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ABSTRACT 
 
 
CHARLES CHRISTIAN DAVID. Essential dynamics of proteins using geometrical 
simulations and subspace analysis. (Under the direction of DONALD J. JACOBS) 
 
 
 Essential dynamics is the application of principal component analysis to a 

dynamic trajectory derived from a simulation protocol in order to extract biologically 

relevant information contained in the high dimensional data. In this work, we apply the 

methodology of essential dynamics to protein trajectories derived from geometrical 

simulations, which are based on the perturbation of geometrical constraints inherent in a 

protein. Specifically, we show that the geometrical simulation model is highly efficient 

for the determination of native state dynamics. Furthermore, by the application of 

subspace analysis to the essential subspaces of multiple sets of proteins that were 

simulated under multiple modeling paradigms, we show that the geometrical modeling 

paradigm is internally consistent and provides results that are qualitatively and 

quantitatively similar to results obtained from the more commonly employed methods of 

elastic network models and molecular dynamics. The geometrical paradigm is therefore 

established as a viable alternative or co-model for the investigation of native state protein 

dynamics with application to both small, single domain proteins as well as large, multi 

domain systems. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 General Overview 

 Proteins are biological molecules that participate in and catalyze chemical 

reactions necessary for life. The basic structure of a protein is that of a polymer 

composed of units called residues, which are chemically identified as alpha amino acids 

composed of an alpha carbon that is a chiral center (except in glycine), a carboxyl group, 

an amino group, and a functional group commonly referred to as the side chain, as shown 

in Figure 1.1. The sequence of the residues is determined primarily by the genetic code 

contained within the cell (deoxyribonucleic acid or DNA) and post-transcriptional 

processing that often occurs in the cell that produces the protein. Higher order structures 

of these polymers emerges as interactions between the residues cause the linear chain to 

adopt regular conformations known as secondary structures, such as alpha helices and 

beta sheets as shown in Figure 1.2. More complex structures arise, called tertiary 

structures, which engender identifiable topologies of the molecule as a whole. 

 Additionally, when two or more proteins interact, a quaternary structure is 

formed. The levels of protein structure are summarized in the Figure 1.3. Given such a 

hierarchy of structural organization, the ultimate arrangement of a large protein can be 

quite complex. In spite of this inherent complexity, many protein structures have been 

determined using a wide array of techniques such as x-ray crystallography, nuclear 

magnetic resonance (NMR), and cryo-electronic microscopy (cryo EM), and others. 
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Indeed, The Protein Data Bank (NCBI) (1,2) has acquired tens of thousands of structures 

for proteins, many of which play vital roles in the determination of health. While this is a 

noble achievement, these structures provide only a single (or a few when multiple 

structures exist) snapshot of a protein as it exists within a living cell. The key element 

missed by structure determination is dynamics and it is this dynamical behavior that 

ultimately determines the function of the protein in a biological sense.  

 The ability to determine the dynamics of a protein given only its structure still 

remains a Holy Grail for computational biologists and biophysicists. Each known 

structure provides a static snapshot of a protein, one configuration out of many possible 

states known as an ensemble, but it does not convey information about what other states 

are possible or whether those other states are probable. In order to address the 

determination of the dynamics of a protein, many computational approaches have been 

developed. All of these approaches invoke a three dimensional model of the protein 

structure, and the level of detail that goes into constructing that model has a great impact 

on how the model performs. The competing factors to be optimized in the model are the 

speed versus the accuracy. Including more details can improve model accuracy, but doing 

 Clearly, 

trade-offs must be made to account for the processing power of computational hardware. 

Additionally, the resolution of the description determines the time-scale at which the 

model functionally operates. Since a protein is a molecular system, a full description of 

all its chemical bonds requires quantum mechanics. However, this level of detail is not 

always needed to describe biologically relevant behaviors of the molecule. The key is to 

include the details that are needed for the behavior of interest, but no more. 
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 Not surprisingly, many models have emerged that span a spectrum of complexity, 

with the level of complexity being determined by the number and resolution of the details 

that are included in the computations. Some of these are extremely coarse-grained models 

that treat the residues in the protein as  (Figure 1.4), while others 

employ a very high resolution, tracking every atom in the molecule as it moves under the 

influence of a set of forces (Figure 1.5). Each such model uses a set of assumptions 

within a biophysical paradigm that computes a set of structures, called a trajectory, which 

purportedly characterizes the dynamics of the given protein. After a trajectory is 

computed, it is critical to assess how well it represents the actual dynamics of the 

sampled protein. In order to determine if the model sufficiently sampled the states 

available to the protein, a number of statistical tools are used. The ultimate aim here is to 

extract the relevant information from the trajectory that indicates the primary motions 

that the protein samples and relate this to possible known biological functions. Care is 

needed in the interpretation of a trajectory as each model probes a particular set of 

timescales that is determined by its level of complexity. Figure 1.6 illustrates this idea. 

Typically, dynamics at a very short timescale is distinct from the dynamics at longer 

times, as atomic fluctuations in side chains are very different from collective motions of 

large groups of atoms that form domains. Therefore, a trajectory that samples a particular 

timescale with statistically significant coverage of the possible structures (macrostates) 

timescale, while another trajectory that insufficiently sampled the proteins macrostates 

when similarly analyzed will likely produce misleading conclusions (3).  
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1.2 Computational Methods 
 
 

1.2.1 Protein Structure Preparation 

 In order to employ computational methods to determine the dynamics of a 

protein, the molecular structure of the protein must be assessed and possibly repaired. 

Most of the structures that exist in the PDB contain missing atoms and many have entire 

residues missing. Coarse-grained methods that employ an analysis of the protein 

backbone or the set of alpha carbons will not give reliable results unless the structure is 

first prepared for the analysis by filling in the missing residues. All atom methods are 

even more dependent on the initial structure, so some effort needs to be made to complete 

the structure in a biochemically sound manner. One approach to repair the protein is to 

first employ homology modeling (HM) to insert missing loops and flexible regions in the 

molecule. In this approach, one or more known structures are used as a template to 

inform how the missing residues should be placed in the gap. If no other structures are 

used, the incomplete structure may be used as its own template in a process called self-

HM. In this case, no evolutionary information is used to fill the gaps. After a set of HMs 

is created, the structures can be minimized in terms of energy and a satisfactory structure 

may be chosen using a variety of criteria. 

 Once the backbone of the molecule is complete, the next step is to assess the 

structure for bad phi-psi angles on a Ramachandran Plot (Figure 1.7) and to determine if 

there are any clashes in the side chains. Many minor problems can be either reduced or 

eliminated by performing an energy minimization under an appropriate forcefield, such 

as AMBER 99, which will relax the structure and relieve pockets of strain. The last step 

in the structure preparation involves the addition of hydrogen atoms and the 
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determination of the protonation state of the titratable residues (at a specified pH, usually 

close to 7). This is a critical step as it is the foundation for the hydrogen bond network 

within the protein. There are many programs to perform such a task, such as H++ 

available from Virginia Tech. Once the missing hydrogen atoms are added and the 

protonation state of the titratable residues determined, the structure is minimized again so 

that any new clashes or strains due to the additions or changes in partial charges can be 

relieved. One program that may be used for this entire process is called the Molecular 

Operating Environment (MOE) available from the Chemical Computing Group. The end 

result of the structure preparation recipe is a molecule that is ready to be used in either a 

coarse-grained or all-atom simulation. 

1.2.2 Elastic Network Models 

 One of the simplest computational models that has been applied to proteins is the 

elastic network model (ENM). In this model, a single point, either the center of mass of 

the residue or more commonly, the alpha carbon, is used to represent each residue. Each 

of these points forms a node on a graph and the interactions that each residue participates 

in is represented by an edge on the graph. While it is possible to use different values for 

the interaction, typically a single value is used as in the Anisotropic Network Model 

(ANM) (4,5,6). The result is a graph that is a network of beads connected by springs all 

having the same spring constant. Figure 1.8 provides an illustration of the process. A key 

simplification here is that a simple harmonic potential is implemented to describe the 

native basin defined by the global topology of the input structure. This coarse-graining 

has the effect of reducing complexities in the energy landscape of the real protein as 
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shown in Figure 1.9, and makes the model insensitive to slight variation in the protein 

structure. 

 In much the same way that coupled motion is studied in physics, the protein is 

analyzed using a normal mode analysis (NMA) (7). This is done by constructing the 

matrix of the second derivatives of the potential (the Hessian) and diagonalizing this 

matrix. The result of this eigenvalue-eigenvector decomposition is a set of frequencies 

(the eigenvalues) and a set of directions (the eigenvectors) that characterize the correlated 

motions of the protein. Timescale information is obtained from the frequencies, as the 

lowest frequency motions occur on the longest timescales and have been shown to 

represent biologically relevant motions of the protein. Higher modes, on the other hand, 

have been shown to be more local and represent events that occur on very short time 

scales such as side-chain fluctuations. 

 While this approach is both very simple and requires little computational time 

even for large proteins, it has been shown to be quite accurate in predicting large-scale 

motions of proteins. Another benefit is that no energy minimization is needed for the 

analysis. A limitation of this method is that no trajectory is produced and thus, one does 

not generate a complete ensemble of states in a thermodynamic sense. However, it is 

possible to calculate the vibrational energy of the modes from these models. 

1.2.3 Molecular Dynamics 

 Molecular dynamics (MD) represents a comprehensive model for the analysis of 

protein dynamics (8). While the model does not use quantum mechanical calculations, it 

does implement an all-atom classical forcefield. The basic assumption of this model is 

that the way a protein behaves can be elucidated by examining how it evolves through a 
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set of molecular steps under the influence of the specified forcefield. In this sense, the 

forcefield is key, as it must capture the essence of the interactions that drive the dynamics 

of the protein. A sample MD potential is shown in Figure 1.10. Most applications of MD 

to proteins use either an implicit or explicit solvent representation, as real proteins do not 

exist in vacuum, but rather are hydrated by water in the biological environment. Another 

critical aspect of the MD model is that it is a thermal simulation and proteins are not only 

hydrated, but the entire system of protein plus solvent is equilibrated at a specific 

temperature. Figure 1.11 illustrates a solvated protein in an MD simulation box. The 

benefit here is that the trajectory is not only a set of structures as a function of time, but it 

is a true ensemble in the thermodynamic sense, so that other thermodynamic quantities 

may be determined from such a trajectory. The downside to performing MD simulations 

is the computational resources and time that they require. 

 The critical issues here are the size of the protein to be simulated and the 

timescale that is to be investigated. The calculations are highly intensive and serial in 

nature, thus the simulation of large proteins can not be performed long enough to ensure 

that the ensemble has been sampled in a statistically significant manner for the timescales 

that are typically of interest. This problem arises due to the fact that an MD simulation 

can and does sample beyond the native basin of the input structure. The reason is that a 

protein exists within a free-energy landscape (FEL) and, for any given temperature, there 

will be a large number of local minima in this FEL that represent stable structures. This 

situation is illustrated in Figure 1.12. It is the nature of MD to allow the protein access to 

states beyond the single basin that represents the input structure, and the rate at which the 

protein samples the other minima in the FEL is dependent on the barriers that separate 
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those basins and the temperature at which the simulation is performed. A vexing problem 

with MD is that one never really knows if the simulation has equilibrated (9). A 

simulation may appear to be nicely equilibrated in a particular basin, but if the simulation 

is run just a bit longer, the system jumps to another basin (macrostate) and will need to 

limitations that must be considered depending on the application. 

1.2.4 Geometrical Simulation Model 

 A compromise between the two extreme levels of detail is achieved by using 

geometrical constraints (10,11). The geometrical simulation model (GSM) is a relatively 

new model paradigm that uses geometrical constraints to define the native basin of an 

input structure, while the perturbation of those constraints (with subsequent relaxation 

and tolerance matching) yields conformers within the constraint space of the input 

structure. Floppy Inclusions and Rigid Substructure Topology (FIRST) (12) implements a 

graph rigidity algorithm (The Pebble Game) that identifies flexible and rigid regions of 

the protein given the constraints that are present in the input structure. This process of 

recasting the protein as a set of rigid sub-graphs joined by hinges is referred to as a rigid 

cluster decomposition (RCD). Figure 1.13 depicts two RCDs, one at -1 kcal/mol (left) 

and the other at -2 kcal/mol (right). The RCDs are in color while flexible regions are 

shown in black. Since the Pebble Game counts the number of constraints in the network, 

the first requirement to perform a geometric simulation is the specification of all 

constraints. 

 After an input structure is suitably prepared by adding hydrogen atoms and 

determining the protonation state of the titratable residues, FIRST accomplishes this by 
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processing the structure using constraint assignment parameters, in particular, the 

specified energy cutoff for hydrogen bonds (HB) and the specified distance cutoff for 

hydrophobic tethers (HT). HBs span an energy range form near zero to -10 kcal/mole and 

therefore the choice of HB energy cutoff is critical. Choosing an HB cutoff of zero results 

in a structure that is highly over-constrained due to the inclusion of many weak 

interactions. Also, specifying a very low HB cutoff (less than -5 kcal/mole) results in an 

under-constrained structure that is similar to an unfolded state. In a similar fashion, HTs 

are needed to perform the RCD and these are determined by a distance cutoff between 

atoms that can support HTs (carbon and sulfur atoms). Choosing to include no HTs 

results in an under-constrained system while setting the HT cutoff too large will lead to 

the inclusion of excess HTs and result in an over-constrained system. Of importance to 

the GSM is the fact that HBs are modeled as harmonic constraints that take 5 degrees of 

freedom (DOF) (5 bars in the graph model), HTs are modeled as half-harmonic 

constraints (distance inequalities) that consume 2 DOF (2 bars in the graph model), and 

covalent bonds consume 5 DOFs (5 bars in the graph model, but 6 if the bond is not 

rotatable) and are quenched. It has been shown through rigidity percolation analysis (13) 

where the number of constraints is systematically varied, that different choices of 

constraints yield different rigidity transitions in proteins. 

 Although the constraint types used in FIRST/FRODA have been selected to best 

match empirical characteristics of protein flexibility in the native state, there remains 

considerable freedom in the user-defined rules for identifying native constraints. This 

model parameter ambiguity is unsettling when one wants to quantitatively characterize 

the native state dynamics of a protein. The fact that the user can select the number of HB 
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and HT to model as constraints may affect the outcome of a simulation, since this can 

substantially alter the degree of rigidity/flexibility predicted within a protein. Due to the 

strong dependence on constraint parameters, the structure can be characterized as being 

very flexible or very rigid. Presumably, both extremes are not physically correct. 

Unfortunately, a weakness of the GSM is that this selection is left to the user to decide, 

guided only by the default values, which are based on qualitative empirical results.  One 

would ideally expect that a range of constraint assignment parameters should exist 

between over-constrained systems and under-constrained systems where the dynamical 

behavior of the system would be qualitatively and quantitatively similar. Due to this 

inherent ambiguity in parameter choices, the GSM has not been popular. Specifically, the 

GSM has not been benchmarked and therefore is not a well established model based on a 

thorough assessment, in contrast to ENM and MD. 

 In order to generate a trajectory, the GSM makes the assumption that the rigid 

clusters will move as a single unit, so there is no need to track each individual atom 

within this unit. The RCD is used as input to Framework Rigidity Optimized Dynamics 

Algorithm (FRODA) to generate a set of output structures that sample the native basin 

defined by the input structure. FRODA performs a Monte Carlo (MC) simulation in 

which the RCD is perturbed and allowed to relax. The acceptance criterion is that the 

geometric constraints must be satisfied to within a specified tolerance. The initial energy 

of the system is therefore zero, indicating all geometrical attributes (packing, bonding, 

hydrophobic interactions) are valid and native-like. Thereafter, rigid cluster center of 

mass coordinates and orientations are randomized slightly in each MC move. After each 

randomization step, the energy of the system is relaxed back to zero energy without 
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causing any atomic clashing, and all rigid clusters are maintained within tight distance 

constraint tolerances. This procedure produces a trajectory that preserves all rigid 

clusters, while allowing relative positions of atoms in different rigid clusters to change 

within flexible regions without having any atom or rigid cluster pass through each other.  

 The efficiency of the simulation is greatly improved by activating the 

momentum  feature in FRODA. This feature weights a successful MC move and then 

biases the simulation to continue to move in the successful direction until no acceptable 

conformers are produced, at which point a new random perturbation is used. When using 

the momentum feature, the size of the random step should be reduced from 0.1Å to 

0.01Å. In spite of the order of magnitude reduction in the step size, the simulation 

actually explores the conformational space much more effectively than when using 

diffusion mode (no momentum feature), equilibrates rapidly, and generates constraint 

violations that are almost all less than 0.05Å. 

 A critical difference between the GSM and MD is that the GSM is an athermal 

model and the trajectory is not a function of time. In the GSM, the HB energy cutoff 

plays a role that is analogous to temperature in an MD simulation, but this analogy is not 

exact and equilibration must be assessed by studying the molecular fluctuations. The 

consequence of the athermal nature of the GSM is that it is difficult to extract 

thermodynamic quantities from the trajectory. The advantage of the GSM is that is runs 

very quickly, up to four orders of magnitude faster than MD, and since the RCD is not 

fluctuating, the GSM trajectory samples the native basin of the input structure exclusively 

 These advantages allow the GSM to 

be applied to large proteins and used for investigating the dynamics at long time scales. 
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1.3 Essential Dynamics and Analyzing Trajectories 
 
 

 Essential dynamics (ED) is the application of principal component analysis (PCA) 

to a protein trajectory in order to extract the most important dynamics for biological 

function (14,15,16). The idea is that even though proteins are fully characterized by a 

high dimensional space defined by a set of coordinates, or a set of degrees of freedom 

(DOF), the critical aspects of their dynamics can be represented in a much smaller 

subspace (SS) of that vector space (VS), called the essential subspace (ESS). The ESS is 

inherently stable against noise that is captured in the lower modes and is able to extract 

the biologically relevant motions of the protein when atomic variance/covariance is a 

determining factor. 

 The method of ED can be applied to both single trajectories as well as sets of 

trajectories obtained from either different simulation models or different model 

conditions. The value of pooling dynamic data is that greater statistics are obtained for 

sampling the configuration space of the protein and meaningful comparisons may be 

made between not only multiple states of a protein, but also between different models 

that are defined by distinct physical paradigms. 

1.4 Overview of the Dissertation Project 

 We develop a statistically sound protocol for extracting biologically relevant 

motions from geometrical simulations. In order to achieve this result, we tested the 

geometrical simulation paradigm and determined appropriate values of constraint 

assignment parameters. Additionally, we discovered that there is consistency within the 

model with respect to parameter choice. We also assessed the degree of trajectory 

equilibration and the statistical sampling efficiency of the model. Our first task was to 
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benchmark the geometrical paradigm. Our second task was to compare geometrical 

simulation results to the well accepted and commonly employed MD and ENM methods. 

