 0.3 + pfname(wi)× 0.15 + pftext(wi)× 0.05, (8)

where pfalt(wi), pftitle(wi), pfname(wi), pftext(wi) are the occurrences of wi in alternate

text, title, name and surrounding text, respectively. The weights are determined

according to the observation that the phrases which are parsed from the alternate

texts are more related to the semantics of image content than those phrases extracted

1http://www.proxem.com/Default.aspx?tabid=119
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from its title, name and surrounding texts. Finally, for each web image, the extracted

phrases are ranked by using their pf-iif values which are calculated as

pf-iif(wi) = pf(wi)× iif(wi), (9)

where the inverse image frequency iif(wi) is a measure of the importance of the phrase,

and it is estimated as

iif(wi) = log

(

|I|

|{I : wi ∈ LI}|

)

, (10)

where |I| is the total number of web images in the database, |{I : wi ∈ LI}| is

the number of web images whose associated phrase lists contain the phrase wi. The

idea of using the inverse image frequency to reduce the importance weights of the

commonly occurring phrases is very similar with the idea which is very popular in

the information retrieval society. That is, the commonly occurring text terms are less

discriminative for text document representation and the inverse document frequency

is used to reduce their importance weights. Similarly, the commonly occurring phrases

are less important on interpreting the semantics of web image as compared with the

rarely occurring phrases. By computing the pf-iif value for each phrase wi, the rank

scores for all the phrases can be initialized and they can be used to identify more

relevant phrases for interpreting the semantics of the given web image.

Ideally, we attempt to extract the phrases from the associated texts which are

more relevant with the semantics of web images. The intuitive observation is that

the phrases in the surrounding texts and meta-data are often semantically related to

the semantics of web images. In addition, we quantitatively assessed the relatedness
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Figure 6: Some web images and their associated phrases ranked by the pf-iif value.

between the extracted phrases and the semantics of web images. We randomly pick

up 1508 web images and their associated phrase lists. For each web image, every

phrase in the associated list is manually judged whether it is relevant with its seman-

tics. We then calculated the accuracy as the number of the relevant phrases divided

by the number of all the phrases in the list. The average accuracy over the 1508 web

images is 0.3045 which indicates that one third of the extracted phrases are semanti-

cally relevant to the semantics of web images. Noting that the accuracy is measured

without considering the phrases’ positions in the list. It is safe to conclude that the

extracted phrases are related to the semantics of web images. In Fig. 6, we presented

some examples of web images and their associated phrase lists in which the phrases

are ranked by their pf-iif values.
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3.3 Automatic Image-Text Alignment

Ranking the phrases according to their pf-iif values can capture the intuition that

the most co-occurring phrases are often related to the semantics of web images. The

appearance of noise phrases may make ranking the phrases by their pf-iif values to

be far from satisfaction, thus it is very important to develop a re-ranking method for

achieving more accurate image-text alignment. In this section, an automatic image-

text alignment approach is developed by performing near-duplicate image clustering

and relevance re-ranking.

3.3.1 Near-Duplicate Image Clustering

Our image-text alignment algorithm essentially relies on the observation that the

most relevant phrases for a web image are very likely to re-appear on the phrase

lists for its near-duplicates. By grouping near-duplicate web images into the same

cluster, their most significant phrases which appear in the phrase lists of all these near-

duplicate web images in the same cluster can be aggregated to achieve more accurate

interpretation of their semantics. It is well known that the visually similar images are

not necessary to be semantically similar due to the problem of semantic gap [46]. On

the other hand, near-duplicate web images are strongly relevant on their semantics

because they are usually generated from the same image via manual editing. When

a web image or its near-duplicates appear in multiple web pages, its semantics may

be described from different perspectives, e.g ., various web page content creators may

use their own vocabularies. As shown in the first group of near-duplicate web images

of Fig. 7 (Group 1), even the auxiliary text phrases for each near-duplicate web
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image are different, some common phrases repeatedly occur on their auxiliary text

documents. Thus we can achieve more accurate image-text alignment by aggregating

such frequently co-occurring phrases.

For each cluster of near-duplicate web images, we aggregate all these phrases from

multiple individual phrase lists by using three different strategies (See Section 3.3.2)

for interpreting the semantics of near-duplicate web images in the same cluster. In

practice, this method may fail in two extreme cases: 1) some unpopular web images

might not have any duplicate in the database or even on the web; and 2) the associated

text phrases for each near-duplicate web image are almost the same (see Group 2 in

Fig. 7) even these phrases are derived from different web pages. For example, the

web content creators sometimes simply copy the image and its associated texts from

other reference web pages without changing anything.

To evaluate how much percentage of web images in our database have near du-

plicates, we randomly selected 80,000 web images from our database and found that

about 21% of them have more than 3 near duplicates and around 3% have more than

10 near duplicates. This statistics indicates that more accurate image-text alignment

can be envisioned by performing near-duplicate image clustering because more than

one fifth web images in our database are duplicated.

Near-duplicate image detection has been intensively investigated recently. One of

the key components for such a system is to use locality sensitive hashing (LSH) [30] or

its variants [26] to approximate nearest-neighbor matching in high dimensional space.

LSH devises a family of hash functions to ensure that the collision probability of two

data points is inversely proportional to their distance in the original feature space.
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Associated Text Top Ranked Phrase

Group 1

52 dupli-
cates

Alt: Title: Name: air-jordan-xi-cool-grey-
confirmed-1 Text: Air Jordan XI (11) Retro –
Cool Grey – Holiday 2010 Release Confirmed

jordan, air,
summer sam-
ple, nike air
maxim torch,
air jordan, ...

Alt: Retro Air Jordan 11 Retro Title: Retro Air Jor-
dans Name: jordan retro 11 Text: Air Jordan 11
Retro White/Black-Dark Concord White/Columbia
Blue-Black Black/Varsity Red-White Black/Varsity
Red-Dark Charcoal (low) White/Cobalt-Zen Grey
(low)

air jordan,
retro, white, ...

Alt: Title: Name: air-jordan-xi-cool-grey-confirmed-1
Text: Remember the Defining Moments Package from
2006? Well, 2010 appears to be the Defining Moments
Year. The Air Jordan VI Varsity ...

jordan, air,
air jordan,
package, ...

Group 2

4 duplicates

Alt: KHUFU PYRAMID T-SHIRT Ti-
tle: KHUFU PYRAMID T-SHIRT by
Dianekmt Name: khufu pyramid t shirt-
p2351751824823459172r1oa 125 Text: KHUFU
PYRAMID T-SHIRT

pyramid shirt,
khufu, pyra-
mid, khufu
pyramid, shirt,
...

Alt: KHUFU PYRAMID T-SHIRT Ti-
tle: KHUFU PYRAMID T-SHIRT by
Dianekmt Name: khufu pyramid t shirt-
p2351751824823459172r1oa 125 Text: KHUFU
PYRAMID T-SHIRT

pyramid shirt,
khufu, pyra-
mid, khufu
pyramid, shirt,
...

Alt: KHUFU PYRAMID T-SHIRT Ti-
tle: KHUFU PYRAMID T-SHIRT by
Dianekmt Name: khufu pyramid t shirt-
p2351751824823459172r1oa 125 Text: KHUFU
PYRAMID T-SHIRT

pyramid shirt,
khufu, pyra-
mid, shirt,
khufu pyramid,
...

Figure 7: Examples of near-duplicate image groups, associated text and top ranked
extracted phrase.

Given a feature vector x = (x1, . . . , xd)
T of an image, each of the hash functions

hi(·), i = 1, 2, . . . , k maps it onto the set of integers, mathematically expressed as

hi(x) =

⌊

a · x + b

c

⌋

, (11)

where c is a preset bucket size, a is a d dimension vector whose entries independently

chosen from a p-stable distribution and b is a scalar uniformly sampled from the rang

[0, c]. In our implementation, we choose using the 1-stable Cauchy distribution and

c is empirically set as 1. The Cauchy distribution-based hash function exhibits the

property that the collision probability monotonically decreases with the L1 distance

between two feature vectors. That is, the closer of two vectors x1 and x2 in the

original space ( ||x1 − x2||1 is smaller), the more likely their hashing signatures are
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the same. A single hash is usually not sufficiently discriminative to support matching

and thus we group k hashing values to form a k-tuples which is mapped into a hash

table by using the second level of standard hashing. Web images in the same bucket,

i.e., web images having the same k-tuples, are deemed potential near-duplicates which

are further verified by using the Euclidean distance among them.

Technically, any visual features can be adopted to represent the visual content

of an image. In this work, we use the bag-of-feature model to capture both color

and local gradient information of an image. Specifically, a color-based and a SIFT

(Scale Invariant Feature Transform [98]) based codebook is trained, respectively. To

learn the color dictionary, we randomly select 20,000 images from our database and

then partition each image into a set of 4 × 4 image patches with step size of 4. For

each image patch, its average RGB color is computed. We then pool all the average

color vectors as the training samples to learn a 768-dimensional color dictionary by

using k-means. Following a similar process, we trained a SIFT-based codebook which

contains 2048 visual words. Finally, the visual feature vector of an image is produced

by concatenating the two codebook-based histograms with l2 normalization.

3.3.2 Phrase Aggregation

While the lists of candidate phrases are available for each web image within a

particular cluster of near-duplicate web images, a phrase aggregation step is needed

to merge all the phrase lists into a single ranking list, and the top ranked ones are then

used to interpret the semantics of near-duplicate web images in the same group. In

this section, we define three aggregation methods, namely naive voting, borda voting
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[128] and summing, for this purpose.

Let {Li}
n
i=1 be the phrase lists associated with n near-duplicate web images in the

same cluster, U =
⋃n

i=1 Li the union set of all unique candidate phrases. The three

aggregation methods are described as following.

Naive Voting : For each candidate phrase w ∈ U , the naive voting strategy assigns

1 to its vote whenever w ∈ Li, and 0, otherwise.

vote(w, i) =



















1 if w ∈ Li ,

0 otherwise.

(12)

A single list of phrases S is obtained by sorting the candidate phrases in terms of the

number of votes, namely the score, given as

score(w) :=

n
∑

i=1

vote(w, i). (13)

Borda Voting : Unlike the naive voting which ignores the ranking positions of the

phrases in the candidate lists, the borda voting strategy ranks the candidate phrases

by taking into account the ranking information. In each phrase list Li, the phrases

are assigned a decreasing number of points. That is, the top-ranked phrase is given

k− 1 points, the second-ranked one receives k− 2 points and so on until the last one

is given no points. In many cases, phrase lists have various number of phrases, and

we set k to be the size of the longest list among all the n lists. Finally, the candidate

phrases are sorted in a decreasing order in terms of points that they received, given

as

score(w) :=
n

∑

i=1

point(w, i), (14)
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where point(w, i) is the point that w received in list Li.

Summing : The summing strategy also considers the ranking information of each

phrase. For the phrases in the candidate union, the summing strategy sums over their

pf-iff values (See Section 3.2.3). Thus the score of a phrase w ∈ U is calculated as

score(w) :=
n

∑

i=1

pf-iif(w, i), (15)

where pf-iif(w, i) is the pf-iif value of the phrase w in list Li.

By aggregating the phrases from multiple phrase lists which are associated with

the near-duplicate web images in the same cluster, a single phrase ranking list is

produced where the top ranking ones are then used to index all the near-duplicate

web images in the same group. It turns out that borda voting and summing strategies

outperform the naive voting strategy on this task (See Section 3.4.2). In Fig. 8, we

present some groups of near-duplicate web images, their associated phrase lists and

the aggregated single list produced by the summing strategy.

3.3.3 Relevance Re-ranking

When people compose their cross-media web pages, they often interchangeably use

different text words or phrases with similar meanings to interpret the semantics of

a web image. On the other hand, some phrases have multiple different but related

senses under various contexts. Thus text phrases are strongly inter-related in terms of

different levels and ways, which could be exploited to further enhance phrase ranking.

In this section, a phrase correlation network is generated to characterize such inter-

phrase similarities intuitively, and a random walk process is performed over the phrase
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Cluster No.: 16263, 33 duplicates

Phrase list 1: face, area, drive stick, rule safety

Phrase list 2: face, grip, play tennis, tennis racket

Phrase list 3: face, , tennis racket, maintenance

Phrase list 4: face, shaver, tennis preparation tip,...

�.

Aggregation: face, shaver, gillete, �.

Cluster No.: 3598, 10 duplicates

Phrase list 1: sterilization equipment, water, sterilizer, china mainland

Phrase list 2: autoclave, sterilizer, water, china mainland, manufacturer

Phrase list 3: retort, heating, sterilizer, water, china mainland, manufacturer

Phrase list 4: sterilizer, water, china mainland, manufacturer

Phrase list 5: sterilization equipment, water, sterilizer, china mainland, manufacturer

�.

Aggregation: sterilizer, sterilization equipment, water, retort, manufacturer, �.

Cluster No.: 35950, 27 duplicates

Phrase list 1: venture snowmobile, indonesia

Phrase list 2: venture snowmobile, arctic, snowmobile, ...

Phrase list 3: venture snowmobile, snowmobile

Phrase list 4: venture snowmobile, snowmobile manufacturer�

Aggregation: venture snowmobile, snowmobile, �.

Cluster No.: 6244, 13 duplicates

Phrase list 1: cimarron, roper, saddle, roper saddle, horse, ...

Phrase list 2: cimarron, roper, saddle, roper saddle,...

Phrase list 3: saddle, roper, roper saddle, horse, sale

Phrase list 4: roper saddle, saddle, cimarron, horse

�.

Aggregation: saddle, roper, roper saddle, cimarron, �.

Cluster No.: 29906, 8 duplicates

Phrase list 1: pisa feb, pisa, leaning tower, location, photo

Phrase list 2: pisa, leaning tower, location, photo

Phrase list 3: pisa, location, leaning tower, photo

Phrase list 4: pisa, leaning tower, photo�.

Aggregation: pisa, learning tower, pisa feb, location, �.

Figure 8: Image clusters and associated phrase lists. The single ranking list is aggre-
gated by the summing strategy.

correlation network to further re-rank the phrases.

3.3.3.1 Phrase Correlation Network

To estimate the correlation between words or phrases for enhancing web image

indexing, a myriad of related efforts have been reported in the literature, including the

use of the ontology WordNet [74] and the normalized Google distance(NGD) derived

from the Word Wide Web [157]. In this work, we consider two types of information

sources to characterize the correlation between a pair of phrases, including inter-

phrase co-occurrence and inter-phrase semantic similarity derived from WordNet.

Specifically, given two phrases wi and wj, their co-occurrence correlation β(wi, wj) is

defined as

β(wi, wj) = −P (wi, wj) log
P (wi, wj)

P (wi) + P (wj)
(16)
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where P (wi, wj) is the co-occurrence probability for two text terms or phrases wi and

wj, P (wi) and P (wj) are the occurrence probabilities for the phrases wi and wj [47].

The semantic similarity γ(wi, wj) is defined as the Leacock and Chodorows similarity

[80],

γ(wi, wj) = − log
L(wi, wj)

2D
(17)

where L(wi, wj) is the number of nodes along the shortest path between wi and wj

on the WordNet hierarchy and D is the maximum depth of the WordNet taxonomy.

Some specific phrase which are not in the WordNet taxonomy are omitted. Finally,

the cross-modal inter-term correlation between the phrases wi and wj is defined as

φ(wi, wj) = α · γ(wi, wj) + (1− α) · β(wi, wj) (18)

where α = 0.5 is the weighting parameter. The text phrases, which have large

values of the cross-modal inter-phrase correlations, are connected to form a phrase

correlation network. A part of the phrase correlation network for our database of

large-scale web images is shown in Fig. 9, where each text term or phrase is linked

with multiple most relevant text terms or phrases with larger values of φ(·, ·). Such

phrase correlation network could provide a good environment for addressing the issues

of polysemy and synonyms more effectively and disambiguating the image senses

precisely. This in turn allows us to identify more relevant text terms or phrases to

interpret the semantics of web images.
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Figure 9: Two alternative views of the hyperbolic visualization of the phrase cor-
relation network. Only 120 terms are shown in this picture to avoid visualization
clutter.

3.3.3.2 Random Walk for Relevance Re-Ranking

In order to leverage the advantage of our phrase correlation network for learning

the rich semantics of web images more precisely, i.e., achieving more precise align-

ments between the semantics of web images and their auxiliary text terms or phrases,

a random walk process is further performed over the phrase correlation network for

refining the relevance scores. Given the phrase correlation network for n most signif-

icant text terms or phrases, we use ρk(w) to denote the relevance score for the text

term or phrase w at the kth iteration. The relevance scores for all these phrases on

our phrase correlation network at the kth iteration will form a column vector
−−→
ρ(w) ≡

[ρk(w)]n×1. We further define Φ as an n × n transition matrix, where each element

φij is used to define the probability of the transition from the ith text term or phrase
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to its inter-related jth text term or phrase and φij is defined as:

φij =
φ(i, j)

∑

k φ(i, k)
(19)

where φ(i, j) is the pairwise inter-phrase cross-modal similarities between the ith and

jth phrase. We then formulate the random walk process as

ρk(w) = θ
∑

j∈Ωj

ρk−1(j)φtj + (1− θ)ρ(C,w) (20)

where Ωj is the first-order nearest neighbors of the jth text term or phrase on the

phrase correlation network, ρ(C,w) is the initial relevance score for the text term or

phrase w and θ is a weight parameter. The initial relevance score ρ(C,w) is estimated

by normalizing the scores of all the phrases in the unique phrase union set UC for the

cluster C,

ρ(C,w) =
score(w)

∑

t∈Uc
score(t)

, (21)

where the score(·) is the phrase scoring function by using summing strategy as (15).

The random walk process will promote the inter-related text terms or phrases that

have many nearest neighbors on the phrase correlation network, e.g ., the inter-related

phrases that have strong semantic correlations and higher co-occurrence probabilities.

On the other hand, this random walk process will also weaken the isolated text terms

or phrases on the phrase correlation network, e.g ., the isolated text terms or phrases

that have weak semantic correlations and low co-occurrence probabilities with other

text terms or phrases. This random walk process is terminated when the relevance

scores converge or after several iterations.

For a cluster C of near-duplicate web images, we re-rank all its auxiliary text
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terms or phrases according to their relevance scores after the random walk process

terminates. By performing random walk over the phrase correlation network, our

relevance score refinement algorithm can leverage both the inter-phrase co-occurrence

similarity and the inter-phrase semantic similarity for re-ranking the auxiliary text

phrases more precisely. Finally, the top-k auxiliary text terms or phrases, which

have higher relevance scores with the semantics of near-duplicate web images, are

selected for interpreting the semantics of near-duplicate web images in the given

cluster C. An alternative way is to select the top phrases whose scores are larger than

a pre-defined threshold. Such automatic image-text alignment process can support

better understanding of cross-media web pages (web images and their associated text

documents) because it can couple different information sources together to resolve

the ambiguities that may arise from performing single media analysis.

Some experimental results on relevance re-ranking for automatic image-text align-

ment are given in Fig. 10. From these experimental results, one can observe that

our automatic image-text alignment algorithm can effectively identify the most rel-

evant auxiliary text terms or phrases to interpret the rich semantics of web images

sufficiently.

3.4 Experiments for Algorithm Evaluation

Following the method described in Section 3.2, we have created a database with

5,000,000 image-text pairs. We have also excluded some web images because their

visual features cannot be extracted successfully. Our database for large-scale image-

text pairs finally contains 4,651,972 web images and 986,735 unique phrases in total.
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Original: zion national park, ...

Re-ranked: zion national park, 

utah, sandstone, patriarch, 

landscape, ...

Original: cruiser, thumbnail, flash, player, ...

Re-ranked: cruiser, toyota, land, wagon, race, ...

Original: oxbow, grand teton 

national park, ...

Re-ranked: grand teton national 

park, waters, snake river, 

rang, ...

Original: yellow stone national 

park, …

Re-ranked: yellow stone national 

park, geyser, hot springs, 

chute, ...

Original: bandlandS national park, south dakota, 

sunrise, bridge, river, �

Re-ranked: south dakota,  bandlands national park, 

peak, winter, ... 

Original: oak, cupboard, filling cabinet, cabinet, 

wall, ...

Re-ranked: cabinet, filling cabinet, oak, cupboard, 

hutch, ...

Original: carpet, hero, …

Re-ranked: carpet, tabriz, rug, prsian, mat, hero, ...

Original: palace, anasazi, cliiff dwelling, mesa verde 

national park, colorado 

Re-ranked: mesa verde national park, cliff dwelling, 

palace, anasazi, cliff, ruin, ...

Figure 10: Example image clusters of original aggregated phrase lists and the re-
ranked lists produced by our relevance re-ranking algorithm.

After removing those phrases occurring less than 10 times, 182,528 phrases were finally

kept in our system. Unlike the vocabularies used in the traditional image annotation

benchmarking databases where an annotation is often a single word or tag, such as

“sky”, “sea”, and “car”, the phrases in our produced vocabulary are more specific

and embodied richer semantics. A few sample phrases can be found in Fig. 6 and

Fig. 8.

To evaluate our proposed methods, the recall and precision rates which are widely

used in the image annotation and retrieval literature might be the desired perfor-

mance metrics. Unfortunately, manually providing 182,528 phases from such size of

vocabulary to describe each web image in our large-scale database is tedious and time

consuming. In this work, we used three alternative metrics, namely mean reciprocal

rank (MMR), success at rank k (s@k) and precision at rank k (p@k), that capture

the performance of the algorithm at different aspects. The MRR is defined as the
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reciprocal of the rank of the first relevant phrase, averaged over all the testing photos,

which indicates the ability of the proposed method to provide a semantically relevant

phrase at the top of the ranking list. Success at rank k is 1 if a relevant tag is ranked

in the top k results and 0 otherwise, averaged over all the test images. Precision at

rank k is the number of relevant phrases ranked in the top k results, averaged over

all test images as well. The relatedness between a phrase and an image is manually

determined by users.

