
PERCEIVING GUARANTEED COLLISION-FREE ROBOT TRAJECTORIES IN
UNKNOWN AND UNPREDICTABLE ENVIRONMENTS

by

Rayomand Vatcha

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Jing Xiao

Dr. Srinivas Akella

Dr. Min Shin

Dr. Barry Wilkinson

Dr. Jiang Xie

ii

c©2012
Rayomand Vatcha

ALL RIGHTS RESERVED

iii

ABSTRACT

RAYOMAND VATCHA. Perceiving guaranteed collision-free robot trajectories in
unknown and unpredictable environments. (Under the direction of DR. JING

XIAO)

The dissertation introduces novel approaches for solving a fundamental problem:

detecting a collision-free robot trajectory based on sensing in real-world environments

that are mostly unknown and unpredictable, i.e., obstacle geometries and their mo-

tions are unknown. Such a collision-free trajectory must provide a guarantee of safe

robot motion by accounting for robot motion uncertainty and obstacle motion uncer-

tainty. Further, as simultaneous planning and execution of robot motion is required

to navigate in such environments, the collision-free trajectory must be detected in

real-time.

Two novel concepts: (a) dynamic envelopes and (b) atomic obstacles, are intro-

duced to perceive if a robot at a configuration q, at a future time t, i.e., at a point

χ = (q, t) in the robot’s configuration-time space (CT space), will be collision-free

or not, based on sensor data generated at each sensing moment τ , in real-time. A

dynamic envelope detects a collision-free region in the CT space in spite of unknown

motions of obstacles. Atomic obstacles are used to represent perceived unknown ob-

stacles in the environment at each sensing moment. The robot motion uncertainty is

modeled by considering that a robot actually moves in a certain tunnel of a desired

trajectory in its CT space. An approach based on dynamic envelopes is presented

for detecting if a continuous tunnel of trajectories are guaranteed collision-free in

an unpredictable environment, where obstacle motions are unknown. An efficient

iv

collision-checker is also developed that can perform fast real-time collision detection

between a dynamic envelope and a large number of atomic obstacles in an unknown

environment. The effectiveness of these methods is tested for different robots using

both simulations and real-world experiments.

 v

ACKNOWLEDGEMENTS

I am greatly indebted to my advisor, Prof. Jing Xiao, for her patient guidance, advice,

and encouragement. Some results in this dissertation would not have been possible

without her guidance and feedback. I gratefully acknowledge all the members of my

committee who have given their time to read this manuscript and provided valuable

advice: Prof. Srinivas Akella, Prof. Min Shin, Prof. Barry Wilkinson, and Prof. Jiang Xie.

I would also like to thank my parents, Soli Minocher Vatcha and Bakhtawar Soli

Vatcha, and my sister, Rashna Vatcha, for their love and support.

vi

TABLE OF CONTENTS

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION 1

1.1 Basic tool: C-Space and CT-Space 1

1.2 Different kinds of real-world environments 4

1.3 Planning robot motion 7

1.4 Collision-checking 10

CHAPTER 2: LITERATURE SURVEY 12

2.1 Assumptions made about dynamic environments for robot motion 12

2.2 Extracting information from sensing in unknown environments 14

2.3 Collision detection 18

2.4 Handling motion uncertainty of robot in planning 19

2.5 Limitations 20

CHAPTER 3: RESEARCH OUTLINE 21

3.1 About unknown and unpredictable environments 21

3.2 Online determination of collision-free CT-points via sensing 21

3.3 Detecting safe trajectories for a robot 22

3.4 Outline 23

CHAPTER 4: DYNAMIC ENVELOPE 25

4.1 Robot model 25

4.2 vmax assumption about the environment 26

4.3 Sensing instant τ 26

vii

4.4 Definition and its properties 27

4.5 Collision-free CT-region discovered along with a CT-point 29

4.6 Robustness of approach over exaggerated vmax 33

4.7 Perceived CT-space 35

4.8 Summary 38

CHAPTER 5: DETECTING A COLLISION-FREE TRAJECTORY 40

5.1 Approach 40

5.2 Associating Γ+ to a CT-region of a single CT-point 42

5.3 Associating Γ+ to CT-regions of a set of CT-points 44

5.4 Collision-free perceiver 46

5.5 Implemented examples 48

5.6 Summary 51

CHAPTER 6: ATOMIC OBSTACLES (AO) 54

6.1 Sensor data generated at a sensing moment 54

6.2 Definition, properties and examples 56

6.3 Some free space represented as atomic obstacles 59

6.4 Collision checking between the robot model and obstacles 61

6.5 Summary 62

CHAPTER 7: COLLISION FREE PERCEIVER WITH AO 63

7.1 Extraction and grouping 64

7.2 Hierarchical checking 67

7.3 Real-time collision-detection algorithm 70

viii

7.4 Algorithm 72

7.5 Time and space coherence 74

7.6 Implementation and experimental results 75

7.7 Summary 79

CHAPTER 8: MOTION PLANNING IN PERCEIVED CT-SPACE 80

8.1 Real-time adaptive motion planner (RAMP) 80

8.2 E-RAMP as practical motion planner 82

8.3 Summary 92

CHAPTER 9: EXPERIMENTS AND RESULTS 94

9.1 Performance data 94

9.2 Simulation environment 95

9.3 Real experiments 103

CHAPTER 10: CONCLUSION AND FUTURE WORK 115

10.1 Contributions 115

10.2 Future work and open challenges 118

10.3 Applications 121

REFERENCES 123

ix

LIST OF FIGURES

FIGURE 1: A planar rod robot with two links and two joint variables [q1, q2]
T . 2

FIGURE 2: Robots with different degrees of freedom (DOF). 2

FIGURE 3: CT-space of a 2 DOF robot 4

FIGURE 4: A place with many people walking. 6

FIGURE 5: Approximating real obstacle geometry. 11

FIGURE 6: A dynamic envelope of a planar rod robot. 28

FIGURE 7: Illustration of dmax(q
′,q) of a rod robot. 29

FIGURE 8: Illustration of inequality (5). 30

FIGURE 9: The geometry of CT-region F (χ, τk) for the 2D rod robot. 32

FIGURE 10: Predicted CT-space vs. Perceived CT-Space 36

FIGURE 11: The CT-regions contain the tunnel Γ+, which encloses Γ. 41

FIGURE 12: Illustration of the condition (24). 44

FIGURE 13: A situation after f(t) is shifted ∆t to end at t1. 44

FIGURE 14: Illustration of τe for CT-point χj. 48

FIGURE 15: Piece-wise continuous trajectory Γ consisting of three segments. 48

FIGURE 16: Piece-wise continuous trajectory Γ with two segments. 49

FIGURE 17: Snapshots of robot moving along a trajectory Γ. 53

FIGURE 18: Sensor data generated at a sensing moment. 55

FIGURE 19: An environment is viewed as a set of atomic obstacles. 56

FIGURE 20: Red circles as atomic obstacle. 58

FIGURE 21: The geometry of an atomic obstacle Oij (shown in red color). 59

x

FIGURE 22: Some free-space is represented as a part of atomic obstacles. 60

FIGURE 23: The union of free space visible from two sensors s1 and s2. 61

FIGURE 24: Ray intersection tests to detect an internal super pixel. 65

FIGURE 25: Neighborhood expansion of super pixels. 66

FIGURE 26: Illustration of some notations. 67

FIGURE 27: Division of a super pixel into smaller super pixels. 69

FIGURE 28: Illustrations of two cases of face RF 70

FIGURE 29: CFPA only considers a subset of atomic obstacles. 73

FIGURE 30: A 7-DOF Cyton arm. 75

FIGURE 31: Dimension of atomic obstacles for resolution 752 × 480. 75

FIGURE 32: Experiment and result. 76

FIGURE 33: An experimental environment with the stereo-vision sensor. 87

FIGURE 34: Snapshots of experiment #1 with a blue obstacle. 88

FIGURE 35: Snapshots of experiment #3 with a soccer ball as an obstacle. 89

FIGURE 36: Snapshots of experiment #5 with a plastic cover as an obstacle. 90

FIGURE 37: Simulation environment 96

FIGURE 38: Snapshots of an example run in simulation for vmax = 1 unit/s. 97

FIGURE 39: Effects of over-estimating vmax as v′max = cvmax, c ≥ 1. 98

FIGURE 40: An example of static narrow passage. 99

FIGURE 41: A planar continuum manipulator. 100

FIGURE 42: Experiment with continuum manipulator in static environment. 101

FIGURE 43: Experiment with continuum manipulator (task 1). 102

xi

FIGURE 44: Experiment with continuum manipulator (task 2). 103

FIGURE 45: Experimental setup for Robix Rascal RC 6. 105

FIGURE 46: An environment (Env1) and two traveled paths by the robot. 106

FIGURE 47: Selected steps taken by the robot in Env2. 106

FIGURE 48: A 7-DOF Cyton arm. 108

FIGURE 49: Dimension of atomic obstacles for resolution 188 × 120. 108

FIGURE 50: Snapshots of experiment #1 with vmax = 1cm/s. 110

FIGURE 51: Snapshots of experiment #2 with vmax = 3cm/s. 110

FIGURE 52: Snapshot of the simulated workspace. 112

CHAPTER 1: INTRODUCTION

One of the ultimate goals in robotics is to enable robots to work autonomously in

real-world environments. Meeting this goal requires the robot to move intelligently

in environments without colliding with any obstacles, such as, chairs, tables, people,

etc. Environments can be classified as follows:

• Static environment: No obstacles can move in the environment.

• Dynamic environment: Some or all obstacles can move in the environment.

This dissertation introduces approaches for detecting guaranteed collision-free robot

motions in dynamic environments with obstacle geometries and their future motions

unknown. This enables the robot to move autonomously and safely in such environ-

ments. Finding such intelligent motions for a robot in an environment with obstacles

is the task of a planner, which has been a central theme of robotics research. In the

following, basic concepts about robots and environments are first introduced, and

then the classical planners are surveyed.

1.1 Basic tool: C-Space and CT-Space

Planning can be defined by introducing Configuration Space (C-space) for a static

environment, and Configuration-Time space (CT-Space) for a dynamic environment.

The C-space of a robot can be defined by using the following terms [16,65]:

2

1. Configuration: A vector of independent variables q that defines uniquely the

position of every point of a robot in a real world environment or physical space.

Figure 1 shows a robot arm with two joints expressed by vector [q1, q2]
T in two

different configurations.

(a) (b)

Figure 1: A planar rod robot with two links and two joint variables [q1, q2]
T .

2. Degrees of freedom (DOF): The number of independent variables that uniquely

define the configuration of the robot. For example (Figure 2), a mobile robot

has 2 to 4 DOF, an industrial manipulator has 5 to 9 DOF, a humanoid has 29

DOF, etc.

(a) Mobile robot with 3
DOF.

(b) Puma manipulator with
5 DOF.

Figure 2: Robots with different degrees of freedom (DOF).

3

The configuration space (C-space) [62] of a robot has dimensions equal to degrees of

freedom of the robot. The complex volume occupied by a robot at a configuration in

physical space is represented as a point in the C-space [88]. Each point in the C-space

is classified either as a C-obstacle point if an obstacle intersects with the robot at that

configuration or as a C-free point, otherwise.

If obstacle poses i.e., their positions or orientations, change with time then the

C-space also changes with time, i.e., a C-point which was a C-obstacle point may

now become a C-free point and vice-versa. Planning in such a space, which changes

when an obstacle moves, is difficult. Thus, the notion of configuration-time space

(CT-space) is introduced by adding one more dimension of time to the configuration

space; each CT-slice at a time instant of a CT-space corresponds to a C-space at

that time instant. A CT-point χ = (q, t) corresponds to a robot at a particular

configuration q at a particular time t in the physical space. The C-obstacles on all

the CT-slices define CT-obstacles in the CT-space, and the remaining space is the

CT-free space. Figure 3 shows an example of CT-space of a 2 DOF robot and a

collision-free motion segment (trajectory) that connects the starting configuration S

to the ending configuration G.

The notions of paths and trajectories for robot motion are defined below:

• Path: A 1D curve segment in the C-space of the robot representing the sequence

of configurations of the robot.

• Trajectory: A 1D curve segment in the CT-space of the robot representing the

sequence of poses that the robot will be at different time.

4

Figure 3: CT-space of a 2 DOF robot

A planner tries to find a sequence of motions for the robot to reach the goal con-

figuration from the start or the current configuration, without colliding with any

obstacles. This sequence of motions is a (a) collision-free path in the C-free space of

the robot, if the environment is static, or (b) collision-free trajectory in the CT-free

space of the robot, if the environment is dynamic. Figure 3 shows a collision-free

trajectory (motion segment) in the CT-space of the robot that connects the starting

configuration S at time t = 0 to the ending configuration G at time t = tG.

1.2 Different kinds of real-world environments

Robots, working in a real-world environment, must have complete or partial infor-

mation about obstacles or available free-space in that environment. Depending on

whether an environment is static or dynamic and the level of information available

to the robot, environments can be classified into different categories.

1.2.1 Known environment

A known environment is usually man-made, where the information about it is

completely known. Such an environment can be static or dynamic as discussed below:

5

• Static environment: In a man-made static environment, precise geometries of

obstacles can be known. For example, industrial environments, such as, a man-

ufacturing site, consists of obstacles, such as, machines, parts, etc. with their

geometric models usually known. Thus, most required information about the

physical environment for robot motion planning is available.

• Dynamic environment: In a known dynamic environment, future motions of ob-

stacles are precisely known along-with their geometries. For example, multiple

robots working in the same environment can consider other robots as obsta-

cles with known motions. Such a kind of environment is commonly found in

industrial environments, where robots try to manipulate some objects in the

environment. Thus, most information about environment for planning is avail-

able.

1.2.2 Unknown static environment

An unknown static environment is where objects are unknown but nothing moves,

such as some ancient ruins or the surface of Mars. In such an environment, models of

obstacles are not known, which further complicates detection of obstacles as particular

objects in real-world. Thus, the required information about environment for planning

robot motion has to be gained from sensing.

1.2.3 Partially unknown dynamic environment

A partially unknown dynamic environment contains obstacles, whose geometries

are known but their motions are unknown. Moreover, obstacles are often constrained

to move only within a specific region due to the nature of environment or behaviors of

6

obstacles themselves. For example, on highways, where the roads are clearly divided

by lanes, vehicles can move along only one side of the road and possibly within their

lanes for some time period; also, the geometries of vehicles are known as they are

manufactured by various vehicle manufacturers.

Since the possible obstacle motions could be known based on the constraints on

their motions, their future motions can be predicted by tracking their past motions.

Sensing is required to detect obstacles for planning robot motion in such an environ-

ment.

1.2.4 Unknown and unpredictable environment

An unknown and unpredictable environment is where obstacles are completely

unknown and their motions are unknown or hard to predict. For example, people

moving in shopping malls or offices or at home. Moreover, in such environments, not

all possible obstacles that a robot is likely to encounter can be known. Figure 4 shows

an example. Since possible future obstacle motions are difficult to know, their future

Figure 4: A place with many people walking.

7

motions can be wrongly predicted. Thus, the information about an environment,

obtained through obstacle recognition and motion prediction, may not work here.

New ways are called upon to acquire information.

1.3 Planning robot motion

Planners in the robotics literature can be categorized based on the kinds of envi-

ronments in which robot motions are planned and are described here.

1.3.1 Path planning

If the environment is static, a planner needs to find a path, connecting the start

pose of the robot to the end pose, in the C-free space of the robot. Such kind of

planning is called path planning. The primary focus of the planner is not only to

find the existence of a collision-free path, but also to find the best path depending

on optimization parameters. For finding the existence of a collision-free path there

are approaches for 2D or 3D C-space that use C-obstacle features, such as, vertices

of polygonal C-obstacles [63], edges of polygonal C-obstacles [47], etc. If C-obstacle

geometries are not known, then approximate cell-decomposition [53] is used to com-

pute the approximate geometry of C-free space in the C-space. The commonly used

optimization parameters are shortest path, minimal robot energy, minimal time, etc.

Computing C-obstacles is not only difficult [34,93], but also infeasible if the C-space

is high dimensional for a robot with high-DOF, such as, manipulators, humanoids, etc.

Sampling based approaches [46,55,56] have been used extensively to avoid computing

C-obstacles. These approaches randomly find a set of collision-free C-points (nodes)

and then locally try to find collision-free paths that connect the nearby nodes. The

8

randomness in picking nodes is primarily used to ensure good coverage of C-space.

Testing if a C-point is a part of any C-obstacle just requires collision-checking, which

is described later in the next section. However, such planners may not be able to

find a solution if one exists; increasing sampling of C-points increases the probability

of finding a solution and thus, such planners are probabilistically complete. One

representative planner is the probabilistic roadmap method [46] and there exists a

well-studied literature on sampling schemes [2, 59, 71] for representing free-space in

the C-space of a robot.

1.3.2 Reactive planning

In certain environments, only some obstacles may be dynamic among other static

obstacles. Then, planning can be done in the robot’s C-space as described in the

above section; for some dynamic obstacles, a found collision-free path among static

obstacles can be modified locally as the robot starts executing that path [45, 103].

Such local planning, where the planner just locally reacts to the obstacles is known

as reactive planning. Reactive planning is computationally less expensive than path

planning or motion planning (described in next section) that uses global information

about an environment, i.e., account for the presence of all the obstacles. Thus, a

reactive planner can easily generate a local plan in real-time; however, it cannot

direct the robot to reach the goal without the help of a path planner and can often

get the robot stuck in local minima.

9

1.3.3 Motion planning

If an environment is dynamic, a planner needs to find a trajectory connecting the

starting configuration-time to the ending configuration-time in the CT-free space of

the robot, and that is called motion planning.

If the future motion of an obstacle is known for a long time period, then a CT-

obstacle corresponds the swept volume over time of a C-obstacle. The approaches [47,

63] mentioned in section 1.3.1 can be used when C-obstacles can be computed. How-

ever, finding the swept volume of a complex obstacle is difficult. Moreover, computing

C-obstacles becomes difficult or even infeasible as the DOF of robot increases. Similar

to path planning, sampling-based approaches [46, 55] could be used here except that

the planning is done in the CT-space of the robot.

If the future motions of obstacles are not known beforehand, then it can be es-

timated or predicted so that the planner is able to find a solution from starting

configuration to ending configuration. In general, the estimation or prediction of fu-

ture motions of obstacles are usually true only for a short period immediate after the

time when the prediction is made. This causes the estimated CT-space of the robot

to keep on changing over time as obstacles behave differently from their predicted

behaviors. This makes planning more difficult as a detected collision-free trajectory

may not really be collision-free. A common approach is to re-plan those parts of

trajectories that now lie on CT-obstacles (e.g., [92, 108]).

10

1.4 Collision-checking

Computing C-obstacles or CT-obstacles is difficult and can be infeasible if the com-

plexity of physical obstacle geometry or the DOF of the robot is high. As discussed

in section 1.3.1, sampling based planners could be used here as they only require

to know if a C-point/CT-points in C-space/CT-space is collision-free or not. The

following two common approaches, depending on whether the obstacle geometry is

known or not, can easily compute such information in 3D physical space of the robot:

• Model based checking: When the 3D obstacle geometry is known, the obsta-

cle can be modeled using (a) simple bounding volumes such as object oriented

bounding boxes (OBBs), spheres, capsules, etc, or (b) a set of polygonal faces

(called mesh) such as triangles, rectangles, etc. Figure 5 shows an example.

There exist well-studied literature [15,61] in the field of computer graphics that

can efficiently detect the existence of intersection between simple bounding vol-

umes or meshes. For example, the separation axis method uses convex property

of polyhedral objects to determine quickly if an intersection exists or not be-

tween them. For intersection checking between meshes, hierarchal checking is

often used, where a complex mesh is represented by simple bounding volumes.

• Occupancy in physical space: If the obstacle geometry is not known then the

physical space can be divided into voxels, which are small cubes; and whether

the voxel is obstacle free or not can be determined by sensing (e.g. [104]). A

robot at a particular configuration occupies a set of voxels in the physical space,

which can be determined as the geometry of robot is known. One approach [58]

11

(a) Bounding box roughly
approximates the obsta-
cle.

(b) Mesh closely approxi-
mates the obstacle (Stan-
ford bunny).

Figure 5: Approximating real obstacle geometry.

computes off-line the mapping between a set of C-points and its corresponding

set of voxels in the physical space. Although such collision-checking may be

faster than the model based checking, it restrains the planner to use only those

C-points for which mapping has been computed.

CHAPTER 2: LITERATURE SURVEY

As this dissertation is focused on tackling the largely open problem of how to

detect collision-free robot trajectories in unknown and unpredictable environments,

it is important to first examine existing approaches related to detecting collision-free

robot trajectories. These approaches often assume that much information about an

environment is known. Related literature includes methods for continuous collision

checking, approaches for acquiring information of an environment through sensing,

and approaches in control focusing on handling robot motion uncertainty.

2.1 Assumptions made about dynamic environments for robot motion

Geometries of obstacles and their future motions are known: As the geometry, pose,

and motion of any obstacle is completely known, planning can be done off-line using

a model of the environment without the need of sensing. Sensing is used only during

actual execution of a robot’s motion to deal with uncertainties (e.g., [51,72,84]). Some

approaches are focused on finding collision-free regions or free space in the C-space [53,

98]. If the robot has high degrees of freedom (DOF), such as, an articulated robot, the

corresponding C-space and CT-space are high-dimensional. To avoid construction of

high-dimensional C-obstacles (or CT-obstacles), sampling-based planners are widely

used [46,55].