The outcomes of these tasks allowed us to determine that the geometrical simulation 

paradigm is effective and efficient for the determination of the native state dynamics of 

single domain proteins. Our third task was to apply the geometrical simulation methods 

with subsequent ED analysis to large multi-domain proteins and compare the results to 

experimental methods such a fluorescence resonant energy transfer (FRET). From this 

work we were able to determine that the geometrical paradigm is also effective and 

efficient for elucidating the dynamics of subsets of interest within the large protein. 
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Figure 1.1: The general chemical structure of an alpha amino acid showing the functional groups and the chiral alpha carbon. 
Source: http://upload.wikimedia.org/wikipedia/commons/thumb/c/ce/AminoAcidball.svg/2000px-AminoAcidball.svg.png  
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Figure 1.2: Proteins adopt secondary structures due to the formation of hydrogen bonds along the backbone. Source: 
http://nook.cs.ucdavis.edu/~koehl/BioEbook/Classification/images/figure3.gif  
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Figure 1.3: Proteins form a hierarchy of structures ranging 
from the linear arrangement of residues to complex 
interactions between multiple protein chains. Source:  
http://upload.wikimedia.org/wikipedia/commons/
thumb/c/c9/Main_protein_structure_levels_en.svg/
2000px-­Main_protein_structure_levels_en.svg.png  
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Figure 1.4: A set of residues is modeled as beads on a string. Different symbols 
indicate that the residues are not identical, but some models treat all residues 
identically. Source: http://www.waisman.wisc.edu/2mbadd/protein.jpg  
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Figure 1.5: Atoms in a simulation box. All interactions supported by a 
specified forcefield are tracked for every particle. Source:  
http://cloud.gpuscience.com/wp-content/uploads/molecules.png  
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Figure 1.6 Timescales and Ranges of Equilibrium Motions. 
Motions range from side-chain rotations to slower concerted domain motions. X-ray crystallography and 
NMR are the primary sources of information on such conformational changes at atomic resolution. Also 
indicated along the abscissa are the timescales of processes that can be explored by molecular dynamics 
simulations (MD) and coarse-grained (CG) computations. Adapted from Bahar et.al., 2009. 
 

 

Figure  1.6  Timescales  and  Ranges  of  equilibrium  motions. 
Motions range from side-chain rotations to slower concerted domain motions. X-ray 
crystallography and NMR are the primary sources of information on such conformational 
changes at atomic resolution. Also indicated along the abscissa are the timescales of processes 
that can be explored by molecular dynamics simulations (MD) and coarse-grained (CG) 
computations. 
Adapted from Bahar et. al., 2009. 
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Figure 1.7: Ramachandran Plot. 
This plot (left) shows the phi and psi angle pairs that correlate to typical secondary structure elements. Angle pairs that occur outside the typical range indicate there is 
inherent strain in the protein backbone. A description of the phi and psi torsion angles are shown in the right panel. Adapted from: 
http://molecularsciences.org/files/images/torsion_angles.gif  

Figure 1.8: Generating a Spring Network from a Protein Structure. 
The process of converting a protein structure (left panel) into a spring network is shown. Residues are first represented by the alpha carbon. Interactions are replaced by springs 
as shown in the middle panel. Subsequent NMA yields the modes of fluctuation as shown in the right panel. Source: http://t3.gstatic.com/images  
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Figure 1.9 Energy Profile of the Native State. 
N denotes the native state, modeled at a CG scale as a single energy minimum. A detailed examination of 
the structure and the energetics may reveal multiple substates (S1, S2, etc.), which in turn contain multiple 
microstates (m1, m2, etc.). Structural models corresponding to different hierarchical levels of resolution are 
shown: an elastic network model representation where the global energy minimum on a CG scaled (N) is 
approximated by a harmonic potential along each mode direction; two substates S1 and S2 sampled by 
global motions near native state conditions; and an ensemble of conformers sampled by small fluctuations 
in the neighborhood of each substate. Adapted from  Bahar et.al., 2009. 
 

 

 

 

 

 

!

! "#$%&'()*'+, &%#-­'.%/0"1&'/0'23&', 42"5&'6242&'7 /8&1&8'42'8"00&%&, 2'%&6/1

" !#$%&'$(! ') $!%*'+, $!('*'$-!. &#$/$#!*'!*!0 1 !(2*/$!*(!*!(+%3/$!$%$435!. +%+. 6. 7!8 !#$'*+/$#

('462'64$!*%#!$%$43$'+2(!. *5!4$, $*/!. 6/'+9/$!(6: ('*'$(!;<=-!<>-!$'27?-!@) +2) !+%!'64%!2&%'*+%!. 6/'+9

. >-! $'27?7! <'462'64*/! . &#$/(! 2&44$(9&%#+%3! '&! #+AA$4$%'! ) +$4*42) +2*/! /$, $/(! &A! 4$(&/6'+&%! *4$! () &@%B! *%! $/*('+2!

%$'@&4C!. &#$/!4$94$($%'*'+&%!@) $4$!') $!3/&: */!$%$435!. +%+. 6. !&%!*!0 1 !(2*/$!;" ?!+(!*994&D+.

9&'$%'+*/!*/&%3!$*2) !. &#$!#+4$2'+&%!;$737!*%+(&'4&9+2!%$'@&4C!. &#$/!;8 " E ??F!'@&!(6: ('*

$2"/ , 6)'

!$D*. +%*'+&%!&A!') $!

/$!. +24&('*'$(!;. =-!

*'$#!: 5!*!) *4. &%+2!

'$(!<=!*%#!<>!(*. 9/$#!: 5!

3/&: /!. &'+&%(!%$*4!%*'+, $!('*'$!2&%#+'+&%(F!*%#!*%!$%($. : /$!&A!2&%A&4. $4(!(*. 9/$#!: 5!(. *//!A/62'6*'+&%(!+%!') $!

%$+3 : &4) &&#! &A! $*2) ! (6: ('*'$7! G) $! #+*34*. (! ) *, $! : $$%! 2&%('462'$#! 6(+%3! ') $! A&//&@+%3! 4) &#&9(+%! ('462'64$(!

#$9&(+'$#!+%!') $!HI J B!!=K=L!;" ?F!=K=L!*%#!M0 8 H!;<=!*%#!<>?!*%#!=NOO-!=1 PE -!=QPR-!=SLQ-!=K=L-!>1 OT-!

>QHU-!>VMW-!>VMX-!>VMT-!>YZU-!>H[ I -!M0 LS-!M0 LE !;. +24&('*'$(?7!N+364$!+(!*#&9'$#!A4&. !;J *) *4!$' !*/7-!>\ \ L?7!

!

!

*

)

! X!

Figure  1.9  Energy  profile  of  the  native  state. 
N denotes the native state, modeled at a CG scale as a single energy minimum. A detailed examination of the 
structure and energetics may reveal multiple substates (S1, S2, etc.), which in turn contain multiple 
microstates (m1, m2, etc.). Structural models corresponding to different hierarchical levels of resolution are 
shown: an elastic network model representation where the global energy minimum on a CG scale (N) is 
approximated by a harmonic potential along each mode direction; two substates S1 and S2 sampled by 
global motions near native state conditions; and an ensemble of conformers sampled by small fluctuations in 
the neighborhood of each substate. Adapted from Bahar et. al., 2009. 
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Figure 1.10 A sample MD Potential 
The form of the potential that is used in MD simulations includes terms for both bonded and non-bonded interactions. 
Source: http://amit1b.files.wordpress.com/2008/04/force-field2.jpg  

( ) ( )
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Figure 1.11 A Hydrated Protein in a Simulation Box. 
While MD simulations may be run in vacuum, more often they use either an implicit or 
explicit solvent in the model. Source: http://www.yasara.org/dhfr.gif  
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Figure 1.12 Free Energy Landscape of a Protein 
The free energy landscapes of proteins tend to be rough with many local minima and a 
single global minimum corresponding to the native state. 
Source: http://www.lsbu.ac.uk/water/images   
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Figure 1.13 Rigid Cluster Decomposition (RCD) 
The RCD identifies all atoms that are located in rigid regions 
joined by hinges, shown here in color. The RCD is strongly 
dependent on the hydrogen bond energy cutoff (HBCut). The 
left panel shows the RCD of myoglobin using HBCut= -1.0 
kcal/mole. The right panel shows the RCD of myoglobin 
using HBCut= -2.0 kcal/mole. While similar, the lower HB 
cutoff results in a more flexible structure, as indicated by the 
black regions. 



 
 
 
 
 

CHAPTER 2: STATISTICAL METHODS 
 
 

2.1 Principal Component Analysis & Essential Dynamics 

Protein dynamics is manifested as a change in molecular structure, or 

conformation as a function of time. To describe accessible motions over a broad range of 

time scales and spatial scales, protein conformations are best represented by a vector 

space that spans a large number of dimensions equal to the number of degrees of freedom 

(DOF) selected to characterize the motions. Many molecular simulation techniques are 

available to generate trajectories to sample the accessible conformational ensemble 

characterized by those DOF. The interpretation of a trajectory can lead to better 

understanding of how proteins perform biological functions. To this end, the process of 

extracting information from sampled conformations over a trajectory, and checking 

whether the sampling is a robust representation of an ensemble of conformations 

accessible to the protein, are tasks well suited for statistical analysis. In particular, 

Principal Component Analysis (PCA) is a multivariate statistical technique applied to 

systematically reduce the number of dimensions (see Figure 2.1 for a simple example) 

needed to describe protein dynamics through a decomposition process that filters 

observed motions from thelargest to smallest spatial scales (17-21). 

PCA is a linear transform that extracts the most important elements in the data 

using a covariance matrix or a correlation matrix (normalized PCA) constructed from 

atomic coordinates that describe the accessible DOF of the protein, such as the Cartesian 
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coordinates that define atomic displacements in each conformation comprising a 

trajectory (3). When all of the atomic displacements posses similar standard deviations, a 

covariance matrix is typically used, otherwise it is prudent to employ the correlation 

matrix, which normalizes the variables to prevent rare but large atomic displacements 

from skewing the results. In constructing the covariance matrix or correlation matrix 

(henceforth C-matrix will be generically used for either matrix type), it is often assumed 

that the amount of sampling is sufficient, but this always requires many more 

observations than the number of DOF (variables) used in the matrix. An eigenvalue 

decomposition (EVD) of the C-matrix leads to a complete set of orthogonal collective 

modes (eigenvectors), each with a corresponding eigenvalue (variance) that characterizes 

a portion of the motion, where larger eigenvalues describe motions on larger spatial 

scales. When the original (centered) data is projected onto an eigenvector, the result is 

called a principal component (PC). 

 While PCA can be performed on any high dimensional dataset, for the analysis of 

a protein trajectory, a C-matrix associated with a selected set of atomic positions must be 

constructed. Often, a coarse grained description of the protein motion is made at the 

residue level by using the alpha carbon atom as a representative point for the position of a 

residue. In this case, the C-matrix will be a 3 3m m  real, symmetric matrix, where m  is 

the number of residues. Performing an EVD results in 3m  eigenvectors (modes) and 

3 6m non-zero corresponding eigenvalues, provided that at least 3m  observations are 

used. When the eigenvalues are plotted against mode index that are presorted from 

When such a scree plot forms, a large portion of the protein motions can be captured with 
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a remarkably small number of modes that define a small dimensional subspace. The top 

set of modes typically has a higher degree of collectivity (22), meaning the PCA modes 

have many appreciable components distributed quite uniformly. Conversely, a low degree 

of collectivity indicates there are a small number of appreciable components, although 

they are not necessarily tied to a localized region of space. When analyzing proteins, 20 

spa

tremendous reduction of dimension.  

 The process of applying PCA to a protein trajectory is called Essential Dynamics 

t of sampled conformations 

(23-25). Of course, a linear combination of the 3m orthogonal PCA modes can be used to 

describe exact protein motions (at the selected coarse grained level). In practice, the 

presence of large-scale motions makes it difficult or impossible to resolve small-scale 

motions because the former has much greater relative amplitude in atomic displacements. 

Indeed, it is for this reason that the large-scale motions are often the most biologically 

relevant. Therefore, only a small number of PCA modes having the greatest variances are 

used to characterize large-scale protein motions. When small-scale motions are of 

interest, the method of PCA can still be used successfully by applying it to sub-regions of 

a protein as a way to increase the resolution for describing the dynamics within those 

sub-regions. 

 An alternative method to quantify large-scale motions of proteins is to use a 

Normal Mode Analysis (NMA) (7,26) derived from an Elastic Network Model (ENM) 

(5,6). In the ENM, one typically considers nearby alpha carbon atoms to interact 
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harmonically, where the connectivity is determined from a single structure to extract an 

elastic network. Typically, the large-scale motions quantified by a small set of lowest 

frequency modes of vibration are in good agreement with the same corresponding 

number of PCA modes when direct comparisons of subspaces are made (27-29). One 

advantage of performing PCA to obtain the ED of a protein is that information from any 

selected set of atoms can be used to obtain the PCA modes associated with that subspace. 

While it is true that ED is often applied to the analysis of alpha carbons, this is not 

required. The spatial resolution of PCA analysis can be coarser than the resolution of the 

structures that comprise the trajectory, which, for example, may come from an all-atom 

based simulation. Another advantage of ED is that statistics from many trajectories may 

be pooled allowing a great deal of flexibility in the way data from different simulations 

can be combined. The overall large-scale motions and any number of selected small-scale 

motions can be determined in a post-simulation phase of research as the nature of the 

protein motions are being interrogated.  

 Perhaps the most important difference between NMA and PCA is in the 

assumption of harmonicity. The premise of NMA requires the molecular motion is 

confined near the local minimum in the free energy landscape where residues in close 

proximity (i.e. atomic packing) respond as harmonic pairwise interactions (i.e. springs). 

Since proteins display a significant amount of anharmonicity in their behavior, this 

assumption is not always suitable (30-32). PCA makes no assumption of harmonicity, 

and thus is not limited to harmonic motions. Indeed, because PCA is independent of the 

model invoked during the simulation to generate the trajectory, the resulting 

conformational changes that can be explored can deviate far from the harmonic 
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assumption. On the other hand, the limitations of PCA stem from using a linear transform 

that is based on second moments (covariance), and the fact that subsequent factorization 

yields eigenvectors that are orthogonal. While a linear transform of the data is always 

possible, if the variables are not intrinsically linearly related, any non-linear relationships 

present will not be properly described. Nonetheless, in practice, standard PCA is similar 

to the standard ENM approach. In other words, relying on covariance implies higher-

order correlated motions related to higher moments are missed.  

 Non-linear generalizations of PCA are available such as kernel PCA (33) that can 

be applied directly, or employed after the most relevant subspace is identified first using 

standard PCA. A disadvantage of kernel PCA is that the choice of kernel is not obvious 

because it is problem dependent, although we show below that some common choices 

work well for protein trajectories. Also problematic is that the reconstruction of data is 

difficult to interpret because the mapping involves feature space, which is distinctly 

different than conformational space that has a geometric interpretation despite being of 

high dimensionality. The reason for employing kernel PCA is to differentiate 

conformations within an ensemble beyond that possible using standard PCA, which may 

give insight into structural mechanisms governing protein function. Our work suggests 

that the simplest PCA, which follows from the C-matrix, offers a validated method to 

describe the dominate correlations present in atomic motions found in proteins, and it 

provides an effective dimension reduction scheme that can be used for subsequent 

analysis to capture non-linear (or higher order correlations) affects when they are of 

interest. Nevertheless, in practice it is always important to ensure and test the robustness 

of the PCA modes. 
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 Keep in mind that individual PCA mode directions are subject to errors related to 

finite sampling of conformations to construct the empirical C-matrix. The empirical C-

matrix should be a good estimate for the actual population C-matrix (infinite samples). In 

practice, PCA can be strongly influenced by the presence of outliers in a dataset. The 

main concern is that the outliers may skew the first few mode directions. While there are 

robust algorithms that are useful in stabilizing PCA in the presence of outliers (34-41), it 

is often effective to remove identifiable outliers or simply consider a sufficiently long 

trajectory for which the results are significant. Generating a large number of 

conformational samples and removal of outliers before the C-matrix is calculated 

mitigates concerns about robustness of the results. Moreover, this type of intrinsic error 

does not pose much of a problem as long as biologically relevant motions are described 

using a superposition of a small set of dominant modes (instead of focusing on one 

mode). As the mode number increases the core part of this subspace becomes stable 

against sampling noise. However, only the top several modes tend to be useful. 

 The choice of which modes to include is often made by examining the scree plot 

42,43), such that all modes up to the kink are 

important. Although a kink does not have to exist, it typically does in the study of protein 

dynamics. In fact, a kink will generally appear for any high dimensional dataset. Hence 

the name scree (geological debris at the bottom of a cliff) plot has been tied to PCA. 

Other criteria are commonly used for the choice of essential modes. For example, the top 

set of modes associated with greatest variances when added should reach some fraction 

(say 80%) of the total variance possible given by the trace of the C-matrix. The problem 

with this method is that some a priori set fraction is arbitrary, and for fractions greater 
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than 50% one tends to end up with many more modes than are truly relevant to the 

problem. The scree plot provides an objective criterion. Figure 2.2 shows the scree plots 

for PCA of two protein simulations and a random process created from independent and 

identically distributed variables. Notice there is a rapid decrease in the eigenvalues for the 

proteins that is not present in the random process. 

 When PCA is applied to Cartesian coordinates that describe the positions of 

atoms, an alignment step is necessary prior to the process of constructing the C-matrix 

because the intent is to capture the internal motions of a protein. The structural alignment 

step requires the center of masses to coincide as well as a global rotation to optimally 

align the structures. We implemented a quaternion rotation method to obtain optimal 

alignment defined by the minimum least-squares error for the displacements between 

corresponding atoms (See Appendix D). PCA is not limited to the analysis of a Cartesian 

coordinate-based C-matrix. Any set of dynamic variables that describe the protein motion 

can be used. For example, one may choose to use internal dihedral-angle coordinates 

such as the ,  angles or interatomic distances, which eliminates the need to 

optimally align conformations. However, in the former case, it has been realized there is 

an intrinsic non-linear effect that is not well described using standard PCA, suggesting 

kernel PCA should be employed or an alternative internal coordinate system that is 

naturally linear should be chosen. In the latter case, internal atomic distances offer the 

possibility of an all-to-all distance C-matrix for the alpha carbons, which has a row 

dimension equal to the number of structures in the trajectory and a column dimension 

equal to 1 / 2m m , where m  is the number of residues considered. A distance based 

C-matrix can be created, which is a square matrix with dimension 1 / 2m m , and 
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therefore requires much more sampling.  In this case, the PCA modes reveal the 

coordinated changes in distances between all residue pairs. Despite the advantage of 

working directly with internal coordinates, performing all-to-all distance PCA quickly 

becomes computationally prohibitive due to the need to diagonalize very large non-sparse 

matrices. More importantly, the interpretation of the eigenvectors becomes difficult when 

the number of residues is greater than ten. Nevertheless, this approach has proven useful 

when studying a small subset of atoms where the interpretation is clear (44,45). 