3.4.1 Effectiveness of Image Clustering

In our work, near-duplicate image clustering is used to reduce the uncertainty

between the semantics of web images and their auxiliary text terms or phrases. Thus

it is very interesting to demonstrate the effectiveness of our method for near-duplicates

image clustering on promoting the accuracy for automatic image-text alignment.

The 4,651,972 web images have been clustered into 216,896 groups of near-duplicate

web images. The number of near-duplicate web images in each group ranges from

1 (no near-duplicate web images) to 383 (383 near-duplicate web images) and the

average size is about 21 near-duplicate web images. Among all the clusters of near-

duplicate web images, we randomly pick 1105 clusters whose numbers of near-duplicate

web images are more than 4 (5,678 images in total) for algorithm evaluation. Some

users without any background of this project were invited to manually evaluate the

relatedness between the semantics of near-duplicate web images in the same cluster

and each phrase on the ranking list which is produced by using the summing aggrega-

tion strategy. Specifically, if a phrase on the list is suitable to describe the semantics
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Table 1: Performance comparison of the proposed method with and without perform-
ing near-duplicate image clustering.

MMR s@1 s@5 p@5
Without Image Clustering 0.7323 0.6233 0.8511 0.2935
With Image Clustering 0.8005 0.6857 0.9523 0.3581

of near-duplicate web images in the same group, score 1 would be assigned to that

phrase, otherwise 0. In the case of without performing near-duplicate image cluster-

ing, each of these 5,678 web images in 1105 clusters is directly annotated with the

phrases ranked by the pf-iif values (See Section 3.2.3). We also manually provides 1

and 0 to each phrase on the ranking lists for indicating whether it is applicable to

describe the visual content of the associated web image. The comparison is tabulated

in Table 1. One can clearly observe that performing near-duplicate image clustering

has boosted the MMR, success and precision at rank k (k=1, 5) significantly, which

indicates that near-duplicate image clustering is particularly effective to find more rel-

evant phrases and rank them at the top of the lists for image semantics interpretation.3.4.2 Comparison of Phrase Aggregation Strategies

As described in Section 3.3.2, three different strategies are used to aggregate the

phrases from individual lists of phrases to form a single ranking list. We compared

three strategies, i.e. naive voting, borda voting and summing and reported the results

in Fig. 11. One can observe that the borda voting and summing methods are superior

to the naive voting strategy in terms of all the three performance metrics. Therefore,

we only reported results for the summing strategy when aggregation was applied.
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(a) MMR and s@k
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(b) p@k

Figure 11: Performance comparison of different phrase aggregation strategies.

3.4.3 Effectiveness of Relevance Re-ranking

As discussed in Section 3.3.3.2, we have constructed a phrase correlation network

which captures the inter-phrase co-occurrence and semantic similarity, so that we

can re-rank all the phrases for each cluster of near-duplicate web images. The re-

ranking is achieved by performing random walk over the phrase correlation network

for all the clusters of near-duplicate web images. To assess the effectiveness of our

relevance re-ranking algorithm via random walk, we randomly select 1,000 clusters

of near-duplicate web images which have more than four duplicates, and compute

three metrics, i.e. MMR, s@k, and p@k for two cases: with and without performing

relevance re-ranking. The comparison is reported in Fig. 12. One can observe that

the process of relevance re-ranking via random walk can further improve the results

of automatic image-text alignment because our phrase correlation network can make

use of multi-modal inter-phrase correlations to address the issues of polysemy and

synonyms effectively.
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0.5
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0.8

0.9
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Without RW Re-ranking With RW Re-ranking
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MMR s@1 s@5 p@5 p@10

Figure 12: Performance comparison of image-text alignment with and without per-
forming random walk (RW) for relevance re-ranking.

3.4.4 Performance on Web Image Indexing and Retrieval

We also evaluate the effectiveness of our automatic image-text alignment algorithm

for web image indexing and retrieval. We index each web image by using its ranking

list of phrases and support web image retrieval by using their ranking list of phrases.

Given a query term or phrase, the system returns all the web images that are as-

sociated with the text term or phrase and ranks them according to their relevance

scores. The precision for top k returned images, denoted as Pre@k, is computed and

the average precision over all the query phrases is reported. A user-friendly interface

is designed for users to determine whether a returned image is relevant to the query

phrase or not. Mathematically, the Pre@k is defined as

Pre@k =

∑k
i=1 δ(i)

k
, (22)

where δ(·) is an indicator function which equals to 1 if the ith web image is relevant

to the query and 0 otherwise.
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To assess the effectiveness of image clustering and relevance re-ranking on auto-

matic image-text alignment, we have compared the performance of our automatic

image-text alignment algorithm under three different scenarios: (1) near-duplication

image clustering is not performed for reducing the uncertainty between the relatedness

between the semantics of web images and their auxiliary text terms or phrases; (2)

random walk is not performed for relevance re-ranking; and (3) both near-duplicate

image clustering and random walk are performed for learning the rich semantics of

web images more precisely by achieving more accurate image-text alignments. We

randomly select 61 phrases as queries from the vocabulary. As shown in Fig. 13,

where the precision for top 20, 40 and 60 returned images are evaluated respectively.

One can observe that incorporating near-duplicate image clustering for uncertainty

reduction and performing random walk for relevance re-ranking can significantly im-

prove the accuracy rates for automatic image-text alignment.

For the same task on identifying the most relevant text terms or phrases for in-

terpreting the semantics of web images, we have compared the performance between

three approaches for image-text alignment: our unsupervised image-text alignment

approach versus Berg’s approach [10] and cross-media relevance model proposed by

Feng et al . and Lavrenko et al . [54, 78]. Both Berg’s approach and cross-media rele-

vance model are supervised and require large amounts of labeled training images to

learn joint image-word relevance models. In our experiments, we use large amounts

of web images and their auxiliary text terms or phrases as the labeled images to train

the joint image-word relevance models for both Berg’s approach and cross-media rel-

evance model. We plot the performance comparison in Fig. 14 with respect to the
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(a) Pre@20, top 20 images are evaluated. Average precision rates: without clustering,
0.6497; without re-ranking, 0.7659; full approach, 0.8141.
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(b) Pre@40, top 40 images are evaluated. Average precision rates: without clustering,
0.5828; without re-ranking, 0.6853; full approach, 0.7279.
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(c) Pre@60, top 60 images are evaluated. Average precision rates: without clustering,
0.5054; without re-ranking, 0.6332; full approach, 0.6819.

Figure 13: Performance comparison in the application of image indexing and re-
trieval. Three cases are assessed: (1) image clustering and relevance re-ranking are
not adopted, denoted as “without clustering”; (2) image clustering is used but random
walk is not adopted, denoted as “without re-ranking” and (3) both image clustering
and random walk are used, denoted as “full approach”.

precision rates in the scenario of image indexing where 35 random query words are

evaluated. One can observe that our unsupervised image-text alignment approach can

significantly improve the precision rates by identifying the most relevant text terms

or phrases for image semantics description and web image indexing. On the other

hand, the other two supervised approaches, the Berg’s approach and the cross-media

relevance modeling approach, are not be able to identify the most relevant text terms

or phrases for web image indexing. One of the reasons is that loose image-text pairs,

such as web images and their auxiliary text terms or phrases, are too noise to be
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(a) Pre@10, top 10 images are evaluated. Average precision rates: Berg’s method, 0.3371;
Relevance model, 0.3886; Our method, 0.8714.
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(b) Pre@20, top 20 images are evaluated. Average precision rates: Berg’s method, 0.2771;
Relevance model, 0.3285; Our method, 0.8319.
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(c) Pre@30, top 30 images are evaluated. Average precision rates: Berg’s method, 0.2105;
Relevance model, 0.2762; Our method, 0.7533.

Figure 14: Performance comparison with Berg’s method and the relevance model in
the application of image indexing and retrieval.

treated as the reliable training source to accurately learn the joint image-word rel-

evance models. Without depending on the labeled training images (training images

with good relatedness between the annotation text terms or phrases and their seman-

tics), our unsupervised image-text alignment approach can achieve higher precision

rates.

Achieving more accurate indexing of large-scale web images, i.e., identifying more

relevant auxiliary text terms or phrases for interpreting the semantics of web images

more accurately, will result in high precision rates for keyword-based web image re-
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trieval, thus we can use the precision rates for keyword-based web image retrieval to

evaluate the performance of various image-text alignment algorithms for web image

indexing. For some queries as shown in Fig. 14, both the Berg’s approach and the

cross-media relevance modeling approach may result in zero precision rates, e.g ., both

the Berg’s approach and the cross-media relevance modeling approach cannot iden-

tify the most relevant auxiliary text terms or phrases for web image indexing because

they cannot learn the joint image-word models accurately by using large amounts of

loose image-text pairs.

Our unsupervised image-text alignment approach can achieve significant improve-

ment on the precision rates and it benefits from three components: (1) Near-duplicate

image clustering is performed to reduce the visual ambiguity between the web images

and provide a good environment to effectively reduce the uncertainty on the related-

ness between the semantics of web images and their auxiliary text terms or phrases;

(2) A phrase correlation network is constructed to tackle the issues of polysemy and

synonyms more effectively; (3) A random walk process is performed over the phrase

correlation network for relevance re-ranking and achieving more precise alignments

between the semantics of web images and their auxiliary text terms or phrases.

3.4.5 Quality of Labeled Training Images

As discussed in Section 3.1, one of our motivations is to automatically collect

large-scale labeled image for classifiers training. In this section, we quantitatively

show that our proposed approach is able to collect large-scale training images with

reliable labels. To assess the quality of labeled training images which are collected
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Table 2: The 80 concepts selected for classification evaluation.

acropolis airplane bait bear bread
bread machine brick bridge broccoli brush
candle carpet caribou carriage carrot
cormorant cruiser cupboard dinner napkin dish aerial
elephant elk eyeglasses flower football helmet
fountain giant panda goblet grape horse
hummingbird hydrometer kangaroo knife komodo dragon
laminate lichen lizard locomotive mandolin
meerkat mini van monitor motorbike oyster
pacifier pajama pan cake peach peafowl
pencil sharpener pendulum clock persimmon pineapple pingpong paddle
pingpong table puffin pumpkin razor riverbank
saddlebag sailing boat scooter screwdriver spatula
speedometer sterilizer sushi table tambourine
tennis ball tent flap tiger toilet paper t-shirt
volcano volleyball whale wrench zipper

by our proposed approach, we conducted the following experiments. We choose 80

concepts from the vocabulary of our database and each of them is a synset in the

ImageNet [33], so that we can have manually labeled images for each object concept

for algorithm evaluation. The 80 concepts are tabulated in Table 2. Given a concept,

we treat it as a query to find top ranked images from our database and collect them

as training instances for that concept. We organize our labeled training images in

three different stages, so that we can clearly see the effectiveness of each component.

The three stages are 1) images are labeled by using the phrases which are ranked only

by pf-iif values, i.e. without image clustering; 2) images are labeled by the ranked

phrases which are determined by only performing near-duplicate image clustering

but without performing relevance re-ranking; and 3) image are labeled by using the

phrases which are determined by performing both near-duplicate image clustering and

relevance re-ranking and we refer to it as full approach. Fig. 15 presents some labeled

training images which are collected by our full approach for some object concepts.
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Figure 15: Sample training images collected by our algorithm for several object con-
cepts.

For each concept, we use 200 images from the ImageNet data set as testing images.

We follow the standard bag-of-features pipeline to extract local SIFT features,

encode the features using a codebook of 2048 visual words and pool the codes with

a two-level spatial pyramid configuration to form the visual representation for each

image. We then train one-against-all linear SVMs on the pooled features for achieving

multi-class image classification due to its efficiency. In Fig. 16, we plot the average

classification accuracy rates, i.e. the mean of the diagonal of confusion matrix, across

different number of labeled training images. One can observe that our algorithm can

obtain reliable labeled training images for classifier training, thus our algorithm can

automatically harvest large-scale labeled training images from the Internet. Each

component of our full approach, i.e. performing both near-duplicate image clustering

and relevance re-ranking with phrase correlation network, can boost the performance

by some margins and near-duplicate image clustering can improve the accuracy rates

dramatically as comparing with the baseline method (“without clustering” in Fig.
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Figure 16: Image classification accuracy comparison between the methods used to
collect training images.

16). However, the performance gap between two approaches for classifier training is

still considerable: training images are manually labeled versus training images are

automatically labeled by the auxiliary text terms or phrases which are determined by

our algorithm. Thus leveraging large-scale web images and their auxiliary text terms

or phrases to construct a unbiased and reliable image database is not a trivial task.

3.5 Summary

In this chapter, we have presented an unsupervised algorithm for automatic image-

text alignment and relevance re-ranking to learn rich semantics of large-scale web

images from their auxiliary text terms or phrases. It can lead to many potential

applications: (1) supporting more effective web image retrieval with higher precision

rates by identifying more relevant text terms or phrases for web image indexing; (2)

by harvesting from the Internet, our research can create large-scale labeled image

sets for achieving more accurate training of large numbers of classifiers, which is a
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long-term goal of the multimedia research community; and (3) achieving cross-media

alignment automatically and generating a parallel cross-media corpus (image-text

pairs), which may provide many opportunities for future researches such as word

sense disambiguation and image sense disambiguation. We will release our parallel

cross-media corpus (image-text pairs) and source codes in the future.



CHAPTER 4: VISUAL TREE FOR EFFICIENT CATEGORIZATION

4.1 Introduction

Image categorization is one of the fundamental problems in the field of computer

vision. A great progress has been made in the past decades, especially on image sets

of moderate sizes, such as Caltech101 [51] and Caltech256 [64]. Recent proliferation

of user-contributed digital images on the Internet has created the need as well as

new chances for tools to recognize a large number of visual categories. For example,

ImageNet (www.imagenet.com) has collected more than 14M images for 22K cate-

gories (classes/concepts). However, large-scale image classification which categorizes

massive amounts of images into a large number of image categories poses tremendous

computational challenges if a flat approach is simply employed (e.g ., image catego-

rization is achieved by using many one-vs-rest (OVR) SVMs). For a testing image,

the computational cost of the flat categorization approach grows linearly with the

number of categories, which prohibits the widespread use of it in many applications

with real-time or near real-time requirements.

One way to reduce the computational cost of a large-scale image categorization

system is to organize the categories hierarchically in a tree structure by exploiting

their inter-category correlations. In [9], Bengio et al . proposed a label tree model for

this purpose. In a label tree, each tree node is associated with a number of classes
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and as well as a predictor. For a given tree node, the set of the associated categories

is required to be a subset of the classes which are associated with its parent node, and

its node predictor is used to determine the best-matching child node to visit at the

next level. Each leaf node corresponds to a particular image category. Given a testing

sample, the label prediction process starts from the root node, and traverses down to

a leaf node in the tree. The label of the leaf node is then taken as the prediction to it.

This hierarchical label prediction process often leads to sub-linear time complexity

in terms of the number of categories because a testing sample is only needed to be

evaluated using a limited number of node predictors along the traversal path in the

tree.

To construct a label tree for N image classes, one has to train N OVR support

vector machines (SVMs) in advance, and then obtain a confusion matrix by evalu-

ating all the N OVR classifiers based on a validation set. The confusion matrix is

then utilized to build the label tree as a surrogate to approximate the inter-category

correlations. However, learning the N OVR SVMs is very computationally expensive,

especially when the number of categories is large. In addition, it often suffers from

the class imbalance problem. That is, for a given image class (positive class), the

negative instances from the other N − 1 categories can heavily outnumber the posi-

tive instances. The negative instances may easily control and mislead the process of

classifier training since the negative instances are numerous and the visual diversity

of them is huge. In a word, the issue of class imbalance often results in unreliable

OVR classifiers which further produces a misleading confusion matrix for learning

the structure of a label tree. In [34], Deng et al . proposed a more efficient algorithm
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for learning a label tree where the partition of the label set and the predictor of a

tree node are learned at the same time. Given a tree node, the partition of its label

set and the training of its node classifier are performed iteratively starting from a

random initialization. The confusions of the node classifiers are essentially used to

determine the tree structure.

In this paper, we propose a visual tree model which resorts to the visual similarities

among image categories instead of the confusions yielded by pre-trained classifiers

as the surrogate to approximate the correlations of image classes for tree structure

learning. Specifically, we first estimate the visual representation of an image category

by computing the mean feature of a number of images within that category. Second,

we calculate the inter-category visual similarities between all the categories by taking

their visual representations as input. Finally, we adopt clustering tools to partition

the categories based on the inter-category visual similarities, and build the visual tree

structure level by level. As the visual correlations between categories are used as the

cue to construct the tree structure, we thus refer to this method as visual tree in the

rest of the paper.

Noting that the mean feature which uses only a single feature prototype to visually

characterize an image category might be of limited power in expressing the visual

diversity of an image class, we introduce an extension in Section 4.2.1, which uses

multiple feature prototypes per category for characterizing the category-specific visual

properties of an image class. Also, we empirically investigate how the number of

prototypes affect the performance of the visual tree model.

The underlying conjecture of using the inter-category visual correlations for visual
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tree construction is that the visual similarities can be used as a proxy to approximate

the learnability (i.e., the possibility of them for being effectively distinguished by a

classifier) of a label set (i.e., a set of image categories). Intuitively, if two image

categories are more visually similar, they are more difficult to be discriminated by a

classifier [46]. Therefore, it is better to put the visually similar categories into the

same set instead of partitioning them into different sets at the high-level nodes of a

tree. Postponing the decision for label set partition (node splitting or image category

partition) can avoid wrong partition of the label set at a high-level tree node and

increase the learnability of the label set, which in turn helps us to train the node

classifiers more accurately.

While hierarchical classification using a tree structure has a genuine advantage on

computational efficiency, it usually degrade the categorization accuracy performance.

If a mistake is made at a high-level node, it will be propagated to a leaf node and has

no chance to be recovered. To alleviate this issue, a simple soft prediction scheme

is utilized by exploring more branches if necessary. Specifically, we tend to choose

a single node to visit if the current prediction is sufficiently confident, otherwise,

both of the top-two scoring nodes (i.e., nodes of the highest and the second-highest

prediction scores) will be selected to visit at the next level. In summary, we make

the following contributions in this chapter.
• A visual tree model is developed for organizing a large number of image cate-

gories hierarchically according to the inter-category visual correlations between

them. Our method for the visual tree construction is very computationally effi-

cient as compared to the traditional label tree method which requires obtaining
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a cost-intensive confusion matrix in advance.

• The class mean feature and its extension are investigated for characterizing

the visual representation of an image category. The impacts of them on the

performance of the proposed visual tree method are empirically evaluated.

• A soft prediction scheme is designed for the tree-based hierarchical image clas-

sification to boost the categorization performance without incurring too much

additional computational cost.

Experiments have been conducted on the ILSVRC20102 data set. Our experimental

results have demonstrated that our visual tree can achieve very competitive or better

results as compared to other tree models which demand training many OVR classifiers

in advance or iteratively. Also, increasing the number of feature prototypes per class

for characterizing the visual representation of an image category can improve the

performance of our visual tree model if the number of feature prototypes is in a certain

range. Third, the soft prediction scheme is effective for boosting the classification

performance of tree models without re-training the node predictors.

4.2 Visual Tree Model

Given N image categories, we are interested in learning a tree structure T = (V,E)

which comprises a set of nodes V and a set of edges E, and each node v ∈ V is

associated with a set of category labels L(v) ⊆ {1, . . . , N} as well as a predictor wv

for selecting the best-matching child node to follow at the next level. In addition, the

label set of a given node v is constrained to only contain a subset of the label set of

2http://www.image-net.org/challenges/LSVRC/2010
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its parent node.

To reduce the computational cost for visual tree construction, we develop a new

algorithm on learning the tree structure by purely using the visual cues, e.g ., the

inter-category visual similarities (correlations). In this section, we describe the details

of our visual tree model, including characterizing the visual representations of image

categories, estimating the inter-category visual similarities, learning the tree structure

via hierarchical clustering and training the predictors associated with the tree nodes.

4.2.1 Visual Representation of an Image Category

The problem of characterizing the visual appearance of an image category remains

open partly due to the fact that finding an effective and yet efficient way to represent

the visual content of an image has not been completely addressed. One way to

estimate the visual representation of an image category is to resort to the overall

visual properties of its relevant images. Let Ii be a collection of relevant images of

the ith image category. We can compute the mean visual feature by averaging the

visual properties of all the images in Ii, and take the mean feature as the overall

characterization of the visual content of this image class. As illustrated in Fig. 17,

we first represent the visual content of each image Ij ∈ Ii using the bag of visual

feature (BoF) model. Specifically, we encode the dense histogram of gradient (HoG)

features using the locality linear coding (LLC) [155] over a dictionary, and then pool

the codes to form an image-level signature hj for image Ij with max pooling. In

our implementation, a dictionary of size 8, 192 was used, and a two-level spatial

pyramid partition, namely 1× 1 and 2× 2, was employed to incorporate weak spatial
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Figure 17: Schematic illustration of the mean feature representation of an image
category. An image is represented as a bag of visual features (middle column); the
mean feature vector w.r.t an category is then computed as the visual representation
of that category (right column).

information. Second, the visual representation of the ith image category, Hi, is

defined as the class mean feature by averaging the image-level signatures of all the

relevant images, given as

Hi :=
1

|Ii|

∑

j∈Ii

hj. (23)

We then normalize the class mean feature vector Hi to have unit l2 norm.

Considering the potential visual diversity of an image class, a single mean feature

vector might be of intrinsically limited power to sufficiently express the visual ap-

pearance of an image category. We therefore extend the mean feature model to allow

for more flexible category visual representations, which result in a model of stronger

expression capability. The idea is to represent each category by a set of feature cen-

troids, instead of only a single one class mean vector. Assume that we use K centroids

for each class, the visual representation of the ith category can be defined as a set of
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feature centroids, given as:

Mi := {mk
i }

K
k=1, (24)

where mk
i is the vector of a centroid. In practice, we can adopt k-means to group the

image-level signatures {hj}
|Ii|
j=1 of the ith category into K clusters, and then take the

cluster centroids to form the multiple feature centroids representation Mi.