Geometries of obstacles are known and their precise velocities within some time inter-

13

val can be computed: Here one common focus is on-line revising pre-planned paths

in previously known environments to avoid robot collisions with newly added recog-

nizable obstacles, which could be static (e.g., [58]) or performing particular kinds of

motions (e.g., [103, 108]). These schemes usually assume partial changes to known

C-space or CT-space to limit the scale of re-computing or re-planning for facilitating

real-time computation. There is also work on motion planning to avoid static or

moving obstacles with certain known velocities within some time interval [25,52].

Only the geometries of obstacles are known: Here the obstacles are assumed known (or

recognizable), but with unknown future trajectories. There are a few planners (e.g.,

[20, 35, 50, 89]) that address mobile-robot motion planning in such an environment.

A real-time adaptive motion planning (RAMP) approach [91, 92] is very effective

for planning high-DOF robot motion, characterized by simultaneous planning and

execution based on sensing.

Most approaches commonly predict future obstacle trajectories by tracking the

past motions of the known obstacles (e.g. [12,21–23,27,32,36]). However, the predic-

tion is usually true only for a short period, i.e., immediately after the time when the

prediction is made. As the observed behavior of an obstacle changes, the prediction

of the obstacle’s future trajectory changes. Thus, planning future robot’s motion is

based on frequently updating the predictions, and unknown changes in an environ-

ment are taken into account by repeated computations or re-computations of (some

parts of) paths/trajectories, which involve repeated collision checking. Moreover, the

planned motions may also fail to be collision-free due to inaccurately predicted obsta-

cle motions. There exists work aimed at guaranteeing collision-free motions for mobile

14

robots. The notion of “Inevitable Collision Regions” (ICS) was introduced [28] for a

mobile robot to characterize guaranteed CT-obstacles in its CT-space. Further, there

has also been some approaches introduced in [29] that guarantee motion safety of a

robot by assuming specific conditions, such as, the robot observes unicycle dynamics,

obstacles are also robots, etc.

Geometries of obstacles are known and all possible motions of obstacles are taken

into account: In [90], prediction of unknown motions of known obstacles is avoided

by considering all the possible future motions of the obstacles, i.e., considering worst-

case CT-obstacles so that the planned motions are guaranteed collision-free. However,

the estimated free CT space is too conservative (i.e., too small due to exaggerated

CT-obstacle regions) and increasingly so with time, as possible poses of obstacles

increase with time. Also, in [101], the precise reachable motions of circular disc

obstacles, observing unicycle dynamics, are computed to guarantee safety for infinite

time horizon.

2.2 Extracting information from sensing in unknown environments

Planning requires to know information about environment, such as, geometries

of obstacles and their future motions. If obstacle geometries and their motions are

unknown, then sensor(s) can be used by the robot to gain information about the

environment. However, the kind of sensor data generated by real sensors are very

rudimentary and do not directly provide high-level information of object models.

There exists a vast literature that addresses this problem of inferring information

about an environment from sensor data and are discussed in this section.

15

2.2.1 Acquiring information of obstacles

Any moment, the planner needs to know the current pose occupied by the obstacles

or the available free space. For dynamic environments, the planner additionally needs

to know how the obstacles poses change with time or the way the available free-space

changes with time. There are mainly two approaches that try to infer information

about the occupancy of obstacles in an environment:

Finding obstacles: From sensor data, if an obstacle in the environment can be identi-

fied using its features, then based on poses of features along with the known geometry

of obstacles, the occupancy of that obstacle in the physical space can be obtained.

Two most common approaches for 3D modeling are (a) 3D modeling tool used while

designing that object (obstacle), and (b) scanning real-world object using different

kind of sensors (e.g. [24,38]), such as, laser scanner, stereo-vision, camera, etc. How-

ever, identifying obstacles from sensor data itself is an active research area as each

obstacle has different kind of features and complexities. For example, in computer

vision, a major focus of research is to identify specific kinds of objects, such as, hu-

man [4, 33], vegetation [7], objects that can cause a mobile robot to drop off [69],

internal organs or parts in human bodies for medical analysis [44], etc. There exist

common methods [73,79,100], especially from machine learning [48,107], that can be

used to detect various kinds of objects. Such methods often require time consuming

training process, but the training could be done off-line and a mapping function,

which identifies a specific object or object class from other objects, determined as a

result of training, could identify that object instantaneously. The major issue with

16

such approaches is the lack of guarantee to have high accuracy for identifying an

object due to many factors, such as different lighting conditions, occlusions, etc.

Finding free physical space: There is much research on how to represent and sense

an unknown (mostly static) environment using robots with sensors mounted. One

approach represents an unknown static environment with unknown obstacle geometry

in terms of voxels [104]. However, detecting all voxels occupied by the actual obstacles

from sensing is not a trivial matter and may not be feasible in real-time. A large body

of work is focused on simultaneous robot localization and mapping (SLAM) in an

unknown static environment [86], which represents the environment using probability

distributions.

There is also research addressing how to move a robot to maximize sensing views

(i.e., minimize occlusions) [106]. For sensor-based robot navigation, different kinds

of sensors are used, either mounted in the environment to provide a world view, or

mounted on a robot to provide a robot-centric local view. The planners, referred to as

sensor based motion planners [31,105], are often adapted from classical model based

planners to plan paths incrementally, as the unknown static environment becomes

known gradually from sensing. However, for unknown dynamic environments with

obstacle geometries not known, planning becomes difficult.

2.2.2 Future changes in an environment

For planning robot motion in a changing environment, the future information about

that environment must be known. The future change in the environment can be

estimated if the change in obstacle poses can be estimated, or dually the change in

17

available free-space in physical space can be estimated.

Predicting future obstacle motion based on its past motion or its current motion

has been widely used in literature. The common motion model performed by any

obstacle is well defined in the literature of Physics, such as Newton’s law of motion,

Newtonian dynamics, Lagrangian mechanics, etc. The kind of predictions commonly

made in literature for planning robot motion are described below:

Short-term prediction: If the prediction is made based on only the current state of

the obstacle, then the prediction about obstacle motion is accurate as long as the

obstacle is not obstructed or the obstacle, itself, decides to change its motion. As no

past information is known, the event of such occurrence, i.e., obstacle changing its

motion, can not be known based on the current state of the obstacle. Thus, predictions

are true usually for a short period of time. Such a kind of prediction [12,70] is widely

used for reactive planning [25,52] (see Section 1.3.2).

Long-term prediction: Using the past information of an obstacle may enable predict-

ing for longer period. One approach [27] considers using the notion that obstacles

move in a way so as to achieve their point of interest. Other approaches [5,13,21,91]

try to find some repetitive pattern occurring by tracking obstacle motion all the time,

for long-term prediction. Since, the precise future obstacle motion may not be known,

multiple possible future trajectories [67] for each obstacles need to be considered for

planning, which can increase collision-checking cost. Moreover, identifying a single

obstacle in a complex environment itself is difficult as discussed in Section 2.2.1. Thus,

tracking multiple obstacles [12, 21–23, 27, 32, 36] is not only difficult but the compu-

tational complexity grows as the number of obstacles increases in an environment.

18

2.3 Collision detection

Collision detection is usually the most time consuming component of any sampling-

based robot motion planner. Many fast collision-checking algorithms [15, 42, 61]

exist for detecting collisions between two arbitrary stationary objects represented by

polygonal meshes or sphere trees. Recently, an efficient collision detection algorithm

[60] is introduced for checking collisions between the exact model of a continuum

manipulator and obstacles in polygonal meshes.

Checking for collisions of a robot path or trajectory is usually done by discretizing

the path/trajectory and check for each discretized configuration, which may omit col-

lisions with small obstacles, depending on the resolution of discretization. Therefore,

there also exists some work that addresses continuous collision checking of a robot

path/trajectory. Most of such work requires known obstacle motions. One approach

formulates trajectories of the robot and approximated obstacles in the environment

as functions of time and finds the time instants when collision occurs analytically [81].

However, if the trajectory functions are nonlinear, solving for collision time instants

can be difficult. The adaptive bisection algorithm [80] is based on the intuition that

if the sum of the distances traveled by two objects is less than the minimum distance

between them before traveling, then they cannot collide during their motions.

There are also approaches in the literature that focus on generating or approximat-

ing the continuous swept volume by a robot along a path or trajectory [11,26], which

can then be used to perform collision tests against obstacles. One approach [76] mod-

els the motion between two discrete configurations of an articulated robot in order

19

to avoid generating the swept volume of individual links. Graphics hardware is then

used to perform fast collision queries for approximated swept volumes in a virtual

prototyping environment. Another approach [3] is focused on growing the physical

robot’s volume at discrete configurations along a path to form a continuous region

for collision tests. These approaches are focused on the moving robot rather than the

obstacles, which are mostly assumed static.

2.4 Handling motion uncertainty of robot in planning

Uncertainty in robot configuration while planning robot motion is well studied in

the literature. Different kind of uncertainties resulting from different factors, such as

stabilizing a non-holonomic system [9], slipping of wheels [19], etc. has been studied

for a mobile robot. Further in [99], it has been shown by deriving equations specific

to that robot, uncertainty in robot control can be easily handled. Such approaches

are focused more on reducing uncertainty for specific robots than considering collision

avoidance with obstacles.

The approach [77] relies on known environment features (map) to handle uncer-

tainty in robot configuration; also, there exists approaches (e.g., [66]) to deal with

uncertainity in a map. If the environment is unknown and static, there exists a body

of literature [41,86] that simultaneously handles uncertainty in robot localization and

mapping of an environment.

Some researchers addressed uncertainties in motion planning algorithm, e.g., [49,

54, 72]. The approach [30] introduces the notion of a robust path that guarantees a

non-holonomic mobile robot to reach its goal based on landmarks.

20

2.5 Limitations

The following limitations hold for the existing methods in detecting collision-free

robot trajectories in an uncertain, dynamic environment:

• The approaches based on predicting known obstacle motions may be too expen-

sive due to the non-trivial process of obstacle identification and the repeated

computations of their predicted motions, especially if there are many obstacles,

which leads to repeated collision checking for detecting collision-free robot tra-

jectories, which can be infeasible in real-time for high degrees-of-freedom (DOF)

robots.

• The planned robot motions may fail to be collision-free, i.e., unsafe, if future

obstacle motions are predicted inaccurately.

• Planning in an environment that is unknown and unpredictable, i.e., obstacle

geometries are unknown and their future motions can not be predicted, is more

challenging, and to the best of the author’s knowledge, no current approach can

tackle that.

These limitations motivate the proposed research and shed light on the value of

contributions of this dissertation.

CHAPTER 3: RESEARCH OUTLINE

One of the fundamental abilities required by motion planners is to test if a motion

performed by a robot will collide with any obstacles or not. The focus of the disserta-

tion is to present novel approaches/algorithms that enable a motion planner to know

if a future motion of the robot is collision-free or not based on sensing in an unknown

and unpredictable environment.

3.1 About unknown and unpredictable environments

In an unknown and unpredictable environment all or some obstacles can move in

any direction. Moreover, objects can appear or disappear from a real-world environ-

ment, become separate into smaller objects or combine into bigger ones, for example,

in human centered environments, such as domestic environments, office environments,

etc. Even for environments well known to humans, the number and variety of obsta-

cles can be practically uncountable and not constant.

A robot operating in such an environment neither knows the possible kinds of

obstacles (i.e. their geometries) nor the kinds of motions they could perform. How

to enable a robot to move safely in this kind of environments is an open challenge.

3.2 Online determination of collision-free CT-points via sensing

A robot needs to actively sense to acquire information about its unknown envi-

ronment. A sensor can sense only a part of a physical space, where the robot goal

22

configuration may not be visible. Many sensors could be used to sense the physical

space, however, the amount of sensor data generated could be huge, which could make

it difficult for planners to find collision-free motions in real-time.

The rate at which the information about the environment is gained, determines

whether a planner can plan robot motions in real-time. Many sensors generate sensor

data at the rate of 20Hz-80Hz. Within a sensing cycle, the planner must be able to

detect multiple collision-free CT-points for decision making in real-time. Thus, how

to quickly determine collision-free CT-points from sensor data is a major challenge,

especially for high degree-of-freedom robots.

3.3 Detecting safe trajectories for a robot

For a robot to operate in a real-world environment, especially one involving humans,

the robot must not hit any obstacles. While a simple solution is to make the robot

stop its motion, it can get damaged by a moving obstacle. If a robot is set to execute

a trajectory, the trajectory should not be merely collision-free, rather, it is better

guaranteed collision-free in spite of unknown motions of obstacles.

Further, all the possible configurations that can be reached by the robot, which

cannot execute a trajectory precisely, need to be guaranteed collision-free. This can be

modeled as a certain “tunnel” of collision-free trajectories, which needs to be detected

as continuously collision-free, i.e., every CT-point in that tunnel is collision-free. How

to enable fast detection of a tunnel of guaranteed collision-free trajectories is a novel

challenge that has not been addressed.

23

3.4 Outline

Our research contribution is to introduce approaches that, (a) do not require iden-

tifying individual obstacles, (b) do not require tracking to predict obstacle future

motions, and (c) do not consider all possible motions of all obstacles for infinite time

horizon but rather use progressive sensing to perceive collision-free high-DOF robot

trajectories in real-time. Moreover, the detected trajectories will be guaranteed con-

tinuously collision-free and safe in spite of robot motion uncertainty.

The rest of the dissertation is outlined below. Chapter 4 introduces the notion of

dynamic envelope for detecting a collision-free CT-region associated with a CT-point

χ = (q, t), under an assumption that the obstacle speeds range in [0, vmax]. As the

robot cannot execute a trajectory Γ precisely, we assume that it will move within some

continuous tunnel Γ+, which describes motion uncertainty when the robot executes

trajectory Γ. An algorithm is introduced in Chapter 5 to detect Γ+ as collision-

free using only a finite set of CT-points Q(Γ+), which when discovered guaranteed

collision-free, implies that Γ+ is guaranteed collision-free.

Chapter 6 introduces the notion of atomic obstacles to characterize the obstacles

directly from sensor data for any sensing moment. The concept of atomic obstacles

avoids identifying obstacles, considering that not all obstacles need to be identified

and obstacle identification and tracking are often difficult or expensive to do. Chapter

7 introduces a fast real-time collision detection algorithm between a high DOF robot

and a large number of atomic obstacles.

Chapter 8 merges the notion of dynamic envelopes, introduced in Chapter 4, with

24

atomic obstacles, introduced in Chapter 5, to detect collision-free CT-points via a

general online sensor-based algorithm called Collision Free Perceiver using Atomic

obstacles (CFPA). Next, we focus our attention in embedding CFPA into a real-time

motion planner, taking into account the finite processing time that CFPA requires,

in Chapter 9. Chapter 10 demonstrates experiments and results for the approaches.

Chapter 11 concludes the dissertation and discusses directions for future work.

CHAPTER 4: DYNAMIC ENVELOPE

One of the important factors that facilitates real-time motion planning of high-

DOF robots is the ease of knowing if the robot can stay safely at a configuration q

for given future time t. Dynamic envelope is a novel concept that allows a robot to

know if a configuration-time point (CT-point) χ = (q, t) is guaranteed collision-free

or not, without knowing future motions of obstacles. Further, it can also be used to

detect a collision-free continuous CT-region that is in a neighborhood of CT-point χ.

For some future time t, dynamic envelope is defined based on the robot model, vmax

assumption about the environment, and a sensing moment τ .

4.1 Robot model

We assume that a high-DOF robot consists of multiple polyhedral links. This is a

reasonable assumption since a real robot’s link is commonly modeled by a polygonal

mesh, or can be approximated by a polyhedral bounding box.

The following notations describe such a robot model in the Cartesian space R3

(physical space).

• l: the set of points constituting a polyhedral link (rigid body) of the robot.

• lx: the set of vertices of l.

• R(q): the set of all points of all links of the robot at configuration q, i.e.

26

R(q) =
⋃
l(q).

• Rx(q): the set of all bounding vertices of all links of the robot at configuration

q, i.e. Rx(q) =
⋃
lx(q).

• p(q): the position of a point p ∈ R in the Cartesian space when the robot is at

configuration q.

• px(q): the position of a point px ∈ Rx in the Cartesian space, when the robot

is at configuration q.

4.2 vmax assumption about the environment

For an unpredictable environment, we assume an upper bound on the maximum

possible linear speed vmax of any obstacle. The value of vmax can be obtained for

different real world environments. For example, in a city environment where people

and cars move, vmax can be determined based on the speed limit on a vehicle, and in

a pedestrian only area, vmax can be set as the maximum walking/running speed of a

person. Any obstacle may have varied actual speeds in [0, vmax]

4.3 Sensing instant τ

At every sensing moment τk, k > 0 the sensor generates new rudimentary sensor

data. For motion planning, within a sensing cycle [τk−1, τk] the information about

the poses of obstacles in the environment need to computed from the sensor data.

We use the following notation to indicate obstacles sensed at time τ in the robot’s

physical space:

• O(τ): the union of regions occupied by obstacles in R3 at time τ .

27

4.4 Definition and its properties

Definition 1: For a robot’s configuration-time (CT) point χ = (q, t), a dynamic

envelope E(χ, τ), as a function of current sensing time τ ≤ t, is a closed surface

enclosing the region R(q) occupied by the robot at configuration q in the physical

space R3 (or R2 for 2-D planar space) so that the minimum distance between any

point on E(χ, τ) and the region R(q) is

d(t, τ) = vmax(t− τ) (1)

Theorem 1: For a CT-point χ = (q, t), if E(χ, τ) ∩O(τ) = ∅ at sensing time τ < t,

then χ is detected as guaranteed collision-free, i.e., no obstacle will hit the robot at

χ no matter how obstacles move.

Proof:

Since vmax is the upperbound of all actual obstacle speeds at any time, E(χ, τ) has

the following general properties:

1. It shrinks monotonically over sensing time with speed vmax, i.e., E(χ, τk+1) ⊂

E(χ, τk), where i > 0, τk < τk+1 ≤ t. E(χ, τ) shrinks to R(q) at t.

2. An obstacle not on or inside E(χ, τk) will never be on or inside E(χ, τk+1).

3. An obstacle either on or inside E(χ, τk) can be outside E(χ, τl) for some τl ∈

(τk, t], if not moving towards R(q) in maximum speed vmax.

Hence, at any time τk, if no obstacle is on or inside the dynamic envelope E(χ, τk), i.e.,

E(χ, τk)∩O(τk) = ∅, then, based on property 2 above, E(χ, τl)∩O(τl) = ∅, τl ∈ [τi, t],

28

(a) E(χ, 0.1) contains obstacles. (b) E(χ, 1) shrinks and squeezes out
obstacles.

(c) E(χ, 1.89) is free of obstacles.

Figure 6: A dynamic envelope of a planar rod robot.

and χ is guaranteed collision-free.

Figure 6(a) shows an example of a dynamic envelope for a planar rod robot in 2-D

environment, where χ = ((3, 3), 3), τi =0.1s and vmax = 1 unit/s. At τ = 1.89s, χ is

detected guaranteed collision free.

As soon as a dynamic envelope E(χ, τ) is free of obstacles at a sensing instant τl,

it has achieved the purpose of detecting that χ is collision-free. Thus it is no longer

needed and can expire at τl. If a dynamic envelope is first used at time τ0 and expires

later at τl, we call [τ0, τl] its life span.

As R(q) ⊂ E(χ, τl), more neighboring CT-points are discovered collision-free:

• Time-wise: Since no obstacle can be inside dynamic envelope within time inter-

val [τl, t], all the continuous configuration-time points within that time interval

for configuration q are guaranteed collision-free.

• Space-wise: For other neighboring configuration q′, we could find a dynamic

envelope E(χ′, τl), such that E(χ′, τl) ⊂ E(χ, τl) (see Figure 8), where χ′ =

(q′, t′), then χ′ is also guaranteed collision-free. Finding such CT-points are

29

Figure 7: Illustration of dmax(q
′,q) of a rod robot.

shown in the next section.

4.5 Collision-free CT-region discovered along with a CT-point

As a dynamic envelope of a CT-point always contains R(q), it is interesting to

find an another configuration q′, so that the dynamic envelope of that CT-point χ =

(q, t) contains R(q′) within certain lifespan of the dynamic envelope. The distance

dmax(q
′,q), defined as,

dmax(q
′,q) = max

∀px∈Rx

‖px(q′)− px(q)‖. (2)

is useful for this purpose. Figure 7 illustrates dmax(q
′,q) of a rod robot (which can

also be considered a rectangular link of a high-DOF robot).

We have the following theorem.

Theorem 2: When a CT-point χ = (q, t) is discovered collision-free at a sensing time

τl, i.e., the dynamic envelope E(χ, τl) is free of obstacles, a continuous neighborhood

F (χ, τl) of χ is also discovered collision-free, such that, for any CT-point χ′ = (q′, t′) ∈

F (χ, τl), its configuration q′ satisfies:

dmax(q
′,q) ≤ vmax(t− τl), (3)

30

Figure 8: Illustration of inequality (5).

and its time t′ satisfies

τl ≤ t′ ≤ t− dmax(q
′,q)

vmax
< t. (4)

Proof : When inequality (3) is satisfied, R(q′) is contained by the dynamic enve-

lope E(χ, τl), which is free of obstacles. If χ′ = (q′, t′) is collision-free, it means

that the dynamic envelope of χ′ is contained in the dynamic envelope of χ, i.e.,

E(χ′, τl) ⊂ E(χ, τl), and τl ≤ t′. Since dmax(q
′,q) is the maximum distance between

two corresponding points of R(q′) and R(q), we have

dmax(q
′,q) + vmax(t

′ − τl) ≤ vmax(t− τl), (5)

which can be simplified to

t′ ≤ t− dmax(q
′,q)

vmax
.

