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ABSTRACT

FARIA KAMAL. Resilient Operation and Optimal Scheduling of Networked
Microgrids. (Under the direction of DR. BADRUL CHOWDHURY)

The rapid proliferation and widespread adoption of microgrids (MG) necessitate the

development of new methodologies to holistically model all the active components

within MGs. It’s crucial to focus on specific islanding requirements, especially when

the primary grid power is unavailable. In order to ensure a high level of reliability

in an interconnected MG network, this dissertation presents an optimal scheduling

model designed to minimize the day-ahead costs of the MGs while taking into account

the existing operational constraints.

This problem is thoughtfully decomposed using Bender’s Decomposition method

into two key operating conditions: grid-connected and resilient operations. The ulti-

mate goal is to ensure that each MG within the network maintains sufficient online

capacity in the event of an emergency islanding situation, such as during extreme

weather events. These events often come with uncertainties regarding their timing

and duration, necessitating the consideration of multiple potential islanding scenarios

for each event.

The primary objective of this thesis is to establish optimal scheduling that guar-

antees the feasibility of islanding for all conceivable scenarios of such events, with

load shedding as a last resort. The optimization model has been put into practice

across different layouts of the modified IEEE 123-bus test system, encompassing var-

ious events over a 24-hour period. In addition to proposing a day-ahead scheduling

approach oriented towards resiliency for multiple MGs, a comprehensive cost analysis

and comparisons among all the test cases are also offered. The results convincingly

demonstrate the utility of the proposed day-ahead scheduling algorithm, particularly

for MG owners looking to foster collaborations with neighboring MGs. Lastly, after
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comparing with the traditional Single Stage MILP approach, the proposed method

has proven to be computationally faster for practical usage. It has been shown that

decomposing the problem using the proposed model makes it possible to combat real

life events with thousand scenarios, where the single stage approach may fail.
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CHAPTER 1: Introduction

An electrical grid that’s dependable, with ample power generation capacity to meet

the everyday load, and capable of enduring unexpected disruptions, represents a fun-

damentally sound framework for a smart grid in the 21st century. However, this

concept, while conceptually robust, remains incomplete. The modern grid should be

more than just robust; it should possess the ability to adapt seamlessly to a wide

spectrum of challenges, ranging from large-scale environmental incidents to unfore-

seen, unnatural events, all while remaining operational in the face of adversity.

Furthermore, the smart grid should go beyond mere functionality and aim to min-

imize the repercussions of catastrophic events that could impact the quality of life,

economic activities, national security, and the smooth operation of critical infras-

tructure. In essence, the grid should not only prioritize reliability in providing a

continuous power supply for everyday life but also emphasize resilience. Reliability

assures uninterrupted power supply under normal circumstances, fostering stability in

daily activities. In contrast, resilience introduces a more encompassing set of ideals,

including the capacity to withstand and rebound from extreme or prolonged events.

Thus, it’s crucial to understand that while all resilient grids are inherently reliable,

not all grids characterized by reliability can claim the same degree of resilience. The

distinction between the two emphasizes the evolving demands and expectations placed

on modern energy infrastructure, ultimately shaping the grid of the future.

1.1 Networked Microgrids

In today’s modern distribution systems, there is a growing presence of multiple mi-

crogrids (MGs) equipped with extensively integrated inverter-based resources. These
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versatile MGs are engineered to operate either independently or in coordination with

the main grid, emphasizing the critical role of MG resiliency in ensuring an unin-

terrupted power supply to end consumers. Additionally, when independent MGs are

geographically close, they have the capacity to function collectively as a network,

akin to an archipelago when viewed from the perspective of the main grid [1]. The

primary goal underpinning the formation of MG networks is to establish an intelligent

structure that facilitates the efficient sharing of locally generated power. This col-

laborative approach bolsters the overall system’s stability, reliability, and resilience,

particularly during events that could disrupt the balance between power generation

and consumption.

Traditionally, the operation of MGs falls within the purview of the Distribution

System Operator (DSO), who oversees MG interconnections and orchestrates opti-

mal power exchanges by aggregating crucial data from individual MGs [2]. This

centralized control scheme relies on a robust cyber network to facilitate seamless

communication and control. Nevertheless, in certain scenarios, decentralized control

strategies have been embraced as well [3, 4].

Within the context of a smart community, where resiliency is of paramount im-

portance, one or more MGs can participate in coordinated operations [5, 6]. While

connected to the main grid, these operations are geared towards reducing overall en-

ergy consumption, curbing emissions, and maximizing the utilization of renewable en-

ergy resources [7–9]. Grid-connected MG operations offer the flexibility to adapt and

reconfigure as needed to optimize energy consumption and minimize emissions [10].

However, in the face of severe disruptions, a smart city may find itself isolated from

the main power grid [11–13]. In such challenging circumstances, the city’s energy

needs can only be met by the local distributed energy resources (DERs), supporting

a reduced set of critical end-use loads. In these scenarios, the smart city is more likely

to be served by individual MGs rather than a single uniform MG [14].
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Forming a network of MGs offers several compelling advantages, including the in-

tegration of diverse DERs into the system [14]. These benefits can be succinctly

summarized as follows:

1) Lowering emissions by sharing renewable energy resources.

2) Efficiently utilizing distributed generator (DG) units while adhering to their op-

erational constraints.

3) Providing mutual support to neighboring MGs in the event of a local DG failure.

4) Reducing operational costs through the incorporation of a diverse array of energy

choices.

1.2 Resiliency

In a scenario where the main grid serves as an infinite bus with a seemingly bound-

less power supply and demand capacity, it effectively acts as a balancing force that

mitigates power mismatches within individual MGs. Consequently, the loss of the

main grid can pose significant challenges for MGs. Existing research on grid re-

siliency has primarily centered on the structural and configurational aspects of the

system [15,16]. What adds an extra layer of complexity to the analysis of resiliency is

the presence of physical constraints, encompassing voltage and line limitations, gen-

eration and thermal restrictions, within a power distribution system. Furthermore,

the control decisions made by the Distribution System Operator (DSO), including

network reconfiguration, play a crucial role in influencing the overall resiliency of the

system [17].

Despite numerous research studies focusing on the resiliency of complex power sys-

tem networks [18–21], the effectiveness of different control actions remains challenging

to assess and compare using the existing resilience matrix. Various optimization-based

network reconfiguration methods have been explored [22, 23], although research in-

corporating multiple MGs into these strategies is relatively limited. While these

approaches can facilitate successful power restoration, some of them may prove vul-
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nerable to extreme events [17].

1.3 Rationale

While there has been a substantial body of research on MG cluster optimization, a

significant portion of these studies has predominantly focused on cost minimization

as their primary objective [24–31]. However, a select few have taken different angles

in their approach, with authors in [27,29,32] emphasizing the importance of maximiz-

ing reliability. Authors in [30,31,33] extended their optimization goals to encompass

system adequacy maximization. Previous research efforts like those in [19, 34] have

applied techniques such as Bender’s Decomposition and robust optimization for single

MG optimization.

However, a newer and evolving challenge in the realm of MG optimization is the

creation of an optimal framework geared towards ensuring resiliency, particularly for

interconnected MGs. Notably, research works such as [35] have addressed optimal

battery energy storage (BES) scheduling, while [36] focused on optimal load shedding

for multiple MGs. Another significant contribution can be found in [37], where a

Model Predictive Control (MPC) method was introduced for the optimal scheduling

of distributed generators (DGs) and BES systems in a MG cluster.

Considering the proximity and interconnection of multiple MGs, it becomes evi-

dent that a robust, resilient infrastructure is imperative for their sustained operation,

especially during events characterized by extreme uncertainty, such as natural disas-

ters. In these scenarios, the possibility of the main grid remaining disconnected for

extended periods poses a unique set of challenges. While there are some studies that

delve into resilient MG operation with the application of decomposition techniques,

only a few have ventured into the domain of large MG networks.

This research stands out as innovative for harnessing the advantages of the Bender’s

Decomposition technique to achieve cost-effective resiliency in a network of MGs. The

utilization of Benders Decomposition notably alleviates the computational complexity
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that often plagues larger networks, which typically involve a multitude of variables.

As a result, this approach is capable of ensuring zero generation-load mismatches for

a wide range of scenarios during extreme events. Additionally, a distinct contribu-

tion lies in incorporating battery degradation costs into the cost comparison among

various MG layouts, a facet often absent in existing literature.

In this study, we introduce an interconnected MG operational framework using

Bender’s Decomposition with a key focus on minimizing load curtailment. The con-

tributions of this work can be summarized as follows:

1. The proposal of an innovative method for scheduling multiple MG resources

to facilitate resilient operation during extreme events, tested on the modified IEEE

123-bus distribution test system.

2. The achievement of resilient operation, guaranteeing zero generation-load mis-

match in numerous potential scenarios resulting from extreme weather events.

3. The comparison of day-ahead scheduling and resilient operation costs for differ-

ent networked MG layouts across various extreme weather events.

The proposed approach can serve as a valuable tool for MG owners in determining

the optimal day-ahead scheduling of MG units. Furthermore, establishing connections

with neighboring MGs offers additional benefits from both resiliency and economic

perspectives.

The subsequent sections of this dissertation are structured as follows: Chapter 2

provides a comprehensive review of relevant literature. Chapter 3 outlines the pro-

posed methodology and the test system used. Results, cost analyses, sensitivity to

uncertainties, and comparison with the Single Stage MILP approach are detailed in

Chapter 4, and the concluding remarks are presented in Chapter 5.



CHAPTER 2: Background

2.1 MG Components and Control

A MG is a small network situated at the low voltage side of a distribution substation

through a point of common coupling (PCC). MGs contain of a number of components

including DGs, energy storage system (ESS), and essential, non-essential loads. The

distinguishing features and dynamics of all the components make the control and

operation of the MGs difficult. Because MGs incorporate a lot of DERs and ESS, the

energy management method can drastically differ from the traditional power system.

2.1.1 Distributed Generators (DGs)

The inclusion of the DGs makes electrical power available in the remote areas,

promotes local decision making, and to some extent, protects the environment. As a

result, it is becoming a more popular choice for the large-scale grid electrification [38].

Generally, a DG is a small scale (kW) electric power generator connected near the

demand side of the distribution network. The power generation capacity of the DGs

can vary between 1 kW and 3 MW [39, 40]. Unlike centralized power systems, DGs

are smaller in size and flexible in terms of location. This allows the users to generate

the required amount of power for their household or community. Thus, cost is lowered

by minimizing surplus generation and line losses. A number of studies [41–43] have

concluded that even for a user 3.4 miles away from the main grid, decentralized

electrification can be more economically beneficial.

The DGs can be powered by different types of fuels such as diesel, natural gas (NG),

hydrogen (H2), solar, wind, geothermal, biomass or a combination of these sources.

The DGs fueled by renewable energy (e.g., wind turbines, photovoltaic [PV] panels)
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are non-dispatchable, and their output varies with nature. On the other hand, the

dispatch level of the fuel based DGs (e.g., micro-gas turbines, diesel generators, etc.)

can be determined by the user according to their operating cost. Different types of

DGs, their sizes, efficiency and costs are presented in Table 2.1 [44].

Table 2.1: Various types of DGs

Technology Size range Energy source Electrical

efficiency

Waste heat

quality

Equipment

cost ($)

Reciprocating

engine

1-5,000+

kW

Diesel,

propane, NG,

or gasoline

25-45 High 500-1000

Microturbine 30-1000 kW NG High 500-1000

Fuel Cell 1W -2 MW Biogas,

diesel,H2,

methanol, NG,

and propane

1-60 Depends on

technology

1000-5000

Stirling

Engine

≥ 100 watts Diesel, biofuels 10-30 Medium 1200-7000

Photovoltaics ≥ 1 kW Solar 10-20 N/A 1850-2130

Moreover, some DGs such as combined heat and power (CHP) plants can simul-

taneously generate electric power and usable heat. This characteristic proves really

beneficial, especially because DGs are placed locally. This added benefit of the CHP

plants is one of the main economic privileges of installing MGs [45].

An effective energy management system (EMS) is crucial to operate the MG at

the optimal energy scheduling. Balancing generation and load while minimizing the

operational cost adds challenge to the MG’s control algorithm. Advancement in the

inverter control strategy has made it possible to successfully integrate variable fre-
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quency DERs in the MG. On another note, observing and controlling all the DG units

requires proper communication among them. The communications standard for DERs

(61850-7-420) established by the International Electro technical Commission (IEC) is

commonly followed (Cleveland, 2008) in this regard [46]. It is an international code

that determines the communication and control protocols for all the DERs, especially

when DERs are connected to the main grid [46].

2.1.2 Energy Storage Systems (ESS)

The energy storage system (ESS) is one of the crucial components in the MG. The

benefits of ESS include [47]:

1. Ensuring stable power supply to the load in the face of uncertainty posed by

the renewable energy sources.

2. Storing surplus energy during off peak and serving loads during peak hours.

3. Enhancing reliability

4. Serving as a local power source in remote areas or islanded MG

5. Improving power quality by providing fast response

6. Providing voltage and ride through support

A comparison among different ESS technologies is presented in Figure 2.1 [48].

While pumped hydro can store a significant amount of energy, super capacitors are

small but can respond very fast.



9

Figure 2.1: Essential load and PV profile

The most common types of ESS used in MGs are battery energy storage (BES)

types. Among all the available options, the Li-Ion battery has better characteristics

compared to other technologies of batteries [49]. Because of their prolonged cycle life,

acceptable cell voltage, heat dissipation capability, excellent charge accumulation,

and decent depth of charge, they are more widely used than any other type of energy

storage systems [50].

