
HUMAN-CENTRIC COMPUTER VISION FOR THE ARTIFICIAL
INTELLIGENCE OF THINGS

by

Christopher Neff

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2023

Approved by:

Dr. Hamed Tabkhi

Dr. Arun Ravindran

Dr. Ahmed Arafa

Dr. Vasily Astratov



ii

©2023
Christopher Neff

ALL RIGHTS RESERVED



iii

Copyright Notes

In respect to the material included in Chapter 2: © 2019 IEEE. Reprinted, with

permission, from Christopher Neff, Matías Mendieta, Shrey Mohan, Mohammadreza

Baharani, Samuel Rogers, and Hamed Tabkhi, "REVAMP2T: Real-time Edge Video

Analytics for Multi-person Privacy-aware Pedestrian Tracking," in Internet of Things

Journal, vol. 7, no. 4, pp. 2591 - 2602, Nov. 2019, doi: 10.1109/JIOT.2019.2954804.

In respect to the material included in Chapter 3: © 2023 IEEE. Reprinted, with

permission, from Armin Danesh Pazho, Christopher Neff, Ghazal Alinezhad Noghre,

Babak Rahimi Ardabili, Shanle Yao, Mohammadreza Baharani, and Hamed Tab-

khi, "Ancilia: Scalable Intelligent Video Surveillance for the Artificial Intelligence of

Things," in Internet of Things Journal, vol. 10, no. 17, pp. 14940 - 14951, Mar.

2023, doi: 10.1109/JIOT.2023.3263725.

In respect to the material included in Chapter 4: © 2021 Springer Nature. Re-

printed, with permission, from Christopher Neff, Aneri Sheth, Steven Furgurson,

John Middleton, and Hamed Tabkhi , "EfficientHRNet: Efficient and scalable high-

resolution networks for real-time multi-person 2D human pose estimation," in Springer

Journal of Real-Time Image Processing, vol. 18, pp. 1037 - 1049, June 2021, doi:

10.1007/s11554-021-01132-9.

In respect to the material included in Chapter 5: © 2023 Springer Nature. Re-

printed, with permission, from Christopher Neff, Armin Danesh Pazho, and Hamed

Tabkhi, "Real-time online unsupervised domain adaptation for real-world person re-

identification," in Springer Journal of Real-Time Image Processing, vol. 20, Sep.

2023, doi: 10.1007/s11554-023-01362-z.

In reference to IEEE copyrighted material which is used with permission in this

dissertation, the IEEE does not endorse any of the University of North Carolina at

Charlotte’s products or services. Internal or personal use of this material is permitted.

If interested in reprinting/republishing IEEE copyrighted material for advertising or



iv

promotional purposes or for creating new collective works for resale or redistribution,

please go to here1 to learn how to obtain a License from RightsLink.

In reference to Springer copyrighted material which is used with permission in

this dissertation, the Springer does not endorse any of the University of North Car-

olina at Charlotte’s products or services. Internal or personal use of this material is

permitted. If interested in reprinting/republishing Springer copyrighted material for

advertising or promotional purposes or for creating new collective works for resale or

redistribution, please go to here2 to learn how to obtain a License from Springer.

1http://www.ieee.org/publications_standards/publications/rights/rights_link.html
2https://www.springer.com/gp/rights-permissions/obtaining-permissions/882

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882


v

ABSTRACT

CHRISTOPHER NEFF. Human-Centric Computer Vision for the Artificial
Intelligence of Things. (Under the direction of DR. HAMED TABKHI)

This dissertation presents a comprehensive exploration of innovative approaches and

systems at the intersection of edge computing, deep learning, and real-time video

analytics, with a focus on real-world computer vision for the Artificial Intelligence

of Things (AIoT). The research comprises four distinct articles, each contributing to

the advancement of AIoT systems, intelligent surveillance, lightweight human pose

estimation, and real-world domain adaptation for person re-identification.

The first article, REVAMP2T: Real-time Edge Video Analytics for Multi-

camera Privacy-aware Pedestrian Tracking, introduces REVAMP2T, an integ-

rated end-to-end IoT system for privacy-built-in decentralized situational awareness.

REVAMP2T presents novel algorithmic and system constructs to push deep learning

and video analytics next to IoT devices (i.e. video cameras). On the algorithm side,

REVAMP2T proposes a unified integrated computer vision pipeline for detection, re-

identification, and tracking across multiple cameras without the need for storing the

streaming data. At the same time, it avoids facial recognition, and tracks and re-

identifies pedestrians based on their key features at runtime. On the IoT system side,

REVAMP2T provides infrastructure to maximize hardware utilization on the edge, or-

chestrates global communications, and provides system-wide re-identification, without

the use of personally identifiable information, for a distributed IoT network. For the

results and evaluation, this article also proposes a new metric, Accuracy•Efficiency

(Æ), for holistic evaluation of AIoT systems for real-time video analytics based on

accuracy, performance, and power efficiency. REVAMP2T outperforms current state-

of-the-art by as much as thirteen-fold Æ improvement.

The second article, Ancilia: Scalable Intelligent Video Surveillance for the



vi

Artificual Intelligence of Things, presents an end-to-end scalable intelligent video

surveillance system tailored for the Artificial Intelligence of Things. Ancilia brings

state-of-the-art artificial intelligence to real-world surveillance applications while re-

specting ethical concerns and performing high-level cognitive tasks in real-time. An-

cilia aims to revolutionize the surveillance landscape, to bring more effective, intelli-

gent, and equitable security to the field, resulting in safer and more secure communit-

ies without requiring people to compromise their right to privacy.

The third article, EfficientHRNet: Efficient and Scalable High-Resolution

Networks for Real-Time Multi-Person 2D Human Pose Estimation, focuses

on the increasing demand for lightweight multi-person pose estimation, a vital com-

ponent of emerging smart IoT applications. Existing algorithms tend to have large

model sizes and intense computational requirements, making them ill-suited for real-

time applications and deployment on resource-constrained hardware. Lightweight

and real-time approaches are exceedingly rare and come at the cost of inferior accur-

acy. This article presents EfficientHRNet, a family of lightweight multi-person human

pose estimators that are able to perform in real-time on resource-constrained devices.

By unifying recent advances in model scaling with high-resolution feature represent-

ations, EfficientHRNet creates highly accurate models while reducing computation

enough to achieve real-time performance. The largest model is able to come within

4.4% accuracy of the current state-of-the-art, while having 1/3 the model size and

1/6 the computation, achieving 23 FPS on Nvidia Jetson Xavier. Compared to the

top real-time approach, EfficientHRNet increases accuracy by 22% while achieving

similar FPS with 1
3

the power. At every level, EfficientHRNet proves to be more com-

putationally efficient than other bottom-up 2D human pose estimation approaches,

while achieving highly competitive accuracy.

The final article introduces the concept of R2OUDA: Real-world Real-time

Online Unsupervised Domain Adaptation for Person Re-identification. Fol-



vii

lowing the popularity of Unsupervised Domain Adaptation (UDA) in person re-

identification, the recently proposed setting of Online Unsupervised Domain Adapta-

tion (OUDA) attempts to bridge the gap towards practical applications by introducing

a consideration of streaming data. However, this still falls short of truly representing

real-world applications. The R2OUDA setting sets the stage for true real-world real-

time OUDA, bringing to light four major limitations found in real-world applications

that are often neglected in current research: system generated person images, sub-

set distribution selection, time-based data stream segmentation, and a segment-based

time constraint. To address all aspects of this new R2OUDA setting, this paper further

proposes Real-World Real-Time Online Streaming Mutual Mean-Teaching (R2MMT),

a novel multi-camera system for real-world person re-identification. Taking a popular

person re-identification dataset, R2MMT was used to construct over 100 data subsets

and train more than 3000 models, exploring the breadth of the R2OUDA setting to

understand the training time and accuracy trade-offs and limitations for real-world

applications. R2MMT, a real-world system able to respect the strict constraints of

the proposed R2OUDA setting, achieves accuracies within 0.1% of comparable OUDA

methods that cannot be applied directly to real-world applications.

Collectively, this dissertation contributes to the evolution of intelligent surveillance,

lightweight human pose estimation, edge-based video analytics, and real-time unsu-

pervised domain adaptation, advancing the capabilities of real-world computer vision

in AIoT applications.

Keywords: Computer Vision, Deep Learning, AIoT, Video Surveillance, Edge

Computing, Video Analytics, Pedestrian Tracking, Action Recognition, Anomaly De-

tection, Privacy, Ethics, Human Pose Estimation, High-Resolution Networks, Model

Scaling, Real-Time, Lightweight, Person Re-identification, Online Learning, Unsu-

pervised Learning, Domain Adaptation, Real-World, Real-Time, Domain Shift



viii

ACKNOWLEDGEMENTS

I am profoundly grateful for the unwavering support and guidance of my advisor, Dr.

Hamed Tabkhi. His mentorship not only enabled the research within this disserta-

tion but also ignited my passion for graduate studies. The profound impact of his

unwavering commitment, dedication, and inspiration on my academic journey cannot

be overstated. Without him, I would not be where I am today.

I extend my heartfelt appreciation to my esteemed committee members: Dr. Arun

Ravindran, Dr. Ahmed Arafa, and Dr. Vasily Astratov, for their invaluable insights

and contributions to this work.

My academic journey has been enriched by countless individuals, each contributing

in their unique way. I owe sincere thanks to Reza Baharani, Samuel Rogers, Ma-

tias Mendieta, Aneri Sheth, Steve Furgurson, Justin Sanchez, Amrin Danesh Pazho,

Ghazal Alinezhad Noghre, Vinit Kataria, Babak Ardabili, Shanle (Eric) Yao, Jeri

Guido, and Dr. Shannon Reid. Your collaboration, mentorship, and camaraderie

have been instrumental in my growth and success.

I would like to acknowledge the generous support of the National Science Found-

ation (NSF) under Award No. 1831795 and the NSF Graduate Research Fellowship

Award No. 1848727. This funding provided essential resources for conducting the

research presented in this dissertation.

As I move forward in my academic and professional journey, I am deeply aware

that the influence of these remarkable individuals will continue to shape my future en-

deavors. Their contributions have been the cornerstone of my academic achievements,

and for that, I am profoundly grateful.



ix

DEDICATION

In heartfelt gratitude, I extend special thanks to:

My brother and sister-in-law, Sean and Lauren, who have been unwavering pillars

of strength throughout this journey. In the midst of life’s challenges and triumphs,

including loss of our closest family members, they stood by me with resilience and

unwavering support.

To Greg and Elizabeth, true allies and confidants, whose friendship and encourage-

ment have been the cornerstone of my academic pursuit. Without their unwavering

support, I would not have reached this momentous milestone.

I also want to acknowledge my extensive circle of friends, both those I have the

privilege of knowing in person and those I’ve had the pleasure of meeting virtually.

Their unwavering support, camaraderie, and occasional delightful distractions from

the world of academia have nurtured my mental and social well-being throughout this

journey.

As I embark on new horizons and future endeavors, I carry with me the enduring

impact of these remarkable individuals, who have shared in my challenges and cel-

ebrated my victories. Their presence in my life has been an irreplaceable source of

inspiration and strength, and for that, I am profoundly thankful.



x

TABLE OF CONTENTS

LIST OF FIGURES xiv

LIST OF TABLES xvii

LIST OF ABBREVIATIONS xix

CHAPTER 1: Introduction 1

1.1. Motivation 1

1.2. Contributions to the Body of Knowledge 4

CHAPTER 2: REVAMP2T: Real-time Edge Video Analytics for Multi-
camera Privacy-aware Pedestrian Tracking

7

2.1. Introduction 7

2.2. Related Work 9

2.2.1. Pedestrian Detection, Re-Identification, and Tracking 9

2.2.2. IoT Systems for Edge Video Analytics 11

2.3. Privacy Requirements and Threat Modeling 12

2.4. REVAMP2T: Algorithmic Constructs 13

2.4.1. Feature Extractor Network 14

2.4.2. Pedestrians Tracking 16

2.4.3. Integration of Video Analytic Pipeline 17

2.5. REVAMP2T: System Constructs 18

2.5.1. System Hyperparameters and Processing Flow 19

2.5.2. Databases 21

2.5.3. System Communication / Synchronization 22



xi

2.5.4. Computation and Optimization 24

2.6. Experimental Results and Evaluation 25

2.6.1. Algorithm Evaluation 25

2.6.2. System Evaluation 29

2.6.3. Scalability 32

2.6.4. Design Flexibility and Adaptation 34

2.7. Conclusions 35

CHAPTER 3: Ancilia: Scalable Intelligent Video Surveillance for the Ar-
tificial Intelligence of Things

36

3.0. Individual Contributions to Jointly Authored Work 36

3.1. Introduction 38

3.2. Related Work 41

3.3. Ethical Concerns 42

3.4. Ancilia Algorithmic Framework 44

3.4.1. Single Camera Vision Pipeline 44

3.4.2. Multi-Camera Person Re-identification 46

3.4.3. higher Level Tasks 47

3.5. System Design 48

3.5.1. Parallelism 48

3.5.2. Data Batching 49

3.5.3. Local Node 49

3.5.4. Global Node 52



xii

3.6. Experimental Results 52

3.6.1. Algorithmic Core 52

3.6.2. High-level Tasks 54

3.6.3. Real-time System Performance 57

3.6.4. Effect of Batch Size on Real-time Performance 61

3.7. Conclusion 63

CHAPTER 4: Efficient and Scalable High-Resolution Networks for Real-
Time Multi-Person 2D Human Pose Estimation

64

4.1. Introduction 64

4.2. Related Work 66

4.2.1. Top-down Methods 66

4.2.2. Bottom-up Methods 67

4.2.3. Top-down vs Bottom-up 68

4.2.4. Multi-scale High-Resolution Networks 68

4.2.5. Model Scaling 69

4.2.6. Real-Time Pose Estimation 70

4.3. EfficientHRNet 70

4.3.1. Network Architecture and Formulation 70

4.3.2. Compound Scaling Method 74

4.4. Experimental Results 77

4.4.1. Classification for Compact EfficientNet 77

4.4.2. 2D Human Pose Estimation for EfficientHRNet 79

4.4.3. Real-Time Execution Analysis on Edge 82



xiii

4.4.4. Qualitative Analysis 85

4.5. Conclusions 86

CHAPTER 5: Real-Time Online Unsupervised Domain Adaptation for
Real-World Person Re-identification

87

5.1. Introduction 87

5.2. Related Work 90

5.2.1. Style Transfer 90

5.2.2. Target Domain Clustering 91

5.2.3. Online Unsupervised Domain Adaptation 92

5.3. Proposed R2OUDA Setting 92

5.4. Real-World Real-Time Online Streaming MMT 94

5.5. Experimental Results 97

5.5.1. Subset Distribution Selection 101

5.5.2. System Generated Data 102

5.5.3. R2MMT 107

5.6. Conclusion 111

CHAPTER 6: Conclusions 114

REFERENCES 117

Appendix A: Extended Results for Subset Distribution Selection 147

Appendix B: Extended Results for System Generated Data 161

Appendix C: Extended Results for R2MMT 167



xiv

LIST OF FIGURES

FIGURE 2.1: Hierarchical System Overview 7

FIGURE 2.2: Algorithm Pipeline on the Edge 14

FIGURE 2.3: LSTM training: Feeding a sequence of frames and getting
the predicted bounding box predictions

17

FIGURE 2.4: Processing Flow of the Edge 19

FIGURE 2.5: Edge Node to Edge Server Communications 20

FIGURE 2.6: Mapping of Processes to Edge Resources 24

FIGURE 2.7: ResNet-50 single precision and MobileNetV2 half precision
accuracy evaluation on three different benchmarks

27

FIGURE 2.8: Average IoU for each camera on the testing sequences 28

FIGURE 2.9: Precision (IDP) and Recall (IDR) for DeepCC (blue) and
REVAMP2T (orange)

29

FIGURE 2.10: IDF1 Results for Multi-Camera and Single Camera 30

FIGURE 2.11: Efficiency of each test case. 31

FIGURE 2.12: Æ of DeepCC on Titan V and REVAMP2T on Xavier. 32

FIGURE 2.13: Æ Coverage 33

FIGURE 3.1: Conceptual overview of Ancilia. 39

FIGURE 3.2: Ancilia algorithmic details. N local nodes are connected to
a single global node on the edge. The final analyses are transferred
to the cloud node to feed the application on the user device. Multiple
edges may be connected to the could, though this figure only shows
one edge for clarity. BBP , BBO, IDL, P , C, FL, D, FD, IDG, I,
SA, R, and AR refer to bounding boxes for pedestrians, bounding
boxes of objects, local identities, poses, person crops that passed
selection, features from the local node, data from the downstream
tasks, features from the database, global identities, information from
the database, completed statistical analysis, requests from users, and
requested attributes respectively.

45



xv

FIGURE 3.3: A detailed view of system design in Ancilia’s local nodes.
β and δ refer to different batch sizes. λ refers to the queue size. FL

and D represent local features and data received from downstream
tasks respectively.

47

FIGURE 3.4: Throughput of Ancilia with respect to number of nodes
across different crowd densities. Hardware details can be seen in
Tab. 3.4.

55

FIGURE 3.5: Distribution of detections for different crowd densities and
its effect on throughput. Data collected using the Workstation with
a single local node.

60

FIGURE 3.6: Throughput and latency trends with respect to batch size
across different crowd densities. Data collected using Workstation
with a single local node.

62

FIGURE 4.1: Comparison of computational complexity and accuracy
between bottom-up human pose estimation methods measured on
COCO val dataset. X-axis is logarithmic in scale.

66

FIGURE 4.2: A detailed illustration of the EfficientHRNet architecture.
Consisting of a backbone EfficientNet, a High-Resolution Network
with three stages and four branches (denoted by different colors),
and a Heatmap Prediction Network. EfficinetHRNet is completely
scalable, allowing network complexity to be customized for target
applications.

71

FIGURE 4.3: Qualitative results for EfficientHRNet models on
COCO2017 test. Left to right: simple, medium and complex ex-
amples.

84

FIGURE 5.1: System view of Real-World Real-Time Online Streaming
Mutual Mean-Teaching.

92

FIGURE 5.2: Illustration of computation overlap through time. 95

FIGURE 5.3: Results exploring SDS on the hand crafted DukeMTMC-
reid dataset [1] plotted in three-dimensional space. Larger circles
represent larger values of k.

98

FIGURE 5.4: Results exploring SDS on the hand crafted DukeMTMC-
reid dataset [1] plotted in three-dimensional space. Larger circles
represent larger values of k.

99



xvi

FIGURE 5.5: Results exploring SDS on the hand crafted DukeMTMC-
reid dataset [1] showing a two-dimensional view when E = 5. Larger
circles represent larger values of k.

100

FIGURE 5.6: Results exploring the use of system generated data using
DukeMTMC-video [1] plotted in three-dimensional space. Larger
circles represent larger values of k.

103

FIGURE 5.7: Results exploring the use of system generated data using
DukeMTMC-video [1] plotted in three-dimensional space. Larger
circles represent larger values of k.

104

FIGURE 5.8: Results exploring the use of system generated data using
DukeMTMC-video [1] showing a two-dimensional view when E = 5.
Larger circles represent larger values of k.

105

FIGURE 5.9: Distribution of accuracies achieved on DukeMTMC [1] with
R2MMT.

112

FIGURE 5.10: Best results for each system configuration. Dashed lines
(- -) represent standard configurations. Solid lines (–) represent con-
figurations with memory. Green, blue, and purple denote τ values of
15, 20, and 30 respectively.

113



xvii

LIST OF TABLES

TABLE 2.1: System Parameters 20

TABLE 2.2: Training Parameters 25

TABLE 2.3: FPS and Power Consump. of Real-Time Inference 30

TABLE 2.4: Scalability Evaluation Results 32

TABLE 2.5: Design Configuration Analysis 34

TABLE 3.1: Accuracy of Ancilia’s Algorithmic Core networks in isola-
tion. SotA Algorithms represent the highest performance currently
achievable when computation and latency are not a concern.

53

TABLE 3.2: Top-1 and Top-5 accuracies on NTU60-XSub [2] in full and
half throughput modes for PoseConv3D [3] and CTR-GCN [4].

55

TABLE 3.3: AUC ROC, AUC PR, and EER on ShanghaiTech dataset [5]
in full and half throughput modes for GEPC [6] and MPED-RNN
[7].

56

TABLE 3.4: System configurations. Stats are per CPU/GPU of the listed
type.

58

TABLE 3.5: Average throughput and latency. Data collected using the
Workstation with varying local node counts.

58

TABLE 3.6: Effect of different batch sizes on throughput and latency. 63

TABLE 4.1: Efficient scaling configs for EfficientHRNet 74

TABLE 4.2: Compact EfficientNet performance on ImageNet and CIFAR-
100 datasets.

78

TABLE 4.3: Comparisons with SotA bottom-up methods on COCO2017
test-dev dataset. Numbers for HRNet come from a bottom-up ap-
proach outlined in [8].

80

TABLE 4.4: Comparisons with bottom-up methods on COCO2017 val
dataset. Metrics and accuracy for HRNet come from a bottom-up
approach outlined in [8] (FPS not reported). Lightweight OpenPose
numbers were reported on the Intel NUC 6i7KYB. All other FPS
results were preformed on the Nvidia Jetson NX Xavier [9].

83



xviii

TABLE 4.5: Æ comparisons with lightweight bottom-up approaches.
Lightweight OpenPose reported on Intel NUC 6i7KYB (45W). All
others Nvidia Jetson NX Xavier (15W).

83

TABLE 5.1: Challenges of Real-World Applications and if they are ad-
dressed in the UDA, OUDA, and R2OUDA settings. † Streaming
data is simulated.

87

TABLE 5.2: Distribution of accuracies achieved on DukeMTMC [1] with
R2MMT.

110

TABLE 1: Extended results for Subset Distribution Selection. Time
is in format h:mm:ss.

147

TABLE 2: Extended results for System Generated Data. Time is in
format h:mm:ss.

161

TABLE 3: Extended results for R2MMT, standard configuration. Time
is in format h:mm:ss.

167

TABLE 4: Extended results for R2MMT, configuration with memory.
Time is in format h:mm:ss.

236

TABLE 5: SDS time for each camera at each time segment in R2MMT.
Time is in format h:mm:ss.

302

TABLE 6: Distribution of person crops for each camera at each time
segment.

345



xix

LIST OF ABBREVIATIONS

2D Two Dimensional.

5G Fifth Generation of cellular networks.

Æ Accuracy•Efficiency.

ADG Automated Dataset Generation.

AI Artificial Intelligence.

AIoT Artificial Intelligence of Things

AP Average Precision.

AUC Area Under the Curve

AWS Amazon Web Services

BN Batch-Normalization.

CMC Cumulative Matching Characteristics.

CMU Carnegie Mellon University.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CUDA Compute Unified Device Archetecture.

DA Domain Adaptation

DBSCAN Density-based Spatial Clustering of Applications with Noise

DeConv Deconvolution

EER Equal Error Rate



xx

FLOPs Floating Point Operations.

FPS Frames per Second.

GAN Generative Adversarial Netwok

GCN Graph Convolutional Network.

GeMM General Matrix Multiply.

GPU Graphical Processing Unit.

GUI Graphical User Interface.

ID Identity.

IDF1 Identity F1-score.

IDP Identity Precision.

IDR Identity Recall.

IoT Internet of Things.

IoU Intersection Over Union.

LR Learning Rate.

LSTM Long Short-Term Memory.

LTE Long-Term Evolution.

mAP Mean Average Precision.

MMT Mutual Mean-Teaching

MSE Mean Squared Error.

MTMC Multi-Target Multi-Camera.



xxi

ONNX Open Neural Network Exchange.

ONNX Open Neural Network Exchange

OUDA Online Unsupervised Domain Adaptation

Params Parameters

PII Personally Identifiable Information.

PNG Portable Network Graphics.

PoE Power over Ethernet.

PR Precision-Recall

R2MMT Real-world Real-time Mutual Mean-Teaching

R2OUDA Real-world Real-time Online Unsupervised Domain Adaptation

RAM Random Access Memory

ReID Re-Identification.

ReLU Rectified Linear Unit.

REVAMP2T Real-time Edge Video Analytics for Multi-person Privacy-aware Ped-

estrian Tracking.

RGB Red Green Blue.

RMPE Regional Multi-Person Pose Estimation

RNN Recurrent Neural Network.

ROC Region of Convergence

RoI Region of Interest.



xxii

RW-GCN Real-World Graph Convolutional Network.

SDS Subset Distribution Selection

SGD Stochastic Gradient Descent.

SoC System on Chip.

SotA State-of-the-Art.

SQL Structured Query Language.

ST-GCN Spatial-Temporal Graph Convolutional Network.

TCP Transmission Control Protocol.

UDA Unsupervised Domain Adaptation

VRAM Video Random Access Memory



CHAPTER 1: Introduction

1.1 Motivation

In the ever-evolving landscape of technology, the advent of the Internet of Things

(IoT) has ushered in a new era of computational challenges, punctuated by the scarcity

of bandwidth resources and an unwavering demand for low-latency responsiveness.

At the forefront of this transformation stands edge computing, complemented by the

concept of fog computing [10], which collectively define a paradigm shift towards

cooperative computation at the network’s edge [11, 12]. However, the convergence

of these technologies finds its true purpose in the realm of ambient computer vision

and real-time video analytics. These are the domains where human-like vision pro-

cessing across vast geographic areas has become not just a technical aspiration, but an

imperative for applications ranging from smart cities to surveillance [12, 13, 14, 15].

The stage for this transformation is set by the remarkable advances in machine

learning, especially the realm of deep learning, which have propelled the development

of sophisticated video analytics and surveillance technologies. These encompass an

array of applications, from license plate recognition to the intricate domains of facial

recognition and pedestrian tracking. Historically, these applications relied heavily on

a cloud computing paradigm, where video collection and processing were concentrated

on centralized servers. Yet, this paradigm introduces pressing technical and ethical

concerns.

From a technical perspective, the cloud-based approach imposes significant bur-

dens. It leads to the massive recording, transmission, and storage of raw video data,

incurring substantial costs and imposing constraints on scalability. Equally, it falls

short in addressing the critical requirements of real-time and time-sensitive video



2

analytics, where split-second decisions can make all the difference.

On the ethical front, the indiscriminate capture of vast volumes of personal in-

formation has elicited substantial resistance from privacy advocates. This has, in

turn, culminated in outright bans on facial recognition and tracking technologies in

numerous U.S. cities [16], as well as heightened regulatory scrutiny in the European

Union [17]. In response, there is a growing consensus that a holistic approach is im-

perative. It must encompass the realms of IoT system design, privacy preservation,

computation mapping, communication, and system-level synchronization, all the way

from the inception of algorithms to their real-time execution.

This is the backdrop against which REVAMP2T (Real-time Edge Video Analytics

for Multi-person Privacy-aware Pedestrian Tracking) emerges as a beacon of innov-

ation. This solution envisions a future where human-like vision processing occurs

seamlessly and securely at the network’s edge, without infringing upon individuals’

privacy. It stands as a testament to our commitment to striking the delicate balance

between real-time tracking, privacy preservation, and computational efficiency.

Yet, REVAMP2T is just one facet of our mission. The demand for effective sur-

veillance to protect our cities, citizens, and vital infrastructure remains unabated. As

incidents in Itaewon, South Korea [18], and Moore County, North Carolina [19], have

shown, the need for proactive, intelligent surveillance systems is undeniable. In many

of these cases cameras are already prevalent in the target environment, but installing

edge based processing on top of the existing infrastructure is not a feasible solution.

In this context, there is a need for a scalable solution that can run in the fog - that

is a centralized location on premise located between the edge and the cloud. In this

context, Ancilia emerges as an innovative surveillance system, designed to offer real-

time situational awareness and threat detection using scalable fog intelligence that

can retrofit to existing installations. Ancilia leverages advancements in computer

vision to perform high level cognitive tasks, such as action recognition and anomaly



3

detection, advancing the field towards truly autonomous surveillance.

For such applications, human motion data is critical. In REVAMP2T, OpenPose

[20] was used to collect human pose data, but its large computational demands dom-

inated the system design and greatly limited performance on edge devices. In Ancilia,

the much smaller HRNet [21] was used, but as a top-down method it scaled poorly

with the number of people in the scene, becoming a performance bottleneck in high

traffic environments. This highlights the need for real-time multi-person pose estim-

ation that is both lightweight enough to run at the IoT edge and accurate enough

to provide quality data to downstream tasks. It is here that EfficientHRNet enters

the arena, aiming to bridge the gap by delivering real-time, lightweight human pose

estimation models that rival the accuracy of state-of-the-art approaches.

Lastly, person re-identification (ReID) emerges as a pivotal task with applications

spanning video surveillance, public safety, and smart health [22]. While deep learning

has elevated accuracy to remarkable levels, the challenge remains in adapting these

models to real-world scenarios riddled with domain shift and streaming data com-

plexities. Models trained on datasets have greatly diminished accuracy in real-world

scenarios, due to the highly context specific nature of person re-identification. Manu-

ally labeling data for each new environment is a monumentally expensive and prac-

tically infeasible task, while current unsupervised methods have diminished accuracy

compared to supervised approaches. Online unsupervised domain adaptation shows

promise, but current method fail to account for the many challenges of real-world

implementation. R2OUDA, or Real-World Real-Time Online Unsupervised Domain

Adaptation, steps up to address these domain adaptation challenges in the dynamic

context of streaming data, aligning our research more closely with the demands of

practical applications.

Collectively, these research efforts weave the narrative of an evolving Computer

Vision landscape in the Artificial Intelligence of Things (AIoT). It is a landscape



4

that demands not only technological prowess but also a profound commitment to

ethics, privacy, and real-world feasibility. As we confront the complexities of AIoT

algorithmic and system design and the imperative of safeguarding privacy, we seek to

pave the way for an interconnected, intelligent, and secure future. It is a future where

the boundaries of possibility are redrawn by innovation, one algorithm at a time.

1.2 Contributions to the Body of Knowledge

Overall, this dissertation encompasses a broad range of transformative research,

each contributing significantly to the evolving landscape of the Artificial Intelligence of

Things (AIoT). The following contributions represent the key findings and innovations

presented in this work:

• This dissertation introduces the novel Real-time Edge Video Analytics for Multi-

camera Privacy-aware Pedestrian Tracking, or REVAMP2T. This innovative

system achieves multi-camera pedestrian tracking without transferring raw video

or personally identifiable information. REVAMP2T prioritizes privacy rights

and complies with recent EU legislation, generating unique pedestrian identities

for tracking and safeguarding privacy. It demonstrates exceptional pedestrian

re-identification accuracy, competing with the state-of-the-art while operating

at significantly higher real-time frames per second (FPS) and lower power con-

sumption. The novel metric Accuracy•Efficiency (Æ) is introduced to balance

algorithmic accuracy and system efficiency, highlighting REVAMP2T’s scalab-

ility and privacy-awareness in multi-camera IoT environments.

• This work presents Ancilia, the first end-to-end scalable intelligent video surveil-

lance system designed to perform high-level cognitive tasks in real-time. Ancilia

leverages existing IoT camera ecosystems, processing video data on the edge to

minimize latency and privacy concerns associated with cloud computing. It

addresses ethical concerns by strictly avoiding the storage of personally identifi-



5

able information and invasive techniques like facial recognition. Ancilia focuses

on pose and locational information, contributing to unbiased surveillance. Em-

pirical evaluations demonstrate Ancilia’s capability to achieve state-of-the-art

results, delivering high-level cognitive tasks with minimal accuracy deviation.

Ancilia serves as a privacy-conscious, effective, and scalable solution for real-

world intelligent surveillance.

• This dissertation introduces EfficientHRNet, a family of lightweight scalable net-

works for high-resolution and efficient real-time bottom-up multi-person pose

estimation. EfficientHRNet combines the principles of EfficientNet and HR-

Net to provide near-state-of-the-art human pose estimation while being more

computationally efficient than other bottom-up methods. It achieves higher

accuracy with lower computational complexity and parameter requirements,

improving real-time performance. Empirical evaluations on the COCO dataset

demonstrate EfficientHRNet’s competitive accuracy and efficiency, highlighting

its suitability for resource-constrained edge devices.

• To bridge the gap between research and real-world applications, this work intro-

duces the setting of Real-World Real-Time Online Unsupervised Domain Ad-

aptation (R2OUDA). R2OUDA addresses the unique challenges of real-world

applications, considering algorithmic generation of person images, data distri-

bution selection, time-based data streams, and segment-based time constraints.

Real-World Real-Time Online Streaming Mutual Mean-Teaching (R2MMT) is

proposed as an end-to-end multi-camera system designed for real-world person

re-identification within the R2OUDA setting. R2MMT captures the complex-

ities of real-world applications, achieving high accuracy while accommodating

noisy data and real-time constraints. Exhaustive experimentation demonstrates

R2MMT’s potential to meet the demands of real-world applications, achieving



6

highly competitive accuracy within the R2OUDA setting.