4.2.2 Learning the Structure of a Visual Tree

The underlying conjecture of the visual tree model is that the visual correlations

between the image categories (i.e., inter-category visual similarities) can be used as

a proxy to determine the learnability of a label set (i.e., a set of image categories)

[46]. The visually similar image categories are more likely to be confused by the node

predictors. In other words, they are more difficult to be distinguished by the node

classifiers. Assigning such visually similar image classes into the same label set would

help to increase the learnability of the label set, which in turn allows us to learn the

node predictors with higher accuracy rates. Here, we employ two hierarchical clus-

tering techniques, namely hierarchical k-means and hierarchical spectral clustering,

to learn the structure of a visual tree.

4.2.2.1 Learning by using hierarchical k-means

Given the mean feature representations {Hi}
N
i=1 of N image categories, we can use

k-means clustering algorithm to partition the N image categories based on the class

mean features, and build up a visual tree level by level. Specifically, for a particular

node v, we can partition its label set L(v) ⊆ {1, . . . , N} into B subsets according to

the group assignments produced by the k-means algorithm. We then create B child
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nodes, and each of the nodes takes one of the B label subsets as its own label set.

For each of the child nodes, we go through the same procedure to generate its own

child nodes until it is a leaf node which contains a single class label. Note that if the

label set L(v) of the particular node v has less than B labels, we only split it into

|L(v)| child nodes, instead of B nodes. We also control the maximum depth H of the

visual tree. The depth of a tree node is defined as the length of the path from the

root node to it. The root node has depth zero.

In Fig. 18, we demonstrate how to build a visual tree using the hierarchical k-

means algorithm based on the mean feature representations. Assuming that there

exists 10 classes, the root node contains the entire label set L0 1 = {1, 2, . . . , 10}.

We then run k-means by taking the corresponding mean features H0 1 as input, and

partition them into B clusters. To illustrate the visual tree construction process in

this particular example, we set B to be 3. According to the cluster memberships

of these ten categories produced by k-means, we split the root node into three child

nodes accordingly, and each of them inherits a subset of the corresponding categories

(labels) and a subset of the corresponding mean features as well. If a child node has

more than B classes, for example the 3rd node at depth 1 (labeled with L1 3 in Fig.

18), we split it into three child nodes by repeating the procedure above. We apply

this hierarchical category partition strategy to every tree node until we build up a

tree of desired depth. Finally, we summarize the learning procedure of constructing

a visual tree by using hierarchical k-means in Algorithm 1.
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Label set: 0_1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Mean features: 0_1 = {H1, H2, H3, H4, H5, H6, H7, H8, H9, H10}

1_1 = {1, 3, 5, 8}

1_1 = {H1, H3, H5, H8}

1_2 = {2, 4}

1_2 = {H2, H4}

1_3 = {6, 7, 9, 10}

1_3 = {H6, H7, H9, H10}

= {2} = {4}

Run k-means on mean features 0_1 and 

split  current node into to three child nodes

Run k-means on mean features 1_1 and 

split  current node into to three child nodes

Run k-means on mean features 1_3 and 

split  current node into to three child nodes

2_2 = {1, 5}

2_2 = {H1, H5}
2_1 = {3}

2_2 = {H3}

2_3 = {8}

2_3 = {h8}
2_6 = {6, 10}

2_6 = {H6, H10}

2_7 = {7}

2_7 = {H7}

2_8 = {9}

2_8 = {H9}

2_4 = {2}

2_4 = {H2}

2_5 = {4}

2_5 = {H4}

3_1 = {1}

3_1 = {H1}

3_2 = {5}

3_2 = {H5}

3_3 = {6}

3_3 = {H6}

3_4 = {10}

3_4 = {H10}

split  current node into to three child nodes split  current node into to three child nodes

Figure 18: An example for illustrating the process of constructing a visual tree by
using the hierarchical k-means based on the mean feature representations. Both of
the branch-factor B and the maximum depth H are set to be 3, and each node is
labeled with a pair of numbers, l j, indicating the jth node at depth l.

Algorithm 1. Learning the structure of a visual tree structure by using hierarchical
k-means

Input: Mean feature vectors {Hi}
N
i=1 of N image categories, the entire label set L =

{1, . . . , N} of the classes, branching factor B and maximum depth H
1: Make a root node with depth 0 by taking L = {1, . . . , N} and {H}Ni=1 as its

associated label set and mean feature set, respectively.
2: for h = 0, 1, . . . , H do
3: for each node v on depth h do
4: if |L(v)| < B then
5: Create |L(v)| nodes C(v) as the children of node v where ∪c∈C(v)Lc =

L(v) and Li ∩ Lj = ∅, ∀i, j ∈ C(v), i 6= j
6: else
7: Partition the associated label set L(v) into B disjoint subsets by using

k-means based on the corresponding mean features {Hj}
|L(v)|
j=1

8: Create B nodes C(v) as the children of node v where ∪c∈C(v)Lc = L(v)
and Li ∩ Lj = ∅, ∀i, j ∈ C(v), i 6= j

9: end if
10: end for
11: end for

4.2.2.2 Learning by using hierarchical spectral clustering

The visual tree, which is learned by performing hierarchical k-means algorithm

over the mean features as described in Algorithm 1, is not guaranteed to be balanced.
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However, a balanced tree is often desired if one wants to achieve the logarithmic com-

plexity in tree-based image categorization. In [9], the spectral clustering algorithm

[110] is used to build a label tree by recursively partitioning the confusion matrix

because spectral clustering usually penalizes the unbalanced partitions. This inspires

us to construct the proposed visual tree using the spectral clustering algorithm based

on the inter-category visual similarities.

Given N image categories, we first compute the visual representations for them

using the methods described in Section 4.2.1, including the class mean feature and

its extension of using multiple centroids per class. We then compute the pair-wise

visual similarity between two image classes based on their visual representations. The

pair-wise similarity values among all the N image classes can be represented as an

N -by-N matrix S, and an element Si,j of of the matrix represents the visual similarity

value s(i, j) between the ith and the jth image categories, which can be defined as:

s(i, j) = exp

(

−
dist (Ci, Cj)

σ

)

, (25)

where σ is the bandwidth parameter which is chosen by using the self-tuning technique

proposed in [172] and dist (Ci, Cj) is the distance between the ith and jth image

classes . Note that S is a symmetric matrix.

In case that the class mean feature vector is used as the visual representation of an

image category, the distance dist (Ci, Cj) is defined as the Euclidean distance between

the two mean feature vectors, given as

dist (Ci, Cj) =

√

√

√

√

D
∑

d=1

(Hi(d)−Hj(d))
2, (26)
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Algorithm 2. Learning the structure of a visual tree by using hierarchical spectral
clustering

Input: Visual similarity matrix S ∈ RN×N of N image categories, the entire label set
L = {1, . . . , N} of the N classes, branching factor B and maximum depth H

1: Make a root node with depth 0 by taking L = {1, . . . , N} and S ∈ R
N×N as its

label set and visual similarity matrix, respectively
2: for h = 0, 1, . . . , H do
3: for each node v on depth h do
4: if |L(v)| < B then
5: Create |L(v)| nodes as the children C(v) of node v where ∪i∈C(v)Li =

L(v) and Li ∩ Lj = ∅, ∀i, j ∈ C(v), i 6= j
6: else
7: Partition the associated label set L(v) into B disjoint subsets by using

the spectral clustering algorithm [110] based on the corresponding affinity sub-
matrix S(v) ∈ R|L(v)|×|L(v)|

8: Create B nodes as the children C(v) of node v where ∪i∈C(v)Li = L(v)
and Li ∩ Lj = ∅, ∀i, j ∈ C(v), i 6= j

9: end if
10: end for
11: end for

where D is the dimension of the feature vector and Hi(d) is the dth element of the

vector Hi. If an image class is represented using K feature centroids, the distance

between the two categories is defined as

dist (Ci, Cj) =
1

K2

∑

m
p
i∈Mi

∑

m
q
j∈Mj

√

(

m
p
i −m

q
j

)T (

m
p
i −m

q
j

)

, (27)

where m
q
i is the pth centroid of the ith category and T denotes vector transpose.

After the similarity matrix S has been computed, we adopt the spectral clustering

algorithm proposed in [110] to construct the visual tree by taking S as input, and the

details of the learning procedure is summarized in Algorithm 2.

4.2.3 Learning Node Predictors of a Visual Tree

Given a visual tree with a fixed structure (i.e., the tree structure has been learned

for the N image categories using Algorithm 1 or 2), we learn the node predictors by
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solving |V| independent convex problems where |V| is the total number of tree nodes

in the tree. Specifically, let B be the number of the child nodes for the current node

v and L(v) = {l1, . . . , lL} be its label set where L = |L(v)|. The associated node

predictor to be learned is a linear model given as w ∈ RD×B where D is the feature

dimension and each column of w is the parameter vector of the classifier for a child

node.

The assignments between the category labels and the child nodes can be represented

as a L-by-B label-node association matrix A, where the entry in the lth row and the

bth column A[l, b] = 1 if the lth category label is assigned to the child node b,

otherwise, A[l, b] = 0. Let T = {(xi, yi)}
M
i=1 be the training set where xi ∈ R

D and

yi ∈ L(v) for learning the predictor for the current node v. Our goal is to minimize

the empirical loss for the training images in the training set and we use 0/1 loss here,

given as

L(xi, yi;w,A) = 1−A[yi, b̂], (28)

where b̂ = argmaxb∈C(v) w
T
b xi is the child node that the training image xi will select

to visit at the next level. The loss incurs if the label set of the child node with

the highest prediction score does not contain the true label yi of training image xi.

Considering that each class label is only assigned to a single child node in the visual

tree, we can train B OVR classifiers independently, and then stack the parameter

vectors of the B classifiers to form the predictor w for the current node. Specifically,

to optimize the predictor wb for the child node b, we first transform the label yi of

each image in the training set to be +1 if the label set of node b contains label yi,
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and −1 otherwise. In mathematics, it is given as:

θ(yi) =



















+1 if yi ∈ L(b),

−1 otherwise.

(29)

Using the hinge loss, we are then left with the following convex problem

minimize
wb,ξ

1

2
||wb||

2 + γ
M
∑

i=1

ξi

subject to θ(yi)w
T
b xi ≥ 1− ξi, i = 1, . . . ,M

ξi ≥ 0, i = 1, . . . ,M

(30)

where ξi are non-negative slack variables which measure the degree of misclassification

of data point xi.

4.2.4 Label Prediction with a Visual Tree

Given the visual tree with node predictors which have been learned from the train-

ing set, we follow the same prediction procedure as described in [9] to categorize

testing images. For a given test image, the prediction begins at the root node, and

stops at a leaf node by visiting the best-matching node which has the largest predic-

tion score at each depth of the visual tree. The label of the leaf node is then taken

as the predicted label to the test image. We summarize the prediction process in

Algorithm 3. Since only the most confident (best-matching) child node is chosen to

visit at each depth of the visual tree, we refer to the prediction algorithm as hard

prediction.

One problem of the hard prediction scheme is that only one single node is selected

to visit at each depth of the visual tree, even if the score of the highest scoring node
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Algorithm 3. The hard prediction scheme with visual tree

Input: Test image x, the visual tree T
1: Let node r be the root node
2: while C(r) 6= ∅ do ⊲ C(r) denotes children of node r
3: r ⇐ arg max

c∈C(r)
w

T
c x

4: end while

Output: The label of r as the prediction for image x

dose not exceed that of the second-highest scoring node by a considerable margin. It

is more likely that a wrong child node would be chosen to visit in this situation, and

the mistake will be propagated all the way to a leaf node and cannot be recovered.

This inevitably degrade the performance of categorization accuracy.

To alleviate the performance degradation which may induced by using the hard

prediction scheme, we also adopt a soft prediction scheme in this work, where the

top-two child nodes (tree nodes are ordered according to their prediction scores) are

simultaneously chosen to visit at each depth of the visual tree if the difference between

their prediction scores dose not exceed a considerable margin. Let p and q be the

highest scoring and second-highest scoring child nodes, and score(p) and score(q) be

their prediction scores, respectively. The difference between score(p) and score(q) is

used as the evidence for determining whether we should select only node p or both

node p and q to visit at the next level. Specifically, both p and q are selected if the

difference between score(p) and score(q) is below a threshold ǫ, otherwise only node

p is selected.

In the soft prediction scheme, multiple leaf nodes are reached through different

paths. However, in the context of image categorization, the label prediction is desired

to assign a single label or multiple labels in sorted order to a unseen image. One way
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Algorithm 4. The soft prediction scheme with visual tree

Input: Test image x, the visual tree T
1: Initialize an empty queue Q
2: Initialize an empty vector O
3: EnQueue(Q, r) ⊲ Insert the root node r to queue Q
4: while Q is not empty do
5: s⇐ DeQueue(Q) ⊲ Delete a node from Q and assign it to s
6: if Node s is a leaf node then
7: Put s together with its probabilistic score into O
8: else
9: if score(p)− score(q) < ǫ then ⊲ p and q are the top-2 scoring nodes
10: EnQueue(Q, p) and EnQueue(Q, q) ⊲ Follow both branches
11: else
12: EnQueue(Q, p) ⊲ Follow only one branch
13: end if
14: end if
15: end while

Output: The label of the node with the largest score in O

to rank the leaf nodes that have been visited is to sort them with respect to their

prediction scores. Unfortunately, the node predictors at different levels of the visual

tree are trained independently, and their responses are not directly comparable. We

thus adopt the Platt scaling [121] to transform the responses to probabilistic scores

for all the node predictors. Note that the leaf nodes are not associated with predictors

since a leaf node contains a single class. The label of the leaf node which has the

highest score is taken as the final prediction to a novel image. Algorithm 4 describes

the scheme of soft prediction.

4.3 Experimental Setup

In this section, we describe the experimental setup for evaluating the proposed

visual tree algorithms, including image set, visual feature extraction and node pre-

dictor training. The ILSVRC2010 image set3, which originates from ImageNet [33]

3http://www.image-net.org/challenges/LSVRC/2010
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database, is used for assessing the performance of our algorithms. The ILSVRC2010

image set contains 1.4M images for 1,000 image classes (categories). The standard

training/validation/testing split is used (respectively 1.2M, 50K and 150K images).

For visual content representation, the standard BoF pipeline is used to extract an

image-level signature for each image, which typically consists of local feature extrac-

tion, encoding, and pooling. Specifically, we extract dense HoG features with four

different patch sizes including 16 × 16, 25 × 25, 31 × 31 and 46 × 46, and encode

them using LLC [155] with a codebook of size 8192. After encoding the local features

extracted from an image, a configuration of two-level spatial partitions (i.e., 1 × 1

and 2 × 2) is used to pool the LLC codes into an image-level signature. Thus the

dimension of the image-level signature is 40,960.

The stochastic gradient descent (SGD) [16] method is adopted here to train the

node predictors because it is very efficient for large-scale classifier training. The

parameters for SGD were optimized based on the validation set. For the purpose of

supporting large-scale computation, a computer cluster with 492 computing cores is

used for experiments.

4.4 Experimental Results

We report our experimental results of our visual tree algorithm in this section, and

compare it with many other tree methods based on the ILSVRC2010 benchmarking

data set. The competing methods include the original label tree [9], the fast and

balanced label tree in [34] and the recently proposed probabilistic label tree [93].

Also, we evaluate the effectiveness of the extension of using multiple centroids for
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(a) visual k-means tree
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(b) visual spectral tree

Figure 19: Visualization of the visual tree structures. The visual trees were built
with branching factor B = 6 and maximum depth H = 4. The leaf nodes are not
shown since each of them contains a single class. (a) visual tree constructed using
hierarchical k-means (c.f. Algorithm 1) ; (b) visual tree constructed using hierarchical
spectral clustering (c.f. Algorithm 2).

image class visual representation and the soft prediction scheme.

4.4.1 Comparison with other Tree Methods

We randomly selected 100 images per category from the ILSVRC2010 training set

to compute the visual representation of each image class, and then use the proposed

Algorithm 1 and 2 to learn the structures of visual trees. To learn the label tree in [9],

the 100 images are further split into training and testing sets at the ratio of 3:2. The

training set is used to train the OVR SVMs, and the testing set is used to obtain the

confusion matrix. We repeated this process for three times, and computed an mean

confusion matrix C by averaging the three confusion matrices which are obtained
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from the three different trials. Since the confusion matrix C is not symmetric in

general, we compute its symmetric version as B = C +C
T , and learn the structure

of the label tree based on B using the algorithm in [9].

We control the structures of the visual tree and label tree by fixing the branching

factor B and the maximum depth H . Each of the internal tree nodes is required to

split into B children except if it is at depth H − 1 or the cardinality |Lv| of its label

set is less than B. In either case, we create |Lv| children for that tree node instead.

We denote a tree of B branches and H maximum depth using TB,H .

In Fig. 19, we visualize the tree structures of the visual k-means tree (c.f. Algorithm

1) and the visual spectral tree (c.f. Algorithm 2) with B = 6 and H = 4. We use

icon images to represent and illustrate image categories. An icon image is randomly

selected from an image class for visually representing and illustrating it. The icon

images of all the categories which are in the label set of the same tree node are used

to visually illustrate that tree node. We only visualize a small part of the tree nodes

due to the limitation of the screen space. One can observe that the spectral clustering

algorithm can construct a more balanced tree than the k-means algorithm. The label

tree with the same configuration is illustrated in Fig. 20.

First, we can observe that our visual tree algorithms produce similar tree structures

as the label tree method, but our visual tree model directly uses the inter-category

visual similarities for tree construction. It is worth noting that the inter-category

visual similarities are much computationally cheaper than the confusion matrix used

in the label tree method since a lot of OVR SVMs should be learned in advance

to obtain the confusion matrix. Second, using the same clustering technique (i.e.,
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Figure 20: Visualization of the label tree structure. The label tree was built using
spectral clustering based on the confusion matrix (see [9]) with the branching factor
B = 6 and the maximum depth H = 4. The leaf nodes are not shown since each of
them contains a single category.

spectral clustering) for tree construction, our visual tree (Fig. 19(b)) exhibits an

even more balanced tree structure than the label tree (Fig. 20) dose. One of the

reasons is that the confusion matrix computed by evaluating all the OVR SVMs based

on a validation set is generally sparse. The missing values (zeros) in the confusion

matrix usually cause unbalanced clustering results during the construction of a label

tree. The appearances of the unknown (zeros) values in the confusion matrix not

necessarily mean that the corresponding inter-category correlations do not exist. On

the other hand, the visual similarity matrix S computed by using the visual cues of

image classes is guaranteed to be full in spite of that some of them could be very small

or close to zero. The visual similarity matrix therefore often leads to more balanced

clustering results for visual tree construction.
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We tabulate the classification accuracy rates of our visual tree, the label tree and

its two variants in Table 3 based on ILSVRC2010 image set. The results of the trees

under different configurations are reported. First, the visual spectral tree learned

using Algorithm 2 outperform the visual k-means tree which is constructed using

Algorithm 1. Second, the performance of our proposed visual tree (visual spectral

tree) is comparable to the label tree especially when the trees are of deeper depths

(e.g . under configurations of T10,3 and T6,4). However, our visual tree method dose not

require obtaining the cost-intensive confusion matrix, and hence avoid learning many

OVR classifiers. It is worth noting that if multiple feature centroids are used for the

visual representation of an image category, our visual tree is superior to the label tree

in terms of the classification accuracy (c.f. Fig. 21). This has proved that the visual

correlations between the image categories (i.e., inter-category visual similarities) can

be used as an effective surrogate to learn a tree structure for organizing a large number

of image categories hierarchically. Third, our implementation of the label tree achieves

state-of-the-art results on the ILSVRC2010 image set, e.g ., it even outperforms the

probabilistic label tree in [93] under the T32,2 configuration.

One of the advantages for organizing a large number of image categories hierar-

chically in a tree structure is that it can significantly reduce the computational cost

in large-scale image categorization. For large-scale image categorization, an ideally-

balanced tree leads to logarithmic complexity in terms of the number of image cat-

egories in testing time, and it is achieved by testing against a limited number of

possible node predictors along the traversal path. We use the average number of dot

products [34] that is needed to make a label prediction for a unseen image as the test-
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Table 3: Classification accuracy (%) comparison between our visual trees and the
label tree and its variants on the ILSVRC2010 image set. Cues for node splitting :
information used to learn the tree structures in different methods. TB,H denotes a
tree having at most B children per node and H depths (root node has depth 0).

Model Cues for node splitting T32,2 T10,3 T6,4
Flat (1,000 OVR SVMs) 36.36

Visual k-means tree (Alg. 1) visual feature 15.23 12.30 12.23
Visual spectral tree (Alg. 2) visual feature 18.94 13.77 13.21

Label tree (our implementation) output of OVR classifiers 22.34 14.81 13.11
Label tree implemented in [34] output of OVR classifiers 8.33 5.99 5.88

Results in [34] output of node classifiers 11.90 8.92 5.62
Results in [93] output of node classifiers 21.38 20.54 17.02

ing efficiency metric. In the flat categorization approach, 1,000 OVR SVMs are used,

and a test image has to be tested against all the 1,000 OVR classifiers for inference,

which amounts to 1,000 dot products assuming that the SVMs are linear models. Let

n and m be the average numbers of dot products used in the flat method and the

tree models for image categorization, respectively. We define the testing speedup as

Stest =
n
m
. In a similar spirit, we define the training speedup, and denote it as Strain.

In Table 4, we compare the training and testing efficiency of different tree methods.

One can observe that the visual tree built by using hierarchical spectral clustering

(Algorithm 2) is more efficient than the visual tree built by using hierarchical k-means

(Algorithm 1) because spectral clustering usually produces a more balanced visual

tree by penalizing unbalanced partitions during the node splitting. Also, our visual

tree (e.g ., the visual spectral tree) outperform the original label tree and the other two

variant label tree models in [34, 93] in terms of computation speedup, and achieves

the most speedup in both training and testing. This verifies our previous observation

that the visual tree has a more balanced tree structure than the label tree, which
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Table 4: Computational efficiency comparison of different tree methods. Strain: test-
ing speedup compared to the flat model. Stest: testing speedup compared to the flat
model.