2.1.3 Loads

Generally, a MG includes both critical or essential load and controllable or non-

essential load. When the MG is grid connected, there is usually enough generation

to meet wll the loads. However, during islanded hours there may not be enough

generation to supply all the loads. even after utilizing the DGs and ESS, if there is
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insuffcient power, some non-essential loads can be curtailed at the expense of cus-

tomer’s inconvenience.

2.2 Networked MGs Structure

A number of MGs can form a network as depicted in Figure 2.2 [51]. Figure 2.2(a)

portrays the parallel-connected MG (PCM) structure. In this architecture, each MG

has a single point of common coupling (PCC), and all the MGs are connected to

the same power grid in parallel. While grid-connected, these MGs receive orders

from a controller in the external grid. A number of authors have used the PCM

layout in their papers [52–56]. In Figure 2.2(b), the grid series interconnected MGs

Figure 2.2: Different layouts of MG cluster [51]

(GSIM) architecture is presented. In this case, each MG is connected to another in

a point-to-point manner. Because there is no connection with the utility grid in this

layout, if the interconnected MGs are AC, they must generate the voltage and the

frequency themselves. Such architectures have been studied in [57, 58]. The next

possible architecture is shown in Figure 2.2(c) and is termed a mixed parallel-series
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connection (MPSC). In this structure, some MGs can form clusters of MGs connected

in series. However, each of the single MGs or clusters has at least one direct connection

with the grid. The authors in [59] presented an MPSC layout, where a cluster of two

MGs is connected to an external power grid.

Ensuring optimal mutual power support among all the MGs in a network introduces

an added challenge compared to optimal control in a single MG [60].

2.3 Control and Optimization of Networked MGs

The traditional PID controller used in MGs does not provide optimal results, as the

acceptable error is defined at the time of modeling. On the other hand, in the optimal

control methods, the control problem is formulated as an optimization problem. The

control and management of a MG cover different technical areas, time scales, and

physical layers. The local power, voltage, and current of a MG are handled by the

primary control which performs control actions by following the set-points determined

by upper level controllers. Based on the implementation of these control levels, a MG

can be controlled in centralized, decentralized, distributed, or hierarchical fashion.

The same idea can be expanded to multi-MG scenarios as depicted in Figure 2.3.

Figure 2.3: Basic MG control structures. (a) Centralized. (b) Decentralized. (c)
Distributed. (d) Hierarchical [61].
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2.3.1 Centralized Control

In a centralized structure, a central control unit gathers and transmits information

from and to all the MGs. The collected information is used to execute the control and

management procedures. The centralized control can be implemented in an effort-

less manner while securing the observability and controllability of the whole system.

However, the main disadvantage of centralized control structure is it imposes a sin-

gle point of failure threat. As a result of the central controller breakdown, all the

functionalities are lost. In addition, the centralized control structure is less flexible

and demands significant computational resources. Consequently, centralized control

is more suitable where the communication is limited and the computational cost is

low, such as smaller MG networks. The centralized control structure of a MG cluster

is shown in Figure 2.3(a).

Authors in [62–68] researched optimization techniques that use centralized control

strategies. An energy management method for a multi-MG system is proposed in [62],

which focuses on cost minimization and economic optimization. Again, a dynamic

multi-criteria-based energy management approach is proposed in [63] which takes the

security, reliability, power loss, energy cost, and environmental concerns into account

while decision making. Particle swarm optimization and heuristic-based optimization

approaches are adopted in [64,65] in determining the most suitable MG in the neigh-

borhood to support each other during emergencies. A control scheme proposed in [68],

is claimed to be able to coordinate multiple MGs by optimizing their renewable en-

ergy usage. Nonetheless, all these control techniques are communication-dependent

and therefore, the system reliability is compromised.

2.3.2 Decentralized Control

The decentralized control scheme shown in Figure 2.3(b), does not require infor-

mation from other MGs in the network. The respective MG controller operates with
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the information that is locally available. One benefit of the decentralized method is

that it does not demand real-time communication. However, as a drawback of lacking

coordination between local regulators, global optimization is not achieved.

2.3.3 Distributed Control

In a distributed control scheme, the information flows between the controllers

through communication lines. As a result, a coordinated behavior is observed among

all the MGs. The main challenge placed by the distributed control scheme is the co-

ordination among MGs to meet either the control or optimization objectives, which

demand flawless communication and exchange of essential information. A distributed

energy coordination management method based on droop control is proposed in

[66, 67, 69, 70]. The drawback in this control is the continuous enforcement of power

exchange between two MGs resulting in additional power loss. An updated control

strategy has been proposed in [71–73] to address this issue. In this strategy, the power

flow between two MGs takes place within a certain operation threshold only.

2.3.4 Hierarchical Control of Networked MGs

The increasing number of inverter-based resources is making the existing power

system network more complex and in need of complicated decision-making. It is be-

coming increasingly evident that all the requirements may not possibly be met in

a distributed or decentralized manner. A hierarchical control structure, as shown in

Figure 2.3(d), has thus come into the picture. Simple functions can be implemented in

the local controllers of the system to ensure basic operations, while the advanced con-

trol and management functions can be applied in the central controller. Hierarchical

control is thus becoming a standardized configuration in MGs.

2.4 MG Reliability and Resilience

In recent times, the intensity and frequency of natural disasters have been increas-

ing, posing a significant threat to the energy infrastructure [74]. Especially the electric
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power system is generally prone to outages and resulting losses. Natural disasters,

ranging from extreme temperatures and storms to cyclones, earthquakes, volcanic

eruptions, floods, droughts, tsunamis, and even biological crises such as epidemics

and pandemics [75], consistently inflict significant damage on the electric power sec-

tor year after year. The impact of these disasters on the power infrastructure is

profound. In Table 2.2, a historical account of the most widespread blackouts in the

United States can be observed, some of which led to extended power outages [76].

Table 2.2: Largest blackouts in the history of U.S.A. [74]

Blackout/Cause of blackout Lost electricity service(million

customer hours)

Hurricane Maria (2017) 3,393

Hurricane Georges (1998) 1,050

Hurricane Sandy (2012) 775

Hurricane Irma (2017) 753

Hurricane Hugo (1989) 700

Hurricane Ike (2008) 683

Hurricane Katrina (2005) 681

Northeast blackout (2003) 592

Hurricane Wilma (2005) 515

Hurricane Irene (2011) 483

Notably, what stands out is that hurricanes were responsible for nine out of the

top ten blackouts. This is particularly worrisome given that eight of the ten most

disastrous hurricanes ever recorded have occurred within the last 10 years [77]. Aside

from the peril posed by natural disasters, the power system is also susceptible to other

malevolent threats that can trigger power outages and blackouts. These threats en-

compass both physical and cyber-attacks, adding another layer of complexity and
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vulnerability to the power grid.

Historically, power system reliability has been ensured using single or double out-

age contingency (N-1 or N-2). The power system is termed N-1 or N-2 secured if it

can endure a single or double component failure. Even though the probability of such

incidences is high, the impact is much lower. Therefore, the grid remains unharmed

and a small number of customers may lose power for a short period of time. However,

it becomes essential to conduct multiple outage contingencies (N-K) for catastrophic

events such as the natural disasters mentioned above. During such events, the pri-

ority is to keep the critical infrastructures functional and operational. Additionally,

ensuring minimum losses and avoiding a disastrous aftermath following the event are

important factors to be considered [78]. Therefore, it is crucial to identify the under-

lying differences between reliability and resilience. Due to the increasing phenomena

of natural disasters and resulting outages, a thorough study of power system resilience

has become essential.

On another note, the advancement of smart grid technologies and its applications

advocate for a resilient power system. Since a MG is an indispensable part of the

smart grid, it can play a major role in this regard. In fact, numerous recent stud-

ies suggest the appropriate utilization of MGs and DERs can play a vital role in

improving system resiliency [74].

2.5 MG Day-ahead Scheduling

Optimal scheduling and energy management strategies of MGs demands various

operational difficulties to be overcome. Generally, a unit commitment problem is

solved for the grid connected operation of the MG to determine the required local

generation at the minimum cost. However, to ensure resilient operation, MG day

ahead scheduling should also take into account the islanded hours of operation. The

scheduling should be such that the maximum number of loads are supplied during

the islanded hours.
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2.5.1 Feasible Islanding of the MG

Ensuring feasible islanding of a MG during any severe event is the first step to-

wards achieving complete resiliency of the MG. Aside from the technical constraints,

the feasible islanding mostly depends on confirming adequate local supply to the crit-

ical loads of the MG in the absence of the main grid. Any mismatch between the

generation and the load may result in frequency fluctuations, leading to significant

failure of multiple system components [74]. To prevent such occurrence during ex-

treme events, the MG must be scheduled accordingly while it is still in the normal

operation mode. If the initial unit commitment results from the normal operation

does not guarantee feasible islanding, the results are revised accordingly.

2.5.2 Uncertainty

Uncertainty refers to certain aspects of MG management which can neither be pro-

jected precisely, nor be controlled. There are mainly two types of uncertainties [79,80]:

1. Uncertainties that originate from forecast errors, such as load demand, renew-

able generation, and real-time market price.

2. Uncertainties that result from disruption in the supply or service restoration

time

A MG scheduling is proposed in [81] that ensures system resilience and conducts

sensitivity analysis for various degrees of uncertainty. Two deep reinforcement learn-

ing techniques for resilient MG management are proposed and analyzed by Tightiz

and Yang [82] while taking uncertainty into account. On another note, some research

projects emphasize timing ESSs in order to address the uncertainty in the generation

of RESs. An effective optimization approach to MG scheduling is presented in [83]

that takes into account demand projections and renewable power generation uncer-

tainties at the appropriate robustness level.The effect of accurately estimating and
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choosing the ESS of the islanded MGs on their uncertainties-based resilience met-

rics is quantitatively assessed by Shahinzadeh et al. [84]. With an emphasis on ESS

scheduling, a chance-constrained optimization model for MG robust and economical

operation is presented in [85]. In order to estimate certain optimization issue inputs,

such as load demand, PV generation, and supply disruption, this study use machine

learning models.

2.5.3 Networked MG Scheduling

Because networked MGs allows each MG in the neighborhood to aid one another

through local sources, it offers substantial prospects toward a more resilient power

grid. This networking does present certain difficulties, though. Whether the commu-

nication, control, and decision-making will be centralized or decentralized is linked

with privacy concerns. As a result, this has an impact on how the MGs operate and

communicate with each other. Furthermore, networking among the individual MGs

and the main grid after an incident should be influenced by the market strategy from

a practical perspective [74]. There are certain technological difficulties to resolve.

In order to increase system resilience, networking MGs is becoming a more crucial

technique [74]. Numerous published studies have been done to optimize networked

MG operation. For networked MGs connected to a point of common coupling, a

normal and self-healing operation strategy is suggested in [86]. This study states

that when an MG experiences a malfunction or generation shortfall, it switches to a

self-healing state and asks nearby MGs that are normally running for power support.

Through a two-stage decentralized control and networking method, the requested

power is optimally distributed across the supporting MGs. A 3-layer optimal schedul-

ing model for networked MGs as a stochastic MILP issue is presented in [87]. In order

to provide a small number of the most anticipated scenarios for each stage transition,

this study used the three-point estimation strategy to feed the suggested model. For

the best possible operation of networked MGs in both normal and critical situations,
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a dynamic, stochastic MILP is advised in [88] that captures uncertainties of the start

time and length of large disturbances. Authors in [89] present an networked MG

scaling model in a design based research project with the goal of improving system

resilience. In [90], authors explore the effects of the Internet of Things (IoT) on net-

worked MG operation. Taking the demand response program into consideration, a

day-ahead scheduling is recommended in [91] as a solution to the prolonged detach-

ment of networked MGs from the main grid. In [92], a two-stage operational strategy

is proposed using Bender’s Decomposition to test the viability of MG islanding.

2.6 Multi-objective Optimization Problems

All the design problems that exist around us are multi-objective by nature. In

system engineering, the four main objectives are performance, cost, schedule and

risk. As shown in Figure 2.4, an inherent tension exists among these four main

objectives [93]. If the schedule and the risk level are fixed, the cost increases to

Figure 2.4: Tensions during system design [93]

achieve better performance. Extending one of the four sides in the rectangle of Figure

2.4 would compromise the other sides. Performance of a product can be measured

differently. Obtaining a balance among these performances, risk and cost is a part

of the engineering department. When scheduling is involved, it becomes a job of the

project management. However, assessing, observing and finding solutions of these

trade-offs is one of the main responsibilities of system designers. This multi-objective
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thought process is very significant, as it ensures optimal designs.

A common multi-objective optimization problem may be formulated as in:

min C(x,p)

s.t. f(x,p) ≤ 0

f ′(x,p) = 0

xi,L ≤ xi ≤ xi,U (i = 1, ...,m)

x ∈ S

Where,

C = [C1(x)...Ck(x)]
T

x = [x1...xi...xm]
T

f = [f1(x)...fn1(x)]
T

f ′ = [f ′
1(x)...fn2(x)]

T

(2.1)

Here, the multi-objective function Ci ∈ R is a column vector. It has k objectives.

Each of these objectives is dependent on a vector x of m decision variables and a

vector of constant parameters, p. The decision variables are presumed continuous

and can be adjusted freely by the user within upper and lower limits, xU and xL,

respectively. The two vectors f and f ′ are set of n1 inequality and n2 equality

constraints respectively which need to be satisfied for x to be in the feasible domain

S. The problem is to minimize all components of the objective vector at the same

time. This is the reason it is called multi-objective optimization problem. It is also

popularly known as multi-criteria optimization, vector minimization, multi-attribute

maximization etc.