In summary, this dissertation contributes significantly to the evolving field of Com-

puter Vision for the AIoT by introducing novel technologies and methodologies in

privacy-aware tracking, intelligent surveillance, lightweight human pose estimation,

and real-world domain adaptation for person re-identification. These contributions

offer innovative solutions, address ethical concerns, and enhance the efficiency of

real-time applications, providing valuable insights for future research and real-world

applications.



CHAPTER 2: REVAMP2T: Real-time Edge Video Analytics for Multi-camera

Privacy-aware Pedestrian Tracking

2.1 Introduction

The emerging wave of Internet of Things (IoT), scarcity of bandwidth resources,

and tight latency awareness is pushing system designers to extend cloud computing

to the edge of the network. Edge computing (and also fog computing [10]) refers to

a group of technologies allowing cooperative computation at the edge of the network

[11, 12]. Ambient computer vision and real-time video analytics are the major classes

of applications that requires edge computing for human-like vision processing over a

large geographic area [12, 13, 14, 15].

Edge 0 Edge N-1

Zone 0

Edge 0 Edge N-1

Zone k

Edge 0 Edge N-1

Zone M-1

Edge Server k

Edge Server M-1Edge Server 0

Figure 2.1: Hierarchical System Overview

Recent advances in machine learning, particularly deep learning, have driven the

development of more advanced video analytics and surveillance technologies. This



8

includes everything from simple license plate scanners that search for stolen vehicles,

to facial recognition and pedestrian tracking. These applications often rely on a

cloud computing paradigm for mass video collection and processing on a centralized

computing server. The cloud computing paradigm introduces significant technical and

social/ethical concerns for such applications. On the technical side, cloud computing

leads to mass recording and storage of raw video data, which result in significant costs

and limits scalability. At the same time, cloud computing is not applicable to many

inherently real-time and time-sensitive video analytics.

On the social perspective, the broad net cast by typical surveillance approaches

means that large amounts of personal information are incidentally collected and

stored. This has led to significant push-back by privacy advocates against any ex-

pansions to video surveillance systems As an example, multiple cities in the US have

imposed bans on all deployment of facial recognition and tracking technologies [16].

European Union regulators are also considering new restrictions on AI-driven sur-

veillance [17]. To address both technical and ethical concerns, novel approaches are

required to address both IoT systems design and privacy challenges in a holistic man-

ner across entire computing stack from algorithm design to computation mapping,

communication, and system-level synchronization.

This paper introduces novel Real-time Edge Video Analytics for Multi-camera

Privacy-aware Pedestrian Tracking, or REVAMP2T. REVAMP2T is able to track ped-

estrians across multiple cameras without ever transferring raw video or other forms of

personally identifiable information. Fig.2.1 presents our proposed REVAMP2T IoT

system. Each IoT device (edge nodes) contains cameras equipped with the NVIDIA

AGX Xavier [23] embedded platform, running a deep learning based video analytics

pipeline, for real-time pedestrian detection and tracking over streaming pixels. In

keeping with the concept of the "right to be forgotten" that was recently enshrined

in EU law, our system does not rely on a static identity database. Instead, unique



9

identities are generated when pedestrians first enter the view of a camera in our sys-

tem and forgotten when those individuals are no longer being actively tracked by any

part of our system.

Overall, REVAMP2T achieves a pedestrian re-identification accuracy of 74.8%

(only 4.3% below the current state-of-the-art [24]) on the DukeMTMC dataset [25],

while achieving more than two times the real-time FPS and consuming 1/5th of the

power compared to [24]. A balance was struck between algorithmic Accuracy and sys-

tem Efficiency, measured by Accuracy•Efficiency (Æ). Our system has high scalability

potential in a multi-camera IoT environment while never sacrificing personal privacy.

2.2 Related Work

2.2.1 Pedestrian Detection, Re-Identification, and Tracking

With the rapid advancements made in deep learning, a plethora of work has been

published on pedestrian detection. Such models include region proposal networks

like Faster-RCNN [26], single shot detectors like SSD [27] and YOLO [28], as well

as pose-estimation models like DeeperCut [29] and OpenPose [20]. When analyz-

ing these algorithms in light of edge-capable real-time performance, MobileNet-SSD,

TinyYOLOv3, and OpenPose show promising results.

The heart of pedestrian tracking is consistent re-identification (ReID) of those

pedestrians throughout the frames of videos across multiple cameras. Similarly, on

the re-identification side, recent methods leverage CNNs to extract unique features

among persons [30, 31, 32, 33, 34, 35, 36, 37]. The work in [38] learns the spatial

and temporal behavior of objects by translating the feature map of the Region of

Interest (RoI) into an adaptive body-action unit. [39] uses bidirectional Long-Short-

Term-Memory (LSTM) neural networks to learn the spatial and temporal behavior of

people throughout the video. Triplet loss [40, 41, 42] is another promising technique

to train the network with the goal of clustering classes in a way that IDs with the

same type have minimum distance among each other, while examples from different



10

categories are separated by a large margin.

Pedestrian tracking systems often rely on prediction models to create insight on

the changes in movement over time and empowers object re-identification. Object

tracking has been tried using spatial masking and Kalman filter techniques for single

and multiple object tracking [43, 44, 45]. In contrast, there is an interest in leveraging

LSTM networks for prediction and tracking. One pronounced example is ROLO

[46], which uses YOLOv1 as its feature extractor, combined with LSTMs. Similarly,

[47] uses VGG-16 for feature extraction and inputs the 500x1 feature vector into an

LSTM. LSTM networks have been shown to provide lower Mean Squared Error in

single object and fewer ID switches in multi-object tasks. However, the approaches

in [47] and [46] often show very low accuracy as they are not customized for human

objects.

Overall, the current state of pedestrian tracking algorithms struggle with limited

focus and lack of privacy preservation. First, they look at the problem of pedestrian

tracking in isolation, whether solely by detection, only re-identification using image

crops, or just tracking with trajectories. However, these approaches do not analyze

the problem in a holistic manner, which would require designing a pipeline to under-

stand, integrate, and correlate these three functions into a single intelligent system.

Second, the idea of privacy preservation and online functionality are lost with this

narrowly focused approach. The previous works typically rely on the storage of large

time segments of video data or image crops, degrading privacy preservation. Sim-

ilarly, many works propose facial recognition techniques [48, 49, 50, 51, 52], which

also gravely compromises the privacy of tracked persons, requiring the pre-loaded and

long-term storage of personally identifiable information like a facial database. At the

same time, existing approaches typically analyzes the data offline with the ability

to move forward and backward in time to maximize their algorithm accuracy scores,

making edge deployable operation of these approaches impractical. In contrast to



11

existing work, this article proposes a shift to non-personal and data private pedes-

trian tracking, improving upon our previous work in re-identification [53] and LSTM

tracking [54] for a holistic algorithm pipeline and fully edge capable design.

2.2.2 IoT Systems for Edge Video Analytics

The concept and motivation behind edge computing has been described in a num-

ber of recent publications [10, 12, 13, 14, 15, 55, 56, 57, 58]. However, there are very

few works that present a distributed IoT system for video analytics and real-time

tracking. [59] proposes a basic system framework for vehicle detection and tracking

across multiple cameras. The approach uses positional matching for re-identification,

relying on GPS coordinates, known distances, and time synchronization between cam-

eras. The Gabriel project from CMU [60] is a wearable cognitive assistance system

where the images captured by a mobile device are processed by the edge node to

analyze what the user is seeing, and provide the user with cues as to what is in the

scene (for example, recognizing a person). In the VisFlow project from Microsoft,

Lu et al. [61] describe a system that can analyze feeds from multiple cameras. In

particular, they describe a dataflow platform for vision queries that is built on top

of the SCOPE dataflow engine, that offers general SQL syntax, and supports ad-

ded user-defined operators such as extractors, processors, reducers, and combiners.

[62] proposed a method for single camera multi-target tracking in terms of the Bin-

ary Integer Program, and can incur online, real-time results on hardware. However,

the system does not scale to multi-camera systems. The current state-of-the-art in

Multi-Target Multi-Camera (MTMC) systems is DeepCC [24]. This approach uses

OpenPose for detections, a deep learning triplet loss ReID network for visual data

association, and trajectory tracklets.

In contrast to Gabriel, REVAMP2T targets machine vision at the edge involving

multiple cameras distributed across a geographical area. Unlike VisFlow, where all

processing is done at the cloud, REVAMP2T performs a considerable amount of the



12

processing at the edge nodes (next to the camera) by custom-designed deep learning

based vision engines, thereby decreasing bandwidth requirements. This also allows

REVAMP2T to protect the privacy of the tracked individuals, On the other hand,

cloud-based systems must transfer personally identifiable information across large,

interconnected networks and store that information in the cloud, where it is all too

vulnerable. Additionally, the proposed edge vision system scales easily to a large

number of cameras distributed over a wide geographic region.

REVAMP2T accomplishes all these tasks online, in real-time, on low-power edge

devices.

2.3 Privacy Requirements and Threat Modeling

This section describes the privacy threat models which REVAMP2T is designed

to address. In safeguarding privacy, we wish to protect the identities and Personally

Identifiable Information (PII) of the individuals being viewed by our system. This

is most commonly in the form of raw image data, but can also refer to meta-data

that can be used to determine the race, gender, nationality, or even identity of an

individual. There are three main threats to this that we attempt to address:

• The external threat of someone getting unintended access to network commu-

nications and retrieving image data or Personally Identifiable Information (PII).

• The internal threat of someone with authorized access to the system viewing

image data or PII - even someone who is supposed to have access to the system

should not be able to discern the identities of individuals or have access to their

personal information.

• The physical threat of someone getting physical access to the edge device.

To safeguard against these threats, we impose two major policies for designing

REVAMP2T:



13

(1) REVAMP2T will not store any image data or transfer it across the network.

As soon as the image is processed on the edge node, it is destroyed. This protects

any PII in the images from being viewed by anyone with access to the system. Even

with direct access to the edge node, image data never touches non-volatile memory,

so accessing it is impossible without fundamentally changing the semantics of our

system.

(2) REVAMP2T re-identification algorithm will work on an encoded feature repres-

entation of an individual (without using facial recognition algorithms). These features

represent the visual and structural attributes of an individual, but can not be inter-

preted by humans and has zero meaning outside the constraints of our system. This

means that even if a person gains access to this feature representation, intended or

otherwise, they can not learn anything about the appearance or identity of the indi-

vidual it was derived from. By utilizing these feature representations, REVAMP2T

is able to focus on differentiation between people rather than personal identification.

This is in contrast to common methods that rely on facial recognition or other PII

[48, 49, 50, 51, 52].

We design REVAMP2T, with respect to defined privacy protection policies. Sec-

tion 2.4 and Section 2.5 present algorithmic constructs and IoT system design of

REVAMP2T.

2.4 REVAMP2T: Algorithmic Constructs

This section presents algorithmic constructs to enable real-time pedestrian re-

identification and tracking while satisfying our privacy model detailed in Section 2.3.

Figure. 2.2 outlines the full algorithmic pipeline. The pipeline consists of three

primary phases: (1) Detection, (2) Re-identification, and (3) Tracking and Predic-

tion. For the detection part, we chose OpenPose [20] from the CMU Perceptual Com-

puting Lab. OpenPose is a pose prediction framework that uses part affinity fields

to understand the image input and provide person detections with marked keypoint



14

OpenPose

F0 F1 F2 …. FjF0 F1 F2 …. Fj

IoUIoU

Ft-Ext.Ft-Ext.

Cell

LSTM

Cell

LSTM

Spatial Filtering 
Candidate

Spatial Filtering 
Candidate

L2-norm
R.R

L2-norm
R.R

F0 F1 F2 …. FjF0 F1 F2 …. Fj

F0 F1 F2 …. FjF0 F1 F2 …. Fj

F0 F1 F2 …. FjF0 F1 F2 …. Fj

t+1
t+2

t+5

t+1
t+2

t+5

p0 p1

ID assignmentID assignment

Update Local 
Database

Update Local 
Database

t
t+1

t+5

t
t+1

t+5

t
t+1

t+5

Local Database
<bboxes>

t
t+1

t+5

t
t+1

t+5

Local Database
<bboxes>

F0 F1 F2 …. FjF0 F1 F2 …. Fj

F0 F1 F2 …. FjF0 F1 F2 …. Fj

F0 F1 F2 …. FjF0 F1 F2 …. Fj

F0 F1 F2 …. Fj

F0 F1 F2 …. Fj

F0 F1 F2 …. Fj

Local Database
<FV>

F0 F1 F2 …. Fj

F0 F1 F2 …. Fj

F0 F1 F2 …. Fj

Local Database
<FV>

Figure 2.2: Algorithm Pipeline on the Edge

locations. In addition, it provides keypoints that reveal the motion of the human

body, making them useful for motion prediction and action recognition. In the re-

identification portion, discriminative features are generated for detection comparison

and matching in the Local Database. Once the re-identification has been completed,

an LSTM network is applied to predict future positions of known detections. The

rest of this section discusses the technical details of our proposed re-identification,

tracking, and integration.

2.4.1 Feature Extractor Network

The core of the re-identification is the feature extraction network to extract dis-

criminative features from each detection, represented by the Ft-Ext. box in Fig-

ure. 2.2. For this task, a deep convolution network had to be developed for accurate,



15

real-time performance. Most deep convolution networks have a massive number of

parameters and operations, which makes them computationally expensive for use

in mobile and embedded platforms. MobileNet-V1 [63] and MobileNet-V2 [64] are

two developed light-weight deep convolution networks which effectively break down

a standard convolution into a depth-wise and point-wise convolution to decrease the

network parameters and operations. MobileNet-V2 further improved the MobileNet-

V1 architecture by adding linear bottleneck layers and inverted residual connections.

In this article, we use the MobileNet-V2 model and change the fully connected layer

to a 2D average pooling with the kernel size of (8, 4) in order to make the output of

the network a 1x1280 vector as the embedded appearance features. We also use the

triplet loss function [42] to train the MobileNet-V2 for extraction of discriminative

features based on person appearance. The underlying architecture of a triplet loss

network is consisted of three identical networks which transform the cropped RoI into

embedding on a lower dimensional space. One RoI is the anchor image, the second

is a positive sample of the anchor and third is a negative sample. The basic concept

here is to minimize the distance between the anchor and the positive samples and

maximize the distance between the anchor and the negative samples in the lower

dimensional embedding space. To facilitate such learning, a suitable loss function is

used after the embeddings are extracted from the RoIs:

Loss =
n∑

i=1

[
α + ∥fa

i − fp
i ∥

2 − ∥fa
i − fn

i ∥
2
]
+
, (2.1)

where α is margin, fa, fp, and fn are embedded appearance features of the anchor,

positive, and negative samples for the class i, respectively. Minimizing Loss function

will force all samples of class i to be inside of hypersphere of radius α. The dimension

of the hypersphere is equal to the size of the network output (1280 for MobileNet-V2).



16

To further improve the performance of MobileNet-V2, we have assigned error-friendly

operations, such as convolution and General Matrix Multiply (GeMM) operations, to

half precision which is 16-bit floating point accuracy and applied mixed precision

training [65] to minimize the error caused by half precision operations.

2.4.2 Pedestrians Tracking

After the re-identification process, we send the current detections to the LSTM

network to get their respective bounding box predictions for the coming five frames.

In this way, we can handle miss-detections that the detection network might suffer

as it is running at the edge (lower detection network resolution). At the same time,

we are able to handle short-term occlusions as we know the position of the occluded

pedestrian and can ReID them once they are back in the scene.

To efficiently train our LSTM, we chose the DukeMTMC [25] dataset for training

the module as it focuses on pedestrian tracking. The dataset involves multiple targets,

and we curate single target instances from the dataset so that we do not involve the

re-identification pipeline for the training phase. This results in the network being

trained on single instances and carrying out inference on multiple targets. Also, using

this technique helps us to re-use the same model parameters for multiple pedestrians

when predicting their future positions, saving us redundant computation and making

our LSTM tracking module scalable. We leverage the sequence learning capabilities

of LSTM by providing it with consecutive frame keypoints of a set sequence length

and minimizing the mean-squared error between the obtained predictions and the

ground-truth positions of the next five frames.

Fig 2.3 shows our LSTM module in detail. We provide it with the keypoints of

three (our sequence length) consecutive frames and send the last step output to the

fully-connected layer which encodes these keypoints to the bounding box position of

the pedestrian for the next five frames. The size of our trained LSTM model is under

1.5 MB, making it suitable to run on edge devices.



17

LSTM LSTM LSTM

t=1 t=2t=0

Final Predictions

Frame 1 Frame 2 Frame 3

Keypoint 
inputs

Sequence Length

Fully-
connected

O
u

tp
u

t =
 4

 X
 n

u
m

b
e

r o
f fu

tu
re

 ste
ps

X1

     Y1

      W1

      H1

X1

     Y1

      W1

      H1

     X5

     Y5

      W5

      H5

     X5

     Y5

      W5

      H5

Keypoint 
Output

Figure 2.3: LSTM training: Feeding a sequence of frames and getting the predicted
bounding box predictions

2.4.3 Integration of Video Analytic Pipeline

In order for the entire re-identification task to be accomplished on the edge, these

modules must be integrated seamlessly together. Referring back to Figure. 2.2, a

frame is inputted from the camera feed directly into the detection network. The

resulting detections are received, scaled to the appropriate size and aspect ratio,

and batched through the feature extractor (FT-Ext. box, Figure. 2.2). The output

of this network provides the encoded 1x1280 Feature Vector for each detection. In

parallel, spatial filtering is being done on the Local Database (southern portion of

Figure. 2.2). For each detection, a subset of candidate matches are chosen based

on IoU with last known or predicted bounding boxes from previous Local Database

entries. The intuition behind this filtering mechanism is to ensure that detections are

matched with entries that not only match in the embedded space (Feature Vector),

but also in location and trajectory. Because the entire pipeline is running many times

per second, the likelihood of a pedestrian traversing a substantial amount of distance

or drastically changing trajectory between processed frames is low. Therefore, we

avoid including entries that do not make sense from a positional standpoint in the

candidate pool for ReID on a new detection.



18

Within the subset of candidates, the L2-norm operation can be done between Fea-

ture Vectors to differentiate between entries, and make final matching decisions using

a re-ranking approach to ensure optimal ID assignment (L2-norm R.R box in Fig-

ure. 2.2). As described above, the feature extraction network was trained to maximize

the euclidean distance between Feature Vectors of different pedestrians, and minim-

ize the distance between vectors of the same pedestrian. This training and inference

methodology provides a privacy-aware approach to ReID, as per our threat models.

Rather than using specialized, personally identifiable blocks of information to con-

tinually re-identify a pedestrian, our model simply encodes the current visual features

of a detection to an abstract representation, and focuses on differentiation between

entries rather than personal identification. Once all detections in the scene are as-

signed, the LSTM described previously takes in the detection keypoints and generates

predicted bounding boxes for the next five time intervals. Finally, the Local Database

is updated with assigned labels, keypoints, Feature Vectors, and generated predictions

from the processed frame.

2.5 REVAMP2T: System Constructs

Creating algorithms that can effectively solve issues while running on low-power

devices is of vital importance to enable inference on the edge. However, there are many

system-level considerations that must be taken into account when developing a robust

end-to-end system. How data flows between algorithms, when and how to utilize

said algorithms, how to handle communications between the edge node and edge

server, and how to map and optimize processes to and for the underlying hardware

available on the edge. All of these are system-level design decisions that greatly

impact the efficiency and viability of the end-to-end system. With REVAMP2T’s

focus on privacy, it was important that the IoT system was designed around never

storing any personally identifiable information. Algorithmic selections and the design

of the system’s processing flow hinged around that constraint.



19

Valid 
Detection?

More 
Detections

?

Check Next 
Detection

Extract 
Features
and IoU

Find 
Matches

Matches 
Found?

Assign New 
ID

Store in 
Candidates 

Table

Store in 
Local 

Database

Send to 
Server for 

Global Re-ID

Keypoint 
Extractor

no

yes

yes

no

Input Image

Detections
Candidate 

Table

Local 
Database

Find Best 
Match

Update 
Local 

Database

Match 
Found?

More 
Candidates

?

Generate 
Predictions

Generate 
Output 
Image

Output Image

yes

no

no

yes

Processing 
Flow

Load/Store

Processing 
Flow

Load/Store

no

yes

Figure 2.4: Processing Flow of the Edge

2.5.1 System Hyperparameters and Processing Flow

Figure. 2.4 shows the logical processing flow of one frame of data on the edge, be-

ginning at when the image is extracted from the camera to when the final output is

displayed on the edge device. First, the image is run through the keypoint extractor,

which outputs a vector of detections. To remove false detections, each detected ped-

estrian should have a minimum number of keypoints equal to θkey, and each of those

keypoints a confidence value of at least θconf .

Table 2.1 presents the system configurable hyperparameters. For every valid detec-



20

Table 2.1: System Parameters

Parameter Description
θkey Minimum keypoints for valid detection
θconf Confidence threshold for valid keypoint
θeuc Euclidean threshold with IoU
βeuc Euclidean threshold without IoU
θIoU IoU threshold for updating Feature Vector
D̄ Detection from keypoint extractor
V̄ Valid Detections
DB
∧

Local database
C
∧

Candidate matrix
ζ Global variable to keep track of new ID

Listen
Store data in 
Recv Buffer

Recv 
Buffer

Send 
Buffer

Recv 
Buffer 

Empty?

Get FV from 
Recv Buffer

no

Find Lowest 
Euc Distance

Euc Dist 
< Euc 

Thresh?

Add to 
Database

Update 
Database

Give re-ID to 
Send Buffer

no

Global
Database

Send 
Buffer 

Empty?

Get re-ID from 
Send Buffer

Send re-ID to 
Edge Node

no

yes

yes

Listen
Store data in 

RecvQ

SendQ 
Empty?

Get data 
from SendQ

Send data to 
Edge Server

no
yes

SendQ

RecvQ

Edge Node

Edge Server

yes

Processing Flow Load/Store Unique ThreadProcessing Flow Load/Store Unique Thread

TCP/IP
Socket

over WiFi

Figure 2.5: Edge Node to Edge Server Communications

tion, all possible matches for ReID are gathered from the Local Database, as discussed

in Section 2.4.3. When a potential match is found, the detection, database entry in-

dex, and the Euclidean Distance between the two are stored in the Candidate Table.

If no potential matches were found for a detection, it is considered to be a new per-

son, assigned a new Local ID, stored in the Local Database, and sent to the server

for Global ReID.

After all detections have been processed and the Candidate Table filled, the ReID

processing is completed and IDs assigned, as shown in Algorithm 2. The lowest

Euclidean Distance score in the Candidate Table is found, the detection assigned

the ID it was matched to, and the Local Database updated accordingly. Then all

entries in the Candidate Table corresponding to that detection and Local Table entry



21

are removed. This process is repeated until there are no suitable matches in the

Candidate Table, after which all remaining detections are assigned new IDs.

For updating the Local Database on a successful ReID, the system always updates

the spatial location of the person (bbox coordinates). However, it only updates the

Feature Vector if the IoU score is less than θIoU and the new Feature Vector is better

representative of the object (meaning obtained with more keypoints than previously

had). Whenever the Local Database is updated, a message is sent to the server to

update its contents accordingly. Once ReID is complete, the system uses the LSTM

to generate predictions on all applicable detections, as detailed in Section 2.4.2 and

Section 2.4.3.

2.5.2 Databases

On the edge node, a "Local Database" is responsible for storing all pedestrians in

the current scene. This database is filled with objects that contain IDs, bounding

box coordinates, feature vectors, keypoints, and a parameter called life which keeps

track of how many frames it has seen since that pedestrian has been detected. When

an object has not been seen by the system after some time (as indicated by life),

the object’s ID is sent to the edge sever, informing the server of the object’s removal

from the Local Database. This has two main benefits. Reducing the length of time

an object’s data is stored on the edge increases the effectiveness of spatial reasoning

through IoU, as well as ensuring any single person’s data is not stored on the edge

when they are not active in the current scene. It also acts as an efficient replacement

policy without complex computation.

On the edge server, there is a "Global Database" that functions very similarly

to the Local Database. It stores the exact same information, with the addition of

knowing which edge node’s scene, if any, the object is currently active in. When an

object is active in an edge node’s scene, that edge node gains ownership of that object,

blocking it from being ReID’d by other edge nodes. This ownership is cleared when



22

the server receives notification of the object’s removal from the local database of the

owning edge node, allowing the object to be included in ReID from all edge nodes.

The size of both the Local Databases and the Global Database are easily configurable,

allowing for customization to fit the requirements of individual applications.

Algorithm 1 Validating Detections
Input: D̄, θconf , θkey
Output: V̄
1: V̄ ← ∅
2: for d in D̄ do
3: numKeyPoints = findValidKeyPoints(d, θconf )
4: if numKeyPoints ⩾ θkey then
5: V̄ ← V̄ ∪ {d}
6: end if
7: end for

Algorithm 2 Finding Best Matches

Input: C
∧

Output: newID
∧

, reID
∧

1: newID
∧

← Φ, reID
∧

← Φ
2: C̃ = sortBasedOnL2Norm(C

∧
)

3: for (v, e, ϕ) in C̃ do
4: if e ̸= null then
5: reID

∧
← reID
∧

∪ {e.id}
6: removeValidEntryAndCandidate(v,e, C̃)
7: end if
8: end for
9: while thereIsCandidate(C̃) do

10: ζ = ζ + 1
11: newID
∧

← newID
∧

∪ {ζ}
12: removeValidEntryAndCandidate(v,∅, C̃)
13: end while

2.5.3 System Communication / Synchronization

A vital aspect of REVAMP2T’s communication design hinges around exactly what

data is sent to the server, according to our privacy threat models described in Sec-

tion 2.3. The only data transmitted across the network is encoded Feature Vectors,



23

impersonal IDs, and system metadata. The current iteration of REVAMP2T’s com-

munication protocol leverages Wifi, but is adaptable and can be expanded to other

communication protocols, such as LTE and 5G. This allows REVAMP2T to keep

up with the ever-changing communications landscape, no matter what technologies

emerge.

Figure. 2.5 shows communication synchronization between edge nodes and edge

server. Communications between the edge node and edge server are handled asyn-

chronously. Both the edge node and edge server have separate threads to handle

sending and receiving ReID information and storing it in separate buffers. These

buffers hold the data until the main threads are ready to work on it. In addition

to the main thread and the Global Database, the server has a separate set of these

buffers and threads for each node. The main thread of the server processes this data

in a round robin fashion and based on the metadata it receives from the edge node.

It will either update the Global Database with a new Feature Vector for a global ID,

release ownership of a global ID, or check the Global Database for ReID matches for

the provided Feature Vector. Communications are only sent back to the edge node

when a ReID match is successfully found.

By handling all communications on separate threads unrelated to inference, com-

munications are entirely decoupled from the processing pipeline, eliminating pipeline

stalls that would normally result from inline communications. This decoupling also

means that edge node throughput is not dependent on network latency; Local ReID

will always perform at a constant FPS. Additionally, if the network goes down and

communications are completely lost, the buffers will allow a level of data synchroniza-

tion after communications are restored. The system efficiently utilizes edge resources,

which has a monumental impact on inference time. On the server side, the proposed

system achieves greater scalability, as edge nodes do not fight over available sockets

and communications does not take away from ReID resources.



24

SM7

CUDA 
Cores

Tensor 
Cores

L1

SM7

CUDA 
Cores

Tensor 
Cores

L1

L3

ARM0 ARM1

L2

ARM0 ARM1

L2

ARM2 ARM3

L2

ARM2 ARM3

L2

ARM4 ARM5

L2

ARM4 ARM5

L2

ARM6 ARM7

L2

ARM6 ARM7

L2

ARM0 ARM1

L2

ARM2 ARM3

L2

ARM4 ARM5

L2

ARM6 ARM7

L2

CPU Memory Space

CPU Cluster Volta GPU

GPU Memory Space

L2

Input

Pre Processing

Mid Processing

Post Processing

Output

Input

Pre Processing

Mid Processing

Post Processing

Output

Detection Inference

Feature Extraction Inference

Communications: Transmit

Communications: Receive

Memory/Cache

Detection Inference

Feature Extraction Inference

Communications: Transmit

Communications: Receive

Memory/Cache

Legend

Data Movement

Input

Pre Processing

Mid Processing

Post Processing

Output

Detection Inference

Feature Extraction Inference

Communications: Transmit

Communications: Receive

Memory/Cache

Legend

Data Movement

SM0

CUDA 
Cores

L1

Tensor 
Cores

SM0

CUDA 
Cores

L1

Tensor 
Cores

SM0

CUDA 
Cores

L1

Tensor 
Cores

Tensor 
Cores

Figure 2.6: Mapping of Processes to Edge Resources

2.5.4 Computation and Optimization

To achieve real-time performance on the edge, we chose Nvidia AGX Xavier SoCs

[23]. The Xavier is equipped with many advanced components that are leveraged

for REVAMP2T, including eight ARM Core processors, two Nvidia Deep Learning

Accelerators (NVDLA), and a Volta GPU with Tensor Cores optimized for FP16

Multiply and Accumulate.

Figure. 2.6 shows the how the different processes in REVAMP2T are mapped to

the Xavier resources. Each stage of the detection framework is mapped to a separate

ARM Core. The transmit and receive threads are mapped to their own cores as

well. This leaves one ARM Core free to handle the OS and any background processes

running outside of the system. Detection inference runs on the CUDA Cores of

the Volta GPU. ReID inference is run on Tensor Cores. To enable this, the ReID



25

network model was is converted from ONNX to use half precision through TensorRT.

Batch normalization layers are also fused into the convolutional layers, reducing data

migration. Detections are batched for ReID inference each frame, allowing a ReID

throughput above 20 FPS. The NVDLAs were not used for ReID due to a lack of

support for the level of group convolution in MobileNetv2. All code on the edge was

developed in C++ for computational efficiency, enhanced execution, and mapping

control.

2.6 Experimental Results and Evaluation

The experimental setups and results will be split into four subsections: Algorithm,

System, Scalability, and Design Flexibility. All project code for simulations and full

system implementation is provided on GitHub1.

2.6.1 Algorithm Evaluation

2.6.1.1 Feature Extractor Network

We used DukeMTMC-reID [25, 66], CUHK03 [67], and Market1501 [68] for eval-

uating the performance of two networks with different training methods. Table 2.2

summarizes the hyperparameters of our network. We decreased learning rate expo-

nentially after 150 epochs and used Adam optimizer to train both networks.

Table 2.2: Training Parameters

Description Value Description Value
Batch size 128 Input shape (H×W) (256×128)

IDs per batch 32 Margin 0.3
Instances per ID 4 Epoch 300

Initial learning rate 2× 10−4

We used the baseline ResNet as used in DeepCC for the sake of performance evalu-

ation of MobileNet-V2. We applied Cumulative Match Characteristic (CMC) [69, 70]

as a metric to evaluate and compare the identification performance of the two net-
1https://github.com/TeCSAR-UNCC/Edge-Video-Analytic



26

works. Each dataset consists of a gallery G as a set of various person images, and a

query Q as a set of various person images that we want to identify. PG is a probe set,

a subset of Q, and for each of its images there are matches in G. As the gallery em-

beddings are extracted, they are ranked (sorted) based on the similarity (L2−Norm

distance) across the current query image features. Then a set of the matched cases

at rank r can be defined as in [70]:

C(r) = {pj | rank(pj) ⩽ r} ∀pj ∈ PG (2.2)

Based on Eq. 2.2 CMC at rank r is calculated by following equation:

CMC(r) =
|C(r)|
|PG|

(2.3)

It should be noted that the CMC calculation can still be different for each dataset.

For example, in Market-1501, Q and G can share the same camera view. However,

for each individual query image, the individual’s samples in G from the same camera

are excluded [68].

Another evaluation metric which gives a representation of network performance

over a set of queries Q is mean Average Precision (mAP), which can be extracted by:

mAP =

∑|Q|
i=1AP (qi)

|Q|
, qi ∈ Q (2.4)

AP (q) =
1

TPgt

|G|∑
j

TPdetected

j
(2.5)

where TPgt is the number of ground-truth true positives, and TPdetected is the number

of true positives detected by the network. CMC(1), CMC(5), and mAP are com-

puted and compared side-by-side in Fig. 2.7 for both ResNet and MobileNet-V2 half

precision networks. We can realize that the ModilbeNet-v2 half precision is 6.1%



27

less than ResNet for mean value of CMC(1) across all three datasets, while reaching

an 18.92× model size compression ratio for MobileNet-V2 (5.0MB) over the baseline

model (94.6MB).

DukeMTMC CUHK03 Market1501 Mean

50

60

70

80

90

100

80
.3

59
.9

88
.9

76
.4

75
.9

51
.2

83
.9

70
.3

90
.5

79
.2

96
.1

88
.6

87
.3

72
.4

93
.9

84
.5

65
.9

57
.5

75
.5

66
.3

57
.9

48
.5

67
.8

58
.1

Pe
rc

en
ta

ge
(%

)

CMC(1)-RN50 CMC(1)-MB2 CMC(5)-RN50
CMC(5)-MB2 mAP-RN50 mAP-MB2

Figure 2.7: ResNet-50 single precision and MobileNetV2 half precision accuracy eval-
uation on three different benchmarks

2.6.1.2 LSTM Prediction Network

A total of 120 single object sequences, 15 from each camera, were used to train

the LSTM model for 200 epochs. For testing the model we used 3 sequences per

camera. The network takes around 14 hours to train on an Nvidia V100 GPU and

was implemented using PyTorch. To evaluate the performance of the network we use

the Intersection over Union (IoU) of the predicted bounding boxes with the ground

truth bounding boxes and average it for all frames in the sequence, as shown in

Figure. 2.8. This average IoU shows that we maintain performance above the 0.3 IoU

detection threshold typically used for evaluation. We do not compare these results

with DeepCC because their approach uses tracklets rather than IoU for tracking

evaluation.