Thus, the theorem is proven.

Figure 8 illustrates the proof for a rod robot.

Corollary 1: If χ′ ∈ F (χ, τl) for some τl < t, then χ′ ∈ F (χ, τl+m), τl+m ∈ [τl, t
′],m ≥

0

31

Proof : From inequality (4), subtracting t′, we have

0 ≤ (t− t′)− dmax(q
′,q)

vmax

which, multiplying vmax, leads to:

dmax(q
′,q) ≤ vmax(t− t′)

From the above, because τl+m ≤ t′, we have

dmax(q
′,q) ≤ vmax(t− τl+m) (6)

and also

τl+m ≤ t′ ≤ t− dmax(q
′,q)

vmax
< t. (7)

With (6) and (7), based on Theorem 2, the corollary holds.

We next characterize the geometry of the CT-region F (χ, τl) below, based on The-

orem 2 and Corollary 1.

• F (χ, τl) is on the time interval [τl, t].

• The region of F (χ, τl) on the time-slice τl contains all the configurations that

satisfy inequality (3), whose size and shape depend on (a) the robot kinematics,

and (b) the size of the dynamic envelope E(χ, τl).

• At the time-slice t, F (χ, τl) contains the single CT-point χ = (q, t).

• Based on Theorem 2, for τl ≤ t′ ≤ t(χ,q′), where

t(χ,q′) = t− dmax(q
′,q)

vmax
(8)

32

(a) F (χ, 1.89) based on the dynamic enve-
lope E(χ, 1.89) shown in Figure 6(c).

(b) F (χ, 2.15) based on the dynamic enve-
lope E(χ, 2.15). F (χ, 2.15) ⊂ F (χ, 1.89).

Figure 9: The geometry of CT-region F (χ, τk) for the 2D rod robot.

all CT-points χ′ = (q′, t′) are in F (χ, τl). Equation (8) shows that the smaller

dmax(q
′,q) is, the longer is the hyper-line from (q′, τl) to (q′, t(χ,q′)) in F (χ, τl).

• dmax(q′,q) decreases with slope vmax as t(χ,q′) increases from τl to t as indicated

by the following equation derived from (8).

dmax(q
′,q) = −vmaxt(χ,q′) + vmaxt (9)

• F (χ, τl+m) = F (χ, τl)− Fp, where Fp = {(q′, t′)|(q′, t′) ∈ F (χ, τl), t
′ < τl+m}.

As an example, Figure 9 illustrates the geometry of the CT-region F (χ, τl) of the

same rod robot with no width as in Figure 6 with only two translational degrees of

freedom. The region of F (χ, τl) on the time slice τi is a circular disc.

Thus, a dynamic envelope not only discovers a collision-free CT-point but also its

neighboring CT-region. Moreover, without assuming any future motions of obstacles,

based on vmax assumption, the tool successfully discovers collision-free CT-points.

Next, we show the effects of over exaggerated vmax assumption for our approach.

33

4.6 Robustness of approach over exaggerated vmax

As vmax, the maximum speed of an obstacle, is the only known or estimated pa-

rameter we assume in our approach dealing with an unpredictable environment, it is

necessary to investigate how robust our approach of detecting collision-free CT-space

points is if vmax is over-estimated as v′max > vmax. The effect of such over-estimation

can be stated in the following theorem.

Theorem 3: Let v′max = cvmax, c > 1, and let χ = (q, t) be a collision-free CT-

point. Let E(χ, τ) and E ′(χ, τ) be the dynamic envelopes defined by vmax and v′max

respectively. If (q, t) is detected collision-free at τl by E(χ, τl), then, (q, t) will also

be detected collision free by E ′(χ, τ ′l), such that τl < τ ′l and τ ′l = τl+(c−1
c+p

)(t− τl) ≤ t,

where −1 ≤ p ≤ 1.

Proof: Suppose at time τ0, we start observing the dynamic envelopes E(χ, τ0) and

E ′(χ, τ0) with respect to vmax and v′max, where, based on equation (1),

d(t, τ0) = vmax(t− τ0), and

d′(t, τ0) = v′max(t− τ0) = cvmax(t− τ0)

Clearly for any time τ0 ≤ τ < t, E ′(χ, τ) is larger than E(χ, τ). Suppose further that

at least one obstacle was on or inside E(χ, τ0), then it was also on or inside E ′(χ, τ0).

Suppose at time τl, where τ0 ≤ τl ≤ t, the dynamic envelope E(χ, τl) has shrunk

enough to just “squeeze out” obstacles and detected that the CT-point (q, t) is

collision-free. Let dmin(q, τl) denote the minimum distance between R(q) and the

obstacles. Thus,

d(t, τl) = vmax(t− τl) = dmin(q, τl)− ε (10)

34

where ε > 0 is infinitesimally small. Clearly at τl, E
′(χ, τl) still has an obstacle

because it is larger than E(χ, τl).

However, according to Definition 1 and equation (1), d(t, t) = cvmax(t − t) = 0.

Since (q, t) is a collision-free CT-point, it means that E ′(χ, t) at sensing time t is

free of obstacle. Since E ′(χ, τ) shrinks continuously as τ progresses towards t, there

exists a moment τ ′l , τl < τ ′l ≤ t, when E ′(χ, τ ′l) is free of obstacle and (q, t) is detected

collision-free.

We now see how τ ′l is related to τ . Based on equation (1),

d′(t, τ ′l) = cvmax(t− τ ′l) = dmin(q, τ ′l)− ε. (11)

Since obstacles never move with speed greater than vmax, from τl to τ ′l , the change in

minimum distance between R(q) and obstacles can be expressed as:

dmin(q, τ ′l)− dmin(q, τl) = pvmax(τ
′
l − τl), −1 ≤ p ≤ 1. (12)

From the equations (10), (11), and (17), we have

d′(t, τ ′l)− d(t, τ) = pvmax(τ
′
l − τl), −1 ≤ p ≤ 1 (13)

From (10), (11), and (13), we can further obtain

τ ′l − τl = (
c− 1

c+ p
)(t− τl) ≤ t− τl (14)

Based on Theorem 3, τ ′l = t corresponds to the worst case scenario where p = −1,

meaning that the closest obstacle to R(q) at τ originally inside E(χ, τ0) moves towards

35

R(q) with vmax from τ to t, and in all other cases, τ ′l < t.

The significance of the theorem is that, if a CT-point (q, t) is collision-free, then it

will be detected as collision-free no later than time t no matter how badly the actual

vmax is overestimated as v′max. This shows the robustness of our approach.

4.7 Perceived CT-space

An important tool required for motion-planning of robot in a dynamic environment

is the CT-space (see section 1.1) of the robot. In an unknown and unpredictable

environment, as the motion of obstacles are unknown, a common way is to predict

obstacles motion and the corresponding CT-space of the robot we call as Predicted

CT-space; whereas, using our approach of dynamic envelope, which requires to know

only poses of obstacles at a current sensing moment τ , the corresponding CT-space

we call as Perceived CT-space.

The motion planner must plan the motion on true collision-free regions, or free

space, in the CT-space of a robot. However, with the prediction mechanism, being

true only for a short period of time, does not guarantee that the motions planned

lie on true collision-free regions. Whereas, with dynamic envelopes true collision-free

regions can be perceived. We illustrate this by an example.

Figure 10 compares predicted vs. perceived vs. actual CT-space in a 2-D example.

Both predicted CT-space and perceived CT-space will change as sensing/time pro-

gresses. However, unlike predicted CT-space, where a point predicted collision-free

may not be actually collision-free, the perceived CT-space consists of actual collision-

free regions that can only grow over time and uncertain regions, which can be either

36

Figure 10: Predicted CT-space vs. Perceived CT-Space

free or CT-obstacle regions.

4.7.1 Collision-free region vs. uncertain region

A dynamic envelope answers if a CT-point (q, t) can be perceived at τ ≤ t as

guaranteed collision-free, and also by its property 2, if (q, t) is perceived at τk as

guaranteed collision-free, then hyperline segment [(q, τk), (q, t)] in the CT-space is

37

also guaranteed collision-free.

Now a natural next question is: given a configuration q, what is the longest hy-

perline segment [(q, τk), (q, t)], or the furthest time t, that can be perceived at τk as

guaranteed collision-free? The answer to that question depends on the minimum dis-

tance dmin(q, τk) between the robot (if it were) at configuration q and the closest

obstacle sensed at τk. Let

∆t(q, τk) =
dmin(q, τk)

vmax
, (15)

which is the minimum period before a collision can possibly occur at q. Let

tf (q, τk) = τk + ∆t(q, τk) (16)

Clearly, as long as t is within the time interval [τk, tf (q, τk)), the hyperline seg-

ment [(q, τk), (q, t)] can be perceived at τk as guaranteed collision-free. Thus, the

longest hyperline segment that can be perceived at τk as guaranteed collision-free is

[(q, τk), (q, tf (q, τk)).

The union of all the guaranteed collision-free hyperline segments of the CT-space

perceived at τk is the maximum collision-free region (that may include multiple con-

nected continuous regions) perceived at τk, denoted as F (τk). F (τk) consists of only

CT-points for t ≥ τk. The union of the rest of the regions in the CT-space for time

t ≥ τk forms the uncertain region U(τk).

Theorem 4: For any τk and τk+m,m > 0, such that τk ≤ τk+m, if a CT-point (q, t),

where t ≥ τk+m, belongs to F (τk), then it also belongs to F (τk+m). On the other

hand, if the point (q, t) belongs to U(τk), it may still belong to F (τk+m).

38

Proof: From τk to τk+m, the change in minimum distance at configuration q can be

expressed as:

dmin(q, τk+m)− dmin(q, τk) = pvmax(τk+m − τk), −1 ≤ p ≤ 1. (17)

From equations (15) and (16), and using equation (17), we get

tf (q, τk+m)− tf (q, τk) = (τk+m − τk) + dmin(q,τk+m)−dmin(q,τk)

vmax
= (1 + p)(τk+m − τk)

⇒ tf (q, τk+m)− tf (q, τk) ≥ 0

That is, if (q, t) is on the hyperline [τk, tf (q, τk)), then, since t ≥ τk+m, it is also on

the hyperline [τk+m, tf (q, τk+m)). On the other hand, if (q, t) belongs to U(τk), then

t ≥ tf (q, τk), but as long as t < tf (q, τk+m), (q, t) belongs to F (τk+m).

The significance of the above theorem is that more collision-free CT-space points

can be discovered as sensing time progresses, i.e., the collision-free regions can only

grow.

4.8 Summary

This chapter introduced the notion of a dynamic envelope to detect if a CT-point is

collision-free or not without assuming about any future motions of obstacles. Through

“progressive sensing”, i.e., observing the poses of obstacles at different sensing instants

τ , a better decision is made whether a CT-point is guaranteed collision-free or not.

Further, it is shown that for a collision-free CT-point a dynamic envelope detects a

collision-free CT-region in the neighborhood of that CT-point. The notion of Per-

ceived CT-space is introduced to characterize the CT-space discovered by sensing

using our approach; it is shown that the guaranteed CT-free space only grows as

39

sensing time progresses.

CHAPTER 5: DETECTING A COLLISION-FREE TRAJECTORY

In the real world, whether and how objects in an environment move can be un-

predictable, and a robot’s own motion is also subject to uncertainty. In the previ-

ous chapter, the notion of dynamic envelope was introduced to discover guaranteed

collision-free CT-point χ = (q, t), for unpredictable environments. Now to enable a

robot to move safely in such an environment, it is necessary to be able to detect a

robot trajectory that is (a) guaranteed collision-free in spite of unknown motions of

obstacles, (b) continuously collision-free, i.e., not only at discrete1 configuration-time

(CT) points but also at all in-between configuration-time points, and (c) robustly

collision-free in spite of robot motion uncertainty, all in real-time.

5.1 Approach

For an n-DOF robot, a continuous trajectory segment Γ from CT-point χs = (qs, ts)

to CT-point χe = (qe, te) can be formulated as:

Γ = q(t) = [q1(t), ..., qn(t)]T ,

ts ≤ t ≤ te,

(18)

where q1(t), ..., qn(t) are continuous functions of time t for respective joint variables.

We consider a trajectory Γ robustly collision-free if (i) it is detected continuously col-

1Discretizing a continuous trajectory into a sequence of discrete configuration-time points may
cause a collision to be missed between two consecutive discrete points, especially if the size of an
obstacle is not known beforehand.

41

lision free, rather than being detected collision-free only at discretized configuration-

time points, and (ii) when the robot executes Γ with motion uncertainty so that it is

not exactly on Γ, the robot motion is still guaranteed collision-free.

With motion uncertainty, the robot will not exactly follow Γ but its motion can

occur in a tunnel enclosing Γ, which we call Γ+. To guarantee that the robot motion

is collision-free, we need to guarantee that not only Γ but also Γ+ is collision-free.

Recall that a dynamic envelope of a CT-point χ when detected collision-free at

sensing moment τl also detects a collision free CT-region F (χ, τl) as described in

Section 4.5. In order to detect if the tunnel Γ+ is collision-free or not, our idea is to

find a set of sparse CT-points Q(Γ+) = χj, j = 1, ..., k, such that if each χj is detected

collision-free at sensing time τj, then the tunnel Γ+ is contained in
⋃
F (χj, τj) and is

collision-free, and we say that the trajectory segment Γ is detected robustly collision-

free.

Figure 11 illustrates this notion for a 1-DOF robot. We now explain the details of

how this approach works below.

Figure 11: The CT-regions contain the tunnel Γ+, which encloses Γ.

42

5.2 Associating Γ+ to a CT-region of a single CT-point

Now we consider the condition for the CT-region F (χ1, τ1) of a single CT-point

χ1 = (q1, t1) to include all (continuous) CT-points satisfying Γ+.

For a trajectory Γ to be contained in F (χ1, τ1), by Theorem 2, we have,

dmax(q(t),q1) ≤ vmax(t1 − t) (19)

Let L(t) be the cross-section region of Γ+ at time t. Let q′(t) (or (q′, t)) be any

CT-point on L(t). Then, for q′(t) to be in F (χ1, τ1), by Theorem 2, we have,

dmax(q
′(t),q1) ≤ vmax(t1 − t) (20)

However, by triangle inequality, we have,

dmax(q
′(t),q1) ≤ dmax(q

′(t),q(t)) + dmax(q(t),q1) (21)

Thus, from above, if the equation,

dmax(q
′(t),q(t)) + dmax(q(t),q1) ≤ vmax(t1 − t) (22)

is satisfied, equations (19) and (20) hold.

Further, let qmax(t) be a configuration in L(t) that satisfies the inequality,

dmax(q
′(t),q(t)) ≤ dmax(qmax(t),q(t)) (23)

Thus, from equation (23), if the equation:

dmax(q(t),q1) + dmax(qmax(t),q(t)) ≤ vmax(t1 − t) (24)

43

is satisfied, equation (22) holds. Hence, if the condition (24) is satisfied, the tunnel

Γ+ is in F (χ1, τ1). From equation (2), dmax(q(t),q1) can be further computed as

dmax(q(t),q1) = max
∀px∈Rx

‖px(q(t))− px(q1)‖

where px(q(t)) can be obtained from q(t) by forward kinematics.

For a CT-point χ1 = (q1, t1) to satisfy the condition (24), the nonlinear function

g(t) = dmax(q(t),q1) + dmax(qmax(t),q(t)) (25)

on the left side of the inequality, has to be bounded by the straight line f(t) =

vmax(t1 − t) during interval [ts, te]. Figure 12 illustrated the condition (24) visually.

We now need to determine (q1, t1) to satisfy condition (24). To minimize g(t), we

select q1 = qe so that dmax(q(t),qe) becomes zero at t = te, and the condition (24)

becomes,

t1 ≥ te +
dmax(qmax(te),q(te))

vmax
(26)

Let,

tm = te +
dmax(qmax(te),q(te))

vmax
(27)

To increase the area below f(t) in order to satisfy condition (24), we have to select

t1 > tm i.e., shifting f(t) along the t axis in the positive direction, as shown in

Figure 12.

The subsequent question is how much t1 should be greater than tm (or f(t) should

be shifted). Apparently the greater the t1, the more likely condition (24) will be

satisfied. However, a greater t1 can mean a delayed discovery of tunnel Γ+ being

44

Figure 12: Illustration of the condition (24).

Figure 13: A situation after f(t) is shifted ∆t to end at t1.

collision-free, if it is indeed collision-free. This is because, for the same configuration

q1, if t′1 < t1, it will take longer time to discover if the CT-point χ1 = (q1, t1) is

collision-free or not than the CT-point χ′1 = (q1, t
′
1).

Thus, we have to limit t1 to be only slightly later than tm to avoid much delay, but

then this small shift ∆t of the line f(t) may not result in condition (24) to be satisfied

(see Figure 13). This is why we want to consider using not just one CT-point, but

a set of CT-points Q(Γ+) = χj, j = 1, ..., k, to discover if the trajectory tunnel Γ+ is

continuously collision-free or not.

5.3 Associating Γ+ to CT-regions of a set of CT-points

From equation (27), if t1 > tm, then for some time interval [tr, te] ending at te,

g(t) is below f(t). Now we need to find out the value of tr. There are the following

45

possible results:

• Case 1: tr = ts, implying that g(t) is below f(t) for the entire time interval

[ts, te];

• Case 2: tr is the greatest root of equation g(t) = f(t).

If case 1, the single CT-point (q1, t1) is sufficient for discovering if the tunnel Γ+ is

collision-free or not (as described in previous section).

Case 2 means that only the part of Γ+ for the time interval [tr, te], where ts <

tr < te, can be contained by F (χ1, τ1) of the CT-point χ1 = (q1, t1). That further

means that the dynamic envelope of χ1 can be used to only discover if that part of

tunnel Γ+ is collision-free or not. Therefore, we need to find additional CT-points for

checking if the remaining part of Γ+, for the time interval [ts, tr], is collision-free. We

use Algorithm 1 to find such a set Q(Γ+) of CT-points.

Algorithm 1 Q(Γ+) generator

1: Input Γ for the time interval [ts, te]
2: tr = te; qr = qe
3: j = 0; Q(Γ+) = ∅
4: repeat
5: j = j + 1
6: Find χj = (qj, tj) for Γ in [ts, tr] as: qj = qr, and tj = tr+

dmax(qmax(tr),q(tr))
vmax

+∆t
(as explained in section 4.1)

7: Add χj to Q(Γ+)
8: Find new tr and qr from equation:

g(t)− f(t) = 0 (28)

9: until tr = ts (i.e., Case 1)
10: return Q(Γ+)

Note that the value of ∆t (which is the amount of shift of f(t) along positive time

axis) affects the number of CT-points in Q(Γ+). Recall that we want ∆t to be small to

46

avoid time delay in detecting if Γ+ is collision-free or not. However, if ∆t is too small,

there can be too many CT-points in Q(Γ+), and thus the cost of collision checking

(of the CT-points via their dynamic envelopes) increases. So instead of using a fixed

∆t, our strategy is to adapt the value of ∆t to balance the need of fast detection of

collision-free CT points and the number of CT points for detection.

Note also that solving the non-linear equation (28) to find roots may require nu-

merical techniques. There are derivative-free2 fast numerical methods [8,10,57] which

guarantee to find the roots of a non-linear equation g(x) = 0 in an interval [a, b], if

g(a)g(b) < 0. If g(a)g(b) > 0, we can sample within this interval for potential roots,

which requires evaluating a non-linear function. If the function is a high order poly-

nomial, there are fast numerical methods for evaluation [75]. In the case of a robot,

the L.H.S. of equation (28) can be converted to a polynomial (by variable substitution

in transcendental equations).

5.4 Collision-free perceiver

We refer to our general sensor-based online detector of collision-free CT points as

collision-free perceiver (CFP). The CFP algorithm is shown in Algorithm 2. The

CFP keeps observing a CT point χ = (q, t) from a starting sensing time τ0 until it

is detected collision-free (causing return from the algorithm) or the time τe < t is

reached, i.e., a maximum computing period τe − τ0 is met, as monitored by a system

clock variable tclock. It relies on progressive sensing with the latest updates. tclock

updates itself independently outside the CFP algorithm. CFP gives the binary output

2No need to differentiate L.H.S. of (28)

47

of either possible collision or guaranteed collision-free for the CT-point. However, if

time t is reached and E(χ, t) is not free of obstacle, the CT-point χ = (q, t) is

definitely not collision-free.

The interval between two adjacent sensing instants is ∆τ , i.e., the sensing frequency

is 1/∆τ . Note that each iteration in the while loop usually takes longer than ∆τ .

Thus, after each iteration, there is always the updated sensing data for the next

iteration.