 The task of applying PCA to a conformational ensemble (CE) requires that a CE 

be generated. There are multiple ways to create a CE including molecular dynamics 

(MD) and geometrical simulations such as FIRST/FRODA (10-12). A CE may be 

generated by experimental methods such as using protein structures from X-ray 

crystallography or nuclear magnetic resonance (NMR) techniques. For certain 

applications it is prudent to combine multiple CEs together that define a single dataset. 

One reason for combining different CEs is to boost statistics, where each CE has the 

same characteristics. This is convenient, as the simplest way to apply parallel computing 

occurs when multiple simulations are run simultaneously and independently. However, 

the CEs that are combined could represent different conditions, such as different 

temperatures in MD simulation, fixing a different set of distance constraints in geometric 

simulation or contrasting mutant structures. Clustering different CEs in the subspace 

defined by the most relevant PCA modes provides insight into the effect of varying 

conditions. In some cases, a protein may undergo large-scale (anharmonic) 

conformational changes that bridge two distinct basins of low free energy. The combined 

CEs will allow these basins to be clearly identified, as well as the paths connecting them. 



   34  

Similarly, different CEs that represent a set of mutant structures, or apo and holo forms of 

a protein, possibly with different ligands bound, allow one to differentiate the 

conformations easily by clustering in a small dimensional subspace. 

 The most appealing and intuitive way to investigate the nature of protein motions 

is to project the displacement vectors (DV) defined in the original high dimensional space 

that characterize different conformations onto a pair of PCA modes. It is even possible to 

project onto higher dimensions as one visualizes multiple PCA modes simultaneously 

using specialized software such as R or XL- -in for Microsoft 

Excel developed by Addinsoft . Such plots are indispensible for assessing how well 

certain parts of the subspace are sampled, especially in comparative studies where 

differentiation in dynamics can have functional consequences. The results of such an 

analysis show how each state occupies a region of the conformational space defined by 

the first two PCA modes. 

2.2 Subset Selection and Analysis 

 A substantial advantage to ED over other methods is that one may choose to 

examine a subset of a protein to determine the large-scale motions within that particular 

set of residues under the influence of all the entire set of residues contained in the protein. 

This last constraint is the key: Running a smaller simulation will inform about a subset of 

a protein, but it will NOT inform about how that subset behaves under the influence of all 

the other residues in the protein that interact with it. Subset selection involves choosing a 

subset of residues/atoms from a protein and analyzing their dynamics from a trajectory 

derived from the entire protein. Since PCA will always reveal the correlated motions of 

the atoms with greatest variance in the first mode, zooming in on a protein allows an 
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investigator to determine the functional motions of subsets of a protein. It is critical to 

realize that the motions of a subset may be washed out in a simulation of the entire 

protein, but become prevalent once the subset is analyzed. One very useful subset of 

atoms is the set of all alpha carbons. Analysis of this subset reveals global residue-level 

correlated motions within the protein and is a coarse-grained analog of the all-atom 

NMA, which allows one to better interpret the large-scale motions that are often relevant 

to protein function. 

 More detailed analysis can be performed using the entire backbone or even all 

heavy atoms. As the level of detail increases, the results of the analysis portray emergent 

correlated motions of more complexity. This could be taken to the extreme limit of 

including all atoms, but interpreting the results of such an analysis would be difficult at 

best. Other subsets of special interest involve active sites and possible allosteric 

pathways. Focusing on particular sets of atoms often reveals details that are critical to 

overall protein function, which while latent within the overall simulation, are often 

washed out in the subsequent statistical analysis. The result of zooming in on a subset of 

the protein helps to elucidate such washed out features and provide insight into biological 

mechanisms. However, determining an appropriate subset of atoms is non-trivial in a 

brute-force way and is best assisted by biological/biochemical/physical intuition and from 

experimental insight. Such insight may be derived from using probes, as in the 

application of fluorescence resonance energy transfer (FRET) analysis. 

2.3 Metrics for Assessing Subspace Similarity 

 Once ED has been performed on a number of trajectories, it is useful to assess 

how similar the dynamics from each trajectory are to one another. Given that the ED of a 
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protein is characterized using a small vector space defined by PCA modes that reflect 

different CEs and a combined CE, it becomes necessary to benchmark how similar these 

subspaces are to one another. When subspaces are sufficiently similar, this implies that 

the different ensembles capture the same type of protein dynamics. Conversely, when 

subspaces overlap poorly, different types of motions are being captured, which may have 

biological consequences tied to the different conditions analyzed. As such, it is necessary 

to define a measure to quantify the overlap of vector subspaces, as a natural 

generalization to the concept of a projection (dot product) of one vector onto another. 

 That said, note that a set of n  PCA modes forms an orthogonal n  dimensional 

subspace (SS) within the full vector space (VS) defined by the size of the C-matrix. 

Common metrics that quantify SS similarity include cumulative overlap (CO), root mean 

square inner product (RMSIP), and principal angles (PA) (23, 46-50). The CO metric 

quantifies how well one SS is able to capture the PCA modes of the other SS. The 

RMSIP metric is a single number that quantifies the SS similarity in terms of multiple 

inner products between the two. The PA method provides a quantification of the optimal 

alignment between the two SS that is based on the singular value decomposition (SVD) 

of a matrix of overlaps (inner products) between the two SS. The result is a sorted 

(monotonically increasing) set of n  angles, where n  is the dimension of the compared 

subspaces, that quantify how well the two SS can be aligned. 

 When comparing essential subspaces, keep in mind that all of the subspace 

metrics described above depend on both the dimension of the SS and the dimension of 

the full VS as shown in Figure 2.3. One way to assess PCA modes is to compare them to 

the modes of a random process to obtain a baseline for determining the significance of 
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the subspace comparisons as the dimensions for the SS and full VS change. With these 

baselines, a Z-score can be calculated to assess the statistical significance of the scores, 

for example when using RMSIP: 

                Eq. (2.1) 

 However, the essential SS of a random process has very different characteristics 

than the essential SS constructed from a protein trajectory as Figures 2.2-4 clearly show. 

Randomly shuffling the indices for the components of modes produces a new set of 

modes that have essentially the same character as the modes determined by PCA on a 

purely random process. Consequently, any two same-sized proteins share much more in 

common than would be expected by a random process, making large Z-scores not very 

useful in practice. This is due to the fact that compared to a completely random process 

all proteins share much more common dynamics because they share common structural 

features such as a covalent backbone even if their fold topology is very different. What 

this means in practice is that any of the metrics described above for any two proteins will 

show much more overlap compared to a random process. In fact, using two different 

trajectories under the same conditions, we found that the scores for overlap between two 

identical proteins can be lower than the overlap between two different proteins when the 

number of residues is small (<100). This result is augmented when using a coarse-grained 

approach that prunes many discriminating features (to reduce DOF). To obtain a more 

stringent criterion for z-score determination, the data presented strongly suggests that a 

comparison to other proteins, possessing the same number of DOF, that define a decoy 

set should be used to define the random baseline in Eq. (1), rather than a generalized 
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random process. However, to the best of our knowledge, baselines from decoys have not 

been done.  

 Figures 2.5-6 show the risk of comparisons made for small proteins using a 

coarse-grained model. For this analysis, four proteins having distinctly different folds 

were simulated under the same conditions using geometrical simulation and then 

subjected to PCA as a combined set, where only the first 75 residues were included in the 

covariance matrix starting from the N-terminus and always remaining within the N-

terminal domain. Figure 2.5 shows the Z-scores for the comparisons in Figure 2.4. Here it 

is critical to note the similarity between the random process and the decoy comparisons. 

When 1WIT is compared to itself (using different simulation conditions), RMSIP 

saturation suggests that the proper essential subspace dimension is 9 modes. However, 

the random process and the decoy comparisons do not reach a saturation point within the 

first 30 modes. When working with larger proteins, such comparisons are much safer, as 

shown in Figures 2.6-7 with myosin V (MV). The moral here is that extra care must be 

taken to claim significance of PCA results on small proteins when coarse-graining is 

used. 

   Another way to assess how stable the PCA results are can be made by looking for 

cosine content within the top few PCs. It has been noted that MD trajectories, which 

insufficiently sample the conformational space of the protein, yield PCs that resemble 

cosine functions with periods equal to half the mode number, which is what occurs for 

PCs derived from random diffusion (51). The resemblance is determined by finding the 

correlation between the set of T values of PCi and the function cos 2 /t bT where  

0 , / 2t T b i  . We note that CEs derived from geometrical simulation do not 
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produce PCs that resemble cosines due to the restriction of conformational space imposed 

by the locking in of the distance constraints at the beginning of the simulation. However, 

it can occur in MD simulations, which would be an indication that sampling is limited. 

Thus, if the CE is derived from an MD simulation, it is prudent to assess the first two or 

three PCs to determine how much they resemble a cosine function with a period equal to 

half of the mode index. 

2.4 Sampling 

 A final concern with assessing the PCA output is the significance of the results. 

While PCA is robust when there is sufficient sampling, the questions that remain are 

what constitutes sufficient sampling and how trustworthy are the modes. Since PCA 

relies on the factorization of the C-matrix, the condition number of the C-matrix indicates 

the numerical accuracy that can be expected within the solution of the associated set of 

equations. For a given process, more sampling reduces the condition number. Therefore, 

if the condition number for a C-matrix is high, this could be an indication that there is not 

enough statistics. If possible, the number of independent samples should be at least ten 

times the number of variables. Two direct measures for sampling significance are known 

as the Kaiser-Meyer-Olkin (KMO) score given as: 

   2 2 2
jk jk jk

j k j j k j j k j

KMO r r p            Eq. (2.2) 

and the associated measure of sampling adequacy (MSA) given as: 

   
2 2 2

j jk jk jk
k j k j k j

MSA r r p             Eq. (2.3) 

where r  is the standard correlation coefficient and p  is the standard partial correlation 

coefficient (52). These statistics can take values between zero and one. If all the partial 
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correlations are zero, then the MSA score is 1. The KMO score indicates the amount of 

partial correlations between the sampled variables and provides an indicator for when 

applying PCA is appropriate. The MSA provides a metric for each variable. KMO and 

MSA should ideally be greater than 0.5. It is worth noting that the MSA scores for each 

variable are related in a non-trivial way to the protein environment. Specifically, there 

tends to be a small to medium negative correlation between the MSA scores when 

averaged for each residue and the residue RMSD. 

2.5 Kernel Methods 

 When choosing to work in the sample space, either due to a small number of 

samples or to implement a non-linear method, one must construct the kernel matrix K , 

which is an n nsquare symmetric matrix, where n is the number of observations. Each 

element of K is formed by computing ,K i j , where i and j represent two observations 

from the centered data set, using the definition for the specific kernel function of interest, 

k . Essentially, the kernel function maps N dimensional vectors in N from the sample 

space to a new high dimensional (possibly infinite) vector space referred to as feature 

space. Working in the high dimensional feature space can often detect features that are 

the feature space from a collection of inner-products so that the actual mapping function 

is never calculated. Calculating inner products over the sampled data is not by itself an 

intensive operation. This method of avoiding the difficulties normally associated with 

high- worth noting that using this 

approach, only a subset of feature space is being explored, which is limited by the range 

of the data of the original sample space. 
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 The kernels that can be employed must yield positive-definite symmetric square 

matrices (33). When the kernel is defined simply as the inner product of the input data 

(linear kernel), then the results of the analysis are identical to the standard PCA. 

Specifically, one will recover the same set of non-zero eigenvalues as that from the 

covariance matrix based PCA. In this sense, kernel PCA (kPCA) subsumes standard 

PCA. Additional features may be detected by using other types of non-linear kernels, 

such as a Gaussian kernel, a Neural Net kernel (i.e., a tanh  function), a kernel that maps 

the data to a set of degree n polynomials (either homogeneous or inhomogeneous), or a 

mutual information kernel. There are no rigorous guidelines for which kernel to apply to 

the data of interest and thus the method of kPCA requires intimate knowl

data (or based on trial an error) as well as how a particular kernel might or might not 

affect the resolution of multiple states. Furthermore, most kernel functions have 

adjustable parameters that need to be set to obtain the best resolving power within feature 

space. 

Unfortunately, there is no a priori formula for parameter optimization because this 

process is highly dependent on the data used. Lastly, unlike standard PCA where the PCs 

are generated by taking the dot product of the DVs and the appropriate eigenvector, the 

process for kPCA is more involved. First, the eigenvectors must be normalized in the 

sample space to reflect the fact that their magnitude in the feature space is unity, and then 

the PCs (for the training set) are calculated by determining the sum of the inner products 

of the normalized eigenvectors with the kernel columns. Having used both standard PCA 

and kPCA, we note that when the parameters are suitably tuned, the ability of kPCA to 

discriminate multiple states from a trajectory is impressive.  
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If kPCA is to be used, we note that an ideal approach for computationally 

intensive kernels is to first use PCA to reduce the dimension of the data and then apply 

the kernel methods to the top set of PCs. In this approach, we have found that as few as 

five PCs may be used as input to kPCA with no substantial loss in numerical accuracy. 

This filtering process greatly reduces the computational intensiveness of the kPCA, 

although it does not reduce the size of the kernel matrix.  

2.6 Additional PCA Variations 

 For completeness, we briefly consider the method of Independent Component 

Analysis (ICA) (53). ICA is a method for performing blind source separation, as when 

one wishes to decompose a mixed signal into two signals or a signal plus noise. The 

underpinning mathematics of the method is to detect non-Gaussian processes by looking 

at higher order correlations than second degree. To achieve this, ICA is typically 

implemented using either kurtosis or an information theoretic quantity like mutual 

information (FastICA) as a contrast function (54). 

 To apply ICA, one must first center the data and then whiten it. Whitening is the 

process of transforming an observed data vector linearly so that one obtains a new vector, 

which is white, i.e. its components are uncorrelated and their variances equal unity. In 

other words, the covariance matrix of a whitened data vector equals the identity matrix. 

One method for whitening data involves an EVD of the covariance matrix and is given by 

1
2 Tx E D E x   where x  is the centered data, E  is the matrix of eigenvectors from the 

EVD of the covariance matrix, with TE  its transpose, and D  is the diagonal matrix of 

eigenvalues from the EVD of the covariance matrix. Once the data has been centered and 

whitened, the ICA algorithm essentially computes the optimal rotation of the data using 



   43  

higher order statistics (e.g., fourth moments), thereby determining the independent 

components (ICs). We note that the algorithm can be computationally expensive for high 

dimensional data when a large number of ICs are to be extracted. 

 In order to make ICA amenable to large, high-dimensional datasets like protein 

CEs, PCA is first applied to perform a dimensionality reduction and whitening pre-

processing step. Similar results to ICA may be obtained from kPCA by choosing to work 

with a kernel that maps the data to inner products of degree two polynomials. Such 

kernels have the property of detecting fourth moments, i.e. kurtosis. Alternatively, we 

note that one may perform post hoc analyses of the PCs derived from either standard 

PCA or kPCA to determine which ones have the highest amount of kurtosis. Choosing to 

examine such PCs will allow the investigator to see if non-Gaussianity, as measured by 

kurtosis, leads to the detection of a biological signal. The real criterion for assessing the 

usefulness of ICA is determining if the assumptions of the model are met. We find that 

for investigating native state dynamics, where proteins are described by a large set of 

DOF and are not undergoing large conformational shifts, ICA does not provide greater 

insight than what PCA (or kPCA) provides because most of the variables in the CEs are 

Gaussian. 

 PCA is a multivariate statistical approach, and there is almost no limit to the 

variants available to an investigator. For example, one may perform sparse PCA (SPCA) 

in which one attempts to form linear combinations that are sparse, meaning that they are 

combinations of less than all the variables. This is done in an attempt to make the 

interpretation of the PCA more manageable as is the case of standard PCA the linear 

combinations include all the variables and in high dimensional data, rendering an 
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interpretation as non-trivial at best. Typically this is done by using a thresh-holding 

method such as any component less than c  is mapped to zero, where c is an ad hoc 

chosen number between 0 and 1 or by solving an optimization criterion as in the case of 

SPCA (55). The effect of such a sparsification is the reduction of complexity in 

interpretation of correlated motions and often better cluster separation. The problem with 

the approach is that there is no guarantee that the sparse variables are the important ones. 

 Another approach combines PCA and ICA methodologies in a process called 

Independent Principal Component Analysis (IPCA) (56), based on the assumption that 

biologically meaningful components can be obtained if most noise has been removed 

from the associated loading vectors. In IPCA, PCA is used as a pre-processing step to 

reduce the dimension of the data and to generate the loading vectors. The FastICA 

algorithm is then applied to the previously obtained PCA loading vectors to generate the 

Independent Principal Components (IPCs). In this method, the kurtosis measure of the 

loading vectors is used to order the IPCs. There is also a sparse variant with a built-in 

variable selection procedure implemented by applying soft-thresholding on the 

independent loading vectors (sIPCA).  
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Figure 2.1 PCA 
PCA identifies the directions of highest variance 
in a data set. PC1 is aligned with the direction of 
highest variance in the data. While PC1 and PC2 
together represent the original data perfectly, most 
of the original information is captured by PC1. 
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Figure 2.2: Eigenvalue Scree plot for first 100 modes of two example protein simulations 
and a random process, each having 225 dimensions. The random process is shown on the 
secondary y-axis. 
 

 
Figure 2.3: Average RMSIP scores for a random process in different vector space 
dimensions as a function of subspace dimension. Error bars show plus and minus one 
standard deviation. 
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Figure 2.4: RMSIP scores for inter-comparisons between 3 proteins each having 75 
residues and a random process with 225 DOF. Only the true self-comparison yields a 
curve that saturates rapidly within a small essential space defined by the first 9 modes. 
The decoy plots have much in common with the random process as shown by the general 
increase over the first 30 modes. 
 

 
Figure 2.5: The Z-scores for the RMSIP scores shown in Figure 2.4. 
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Figure 2.6: Comparison of two myosin V (795 residues) CEs run under different 
simulation conditions and a random process with 2,385 DOF. Again, note the rapid 
saturation of the RMSIP scores in an essential subspace defined by the first 10 modes. 
 

 
 
Figure 2.7: The Z-scores for the RMSIP scores in Figure 2.6. 