2.6.1 Goal Programming

Goal programming is an addition of linear programming which deals with multi-

objective optimization with contrasting objectives. Each of these individual objectives

is assigned a goal or set value to be achieved. Any unwanted deviations from these set

values are then minimized using an achievement function. Depending on the user’s

requirement or the type of goal programming, this function can be a vector or a

weighted sum.

The type of goal programming model is picked by the user based on their goals. In
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the basic goal programming formulations, the undesirable deviations are arranged by

their level of criticality. This means minimizing the deviations of factors which are

more important to the user are prioritized over the other factors. This is termed as

lexicographic (preemptive) or non-Archimedean goal programming [94].

A general mathermatical formulation of the Goal Programming can be found in

[95]: Instead of the original objective function ci(x̄) where decision variable vector

x̄ = x1, ..., xi, ...xI , in Goal Programming an achievement function ā is minimized:

ā = f1(n̄, p̄, ), ...fj(n̄, p̄), ...fJ(n̄, p̄) (2.2)

such that:
ck(x̄) + nk − pk = bk for all k = 1, ...,m

x̄, n̄, p̄ ≥ 0̄,

(2.3)

Here nk and pk are the negative and positive deviation variables associated with

constraint k. fi is a function of the deviation variables associated with the objectives

or constraints with ith priority level. The aim is to minimize the deviation variables

to obtain the desired goal. The process is summarized in Table 2.3.

Table 2.3: Minimizing deviation variables in Goal Programming [95]

Goal or constraint

type

Processed goal or constraint Deviation variables to

be minimized

ck(x̄) ≤ bk ck(x̄) + nk − pk = bk pk

ck(x̄) ≥ bk ck(x̄) + nk − pk = bk nk

ck(x̄) = bk ck(x̄) + nk − pk = bk pk + nk

2.7 McCorkmick Envelope Relaxation of Bilinear Problems

Bilinear problems are non linear problems (NLP) and non-convex by nature. This

makes the solution difficult and some type of convex relaxation technique may be
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applied. The McCormick Envelope, proposed first by Dr. Garth McCormick, is such

a method. In this method, it is assumed that convex and concave envelopes can be

drawn for the given function [96]. The concave and convex envelope, are the concave

over-estimator and convex under-estimator respectively which provides the closest fit

to the given function. Like an envelope enclosing a letter, the envelope encircles the

provided function and constrains the possible solution space to the greatest extent.

For a given function and domain, there can be several concave over-estimators and

several convex under-estimators, but only one concave envelope and one convex enve-

lope. The link between the given function f(x), a convex envelope, a concave envelope,

multiple concave over-estimators, and multiple convex under-estimators is shown in

Figure 2.5. Four sets of constraints are introduced, and a new variable is substituted

Figure 2.5: McCormick Envelope Method design [97]

for each bilinear term. Thus, the bilinear NLP problem is relaxed into a convex LP

problem which can be more convenient to solve. Below is an example of a non-convex

function:

min C =
∑
i=1

∑
j=1

pi,jxiyj + f0(z) (2.4)

subject to, ∑
i=1

∑
j=1

pli,jxiyj + fl(z) ≤ 0 ∀l ∈ L (2.5)
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xL ≤ x ≤ xU

To apply McCormick Envelope method to the aforementioned non-convex problem,

xiyj is substituted by wij. As a result the convex problem below is achieved:

min C =
∑
i=1

∑
j=1

pi,jwi,j + f0(z) (2.6)

subject to, ∑
i=1

∑
j=1

pli,jwi,j + fl(z) ≤ 0, ∀l ∈ L

wi,j ≥ xL
i yj + xiy

L
j − xL

i y
L
j

wi,j ≥ xU
i yj + xiy

U
j − xU

i y
U
j

wi,j ≤ xL
i yj + xiy

U
j − xL

i y
U
j

wi,j ≤ xU
i yj + xiy

L
j − xU

i y
L
j

(2.7)

After the relaxation, the resulting problem is a convex optimization problem.

2.8 Mixed Integer Linear Programming

Linear programming (LP) deals with the problem of maximizing or minimizing a

linear function over a polyhedron. For instance:

max {cx|Ax ≤ b}, min {cx|x ≥ o;Ax ≤ b}

Here, A is a matrix, b, c are vectors and x, y are the variables. In Fourier [1826b,

1827], there are indications of the concept of linear programming. However, it wasn’t

until the 1940s that Dantzig, Kantorovich, Koopmans, and von Neumann’s work

helped establish the discipline and acknowledge its significance. As a consequence

of the Fundamental theorem of linear inequalities [76], the Duality theorem of linear

programming was then proposed and demonstrated by Gale, Kuhn, and Tucker [1951]

[98]:

max{cx|Ax ≤ b}=min {yb|y ≥ 0, yA = c}

The variables (x and y) in the LP problem can be continuous or discrete. A mixed
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integer linear programming (MILP) problem is an optimization problem containing

both integer and continuous decision variables, a linear objective function, and linear

constraints. MILP theory and practice have evolved throughout the course of its more

than 50 years of existence, making it an essential tool in both engineering and business

today [99–101]. The modeling flexibility of MIP and LP-based solvers are two factors

contributing to the success of MILP. Presently, we possess numerous highly efficient

cutting-edge solvers [102–104] that integrate numerous sophisticated methods [105–

111]. In fact, MILP has been employed to simulate an extensive array of applications

since its inception [112,113]. While creating appropriate MILP formulations is often

not too difficult, caution must be given in this process since some formulation features

can drastically lower the efficiency of LP-based solvers. Fortunately, by following

basic criteria found in mainstream textbooks, one can usually create formulations

that perform nicely with available solvers. However, more sophisticated methods

are occasionally required and can frequently perform more effectively than textbook

approaches [114].

2.8.1 Single Stage MILP

Regular MILP problems can be solved in a single stage and has the form as follows:

min
n∑

i=1

cixi +
m∑
j=1

djyj (2.8)

Subject to,
n∑

i=1

alixi +
m∑
j=1

eljyj = bl

xdown
i ≤ xi ≤ xup

i , xi ∈ N;

ydown
j ≤ yj ≤ yupj , yj ∈ R;

l =1, ..., q

i =1, ..., n

j =1, ...,m

(2.9)

Here, N is the set of natural numbers (Integers starting from zero to infinity), and R

is the set of real numbers (Both integers, fractions and irrational numbers). However,

both the integer and continuous variables are bounded by the limiting constraints,
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reflecting most engineering problems. On another note, any integer variable can

be represented as a multiplication factor of binary variables 1. For instance, x =

a1, a2, ...an can be substituted by n binary variables:

x =
n∑

i=1

aiui where,
n∑

i=1

ui = 1

ui ∈ 0, 1; i = 1, ...n.

(2.10)

If a centralized solution of problem is not advisable, the integer variables can be

considered as complicating variables and the Bender’s decomposition scheme can be

used used. The details are presented in chapter 2.7.2.4.

2.8.2 Decomposition Techniques

Whether or not an LP or MILP problem is decomposable can be determined from

the complicating constraints and complicating variables. If a problem is decompos-

able, the objective function can be broken down into multiple sections with associated

constraints. However, complicating constraints and complicating variables prevent

that from happening. In such cases, problem can be decomposed if the complicating

constraints or complicating variables are fixed.

2.8.2.1 Complicating Constraints

In real life, linear programming problems can be significantly large in size. It is

possible to come across problems that deal with numerous variables and constraints.

Using some techniques may make these problems possible or even easier to solve. On

another note, a large problem may be more approachable if divided into smaller sec-

tions for both theoretical and practical reasons. The techniques which enable certain

type of problems to be solved in a decentralized manner, are termed as Decom-

position techniques. These techniques may make the solution procedure rigorously

simple. These techniques can be implemented only when the problem under study has

the suitable structure. There are two such possibilities: the complicating constraint
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and the complicating variable structures. The Complicating Constraints structure

involves a problem where there is at least one constraint which contains all the vari-

ables from the objective function and thereby prevents the separation of the multiple

objectives. Because these constraints complicate the solution of the problem, this

structure is termed as Complicating Constraints. Below is an example of a problem

with complicating constraints structure:

minimize α1x1 + α2x2 + α3x3 + β1y1 + β2y2 + γ1v1 + γ2v2 + γ3v3 (2.11)

Subject to, a11x1 + a12x2 + a13x3 = m1

a21x1 + a22x2 + a23x3 = m2

b11y1 + b12y2 = n1

c11v1 + c12v2 + c13v3 = o1

c21v1 + c22v2 + c23v3 = o1

d11x1 + d12x2 + d13x3 + d14y1 + d15y2 + d16v1 + d17v2 + d18v3 = p1

x1, x2, x3, y1, y2, v1, v2, v3 ≥ 0

(2.12)

The last equality constraint has all the variables in it, which prevents from decom-

posing the problem. Therefore, that is the complicating constraint. Relaxing this

constraint can can facilitate decomposing the problem into three subproblems:

Sub-problem 1:

minimize α1x1 + α2x2 + α3x3 (2.13)

Subject to, a11x1 + a12x2 + a13x3 = m1

a21x1 + a22x2 + a23x3 = m2

x1, x2, x3 ≥ 0

(2.14)
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Sub-problem 2:

minimize β1y1 + β2y2 (2.15)

Subject to, b11y1 + b12y2 = n1

y1, y2 ≥ 0

(2.16)

Sub-problem 3:

minimize γ1v1 + γ2v2 + γ3v3 (2.17)

Subject to, c11v1 + c12v2 + c13v3 = o1

c21v1 + c22v2 + c23v3 = o1

v1, v2, v3 ≥ 0

(2.18)

Approaches such as Dantzig Wolf or Column Generation methods are taken to

solve problems with complicating constraints structure.

2.8.2.2 Complicating Variables

In a linear programming problem, the complicating variables are those variables

which hinders the distributed or straightforward solution of the problem. The Com-

plicating Variables structure involves a problem where there is at least one variable

from the objective function which is present in all the constraints. Because these vari-

ables complicate the solution of the problem, this structure is termed as Complicating

Variables.

minimize α1x1 + α2x2 + β1y1 + γ1v1 + γ2v2 + λ1z1 (2.19)
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Subject to, a11x1 + a12x2 + d11z1 ≤ m1

a21x1 + a22x2 + d21z1 ≤ m2

a31x1 + a32x2 + d31z1 ≤ m3

b11y1 + d41z1 ≤ n1

b21y1 + d51z1 ≤ n2

c11v1 + c12v2 + d61z1 ≤ o1

c21v1 + c22v2 + d71z1 ≤ o1

c31v1 + c32v2 + d81z1 ≤ o1

(2.20)

The variavle z1 is present in all the constraints, preventing a distributed solving ap-

proach. Therefore, if it can be given a fixed value z′, the problem can be decomposed

into 3 sub-problems:

Sub-problem 1:

minimize α1x1 + α2x2 (2.21)

Subject to, a11x1 + a12x2 ≤ m1 − d11z
′

a21x1 + a22x2 ≤ m2 − d21z
′

a31x1 + a32x2 ≤ m3 − d31z
′

(2.22)

Sub-problem 2:

minimize β1y1 (2.23)

Subject to, b11y1 ≤ n1 − d41z
′

b21y1 ≤ n2 − d51z
′

(2.24)

Sub-problem 3:

minimize γ1v1 + γ2v2 (2.25)
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Subject to, c11v1 + c12v2 ≤ o1 − d61z
′

c21v1 + c22v2 ≤ o1 − d71z
′

c31v1 + c32v2 ≤ o1 − d81z
′

(2.26)

To solve problems with complicating variable structure, Bender’s Decomposition

method may be used. If the problem in concern is a LP problem, the dual of the

problem would be another LP problem with complicating constraint structure, and

Dantzig Wolf or Column Generation method could be implemented. However, such

is not the case with MILP problems [115].

2.8.2.3 Lagrangian Duality

In an unconstrained optimization problem min L(θ) the solution can be determined

by solving the first-order optimality conditions. In other words, the solution can be

obtained if the gradient is set to zero [116]:

∇L(θ) =
d

dθ
L(θ) = 0 (2.27)

However, in a constraint problem minL(θ) subject to g(θ) = 0, the gradient may

not be set to zero. Instead it is suffice if the gradient is orthogonal to the constraint.

As shown in Figure.2.6, gliding along the constraint at any direction does not change

the objective. The constraint g has the orthogonal direction at ∇g(θ). This results

in the following first-order optimality conditions:

∇L(θ) = λ∇g(θ) for some λ ∈ R (2.28)

g(θ) = 0 (2.29)

Therefore, both the gradient of the original function and the constraint are parallel

to each other. This new variable "λ" is termed as Lagrange multiplier or dual variable.
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Figure 2.6: Parallel gradients and Lagrange multiplier [116]

A force can be assumed which pushes the point of interest downhill towards the

gradient decent. The dual variable will then be a force that pushes back, keeping

from violating the constraint. At the optimum, the two forces balance exactly:

λ∇g(θ)−∇L(θ) = 0 (2.30)

By introducing the dual variable, the optimization problem is transformed into a

system of simultaneous equations, where the objective and the constraints are treated

the same way. This sort of transformation can sometimes make the problem easier

to solve [116].

2.8.2.4 Bender’s Decomposition

To solve problem 2.8 - 2.9 in a distributed manner, the Benders decomposition

method can be implemented following the algorithm below [117]:

1. Integer variables are assigned fixed values.

2. The optimal objective function value is obtained by solving the subsequent con-

tinuous LP problem for the fixed integer variables. Because of fixing integer variables,

a sensitivity associated with each constraint is also obtained in the form of dual vari-
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ables. In addition, an upper bound of the objective function is determined.