Algorithm 2 Collision-Free Perceiver (CFP)

1: Input CT point χ = (q, t), τ = τ0, τe < t, ∆τ , tclock = 0
2: while tclock ≤ τe − τ0 and τ ≤ τe do
3: Get dynamic envelope E(χ, τ)
4: if E(χ, τ) does not intersect with any obstacles at τ then
5: E(χ, τ) expires
6: return χ is guaranteed collision-free
7: end if
8: τ = τ + ∆τ (for next sensor data)
9: end while

10: return χ may not be collision-free

The CFP is quite efficient for real-time operation because the dynamic envelopes are

of simple shapes, and the algorithm only returns a boolean value and does not require

expensive minimum distance computation. Efficient collision detection algorithms

using bounding volume hierarchy can be applied here.

For each CT-point χj = (qj, tj) in Q(Γ+), we apply CFP to detect if it is collision-

free starting from some initial sensing moment τ0 < ts. For each CT-point χj in

Q(Γ+), the corresponding τe should be set before the time component of the earliest

CT-point on Γ+ covered by F (χj, τj). We simply set τe < tj+1 satisfying q(τe) = qj+1,

and for j = k, τe = ts. Figure 14 illustrates this notion.

48

Figure 14: Illustration of τe for CT-point χj.

5.5 Implemented examples

(a) Γ shown by the sequence of CT-points
in Q(Γ+).

(b) Dynamic envelopes of the CT-points in
Q(Γ+).

Figure 15: Piece-wise continuous trajectory Γ consisting of three segments.

Our approach was implemented in 2D simulation environments. First we demon-

strate an example of continuous collision checking with a planar rod robot by simply

assuming a zero width tunnel, i.e. Γ+ = Γ. Later, for a mobile planar manipulator

robot, we demonstrate an example assuming that the robot has motion uncertainty

when it executes a trajectory, i.e. Γ+ has a non-zero width.

The mobile rod robot has three degrees of freedom in its configuration, i.e. q =

[x, y, θ]T , where the origin of the robot frame was at one end of the rod. The rod

49

(a) Γ shown by the sequence of CT-points in
Q(Γ+).

(b) The tunnel Γ+ representing the motion uncertainty
when the robot executes trajectory Γ.

Figure 16: Piece-wise continuous trajectory Γ with two segments.

robot moves in an unpredictable environment with obstacles shown as red circles (as

in Figure 6). A continuous trajectory segment for the rod robot was generated with

cubical polynomials [16].

Figure 15(a) shows the configurations of a piece-wise continuous trajectory Γ con-

sisting of three continuous segments. The discrete configurations shown along Γ are

from the set Q(Γ+) generated by Algorithm 1. Γ starts from time ts = 2s and ends

at time te = 4.4402s. Figure 15(b) shows a snapshot of dynamic envelopes of the CT-

points in Q(Γ+) when the continuous Γ is detected collision-free. In this environment,

vmax = 1 unit/s.

The mobile planar manipulator robot consists of four links and three joints, with

link 0 being a point, where the robot base frame is set. It has five degrees of freedom

in its configuration: q = [θ1, θ2, θ3, x, y]T . A continuous trajectory segment for the

robot was generated with cubical polynomials [16].

50

Figure 16(a) shows the configurations of a piece-wise continuous trajectory Γ con-

sisting of two continuous segments. The discrete configurations shown along Γ are

from the set Q(Γ+) generated by Algorithm 1. Γ starts from time ts = 0.1s and ends

at time te = 2.58s. Figure 16(b) shows the tunnel Γ+ representing all the CT-points

that the robot could reach when it executes trajectory Γ. The motion uncertainty for

each segment grows linearly from 0.01◦ to 0.1◦ for joint variables θ1, θ2, θ3 and from

0.01 unit to 0.1 unit for joint variables x and y.

Figure 17 shows the results of CFP over time, i.e., via progressive sensing, in

detecting if a CT-point in Q(Γ+) is collision-free for the mobile manipulator in an

unpredictable environment with randomly moving obstacles in red dots with vmax =

1.5 unit/s. It also shows the robot’s motion in executing the detected collision-

free part of the trajectory. Each CT-point in Q(Γ+) is shown by the corresponding

dynamic envelope at the indicated sensing time. The green dynamic envelopes are

free of obstacles, representing CT-points just detected collision-free at the indicated

sensing time, whereas the red dynamic envelopes contain obstacles. The moment

after a dynamic envelope is free of obstacle, it expires and is no longer displayed.

As sensing time progresses, most dynamic envelopes shrink enough to “squeeze out”

obstacles, i.e., indicating that the corresponding CT-points are collision-free, before

the robot reaches those CT-points. However, in Figure 17(f), the dynamic envelope

cannot shrink enough to “squeeze out” obstacles and the robot has to make a stop

because it cannot follow the portion of the trajectory that is not collision-free. The

attached video clip shows the entire process depicted in Figure 17.

Table 1 and 2 shows the results for the trajectories of the planar rod robot and

51

Table 1: Results of Q(Γ+) of the continuous trajectory Γ shown in Figure 15(a) of
the mobile rod robot in different environments

vmax Smallest Largest |Q(Γ+)| ∆t
(unit/s) interval(s) interval (s) (s)

1 0.0154 0.0570 99 0.1
1.5 0.0250 0.0858 60 0.1
2 0.0158 0.1023 41 0.1

In all cases, the time to generate Q(Γ+) was within 1s.

Table 2: Results of Q(Γ+) of the continuous trajectory Γ shown in Figure 16(a) of
the mobile manipulator in different environments

vmax Smallest Largest |Q(Γ+)| ∆t
(unit/s) interval(s) interval(s) (s)

1 0.0079 0.2460 121 0.2
1.5 0.0192 0.3798 48 0.2
2 0.0319 0.5119 27 0.2

mobile manipulator respectively in three environments of different levels of obstacle

activities, as indicated by different values of vmax (which is the upper-bound of obsta-

cle speeds). Each table shows the smallest time interval and the largest time interval

between two consecutive CT-points (qj, tj) and (qj+1, tj+1) in Q(Γ+), the number of

CT-points in Q(Γ+), and ∆t in each case. Note that as vmax increases, the number

of CT-points in Q(Γ+) decreases in both examples. This is due to that the increase

of vmax enlarges the dynamic envelope E(χj, τ) of χj = (qj, tj) at any sensing time

τ , and, if χj = (qj, tj) is detected collision free at τ , the associated collision-free

CT-region F (χj, τ) is also enlarged by the greater vmax.

5.6 Summary

This chapter addressed the novel problem of how to detect a collision-free trajectory

robustly in unpredictable environments. It shows how to find a set of sparse CT-points

Q(Γ+) = χj, j = 1, ..., k, such that if each χj is detected collision-free at sensing time

52

τj, then the tunnel Γ+ is contained in
⋃
F (χj, τj) and is collision-free.

53

(a) τ =0.05s (b) τ =0.3s

(c) τ =0.45s (d) τ =0.85s

(e) τ =1.1s (f) τ =1.94s

Figure 17: Snapshots of robot moving along a trajectory Γ.

CHAPTER 6: ATOMIC OBSTACLES (AO)

A robot can navigate safely in an environment if it knows the regions (obstacles)

that could be responsible for collision, on right time. Human often group or divide

these regions to refer them as objects such as, table, chair, etc. While human eyes

can quickly detect individual objects, sensors can detect only 2D regions that are

occupied by these objects. Reconstructing these objects from sensor data is a te-

dious process [24,38] and limits real-time performance of robot to navigate safely in

the environment. In this chapter, we introduce the notion of atomic obstacles that

instantly represents an environment, directly from sensor data.

6.1 Sensor data generated at a sensing moment

Most sensors, such as, stereo-vision, laser range-finder, sonar, etc., generate 3D

point clouds based on disparity calculations [83] or time-of-flight calculations, within

sensing interval [τk−1, τk], k > 0. An example of point cloud is shown in Figure 18(a),

which is obtained from stereo-vision sensor. Using a sensor, only the front part

of obstacle is detected and the occluded part, i.e., where sensors cannot see, are

represented as empty spaces. Thus, the kind of sensor data generated is often referred

to as having 2.5 dimension(D), e.g., [85].

Every sensor s has a sensing region1 that is discretized into M × N cells (sensor

1For a stereo-vision sensor, CCD of one of the camera is a sensing plane.

55

(a) Point cloud image of a human from
Point Grey’s Digiclops sensor. Reprint
from Digiclops manual.

(b) Sensor data Zij is the nearest point to
the sensor frame lying within viewing frus-
tum of cell at index (i, j).

Figure 18: Sensor data generated at a sensing moment.

resolution). Each cell (or pixel) at index (i, j) is associated with a viewing frustum Vij,

bounded by the four rays originating from the sensor frame {s} and passing through

four corners of the cell (see Figure 18(b)). For stereo-vision sensor, which observes

perspective projection geometry, the viewing frustum is a trapezoidal ray, whereas, for

laser-range finder or sonar, which observes parallel projection geometry, the viewing

frustum is a rectangular ray. The sensor data Zij is the nearest obstacle point present

in a viewing frustum Vij. Figure 18(b) shows an example for a stereo-vision sensor

that has sensing region as a plane.

Thus, each point of a point-cloud, representing the front part of an object, is

associated with (i) cell (sensing pixel) at (i, j) on the sensing region, and (ii) sensor

data Zij = {x, y, z}.

The sensor data generated is quite rudimentary in nature, although it can capture

most real-world environments that consist of many objects with complex geometry

structures. For a particular environment, let obstacle space O(τk) be the set of all

56

objects present at time τk. The numerous kinds of objects can appear or disappear

from a real-world environment, become separate into smaller objects, or combine into

bigger ones, i.e., the set O(τk) 6= O(τk+m),m > 0 and, thus, changes with time.

A sensor s, also, has a limited sensing frustum and thus may only see part of objects

Os(τk) in the environment at a particular sensing time, i.e., Os(τk) ⊆ O(τk).

6.2 Definition, properties and examples

An atomic obstacle Oij(τk), at a sensing moment τk, has simple default geometry

as a part of viewing frustum Vij, starting from sensor data Zij and including all the

regions that could possibly be a part of obstacles in viewing frustum Vij, with (i, j)

defining one-to-one mapping to a part of an object in the environment, such that, if

Os(τk) is the set of volumes of all objects viewed in the sensing frustum of sensor s,

and the set of all atomic obstacles is Os
A(τk) =

⋃
∀ij

Oij(τk), then,

Os(τk) ⊆ Os
A(τk),∀k (29)

Figure 19 shows an example.

Figure 19: An environment is viewed as a set of atomic obstacles.

Following are the general properties of atomic obstacles:

57

1. The generation of atomic obstacles does not need elaborate sensor information

processing as required for obstacle detection [18] or map building [37]. Thus,

the sensing cycle is same as the cycle where information about obstacles in the

environment are updated.

2. The occluded part of the environment is directly represented as an obstacle

space by the group of atomic obstacles. Thus, a collision between obstacles in

environment and robot model can never be missed if one exists.

3. Collision checking between an atomic obstacle and a robot model is fast as it

has simple default geometry.

4. The number of atomic obstacles generated in sensing interval [τk−1, τk] is at

most equal to the sensor resolution M ×N , i.e., # of sensor data generated by

the sensor at a sensing time.

5. There may not exist any relationship between Os
A(τk) and Os

A(τk+m),m > 0.

Thus, the memory requirement for storing atomic obstacles is a constant size

of M ×N .

The examples of atomic obstacles are given next.

6.2.1 Polygons/Circles as 2D atomic obstacles

Most literature in robotics (e.g., [14, 64, 68, 74]) plans mobile robot motion in 2D

space and execute it in real environment, which is 3D. The sensor provides top-view

of the environment and collision-checking is done in 2D space.

58

Figure 20: Red circles as atomic obstacle.

For any sensor, the sensor data Zij = {x, y, z} generated often represents its z value

with depth (height) information. As objects with height can be obstacles to the robot,

we can distinguish floor from object using the z value of sensor data. Further, all

objects in the environment can be projected on x-y plane where the plane includes the

top of the robot. The x and y of the sensor data can be used to determine the centre

of circle/polygon of fixed size depending on the resolution of sensor. Figure 20 shows

an example with red circles as atomic obstacles, taken from a sensor that observes

parallel projection geometry. The circle/polygon forms the front face of an atomic

obstacle Oij(τk).

Note that the sensor data is sufficient to represent the environment for 2D mobile

robot motion planning, i.e., Os(τk) = Os
A(τk),∀k.

6.2.2 Polygonal projection rays as 3D atomic obstacles

Motion planning for a high-DOF of robot, such as manipulator, humanoid, etc.,

needs to know the environment in 3D in order to perform complex task, such as,

serving food in restaurant. For motion planning the exact model of objects need not

be known as the robot has to only avoid collision from them.

59

The sensor generates the 3-D point {x, y, z} in Wij that is closest to the image

plane, with distance dij. Wij can be viewed as the projection of the square pixel at

(i, j) on the image plane to the sphere centered at the origin of the sensor frame {s}

with radius dij. Thus, Wij is the front face of atomic obstacle Oij (see Figure 21).

Figure 21: The geometry of an atomic obstacle Oij (shown in red color).

Note that the sensor data is insufficient to represent the environment, and thus

atomic obstacle have infinite size that causes some free-space to be represented as

atomic obstacles i.e. Os(τk) ⊂ Os
A(τk),∀k.

6.3 Some free space represented as atomic obstacles

As Os(τk) ⊆ Os
A(τk),∀k, some free space in the environment is represented as if

they were a part of obstacle space by atomic obstacles. Figure 22 shows an example

for a planar environment containing obstacles (shown in red) and two stereo-vision

sensors s1 and s2.

At any particular sensing moment, free space is required by the robot to move to

its goal configuration, and if a collision-free goal configuration is occluded at sensing

moment τk, i.e., placing the robot at the goal configuration will make it considered

inside some atomic obstacles at τk, then no planning will be able to find a collision-

free trajectory for the robot to reach the goal with the current sensing information.

60

(a) Atomic obstacles from sensor s1. (b) Atomic obstacles from sensor s2.

Figure 22: Some free-space is represented as a part of atomic obstacles.

However, by continuously observing the goal configuration, it is possible that the

occluding object moves away, and the goal configuration is visible again at some

future moment τk+m,m > 0.

As atomic obstacles are directly derived from sensor data, different sensor views for

the same set of obstacles will result in different set of atomic obstacles. For example,

for the same set of obstacles, Figure 22(a) shows the set of atomic obstacles from

s1 and Figure 22(b) shows the set of atomic obstacles from sensor s2. Some free

space viewed as atomic obstacles from one sensor, will be viewed as free space by the

other sensor. Hence, more free space can be found using multiple sensors at the same

sensing moment if obstacles are viewed from different direction; Figure 23 shows the

union of free space from two stereo-vision sensor s1 and s2, has the blue boundary,

and includes more free space than that from a single sensor.

61

Figure 23: The union of free space visible from two sensors s1 and s2.

6.4 Collision checking between the robot model and obstacles

As obstacle geometries are unknown, collision checking between the robot model

and obstacles is possible if obstacles in the environment are represented by a set of

atomic obstacles obtained from each sensor at the same time. Algorithm 3 shows the

collision checking between the robot model and obstacles with n different sensors that

can see the robot model, i.e., whose sensing frustums contain the robot model.

Algorithm 3 Collision checking between the robot model and obstacles

1: Input robot model and atomic obstacles Os1
A (τk),...,O

sn
A (τk) from n sensors s1,...,sn.

2: for s = s1 to sn do
3: if the robot model is closer to sensor s than any atomic obstacle in Os

A(τk)
then

4: return no collision
5: end if
6: if the face of any atomic obstacle in Os

A(τk) intersects with the robot model
then

7: return collision
8: end if
9: end for

10: return collision may exist

If the robot model does not intersects with obstacles, there exists a sensing view

62

from a sensor s where the robot model is closer to that sensor s than any face of

atomic obstacles. Otherwise, if the face of an atomic obstacle, which is associated

with sensor data, intersects with the robot model, then a collision between the robot

model and obstacles in the environment surely exists. If the robot model is not in

front of the atomic obstacles of any sensor and it does not intersect with the face

of any atomic obstacle, it means the robot model is behind the faces of all atomic

obstacles of the n sensors that are considered. Thus, it is uncertain whether the robot

model is just occluded or in collision with some obstacle, i.e., a collision may exist.

6.5 Summary

This chapter introduced the novel notion of atomic obstacles that instantly rep-

resent moving obstacles in an environment. Such an atomic obstacle has geometry

similar to that of a viewing frustum, where it starts from the front face Wij, including

all the occluded space in that viewing frustum. To minimize occlusions caused by

infinite volumes of atomic obstacles, multiple sensors can be used.

CHAPTER 7: COLLISION FREE PERCEIVER WITH AO

For a robot to move safely in an environment, a motion planner must be able

to detect collisions with obstacles in order to avoid them. Such collisions must be

detected in real-time for the robot to avoid obstacles. Even if obstacle geometries

are unknown, using atomic obstacles, collision checking between the robot model R

and obstacles is shown in Algorithm 3. Algorithm 3 uses two computational steps to

check:

1. if the robot model is closer to a sensor than the atomic obstacles, and

2. if there is intersection between the robot model and faces of atomic obstacles

of a sensor.

In this chapter, we try to solve these two computational steps efficiently to operate

in real time.

Algorithm 3 used atomic obstacles to instantly represent an unknown environment

that changes unpredictably with time. As atomic obstacles are directly derived from

sensor data, the number of atomic obstacles Os
A(τk) present at a given sensing moment

τk, from a sensor s equals the resolution of sensor M × N , which can be a large

number. For example, even a sensor with a coarse resolution of 188× 120 generates

up to 22,560 atomic obstacles. Thus, key to the real-time efficiency of the collision-

detection algorithm with atomic obstacles is how to manage a large number of atomic

64

obstacles to minimize the number of intersection computations with the robot model.

Our algorithm uses the following strategies, which will be detailed in the following

sections:

• Extraction: Consider only those atomic obstacles that are likely to intersect

with a robot model, i.e., the atomic obstacles whose indices (i, j) are on the

projection P (R) of the robot model, on the image plane.

• Grouping: Partition pixels on P (R) into multi-size super pixels, such that each

super pixel corresponds to a m×n image region of P (R), with varied m(≥ 1) and

n(≥ 1) values1. The atomic obstacles corresponding to a super pixel on P (R)

form a combined atomic obstacle. With such grouping, intersection checking is

reduced to that between the robot model and combined atomic obstacles (which

are far fewer than the atomic obstacles).

• Hierarchical Checking: Perform intersection checks efficiently through multi-

level simplified computations by subdividing the combined atomic obstacle into

smaller ones when an intersection is detected between a robot model and that

combined atomic obstacle. Thus, if no intersection is detected at a high-level,

than there is no intersection for sure; else, re-check intersection at a lower level.

7.1 Extraction and grouping

The idea here is to identify super pixels of varied m and n values to partition the

projection P (R) of the robot model on the image plane without explicitly computing

the boundary of P (R). A super pixel has four corner points as shown in Figure 24,

1When m = n = 1, the super pixel is reduced to a normal pixel.

65

Figure 24: Ray intersection tests to detect an internal super pixel.

and a ray that originates from the origin of the camera frame {C} and passes a corner

point is called a corner ray. If all corner rays of the super pixel intersect the robot

model, then the super pixel is called an internal super pixel; else, if at least one corner

ray intersects with the robot model, the super pixel is called a boundary super pixel.

Our strategy simultaneously discovers P (R) and covers it by a partition of super

pixels of multiple sizes. We say the region already discovered and partitioned by

internal super pixels the discovered region of P (R), and the remaining region of P (R)

the undiscovered region of P (R).

Starting from an entirely undiscovered P (R), our strategy first finds a seed m ×

n super pixel on the image plane by determining the upper leftmost pixel of the

region and the m and n values. The ideal seed should be the maximum axis-aligned

rectangular region that fits inside P (R). However, since P (R) is not known precisely,

we make a reasonable estimate based on the OBB of the robot model and its projection

on the image plane. Values of m and n should be chosen large enough because they

will only be reduced later.

Next, our strategy consists of the following steps:

• Extract: from the seed super pixel, find all neighboring internal or boundary

66

Figure 25: Neighborhood expansion of super pixels.

super pixels on the originally undiscovered regions of P (R) and their neighbors,

etc., in a fashion similar to connected neighborhood expansion of the flood-fill

algorithm [39,87]. Put every boundary super pixel in a first-in-first-out (FIFO)

queue B. Figure 25 illustrates this process.

• Re-seed: Remove the first boundary super pixel from B and if it is larger than

a minimum size m0 × n0
2, then

– for every corner point p inside P (R), reduce m and n to halfs with p fixed

to get a smaller super pixel, and go to Extract.

• Return the internal and boundary super pixels of various sizes of P (R).

Note that the FIFO queue B is in the order of decreasing size of the boundary super

pixels. Therefore, when the first mo × no boundary super pixel is removed from

the queue, the remaining queue has only mo × no boundary super pixels. Thus, the

partition is complete.

2m0(≥ 1) and n0(≥ 1) are proportional to the initial m and n and are set to make sure that the
area of partition covering P (R) is not much larger than P (R) and yet also without using too many
super pixels, i.e., to provide a good tradeoff.

67

Figure 26: Illustration of some notations.