 
 
 
 
 
 
 
 
 



 
 

 
 
 

CHAPTER 3: BENCHMARKING THE GSM 
 
 

3.1 Introduction 

 Since the GSM requires user input to determine the number and type of 

constraints that will be used to determine the RCD, we ran many simulations on small 

single domain proteins in order to determine if the default parameters were consistent and 

appropriate. We also assessed how critical the choice of the constraint assignment 

parameters was for determining the outcome of the model. A systematic selection of HB 

energy cutoffs and HT distance cutoffs were assessed. Additionally, a number of 

assessments were made regarding how rapidly the simulations equilibrated, how many 

output structures were needed to determine a statistically significant trajectory, and what 

the optimum output frequency should be. These assessments were made from trajectories 

that were run in diffusion mode and using the momentum perturbation feature. Finally, 

measurements were made concerning the how much diversity exists in the sampled 

structures and if there was any concern for repeat structures due to periodicity in the 

simulation. 

3.2 Methods 

 All simulations were performed on UNCC computing resources using 

FIRST/FRODA version 6.2 using software downloaded from http://flexweb.asu.edu/

 We designed a Java software package for the analysis of trajectories produced 

from the GSM and MD. Key steps in the process are: 
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1. Read in the trajectory(s) 

2. Select a set of atoms 

3. Align the structures defined by the atom set to remove overall translation and 

rotations using quaternion operations (see APPENDIX B) 

4. Compute the conformational RMSD for the trajectory 

5. Compute the residue RMSD for the protein over the trajectory 

6. Calculate the distance of each trajectory structure to a reference structure 

7. Calculate the all-to-all distances between alpha carbon atoms 

8. Construct the coordinate based C-matrix 

9. Construct the distance based C-matrix  

10. Perform an EVD of the C-matrix 

11.  

12. Generate output files for the eigenvalue scree plots 

13. Generate the top specified RMSD PCA modes 

14. Construct the top specified weighted-RMSD PCA modes 

15. Construct an iterated set of structures for PCA mode visualization of specified modes 

16. Output an edited PDB file for the structure with B-factors replaced with simulation 

residue RMSD for visualization 

17. Construct the displacement vectors for the simulation using a specified structure 

18. Construct the principal components 

19. Compare sets of specified PCA modes (subspaces) from multiple simulations using 

CO, RMSIP, and PA 

20. Calculate the collectivity of the eigenvectors 
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21. Construct various kernels for non-linear feature analysis 

We also relied on standard statistical packages such as XLStat, an add-on for Microsoft 

Excel developed by Addinsoft  for additional statistical scores like the KMO and MSA. 

3.3 Results 

 FRODA yields trajectories very quickly. Additionally, the trajectories equilibrate 

rapidly for small, single domain proteins and large multi-domain proteins when using the 

momentum perturbation. Longer simulations are needed when using FRODA in diffusion 

mode (Figure 3.1). Minimal sampling is achieved when there are more samples than 

variables. Some variables are sampled better than others due to their environment (e.g., 

the secondary structure) as measured by the MSA scores. Obtaining very high KMO 

scores and/or reducing the condition number of the C-matrix requires tremendous 

sampling. A best practices guideline suggests that obtaining a number of observations 

that is at least ten times the number of variables, where the samples are somewhat similar 

to each other (i.e., using smaller output frequencies) to enhance inter-variable correlations 

and reduce partial correlations. Output frequency is generally optimized when it is 

between 25 and 50 (i.e., every 25th or 50th frame) (Figure 3.2) but should be individually 

assessed per protein. Reducing the frequency means that the time of the simulation is 

shortened, as less conformers will need to be generated to produce a large statistical 

sample. While the conformational RMSD tends to fluctuate, it does so about an average 

and reaches that average very quickly. Although similar RMSD values are seen with 

regular periods, when the distances between the trajectory structures and the initial 

structure were examined, the distances were not close to zero, in fact they were not very 

different from the average distance, suggesting that the structures were nicely 
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randomized. We also assessed the degree of constraint violation to determine the size of 

the randomization step to optimize the simulation. It turns out that the recommended 

value of .01A for using the momentum perturbation was viable and, as seen in the 

histogram of constraint violations (Figure 3.3), most violations were smaller than 0.05A.  

 Both conformational RMSD and residue RMSD are highly dependent on the HB 

cutoff and the HT cutoff as seen in Figure 3.4. In addition, rigidity transitions are very 

sensitive to the HB cutoff, as seen in the Figure 3.5. It is interesting to note that the plot 

of number of iDOF per residue (Figure 3.6) does not have the abrupt transitions seen in 

the rigidity plot (Figure 3.5). Based on movies created from the simulations, it did appear 

that some trajectories were over-constrained, while others were under-constrained. 

Furthermore, a range of parameters emerged wherein the protein behaved in similar 

dynamical ways. This was assessed by performing subspace analyses on the top 20 

dynamics in the GSM, as seen by the similar RMSIP and first PA scores, as well as 

robust CO scores. We chose the 20 dimensional subspace after assessing how both 

RMSIP and the first PA depend on the size of the subspace. Typical representations of 

RMSIP, PA, and CO are shown in Figures 3.8-10. 

 One very surprising result was that the dynamical behavior of the single domain 

proteins was not appreciably affected by the addition or subtraction of constraints within 

this range of physicality. Specifically, altering the HT cutoff did not significantly alter the 

mode spaces. Closer inspection of the movies of these trajectories revealed that the 

complete removal of the HTs yielded unphysical behavior. Moreover, the number of 

independent degrees of freedom (iDOF) is determined by the values of the HB cutoff and 
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the HT cutoff. It is possible to produce two simulations with the same number of iDOF 

using contravariant mixtures of the HB cutoff and the HT cutoff. In all cases, the 

dynamical similarity persisted across a wide range of the constraint assignment 

parameters and only deviated notably at the extremes. Additionally, we saw that the 

choice of a 20 dimensional subspace, similar to what is done in NMA for the anisotropic 

network model (ANM), is sufficient to capture most of the large-scale long-timescale 

dynamics of the proteins. 

 Finally, we assessed how well the GSM samples the conformational space of the 

native state by projecting the simulation displacement vectors onto the top two PCA 

modes (DVP). As shown in Figure 3.11, the GSM generates conformers that very 

effectively spans the phase space defined by the top two PCA modes. While such plots 

are not always circularly symmetric, substantial coverage of the mode space is a good  

indication that the simulation has sampled the native basin in a statistically significant 

manner and has reached equilibration. 

3.4 Conclusions 

 The GSM is an all atom model that uses geometrical constraints assigned though 

rigidity analysis derived from graph theory. The model is very fast and yields trajectories 

that equilibrate rapidly provided that one uses the momentum perturbation. Sampling of 

the native basin is thorough as was seen by projecting the DVs on the top few PCA 

modes and the mode spaces are highly conserved over a wide range of constraint 

assignment parameters as measured by RMSIP and PA. The simulations did not become 

irrevocably jammed nor did they yield structures containing large constraint violations. In 

fact, the GSM as implemented in FIRST/FRODA is very stable, fast, and efficient at 
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producing trajectories that well characterize the native basin defined by the input 

structure. 

 

 

 

Figure 3.1 Conformational RMSD using FRODA 
Running FRODA in diffusion mode yields trajectories that do not equilibrate rapidly due to low efficiency 
in how configuration space is sampled. These results are for MV in rigor state, which contains 946 
residues.  
 

 

Figure  2.1  Conformation  RMSD  using  FRODA  Diffusion  mode. 
Running FRODA in diffusion mode yields trajectories that do not equilibrate rapidly due to low efficiency in how configuration 
space is sampled. These results are for MV in rigor state, which contains 946 residues. 
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Figure 3.2 The dependency of equilibration rate on output frequency. 
There is a rtrade-0ff between sampling every conformation and sampling every 100th conformations. Here, 
the conformational RMSD is plotted as a function of FRODA output, with the abscissa showing 
conformations from1 to 2,000. Using an output frequency of 25 to 50 balances the time needed to sample 
more of the configuration space with the requirement to achieve sufficient statistical sampling. There 
results are for myoglobin, which contains 1512 residues. 
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Figure 3.3 Constraint Violations 
When using the momentum feature or FRODA, it is important to verify that the output structures are of good quality with very small errors in the 
geometric constraint matching. With a small perturbation (step size) of 0.01A, very small errors are present in the structures and the simulation is 
able to explore the conformational space much more effectively than when using a step size of 0.1A and the diffusion option. 

Figure 3.4 Conformation RMSD 
The difference in RMSD to the initial structure is plotted for four FRODA trajectories consisting of 2,000 
structures. All four show equilibration, and illustrate how the number of iDOF (and by extrapolation, the HB 
energy cutoff) affects the geometrical simulation. 
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Figure 3.5 Residue RMSD 
Variations in residue fluctuations as a function of the number of iDOFs. Here 763 residues of the 
rigor state of myosin V are plotted (the lever are was removed in this analysis). 

Figure 3.6 Rigidity Percolation 
An analysis of how rigidity transitions occur in the three forms of myosin V as a function of 
hydrogen bond (HB) energy cutoff in FIRST. Due to variations in HB networks, each structure 
undergoes stepwise jumps in rigidity as HBs are removed. 
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Figure 3.7 iDOF as a function of HB Energy. 
The trends in changes in the number of iDOFs per residue as the number of HBs are 
changed. Here a smooth transition is seen, unlike the case for the rigidity transitions. 

Figure 3.8 Subspace Analysis using RMSIP as a function of Dimension. 
RMSIP values are heavily dependent on the size of the subspaces that are compared. The RMSIP score tends to saturate as higher 
dimensional subspaces within a vector space are compared. Balancing the fact that the top few modes are relevant for biological 
motions  with the fact that better comparisons result from larger subspaces, it appears that the 20 dimensional subspace is a good 
compromise. 
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Figure 3.9 Subspace Analysis using First Principle Angle as a function of Subspace Dimension. 
A similar trend is seen for the first PA analysis as is seen for the RMSIP analysis. Again, saturation occurs for larger subspaces. 
The choice of a 20 dimensional space is reinforced here. 

Figure 3.10 The set of Principle Angles as a Function of Subspace Dimension. 
In this analysis, not only is the trend for the decrease in first PA seen, but the optimization effect of the SVD 
used to generate the set of Pas becomes evident too. Again, choosing a 20 dimensional subspace provides a 
good foundation for examining modes that are relevant to biological function while also providing optimal 
alignments of the two subspaces. 
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Figure 3.11 Scatterplot of the top 2 PCs. Notice that the sampling of the phase space is fairly uniform 
and thorough. This indicates good sampling and equilibration in the essential space. 



 

 

 
CHAPTER 4: MODEL-TO-MODEL COMPARISONS 

 
 

4.1 Introduction 

In order to assess the degree to which ENM, MD, and GSM provide equivalent 

information, we selected four sample proteins chosen from distinct structural classes 

(SCOP) (57). These proteins were simulated using the three models and the results 

compared using subspace analysis of the top 20 mode spaces. We used MD trajectories 

archived by the Daggett Group available at www.dynameomic.org and we used the ANM 

web server available at http://ignmtest.ccbb.pitt.edu/cgi-bin/anm to generate the normal 

modes. We constructed the GSM trajectories in-house. All analysis was done using our 

Java based analysis package: Essential Dynamic of Proteins with Subspace Analysis in 

Java (in preparation for publication in BMC Bioinformatics). 

4.2 Methods 

4.2.1 Geometrical Simulation 

 GSM trajectories were created using FIRST/FRODA version 6.2 using software 

downloaded from http://flexweb.asu.edu. For each protein, trajectories were created using 

the command line1 for a variety of constraint assignment parameters (the parameters x 

and y in the footnote) that modify how many of the possible constraints in the input 

structure are used for the RCD. Each trajectory was obtained by selecting every 50th 

structure in a simulation that generated 100,000 structures, yielding 2,000 sample 

                                                                                                                
1  FIRST FRODA froda2Hybrid froda2Momentum totconf 100000 freq 50 step 0.01 body E x H 3 c y ph_tol 2.50 non 
v 0 1A6N.PDB 



   62  

structures. The variations span the spectrum of rigidity from highly over constrained, 

with all H-bonds modeled as distance constraints,  to completely flexible with no H-

bonds modeled as a distance constraint. 

 The two main parameters that were varied were the number of H-bonds, 

controlled by the H-bond Ecutoff, and the number of hydrophobic tethers, controlled by 

the hydrophobic (HP) tether cutoff using the default a

hydrophobic tether assignment scheme. Note that it is expected that the H-bond Ecutoff 

will be changed when using FIRST/FRODA, but normally the hydrophobic interactions 

are left at default values. In this work, we explored modifying the HP tether cutoff 

criteria in addition to the H-bond Ecutoff. Within the H3-hydrophobic rules, distances 

between certain pairs of carbon atoms are restrained using inequalities that are 

implemented as a half harmonic potential function. That is, if the distance between a pair 

of carbon atoms exceeds a maximum value (an example command line specification of 

this value is given as ph_tol=2.50 in angstroms), then a restoring force is applied to 

reduce their separation. However, in addition, if the distance between a pair of carbons 

atoms is less than a minimal value (an example command line specification of this 

minimum value is given as c=0.50 in angstroms), two distance constraints are placed 

between these two carbon atoms, where each atom is modeled as a rigid body. 

 For completeness, the switch froda2Hybrid activates the newest version of the 

FRODA engine (no more ghost templates as in the older version), the switch 

froda2Momentum introduces a perturbation that allows movements that were successful 

to be weighted so that the next Monte Carlo step is in that direction, and the switch -body 
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instructs the program to move entire rigid clusters as a unit rather than perturbing each 

individual atom. 

4.2.2 Displacement Vectors 

 The input structure used to derive each trajectory was also used as a reference to 

construct a set of displacement vectors by subtracting it from each of the generated output 

structures. 

4.2.3 Principal Component Analysis 

 PCA was done using the covariance matrix of the alpha carbon positions from 

each trajectory. Since the objective was to identify global collective motions, the 

sensitivity cutoff for PCA was coarse-grained by using only the alpha carbons. The 

structures comprising each trajectory were appropriately aligned to remove overall 

translation and rotation from the intrinsic atomic fluctuations prior to the PCA. After 

diagonalization of the covariance matrix, the top 20 PCA modes were selected for 

subspace comparisons and the projection of displacement vectors. 

4.2.4 Overlaps of Displacement Vectors and Modes 

 The overlap between a displacement vector and a principal mode was determined 

using the inner (dot) product of the two vectors, normalized by their respective 

magnitudes. The NIP as defined here is the same quantity as the overlap between two 

vectors as defined by Sanejound (23), where Oij represents the overlap of the ith vector in 

subspace one with the jth vector in subspace two. 

     i j
ij

i j

u v
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u v
     Eq. 4.1 
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4.2.5 Comparing Subspaces by Cumulative Overlap 

 A cumulative overlap was calculated to assess how well a given model 

obtained by successively determining the overlap between the given eigenvector and each 

of the eigenvectors in the other mod 26).   

        Eq. 4.2 

 For our analysis, k was always equal to twenty and Oij represents the overlap of 

the ith vector in subspace one with the jth vector in subspace two. Since this calculation is 

not symmetric, the analysis was performed twice, first for vectors in subspace one on 

subspace two, second for vectors in subspace two on subspace one. The average of these 

two values for each vector was reported as the average CO. 

4.2.6 Comparing Subspaces by Root Mean Square Inner Product 

 The mode subspaces were globally compared using root mean square inner 

product (RMSIP) (27,28). 
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In our analysis, I and J were both equal to twenty, iu is the ith vector in subspace one, and 

vj is the jth vector in subspace two. RMSIP scores range from zero for mutually 

orthogonal subspaces to one for identical subspaces. The RMSIP score is effectively the 

correlation between the vectors in subspace one with the vectors in subspace two. A 

value of 0 or 1 respectively indicates no or full correlation. A score of 0.70 is considered 

an excellent correspondence while a score of 0.50 is considered good (46). We note that 

1
2

2

1
( )

k

ij
j

C O k O



   65  

the RMSIP score is dependent on the size of the subspaces compared, such that for a 

given RMSIP score the result is more significant for larger subspaces compared to 

smaller subspaces. This size dependence is not encountered when using principal angles, 

as this process will always yield a set of angles in the range of [0,90 degrees]. 

4.2.7 Comparing Subspaces by Principal Angles 

 Two mode subspaces  and  with were assessed using 

principal angle analysis, also called canonical correlations (48-50).  These angles were 

obtained by computing the singular value decomposition (SVD) of the matrix, , 

constructed from the product of the two orthonormal bases  and , where  

and  where  is the j-th component of the i-th normalized eigenvector 

defining an orthogonal direction in subspace  Following the process of  

produces 20 singular values  where the k-th principal angle is given by 

. PA values within the small angle approximation (< 23 ) are considered 

excellent for similarity, while values near 90  indicate orthogonality or complete 

dissimilarity. A value of 45  corresponds to about a 71% correlation. For 

equidimensional subspaces, the largest PA is related to the geometric notion of distance, 

een the subspaces is: 

                  2, sin 1 cosk kgap F G    Eq. 4.4
 

In our analysis, the first principal angle 1 provides the most stringent measure of 

subspace similarity as it indicates how well the two spaces can be aligned. The value of k 

for which the principal angles { k} surpass the small angle approximation informs as to 

how many principal axes the subspaces share with a high correlation. Monitoring the 



   66  

rapid increase in PA provides an ideal way to quantify the most relevant size of 

subspaces when intra consistency is compared. 

4.2.8 Datasets 

 Datasets were constructed for each of the four proteins investigated in this paper: 

PDB ID: 1A6N (58) deoxy-myoglobin: SCOP class , 151 residues 

PDB ID: 1WIT (59) twitchin immunoglobulin: SCOP class , 93 residues 

PDB ID: 1UBQ (60) ubiquitin:  SCOP class + , 76 residues 

PDB ID: 1YPI (61) triosephosphate isomerase: SCOP class / , 247 residues 

Each dataset contained the following: 

1. One MD simulation trajectory obtained using explicit solvent at 298 K for at least 31 

ns consisting of 2,000 structures. 

2. 31 FRODA trajectories each consisting of 2,000 sample structures each, derived from 

simulation runs using a H-bond Ecutoff range of 0.0 to -10 kcal/mol and a HP tether 

cutoff range of 0.0 to 0.5 Å 

3. PCA modes from each of the 31 FRODA trajectories. 

4. One set of PCA modes derived from the combination of eight individual FRODA 

runs using a H-bond Ecutoff range of 0.0 to -5 kcal/mol and a HP tether cutoff of 0.5 

Å. This set is referred to in the analysis as FRODA-8. 

5. One set of PCA modes derived from the combination of twenty individual FRODA 

runs using a H-bond Ecutoff range of 0.0 to -5 kcal/mol and a HP tether cutoff range 

of 0.0 to 0.5 Å. This set is referred to in the analysis as FRODA-20. 

6. Twenty-one sets of normal modes derived from ANM analysis on the original 

structure and twenty FRODA-generated structures. 
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7. Additionally, the 1A6N dataset contained a group of 95 structures of myoglobins with 

sequence identity > 98.7% and RMSD  < 1Å to 1A6N.  