3. The MILP master problem is solved to obtain improved values of the integer

variables. In addition, a lower bound of the objective function is determined.

4. The optimal solution has been obtained if the bounds of the objective function

optimal value are sufficiently close; if not, the algorithm moves on to Step 2.

A formal description of the Benders decomposition algorithm for MILP problems

is as follows [117].

Step 1: Initialization

Iteration counter iter = 1 is started, with following assumption:

x
(v)
i =


xdown
i ifci ≥ 0

xup
i ifci ≤ 0

(2.31)

α(v) = αdown (2.32)

minimize
n∑

i=1

cixi + α (2.33)

subject to,

xdown
i ≤ xi ≤ xup

i , xi ∈ N; i = 1, ..., n

α ≥ αdown

(2.34)

Step 2: Sub-problem is solved

minimize
m∑
j=1

djyj (2.35)

subject to,
m∑
j=1

eljyj = bl −
n∑

i=1

alixi; l = 1, ...q

ydown
j ≤ yj ≤ yupj , yj ∈ R; j = 1, ...,m

xi = x
(v)
i : λi; i = 1, ..., n.

(2.36)
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The solution of this problem is y(v)1 , ..., y
(v)
m with associated dual variables λ(v)

1 , ..., λ
(v)
n .

The aforementioned problem can be broken down into smaller parts. If so, the prob-

lem can be tackled in parts. If it is not feasible, the user can employ penalties for the

objective function and extra variables to make it feasible.

Step 3: Convergence is checked.

Upper and lower bounds of the original objective function is determined.

z(v)up =
n∑

i=1

cix
(v)
i +

m∑
j=1

djy
(v)
j (2.37)

z
(v)
down =

n∑
i=1

cix
(v)
i + α(v) (2.38)

Otherwise, the algorithm continues with the next step.

Step 4: Master problem is solved. The iteration counter is incremented by 1.

minimize
n∑

i=1

cixi + α (2.39)

subject to,

α ≥
m∑
j=1

djy
(k)
j +

n∑
i=1

λ
(k)
i (xi − x

(k)
i ); k = 1, ...v − 1

xdown
i ≤ xi ≤ xup

i , xi ∈ N; i = 1, ..., n

α ≥ αdown

(2.40)

The solution to problem is x
(v)
i , ..., x

(v)
n and α. The algorithm continues with Step

1.



CHAPTER 3: Methodology

A centralized control strategy, as shown in Figure 3.1, is assumed for the intercon-

nected MGs, where all the MGs communicate through a central control unit. This

control unit gathers and transmits information from and to all the MGs. The collected

information is used to execute the control and management procedures. Some exam-

ples of such controllers would be the RTACs (Real-Time Automation Controllers) by

SEL (Schweitzer Engineering Laboratories), ECC (Energy Control Center) by Schnei-

der Electric, or the Omnisive Hybrid Control solution by Siemens. In addition, if a

single point failure occurs at the central controller, there is provision for a backup

central controller which can take over the responsibility. Even though the probability

of the backup controller failure is slim, if it does indeed fail, the MGs will operate on

their own using their own individual MG controllers. As shown in Figure 3.1, each of

the MGs has its own DGs, BES systems, PVs, and non-essential loads (NEL), and is

able to share its resources with the neighboring MGs.

Figure 3.1: Centralized control of the interconnected MGs
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3.1 Problem Statement

The resilient operation of this interconnected multi-MG system demands all the

MGs to operate in the islanded mode for prolonged hours, preferably without com-

promising any loads. Since the exact time of any environmental and unnatural event

cannot be precisely known in advance, the number of possible islanding scenarios

can be many. The more scenarios the optimization problem is solved for, the more

resilient the system will be. For each of these scenarios, the total generation should

match the total load of the system. This condition is subject to all the power flow

and system constraints and losses. If there exists a mismatch between the generation

and the load for any scenario, load shedding would need to take place. Nonetheless,

the MG owners will benefit not only from resiliency, but also by computing the most

cost-effective way to achieve it. The original optimization problem consists of two

minimization problems:

1) Minimizing the cost function, J , which includes the cost of MG units and power

transfer from the main grid during normal operation

2) Minimizing the generation-load mismatch in resilient operation for each of the

possible scenarios considered.

3.1.1 Single Stage MILP Approach

The problem at hand is a multiple-objective, MILP problem which can be solved in

various ways. The most straightforward approach is the Single Stage MILP approach,

where the problem is solved as a single block. The steps in Single Stage MILP

approach to solve the aforementioned problem can be summarized as shown by the

block diagram in Figure. 3.2.
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Figure 3.2: Single Stage MILP Approach

In multi-objective problems, one of the main perplexity is representing two different

objectives as a whole. In the SMILP approach shown in Figure. 3.2, the mismatch is

added as one of the constraints, instead of another objective. This makes the problem

more straightforward as it becomes a single objective MILP problem where the only

objective is to minimize the cost. In this way the complexity of representing both

objectives as a summation can be avoided. However, the drawback to this approach is

- if zero mismatch cannot be obtained for any scenario, the solution does not converge.

By cutting some slack to the zero mismatch, i.e. by making the equality constraint

mismatch = 0 an inequality constraint with some level of tolerance, this phenomenon

may be avoided. The system and power flow constraints and the mismatch are checked

for every hour of every scenario. The blue boxes in Figure. 3.2 represent the loops or

the number of times/scenarios the constraints are checked for.
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3.1.2 Goal Programming Approach

Another approach that can be used to solve the problem in concern is to treat it

with Goal Programming method. As mentioned in section 2.6.1, Goal Programming

is a very popular method for solving multi-objective optimization problems. In the

block diagram shown in Figure. 3.3, the required steps are shown to solve the problem

using Goal Programming.

Figure 3.3: Goal Programming Approach

As can be seen, it is also a Single Stage MILP approach. The difference lies in

treating the mismatch as an objective function, instead of a constraint, and thus

avoiding infeasible solutions.

3.1.3 Decomposition Methods

The Single Stage MLIP may be simple and straightforward in nature, but for a

very large number of scenarios it may not converge. To ensure MG resilience, it is

necessary to consider thousands of scenarios. Therefore, instead of solving an MILP

problem in the centralized manner, a distributed approach is proposed. It is possi-

ble to decompose the problem by relaxing the complicating constraints or fixing the
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complicating variables as discussed in section 2.8.2.4. However, the aforementioned

problem is of complicating variable structure, because it has integer variables (deci-

sion variables that represent commitment states of the MG units) which are present

in most of the constraints. This makes Bender’s Decomposition a suitable candi-

date to be implemented for decomposing the problem. In Figure 3.4, the Bender’s

Decomposition approach is presented in steps to solve the concerned problem.

Figure 3.4: Bender’s Decomposition Approach
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3.2 Proposed Framework - Bender’s Decomposition

Using Bender’s Decomposition, the original problem is decomposed into a master

problem (MP) and a sub-problem (SP) as shown in Figure 3.5.

Figure 3.5: The Proposed Framework

It can be seen in Figure 3.4, that the 24 hours unit commitment result is obtained

first for the minimum cost. Mismatch is treated as an objective function unlike Sin-

gle Stage MILP approach, but under a sub-problem unlike the Goal Programming

approach. Although the Bender’s Decomposition seems more critical compared to

Single Stage MILP and Goal Programming approaches, this approach is more bene-

ficial in terms of large number of scenarios, as the original problem is broken down

into master problem and sub-problem.

3.2.1 Master Problem

The normal or grid connected operation of the MGs are carried out in the MP, while

the resilient operations are handled in the SP. In the MP, the commitment states of

the DGs, BES systems and the NEL of all the MGs are determined. These unit

commitment states obtained during the normal operation ensure the cost incurred by

the MGs is minimum. The results are then sent to the SP. The SP checks for any

generation-load mismatch in all possible scenarios in a certain case. Each scenario
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has a possibility to have a mismatch for the unit commitment obtained from the MP.

If there is no mismatch, the results obtained from the MP are used for scheduling the

units. On the other hand, if there is a mismatch in any of the scenarios, the commit-

ment states of the units are revisited in the MP using Bender’s cuts or resiliency cuts.

The results are then again sent to the SP to check for any mismatch. The process

continues until the mismatch is zero for every scenario considered for the event. Load

shedding is considered only if there is still a mismatch after the maximum number of

iterations has been reached.

3.2.1.1 Cost Function

The maximum benefit of the MGs is ensured by minimizing the power purchased

from the grid and operating the least expensive DGs first in all active MGs. The

objective function shown in (3.1) aims to achieve this cost minimization. The first

portion of the objective function represents cost minimization related to the main

grid. The cost (CG) of purchasing power from or selling power to the main grid is

considered to be equal. It is assumed that the MGs cannot simultaneously purchase

power from the grid and sell power to the grid. Therefore, the power purchased from or

sold to the grid is represented with a single variable (PG). If power is purchased from

the grid, it is considered a generation source for the MGs, therefore PG is positive. If

power is sold to the grid, PG is negative. The later portion of the objective function

minimizes the cost associated with all the DG units in the network. The cost of

operating a DG is determined by multiplying the generator fuel cost (CDG) with the

power generated (PDG) by, and the commitment state (IDG) of that DG unit.

Minimize
∑
t

[
(PG

t CG
t ) +

∑
i

∑
j

PDG
t,i,jC

DG
t,i,jI

DG
t,i,j

]
(3.1)
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3.2.1.2 DG Constraints

The maximum and minimum powers that can be drawn from the DGs are restricted

using (3.2). The operation of all the DGs are subject to maximum ramp-up and ramp-

down limits (3.3,3.4).

PDG,min
i,j IDG

t,i,j ≤ PDG
t,i,j ≤ PDG,max

i,j IDG
t,i,j (3.2)

PDG
t,i,j − PDG

t−1,i,j ≤ RUi,j (3.3)

PDG
t−1,i,j − PDG

t,i,j ≤ RDi,j (3.4)

3.2.1.3 Convex Relaxation through McCormick Envelope Method

The aforementioned minimization problem 3.1 and constraint 3.2 have the term

PDGIDG in them. Therefore, they are of bilinear NLP by nature. However, the

variable IDG is the commitment status of the DG units. Because it is a binary variable,

the minimum and maximum will be IDG,min = 0 and IDG,max = 1 respectively. The

problem is then relaxed using the McCormick Envelope method mentioned in section

2.7:

Minimize
∑
t

[
(PG

t CG
t ) +

∑
i

∑
j

PDG
t,i,jC

DG
t,i,j

]
(3.5)

subject to

PDG
t,i,j ≥ PDG,min

i,j IDG
t,i,j + PDG

t,i,j I
DG,min − PDG,min

i,j IDG,min

PDG
t,i,j ≥ PDG,max

i,j IDG
t,i,j + PDG

t,i,j I
DG,max − PDG,max

i,j IDG,max

PDG
t,i,j ≤ PDG,max

i,j IDG
t,i,j + PDG

t,i,j I
DG,min − PDG,max

i,j IDG,min

PDG
t,i,j ≤ PDG,min

i,j IDG
t,i,j + PDG

t,i,j I
DG,max − PDG,min

i,j IDG,max

(3.6)

The remaining constraints will not need any relaxation and can be implemented as

they appear in the following sections.
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3.2.1.4 Power Balance Constraints

The power balance constraint for normal operation is shown in (3.7). This confirms

that at a given time, the total generation in the system matches the total load. The

total generation in the system includes generation from the main grid (PG), DGs

(PDG), PVs (P PV ) and the BESs (PBES). The total load includes power supplied to

the essential loads (PLD) and NEL (PNEL).

PG
t +

∑
i

[∑
j

PDG
t,i,j +

∑
b

PBES
t,i,b +

∑
k

P PV
t,i,k

]
=

∑
i

[
PLD
t,i + PNEL

t,i

]
(3.7)

3.2.1.5 Grid constraints

During normal operation, each MG has a maximum limit on how much power to

draw from the grid and how much power to sell back to the grid, which is represented

by (3.8).

−PG,max,sell ≤ PG
t ≤ PG,max,pur (3.8)

3.2.1.6 Energy Storage Constraints

The charging power supplied to the BES and the discharging power generated by

the BES is represented by a single variable PBES. It is assumed that a BES cannot

charge and discharge at the same time (3.9). Therefore, when BES is discharging,

PBES is positive and a source of generation for the MGs. On the other hand, when

charging, PBES is negative and acts as a load. The BESs are charged from the main

grid or the MG resources (DGs and PVs).

Idcht,i,j + Icht,i,j ≤ 1 (3.9)
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The maximum power capacity or the charging and discharging limits of the BES

systems are expressed in (3.10, 3.11). The maximum energy storage capacity of the

BES is presented with SEmax (3.12). The charging and discharging of the BES are

reflected in the stored energy (3.13).

PBES
t,i,b ≤ P dch,max

i,b Idcht,i,b − P ch,min
i,b Icht,i,b (3.10)

PBES
t,i,b ≥ P dch,min

i,b Idcht,i,b − P ch,max
i,b Icht,i,b (3.11)

0 ≤ SEt,i,b ≤ SEmax
i,b (3.12)

SEt,i,b = SEt−1,i,b − PBES
t,i,b (3.13)

3.2.1.7 NEL Constraints

The NEL are adjustable, and therefore have a maximum and minimum limit (3.14).

The NEL can be supplied over a period of 24 hours, as long as it is within an acceptable

limit, and the total energy adds up to a certain demand for energy (3.15).