28

Cam1
Cam2

Cam3
Cam4

Cam5
Cam6

Cam7
Cam8

0.3

0.4

0.5

0.6

Io
U

Figure 2.8: Average IoU for each camera on the testing sequences

2.6.1.3 Algorithm Pipeline

In order to validate the accuracy of the full algorithm pipeline, the edge algorithms

and edge server functionality were ported to MATLAB and compiled into a simulation

testbed to gather results. For these experiments, we used the DukeMTMC dataset,

which includes 85 minutes of 1080p footage from 8 different cameras on the Duke

University campus. Specifically, the trainval_mini frame set was used for validation.

For comparison, we also ran the current state-of-the-art in MTMC work, DeepCC,

on the same trainval_mini validation set. For all experiments, we measure ID Preci-

sion (IDP), ID Recall (IDR), and ID F1 score (IDF1) with truth-to-result matching,

as proposed in [71]. Intuitively, IDP measures the percentage of attempted ReIDs

that were correct, and IDR measures the percentage of possible ReIDs completed,

regardless of number of attempts. IDF1 is simply the harmonic mean of IDP and

IDR. Detection misses are computed in accordance to the truth-to-matching method,

with the IoU threshold at 0.3. In accordance with Table 2.1, the values for system

hyperparameters are as follows: θkey = 5, θconf = 0.5, θeuc = 5, θeucβ = 2, θIoU = 0.3.

Figure. 2.9 shows IDP versus IDR for REVAMP2T and DeepCC. Analyzing the res-

ults, DeepCC maintains groupings around 80% for both IDP and IDR. REVAMP2T

maintains high IDP, always above 90%; however, the IDR is less consistent across

cameras. The reasons for this problem are two fold. First, because REVAMP2T is



29

40 50 60 70 80 90 100
70

80

90

100

IDR

ID
P

Multi
Cam1
Cam2
Cam3
Cam4
Cam5
Cam6
Cam7
Cam8

Figure 2.9: Precision (IDP) and Recall (IDR) for DeepCC (blue) and REVAMP2T
(orange)

an online system, it was designed to ReID within a short temporal window, in ac-

cordance with the spontaneous nature of online operation. Second, many of our false

negatives are simply the result of missed detections. For the full 8-camera (shown

as Multi) scenario, 59% of the false negatives incurred were from missed detections

from the first stage of the pipeline. As mentioned in Section 2.4, we chose to run the

detection network at a relatively low resolution at an attempt to balance reasonable

runtime speed and detection accuracy. Nonetheless, despite the challenges of edge-

capable algorithmic development, REVAMP2T maintains reasonably close IDF1 in

comparison to DeepCC. Figure. 2.10 shows the IDF1 for each camera individually, as

well as the complete 8-camera global system (Multi) for both approaches. Overall,

REVAMP2T only drops 4.3% IDF1 in the full multi-camera system compared to the

offline DeepCC algorithm, with DeepCC at 79.1% and REVAMP2T at 74.8%.

2.6.2 System Evaluation

For all measurements, REVAMP2T is run in real-time. We also compare against

DeepCC [24]. For both, 16 detections per frame is assumed. As DeepCC was not

built as a real-time system, it would be unfair to include the latency incurred through

gallery matching in these comparisons, so we ignore the effect of this on power and

latency. Real-time candidate matching is built into REVAMP2T, so it is included in



30

all reported measurements. For measuring the power consumption on the Xavier NX,

Tegrastats was used.

2.6.2.1 Power Consumption and Computation Efficiency

For power consumption on the Titan V and V100 GPUs, we utilized the NVIDIA

System Management Interface. AMD µProf was used to measure CPU idle power for

the edge server. For REVAMP2T, 1080p 30 FPS video was pulled directly from a

webcam. For DeepCC, 1080p 60 FPS video was read from memory. In both cases, a

brief warm up of 20 frames was allowed before power was sampled over 100 frames.

Measurements for FPS were taken directly from the OpenPose GUI.

Table 2.3: FPS and Power Consump. of Real-Time Inference

System REVAMP2T DeepCC DeepCC DeepCC
Device Xavier Titan V 2xTitan V V100
FPS ↑ 5.7 2.5 4.7 2.7

Power ↓ 34.4W 200W 365W 224W
Detailed Xavier Power Consumption

CPU GPU DDR SOC Total
4.2W 22.1W 2.75W 5.35W 34.4W

Table 2.3 presents the power consumption and FPS for REVAMP2T and DeepCC.

Multi
Cam1

Cam2
Cam3

Cam4
Cam5

Cam6
Cam7

Cam8
0

20

40

60

80

100

ID
F1

(%
)

DeepCC REVAMP2T

Figure 2.10: IDF1 Results for Multi-Camera and Single Camera



31

Here we can see that for real-time applications, REVAMP2T out performs DeepCC

on each GPU setup we tested. Even using two Titan V’s, DeepCC is only able to

reach 4.7 FPS. Meanwhile, REVAMP2T can reach 5.7 FPS. In addition, REVAMP2T

consumes only 17% of the power of DeepCC on a single Titan V, or 9% for the dual

Titan setup. Figure. 2.11 presents computation efficiency, which is FPS processing

per watt. DeepCC has an Efficiency between 0.0147 and 0.0161 FPS/Watt in all

configurations. In comparison, REVAMP2T has an Efficiency of 0.166 FPS/Watt.

When looking at Efficiency, REVAMP2T performs an order of magnitude better than

DeepCC for real-time applications. This is because REVAMP2T was built from the

ground up to perform in real-time, both algorithmically and systemically.

TitanV 2×TitanV V100 Xavier
0

0.1

0.2

1.3 · 10−2 1.3 · 10−2 1.2 · 10−2

1.7 · 10−1

E
ffi

ci
en

cy
(F

P
S/

W
at

t)

DeepCC REVAMP2T

Figure 2.11: Efficiency of each test case.

2.6.2.2 Accuracy•Efficiency (Æ)

To enable real-time AI applications on the edge, we propose a new metric with

which to measure edge performance; that is Accuracy•Efficiency (Æ). With Æ, we

combine the algorithmic measurement of Accuracy with the systemic measurement

of Efficiency to measure how well an application will perform in a real-time edge

environment. Æ has two parts: an Æ mark, which is a score measured by the product

of Accuracy and Efficiency, and Æ coverage, which is measured in area, as determined

by all the components of an Æ mark. The components in Æ coverage, when not

already reported as a percentage, are normalize to be so. In the case of power, this



32

normalized value is subtracted from one, as lower power consumption is preferable.

0 5 · 10−2 0.1 0.15 0.2
60

80

Efficiency (FPS/Watt)

A
cc

ur
ac

y
(I

D
F
1%

)
DeepCC

REVAMP2T

Figure 2.12: Æ of DeepCC on Titan V and REVAMP2T on Xavier.

Table 2.4: Scalability Evaluation Results

Server Processing Split Processing Edge Processing

Nodes GPUs Cost Power
(W)

End-to-
end

Latency
(ms)

Network
Latency

(ms)
Cost Power

(W)

End-to-
end

Latency
(ms)

Network
Latency

(ms)
Cost Power

(W)

End-to-
end

Latency
(ms)

Network
Latency

(ms)

1 1 $8,300 201 83.2 21 $8,900 122 506.6 29 $5,700 34 540.6 17
2 1 $8,400 202 105.0 35 $9,600 203 571.6 53 $6,400 69 549.6 26
4 2 $11,800 359 168.8 51 $11,000 306 678.6 82 $7,800 138 559.7 36
8 3 $15,400 518 223.8 107 $13,800 455 941.6 175 $10,600 275 601.9 78
16 6 $25,000 946 374.8 258 $19,400 742 1547.1 414 $16,200 550 700.3 175
32 11 $48,400 1827 972.8 856 $30,600 1301 2723.2 858 $27,400 1101 866.0 338
64 22 $91,800 3609 1202.8 1086 $53,000 2406 6020.9 2074 $49,800 2202 1095.7 559

In the case of REVAMP2T, Accuracy would take the form of F1, while Efficiency

is measured in FPS/Watt. Figure. 2.12 shows the Æ Mark for REVAMP2T and

DeepCC, while Æ Coverage can be seen in Figure. 2.13. Here you can see that while

DeepCC outperforms REVAMP2T in terms of IDR and IDF1 Accuracy, REVAMP2T

has a significantly higher Æ Mark (12.39 vs 1.02) and almost double the total Æ Cov-

erage (81.25% vs 42.75%). This is because our optimizations allow us to operate at

twice the framerate, 17% of the power, and we only lose by 4.3% in F1 accuracy.

2.6.3 Scalability

To measure scalability, we compare REVAMP2T, which pushes all local processing

to the edge nodes, against two other configurations: (1) "Server Processing" which

streams the edge video frames to the edge server to handle all the local processing,

and (2) "Split Processing" which splits local processing between the edge node and



33

0.0 50.0 100.0

0.0

50.0

100.0

0.0

50.0

100.0

0.0

50.0

100.0

0.0

50.0

100.0

0.0

50.0

100.0

0.0

50.0

100.0

IDP

IDF1

Æ

Efficiency

FPS

Power

IDR

DeepCC

REVAMP 2 T

Figure 2.13: Æ Coverage

the edge server. Table 2.4 lists the number of GPUs, cost, power, end-to-end latency,

and network latency over increasing number of edge nodes for all three scenarios.

Power was measured using the same methods as described previously. The latency

for a single frame was measured from when it was grabbed from the camera/video, to

right before being displayed (using chrono library in C++), averaged over 100 frames,

after a 20 frame warm up. For Server Processing, the edge nodes are Nvidia Jetson

Nano SoCs [72], as they only stream video to the server. For the other cases, the

Nvidia Xavier was used. In all cases we assume an edge server with a 12 core CPU,

at least 32 GB of memory, and the capacity to support up to eight Nvidia Titan-V

GPUs. The server processes all data at 30 FPS. We assume video data from separate

nodes can be interwoven to allow a single instance of REVAMP2T to support two

edge nodes. Network latency was simulated using NS-3 Discrete Network Simulator,

using 802.11ac, TCP, and 600Gbps throughput. H.264 compression for video, PNG

for images, and 16 detections per frame are assumed.

From Table 2.4 we are able to see that Server Processing is able to achieve the



34

lowest latency for smaller node counts. Past 16 edge nodes, the network latency

from streaming video tips the scales latency to favor Edge Processing. However,

Edge Processing always wins out in terms of cost and power consumption, making

it a promising option particularly for high node counts. At 64 edge nodes, Edge

Processing has the best latency while only requiring about half the cost and 60%

the power of Server Processing. We expect this trend to continue on to even higher

node counts, increasingly favoring Edge Processing. Split Processing fares the worst

in the comparison, due mostly to network latency. PNG compression is not nearly as

efficient as H.264, meaning far more data is sent across the network, leading to the

large latencies seen in the table. Overall, this shows that even for computationally

intensive applications, edge processing is the only truly scalable solution for real-time

IoT applications.

Table 2.5: Design Configuration Analysis

Config. Power(W) ↓ FPS ↑ Accuracy ↑
P2 12.48 3 71.37%
P3 15.51 4 73.67%
CD 34.40 5 74.80%
R720 36.47 3 74.91%
R256 30.09 15 73.77%
R128 26.01 24 0.97%

2.6.4 Design Flexibility and Adaptation

REVAMP2T can further be configured to prioritize accuracy, FPS, or power con-

sumption, as illustrated Table 2.5. The default configuration of REVAMP2T is shown

as CD, with an input resolution of 496x368 for the keypoint extractor, and power con-

sumption as seen in Table 2.3. We analyze five additional design configurations by

modifying the input resolution, as well as the power restriction levels on the Xavier

device. Configuration R720, R256, and R128 are the proposed REVAMP2T with mod-

ified input resolutions at 720x544, 256x192, and 128x96. Configuration P2 and P3

are the proposed REVAMP2T configured with Power Mode 2 and 3 (CD uses Power



35

Mode 0) provided by the Xavier device [73].

While R720 does provide slightly higher accuracy than other configurations, it does

incurs loss in FPS and increased power consumption. The keypoint extraction res-

olution for R128 cannot properly extract keypoints for persons further than ∼30 feet

from the camera, resulting in low accuracy for DukeMTMC. R256 offers an option for

additional throughput at an accuracy loss. While R256 performs well on the tested

dataset, we found that in real-world testing, this configuration was only able to extract

keypoints for persons within ∼50 feet from the camera. Therefore, for robustness to

real-world situations and its balance across all areas, configuration CD was chosen for

the analysis of this report. With deployment in an IoT environment, CD would likely

require PoE Type 3. The P3 and P2 configurations show how REVAMP2T could be

adapted to the power levels of PoE Type 2 and Type 1 for deployment, with minimal

loss in accuracy.

2.7 Conclusions

This report proposes REVAMP2T as an integrated end-to-end IoT system to enable

decentralized edge cognitive intelligence for situational awareness. For the results

and evaluation, this report also proposes a new two-part metric, Accuracy•Efficiency

(Æ). REVAMP2T outperforms current state-of-the-art by as much as a thirteen-fold

improvement in Æ.



CHAPTER 3: Ancilia: Scalable Intelligent Video Surveillance for the Artificial

Intelligence of Things

3.0 Individual Contributions to Jointly Authored Work

This section highlights my individual contributions to the collaborative work on

Ancilia: Scalable Intelligent Video Surveillance for the Artificial Intelli-

gence of Things, undertaken alongside Armin Danesh Pazho, with whom I share

co-first authorship. The work presented in Ancilia is the result of a synergistic col-

laboration, with each author bringing unique skills and perspectives to the table. My

direct contributions to this body of work are outlined below:

Algorithmic Design and Implementation: I was responsible for the concep-

tualization, design, and implementation of the Ancilia algorithmic framework, as

detailed in Sec. 3.4. My direct contributions include:

• Crafting the initial concept and design of the Ancilia algorithmic framework,

ensuring its alignment with the objectives of scalable and real-time video sur-

veillance in the realm of the Artificial Intelligence of Things.

• Developing the underlying algorithmic pipeline that forms the core of Ancilia

and allows for concurrent and overlapping execution to increase real-time per-

formance.

Experimental Results: My contribution extended to the empirical evaluation of

Ancilia, encompassing a comprehensive suite of experiments to validate its perform-

ance and real-world efficacy. Seen in Sec. 3.6.1 and Sec. 3.6.2, my direct contributions

include



37

• Performing evaluations of the individual algorithms that make up the Algorithmic

Core of Ancilia compared to their state-of-the-art counterparts, ensuring that

accuracy remains high enough to limit the amount of noise generated by the

system while still allowing real-time performance.

• Data extraction, training, and evaluation of two state-of-the-art action recog-

nition algorithms (PoseConv3D [3] and CTR-GCN [4]) and two state-of-the-

art anomaly detection algorithms (GEPC [6] and MPED-RNN [7]) using both

ground truth and Ancilia generated data, both at full and half throughput, to

demonstrate the effect of both system generated noise and reduced through-

put on end-to-end accuracy in action recognition, and validating the efficacy of

Ancilia for such high-level tasks.

In summary, my contributions to Ancilia encompass both the design of the al-

gorithmic framework, the practical aspects of its implementation, and a thorough

evaluation of its suitability for high-level cognative tasks common in the video sur-

veillance industry. These contributions are vital to Ancilia’s success, ensuring it

stands as a robust and scalable solution for intelligent video surveillance within the

AIoT paradigm.



38

3.1 Introduction

There is a growing need for effective and efficient surveillance technologies that can

be deployed to protect our cities, people, and infrastructure. For example, in Itaewon,

South Korea, a holiday celebration left over 150 dead due to severe overcrowding,

with many blaming the tragedy on careless government oversight [18]. In Moore

County, North Carolina, directed attacks against two power substations left over

45,000 residents without power for days as technicians rushed to restore power and

authorities struggled to find the source of the attacks [19]. With enough forewarning

through smart video surveillance, they could have been prevented.

With the recent emergence of the Artificial Intelligence of Things (AIoT), some

surveillance solution providers have started adding basic forms of artificial intelligence

to their systems. However, their methods are still naive and unable to enhance

security in a truly meaningful way [74]. This is because, while a lot of research is

conducted on tasks that would benefit surveillance systems, most works focus on

algorithmic improvements in a lab environment instead of paying attention to factors

that are prevalent in real-world scenarios [75, 76]. Most research focuses on a single

algorithm and how to tweak it to get the best possible results on readily available

datasets that often do not reflect a real surveillance environment. Few works explore

how different algorithms affect the performance of other downstream algorithms in

multi-algorithm systems. Few still explore the effects of noise (both data derived

and the system produced) in end-to-end accuracy. Beyond this, real-world intelligent

surveillance necessitates real-time performance. The cognitive abilities of advanced

artificial intelligence are only helpful if they can be provided to security personnel

quickly enough to take appropriate action before it is too late.

In this article, we present Ancilia, the first end-to-end scalable, intelligent video sur-

veillance system able to perform high-level cognitive tasks in real-time while achieving

state-of-the-art results. Ancilia takes advantage of the prevalence of cameras in the



39

EdgeN-1Camera(s)

C0

C1

CN-1

Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Global

Node

EdgeN-1Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

EdgeN-1Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

EdgeN-1Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Edge0

Camera(s)

C0

C1

CN-1

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Local Node(s)

L0

L1

LN-1

Global NodeGlobal Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0

Camera(s)

C0

C1

CN-1

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Local Node(s)

L0

L1

LN-1

Global NodeGlobal Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0

Camera(s)

C0

C1

CN-1

Local Node(s)

L0

L1

LN-1

Global Node

Edge0Camera(s)

C0

C1

CN-1

Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Global

Node

Edge0Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Edge0Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Edge0Camera(s)

C0

C1

CN-1

Local

Node(s)

L0

L1

LN-1

Global

Node

Cloud

Service(s)
User 

Device(s)

D0

D1

DN-1

User 

Device(s)

D0

D1

DN-1

Figure 3.1: Conceptual overview of Ancilia.

Internet of Things (IoT) and uses localized servers to integrate with existing IoT cam-

era ecosystems, facilitating processing on the edge. Current IoT methods often use

cloud computing, which can introduce latency and privacy concerns, or they require

custom sensors with high processing power. Ancilia offers a solution to utilize existing

IoT sensors, minimizing the need for expensive infrastructure upgrades and reliance

on cloud processing. Ancilia is device agnostic; As long as video from the camera can

be accessed, Ancilia can provide intelligence. Shown in Fig. 3.1, Ancilia exists within

three logical and physical segments: the edge, the cloud, and user devices. The edge

uses a plethora of advanced artificial intelligence algorithms processing data received

from cameras to facilitate intelligent security. Using a single workstation to perform

edge processing, Ancilia can monitor up to 4 cameras in real-time at 30 FPS, or up to

8 cameras at 15 FPS, in scenarios with both medium and heavy crowd density. An-

cilia performs high-level cognitive tasks (i.e. action recognition, anomaly detection)

with ∼ 1% deviation in accuracy from current State-of-the-Art (SotA).

Ancilia is designed from the ground up to respect the privacy of the people and

communities being surveilled. Ancilia does not store any personally identifiable in-

formation in any databases and does not make use of invasive artificial intelligence



40

techniques such as facial recognition or gait detection. Ancilia strictly provides pose

and locational information for high-level tasks (i.e. action recognition, anomaly de-

tection), as opposed to identity information, which is common. Ancilla looks at what

a person is doing, not who they are. This allows Ancilia to act as a buffer to help

remove biases based on race, ethnicity, gender, age, and socio-economic factors, which

can lead to a reduction in the unnecessary conflict between authorities and marginal-

ized communities that has become increasingly problematic. After data is processed

on edge and sent to the cloud for communication and service management with user

devices. A mobile app allows user devices to receive data from the cloud, including

alerts when potential security concerns arise.

In summary, this article has the following contributions:

• We present Ancilia, the first end-to-end scalable real-world intelligent video

surveillance system capable of performing high-level cognitive tasks in real-time

while achieving SotA accuracy.

• We analyze the ethical concerns of intelligent video surveillance, both from a

privacy and fairness perspective, and illustrate how Ancilia’s design is purpose-

built to address them.

• We perform an end-to-end empirical evaluation of Ancilia using two high-level

cognitive tasks directly related to intelligent surveillance, action recognition, and

anomaly detection, investigating the trade-off in accuracy required to achieve

real-time performance.

• We perform an exhaustive system-level evaluation of Ancilia’s real-time per-

formance and scalability across different classes of hardware and increasing

scenario intensities, displaying how Ancilia is able to meet real-time intelligent

security needs in different contexts.



41

3.2 Related Work

There has been a plethora of research regarding the use of artificial intelligence for

video surveillance [75, 77, 78, 79]. [80] proposes the use of region proposal based op-

tical flow to suppress background noise and a bidirectional Bayesian state transition

strategy to model motion uncertainty to enhance spatio-temporal feature representa-

tions for the detection of salient objects in surveillance videos. [81] proposes the use

of a person detector, tracking algorithm, and mask classifier for tracking pedestrians

through surveillance video streams.

In [75], it is determined that in order to address the latency concerns of real-time

video surveillance, a shift towards edge computing is needed. Nikouei et al. [82, 83, 84]

explore the feasibility of using low-power edge devices to perform object detection and

tracking in surveillance scenarios. They argue that in worst case 5 FPS is high enough

throughput for tracking humans in surveillance applications, and as such computation

can be pushed to the edge. However, their results show that even light weight convo-

lutional neural networks can prove problematic for low-power devices, often reducing

throughput below the 5 FPS threshold. [85] proposes a system using low-power em-

bedded GPUs to perform detection, tracking, path prediction, pose estimation, and

multi-camera re-identification in a surveillance environment, while placing a focus on

real-time execution and the privacy of tracked pedestrians. [86] proposes a similar sys-

tem, focusing solely on object detection, tracking, and multi-camera re-identification

to increase throughput. [87] proposes using a combination of lightweight object de-

tection models on the edge and more computationally expensive models in the cloud,

splitting computation between the two to provide real-time video surveillance in a

construction site environment. [88] proposes the use of background detection, vehicle

detection, and kalman filter [89] based tracking for parking lot surveillance and de-

termining lot occupancy. [90] proposes a system that uses object detection, person

tracking, scene segmentation, and joint trajectory and activity prediction for pedes-



42

trians in a surveillance setting.

The future of intelligent surveillance is heading towards systems able to perform

high-level cognitive tasks. A recent survey focusing on real-world video surveillance

[75] asserts that while the domain of video surveillance is comprised of understanding

stationary object, vehicles, individuals, and crowds, the ability to determine when

anomalous events occur is paramount for intelligent surveillance systems. Other re-

search has supported this assertion [77]. [91] utilizes the Infinite Hidden Markov

Model and Bayesian Nonparametric Factor Analysis to find patterns in video streams

and detect abnormal events. [92] proposes active learning and fuzzy aggregation to

learn what constitutes an anomaly continually over time, adapting the scenarios not

seen in standard datasets. [93] proposes a system to detect suspicious behaviors in

a mall surveillance setting, using lightweight algorithms such as segmentation, blob

fusion, and kalman filter based tracking [89]. AnomalyNet [94] is a recently proposed

recurrent neutral network with adaptive iterative hard-thresholding and long short-

term memory that works directly off pixel information to eliminate background noise,

capture motion, and learn sparse representation and dictionary to perform anomaly

detection in video surveillance.

3.3 Ethical Concerns

Video surveillance has always been associated with social and ethical concerns,

whether in traditional form or more recent intelligent formats. Respecting citizens’

privacy and autonomy while improving public safety and security are the most well-

known and enduring ethical issues in this context [95, 96, 97, 98]. Developing a

successful smart video surveillance solution that addresses the public safety problem

and engages the community up to a certain level is only possible by considering these

concerns.

There is rising attention among scholars to the issue of incorporating privacy con-

cerns at the design level, referred to as "privacy by design" [99]. The source of



43

discrimination and privacy violation in many data-driven and AI-based systems,

such as Smart video surveillance technology, is using Personal Identifiable Inform-

ation (PII)[100, 101]. Using PII, such as actual footage of people’s daily activities

at any stage of the technology, can increase the risk of privacy violation. There

is a long-lasting debate on the ethical challenges of using facial recognition tech-

nologies in different sectors and how using this technology can result in privacy

violation[102, 103, 104, 105].

The approaches used to perform high-level cognitive tasks in intelligent video sur-

veillance, such as action recognition and anomaly detection, can be grouped into two

distinct categories based on the data used [106]. The first category directly utilizes

pixel data. A common example is facial recognition [107], where algorithms look

at images of people’s faces to identify them. These algorithms can perform well

with sufficient historical data, but are often seen as intrusive and increase the risk of

identifying personal demographic information [104]. The second category only lever-

ages processed information, such as pose data in the case of Ancilia, which tends to

de-identify personal demographic information [108]. This is not a complete removal

of PII, as some works have been able to identify individuals purely by gait [109] or sil-

houette [110], but it significantly reduces the risk to privacy compared to pixel-based

approaches.

Similarly, avoiding facial recognition technologies does not guarantee the system is

entirely privacy persevering. Storing images of pedestrians is another source of ethical

violation. From the discrimination perspective, using any form of PII can contribute

to the issue of marginalization in policing systems[111]. Therefore, an essential step

in designing a non-discriminatory system is to ensure the system is not dependent

on PII. This requires a specific approach toward the design of such technology in the

choice of algorithm, the type of data used, and the storing of such data.

Ancilia addresses this by not storing any PII or sending any PII across the network.



44

Such data is destroyed after it is used. Ancilia utilizes pose-based methods for all

high-level cognitive tasks, severely limiting the amount and quality of PII used by such

algorithms. This allows such processing without any potential for gender, ethnicity,

or class-based discrimination. As such, Ancilia is able to address many of the privacy

concerns regarding intelligent video surveillance while also addressing the ethical issue

of discrimination.

3.4 Ancilia Algorithmic Framework

The algorithmic core of Ancilia is separated into two conceptual systems: the local

nodes containing the algorithmic pipeline of each camera and the global node that

handles all processing that requires understanding of multiple camera perspectives.

These two systems make up the algorithmic core of Ancilia and are the basis on which

all higher understanding is achieved. A visual representation of this algorithmic core

can be seen in Fig. 3.2.

3.4.1 Single Camera Vision Pipeline

As seen in Fig. 3.2, the local algorithmic pipeline starts when an image is extracted

from the camera. The image is first run through an object detector to locate people,

vehicles, animals, and other important objects in the scene. This is important not only

because it acts as the basis for the rest of the algorithmic pipeline but also because it

can be used for basic situational awareness. Sometimes, just the presence of a certain

object in a scene is noteworthy, like a person in an unauthorized location, a bag left

unattended, or the presence of a firearm. Ancilia uses YOLOv5 [112] for this purpose

(however, it can be any detector). Please note that many objects of interest are not

included in the default weights provided by the YOLOv5 authors. However, other

works have trained the architecture for classes such as firearms [113, 114, 115], and

custom weights can always be trained to match the target application. The locational

coordinates of persons are sent to a tracker, where tracklets are created, matching



45

Neural 

Network
Filter

Match and 

Combine
Algorithm

SQL 

Database

Node 

Boundary

CloudCloud

(C) Cloud 

Node

SA

Dependency 

within a 

Node

Dependency 

Between 

Nodes

Communication

ARR

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node N-1

F PB

OB

T

P

PT

C

PT

E

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node N-1

F PB

OB

T

P

PT

C

PT

E

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

DIo
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

D
Database

Global 

Tracker

Statistical 

Analysis

(B) Global Node

FL

FD IDG

FL

D

I

SA
Io

U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

High-level 

Tasks

Crop 

Selection

(A) Local Node 0

BBP

BBO

IDL

P

P,IDL

C

P,IDL

BBP

FL

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

High-level 

Tasks

Crop 

Selection

(A) Local Node 0

BBP

BBO

IDL

P

P,IDL

C

P,IDL

BBP

FL

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node N-1

F PB

OB

T

P

PT

C

PT

E

D

Io
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

DIo
U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Video 

Stream

Tracker

Pose 

Estimator

Feature 

Extractor

Downstream 

Tasks

Crop 

Selection

(A) Local Node 0

F PB

OB

T

P

PT

C

PT

PB

E

D
Database

Global 

Tracker

Statistical 

Analysis

(B) Global Node

FL

FD IDG

FL

D

I

SA
Io

U

C
o
n

fi
d

e
n

c
e

C
o
n

fi
d

e
n

c
e

Object 

Detector

P
ed

e
st

r
ia

n

Tracker

Pose 

Estimator

Feature 

Extractor

High-level 

Tasks

Crop 

Selection

(A) Local Node 0

BBP

BBO

IDL

P

P,IDL

C

P,IDL

BBP

FL

D

Edge 

Boundary

Video 

Stream 

from 

Camera
(D) User 

Device(s)

ARR

User

Device

Figure 3.2: Ancilia algorithmic details. N local nodes are connected to a single global
node on the edge. The final analyses are transferred to the cloud node to feed the
application on the user device. Multiple edges may be connected to the could, though
this figure only shows one edge for clarity. BBP , BBO, IDL, P , C, FL, D, FD, IDG,
I, SA, R, and AR refer to bounding boxes for pedestrians, bounding boxes of objects,
local identities, poses, person crops that passed selection, features from the local
node, data from the downstream tasks, features from the database, global identities,
information from the database, completed statistical analysis, requests from users,
and requested attributes respectively.

each person with their previous detections in prior images. Ancilia utilizes the version

of ByteTrack [116] without frame similarity. In this configuration, ByteTrack does

not perform feature extraction, which results in a notable reduction in computation.

As shown in [116], locational similarity is sufficient for single camera tracking. The

tracking allows for understanding how a person moves throughout a scene, which is

vital for many surveillance applications. It also allows Ancilia to understand which

poses belong to which persons over time, which is vital for many high-level tasks

that provide much-needed situational awareness. Image crops of the people detected

in the image are also sent to a human pose estimator, where two-dimensional pose

skeletons are created. Ancilia uses HRNet [117] for extracting 2D skeletons. Using

pose data for higher-level tasks has two major benefits over simply using raw pixel

data. First, pose data is of much lower dimensionality than pixel data, making it

much less computationally expensive and allowing the Ancilia to function in real-time.

Second, pose data helps us remove the appearance-based PII information inherent in



46

pixel data, making it harder for high-level tasks to form unintended biases based on

ethnicity, gender, age, or other identity-based metrics. Works such as [118, 119] try

to identify subjects based on their poses, in a line of work called Gait Recognition,

but as discussed in Sec. 3.3, pose-based approaches are shown to be more privacy

preserving compared to their alternatives.

3.4.2 Multi-Camera Person Re-identification

While the tracker tracks people within a single camera, locational information

cannot accurately re-identify a person across multiple cameras. For this, the same

person crops that are sent to the human pose estimator are also sent to a person re-

identification feature extractor, where an abstract feature representation is created for

each person. Only one feature representation is created for each person during a single

batch, and only when the quality of the representation can be assured, as poor qual-

ity representations are detrimental to accurate multi-camera person re-identification.

Ancilia uses a feature representation filtering algorithm to verify two qualities for

person crops. First, a person crop must contain a high-quality view of the person.

To this end, the filter algorithm uses the 2D pose skeleton and verifies that at least

9 keypoints were detected with at least 60% confidence. The filter algorithm looks

at the overlap (i.e. Intersection of Union) of the bounding boxes generated by the

object detector. An individual’s bound box must have an Intersection over Union

(IoU) of no more than 0.1 with any other person. If those two conditions are met,

the person crop is determined to be of high enough quality to produce an adequate

feature representation. If more than one crop is deemed suitable for a single person

during a 15 frame window, the one with the most confident pose is selected. The

features created by the feature extractor are sent to the global node for multi-camera

person re-identification. Ancilia uses OSNet [120] to extract feature representations.