4.3 Results 

 FIRST uses a set of parameters that determine how constraints are identified, 

which is ultimately responsible for outcomes in determining the number of iDOF and the 

predicted rigid and flexible regions of a protein. Based on the RCD, a geometric 

simulation using FRODA is very efficient. The advantage of FIRST/FRODA is that the 

generation of output structures is by some comparisons four orders of magnitude faster 

than MD. However, this tremendous gain in speed comes at the price of model-dependent 

limitations. Only intra-molecular interactions are modeled (no solvent molecules are 

considered), and the set of distance constraints is chosen before the geometrical 

simulation begins. The geometrical simulation is an athermal simulation, where atoms are 

randomly moved without creating any atomic clashes while the RCD remains fixed for 

the entire simulation. In such a scenario, a substitute for temperature, or pseudo 

temperature, is based on the energy cutoff used for selecting H-bonds (62,63). 

Conversely, the identified rigid and flexible regions can fluctuate between frames within 

a MD simulation.  

 FRODA produces datasets composed of multiple structures that capture 

conformational changes and latent cooperativity in the high dimensional configuration 

space of the protein. In order to identify those conformational changes and visualize the 

latent cooperativity, a reduction of dimension is performed by the application of principal 

component analysis (PCA) (64-66) to the atomic fluctuations of the alpha carbons in the 

protein. The application of PCA to MD trajectories has a long history and the 
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computation of the essential dynamics of a protein is now well accepted. PCA transforms 

a set of correlated variables in the original space to a new set of variables that are 

uncorrelated, similar to normal modes. Furthermore, the original data may be projected 

onto a small set of principal components that retain a large fraction of the original 

information, even though the data is represented in a low dimensional subspace. The 

reduction in dimension can be tremendous, moving the data from a space of tens or 

hundreds of thousands of variables to one that typically contains less than twenty. 

4.3.1 Conformation and Residue RMSD for MD and FRODA 

Both MD and FRODA generate trajectories that sample the native basin of a 

protein when provided a structure. As illustrated in Figure 4.1A for myoglobin, the 

conformational rmsd for all four proteins investigated indicate good equilibration in 

exploring the native state conformations in both methods. The MD run was performed at 

298K, while different H-bond Ecutoff values and HP parameters were used for FRODA. 

As more H-bond constraints are removed in the geometrical simulation (FRODA), 

qualitatively similar results are obtained with progressively larger rmsd. The comparisons 

given in Figure 4.1A show the correspondence between MD and FRODA. The amount of 

mobility that the residues experienced in the MD simulations is bounded by the FRODA 

trajectories using H-bond Ecutoffs between -1 and -3 kcal/mol. In between this range, 

there exist a H-bond Ecutoff that yields results with high similarity between the MD and 

FRODA runs, where the residue rmsd is qualitatively consistent (Figure 4.1B) and robust 

(virtually identical) distributions in residue rmsd (Figure 4.1C) are generated in both 

cases. It is important to note that even for the most similar case, there is not a one to one 

correspondence between the two methods because MD allows interactions (both native 
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and non-native) to fluctuate while FRODA keeps the number and identity of all native 

interactions initially modeled as distance constraints fixed (or constant) throughout a 

simulation run. The similarity and differences between the residue rmsd generated by 

MD and FRODA is shown in Figure 4.2 as cartoon representations at the special H-bond 

Ecutoff that yields maximum correspondence. It is evident that the overall similarity is 

outstanding, although some key differences within loop regions and helices are frequently 

detected. These differences are not surprising, as at no time during a FRODA simulation 

is solvent taken into account, and there is no ability to form non-native contacts. 

The level of conformational rmsd can be varied by changing temperature in MD 

or the H-bond Ecutoff in FRODA. As demonstrated in Figure 4.1, as the H-bond Ecutoff 

is lowered, the effective temperature is raised and the physicality (or lack thereof) of the 

simulation for biological conditions must be considered. For example, using a H-bond 

Ecutoff of 0.0 kcal/mol predicts a globally rigid protein that is severely over-constrained 

while a H-bond Ecutoff lower than -5 kcal/mol erroneously predicts the protein to be 

extremely flexible characteristic of an unfolded state. This situation suggests that when 

using FRODA, there exists a range of physicality (ROP) for which the conformational 

ensemble that is generated can be considered valid. Although the precise range of the H-

bond Ecutoff may vary between proteins, values between -1 kcal/mol and -3 kcal/mol 

provide a safe ROP, which was demonstrated by each of the 4 proteins studied here. 

While both H-bonds and HP constraints reduce the number of iDOF, the H-bond 

constraints are more plentiful. We find that acceptable values for the HP parameters are 

broad, and the FRODA default values work well in all cases. We include the results of a 

variety of HP parameter variation for completeness of our analysis. It is worth noting that 



   70  

the removal of all HP tethers is non-physical and yields overly flexible structures.  

Presumably there is a minimum number of tethers, but do to the insensitivity of the range, 

we focused on the H-bond criteria, which is the usual way to control the degree of 

flexibility in the structure. These observations were shared across all proteins studied. No 

differences in dynamics due to tether parameter adjustments were detected because of 

differences in beta sheets or alpha helices.  

Crosslinking patterns in the H-bonds and the spatial distribution of both HP 

tethers and HP constraints are dependent on secondary structure. Nevertheless, the 

FRODA parameters that support a ROP are found to be insensitive (if not independent) to 

local secondary structural motifs in all the proteins studied here. Since the HP 

interactions are more often modeled as distance inequalities, it is expected there will be 

less sensitivity in HP parameters to secondary structures than the H-bonds. As described 

below, the existence of this ROP was verified by analyzing the generated mode spaces 

using a wide range of H-bond Ecutoffs and HP parameter variation that control the 

assignment of constraints/tethers.  

One of the most interesting results from this work is that PCA modes generated 

from a large range of FRODA runs (using different user-defined parameter settings) are 

consistent in spanning the same subspace describing low frequency and large-scale 

conformational changes of the protein. It seems counter-intuitive that simulations with 

very large differences in rmsd could yield principal motions that are quantitatively 

similar. That is, once the outliers were identified (H-bond Ecutoffs that are greater than -

0.50 kcal/mol or less than -5 kcal/mol) all FRODA runs produced robust results using 

PCA. Apparently, reducing the number of native interactions modeled as distance 
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constraints in FRODA allows exploration of conformations with larger amplitudes of 

atomic displacements, but the essential dynamics (described by the eigenvectors or 

modes, not the eigenvalues) remain markedly consistent over a large range in 

flexibility/rigidity. Therefore, multiple H-bond Ecutoffs within the ROP can be 

determined by plots like Figure 4.1 to identify the FRODA runs that produce a mean 

value in conformational rmsd in the range of 1.25 to 2.75 Angstroms. On such a plot, a 

non-physical over-

motions in loop regions are absent, while the non-physical under-constrained proteins 

show unfolding. These rmsd-based criteria for a range of physicality for FRODA 

simulations are supported by our subspace analysis of those simulations. 

4.3.2 PCA for MD and FRODA 

Another quantitative comparison between MD and FRODA using PCA is given in 

Figure 4.3A. The trace of the covariance matrix, or sum of the eigenvalues of all PCA 

modes, quantifies the total mobility of the protein explored by a simulation. Sorted from 

largest to smallest, the scree plot shows that only a relatively small number of PCA 

modes capture most of the mobility. Clearly, increasing the number of iDOF by lowering 

the H-bond Ecutoff in FRODA leads to a dramatic increase in the mobility ascribed to 

each PCA mode as shown in Figure 4.3A. When comparing the MD run to the most 

similar FRODA run (using an Ecutoff of -1 kcal/mol) in terms of raw variance of atomic 

positions, it is seen that the fall of eigenvalues from the MD run is similar to the FRODA 

run over the first ten modes. However, as the number of modes increase beyond 10, the 

eigenvalues of the MD simulation rise in comparison to this FRODA run, approaching 

the FRODA run performed using an Ecutoff of -2 kcal/mol. This data suggests that the 
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scree plot does not fall off as fast when the protein is intrinsically more flexible, because 

there will be more collective modes that get mixed up in describing the protein motion. 

When FRODA adds constraints, many of the motions get frozen out, and a greater 

distinction in overall amplitudes (variance) occurs. The top two PCA modes by residue 

shown in Figures. 4.3B-C show similarities and differences in the modeling paradigms. 

While there are qualitative similarities, a number of regions exist where individual 

residue motion is differentially assigned. This comparison identifies the regions of the 

protein that each model addresses in distinct ways, where the key differences arise due to 

the context of the particular model assumptions. 

Once a scree plot is obtained, it is desired that the mode eigenvalues drop off 

rapidly allowing most of the motions to be reconstructed using the reduced dimensional 

space. Depending on FRODA parameters, the MD eigenvalues can drop-off faster or 

slower than the FRODA eigenvalues.  In some cases, when the scree plot falls off fast, it 

may be inferred that the lowest few modes are sufficient to describe biologically relevant 

information. However, as is the case shown, it often happens that the scree plot falls 

rapidly but without a distinct kink (as the name would imply). In these cases, one must 

make a selection based on the relative ratio of the smallest eigenvalue used compared to 

the largest eigenvalue. A ratio of 0.1 may be large, but may suffice. In general, it is not 

possible to set a fixed number such as 85% for the cumulative variance. The reason is 

that some proteins have most of their large-scale motions contained in just a few modes, 

and to reach some arbitrary pre-determined value will result in including many modes 

that are associated with motions that are not large-scale. In other words, looking at the 

ratio of how fast the eigenvalues drop off using a scree plot is always the best way to 
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determine the dimensionality to use. In this work, we selected 20 dimensions in all cases 

to facilitate the comparative analysis across FRODA runs, MD simulation and ANM. In 

some cases, it would be better to have used more than 20 dimensions based on the scree 

plot. Nevertheless, the PA analysis shows that 20 dimensions still captures the majority 

of the overlap between runs that require less than 20 dimensions and those that may be 

better to use more than 20 dimensions. The disadvantage of using a higher dimension is 

that the benefit in reduction of dimensionality is not as great. However, in practice, this 

would indicate that the protein motions are distributed over more collective modes, and 

one cannot force the outcome to be low dimensionality. 

4.3.3 Range of Physicality for FRODA Simulations 

When FRODA is employed, a ROP) must be established 

by adjusting the selection rules that determine which interactions are modeled as distance 

constraints to obtain quantitatively reasonable conformational and/or residue rmsd as 

Figure 4.1 shows. The ROP can be further quantified by the number of independent 

degrees of freedom per residue (iDOF/res), as determined by FIRST. In other related 

work, a range of [0.5, 1.2] for iDOF/res is considered appropriate for globular proteins 

under biological conditions (64-66). Our FRODA analysis indicates that this range falls 

safely within a parameter set that generates a robust subspace analysis (explained below). 

The onset of atypical dynamical behavior based on quantitative comparisons over ranges 

of FRODA parameters and MD results, and visually identified as having unphysical 

characteristics as being too rigid or too flexible) is only apparent when using a H-bond 

Ecutoff greater than -0.5 kcal/mol or less than -5 kcal/mol. Thus, quantitatively, it 

appears that even a wide disparity in the assignment of constraints, which yields very 
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different flexibility/rigidity profiles, behave in a coherent and consistent manner in terms 

of large-scale, low frequency motions as determined by PCA mode extraction. Since 

coherent and consistent results are reliably obtained by using H-bond Ecutoffs between [-

0.5, -5] kcal/mol, a recipe for best practices involves performing a number of runs within 

this range of H-bond Ecutoffs using FRODA default settings for hydrophobic 

interactions, and then combining the trajectories to improve the statistical sampling of 

native conformations. It is important to note that the ROP does not have absolute hard 

boundaries for all proteins. The ROP will in general slide somewhat depending on 

protein, and resolution of the input structure. The main point that we found surprising is 

the ROP is very broad. Moreover, the PCA analysis of a series of FRODA runs provides 

a protocol that is easy to use to determine the ROP. 

4.3.4 Projection of the Displacement Vectors on Model Modes 

   An important concern is how well dynamical simulation methods such as MD 

sample the configuration space of a protein. One approach to address this question is to 

project the displacement vectors obtained from a dynamical simulation onto its principal 

modes (3). This method makes no assumptions about the underlying distribution and 

allows one to explore how well the actual simulation events project on the top modes. 

Moreover, if both the eigenvectors and displacement vectors are normalized, then the 

projections will all be in the range [-1, 1] due to the normalized inner product (NIP), 

allowing for intuitive and consistent comparison. 

Figure 4.4 presents the results for the projection of the displacement vectors on 

the FRODA-8 PCA modes. All the displacement vector projections from the FRODA-8 

displacement vectors cover the combined FRODA-8 mode space much better than the 
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MD displacement vectors. For the case of 0 H-bond Ecutoff, an ellipse emerges near the 

origin, which shows a very different signature than any of the other runs comprising the 

FRODA-8 group. Interestingly, this over constrained FRODA run produces a quasi 

simple harmonic motion, as revealed by the hyperdimensional ellipsoidal plot. The MD 

run shows a much more confined clustering on the projection plot for FRODA-8 PCA 

modes 1 and 2 within the 95% confidence ellipse, but it does not coincide with most of 

the FRODA generated displacements. As a result, MD is probing a different type of 

motion, in a similar way that the highly over constrained FRODA run demarked by the 

ellipse near the origin is atypical. We can infer that in mode 1, MD is probing much less 

conformational diversity than FRODA. Nonetheless, beyond mode 1, there is an 

increasing degree of overlap in the conformatioinal space defined by high PCA modes 

where the atomic displacement amplitude is rapidly decreasing.  

Comparisons within two-dimenisonal projections depend on the two modes used 

to define a plane. Therefore, to get a better picture of the similarities and differences 

between the three models, in Figure 4.5 we plot the displacement projections of the MD 

and FRODA simulations onto PCA modes obtained from MD. The distribution of the 

MD displacement vectors is tri-modal in the projection on modes 1 and 2, where FRODA 

and MD coincid

the MD simulation spends much of the run time in a few basins, some of which are not 

being sampled by FRODA. The reason for this is most likely that during the MD 

simulation, two slight rearrangements of the residues occurred. Because MD allows 

native contacts to break and reform, the result of these fluctuations is that the MD run is 

sampling beyond the native basin defined by the input structure. The evidence for this is 
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that there were significant changes in the number of native and non-native contacts along 

the MD trajectory. These variations in the number and type of contacts support the claim 

n 

the plots. Nevertheless, using the MD modes as a metric, the FRODA runs intersect with 

a small portion of the MD displacement vectors.  Interestingly, the rapid containment that 

was seen in Figure 4.4 for projections onto the combined FRODA modes is not seen in 

Figure 4.5, showing there is still clear cluster separation in modes 4 and 5.  

To complete the picture of displacement projections, we also consider projecting 

onto ANM modes. The ANM modes serve as a metric by which the range of dynamical 

motion can be effectively measured and compared between the two dynamical models. 

As is evident in Figure 4.6, the FRODA displacement vector projections cover much 

more of the mode space defined by the top 20 ANM modes than do the MD displacement 

vector projections. Once again, in mode 1, it can be seen that FRODA and MD are 

sampling somewhat different dynamics, but the MD projections are nearly completely 

contained within the FRODA runs as early as mode 1. Based on the much greater 

coverage, FRODA appears to be probing the same dynamics that is captured using ANM. 

FRODA produced trajectories that covered much more conformational space than the 

MD simulation. We have compared the amplitudes of conformational dynamics by 

projecting the model displacement vectors on the modes. The FRODA subspace is larger 

in that it accomodates more of the dynamical displacements generated by MD. The 

distinction in the projections highlights the fact that the principal motions captured in the 

different models have some differences. 
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4.3.5 Comparison of Model Mode Spaces 

 The question of how to compare low dimensional subspaces that are derived from 

PCA or ANM has been answered in a number of ways. That the overlap between two 

vectors can be determined by the inner product of those two vectors is generally well 

known, however, the overlap between subspaces of high dimensional vector spaces is less 

intuitive. One approach to measuring the co-incidence of two subspaces is to assess how 

well each vector in one subspace overlaps all the vectors in the other subspace. This 

cumulative overlap (CO) method quantifies how well all of a given subspace captures a 

given vector. Another approach is to determine an average of the inner products of all the 

vectors in both subspaces. Such a method provides insight into how well each vector in 

one subspace aligns globally with the vectors in the other subspace, and it is called the 

root mean square inner product (RMSIP). A more detailed assessment of the 

interpenetration of two high dimensional subspaces can be made by measuring principal 

angles and the corresponding principal vectors that describe how one subspace can be 

rotated/scaled for optimal alignment with the other.  

 In the comparison of two subspaces, we start with a set of normalized 

eigenvectors (either from the covariance matrix or from the Hessian matrix) that define 

subspaces embedded within the high dimensional space equal to 3 times the number of 

residues in the protein (only alpha carbons were used in the covariance matrix). The 

process of finding principal angles involves computing the singular value decomposition 

(SVD) of a matrix of overlaps. The SVD factorization of the matrix of overlaps (inner 

products) yields a matrix of vectors (left principal vectors) that describe a high 

dimensional rotation, a diagonal matrix of singular values that describe a scaling, and 
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another matrix of vectors (right principal vectors) that describe another rotation. In this 

work, the SVD process is applied to a 20 by 20 square matrix so that the right and left 

vectors describe the same rotation. The singular values are the cosines of the Principal 

angles and are ordered from largest to smallest. The whole process is an optimization that 

determines the best possible alignment between the two subspaces.  

 The interpretation of a PA for two 2-dimensional subspaces within a 3-

dimensional space is straightforward, because two planes with different orientations that 

pass through the origin always coincide or intersect along a single line. In this latter case, 

the first PA is zero and the second is the acute angle between the two planes. For 2-

dimensional subspaces within a 4-dimensional space the situation is more complicated 

because the two planes may intersect only at a single point (the origin), yielding two non-

zero PA. Although geometric visualization fails for 20-dimensional subspaces within a 

600-dimensional space, the notion of an angle between two axes remains 

comprehensible. While each individual PA ranges from 0 to 90 degrees, it is often useful 

to compute a single value for the angle between the two subspaces, similar to the RMSIP 

value. The geodesic distance between the two subspaces can be determined by 

calculating the Euclidean norm of the vector of principal angles. This means that the 

largest angle between two M-dimensional subspaces derived from a N-dimensional space 

is not ninety degrees, but rather  for  and , making the maximum 

possible angle between two 20-dimensional subspaces for all the proteins considered here 

equal to 402.5

so determining for which mode the angle between the two spaces leaves the small angle 

90M M N 3N
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approximation (less than 23 degrees) indicates the number of modes that can be 

considered similar.  