The above strategy generates a partition of super pixels for P (R) efficiently without

requiring excessive intersection checking that a standard cell decomposition method,

such as a quadtree [53] requires. Our method discovers pixels or super pixels of P (R)

through connected expansion (from a seed by flood-fill) and thus avoids the problem

of having a cell with all four corner points outside of P (R) but possibly some internal

points inside P (R). Whereas, such a cell is possible with quadtree decomposition,

and it is expensive to check if the cell is entirely outside P (R), which may involve

intersection checking beyond just between corner rays and the robot model.

7.2 Hierarchical checking

Once a super pixel of P (R) is determined, we can next check if its corresponding

combined atomic obstacle intersects with the robot model or not.

We first introduce a few related terms and notations (see Figure 26) as following:

Viewing frustum of a super pixel: the rectangular pyramid region defined by the four

rays originating from the origin of {C} and passing through the four corner points of

a super pixel. It extends to infinity and is the union of viewing frustums of all pixels

that form the super pixel.

68

Minimum distance dcao of a combined atomic obstacle: the distance from the origin

of {C} to the atomic obstacle closest to the origin of {C} in the combined atomic

obstacle.

Front and rear faces FF and RF of a robot model intersected by a viewing frustum:

the intersection surface regions between the viewing frustum of a super pixel (or a

pixel) and the robot model, where the region closer to the camera is the front face and

the other region is the rear face. Note that the two faces become one if the viewing

frustum partially intersects the robot model, i.e., not all of its corner rays intersect

the robot model (such a viewing frustum corresponds to a boundary super pixel of

P (R)).

Given a super pixel, if the corresponding combined atomic obstacle is behind RF of

the robot model as viewed from the camera, then there is no intersection between the

combined atomic obstacle and the robot model; otherwise, there is an intersection.

We adopt a hierarchical refinement approach to combine simple checking and nar-

rowing scope of consideration. Our approach takes advantage of the intersection

results between corner rays of the combined atomic obstacle and the robot model

(obtained in the step of “Extraction and Grouping” described in section 7.1) to ob-

tain eight boundary vertices of the front face and rear face of the robot model. The

recursive algorithm HierCheck implements our approach that returns either intersec-

tion or no intersection, given a super pixel.

Note that in HierCheck step 1, dcao is obtained from comparing the distances of

all atomic obstacles, which are the readings of stereo vision sensor, in the combined

atomic obstacle. Moreover, the considered atomic obstacles are divided into small

69

Algorithm 4 HierCheck (super pixel)

1: Find dcao and the corresponding atomic obstacle Oij.
2: Compute dR as a small upper bound on the greatest distance from RF to the

origin of {C}.
3: if dcao ≤ dR (i.e., possible intersection), then
4: if super pixel is a pixel or dR is less than the minimum distance from a boundary

vertex to the origin of {C} then
5: return intersection
6: end if
7: Divide the super pixel into one pixel at (i, j) and four smaller super pixels as

shown in Figure 27.
8: if HierCheck(pixel) = no intersection then
9: for each smaller super pixel do

10: if HierCheck(smaller super pixel) = intersection then
11: return intersection
12: end if
13: end for
14: end if
15: end if
16: return no intersection

Figure 27: Division of a super pixel into smaller super pixels.

groups and the local minimum distance in each group is computed first. Next the

minimum distance is computed from the group minimum. In that way, many group

minimum distances can be re-used if the corresponding atomic obstacles are shared

by other robot model at the same sensing time τk.

In HierCheck step 2, dR is obtained based on the OBB of the robot model if RF is so

large that it cannot be viewed as a flat surface. Let RF ′ be the surface corresponding

to RF on the OBB of the robot model. dR is the distance from the furthest feature

70

(i.e., vertex, edge, or face) of RF ′ to the camera origin. If, however, RF is small

enough to be considered as a flat surface, then dR is the maximum distance from a

boundary vertex of Rde to the origin of {C}. See Figure 28 for illustrations of the

two cases.

(a) RF is a planar surface (b) RF is not a planar surface

Figure 28: Illustrations of two cases of face RF

Steps 3-16 of HierCheck shows that if a possible intersection is detected based on

the simple inequality, it is necessary to decompose the combined atomic obstacle into

smaller ones and do the checking again on them, i.e., recursively moving down to

lower levels of the computation hierarchy, until either no intersection is detected or

an intersection is detected between a single atomic obstacle and the robot model (or

its OBB). Hence, our approach hierarchically refines the accuracy of computation

based on need.

7.3 Real-time collision-detection algorithm

With the above strategies (i.e., extraction, grouping, and hierarchical checking) the

Algorithm 3 can run in real-time.

7.3.1 Implementation of computational step 1

We conduct the checking of whether the robot model is closer to a sensor than the

atomic obstacles from the sensor in the following way. After generating one super

71

pixel on P (R) using “Extraction and Grouping”, proceed to hierarchical checking of

whether the corresponding combined atomic obstacle intersects with the robot model

or not. If an intersection is detected, collision-detection simply returns “there is

intersection” and halt. Otherwise, it generates another super pixel on P (R) (in the

flood-fill fashion) and do the hierarchical checking again, and so on. Therefore, this

process will only generate enough combined atomic obstacles to find an intersection,

and if there is no intersection, the algorithm will halt only after processing all the

combined atomic obstacles whose super pixels partition P (R), through hierarchical

checking.

7.3.2 Implementation of computational step 2

This step is reached when an intersection is found in step 3 of the algorithm 3.

Since “Extraction and Grouping” described in section 7.1 is required initially, the

intersection results could be used directly in determining if the face of an atomic ob-

stacle intersects with the robot model. The intersection results include eight boundary

vertices of the front face and rear face of the robot model (see Figure 26). If the dis-

tance dcao of the atomic obstacle is greater than the distance to the front face of the

robot model from the sensor frame, then the face of that atomic obstacle intersects

the robot model. If there is no intersection, then again repeat the above process

of calling “Extraction and Grouping” and then hierarchical checking, until all the

atomic obstacles partitioning P (R) are found.

72

7.4 Algorithm

The notion of dynamic envelope coupled with atomic obstacles enables the detection

of collision-free CT-points without requiring to know, recognize, or track obstacles

in an unknown changing environment. We refer to our general sensor-based online

collision-checker as collision-free perceiver using atomic obstacles (CFPA) – it keeps

on perceiving (sensing) for possible collision until a collision-free situation is found,

where no obstacle can be responsible for collision. Thus, the binary output given by

our algorithm is possible collision or guaranteed collision-free CT-point at a sensing

moment.

Our general algorithm, to check whether a CT-point χ = (q, t) is collision-free or

not, is shown in Algorithm 5. The CFPA discovers if χ is collision-free or not for

each sensing instant starting from τ0 until either the point is discovered collision-free

(causing return from the algorithm), or maximum computing time t− τ0 is met, as

monitored by a system clock variable tclock. tclock updates itself independently outside

the CFPA algorithm. The interval between two adjacent sensing instants is δτ , i.e.,

the sensing frequency is 1/δτ . Note that each iteration in the while loop usually takes

longer than δτ for acquiring the image corresponding to the atomic obstacles. Thus,

after each iteration, there is always the updated sensing data for the next iteration.

CFPA is quite efficient for real-time operation because of the following:

• CFPA, being a classifier, returns a boolean value and does not require expensive

minimum distance computation.

• CFPA only needs to consider a subset of sensed atomic obstacles – those that

73

Algorithm 5 Collision-Free Perceiver using Atomic obstacles (CFPA)

1: Input CT point χ = (q, t), τ = τ0, δτ , tclock = 0
2: while τ < t and tclock < t− τ0 do
3: Get dynamic envelope E(χ, τ)
4: Use E(χ, τ) as robot model to Algorithm 3
5: if Algorithm 3 returns no intersection at τ then
6: E(χ, τ) expires
7: return χ is guaranteed collision-free
8: end if
9: τ = τ + δτ (for next sensor data)

10: end while
11: return χ may not be collision-free

could be enclosed in E(χ, τi). As locations of atomic obstacles (x, y, z) are

directly indexed by (i, j) with a one-to-one mapping, CFPA only considers those

atomic obstacles whose indices (i, j) are on the projection of E(χ, τi) onto the

image plane. Figure 29 shows an example with a stereo vision sensor. The

number of such atomic obstacles is related to the size of the dynamic envelope

that shrinks over time.

• Both the atomic obstacles and the dynamic envelope are of simple shapes.

Figure 29: CFPA only considers a subset of atomic obstacles.

Clearly the key step in Algorithm 5 is step 5 to check whether any atomic obstacle

intersects with the dynamic envelope of a CT-point for any sensing instant. Various

74

Table 3: Costs of computing intersections between a ray and an object

Operations
Object +,− × <,>,= /

√

OBB 120 108 48 6 0
Sphere 8 11 0 1 1
Capsule 29 48 0 3 3

techniques such as extraction and grouping, and hierarchical checking introduced in

Chapter 7 are used to achieve real-time collision-detection algorithm with atomic

obstacles.

7.5 Time and space coherence

CFPA repeatedly calls the Algorithm 3 for collision checking for different CT-points

and at different sensing intervals. It can take advantage of time and space coherence

to reduce computation significantly.

For the same CT-point χ = (q, t), if the sensor does not move from sensing moment

τk to τk+1, then many super pixels (or pixels) on P (E(χ, τk)) (i.e., the projection of

E(χ, τk) on the image plane) are also on (the smaller) P (E(χ, τk+1)). Thus, the low-

level intersection checking results between the corresponding rays and E(χ, τk) can

be re-used.

Similarly, if two CT-points have sufficiently close configurations q and q + ∆q,

even with different future times t and t+ ∆t, their respective dynamic envelopes for

any sensing moment τk could overlap significantly, and then, again, some low-level

intersection checking results of one CT-point can be re-used for the other CT-point.

Table 3 shows the costs of computing the intersection between one ray and one

object of each of the given types. If the result is re-usable, such costs are saved.

75

Figure 30: A 7-DOF Cyton arm.

Figure 31: Dimension of atomic obstacles for resolution 752 × 480.

7.6 Implementation and experimental results

We have implemented Algorithm 3, the collision-detection algorithm, as the core

algorithm for the CFPA (Algorithm 5) on a Dell Precision T5400 computer and tested

the algorithm in real-world experiments using a real 7-DOF Robai’s Cyton robot arm

(see Figure 30) and an indoor MobileRanger’s stereo vision camera. The robot has

7 revolute joints. Each robot link is approximated by an OBB and so is its dynamic

envelope.

An atomic obstacle’s geometry along with the dimensions is shown in Figure 31.

The sensor resolution was fixed to 752×480 and thus, at most 360,960 atomic obstacles

were generated at each sensing moment. The sensing frequency was set at 8 Hz. vmax=

1 cm/s.

76

Figure 32(a) shows the environment of the robot, where two obstacles unknown

to the robot are nearby, one is a scanner underneath the robot, and the other is a

plastic bag. Figure 32(b) shows the same environment as viewed by the stereo vision

sensor at sensing time τ0=0s, superimposed with the projection image of the dynamic

envelope of every link of the robot, which is partitioned by super pixels, for the CT-

point χ1=(q1, t1), and q1 is the configuration where every joint angle of the robot

is at −90o, and t1=2s. Note that q1 is not the robot’s current configuration in the

figure.

(a) Testing environment (b) Stereo vision im-
age at τ0= 0(s) and
for the CT-point χ1,
with the partitioned
projection image
P (E) of the robot’s
dynamic envelope
E(χ1, τ0).

Figure 32: Experiment and result.

Table 4 shows the results of running the collision-detection algorithm at sensing

time τ0 for two different CT-points χ1 as introduced above and χ2 = (q2, t2), where

q2 is the configuration with all 7 joint angles of the robot at 90o respectively and

t2=5.57s. The results are for the entire robot (i.e., summing up the results for the

dynamic envelopes of 7 individual links). Initial m and n were both set to be 16.

m0 × n0 was set to 2× 2.

77

As shown in the table, the total number of combined atomic obstacles checked

for each CT-point is more than 10 times smaller than the total number of atomic

obstacles involved. That implies great saving of computation time in the similar order

of magnitude by the collision-detection algorithm rather than using a naive algorithm

to directly check intersections of atomic obstacles with the dynamic envelope. Note

that the total number of combined atomic obstacles is greater than the total number

of super pixels generated in each case because hierarchical checking divided some

combined atomic obstacles into smaller ones for checking (see step 7 of HierCheck).

For χ1, the result of no intersection means that the CT-point is guaranteed collision-

free. P (E) was actually covered by the super pixels generated (as shown in Fig-

ure 32(b)). Because of the efficiency of collision-detection algorithm, χ1 is discovered

collision-free 1.73s before its time t1=2s, which is important for on-line motion plan-

ning to utilize that CT-point. The time cost 0.265s of the detection is only about

1% of the total time between the sensing moment τ0=0s and t1= 2s. Recall that no

actual obstacle was ever identified or recognized.

For χ2, because collision-detection algorithm halted as soon as an intersection was

found, the super pixels generated were only a subset of super pixels for covering

P (E). Note that P (E) and the corresponding dynamic envelope for χ2 was much

larger than those for χ1 because t2=5.57s was close to three times of t1=2s. The

result of intersection means that it was not certain whether χ2 was collision-free or

not based on the sensing data at τ0=0s. Further checking with new sensing data was

necessary.

Table 5 shows the results of running collision-detection algorithm by CFPA for a

78

Table 4: Results of running collision-detection algorithm for two CT-points at τ0

CT-points χ1 χ2

super pixels

16× 16 13 41
8× 8 77 78
4× 4 156 182
2× 2 291 402

boundary 2× 2 640 729
total 1177 1432

hierarchy 2 5
combined atomic obstacles checked 1248 1542

atomic obstacles involved 14,476 22,924
time cost (s) 0.265 0.328
intersection no yes

CT-point χ3 = (q3, t3) multiple times with sensing data from six different sensing

instants τ , where q3 is the configuration that every joint angle of the robot is set

to 23.39o, and t3=4.05s. The results show the reduction of the computation cost

by exploiting the sensing time coherence. Collision-detection algorithm was used to

check the CT-point χ by generating all low-level intersection checking results from

scratch based on the sensing data at τ = 0.66s. Later, however, for τ ∈ (0.66, 0.86] (s),

useful previous results were repeatedly re-used so that even though the total number

of super pixels decrease only slightly as the dynamic envelope shrunk over time, the

drop in computation time was far more drastic. Similarly, for τ ∈ (1.25, 1.52] (s), the

results obtained from τ = 1.25s was re-used repeatedly to reduce the time cost of

running collision-detection algorithm.

Notice that the time cost for τ= 0.66s is smaller that for τ = 1.25s, even though

the dynamic envelope for the latter was much shrunk from that of the former. This

was because as the dynamic envelope shrunk over time, at τ = 1.25s, some atomic

obstacles were “squeezed out” of the dynamic envelope. Thus, with fewer intersections

79

Table 5: Results of running collision-detection algorithm for a CT-point χ3 with data
from different sensing instants within [0.66, 1.52] (s)

τ (s) time cost (s) # super pixels generated
0.66 0.109 950
0.74 0.047 889
0.86 0.031 889
1.25 0.344 858
1.38 0.094 852
1.52 0.047 842

present, the algorithm had to spend more time to find one of those intersections.

Note that the CT-point χ3 = (q3, t3) was discovered collision-free (i.e., there was

no intersection between the dynamic envelope and atomic obstacles) at τ=2s, which

was 2.05s. ahead of the time t3=4.05s.

7.7 Summary

This chapter introduced a fast real-time collision detection algorithm between a

robot model and a large number of atomic obstacles. The algorithm uses a number of

strategies to speed up computation, including extraction, grouping and hierarchical

checking. Using the notion of dynamic envelope coupled with atomic obstacles a

general online sensor-based algorithm called Collision Free Perceiver using Atomic

obstacles (CFPA) is developed to detect a collision-free CT-point directly from sensor

data. Real experiments are demonstrated to show the real-time capability of the

approach in detecting a CT-point.

CHAPTER 8: MOTION PLANNING IN PERCEIVED CT-SPACE

A motion planner needs to come up with collision-free trajectories so that the

robot, when executing those trajectories, can avoid obstacles and reach its goal con-

figuration. In the previous chapter, for an unknown and unpredictable environment,

discovering guaranteed collision-free trajectories (or set of CT-points) via sensing was

shown using the algorithm collision-free perceiver using atomic obstacles (CFPA),

which is based on notion of dynamic envelope and atomic obstacles. In this chapter,

we focus our attention on integrating CFPA with a motion planner. CFPA needs

finite time for processing (such as, collision checking) of each collision-free CT-point.

Such computational cost must be accounted by motion planners to successfully plan

motions in real-world environments.

8.1 Real-time adaptive motion planner (RAMP)

The RAMP paradigm [92] is motivated by the need of real-time motion planning

of high-DOF robots, such as (mobile) manipulators, in dynamic environments of

unknown obstacle motions. A well known fact about motion planning for high-DOF

robots is that no complete algorithm is feasible even for known and static environment

due to the formidable challenge of constructing high-dimensional C-obstacles. Thus,

sampling-based planners, notably PRM [46] and RRT [55] planners and variants, are

widely used.

81

RAMP is also sampling-based, but it is especially effective in planning high-DOF

robot motion in dynamically unknown environments because of the following charac-

teristics:

• real-time simultaneous planning and execution of high-DOF robot path/trajectory

based on sensing;

• anytime and parallel planning with optimization, as inspired by evolutionary

computation [6], through maintaining and repeatedly updating/improving a set

of trajectory candidates for a robot from its current configuration to a goal

configuration;

• great structural flexibility to allow for both on-line adaptation to different en-

vironmental scenarios and off-line extension to robots of very different nature.

All major components of the RAMP algorithm can be customized. The strength

of RAMP lies in both its generality and its flexibility for adaptation and extension.

Indeed, it has recently been extended to real-time continuum manipulator motion

planning [102].

RAMP always maintains a set of diverse trajectories in the CT-space of the robot,

called a population. The initial population of trajectories can be formed randomly.

Each trajectory starts from the robot’s current configuration and ends at the goal

configuration and may be only partially feasible – defined as both collision-free and

singularity free. A partially feasible trajectory is one that has a beginning feasible

segment followed by an infeasible segment. The quality of a trajectory, in terms

of feasibility and optimality, is evaluated through a fitness evaluation function that

82

combines optimization criteria, such as shortest overall time, maximum time of the

feasible segment, and so on.

As soon as a trajectory has a feasible segment starting from the robot’s current

configuration, RAMP allows the robot to move along it while planning for subsequent

feasible trajectory segments simultaneously so that the robot can switch to the best

subsequent feasible trajectory segment as it finishes the current feasible one. Three

repeated cycles of processes are run simultaneously in the classical RAMP:

• Sensory data are updated in each sensing cycle.

• Trajectory modification and evaluation (or re-evaluation) based on sensing data

is conducted in each planning cycle.

• The robot switches to a better trajectory from the currently executed one in

each control or adaptation cycle.

Key to RAMP is efficient on-line detection of feasible trajectory segments of can-

didate trajectories. The original RAMP assumes known obstacle geometry and con-

ducts collision checking based on predicting obstacle motions. It was also only im-

plemented in simulation.

8.2 E-RAMP as practical motion planner

The CFPA takes a finite time to detect a collision-free trajectory segment through

detecting collision-free CT points. The actual time for CFPA to detect a collision-free

CT point χ = (q, t) depends on two factors:

1. the size of the dynamic envelope E(χ, τ), which is decided by vmax(t − τ) and

83

shrinks as τ increases, and

2. the processing power of the computer and sensors.

Factor (1) is usually the dominating factor. Let τ0 be the time to start observing

and checking if (q, t) is collision-free. If E(χ, τ) is free of atomic obstacles by time

τ1 < t, then CFPA takes at least the time duration τ1 − τ0 to detect that χ is

collision-free, even if the computation cost of detection, i.e., factor (2), is omitted.

Hence, the combined time of CFPA and RAMP to decide a subsequent feasible

trajectory segment can be longer than the time period of the feasible trajectory

segment that the robot executes. Therefore, a subsequent feasible trajectory segment

may not be found when the robot finishes executing the current segment, resulting

in a forced stop of the robot. During such a forced stop, the robot may be hit by

obstacles and is thus unsafe.

Therefore, it is important that we extend the motion planner RAMP to minimize

forced stops.

8.2.1 Algorithm

The parallelism and flexibility of RAMP enables us to do so in the following ways:

• We add to the evaluation function of RAMP, as an additional optimization

criterion, maximizing the safe time δtsafe for the robot to pause at the end

CT point (qe, te) of a collision-free trajectory segment without being hit. With

this added optimization criterion, RAMP is able to select a feasible trajectory

segment (among all feasible trajectory segments found) that maximizes the total

time ∆tsafe = ∆tmove + δtsafe, where ∆tmove is the time period of the segment.

84

Note that δtsafe at CT point χe = (qe, te) cannot be known precisely before the

robot reaches χe, but it can be (under)estimated as dmin(qe, τ)/vmax − (te − τ)

for τ < te, where dmin(qe, τ) is the sensed minimum distance at τ between

the robot and the atomic obstacles. Note also that since δtsafe is meant for

a collision-free CT point, τ is greater than the time τe when the CT point χe

is found collision-free. We developed a method to obtain dmin(qe, τ) among

atomic obstacles near the robot at χe.