47

Pre-

Processor

Object 

Detector
Tracker AA

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

AA

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ ∞ ∞ β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 

β1 β1 β1 β1 
β2 β2 

β1 β1 

β1 β1 

Local Node 0

β3 β3 

β2 β2 

β3 β3 

β1 β1 

β3 β3 

β1 β1 

β1β1

β1β1

δ0δ0

δ1δ1

δN-1δN-1

δ0δ0

δ1δ1

δN-1δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker A

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

A

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ β1 β1 β1 β1 β1 β1 

β1 β1 
β2 

β1 

β1 

Local Node 0

β3 

β2 

β3 

β1 

β3 

β1 

β1

β1

δ0

δ1

δN-1

δ0

δ1

δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker AA

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

AA

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ ∞ ∞ β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 

β1 β1 β1 β1 
β2 β2 

β1 β1 

β1 β1 

Local Node 0

β3 β3 

β2 β2 

β3 β3 

β1 β1 

β3 β3 

β1 β1 

β1β1

β1β1

δ0δ0

δ1δ1

δN-1δN-1

δ0δ0

δ1δ1

δN-1δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker A

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

A

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ β1 β1 β1 β1 β1 β1 

β1 β1 
β2 

β1 

β1 

Local Node 0

β3 

β2 

β3 

β1 

β3 

β1 

β1

β1

δ0

δ1

δN-1

δ0

δ1

δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker AA

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

AA

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ ∞ ∞ β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 

β1 β1 β1 β1 
β2 β2 

β1 β1 

β1 β1 

Local Node 0

β3 β3 

β2 β2 

β3 β3 

β1 β1 

β3 β3 

β1 β1 

β1β1

β1β1

δ0δ0

δ1δ1

δN-1δN-1

δ0δ0

δ1δ1

δN-1δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker A

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

A

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ β1 β1 β1 β1 β1 β1 

β1 β1 
β2 

β1 

β1 

Local Node 0

β3 

β2 

β3 

β1 

β3 

β1 

β1

β1

δ0

δ1

δN-1

δ0

δ1

δN-1

S1 S2 S3

S4 S5

D1

S6

Camera
Neural 

Network
Algorithm

Data
Batched 

Data

Sequential 

Data

Frame 

Batching

Object 

Batching

Comm.

Process
IoT

Flow within 

a Node

Transfer to 

Global Node

Frame 

Unbatching

De-identified

Data
Queue

Comm.

Process

Pipeline 

Stage

Pre-

Processor

Object 

Detector
Tracker AA

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

AA

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ ∞ ∞ β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 β1 

β1 β1 β1 β1 
β2 β2 

β1 β1 

β1 β1 

Local Node 0

β3 β3 

β2 β2 

β3 β3 

β1 β1 

β3 β3 

β1 β1 

β1β1

β1β1

δ0δ0

δ1δ1

δN-1δN-1

δ0δ0

δ1δ1

δN-1δN-1

S1 S2 S3

S4 S5

D1

S6

Pre-

Processor

Object 

Detector
Tracker A

Pose 

Estimator

Task 0

Task 1

Task N-1

Feature 

Extractor

Crop 

Selection

A

T
r
a
n

sf
er

FL

D0

DN-1

∞ ∞ β1 β1 β1 β1 β1 β1 

β1 β1 
β2 

β1 

β1 

Local Node 0

β3 

β2 

β3 

β1 

β3 

β1 

β1

β1

δ0

δ1

δN-1

δ0

δ1

δN-1

S1 S2 S3

S4 S5

D1

S6

λ λ λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

λ λ 

Figure 3.3: A detailed view of system design in Ancilia’s local nodes. β and δ refer
to different batch sizes. λ refers to the queue size. FL and D represent local features
and data received from downstream tasks respectively.

3.4.3 higher Level Tasks

To help preserve privacy from a system perspective, sensitive information is kept

on the local machine by executing all high-level tasks on the local node. These

tasks have access to the object, tracking, and pose data generated in the previous

steps. Since the decision of which high-level tasks are needed is highly application

dependent, we do not consider these tasks to be part of Ancilia’s algorithmic core,

but instead an extension to be customized based on intended use. In this paper, we

use action recognition and anomaly detection as two common examples of high-level

tasks that are highly relevant to intelligent surveillance. For action recognition, we

choose PoseConv3D [3] and CTR-CGN [4], two state-of-the-art networks that can

utilize the 2D human pose skeletons provided by Ancilia. For anomaly detection, we

use GEPC [6] and MPED-RNN [7], which are based on 2D human pose skeletons.

There are many works that use pixel-based methods for these tasks that achieve

superior accuracies than SotA posed-based methods, such as I3D [121], MVIT [122]



48

and Stargazer [123]. Argus [124] is a good example of a system that employs pixel-

level information, with a subsequent evaluation conducted on a real-world surveillance

dataset called Meva [125]. However, due to the privacy benefits discussed in Sec. 3.3

and the computational benefits of using lower-dimensional pose data, we have opted

to stick with pose-based methods for Ancilia.

3.5 System Design

Beyond the algorithmic design, Ancilia can be analyzed from a system-level design

and implementation perspective. The local node in particular has a complex system

design, as seen in Fig. 3.3. The global node and cloud are much simpler, as shown in

Fig. 3.2.

3.5.1 Parallelism

A key design objective of Ancilia is to achieve higher efficiency by balancing

throughput and latency. Ancilia uses pipelining to take advantage of process par-

allelism, dividing tasks into six separate stages of a pipeline system (S1, S2, ..., S6).

Each stage is implemented as a separate process, which executes concurrently with

other processes as soon as it receives its required input. These stages communicate

with each other using queues to utilize memory resources better and enable fast inter-

process communication. While pipelining is a well-known technique for optimization,

the overhead associated with its implementation means a balance needs to be found.

Figure 3.3 shows a detailed view of the system design on the local node. Each pipeline

stage is separated by a queue with a size limit of λ elements, preventing any potential

overflow from uneven execution speed between pipeline stages. By default, Ancilia

uses a λ value of 1. As is common, Ancilia offloads highly parallel tasks that rely on

neural networks (i.e. object detection, pose estimation, feature extraction, and many

high-level tasks) to Graphics Processing Units (GPUs) for execution.



49

3.5.2 Data Batching

Batching is another technique Ancilia implements to better utilize hardware re-

sources. Generally, batching is able to greatly increase the throughput of a system

at the cost of end-to-end latency. However, many high-level tasks (e.g. action recog-

nition, anomaly detection) require multiple video frames worth of input data (often

called a window) before they can start processing, so the latency that would be in-

curred by batching input frames is already inherent in these high-level task, as long

as the frame batch and high-level task window are of the same size. In other words,

if a high-level task needs X number of frames before it can start processing, having a

batch size of X frames will ensure the task gets all the frames it needs simultaneously,

incurring no additional latency for the task. If the window size of the high-level task

is larger than the batch size multiple batches will be needed to be processed to re-

ceive output from the high-level task. Further, as frame batching ultimately increases

the throughput, the end-to-end latency is decreased when compared processing each

frame sequentially. While object detection works on entire frames, all other neural

networks in Ancilia work off individual objects. These objects are batched together

before being input to the network, greatly increasing hardware utilization. There can

be multiple object batches within a single frame batch, based on how many of the

relevant objects are detected in the video.

3.5.3 Local Node

3.5.3.1 S1 - Preprocessing

Once the local node receives the video stream from the camera, the preprocessor is

responsible for all basic image processing necessary before sending the frames through

the algorithmic core. That includes any necessary resizing, frame dropping, and/or

color channel reordering. Frame dropping is a dynamic machanism that ensures the

framerate fed to the pipeline matches the throughput of the pipeline. For example, if



50

the frame source (i.e. camera) produces 60 FPS, but Ancilia can only run at 30 FPS,

only every second frame from the source will be passed through preprocessing. After

preprocessing, frames are batched in sequential segements of size β1. Ancilia sets

β1 = 15. This is done to balance throughput and latency, as discussed in Sec. 3.6.4,

as well as to more closely match the window size of the high-level tasks, requiring

only two batches to complete before these tasks can produce an output. This is also

suitable because most modern security and IoT cameras record video at either 30 or

60 FPS.

3.5.3.2 S2 - Object Detection

The batched frames are sent to the object detector, which outputs a list of objects

with class labels and bounding box coordinates. Bounding boxes for pedestrians are

sent to the tracker, while bounding boxes for other objects are passed through the

system for use in high-level tasks and statistical analysis. A crop of each pedestrian

from the original frame is passed through to the pose estimator at later stages.

3.5.3.3 S3 - Tracking

At the tracker, bounding boxes for pedestrians are unbatched to fit the tracker’s

sequential operation. The tracker groups the pedestrians and either matches them

with previously seen pedestrians or assigns them a unique local ID. Afterwards, the

pedestrians are once again batched by frame, back to the original batch size of β1 = 15

frames, and sent to the pose estimator.

3.5.3.4 S4 - Pose Estimation

At the pose estimator, the object batching is performed on the person crops, with

a batch size of β2 = 32. These batches are fed to the pose estimator, which outputs

human pose skeletons for each person crop. Then the pedestrian bounding boxes, per-

son crops, local IDs, and human pose skeletons are once again batched by frame and

combined with the object bounding boxes from the object detector. Select data (ped-



51

estrian bounding boxes, person crops, local IDs, and pose skeletons) is sent to crop

selection and feature extraction, while the de-identified data (pedestrian bounding

boxes, object bounding boxes, local IDs, and pose skeletons) is sent to each high-level

task as per their request.

3.5.3.5 S5 - Feature Extraction and High-level Tasks

Before feature extraction, crop selection filters out low-quality person crops based

on bounding box overlap and keypoint confidence, as described in Sec. 3.4. By de-

fault, crops with an IoU higher than 0.1 or with 9 or more keypoints with confidence

below 60% are discarded. These thresholds can be adjusted to best suit the target

application. Out of the remaining crops only a single crop with the highest overall

keypoint confidence for each person is selected. The remaining crops are batched,

with a dynamic size of β3 based on the number of persons in the scene. Feature

extractor receives the batch of β3 crops. Once features are extracted, they are sent

for transfer to the global node. Each high-level task receives data at the granularity

of a frame batch with size β1, and sends data to the global node at the granularity

that task operates at (δ0, δ1, ..., δn). Only de-identified data is sent to the high-level

tasks, keeping in line with the ethical concerns mentioned in Sec. 3.3 and Sec. 3.4Ėach

high-level task has its own process and works in parallel with other tasks as well as

with crop selection and feature extraction in stage 5 of the pipeline.

3.5.3.6 S6 - Transfer

Communication is completely decoupled from the pipeline, so once the data is

sent, the local node pipeline continues to function as normal without needing a re-

sponse from the global node. Importantly, no identifiable information is ever sent to

the global node, keeping in line with the privacy and ethical concerns mentioned in

Sec. 3.3.



52

3.5.4 Global Node

All received data is stored in a relational database on the global node. The matching

algorithm described in Sec. 3.4 compares the received features with existing features

in the database over the period T and assigns a global ID based on the results. The

default value for T is set to 1 hour, but this should be changed to suit the needs

of the application. An assortment of algorithms performs statistical analysis using

the relational database, as detailed in Sec. 3.4. The analysis is transmitted to the

cloud node using APIs provided by the cloud service provider. By default, Ancilia

uses Amazon Web Services, but this can be altered based on user/application needs.

The cloud (e.g. Amazon Web Services (AWS)) receives analyzed data from the global

node.

3.6 Experimental Results

3.6.1 Algorithmic Core

The algorithmic core of Ancilia consist of multiple algorithms, each of which works

off of data generated by the previous algorithms. As these algorithms leverage imper-

fect neural networks, they generate noise that accumulates through the system. To

understand the source of this noise, we must first look at the accuracy of each of these

core algorithms in isolation. Table 3.1 shows the accuracies of the algorithmic core’s

four main tasks: object detection, pedestrian tracking, human pose estimation, and

person re-identification. The table also shows the accuracies of the top SotA models

in each task. These SotA methods are not suitable for intelligent surveillance applic-

ations, as their excessive computation and vast parameters make real-time execution

impossible, but the comparison allows us to see the maximum potential allowable

by current research and the accuracy loss incurred to keep Ancilia performing in

real-time.

Object detection sees the biggest hit to accuracy, with a 16% drop from SotA. This



53

Table 3.1: Accuracy of Ancilia’s Algorithmic Core networks in isolation. SotA Al-
gorithms represent the highest performance currently achievable when computation
and latency are not a concern.

Task Method Performance Dataset
Ancilia’s Algorithmic Core

Object
Detection YOLOv5 [112] 49.0 (mAP) COCO [126]

Tracking ByteTrack [116] 77.8 (MOTA) MOT20 [127]
Pose

Estimation HRNet [117] 75.1 (AP) COCO [126]

Person
ReID OSNet [120] 88.6 (Top-1) DukeMTMC [1]

State-of-the-Art Algorithms
Object

Detection Internimage [128] 65.0 (mAP) COCO [126]

Tracking SOTMOT [129] 77.9 (MOTA) MOT20 [127]
Pose

Estimation ViTPose [130] 81.1 (AP) COCO [126]

Person
ReID Centeroids-ReID [131] 95.6 (Top-1) DukeMTMC [1]

is intuitive, as YOLOv5 [112] is not only the largest model in the algorithmic core, but

also the only one that operates on the raw camera stream. So while larger models are

available and would be able to produce higher accuracy, even a slight increase in model

size or computation would result in a noticeable decrease in throughput. Human pose

estimation sees a decrease in accuracy for a similar reason, though much smaller in

scale at only 6%. While HRNet [117] is not run on the raw camera stream, it is run

individually for each person detected by the object detector. As such, maintaining

a small model size is preferable. Person re-identification sees a slightly larger drop

in accuracy than human pose estimation at 7%. While this is partly due to using a

lightweight model, OSNet [120], the SotA model for person reID is also lightweight.

However, the SotA uses a centroid based retrieval method not suitable for pen-set

reID, of which most surveillance scenarios are. Pedestrian tracking sees almost no

drop in accuracy, approximately 0.1%. This stems from the comparative ease of

tracking pedestrians in a single camera, where a simple, lightweight algorithm like



54

ByteTrack [116] see almost no performance difference from the top of the line SotA

approaches.

3.6.2 High-level Tasks

To better understand how the noise generated by the algorithmic core effects overall

performance, and thus how well Ancilia performs in the realm of real-world intelligent

surveillance, we examine the performance of two high-level cognitive surveillance tasks

when running on Ancilia. For Ancilia to be a benefit to intelligent surveillance tasks,

we must ensure that excess false alarms or missed positive events do not occur. To

assess this, we choose action recognition and anomaly detection, as these tasks can

utilize the human pose information generated by the algorithmic core, resulting in

faster and less biased inference. Since both these methods utilize temporal batches of

human poses for each individual, these experiments will directly reflect the quality of

the object detection, tracking, re-identification, and pose estimation data generated

by Ancilia.

3.6.2.1 High-level Task - Action Recognition

We select two state-of-the-art action recognition models, PoseConv3d [3] and CTR-

GCN [4], and train them using data generated with Ancilia. For each model, we train

and test with full (30 FPS) and half (15 FPS) throughput on NTU60-XSub [2].

Both models use a window size of 30 and are trained for 24 epochs using Stochastic

Gradient Descent (SGD) with a momentum of 0.9 and Cosine Annealing scheduling.

PoseConv3d and CTR-GCN have weight decay of 3e−4 and 5e−4 and an initial learning

rate of 0.4 and 0.2, respectively.

The results of these experiments can be seen in Tab. 3.2. We report the Top-1

and Top-5 accuracy and compare the results using data generated by Ancilia to the

original data available through the PYSKL toolbox [132]. We can see that Ancilia is

able to provide data of comparable quality to the original; action recognition as a high-



55

Table 3.2: Top-1 and Top-5 accuracies on NTU60-XSub [2] in full and half throughput
modes for PoseConv3D [3] and CTR-GCN [4].

Model Data FPS Top-1 (%) Top-5 (%)

PoseConv3D [3]
[132] 15 91.96 99.47

30 92.76 99.57

Ours 15 88.79 98.82
30 91.99 99.28

CTR-GCN [4]
[132] 15 86.36 98.46

30 83.07 98.26

Ours 15 81.58 97.52
30 80.44 97.2

level task in Ancilia sees around 1% drop in accuracy compared to the original data

using PoseConv3D [3] at full throughput, and around 3% at half throughput. Using

CTR-GCN [4], Ancilia sees a 2.5% drop at full throughput and a 4.8% drop at half

throughput, compared to the original data. From this we can infer that PoseConv3D is

more robust to noise than CTR-GCN, however both performed reasonably well with

data generated from Ancilia, demonstrating its efficacy for intelligent surveillance

applications.

Figure 3.4: Throughput of Ancilia with respect to number of nodes across different
crowd densities. Hardware details can be seen in Tab. 3.4.

Another interesting observation is that CTR-GCN [4] actually performed notice-

ably better at half throughput than at full throughput. This means that CTR-GCN

is more suited to taking advantage of the higher temporal window allowed when using

half throughput. This is something to consider when choosing an action recognition

model when a real-time throughput of 30 FPS cannot be guaranteed.

3.6.2.2 High-level Task - Anomaly Detection

Using the ShanghaiTech dataset [5] we train two state-of-the-art anomaly detection

models, GEPC [6] and MPED-RNN [7], using both data generated by Ancilia and the

data provided by the original authors. The same training strategy from Sec. 3.6.2.1 is



56

used, with both models trained in full (20 FPS) and half (10 FPS) modes. GEPC is

trained for 25 epochs with a window size of 30 and stride of 20 using Adam optimizer

with a learning rate of 1e-4, weight decay of 1e-5, and batch size of 512. MPED-RNN

is trained with an input window size of 30, a reconstruction window of 12, and a

prediction window of 6. The model is trained for 5 epochs using the Adam optimizer

with a learning rate of 1e−3 and a batch size of 265.

Table 3.3: AUC ROC, AUC PR, and EER on ShanghaiTech dataset [5] in full and
half throughput modes for GEPC [6] and MPED-RNN [7].

Model Data FPS AUC ROC AUC PR EER

GEPC [6]
[6] 10 0.6906 0.5951 0.35

20 0.7372 0.6427 0.31

Ours 10 0.6888 0.5905 0.35
20 0.7223 0.6023 0.32

MPED-RNN [7]
[7] 10 0.6645 0.5733 0.37

20 0.7023 0.5869 0.36

Ours 10 0.6685 0.5661 0.37
20 0.6679 0.5487 0.37

The results of this experiment can be seen in Tab. 3.3. In line with current practices,

we report Area Under the Receiver Operating Characteristic Cure (AUC ROC), Area

Under the Precision-recall Curve (AUC PR), and the Equal Error Rate (EER). With

GEPC, we can see that Ancilia more than measures up to the task, with only a 1.5%

drop in AUC ROC at full throughput and less than a 0.2% drop in AUC ROC at

half throughput. AUC PR shows a more substantial drop of 4% at full throughput,

but goes down to less than 0.5% at half throughput. Equal Error Rates are almost

identical, seeing almost no change (less than 0.01) when using Ancilia. MPED-RNN,

which displayed lower overall accuracy in all regards to begin with, sees a more

significant drop in AUC ROC at full throughput, losing 3.5%. However, at half

throughput the AUC ROC actually increases when using Ancilia, though only by

0.5%. The AUC PR results mirror that of GEPC, dropping 3.8% at full throughput

and 0.7% at half throughput. The Equal Error Rates are once again nearly identical.



57

Being able to perform a high-level task such as anomaly detection while maintaining

accuracies so close to current SotA in research, demonstrates Ancilia’s ability to

produce quality data, suitable for intelligent surveillance applications.

3.6.3 Real-time System Performance

Algorithmic accuracy is vital for ensuring the information provided by high-level

cognitive tasks is beneficial for surveillance applications. However, Ancilia’s ability

to perform in real-time is equally important. We conduct a series of experiments,

evaluating the runtime performance of Ancilia on different hardware, with different

scenario intensities, and for increasing number of local nodes per hardware device.

We focus on the performance of the local node, as the global node is completely

decoupled from the algorithmic pipeline and has no noticeable effect on throughput

or latency.

We choose three different hardware configurations for these experiments: a high-

end server, a lower-end server, and a high-end workstation, as seen in Tab. 3.4. For

our scenarios, we use the DukeMTMC-video dataset [1] and pick three scenes with

different crowd densities: normal density, heavy density, and extreme density. The

distribution of detection density in each scenario, as well as their effect on throughput,

can be seen in Fig. 3.5. Note that what is considered "normal density" will change

based on application environment, which is why we report on such a wide range. Each

video lasts for 32k frames, with 7k frames warm-up and cool-down. We test using 1,

2, 4, 6, and 8 local nodes on a single system, showing how throughput and latency

scale in such cases. Each experiment is conducted three times, the throughput and

latency averaged across runs. The results of these experiments can be seen in Tab. 3.5

and Fig. 3.4.

Under normal crowd density, Server A and Workstation are both able to achieve

over 50 FPS with up to four local nodes, with an end-to-end latency of 1.60 and

1.58 seconds respectively. This is well above FPS required by action recognition and



58

Table 3.4: System configurations. Stats are per CPU/GPU of the listed type.

Processor GPUName Model Cores Clock Speed Model CUDA Cores VRAM
Server A 2× EPYC 7513 32 2.6 GHz 4× V100 5120 32 GB
Server B 2× Xeon E5-2640 v4 10 2.4 GHz 2× Titan V 5120 12 GB

Workstation Threadripper Pro 3975WX 32 3.50 GHz 3× A6000 10752 48 GB

Table 3.5: Average throughput and latency. Data collected using the Workstation
with varying local node counts.

Server A Server B WorkstationCrowd Density Nodes FPS Latency (s) FPS Latency (s) FPS Latency (s)

Normal
(70 detections
per second)

1 82.31 1.17 52.45 1.52 96.88 0.87
2 77.59 1.15 39.50 2.05 84.57 1.00
4 53.40 1.60 - - 56.27 1.58
6 33.43 1.99 - - 36.40 2.27
8 23.64 2.05 - - 26.60 2.84

Heavy

(216 detections
per second)

1 57.47 1.80 38.97 2.62 67.25 1.53
2 50.05 2.07 32.85 3.16 58.95 1.77
4 32.09 3.45 - - 33.99 3.98
6 18.51 4.17 - - 21.08 6.89
8 13.35 5.87 - - 15.48 9.54

Extreme
(744 detections

per second)

1 19.84 5.29 14.67 7.37 19.00 5.73
2 20.76 5.09 16.56 6.54 18.45 5.81
4 10.95 11.64 - - 10.29 12.49
6 6.25 20.70 - - 5.93 21.87
8 4.53 28.48 - - 4.18 31.19

anomaly detection algorithms at full throughput, and the latency is low enough to

be suitable for most surveillance applications where the main concern is to notify

authorities in time for appropriate response. Both Server A and Workstation are

able to handle 6 local nodes in the normal scenario while maintaining above 30 FPS.

Workstation is able to maintain above 26 FPS while running all 8 local nodes, while

Server A drops to just below 24 FPS at 8 local nodes. Server B is able to achieve over

50 FPS with a single node but falls just short of 40 FPS while handling two nodes

simultaneously. Due to having only two GPUs with limited VRAM, Server B was

unable to run 4 or more nodes concurrently.

Heavy crowd density proves more challenging, with both Server A and Workstation

only able to achieve above 30 FPS with up to 4 nodes. The end-to-end latency is also

longer than it was under normal crowd density, with all systems seeing between a 50%

to 100% increase in most cases, and up to a 230% increase at the mose extreme. Server



59

A and Workstation are able to mainatin above 15 FPS at 6 and 8 nodes respectively,

while Server A drops to just above 13 FPS at 8 nodes. Server B behaves similarly to

how it did with normal crowd density, still able to maintain above 30 FPS for up to

2 nodes, though with slightly low throughput. Assuming only half throughput was

needed for high-level tasks, Server B would still be suitable for running up to two

nodes.

With the extreme crowd density scenario, Ancilia begins to struggle. None of the

systems are able to achieve above 30 FPS even with a single camera, putting full

throughput action recognition out of reach. Server A is able to achieve above 20

FPS with 2 nodes (but notably not with 1) and Workstation fall short even with

1 node. Both Server A and Workstation can maintain above 10 FPS at 4 nodes,

but both drop to around 6 and 4 FPS at 6 and 8 nodes, respectively. [133] argues

that 5 FPS is suitable for tacking pedestrians, and while that is true, high-level

tasks that rely on detailed human motion, such as action recognition and anomaly

detection, often struggle for accuracy when running below 10 FPS. Another issue

is with the increased latency. Running 6+ nodes, Server A and Workstation have

latencies over 20 seconds, which is suitable for many surveillance applications, but

might be too much for those that require sharper response times. Combined with the

low throughput, it becomes difficult to recommend running more than 4 nodes on a

single system with Ancilia when operating under extreme crowd density, expect for

applications where low throughput and high latency are not as much of a concern.

Server B is unable to achieve 30 FPS, but does stay around 15 FPS for both 1 and

2 nodes, making it suitable for half throughput in action recognition and anomaly

detection.

Interestingly, with extreme crowd density we start to see unusual behavior with

both Servers having worse performance with a singe node than they do with 2 nodes.

This is likely caused by the abundance of CPU resources available to them with their



60

0   
0.05   

0.1   
0.15   

0.2   
0.25   

0.3   
0.35   

0.4   
0.45   

0 5 10 15 20

Extreme
Heavy
Normal

Average Number of Detections/Batch

Pr
ob

ab
ili

ty

0   
0.02   
0.04   
0.06   
0.08   

0.1   
0.12   
0.14   
0.16   

0 50 100 150 200

Extreme
Heavy
Normal

Throughput (FPS)

Pr
ob

ab
ili

ty

Figure 3.5: Distribution of detections for different crowd densities and its effect on
throughput. Data collected using the Workstation with a single local node.



61

dual CPU configuration and a single node being unable to fully utilize them. As such,

the behavior of both servers in the extreme crowd density scenario does not start to

match the expected behavior and mimic the other systems until multiple nodes are

being run simultaneously. This behavior is not too concerning, considering it does

not make sense to purchase such a high-end server class machine for only running a

single local node, when a more latency focused workstation would be both cheaper

and more effective.

Overall, Ancilia is able to meet the needs of high-level cognitive tasks while still

achieving performance suitable for real-time intelligent surveillance applications. Ex-

act performance is dependent on both the hardware used and the intensity of the

scene, but these results show that even for the most extreme of scenarios, Ancilia can

be used to provide intelligent assistance to surveillance applications.

3.6.4 Effect of Batch Size on Real-time Performance

To understand the effect of batch size on end-to-end latency and throughput, we

test using a single node on Workstation but varying the batch size. The results of this

can be seen in Fig. 3.6. As expected, both latency and throughput increase with batch

size across all densities. The jump in throughput from a batch size of 1 to a batch size

of 10 is the most dramatic, with diminishing returns using larger batch sizes, while

increases in latency tend to be more proportional. However, due to the high-level

tasks needing 30 frames, the end-to-end latency is not directly representative of the

latency of performing high-level tasks.

Overall, a balance needs to be struck between throughput, end-to-end latency, and

batch size. Too high of an end-to-end latency will effect the speed at which detected

objects of interest raise alarms, while a lower throughput can affect high-level task

accuracy, as seen in Sec. 3.6.2. Likewise, having too small of a batch size means

more batches need to be processed before high-level tasks can operate. A batch size

of 15 strikes this balance well, with less than a second of end-to-end latency of 0.87



62

1 10 15 20 30
0   
2   
4   
6   
8   

10   
12   Normal

Heavy
Extreme

Batch Size

L
at

en
cy

 (s
)

1 10 15 20 30
0   

20   

40   

60   

80   

100   

Batch Size

T
hr

ou
gh

pu
t (

FP
S)

Figure 3.6: Throughput and latency trends with respect to batch size across different
crowd densities. Data collected using Workstation with a single local node.



63

Table 3.6: Effect of different batch sizes on throughput and latency.

Crowd Density Batch Size FPS Latency (s)

Normal

1 40.58 0.27
10 91.66 0.58
15 96.88 0.87
20 96.69 1.11
30 100.46 1.58

Heavy

1 21.13 0.42
10 66.35 1.14
15 67.25 1.58
20 67.73 2.03
30 69.62 3.02

Extreme

1 9.34 1.04
10 18.92 3.89
15 19.00 5.73
20 19.28 7.48
30 19.52 11.00

seconds and a throughput of 96.88 FPS in normal density, and only needing to process

two batches for high-level tasks. This proves similar for heavy and extreme crowd

densities as well, though the throughput is higher and latency is lower, as expected.

3.7 Conclusion

In this article we presented Ancilia, an end-to-end scalable intelligent video surveil-

lance system for the Artificial Intelligence of Things. Through empirical evaluation,

Ancilia has demonstrated its ability to bring state-of-the-art artificial intelligence to

real-world surveillance applications. Ancilia performs high-level cognitive tasks (i.e.

action recognition and anomaly detection) in real-time, all while respecting ethical

and privacy concerns common to surveillance applications.



CHAPTER 4: Efficient and Scalable High-Resolution Networks for Real-Time

Multi-Person 2D Human Pose Estimation

4.1 Introduction

Two-dimensional human pose estimation is a common task used in many popular

smart applications and has made substantial progress in recent years. There are two

primary approaches to 2D human pose estimation. The first is a top-down approach,

where cropped images of humans are provided and the network uses those cropped

images to produce human keypoints. Top-down approaches rely on object detectors to

provide initial human crops, thus they often come with relatively higher computation

cost, and are not truly end-to-end. The second is a bottom-up approach, where a

network works off the original image and produces human keypoints for all people

in the image. While these methods often do not quite reach the accuracy that is

possible with state-of-the-art (SotA) top-down approaches, they come with relatively

lower model size and computational overhead. Even so, SotA bottom-up approaches

are still quite large and computationally expensive. The current SotA [8] having 63.8

million parameters and requiring 154.3 billion floating-point operations.

Many emerging Internet-of-Things (IoT) applications require lightweight real-time

multi-person pose estimation at the edge, next to the cameras. This is more pro-

nounced in a broad range of smart and connected applications with demands for

continuous human activity analysis and behavioral monitoring. Few examples are

video surveillance, patient monitoring, and public safety [85, 134, 135]. These applic-

ations demand agile but highly accurate human pose estimation that can run next

to the cameras on the IoT edge devices. Despite this, there has been a dearth of

attention towards developing lightweight bottom-up methods capable of real-time ex-



65

ecution under constrained computational resources. To address the gap, there is a

need for a family of lightweight real-time human pose estimation models that achieves

accuracy comparable to SotA.

In this paper, we present EfficientHRNet1, a family of lightweight scalable networks

for high-resolution and efficient real-time bottom-up multi-person pose estimation.

EfficientHRNet unifies the principles of SotA EfficientNet [136] and HRNet [21], and

presents a new formulation that enables near SotA human pose estimation while being

more computationally efficient than all other bottom-up methods. Similar to HRNet,

EfficientHRNet uses multiple resolutions of features to generate keypoints, but in a

much more efficient manner. At the same time, it uses EfficientNet as a backbone and

adapts its scaling methodology to be better suited for human pose estimation. To en-

able lightweight real-time execution, EfficientHRNet further expands the EfficientNet

formulation to not only scale below the baseline, but also jointly scale down the input

resolution, High-Resolution Network, and Heatmap Prediction Network. Through

this, we create a family of networks that can address the entire domain of real-time

2D human pose estimation while being flexible towards accuracy and computation

requirements of an application.

We evaluate accuracy on the COCO dataset [126] and real-time performance on

the Nvidia NX Xavier. Figure. 4.1 demonstrates how our models provide equival-

ent or higher accuracy at lower computational costs than their direct peers. When

comparing to SotA bottom-up models, baseline EfficientNet competes in accuracy

while requiring much less computation, resulting in faster inference. Compared to

HRNet2 [21], EfficientHRNet achieves 0.4% higher accuracy while reducing compu-

tation requirements by 34%. When comparing to HigherHRNet [8] and PersonLab

[137], EfficientHRNet sees between a 1.7% to 5.1% decrease in accuracy, while re-
1The source code of EfficientHRNet has been provided here: https://github.com/

TeCSAR-UNCC/EfficientHRNet
2Bottom-up implementation reported in [8]

https://github.com/TeCSAR-UNCC/EfficientHRNet
https://github.com/TeCSAR-UNCC/EfficientHRNet


66

ducing computation requirements by an impressive 83% to 93%. This results in a

3.4x FPS increase over HigherHRNet. Even when comparing to models designed spe-

cifically for lightweight execution, such as Lightweight OpenPose [138], a scaled-down

EfficientHRNet is able to achieve 10.1% higher accuracy while further reducing com-

putation by 15%, maintaining similar FPS while requiring 1
3

the power. In addition,

the scaled-down backbone models have been evaluated in isolation on ImageNet. The

results demonstrate competitive accuracies while achieving greater efficiency than

their peers.

10 100 1,000

40

50

60

70

GFLOPs

A
cc

u
ra

cy
(%

)

EfficientHRNet
HRNet

HigherHRNet
PersonLab

Lightweight OpenPose

1

Figure 4.1: Comparison of computational complexity and accuracy between bottom-
up human pose estimation methods measured on COCO val dataset. X-axis is logar-
ithmic in scale.

4.2 Related Work

4.2.1 Top-down Methods

Top-down methods rely on first identifying all the persons in an image using a

detector, and then detecting keypoints for a single person within a defined bounding



67

box. These single person [139, 140, 141, 142, 143, 144, 145] and multi-person [146, 147,

148, 149, 150] pose estimation methods often generate person bounding boxes using

object detector [151, 152, 153, 154]. Regional Multi-Person Pose Estimation [149]

adds symmetric spatial transformer network on top of single person pose estimator

stacked hourglass network [143] to get high-quality regions from inaccurate bounding

boxes, then detects poses using parametric non-maximum suppression.