Model T32,2 T10,3 T6,4
Strain Stest Strain Stest Strain Stest

Visual k-means tree (Alg. 1) 13.83 14.76 28.38 26.86 36.56 32.87
Visual spectral tree (Alg. 2) 15.17 15.00 32.32 32.62 42.86 42.44

Label tree (our implementation) 12.72 12.19 28.28 27.21 36.02 35.53
Label tree implemented in [34] - 10.30 - 15.20 - 9.32

Results in [34] - 10.30 - 18.20 - 31.30
Results in [93] - 10.42 - 17.85 - 31.25

leads to better training and testing efficiencies.

4.4.2 Evaluation of using Multiple Centroids per Class

In this section, we empirically evaluate how the extension of using multiple centroids

per class for visual representation (c.f. Section 4.2.1) affect the performance of the

proposed visual tree model. Increasing the number of centroids (K) per class allows

for more flexible visual representation, and thus characterizes the visual appearance

of an image class with more details. However, it might be less robust to noise. For

example, if K equals to the number of relevant images in an image category (i.e., the

feature vector of each image is treated as a feature centroid), every image instance

would then play a major role in estimating the inter-category visual similarity which

is defined in Eq. (27).

We obtain the K centroids per class by using the k-means algorithm in the Eu-

clidean space. Fig. 21 shows the classification results of different visual trees with

different configurations, including various branching factor B and maximum depth H

values. The classification accuracy rates are demonstrated with the number of cen-
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Figure 21: The classification performance of the visual tree model using different
number of centroids per class. B: branching factor; H : the maximum depth of a
tree.

troids (K) ranging from 1 to 15. We observe that the accuracy rates increase first and

then decrease. The reason is twofold: 1) using more feature prototypes initially in-

creases the capability of the mean feature model for describing the visual properties of

an image category which leads to better classification performance of the visual tree;

2) however, if the number of feature prototypes (centroids) is too many, the mean

feature model is more sensitive to the noisy or insignificant image instances which

results in classification performance sliding down. In Fig. 22, we show the testing

speedup of different visual trees across different K’s. It is seen that the speedup of the

proposed visual tree model is very robust to the number of centroids. For the training

speedup of our visual tree model, we observe very little changes by adopting different

numbers of feature centroids, and thus we do not report the detailed numbers here

to save space.
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Figure 22: The testing speedup performance of the visual tree model using different
number of centroids per class. K: the number of centroids per class; B: branching
factor; H : the maximum depth of a tree.

4.4.3 Evaluation on Soft Prediction

While soft prediction tends to boost the accuracy rates by exploring more branches

in a tree model, it incurs more dot products to yield a prediction for a test image. As

the threshold ǫ in Algorithm 4 varies, the average number of dot products which are

needed to categorize a test image also changes. We plot the classification accuracy

rates against the average numbers of dot products of different tree models in Fig.

23. The scheme of soft prediction is more critical for the trees of deeper depths

because a wrong child node is more likely to be chosen at a high-level node. We thus

only evaluate the soft prediction using the trees with the configurations of T10,3 and

T6,4. One can observe that the soft prediction scheme can boost the categorization

performance of both visual tree and label tree models by exploring more branches.
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Figure 23: Performance evaluation of the soft prediction scheme. The categorization
accuracy is plotted over different average numbers of dot products.

4.5 Summary

Multi-class image categorization becomes challenging when the number of image

categories becomes very large. A flat approach where a testing sample has to test

against every possible image category (i.e., every possible classifier) is computation-

ally infeasible. In this paper, to alleviate this issue, a visual tree has been constructed

for organizing a large number of image categories hierarchically according to their

inter-category visual correlations. Without resorting to a cost-intensive confusion
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matrix, our visual tree method significantly reduces the computational cost for the

tree construction compared to the traditional label tree approach. As well as present-

ing the visual tree model, we have developed an effective class mean feature method

and its extension to characterize the visual appearance of an image category. Also,

a soft prediction scheme has been designed to further boost the classification accu-

racy of tree methods by exploring more possible branches. Our experimental results

have demonstrated that our visual tree can achieve very competitive categorization

accuracy rates and better computational efficiency results than other tree methods.



CHAPTER 5: DISCRIMINATIVE DICTIONARY LEARNING

5.1 Introduction

Large-scale visual recognition has been a tremendously challenging problem in the

field of computer vision for decades. One of the paradigms is to automatically cat-

egorize objects or images into hundreds or even thousands of different classes. It

has recently received significant attention [34, 32, 9, 90, 117, 116], partly due to the

increasing availability of big image data. For example, ImageNet [33], a large-scale la-

beled image database, has collected 14M images for 22K visual categories. There are

two important criteria for assessing the performance of a large-scale visual recognition

system: (1) recognition accuracy; and (2) computational efficiency. The accuracy de-

pends largely on the discrimination power of visual content representations as well as

the effectiveness of classifier training techniques, and the efficiency relies greatly on

the methods for category organization (e.g ., flat or hierarchical).

The bag-of-visual-words (BoW) model, one of the most successful models for visual

content representation, has been widely adopted in many computer vision tasks, such

as object recognition [62, 160], image classification [85, 79] and segmentation [176].

The standard recognition pipeline of BoW, which consists of local feature extraction,

encoding, pooling and classifier training, harnesses both the discrimination power of

some well-engineered local features (e.g ., SIFT [98], HoG [29], etc.) and the general-
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ization ability of large margin classifiers (e.g ., SVM). It has accomplished top results

in visual recognition, from medium-sized image sets [165, 184] to large-scale ones

[116, 130]. Apart from many advanced methods for feature encoding, e.g ., sparse

coding [165], local coordinate coding (LCC) [155], super-vector coding [184], Fisher

vector [117], etc., a dictionary (codebook) of strong discrimination power is usually

demanded to achieve better classification results. However, the dictionaries learned

through unsupervised learning [1, 39, 83] are usually lack of strong discrimination.

In [103, 174, 167, 102, 104, 73, 168], it has been shown that training more dis-

criminative dictionaries via supervised learning usually leads to better recognition

performance. A typical method is to integrate the processes of dictionary learn-

ing and classifier training into a single objective function by adding a discriminative

term according to various criteria, such as the logistic loss function with residual

errors [103], the soft-max cost function with classification loss [167], the linear clas-

sification error [174] and the Fisher discrimination criterion [71, 168]. More recently,

researchers have proposed to learn individual dictionaries for different categories, and

to enhance their discrimination by incorporating the reconstruction errors with the

soft-max cost function [102], promoting the incoherence among multiple dictionaries

[122] or exploiting the classification errors through a boosting procedure [177].

In large-scale visual recognition applications, the number of categories could be

huge (e.g ., hundreds or even thousands). Therefore, it is computationally infeasible

to integrate the dictionary learning and classifier training into one single optimization

framework. More importantly, some image categories have stronger inter-category vi-

sual correlations than others. For example, the five image categories in Fig. 24, whip-
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dog houndcatwhippet margay

D̂1 D̂2 D̂3 D̂4 D̂5D0

Figure 24: Inter-related dictionaries for a group of visually correlated categories. A
common dictionary D0 is used to characterize the commonly shared visual patterns,
and five category-specific dictionaries {D̂i}

5
i=1 are devised to depict the class-specific

visual patterns.

pet, margay, cat, dog, and hound, which are selected from the ImageNet [33] database,

are of strong visual correlations since they are highly visually similar. A number of

common visual features shared by the visually correlated categories contribute noth-

ing to distinguishing them. However, in most existing dictionary learning methods,

the commonly shared visual atoms are treated equally as the category-specific ones

which are more useful for the recognition. For a group of visually similar categories,

what is desired is a new dictionary learning algorithm which can explicitly separate

the shared visual words from the class-specific ones, and jointly learn the inter-related

dictionaries to enhance their discrimination.

Considering a large number of image categories, the visual features shared by all

of them might be limited. However, visually similar categories usually share a con-

siderable amount of features. It is natural to cluster these categories into a number

of disjoint groups so that each group contains a reasonable number of visually cor-

related categories whose dictionaries indeed share some common visual atoms. In

other words, image category clustering provides a way to support a newly proposed
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joint dictionary learning (JDL) algorithm (Section 5.3) by guaranteeing that the cat-

egories in the same group have strong visual correlations. In addition, image category

clustering makes the JDL algorithm to be computationally affordable in large-scale

visual recognition applications by allowing one to perform JDL for different groups

sequentially or in parallel. Finally, it is shown in Section 5.5.3.1 that the unsupervised

dictionary learning (UDL) method [83] even learns better dictionaries for classifica-

tion with the help of image category clustering.

The idea of clustering image categories into a set of disjoint groups is related to a

myriad of works on learning image category hierarchies for reducing the computational

complexity of image classification [6, 65, 107, 137, 9, 34]. A remarkable example is

the label tree method [9] which learns a tree structure by recursively clustering the

categories of interest into disjoint sets based on a confusion matrix. The adoption of

the confusion matrix is based on the fact that putting the classes which are easily

confused by classifiers into the same set (i.e., the same tree node) makes the classifiers

associated with the tree node to be easily learnable [9]. However, in this work, the

main purpose of image category clustering is to determine which categories possess

strong visual correlations, and their dictionaries should be learned together to enhance

the discrimination.

In this chapter, we investigate the learning of discriminative dictionaries for large-

scale visual recognition applications. First, for a group of visually correlated cat-

egories, a joint dictionary learning (JDL) algorithm is developed to make use of

the inter-category visual correlations for learning more discriminative dictionaries.

Specifically, JDL simultaneously learns one common dictionary and multiple category-
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specific dictionaries to explicitly separate the commonly shared visual atoms from

the category-specific ones. Considering again the example illustrated in Fig. 24, a

common dictionary D0 is devised to contain the visual atoms shared by all the five

categories, and five dictionaries {D̂i}
5
i=1 are used to hold the category-specific visual

atoms, respectively. To enhance the discrimination of the dictionaries, a discrimina-

tion promotion term is added according to the Fisher discrimination criterion [38]

which directly operates over the sparse coefficients.

Second, we empirically study a number of different approaches to image category

clustering and how they affect the performance of the proposed JDL algorithm. They

include the label tree [9] method and a newly proposed visual tree approach. The

purpose of image category clustering is twofold. (1) It determines the groups of

visually correlated classes to ensure that the dictionaries for the categories in the

same group share some common visual atoms. Thus, the proposed JDL algorithm

can be used to learn more discriminative dictionaries by separating the common

visual atoms from the category-specific ones. (2) It makes the JDL algorithm to be

computationally tractable in large-scale visual recognition applications as JDL can

be applied to different groups in sequence or parallel.

Third, three schemes are developed for image content representation, classifier

training and image classification: (1) local classification scheme; (2) global classi-

fication scheme; and (3) hierarchical classification scheme. The local classification

scheme is applicable when the labels of test images are defined as the classes of a

single group. Particularly, after the dictionaries have been learned by JDL for the

five classes in Fig. 24, the local classification scheme can be used if a test image is
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only required to be classified into one of the five categories. Nevertheless, a large-scale

visual recognition system should be capable of distinguishing hundreds or thousands

of classes from different groups. The global classification scheme is thus designed

to categorize a test image into any class from any group. Finally, by clustering the

categories into a number of disjoint groups, a tree structure of depth two is actually

constructed where the root, group and category nodes are of depth zero, one and two,

respectively. We design a hierarchical classification scheme to make use of the tree

structure for reducing the computational complexity of image classification, where

the group classifiers at depth one are used to identify the most-likely group for a test

image, and the category classifiers at depth two are used to predict the best-matching

category in the chosen group. More importantly, the group and category classifiers

are trained in two disjoint feature spaces by taking advantage of the structure of the

dictionaries learned by JDL.

Experiments have been conducted on popular visual recognition benchmarks, in-

cluding the 17-class Oxford flower image set and the ILSVRC2010 data set4 which

originates from the ImageNet [33] database. Our experimental results demonstrate

that the proposed JDL algorithm is superior to many previous unsupervised and

supervised methods on learning discriminative dictionaries for the task of image cat-

egorization.

The rest of this chapter is organized as follows. The visual tree method for image

category clustering is described in Section 5.2. In Section 5.3, we present the joint

dictionary learning algorithm, including formulation and optimization. Three classi-

4http://www.image-net.org/challenges/LSVRC/2010
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fication schemes are described in Section 5.4. The experimental setup and results are

given in Section 5.5. We conclude in Section 5.6.

5.2 Image Category Clustering for Joint Dictionary Learning

When a group of categories have strong inter-category visual correlations, their

dictionaries which share some common visual atoms should be trained jointly to

enhance the discrimination. In this section, a visual tree method is proposed to

generate such groups of visually correlated categories by clustering a large number of

categories into disjoint groups according to their inter-category visual correlations.

5.2.1 Visual Category Representation

To characterize the inter-category visual correlations, we first estimate the visual

representation of an image category based on its relevant images. Let Ii be a collection

of relevant images for the ith category. We compute the average visual feature as the

overall visual representation for it. First, the content of image Ij ∈ Ii is represented

using the BoW model. Specifically, we encode the local SIFT features extracted

from it over a dictionary using sparse coding, and then pool the sparse codes with

max-pooling to form an image-level representation hj for it. In implementation, a

dictionary of size 4, 096 was used, and a two-level spatial pyramid partition (1 × 1,

2 × 2) was employed to incorporate weak spatial information. Second, the visual

representation Hi of the ith category is defined as the average feature based on all

the relevant images:

Hi =
1

|Ii|

∑

Ij∈Ii

hj , (31)
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Table 5: A number of category groups identified by k-means based on the visual
representations of the categories in ILSVRC2010 data set.

bullet train; CD player;
grand piano; grille;
odometer; subway train

ballpoint; bathtub; iPod;
lamp; lampshade; paper
towel; washbasin

airship; envelope; foun-
tain pen; parachute; radio
telescope; rule; stupa

breakwater; speedboat;
stadium; dune; lakeside;
promontory; sandbar;
seashore

howler monkey; spider
monkey; ilang-ilang;
vanda; fig; paper mul-
berry; coral tree; Arabian
coffee; holly

cassette player; hot plate;
photocopier; Primus
stove; printer; radio;
scanner; shredder; swivel
chair

monarch; nigella; corn-
flower; cosmos; dahlia;
coneflower; gazania;
African daisy; sunflower

hourglass; ladle; lighter;
nail polish; needle; nip-
ple; pencil; rubber eraser;
saltshaker; toothbrush

banjo; bassoon; bow; Chi-
nese lantern; cornet; dial
telephone; drum; eupho-
nium; flute; football hel-
met; sax; shovel; sword;
trombone

sloth bear; polecat;
orangutan; gorilla; chim-
panzee; gibbon; siamang;
guenon; langur; colobus;
marmoset; titi; squirrel
monkey; lesser panda

birdhouse; butcher
shop; buttress; carousel;
church; confectionery;
dome; fountain; jinrik-
isha; padlock; picket
fence; roller coaster; shoe
shop; toyshop

isopod; honeycomb; cress;
elderberry; lunar crater;
juniper berry; ginkgo;
wattle; mistflower; witch
elm; silver maple; Oregon
maple; sycamore; box el-
der

pheasant; spiny lobster;
leopard; cheetah; wood
rabbit; laurel; dusty
miller; sorrel tree; alder;
fringe tree; European ash;
mountain ash; ailanthus;
China tree; Japanese
maple; pepper tree

tree frog; American
chameleon; green lizard;
African chameleon; green
snake; green mamba;
jellyfish; leaf beetle;
weevil; fly; grasshopper;
cricket; cicada; leafhop-
per; mayfly; lacewing

black grouse; snail; Chi-
huahua; English setter;
Brittany spaniel; Saint
Bernard; griffon; corgi;
white wolf; Arctic fox;
Egyptian cat; ice bear;
weasel; mink; black-
footed ferret; macaque;
giant panda

can opener; circular saw;
crash helmet; face pow-
der; frying pan; hard disc;
harmonica; iron; lens cap;
Loafer; mouse; plane;
pocketknife; projector;
stethoscope; straight
razor; trackball; waffle
iron

where |Ii| is the number of images in Ii. Finally, we normalize the l2 norm of Hi to

be 1.

5.2.2 Image Category Clustering

After the visual representations {Hi}
M
i=1 for M categories are computed, theoreti-

cally any clustering methods can be used to cluster them into disjoint groups based

on the representations. For instance, one could simply use the k-means algorithm

to group the categories by taking {Hi}
M
i=1 as input. Table 5 presents a number of

category groups which are identified by the method following this idea based on the

ILSVRC2010 data set.

Another approach is to first compute the visual similarities between the categories,

and then cluster them into groups according to the similarity values. Specifically, we
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Table 6: A number of category groups identified by AP clustering based on the visual
similarities between the image categories in ILSVRC2010 data set.

black and gold garden spi-
der; garden spider; man-
tis; dragonfly; damselfly;
lycaenid

ambulance; cab; limou-
sine; police van; recre-
ational vehicle; school
bus; trolleybus

cocktail shaker; hair
spray; lipstick; lotion;
metronome; pendulum
clock; shaver

espresso maker; flash;
hand calculator; hand-
held computer; hipflask;
loudspeaker; tumble-
dryer

male orchis; marsh orchid;
fragrant orchid; lizard or-
chid; gentian; kowhai;
goat willow; coral fungus

barbell; binoculars;
dumbbell; hand blower;
joystick; knee pad;
maraca; microphone;
pencil sharpener

desktop computer; elec-
tric range; hot plate;
ice maker; monitor; pho-
tocopier; printer; radio;
scanner

bow tie; brassiere; eye-
patch; gasmask; hand
glass; hard hat; oxygen
mask; seat belt; violin;
wig

computer keyboard; desk;
digital clock; dining table;
dishwasher; grand piano;
laptop; pool table; sewing
machine; table-tennis ta-
ble; trundle bed

abacus; balance beam;
beaker; horizontal bar; ice
skate; marimba; parallel
bars; pew; rotisserie; sub-
way train; volleyball

vine snake; magnolia;
calla lily; butterfly or-
chid; aerides; cattleya;
cymbid; dendrobium;
odontoglossum; oncid-
ium; phaius; moth orchid

bell cote; bridge; but-
tress; castle; church;
dome; fountain; mosque;
picket fence; roller
coaster; silo; skyscraper;
triumphal arch

Rhodesian ridgeback;
greyhound; Scottish deer-
hound; Australian terrier;
vizsla; English setter;
dalmatian; basenji; white
wolf; dingo; Indian ele-
phant; African elephant;
birdhouse; rugby ball;
soccer ball

baobab; kapok; red beech;
New Zealand beech; live
oak; cork oak; yellow
birch; American white
birch; downy birch; iron
tree; mangrove; Brazil-
ian rosewood; cork tree;
weeping willow; teak

tiger; orangutan; gorilla;
siamang; proboscis mon-
key; howler monkey; spi-
der monkey; Madagascar
cat; indri; lesser panda;
chainlink fence; spider
web; lunar crater; vanda;
cacao; coral tree; holly

apiary; barrow; brass;
croquet ball; doormat;
greenhouse; jigsaw puzzle;
maze; mountain bike; ox-
cart; park bench; plow;
rake; rug; shopping cart;
sundial; window screen;
bonsai

define the visual affinity value s(i, j) between the ith and jth classes as:

s(i, j) = exp

(

−
d(Hi,Hj)

σ

)

, (32)

where σ is the bandwidth which is automatically determined by the self-tuning tech-

nique proposed in [172], and d(·, ·) is the Euclidean distance operator. The inter-

category affinity values of M categories can be represented as an M-by-M matrix

S, where Si,j = s(i, j). The affinity propagation (AP) [57] clustering algorithm is

employed to partition the categories into a set of disjoint groups by taking S as input

because of the effectiveness of AP clustering in many applications. Assuming that all

the categories have equal chances to be the exemplars, their preferences are set to be

a common value which is chosen as the median of all the similarity values. In Table

6, we show several category groups which are generated by using AP clustering with

affinity matrix S as input for the ILSVRC2010 set.



106

It is seen in Table 5 and 6 that category clustering aims to assign a small number of

visually similar categories into the same group, so that their inter-related dictionaries

should share some common visual atoms. Given such a group of visually correlated

categories, the proposed joint dictionary learning (JDL) algorithm (Section 5.3) can

be utilized to learn more discriminative dictionaries by explicitly separating the com-

mon visual atoms from the category-specific ones.

5.2.3 Relation to Label Tree [9]

It is worth noting that the label tree method [9] can also be used as an effective

approach to category clustering. Specifically, to obtain the confusion matrix C ∈

R
M×M (M is the number of categories), which is needed in the label tree method,

we train M one-vs-rest (OVR) binary SVMs, and then evaluate them on a validation

set. The categories are partitioned into a number of disjoint groups using spectral

clustering [110] with B as the affinity matrix, where B = C+C
T

2
.

One can observe that the label tree method tends to assign the classes which are

easily confused by the OVR SVMs into the same group. However, the visual tree

method is designed to put the categories which have strong inter-category visual cor-

relations into the same group, so that the JDL algorithm can be applied to learn

more discriminative dictionaries. In Section 5.5.3.1, we not only compare the perfor-

mance of the visual tree with the label tree in the task of category clustering, but

also quantitatively evaluate how they contribute to the performance of the proposed

JDL algorithm on image classification.
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5.3 Joint Dictionary Learning

After a large number of visual categories are partitioned into a set of disjoint groups,

we present a joint dictionary learning (JDL) algorithm in this section. It can simulta-

neously learn one common dictionary and multiple category-specific dictionaries for

the visually correlated categories in the same group. Obviously, the discriminative

dictionaries of different groups can be learned independently by performing the JDL

algorithm sequentially or in parallel.