PNEL,min
i INEL

t,i ≤ PNEL
t,i ≤ PNEL,max

i INEL
t,i (3.14)

∑
t

PNEL
t,i = Ei (3.15)

3.2.2 Sub-Problem

To ensure complete resiliency of the MGs during an event, it is essential to guar-

antee resilient operation for all possible scenarios of that event. The main grid may

remain disconnected for prolonged hours. As a result, a power mismatch (m) may

occur at any hour in one or more scenarios. The SP objective function ensures that

the summation of the mismatches in all the scenarios is minimized (3.16). The total

number of scenarios is expressed with Sc. For each scenario, this hourly mismatch



42

is expressed as the summation of two slack variables - virtual generation (V G) and

virtual load (V L) (3.17). The generation and load in the power balance equation

(3.18) have to be such that the summation of these variables is zero.

Minimize
Sc∑
s=1

ms,t (3.16)

ms,t = V Gs,t + V Ls,t for, 0 ≤ V G, 0 ≤ V L (3.17)

PG
s,tI

G
s,t +

∑
i

[∑
j

PDG
s,t,i,j +

∑
b

PBES
s,t,i,b +

∑
k

P PV
s,t,i,k

]
+ V Gs,t = V Ls,t +

∑
i

[
PLD
s,t,i + PNEL

s,t,i

]
+ PLoss

s,t (3.18)

The constraints in (3.9), and (3.2) - (3.14) also apply to the resilient operation prob-

lem. During resilient operation, slow charging and discharging rates are considered

for all the BES systems to ensure feasible islanding. The unit commitment results

(I ′) obtained from the master problem are assigned to the subsequent variables (I) in

the SP to obtain their associated Lagrangian dual multipliers (3.19) - (3.22). These

dual variables (α, βch, βdch, γ) are later used to generate resiliency cuts in the master

problem.

IDG
s,t,i,j = I

′DG
t,i,j ; dual = αs,t,i,j (3.19)

Idschs,t,i,b = I
′dsch
t,i,b ; dual = βdch

s,t,i,b (3.20)

Ichs,t,i,b = I
′ch
t,i,b; dual = βch

s,t,i,b (3.21)

INEL
s,t,i = I

′NEL
t,i ; dual = γch

s,t,i (3.22)

3.2.3 Resiliency Cut

The aim is to ensure feasible islanding for all the possible scenarios in an event.

After the initial iteration, if there is a mismatch at any hour in any of the scenarios, the
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MP will be revised using the resiliency cut shown in (3.23). As can be seen in (3.23),

if the hourly mismatch for the given scenario ms is not zero, the unit commitment

state is changed accordingly. The process is repeated until zero mismatch is secured

in all possible scenarios.

ms,t +
∑
i

[∑
j

αs,t,i,j(I
DG
t,i,j − IDG

s,t,i,j)+

∑
b

βdch
s,t,i,b(I

dch
t,i,b − Idchs,t,i,b) +

∑
b

βch
s,t,i,b(I

ch
t,i,b − Idchs,t,i,b)

+ γs,t,i(I
NEL
t,i − INEL

s,t,i )
]
≤ 0 (3.23)

3.3 Test System

The algorithm is tested and validated on the modified IEEE 123-bus test system

shown in Figure 3.6. Three different layouts of the interconnected MG system are

considered to assess the algorithm for various test cases. The first layout (L1) includes

all the MGs as pictured in Figure 3.6. The second layout (L2) consists of MG1, MG2

and MG3, whereas the third layout (L3) includes MG2, MG3, and MG4. In all three

layouts, the MGs are connected to the main grid via MG2. The system has been

modeled using OpenDSS, and power flow and line flow constraints have been verified

for each layout and each test case.

3.3.1 MG Resources

Each of the MGs has its own DGs, BES systems, PVs, and NEL as shown in Figure

3.6, and is able to share its resources with the neighboring MGs. In total, there are 7

DGs in all 5 MGs, and each is rated 1000 kW . The solar irradiance and the capacity

of each PV is 0.8 kWh/m2 and 300 kV A respectively. In total, there are fourteen PV

panels and six BES systems in the entire system. The maximum power and capacity

of each of the BES systems are 600 kW and 1200 kWh, respectively. Each of the

MGs has a NEL rated 200 kWh, which can be supplied over the period of 24 hours
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Figure 3.6: IEEE 123-bus test system sectioned into 5 MGs and 3 layouts

within its per-hour maximum and minimum limits. Aside from all the resources, it is

assumed that while grid-connected, each of the MG owners can buy back up power

or sell excess power back to the grid, subject to a maximum limit. The total load

and generation capacity of three different MG layouts are described in Table 3.1.

Table 3.1: Total Load and generation capacity in each layout

MG Layout Essential Load PV BES Capacity NEL

(kW) (kW) (kW, kWh) (kWh)

L1 3310 4480 3000, 6000 1000

L2 1965 2560 2400, 4800 600

L3 1795 2240 1800, 3600 600
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Authors considered the 24-hour PV and essential load profile shown in Figure 3.7.

Figure 3.7: Essential load and PV profile

3.3.2 Cost of Resources

The DGs are fueled by natural gas (NG), hydrogen (H2) and diesel, the cost [118–

120] of which are shown in Table 3.2.

Table 3.2: Fuel Costs of the DGs

DG no MG Bus no Commitment State Fuel Cost ($/kWh)

1 1 18 IDG
1,1 NG 0.25

2 1 151 IDG
1,2 Diesel 0.34

3 2 1 IDG
2,1 H2 0.3

4 3 54 IDG
3,1 Diesel 0.34

5 4 77 IDG
4,1 NG 0.25

6 4 93 IDG
4,2 H2 0.3

7 5 97 IDG
5,1 Diesel 0.34

The cost of the main grid energy is $0.15/kWh [118] during peak hours, and

$0.13/kWh − $0.14/kWh during off-peak hours. The Levelized Cost of Energy
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(LCOE) associated with the PVs account for $0.12. The battery pack replacement

cost is $300/kWh.

3.3.3 Cost of BES and NEL

Even though not included in the formulation, the battery degradation cost is still

important to determine. Therefore, this cost is calculated for each BES. The rainflow

algorithm is used to calculate the number of cycles from the battery state of charge

(SoC). Based on the battery DoD (Depth of discharge) stress model (3.24), the total

life loss of the BES is calculated [121]. As shown in (3.25), the total life loss (∆L)

is the sum of the life loss from all cycles. The battery degradation cost (f) is then

calculated from ∆L, battery cell replacement cost (B) in $/kWh, and the capacity

of battery SEmax in kWh, using (3.26). The k1 and k2 are battery specific constants

empirically fitted to battery life data [122].

Φ(u) = k1ue
k2u (3.24)

∆L =
N∑
l=1


Φ(u)
2

, if u is a half cycle

Φ(u), if u is a full cycle
(3.25)

f = ∆L ∗ SEmax ∗B (3.26)

During normal operation unit commitment, the NEL is assigned economically

throughout 24 hours. However, each of the NEL has an hourly maximum and min-

imum limit. On top of that, it has to meet a total energy demand throughout this

24-hour period. During resilient operation, even though the maximum and minimum

limit on the NEL is still imposed, it may not always meet its total energy demand.

In that case, a penalty cost equal to the grid energy price is added to the total cost.

In the cost analysis in section 4.1.4, these costs are taken into account.



CHAPTER 4: Results

The optimization problem formulation is done using CVX -a Matlab-based model-

ing system for convex optimization. The Mixed Integer Linear Programming (MILP)

problem is solved using the Gurobi solver. The model is implemented on the modified

IEEE 123 bus test system in OpenDSS. The line and system constraints were taken

into account, and the losses were included for the power balance constraint. A single

machine (A computer with Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz processor

and 8 GB RAM) has been used for modeling and execution of the proposed method in

the benchmark system. The outcomes of this dissertation are categorized into three

distinct segments, each elucidated within the corresponding sections of this chapter.

In the first section, the implemented methodology is put to the test within three

different layouts of the modified IEEE 123-bus test system. The objective here is

to gauge the efficiency and financial implications of optimal scheduling, with a spe-

cific focus on determining the advantages of interconnecting multiple MGs versus

standalone operation. This comparison serves to highlight the overall benefits of har-

nessing a network of MGs.

The second section delves into an exploration of the method’s sensitivity, specifi-

cally concerning the variables of generation and load forecasting errors. This analysis

distinguishes between the resilience of a single MG in the face of uncertainties and

that of an entire network of MGs. The intention is to showcase how a networked MG

infrastructure possesses a distinct advantage in maintaining operational resilience

when confronted with varying levels of uncertainty.

Finally, the third section accentuates the superiority of the proposed decomposition

method. It does so by drawing a clear comparison between this innovative approach
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and the more conventional Single Stage MILP method. The contrast between these

two methodologies underscores the unique advantages offered by the proposed de-

composition technique.

4.1 Test cases in different multi-MG layouts

The proposed algorithm has been applied in each of the three MG layouts (L1, L2,

L3) for three test cases (C1, C2, C3), resulting in nine test cases altogether. In case

1 (C1) and case 2 (C2), the disruption which causes the main grid to be disconnected

from the MGs is predicted to occur within a known time frame. The main grid

connection status in cases C1, C2 and C3 are shown in Figure 4.1.

Figure 4.1: Islanding scenarios in cases C1, C2 and C3

The blue boxes are hours of normal or grid connected operation, and the orange

boxes reflect the islanding hours. In case C1, it is assumed that the disruption takes

place at any hour between t = 12− 18hr, and lasts for 6 hours at a stretch. Similar
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to case C1, in case 2 (C2), the islanding is predicted to occur at any hour between

t = 12 − 18hr. However, in case C2, the islanding lasts for 12 hours at a stretch.

In case 3 (C3), an extreme event is considered where the MGs are in risk of being

islanded at any hour t, for the next 23 hours at a stretch.

4.1.1 Case 1 (L1C1, L2C1, L3C1)

In case C1, the MGs may get islanded from the main grid at any hour between

t = 12 − 18hr, and is assumed to remain islanded for the next 6 hours. As a result,

there are 7 possible scenarios (Figure 4.1), assuming an islanding scenario for every

hour t between t = 12 − 18hr. First, the unit commitment is carried out for all

the DGs, BES systems, and NEL in the system in the normal operation problem.

Later, all the 7 scenarios are checked for any generation-load mismatch in the resilient

operation problem. The resilient operation problem returns the hourly mismatch, and

the associated dual variables for each of these 7 scenarios which are sent back to the

normal operation problem. In the normal operation problem, for each scenario, a

resiliency cut is generated to find a solution which satisfies zero mismatch for all the

scenarios. If mismatch is not zero, the units are rescheduled in the normal operation

problem, and the results are again sent back to the resilient operation problem. The

process continues until all the scenarios have zero generation-load mismatch or the

maximum number of iterations have been reached. Case C1 is examined for all three

MG layouts and are termed L1C1, L2C1, and L3C1. In cases L1C1 and L2C1 the

zero mismatch is obtained at iteration-9 and iteration-8 respectively, whereas in case

L3C1, it occurs at iteration-5. Among the 7 scenarios in case L3C1, the generation-

load mismatch for scenario-1, 3, 5 and 6 at iteration-1, 3, 4, and 5 are presented in

Figure 4.2.

As can be seen from Figure 4.2, the unit commitment from initial iteration results in

several mismatches throughout the 24 hours in different scenarios. In the subsequent

iterations, mismatch is reduced significantly, eventually becoming zero at iteration-
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5. It can be observed that scenario-1 and 3 reach zero mismatch at iteration-3, but

scenario-5 and 6 still have mismatches at t = 15hr. Therefore, the process continues

until zero mismatch is obtained for all the scenarios. In Figure 4.3, the commitment

states of the DG units are presented at initial and final iteration. It can be observed

that even though DG5 was the only DG supplying power at the initial iteration, by

iteration-5, DG3 is turned on to reduce the generation-load mismatch in case L3C1.

The other 2 DGs in layout L3 (DG4 and DG6) does not need to be turned on while

scheduling day-ahead in case C1.

Figure 4.2: Generation-load mismatch for different scenarios in case L3C1 at different
iterations
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Figure 4.3: DG commitment states in case L3C1 at initial and final iterations

4.1.2 Case 2 (L1C2, L2C2, L3C2)

In case C2, the disruption is predicted to last 12 hours at a stretch. However, the

time of islanding is predicted to occur between t = 12 − 18hr like case C1. As a

result, case C2 also has 7 scenarios (Figure 4.1) which need to have zero generation-

load mismatch. Case C2 is examined for all three MG layouts and are termed L1C2,

L2C2, and L3C2. In case L2C2, zero mismatch is obtained for all 7 scenarios at the

5th iteration. Among the 7 scenarios in case L2C2, the generation-load mismatch for

scenario-1, 3, 5 and 7 at iteration-1, 3, 4 and 5 are presented in Figure 4.4.



52

Figure 4.4: Generation-load mismatch for different scenarios in case L2C2 at different
iterations

As can be seen from Figure 4.4, the unit commitment from initial iteration results in

several mismatches throughout 24 hours in different scenarios. In the next iterations,

mismatch is reduced significantly, eventually becoming zero at iteration-5. It can be

observed that scenarios-1, 3 and 7 reach zero mismatch at iteration-4, but scenario-5

still has a mismatch at t = 5hr. At the 5th iteration, zero mismatch is obtained for

all the scenarios. In Figure 4.5, the commitment states of the all 4 DG units of layout

L2 are presented at iteration-1 and iteration-5. It can be observed that initially the

least expensive generator (DG1) was on, but at the end of the 5th iteration, DG3 is

also turned on to minimize the generation-load mismatch. The day-ahead scheduling

in case L2C2 does not require the other 2 DGs (DG2 and DG4) to be turned on.