4.2.2 Bottom-up Methods

Bottom-up methods [20, 29, 137, 155, 156, 157, 158, 159] detect identity-free key-

points in an image and group them into persons using various keypoints grouping

techniques. Methods like [29] and [158] perform grouping by integer linear program

and non-maximum suppression. This allows for faster inference times compared to

top-down methods with almost similar accuracies. Other methods further improve

upon prediction time by using greedy grouping techniques, along with other optim-

izations, as seen in [20, 137, 155, 156, 157]. For instance, OpenPose [20, 155] is a

multi-stage network where one branch detects keypoints in the form of heatmaps,

while the other branch generates Part Affinity Fields that are used to associate key-

points with each other. Grouping is done by calculating the line integral between all

keypoints and grouping the pair that has the highest integral. Lightweight OpenPose

[138] replaces larger backbone with MobileNet [160] to achieve real-time performance

with fewer parameters and FLOPs while compromising on accuracy. PifPaf [156] uses

Part Intensity Fields to detect body parts and Part Associative Fields for associating

parts with each other to form human poses. In [157], a stacked hourglass network

[143] is used both for predicting heatmaps and grouping keypoints. Grouping is done

by assigning each keypoint with an embedding, called a tag, and then associating

those keypoints based on the L2 distance between the tag vectors. In this paper, we

mainly focus on a highly accurate, end-to-end multi-person pose estimation method

as in [157].



68

4.2.3 Top-down vs Bottom-up

While both top-down and bottom-up approaches can be applied to the domain of

multi-person pose estimation, the way they function is inherently different. While

bottom-up methods are designed specifically for end-to-end multi-person pose estim-

ation, most top-down approaches require multiple instances and the use of external

detectors, and are generally not end-to-end in nature. This makes direct quantitative

comparisons between these two approaches impractical. As such, this paper focuses

primarily on the domain of bottom-up multi-person pose estimation.

4.2.4 Multi-scale High-Resolution Networks

Feature pyramid networks augmented with multi-scale representations are widely

adopted for complex and necessary computer vision applications like segmentation

and pose estimation [161, 162, 163, 164, 165]. Recovering high-resolution feature

maps using techniques like upsampling, dilated convolution, and deconvolution are

also widely popular for object detection [163], semantic segmentation [166, 167, 168,

169, 170, 171] and pose estimation [29, 143, 158, 164, 165, 172, 173]. Moreover,

there are several works that focus on generating high-resolution feature maps directly

[8, 21, 117, 174, 175, 176, 177]. HRNet [21, 177] proposes to maintain high-resolution

feature maps throughout the entire network. HRNet consists of multiple branches

with different resolutions across multiple stages. With multi-scale fusion, HRNet is

able to generate high resolution feature maps and has found its application in object

detection, semantic segmentation, and pose estimation [21, 117, 177], achieving re-

markable accuracy. Recently, DSPNet [178] is proposed for lightweight single-person

pose estimation. EfficientNet [136] based, it has a pyramid architecture using light-

weight up-sampling unit and achieves high accuracy, becoming the SotA top-down

approach. Following HRNet, HigherHRNet for multi-person pose estimation [8] is pro-

posed which uses HRNet as base network to generate high resolution feature maps,



69

and further adds a deconvolution module to predict accurate, high-quality heatmaps.

HigherHRNet achieves SotA accuracy on the COCO dataset [126], surpassing all ex-

isting bottom-up methods. In this paper, we adopt the principles of HigherHRNet

[8] for generating high-resolution feature maps with multi-scale fusion for predicting

high quality heatmaps.

4.2.5 Model Scaling

Previous works on bottom-up pose estimation [8, 20, 21, 143, 155, 157] often rely

on large backbone networks, like ResNet [179] or VGGNet [180], or large input res-

olutions and multi-scale training for achieving SotA accuracy. Recent works [8, 21]

show that increasing the channel dimension of otherwise identical models can further

improve accuracy. EfficientNet [136] and RegNet [181] show that by jointly scaling

network width, depth, and input resolution, better efficiency for image classification

can be achieved compared to previous SotA networks using much larger models. More

recently, EfficientNet’s lite models remove elements, such as squeeze and excite and

swish layers, to make the network more hardware friendly. Inspired by EfficientNet,

EfficientDet [182] proposes a compound scaling method for object detection along

with efficient multi-scale feature fusion. We observe that there is a lack of an efficient

scaling method for multi-person pose estimation, especially for embedded devices.

Lightweight pose estimation models which are scalable and comparatively accurate

are needed for computer vision applications which focus on real-time performance.

Our proposed compound scaling, also inspired by EfficientNet, is a method that

jointly scales the width, depth, and input resolution of EfficientHRNet, as well as the

repetition within the high-resolution modules, explained in Section 4.3. In addition,

this compound scaling allows our EfficientNet backbone to scale below the baseline

B0, creating even lighter weight models.



70

4.2.6 Real-Time Pose Estimation

While most work in the field focuses on accuracy in isolation, some recent works

have been developed that shift the focus more to real-time inference. In [183], focus

is placed on real-time execution using a densely connected residual module and high-

resolution feature maps, similar to [21], for accurate and lightweight single person pose

estimation able to achieve real-time performance with an impressive 39 FPS on an

Nvidia 1080TI. In [138], OpenPose [155] is modified to use a MobileNet [160] backbone

and fewer refinement stages, creating a multi-person bottom-up model that achieves

28 FPS using the Intel OpenVINO Toolkit [184] on an Intel NUC 6i7KYB. Nvidia

has also been focusing on real-time inference, releasing trt_pose [185], a single person

pose estimation model optimized with TensorRT and DeepStream [186], achieving up

to 251 FPS on the Nvidia Jetson Xavier [187].

4.3 EfficientHRNet

We have developed a family of lightweight, scalable networks for real-time multi-

person human pose estimation called EfficientHRNet. This section gives an overview

of EfficientHRNet and introduces the formulation for the compound scaling of Effi-

cientHRNet’s sub-networks.

4.3.1 Network Architecture and Formulation

EfficientHRNet, shown in Figure. 4.2, comprises of three sub-networks: (1) Back-

bone Network, (2) High-Resolution Network, and (3) Heatmap Prediction Network.

4.3.1.1 Backbone Network

The first stage of EfficientHRNet is the backbone, consisting of a modified of Effi-

cientNet [136] altered to scale below the baseline, as discussed in Section 4.3.2. The

backbone outputs four different resolution feature maps of decreasing resolutions 1
4
,

1
8
, 1

16
, and 1

32
the size of the input image. These feature maps are passed into the

main body of the network, called the High-Resolution Network.



71

M
B

C
on

v
4

M
B

C
on

v
6

M
B

C
on

v
3

E
ff

ic
ie

n
tN

et
 B

a
ck

b
o
n
e

S
ta

g
e
 1

S
ta

g
e

 2
S

ta
g
e

 3

+
  

+
  

T
ag

s 
fo

r 

k
ey

p
o
in

t 
p
ai

rs

H
ea

tm
ap

s

+
  

+
  

B
lo

c
k
 1

B
lo

c
k
 M

S

H
ig

h
 R

es
o
lu

ti
o
n
 M

o
d
u
le

R
es

id
u
a
l 
B

lo
c
k

2
4

*w
 x

 

4
0

*w
 x

 

1
1

2
*w

 x
 

3
2

0
*w

 x
 

x xxx

W
b 

  x
 

4
W

b 
  x

 
4

W
b 

  x
 

3
W

b 
  x

 
3

W
b 

  x
 

2
W

b 
  x

 
2

W
b 

  x
 

1
W

b 
  x

 
1

x
W

b 
  x

 
1

W
b 

  x
 

1
x

W
b

  
 x

 
1

W
b

  
 x

 
1

x

x
W

b 
  x

 
2

W
b 

  x
 

2
x

W
b 

  x
 

2
W

b 
  x

 
2

x

x
W

b 
  x

 
3

W
b 

  x
 

3
x x

3
4

  x
 

3
4

  x
 

x

D
eC

o
n
v
 B

lo
c
k

W
b 

  x
 

1
W

b 
  x

 
1

x
3

4
 +

 
3

4
 +

 

W
b 

  x
 

1
x

W
b 

  x
 

1
x

   
1

7
 x

 
x

   
1

7
 x

 
x

2D
 C

on
v

ol
ut

io
n

R
e
si

d
u

al
 

B
lo

ck
H

ig
h
 R

e
so

lu
ti

o
n
 

M
o

du
le

D
ec

o
nv

o
lu

ti
on

L
eg

e
n
d

n

F
ig

ur
e

4.
2:

A
de

ta
ile

d
ill

us
tr

at
io

n
of

th
e

E
ffi

ci
en

tH
R

N
et

ar
ch

it
ec

tu
re

.
C

on
si

st
in

g
of

a
ba

ck
bo

ne
E

ffi
ci

en
tN

et
,a

H
ig

h-
R

es
ol

ut
io

n
N

et
w

or
k

w
it

h
th

re
e

st
ag

es
an

d
fo

ur
br

an
ch

es
(d

en
ot

ed
by

di
ffe

re
nt

co
lo

rs
),

an
d

a
H

ea
tm

ap
P

re
di

ct
io

n
N

et
w

or
k.

E
ffi

ci
ne

tH
R

N
et

is
co

m
pl

et
el

y
sc

al
ab

le
,a

llo
w

in
g

ne
tw

or
k

co
m

pl
ex

ity
to

be
cu

st
om

iz
ed

fo
r

ta
rg

et
ap

pl
ic

at
io

ns
.



72

4.3.1.2 High-Resolution Network

The High-Resolution Network is inspired by HRNet [21, 177] and HigherHRNet

[8]. Borrowing the principles of these higher resolution networks brings two major

advantages:

1. By maintaining multiple high-resolution feature representations throughout the

network, heatmaps with a higher degree of spatial precision are generated.

2. Repeated multi-scale fusions allow for high-resolution feature representations

to inform lower-resolution representations, and vice versa, resulting in robust

multi-resolution feature representations that are ideal for multi-person pose es-

timation.

Figure 4.2 presents a detailed architecture illustration of EfficientHRNet. It shows

the three sub-networks: the Backbone Network, the High-Resolution Network, and

the Heatmap Prediction Network. It also provides equations showing how the network

scales the input resolution Rinput and the width of feature maps Wbn , which will be

further explained in Section 4.3.2.

The High-Resolution Network has three stages s1, s2, and s3 containing four parallel

branches b1, b2, b3, and b4 of different resolutions. The first stage s1 starts with two

branches b1 and b2, with each consecutive stage adding an additional branch, until all

four branches are present in s3. These four branches each consist of high resolution

modules with a width of Wbn . Each branch bn contains feature representations of

decreasing resolutions that mirror the resolutions output by the Backbone Network,

as shown in Figure. 4.2 and the following expression:

Wbn ×
Rinput

2n + 1
(4.1)

For instance, stage 2 (s2) has three branches of resolutions 1
4
, 1
8
, and 1

16
of the original



73

input image resolution and a width Wbn . Moreover, each high resolution module is

made up of a number of blocks, Msn , each containing two residual blocks, of which

each perform three convolution operations with a residual connection.

4.3.1.3 Heatmap Prediction Network

The Heatmap Prediction Network is used to generate human keypoint predictions.

In order to predict more accurate heatmaps, a DeConv block is added on top of

the High-Resolution Network, as proposed in [8]. Transposed convolution is used to

generate high quality feature maps which are 1
2

the original input resolution. The

input to the DeConv block is the concatenation of the feature maps and predicted

heatmaps from the High-Resolution Network, as shown below:

34 +Wb1 ×
Rinput

4
× Rinput

4
(4.2)

Two residual blocks are added after the deconvolution to refine the up-sampled feature

maps. After the DeConv block, 1x1 convolution is used to predict heatmaps and

tagmaps in a similar fashion to [157], the feature map size of each shown below:

Tsize = 34× Rinput

4
× Rinput

4

Hsize = 17× Rinput

2
× Rinput

2

(4.3)

The grouping process clusters keypoints into multiple persons by grouping keypo-

ints whose tags have minimum L2 distance. Like [8], the High-Resolution Network

is scale-aware and uses multi-resolution supervision for heatmaps during training to

allow the network to learn with more precision, even for small-scale persons. From the

ground truth, heatmaps for different resolutions are generated to match the predicted

keypoints of different scales. Thus, the final heatmaps loss is the sum of mean squared

errors for all resolutions. However, as high resolutions tagmaps do not converge well,



74

tagmaps are trained on a resolution 1
4

of the original input resolution, as in [157].

4.3.2 Compound Scaling Method

This section details the compound scaling methodology, which jointly scales all

parts of EfficientHRNet, as seen in Figure. 4.2 and Table 4.1. The aim of Efficien-

tHRNet is to provide a family of models optimized for both accuracy and efficiency,

which can be scaled to meet a diverse set of memory and compute constraints.

Table 4.1: Efficient scaling configs for EfficientHRNet

Model Input Size Backbone Width per Branch Blocks per Stage Tags Heatmaps
(Rinput) Network (Wb1 , Wb2 , Wb3 , Wb4) (Ms2 , Ms3 , Ms4) (Tsize) (Hsize)

H0 (ϕ = 0) 512 B0 32, 64, 128, 256 1, 4, 3 128 256
H−1 (ϕ = -1) 480 B−1 26, 52, 103, 206 1, 3, 3 120 240
H−2 (ϕ = -2) 448 B−2 21, 42, 83, 166 1, 2, 3 112 224
H−3 (ϕ = -3) 416 B−3 17, 34, 67, 133 1, 1, 3 104 208
H−4 (ϕ = -4) 384 B−4 14, 27, 54, 107 1, 1, 2 96 192

Previous works on bottom-up human pose estimation and semantic segmentation

mostly scale the base network by using bigger backbone networks like ResNet [179] and

VGGNet [180], using large input image sizes, or using multi-scale training to achieve

high accuracies. However, these methods rely on scaling only a single dimension,

which has limited effectiveness. Recent works [136, 181] show notable performance

on image classification by jointly scaling the width, depth, and input image resolu-

tion. Inspired by EfficientNet, EfficientDet [182] proposes a similar compound scaling

method for object detection, which jointly scales the backbone network, multi-scale

feature network, and the object detector network. We propose a heuristic-based com-

pound scaling methodology for computer vision applications, specifically bottom-up

human pose estimation and semantic segmentation, using EfficientHRNet. Based

on [136], EfficientHRNet’s methodology uses a scaling coefficient ϕ to jointly scale

the Backbone Network, the High-Resolution Network, and Task-Specific Head. More

precisely, the EfficientNet backbone is scaled below the baseline and the rest of Ef-

ficientHRNet is scaled down in order to maintain near SotA accuracy while creating



75

lightweight and flexible networks.

4.3.2.1 Backbone Network.

The same width and depth scaling coefficients are maintained as in EfficientNet

[136]. In order to meet the demands of running models on constrained devices, a

new formulation for scaling EfficientNet below the baseline and into a more compact

model is provided.

Starting with the baseline EfficientNet-B0 scaling coefficients:

depth : d = 1.2ϕ

width : w = 1.1ϕ

resolution : r = 1.15ϕ

(4.4)

ϕ, i.e. ϕ = -1, -2, -3, -4, is inverted to calculate the scaling multipliers for the compact

EfficientNet models, which is symbolized as B−1, B−2, B−3 and B−4 respectively. As

an example, in order to take the baseline resolution, 224, and scale it down for our

B−1 model, we would take r, from (4.4), with ϕ = −1. This would result in a

resolution scaling coefficient of 1.15−1, i.e. 0.87, leaving a scaled resolution size of

ceil(224 ∗ 0.87) = 195. This pattern repeats for B−2 through B−4, and can be seen

in Table 4.2. We train these compact EfficientNet models (B−1 to B−4) on ImageNet

and use the resulting models for the Backbone Network in EfficientHRNet.

4.3.2.2 High-Resolution Network.

The High-Resolution Network has three stages and four branches with four different

feature map sizes. Each branch n also has a different width Wbn and our baseline H0

model has a width of 32, 64, 128, and 256 for each branch respectively. We selectively

pick a width scaling factor of 1.25 and scale down the width using the following



76

equation:

Wbn = (n · 32) · (1.25)ϕ (4.5)

where n is a particular branch number and ϕ is the compound scaling coefficient.

Furthermore, within each stage, each high resolution module has multiple blocks

Msn which repeat a number of times, as seen in Table 4.1. In our baseline Efficien-

tHRNet H0 model, blocks within each stage repeat 1, 4, and 3 times respectively. We

found that the number of repetitions in stage 3 had the largest impact on accuracy.

Therefore, the number of repetitions within a high resolution module Ms2 decreases

linearly as the models are scaled down, starting with stage 2 until reaching a single

repetition and then moving on to stage 3, as shown in Table 4.1.

4.3.2.3 Heatmap Prediction Network

The DeConv block is scaled in the same manner as the width of the High Resolution

Network (4.5). The Heatmap Prediction Network outputs tags and heatmaps whose

width remains fixed across all models.

4.3.2.4 Input Image Resolution.

The EfficientNet layers downsample the original input image resolution by 32 times.

Thus, the input resolution of EfficientHRNet must be dividable by 32, and is linearly

scaled down as shown in the following equation:

Rinput = 512 + 32 · ϕ (4.6)

The final result of this compound scaling methodology on EfficientHRNet H0 to H−4

can be seen in Table 4.1.



77

4.4 Experimental Results

This section evaluates our method for scaling EfficientNet below the baseline through

classification on the popular ImageNet [188] and CIFAR-100 [189] datasets. Then,

an exhaustive evaluation of five different EfficientHRNet models is conducted on the

challenging COCO [126] dataset and compared to SotA methods. Additional, metrics

on real-time inference are reported using the Nvidia Jetson NX Xavier and compared

to SotA lightwieght approaches. Finally, a qualitative evaluation of EfficientHRNet

is presented, illustrating both where the models excel and where they fall short.

4.4.1 Classification for Compact EfficientNet

4.4.1.1 Dataset

ImageNet [188] has been a long time standard benchmark for object classification

and detection thanks to its annual contest, the ImageNet Large Scale Visual Recogni-

tion Challenge, that debuted in 2010. The challenge uses a subset of the full dataset

with over a million images spread out over 1000 object classes. For training, valid-

ating, and testing purposes, the trimmed ImageNet is divided into three sets: 800k

images will be used for training the network, 150k will be used for validation after

each epoch, and 50k will be used for testing the fully trained model. CIFAR-100 [189]

consists of 100 object classes each with 500 images for training, and 100 for testing.

This relatively small dataset helps illuminate our lightweight models, which start to

struggle with the larger ImageNet as ϕ decreases, designed for resource constrained

devices that might not need to classify as many object classes.

4.4.1.2 Training

We use random rotation, random scale, and random aspect ratio to crop the input

images to the desired resolutions based on the current EfficientNet model. Color

jitter was also used to randomly change the brightness, contrast, saturation, and hue

of the RGB channels using principle component analysis [190]. The images are then



78

normalized using per channel mean and standard deviation. Each model was trained

using Stochastic Gradient Descent with Momentum [191] and a weight decay of 1e−4.

The weights were initialized using the Xavier algorithm [192] and underwent five

warm-up epochs with a learning rate of 1e− 4 that increased linearly until it reached

0.05. The networks were then trained for an additional 195 epochs and followed the

step decay learning rate scheduler [193] that reduces the learning rate by a factor of

10 every 30 epochs.

4.4.1.3 Testing

Compact EfficientNet models were tested for accuracy based on their respective

test sets. For a fair comparison, the number of ImageNet test samples were reduced

to 10,000 to match the test set of CIFAR-100, where the batch size is 1. These results

can be seen in Table 4.2.

Table 4.2: Compact EfficientNet performance on ImageNet and CIFAR-100 datasets.

Input ImageNet CIFAR-100
Model size FLOPs Params Top-1 Params Top-1

B0 224 0.4B 5.3M 75 4.1M 81.9
B−1 195 0.3B 4.5M 73.8 3.5M 81.4
B−2 170 0.2B 3.4M 71.3 2.5M 79.8
B−3 145 0.1B 2.8M 68.5 1.9M 78.2
B−4 128 0.05B 1.3M 65.6 1.3M 74.3

4.4.1.4 Results on ImageNet and CIFAR-100

Looking at B−1 there is a 15% reduction in parameters and 25% reduction in

operations, yet an accuracy drop of only 1.2% and 0.5% on ImageNet and CIFAR-

100 respectively. More impressively, B−2 sees a 35-40% reduction in parameters and

a 50% reduction in operations, yet only a 3.7% and 2.1% drop in accuracy. This

minor accuracy loss is negligible compared to the massive reduction in model size and

computation, allowing for much faster inference and deployment on low-power and

resource constrained devices. In the most extreme, B−4 shows a parameter reduction



79

of 68-75% and a 87.5% decrease in operations while having an accuracy drop of

9.4% and 7.6% on ImageNet and CIFAR-100. While the accuracy drop is a bit more

significant here, the massive reduction in computation allows for much more flexibility

when it comes to deployment in systems where a lightweight approach is needed. This

gives us a solid foundation on which to build EfficientHRNet.

4.4.2 2D Human Pose Estimation for EfficientHRNet

4.4.2.1 Dataset

COCO [126] consists of over 200k images with 250k person instances, each annot-

ated with 17 keypoints. COCO is divided into three sets, train, val, and test, which

have 57k, 5k, and 40k images respectively. Additionaly, test-dev is a subset of test

with 20k images and is used for fair comparison with other works, where possible.

COCO evaluation meterics use mean average precision (AP) and are detailed on the

COCO website3.

4.4.2.2 Training

We use random rotation, random scale, and random translation for data augment-

ation. Following [8], we generate two ground truth heatmaps of different sizes, 1
2

and

1
4

of the original input size respectively. Each EfficientHRNet model is trained using

Adam optimizer [194] and weight decay of 1e − 4. While we saw little difference in

accuracy between using Adam and SGD with momentum in our initial testing, Adam

was selected for its higher speed of convergence and overall effect on training time.

All models from H0 to H−4 are trained for a total of 300 epochs with a base learning

rate of 1e− 3, decreasing to 1e− 4 and 1e− 5 at 200th and 260th epochs respectively.

To maintain balance between heatmap loss and grouping loss, we weight the losses

at 1 and 1e− 3 respectively.
3http://cocodataset.org/#keypoints-eval

http://cocodataset.org/#keypoints-eval


80

4.4.2.3 Testing

Models are tested using both single scale and multi-scale heatmaps, as is common.

Following [157], the output detection heatmaps across different scales are averaged

and the tags concatenated into higher dimension tags, making the models considerably

more scale-invariant.

Table 4.3: Comparisons with SotA bottom-up methods on COCO2017 test-dev data-
set. Numbers for HRNet come from a bottom-up approach outlined in [8].

Input
Method Backbone size # Params FLOPs AP

w/o multi-scale test
OpenPose - - 25.94M 160B 61.8
Hourglass Hourglass 512 277.8M 206.9B 56.6
PersonLab ResNet-152 1401 68.7M 405.5B 66.5

PifPaf ResNet-152 - - - 66.7
HRNet HRNet-W32 512 28.5M 38.9B 64.1

HigherHRNet HRNet-W32 512 28.6M 47.9B 66.4
HigherHRNet HRNet-W48 640 63.8M 154.3B 68.4

H0 B0 512 23.3M 25.6B 64.0
H−1 B−1 480 16M 14.2B 59.1
H−2 B−2 448 10.3M 7.7B 52.8
H−3 B−3 416 6.9M 4.2B 44.5
H−4 B−4 384 3.7M 2.1B 35.5

w/ multi-scale test
Hourglass Hourglass 512 277.8M 206.9B 63.0
Hourglass Hourglass 512 277.8M 206.9B 65.5
PersonLab ResNet-152 1401 68.7M 405.5B 68.7

HigherHRNet HRNet-W48 640 63.8M 154.3B 70.5
H0 B0 512 23.3M 25.6B 67.1
H−1 B−1 480 16M 14.2B 62.3
H−2 B−2 448 10.3M 7.7B 55.0
H−3 B−3 416 6.9M 4.2B 45.5
H−4 B−4 384 3.7M 2.1B 39.7

4.4.2.4 Results on COCO2017 test-dev

Table 4.3 compares EfficientHRNet with other works on COCO test-dev set. As

explained in Section 4.2.3, top-down methods, such as [21, 149, 178], are inherently

not end-to-end. As such, we limit our comparisons to the domain of bottom-up multi-



81

person human pose estimation. The baseline H0 model with single-scale testing serves

as an efficient and accurate model for bottom-up methods as it is almost comparable

to HRNet [8] in accuracy, losing by only 0.1%, while having 18% less parameter and

34% fewer FLOPs. H0 outperforms Hourglass [143] in both single-scale and multi-

scale testing by 7.4% and 1.6% respectively, with H0 remarkably having about 1
10

the model size and number of FLOPs as Hourglass. The highest performing of all

models on COCO test-dev, HigherHRNet [8], beats H0 in accuracy by 4.4%, but at

the cost of nearly triple the model size and more than 6x the computation. In all cases

where H0 loses in accuracy, it more than makes up for it in a reduction in parameters

and operations. Additionally, our H−1 model, with only 16M parameters and 14.2B

FLOPs, outperforms both OpenPose [20, 155] and Hourglass [143], demonstrating

EfficientHRNet’s efficiency and suitability for low-power and resource constrained

devices.

As EfficientHRNet is scaled down using the compound scaling method mentioned

in Section 4.3.2, we see somewhat minor drops in accuracy with significant drops

parameters and FLOPs as compared to the baseline H0 model. H−1 has 31.3% less

parameters and 44.5% less FLOPs as compared to H0 while only being 4.9% less

accurate. Similarly, our lightest model H−4 is 84% smaller and has 91.7% less FLOPs,

with a less than 45% drop in accuracy. Interestingly, EfficientHRNet is the only

bottom-up pose estimator that is able to provide such lightweight models while still

having accuracies that are comparable to SotA bottom-up methods, as illustrated by

both Table 4.3 and Figure. 4.1. These results nicely show the validity of our approach

to scalability and efficiency in EfficientHRNet.

4.4.2.5 Results on COCO2017 val

We report EfficientHRNet accuracy on COCO val, noting the number of parameters

and FLOPs, and compare it with other bottom-up methods. In addition, to accurately

assess suitability for real-time performance on embedded devices, we inference our



82

models as well as one of our closest competitors, HigherHRnet [8], on the Jetson NX

Xavier, first converting the models to ONNX and then inferencing in TensorRT. FPS

results for Lightweight OpenPose are on an Intel NUC 6i7KYB as reported in [138].

Looking at Table 4.4, we can see that PersonLab is a very large network. With nearly

3x as many parameters and 16x as many operations as our most complex model

H0 it is too large to even run on the NX Xavier, despite an improvement of less

than 2% accuracy. Still, the baseline H0 model outperforms HRNet [21] with 0.4%

more accuracy, 18% fewer parameters and 34% fewer FLOPs. H−2 and H−3 models

outperform Lightweight OpenPose [138] in accuracy while having fewer FLOPs. H−4

has the worst accuracy of any model in Table 4.4. However, it boasts both the smallest

model size and fewest number of operations, seeing an over 75% reduction from its

lightest weight competitor. When looking at FPS, HigherHRNet becomes much less

desirable, being the only model unable to achieve at least 20 FPS. H0 is 3.4x faster

while only being 2.3% less accurate. Comparing to Lightweight OpenPose, H0 is

22% more accurate while only being 2 FPS slower. Scaling down to H−3 reduces

EfficientHRNet’s accuracy lead by to only 2%, but increases throughput to be 1.3x

greater than Lightweight OpenPose. Our smallest model H−4 achieves an impressive

50 FPS, but at a substantial cost in accuracy. Note that we see an unusually high

FPS drop in H−1. This is due to H−1’s input resolution and intermediate feature

map sizes resulting in memory tiles that map poorly to the NX Xavier’s Tensor Core

architecture. In the following subsection, we provide further analysis and comparison

regarding real-time execution on NX Xavier.

4.4.3 Real-Time Execution Analysis on Edge

Since real-time inference is highly dependent on the hardware utilized, we must

account for more than just accuracy and throughput in our comparisons. To best com-

pare accuracy and efficiency across differing platforms, we adopt the Accuracy•Efficiency

(Æ) metric from [85]. Æ is simply the product of accuracy (measured in AP) and



83

Table 4.4: Comparisons with bottom-up methods on COCO2017 val dataset. Metrics
and accuracy for HRNet come from a bottom-up approach outlined in [8] (FPS not
reported). Lightweight OpenPose numbers were reported on the Intel NUC 6i7KYB.
All other FPS results were preformed on the Nvidia Jetson NX Xavier [9].

Input
Model size AP # Params FLOPs FPS

PersonLab 1401 66.5 68.7M 405.5B -
HRNet 512 64.4 28.5M 38.9B -

HigherHRNet 512 67.1 28.6M 47.9B 6.68
Lightweight OpenPose 368 42.8 4.1M 9.0B 26

H0 (ϕ = 0) 512 64.8 23.3M 25.6B 22.95
H−1 (ϕ = -1) 480 59.2 16M 14.2B 20.43
H−2 (ϕ = -2) 448 52.9 10.3M 7.7B 24.53
H−3 (ϕ = -3) 416 44.8 6.9M 4.2B 33.78
H−4 (ϕ = -4) 384 35.7 3.7M 2.1B 50.96

Table 4.5: Æ comparisons with lightweight bottom-up approaches. Lightweight Open-
Pose reported on Intel NUC 6i7KYB (45W). All others Nvidia Jetson NX Xavier
(15W).

Model AP FPS Efficiency Æ
HigherHRNet 67.1 6.68 0.445 29.850

Lightweight OpenPose 42.8 26 0.578 24.738
H0 (ϕ = 0) 64.8 22.95 1.530 99.144

H−1 (ϕ = -1) 59.2 20.43 1.362 80.630
H−2 (ϕ = -2) 52.9 24.53 1.635 86.492
H−3 (ϕ = -3) 44.8 33.78 2.252 100.89
H−4 (ϕ = -4) 35.7 50.96 3.397 121.273

efficiency (measured in FPS per Watt). Table 4.5 shows how EfficientHRNet com-

pares when taking this into account. Note that Lightweight OpenPose reports results

on Intel NUC 6i7KYB, which has a TDP of 45 Watts [138], while all other methods

were measured on the Jetson NX Xavier with a maximum power draw of 15 Watts.

We use these power numbers across all approaches in an attempt to create as fair a

comparison as possible. EfficientHRNet greatly outperforms the competition in terms

of Æ, with all models achieving an Æ score of over 80 while Lightweight OpenPose

and HigherHRNet achieve scores of 25 and 30 respectively.

In terms of Æ, EfficientHRNet outperforms the competition between 3x to 5x. This

is largely due to the poor throughput of HigherHRNet and the relatively higher power



84

NUC that Lightweight OpenPose reports on. HigherHRNet excels in accuracy and

Lightweight OpenPose excels in FPS and model size, while EfficientHRNet is more

equally balanced between accuracy, model size, throughput, and power consumption.

This gives EfficientHRNet a leg up in terms of low-power, real-time inference, making

its scalable models the new SotA for lightweight bottom-up human pose estimation

for real-time edge applications.
Simple Medium Complex

H0

H-1

H-4

H-2

H-3

Figure 4.3: Qualitative results for EfficientHRNet models on COCO2017 test. Left
to right: simple, medium and complex examples.



85

4.4.4 Qualitative Analysis

To further demonstrate how EfficientHRNet models perform in relation to one

another, we present qualitative results on COCO. Figure. 4.3 shows simple, medium,

and complex examples for EfficientHRNet models H0 to H−4. We see that H0 can

accurately detect all but the most distant and occluded individuals. This accuracy is

functionally identical to SotA models but is able to inference in real-time, making it

immensely valuable for applications that require high accuracy but need to run in real-

time or on low-power devices. Looking at H−1 we see that keypoints are accurately

detected, but in medium and complex scenarios keypoint groupings become confused.

Here, the confusion is minor enough that it can be filtered out with additional post

processing, meaning that applications that require predicting complex scenarios on

devices that can not fit H0 can use H−1 with slightly decreased accuracy. For the

medium scenario, there is also missed detection from the distant person occluded

by the left-most surfboard, though such missed detections are relatively uncommon

throughout the dataset. However, for simple scenarios there is little to no difference

when compared with H0. These qualities make H−1 a compelling model when using

a device without enough memory resources for H0 and when a minor amount of

error is acceptable, or for applications that will only deal with simple scenarios. H−2

looks a lot like H−1, but the confusion is worse, with multiple keypoint grouping

being detected for a single person, and this even extends to simple scenarios. This

would again require additional post processing, depending on the application. H−3

and H−4 follow the same pattern, with confusion continuing to get worse. Again, we

see that actual keypoint detections themselves are fairly accurate, and the greatly

reduced model size and computational complexity open up a wide range of additional

devices capable of real-time performance. This makes the smaller models extremely

compelling for real-time applications that can afford a certain amount of error but

require the use of highly resource constrained devices, particularly in the case of simple



86

scenarios. This analysis helps visualize the relationship between detected keypoints

and model size, and shows the overall affect on accurate human pose prediction as

we move towards smaller models. This further validates EfficientHRNet as a family

of high accuracy and efficient models capable of real-time 2D human pose estimation

for a variety of embedded and resource constrained devices.