5.3.1 Formulation of JDL

Given a group of C visually correlated categories, let Xi ∈ Rd×Ni , i = 1, . . . , C, be

a collection of training points for the ith class, and Di ∈ Rd×Ki is its visual dictionary,

where d is the dimension of a training sample, Ni is the number of training samples for

the ith class, and Ki is the number of visual atoms in dictionary Di. The dictionaries

{Di}
C
i=1 for the visually correlated categories in the same group share some common

visual words, so each of these dictionaries can be partitioned into two parts: (1) a

collection of K0 visual words, denoted as D0 ∈ Rd×K0 , which are used to describe the

common visual properties for all the visually similar classes in the same group; and

(2) a set of Ki −K0 visual words, denoted as D̂i ∈ Rd×(Ki−K0), which are responsible

for describing the class-specific visual properties of the ith category. Following the

notation of concatenating two column vectors as: [d1;d2] ,
[

d1

d2

]

and [d1,d2] ,

[ d1 d2 ], each dictionary Di can be mathematically denoted as Di = [D0, D̂i]. We
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formulate the joint dictionary learning problem for C visually similar classes as:

min
{D0,D̂i,Ai}Ci=1

C
∑

i=1

{

||Xi − [D0, D̂i]Ai||
2
F + λ||Ai||1

}

+ηΨ(A1, . . . ,AC), (33)

where Ai = [ai1, . . . , aiNi
] ∈ RKi×Ni is the sparse coefficient matrix of Xi over the

ith visual dictionary Di, λ is a scalar parameter which relates to the sparsity of

the coefficients, Ψ(A1, . . . ,AC) is a term acting on the sparse coefficient matrices

to promote the discrimination of the dictionaries, and η ≥ 0 is a parameter which

controls the trade-off between reconstruction and discrimination.

5.3.2 Discrimination Promotion Term

The discrimination promotion term Ψ(A1, . . . ,AC) is designed to not only couple

the processes of learning multiple inter-related dictionaries, but also promote the dis-

crimination of the sparse coefficients as much as possible. According to Fisher linear

discriminative analysis (LDA) [38], one can obtain more discriminative coefficients

by maximizing the separation of the sparse coefficients of different categories in the

same group. It is usually achieved by minimizing the within-class scatter matrix and

maximizing the inter-class scatter matrix at the same time.

In our settings, the within-class scatter matrix is defined as:

SW =
C
∑

j=1

∑

ai∈Aj

(ai − µj)(ai − µj)
T , (34)

where µj is the mean column vector of matrix Aj, ai is a column vector in Aj, and

T denotes the matrix transposition. Considering the structure of the dictionaries for
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a group of visually correlated classes, the sparse coefficient matrix Aj for the jth

class is concatenated by two sub-matrices A0
j and Âj in the form of [A0

j ; Âj], where

A
0
j contains the sparse codes over the common dictionary D0, and Âj is the matrix

holding the corresponding sparse coefficients over the class-specific visual dictionary

D̂j. The inter-class scatter matrix is defined as:

SB =
C
∑

j=1

Nj(µ
0
j − µ0)(µ0

j − µ0)T . (35)

where µ0
j and µ0 are the mean column vectors of A0

j and A
0 = [A0

1, . . . ,A
0
C ], respec-

tively. The discrimination promotion term is therefore defined as:

Ψ(A1, . . . ,AC) = tr(SW )− tr(SB), (36)

where tr(·) is the matrix trace operator. Plugging (36) into (33), we have the opti-

mization function for the JDL model, given as:

min
{D0,D̂i,Ai}

C
∑

i=1

{

||Xi − [D0, D̂i][A
0
i ; Âi]||

2
F + λ||Ai||1

}

+η (tr(SW )− tr(SB)) . (37)

The discrimination promotion term has several attractive properties. First, it di-

rectly operates on the sparse coefficients rather than on the classifiers [73, 102, 103,

174, 167], dictionaries [122], or both the reconstruction term and the sparse coeffi-

cients [168]. The discrimination promotion term can thus make the optimization of

JDL to be more tractable. Second, the discrimination of sparse coefficients is closely

related to the discrimination power of classifiers because sparse coefficients are usually

used as the input features of the classifiers. By learning more discriminative coeffi-
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cients, the discrimination of the learned dictionaries is essentially enhanced because

the sparse codes and the visual atoms are updated in an iterative way. Finally, the

discrimination promotion term Ψ(·) is differentiable. An iterative scheme is used to

solve the JDL problem (37) by optimizing with respect to {Di}
C
i=1 and {Ai}

C
i=1 while

holding the others fixed.

5.3.3 Optimization of JDL

The optimization procedure of the JDL problem (37) iteratively goes through two

sub-procedures: (1) computing the sparse coefficients by fixing the dictionaries, and

(2) updating the dictionaries by fixing the sparse coefficients.

Considering that the dictionaries {Di}
C
i=1 are fixed, (37) essentially reduces to a

sparse coding problem. However, the traditional sparse coding (e.g ., l1 norm op-

timization) only involves one single sample each time. The coefficient vector ai of

a sample xi is computed without considering other samples’ sparse coefficients. In

JDL, when we compute the sparse codes of xi, the coefficients of other samples from

the categories in the same group must be considered simultaneously. Therefore, we

compute the sparse coefficients class by class. That is, the sparse codes of the samples

from the ith class are simultaneously updated by fixing the coefficients of those from

the other classes in the same group. Mathematically, we update Ai by fixing Aj,

j 6= i, and the objective function is given as:

F (Ai) = ||Xi − [D0, D̂i]Ai||
2
F + λ||Ai||1 + ηψ(Ai), (38)

where ψ(Ai) is the discrimination promotion term derived from Ψ(A1, . . . ,AC) when
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all the other coefficient matrices are fixed, given as:

ψ(Ai) = ||Ai −Mi||
2
F −

C
∑

j=1

||M0
j −M

0
(j)||

2
F . (39)

The matrix Mi ∈ RKi×Ni consists of Ni copies of the mean vector µi as its columns.

And the matrices M
0
j ∈ RK0×Nj and M

0
(j) ∈ RK0×Nj are produced by stacking Nj

copies of µ0
j and µ0 as their column vectors, respectively. We drop the subscript j

of M0
(j) in the rest of the chapter to limit the notation clutter as its dimension can

be determined in the context. It is worth noting that except the l1 penalty term,

the other two terms in (38) are differentiable everywhere. Thus, most existing l1-

minimization algorithms [164] can be modified to solve the problem effectively. In

this work, we adopt one of the iterative shrinkage/thresholding approaches, named

two-step iterative shrinkage/thresholding (TwIST) [13], to solve it.

Considering the sparse coefficients are fixed, we first update the class-specific dictio-

naries {D̂i}
C
i=1 class by class and then update the common dictionaryD0. Specifically,

when Ai and D0 are fixed, the optimization of D̂i is reduced to the following problem:

min
D̂i

||Xi −D0A
0
i − D̂iÂi||

2
F (40)

s.t. ||d̂j||
2
2 ≤ 1, ∀j = 1, . . . , Ki.

After the class-specific dictionaries {D̂i}
C
i=1 are updated, we can further update the

basis in the common dictionary D0 by solving the following optimization:

min
D0

||X0 −D0A
0||2F (41)

s.t. ||dj||
2
2 ≤ 1, ∀j = 1, . . . , K0,
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Algorithm 5. Joint Dictionary Learning

Input: Data {Xi}
C
i=1, sizes of dictionaries Ki, i = 1, . . . , C, sparsity parameter λ,

discrimination parameter η, and similarity threshold ξ.
1: repeat {Initialize {Di}

C
i=1 and {Ai}

C
i=1 independently.}

2: For each class i in the group with C classes, update Ai by solving minAi
||Xi−

DiAi||
2
F + λ||Ai||1;

3: For each class i in the group with C classes, update Di by solving minDi
||Xi−

DiAi||
2
F using its Lagrange dual.

4: until convergence or certain rounds.
5: Select the basis in {Di}

C
i=1 whose pairwise similarities (inner-product) are bigger

than ξ and stack them column by column to form the initial D0.
6: Compute the initial {D̂i}

C
i=1 such that Di = [D0, D̂i].

7: repeat {Jointly updating {D̂i}
C
i=1 and D0.}

8: For each class i in the group with C classes, update Ai by optimizing (38)
using TwIST [13].

9: For each class i in the group with C classes, update D̂i by solving the dual of
(40).

10: Update D0 by solving the dual of (41).
11: until convergence or after certain rounds.
Output: The learned category-specific dictionaries {D̂i}

C
i=1 and the shared common

dictionary D0.

where

A
0 , [A0

1, . . . ,A
0
C], (42)

X
0 , [X1 − D̂1Â1, . . . ,XC − D̂CÂC ]. (43)

Both (40) and (41) are the least squares problems with quadratic constraints, which

can be solved efficiently by using their Lagrange dual forms[83]. The overall opti-

mization procedure of our JDL model is summarized in Algorithm 5.

5.4 Large-Scale Image Classification

Learning discriminative dictionaries aims to extract more discriminative visual fea-

tures for image content representation. To make better use of the discriminative

dictionaries leaned by JDL, three schemes are designed for classifier training and im-
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age classification under different configurations: (1) local classification scheme; (2)

global classification scheme; and (3) hierarchical classification scheme.

5.4.1 Local Classification Scheme

Once the dictionaries for a group of visually similar categories have been trained

by JDL, classifying a test image into one particular category in the group can be

done effectively by making use of the residual errors provided by different category

dictionaries. While this strategy has achieved good results in [161, 122], better re-

sults have been reported in [102, 104, 168] by considering the discrimination of the

sparse coefficients. For example, in [102, 104], the classification decision was based

on the reconstruction errors, and in [168] the discrimination of the spare codes was

exploited by calculating the distances between the coefficients and the class centroids.

In addition, classifiers were trained either simultaneously with the dictionary learning

process [103, 167, 174, 73] or as a second step [166, 17] to make use of the discrimi-

native coefficients.

Given a test image, multiple versions of content representation can be obtained

based on different category dictionaries learned by our JDL algorithm. As illustrated

in Fig. 25, each category dictionary comprises the common dictionary D0 shared by

all the C classes and as well as the category-specific dictionaries D̂i, i = 1, . . . , C. To

make full use of the multiple versions of representation, we train a linear SVM based

on each of them, and combine the outputs of all the linear SVMs to yield the final

prediction using an equal voting scheme.

For visually correlated categories, learning their inter-related dictionaries jointly
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Figure 25: Illustration of the local classification scheme when the labels of test images
are defined as the visually similar classes within a single group.

with the JDL algorithm can explicitly separate the common visual atoms from the

category-specific ones. Therefore, more discriminative visual features can be extracted

for image content representation. Thus, the local classification scheme can be used to

assess the effectiveness of JDL on learning discriminative dictionaries for distinguish-

ing a number of visually similar categories.

5.4.2 Global Classification Scheme

It is too simplified to assume that the labels of test images are only defined as the

classes in a single group. A large-scale visual recognition system should be able to

distinguish a large number of classes from different groups. A global classification

scheme is therefore developed as illustrated in Fig. 26, where the categories are

clustered into T groups. First, the local features of an image are encoded using

the T different group dictionaries to produce various local histograms which are then

concatenated to form an image-level signature. The group dictionary of the tth group

is constructed by concatenating the common dictionary D
(t)
0 and the class-specific

parts D̂
(t)
i , i = 1, . . . , Ct, where Ct is the number of categories in the tth group.
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Figure 26: Illustration of the global classification scheme when the labels of test
images are defined as the classes from T different groups.

Finally, the image-level signature is used as the input feature for SVM training and

image classification.

5.4.3 Hierarchical Classification Scheme

In the local and global classification schemes, the computational complexity of

prediction grows linearly with the number of visual categories. One way to reduce the

computational cost is to hierarchically organize the image categories in a tree structure

according to their inter-category relations. In this section, we compare two different

methods (i.e., the label tree [9] and visual tree in Section 5.2) for tree structure

construction. Also, we argue that the classifiers in hierarchical categorization can be

trained more effectively with the dictionaries learned by JDL.

5.4.3.1 Label Tree for Hierarchical Category Organization

In the label tree [9], each tree node is associated with a number of classes and

a predictor. The set of classes is required to be a subset of the classes which are

associated with its parent node, and the predictor is used to determine the best-

matching child node to follow at the next level. Each leaf node corresponds to a

particular image category. As described in Section 5.2.3, M OVR classifiers are pre-
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trained to obtain the confusion matrix C for learning the label tree structure. When

the OVR classifiers and confusion matrix are reliable, the label tree method tends to

assign visually correlated categories into the same node. However, training a large

number of OVR classifiers is computationally expensive, and often suffers from the

problem of huge sample imbalance. That is, the negative instances from the other

M − 1 categories heavily outnumber the positive samples of a given category. In

addition, the negative instances may have huge visual diversity and can easily control

and mislead the process of classifier training. The issue of sample imbalance may

result in unreliable OVR classifiers which further produces a misleading confusion

matrix for learning the structure of a label tree.

5.4.3.2 Visual Tree for Hierarchical Category Organization

The proposed visual tree (Section 5.2) method can be easily modified to hierarchi-

cally organize the image categories as well. After the visual affinity matrix S ∈ R
M×M

of M categories is computed, a tree structure can be constructed by recursively par-

titioning the categories based on S with any applicable clustering algorithm, such as

spectral clustering[110] and AP clustering [57], to name a few. The tree structure is

often application oriented, and can be explicitly controlled by specifying the branch

factor (the maximum children of a tree node) and the maximum depth allowed in the

visual tree.

5.4.3.3 Visual Tree versus Label Tree

To compare the visual tree and label tree on hierarchical category organization, we

constructed the two trees with the same configuration where branch factor was set
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Figure 27: Visualization of the visual and label tree structures. The visual and label
trees were built by recursively performing spectral clustering on the visual affinity
matrix and classification confusion matrix, respectively. The branching factor is 5
and the maximum depth is 4 in both trees. The leaf nodes are not shown since each
of them contains only one image category.

to be 5, maximum depth was set as 4 and the spectral clustering [110] was used for

category partition. We visualize the structures of the visual tree and label tree in

Fig. 27, where an icon image is selected to represent and illustrate an image category.

The icon images of the categories in the same tree node are tiled together to visually

illustrate it. It is seen that the proposed visual tree algorithm produces a similar

tree structure as the label tree method. However, compared to the confusion matrix

required by the label tree method [9], the visual affinity matrix used in the visual tree

method are much cheaper to obtain in terms of computational cost, since many OVR

classifiers have to be learned in advance to compute the confusion matrix.

Under the same configuration (i.e., same branch factor, maximum depth and clus-

tering method), our visual tree (Fig. 27 (a)) exhibits an even more balanced tree
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structure than the label tree (Fig. 27 (b)). One of the reasons is that the confusion

matrix is generally sparse with a lot of zero values, which may result in unbalanced

clustering results for label tree construction. However, the zero values in the confu-

sion matrix not necessarily indicate that the corresponding inter-category relations

do not exist. On the other hand, the visual affinity matrix is guaranteed to be full

which often leads to more balanced clustering results for visual tree construction.

5.4.3.4 JDL for Hierarchical Image Classification

To evaluate the effectiveness of the dictionaries learned by JDL for classifier training

in the setting of hierarchical image classification, the visual tree of depth two is used

as we only partition the categories into disjoint groups for one time in Section 5.2.

The hyperbolic visualization of the tree structure is shown in Fig. 28.

In the visual tree of depth two, there are two types of classifiers: (1) the group

classifiers which serve as the predictors to determine the best-matching group for

a test image; and (2) the category classifiers which are used to identify the most

confident category in the group which has been selected by the group classifiers. As

argued in [72], the visual features which are effective in distinguishing various super-

categories (i.e., groups of categories) are usually different from the features which are

useful for discriminating the image categories at sub-levels. In other words, the feature

space which is particularly effective for group classifier learning is often different from

that for category classifier training.

Suppose that a large number of categories are clustered into T groups, and T

group-based dictionaries have been learned by JDL accordingly. Each group-based
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Figure 28: Hyperbolic visualization of the visual tree of depth 2 for the ILSVRC2010
data set. AP clustering was used to partition the image categories (Section 5.2.2).

dictionary has the same structure (i.e., a common dictionary and multiple category-

specific dictionaries) as described in Section 5.3.1. We concatenate the T common

dictionaries {D
(t)
0 }Tt=1 as [D

(1)
0 , · · · ,D

(T )
0 ] to form the feature space for group clas-

sifier training. The category-specific dictionaries of the Ct classes in the tth group

are concatenated as [D̂
(t)
1 , · · · , D̂

(t)
Ct
)] to establish the feature space for training its

own category classifiers. The proposed hierarchical classification scheme using the

dictionaries learned by JDL is illustrated in Fig. 29.
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Figure 29: Illustration of the hierarchical classification scheme where the group and
category classifiers are trained based on different dictionaries (i.e., feature spaces).

5.5 Experiments

We evaluate the performance of JDL with different classification schemes based

on two widely used data sets, including the Oxford flower image set of 17 classes

and the ILSVRC2010 data set containing 1,000 categories. First, we adopt the local

classification scheme on the Oxford flower image set to assess the effectiveness of JDL

in learning discriminative dictionaries for distinguishing a number of visually similar

categories. Second, to further evaluate the performance of JDL in large-scale visual

recognition, we assess it using the global classification as well as the hierarchical

classification schemes on the ILSVRC2010 image database. Third, we empirically

investigate the convergence and discrimination of JDL. Finally, we give the time

complexity of JDL.
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5.5.1 Experimental Setup

We describe the common experimental setup in this subsection for all the exper-

iments, including visual feature extraction and parameter settings. The SIFT [97]

descriptor is used as the local feature due to its excellent performance in object

recognition and image classification [17, 165, 73]. Specifically, we extract SIFT de-

scriptors from 16× 16 patches with a step size of 6 at 3 scales. The maximum width

or height of an image is re-sized as 300 pixels, and the l2 norm of each SIFT descriptor

is normalized to be 1. The sparsity parameter λ is set to be 0.15 in all experiments,

and the parameter of the discrimination promotion term η in the JDL model is fixed

as 0.1. They are determined via cross-validation. We set the similarity threshold ξ

in Algorithm 5 to be 0.9 if required.

5.5.2 Evaluation on Oxford Flower Image Set

The Oxford flower benchmark contains 1,360 flower images of 17 classes, and each

category has 80 images. Three predefined training, testing and validation splits pro-

vided by the authors in [111] are used in our experiments. Since the 17 flower cat-

egories have strong visual correlation, we use the proposed JDL algorithm to learn

discriminative dictionaries by treating them as a single group. The local classification

strategy (Section 5.4.1) is thus adopted, and we compare it with a number of other

dictionary learning methods, including ScSPM [165], D-KSVD [174] and FDDL [168].

Also, we include another baseline method for comparison, named independent multi-

ple dictionary learning (IMDL), which learns multiple class-based dictionaries inde-

pendently rather than jointly (See line 1 to 4 in Algorithm 5). Finally, we evaluate the
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Table 7: Recognition accuracy on the 17-category Oxford flower data set (continued
in Table 8).

ScSPM [49] 53.33 65.00 68.33 58.33 70.00 18.33 45.00 51.67 63.33
IMDL 63.33 93.33 80.00 58.33 73.33 33.33 58.33 78.33 86.67

D-KSVD [55] 61.67 90.00 80.00 48.33 68.33 30.00 58.33 71.67 80.00
FDDL [52] 46.67 88.33 88.33 68.33 78.33 41.67 71.67 76.67 81.67

JDL 75.00 95.00 81.67 58.33 70.67 35.00 60.23 78.33 85.00

Table 8: Recognition accuracy on the 17-category Oxford flower data set (continued
from Table 7).

Avg.
ScSPM [49] 58.33 58.33 50.00 38.33 70.00 43.33 20.00 58.33 52.35

IMDL 80.00 66.67 40.00 61.67 86.67 68.33 35.00 70.00 66.67
D-KSVD [55] 75.00 65.00 31.67 58.33 81.67 45.00 33.33 66.67 61.47

FDDL [52] 76.67 61.67 51.67 46.67 76.67 46.67 48.33 80.00 66.47
JDL 75.00 70.67 45.00 60.00 86.67 65.33 45.23 80.58 68.69

necessity of explicitly separating the common visual atoms from the category-specific

ones in the configuration of local classification.

5.5.2.1 Comparison with Other Dictionary Learning Algorithms

Given an image, the spatial pyramid feature [79] is computed as the representation

of an image by using max pooling with a three-level spatial pyramid partition. The

image-level features are then used as the input for SVM training and image classi-

fication in ScSPM, IMDL and JDL. Note that the local classification scheme is also

used in IMDL as multiple dictionaries are trained. Another important factor of JDL

and IMDL is the dictionary size. For simplicity, we set the dictionary size for each

class to be 256 in both JDL and IMDL. After the JDL algorithm converges, a com-

mon dictionary of 95 visual atoms is obtained, which is shared by all the 17 flower

categories.
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In D-KSVD, a linear classifier is simultaneously trained along with the dictionary

learning process. In FDDL, however, the residual errors as well as the distances

between spare coefficients and class centroids are combined for classification. For a fair

comparison, the dictionaries in D-KSVD and FDDL are learned based on the image-

level spatial pyramid features rather than on local SIFT descriptors. Specifically, the

spatial pyramid features are computed with a codebook of size 1,024 which is trained

using the same method as in [83]. We further reduce the spatial pyramid features

to certain dimensions with PCA before feeding them into the D-KSVD and FDDL

models as stated in [174]. The dictionary size in ScSPM and D-KSVD is set the same

as 2,048.

We show the experimental results in Table 7 and 8. It is clearly seen that our

JDL algorithm consistently outperforms other dictionary learning algorithms, namely

IMDL, D-KSVD and FDDL, in terms of the average accuracy. It proves that JDL is

able to learn more discriminative dictionaries to distinguish a group of visually similar

categories by separating the commonly shared visual atoms from the category-specific

ones.

5.5.2.2 Effectiveness of D0 in Local Classification

A common dictionary D0 is designed in JDL to capture the common visual pat-

terns which are shared by the visually correlated categories. As the discrimination of

the shared features are often weak, separating them from the class-specific features

enables JDL to learn more discriminative dictionaries. To evaluate the effectiveness of

the common dictionary, we train 17 dictionaries of size 256 for the 17 flower categories
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Table 9: Performance comparison of the JDL algorithms with and without separating
the common visual atoms (D0) from the category-specific ones ({D̂i}

17
i=1) for the 17-

category Oxford flower data set.