 The SVD process that generates the mapping to align two subspaces always 

orders the set of principal angles from smallest to largest. When a PA is small in the 

sense that the sine of the angle is approximately equal the angle when measured in 

radians, this indicates that there is a high degree of overlap of the two subspaces relative 

to a particular rotation axis. The individual value of a PA is viewed as small or large 

based on the value of PA itself, independent of the dimension of the spaces being 

compared. In higher dimensions there are more principal angles, and typically the 

greatest PA will be close to 90 degrees indicating the part of the subspaces that are 

orthogonal. Even without using the principal vectors derived from the SVD process, the 

set of principal angles alone gives a more critical assessment of how much space is in 

common between the two subspaces. Unlike RMSIP, which tends to increase with the 

size of the subspaces, the ordered list of principal angles quantifies where the increases 

comes from. For example, if comparing a 20 dimensional space, if the first 12 principal 

angles are small, and the last 8 principal angles grow rapidly, we know that the most 

congruent part of the two subspaces actually lives in 12 dimensions, which cannot be 

obtained from the RMSIP measure. Since multiple spectra of principal angles can lead to 

the same RMSIP, the former is a more powerful method for analyzing the similarity of 

subspaces. It is worth noting that the average of the cosines over all the principal angles 

gives a qualitatively similar measure as the RMSIP. In summary, if a single number is 

desired to discriminate similarity, RMSIP is a good measure, but the method of PA gives 
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a much more critical assessment, and carries with it additional information within the 

principal vectors that inform on how the subspaces are spatially related.   

 Significant similarity was seen for all three models when the subspaces were 

compared using the RMSIP and PA metrics. There are no significant differences related 

to the SCOP class of the protein. When reviewing the displacement vector projections, 

we found that there were substantial differences between the methods in the first few 

modes as indicated by distinct cluster distributions. However, for all four classes of 

protein, the projection space derived from FRODA was greater than the mode projection 

derived from MD when the ANM modes were used as a metric, suggesting that the 

geometrical simulation samples more of the native basin than MD does. Additionally, a 

clear pattern is seen as the two dimensional mode spaces are defined by higher modes 

with increasing interpenetration of the projection spaces. This is to be expected, as the 

first few modes will be rather arbitrary and model specific due to statistical sampling and 

the nature of PCA to maximize variance in a descending fashion. This, in conjunction 

with the global measure of the RMSIP, is strong evidence for homogeneity within the 

two dynamical models. 

While it is known that the rigidity of a protein is very sensitive to the H-bond 

Ecutoff that is used in FIRST (12), we conclusively show here that there is no such high 

sensitivity for the essential motions derived from the RCDs using a wide range of H-bond 

Ecutoffs. Each individual run from FRODA was comparatively assessed by the different 

model mode spaces as shown in Figure 4.7A,B. All the subspaces derived from H-bond 

Ecutoffs between [-1, -5] kcal/mol are essentially the same as measured by the RMSIP 

(Figure 4.7A) and first PA (Figure 4.7B) scores. Interestingly, variations in the number of 
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hydrophobic tethers have almost no effect on either the RMSIP or first PA within the 

specified range of H-bond Ecutoffs. Taken together with the earlier analysis based on 

conformation and residue rmsd, this is strong evidence for a ROP within the regime of 

the geometrical simulation. Figure 4.7C shows the intra-consistency within the FRODA 

and MD trajectories. The MD comparison shows that parts one and two of the trajectory 

are quite similar for the top eight modes with a RMSIP value of 0.81 while the FRODA 

run was consistent for the top seventeen modes (PA < 23 ) with a RMSIP value of 0.94. 

This substantial difference may be the result of non-equilibration of the MD trajectory 

and lends credence to the critics of MD for statistical under-sampling problems. Figure 

4.7D shows the intra-consistency results for twenty ANM analyses. These comparisons 

of FRODA structures to the original pdb show a remarkable amount of similarity ranging 

from the top 13 to 17 modes with not a single RMSIP value below 0.89. Overall, this 

result suggests that due to the coarse-grained nature of the ANM, small perturbations of 

the structure do not substantially alter the normal modes obtained. This result provides 

additional evidence that the distance constraint perturbations that are used by FRODA 

remain within the native basin of the input structure. 

Resolving more detail within the twenty dimensional subspace defined by the 

modes of different models is achieved by examining the entire set of 20 PA and the 

average CO. PA values of less than 23 degrees are considered to be within the small 

angle approximation and suggest excellent similarity. Figure 4.8 shows the comparison of 

the model mode subspaces using the metric of PA, with RMSIP values shown 

parenthetically in the legend. From Figure 4.8A, it is clear that the most similar mode 

subspaces are those from FRODA-8 and FRODA-20 with an RMSIP score of 0.93 and 
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PAs less than 23  for the top fifteen modes. The next most similar mode subspaces are 

from FRODA and ANM. These comparisons yield a RMSIP value near 0.75 and have 

PAs within the small angle approximation for six modes. The mode subspace 

comparisons between ANM and MD and MD and FRODA are very similar, each having 

an RMSIP value between 0.5 and 0.6 and PA values less than 45  for the top five modes. 

While these angle values are not within the small angle approximation, they do indicate a 

good amount of similarity, commensurate with the good RMSIP score.  

It appears that the ANM and FRODA mode subspaces are best able to capture 

modes where the average CO remains greater than 0.70 (not shown). Additionally, ANM 

to MD as well as MD to FRODA maintain an average CO greater than 0.50 for the top 

twelve modes (not shown). While not excellent, these values parallel the results seen in 

Figure 4.8 and indicate a substantial amount of compatibility between the essential 

motions contained in these subspaces. Similar results were found for the other three 

SCOP classes of protein with the RMSIP between FRODA and MD within the range of 

0.51 to 0.63, and the RMSIP between ANM and FRODA within the range of 0.69 to 0.78 

for all four SCOP classes. To put these values in perspective, the RMSIP between the 

FRODA-8 and FRODA-20 modes spanned the range of 0.64 to 0.93 over the four studied 

proteins, indicating that the inter-model comparisons were on par with the intra-model 

comparisons. For all four classes of proteins investigated, the ANM to MD RMSIP 

values were the lowest, spanning the range of (0.45 to 0.57). This result shows that ANM 

and MD are the most divergent of the three models investigated here. There are no 

significant differences between the four proteins based on SCOP classification. 
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4.3.6 Projection of Experimental Structures on the Model Modes 

An important consideration beyond the model-to-model comparisons that have 

been performed is how well are actual experimental structures accommodated by the 

three different models. To address this question, a 20-dimensional subspace was derived 

from the experimental dataset of myoglobins, and compared to those obtained from each 

model. We are specifically assessing how well the 3 models under investigation were 

able to access the set of experimental structures given only the initial structure. Figures 

4.9A and 4.9B show the projection of the experimental displacement vectors onto the 

model modes. In both panels, it is evident that the ANM mode space captures the 

experimental displacements best, with FRODA doing almost as well in terms of both the 

size of conformational space defined by the top three modes and the significance of the 

overlaps generated therein. The MD based PCA mode space does significantly worse in 

terms of the amount of conformational space covered and fails to yield any significant 

overlap to the experimental displacements. These results are echoed in Figure 4.9C 

showing the RMSIP values of ANM and FRODA mode subspaces to the experimental 

mode subspace are about 0.60 while the RMSIP value of the MD mode subspace to the 

experimental mode subspace is only 0.44, a significantly lower result. Taken together, 

these results indicate that both ANM and FRODA are able to capture the majority of the 

displacements seen in the experimental structures, while MD captures significantly less 

of the displacements. 

4.4 Conclusions 

The existence for a range of physicality using FRODA has been demonstrated in 

this work for the first time. For the four proteins studied here: We established that the 
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default settings for hydrophobic tethers (rule H3) combined with a H-bond energy cutoff 

between -1 kcal/mol to -3 kcal/mol is robust. For much larger proteins, the H-bond 

energy cutoff range may shift slightly lower because the decrease in surface to volume in 

larger proteins gives slightly higher density of H-bonds. More importantly, the range of 

physicality can be established on a case-by-case basis using the protocols developed here. 

Namely, a comparison of multiple FRODA runs should be made with respect to a 

common vector space derived from PCA on the combined dataset, and a subspace 

comparison on each separate FRODA run using RMSIP and PA metrics. In particular, the 

PA metric provides the most mathematically precise and sensitive measure of vector 

subspace overlaps, and, therefore, we note that the application of PA has much broader 

implications in the analysis of molecular dynamics, and other types of statistical data 

routinely encountered in bioinformatics and other fields.  

We investigated three models, each based on very different assumptions 

concerning how to translate the latent information of a protein structure into essential 

motions within the native basin. Despite very different assumptions in their approach, all 

three models share marked consistency in the subspaces that describe the greatest 

fluctuations. The subspaces derived from ANM using a selection of structures obtained 

from a dynamical trajectory are robust as measured by RMSIP (> 0.85) and first PA (< 

10 ). Moreover, the subspaces derived from FRODA are robust across a broad range of 

H-bond energy cutoffs and hydrophobic tether definitions. MD trajectories are as much 

consistent to ANM and FRODA results, as it is consistent against itself with respect to 

using PCA on partial statistics. The subspace defined by an experimental set of mutant 
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structures is well covered by both FRODA and ANM. Being less covered by MD clearly 

indicates longer simulations are required.  

The structural basis for observed motions within single domain proteins or for 

proteins that do not exhibit large-scale structural rearrangement via conformational states 

separated by an energy barrier can be understood within the scope of a coarse-grained 

view of protein dynamics. The input structure imparts the information needed for the 

construction of a dynamical vision of the protein contained within a small subspace. 

However, there are differences regarding the resolution of the motions and comparing 

individual modes. Which model to employ will depend on what one wishes to optimize. 

MD allows the underlying structure to change and thus can sample beyond the native 

basin defined exclusively by the input structure. However, for this advantage to be fully 

realized very long simulation times are required. The time needed to run an all-atom 

geometric simulation (FRODA) on myoglobin that generates 100,000 output structures is 

a few hours on a modern desktop computer, compared to several seconds for ANM. On 

the other hand, FRODA allows one to break free of the required harmonic limitation 

imposed by ANM, while the choice of runtime parameters is non-critical. We note in 

closing that this study represents the first employment of the momentum perturbation in 

the GSM to a set of proteins to assess the geometrical model. Previous work used the 

FRODA module in diffusion mode. 
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Figure 4.1 Conformational and residue RMSD from MD and FRODA runs using 
multiple Ecutoffs are compared for myoglobin (pdb code 1A6N). (A, Top) 
Conformation RMSD. (B, Middle) Residue RMSD. (C, Bottom) The distribution of 
residue RMSD values across the protein for MD and the most similar FRODA run 

  



   87  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Cartoon representations of four proteins colored 
by residue RMSD using FRODA runs (right panels) with an 
Ecutoff to produce maximum similarity with MD simulation 
(left panels). Panels A1 and A2 show myoglobin (pdb code 
1A6N). Panels B2 and B3 compare twitchin (pdb code 
1WIT). Panels C2 and C3 compare ubiquitin (pdb code 
1UBQ). Panels D1 and D2 compare triosephosphate 
isomerase (pdb code 1YPI). The cartoons are rendered by 
Pymol (the PyMOL Molecular Graphics System, Version 1.2, 
Schrödinger, LLC).  
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Figure 4.3 Comparison of eigenvalues and the top two modes. 
(A, Top)On a semi-log scale the rate of decay for the 
eigenvalues as the PCA modes increase is shown for a 
selection of FRODA runs and the MD run. (B, Middle) 
Comparing mode 1 from the PCA of FRODA and MD and 
from ANM. The FRODA modes are derived from the 
combination of eight runs using a range of Ecutoffs between 0 

-8). (C, Bottom) Comparing mode 2 
for the same three models.  
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Figure 4.4 The  FRODA-­‐8  and  MD  displacement  vectors  are  projected  on  the  PCA  modes  derived  
from  the  combined  FRODA-­‐8  ensemble.  Confidence  ellipses  are  drawn  for  95%.  Projections  are  
made  on  modes:  1,  2  for  A  (top  left);  2,  3  for  B  (top  right);  3,  4  for  C  (bottom  left),  and  4,  5  for  D  
(bottom  right).  In  all  cases,  the  FRODA-­‐8  confidence  ellipse  contains  the  MD  projections.  The  
ellipse  (indicated  by  the  arrow)  seen  in  the  top  left  panel  is  the  result  from  a  FRODA  run  using  an  
Ecutoff  of  0.  
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Figure 4.5 The FRODA-8 and MD displacement vectors are projected on the PCA modes derived 
from the MD ensemble. Confidence ellipses are drawn for 95%. Projections are made on modes: 1, 2 
for A (top left); 2, 3 for B (top right); 3, 4 for C (bottom left), and 4, 5 for D (bottom right). Note the 
tri-modality of the MD series in the projection on modes 1 and 2. In all cases there is a clear 
separation between the FRODA-8 and MD displacement vectors, with only an interface between the 
two clusters that exhibits an overlap.  
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Figure 4.6 The FRODA-8 and MD displacement vectors are projected on the ANM modes. 
Confidence ellipses are drawn for 95%. Projections are made on modes: 1, 2 for A (top left); 2, 3 for 
B (top right); 3, 4 for C (bottom left), and 4, 5 for D (bottom right). The FRODA-8 confidence ellipse 
nearly completely contains the MD space in all cases.  
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Figure 4.7 Consistency of subspaces describing essential dynamics using RMSIP 
and PA. (Top A) RMSIP results for individual FRODA runs compared to the four 
model modes: FRODA-8, FRODA-20, ANM, and MD. (Upper-middle B) PA 
results for individual FRODA runs to the four model modes; the horizontal axis 
indicates the run parameters that were used in each case. (Lower-middle C) Inter-
consistency is found between FRODA and MD runs using the top 20 PA, with 
RMSIP values parenthetically shown. (Bottom D) Consistency in results for 20 
ANM modes derived from 20 structures produced during a default run of FRODA. 
In C and D, a   
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Figure 4.8 Model-to-model subspace comparisons for the 4 proteins investigated. (A)It shows the results for1A6N 
using the top 20PA, with RMSIP values shown parenthetically in the legend. Figure B, C, and D similarly show 

 



   94  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9 Experimental and model subspace comparisons. Projection of 
the experimental displacement vectors on model modes 1, 2 (Top A) and 
on modes 2, 3 (middle B). The PA results from comparing the 
experimentally derived mode space to the model mode spaces, with the 
RMSIP values shown parenthetically in the legend (bottom C). The level 

  



 
 

 
 
 

CHAPTER 5: APPLICATION OF THE GSM TO MYOSIN V 
 
 

5.1 Introduction 

 We worked with collaborators who are experimentalists studying the kinetics and 

thermodynamics of myosins using FRET. The placement of the fluorophores allows for 

the determination of distance between a donor and acceptor probe, which in turn conveys 

information about the dynamics of the protein under various conditions. The subset of 

interest was defined by our collaborators and for project I was a set of 106 residues that 

defined the nucleotide-binding pocket (NBP) of myosin V (MV). For project II, there 

were three subsets: The actin-binding region (ABR), the NBP, and a proposed 

communication pathway (CP). 

5.2 Project I: Nucleotide Binding Pocket 

5.2.1 Introduction to Project I 

 Myosins are molecular motors capable of converting chemical energy into 

mechanical work through a cyclic interaction with actin filaments in what is known as the 

mechanochemical ATPase cycle. There is substantial evidence to support the lever arm 

hypothesis of force generation in which small conformational changes in the nucleotide-

binding region are coupled to a large rotation in the lever arm or light chain binding 

region (67,68). The swing of the lever arm generates nanometer displacements of actin 

filaments in muscle contraction and walking of myosin along actin in non-muscle cells. 

In addition, coupling between the active site and the actin-binding region is critical to 
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allow myosin to cyclically attach and detach from the actin filament. A large cleft in the 

50 kDa region separates the actin-binding region into an upper and lower 50 kDa 

subdomain. Considerable evidence suggests this cleft favors a closed conformation in the 

high actin affinity states and an open conformation in the low actin affinity states (69-72). 

However, it is unclear how conformational changes in the nucleotide-binding pocket are 

communicated to the lever arm and actin-binding cleft. In addition, determining 

mechanisms of subdomain coupling is critical for understanding how myosin motors 

adapt their mechanochemical cycle to external loads, a requirement for motor function in 

a cellular environment. 

 Several studies have demonstrated the lever arm swing during the mechanical 

cycle of myosin, including muscle fiber studies (73,74) and single molecule processive 

walking experiments (75-78). High resolution crystal structures have captured the lever 

arm in the pre- and post-power stroke conformation while there is still debate as to what 

step in the ATPase cycle (before, during, or after phosphate release) the power stoke 

occurs. However, electron microscopy and image reconstruction studies have observed 

movements of the lever arm in a subset of myosins when comparing the actomyosin 

nucleotide-free (APO) and ADP states (79-81). The observed structural changes along 

with other biochemical and biophysical studies lead to the hypothesis that the ADP 

release step may play a role in strain sensitivity (82). Indeed, a strain sensitive step was 

originally proposed by Huxley to explain the non-linear force velocity relationship in 

muscle contraction (83) and later ADP release was found to be the step that limits 

contractile speed in muscle by White and coworkers (84). The ADP release step is 

thought to be strain sensitive in that if the lever arm is exposed to negative strain, force in 
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the direction opposing motion, the ADP release rate will be reduced while if it is exposed 

to positive strain the ADP release rate is enhanced (82). In addition, gating between the 

two heads of the myosin V dimer is thought to occur during the ADP release step and 

allows for processive walking in which myosin V can take multiple steps along actin 

prior to detachment. Single molecule studies have provided direct evidence for strain 

dependent ADP release in the myosin V dimer providing support for the head-gating 

hypothesis (85-88). Therefore it is critical to understand the structural changes in the 

nucleotide binding region associated with ADP binding and release to understand this 

mechanism. 

 The current study utilizes a method of FRET between mantADP or IAEDANS 

actin and FlAsH labeled myosin V (70,89) to examine the conformation of the nucleotide 

binding region and the upper 50 kDa subdomain during the ADP binding and release 

steps. Our studies demonstrate that the conformational change measured by FRET 

correlates well with the rate-limiting step in the actomyosin V ATPase cycle. Our results 

allow us to propose a model in which strain dependent ADP release is mediated by the 

conformational change in the nucleotide-binding pocket characterized by our studies. 

5.2.2 Methods for Project I 

 We used FRET to examine the kinetics and thermodynamics of structural changes 

associated with ADP release in myosin V, which is thought to be a strain sensitive step in 

many muscle and non-muscle myosins. We also explore essential dynamics using 

FIRST/FRODA starting with three different myosin V x-ray crystal structures to examine 

intrinsic flexibility and correlated motions. The input structures employed here are the 

known x-ray crystal structures (1OE9, 1W7J, 1W7I), which were processed using MOE 
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(Molecular Operational Environment) software from Chemical Computing Group. All 

missing residues and atoms where computationally added, with missing loop regions 

determined by homology modeling, and the energy of each structure minimized. 