4.5 Conclusions

In this paper, we have presented EfficientHRNet, a family of scalable networks for

high-resolution and efficient bottom-up multi-person pose estimation made for real-

time execution on low-power edge devices. EfficientHRNet unifies the principles of

state-of-the-art EfficientNet [136] and HRNet [21] to create a network architecture for

lightweight real-time human pose estimation, and proposes a new compound scaling

method that jointly scales down the input resolution, backbone network, and high-

resolution feature network. EfficientHRNet is not only more efficient than all other

bottom-up human pose estimation methods, but it can maintain accuracy compet-

itive with state-of-the-art models on the challenging COCO dataset. Remarkably,

EfficientHRNet can achieve this near state-of-the-art accuracy with fewer parameters

and less computational complexity than other bottom-up multi-person pose estima-

tion networks, all while being able to achieve 23 FPS on an Nvidia Jetson NX Xavier.



CHAPTER 5: Real-Time Online Unsupervised Domain Adaptation for Real-World

Person Re-identification

5.1 Introduction

Person re-identification (ReID) is the task of matching a person in an image with

other instances of that person in other images, either from the same camera or a

different one. More specifically, it is associating a person’s query with its match in a

gallery of persons [22]. Person ReID is a common task in many real-world applications.

Such applications include video surveillance (e.g. determining when unauthorized

people are present in an area), public safety (e.g. understanding pedestrian motion

to avoid accidents), and smart health (e.g. mobility assessment and fall detection for

seniors needing assistance). Thus, achieving accurate and robust person ReID for any

environment is an important research goal for the community.

Table 5.1: Challenges of Real-World Applications and if they are addressed in the
UDA, OUDA, and R2OUDA settings.
† Streaming data is simulated.

Real-World UDA OUDA R2OUDA (Ours)
Data from target domain is only available through a data stream. ✗ ✓† ✓

Person crops are not provided and must be generated online. ✗ ✗ ✓
There is no guarantee that every identity will be available during training. ✗ ✗ ✓

The distribution of person crops must be determined online. ✗ ✗ ✓
Training time must be accounted for. ✗ ✗ ✓

Many methods have been developed for person ReID [195, 196, 197, 198], and

many high quality datasets have been created for the task [1, 199, 200, 201, 202].

Deep learning approaches have been able to achieve incredible accuracies, nearly

reaching saturation in some cases [203, 204, 205, 206]. However, person ReID is a

highly context-specific task, and models trained on one dataset often fail to perform

well on others [22]. Unsupervised Domain Adaptation (UDA) has been studied to



88

combat this domain shift [22, 201, 207, 208, 209, 210]. In UDA, initial training is

performed on the labeled data of the source domain, and then inference is done in a

different target domain. UDA methods generally achieve lower accuracies than State-

of-the-Art (SotA) deep learning approaches that train directly on the target domain.

However, recent approaches have begun to close that gap [211, 212, 213].

One common thread among these approaches is the reliance on having the en-

tirety of the target domain available at training time. While this is convenient for

research, many practical applications do not have unrestricted access to the entire tar-

get domain. Recently, [214] introduced the setting of Online Unsupervised Domain

Adaptation (OUDA). OUDA specifies that data from the target domain can only

be accessed through a data stream, bringing research more in line with real-world

applications. OUDA adopts a batch-based relaxation [215] where different identities

are separated among batches to simulate streaming data. OUDA also argues that

confidentiality regulations make it such that many real-world applications can only

store data for a limited amount of time, applying a restriction that image data cannot

be stored beyond the batch in which it was collected.

Tab. 5.1 shows the challenges of real-world applications, and how UDA and OUDA

fail to fully address them. Like UDA before it, OUDA uses hand-crafted person ReID

datasets for the target domain. Not only is the data stream only simulated, but the

provided person images were hand selected by the creators of the dataset. In a real-

world system, person images need to be generated by the system itself, creating a layer

of noise not present in hand-crafted datasets. Further, by using hand-crafted datasets,

the distribution of person images is guaranteed to be suitable for training. Specifically,

most person ReID dataset tend to have a fairly uniform distribution, having around

the same number of person images for each identity [216]. However, in real-world

applications, there is no guarantee that person images generated from streaming

data will form a uniform distribution in identities. There is also no guarantee that



89

every identity in the dataset will be available for training. Additionally, in real-

world applications, we often see multi-camera systems that rely on processing all this

information in real-time. The UDA and OUDA settings do not address this.

To bring the field closer to the real-world, this paper proposes Real-World Real-

Time Online Unsupervised Domain Adaptation (R2OUDA), a setting designed to

address the challenges found in real-world applications, as seen in Tab. 5.1. R2OUDA

defines four major considerations beyond the OUDA setting needed to develop sys-

tems for the real world. First, R2OUDA considers that person images must be gener-

ated algorithmically from streaming data. Second, the distribution of data to be used

in training must also be determined algorithmically. Third, R2OUDA expands the

batched-based relaxation [215] of online learning to use time segments, relating the

conceptual mini-batch to the real-world notion of time inherent in streaming data.

Fourth, R2OUDA defines a time constraint such that the time spent training a single

time segment cannot interfere with the training for subsequent time segments. The

first two considerations address the noisy data inherent in real-world systems, while

the last two considerations address the time-based streaming nature of data seen in

real-time systems.

To address all aspects of the new R2OUDA setting, this paper further proposes

Real-World Real-Time Online Streaming Mutual Mean-Teaching (R2MMT). R2MMT

is an end-to-end multi-camera system designed for real-world person ReID. Using

object detection, pedestrian tracking, human pose estimation, and a novel approach

for Subset Distribution Selection (SDS), R2MMT is able to generate person crops

directly from a data stream, filter them based on representation quality, and create

a subset with a suitable distribution for real-time training. To show the viability

of R2MMT to meet the challenges of real-world applications, and to explore the

breadth of the R2OUDA setting, an exhaustive set of experiments were conducted on

the popular and challenging DukeMTMC dataset [1]. Using R2MMT, over 100 data



90

subsets were created and more than 3000 models were trained, capturing the trade-

offs and limitations of real-world applications and the R2OUDA setting. R2MMT

is a real-world system that can meet the demanding requirements of the proposed

R2OUDA setting, and is able to achieve over 73% Top-1 accuracy on DukeMTMC-

reid, within 0.1% of comparable OUDA methods that cannot be directly applied for

real-world applications.

To summarize, this paper’s contributions are as follows:

• We define the setting of Real-World Real-Time Online Unsupervised Domain

Adaptation, accounting for the challenges of real-world applications and bridging

the gap between research and application.

• We propose Real-World Real-Time Online Streaming Mutal Mean-Teaching,

a novel end-to-end multi-camera person ReID system designed to meet the

challenges of R2OUDA and real-world applications.

• We perform exhaustive experimentation, creating over 100 data subsets and

training over 3000 models, to explore the breadth of the R2OUDA setting and

understand the trade-offs and limitations of real-world applications.

5.2 Related Work

The UDA setting for person ReID has been extensively explored by the research

community [22, 210, 217, 218]. In general, there are two main categories of algorithms

used to perform UDA for person ReID: style transfer methods and target domain

clustering methods.

5.2.1 Style Transfer

Style transfer based methods generally use Generative Adversarial Networks (GANs)

[219] to perform image-to-image translation [220], modifying images from the source

domain to look like the target domain without affecting the context of the original im-

ages. [221] uses self-similarity and domain-dissimilarity to ensure transferred images



91

maintain cues to the original identity without matching to other identities in the tar-

get domain, while [222] introduces an online relation-consistency regularization term

to ensure relations of the source domain are kept after transfer to the target domain.

[208] separates transfers into factor-wise sub-transfers, across illumination, resolution,

and camera view, to better fit the source images into the target domain. [207] uses a

dual conditional GAN to transfer source domain images to multiple styles in the tar-

get domain, creating a multitude of training instances for each source identity. [201]

uses a cycle consistent loss [223] with an emphasis on the foreground to better main-

tain identities between styles. [224] looks at domain shift as background shift and

uses a GAN to remove backgrounds without damaging foregrounds, while a densely

associated 2-stream network integrates identity related cues present in backgrounds.

5.2.2 Target Domain Clustering

Target domain clustering approaches focus on using clustering algorithms to group

features of the target domain for use as labels to fine tune a neural network pre-

trained on the source domain [225]. This is usually done in an iterative fashion,

where clustering is performed between training epochs to update the group labels

as the model learns. [226] proposes using a dynamic graph matching framework to

better handle large cross-camera variations. [227] introduces a self-similarity group

to leverage part-based similarity to build clusters from different camera views. [216]

utilizes a diversity regularization term to enforce a uniform distribution among the

sizes of clusters. [228] introduces hybrid memory to dynamically generate instance-

level supervisory signal for feature representation learning. [211] builds on [229], using

two teacher models and their temporally averaged weights to produce soft pseudo

labels for target domain clustering. [230] utilizes both target domain clustering and

adversarial learning to create camera invariant features and improve target domain

feature learning.



92

5.2.3 Online Unsupervised Domain Adaptation

While Online Unsupervised Domain Adaptation has been explored for other AI

tasks [231, 232, 233, 234, 235, 236, 237], it was first defined for the field of person

ReID in [214]. OUDA for Person ReID aims to create a practical online setting

similar to that found in practical applications. OUDA builds upon the UDA setting

by adding two considerations. First, data from the target domain is accessed via a

data stream and not available all at once. Second, due to confidentiality concerns

common in many countries, data from the target domain can only be stored for a

limited time and only model parameters trained on that data may be persistent.

5.3 Proposed R2OUDA Setting

CropsN-1

LocalN-1

CropsN-1

LocalN-1 Matching

Selecting

Collecting

OUDA

SF[0:N-1] Gs [0:N-1]

CC

SS

M

Send 

Locals

Global

Object

Detector

Pose

Estimator

Tracker

Feature 

Extractor

Crop

Selection

Receive Global

M

K0 [0:i-1]

SC0 [0:c-1]P0[0:i-1]

L0[0:j-1]

IF0 [0:i-1]

IF0 [0:i-1]

Crops0

Crops0

Stream0
Send 

Global

Local0

Neural Network Algorithm
Data Flow within a 

System

Data Flow between 

Systems
Communication

Feautre

SelectionL0[0:j-1]
SF0 [0:f-1]

Send 

Global

SC[0:N-1]

K0 [0:i-1]

Figure 5.1: System view of Real-World Real-Time Online Streaming Mutual Mean-
Teaching.

The proposed setting of Real-World Real-Time Online Unsupervised Domain Ad-

aptation, building off OUDA [214], considers that we have access to a completely

annotated source dataset DS as well as partial access to an unlabeled target dataset

DT in the domain of our target application. In contrast to standard UDA, in both

OUDA and R2OUDA the data from DT is only accessible as an online stream of

data. Whereas both UDA and OUDA use person crops from hand crafted datasets,



93

R2OUDA specifies that person crops from DT must be generated algorithmically from

the data stream. This reflects how data is gathered in the real world. Where hand

selected crops from datasets are generally highly representative, crops generated from

a data stream will have varying levels of quality. This introduces noise in DT , both

in quality and in the inevitable missed detections, which needs to be accounted for.

Additionally, hand crafted datasets choose person images to fit a distribution suit-

able for training. However, since crops in R2OUDA are generated from streaming

data, such a distribution can not be assumed. This leads to the second consideration

of R2OUDA, that the distribution of data to be used in training must be determined

algorithmically. Instead of relying on a predefined set of person images, systems must

generate their own data subset, determining its size and distribution appropriately.

This also reflects the real-world, as it is rarely known beforehand the amount and

distribution of person crops that will be collected by an application.

Continuing with the batched-based relaxation [215] of the online learning scenario

proposed in [214], we further introduce a time constraint for R2OUDA. First, instead

of separating our "mini-batches" ("tasks" as defined in [214]) across identities, since

R2OUDA requires actual streaming data, the data stream is separated into discrete

time segments. We consider that for a chosen time segment of length τ , the streaming

data will be divided into equal, non-overlapping time segments of length τ whose

combined contents are equivalent to the original data stream.

For R2OUDA, we must account both for applications that run continuously (i.e.

the total length of the data stream is infinite) and the fact that, in the real world,

computation resources are not unlimited. This leads to the necessity of a time con-

straint, but one that is not simple to define. Training time is inherently linked to

hardware, and there are many techniques to hide latency or increase throughput in

system design. As such, we simply define the time constraint such that, for any time

segment τi, the length of time spent training on data collected during τi must be such



94

to not interfere with the training for the data collected during τi+1. This is to prevent

the training time deficit from increasing infinitely as i increases.

In summary, R2OUDA introduces four new considerations to better match real-

world applications:

• Person crops from the target domain must be generated algorithmically from a

data stream.

• The selection and distribution of data to be used in training must be determined

algorithmically.

• An expansion of the batch-based relaxation to use time segments, relating the

conceptual mini-batch to the real-world notion of time inherent in streaming

data.

• An additional time constraint such that the time spent training a single time

segment cannot interfere with the training for any subsequent time segments.

5.4 Real-World Real-Time Online Streaming MMT

To address the challenges of R2OUDA, we present Real-World Real-Time Online

Streaming Mutual Mean Teaching, a novel multi-camera system for real-world person

ReID. Similar to [85], R2MMT is comprised of multiple Local Nodes and a single

Global Node. Local nodes have access to the data stream directly from the cameras

and are responsible for generating quality person images. The Global Node has

access to all data generated by Local Nodes and is responsible for global ReID, subset

distribution selection, and target domain training. An overview of R2MMT can be

seen in Fig. 5.1.

On the Local Node, YOLOv5 [112] is used as an object detector to find people in

the video stream. Image crops are created for each person and sent to both a pose

estimator (HRNet [117]) and a ReID feature extractor (ResNet-50 [179]). Coordin-

ates for each person and features generated by the feature extractor are sent to a



95

Collection(T0) Collection(T1) Collection(T2) Collection(T3) Collection(TN)

Selection(T0) Selection(T1) Selection(T2)

Training(T0) Training(T1)

Inferencing(T0)

T(0) T(1) T(2) T(3) T(N)

Selection(TN-1)

Training(TN-2)

Inferencing(TN-3)

Collection(TN+1)

Selection(TN)

Training(TN-1)

Inferencing(TN-2)

T(N+1) Time

Inferencing(B)Inferencing(B)Inferencing(B)

Figure 5.2: Illustration of computation overlap through time.

tracker [238] for local ReID. Afterward, feature and crop selection are performed to

ensure that features and person crops sent to the Global Node for global ReID and

crop collection are highly representative. This process utilizes person bounding box

coordinates from the tracker to filter out any persons that have significant overlap

(IoU >= 0.3) with other persons. This limits the number of crops used for train-

ing and features used for ReID containing multiple persons. The pose estimator is

used to determine the quality of the features themselves. We reason that if a highly

representative feature is present, then poses generated from the person crop should

be of high confidence, while the number of keypoints present can help determine if

there is significant occlusion or cutoff. Only crops and features with poses containing

15 or more keypoints (out of 17 total [126]) with at least 50% confidence are sent to

the Global Node. This helps ensure that the quality of the crops used for training is

similar to the quality of crops found in hand-crafted datasets.

On the Global Node, local identities and features are received from the Local

Nodes and sent to a matching algorithm. This matching algorithm, as described

in [85], performs global (i.e. multi-camera) ReID. Concurrently, person crops from

all cameras are collected for a single time segment. Generally, far more features

will be collected than can reasonably be used during training. For instance, when

DukeMTMC-Video [1] is sampled every frame, the system produces over 4 million

crops that pass feature selection. To reduce redundancy and computation, R2MMT

samples crops for selection once every 60 frames.



96

After all person crops from a single time segment are collected, the Subset Distri-

bution Selection algorithm is used to create a subset that maintains a uniform dis-

tribution and number of crops suitable for training. R2MMT uses an SDS algorithm

based on the metric facility location problem [239]. We define that given a number of

features in a metric space, we wish to find a subset of k features such that the min-

imum distance between any two features within the subset is maximized. However,

this problem is known to be NP-hard [240], making it unsuitable for our real-world

applications. R2MMT instead uses a greedy implementation of the algorithm proven

to be Ω(log k)-competitive with the optimal solution while proving to be significantly

faster, especially for larger sets of data [241]. For ease of readability, we adopt the

nomenclature of K to mean the number of instances per identity. Therefore the total

number of person crops in a subset k is equal to the number of identities in the data-

set times K. To further reduce complexity, SDS is performed on the data from each

camera individually, and their results are combined to form the complete subset. The

SDS process helps ensure we have a uniform distribution of identities in our training

data, similar to what is found in hand-crafted ReID datasets.

Once the training subset is created, domain adaptation is performed using Mutual-

Mean Teaching (MMT) [211]. R2MMT follows the training methodology described

in [211], except that epochs and iterations are variable. Clustering is done using

DBSCAN [242], as GPU acceleration allows it to perform much faster than CPU

based approaches. Exact training parameters, both for pre-training on the source

domain and domain transfer on the target domain, are as detailed in [211] unless

otherwise noted.

Both SDS and training are time consuming, particularly when dealing with large

amounts of data. To meet the time constraint of the R2OUDA setting, R2MMT

utilizes a pipelined processing model, taking advantage of parallel computing resources

while hiding the latency of the aforementioned tasks. An illustration of this pipelined



97

approach can be seen in Fig. 5.2. Crop collection, SDS, and training are separated

into their own pipeline stages. This means that while a model collects data for the

current time segment, SDS on that data will occur the following time segment, and

the training for that subset will occur the time segment after that. More formally,

during a single time segment TN , a model trained on data from TN−3 is used to collect

data from time segment TN , while subset distribution selection is performed on data

collected during TN−1 and another network is being trained on a subset created from

data from TN−2. All of these processes will finish before TN+1. This means there will

always be a latency of two time segments between collection and inference for a single

time segment. However, due to the pipeline structure, training throughput remains

at a rate of one time segment per time segment. This satisfies the time constraint of

R2OUDA.

5.5 Experimental Results

To explore the setting of R2OUDA, we select the Market 1501 dataset [199] as

the source domain and the DukeMTMC dataset [1] as the target domain. The

DukeMTMC dataset is desirable as a target domain because it has both a video

dataset (DukeMTMC-video) and a hand crafted person ReID dataset (DukeMTMC-

reid), both in the same domain. The video dataset is required in order to satisfy the

streaming data constraint of the R2OUDA setting. The hand crafted ReID dataset

brings two benefits. First, it allows us to directly observe the effect of noisy sys-

tem generated crops compared hand selected person images when used for training.

Second, testing on the ReID dataset allows direct comparison with works done in

the UDA and OUDA space. As such, all our Top-1 accuracies are reported on the

DukeMTMC-reid dataset. Similarly, we determining subset size, we treat the number

of identities for both DukeMTMC-reid and DukeMTMC-video to be 702, as described

in [1]. The number of person crops in a subset k is always equal to k × 702.

For all experiments, R2MMT is used to perform domain adaptation. Parameters



98

To
p-
1 
(%
)

Figure 5.3: Results exploring SDS on the hand crafted DukeMTMC-reid dataset [1]
plotted in three-dimensional space. Larger circles represent larger values of k.



99

To
p-
1 
(%
)

Figure 5.4: Results exploring SDS on the hand crafted DukeMTMC-reid dataset [1]
plotted in three-dimensional space. Larger circles represent larger values of k.



100

To
p-
1 
(%
)

Figure 5.5: Results exploring SDS on the hand crafted DukeMTMC-reid dataset [1]
showing a two-dimensional view when E = 5. Larger circles represent larger values
of k.



101

in all experiments are the same as in [211], except where noted otherwise. All Local

Nodes are run on a single server with two AMD EPYC 7513 CPUs, 256 GB of RAM,

and three Nvidia V100 GPUs. The Global Node is run on a workstation with an

AMD Threadripper Pro 3975WX CPU, 256 GB RAM, and three Nvidia RTX A6000

GPUs. All timing results presented in this section are using this Global Node.

5.5.1 Subset Distribution Selection

We first explore the effect of using our baseline Subset Distribution Selection al-

gorithm for training on the DukeMTMC-reid dataset. By using hand selected person

crops from the dataset, we remove the effect of noise generated by our system and

single out the impact of our SDS algorithm and the reduction in amount of data

on domain adaptation. We vary the number of person images per identity K, iter-

ations per epoch I, and total epochs E as shown below. Note that using the entire

DukeMTMC-reid dataset would be equivalent to K = 25.

K ∈ [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

I ∈ [100, 250, 500, 750, 1000, 1500]

E ∈ [1, 2, 3, 5]

(5.1)

These variable ranges lead to 240 training permutations, which is difficult to list

in a single table. Instead, the results are plotted in a three-dimensional space and

can be seen in Fig. 5.3, Fig. 5.4, and Fig. 5.5. Training Time and Top-1 make up

the x and y axes, Epochs are the z axis, Iterations are noted by color, and k is

indicated by size, with bigger circles representing higher values of k. As the purpose

of these experiments is to focus on the effects of our SDS algorithm, the system

pipeline described in Sec. 5.4 is ignored and timing results count SDS and training

sequentially. More detailed information on these experiments can be found in the



102

supplementary materials.

From these graphs, we can understand the general trend of the data. Intuitively, we

see a fairly linear trend where more data generally results in higher Top-1 accuracy.

Likewise, more iterations per epoch and more epochs also tend to result in higher

accuracy. Interestingly, with lower values of k we see the reverse effect; more time

spent training results in decreased accuracy, sometimes even below the pre-trained

accuracy of 42.0%. In general, at least 6 person images per identity are needed to

consistently learn, while we start to see diminishing returns at around 16 person

images per identity. The top result occurs when K = 20, I = 1500, and E = 5,

achieving a Top-1 accuracy of 74.55% with a training time of 82 minutes. This

is only 3.5% less than what comparable algorithms are able to achieve in the UDA

setting [211] and over 2% greater than the same algorithm in the OUDA setting [214].

When using the same hardware, R2MMT is 2.6× faster than its UDA counterpart.

5.5.2 System Generated Data

As explained in Sec. 5.3, one of the requirements of the R2OUDA setting is that

person crops must be generated algorithmically from a data stream. As such, it

is necessary to explore the effects of the noise this introduces. The structure of

these experiments are exactly the same as in Sec. 5.5.1, except that instead of us-

ing DukeMTMC-reid, R2MMT generates data from the DukeMTMC-video dataset.

Similar to Sec. 5.5.1, we ignore the system pipeline and focus on the effects of the

generated data. Based on the larger amount of data available in DukeMTMC-video,

the ranges for our experimental variables are adjusted as shown below. Using all

generated data would be equivalent to K = 99.



103

To
p-
1 
(%
)

Figure 5.6: Results exploring the use of system generated data using DukeMTMC-
video [1] plotted in three-dimensional space. Larger circles represent larger values of
k.



104

To
p-
1 
(%
)

Figure 5.7: Results exploring the use of system generated data using DukeMTMC-
video [1] plotted in three-dimensional space. Larger circles represent larger values of
k.



105

To
p-
1 
(%
)

Figure 5.8: Results exploring the use of system generated data using DukeMTMC-
video [1] showing a two-dimensional view when E = 5. Larger circles represent larger
values of k.



106

K ∈ [16, 18, 20, 25, 30, 40]

I ∈ [100, 250, 500, 1000, 1500]

E ∈ [1, 2, 3, 5]

(5.2)

The results of this exploration can be seen in Fig. 5.6, Fig. 5.7, and Fig. 5.8,

with more details available in the supplementary materials. Axes are identical to

Fig. 5.3 and Fig. 5.5, with color and size representing iterations and k respectively.

These graphs show a somewhat similar trend as in Sec. 5.5.1 with some interesting

deviations. While the trend starts off with accuracy increasing as k gets larger,

there is a sharp decrease in accuracy when k increases beyond a certain point. The

scale of the decrease, as well as how early it occurs, lessens with both iterations and

epochs. This is likely a byproduct of how many identities are present in DukeMTMC-

video. While DukeMTMC only labels a total of 1404 identities, our system is able

to detect far more. Increasing iterations has such a drastic effect here because it

determines how many of and how often these identities are seen during an epoch.

Further increasing iterations and epochs could help mitigate this, but would also

increase overall training time. This, combined with the fact that more epochs and

more iterations always result in higher accuracy, suggests that accuracy saturation

has not been reached here, and the main limiting factor is training time. The highest

accuracy achieved on this noisy data was a Top-1 of 69.34%, with K = 20, I = 1500,

E = 5, and a total training time of just under 57 minutes. This is notably worse

than both the 74.55% achieved in Sec. 5.5.1 and the 72.3% MMT achieves in the

OUDA setting [214]. This demonstrates the extreme impact noisy data can have on

unsupervised domain adaptation, and why the extra considerations of the R2OUDA

setting are a necessity when designing algorithms for real-world applications.



107

5.5.3 R2MMT

Finally, we make the first attempt at addressing the R2OUDA setting. An ex-

haustive set of experiments are conducted with R2MMT, producing a fully functional,

end-to-end system that meets all the requirements of the R2OUDA setting. R2MMT

generates person crops from a stream of data, uses SDS to construct training subsets,

operates on the notion of time segments, and must adhere to the strict time con-

straint outlined in Sec. 5.3. A successful implementation will conform to all of those

standards while achieving the highest accuracy possible, ideally within range of what

was seen in Sec. 5.5.1. One hour of DukeMTMC-video is used as the data stream,

split into equal sized continuous segments of size τ . SDS is performed at each time

segment on each camera individually, and k refers to the total number of person crops

across all training subsets for the full hour. Two methods are used to determine the

number of crops needed at each time segment. In the standard method, only data

collected in a time segment may be used for training related to that time segment.

The second method uses a form of memory, allowing the use of data from the current

time segment and previous time segments still in memory. For these experiments, we

assume a memory length of up to 60 minutes. Eq. (5.3) and Eq. (5.4) are used to

calculate the number of person crops needed from each camera at each time segment,

for the standard and memory based methods respectively.

k =

60
τ
−1∑

t=0

8∑
i=1

P (Ci)P (Ci ∩ τt) (5.3)

k =

60
τ
−1∑

t=0

8∑
i=1

P (Ci)
t∑

η=0

P (Ci ∩ τη) (5.4)



108

where k is the total number of person crops desired for the training subset over an

hour of video stream, τt is a time segment of length τ minutes that begins at τ × t

minutes, Ci is the ith camera, P (Ci) is the percentage of total person crops received

from CI when compared to all cameras over an hour of video, and P (Ci)P (Ci ∩ τt) is

the percentage of person crops received during τt for Ci compared to all person crops

received from Ci over an hour of video.

This ensures the number of person crops selected for a subset from each camera

at each time segment is proportional to the number of person crops received. The

variable ranges used in these experiments are shown below.

K ∈ [18, 20, 25, 30, 40, 50]

I ∈ [100, 250, 500, 750, 1000, 1500]

E ∈ [1, 2, 3, 5]

τ ∈ [15, 20, 30]

t ∈ Z : {0 ≤ t ≤ (
60

τ
− 1)}

(5.5)

This creates over 2500 data points across the two methods, becoming difficult to

visualize even in three dimensional space. Fig. 5.9 displays the distribution of training

accuracies for each τ at each time segment. Out of the 864 configurations tested, more

than half of them failed to consistently meet the time requirement of R2OUDA and

are not included in the statistics. Most notably, all configurations that used memory

failed to consistently meet the time requirement when given a τ of 15. When memory

is utilized, the time required for SDS greatly increases for successive time segments

as more images accumulate. This limits how large k can be, restricting K to 20 or

below when τ = 20 and 30 or below when τ = 30. Even without memory, the time

constraint proves very limiting. Only when τ = 20 is the entire range of K able to



109

be utilized. For a more fine grain look at all 2500+ data points in this experiment,

please see the supplementary materials.

The data in general follows similar trends as seen in Sec. 5.5.1 and Sec. 5.5.2, but

to more of an extreme. In addition to disqualifying several configurations off the

bat, the segmented data stream and time constraint generally mean R2MMT has less

data to work with during any given training. Unlike in the previous experiments, the

time constraint prevents the system from just throwing more data and more training

at the problem. Instead, a balance must be found. We see an overall increase in

top accuracies when τ increases, both in standard and memory configurations. Top

accuracies also increase over time, with one notable exception. When τ = 15, accuracy

actually drops in the final time segment. This is due to the extremely low amount of

data available in that particular time segment.

Another interesting observation can be made by looking at τ = 20 both with and

without memory. While the standard R2MMT achieves higher overall top accuracies,

the distribution is a lot more varied when compared to R2MMT with memory. Many

configurations actually lose accuracy, far more than when memory is present. This

suggests that while memory is limiting, it may add stability to training over time.

This is further demonstrated when τ = 30. When memory is used the maximum

accuracy is lower in the first time segment, being restricted to a lower value of K, but

is higher in the second time segment due to the increased range of available data.

Fig. 5.10 shows the best configurations of R2MMT, both with and without memory,

for each τ . The overall highest accuracy is achieved with memory when τ = 30,

K = 30, E = 5, and I = 500, reaching an impressive 73.2% Top-1. Despite the much

harsher requirements of the R2OUDA setting, this is within 0.1% of the best possible

accuracy using MMT in the OUDA setting [214]. However, with a τ of 30 it also has

a latency of 60 minutes between collecting data and inferencing with a model trained

on that data. This can be reduced to 30 minutes by changing τ to 15, but then



110

Table 5.2: Distribution of accuracies achieved on DukeMTMC [1] with R2MMT.

τ t Min Q1 Q2 Q3 Max
R2MMT

15 0 35.28 40.93 43.76 47.80 52.29
1 35.68 41.43 44.48 51.66 57.05
2 30.92 37.75 41.97 52.74 59.92
3 26.30 33.62 40.89 51.71 58.08

20 0 39.00 44.39 50.27 54.29 61.63
1 33.75 42.42 55.39 61.15 68.76
2 28.73 43.31 56.96 63.85 69.97

30 0 44.30 51.35 54.76 59.04 65.66
1 43.22 53.91 58.71 65.04 72.08

R2MMT with memory
20 0 38.87 41.67 42.77 43.65 46.36

1 38.42 45.20 48.03 49.87 54.26
2 37.88 47.44 51.35 53.90 60.73

30 0 44.26 50.30 54.17 57.72 64.36
1 47.58 58.39 62.17 67.00 73.21

accuracy drops to a disappointing 58.08%. Interestingly, with a τ of 15, accuracy

actually drops in the final time segment. This is due to a limited number of persons

present in the dataset during that time, leading to less data available for training and

making the model less generalizable. A τ of 20 splits the difference, achieving a final

Top-1 of 69.97% while reducing the inference latency to 40 minutes. This is within

4% of our best overall result, and reduces the delay by over 30%.

The strict time constraint disqualified many of the configurations in Sec. 5.5.3.

However, if we ignore the time constraint for a moment we see accuracies reaching

up to 76.53% when τ = 15, K = 40, E = 5, and I = 1500 in a system with memory,

putting it within 1.5% of MMT in the UDA setting [211]. With further optimization

or more powerful hardware, R2MMT might be able to achieve higher accuracies with

decreased latency between collection and inference. This shows that there is a lot

of room for improvement and growth in the R2OUDA setting. Overall, it is clear

that larger values of K and more training time lead to better results, but the time

constraint limits both of these factors. For any practical implementation, a balance



111

must be found for that specific use case. The explorations in this paper can serve as

a guideline for future works. The specific optimal ranges for each variable will shift

with different target domains, but the overall trends and optimization techniques will

be consistent.

5.6 Conclusion

This paper proposed the setting of R2OUDA, to better represent the unique chal-

lenges of real-world applications. R2MMT was introduced as the first attempt at

a real-world, end-to-end system that can address all the demands of the R2OUDA

setting. An exhaustive set of experiments were conducted, using R2MMT to create

over 100 data subsets and train more than 3000 models, exploring the breadth of

the R2OUDA setting. While meeting the harsh requirements of R2OUDA, including

noisy data and time constraints, R2MMT was able to achieve over 73% Top-1 accur-

acy, reaching within 0.1% of comparable SotA OUDA approaches without noisy data

or a time constraint, that cannot be directly applied to real-world applications.



112

0 1 2 3

30

40

50

60

t

To
p-

1
(%

)

(a) τ = 15

0 1 2

40

60

t

(b) τ = 20

0 1

50

60

70

t

(c) τ = 30

0 1 2

40

50

60

t

(d) τ = 20 (w/ memory)

0 1

50

60

70

t

(e) τ = 30 (w/ memory)

Figure 5.9: Distribution of accuracies achieved on DukeMTMC [1] with R2MMT.



113

15 20 30 40 45 60
40

45

50

55

60

65

70

75

Time

To
p-

1
(%

)

Figure 5.10: Best results for each system configuration. Dashed lines (- -) represent
standard configurations. Solid lines (–) represent configurations with memory. Green,
blue, and purple denote τ values of 15, 20, and 30 respectively.