Models Accuracy (%)
MCLP [60] 66.74

KMTJSRC [171] 69.95
HCLSP [24] 63.15

HCLSP ITR [24] 67.06
JDL without D0 67.15

JDL 68.69

without devising the common dictionary explicitly, denoted as “JDL without D0”.

The local classification scheme is also used for classification once the dictionaries have

been learned. We present the comparison in Table 9. It shows that separating the

common visual atoms from the category-specific ones is effective in enhancing the

discrimination of the dictionaries, and can lead to performance boosting.

Also, we compare JDL with a number of other state-of-the-art methods on this

benchmark, which combine various types of visual features (color histogram, BoW,

and HoG) for recognition. They include multi-class LPboost (MCLP) [60], visual clas-

sification with multi-task joint sparse representation (KMTJSRC) [171], histogram-

based component-level sparse representation (HCLSP) and its extension (HCLSP ITR)

[24]. The performance of our JDL algorithm is comparable to that of KMTJSRC,

which, however, combines multiple visual features via a multi-task joint sparse rep-

resentation.

5.5.3 Evaluation on ILSVRC2010 Image Set

The ILSVRC2010 data set contains 1.4M images of 1,000 categories. The standard

training/validation/testing split is used (respectively 1.2M, 50K and 150K images).
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We first present the results of different category grouping methods, and how they

affect the performance of the JDL algorithm. Second, we evaluate the effectiveness of

the JDL model in the setting of hierarchical image classification which provides two

disjoint feature spaces for group and category classifiers training. Finally, we compare

JDL with a number of state-of-the-art methods on this data set.

The final performance of a visual recognition system can be affected by many

factors, such as the number of training images and the classifier training method. We

follow the “good practice” in [116] to train linear SVMs in all the following trials, so

that the effectiveness of different dictionary learning and category clustering methods

can be seen clearly. Specifically, the OVR SVMs are adopted to support multi-class

classification. We use Stochastic Gradient Descent (SGD) [16] to train the SVMs due

to its efficiency in processing large-scale data. The parameters of SGD are optimized

based on the validation set. For the computation, a computer cluster of 492 computing

cores is used.

5.5.3.1 Comparison on Image Category Clustering

The visual tree and label tree methods use two different types of information (i.e.,

visual correlations and confusion matrix) for image category clustering. We randomly

select 100 images per category as the training data to estimate them. In the visual

tree method, the 100 images are used to compute the average visual representation

(Section 5.2.1) for the corresponding category. In the label tree method, the 100

images are further split into training and testing at the ratio of 3:2, where the training

set is used for training the OVR SVMs, and the test set is used to obtain the confusion



126

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 31 33 34 36 39 42 52 61 66 84
Group Size (number of categories in a group)

0

1

2

3

4

5

6

7

8

9

N
u
m

b
er

o
f

g
ro

u
p
s

Label Tree

k-Means

AP Clustering

0

10

20

30

40

50

60

70

80

90

C
u
m

u
la

ti
v
e

n
u
m

b
er

o
f

g
ro

u
p
s

Label Tree

k-Means

AP Clustering

Figure 30: The number of groups (bar, units indicated in the left y-axis) and cumu-
lative number of groups (line, units indicated in the right y-axis) of different image
category clustering methods on ILSVRC2010 data set.

matrix. The number of disjoint category groups is fixed as 83 in both label tree and

visual tree methods.

Fig. 30 presents the distributions of the group sizes obtained by the two methods

(i.e., label tree, visual tree based on k-means and AP clustering). We plot the

numbers of groups across different group sizes. It shows that the sizes of the biggest

groups generated by the label tree, visual tree with k-means and visual tree with AP

clustering are 84, 33 and 39, respectively. The label tree method tends to produce

unbalanced clustering results with many small groups (e.g ., the number of categories

in the same group is less than 8) and some very large groups (e.g ., four groups have

more than 50 classes). A number of groups determined by the methods are illustrated

in Fig. 31 where the groups in each row have at least one overlapping category.

Given various methods for category grouping, it is desired to quantitatively evaluate

how they contribute to the performance of dictionary learning algorithms. We com-

pare our JDL algorithm with the unsupervised dictionary learning (UDL) method [83].

In UDL, three different image category clustering strategies are adopted. First, a sin-

gle dictionary of size 8,192 is trained without category clustering being performed.
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Label Tree k-Means AP Clustering

Figure 31: Example groups identified by different image category clustering methods
on ILSVRC2010 data set. Each cell shows the sample pictures of the categories in
the same group.

Second, we randomly partition the 1,000 categories into 83 groups, and learn one

dictionary for each group using UDL (UDL + Random Group). Third, we cluster the

categories into 83 groups by using the visual tree method with AP clustering, and

then use UDL to learn the dictionary for each group. For evaluating the proposed

JDL algorithm, we also implement three versions of JDL based on three different

methods for category clustering, namely the label tree, the visual tree with k-means
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and the visual tree with AP clustering.

Since the categories are clustered into a number of disjoint groups, an important

issue is to determine the dictionary size for each group. For a given group, the

dictionary size essentially depends on its visual complexity and diversity. We set the

dictionary size for a group to be proportional to the number of the categories in it.

Specifically, let Ci be the number of categories in a group. The dictionary size for it is

decided as 8×Ci when UDL is adopted. In JDL, the sizes of the common and class-

specific dictionaries are set to be 3×Ci and 5×Ci, respectively. One reason for this

setting is that the number of common visual atoms in a group should be smaller than

that of the category-specific ones since the categories in it are still visually different

from each other even though they have strong visual correlations. Obviously, the size

of the common dictionary in a group can be dynamically determined by the parameter

ξ in Algorithm 5. For this data set, we do not set the dictionary sizes dynamically

to strictly control the total number of visual words used in JDL (i.e., 8K in total).

Therefore, a fair comparison could be made between the JDL and UDL algorithms.

Finally, after encoding the local features extracted from an image over the learned

dictionaries, a configuration of two-level spatial partitions, i.e., 1 × 1 and 2 × 2,

is used to pool the codes into an image-level signature. The global classification

scheme is used here to obtain the accuracy rates for categorizing the 1,000 classes.

In Table 10, we summarize the configurations of different dictionary learning and

category clustering methods to be compared. Fig. 32 shows the comparison between

UDL and JDL based on different category clustering methods. First, it is seen that

clustering a large number of categories into disjoint groups improves the results even



129

Table 10: The configurations of different dictionary learning and image category
clustering methods. # of Groups: the number of groups; Total # of Words: the total
number of visual words used in all dictionaries; Feat. Dim.: the dimension of the
feature vector fed to SVM; UDL: unsupervised dictionary learning.

# of Groups Total # of Words Feat. Dim.
UDL + Single Dictionary 1 8192 8192× 5
UDL + Random Group 83 8× 1000 8000× 5
UDL + AP Clustering 83 8× 1000 8000× 5
JDL + Label Tree 83 (3 + 5)× 1000 8000× 5
JDL + k-Means 83 (3 + 5)× 1000 8000× 5
JDL + AP Clustering 83 (3 + 5)× 1000 8000× 5

in UDL. For image search task, Aly et al . [3] have reported similar results when

multiple individual dictionaries were trained by randomly partitioning the training

samples into a number of disjoint sets. Second, when the same category clustering

method is used, JDL (JDL + AP Clustering) learns more discriminative dictionaries

which lead to higher categorization accuracy rates as compared to UDL (UDL +

AP Clustering). Third, the visual tree method based on k-means or AP clustering is

more effective than the label tree method in clustering image categories to support the

proposed JDL algorithm, and achieves slightly better classification results. Note that

the experimental results of JDL on two selected groups using the local classification

scheme were reported in [182].

5.5.3.2 Effectiveness of D0 in Hierarchical Classification

As discussed in Section 5.4.3, the feature spaces which are effective for learning

the group and category classifiers are usually different. One of the advantages of our

JDL model is that the common dictionaries can be used to extract visual features

for group classifier training while the class-specific dictionaries can be utilized to
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Figure 32: Classification accuracy rates using the dictionaries learned by JDL and
UDL based on different image category clustering methods for ILSVRC2010 data set.

extract features for category classifier learning. To assess the effectiveness of this

strategy in hierarchical image classification, we compare JDL with UDL. In UDL, a

single dictionary is learned to extract features for training both group and category

classifiers. The visual tree produced by AP clustering is used to organize the categories

for hierarchical image classification. The common dictionaries {D
(i)
0 }83i=1 learned by

JDL for the 83 groups are concatenated to form a dictionary of 3,000 visual words.

The dictionary is thus used as the feature space for group classifier training. For the

tth group (t = 1, . . . , 83), its category-specific dictionaries {D̂
(t)
i }Ct

i=1 are used to form

the feature space for learning its own category classifiers, where Ct is the number of

categories in the tth group.

In implementation, given the local descriptors X of an image, we individually

encode them over the 83 group dictionaries, and obtain 83 different versions of sparse

codes, denoted as {[A
(t)
0 ; Â(t)]}83t=1. Note that the dictionary size for each group is

relatively small (e.g ., the biggest dictionary of the largest group only consists of
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Table 11: Comparison between using the discriminative dictionaries (common and
category-specific dictionaries) learned by JDL and the single dictionary trained by
UDL for visual representation in hierarchical image classification. GC: group classi-
fier; CC: category classifier; Feat. Dim.: feature dimension.

UDL + Single Dict. JDL + Group Dict.
Feat. Dim. for GC 3000× 5 3000× 5
Feat. Dim. for CC 3000× 5 varies across groups

Accuracy (%) 7.6 9.5

39 × 8 = 312 visual words) which makes the encoding process very computationally

efficient. The coefficients corresponding to the common dictionaries are concatenated

as [A
(1)
0 ; . . . ,A

(83)
0 ] to yield the visual features for group classifier training. In the tth

group, the sparse codes Â
(t) corresponding to its own category-specific dictionaries

are utilized as the features to train the category classifiers in the group.

For comparison, one single dictionary of size 3,000 learned by UDL is used for

both group and category classifier training. In Table 11, we tabulates the results of

hierarchical image classification by using the dictionaries learned by JDL and UDL

for feature extraction, respectively. It is seen that JDL outperforms UDL, since

different feature spaces (i.e., different dictionaries) are used for training the group

and category classifiers. On the other hand, UDL uses the same feature space (i.e.,

the same dictionary) to learn both group and category classifiers.

5.5.3.3 Comparison with State-of-the-Art Results

In this section, we compare our JDL algorithm with a few state-of-the-art methods

on the ILSVRC2010 data set, including Fisher Vector [117], method of NEC [90],

the winner team at ILSVRC2010, and the Meta-Class feature (MC) [11]. The perfor-

mance comparison is shown in Table 12. The proposed JDL algorithm achieves better



132

Table 12: Comparison between JDL and a few state-of-the-art methods on the
ILSVRC2010 data set.

Visual Features Coding Feat. Dim. Accuracy (%)
Fisher Vector [116] SIFT Fisher Vector 131,072 45.7

NEC [90] LBP, HOG LCC [155], Super-vector [184] 262,144a 52.9
MC-Bit [11] GIST, HoG, SSIM, SIFT MC feature 15,458 36.4

JDL + AP Clustering SIFT Sparse Coding 40,000 38.9

a Only the value of the largest dimension is shown as multiple features and encoding methods were used.

result than MC-Bit [11], but does not perform as well as the Fisher Vector and the

method of NEC. However, Fisher Vector takes the advantage of higher dimensional

features, and NEC combines the HoG and LBP (local binary pattern) features, mul-

tiple encoding methods and fine-grained spatial pyramids to achieve better results.

5.5.4 Convergence and Discrimination

The convergence of JDL indicated by the values of the objective function (33) over

iterations is plotted in Fig. 33. Three groups of different sizes are randomly selected

from the 83 groups which are generated by the visual tree method with AP clustering

on the ILSVRC2010 data set. One can observe that after a few iterations, our JDL

algorithm always empirically converged. In addition, we have quantitatively analyzed

the discrimination of the sparse coefficients based on the Fisher score which is defined

as tr(SW )
tr(SB)

, where SW and SB are the within-class scatter matrix and the inter-class

scatter matrix of the sparse codes, respectively. A smaller value of Fisher score implies

that the current sparse representation has stronger discrimination. Fig. 34 shows the

Fisher scores of JDL over iterations for three groups. The Fisher scores decrease over

iterations which demonstrate that more discriminative sparse coefficients are obtained

as the JDL algorithm iterates.
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Figure 33: The values of the objective function (Eq. 33) in log scale of JDL on four
image category groups of different sizes.
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Figure 34: The Fisher scores (tr
(

SW

SB

)

) of JDL on four image category groups of

different sizes.

5.5.5 Dictionary Size

We further investigate how sensitive JDL and IMDL are to the choice of the dic-

tionary size per class Ki. Intuitively, increasing the dictionary size often leads to

better results at the expense of increasing computational cost. We plot the overall

categorization performance of JDL and IMDL across different choices of Ki for the
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Figure 35: Comparison between JDL and IMDL using different dictionary sizes per
category on the Oxford flower data set.

Oxford flower image set in Fig. 35. One can observe that JDL outperforms IMDL

under the configurations of all the different the dictionary sizes, and the performance

gain increases when the number of visual words decreases.

5.5.6 Computational Complexity of JDL

Compared with the unsupervised dictionary learning algorithms, our JDL algo-

rithm can extract more discriminative visual features by learning more discriminative

dictionaries, and achieve better classification accuracy. The drawback of JDL is that

it is computationally more complex. Although dictionary learning can be done in

parallel and off-line, it is still important to see how long the dictionary learning pro-

cess would take. A number of experimental parameters can affect the run time of the

dictionary learning, including the number of categories, number of training samples,

dictionary size and dimension of local descriptors. The run time performance of JDL

is shown in Fig. 36 based on different numbers of training samples per category. The

timing is based on a single core of an 8-core Xeon 2.67GHz server node without fully
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optimizing the code.

5.6 Summary

In this chapter, a novel joint dictionary learning (JDL) algorithm has been devel-

oped to learn more discriminative dictionaries by explicitly separating the common

visual atoms from the category-specific ones. For a group of visually correlated classes,

a common dictionary and multiple class-specific dictionaries are simultaneously mod-

eled in JDL to enhance their discrimination power, and the processes of learning the

common dictionary and multiple class-specific dictionaries have been formulated as

a joint optimization by adding a discrimination promotion term based on the Fisher

discrimination criterion. The visual tree as well as the label tree methods have been

employed to cluster a large number of image categories into a set of disjoint groups.

The process of image category clustering not only ensures that the categories in the

same group are of strong visual correlation, but also makes the JDL algorithm to

be computationally affordable in large-scale visual recognition applications. Three
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schemes have been developed to take the advantage of the discriminative dictionaries

learned by JDL for image content representation, classifier training and image clas-

sification. The experimental results have demonstrated that our JDL algorithm is

superior to many unsupervised and supervised dictionary learning algorithms, espe-

cially on dealing with visually similar categories.



CHAPTER 6: SEMANTIC GAP MODELING

6.1 Introduction

With the exponential growth of digital images, there is an urgent need to achieve

automatic concept detection for supporting concept-based (keyword-based) image re-

trieval [138]. Unfortunately, there is a fundamental barrier of semantic gaps when

low-level visual features are used to represent high-level image concepts. The seman-

tic gap can be defined as the difference on the expression power between the low-

level visual features (i.e., computational representations of the visual content of the

images from computers) and the high-level image concepts (i.e., semantic interpreta-

tions of the visual content of the images from human beings) [108, 100, 68, 99, 67].

To bridge the semantic gaps, machine learning tools are usually used to learn the

concept classifiers from large amounts of labeled training images (i.e., learning the

mapping functions between the low-level visual features and the high-level image con-

cepts) [37, 66, 101, 178, 124, 44]. However, it is not a trivial task because the learning

complexities for concept classifier training could vary with the image concepts signif-

icantly, e.g ., some image concepts may have lower learning complexities for concept

classifier training because their semantic gaps are smaller, on the other hand, some

image concepts may have higher learning complexities for concept classifier training

because their semantic gaps are larger.
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To achieve more effective concept classifier training, it is very important to support

quantitative characterization of the semantic gaps. It is worth noting that both con-

cept classifier training and automatic concept detection are performed in the visual

feature space rather than in the label space, thus it is very attractive to develop new

algorithms that can support quantitative characterization of the semantic gaps di-

rectly in the visual feature space, so that we can automatically estimate the learning

complexities and select more effective inference models for concept classifier training.

For a given image concept with small semantic gap, there may exist a unique mapping

function (concept classifier) between its feature-based visual representation and its

semantic interpretation, e.g ., the concept classifier for the given image concept is iso-

lated from the concept classifiers for other image concepts in the visual feature space,

which may further result in high discrimination power on concept detection. For a

given image concept with large semantic gap, its concept classifier is not unique and

may overlap with the concept classifiers for other image concepts in the visual feature

space, which may further result in low discrimination power on concept detection.

Thus the scales (numerical values) of the semantic gaps can also be treated as an

effective measurement of the learning complexities for concept classifier training.

When the image concepts are visually-related, their relevant images may share

some common or similar visual properties (i.e., huge inter-concept visual similarity),

and it could be difficult for machine learning tools to obtain unique concept classi-

fiers for distinguishing such visually-related image concepts precisely. For instance,

the visually-related image concepts may not be visually separable because huge inter-

concept visual similarity may cause significant overlapping among their concept clas-
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sifiers and result in low discrimination power on concept detection [43, 147, 42, 14].

Thus, the image concepts which are visually-related with many other image concepts,

will have larger semantic gaps and their learning complexities for concept classifier

training will be higher.

When the image concepts have huge inner-concept visual diversity among their rel-

evant images (i.e., low inner-concept visual consistency), it could be very difficult for

machine learning tools to use some simple models to approximate their diverse visual

properties effectively, on the other hand, using some complex models to approximate

their diverse visual properties completely may cause significant overlapping between

their concept classifiers and the concept classifiers for other image concepts, which

may further result in low discrimination power on concept detection. Thus the im-

age concepts, which have huge inner-concept visual diversity (i.e., low inner-concept

visual consistency), will have larger semantic gaps and their learning complexities for

concept classifier training will be higher.

Based on these observations, an inner-concept visual homogeneity score is defined

for characterizing the inner-concept visual consistency among the relevant images

for the same image concept, and an inter-concept discrimination complexity score

is defined for characterizing the inter-concept visual correlations among the relevant

images for multiple visually-related image concepts. By simultaneously considering

both the inner-concept visual homogeneity scores and the inter-concept discrimination

complexity scores, a novel data-driven approach is developed for supporting quanti-

tative characterization of the semantic gaps directly in the visual feature space.

The rest of this paper is organized as follows. Section 6.2 presents our work
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on feature extraction and image similarity characterization; Section 6.3 defines the

inter-concept discrimination complexity score, where a visual concept network is con-

structed for characterizing the inter-concept visual similarity contexts explicitly and

providing a good environment to determine the visually-related image concepts auto-

matically; Section 6.4 defines the inner-concept visual homogeneity score; Section 6.5

introduces two different approaches for supporting quantitative characterization of

the semantic gaps directly in the visual feature space; Section 6.6 presents our struc-

tural learning algorithm for concept classifier training by leveraging both the scales

(numerical values) of the semantic gaps and the visual concept network for automatic

inference model selection; Section 6.7 describes our work on algorithm evaluation on

two well-known image sets; We conclude this chapter in Section 6.8 .

6.2 Feature Extraction and Image Similarity Characterization

A large number of image concepts and their relevant images are used to assess the

effectiveness and robustness of our data-driven algorithm on quantitative character-

ization of the semantic gaps. These image concepts and their relevant images are

collected from two well-known image sets: NUS-WIDE [25] and ImageNet [33]. In

this paper, we focus on assessing the effectiveness and robustness of our data-driven

algorithm on two types of image concepts: (1) scene-based and event-based image

concepts (image semantics are interpreted by the visual content of entire images);

and (2) object-based image concepts (image semantics are interpreted by the visual

content of object regions or object bounding boxes).

NUS-WIDE image set [25] has collected large amounts of Internet images for 81
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Table 13: The 81 image concepts in NUS-WIDE [25] for algorithm evaluation.

Categories Image Concepts

Event/Activities
Swimming Earthquake Fire-exposition Surfing Run-
ning Wedding Dancing Protest Soccer

Scene/Location

Airport Temple Castle Beach Cityscape Snow Buildings
Mountain Valley Street Railroad Road Harbor Bridge
Sky Clouds Garden Glacier Sunset Reflection Night-
time Water Grass Moon Frost Ocean Window Plants
Waterfall Lake Rainbow House Town

People Police Military Person Tattoo

Objects

Animal Vehicle Flags Birds Tiger Bear Car Toy Tree
Train Boats Cat Horse Fox Elk Cow Computer Whales
Zebra Fish Dog Tower Statue Coral Rocks Sign Flowers
Leaf Sand Food Sun Book Plane

Graphics Map
Program Sports

image concepts. For the NUS-WIDE image set, all these 81 image concepts are illus-

trated in Table 13, and they are used for assessing the effectiveness and robustness of

our data-driven algorithm on supporting quantitative characterization of the semantic

gaps.

ImageNet [33] has collected more than 9, 353, 897 Internet images, and it contains

more than 14, 791 image concepts at different semantic levels. In this paper, only

1, 000 image concepts (1, 000 most popular real-world object classes and scene cat-

egories), which contain large amounts of relevant images, are selected for assessing

the effectiveness and robustness of our data-driven algorithm on supporting quanti-

tative characterization of the semantic gaps directly in the visual feature space. A

part of these 1, 000 most popular image concepts (real-world object classes and scene

categories) are given in Table 14.