However, in cases L1C2 and L3C2, zero mismatch is obtained after the 12th and 6th

iterations respectively.
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Figure 4.5: DG commitment states in case L2C2 at initial and final iterations

4.1.3 Case 3 (L1C3, L2C3, L3C3)

In case C3, the MGs may get islanded from the main grid at any hour t in the 24

hour period, and is assumed to remain islanded for the next 23 hours. As a result,

there are 24 possible scenarios (Figure 4.1), assuming an islanding scenario for every

hour t. Case C3 is examined for all three MG layouts and are termed L1C3, L2C3,

and L3C3. In case L1C3, zero mismatch is obtained for all 24 scenarios at the 8th

iteration. Among the 24 scenarios in case L1C3, the generation-load mismatch for

scenario-1, 8, 16 and 22 at different iterations are presented in Figure 4.6. As can

be seen from Figure 4.6, the unit commitment from initial iteration results in several

mismatches throughout 24 hours in all the scenarios. After that, the mismatch is

reduced at every iteration. All but scenario-22 have a zero mismatch at iteration-4,

causing the process to continue for 4 more iterations. In Figure 4.7, the commitment

states of the all 7 DG units are presented at iteration-1 and iteration-8. 4.6.
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Figure 4.6: Generation-load mismatch for different scenarios in case L1C3 at different
iterations

Figure 4.7: DG commitment states in case L1C3 at initial and final iterations

It can be observed that initially the least expensive generators (DG1 and DG5)

were on. Later, at the end of the 8th iteration, DG3 and DG6 are also turned on to
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minimize the generation load mismatch. Even though case C3 is the most extreme

case, the remaining 3 DGs in layout L1 (DG2, DG4 and DG7) do not need to be

turned on for day-ahead scheduling in case L1C3. In cases L2C3 and L3C3 the zero

mismatches for all 24 scenarios are obtained at iteration-7. The number of variables

in the MP, SP, number of iterations and computation time required in each case can

be found in Table III. As shown in the table, only the MP has binary variables. A

larger number of variables are required in case C3, where 24 SPs are solved for 24

scenarios. The changes of the master problem objective value during the iterations

are shown in Figure4.8.

Table 4.1: Number of Variables and Computation Time in each case

Case No of No of Variables No of Time

Scen- MP Co- MP SP Total Iter- (s)

arios ntinuous Binary ations

L1C1 7 25 24 189 238 9 2335

L1C2 7 25 24 189 238 12 2949

L1C3 24 25 24 648 697 8 6720

L2C1 7 16 15 147 178 8 1362

L2C2 7 16 15 147 178 5 922

L2C3 24 16 15 504 535 7 4286

L3C1 7 14 13 133 160 5 902

L3C2 7 14 13 133 160 6 999

L3C3 24 14 13 456 483 7 3706
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Figure 4.8: The changes of master problem objective value during the iterations

It can be observed from the figure that the general trend of the objective or cost

function is to increase with the number of iterations. This is because, when more

iterations are needed to reach zero mismatch, the more expensive alternatives are

checked. In layout L1, the system has more DG units to choose from. As a result, the

objective function or cost increases very slowly (decreases initially in case C1) with

the number of iterations. A computer with Intel(R) Core(TM) i7-7700HQ CPU @

2.80GHz processor and 8 GB RAM has been used to run all the cases.

4.1.4 Cost Analysis

The main goal of this paper was to find the most economic way to schedule the

MG units so that the system of MGs is prepared for any event which may cause it to
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be isolated from the main grid. In cases C1 and C2, the time of the interruption is

predicted beforehand, whereas, in case C3, the islanding is presumed to take place at

any hour in the next 24 hours. As the system remains disconnected for 23 hours at

a stretch, case C3 is the most extreme situation that the MGs deal with. Islanding

at each of these 24 scenarios is considered, and the generation load mismatch is

calculated for each scenario. The system loss is taken into account while calculating

the mismatch. The power flow and line constraints are implemented, and all the bus

voltages remain within the limit.

The final day-ahead scheduling of the DG units for all 9 cases are presented in

Table 4.2. The DGs which are absent in the subsequent layout are marked with "X".

In section IV, we show that the least expensive generators are turned on first, and the

most expensive ones are reserved for the worst case scenarios. From Table 3.2, note

that the most expensive DGs are diesel generators, followed by the H2 generators.

The NG generators are the least expensive ones.

Table 4.2: Final commitment states of the DGs for day-ahead scheduling in all 9 cases

DG1 DG2 DG3 DG4 DG5 DG6 DG7

L1C1 1 0 1 0 1 1 0

L1C2 1 0 1 0 1 1 0

L1C3 1 0 1 0 1 1 0

L2C1 1 0 1 0 X X X

L2C2 1 0 1 0 X X X

L2C3 1 1 1 0 X X X

L3C1 X X 1 0 1 0 X

L3C2 X X 1 0 1 1 X

L3C3 X X 1 0 1 1 X
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In Table 4.2, it can be observed that for layout L1, none of the cases require the

most expensive DGs or the diesel generators (DG2, DG4 and DG7) to be turned on

for day-ahead scheduling. In layout L2, only one (DG2) of the 2 diesel generators

(DG2 and DG4) is turned on while scheduling for the most extreme case (C3). Lastly,

because layout L3 has only one diesel generator (DG4), and two H2 generators (DG3

and DG6), DG4 is not required to be turned on in any of the cases. However, both

the H2 generators (DG3 and DG6) need to be turned on sometime in the 24-hour

period while scheduling for the most extreme case (C3).

The day-ahead scheduling prepares the MGs to be isolated from the main grid

either within a known time frame (C1 and C2), or at any hour t (C3). The costs

are calculated for this day-ahead scheduling of the MGs in each case. If the MGs are

operated following the day-ahead schedule obtained from the proposed algorithm, the

resulting cost of operation for case C3 is presented through the bar chart in Figure 4.9.

It can be seen that layout L1 has the highest operating cost, followed by L2 and L3,

which is expected given the size of the networks. However, it can also be observed

that most of the cost incurred by the MGs is associated with the DGs. The next

source of generation contributing to the cost is PV. The grid cost is lower because

the MGs have a limit on the maximum backup power they can draw from the grid.

The battery degradation cost contributes the least.

Figure 4.9: Day-ahead scheduling cost comparison among different cases
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The lines in Figure 4.9 portray the per unit day-ahead scheduling cost ($/kWh)

for all 9 cases. The black, green, and blue lines represent the costs in cases C1, C2

and C3 respectively. As can be observed, the per unit cost is the least for layout L1,

and the highest for layout L3. This can be explained from Figure 4.10, where it is

shown that the ratio of the PV vs total load of the system is the lowest in layout L3.

Figure 4.10: Percentage of generation from each type of source in layouts L1, L2 and
L3

As PV is less expensive than the DGs, the per unit cost of layout L3 becomes

higher than those of L1 and L2. This also emphasizes the importance of resource

sharing in the multi-MG network both in terms of resilience and cost saving.

Also, the cost of day-ahead scheduling layouts L1 and L3 for case C3 is lower than

that of C2. This is because the battery degradation cost is higher in layouts L1 and L3

for case C2. Because battery degradation cost depends significantly on the number of

cycles, and the 12 hour outage scenario demands the battery to perform more cycles,

the cost is higher. However, that is not the case with layout L2. This is because L2

has more active power from the BES than layouts L1 and L3, as can be seen in Figure

4.10. The battery degradation cost and the penalty cost for shifting the NEL are not

considered within the objective function but are added later for cost comparison.

Therefore the scheduling decision does not depend on these two costs. On another

note, the costs associated with the resilient operation during various scenarios are also
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presented in Figs. 4.11 -4.13. In Figure 4.11, the costs of operating layout L1 in the

resilient mode for the 7 scenarios (Sc1- Sc7) in cases C1, C2, and the first 7 scenarios

in case C3 are presented. The cost of operating layouts L2 and L3 in the resilient

mode for those scenarios are presented in Figure 4.12 and Figure 4.13 respectively.

It can be seen from all three figures that the MGs incur the highest cost in the most

extreme situation (C3), and it remains quite stable throughout the scenarios. The

costs for cases C1 and C2 tend to increase as the scenarios move from scenario 1 to

scenario 7. This is because unlike case C3, the MGs are not islanded at any hour and

does not remain islanded for more than 12 hours. As the islanding scenario moves

towards the later part of the day when the PV has no output, the cost of operation

increases.

Figure 4.11: Cost of resilient operation in layout L1

Figure 4.12: Cost of resilient operation in layout L2



61

Figure 4.13: Cost of resilient operation in layout L3

4.2 Sensitivity to uncertainty

The sensitivity to uncertainty or forecasting error is presented in Figure 4.14. The

amount of load shedding (kWh) required to take place in L1C3 for a load forecasting

error (LFE) and/or a generation forecasting error (GFE) are shown in Figure 4.14.

The LFE/GFE is calculated by subtracting the actual load/PV generation from the

forecasted load/PV generation. Therefore, if the forecasted load/generation is higher

than the actual, the LFE/GFE is positive, and if lower then LFE/GFE is negative.

Because load shedding is required only if the actual load is higher or the actual

generation is lower than what has been forecasted, only the negative LFE and positive

GFE are portrayed in Figure 4.14.
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Figure 4.14: Sensitivity to forecasting error in L1C3

In Figure 4.14a., the LFE is fixed at 10% (blue line) and 20% (red line) as the GFE

is varied along the x-axis between 0-20%. In Figure 4.14b., the GFE is fixed at 10%

(blue line) and 20% (red line) as the LFE is varied along the x-axis between 0-20%.

It can be seen from both the figures that load shedding is required for LFE/GFE

greater than 5%. In Figure 4.14a., at 10% GFE, the required load shedding increases

from 40 kWh to 150 kWh if the LFE is increased from 10% tp 20%. At 15% GFE, the

required load shedding increases from 45 kWh to 250 kWh. On the other hand, In

Figure 4.14b., at 10% LFE, the required load shedding is almost the same (40 kWh)

for 10% or 15% GFE. Again, at 15% LFE, the required load shedding increases from

50 kWh to 120 kWh for a 10% change in the GFE. Therefore, it can be concluded that

the system is more sensitive to load forecasting error than to generation forecasting

error.
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A comparison of the proposed multi-microgrid formulation with single microgrid

formulations is shown in Figure 4.15 below.

Figure 4.15: Comparison between L1 and MG1 of required load shedding

In the proposed layout, denoted as L1, there are five networked MGs. In contrast,

the single MG structure, represented by MG1, consists of just one isolated microgrid.

Now, when the actual PV generation falls short by 20% compared to what was ini-

tially forecasted (resulting in a positive GFE), the situation presents a stark contrast

between the two scenarios.

In the single MG context, where only MG1 is in operation, the magnitude of load

shedding required is notably higher. This means that in the event of a GFE, the

single MG scenario experiences more significant load curtailment to align with the

reduced PV generation, leading to greater disruptions.

Conversely, in the multi-MG scenario (L1), where five interconnected MGs collec-

tively manage the power resources, the impact of the negative LFE is less severe.

Despite facing increasingly unfavorable LFE conditions, the interconnected MGs can

distribute and manage the load more efficiently, mitigating the need for extensive load

shedding and minimizing disruptions. This highlights the advantage of networked MG

structures in handling fluctuations in renewable energy generation
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4.3 Comparison between Bender’s Decomposition and Single Stage MILP

approach

The problem at hand has been solved for the entire layout of 5 MGs (L1) using both

Bender’s Decomposition and Single Stage MILP methods. Given that the islanding

state of the MG is binary for every hour, this translates to a vast number of potential

scenarios over the next 24 hours. Specifically, there are 224 possible combinations,

which amounts to a staggering 16,777,216 scenarios. To provide a meaningful com-

parison of computational efficiency and solutions, a subset of random scenarios has

been selected from this multitude. These selected scenarios offer insights into the

performance of both the Bender’s Decomposition and Single Stage MILP approach.

4.3.1 Comparison of computational time

The number of scenarios considered indeed exerts a significant impact on compu-

tational time, as the number of variables escalates in tandem with the number of

scenarios (as outlined in Table 4.1). To provide a comprehensive perspective, a wide

spectrum of scenarios has been taken into account for this comparative analysis. The

computational time has been meticulously documented as the number of scenarios is

incrementally doubled or closely approximated. The comparison encompasses scenar-

ios ranging from a minimum of 6 up to a maximum of 1000 scenarios, and the results

are visually presented in Figure 4.16.
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Figure 4.16: Comparison of computational time

In Figure 4.16, the computational time taken to solve the problem is shown along

the y-axis. In the x-axis, the number of scenarios are presented. It can be noticed

that for up to 200 number of scenarios, it takes more time to solve the problem using

Bender’s Decomposition than it does using Single Stage MILP approach. When the

number of scenarios considered is increased to 500, the computational time becomes

less for the Bender’s decomposition than for the Single Stage MILP approach. It

takes 11.7 hours to solve the problem for 500 scenarios using Bender’s Decomposition

method, whereas it takes 13.2 hours to solve it using Single Stage MILP approach.

To further justify the use of decomposition technique, the number of scenarios are

increased to 1000. As can be seen in Figure 4.16, the problem is solved in 22.3 hours

when Bender’s Decomposition technique is used. However, when Single stage MILP

approach is used, no solution is obtained at least til 32 hours. It is possible that the

solution is reached after that, or it never converged. So, it can be concluded that

the solution of this problem if at all obtainable using Single stage MILP approach,

takes longer than 32 hours. The comparison for smaller number of scenarios can be

observed better from the Table 4.3.