CHAPTER 6: Conclusions

In this dissertation, we have explored cutting-edge artificial intelligence technology

through four transformative creations: REVAMP2T, Ancilia, EfficientHRNet, and

R2OUDA. These works encapsulate a spectrum of advancements within the fields of

edge computing, intelligent video surveillance, lightweight human pose estimation,

and real-world person re-identification. Each has made significant contributions to

the landscape of the Artificial Intelligence of Things.

This research began with REVAMP2T, an integrated end-to-end IoT system that

signified a significant leap in decentralized edge cognitive intelligence for video-based

situational awareness. With the introduction of the novel Accuracy•Efficiency (Æ)

metric, REVAMP2T set a new benchmark for real-time video analytics within IoT

systems. Its exceptional performance, achieving up to a thirteen-fold improvement

in Æcompared to pre-existing state-of-the-art solutions, is a testament to its efficacy

in the world of edge computing. This achievement has profound implications for ap-

plications requiring swift and accurate decision-making, such as autonomous vehicles,

industrial automation, and smart cities.

Second was Ancilia, a scalable intelligent video surveillance system tailored for the

AIoT era. Ancilia’s ability to bring cutting-edge artificial intelligence to the realm of

video surveillance is a milestone in itself. It denotes significant progress, performing

high-level cognitive tasks, including action recognition and anomaly detection, in

real-time. Importantly, Ancilia achieves these feats while adhering to ethical and

privacy considerations that are paramount in the realm of surveillance. Its potential

applications span a wide spectrum, from enhancing public safety and security to

enabling smarter and more responsive infrastructure management and protection.



115

In pursuit of efficiency and accuracy, we introduced EfficientHRNet, a family of

scalable networks tailored for real-time, low-power execution of multi-person 2D hu-

man pose estimation on edge devices. By marrying the principles of EfficientNet

[136] and HRNet [21], we engineered a lightweight yet powerful architecture. Effi-

cientHRNet’s ability to maintain competitive accuracy on challenging datasets while

outperforming existing bottom-up pose estimation networks in terms of efficiency is

unmatched. Its suitability for deployment on resource-constrained devices, achieving

23 FPS on an Nvidia Jetson NX Xavier, ushers in a new era for applications demand-

ing real-time human pose estimation, such as sports analytics, health monitoring, and

autonomous thread detection.

This research culminated in the introduction of R2OUDA, a new paradigm that

recognizes the unique challenges posed by real-world applications in online unsuper-

vised domain adaptation for person re-identification. To address these challenges

head-on, we conceived R2MMT, a real-world, end-to-end system that navigates the

demands of the exacting R2OUDA setting. Through an exhaustive array of experi-

ments, R2MMT demonstrated its prowess by achieving over 73% Top-1 accuracy —

a remarkable feat given the noisy data and time constraints inherent in real-world

scenarios. This performance underscores the potential of R2MMT and the broader

R2OUDA setting to revolutionize domains like healthcare, retail, public safety, trans-

portation, video surveillance, and smart cities, where domain shifts are the norm

rather than the exception.

In summary, this dissertation presents innovations with significant implications for

the field of Human-Centric Computer Vision for the Artificial Intelligence of Things

(AIoT). It has advanced the current state-of-the-art in edge computing, intelligent

surveillance, efficient deep learning, and real-world domain adaptation. Looking for-

ward, the groundwork laid in these fields is positioned to facilitate the emergence

of intelligent, adaptive, and efficient technologies that will influence our interactions



116

with and utilization of the interconnected world. The chapters within this disser-

tation serve as critical milestones in the ongoing development of technology and its

practical applications.



117

REFERENCES

[1] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance meas-

ures and a data set for multi-target, multi-camera tracking,” in European Con-

ference on Computer Vision workshop on Benchmarking Multi-Target Tracking,

2016.

[2] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. C. Kot, “Ntu

rgb+ d 120: A large-scale benchmark for 3d human activity understanding,”

IEEE transactions on pattern analysis and machine intelligence, vol. 42, no. 10,

pp. 2684–2701, 2019.

[3] H. Duan, Y. Zhao, K. Chen, D. Lin, and B. Dai, “Revisiting skeleton-based

action recognition,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 2969–2978, 2022.

[4] Y. Chen, Z. Zhang, C. Yuan, B. Li, Y. Deng, and W. Hu, “Channel-wise to-

pology refinement graph convolution for skeleton-based action recognition,” in

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pp. 13359–13368, 2021.

[5] W. Liu, D. L. W. Luo, and S. Gao, “Future frame prediction for anomaly

detection – a new baseline,” in 2018 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2018.

[6] A. Markovitz, G. Sharir, I. Friedman, L. Zelnik-Manor, and S. Avidan,

“Graph embedded pose clustering for anomaly detection,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 10539–10547, 2020.

[7] R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh, “Learning

regularity in skeleton trajectories for anomaly detection in videos,” in Proceed-



118

ings of the IEEE/CVF conference on computer vision and pattern recognition,

pp. 11996–12004, 2019.

[8] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang, “Higherhr-

net: Scale-aware representation learning for bottom-up human pose estimation,”

2019.

[9] “Jetson xavier nx developer kit,” May 2020.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A Platform for

Internet of Things and Analytics, pp. 169–186. Cham: Springer International

Publishing, 2014.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646, Oct 2016.

[12] M. Sapienza, E. Guardo, M. Cavallo, G. L. Torre, G. Leombruno, and O. To-

marchio, “Solving critical events through mobile edge computing: An approach

for smart cities,” in 2016 IEEE International Conference on Smart Computing

(SMARTCOMP), pp. 1–5, May 2016.

[13] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-

edge computing architecture: The role of mec in the internet of things,” IEEE

Consumer Electronics Magazine, vol. 5, pp. 84–91, Oct 2016.

[14] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,”

IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2016.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23,

Oct 2009.



119

[16] “https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-

francisco.html.”

[17] “https://www.wsj.com/articles/ai-surveillance-tools-scrutinized-by-european-

regulators-11561562155.”

[18] C. Alexandre, “The public safety implications of the itaewon tragedy,” Dec 2022.

[19] N. Salahieh, J. Miller, and H. Yan, “As north carolinians regain power, investig-

ators probe terrorism and threats against power substations across the us. one

expert explains what needs to be done,” Dec 2022.

[20] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d pose

estimation using part affinity fields,” CoRR, vol. abs/1611.08050, 2016.

[21] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation

learning for human pose estimation,” CoRR, vol. abs/1902.09212, 2019.

[22] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, “Deep learning for

person re-identification: A survey and outlook,” 2020.

[23] M. Ditty, A. Karandikar, and D. Reed, “Nvidia xavier soc,” Aug 2018.

[24] E. Ristani and C. Tomasi, “Features for multi-target multi-camera tracking and

re-identification,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 6036–6046, 2018.

[25] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance meas-

ures and a data set for multi-target, multi-camera tracking,” in European Con-

ference on Computer Vision workshop on Benchmarking Multi-Target Tracking,

2016.



120

[26] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time

object detection with region proposal networks,” CoRR, vol. abs/1506.01497,

2015.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,

“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[28] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv,

2018.

[29] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V. Gehler,

and B. Schiele, “Deepcut: Joint subset partition and labeling for multi person

pose estimation,” CoRR, vol. abs/1511.06645, 2015.

[30] X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang, C. Zhang,

and J. Sun, “Alignedreid: Surpassing human-level performance in person re-

identification,” arXiv preprint arXiv:1711.08184, 2017.

[31] E. Ristani and C. Tomasi, “Features for multi-target multi-camera tracking and

re-identification,” in Conference on Computer Vision and Pattern Recognition,

2018.

[32] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for

person re-identification,” arXiv preprint arXiv:1905.00953, 2019.

[33] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person re-identification with

deep similarity-guided graph neural network,” in The European Conference on

Computer Vision (ECCV), September 2018.

[34] S. Li, S. Bak, P. Carr, and X. Wang, “Diversity regularized spatiotemporal

attention for video-based person re-identification,” in 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 369–378, June 2018.



121

[35] M. Li, X. Zhu, and S. Gong, “Unsupervised tracklet person re-identification,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,

2019.

[36] X. Zhu, X. Jing, X. You, X. Zhang, and T. Zhang, “Video-based person re-

identification by simultaneously learning intra-video and inter-video distance

metrics,” IEEE Transactions on Image Processing, vol. 27, pp. 5683–5695, Nov

2018.

[37] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “Joint detection and identification

feature learning for person search,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3376–3385, July 2017.

[38] W. Zhang, B. Ma, K. Liu, and R. Huang, “Video-based pedestrian re-

identification by adaptive spatio-temporal appearance model,” IEEE Trans-

actions on Image Processing, vol. 26, pp. 2042–2054, April 2017.

[39] J. Dai, P. Zhang, D. Wang, H. Lu, and H. Wang, “Video person re-identification

by temporal residual learning,” IEEE Transactions on Image Processing, vol. 28,

pp. 1366–1377, March 2019.

[40] Y. Zhang, Q. Zhong, L. Ma, D. Xie, and S. Pu, “Learning incremental triplet

margin for person re-identification,” CoRR, vol. abs/1812.06576, 2018.

[41] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin

nearest neighbor classification,” J. Mach. Learn. Res., vol. 10, pp. 207–244,

June 2009.

[42] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person

re-identification,” CoRR, vol. abs/1703.07737, 2017.



122

[43] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE

Transactions on Pattern Analysis & Machine Intelligence, no. 5, pp. 564–575,

2003.

[44] S.-K. Weng, C.-M. Kuo, and S.-K. Tu, “Video object tracking using adaptive

kalman filter,” Journal of Visual Communication and Image Representation,

vol. 17, no. 6, pp. 1190–1208, 2006.

[45] X. Li, K. Wang, W. Wang, and Y. Li, “A multiple object tracking method using

kalman filter,” in The 2010 IEEE international conference on information and

automation, pp. 1862–1866, IEEE, 2010.

[46] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang, “Spatially super-

vised recurrent convolutional neural networks for visual object tracking,” CoRR,

vol. abs/1607.05781, 2016.

[47] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learning to

track multiple cues with long-term dependencies,” CoRR, vol. abs/1701.01909,

2017.

[48] K. Koide, E. Menegatti, M. Carraro, M. Munaro, and J. Miura, “People tracking

and re-identification by face recognition for rgb-d camera networks,” in 2017

European Conference on Mobile Robots (ECMR), pp. 1–7, Sep. 2017.

[49] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015.

[50] H. S. Dadi, G. K. M. Pillutla, and M. L. Makkena, “Face recognition and

human tracking using gmm, hog and svm in surveillance videos,” Annals of

Data Science, vol. 5, pp. 157–179, Jun 2018.



123

[51] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning ap-

proach for deep face recognition,” in Computer Vision – ECCV 2016 (B. Leibe,

J. Matas, N. Sebe, and M. Welling, eds.), (Cham), pp. 499–515, Springer Inter-

national Publishing, 2016.

[52] “Surveillance solutions.”

[53] M. Baharani, S. Mohan, and H. Tabkhi, “Real-time person re-identification at

the edge: A mixed precision approach,” in Lecture Notes in Computer Science,

Springer International Publishing, 2019.

[54] P. Kulkarni, S. Mohan, S. Rogers, and H. Tabkhi, “Key-track: A lightweight

scalable lstm-based pedestrian tracker for surveillance systems,” in Lecture

Notes in Computer Science, Springer International Publishing, 2019.

[55] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. S. Rosing, J. Wawrzynek,

D. Wessel, J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia,

D. Blaauw, P. Dutta, K. Fu, C. Guestrin, B. Taskar, R. Jafari, D. Jones, V. Ku-

mar, R. Mangharam, G. J. Pappas, R. M. Murray, and A. Rowe, “The swarm

at the edge of the cloud,” IEEE Design Test, vol. 31, pp. 8–20, June 2014.

[56] O. Vermesan, P. Friess, P. Guillemin, and S. Gusmeroli, Internet of Things

Strategic Research Agenda. River Publishers, 2011.

[57] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and

challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646, Oct 2016.

[58] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing, MCC ’12, (New York, NY, USA), pp. 13–16, ACM,

2012.



124

[59] J. Španhel, V. Bartl, R. Juránek, and A. Herout, “Vehicle re-identification and

multi-camera tracking in challenging city-scale environment,” in Proc. CVPR

Workshops, 2019.

[60] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards

wearable cognitive assistance,” in Proceedings of the 12th Annual International

Conference on Mobile Systems, Applications, and Services, MobiSys ’14, (New

York, NY, USA), pp. 68–81, ACM, 2014.

[61] Y. Lu, A. Chowdhery, and S. Kandula, “Visflow: A relational platform for

efficient large-scale video analytics,” tech. rep., June 2016.

[62] E. Ristani and C. Tomasi, “Tracking multiple people online and in real time,”

in Asian Conference on Computer Vision, pp. 444–459, Springer, 2014.

[63] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[64] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam, and

D. Kalenichenko, “Quantization and training of neural networks for efficient

integer-arithmetic-only inference,” in 2018 IEEE Conference on Computer Vis-

ion and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June

18-22, 2018, pp. 2704–2713, 2018.

[65] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. García,

B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed

precision training,” CoRR, vol. abs/1710.03740, 2017.

[66] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled samples generated by gan im-

prove the person re-identification baseline in vitro,” in Proceedings of the IEEE

International Conference on Computer Vision, 2017.



125

[67] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural

network for person re-identification,” in CVPR, 2014.

[68] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable per-

son re-identification: A benchmark,” in Computer Vision, IEEE International

Conference on, 2015.

[69] H. Moon and P. J. Phillips, “Computational and performance aspects of pca-

based face-recognition algorithms,” Perception, vol. 30, no. 3, pp. 303–321, 2001.

[70] P. Grother, R. J. Micheals, and P. J. Phillips, “Face recognition vendor test

2002 performance metrics,” in International Conference on Audio-and Video-

based Biometric Person Authentication, pp. 937–945, Springer, 2003.

[71] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi, “Perform-

ance measures and a data set for multi-target, multi-camera tracking,” CoRR,

vol. abs/1609.01775, 2016.

[72] “Nvidia jetson nano system-on-module data sheet [preliminary],” May 2019.

Rev. 0.7.

[73] Dusty-Nv, “Jetson agx xavier new era autonomous machines,” May 2019.

[74] S. Feldstein and C. E. for International Peace, The Global Expansion of AI

Surveillance. Carnegie Endowment for International Peace, 2019.

[75] M. R. Patrikar, Devashree R. Parate, “Anomaly detection using edge comput-

ing in video surveillance system: review,” International Journal of Multimedia

Information Retrieval, pp. 85–110, 2022.

[76] A. Danesh Pazho, G. Alinezhad Noghre, A. A. Purkayastha, J. Vempati,

O. Martin, and H. Tabkhi, “A comprehensive survey of graph-based deep learn-



126

ing approaches for anomaly detection in complex distributed systems,” arXiv

preprint arXiv:2206.04149, 2022.

[77] X. Li and Z.-m. Cai, “Anomaly detection techniques in surveillance videos,” in

2016 9th International Congress on Image and Signal Processing, BioMedical

Engineering and Informatics (CISP-BMEI), pp. 54–59, 2016.

[78] K. Islam, “Person search: New paradigm of person re-identification: A survey

and outlook of recent works,” Image and Vision Computing, vol. 101, p. 103970,

2020.

[79] B. S. Shobha and R. Deepu, “A review on video based vehicle detection, re-

cognition and tracking,” in 2018 3rd International Conference on Computa-

tional Systems and Information Technology for Sustainable Solutions (CSITSS),

pp. 183–186, 2018.

[80] J. Zhang, C. Xu, Z. Gao, J. J. P. C. Rodrigues, and V. H. C. de Albuquerque,

“Industrial pervasive edge computing-based intelligence iot for surveillance sa-

liency detection,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7,

pp. 5012–5020, 2021.

[81] G. T. Draughon, P. Sun, and J. P. Lynch, “Implementation of a computer vision

framework for tracking and visualizing face mask usage in urban environments,”

in 2020 IEEE International Smart Cities Conference (ISC2), pp. 1–8, 2020.

[82] R. Xu, S. Y. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng, and

T. R. Faughnan, “Real-time human objects tracking for smart surveillance at

the edge,” in 2018 IEEE International Conference on Communications (ICC),

pp. 1–6, 2018.

[83] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B.-Y. Choi, and T. Faughnan, “Smart

surveillance as an edge network service: From harr-cascade, svm to a lightweight



127

cnn,” in 2018 IEEE 4th International Conference on Collaboration and Internet

Computing (CIC), pp. 256–265, 2018.

[84] S. Y. Nikouei, Y. Chen, S. Song, B.-Y. Choi, and T. R. Faughnan, “Toward

intelligent surveillance as an edge network service (isense) using lightweight

detection and tracking algorithms,” IEEE Transactions on Services Computing,

vol. 14, no. 6, pp. 1624–1637, 2021.

[85] C. Neff, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and H. Tabkhi,

“Revamp2t: Real-time edge video analytics for multicamera privacy-aware ped-

estrian tracking,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2591–2602,

2020.

[86] B. Gaikwad and A. Karmakar, “Smart surveillance system for real-time multi-

person multi-camera tracking at the edge,” in Journal of Real-Time Image Pro-

cessing, vol. 18, 2021.

[87] Y. Zhao, Y. Yin, and G. Gui, “Lightweight deep learning based intelligent edge

surveillance techniques,” IEEE Transactions on Cognitive Communications and

Networking, vol. 6, no. 4, pp. 1146–1154, 2020.

[88] R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A smart, efficient, and reliable park-

ing surveillance system with edge artificial intelligence on iot devices,” IEEE

Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4962–

4974, 2021.

[89] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D,

pp. 35–45, 1960.

[90] J. Liang, L. Jiang, J. C. Niebles, A. G. Hauptmann, and L. Fei-Fei, “Peeking

into the future: Predicting future person activities and locations in videos,”



128

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019.

[91] V. Nguyen, D. Phung, D.-S. Pham, and S. Venkatesh, “Bayesian nonparametric

approaches to abnormality detection in video surveillance,” Annals of Data

Science, vol. 2, pp. 21–41, 2015.

[92] R. Nawaratne, D. Alahakoon, D. De Silva, and X. Yu, “Spatiotemporal anomaly

detection using deep learning for real-time video surveillance,” IEEE Transac-

tions on Industrial Informatics, vol. 16, no. 1, pp. 393–402, 2020.

[93] R. Arroyo, J. J. Yebes, L. M. Bergasa, I. G. Daza, and J. Almazán, “Expert

video-surveillance system for real-time detection of suspicious behaviors in shop-

ping malls,” Expert Systems with Applications, vol. 42, no. 21, pp. 7991–8005,

2015.

[94] J. T. Zhou, J. Du, H. Zhu, X. Peng, Y. Liu, and R. S. M. Goh, “Anomalynet:

An anomaly detection network for video surveillance,” IEEE Transactions on

Information Forensics and Security, vol. 14, no. 10, pp. 2537–2550, 2019.

[95] J. Pierce, R. Y. Wong, and N. Merrill, “Sensor illumination: Exploring design

qualities and ethical implications of smart cameras and image/video analytics,”

in Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems, CHI ’20, (New York, NY, USA), p. 1–19, Association for Computing

Machinery, 2020.

[96] H. Nissenbaum, “Privacy as contextual integrity,” Wash. L. Rev., vol. 79, p. 119,

2004.

[97] Y. E. Appenzeller, P. S. Appelbaum, and M. Trachsel, “Ethical and practical

issues in video surveillance of psychiatric units,” Psychiatric Services, vol. 71,

no. 5, pp. 480–486, 2020.



129

[98] F. Tariq, N. Kanwal, M. S. Ansari, A. Afzaal, M. N. Asghar, and M. J. Anjum,

“Towards a privacy preserving surveillance approach for smart cities,” in 3rd

Smart Cities Symposium (SCS 2020), vol. 2020, pp. 450–455, 2020.

[99] W. Hartzog, PrivacyÕs Blueprint: The Battle to Control the Design of New

Technologies. Harvard University Press, 2018.

[100] J. Daubert, A. Wiesmaier, and P. Kikiras, “A view on privacy & trust in iot,”

in 2015 IEEE International Conference on Communication Workshop (ICCW),

pp. 2665–2670, IEEE, 2015.

[101] T. Speicher, M. Ali, G. Venkatadri, F. N. Ribeiro, G. Arvanitakis, F. Beneven-

uto, K. P. Gummadi, P. Loiseau, and A. Mislove, “Potential for discrimination

in online targeted advertising,” in Conference on Fairness, Accountability and

Transparency, pp. 5–19, PMLR, 2018.

[102] I. D. Raji, T. Gebru, M. Mitchell, J. Buolamwini, J. Lee, and E. Denton,

“Saving face: Investigating the ethical concerns of facial recognition auditing,” in

Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 145–

151, 2020.

[103] N. Martinez-Martin, “What are important ethical implications of using facial

recognition technology in health care?,” AMA journal of ethics, vol. 21, no. 2,

p. E180, 2019.

[104] L. Introna and H. Nissenbaum, “Facial recognition technology a survey of policy

and implementation issues,” 2010.

[105] E. Selinger and B. Leong, “The ethics of facial recognition technology,” Forth-

coming in The Oxford Handbook of Digital Ethics ed. Carissa Véliz, 2021.



130

[106] F. Angelini, Z. Fu, Y. Long, L. Shao, and S. M. Naqvi, “2d pose-based real-

time human action recognition with occlusion-handling,” IEEE Transactions on

Multimedia, vol. 22, no. 6, pp. 1433–1446, 2019.

[107] J.-M. Guo, C.-C. Lin, M.-F. Wu, C.-H. Chang, and H. Lee, “Complexity reduced

face detection using probability-based face mask prefiltering and pixel-based

hierarchical-feature adaboosting,” IEEE Signal Processing Letters, vol. 18, no. 8,

pp. 447–450, 2011.

[108] T. Özyer, D. S. Ak, and R. Alhajj, “Human action recognition approaches with

video datasets—a survey,” Knowledge-Based Systems, vol. 222, p. 106995, 2021.

[109] R. Liao, S. Yu, W. An, and Y. Huang, “A model-based gait recognition method

with body pose and human prior knowledge,” Pattern Recognition, vol. 98,

p. 107069, 2020.

[110] X. Jin, T. He, K. Zheng, Z. Yin, X. Shen, Z. Huang, R. Feng, J. Huang, Z. Chen,

and X.-S. Hua, “Cloth-changing person re-identification from a single image with

gait prediction and regularization,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 14278–14287, 2022.

[111] D. Leslie, “Understanding bias in facial recognition technologies,” tech. rep.,

2020.

[112] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,

TaoXie, K. Michael, J. Fang, imyhxy, Lorna, C. Wong, Z. Yifu, A. V, D. Montes,

Z. Wang, C. Fati, J. Nadar, Laughing, UnglvKitDe, tkianai, yxNONG, P. Skal-

ski, A. Hogan, M. Strobel, M. Jain, L. Mammana, and xylieong, “ultralytic-

s/yolov5: v6.2 - YOLOv5 Classification Models, Apple M1, Reproducibility,

ClearML and Deci.ai integrations,” Aug. 2022.



131

[113] A. Warsi, M. Abdullah, M. N. Husen, M. Yahya, S. Khan, and N. Jawaid,

“Gun detection system using yolov3,” in 2019 IEEE International Conference

on Smart Instrumentation, Measurement and Application (ICSIMA), pp. 1–4,

IEEE, 2019.

[114] S. Narejo, B. Pandey, D. Esenarro Vargas, C. Rodriguez, and M. R. Anjum,

“Weapon detection using yolo v3 for smart surveillance system,” Mathematical

Problems in Engineering, vol. 2021, pp. 1–9, 2021.

[115] R. Garg and S. Singh, “Intelligent video surveillance based on yolo: A com-

parative study,” in 2021 International Conference on Advances in Computing,

Communication, and Control (ICAC3), pp. 1–6, IEEE, 2021.

[116] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and

X. Wang, “Bytetrack: Multi-object tracking by associating every detection box,”

2022.

[117] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,

X. Wang, W. Liu, and B. Xiao, “Deep high-resolution representation learning

for visual recognition,” TPAMI, 2019.

[118] W. An, R. Liao, S. Yu, Y. Huang, and P. C. Yuen, “Improving gait recognition

with 3d pose estimation,” in Biometric Recognition: 13th Chinese Conference,

CCBR 2018, Urumqi, China, August 11-12, 2018, Proceedings 13, pp. 137–147,

Springer, 2018.

[119] M. M. Hasan and H. A. Mustafa, “Multi-level feature fusion for robust pose-

based gait recognition using rnn,” Int. J. Comput. Sci. Inf. Secur.(IJCSIS),

vol. 18, no. 1, 2020.

[120] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning



132

for person re-identification,” in 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 3701–3711, 2019.

[121] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model

and the kinetics dataset,” in proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 6299–6308, 2017.

[122] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C. Feichtenhofer,

“Multiscale vision transformers,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 6824–6835, 2021.

[123] J. Liang, H. Zhu, E. Zhang, and J. Zhang, “Stargazer: A transformer-based

driver action detection system for intelligent transportation,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 3160–3167, 2022.

[124] W. Liu, G. Kang, P.-Y. Huang, X. Chang, Y. Qian, J. Liang, L. Gui, J. Wen,

and P. Chen, “Argus: Efficient activity detection system for extended video

analysis,” in Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision Workshops, pp. 126–133, 2020.

[125] K. Corona, K. Osterdahl, R. Collins, and A. Hoogs, “Meva: A large-scale mul-

tiview, multimodal video dataset for activity detection,” in Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1060–

1068, 2021.

[126] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer

Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.),

(Cham), pp. 740–755, Springer International Publishing, 2014.



133

[127] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,

K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking

in crowded scenes,” 2020.

[128] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu,

H. Li, et al., “Internimage: Exploring large-scale vision foundation models with

deformable convolutions,” arXiv preprint arXiv:2211.05778, 2022.

[129] L. Zheng, M. Tang, Y. Chen, G. Zhu, J. Wang, and H. Lu, “Improving multiple

object tracking with single object tracking,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2453–

2462, June 2021.

[130] Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “ViTPose: Simple vision transformer

baselines for human pose estimation,” in Advances in Neural Information Pro-

cessing Systems (A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, eds.), 2022.

[131] M. Wieczorek, B. Rychalska, and J. Dabrowski, “On the unreasonable effective-

ness of centroids in image retrieval,” in Neural Information Processing: 28th In-

ternational Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12,

2021, Proceedings, Part IV, (Berlin, Heidelberg), p. 212–223, Springer-Verlag,

2021.

[132] H. Duan, J. Wang, K. Chen, and D. Lin, “Pyskl: Towards good practices for

skeleton action recognition,” 2022.

[133] L. Wang, D. Q. Huynh, and P. Koniusz, “A comparative review of recent kinect-

based action recognition algorithms,” IEEE Transactions on Image Processing,

vol. 29, pp. 15–28, 2020.

[134] K. Chen, P. Gabriel, A. Alasfour, C. Gong, W. K. Doyle, O. Devinsky, D. Fried-

man, P. Dugan, L. Melloni, T. Thesen, D. Gonda, S. Sattar, S. Wang, and



134

V. Gilja, “Patient-specific pose estimation in clinical environments,” IEEE

Journal of Translational Engineering in Health and Medicine, vol. 6, pp. 1–11,

2018.

[135] Z. Fang and A. M. López, “Intention recognition of pedestrians and cyclists by

2d pose estimation,” IEEE Transactions on Intelligent Transportation Systems,

vol. 21, no. 11, pp. 4773–4783, 2020.

[136] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” CoRR, vol. abs/1905.11946, 2019.

[137] G. Papandreou, T. Zhu, L. Chen, S. Gidaris, J. Tompson, and K. Murphy,

“Personlab: Person pose estimation and instance segmentation with a bottom-

up, part-based, geometric embedding model,” CoRR, vol. abs/1803.08225, 2018.

[138] D. Osokin, “Real-time 2d multi-person pose estimation on CPU: lightweight

openpose,” CoRR, vol. abs/1811.12004, 2018.

[139] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible mixtures-

of-parts,” in CVPR 2011, pp. 1385–1392, 2011.

[140] M. Dantone, J. Gall, C. Leistner, and L. Van Gool, “Human pose estimation

using body parts dependent joint regressors,” in 2013 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3041–3048, 2013.

[141] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” CoRR, vol. abs/1312.4659, 2013.

[142] A. Jain, J. Tompson, M. Andriluka, G. Taylor, and C. Bregler, “Learning human

pose estimation features with convolutional networks,” 12 2013.

[143] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose

estimation,” CoRR, vol. abs/1603.06937, 2016.



135

[144] A. Bulat and G. Tzimiropoulos, “Human pose estimation via convolutional part

heatmap regression,” CoRR, vol. abs/1609.01743, 2016.

[145] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-

chines,” CoRR, vol. abs/1602.00134, 2016.

[146] U. Iqbal and J. Gall, “Multi-person pose estimation with local joint-to-person

associations,” CoRR, vol. abs/1608.08526, 2016.

[147] G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and

K. P. Murphy, “Towards accurate multi-person pose estimation in the wild,”

CoRR, vol. abs/1701.01779, 2017.

[148] S. Huang, M. Gong, and D. Tao, “A coarse-fine network for keypoint localiza-

tion,” pp. 3047–3056, 10 2017.

[149] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “RMPE: Regional multi-person pose

estimation,” in ICCV, 2017.

[150] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid

network for multi-person pose estimation,” CoRR, vol. abs/1711.07319, 2017.

[151] B. Cheng, Y. Wei, H. Shi, R. S. Feris, J. Xiong, and T. S. Huang, “Decoupled

classification refinement: Hard false positive suppression for object detection,”

CoRR, vol. abs/1810.04002, 2018.

[152] B. Cheng, Y. Wei, H. Shi, R. S. Feris, J. Xiong, and T. S. Huang, “Revis-

iting RCNN: on awakening the classification power of faster RCNN,” CoRR,

vol. abs/1803.06799, 2018.

[153] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,

“Feature pyramid networks for object detection,” CoRR, vol. abs/1612.03144,

2016.



136

[154] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time

object detection with region proposal networks,” CoRR, vol. abs/1506.01497,

2015.

[155] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose: Re-

altime multi-person 2d pose estimation using part affinity fields,” CoRR,

vol. abs/1812.08008, 2018.

[156] S. Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: Composite fields for human pose

estimation,” CoRR, vol. abs/1903.06593, 2019.

[157] A. Newell and J. Deng, “Associative embedding: End-to-end learning for joint

detection and grouping,” CoRR, vol. abs/1611.05424, 2016.

[158] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele, “Dee-

percut: A deeper, stronger, and faster multi-person pose estimation model,”

CoRR, vol. abs/1605.03170, 2016.

[159] M. Kocabas, S. Karagoz, and E. Akbas, “Multiposenet: Fast multi-person pose

estimation using pose residual network,” CoRR, vol. abs/1807.04067, 2018.

[160] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” 2017.

[161] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs,” CoRR, vol. abs/1606.00915, 2016.

[162] L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale:

Scale-aware semantic image segmentation,” CoRR, vol. abs/1511.03339, 2015.



137

[163] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,

“Feature pyramid networks for object detection,” CoRR, vol. abs/1612.03144,

2016.

[164] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning feature pyramids

for human pose estimation,” CoRR, vol. abs/1708.01101, 2017.

[165] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid

network for multi-person pose estimation,” CoRR, vol. abs/1711.07319, 2017.

[166] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[167] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015.

[168] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

segmentation,” CoRR, vol. abs/1505.04366, 2015.

[169] Z. Zhang, X. Zhang, C. Peng, D. Cheng, and J. Sun, “Exfuse: Enhancing feature

fusion for semantic segmentation,” CoRR, vol. abs/1804.03821, 2018.

[170] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder

with atrous separable convolution for semantic image segmentation,” CoRR,

vol. abs/1802.02611, 2018.

[171] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual parsing for

scene understanding,” CoRR, vol. abs/1807.10221, 2018.

[172] A. Bulat and G. Tzimiropoulos, “Binarized convolutional landmark localizers

for human pose estimation and face alignment with limited resources,” CoRR,

vol. abs/1703.00862, 2017.



138

[173] L. Ke, M. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware network for

human pose estimation,” CoRR, vol. abs/1803.09894, 2018.

[174] S. Saxena and J. Verbeek, “Convolutional neural fabrics,” CoRR,

vol. abs/1606.02492, 2016.

[175] Y. Zhou, X. Hu, and B. Zhang, “Interlinked convolutional neural networks for

face parsing,” CoRR, vol. abs/1806.02479, 2018.

[176] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinber-

ger, “Multi-scale dense convolutional networks for efficient prediction,” CoRR,

vol. abs/1703.09844, 2017.

[177] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,

and J. Wang, “High-resolution representations for labeling pixels and regions,”

CoRR, vol. abs/1904.04514, 2019.

[178] X. Yan, Y. Huang, S. Chen, Z. Nan, J. Xin, and N. Zheng, “Dsp-net: Dense-

to-sparse proposal generation approach for 3d object detection on point cloud,”

in 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8,

2021.

[179] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778, 2016.

[180] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” 2014.

[181] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Designing

network design spaces,” 2020.