For the scene-based and event-based image concepts (scene and event categories),

each image is treated as one single image instance and feature extraction is done by

partitioning each image (image instance) into a set of 8× 8 image patches. For each
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Table 14: A part of the 1000 image concepts in ImageNet [33] for algorithm evaluation.

tree beach snow mountain scarf earing ring abacus
shirt flower road ladder corridor firework sword celery

broccoli corn tadpole watch garden sunset sailing office
scissors penguin starfish toad zebra monkey mouse home
chair plane rail spiders tiger lion cat falls
street landscape screen wall sponge mug cobra dolphin

rainbows water city building parks cars teapot snake
roses golf bears dagger ... ... ... ...

8 × 8 image patch, the following visual features are extracted: (1) top 3 dominant

colors; (2) 12-bin color histogram; (3) 9-dimensional Tamura texture features; and

(4) SIFT features. For each 8 × 8 image patch, its best-matching “visual word” is

found from a pre-trained codebook with 512 visual words (codewords), and a 512-

bin codeword histogram (histogram of 512 visual words) is extracted and used to

represent the principal visual properties of the given image instance.

For the object-based image concepts (object classes), ImageNet [33] has provided

the object bounding boxes, which are used to indicate the appearances of the object

classes and their locations in the images. We treat each object bounding box as

one single image instance and feature extraction is done by partitioning each object

bounding box (image instance) into a set of 8 × 8 image patches. For each 8 × 8

image patch, the following visual features are extracted: (1) top 3 dominant colors;

(2) 12-bin color histogram; (3) 9-dimensional Tamura texture features; and (4) SIFT

(scale invariant feature transform) features. For each 8 × 8 image patch in a given

image instance (object bounding box), its best-matching “visual word” is found from

a pre-trained codebook with 512 visual words (codewords), and a 512-bin codeword

histogram (histogram of 512 visual words) is extracted and used to represent the

principal visual properties of the given image instance.
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A kernel function is defined for measuring the visual similarity context κ(x, y)

between two image instances x and y according to their 512-bin codeword histograms

u and v:

κ(x, y) = e−χ2(u,v)/σ =

512
∏

i=1

e−χ2

i (u(i),v(i))/σi , (44)

where σ = [σ1, · · · , σ512] is the set of the mean values of the χ2 distances. The χ2

distance χ2
i (u(i), v(i)) between u(i) and v(i) is defined as:

χ2
i (u(i), v(i)) =

1

2
·
|u(i)− v(i)|2

u(i) + v(i)
, (45)

where u(i) and v(i) are the ith bin of the codeword histograms u and v for two image

instances x and y.

6.3 Inter-Concept Discrimination Complexity Score

A visual concept network is constructed for organizing a large number of image

concepts according to their inter-concept visual correlations. The visual concept

network consists of two key components: (a) image concepts (i.e., object classes and

scene categories); and (b) inter-concept cumulative visual similarity contexts between

their relevant image instances.

For two given image concepts Ci and Cj, their inter-concept cumulative visual

similarity context γ(Ci, Cj) is defined as:

γ(Ci, Cj) =
1

|Ci||Cj|

∑

x∈Ci

∑

y∈Cj

κ(x, y), (46)

where |Ci| and |Cj| are the total numbers of image instances for the image concepts

Ci and Cj , κ(x, y) is the visual similarity context between two image instances x and
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Figure 37: The visual concept network for the NUS-WIDE [25] data set.

y as defined in Eq. 44.

Two image concepts Ci and Cj are linked together on the visual concept network

when their inter-concept cumulative visual similarity context is above a given thresh-

old or γ(Ci, Cj) 6= 0. The visual concept networks for NUS-WIDE [25] and ImageNet

[33] (1, 000 most popular image concepts are selected) are illustrated in Fig. 37 and

Fig. 38, where the visually-related image concepts (which have larger values of the

inter-concept visual similarity contexts γ(·, ·)) are linked together. Some examples

for the visually-related image concepts, which have larger values of the inter-concept

cumulative visual similarity contexts γ(·, ·)), are illustrated in Fig. 39 and Fig. 40.
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Figure 38: The visual network of the 1000 image concepts on ImageNet [33] database.
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Figure 39: Some visually-related image concepts in the NUS-WIDE [25] data set.

Figure 40: Some visually-related image concepts in ImageNet [33] database.

As shown in Fig. 37 and Fig. 38, the geometric closeness among the image concepts

is inverse with the scales (numerical values) of their inter-concept cumulative visual

similarity contexts γ(·, ·): (a) the visually-related image concepts γ(·, ·) 6= 0 are linked

together and the visually-irrelevant image concepts γ(·, ·) = 0 are not linked at all;

(b) the image concepts, which are closer on the visual concept network, have larger

values of their inter-concept cumulative visual similarity contexts γ(·, ·); on the other

hand, the image concepts, which are far-away on the visual concept network, have

smaller values of their inter-concept cumulative visual similarity contexts γ(·, ·). Thus

supporting graphical representation and visualization of the visual concept network

can reveal a great deal about the visual correlations among the image concepts.

The visual concept network can provide multiple advantages: (a) It can interpret
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the inter-concept visual correlations explicitly as shown in Fig. 37 and Fig. 38. (b)

It can provide a good environment for determining the visually-related image con-

cepts directly in the visual feature space as shown in Fig. 39 and Fig. 40. (c) It

can provide a good environment to select more effective inference models for concept

classifier training, e.g ., integrating the image instances for multiple visually-related

image concepts to learn their inter-related SVM concept classifiers jointly and train-

ing the one-against-all SVM concept classifiers independently for the isolated image

concepts.

For two given image concepts Ci and Cj, if they have large value of their inter-

concept cumulative visual similarity context γ(Ci, Cj), their image instances will share

some common or similar visual properties and there may exist significant overlap-

ping among their concept classifiers in the visual feature space. Thus it could be

hard for machine learning tools to obtain unique concept classifiers for discriminating

such visually-related image concepts effectively in the visual feature space, e.g ., the

visually-related image concepts may not be visually separable because their relevant

images and concept classifiers may have significant overlapping in the visual feature

space. Therefore, th image concepts, which have large values of the inter-concept

cumulative visual similarity contexts γ(·, ·) with many other image concepts on the

visual concept network, may have large semantic gaps. On the other hand, the image

concepts, which have small values or even zero values of the inter-concept cumulative

visual similarity contexts γ(·, ·) with other image concepts on the visual concept net-

work (i.e.,they are isolated from other image concepts in the visual feature space),

may have small semantic gaps. Thus it is easy for machine learning tools to train
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unique concept classifiers for discriminating the isolated image concepts (with smaller

semantic gaps) from other image concepts effectively.

Given image concept Cl, two criteria can be used to quantify its inter-concept dis-

crimination complexity score effectively: (a) the number of its visually-related image

concepts on the visual concept network (some examples for the visually-related image

concepts are illustrated in Fig. 39 and Fig. 40; (b) the strengths (numerical values) of

the inter-concept cumulative visual similarity contexts γ(·, ·)) for the visually-related

image concepts, e.g ., if two image concepts have large value of their inter-concept

visual similarity context γ(·, ·), they may not be visually separable and they may

have large semantic gaps.

For a given image concept Cl, its inter-concept discrimination complexity score

γ̄(Cl) is defined as the cumulative inter-concept visual similarity contexts:

γ̄(Cl) =
∑

Cj∈Θl

γ(Cl, Cj), (47)

where Θl is a set of image concepts that are visually related with the given image

concept Cl and are linked with Cl on the visual concept network, γ(Cl, Cj) is the

strength (numerical value) of the inter-concept visual similarity context between the

image concepts Cl and Cj.

If a given image concept has large value of the inter-concept discrimination com-

plexity score γ̄(·), it may have large semantic gap and high learning complexity for

concept classifier training because the given image concept may not be visually sepa-

rable from other image concepts on the visual concept network. On the other hand, if

a given image concept has small value of the inter-concept discrimination complexity
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score γ̄(·), the given image concept may have small semantic gap and low learning

complexity for concept classifier training because the given image concept is visually

isolated from other image concepts on the visual concept network. Thus the inter-

concept discrimination complexity score γ̄(·) can be used as one important factor for

supporting quantitative characterization of the semantic gaps directly in the visual

feature space.

6.4 Inner-Concept Visual Homogeneity Score

For a given image concept Cl on the visual concept network, its inner-concept

visual homogeneity score Ψ(Cl) is defined as the cumulative visual similarity contexts

among all its image instances:

Ψ(Cl) =
1

|Cl|2

∑

u∈Cl

∑

v∈Cl

κ(u, v), (48)

where |Cl| is the total number of the images instances for the given image concept

Cl, κ(u, v) is the kernel-based similarity context between two image instances u and

v as defined in Eq. (44).

If a given image concept has small value of the inner-concept visual homogeneity

score Ψ(·), its image instances should have huge diversity on their visual properties

(i.e., low inner-concept visual consistency), thus it is very hard for machine learning

tools to use some simple models to approximate its diverse visual properties com-

pletely. When some complex models are used to approximate the diverse visual prop-

erties completely for the given image concept, there may not exist a unique concept

classifier with high discrimination power. On the other hand, if a given image concept
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has large value of the inner-concept visual homogeneity score Ψ(·), its image instances

should have small diversity on their visual properties (i.e., high inner-concept visual

consistency). As a result, it is much easier for machine learning tools to use some

simple models to approximate its homogeneous visual properties completely and there

may exist a unique concept classifier with high discrimination power. Based on these

observations, the inner-concept visual homogeneity score Ψ(·) can be treated as an-

other important factor for supporting quantitative characterization of the semantic

gaps directly in the visual feature space.

6.5 Quantitative Characterization of Semantic Gaps

For a given image concept Cl on the visual concept network, its semantic gap

depends on two important factors: (1) its inner-concept visual homogeneity score

Ψ(Cl) which is used to characterize the inner-concept visual homogeneity or inner-

concept visual consistency among its relevant image instances, e.g ., Ψ(Cl) can be used

to assess whether there exists a unique concept classifier in the visual feature space

for the given image concept Cl; (2) its inter-concept discrimination complexity score

γ̄(Cl) which is used to characterize its cumulative visual correlations with other image

concepts on the visual concept network, e.g ., γ̄(Cl) can be used to assess whether the

given image concept Cl is visually separable from other image concepts in the visual

feature space. It is worth noting that these two important factors are inter-related,

e.g ., for a given image concept Cl, if it has small value of the inner-concept visual

homogeneity score Ψ(Cl) (i.e., it has huge inner-concept visual diversity), it may have

more opportunity to overlap with other image concepts in the visual feature space
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or share some similar visual properties with other image concepts (i.e., it may have

large value for the inter-concept discrimination complexity score γ̄(Cl)).

If the given image concept Cl has large semantic gap, it may have large value for the

inter-concept discrimination complexity score γ̄(Cl) while having small value for the

inner-concept visual homogeneity score Ψ(Cl) (i.e., Cl has many visually-related image

concepts on the visual concept network while its inner-concept visual consistency is

low). On the other hand, if the given image concept Cl has small semantic gap,

it may have small value for the inter-concept discrimination complexity score γ̄(Cl)

while having large value of the inner-concept visual homogeneity score Ψ(Cl) (i.e.,

Cl has high inner-concept visual consistency while it is visually isolated from other

image concepts on the visual concept network).

Based on these observations, the semantic gap for the given image concept Cl can

be defined as:

Υ(Cl) =
γ̄(Cl)

Ψ(Cl) + δ0
, (49)

where δ0 is a constant to avoid the problem of overflow, Ψ(Cl) is the inner-concept

visual homogeneity score for the given image concept Cl, γ̄(Cl) is the inter-concept

discrimination complexity score for the given image concept Cl.

By simultaneously considering both the inner-concept visual homogeneity score and

the inter-concept discrimination complexity score, the scale of the semantic gap Υ(Cl)

can be used to predict whether the given image concept Cl is visually separable from

other image concepts in the visual feature space or whether there exists a unique

concept classifier for the given image concept Cl in the visual feature space, e.g .,
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Υ(Cl) can be used to estimate its learning complexity for concept classifier training.

For the given image concept Cl on the visual concept network, the success for concept

classifier training (i.e., whether its concept classifier can achieve high accuracy rate

for automatic concept detection on test images) largely depends on the scale of its

semantic gap Υ(Cl).

It is worth noting that: (1) our algorithm for supporting quantitative character-

ization of the semantic gaps is data-driven because both the inner-concept visual

homogeneity score and the inter-concept discrimination complexity score are directly

derived from the relevant image instances; (2) our data-driven algorithm can achieve

quantitative characterization of the semantic gaps directly in the visual feature space,

and the visual feature space is the common space for concept classifier training and

automatic concept detection.

To assess the effectiveness and robustness of our data-driven algorithm on support-

ing quantitative characterization of the semantic gaps, it is very important to compare

its effectiveness with other alternative approaches. Some pioneering researches have

been done recently for calculating the inner-concept visual homogeneity and the inter-

concept visual correlation by using the average distances [35]. Unfortunately, there

is no existing approach for supporting quantitative characterization of the semantic

gaps directly in the visual feature space (i.e., calculating the numerical values (scales)

of the semantic gaps rather than simply guessing whether the image concepts have

larger semantic gaps or not). Based on these observations, an alternative approach is

developed for supporting quantitative characterization of the semantic gaps directly

in the visual feature space, and it is treated as an alternative approach for effectiveness
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comparison in this paper.

For a given image concept Cl, its inner-concept cumulative visual variance σ(Cl) is

defined as:

σ(Cl) =
1

|Cl|2

∑

u∈Cl

∑

v∈Cl

|κ(u, v)−Ψ(Cl)|
2 , (50)

where Ψ(Cl) is the inner-concept visual homogeneity score for the given image con-

cept Cl as defined in Eq. (48). From this definition, one can observe that small

inner-concept cumulative visual variance corresponds to large inner-concept visual

homogeneity score, on the other hand, large inner-concept cumulative visual variance

corresponds to small inner-concept visual homogeneity score.

If the given image concept Cl has large semantic gap, it should have large values for

both the inter-concept discrimination complexity score γ̄(Cl) and the inner-concept

cumulative visual variance σ(Cl). On the other hand, if the given image concept Cl

has small semantic gap, it should have small values for both the inter-concept dis-

crimination complexity score γ̄(Cl) and the inner-concept cumulative visual variance

σ(Cl). Based on these observations, the semantic gap for the given image concept Cl

can alternatively be defined as:

Υ(Cl) = λ · γ̄(Cl) + (1− λ) · σ(Cl), (51)

where λ = 0.6 is a weighting factor, σ(Cl) is the inner-concept cumulative visual

variance, γ̄(Cl) is the inter-concept discrimination complexity score for the given

image concept Cl.

The goals for supporting quantitative characterization of the semantic gaps directly
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in the visual feature space are to: (1) provide a theoretical approach to estimate the

learning complexity for concept classifier training; (2) provide a good environment to

select effective inference models for concept classifier training which will further result

in high accuracy rates on concept detection. It is worth noting that both concept

classifier training and automatic concept detection are performed in the visual feature

space rather than in the label space. Thus supporting quantitative characterization

of the semantic gaps directly in the visual feature space plays an important role in

achieving more effective concept classifier training by selecting more suitable inference

models automatically.

6.6 Automatic Inference Model Selection for Concept Classifier Training

Supporting quantitative characterization of the semantic gaps can allow us to es-

timate the learning complexity for each image concept directly in the visual feature

space. With the knowledge of the learning complexity for each image concept (i.e.,

numerical value (scale) of the semantic gap Υ(·) for each image concept), more effec-

tive inference models can be selected for concept classifier training by: (a) identifying

the image concepts with small semantic gaps (i.e., the isolated image concepts with

good inner-concept visual consistency) and training their one-against-all SVM con-

cept classifiers independently; (b) determining the image concepts with large semantic

gaps (i.e., the visually-related image concepts with low inner-concept visual consis-

tency) and integrating their image instances to train their inter-related SVM concept

classifiers jointly; and (c) using more image instances to achieve more reliable training

of the concept classifiers for the image concepts with large semantic gaps.
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To bridge the semantic gaps, a structural learning algorithm is developed for con-

cept classifier training, where both the scales of the semantic gaps Υ(·) and the visual

concept network are used to determine the inter-related learning tasks directly in the

visual feature space and select more effective inference models for concept classifier

training. As compared with traditional structural SVM algorithm [14], our struc-

tural learning algorithm leverages the inter-concept visual correlations for training

multiple inter-related concept classifiers jointly rather than simply performing struc-

tural output regression in the label space. As compared with traditional multi-task

boosting algorithm [147], our structural learning algorithm leverages both the visual

concept network and the scales of the semantic gaps for inter-task relatedness mod-

eling and automatic inference model selection rather than simply performing concept

combinations.

For a given image concept Cj on the visual concept network, its SVM classifier is

defined as:

fCj
(x) = W tr

j Φj(x) +
∑

Ct∈Θj

γt · V
tr
t Φt(x),

∑

Ct∈Θj

γt = 1, (52)

where Θj is used to represent a set of image concepts that are visually-related with

the given image concept Cj (they are linked with the given image concept Cj on the

visual concept network), Wj is a self regularization term that is used to represent the

contribution of the Cj’s image instances on the Cj’s SVM classifier fCj
(x), Vt is the

inter-concept regularization term that is used to represent the contribution of the Ct’s

image instances on the Cj ’s SVM classifier fCj
(x), γt is the weight factor to interpret

how much the Ct’s image instances can contribute on the Cj’s SVM classifier fCj
(x),
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Φj(x) and Φt(x) are the mapping functions from the visual feature vector x to some

other Euclidean space H.

If the given image concept Cj is visually-related with the image concept Ct (i.e., Cj

is linked with Ct on the visual concept network), Vt 6= 0. If the given image concept

Cj is visually-irrelevant with the image concept Ct (i.e., Cj is not linked with Ct on

the visual concept network), Vt = 0.

By integrating both the visual concept network and the scales of the semantic gaps

for automatic inference model selection, our structural learning algorithm can achieve

more effective classifier training by minimizing a joint objective function J .

J =
1

2
(‖Wj‖

2 +

|Θj |
∑

t=1

λt‖Vt‖
2) + ρ0

|Θj |
∑

t=1

nj
∑

i=1

ξti +

|Θj |
∑

t=1

ρt

nt
∑

i=1

ηti, (53)

where |Θj| is the size of Θj, ξti ≥ 0 and ηti ≥ 0 are the error rates, ρ0 and ρt are

the weighting factors for controlling the error penalty, nj and nt are the total number

of image instances for the image concepts Cj and Ct, λt is the weighting factor that

is used to control the contributions of the Ct’s image instances on the Cj’s concept

classifier fCj
(x).

By integrating the image instances for multiple visually-related image concepts Ω =

{(xit, yit)|i = 1, · · · , n; t = 1, · · · , |Θj|} to solve the joint objective function as defined

in Eq. (53), the SVM classifier for the given image concept Cj can be determined as:

fCj
(x) =

∑|Θj |
h,t=1 γtκs(t, h)

(
∑nj

i=1 βhiκ(xji, x)−
∑nh

i=1 βhiκ(xhi, x)
)

+
∑|Θj |

t=1
γt
λt

(
∑nj

i=1 βtiκ(xji, x)−
∑nt

i=1 βtiκ(xti, x)
)

, (54)

where β and β̄ are two different sets of the weights for the image instances, κs(t, h)
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is the semantic kernel for characterizing the semantic similarity context between the

image concepts Ct and Ch, κ(·, ·) is the visual kernel for characterizing the visual

similarity context between the image instances as defined in Eq. ( (44)).

Our structural learning algorithm can significantly enhance the discrimination

power of the concept classifiers by: (a) training the one-against-all SVM classifiers in-

dependently for the image concepts with small semantic gaps (i.e., the isolated image

concepts with good inner-concept visual consistency) by automatically setting Vt = 0

in Eq. (52); (b) training the inter-related SVM classifiers jointly for multiple visually-

related image concepts with large semantic gaps (i.e., multiple visually-related image

concepts with low inner-concept visual consistency) by automatically setting Vt 6= 0

in Eq. (52); (c) learning from the image instances for other visually-related image

concepts to enhance the generalization ability of the concept classifiers on test images,

which may somewhat reduce the required sizes of the image instances for achieving

reliable training of the concept classifiers for the image concepts with large semantic

gaps.

6.7 Algorithm Evaluation and Experimental Results

Our experiments on algorithm evaluation are performed on two well-known image

sets: NUS-WIDE [25] and ImageNet [33]. For a given image concept, our algorithm

first calculates the scale (numerical value) of its semantic gap by using two alternative

approaches as defined in Eqs. (49) and (51). The image concepts with small semantic

gaps and the image concepts with large semantic gaps are then identified automati-

cally according to the scales of their semantic gaps Υ(·). The learning complexities
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Table 15: Image concepts with small semantic gaps in NUS-WIDE [25] data set.

clouds sky ocean grass zebra plane airport rocks
animal map soccer vehicle window mountain valley water
flower sun sunset tiger buildings reflection lake tree
whales

Table 16: Image concepts with large semantic gaps in NUS-WIDE [25] data set.

wedding earthquake tatoo statue fox toy running dancing
temple book bridge glacier castle fire protest police
protest flags cars town

for concept classifier training are high for the image concepts with large semantic

gaps, on the other hand, the learning complexities for concept classifier training are

low for the image concepts with small semantic gaps.

6.7.1 Experimental Results for NUS-WIDE Image Set

As mentioned above, a data-driven algorithm is developed for supporting quanti-

tative characterization of the semantic gaps directly in the visual feature space, e.g .,

calculating the numerical values (scales) of the semantic gaps for the image concepts.

Thus our data-driven algorithm can automatically identify both the image concepts

with small semantic gaps and the image concepts with large semantic gaps, and some

experimental results are given in Table 15 and Table 16 for the NUS-WIDE [25] image

set.

After the concept classifiers are obtained for all these 81 image concepts in NUS-

WIDE image set, they are further used for detecting the image concepts from test

images. Ideally, if an image concept has large semantic gap, its learning complexity

for concept classifier training is high. As a result, the accuracy rates for detecting the

image concepts with large semantic gaps may be low when the same sizes of image
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Figure 41: The consistency between the numerical values of semantic gaps Υ(·) for
learning complexity estimation and the accuracy rates for automatic concept detection
in NUS-WIDE image set.

instances are used for concept classifier training. Thus there is a good consistency

between the scales (numerical values) of the semantic gaps, the strengths of the

learning complexities for concept classifier training, and the accuracy rates of the

concept classifiers on automatic concept detection. As shown in Table 17 and Fig.