In Table 4.3, the computational time and the obtained solution are compared be-
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tween the Bender’s Decomposition and Single Stage MILP approaches. It is shown

that even though the solution or the optimal cost is quite close if not the same for

both the approaches, the computational time varies significantly. For small number

of scenarios, the Single Stage MILP approach performs remarkably better. In Ben-

der’s Decomposition, the computational time doubles with doubling the number of

scenarios. However, as the number of scenarios doubles, the computational time in

Single stage MILP approach increases even at a faster rate, eventually exceeding the

time taken by the Bender’s Decomposition approach.

Table 4.3: Solving time and optimal solution obtained from Bender’s Decomposition
(BD) and Single Stage MILP (SMILP) methods

No of Computational time (hour) Optimal cost ($) No of

scenarios BD SMILP BD SMILP iterations in BD

6 0.22 0.01 6931.5 6931.5 9

12 0.25 0.02 6954 6954 6

24 0.55 0.04 6931.5 7003.5 5

50 1.01 0.13 7003.5 7003.5 6

100 2.14 0.39 7003.5 7003.5 6

200 4.16 1.45 7003.5 7003.5 6

500 11.7 13.21 7003.5 7003.5 6

1000 22.33 >32 7003.5 7003.5 6

It is worth mentioning that all the cases presented in Table 4.3 have been solved us-

ing the same machine (Personal laptop) and under the same computing environment.

A mini, mainframe, super-computer or even a personal computer will have a much

faster computational time. However, those machines will result a faster run-time for

both the approaches. Therefore, using the same machine for all the computations

makes the comparison completely reliable.
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4.3.2 Comparison of solutions

Even though the computational time is significantly different for the two ap-

proaches, the optimal solution is very close, if not same to each other, as shown

in the fourth and fifth column of Table 4.3. In the right most column, it shown that

it may take anywhere between 5-9 iterations to reach the solution when Bender’s De-

composition technique is applied. At each iteration, a new Bender’s cut is introduced

to mitigate the non-zero mismatch which occurs at the previous iteration. However,

after the final iteration, the obtained solution matches with the solution obtained

from the Single Stage MILP approach.

In Bender’s Decomposition, an optimal objective function or optimal cost is ob-

tained for every iteration until the final iteration where the zero mismatch is obtained.

In Figure 4.17, those optimal costs are shown for scenarios 6, 12, 24, 50 and 1000.

The number of iterations are shown in x-axis, while the optimal cost is shown along

the y-axis. It can be observed that in all the scenario types, the first iteration starts

with the same objective value, which is the cost of operation when no islanding sce-

narios are to be satisfied. However, as the number of scenarios increase so does the

optimal cost. For scenarios 6, 12 and 24 the optimal cost does not increase after the

second iteration. However, for scenarios 50 and 1000, the optimal cost increases after

the fifth iteration. This is understandable as the more number of scenarios exhaust

more scheduling options. Also, the 12 scenario case takes more iterations to solve and

results higher optimal cost than 24 scenario case. This is purely due to the random

nature of the scenarios.

The optimal function values obtained through the Single Stage MILP approach is

shown with "∗". Because there is no iteration involved in the Single Stage MILP

process, the optimal objective function values are shown along zero iteration. It is

evident from Figure 4.17, that the optimal costs obtained from the Single stage MILP

approach mathces the optimal cost obtained at the final iteration through Bender’s
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Decomposition method in most of the cases. The only exception being the 24 sce-

nario case, where the optimal cost function is higher when sought through Single

stage MILP approach.

Figure 4.17: Optimal cost comparison with Single Stage MILP approach and different
iterations in Bender’s Decomposition approach

It can be observed from Table 4.17 and 4.17, that for the 24 scenarios, the optimal

cost achieved through Bender’s Decomposition is slightly lower than the optimal cost

obtained through SMILP approach. Because the cost is largely dependent on the

operational cost of the DG units, the optimal scheduling of the DGs for 24 scenario

case found through both the approaches are presented in Figure 4.18.
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Figure 4.18: Optimal DG commitment states (IDG
i,j ) using Single Stage MILP and

Bender’s Decomposition method in the 24 scenario case

As mentioned in Table 4.3, the solution is obtained after the fifth iteration of the

Bender’s Decomposition method. Therefore, the DG scheduling shown on thr right

side of Figure 4.18 is obtained after the fifth iteration of the Bender’s Decomposition

method. On the left-side, the optimal DG scheduling for 24 scenarios obtained from

the Single Stage MILP approach is presented. The green blocks mean the commitment

state is "on" or "1", while the yellow block means the DG commitment state is "off"

or "0". It can be observed that commitments states IDG
1,1 and IDG

4,1 are "1" longer than

the others. This is expected, as those 2 DGs (DG1 and DG5) are the least expensive

(Table 3.2. Also, the Diesel generators (DG2, DG4 and DG7) are the most expensive

ones. As a result, the optimal scheduling through Bender’s Decomposition results "0"
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for those commitment states (IDG
1,2 , IDG

3,1 and IDG
5,1 ). Using Single stage MILP approach

yields an optimal scheduling that sugges turning on those DGs for couple of hours.

As a result, the optimal cost is a bit higher for Single stage MILP approach than

Bender’s Decomposition method (Table 4.3).

On another note, it can be observed in Table 4.17 that the optimal cost of day ahead

scheduling for 24 scenarios is less than that of 12 scenarios. This is an indication that

the optimal cost does not necessarily increase with the number of scenarios considered,

but the type of scenarios. The optimal cost increases only when certain scenarios force

the more expensive DGs to be turned on. Similarly, the number of iterations required

by the Bender’s Decomposition technique, before it returns a solution also depends on

the type of scenarios, rather than the number of scenarios. That is why it is possible

to obtain a solution for 1000 scenarios in only 6 iterations, while it takes 9 iterations

to obtain a solution for 6 scenarios (Table 4.17).

The optimum DG commitment states obtained through Bender’s Decomposition

method for 6 scenarios from iteration-1 and iteration-9 is shown in Figure 4.19. It can

be observed that at iteration-1, only DG1 and DG5 (commitment states IDG
1,1 and IDG

4,1

respectively) are turned on. However, by iteration-9, DG3 and DG6 (commitment

states IDG
2,1 and IDG

4,2 respectively) are also turned on to eradicate any mismatch in

those 6 scenarios.
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Figure 4.19: Optimal DG commitment states (IDG
i,j ) at iteration-1 and iteration-9

using Bender’s Decomposition in the 6 scenario case

Even when the final optimal cost is same in most cases, the resulting optimal

scheduling may be different for Bender’s Decomposition than the Single Stage MILP

method. For instance, the optimal DG commitment states obtained through both the

methods for 50 scenarios case are presented in Figure 4.20. It can be observed that

IDG
1,2 , and IDG

3,1 (Commitment states of DG2 and DG4) are turned on for a longer du-

ration in the Single stage MILP approach than in Bender’s Decomposition approach.

On the other hand, IDG
5,1 (DG7) is never turned on in Single stage MILP approach,

but turned on for 3 hours in Bender’s Decomposition approach. Because all these

DGs are more expensive compared to DG1 and DG5, different combinations of them

can yield the same optimal result.
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Figure 4.20: Optimal DG commitment states (IDG
i,j ) at for 50 scenarios using Single

Stage MILP and Bender’s Decomposition method

As mentioned earlier, in order to ensure zero mismtach for every scenario, some

non-essential loads may be rearranged across the 24 hour time period. As long as

the total energy offered to the customers are met over the period of 24 hours, a

penalty is added to the cost for any inconvenience caused for this rearrangement.

However, this penalty is added after the optimal cost is determined. Therefore the

non-essential loads do not have any direct affect on determining the optimal objective

function. However, they do play an essential role in mitigating mismatch. This can

be observed in Figure 4.21.
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Figure 4.21: Optimal NEL scheduling obtained through Single Stage MILP and Ben-
der’s Decompsiotion approach

In Figure 4.21, the NEL scheduling obtained through Single stage MILP approach

and Bender’s Decomposition methods are shown for 500 scenarios. The grey areas are

when the loads are not in schedule. For the remainder of the hours, the scheduling is

bounded by the maximum of 50 kW/hour and minimum of 10 kW/hour (3.14). Also,

in accordance with 3.15, the total energy for each NEL sums up to 200 kWh. It is

interesting to see that in the SMILP approach the loads are scheduled more towards

middle of the day, where as in Bender’s Decomposition approach they are spread out

more towards the beginning or end of the day.



CHAPTER 5: Conclusions

The idea of networking multiple MGs has been in practice for quite some now.

Leveraging this technological advancement to obtain absolute resiliency and max-

imum economic benefit is a newer challenge. This dissertation proposes a novel

method to address the utility of networking multiple MGs in securing resilient oper-

ation through day-ahead scheduling. Achieving the optimal operational cost is also

significant besides ensuring resilient operation. Therefore, this research also incor-

porates cost comparison among multiple MG layouts to determine economic benefit

of connecting multiple MGs during extreme events. The primary focus of this dis-

sertation is to address the challenges related to uncertain MG islanding scenarios,

particularly in the context of unfavorable events. It aims to provide a robust solu-

tion to the optimal day-ahead scheduling problem in these scenarios. The innovative

model proposed in this study is not only unique but also highly adaptable. One of its

notable features is modularity, which allows for the seamless integration of new MGs

and their various components.

An essential aspect of this model is its decomposition technique, which enhances

its practicality for centralized MG optimization while effectively managing compu-

tational complexity. First, the original multi-objective MILP problem of minimizing

the operating cost as well as the generation-load mismatch is identified as decompos-

able in nature. Thus, the problem is decomposed into a master problem that deals

with cost minimization, and sub-problems that minimize the mismatch in different

possible scenarios. This decomposition technique, known as Bender’s Decomposition

involves a number of iterations until zero mismatch is obtained for all scenarios being

considered. For any mismatch in an iteration, the initial unit commitment results
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obtained from the master problem is revised using Bender’s cuts.

As opposed to the proposed decomposition technique, the more straight-forward

way to solve the problem is following the Single Stage MILP approach. To avoid the

complexity of a multi-objective problem, the objective of minimizing the generation-

load mismatch is presented as a constraint instead. The number of variables remain

the same as the Bender’s Decomposition method, and there is no need for multiple

iterations. The problem is solved as a single large problem.

Initially, the implementation of Bender’s Decomposition in single MG optimal

scheduling yielded promising results, showcasing the model’s potential. However,

the true novelty of this research lies in its extension to MG clusters, making it possi-

ble to apply this approach within a widely-accepted benchmark system. The model

is applied and evaluated on the modified IEEE-123 bus test system, divided into 5

MGs. All together, there are 7 DGs, 6 BES systems and 14 PVs acting as local power

sources of these 5 MGs (layout-1 or L1). During normal operating condition, gener-

ation from the DGs, PVs, BES systems and the main grid account for 37.3%, 47.4%,

4% and 11.3% respectively of the total load in L1. In L2 there are 3 MGs (MG1,

MG2, M3) consisting of 4 DGs, 4 BES systems and 8 PVs supplying 38.5%, 45.6%,

4.4% respectively of the total load while grid connected. Lastly, L3 also consists of 3

MGs (MG2, MG3 and MG4). During normal operation, the 4 DGs, 3 BES systems

and 7 PVs in L3 supply 40.2%, 43.7%, 3.6% of the total load respectively. While the

total essential load in L1, L2, and L3 are 3310 kW, 1965 kW and 1795 kW respec-

tively, there is a 200 kWh of non-essential load in each layout. While implementing

the model in different layouts of the test system, the system and line constraints are

taken into account. In addition, the line and system losses are considered while cal-

culating power mismatch.

In addition to proposing the decomposition method for effectively and economi-

cally preparing the MG network for such events, the research also compares it with
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the traditional Single Stage MILP approach. The proposed method has shown better

computational performance for larger number of scenarios during an event, which is

more practical to ensure resilient operation.

5.1 Result Analysis

The analysis of the results highlights a notable trend where, in the majority of cases,

the most expensive DGs remain inactive during the various islanding scenarios. This

intriguing observation suggests a cost-effective and environmentally beneficial ap-

proach to managing the MG’s power generation. It’s worth noting that the diesel

generator is only activated in the layout L2 configuration during the most extreme

event (C3). This judicious utilization of resources not only optimizes costs but also

contributes to a reduction in the ecological footprint.

However, it’s essential to acknowledge that certain factors, if considered, could in-

troduce some variations in the results. Elements such as the initial SoC of all BES

systems, the initial commitment state and generation of all DGs, and other relevant

variables may exert influence on the day-ahead scheduling decisions. These nuanced

considerations could further refine the MG’s performance in response to islanding

scenarios.

Nevertheless, the overall findings underscore a fundamental characteristic of the

algorithm: it prioritizes a comprehensive and exhaustive process, ensuring the pur-

suit of feasible islanding solutions for all potential event scenarios. This commitment

to resilience and robustness in MG network operation defines a critical aspect of the

proposed solution method, reinforcing its practicality and adaptability in managing

unforeseen challenges and disturbances.

Moving forward, a crucial insight gleaned from the results is the clear economic

advantage of layout L1, which consistently demonstrates the lowest cost across both

day-ahead scheduling and islanding scenarios when compared to the configurations

of L2 and L3. It’s worth emphasizing that these cost calculations are meticulously
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conducted, accounting for various factors, including system losses such as line losses

and transmission losses. The results not only underscore the economic feasibility but

also provide a compelling rationale for the integration of networked MGs. This under-

scores the inherent efficiency and cost-effectiveness of a networked MG infrastructure.