 Samples from a FRODA trajectory are taken to form a set of conformations that 

represent the native state ensemble. Each conformational ensemble was constructed by 

selecting every 50th structure from a given simulation containing 100,000 structures, thus 

yielding 2,000 samples for statistical analysis. PCA was performed using alpha carbon 

atoms described by Cartesian coordinates. The structures comprising of each trajectory 

were optimally aligned to remove overall rigid body translation and rotation motions 

from the intrinsic atomic fluctuations. PCA analysis was performed based on individual 

trajectories (subject to a specific H-bond energy cutoff) and combined trajectories (using 

multiple H-bond cutoffs) to test sensitivity in the H-bond energy cutoff.  

 The results we report here are based on the application of internal coordinates 

based on distance fluctuations (dPCA), compatible with our focus on residues 171, 294 

and 525. A covariance matrix is constructed based on the distances between the carbon 

alpha atoms of these three residues. This analysis yields 3 PCA modes that characterize 

the correlated displacements of these three selected residues. We note that no linear 

transformation was needed to remove overall rotations and translations of the protein 

because atomic pair distances are invariant under global rigid body motions. 

5.2.3 Discussion for Project I 

 Our steady-state and time resolved FRET analysis demonstrates a temperature 

dependent reversible conformational change in the nucleotide-binding pocket. Our kinetic 

results demonstrate that the nucleotide-binding pocket goes from a closed to an open 



   99  

conformation prior to the release of ADP while the actin binding cleft remains closed. 

Interestingly, we find that the temperature dependence of the maximum actin-activated 

myosin V ATPase rate is similar to the pocket-opening step, demonstrating this is the rate 

limiting structural transition in the ATPase cycle. Thermodynamic analysis demonstrates 

the transition from the open to closed nucleotide binding pocket conformation is 

unfavorable because of a decrease in entropy. The intrinsic flexibility analysis is 

consistent with conformational entropy playing a role in this transition, as the MV.ADP 

structure is highly flexible compared to the MV.APO structure. Our experimental and 

modeling studies support the conclusion of a novel post-power-stroke actomyosin.ADP 

state in which the nucleotide binding pocket and actin binding cleft are closed. The novel 

state may be important for strain sensitivity as the transition from the closed to open 

nucleotide binding pocket conformation may be altered by lever arm position. 

 In order to gain insight into the closed NBP conformation of myosin V in the 

presence of ADP, which is more populated at low temperature, we investigated the 

intrinsic flexibility of each of the three crystal structures of myosin V. We measured the 

distance distributions between proline 294, which is near the center of the FlAsH labeling 

site, and lysine 171, which is near the mant motif based on aligning the structure of 

myosin V with the structure of myosin II bound to mantADP.BeFX (90). The distance 

distributions demonstrate that the 294-171 distance in the MV.ADP.BeFx structure does 

not overlap with the distance distributions of MV.ADP structure (Figure 5.1), which 

suggests the MV.ADP structure is not capable of converting to the closed pocket 

conformation without significantly breaking constraints. In addition, in the MV.ADP 

state structure we observed very few modes of pocket opening/closing that agree with 
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experiment suggesting that this structure represents the weak open pocket MV.ADP state 

and that the strong closed pocket MV.ADP state has not been revealed by 

crystallography. Two other studies came to a similar conclusion in regard to the 

MV.ADP crystal structure (91,92). Our results provide support for a strong MV.ADP 

conformation that has an ATP-like closed NBP, while it has a closed actin-binding cleft. 

5.3 Project II: Three Subsets of Myosin V 

5.3.1 Introduction to Project II 

 Understanding the mechanism of force generation in myosins requires elucidating 

allosteric communication pathways that are critical for motor function. The well-

established lever arm hypothesis suggests that communication between the nucleotide-

binding region and light chain binding region or lever arm is critical for force generation 

(93-95).  In addition, cyclic attachment and detachment from actin is thought to be 

accomplished by nucleotide-dependent conformational changes in the actin binding cleft, 

(96). However, the details of how the active 

site coordinates communication between the lever arm and actin-binding regions is 

currently unclear.  

 The overall architecture of most myosins consists of a well-conserved structural 

core with minor modifications that lead to different mechano-chemical properties 

required for tuning each myosin for a specific biological function (97,98).  Interestingly, 

myosins share sequence and structural homology with G-proteins and other NTPases 

(99), and utilize a similar mechanism of nucleotide binding and hydrolysis. There are 

three well conserved regions in the P-loop family of NTPases (100) involved in 
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performing this task: the P-loop, switch I, switch II. However, it is unclear if the 

structural mechanism of communicating conformational changes from the active site to 

the protein effector-binding site or track is conserved in these structurally related 

NTPases.  Studies have demonstrated that the reversible movement of switch I is coupled 

to the coordinated opening of the actin binding cleft and closing of the nucleotide binding 

pocket (101, 102). Conformational changes in switch II are directly coupled to the kink in 

the relay helix, which allows for positioning of the lever arm and formation of the pre-

power stroke state (88,103). Hence, switch I is thought to be chiefly involved in the 

communication pathways between the active site and the actin binding cleft (104), while 

switch II mediates the communication to the converter-lever arm domain (103). 

 Mutation analysis studies of switch I and switch II (105-107) have provided 

support for this hypothesis. However, several studies have demonstrated that force 

generation in myosins is intimately associated with the transition from weak to strong 

actin binding (108-110).  Thus, the switch II region is implicated for providing allosteric 

coupling between the actin binding, active site, and lever arm domains.  Since the role of 

switch II in mediating the lever arm position has been well established, it is prudent to 

examine its role in opening/closing the nucleotide-binding pocket and in conformational 

communications between the active site and actin binding regions (111-113). 

 To address the question of how switch II affects the conformational dynamics of 

the nucleotide binding pocket and actin binding cleft we introduced two single site 

mutations in the switch II region of myosin V. We investigated the G440A mutant, which 

removes a highly conserved hydrogen bond to the gamma phosphate of ATP, and the 

E442A mutant which removes a highly conserved salt bridge between switch I and 



   102  

switch II (106,113). Both of these mutants inhibit the hydrolysis of ATP (scheme 1) as 

shown with studies of myosin V (113) as well as Dictylostelium (106,114) and smooth 

muscle myosin II (115-117). The conformational dynamics of the nucleotide binding 

pocket were examined by monitoring FRET between dmant [N-methylanthraniloyl 

-nucleotides (dmantADP or dmantATP) and FlAsH labeled in the 

upper 50 kDa domain of myosin V (MV FlAsH) (118,119). Conformational changes in 

the actin-binding cleft were examined by monitoring FRET between IAEDANS [5-((((2-

iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid] labeled actin and MV 

FlAsH. Our results establish a role for switch II in mediating the conformation of the 

nucleotide-binding pocket, which is important for the structural mechanism of ADP 

release from actomyosin.  In addition, we establish a critical role for switch II 

communicating conformational change between the active site and actin-binding region. 

5.3.2 Methods for Project II 

 The X-ray crystal structures (1OE9, 1W7J, and 1W7I) defining three 

conformational states were processed using MOE (Molecular Operational Environment) 

software from Chemical Computing Group. Different from prior work in which we only 

considered the motor heavy chain, we include both the myosin heavy chain and light 

chain, as well as the nucleotide in the active site (ATP, ADP, and no-nucleotide), where 

the ADP-BeF3 moiety was modeled as ATP. All missing residues and atoms were 

computationally added in both the myosin heavy chain and light chain, with missing loop 

regions determined by homology modeling, and the energy of each structure was 

minimized. Once the wild type structure was prepared, single site mutants for G440A and 

E442A were created using the mutate residue function in MOE and the energy of each 
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mutant structure was then minimized again. All HMs were refined using a 0.000001 

gradient and had no missing atoms. 

 Multiple FRODA runs were generated using different H-bond energy cutoffs from 

each conformational state (9 cases in all), an individual dataset consist of 2,000 frames 

uniformly sampled from a FRODA trajectory of 100,000 steps. These datasets were 

described by Cartesian coordinates. PCA was performed on each individual dataset (for a 

particular H-bond energy cutoff) and the combined dataset that includes all 6 FRODA 

runs. After verifying that the PCA modes from individual runs provide consistent results, 

the PCA mode analysis presented here is based on the combined dataset for maximum 

statistics. In addition to the entire protein, PCA is applied for regions of interest that 

include the nucleotide-binding pocket (NBP) consisting of 106 residues (156-244, 429-

445), the actin-binding region (ABR) consisting of 455 residues (201-655), and a 

proposed communication pathway (CP) consisting of 89 residues (393-481). 

5.3.3 Discussion for Project II 

 Our computational modeling results suggest that switch I-switch II interactions 

(120,121) stabilize the closed nucleotide binding pocket conformation in the absence of 

actin. Introducing the switch II mutations into the myosin V.ADP-BeFx structure 

(M.ATP - pdb) only had a minor impact on the overall flexibility as demonstrated by the 

RMSD plots. We also performed PCA to examine the correlated motions of the 

nucleotide-binding pocket, which allowed us to determine if the mutations disrupt 

important changes in active site dynamics. Analysis of the nucleotide-binding pocket in 
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the ATP state reveals reduced dynamics of switch I in the G440A mutant (Figure 5.2A). 

The reduced dynamics of switch I in the G440A may prevent switch I-switch II 

interactions and reduce the stability of the closed nucleotide binding pocket 

conformation, which we observed at higher temperatures in presence of ATP. In addition, 

the mobility of the P loop, which is directly connected to the HF helix and loop 1, is 

increased by both switch II mutants. These results suggest mutations in the switch II 

region can alter the coordinated motions of the HF helix/P-loop, switch I, and switch II 

which appear to be involved in mediating nucleotide binding and release. 

 PCA on the actin-binding subset predominantly defined by the upper and the 

lower 50kDa sub-domains reveals that the G440A mutation alters the dynamics of the 

actin-binding region.  In the rigor state, the G440A mutant increases dynamics of a region 

of the upper 50 kDa domain including the cardiomyopathy loop and C-terminus of the 

HO-helix (Figure 5.2B). There is also a dramatic increase in the mobility of helix-loop-

helix region of the lower 50kDa domain. Previous work has suggested that F441 may be 

a key residue that couples the switch II and the lower 50 kDa subdomain of the actin 

binding region (106). Our simulation results show that F441 is highly dynamic in G440A 

in the ATP state (Figure 5.3). Disruption of switch II rotation by the G440A mutation 

alters the mobility of F441, which may prevent its interaction with the surrounding 

hydrophobic cluster of the lower 50kDa sub-domain. These two structural uncouplings 

engender disruption of communication pathways between the active site and the upper 

and lower 50 kDa regions required for ATP-induced dissociation. 
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Figure 5.1 Intrinsic flexibility and dynamics of the MV crystal structures. A) We performed PCA analysis 
using FRODA to examine the relative motions of three residue pairs (294-171, 171-525, and 294-525) in 
all three crystal structures. The correlated motions were similar in the MV.ADP and MV.APO states 
although different in magnitude, while they were quite different in magnitude and direction in the 
MV.ADP.BeFX state. B) The residue root mean square deviation (RMSD) was examined in the MV.APO 
and MV.ADP crystal structures. The MV.APO residue RMSD was subtracted from the MV.ADP residue 
RMSD and the relative flexibility change is shown in a ribbon diagram The color scale is shown with red 
representing the most positive change in RMSD (MV.ADP more flexible than MV.APO) and blue 
representing the most negative change in RMSD (MV.APO more flexible than MV.ADP). 
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Figure 5.2  The first PC mode of the nucleotide and actin binding subsets of mutant and wild-type myosin 
V. (A) Analysis of the NBP subset defined by 106 residues (156-244, 429-445) is shown in the nucleotide-
free and ATP bound state. (B) The ABR subset defined by 455 residues (201-655) nucleotide-free and ATP 
bound state.  The shaded areas highlight the structural elements discussed in the text, which have 
significant changes in dynamics within the designated subsets.  
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Figure 5.3  Crystal structure of myosin V in the ADP-BeFx state (PDB, 1w7j) showing the Upper 50kDa 
(U50) and Lower 50kDa (L50) sub-domains along with the actin and nucleotide binding regions (top). 
Elements involved in coordination of the nucleotide and communication between the actin and nucleotide 
binding regions are magnified (bottom).  
 

 

 

 

 

 
 
 



 
 
 
 
 

CHAPTER 6: DISCUSSION 
 
 

6.1 Summary 

 The work outlined in this dissertation has established the GSM as a viable 

alternative and/or co-model to be used with, or in place of, either an ENM or MD. The 

GSM is both efficient and effective at determining the native state dynamics of a protein. 

The model is also extensible in that it has shown efficiency and effectiveness when 

applied to very large proteins like MV, which has multiple domains. Specifically, the 

model not only has a strong intra-consistency, but it is also consistent in large part with 

other models as well as experiment. The application of ED to trajectories has been shown 

to be an effective technique to tease out the biological motions of a subset of residues 

from a protein. The metrics that we have developed clearly show that the model is very 

The question of statistical 

sampling of biologically relevant motions can be addressed by using subspace analysis, 

as we have demonstrated here. The GSM with ED and subspace analysis has been 

applied to a wide range of proteins with success including small, single domain proteins 

and large multi-domain, multi-state proteins like MV. While the method is able to capture 

the essence of state transits, the current limitations of the model preclude the elaboration 

of a biologically sound pathway. 
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6.2 Significance 
 
 

 We have clearly shown through our analysis that the GSM is a solid model that 

may be used reliably for the determination of native state dynamics of proteins. Our work 

indicates that the results obtained from the GSM are qualitatively and quantitatively 

similar to those from MD and ANM. While the GSM is not entirely new, it has not had a 

rigorous testing prior to this work. In addition, we have shown that depending on the 

application, results may be obtained thousands of times faster than from an MD 

simulation. Within the framework of biophysical simulations, we have established a new 

method for rapidly assessing the native state dynamics of a protein as well as the 

dynamics of multi-state proteins that have about 1000 residues. Specifically, our work on 

MV combining experimental and computational methods has helped to clarify 

biologically important mechanisms in that protein. 

 We have implemented a set of mathematical and statistical techniques to quantify 

the similarity of native state dynamics as captured in a trajectory from either an MD or 

GSM simulation. While ED has a long history, the application of subspace analysis using 

both RMSIP and PA is new and has been shown to be very effective for measuring the 

similarity of protein dynamics. The work we have done here not only extends the GSM 

paradigm, but also places it on solid ground for other scientists to use as an analysis tool 

for their research. Finally, our analysis tools can be applied to other proteins and 

molecules to help push forward the frontiers of biological science. 
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APPENDIX A: RECIPE FOR PCA 

 
 

Essential Dynamics using Coordinate PCA applied to myoglobin PDB ID: 1a6n 

1. Obtain trajectories (1 or more) from dynamic simulation. For illustrative examples, 

one MD and three FRODA trajectories for myoglobin (PDB ID 1a6n) are considered 

to explain aspects of PCA. For this purpose, details about the setup of the various 

simulations are ignored, except when it pertains to methodology.  The MD trajectory 

consists of 2,000 frames after equilibration. One FRODA trajectory has 2,000 frames 

(100,000 explored conformations), and the other two FRODA trajectories have 

10,000 frames. The sampling rate of FRODA is normally set at 1 out of 50 

conformations generated. Here, one long trajectory is obtained from sampling every 

conformation (10,000 explored conformations), meaning it is 10% as long as the 

2,000 frame FRODA trajectory in terms of MC-steps, while the other is obtained 

from sampling every tenth conformation (100,000 explored conformations), is of 

equal length.  

2. Remove overall translations and rotations by aligning each frame to a reference 

structure. 

 We use the starting (crystal) structure as our reference, and our quaternion 

alignment program to optimally align each structure to the reference structure. 

Only the alpha carbon atoms were included in the alignment process.  

3. Choose the set of atoms for the analysis: This forms the data matrix AAligned. 
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 Protein conformations (observations or frames) define columns, and rows 

describe the x, y and z coordinates of the alpha carbon atoms. In this example, 

all 151 of the alpha carbons are used, giving 453 total DOF (variables). 

4. Examine the descriptive statistics for the variables.  

 Table 1 shows some statistics for three selected coordinates (variables) to 

highlight the non-uniformity of the standard deviations. 

5. Examine the Kaiser-Meyer-Olkin sampling adequacy scores for each coordinate. The 

MD and FRODA trajectories each with 2,000 samples are compared in Figure A1. 

Most coordinates from (MD, FRODA) simulation (do not, do) meet the 

recommended KMO cutoff criterion of 0.50. We assess how the KMO statistic 

changes when the number of FRODA samples is increased from 2,000 to 10,000, and 

investigate how the sampling frequency effects the sampling adequacy in Figure A1-

B. The overall KMO statistic remains about the same, and the individual coordinates 

that had a low KMO statistic did not improve by increasing the number of samples. 

Even more surprising, a sample rate of 1 leads to a slight improvement of the KMO. 

Thus, there exists a trade-off between the amount of conformational space that a 

simulation explores and the statistical sampling adequacy of those states. How to 

improve sampling adequacy in locations with low KMO statistics is not clear, since 

more sampling in the same way has diminishing returns.  

6. Center the variables of AAligned (row centering). 

 This forms the centered data matrix A . 

7. Construct the covariance matrix, Q, of {x,y,z} positions for the atoms using A . 

 For comparisons, construct the correlation matrix R. 
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8. Diagonalize Q or R using an eigenvalue decomposition. 

9. Examine the eigenvalue scree plot to determine the number of eigenvectors to include 

in the reduced vector space that describes the most relevant features. Figure A2 shows 

these plots in Panel A along with the conformational and residue RMSDs in Panels B 

& C. 

 It is not advisable to include all modes up to a preset percent of variance cutoff. 

Note that the characteristics of the scree plot depend heavily on whether one is 

analyzing fluctuations within a single native basin or is analyzing combined 

trajectories of multiple states. For a single native basin of random motions, 

many modes will be required to achieve 50% of the variance. For multiple 

states/configurations, the first two modes may subsume more than 50% of the 

variance. Our example MD plot shows that most of the variance is captured by 

one mode, because its CE clusters into two conformational states. In contrast, 

the FRODA plot does not have a dominant mode, but rather shows a 

monotonically decreasing trend indicative of random fluctuations about the 

native state of the protein (the input structure).  

10. Select the top set of eigenvectors for forming the principal components (PCs) 

(Usually 2-20). In our MD example, the top two modes reveal how two distinct states 

of the protein were sampled. However, at least 10 modes are required to define the 

essential subspaces for a comparison between MD and FRODA CEs (See the RMSIP 

plots below).  

11. Examine the component loadings, which are the product of the square root of the 

eigenvalue with the eigenvector. When the correlation matrix is used, they are also 
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the correlation coefficients (cosines) between the variables and factors (PCs). 