41, our experiments have obtained good evidences for this consistency (e.g ., good

consistency between the scales of the semantic gaps and the accuracy rates of the

concept classifiers on automatic concept detection).

For the image concept “Map” in NUS-WIDE [25], a small semantic gap is obtained

but the detection accuracy rate is very low rather than high. The reason for this

phenomenon is that NUS-WIDE image set contains a small number of the relevant

images for the image concept “Map”, which cannot sufficiently characterize both

the inner-concept visual diversity for the image concept “Map” and its inter-concept

visual correlations with other image concepts.

We have also compared our algorithm for quantitative characterization of the se-

mantic gaps with the approach developed by Lu et al . [99, 100]. Because Lu’s ap-
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Table 17: The consistency between the numerical values (scales) of semantic gaps
Υ(·) for learning complexity estimation and the accuracy rates for automatic concept
detection.

Image concept Semantic gap Accuracy rate Image concept Semantic gap Accuracy rate
sky 0.7557 0.5609 sun 0.337 0.8381

clouds 0.7088 0.6079 tree 0.433 0.6169
person 0.5711 0.6547 snow 0.4315 0.6834
grass 0.5663 0.689 whales 0.4311 0.64

animal 0.5183 0.7337 beach 0.4276 0.7698
water 0.4986 0.7514 garden 0.4642 0.6902

flowers 0.4892 0.7975 surf 0.5072 0.535
tiger 0.5636 0.695 moon 0.4997 0.6644

sunset 0.4599 0.7635 fish 0.4988 0.5521
waterfall 0.4592 0.7967 birds 0.4955 0.6179

zebra 0.5284 0.6458 rainbow 0.4934 0.6554
lake 0.4994 0.5763 boats 0.4921 0.6053

reflection 0.5938 0.534 map 0.1806 0.0913
ocean 0.492 0.6037 military 0.4777 0.6169

buildings 0.4916 0.6301 computer 0.4752 0.5599
valley 0.4569 0.6472 road 0.4732 0.5646
soccer 0.5468 0.5095 street 0.4719 0.5539

nighttime 0.6441 0.5086 house 0.4498 0.5671
cityscape 0.5131 0.5737 horses 0.4487 0.5159
mountain 0.4999 0.6897 elk 0.448 0.6421

airport 0.4953 0.679 harbor 0.5385 0.5146
window 0.4929 0.6157 sports 0.4353 0.5315

coral 0.4778 0.6348 tower 0.4331 0.5269
plane 0.4747 0.5243 protest 0.4301 0.6107

vehicle 0.4732 0.5858 sign 0.5287 0.5962
bear 0.4591 0.5536 sand 0.4279 0.6227
food 0.4495 0.5741 fire 0.4126 0.7491

plants 0.448 0.6308 town 0.5126 0.5849
rocks 0.4457 0.7604 cat 0.5111 0.6181

proach focuses on determining the image concepts with smaller or larger semantic

gaps rather than calculating the numerical values of their semantic gaps, we just

provide our experimental results according to the results presented in Lu’s papers

[99, 100]. As shown in Table 18, our data-driven algorithm has obtained very com-

petitive results, where the image concepts with high confidence scores (small semantic

gaps as defined by Lu’s method) are selected from Fig. 41 in Lu’s paper [100] and

our algorithm is used to calculate the numerical values of their semantic gaps directly
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Table 18: Comparison on image concepts with small semantic gaps.

Image concept Score in [100] Semantic gap Image concept Score in [100] Semantic gap
sunset 0.092 0.4599 cloud(s) 0.012 0.7088
flower(s) 0.057 0.4892 water 0.019 0.4986

sky 0.032 0.7557 garden 0.02 0.4902
tree 0.024 0.3169 beach 0.022 0.4698

in the visual feature space. One can observe that good consistency between the se-

mantic similarity contexts among the associated text terms and the visual similarity

contexts among the relevant images (high confidence scores) does not always corre-

spond to small semantic gaps (small numerical values for the semantic gaps Υ(·) in

the visual feature space). For some image concepts, our data-driven algorithm has

obtained much better results than Lu’s approach because the associated text terms

may consist of rich word vocabulary rather than only the auxiliary text terms for

image semantics description. When all these auxiliary text terms are loosely used

for characterizing the semantics of the social images, it is very hard if not impossi-

ble to obtain semantic consistency among the auxiliary text terms. For some image

concepts, our data-driven algorithm has obtained similar results with Lu’s approach

because the auxiliary text terms have good semantic consistency.

To assess the effectiveness and robustness of our data-driven algorithm on support-

ing quantitative characterization of the semantic gaps, we have compared the scales

(numerical values) of the semantic gaps which are calculated by using two alternative

approaches. As shown in Fig. 42, one can observe that two alternative approaches

have obtained good consistency on supporting quantitative characterization of the

semantic gaps, e.g ., for any two image concepts, the image concept with larger se-

mantic gap will always have larger semantic gap under two alternative approaches, on



162

0

0.2

0.4

0.6

0.8

1

Normalized semantic gap Alternative approach

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Image Concepts

Figure 42: Comparison between two alternative approaches for supporting quantita-
tive characterization of the semantic gaps (i.e., numerical values of the semantic gaps
Υ(·)).

the other hand, the image concept with smaller semantic gap will still have smaller

semantic gap under two alternative approaches. Thus our experimental results have

demonstrated good evidences and rigorous justifications of the effectiveness and ro-

bustness of our data-driven algorithms on supporting quantitative characterization of

the semantic gaps directly in the visual feature space.

6.7.2 Experimental Results for ImageNet Image Set

For the ImageNet [33] data set, its visual concept network is shown in Fig. 38

and some examples for the inter-related image concepts are shown in Fig. 40. The

image concepts with small semantic gaps and the image concepts with large semantic

gaps are identified automatically according to the scales (numerical values) of their

semantic gaps Υ(·), and some experimental results are shown in Table 19 and Table

20.

After the concept classifiers are obtained for all these 1,000 image concepts in Im-

ageNet [33] data set, they are further used for detecting the image concepts from

test images. When the same sized of image instances are used for concept classifier

training, the accuracy rates for detecting the image concepts with large semantic gaps
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Table 19: Image concepts with small semantic gaps for ImageNet [33] data set.

blue sky water red rose sunset cup moon
missle beach snow tree glass garden
sunset yellow flower car-front car-wheel ocean cloud
stone-rock red flower watermelon banana licence plate church
purple flower white flower sand screen firework falls
leaf butterfly stop sign coffee machine coffee pot mug
traffic light bottle bin can ... ...

Table 20: Image concepts with large semantic gaps for ImageNet [33] data set.

flower ring fish dog car crab
rail park gas station gun bank wave
mountain street window horse building bike
dolphin tiger ... ... ... ...

may be low. Thus there is a good consistency between the scales (numerical values)

of the semantic gaps, the strengths of the learning complexities for concept classifier

training, and the accuracy rates of the concept classifiers on automatic concept de-

tection. As shown in Fig. 43, our experiments have obtained good evidences for this

consistency (e.g ., good consistency between the scales of the semantic gaps and the

accuracy rates of the concept classifiers on automatic concept detection).

It is worth noting that our algorithm for supporting quantitative characterization

of the semantic gaps is a data-driven approach, thus it is very attractive to assess

its dependence with various image sets, e.g ., whether the scales (numerical values)

of the semantic gaps for the same image concepts may vary with the image sets. As

shown in Table 21, we have compared the scales (numerical values) of the semantic

gaps Υ(·) for the same image concepts in two well-known image sets: NUS-WIDE

and ImageNet. From these experimental results, one can observe that the scales

(numerical values) of the semantic gaps for the same image concepts may vary with
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Figure 43: The consistency between the numerical values (scales) of semantic gaps
Υ(·) for learning complexity estimation and the accuracy rates for automatic concept
detection in ImageNet data set.

the image sets, but the trends of the semantic gaps are consistent, e.g ., for any two

image concepts with different semantic gaps, the one with larger semantic gap will

always have larger values of the semantic gaps in two image sets and the other with

smaller semantic gap will always have smaller values of these semantic gaps in two

image sets.

To evaluate the effectiveness of image representation and similarity function and

their influences on the effectiveness and robustness of our data-driven algorithm for

quantitative characterization of the semantic gaps, three approaches are used for im-

age representation and similarity characterization: (a) kernel function as defined in

Eq. (44) which is based on the χ2 distances between the codewords; (b) Mahalanobis

distance function where Mahalanobis distance is used to replace the χ2 distances

in Eq. (44); and (c) kernel function between the cumulative codeword histograms.

This study focuses on assessing the consistency of the effectiveness and robustness

of our data-driven algorithm for quantitative characterization of the semantic gaps

when different approaches are used for image representation and similarity charac-
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Table 21: Comparison on the scales of semantic gaps for different image sets.

Image concept Semantic gap on NUS-WIDE Semantic gap in ImageNet

sky 0.7557 0.7802
clouds 0.7088 0.7358
grass 0.5663 0.6132
water 0.4986 0.5202
flowers 0.4892 0.4925
sunset 0.4599 0.4803
waterfall 0.4592 0.4789
zebra 0.4284 0.4559
lake 0.3994 0.4230
ocean 0.392 0.4185
buildings 0.3916 0.4201
mountain 0.2999 0.3260
airport 0.2953 0.3138
tree 0.233 0.2900
snow 0.2315 0.2818
beach 0.2276 0.2498
garden 0.2142 0.2530
moon 0.1997 0.2180
rainbow 0.1934 0.2120
boats 0.1921 0.2018
sand 0.1279 0.1468
train 0.0966 0.1260
flags 0.7763 0.7933
book 0.7486 0.7602
toy 0.7440 0.7579
cow 0.7133 0.7411
castle 0.7090 0.7347
bridge 0.6370 0.6847
glacier 0.5962 0.6282
fox 0.5540 0.5816
temple 0.6388 0.6738

terization. As shown in Fig. 44 and Fig. 45, one can observe that our data-driven

algorithm has good consistency for supporting quantitative characterization of the

semantic gaps when different approaches are used for image representation and sim-

ilarity characterization, e.g ., for any two image concepts (one has smaller semantic

gap and another has bigger semantic gap), the image concept with smaller semantic

gap will always have smaller semantic gap under different distance functions for simi-
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Figure 44: The consistency on the trend of the semantic gaps under different sim-
ilarity functions: our algorithm using kernel function versus cumulative codeword
histograms.

Figure 45: The consistency on the trend of the semantic gaps under different similarity
functions: our algorithm using kernel function versus Mahalanobis distance.

larity characterization, on the other hand, the image concept with larger semantic gap

will always have larger semantic gap under different distance functions for similarity

characterization.
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6.7.3 Benefits from Semantic Gap Quantification

The goal for supporting quantitative characterization of the semantic gaps is to

provide a theoretical approach for: (a) estimating the learning complexity for concept

classifier training directly in the visual feature space; and (b) selecting more effective

inference models for concept classifier training. In order to evaluate the benefits

of semantic gap quantification on concept classifier training, we have compared three

approaches for concept classifier training: (1) our structural learning algorithm which

leverages the inter-concept visual correlations directly in the visual feature space

for automatic inference model selection, e.g ., leveraging both the scales (numerical

values) of the semantic gaps and the visual concept network for automatic inference

model selection; (2) traditional structural SVM algorithm which performs structural

output regression by leveraging the inter-label (inter-concept) semantic correlations

in the label space; (3) traditional multi-task boosting algorithm which leverages the

inter-concept visual correlations via simple concept combinations.

For the NUS-WIDE image set, the comparison results on the detection accuracy

rates for some image concepts are given in Fig. 46. For the ImageNet image set, the

comparison results on the detection accuracy rates are given in Fig. 47. In our struc-

tural learning algorithm, both the scales (numerical values) of the semantic gaps and

the visual concept network are leveraged to: (a) determine the inter-related learn-

ing tasks (i.e., the learning tasks for the visually-related image concepts) directly

in the visual feature space; (b) select more effective inference models for concept

classifier training. On the other hand, the traditional structural SVM algorithm [14]
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Figure 46: Performance comparison on the accuracy rates for automatic concept
detection for NUS-WIDE image set: our structural learning algorithm, traditional
structural SVM algorithm, traditional multi-task boosting algorithm.

Figure 47: Performance comparison on the accuracy rates for automatic concept de-
tection for ImageNet data set: our structural learning algorithm, traditional structural
SVM algorithm, traditional multi-task boosting algorithm.

leverages the inter-concept semantic correlations in the label space via structured out-

put regression and the traditional multi-task boosting algorithm uses simple concept

combinations to exploit the inter-concept visual correlations.

The visual feature space is the common space for concept classifier training and

automatic concept detection, thus characterizing the inter-concept correlations (inter-

task relatedness) directly in the visual feature space and leveraging such inter-concept

visual correlations for concept classifier training can significantly improve the accuracy

rates of the concept classifiers on automatic concept detection. Using simple concept
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combinations for modeling the inter-task relatedness may seriously suffer from the

problem of huge computational complexity: there are 2n combinations for n image

concepts. In addition, not all the image concepts are visually-related and simply

combining the visually-irrelevant image concepts for joint concept classifier training

may decrease their performance rather than improvement [43]. On the other hand,

the benefits from performing structural output regression in the label space could be

limited because both concept classifier training and automatic concept detection are

performed in the visual feature space rather than in the label space. As shown in Fig.

46 and Fig. 47, one can observe that our structural learning algorithm can obtain

higher detection accuracy rates for automatic concept detection as compared with

traditional multi-task boosting algorithm and structural SVM algorithm.

In our structural learning algorithm, the visual concept network is used to de-

termine the inter-related learning tasks automatically (i.e., determine the visually-

related image concepts directly in the visual feature space) and the scales of the

semantic gaps are used to estimate the learning complexity and select more effec-

tive inference models for concept classifier training. To assess whether supporting

quantitative characterization of the semantic gaps contributes on concept classifier

training or not, we have implemented a new structural SVM algorithm, where struc-

tural output regression is performed over the visual concept network (inter-concept

visual contexts in the visual feature space) rather than over the inter-label semantic

contexts in the label space. As shown in Fig. 48, our structural learning algorithm

can obtain the concept classifiers with higher accuracy rates on automatic concept

detection as compared with this new structural SVM algorithm.
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Figure 48: Performance comparison on the accuracy rates for automatic concept
detection for ImageNet image set: our structural learning algorithm by using both
the scales of the semantic gaps and the visual concept network for inference model
selection versus traditional structural SVM algorithm by performing structural output
regression over the visual concept network.

The goal for concept classifier training is to find a concept classifier with low gen-

eralization error on test images. Using more image instances for concept classifier

training may usually improve the generalization ability of the concept classifiers and

result in low generalization error rates on test images, but the sizes of the training

image instances may significantly vary with the image concepts and largely depend on

the scales (values) of their semantic gaps. To achieve the same accuracy rates for au-

tomatic concept detection, more training image instances should be used to train the

concept classifiers for the image concepts with larger semantic gaps, but less training

image instances can be used to train the concept classifiers with small semantic gaps.

As shown in Fig. 49, our experimental results have demonstrated this phenomenon.

From these experimental results, one can observe: (a) When the sizes of the training

image instances are small, increasing the numbers of the training image instances

may significantly improve the accuracy rates of the concept classifiers for automatic

concept detection. When the sizes of the training image instances are large enough,

adding more training image instances cannot obtain significant improvement on the
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Figure 49: Our experimental results on the correlation among the accuracy rates for
concept detection, the scales of semantic gaps (Υ(castle) > Υ(flower) > Υ(beach)),
and the sizes of training image instances for concept classifier training.

accuracy rates of the concept classifiers for automatic concept detection. (b) When

the image concepts have larger semantic gaps, more training image instances are

needed to train their concept classifiers to achieve the same accuracy rates on auto-

matic concept detection as compared with the image concepts with smaller semantic

gaps.

6.8 Summary

In this chapter, we presents a data-driven method to quantitatively estimate the

semantic gaps of visual concepts, where both the inner-concept visual homogeneity

scores and the inter-concept discrimination complexity scores are seamlessly inte-

grated for the estimation directly in the visual feature space. A quantitative charac-

terization of the semantic gap can allow us to estimate the learning complexity for

each image concept and select more effective inference models for concept classifier

training. Our experimental results on a large number of image concepts have obtained

very promising results. Our future work will focus on cleansing large-scale Internet

images for assessing the effectiveness and robustness of our data-driven algorithm on
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supporting quantitative characterization of the semantic gaps.



CHAPTER 7: CONCLUSION

Visual recognition is one of the fundamental problems in computer vision, and

recent research efforts have been focusing on solving it in large-scale. In this dis-

sertation, we have studied the problem of large-scale visual recognition in various

aspects. In particular, we have considered more efficiently harvesting labeled image

data from the Web, making visual recognition models faster, learning more effective

visual dictionary for image content representation and characterizing the semantic

gaps of different visual concepts more accurately. In this chapter, we first summa-

rize our contributions and conclusions in previous chapters, and then discuss some

prospective directions for further research.

7.1 Summary of Conclusions

In Chapter 3, we have developed an automatic image-text alignment algorithm to

align Web images with their most relevant auxiliary text terms or phrases. One of

the main purposes is to collect a large number of images with semantic labels from

the Web for classifier training. Specifically, we have harvested a large number of

cross-media web-pages which contain Web images and their auxiliary texts, and then

segmented them into a collection of image-text pairs. Second, Web images have been

clustered into a number of groups using near-duplicate image clustering techniques

according to their visual similarity. Finally, we have performed the random walk
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over a newly proposed phrase correlation network to achieve more precise image-text

alignment by refining the relevance scores between Web images and their auxiliary

text terms or phrases. Experimentally, we have shown that the proposed approach can

effectively collect images with reliable labels using very limited human supervision.

In Chapter 4, we have proposed a visual tree model to reduce the computational

complexity of a large-scale visual recognition system. The visual tree was constructed

automatically for organizing a large number of image categories hierarchically accord-

ing to their inter-category visual correlations. The biggest advantage of the visual

tree model lies in the fact that the construction of its tree structure is very efficient

compared to previous tree methods which usually require training many classifiers in

advance. Our experimental results have demonstrated that the proposed visual tree

model can achieve very competitive results on both the categorization accuracy and

the computational speedup as being compared with other tree models.

In Chapter 5, we have proposed a joint dictionary learning (JDL) algorithm to

learn more discriminative dictionaries by explicitly separating the common visual

atoms from the category-specific ones. For a group of visually correlated classes, a

common dictionary and multiple class-specific dictionaries are simultaneously mod-

eled in JDL to enhance their discrimination power. The processes of learning the

common dictionary and multiple class-specific dictionaries have been formulated as

a joint optimization by adding a discrimination promotion term based on the Fisher

discrimination criterion. To make the JDL affordable in large-scale applications, we

have considered using the visual tree method described in Chapter 4 as well as the

label tree [9] model to cluster a large number of image categories into a set of disjoint
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groups. The process of image category clustering not only ensures that the cate-

gories in the same group are of strong visual correlation, but also makes the JDL

algorithm to be computationally affordable in large-scale visual recognition applica-

tions. Accordingly, we have developed three schemes to take the advantage of the

discriminative dictionaries learned by JDL for image content representation, classi-

fier training and image classification. Our experimental results have demonstrated

that the proposed JDL algorithm is superior to many unsupervised and supervised

dictionary learning algorithms, especially on dealing with visually similar categories.

In Chapter 6, we have presented a data-driven method to quantitatively estimate

the semantic gaps of visual concepts, where both the inner-concept visual homo-

geneity scores and the inter-concept discrimination complexity scores are seamlessly

integrated for the estimation directly in the visual feature space. A quantitative char-

acterization of the semantic gap can allow us to estimate the complexities of learning

different visual concept classifiers, and to select more effective inference models for

the training. Our experimental results on a large number of visual concepts have

demonstrated the effectiveness of our method.

7.2 Prospective Directions for Further Research

There are many ways to further extend the methods elaborated in this dissertation.

In this section, we detail a number of specific ideas for future research based on the

findings of this dissertations.

Feature Selection in Visual Tree Construction: In the visual tree model described in

Chapter 4, the visual similarities between image categories are computed only based
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on the BoW features where the HoG features are used as the local features. However,

in an ideal visual tree, the features used to split the tree nodes at different levels are

usually different. It is worth incorporating feature selection into the tree construction

process. The challenge, here, is that one has to select more effective features in a

unsupervised manner since the splitting process of a tree node is often unsupervised.

Domain knowledge would be helpful for feature selection.

Trade-off between Speedup and Accuracy in Tree Models: The visual tree presented

in Chapter 4 is built in a naive way that a hard partition of image categories is

adopted. Hard partition usually leads to higher speedup of inference since the image

categories are only allowed to be present in one particular child node. The drawback

here is that if we make a mistake on high-level nodes, we have no chance to correct

it. The soft-prediction was proposed in Chapter 4 to alleviate this issue, but the

effectiveness is limited. Another possible way to compensate the accuracy degradation

incurred by the hard partition is to allow the child nodes of the same parent node

to share some common but hard-separated classes. This can be implemented in

either one single tree or multiple complementary trees. Here, the difficulty is to find

a principle way to guarantee the convergence of the tree model while allow classes

overlapping across sibling nodes.

Image-based Discriminative Dictionary Learning: Most recently proposed super-

vised dictionary learning algorithms including the one presented in Chapter 5 aim to

learn visual words that can distinguish the class labels of local features, e.g . SIFT

or HoG descriptors, while the true objective is to be able to discriminate images or

object regions as a whole based on their distribution of visual word assignments of the
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local patches sampled from them. Local visual features from the same class are not

necessary similar in terms of appearance as an object itself contains a lot of different

texture patterns. What is visually similar is the distribution of visual atoms encoding

the local features of the same category. How to incorporate the classification loss at

image or object level into the local feature dictionary training process is attractive

and might lead better object recognition performance. This is a possible research

direction of our future work.
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