• We separate collision-checking using CFPA from evaluation of the fitness of

a trajectory, rather than embedding collision-checking into the fitness evalua-

tion. Collision-checking is ran constantly in the background and provides the

E-RAMP with the information of the collision-free segment of a trajectory,

while fitness evaluation simply uses the information to compute the value of the

fitness function, which is much faster and almost instant.

We call the extended RAMP algorithm, the E-RAMP, as illustrated in Algorithm 6.

In Algorithm 6, there are four simultaneous threads for sense, collision check, plan

and adapt, and move respectively. The main while loop describes adaptation cycles.

Each adaptation cycle consists of multiple planning cycles. Each sensing cycle lasts

δτ , determined by the planner, such that sufficient new information can be obtained

in each sensing cycle for the CFPA (Algorithm 5) to use, which is called by the

collision-checking algorithm (Algorithm 7).

In each adaptation cycle, the robot simultaneously moves along the feasible segment

of Γbest and plans for its next subsequent feasible segment, which starts from the end

85

Algorithm 6 E-RAMP

m← # of sensing cycles in a planning cycle
n← # of planning cycles in an adaptation cycle
∆tmin ← small constant time
qe ← starting configuration of the robot
te ← current time τ {τ is the clock time of the system that automatically updates}
initialize a set S of trajectories connecting the start configuration to the goal
configuration of the robot
∆tmove ← 0
δtsafe ← 0

while the robot has not reached the goal do

simultaneously sense, collision check, plan and adapt, and move:

sense: repeat sensing cycles

plan at every m-th sensing cycle or when robot stops
if te < τ then

∆t← max (∆tmove + δtsafe,∆tmin)
te = τ + min (mnδτ,∆t)
Set starting time of all trajectories in S to te

end if
modify S

adapt: when τ = te or at every mn-th sensing cycle
evaluate trajectories in S
Γbest ← best trajectory
qe ← last configuration on the first collision-free trajectory segment of Γbest
∆tmove ← the time taken by the robot to move to configuration qe

te ← τ + ∆tmove + δtsafe
if ∆tmove + δtsafe = 0 then

flag ”unsafe” (robot is at risk of collision)
end if

collision check: call Algorithm 7

move: move the robot along Γbest the time period ∆tmove
end while

86

Algorithm 7 collision-checking

1: input trajectory segments of N trajectories in S, where each trajectory segment i,
0 < i ≤ N , is a sequence of CT points χi1, χ

i
2, ... with time duration of m×n× δτ

2: C ← a sequence of CT-points in order χ1
1, χ

2
1, ..., χ

N
1 , χ

1
2, χ

2
2, ..., χ

N
2 , ...

3: run CFPA (Algorithm 5) for every CT point in C until S is updated
4: report collision-free CT points found in each trajectory; compute and report δtsafe

for the end collision-free CT point in each trajectory.

CT point χe = (qe, te) of the feasible segment of Γbest. If, when the robot reaches χe,

no subsequent collision-free segment is found (i.e., not a single new CT free point is

found), then the robot will stop its motion while continuing simultaneous collision-

checking and planning until it finds a collision-free segment. If the time period that

the robot stops is less than δtsafe, it means that the robot stopped safely at χe to

continue planning for a while; otherwise the robot is forced to stop longer at χe at

the risk of being hit by an obstacle.

The constants m and n are decided based on vmax of obstacles and the size of the

environment.

The following subroutines are used in Algorithm 6, in addition to Algorithm 7 for

collision check:

• initialize a set of trajectories as in [92], through randomly creating intermediate

knot configurations between the start and the goal configurations.

• evaluate the fitness function value for each trajectory, which is a cost function

to both maximize the time of the feasible trajectory segment and minimize the

total time of the trajectory.

87

• modify a randomly picked trajectory in S to change its shape via adding/deleting

or changing coordinates of knot configurations or CT points, evaluate the new

trajectory, and use it to replace a non-best trajectory in S.

8.2.2 Implementation and experiments

We applied the E-RAMP to plan motions of a real 7-DOF Robai’s Cyton arm

(see Figure 33(a)), using an indoor Point Grey’s Digiclops stereo vision camera for

overhead sensing and a DELL Precision T5400 computer with four cores and 4 GB

RAM. Each robot link is approximated by an oriented bounding box. Each revolute

joint has a maximum speed of 90 (deg/s) in both directions. To eliminate noise

in sensing data, the image pixels were classified as (a) pixels of the robot and its

accessories (i.e., robot circuit board, battery, etc.), identified by the colors, and (b)

obstacle pixels, by checking if they are in robot workspace. The software was built

using the latest .NET 4.0 framework, and the program was done in C#.

(a) A 7-DOF Cyton arm. (b) The robot at qs in an
environment.

(c) The robot at qg.

Figure 33: An experimental environment with the stereo-vision sensor.

We conducted six experiments with the robot in an environment consisting of a

number of random obstacles such as football, blocks, table, plastic covers, half-filled

water bottles, as well as a person moving those objects. The objects (except for the

88

Table 6: Planner and Task Parameters

|S| vmax ∆tmin qs, qg Sensor Resolution δτ
5 1 cm/s 0.5s {−45◦,−45◦,−45◦, 0◦,−45◦,−45◦,−45◦} 320 × 240 0.05s

{45◦, 45◦, 45◦, 45◦, 45◦, 45◦, 45◦}

Table 7: Experiments

Experiment # 1 2 3,4 5,6
Obstacle moved Blue block Half-filled water bottle Toy soccer ball Plastic cover

(a) τi = 0.0s (b) τi = 2.8s (c) τi = 4.6s

(d) τi = 13.7s (e) τi = 18.2s (f) τi = 22.2s

(g) τi = 22s (h) τi = 35.9s (i) τi = 42.1s

Figure 34: Snapshots of experiment #1 with a blue obstacle.

table) are moved by the person to create arbitrary motions unknown to the robot.

Figures 33(b) and 33(c) show the starting configuration qs and the goal configuration

qg of the robot, which values are shown in Table 9.1. Note that in order to reach qg

from qs, the robot end-effector cannot follow the straight-line path in the workspace

because of the joint limitations. Table 9.1 shows the common parameter values used

in those experiments. Except for vmax, which characterized the environment, the

89

other parameter values were determined empirically based on the processing speed of

the planner.

In these six experiments, different obstacles were moved by a person in more or

less the same way during the robot’s motion from the common qs to qg, as shown

in Table 7. These six experiments used three different sets of m and n values. Each

set of m and n values were shared by a pair of experiments, as shown in Table 8 and

Table 9, which we will discuss later.

We now describe one experiment for each set of m and n values.

In experiment #1 (see Figure 34), the person moved the blue block to approach

the robot (see snapshots 34(a)–34(c)). Then the robot tried to avoid it and other

obstacles while moving towards the goal as the person moved the block closer to the

robot (shown in snapshots 34(d)–34(i)) and finally reached the goal (see 34(i)).

(a) τi = 0.0s (b) τi = 6.1s (c) τi = 14.8s

(d) τi = 30.4s (e) τi = 39.6s (f) τi = 44.2s

(g) τi = 49.8s (h) τi = 65.6s (i) τi = 82.3s

Figure 35: Snapshots of experiment #3 with a soccer ball as an obstacle.

90

In experiment #3 (see Figure 35), initially the robot encountered the soccer ball

moved by the person and performed a motion by bending half of the arm and then

moved away from both obstacles (see snapshots 35(a)–35(c)). As the person moved

the soccer ball towards the robot (similar to experiment #1), the robot started moving

away from it (see snapshots 35(d)–35(i)) and successfully reached the goal as shown

in Figure 35(i).

(a) τi = 0.0s (b) τi = 11.2s (c) τi = 22.7s

(d) τi = 32.4s (e) τi = 40.5s (f) τi = 50.9s

(g) τi = 65.3s (h) τi = 76.6s (i) τi = 99.1s

Figure 36: Snapshots of experiment #5 with a plastic cover as an obstacle.

In experiment #5 (See Figure 36), initially the robot encountered the plastic cover

moved by the person and performed a motion by bending half of the arm to stay

away from the plastic cover (see snapshots 36(a)–36(c)). Later, as the plastic cover

moved closer to the robot, the robot moved away from the table and near the plastic

bag while staying away from the person’s leg (see snapshots 36(d)–36(f)). While the

plastic cover kept approaching the robot; the robot was able to find a motion to reach

91

the goal successfully (see snapshots 36(f)–36(i)).

8.2.3 Results and main experimental insights

The results for the first four experiments performed are shown in Table 8 and the

remaining two are shown in Table 9. As it shows, there are unsafe stops in all cases.

However, the data show that by increasing n, i.e., increasing the number of planning

cycles per adaptation cycle, both the number of unsafe stops and the average duration

of an unsafe stop decreased. Having multiple planning cycles within an adaptation

cycle (i.e. n > 1) leads to finding on average a longer feasible path segment of Γbest.

Note that since we assign a constant speed for the robot, the time duration ∆tmove

of a feasible segment is proportional to its path length.

It can be seen that the # adaptation cycles during which the robot moved was

smaller than the minimum total # adaptation cycles (which is the total # planning

cycles divided by n), and in some cases far smaller. This shows that there were

more stops than the total # unsafe stops, meaning that there were safe stops and in

some cases a lot of them, as in experiments 2, 3, and 5. Note that the # of δtsafe

computations show the number of end points of collision-free trajectory segments,

that is, the number of collision-free segments. This number is smaller for cases with

longer average path length of feasible segments.

As shown in Table 8 and Table 9, the time needed to do one iteration in CFPA for

finding a collision-free CT point (i.e., CT-free point) on average ranged from 3 to 15

sensing cycles. Since many CT-free points in the experiments require two iterations

to be found (i.e., based on sensing data of two different sensing instants), the total

92

time for finding a CT-free point is even longer. In spite of this high cost of CFPA, the

Algorithm 6 was able to lead the robot to its goal in those experiments successfully.

However, for a greater vmax, one iteration in CFPA will take even more time because

the dynamic envelope is larger. Thus, faster computation for the intersection check

in CFPA is necessary, which remains one of our on-going research topics.

Table 8: Experimental Results

Parameters m = 20, n = 1 m = 10, n = 3
Experiment 1 2 3 4

Total time (s) 42.09 83.99 82.29 137.99
Total # planning cycles 21 42 12 128

adaptation cycles that the robot moved 20 22 3 9
Total # unsafe stops 7 9 2 5

Duration of Avg. 0.69 0.48 0.1 0.33
an usafe stop (s) Min. 0.1 0.1 0.1 0.1

Max. 1.3 1.3 0.1 0.4
Path length of Avg. 34.01 26.45 119.05 47.62
feasible seg. of Min. 13.22 13.22 66.14 13.22

Γbest (deg) Max. 145.51 79.37 171.97 92.60
Total # CT-free points found 97 618 64 521

Time for one Avg. 712.22 637.08 156.51 184.66
iteration in CFPA Min. 109.375 15.62 109.37 46.87

that found a CT-free pt. (ms) Max. 11625 5109.37 343.7 859.37
Total # of δtsafe computations 83 196 51 452

Time for Avg. 681.48 1850.153 173.99 178.47
computing one Min. 31.25 140.62 109.37 15.62

δtsafe (ms) Max. 2656.25 13828.13 281.25 718.75

8.3 Summary

This chapter extended the Real-time Adaptive Motion Planner (RAMP) to accom-

modate CFPA and also provided sufficient time to the motion planner for coming up

with the near-optimal next collision-free trajectory. Real experiments were demon-

strated to show that the robot made few unsafe stops while moving amongst unknown

93

Table 9: Experimental Results

Parameters m = 20, n = 2
Experiment 5 6

Total time (s) 99.09 86.49
Total # planning cycles 20 8

adaptation cycles that the robot moved 5 3
Total # unsafe stops 3 2

Duration of Avg. 0.16 0.1
an usafe stop (s) Min. 0.1 0.1

Max. 0.2 0.1
Path length of Avg. 79.37 119.05
feasible seg. of Min. 26.45 66.14

Γbest (deg) Max. 171.97 171.97
Total # CT-free points found 200 98

Time for one Avg. 137.89 142.49
iteration in CFPA Min. 15.62 93.75

that found a CT-free pt. (ms) Max. 406.25 343.75
Total # of δtsafe computations 100 31

Time for Avg. 281.40 192.02
computing one Min. 109.37 125

δtsafe (ms) Max. 1671.87 312.5

and unpredictable obstacles.

CHAPTER 9: EXPERIMENTS AND RESULTS

Using the notion of dynamic envelope and atomic obstacles, we have shown on how

to perceive guaranteed collision-free trajectories in environments that are unknown

and unpredictable. To test the effectiveness and practicality of our approaches we con-

ducted experiments in motion planning of different robots in simulation environments

and real-world environments. The robot is initially at a collision-free configuration

qs and needs to move to a goal configuration qg amongst unknown obstacles that

move unpredictably. The only given input about the environment is vmax, which can

be over-estimated.

9.1 Performance data

The following performance data are gathered for testing our approach:

• Total time (T): the total time for the robot to plan and move simultaneously

from a start configuration qs to a goal configuration qg.

• # Stops (#S): the number of stops the robot is forced to make during its

journey from qs to qg. The robot makes a forced stop when it reaches the end

of the current collision-free motion segment but has not found the next one for

execution. It resumes its motion when a new collision-free motion segment is

found.

95

• # Hits: the number of forced stops when the robot got hit by obstacles. As will

be shown in the simulation, the robot may only get hit by an obstacle during a

forced stop.

• Lf : the total joint-space length of a feasible trajectory segment found by CFPA.

• Tf : the time duration of a feasible trajectory segment found by CFPA.

• # AO: the number of atomic obstacles checked by CFPA to decide if a dynamic

envelope E(χ, τk) for a CT-point χ contains atomic obstacles or not.

• Tc: the time required to check if a dynamic envelope E(χ, τk) of a CT-point χ

contains any atomic obstacle.

9.2 Simulation environment

We tested using the concept of dynamic envelopes for collision detection in an

unpredictable environment in simulation. We used two robots, a simple planar rod

robot, and a planar continuum manipulator in our testing.

9.2.1 With 2-DOF rod robot

We have conducted simulations for a planar rod robot, which can only translate on

a plane having a fixed orientation θ = 45◦, i.e., the robot has two translational degrees

of freedom. The reference frame for the robot, which is aligned with the world frame,

has its origin at an end point of the rod. The robot is initially at a collision-free

configuration qs (shown as S) and needs to reach a goal configuration qg (shown as

G) in Figure 37. The environment consists of unknown obstacles of arbitrary shapes

that are perceived as a set of identical red circles at any sensing moment, which are

96

atomic obstacles. The actual obstacles are either static, or can move randomly with

changing speeds no greater than vmax units/s. Further, the robot can over-estimate

vmax as v′max > vmax. The sensing frequency is 20 Hz. The simulation was conducted

on a Dell Optiplex GX620.

Figure 37: Simulation environment

Figure 38 shows the snapshots of an example run, when the rod robot of unit length

moves from the starting configuration qs = (1, 1) to the goal configuration qg = (9, 9)

with speed 5 units/s. Although the obstacles can change their velocities instantly, the

maximum speed each obstacle can have is vmax = 1 unit/s. The sequences of green (or

dark in B/W) reference positions show the perceived collision-free motion segments

(without showing the time instants). The sequences of red (or light in B/W) reference

positions indicate uncertain motion segments at each moment of perception, which

may or may not be collision-free. The robot executes the best green option found.

Note that the robot never hits an obstacle while moving along a green trajectory

because it is guaranteed collision-free.

As vmax increases, obstacles move faster on average, and it is more likely that the

robot gets hit during forced stops. Over 30 tested runs, the average #hits for the

97

(a) τi = 0.05s (b) τi = 0.7s

(c) τi = 3.25s (d) τi = 5.8s

Figure 38: Snapshots of an example run in simulation for vmax = 1 unit/s.

case vmax = 1 unit/s and the case vmax = 5 unit/s are 0.4 and 2 respectively.

We also tested the effects of overestimating the speed bound vmax of obstacles in the

same environment of the example run, i.e., v′max = cvmax, c ≥ 1. Figure 39 shows the

average results over 30 runs for each c. The results show that c, indicating the level

for over-estimation of vmax, can be increased in a wide range (until c = 3.8) without

affecting much the performance parameters. Within the range, the ups and downs

in the curves reflect the randomness in the environment. This is because although a

greater vmax estimate results in a larger dynamic envelope, the envelope also shrinks

faster (i.e., with a faster speed), and so there is a balance for a certain range of c.

98

(a) c vs. avg. total time (sec) over 30 runs

(b) c vs. avg. # hits and avg. # stops over 30
runs

Figure 39: Effects of over-estimating vmax as v′max = cvmax, c ≥ 1.

As can be seen in Figure 39, once c increases more than 4, it seems that shorter

collision-free segments were found by the CFPA so that #stops and #hits increased.

We also tested our approach for a static environment, i.e., vmax = 0, containing a

narrow passage as shown in Figure 40: the robot had to move through the narrow

passage to reach the goal as shown by every position of the path. We performed

experiments by varying the level of over-estimation v′max ∈ [1, 4]. In all cases, the

travel time for the robot from the start to the goal position was constant: 2.49s.

9.2.2 With continuum manipulator

We have tested our algorithm on a planar continuum robot in simulation environ-

ments. While a continuum robot can in fact have an infinite number of degrees of

freedom because it is deformable, there are only a finite number of controllable de-

grees of freedom when the robot is not in contact. These are the degrees of freedom

99

Figure 40: An example of static narrow passage.

that can be directly changed by the actuators. The continuum manipulator designed

at Clemson University has three sections. According to [43], each section i, i = 1, 2, 3

is a part of a circle with two end points: a base point pi−1 and a tip point pi. The

base of the robot is set at p0 with z0 axis tangent to section 1’s curve. The section i’s

frame is formed at pi−1 with the z axis tangent to the section curve at pi−1. The base

of section i is the tip of section i − 1. Each section has three controllable variables:

curvature κi (which can be either negative or positive), length si, and rotation angle

φ from axes yi−1 to yi about zi−1. Note that the circle center of section i, pic, always

lies on the xi axis.

A configuration C of the continuum manipulator can be expressed by the control-

lable variables as [κ1, s1, φ1, κ2, s2, φ2, κ3, s3, φ3]
T . Thus, we can treat this (κ, s, φ)

space the configuration space of the continuum robot. Given the position of the base

point pi−1, and the κi, si, and φi values, the position of the tip point pi of the section

can be computed [43].

If φi=0 for all the sections, the continuum is planar. Figure 41 shows a planar

three continuum and an example section. Figure 41(a) shows an example section of a

100

continuum manipulator, and (b) shows a continuum manipulator with three sections.

Figure 41: A planar continuum manipulator.

Each environment consists of randomly generated polygonal obstacles of arbitrary

shapes and sizes. It also includes a randomly generated target object for the robot,

also in arbitrary shape and size (in the wide range that the robot can “grasp” it). The

obstacles can be either static or move randomly. The simulated robot has the same

value ranges on (κ, s) for each section as the actual robot at Clemson University. It

can have either a static base or a base that translates horizontally. The simulation

was conducted on a Dell Optiplex GX620. In the simulation environment, we assume

that the poses of both the target object and the obstacles are sensed in sensing cycles,

with a frequency of 20 Hz. Even though the obstacles may move randomly, they will

not run over a stopped robot. This essentially assumes that the obstacles, which can

be either moved by people or are other robots, are not malicious. Our robot is capable

of avoiding others during its motion, but when it is static, others are not assumed to

harm it.

We assume the robot can move with a constant speed with instant acceleration/deceleration

to simplify trajectory generation. We also ignore the width of the continuum robot

for simplicity.

101

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 42: Experiment with continuum manipulator in static environment.

We applied our real-time planner to different simulation environments of randomly

generated obstacles. In the graphical display, 1 unit=15cm in real world. The upper

bound on the obstacle speed is vmax = 1 unit/s. The robot speed is greater than 1

unit/s.

Figure 42 shows the snapshots of continuum manipulator with a fixed-base planning

its motion in a static environment. Figure 43 and Figure 44 shows the snapshots of

a robot with a horizontally moving base in two dynamic environments with unknown

102

obstacle motions: in the first environment (task 1) with three dynamic obstacles

and in the second dynamic environment (task 2) with three static and six dynamic

obstacles. In all cases the target object is indicated by the bounding circle. Also, for

both the cases, the robot is initially in the vertical configuration stretched (i.e., with

zero curvature for all sections).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 43: Experiment with continuum manipulator (task 1).

Table 10 shows the results averaged over 20 runs for task 1 and task 2 respectively.

The results show that there are just a few forced stops in both cases (when the robot

103

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 44: Experiment with continuum manipulator (task 2).

did not find a collision-free segment to follow).

9.3 Real experiments

Extensive testing was done in simulation environments with the assumption that

sensor data are accurate and geometry of obstacles are simple 2D shapes. Thus the

cost of collision-detection was negligible. However, in real environments for robot

manipulators the obstacles have to be represented by 3D atomic obstacles and the

computational resources available are limited for real-time operations. For 5-DOF

104

Table 10: Average Results of 20 Runs of Each Task

Tasks Total #Stops
time(s)

1 28.74 3.05
2 55.41 2.35

Robix Rascal robot a low-end PC was used to test the feasibility of approach, whereas

with 7-DOF Cyton arm comparatively high end PC was used, having four CPU cores.