Analogous to Pearson's r, the squared component loading (squared cosine) is the 

percent of variance in that variable explained by the PC. In Table 2, PC1 is clearly 

capturing the behavior of the first three variables. 

 Scatterplots of the component loadings for the top 2 factors should be 

examined. In Figure A3 the first ten variables (Var 1 to Var 10) are seen to 

cluster. The angle between the variables on this scatterplot indicates the level 

of correlation, with (0, 90, 180) degrees indicating a correlation of (1, 0, -1).  

12. Examine the squared cosines of the variables. These values indicate whether a 

correlation is worthy of interpretation or likely an artifact of projection into a low 

dimensional subspace. Only the first 3 are shown in the Table 3, and they strongly 

support the correlations shown in Figure A3. 

13. Examine the contribution of the variables. Here we show only the first 3 in Table 4, 

but even from this truncated list, it is clear that the N-terminus residues have a large 

contribution to the first mode. 

14. Examine the eigenvector collectivity, Figure A4. The top modes tend to be more 

collective than lower modes indicating that many residues are participating in 

collective motions. For our example, the FRODA eigenvector collectivity drops off 

rather steeply suggesting that the top forty or so modes capture most of the collective 

motions occurring in the native state. This trend of having a set of highly collective 

modes highlights the fact that real protein motions tend to be captured by a 

superposition of PC modes, not a single mode. In contrast, the MD collectivity does 

not drop off rapidly suggesting that many more modes may be required to properly 
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capture the dynamics that the MD simulation produced. These results also clearly 

demonstrate that while PC modes in totality always form a complete basis set, they 

are derived from statistics, and will be dependent on the sampling. The top PC modes 

describe the sampling, not necessarily anything of biological importance. It is 

therefore important to carefully choose what and how to sample so that biological 

interpretations can be made. 

15. Construct the weighted RMSD modes: Here we map the 3m components of the 

eigenvectors to m new variables that capture the squared displacements of each 

residue to visualize which residues contribute most to the fluctuations of each PCA 

mode. For each eigenvector i, the new mode Ni has m components, with each 

component defined by the square root of the sum of the squares of the 3 variables that 

contribute to the associated residue, scaled by the square root of the corresponding 

eigenvalue. These results are shown in Figure A5. The mapping equation is given by: 

   2 2 2
1 1 1

2 2 2

i i

m m m

N
x y z

x y z
            Eq. (A1)

 

 Weighting is done by multiplying by the square root of the eigenvalue for the 

i. 

 It is often useful to compare the RMSD modes to the overall residue RMSD 

plot from the entire trajectory. Also, one may use the un-weighted RMSD 

modes to see relative displacements that are hard to see in the weighted plots 

due to the typical rapid decrease in the eigenvalues with mode index. 
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16. Construct the displacement vectors (DV) for the trajectory, given by  i i refDV X X   

and construct the Principal Components (PCs) (Factor Scores) 

 PCi is formed by taking the inner product between eigenvector i and each DV 

(Observation). Projections can be made on singe modes to view as line graphs. 

Projections on sets of 2 PCA modes create scatter plots that show how the 

simulation explored the configuration space defined by the selected set of 

modes. In Figure A6, it is evident that the MD trajectory sampled two states of 

the protein as seen by the two clusters in the scatterplot of PC1 versus PC2. In 

contrast, the projection of the FRODA trajectory onto the top two modes shows 

a uniform distribution. 

17. Check the contribution of the observations to the PCs to see if there are particular 

ones that unduly influence the analysis. Here we show only the first 3 observations in 

Table 5 and the values are percentages. 

18. We also examine the squared cosines of the observations when determining if an 

observation belongs to a particular cluster or not. In Table 6, we show values for the 

first 3 observations. Values in bold are significant at the 0.01 level. 

19. Since the sampling in the MD simulation was poor for many variables, we check the 

cosine content of the top two principle components. Comparing PC1 to a half-period 

cosine, we find a 0.63 correlation and in comparing PC2 to a full period cosine, we 

find a 0.16 correlation. The high cosine content in mode one suggests that the MD 

simulation should be run longer. 

20. When examining two or more sets of PCA modes, determination of how similar the 

trajectories are to each other may be assessed using the CO, RMSIP or PA metrics. 
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 In Figure A7, we compare the vector space of the top modes from the MD 

trajectory to that of the FRODA trajectory, each with 2000 frames.  Note that 

the various metrics for SS comparisons depend on the size of the VS and SS. 

As the SS DIM increases, the ability of that SS to capture a given eigenvector 

increases. Because all the metrics have dependencies on dimensionality, it is 

best to have a baseline score for random comparisons as a function of the 

dim(VS) and dim(SS). 

 

Table 1: Descriptive statistics for 3 variables in the MD simulation data. 

Variable Minimum Maximum Mean Std. deviation 

Var 1 3.456 11.489 7.085 1.610 

Var 10 9.568 12.980 11.530 0.707 

Var 20 8.390 10.467 9.423 0.301 

 

 

Table 2: Component Loadings for the first 3 variables in the MD trajectory. 

Variable PC1 PC2 PC3 

Var 1 0.807 -0.218 -0.056 

Var 2 0.890 -0.223 -0.095 

Var 3 0.867 -0.254 -0.111 

 

 

Table 3: Squared Cosines of the Variables 

Variable PC1 PC2 PC3 

Var 1 0.651 0.048 0.003 

Var 2 0.791 0.050 0.009 

Var 3 0.752 0.065 0.012 
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Table 4: Contribution of the Variables to the PCs as Percent 

Variable PC1 PC2 PC3 

Var 1 0.570 0.137 0.014 

Var 2 0.693 0.143 0.039 

Var 3 0.659 0.186 0.053 

 

 

Table 5: Contribution of the Observations to the PCs as Percent 

Observation 

 

PC1 PC2 PC2 

Obs 1 

 

0.015 0.529 0.147 

Obs 2 

 

0.002 0.329 0.121 

Obs 3 

 

0.003 0.485 0.033 

 

 

Table 6: Squared Cosines of the Observations 

Observation PC1 PC2 PC3 

Obs 1 0.026 0.285 0.052 

Obs 2 0.005 0.222 0.054 

Obs 3 0.007 0.351 0.016 
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Figure A1: The Kaiser-Meyer-Olkin MSA for (A) the FRODA and MD CEs each with 
2000 frames, and (B) for the FRODA CEs each with 10,000 frames. The overall KMO 
score is shown parenthetically in the legend. (C) Relationship between residue RMSD 
and MSA for MD. (D) Relationship between residue RMSD and MSA for FRODA. (E) 
Ribbon diagram colored by the MSA scores for MD. (F) Ribbon diagram colored by the 
MSA scores for FRODA. 
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Figure A2: (A) Eigenvalue scree plots for the FRODA and MD CEs showing both the 
correlation explained in each mode and the cumulative correlations (Since the PCA was 
based on the correlation matrix). (B) The conformation RMSD of the MD and FRODA 
trajectories. Each value is with respect to the starting structure (crystal structure). (C) The 
residue RMSD for the MD and FRODA trajectories. 
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Figure A3: The correlations between the first 10 variables and the top 2 PCs. Notice how 
these variables form a tight cluster with small angles between each, indicating that they 
are correlated on these PCs. The boundary line on right is an arc of the unit circle to 
indicate how close the values are to 1.  
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Figure A4: The eigenvector collectivity for the entire set of eigenvectors from both the 
MD and FRODA PCA. Note that the mode index is plotted with decreasing size of the 
eigenvalue, so mode index 1 is the top mode. This plot indicates that the collectivity 
measure should not be of primary concern. 
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Figure A5: The RMSD and the top 3 RMSD modes are compared from (A) MD and (B) 
FRODA PCA.  
 

 



   136  

 

 



   137  

 

Figure A6: (A) MD and (B) FRODA displacement vectors are projected onto their 
respective top 2 PCs. (C) Freq 1 and (D) Freq 10 displacement vectors are projected onto 
their respective top 2 PCs. 
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Figure A7: (A) The cumulative overlap of each MD eigenvector with the entire set of 
FRODA eigenvectors defining the subspace of indicated size. We do not show the 
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reverse metric, which is not symmetric, but yields similar values. (B) The RMSIP scores 
for the comparisons of random processes with 453 DOF, two FRODA simulations using 
the same conditions, and the MD and FRODA simulations. Error bars on the random 
process scores indicate plus and minus one standard deviation for 50 iterations. (C) The 
PA spectra for the comparisons of the MD and FRODA simulations using the indicated 
SS DIM. (D) The Z-scores for the RMSIP scores. 
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APPENDIX B: RECIPE FOR DISTANCE BASED PCA 
 
 

1. Obtain trajectories (1 or more) from dynamic simulation. 

2. There is no need to remove overall translations and rotations as internal coordinates 

are being used. 

3. Choose the set of atoms. 

 For a set of N atoms, there will be 1 / 2N N  modes. It is recommended that 

less than ten atoms be selected, because otherwise the interpretation of the 

resulting modes becomes increasingly difficult. 

4. Construct an all-to-all distance matrix D for the residue set chosen for each trajectory. 

5. Construct the centered data matrix D  by centering the variables (row center). 

6. Construct the covariance (or correlation) matrix, QD (or RD), from D . 

7. Diagonalize QD (or RD) using an eigenvalue decomposition. 

 It is best to implement both methods. 

8. Examine the eigenvalue scree plot. 

9. Select the top set of modes, typically, this is one or two. 

 Each component of the distance PCA modes indicates how the relative distance 

between a pair of atoms change. There is no way to map the mode components 

to individual residues. 

10. Construct the weighted distance modes. 
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 Weighting is done by multiplying by the square root of the eigenvalue for the 

i. 

11. Construct the displacement vectors (DV) for the trajectory, given by i i refDV X X , 

and construct the Principal Components (PCs).  

 Although there is a physical difference between using internal and Cartesian 

coordinates, mathematically the same procedures described above in terms of 

taking inner products and forming projections are identical.  

12. When examining two or more sets of PCA modes, determination of how similar the 

trajectories are to each other may be assessed using the CO, RMSIP or PA metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   142  

 

 

 
APPENDIX C: RECIPE FOR KERNEL PCA 

 
 
1. Obtain trajectories (1 or more) from dynamic simulation. For this example analysis, 

four proteins from different structural classes were shortened to 75 residues, and all 

included the N-

These proteins were simulated under the same conditions and then subjected to kernel 

PCA as a combined set with 880 observations. 

2. Remove overall translations and rotations by aligning each frame to a reference 

structure. 

3. Select the set of atoms for the analysis to define the data matrix, A. 

4. Center the variables of A and row center it to define the data matrix A . 

5. Construct the kernel matrix, K, of {x,y,z} positions for the atoms using A . 

 The matrix K has dim (n x n) where n is the number of observations. 

 Each element (i, j) in the kernel is determined using a chosen kernel function, 

which has the general form as . A linear kernel is given as 

,K x y x y ,  and a homogeneous polynomial is given by 

, d
d dK x y x y C x C y  where Cd maps x to the vector Cd(x) with 

entries that are all possible n-th degree ordered products of the entries of x. 

Another kernal type uses a Gaussian weighting function given by 

Ki, j = K k xi, xj( )( )
i, j
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2

2, exp
2

x y
K x y

 
where  the standard deviation, , is an adjustable 

parameter.  A neural net kernel is given as , tanhK x y m x y b , and a 

mutual information kernel is given as , ,K x y MI x y  where 

,
, , log

y Y x X

p x y
MI X Y p x y

p x p y
. These are commonly employed 

kernels in many fields, and are not necessarily particularly useful for protein 

dynamics. Nevertheless, because higher order correlations in large datasets can 

be filtered with these kernels, and as such, we have explored all of them.  

6. Diagonalize K using an eigenvalue decomposition, and ignore the zero eigenvalues.  

7. Examine the scree plot, and from where the kink is, select the top modes. 

 The characteristics of this plot depend heavily on whether one is analyzing 

fluctuations within a single native basin or is analyzing combined trajectories 

of multiple states. In kPCA, typically the first few eigenvalues are much larger 

than the remainder. 

8. Determine the eigenvector collectivity. When using kPCA with properly tuned 

parameters, the top eigenvector often has a collectivity of 0.5 or higher. 

9. Select the top set of eigenvectors for forming the kernel principal components 

(Usually 2-5).  

10. Scale the top eigenvectors using the condition 1 n n n where n  is the nth 

eigenvector (a column vector) of K and n  is the corresponding nth eigenvalue of K. 
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 The eigenvectors are derived from the feature space and usually do not have a 

meaningful interpretation in the sample space. 

11. Construct the displacement vectors (DV) for the trajectory given by i i refDV X X  , 

and then construct the Kernel Principal Components (kPCs). 

 Calculate kPCn  using 
1

,
M

n
i in

i

kPC x k x x . Note that x is a test vector, 

and not a training vector (a vector are used to create the kernel). If only the 

original centered data is to be used, i.e., the data used to construct K, then all the 

elements of K are already determined. Projections can be made on singe modes 

to view as line graphs or on 2 PCA modes create scatter plots that show how the 

simulation explored the configuration space defined by the selected set of 

modes.  

 We applied PCA and kPCA to the set of four 75 residue proteins to assess the 

ability of the methods to achieve cluster separation. The results are shown in 

Figure C1. 

12. When examining two or more sets of kPCA modes, determination of how similar the 

trajectories are to each other may be assessed using the following metrics. We note 

that the essential subspaces in kPCA are quite small, comprised of usually 5 or so 

modes. This is especially true when standard PCA was used as a pre-processing 

dimensional reduction step. Additionally, subspace comparisons require that the 

parent vector spaces have the same dimensionality. Therefore, it is possible to 

compare the essential subspaces derived from different kernels only when the same 

number of samples are used in each case. 
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 In Figure C1-F, we show that the subspaces for the top modes generated from 

the different kPCA approaches are quite similar using the RMSIP scores and 

the first PA. The most dissimilar was the SS derived from the MI kernel. 
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Figure C1: Cluster separation for the dynamics of four different proteins using different 
kernels, but all using the same CE containing trajectories involving 2000 FRODA frames 
for each of the four proteins. (A) Linear kernel equivalent to standard PCA. (B) 
Homogeneous polynomial kernel of degree two, which is sensitive to fourth order 
statistics. (C) Gaussian kernel with standard deviation set to 50. (D) Neural net kernel 
with no offset and a slope parameter set to 10-4. (E) Mutual Information kernel. (F) 
Subspace comparisons of the 4 kernels in B-D using the linear kernel essential space as 
the reference. The SS DIM in all cases was five. 
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APPENDIX D: QUATERNION ROTATION ALGORITHM 
 
 

The user must specify the subset of atoms to use for the analysis. The subset may 

be all atoms, all alpha carbons, or a subset of either of these. The alignment of a 

generated structure to a reference structure involves two sets of points, A and B for 

which we want to find an optimal alignment, defined as the alignment that minimizes 

the RMSD between each point in A and its corresponding point in B. In this situation, 

B is the reference structure and A is each successive conformation generated by 

FRODA. We know which point in A corresponds to which point in B, thus we have 

the correspondence set. The optimal translation involves superimposing the centroids 

of the two sets. The optimal rotation can be found as an optimization problem in 

which a quadratic is extremized. The form is that of the Raleigh Quotient, which tells 

us that the best RMSD alignment can be achieved by finding the largest eigenvalue of 

the matrix of the quadratic form.  

Here we will use quaternions to carry out the rotation operation: 

*

*'

r xi yj zk

q a bi cj dk

q a bi cj dk

r qrq

    Where r is a vector, q is a quaternion, and q* is the 

conjugate of q. 
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We want to find the rotation on set A that maximizes the sum of the dot products 

of the rotated vectors of A with the vectors of B, all expressed as offsets from the set 

of centroids: 

' * ' ' '

1 1

n n

i i i i
i i

qa q b qa b q  

' ' ' ' ' '
, , , , , ,

' ' ' ' ' '
, , , , , ,' '

' ' ' ' ' '
, , , , , ,
' ' ' ' ' '
, , , , , ,

0 0
0 0

' ; '
0 0

0 0

i x i y i z i x i y i z

i x i z i y i x i z i y
i i

i y i z i x i y i z i x

i z i y i x i z i y i x

a a a b b b
a a a b b b

qa q A q b q q B q
a a a b b b
a a a b b b

 

' ' ' ' ' '

1 1 1 1

' '

1
;

n n n n
T T T T T T

i i i i i i i
i i i i

n
T

i i i i
i

A q B q q A B q q A B q q N q q N q

N A B N N
 

4

max 4

det 0

0

optimal rotation

N I

N I v
v q

       Where the optimal rotation is found by mapping the 

eigenvector v to q. 

This eigenvalue equation is a quartic in lambda, and is solved for the largest such 

value. 

The Algorithm: 

1. Read in the x, y, z coordinates of the points in set A (this is one trajectory 

structure). 

2. Calculate the centroid of set A: 
1

1 n

c i
i

a a
n

 

3. Generate the centered coordinates: '
i i ca a a  
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4. Repeat Steps 1  3 for set B (this is the reference structure and only needs to 

be done once). 

 The same subset of atoms must be used so as to maintain a proper 

correspondence set. 

5. Calculate the matrices Ni where: ' 'T
i i iN A B  and where we have: 

' ' ' ' ' '
, , , , , ,

' ' ' ' ' '
, , , , , ,

' ' ' ' ' '
, , , , , ,
' ' ' ' ' '
, , , , , ,

0 0
0 0

' ; '
0 0

0 0

i x i y i z i x i y i z

i x i z i y i x i z i y

i y i z i x i y i z i x

i z i y i x i z i y i x

a a a b b b
a a a b b b

A B
a a a b b b
a a a b b b

 

6. Calculate the matrix N where: 
1

n

i
i

N N   

7. Solve:  det 0N I  to get the maximum eigenvalue, max  

8. Determine the eigenvector corresponding to max  by solving: 0N I v  

9. Generate the quaternion q  from the eigenvector v : 0 x y zq v i v k v k  

10. Generate the set of rotated vectors R using: 'r qrq  

 The set R is the set A after the optimal rotation has been applied. 

 The RMSD of the set R is the least RMSD. 

11. Calculate the RMSD of the set R for each structure that is input: 

2' '

1

1 N

i ref i r
i

RMSD r r
N

 

 This metric is called the conformational RMSD. 

 This is a good measure of how different the FRODA structure is from 

the original structure. 
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 With translation and rotation accounted for, the RMSD for the 

simulation should saturate when the trajectory equilibrates, with 

changes in RMSD showing as random fluctuations from the maximum 

value. 

 This is especially relevant for simulations based on compositional 

invariant rigid clusters. 

12. Calculate the RMSD for each atom in the transformed vectors of set R over all 

structures. 

 This metric is called the residue RMSD. 

 This will give a measure of how much each atom moves throughout 

the simulation. 

 

 

 

 

 

 

 