Moreover, when compared with the more straight forward Single Stage MILP ap-

proach, the proposed method showed better performance as the number of scenarios

increased. Because the level of uncertainty is extremely high in case of natural disas-

ters, it is not possible to guarantee resilience of a system unless it is verified to remain

operational in all possible scenarios of that event. This work demonstrates that for

such large number of scenarios, the traditional Single Stage MILP approach becomes

computationally intractable. On another note, as discussed in section 2.8.2.2, dual

of a LP problem with complicating variable structure is another LP problem of com-

plicating constraint structure. Therefore, the decomposition methods like Dantzig

Wolf and Bender’s can be used interchangeably by finding the dual of the LP prob-

lem. However, such is not the case with MILP problems. Dantiz Wolf or Column

Generation method is not easily applicable to MILP problems of complicating vari-

able structure. As a result, Bender’s Decomposition is the most viable approach for

optimal day-ahead scheduling of networked MGs for resilient operation.

5.2 Contributions

A list of the main contributions of this dissertation is presented below:

1. Proposing an Innovative Scheduling Method: The primary objective is to intro-

duce a groundbreaking approach for scheduling multiple MG resources. This method

prioritizes resilient operation while simultaneously minimizing operating costs to make

MG operation more efficient and dependable.

2. Securing resilient operation under extreme weather events: The proposed ap-

proach ensures that MGs can maintain zero generation-load mismatch in numerous

potential scenarios resulting from extreme weather events.Therefore, load shedding is
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reserved as the last resort.

3. Comparing day-ahead scheduling and resilient operation costs: An essential

part of this research is analyzing and comparing the costs associated with traditional

day-ahead scheduling and the resilient operation approach for different MG layouts.

By quantifying these costs, researchers can demonstrate the advantages and potential

savings of networking the MGs in scenarios involving extreme weather events.

4. Handling uncertainties with large number of scenarios and sensitivity analysis:

Resiliency in MGs often involves dealing with various uncertainties. This research

aims to tackle these uncertainties by employing large number of possible scenarios.

Also, the presented sensitivity to generation or load forecasting error allows for a

structured exploration of multiple potential outcomes and helps in designing robust

strategies.

5. Efficiency Comparison of Optimization Techniques: This research goes a step

further by comparing two different optimization techniques: Bender’s Decomposition

and Single Stage MILP. What makes this study unique is that it evaluates these tech-

niques within a large MG system and across a substantial number of scenarios. This

comparison can shed light on the strengths and weaknesses of each method, helping

researchers and practitioners choose the most suitable one for their specific applica-

tions.

In summary, this research is dedicated to addressing the complex challenges of MG

resiliency and efficiency in the context of extreme weather events. It leverages in-

novative methods, rigorous testing, and comparative analysis to advance the field of

MG management.

5.3 Future Work

By venturing into this uncharted territory, the research not only introduces new

and intriguing challenges but also opens the door to a plethora of innovative research

opportunities. This extension to MG clusters has the potential to drive further ad-
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vancements in the field, offering valuable insights and solutions for managing MG

islanding scenarios during adverse conditions.

One promising avenue for further enhancing the proposed approach involves inte-

grating considerations for battery degradation costs into the objective function. This

could be achieved by obtaining the convexity of the battery degradation model, thus

introducing a practical dimension to the model. By incorporating battery degrada-

tion costs, the optimization becomes even more robust and versatile, aligning it more

closely with real-world applications. This improvement is particularly pertinent in

scenarios where battery health and longevity are significant concerns, such as in re-

newable energy integration projects.

Furthermore, the comparative analysis of the proposed method with the traditional

Single Stage MILP approach has already demonstrated its favorable performance in

practical applications. However, it would be intriguing to expand the comparison to

include an additional single-stage optimization approach mentioned in Section 2.6.1,

known as Goal Programming. Such a comparison would yield valuable insights into

the relative strengths and weaknesses of these different methodologies, helping to in-

form the selection of the most suitable approach for specific use cases.

Additionally, this research has taken into account a substantial number of islanding

scenarios, which are based on the networked MGs’ connection to the main grid. An

exciting avenue for further exploration could be the inclusion of scenarios that con-

sider the interconnectivity between neighboring MGs. This extension would provide

a more comprehensive view of the resilience and optimization possibilities within a

broader grid network, which is increasingly relevant in the context of modern, inter-

connected energy systems. In conclusion, while the proposed formulation represents

a significant breakthrough both in terms of its application and the depth of analysis,

it presents an exciting platform for future research endeavors.
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APPENDIX A: Feeder Data

A.1 Modified IEEE 123-bus Test Feeder

Table A.1: Line parameters for modified IEEE 123-bus feeder

Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
1 1 2 175 960 Non-switchable 10
2 1 3 250 960 Non-switchable 11
3 1 7 300 2200 Switchable 1
4 3 4 200 960 Non-switchable 11
5 3 5 325 960 Non-switchable 11
6 5 6 250 960 Non-switchable 11
7 7 8 200 2200 Non-switchable 1
8 8 12 225 960 Non-switchable 10
9 8 9 225 960 Non-switchable 9

10 8 13 300 2200 Non-switchable 1
11 9 14 425 960 Non-switchable 9
12 13 34 150 960 Non-switchable 11
13 13 18 825 2200 Switchable 2
14 13 152 10 3700 Switchable 13
15 14 11 250 960 Non-switchable 9
16 14 10 250 960 Non-switchable 9
17 15 16 375 960 Non-switchable 11
18 15 17 350 960 Non-switchable 11
19 18 19 250 960 Non-switchable 9
20 18 21 300 2200 Non-switchable 2
21 18 135 10 3700 Switchable 13
22 19 20 325 960 Non-switchable 9
23 21 22 525 960 Non-switchable 10
24 21 23 250 2200 Non-switchable 2
25 23 24 550 960 Non-switchable 11
26 23 25 275 2200 Switchable 2
27 25 26 350 2200 Non-switchable 7
28 25 28 200 2200 Non-switchable 2
29 26 27 275 2200 Non-switchable 7
30 26 31 225 960 Non-switchable 11
31 27 33 500 960 Non-switchable 9
32 28 29 300 2200 Non-switchable 2
33 29 30 350 2200 Non-switchable 2
34 30 250 200 2200 Non-switchable 2
35 31 32 300 960 Non-switchable 11
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
36 34 15 100 960 Non-switchable 11
37 35 36 650 2200 Non-switchable 8
38 35 40 250 2200 Non-switchable 1
39 36 37 300 960 Non-switchable 9
40 36 38 250 960 Non-switchable 10
41 38 39 325 960 Non-switchable 10
42 40 41 325 960 Non-switchable 11
43 40 42 250 2200 Non-switchable 1
44 42 43 500 960 Non-switchable 10
45 42 44 200 2200 Non-switchable 1
46 44 45 200 960 Non-switchable 9
47 44 47 250 2200 Non-switchable 1
48 45 46 300 960 Non-switchable 9
49 47 48 150 2200 Non-switchable 4
50 47 49 250 2200 Non-switchable 4
51 49 50 250 2200 Non-switchable 4
52 50 51 250 2200 Non-switchable 4
53 51 151 500 2200 Non-switchable 13
54 52 53 200 2200 Non-switchable 1
55 53 54 125 2200 Non-switchable 1
56 54 55 275 2200 Non-switchable 1
57 54 57 350 2200 Non-switchable 3
58 54 94 10 3700 Switchable 13
59 55 56 275 2200 Non-switchable 1
60 57 58 250 960 Non-switchable 10
61 57 60 750 2200 Non-switchable 3
62 58 59 250 960 Non-switchable 10
63 60 61 550 2200 Non-switchable 5
64 60 62 250 730 Non-switchable 12
65 60 160 10 3700 Switchable 13
66 61 610 10 150 Non-switchable 13
67 62 63 175 730 Non-switchable 12
68 63 64 350 730 Non-switchable 12
69 64 65 425 730 Non-switchable 12
70 65 66 325 730 Non-switchable 12
71 67 68 200 960 Non-switchable 9
72 67 72 275 2200 Non-switchable 3
73 67 97 250 2200 Non-switchable 3
74 68 69 275 960 Non-switchable 9
75 69 70 325 960 Non-switchable 9
76 70 71 275 960 Non-switchable 9
77 72 73 275 960 Non-switchable 11
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
78 72 76 200 2200 Non-switchable 3
79 73 74 350 960 Non-switchable 11
80 74 75 400 960 Non-switchable 11
81 76 77 400 2200 Switchable 6
82 76 86 700 2200 Non-switchable 3
83 77 78 100 2200 Non-switchable 6
84 78 79 225 2200 Non-switchable 6
85 78 80 475 2200 Non-switchable 6
86 80 81 475 2200 Non-switchable 6
87 81 82 250 2200 Non-switchable 6
88 81 84 675 960 Non-switchable 11
89 82 83 250 2200 Non-switchable 6
90 84 85 475 960 Non-switchable 11
91 86 87 450 2200 Non-switchable 6
92 87 88 175 960 Non-switchable 9
93 87 89 275 2200 Switchable 6
94 89 90 225 960 Non-switchable 10
95 89 91 225 2200 Non-switchable 6
96 91 92 300 960 Non-switchable 11
97 91 93 225 2200 Non-switchable 6
98 93 94 275 960 Non-switchable 9
99 93 95 300 2200 Non-switchable 6

100 95 96 200 960 Non-switchable 10
101 97 98 275 2200 Non-switchable 3
102 97 197 10 3700 Switchable 13
103 98 99 550 2200 Non-switchable 3
104 99 100 300 2200 Non-switchable 3
105 100 450 800 2200 Non-switchable 3
106 101 102 225 960 Non-switchable 11
107 101 105 275 2200 Non-switchable 3
108 102 103 325 960 Non-switchable 11
109 103 104 700 960 Non-switchable 11
110 105 106 225 960 Non-switchable 10
111 105 108 325 2200 Non-switchable 3
112 106 107 575 960 Non-switchable 10
113 108 109 450 960 Non-switchable 9
114 108 300 1000 2200 Non-switchable 3
115 109 110 300 960 Non-switchable 9
116 110 111 575 960 Non-switchable 9
117 110 112 125 960 Non-switchable 9
118 112 113 525 960 Non-switchable 9
119 113 114 325 960 Non-switchable 9
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Line From To Length Capacity Line Config.No. Node Node (ft) (kVA) Type
120 135 35 375 2200 Non-switchable 4
121 149 1 400 2200 Non-switchable 1
122 150 149 10 3700 Switchable 13
123 151 300 10 3700 Switchable 13
124 152 52 400 2200 Non-switchable 1
125 160 67 350 2200 Non-switchable 6
126 197 101 250 2200 Non-switchable 3

Table A.2: Line impedances for modified IEEE 123-bus feeder

Config. Resistance Reactance
(Ohms/mi) (Ohms/mi)

1 0.4619 1.0638
2 0.4619 1.0638
3 0.4619 1.0638
4 0.4619 1.0638
5 0.4619 1.0638
6 0.4619 1.0638
7 0.4576 1.0780
8 0.4596 1.0716
9 1.3292 1.3475

10 1.3292 1.3475
11 1.3292 1.3475
12 1.5249 0.7401
13 0.0100 0.0100

Table A.3: Load parameters for modified IEEE 123-bus feeder

Load P Q Load P Q Load P Q
Name (kW) (kVar) Name (kW) (kVar) Name (kW) (kVar)

L1 15 5 L43 15 5 L79 15 5
L2 5 5 L45 5 5 L80 15 5
L4 15 5 L46 5 5 L82 15 5
L5 5 5 L47 35 25 L83 5 5
L6 15 5 L48 70 50 L84 5 5
L7 5 5 L49 45 30 L85 15 5
L9 15 5 L50 15 5 L86 5 5

L10 5 5 L51 5 5 L87 15 5
L11 15 5 L52 15 5 L88 15 5
L12 5 5 L53 15 5 L90 15 5
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Load P Q Load P Q Load P Q
Name (kW) (kVar) Name (kW) (kVar) Name (kW) (kVar)

L16 15 5 L55 5 5 L92 15 5
L17 5 5 L56 5 5 L94 15 5
L19 15 5 L58 5 5 L95 5 5
L20 15 5 L59 5 5 L96 5 5
L22 15 5 L60 5 5 L98 15 5
L24 15 5 L62 15 5 L99 15 5
L28 15 5 L63 15 5 L100 15 5
L29 15 5 L64 25 10 L102 5 5
L30 15 5 L65 45 35 L103 15 5
L31 5 5 L66 25 10 L104 15 5
L32 5 5 L68 5 5 L106 15 5
L33 15 5 L69 15 5 L107 15 5
L34 15 5 L70 5 5 L109 15 5
L35 15 5 L71 15 5 L111 5 5
L37 15 5 L73 15 5 L112 5 5
L38 5 5 L74 15 5 L113 15 5
L39 5 5 L75 15 5 L114 5 5
L41 5 5 L76 80 60
L42 5 5 L77 15 5

Table A.4: Capacitor data for modified IEEE 123-bus feeder

Node kVar
83 180
88 15
90 15
92 15

Table A.5: Transformer and regulator data for modified IEEE 123-bus feeder

kVA kV-high kV-low Tap Position
Substation 5000 115 4.16 –
XFM-1 150 4.16 0.48 –
RG 150-149 – 4.16 4.16 -7
RG 9-14 – 4.16 4.16 1
RG 25-26 – 4.16 4.16 1
RG 160-67 – 4.16 4.16 -4