9.3.1 With 5-DOF Robix Rascal robot

We have also tested the CFPA by embedding it in a simple real-time motion planner

for a real desktop 5-DOF robot manipulator with revolute joints in an unknown and

unpredictable environment, sensed via an overhead stereovision sensor (Figure 45).

Our real-time motion planner finds a collision-free straight-line segment in the CT-

space as the next-step motion for the robot to execute, with a search method compro-

mising randomized and greedy search1 and using CFPA for discovering collision-free

motion. As the robot moves, the planner simultaneously finds again the subsequent

next step until the goal is reached.

The planner was implemented in C++ on a low-end PC (Dell Optiplex GX260).

The 5-DOF manipulator is made from the Robix Rascal RC6 kit. The stereo vision

camera is PGR’s Digiclops. The obstacles are blocks unknown to the robot, which

can be moved in ways also unknown to the robot. Table 1 shows the input param-

eter values to the planner, where S and G are the starting and goal configurations

respectively. q̇−ve and q̇+ve are the negative and positive bounds on the joint speeds

1In this way the planner is able to overcome local minima, but the details of search and handling
local minima is not the focus of this research since a number of different strategies can be used.

105

of the robot. Note that the number of atomic obstacles of an actual obstacle increase

if the obstacle is close to the origin of the camera frame.

(a) Robix Rascal
RC 6 and obsta-
cles of unknown
geometry in its
workspace.

(b) Kinematics of the manipula-
tor.

Figure 45: Experimental setup for Robix Rascal RC 6.

The atomic obstacles representing the robot itself and the known desk surface (as

“floor”) were filtered out. The shape of an atomic obstacle was approximated as a

straight-line ray. The shape of a link of the robot was simplified by a cylindrical

bounding volume. The number of atomic obstacles in the test environment were in

the range of 345–800. The average rate of collision checking in the CFPA computation

was 1430.64 CT-points/second.

Table 11: Input Parameters and Values

S, G vmax (q̇−ve,q̇+ve) Sensor min#O(i, j)
(degrees) cm/sec (degrees/sec) Image resolution per obstacle

[−70, 45, 0, 0, 0]T 1 ([−6,−6,−5,−6,−7]T , 160× 120 115
[70,−45, 0, 0, 0]T [6, 6, 5, 6, 7]T)

Figure 46 shows a test environment and two different resulting paths that the robot

traveled. The environment had 4 blocks as obstacles, where two were placed at the

106

(a) Path 1 (b) Path 2

Figure 46: An environment (Env1) and two traveled paths by the robot.

corners and two were stacked together to form a taller obstacle in between. The taller

obstacle created a local optima for the given robot structure with limited dexterity,

which our planner was able to overcome.

(a) Step #4 (b) Step #9 (c) Step #18

(d) Step #19 (e) Step #25 (f) Step #27

Figure 47: Selected steps taken by the robot in Env2.

Figure 47 shows a sequence of selected snapshots of the robot motion in another

test environment, where there are four obstacles, and two of them are dynamic, moved

by the two hands of a human operator. Note that a grid of 1× 1 cm2 squares on the

desk was used as a guidance to move obstacles close to vmax = 1cm/s. As shown,

the operator first moved one block towards the robot. In 47(a), robot is near the

configuration S and in (f), robot is at configuration G.

Between step 9 to step 18, the planner tried to get most of links closer to their goal

positions while avoiding the moving block and the block at the bottom left corner.

107

After step 18, the moving block decreased its speed, and a new block was moved

into the visible robot workspace. The planner noticed the reduced speed of the first

moving block in time due to the non-conservative nature of the dynamic envelopes

and simply guided the robot to pass by the moving block and the static block, while

moving away from the newly entered block to reach the goal in step 27. Table 2

Table 12: Average results from two environments (for the same start and goal con-
figurations of the robot)

Env Path length (deg) #Steps Total time (sec) #Sensing cycle (Hz)
Env1 514.924 62.2 82.8 3.5
Env2 235.98 27 49 4.58

shows the resulting statistics characterizing the planner performance in the two task

environments.

9.3.2 With 7-DOF Cyton Arm robot

We have conducted real-world experiments using a real 7-DOF Robai’s Cyton arm

(see Figure 48), an indoor MobileRanger’s stereo vision camera (used overhead), and

a DELL Precision T5400 computer. We have implemented the full-fledged CFPA

here, using realistic models of atomic obstacles (see Figure 49) rather than treating

them as rays2.

The robot has 7 revolute joints. Each robot link is approximated with a oriented

bounding box. Each revolute joint has a maximum speed of 90 (deg/s) in both

directions and a constant acceleration or de-acceleration of 57 (deg/s2).

Each unknown object in the environment was perceived as a set of atomic obstacles

2In the simple experiments with a 5-DOF cyton arm robot reported earlier, atomic obstacles
were treated as rays.

108

Figure 48: A 7-DOF Cyton arm.

Figure 49: Dimension of atomic obstacles for resolution 188 × 120.

at each sensing instant. The dimension of an atomic obstacle corresponding to a pixel

is shown in Figure 49. The sensor resolution was fixed to 188×120 and thus, at most

22,560 atomic obstacles were generated from each sensing moment. The sensing

frequency was in the range of 16-20 Hz. As the stereo vision camera provides highly

inaccurate data for objects with low image intensity values, only objects with high

intensity values were used as obstacles to the robot.

In this implementation with a real sensor and a real high-DOF robot the robot

often requires more “thinking” (i.e., planning) time to come up with a reasonably

long collision-free trajectory segment. To facilitate that need, one more criterion is

added by RAMP to select the best trajectory segment to execute: maximizing the safe

time for the robot to pause and think at the end CT-point of a collision-free segment

109

of a trajectory. This so-called safe time indicates the time period that the robot can

pause its motion and think without being hit by any obstacle, which is determined

by the distance between the robot and its nearest atomic obstacle at that CT-point.

With this modification, the robot is allowed to pause deliberately to think about its

next movement. Therefore, the robot can either stop safely (i.e., deliberately pause

its motion within the safe time) or unsafely (i.e., forced to stop with possibilities to

be hit by obstacles).

Figures 50 and 51 show the snapshots of two real-world experiments: Experiment

#1 and Experiment #2 respectively, where the start and goal configurations of the

robot are given in Table 13. For Experiment #1, the stereo-vision sensor provides an

isometric view. For Experiment #2, the stereo-vision sensor provides a side view of

the workspace.

We deliberately used rather irregular and colorless objects – white plastic bags

with some objects in it and a half-full plastic bottle of water, as obstacles, which are

difficult to model and recognize, to take advantage of our approach that does not

require modeling and recognizing obstacles. From the size of the arm, one can also

see that the robot’s workspace was crowded with obstacles. The empty space was

mostly beyond the robots workspace and was not reachable.

Table 13: Robot start and goal configurations for experiments #1 and #2

Exp#1 qs (deg) [79.9, 99, 81.5, 113.6, 122, 85.1, 105]T

qg (deg) [−100, 0, 0, 55, 0, 85.1, 0]T

Exp#2 qs (deg) [100, 60, 0, 0, 0, 0, 0]T

qg (deg) [−80, 0, 0, 55, 0, 85.1, 0]T

In experiment #1, in addition to the plastic bag and the half-filled bottle, the real-

110

(a) τk = 0.05s (b) τk = 5.1s (c) τk = 6.3s

(d) τk = 9.2s (e) τk = 17.4s (f) τk = 19.6s

(g) τk = 22s (h) τk = 23.5s (i) τk = 26.6s

Figure 50: Snapshots of experiment #1 with vmax = 1cm/s.

(a) τk = 0.0s (b) τk = 7.07s (c) τk = 16.23s

(d) τk = 23.32s (e) τk = 24.89s (f) τk = 38.01s

(g) τk = 54.8s (h) τk = 59.53s (i) τk = 70.67s

Figure 51: Snapshots of experiment #2 with vmax = 3cm/s.

world obstacles also include a part of a person who holds the filled plastic bag and

some cans and blocks. Initially, the robotic arm tried to extend vertically to reach the

111

goal (see snapshots 50(a)–50(c)). However, the arm encountered the moving plastic

bag near its goal configuration as seen in snapshot 50(c). It avoided the collision by

bending itself to move through the passage formed by the obstacles resting on the

floor (shown in snapshots 50(d)–50(i)) and finally reached the goal (see 50(i)), while

the person was trying to place the plastic bag within the workspace of the robot. The

total time of combined planning and execution of the robot motion was 26.6s.

In experiment #2, the goal position of the robot gripper is above the wooden

cylindrical block (see 51(a)). A person tried to move two plastic bags towards the

robot as it tried to reach its goal configuration. Initially, while the robotic arm

began to move (see snapshots 51(a)–51(b)), it encountered the plastic bag on its right

moving towards it; the arm avoided collision by moving closer to the left plastic bag

(see snapshot 51(c)). However, left plastic bag also started moving towards the robot

(see snapshot 51(d)); so the arm moved beneath the right plastic bag, by bending

itself, while minimizing the joint distance to the goal (see snapshots 51(e)–51(g)).

Later, as the left bag moved towards the arm, while further avoiding collisions, the

arm started moving towards the goal (see snapshot 51(h)) and successfully reached

the goal. The total combined planning and execution time was 70.67s.

These experiments clearly show the applicability of our approach in an arbitrary,

unknown and unpredictable environment.

Next we further investigated the performance of our approach statistically over

different and random arrangements of obstacles and their movements. In order to

do that, we used randomly moving virtual obstacles and generated artificial atomic

obstacles corresponding to those virtual obstacles as viewed by the real stereo-vision

112

Figure 52: Snapshot of the simulated workspace.

sensor. Each obstacle can translate and rotate in a random fashion, which satisfies

only that any point on the obstacle does not move faster than vmax. We applied our

approach to planning and executing movements of the model of the real robot in this

environment of unknown and unpredictable artificial obstacles. Figure 52 shows one

example of such environment as viewed from the real stereo-vision sensor, containing

the model of the real manipulator.

Given the start and goal configurations of the robot respectively as qs where all

joint angles are −90o, and qg where all joint angles are 90o, we run our approach

multiple times to move the robot to its goal and collected related performance data.

10 virtual obstacles, with volumes ranging from 8 cm3 to 125 cm3, were randomly

generated with random initial locations and move randomly, with random translations

and rotations, within a bounding box of size 80×100×80 cm3, which is larger than the

robot workspace (see Figure 52), in each run. This creates an extremely unpredictable

environment every run for the robot (which is more challenging than many real-world

environments). Note that as the base of the manipulator was fixed, both the base

113

and the link 1 of the robot cannot move to avoid obstacles, and thus the robot was

more likely to have forced stops, and #Hits was comparable to the number of stops

#S in our results.

Table 14 shows some performance data that characterize the real-time motion plan-

ning and execution results for vmax = 4 cm/s, averaged over 30 runs. From the data

we can see that there are very few forced stops on average, and the time spent on

forced stops is about 22% of the total time of planning and execution (including the

time spent on deliberate pauses by the robot). On average, a collision-free trajectory

segment has a reasonable length. This indicates that the motion planner combined

with CFPA can guide the motion of a high-DOF robot reasonably well in unknown

and extremely unpredictable environments.

Table 14: Data of discovered collision-free trajectory segment averaged over 30 runs

vmax = 4 cm/s, T = 52.73s , #S = 2.03,
total time of forced stops= 11.774s

Avg. Min. Max.
Lf (deg.) 38.12 15.93 93.12
Tf (sec) 0.649 0.152 0.947

Table 15 provides CFPA performance data for different vmax, each averaged over

30 runs. The average values of T and #S show that in all cases, the executions were

completed in a reasonable amount of time with a very few number of forced stops.

From Table 15, as vmax increases from 2 to 6 (cm/s), the corresponding dynamic

envelope for a CT-point is larger; thus, the projected range Max. #AO of atomic ob-

stacles that CFPA may check (see Section IV.c) for a CT-point and the corresponding

Max. Tc increases so that the average #AO and Tc may increase, which explains the

114

results.

However, as vmax further increases from 6 to 8 (cm/s), both the average #AO and

Tc decrease. This can be explained as follows: CFPA, being a boolean classifier, takes

less (or equal) time to detect a dynamic envelope containing atomic obstacles than

to detect it containing no atomic obstacle. As the size of dynamic envelopes further

increased, more of them contained atomic obstacles, which resulted in the decrease of

the average number of atomic obstacles checked by the CFPA along with the average

checking time Tc. Thus, the average #AO and Tc may increase or decrease with

increased vmax, but Max. #AO and Max. Tc always increase as vmax increases.

The experiment shows that even with increasing actual vmax (i.e., not over-estimated

vmax), the CFPA algorithm may not be less efficient.

Note that for obstacles in the small workspace of the fixed-base manipulator, vmax =

8 (cm/s) is relatively fast.

From Table 15, we can also see that the percentage of maximum #AO over the

total number of atomic obstacles (equaling the total number of image pixels 22,560) is

at most 26% (which corresponds to the highest vmax value) but on the average much

lower than that. This again shows the efficiency of the CFPA algorithm.

Table 15: CFPA performance data averaged over 30 runs

vmax T #S Avg. Avg. Tc Max. Max. Tc
(cm/s) (sec) #AO (sec) #AO (sec)

2 61.16 2.93 845.0 0.050 1613.83 0.285
4 72.65 1.93 1312.5 0.078 2999.2 0.330
6 85.42 1.23 1596.2 0.092 4707.3 0.391
8 107.53 3.48 1315.7 0.082 5906.5 0.534

CHAPTER 10: CONCLUSION AND FUTURE WORK

One of the open challenges in robotics is how to enable a robot to move au-

tonomously along collision-free trajectories (i.e., avoiding obstacles) in real world en-

vironments with unknown obstacles or unpredictable obstacle motions. While there

exists much literature on planning collision-free robot motion in known or mostly

known environments, there is hardly any study for unknown and unpredictable envi-

ronments. This dissertation has presented novel approaches and algorithms that can

detect if a robot future motion in an unknown and unpredictable environment will

be guaranteed collision-free or not in real-time based on sensing.

10.1 Contributions

By the novel concept of dynamic envelopes, we can determine if a robot will safely

stay at a configuration at a certain future time, called a CT point in the robot’s

configuration-time (CT) space, through observing the poses of obstacles for some

period of time while the dynamic envelope of the CT point shrinks, which we call

“progressive sensing”. Note that progressive sensing here is different from tracking

obstacle motions because it does not need to remember past obstacle poses. By using

dynamic envelopes, we avoid both tracking and predicting obstacle motions, which

could be expensive and inaccurate.

With dynamic envelopes, we have shown that by detecting a collision-free CT

116

point in the robot’s CT-space, a continuous neighborhood of CT points is also de-

tected collision-free. Based on this fact, we have developed an efficient algorithm for

detecting a guaranteed continuously collision-free robot trajectory based on detecting

only a discrete set of collision-free CT points. Moreover, our algorithm can detect

a continuously collision-free tunnel of trajectories to enable safe robot motion in the

presence of motion uncertainty.

We have introduced the notion of atomic obstacles directly from low-level sensing

data to characterize perceived obstacles in an unknown environment in any given

sensing moment. Using atomic obstacles, we have avoided identifying obstacles that

are too numerous to be countable, can appear or disappear, and can merge or separate

and also avoided the associated computation cost. Since atomic obstacles are directly

obtained from sensing data, there is no construction cost. Moreover, since they are

of identical and simple geometry, collision-checking can be efficient, as illustrated by

the collision-checker we have developed. Although atomic obstacles cover not only

actual obstacles but also occlusions, we have shown that by using multiple sensors,

occlusions can be reduced.

Using either dynamic envelopes or atomic obstacles requires finite time to provide

collision-checking results. To detect a collision-free CT point usually requires observ-

ing the shrinking dynamic envelope for some period of time until it is free of obstacles.

To conduct collision checking with respect to atomic obstacles also cannot be done

instantaneously. Thus, an important question is how to enable real-time detection of

collision-free robot trajectories in an unknown and unpredictable environment when

the tools we use require finite time to produce results. We have addressed this ques-

117

tion by taking advantage of the fact that whenever a robot is following a detected

collision-free trajectory segment, it is guaranteed to be safe in spite of motion un-

certainty and thus can simultaneously detect the subsequent collision-free trajectory

segment while executing the current one in finite time. As the result, the robot

can keep moving and detecting without stop most of the time in an unknown and

unpredictable environment.

To demonstrate this capability, we have extended an existing real-time motion

planner by incorporating the collision-free perceiver based on both dynamic envelopes

and atomic obstacles (as described in Chapter 7). We have conducted simulations and

real experiments to show that a robot, even a high-DOF one, only makes a few stops

when it is moving towards a goal configuration in an unknown and unpredictable

environment. The robot stops when it has finished following the current collision-free

trajectory segment but requires more time to detect the next collision-free segment.

Note that when the robot stops, it may get hit by a moving obstacle in theory, but it

is reasonable to assume that other obstacles (e.g., people or things people move) will

not deliberately hit a robot. The most important point is that, with our approaches,

the robot is guaranteed not to hit anything actively.

Thus, we have made a first step in ensuring that a robot moving in an unknown

and unpredictable environment does not hit any obstacles. We have published many

results reported in this dissertation, see [94–97,102].

118

10.2 Future work and open challenges

Much future research can sprout from this work, especially related to sensing and

processing of atomic obstacles.

Handling noise in sensor data: Data generated by a sensor are important input

for our approaches to successfully detect collision-free robot trajectories. However,

sensor data can be noisy due to various lighting conditions, different textures of

objects, etc., and errors in sensor data may cause a robot to hit an obstacle. We

have experienced three kinds of noise in sensor data: (a) the sensor data values are

inaccurate by some margin, (b) some sensor data are false alarms because they do

not indicate real objects, and (c) there are missing sensor data values with respect to

an object sometimes.

Noise type (a) can be handled relatively easily. For instance, by growing the front

face of an atomic obstacle by the error margin, along the viewing frustum, towards

the sensor can avoid missing obstacles, even though this is a conservative approach.

Noise type (b) refers to outliers of sensor data, which can be filtered out based on some

environmental information, e.g., one can assume that each object in an environment

is greater than some threshold in size.

Handling noise type (c) is challenging. One approach [82] uses a maximum-

likelihood framework to find the missing data. However, such computation is ex-

pensive. It is important to explore how to effectively find missing data in real-time.

There also exist methods [40, 78] that produce more accurate sensor data efficiently,

either by controlling the lighting [78], or by better data matching for stereo vision [40].

119

Detecting occluded space as free space by using past information about

atomic obstacles: Atomic obstacles include both true obstacles and occluded free

space. An interesting question is whether it is possible to detect occluded space in an

atomic obstacle from a fixed sensor in a changing environment with moving obstacles

without using additional sensors, even though the obstacle motions are unknown. It

seems that by observing the past changes in atomic obstacles (which reflect environ-

mental changes), we could reason that a certain part of an atomic obstacle at the

current sensing moment is actually a part of occluded free space. For example, for a

pixel (i, j), if the corresponding atomic obstacle suddenly appears very close to the

sensor comparing to the atomic obstacle of (i, j) at the previous sensing moment,

and the atomic obstacle of a neighboring pixel suddenly appears far from the sensor

comparing to the previous moment, it may suggest that a neighboring obstacle has

moved to occlude the previous obstacle at pixel (i, j). The size of occluded free space

could be detected based on the changing depths of the neighboring atomic obstacles.

Increasing visible free space by changing sensing directions: Each sensor has

a limited viewing range and is also subject to occlusions. Thus, not everywhere in an

environment can be “visible” to a single sensor. We have discussed in the dissertation

how multiple sensors can be used to reduce occlusion and increase visible free-space.

How to maximize viewing ranges by placing multiple sensors is a problem that has

been studied in the literature for environments that are mostly static (e.g. [1, 17]).

However, how to increase a sensor’s limited viewing range by changing its sensing

directions is an interesting problem that should be investigated. Since atomic obsta-

cles include both obstacles and occluded regions that could be free space, changing

120

sensing directions can also reduce occlusion represented as obstacles. On the other

hand, frequent change of viewing directions can increase the cost of the collision-

checker for atomic obstacles because the time coherence can be lost from changing

viewing direction at one sensing moment to the next sensing moment. Thus, mini-

mizing changes in orientations of sensors while still maximizing the viewing capability

is another research problem.

Since a detected collision-free CT point is guaranteed collision-free by our approach,

once the detection is done, the sensor can change its viewing direction to perform

detections for other CT points without continuing to monitor the already detected

collision-free CT point.

Increasing visible free space by changing sensor poses: Since the visible free

space viewed from different sensors with fixed bases may not form a connected region

that is necessary for a robot to move to its goal configuration, it may be desirable to

have moving sensors, i.e., sensors mounted on the robot or other robots. This presents

more open research challenges in an unknown and unpredictable environment, from

how a sensor should move while avoiding obstacles “seen” by itself and other sensors,

to how it coordinates its viewing direction with the sensing need of the main robot.

The latter is related to viewing planning problems [105, 106] but existing work on

viewing planning is focused on static environment with no obstacle motion.

Making CFPA faster by parallel implementation: The main computationally

intensive algorithm is CFPA for detecting if a CT-point is collision-free or not. It is

mainly based on the flood-fill algorithm. If a parallel version of the flood-fill algorithm

is implemented then CFPA for detecting a CT-point would be much faster. Also,

121

CFPA uses sensor data from different sensors to determine if a CT-point is collision-

free or not. Again the checking of individual sensor data can be made on parallel

processors for faster computation.

Further detecting if a trajectory Γ is collision-free or not requires checking of mul-

tiple CT-points in a set Q(Γ+). These CT-points can be individually checked on

parallel processors.

10.3 Applications

A robot autonomously trying to move among unknown and unpredictable obstacles

to reach some goal configuration is the primary application of the work done in this

dissertation. A robot could be of any form, including mobile robots, manipulators,

mobile manipulators, etc. The set of assumptions required by the algorithms of this

dissertation to guide motions of such a robot is as follows:

1. vmax assumption: The maximum linear speed any obstacle can have is the only

required parameter about the environment.

2. The entire environment is visible from fixed sensors: The current approaches

mentioned in this dissertation work well if the sensors in the environment are

fixed and their combined viewing ranges cover the entire environment.

3. The robot can be localized w.r.t. fixed sensor poses: The motion uncertainty of

robot is commonly handled by using known environmental features. However,

if an environment is unknown and unpredictable, the environmental features

are unknown and thus poses of fixed sensors need to be used for localizing the

robot.

122

The above set of assumptions can be easily realized for indoor environments, such as

offices, houses, restaurants, etc. The sensors can be placed on known static obstacles,

such as walls, ceiling, etc. There can be dynamic obstacles, such as people, other

robots, etc. that the robot has to avoid collision with.

For outdoor environments, where there are street lights, the sensors could be

mounted on them. The robot could be an autonomous vehicle navigating streets,

avoiding collisions with other vehicles.

123

REFERENCES

[1] Acar, E. U., and Choset, H. Sensor-based coverage of unknown environ-
ments. International Journal of Robotics Research 21, 4 (2002), 345–366.

[2] Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and Vallejo,
D. OBPRM: an obstacle-based PRM for 3d workspaces. In WAFR ’98: Pro-
ceedings of the Third Workshop on the Algorithmic Foundations of Robotics
(Natick, MA, USA, 1998), A. K. Peters, Ltd., pp. 155–168.

[3] Baginski, B. Efficient dynamic collision detection using expanded geometry
models. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (1997),
pp. 1714–1719.

[4] Bellotto, N., and Hu, H. Multisensor-based human detection and tracking
for mobile service robots. IEEE Trans. on Systems, Man, and Cybernetics –
Part B 39, 1 (2009), 167–181.

[5] Bennewitz, M., Burgard, W., Cielniak, G., and Thrun, S. Learning
Motion Patterns of People for Compliant Robot Motion. Intl. J. of Robotics
Research 24, 1 (2005), 31–48.

[6] Bonissone, P. P., Subbu, R., Eklund, N., and Kiehl, T. R. Evolution-
ary algorithms + domain knowledge = real-world evolutionary computation.
IEEE Trans. Evolutionary Computation 10, 3 (2006), 256–280.

[7] Bradley, D., Unnikrishnan, R., and Bagnell, J. A. Vegetation detec-
tion for driving in complex environments. In IEEE Intl. Conf. on Robotics and
Automation (April 2007).

[8] Brent, R. P. An algorithm with guaranteed convergence for finding a zero of
a function. Computer Journal 14 (1971), 422–425.

[9] Brockett, R. W. Asymptotic Stability and Feedback Stabilization.
Birkhauser, Boston, 1983, pp. 181–191.

[10] Bus, J. C. P., and Dekker, T. J. Two efficient algorithms with guaranteed
convergence for finding a zero of a function. ACM Trans. Math. Softw. 1, 4
(1975), 330–345.

[11] Cameron, S. Collision detection by four-dimensional intersection testing.
IEEE Trans. on Robotics and Automation 6, 3 (1990), 291–302.

[12] Chang, C. C., and Song, K.-T. Environment prediction for a mobile robot
in a dynamic environment. IEEE Trans. on Robotics and Automation 13, 6
(Dec. 1997), 862–872.

124

[13] Chen, Z., Ngai, D. C. K., and Yung, N. H. C. Behavior prediction based
on obstacle motion patterns in dynamically changing environments. In Proceed-
ings of the 2008 IEEE/WIC/ACM Intl. Conf. on Intelligent Agent Technology
(2008), pp. 132–135.

[14] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W.,
Kavraki, L., and Thrun, S. Principles of Robot Motion: Theory, Algo-
rithms, and Implementations. MIT Press, 2005, ch. Bug Algorithms.

[15] Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi, M. I-collide: An
interactive and exact collision detection system for large-scale environments. In
Proc. of ACM Interactive 3D Graphics Conf. (1995), pp. 189–196.

[16] Craig, J. J. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[17] Dhillon, S. S., and Chakrabarty, K. Sensor placement for effective
coverage and surveillance in distributed sensor networks. In Proc. of IEEE
Wireless Communications and Networking Conference (2003), pp. 1609–1614.

[18] Discant, A., Rogozan, A., Rusu, C., and Bensrhair, A. Sensors for
obstacle detection - a survey. In Electronics Technology, 30th International
Spring Seminar on (May 2007), pp. 100 –105.

[19] Dixon, W., Walker, I., and Dawson, D. Fault detection for wheeled
mobile robots with parametric uncertainty. In Advanced Intelligent Mechatron-
ics, 2001. Proceedings. 2001 IEEE/ASME International Conference on (2001),
vol. 2, pp. 1245 –1250 vol.2.

[20] Du Toit, N., and Burdick, J. Robot motion planning in dynamic, uncertain
environments. IEEE Transactions on Robotics 28, 1 (Feb. 2012), 101 –115.

[21] Elnagar, A., and Gupta, K. Motion prediction of moving objects based on
autoregressive model. IEEE Trans. on Systems, Man, and Cybernetics, Part A
28, 6 (1998), 803–810.

[22] Elnagar, A., and Hussein, A. An adaptive motion prediction model for
trajectory planner systems. In Intl. Conf. on Robotics and Automation (Sep.
2003), pp. 2442–2447.

[23] Ess, A., Leibe, B., Schindler, K., and Gool, L. V. Moving obsta-
cle detection in highly dynamic scenes. In IEEE Intl. Conf. on Robotics and
Automation (May 2009), pp. 56–63.

[24] Esteban, C. H., Hernandez, C., and Schmitt, E. F. Multi-stereo 3d
object reconstruction. In 3D Data Processing Visualization and Transmission,
2002 (2002), pp. 159–166.

125

[25] Fiorini, P., and Shiller, Z. Motion planning in dynamic environments
using velocity obstacles. In Intl. J. of Robotics Research (1998), vol. 17, pp. 760–
772.

[26] Foisy, A., and Hayward, V. A safe swept volume method for collision
detection. In The Sixth Int. Symp. of Robotics Research (Pittsburgh (PE), Oct.
1993), pp. 61–68.

[27] Foka, A. F., and Trahanias, P. E. Predictive autonomous robot naviga-
tion. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS (2002), pp. 490–495.

[28] Fraichard, T., and Asama, H. Inevitable collision states - a step towards
safer robots? Advanced Robotics 18, 10 (2004), 1001–1024.

[29] Fraichard, T., and Kuffner, J. Guaranteeing motion safety for robots.
Autonomous Robots (2012), 1–3.

[30] Fraichard, T., and Mermond, R. Path planning with uncertainty for
car-like robots. In IEEE International Conference on Robotics and Automation
(May 1998), vol. 1, pp. 27 –32 vol.1.

[31] Fu, Y., Jin, B., Wang, S., and Cao, Z. Real-time sensor-based motion
planning for robot manipulators. In IEEE Intl. Conf. on Robotics and Automa-
tion (2005), pp. 3108–3113.

[32] Gallagher, G., Srinivasa, S. S., Bagnell, J. A., and Ferguson, D.
Gatmo: a generalized approach to tracking movable objects. In IEEE Intl.
Conf. on Robotics and Automation (May 2009), pp. 2043–2048.

[33] Gavrila, D. The visual analysis of human movement: A survey. Computer
Vision and Image Understanding 73 (1999), 82–98.

[34] Ghosh, P. K. A unified computational framework for Minkowski operations.
Computers & Graphics 17, 4 (1993), 357–378.

[35] Govea, V., Alejandro, D., Large, F., Fraichard, T., and Laugier,
C. High-speed autonomous navigation with motion prediction for unknown
moving obstacles. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(Oct. 2004), pp. 82–87.

[36] Govea, V., Alejandro, D., Large, F., Fraichard, T., and Laugier,
C. Moving obstacles’ motion prediction for autonomous navigation. In Int.
Conf. on Control, Automation, Robotics and Vision (Dec. 2004).

[37] Hahnel, D., Schulz, D., and Burgard, W. Map building with mobile
robots in populated environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (2002), vol. 1, pp. 496–501.

126

[38] Han, M., and Kanade, T. Creating 3d models with uncalibrated cameras. In
proceeding of IEEE Computer Society Workshop on the Application of Computer
Vision (WACV2000) (Dec. 2000).

[39] Heckbert, P. S. A seed fill algorithm. In Graphics gems. Academic Press
Professional, Inc., San Diego, CA, USA, 1990, pp. 275–277.

[40] Hirschmller, H. Accurate and efficient stereo processing by semi-global
matching and mutual information. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2005), IEEE Computer Society,
pp. 807–814.

[41] Huang, Y., and Gupta, K. RRT-SLAM for motion planning with motion
and map uncertainty for robot exploration. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (Sept. 2008), pp. 1077 –1082.

[42] Jiménez, P., Thomas, F., and Torras, C. 3D collision detection: A
survey. Computers and Graphics 25 (2000), 269–285.

[43] Jones, B., and Walker, I. Kinematics for multisection continuum robots.
IEEE Transactions on Robotics 22, 1 (Feb. 2006), 43 – 55.

[44] Kamoun, W., Schmugge, S., Kraftchick, J., Clemens, M., and Shin,
M. Liver microcirculation analysis by red blood cell motion modeling in intrav-
ital microscopy images. In IEEE Trans. on Biomedical Engineering (2008).

[45] Kant, K., and Zucker, S. W. Toward efficient trajectory planning: the
path-velocity decomposition. Int. J. Rob. Res. 5, 3 (1986), 72–89.

[46] Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. In
IEEE Trans. on Robotics and Automation (1996), vol. 12, pp. 566–580.

[47] Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots.
International Journal of Robotics Research (IJRR) 5, 1 (1986), 90–98.

[48] Kodratoff, Y., and Moscatelli, S. Machine learning for object recogni-
tion and scene analysis. International Journal of Pattern Recognition and AI 8
(1994), 259–304.

[49] Kurniawati, H., Yanzhu, D., Hsu, D., and Wee, S. L. Motion planning
under uncertainty for robotic tasks with long time horizons. The International
Journal of Robotics Research 30, 3 (2011), 308–323.

[50] Kushleyev, A., and Likhachev, M. Time-bounded lattice for efficient
planning in dynamic environments. In IEEE Intl. Conf. on Robotics and Au-
tomation (May 2009), pp. 1662–1668.

127

[51] Lambert, A., and Le Fort-Piat, N. Safe actions and observations planning
for mobile robots. In IEEE Intl. Conf. on Robotics and Automation (1999),
pp. 1341–1346.

[52] Large, F., Sckhavat, S., Shiller, Z., and Laugier, C. Using non-
linear velocity obstacles to plan motions in a dynamic environment. In IEEE
Intl. Conf. on Control, Automation, Robotics and Vision (ICARCV) (2002),
pp. 734–739.

[53] Latombe, J. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[54] LaValle, S., and Sharma, R. Robot motion planning in a changing, par-
tially predictable environment. In IEEE International Symposium on Intelligent
Control (Aug. 1994), pp. 261 –266.

[55] LaValle, S. M. Planning Algorithms. Cambridge University Press, May 2006.

[56] LaValle, S. M., and Jr., J. J. K. Randomized kinodynamic planning. In
IEEE International Conference on Robotics and Automation (1999), pp. 473–
479.

[57] Le, D. An efficient derivative-free method for solving nonlinear equations.
ACM Trans. Math. Softw. 11, 3 (1985), 250–262.

[58] Leven, P., and Hutchinson, S. A framework for real-time path planning
in changing environments. Intl. J. of Robotics Research 21 (2002), 999–1030.

[59] Leven, P., and Hutchinson, S. Using manipulability to bias sampling
during the construction of probabilistic roadmaps. IEEE Trans. on Robotics
and Automation 19, 6 (Dec. 2003), 1020–1026.

[60] Li, J., and Xiao, J. Exact and efficient collision detection for a multi-section
continuum manipulator. In IEEE International Conference on Robotics and
Automation (Saint Paul, Minnesota, May 2012).

[61] Lin, M. C., and Gottschalk, S. Collision detection between geometric
models: A survey. In Proc. of IMA Conf. on Mathematics of Surfaces (1998),
pp. 37–56.

[62] Lozano-Pérez, T. Spatial planning: A configuration space approach. In
IEEE Trans. on Computers (Feb. 1983), vol. C-32, pp. 108–120.

[63] Lozano-Pérez, T., and Wesley, M. A. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the As-
sociation for Computing Machinery (ACM) 22, 10 (1979), 560–570.

[64] Lumelsky, V. J., and Stepanov, A. A. Path-planning strategies for a
point mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmica (1987).

128

[65] Mason, M. T. Mechanics of Robotic Manipulation. MIT Press, Cambridge,
MA, Aug. 2001.

[66] Missiuro, P., and Roy, N. Adapting probabilistic roadmaps to handle
uncertain maps. In IEEE International Conference on Robotics and Automation
(May 2006), pp. 1261 –1267.

[67] Miura, J., Uozumi, H., and Shirai, Y. Mobile robot motion planning
considering the motion uncertainty of moving obstacles. In Proceedings. 1999
IEEE Intl. Conf. on Systems, Man, and Cybernetics (1999), pp. 692–697.

[68] Miura, J., Uozumi, H., and Shirai, Y. Mobile robot motion planning con-
sidering the motion uncertainty of moving obstacles. In Proceedings. 1999 IEEE
International Conference on Systems, Man, and Cybernetics (1999), pp. 692–
697.

[69] Murarka, A., Sridharan, M., and Kuipers, B. Detecting obstacles and
drop-offs using stereo and motion cues for safe local motion. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (2008), pp. 702–708.

[70] Nam, Y. S., Lee, B. H., and Kim, M. S. View-time based moving obstacle
avoidance using stochastic prediction of obstacle motion. In IEEE Intl. Conf.
on Robotics and Automation (1996), pp. 1081–1086.

[71] Overmars, M. H. The Gaussian sampling strategy for probabilistic roadmap
planners. In Proc. IEEE Int. Conf. on Robotics and Automation (1999),
pp. 1018–1023.

[72] Page, L., and Sanderson, A. Robot motion planning for sensor-based
control with uncertainties. In IEEE International Conference on Robotics and
Automation (May 1995), vol. 2, pp. 1333 –1340 vol.2.

[73] Pham, T., and Smeulders, A. Object recognition with uncertain geometry
and uncertain part detection. Computer Vision and Image Understanding 99
(2005), 258.

[74] Pivtoraiko, M., and Kelly, A. Differentially constrained mobile robot
motion planning in state lattices. Journal of Field Robotics 26, CMU-RI-TR-
(March 2009), 308–333.

[75] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. Numerical Recipes: The Art of Scientific Computing. Cambridge Uni-
versity Press, Aug. 2007.

[76] Redon, S., Lin, M. C., Manocha, D., and Kim, Y. J. Fast continuous col-
lision detection for articulated models. Journal of Computing and Information
Science in Engineering 5, 2 (2005), 126–137.

129

[77] Roy, N., Burgard, W., Fox, D., and Thrun, S. Coastal navigation-
mobile robot navigation with uncertainty in dynamic environments. In IEEE
International Conference on Robotics and Automation (1999), vol. 1, pp. 35–40.

[78] Scharstein, D. High-accuracy stereo depth maps using structured light. In
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (2003), pp. 195–202.

[79] Schneiderman, H., and Kanade, T. Object detection using the statistics
of parts. Intl. Journal of Computer Vision 56 (2004), 151–177.

[80] Schwarzer, F., Saha, M., and Latombe, J. Adaptive dynamic collision
checking for single and multiple articulated robots in complex environments.
IEEE Trans. on Robotics 21, 3 (2005), 338–353.

[81] Schweikard, A. Polynomial time collision detection for manipulator paths
specified by joint motions. In IEEE Trans. on robotics and automation (1991),
vol. 7, pp. 865–870.

[82] Sharp, G., Lee, S., and Wehe, D. Maximum-likelihood registration of
range images with missing data. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30, 1 (Jan. 2008), 120 –130.

[83] Szeliski, R. Computer Vision: Algorithm and Applications. Springer, 2010.

[84] Takeda, H., Facchinetti, C., and Latombe, J.-C. Planning the motions
of a mobile robot in a sensory uncertainty field. IEEE Trans. Pattern Anal.
Mach. Intell. 16, 10 (1994), 1002–1017.

[85] Thompson, S., and Kagami, S. Stereo vision and sonar sensor based view
registration for 2.5 dimensional map generation. In Intelligent Robots and Sys-
tems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on (Sept. 2004), vol. 4, pp. 3444 – 3449 vol.4.

[86] Thrun, S. In Exploring Artificial Intelligence in the New Millenium, G. Lake-
meyer and B. Nebel, Eds. Morgan Kaufmann, 2002, ch. Robotic mapping: A
survey.

[87] Treuenfels, A. An efficient flood visit algorithm. C/C++ Users J. 12, 8
(1994), 39–62.

[88] Udupa, S. M. Collision detection and avoidance in computer controlled ma-
nipulators. PhD thesis, Pasadena, CA, USA, 1977.

[89] van den Berg, J., Ferguson, D., and Kuffner, J. Anytime path plan-
ning and replanning in dynamic environments. In IEEE Intl. Conf. on Robotics
and Automation (May 2006), pp. 2366–2371.

130

[90] van den Berg, J., and Overmars, M. Planning time-minimal safe paths
amidst unpredictably moving obstacles. In Intl. J. on Robotics Research (2008),
pp. 1274–1294.

[91] Vannoy, J., and Xiao, J. Real-time motion planning of multiple mobile
manipulators with a common task objective in shared work environments. In
IEEE Intl. Conf. on Robotics and Automation (April 2007), pp. 20–26.

[92] Vannoy, J., and Xiao, J. Real-time Adaptive Motion Planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen changes. In
IEEE Trans. on Robotics (2008), vol. 24(5), pp. 1199–1212.

[93] Varadhan, G., and Manocha, D. Accurate Minkowski sum approximation
of polyhedral models. Graphical Models 68, 4 (2006), 343–355.

[94] Vatcha, R., and Xiao, J. Perceived CT-space for motion planning in un-
known and unpredictable environments. In Intl. Workshop on the Algorithmic
Foundations of Robotics (WAFR) (Dec. 2008).

[95] Vatcha, R., and Xiao, J. Discovering guaranteed continuously collision-free
robot trajectories in an unknown and unpredictable environment. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (Oct. 2009).

[96] Vatcha, R., and Xiao, J. An efficient algorithm for on-line determination
of collision-free configuration-time points directly from sensor data. In IEEE
Intl. Conf. on Robotics and Automation (May 2010).

[97] Vatcha, R., and Xiao, J. Practical motion planning in unknown and un-
predictable environment. In 12th International Symposium on Experimental
Robotics (Dec 2010).

[98] Ward, J., and Katupitiya, J. Free space mapping and motion planning in
configuration space for mobile manipulators. In IEEE Intl. Conf. on Robotics
and Automation (2007), pp. 4981–4986.

[99] Widyotriatmo, A., Pamosoaji, A., and Hong, K.-S. Robust config-
uration control of a mobile robot with uncertainties. In Control Conference
(ASCC), 2011 8th Asian (May 2011), pp. 1036 –1041.

[100] Withagen, P., Schutte, K., and Groen, F. Object detection and track-
ing using a likelihood based approach. In Proc. IEEE Int. Conf. on Image
Processing (2003).

[101] Wu, A., and How, J. Guaranteed infinite horizon avoidance of unpredictable,
dynamically constrained obstacles. Autonomous Robots 32 (2012), 227–242.
10.1007/s10514-011-9266-8.

131

[102] Xiao, J., and Vatcha, R. Real-time adaptive motion planning for a contin-
uum manipulator. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(Oct. 2010).

[103] Yang, Y., and Brock, O. Elastic roadmaps: Globally task-consistent motion
for autonomous mobile manipulation in dynamic environments. In Robotics
Science and Systems II (2006), The MIT Press.

[104] Yu, Y., and Gupta, K. An efficient on-line algorithm for direct octree con-
struction from range images. In IEEE Intl. Conf. on Robotics and Automation
(1998), pp. 3079–3084.

[105] Yu, Y., and Gupta, K. Sensor-based probabilistic roadmaps: experiments
with an eye-in-hand system. In Advanced Robotics (2000), pp. 515–536.

[106] Yu, Y., and Gupta, K. C-space entropy: A measure for view planning and
exploration for general robot-sensor systems in unknown environments. In Intl.
J. of Robotics Research (2004), pp. 1197–1223.

[107] Zhu, X., and Goldberg, A. B. Introduction to semi-supervised learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning 3, 1 (2009),
1–130.

[108] Zucker, M., Kuffner, J., and Branicky, M. Multipartite rrts for rapid
replanning in dynamic environments. In IEEE Intl. Conf. on Robotics and
Automation (2007), pp. 1603–1609.