139

[182] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object

detection,” 2019.

[183] L. Yang, Y. Qin, and X. Zhang, “Lightweight densely connected residual network

for human pose estimation,” Journal of Real-time Image Processing, pp. 1–13,

2020.

[184] “Openvino toolkit..”

[185] John, “trt_pose.”

[186] A. Saharan, “Creating a human pose estimation application with nvidia deep-

stream,” Nov 2020.

[187] M. Ditty, A. Karandikar, and D. Reed, “Nvidia xavier soc,” Aug 2018.

[188] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE Conference on Computer

Vision and Pattern Recognition, pp. 248–255, 2009.

[189] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech.

rep., 2009.

[190] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’12,

(Red Hook, NY, USA), p. 1097–1105, Curran Associates Inc., 2012.

[191] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,

vol. abs/1609.04747, 2016.

[192] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the Thirteenth International Confer-

ence on Artificial Intelligence and Statistics (Y. W. Teh and M. Titterington,



140

eds.), vol. 9 of Proceedings of Machine Learning Research, (Chia Laguna Resort,

Sardinia, Italy), pp. 249–256, PMLR, 13–15 May 2010.

[193] R. Ge, S. M. Kakade, R. Kidambi, and P. Netrapalli, “The step decay sched-

ule: A near optimal, geometrically decaying learning rate procedure,” CoRR,

vol. abs/1904.12838, 2019.

[194] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2015.

[195] L. Zheng, H. Zhang, S. Sun, M. Chandraker, Y. Yang, and Q. Tian, “Person

re-identification in the wild,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 3346–3355, 2017.

[196] A. Hermans*, L. Beyer*, and B. Leibe, “In Defense of the Triplet Loss for

Person Re-Identification,” arXiv preprint arXiv:1703.07737, 2017.

[197] Y. Wang, Z. Chen, F. Wu, and G. Wang, “Person re-identification with cascaded

pairwise convolutions,” in 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pp. 1470–1478, 2018.

[198] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-ranking person re-identification with

k-reciprocal encoding,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), July 2017.

[199] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person

re-identification: A benchmark,” in 2015 IEEE International Conference on

Computer Vision (ICCV), pp. 1116–1124, 2015.

[200] W. Li, R. Zhao, T. Xiao, and X. Wang, “Deepreid: Deep filter pairing neural

network for person re-identification,” in CVPR, 2014.



141

[201] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer gan to bridge domain

gap for person re-identification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018.

[202] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars: A

video benchmark for large-scale person re-identification,” in Computer Vision

– ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.), (Cham),

pp. 868–884, Springer International Publishing, 2016.

[203] X. Ni and E. Rahtu, “Flipreid: Closing the gap between training and inference in

person re-identification,” in 2021 9th European Workshop on Visual Information

Processing (EUVIP), pp. 1–6, 2021.

[204] M. Wieczorek, B. Rychalska, and J. Dabrowski, “On the unreasonable effect-

iveness of centroids in image retrieval,” ArXiv, vol. abs/2104.13643, 2021.

[205] Z. Zhu, X. Jiang, F. Zheng, X. Guo, F. Huang, W. Zheng, and X. Sun,

“Viewpoint-aware loss with angular regularization for person re-identification,”

2019.

[206] G. Wang, J. Lai, P. Huang, and X. Xie, “Spatial-temporal person re-

identification,” Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 33, pp. 8933–8940, Jul. 2019.

[207] Y. Chen, X. Zhu, and S. Gong, “Instance-guided context rendering for cross-

domain person re-identification,” in 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), pp. 232–242, 2019.

[208] J. Liu, Z.-J. Zha, D. Chen, R. Hong, and M. Wang, “Adaptive transfer network

for cross-domain person re-identification,” in 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 7195–7204, 2019.



142

[209] H. Feng, M. Chen, J. Hu, D. Shen, H. Liu, and D. Cai, “Complementary pseudo

labels for unsupervised domain adaptation on person re-identification,” IEEE

Transactions on Image Processing, vol. 30, pp. 2898–2907, 2021.

[210] L. Song, C. Wang, L. Zhang, B. Du, Q. Zhang, C. Huang, and X. Wang,

“Unsupervised domain adaptive re-identification: Theory and practice,” Pattern

Recogn., vol. 102, jun 2020.

[211] Y. Ge, D. Chen, and H. Li, “Mutual mean-teaching: Pseudo label refinery for

unsupervised domain adaptation on person re-identification,” in International

Conference on Learning Representations, 2020.

[212] Y. Ge, F. Zhu, D. Chen, R. Zhao, and H. Li, “Self-paced contrastive learning

with hybrid memory for domain adaptive object re-id,” in Advances in Neural

Information Processing Systems, 2020.

[213] K. Zeng, “Hierarchical clustering with hard-batch triplet loss for person re-

identification,” 2019.

[214] H. Rami, M. Ospici, and S. Lathuilière, “Online unsupervised domain adapta-

tion for person re-identification,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 3830–

3839, June 2022.

[215] E. Fini, S. Lathuilière, E. Sangineto, M. Nabi, and E. Ricci, “Online continual

learning under extreme memory constraints,” in Computer Vision – ECCV 2020

(A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, eds.), (Cham), pp. 720–735,

Springer International Publishing, 2020.

[216] Y. Lin, X. Dong, L. Zheng, Y. Yan, and Y. Yang, “A bottom-up clustering

approach to unsupervised person re-identification,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, pp. 8738–8745, Jul. 2019.



143

[217] Q. Leng, M. Ye, and Q. Tian, “A survey of open-world person re-identification,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 4,

pp. 1092–1108, 2020.

[218] L. Zheng, Y. Yang, and A. Hauptmann, “Person re-identification: Past, present

and future,” ArXiv, vol. abs/1610.02984, 2016.

[219] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.

[220] P. Isola, J.-Y. Zhu, T. Zhou, and A. Efros, “Image-to-image translation with

conditional adversarial networks,” in 2017 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 5967–5976, 07 2017.

[221] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and J. Jiao, “Image-image

domain adaptation with preserved self-similarity and domain-dissimilarity for

person re-identification,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[222] Y. Ge, F. Zhu, D. Chen, R. Zhao, X. Wang, and H. Li, “Structured domain

adaptation with online relation regularization for unsupervised person re-id,”

2020.

[223] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks,” in 2017 IEEE International

Conference on Computer Vision (ICCV), pp. 2242–2251, 2017.

[224] Y. Huang, Q. Wu, J. Xu, and Y. Zhong, “Sbsgan: Suppression of inter-domain

background shift for person re-identification,” in 2019 IEEE/CVF International



144

Conference on Computer Vision (ICCV), (Los Alamitos, CA, USA), pp. 9526–

9535, IEEE Computer Society, nov 2019.

[225] H. Fan, L. Zheng, C. Yan, and Y. Yang, “Unsupervised person re-identification:

Clustering and fine-tuning,” vol. 14, oct 2018.

[226] M. Ye, J. Li, A. J. Ma, L. Zheng, and P. C. Yuen, “Dynamic graph co-matching

for unsupervised video-based person re-identification,” IEEE Transactions on

Image Processing, vol. 28, no. 6, pp. 2976–2990, 2019.

[227] Y. Fu, Y. Wei, G. Wang, Y. Zhou, H. Shi, and T. S. Huang, “Self-similarity

grouping: A simple unsupervised cross domain adaptation approach for person

re-identification,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), October 2019.

[228] Y. Ge, F. Zhu, D. Chen, R. Zhao, and H. Li, “Self-paced contrastive learning

with hybrid memory for domain adaptive object re-id,” in Advances in Neural

Information Processing Systems, 2020.

[229] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-

averaged consistency targets improve semi-supervised deep learning results,” in

Proceedings of the 31st International Conference on Neural Information Pro-

cessing Systems, NIPS’17, (Red Hook, NY, USA), p. 1195–1204, Curran Asso-

ciates Inc., 2017.

[230] G. Delorme, Y. Xu, S. Lathuiliere, R. Horaud, and X. Alameda-Pineda,

“Canu-reid: A conditional adversarial network for unsupervised person re-

identification,” in 2020 25th International Conference on Pattern Recognition

(ICPR), (Los Alamitos, CA, USA), pp. 4428–4435, IEEE Computer Society,

jan 2021.



145

[231] N. Ewen and N. Khan, “Online unsupervised learning for domain shift in covid-

19 ct scan datasets,” in 2021 IEEE International Conference on Autonomous

Systems (ICAS), pp. 1–5, 2021.

[232] Y. Ye, T. Pan, Q. Meng, J. Li, and H. T. Shen, “Online unsupervised domain

adaptation via reducing inter- and intra-domain discrepancies,” IEEE Transac-

tions on Neural Networks and Learning Systems, pp. 1–15, 2022.

[233] W. He, Y. Ye, Y. Li, T. Pan, and L. Lu, “Online cross-subject emotion re-

cognition from ecg via unsupervised domain adaptation,” in 2021 43rd Annual

International Conference of the IEEE Engineering in Medicine & Biology So-

ciety (EMBC), pp. 1001–1005, 2021.

[234] J. Moon, D. Das, and C. S. George Lee, “A multistage framework with mean

subspace computation and recursive feedback for online unsupervised domain

adaptation,” IEEE Transactions on Image Processing, vol. 31, pp. 4622–4636,

2022.

[235] J. H. Moon, D. Das, and C. G. Lee, “Multi-step online unsupervised domain ad-

aptation,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 41172–41576, 2020.

[236] Y. Kuznietsov, M. Proesmans, and L. V. Gool, “Towards unsupervised on-

line domain adaptation for semantic segmentation,” in 2022 IEEE/CVF

Winter Conference on Applications of Computer Vision Workshops (WACVW),

pp. 261–271, 2022.

[237] J.-A. Termöhlen, M. Klingner, L. J. Brettin, N. M. Schmidt, and T. Fingscheidt,

“Continual unsupervised domain adaptation for semantic segmentation by on-

line frequency domain style transfer,” in 2021 IEEE International Intelligent

Transportation Systems Conference (ITSC), pp. 2881–2888, 2021.



146

[238] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with

a deep association metric,” in 2017 IEEE International Conference on Image

Processing (ICIP), pp. 3645–3649, 2017.

[239] R. Rana and D. Garg, “Heuristic approaches for k-center problem,” in 2009

IEEE International Advance Computing Conference, pp. 332–335, 2009.

[240] N. Jali, N. Karamchandani, and S. Moharir, “Greedy kk-center from noisy dis-

tance samples,” IEEE Transactions on Signal and Information Processing over

Networks, vol. 8, pp. 330–343, 2022.

[241] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-

ing,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, SODA ’07, (USA), p. 1027–1035, Society for Industrial and

Applied Mathematics, 2007.

[242] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm

for discovering clusters in large spatial databases with noise.,” in kdd, vol. 96,

pp. 226–231, 1996.



147

Appendix A: Extended Results for Subset Distribution Selection

As mentioned, we conducted over 3000 experiments when exploring R2OUDA and

testing R2MMT. To present numerical results for each individual data point is im-

possible within the confines of a conference paper, which is why we instead used 3D

representations to show trends in the data we collected. For transparency’s sake, we

use this appendix to provide detailed numerical results for each data point generated

in our experiments. The amount of data here is massive, and we recommend only

using it in combination with the figures and analysis provided in the main paper to

better understand trends or to find values at individual data points. If these quant-

itative results are read in isolation, we fear the sheer amount of data itself will be

obfuscating, which is counter to the point of providing it in the first place.

The following table contains the complete list of experiments conducted for Sec. 5.5.1.

As can be seen here, we explored more values of K than we reported in Sec. 5.5.1.

These additional data points helped us see the overall trend when we started our ini-

tial exploration and provided the values we went with for the other two experiments.

However, we decided to leave them out for clarity, as Fig. 5.3, Fig. 5.4, and Fig. 5.5

were already quite crowded and the additional data points made the figures more

difficult to understand. Even with the additional data points, the trends remain the

same.

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 2 100 13.90% 26.53% 0:01:43 0:03:59 0:05:42

1 2 250 12.04% 24.46% 0:02:30 0:03:59 0:06:29

1 2 500 11.47% 23.61% 0:03:49 0:03:59 0:07:48



148

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 2 750 11.20% 22.67% 0:05:06 0:03:59 0:09:05

1 2 1000 10.92% 21.54% 0:06:24 0:03:59 0:10:23

1 2 1500 10.28% 20.11% 0:09:05 0:03:59 0:13:04

1 2 2000 9.62% 19.75% 0:11:35 0:03:59 0:15:34

1 4 100 24.77% 40.04% 0:01:50 0:08:03 0:09:53

1 4 250 26.02% 41.16% 0:02:37 0:08:03 0:10:40

1 4 500 27.07% 42.46% 0:03:54 0:08:03 0:11:57

1 4 750 27.22% 41.79% 0:05:12 0:08:03 0:13:15

1 4 1000 27.24% 42.28% 0:06:33 0:08:03 0:14:36

1 4 1500 27.11% 41.29% 0:09:07 0:08:03 0:17:10

1 4 2000 26.94% 41.34% 0:11:37 0:08:03 0:19:40

1 6 100 28.90% 44.75% 0:01:56 0:12:00 0:13:56

1 6 250 31.32% 47.35% 0:02:43 0:12:00 0:14:43

1 6 500 32.90% 48.56% 0:04:02 0:12:00 0:16:02

1 6 750 33.28% 48.16% 0:05:28 0:12:00 0:17:28

1 6 1000 34.47% 50.22% 0:06:39 0:12:00 0:18:39

1 6 1500 33.96% 49.10% 0:09:27 0:12:00 0:21:27

1 6 2000 34.18% 49.10% 0:11:59 0:12:00 0:23:59

1 8 100 30.03% 46.54% 0:02:03 0:15:38 0:17:41

1 8 250 32.75% 48.61% 0:02:51 0:15:38 0:18:29

1 8 500 35.63% 51.97% 0:04:10 0:15:38 0:19:48

1 8 750 35.89% 51.08% 0:05:29 0:15:38 0:21:07

1 8 1000 36.31% 52.11% 0:06:50 0:15:38 0:22:28



149

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 8 1500 37.82% 54.40% 0:09:26 0:15:38 0:25:04

1 8 2000 36.79% 52.83% 0:12:03 0:15:38 0:27:41

1 10 100 32.06% 47.94% 0:02:10 0:21:14 0:23:24

1 10 250 34.10% 49.69% 0:03:04 0:21:14 0:24:18

1 10 500 37.30% 52.87% 0:04:16 0:21:14 0:25:30

1 10 750 37.22% 53.14% 0:05:34 0:21:14 0:26:48

1 10 1000 38.38% 53.82% 0:06:55 0:21:14 0:28:09

1 10 1500 39.39% 54.58% 0:09:31 0:21:14 0:30:45

1 10 2000 39.83% 55.07% 0:12:26 0:21:14 0:33:40

1 12 100 33.44% 48.83% 0:02:18 0:23:38 0:25:56

1 12 250 36.45% 52.20% 0:03:08 0:23:38 0:26:46

1 12 500 39.24% 54.85% 0:04:25 0:23:38 0:28:03

1 12 750 40.20% 56.06% 0:05:45 0:23:38 0:29:23

1 12 1000 40.24% 56.46% 0:07:04 0:23:38 0:30:42

1 12 1500 42.39% 58.30% 0:09:46 0:23:38 0:33:24

1 12 2000 42.82% 58.53% 0:12:40 0:23:38 0:36:18

1 14 100 34.32% 50.00% 0:02:26 0:27:24 0:29:50

1 14 250 37.84% 54.08% 0:03:12 0:27:24 0:30:36

1 14 500 40.03% 55.70% 0:04:33 0:27:24 0:31:57

1 14 750 40.86% 56.73% 0:05:53 0:27:24 0:33:17

1 14 1000 41.83% 57.63% 0:07:14 0:27:24 0:34:38

1 14 1500 42.90% 57.99% 0:09:57 0:27:24 0:37:21

1 14 2000 43.65% 58.21% 0:12:35 0:27:24 0:39:59



150

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 16 100 34.31% 49.96% 0:02:32 0:31:23 0:33:55

1 16 250 38.47% 54.62% 0:03:21 0:31:23 0:34:44

1 16 500 40.98% 56.55% 0:04:42 0:31:23 0:36:05

1 16 750 41.66% 57.41% 0:06:06 0:31:23 0:37:29

1 16 1000 42.63% 57.85% 0:07:27 0:31:23 0:38:50

1 16 1500 43.58% 58.62% 0:10:07 0:31:23 0:41:30

1 16 2000 44.16% 58.48% 0:13:01 0:31:23 0:44:24

1 18 100 35.97% 53.05% 0:02:39 0:35:19 0:37:58

1 18 250 38.45% 54.71% 0:03:28 0:35:19 0:38:47

1 18 500 40.63% 56.33% 0:04:51 0:35:19 0:40:10

1 18 750 42.30% 57.76% 0:06:13 0:35:19 0:41:32

1 18 1000 42.95% 58.57% 0:07:30 0:35:19 0:42:49

1 18 1500 43.78% 58.84% 0:10:11 0:35:19 0:45:30

1 18 2000 44.61% 59.56% 0:13:00 0:35:19 0:48:19

1 20 100 36.57% 53.68% 0:02:48 0:38:28 0:41:16

1 20 250 39.44% 55.07% 0:03:38 0:38:28 0:42:06

1 20 500 42.59% 58.84% 0:05:00 0:38:28 0:43:28

1 20 750 43.07% 58.26% 0:06:22 0:38:28 0:44:50

1 20 1000 44.46% 59.34% 0:07:44 0:38:28 0:46:12

1 20 1500 45.28% 61.09% 0:10:27 0:38:28 0:48:55

1 20 2000 45.88% 60.50% 0:13:15 0:38:28 0:51:43

2 2 100 12.78% 25.40% 0:02:20 0:03:59 0:06:19

2 2 250 12.60% 24.28% 0:03:53 0:03:59 0:07:52



151

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

2 2 500 11.83% 22.04% 0:06:31 0:03:59 0:10:30

2 2 750 11.76% 24.46% 0:09:03 0:03:59 0:13:02

2 2 1000 10.75% 21.18% 0:11:38 0:03:59 0:15:37

2 2 1500 9.72% 18.40% 0:16:51 0:03:59 0:20:50

2 2 2000 9.04% 17.32% 0:22:00 0:03:59 0:25:59

2 4 100 24.99% 38.87% 0:02:34 0:08:03 0:10:37

2 4 250 26.70% 40.08% 0:04:07 0:08:03 0:12:10

2 4 500 28.44% 43.27% 0:06:44 0:08:03 0:14:47

2 4 750 28.14% 42.37% 0:09:20 0:08:03 0:17:23

2 4 1000 27.29% 41.61% 0:11:51 0:08:03 0:19:54

2 4 1500 26.86% 41.29% 0:17:01 0:08:03 0:25:04

2 4 2000 24.07% 36.54% 0:22:19 0:08:03 0:30:22

2 6 100 31.02% 47.22% 0:02:46 0:12:00 0:14:46

2 6 250 34.21% 50.63% 0:04:22 0:12:00 0:16:22

2 6 500 36.02% 51.48% 0:07:04 0:12:00 0:19:04

2 6 750 36.70% 53.10% 0:09:33 0:12:00 0:21:33

2 6 1000 37.35% 52.60% 0:12:29 0:12:00 0:24:29

2 6 1500 36.97% 52.60% 0:17:25 0:12:00 0:29:25

2 6 2000 35.89% 50.81% 0:23:11 0:12:00 0:35:11

2 8 100 33.09% 49.15% 0:02:59 0:15:38 0:18:37

2 8 250 36.72% 52.74% 0:04:36 0:15:38 0:20:14

2 8 500 38.41% 53.90% 0:07:10 0:15:38 0:22:48

2 8 750 39.49% 55.48% 0:09:55 0:15:38 0:25:33



152

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

2 8 1000 40.65% 55.79% 0:12:30 0:15:38 0:28:08

2 8 1500 41.43% 56.37% 0:17:38 0:15:38 0:33:16

2 8 2000 41.16% 56.37% 0:22:50 0:15:38 0:38:28

2 10 100 34.66% 50.81% 0:03:13 0:21:14 0:24:27

2 10 250 39.01% 54.58% 0:04:47 0:21:14 0:26:01

2 10 500 41.53% 57.59% 0:07:24 0:21:14 0:28:38

2 10 750 42.62% 58.84% 0:10:01 0:21:14 0:31:15

2 10 1000 43.87% 59.07% 0:12:50 0:21:14 0:34:04

2 10 1500 44.93% 60.19% 0:18:15 0:21:14 0:39:29

2 10 2000 44.32% 59.20% 0:23:48 0:21:14 0:45:02

2 12 100 37.52% 54.35% 0:03:26 0:23:38 0:27:04

2 12 250 42.07% 58.44% 0:05:01 0:23:38 0:28:39

2 12 500 44.08% 60.14% 0:07:42 0:23:38 0:31:20

2 12 750 45.39% 61.27% 0:10:26 0:23:38 0:34:04

2 12 1000 47.12% 63.11% 0:13:02 0:23:38 0:36:40

2 12 1500 49.42% 65.13% 0:18:22 0:23:38 0:42:00

2 12 2000 49.27% 64.54% 0:23:56 0:23:38 0:47:34

2 14 100 38.59% 54.58% 0:03:41 0:27:24 0:31:05

2 14 250 43.04% 58.93% 0:05:16 0:27:24 0:32:40

2 14 500 45.64% 61.54% 0:07:59 0:27:24 0:35:23

2 14 750 47.42% 63.42% 0:10:38 0:27:24 0:38:02

2 14 1000 48.64% 64.23% 0:13:18 0:27:24 0:40:42

2 14 1500 50.40% 65.75% 0:18:48 0:27:24 0:46:12



153

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

2 14 2000 51.25% 66.74% 0:24:04 0:27:24 0:51:28

2 16 100 39.51% 55.92% 0:03:56 0:31:23 0:35:19

2 16 250 43.45% 59.69% 0:05:32 0:31:23 0:36:55

2 16 500 46.16% 61.76% 0:08:13 0:31:23 0:39:36

2 16 750 47.87% 62.84% 0:10:58 0:31:23 0:42:21

2 16 1000 49.44% 64.95% 0:13:37 0:31:23 0:45:00

2 16 1500 51.94% 67.55% 0:19:19 0:31:23 0:50:42

2 16 2000 52.42% 67.91% 0:24:29 0:31:23 0:55:52

2 18 100 38.78% 54.67% 0:04:08 0:35:19 0:39:27

2 18 250 44.36% 60.86% 0:05:50 0:35:19 0:41:09

2 18 500 46.84% 62.52% 0:08:32 0:35:19 0:43:51

2 18 750 48.46% 63.91% 0:11:12 0:35:19 0:46:31

2 18 1000 49.54% 64.63% 0:14:04 0:35:19 0:49:23

2 18 1500 51.13% 66.56% 0:19:44 0:35:19 0:55:03

2 18 2000 53.03% 68.18% 0:25:05 0:35:19 1:00:24

2 20 100 40.16% 56.82% 0:04:23 0:38:28 0:42:51

2 20 250 45.13% 61.67% 0:06:02 0:38:28 0:44:30

2 20 500 47.38% 63.15% 0:08:41 0:38:28 0:47:09

2 20 750 49.15% 65.08% 0:11:30 0:38:28 0:49:58

2 20 1000 51.05% 65.98% 0:14:24 0:38:28 0:52:52

2 20 1500 52.60% 67.95% 0:19:52 0:38:28 0:58:20

2 20 2000 53.49% 68.67% 0:25:27 0:38:28 1:03:55

3 2 100 12.64% 24.82% 0:02:56 0:03:59 0:06:55



154

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

3 2 250 10.99% 21.50% 0:05:19 0:03:59 0:09:18

3 2 500 11.53% 21.59% 0:09:15 0:03:59 0:13:14

3 2 750 10.41% 19.34% 0:13:03 0:03:59 0:17:02

3 2 1000 9.56% 18.54% 0:17:00 0:03:59 0:20:59

3 2 1500 8.20% 15.75% 0:24:59 0:03:59 0:28:58

3 2 2000 6.54% 12.39% 0:32:43 0:03:59 0:36:42

3 4 100 25.75% 39.32% 0:03:16 0:08:03 0:11:19

3 4 250 27.58% 42.06% 0:05:37 0:08:03 0:13:40

3 4 500 28.15% 43.22% 0:09:33 0:08:03 0:17:36

3 4 750 28.12% 42.77% 0:13:27 0:08:03 0:21:30

3 4 1000 27.01% 41.65% 0:17:14 0:08:03 0:25:17

3 4 1500 24.78% 38.11% 0:25:12 0:08:03 0:33:15

3 4 2000 22.60% 35.95% 0:32:47 0:08:03 0:40:50

3 6 100 32.41% 48.43% 0:03:35 0:12:00 0:15:35

3 6 250 36.09% 52.65% 0:06:00 0:12:00 0:18:00

3 6 500 38.25% 54.35% 0:09:49 0:12:00 0:21:49

3 6 750 38.77% 55.16% 0:14:01 0:12:00 0:26:01

3 6 1000 37.71% 53.41% 0:17:51 0:12:00 0:29:51

3 6 1500 36.97% 52.11% 0:25:26 0:12:00 0:37:26

3 6 2000 36.71% 52.06% 0:33:18 0:12:00 0:45:18

3 8 100 34.64% 50.45% 0:03:55 0:15:38 0:19:33

3 8 250 39.17% 54.89% 0:06:17 0:15:38 0:21:55

3 8 500 41.42% 57.14% 0:10:16 0:15:38 0:25:54



155

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

3 8 750 42.92% 58.30% 0:14:12 0:15:38 0:29:50

3 8 1000 42.75% 57.63% 0:18:11 0:15:38 0:33:49

3 8 1500 43.37% 58.66% 0:26:03 0:15:38 0:41:41

3 8 2000 42.31% 57.18% 0:34:03 0:15:38 0:49:41

3 10 100 37.13% 54.49% 0:04:15 0:21:14 0:25:29

3 10 250 41.66% 58.75% 0:06:38 0:21:14 0:27:52

3 10 500 43.71% 59.61% 0:10:49 0:21:14 0:32:03

3 10 750 45.86% 62.16% 0:14:29 0:21:14 0:35:43

3 10 1000 47.41% 63.33% 0:18:45 0:21:14 0:39:59

3 10 1500 48.24% 64.18% 0:26:28 0:21:14 0:47:42

3 10 2000 47.58% 63.02% 0:34:18 0:21:14 0:55:32

3 12 100 39.68% 56.42% 0:04:35 0:23:38 0:28:13

3 12 250 43.99% 61.04% 0:06:58 0:23:38 0:30:36

3 12 500 47.47% 63.06% 0:11:02 0:23:38 0:34:40

3 12 750 49.42% 65.26% 0:14:53 0:23:38 0:38:31

3 12 1000 50.61% 65.80% 0:19:23 0:23:38 0:43:01

3 12 1500 52.86% 67.95% 0:26:55 0:23:38 0:50:33

3 12 2000 52.58% 67.50% 0:35:29 0:23:38 0:59:07

3 14 100 41.80% 58.39% 0:04:56 0:27:24 0:32:20

3 14 250 45.58% 61.49% 0:07:24 0:27:24 0:34:48

3 14 500 49.04% 64.36% 0:11:19 0:27:24 0:38:43

3 14 750 50.85% 66.02% 0:15:25 0:27:24 0:42:49

3 14 1000 53.22% 68.63% 0:19:27 0:27:24 0:46:51



156

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

3 14 1500 54.59% 69.93% 0:27:28 0:27:24 0:54:52

3 14 2000 55.35% 70.15% 0:35:29 0:27:24 1:02:53

3 16 100 42.28% 58.66% 0:05:16 0:31:23 0:36:39

3 16 250 46.17% 61.80% 0:07:46 0:31:23 0:39:09

3 16 500 50.15% 65.57% 0:11:46 0:31:23 0:43:09

3 16 750 52.02% 67.19% 0:16:02 0:31:23 0:47:25

3 16 1000 53.75% 69.48% 0:19:57 0:31:23 0:51:20

3 16 1500 55.07% 69.52% 0:28:10 0:31:23 0:59:33

3 16 2000 56.08% 70.65% 0:36:32 0:31:23 1:07:55

3 18 100 42.39% 58.53% 0:05:37 0:35:19 0:40:56

3 18 250 47.08% 62.61% 0:08:03 0:35:19 0:43:22

3 18 500 50.32% 65.93% 0:12:09 0:35:19 0:47:28

3 18 750 52.22% 67.32% 0:16:09 0:35:19 0:51:28

3 18 1000 54.55% 69.88% 0:20:32 0:35:19 0:55:51

3 18 1500 56.06% 71.68% 0:28:45 0:35:19 1:04:04

3 18 2000 56.91% 71.41% 0:37:16 0:35:19 1:12:35

3 20 100 43.10% 60.86% 0:05:58 0:38:28 0:44:26

3 20 250 48.12% 64.18% 0:08:27 0:38:28 0:46:55

3 20 500 51.18% 66.88% 0:12:40 0:38:28 0:51:08

3 20 750 53.41% 68.45% 0:16:50 0:38:28 0:55:18

3 20 1000 54.64% 70.24% 0:20:46 0:38:28 0:59:14

3 20 1500 56.12% 70.65% 0:29:33 0:38:28 1:08:01

3 20 2000 57.24% 72.49% 0:37:55 0:38:28 1:16:23



157

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

5 2 100 12.35% 23.38% 0:04:10 0:03:59 0:08:09

5 2 250 9.21% 17.73% 0:08:05 0:03:59 0:12:04

5 2 500 9.83% 19.12% 0:14:34 0:03:59 0:18:33

5 2 750 8.20% 16.83% 0:21:32 0:03:59 0:25:31

5 2 1000 7.57% 13.82% 0:27:37 0:03:59 0:31:36

5 2 1500 6.76% 12.52% 0:41:33 0:03:59 0:45:32

5 2 2000 4.84% 10.55% 0:54:25 0:03:59 0:58:24

5 4 100 26.89% 41.65% 0:04:42 0:08:03 0:12:45

5 4 250 28.01% 42.86% 0:08:37 0:08:03 0:16:40

5 4 500 27.71% 41.88% 0:15:02 0:08:03 0:23:05

5 4 750 27.31% 42.24% 0:21:53 0:08:03 0:29:56

5 4 1000 23.02% 35.23% 0:28:06 0:08:03 0:36:09

5 4 1500 21.17% 34.07% 0:40:57 0:08:03 0:49:00

5 4 2000 19.45% 30.30% 0:54:15 0:08:03 1:02:18

5 6 100 33.78% 49.24% 0:05:13 0:12:00 0:17:13

5 6 250 38.35% 54.26% 0:09:07 0:12:00 0:21:07

5 6 500 39.25% 54.58% 0:15:40 0:12:00 0:27:40

5 6 750 40.58% 57.76% 0:22:10 0:12:00 0:34:10

5 6 1000 39.12% 54.71% 0:29:11 0:12:00 0:41:11

5 6 1500 36.21% 50.63% 0:41:53 0:12:00 0:53:53

5 6 2000 36.21% 51.21% 0:55:48 0:12:00 1:07:48

5 8 100 37.59% 53.68% 0:05:47 0:15:38 0:21:25

5 8 250 42.05% 57.59% 0:09:43 0:15:38 0:25:21



158

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

5 8 500 44.57% 59.96% 0:16:17 0:15:38 0:31:55

5 8 750 45.06% 60.41% 0:22:52 0:15:38 0:38:30

5 8 1000 45.28% 61.31% 0:29:11 0:15:38 0:44:49

5 8 1500 44.67% 59.61% 0:42:53 0:15:38 0:58:31

5 8 2000 42.76% 58.17% 0:56:21 0:15:38 1:11:59

5 10 100 40.43% 57.18% 0:06:19 0:21:14 0:27:33

5 10 250 44.53% 59.96% 0:10:17 0:21:14 0:31:31

5 10 500 48.25% 64.09% 0:16:53 0:21:14 0:38:07

5 10 750 49.67% 65.04% 0:23:26 0:21:14 0:44:40

5 10 1000 50.52% 65.66% 0:30:09 0:21:14 0:51:23

5 10 1500 50.53% 66.29% 0:43:17 0:21:14 1:04:31

5 10 2000 49.57% 65.22% 0:56:34 0:21:14 1:17:48

5 12 100 42.86% 59.61% 0:06:53 0:23:38 0:30:31

5 12 250 47.98% 63.51% 0:10:54 0:23:38 0:34:32

5 12 500 52.11% 67.10% 0:17:43 0:23:38 0:41:21

5 12 750 54.04% 69.75% 0:24:34 0:23:38 0:48:12

5 12 1000 55.71% 70.92% 0:30:59 0:23:38 0:54:37

5 12 1500 56.27% 71.23% 0:44:15 0:23:38 1:07:53

5 12 2000 56.75% 71.86% 0:58:29 0:23:38 1:22:07

5 14 100 44.68% 61.22% 0:07:28 0:27:24 0:34:52

5 14 250 49.46% 64.86% 0:11:24 0:27:24 0:38:48

5 14 500 53.83% 68.67% 0:18:23 0:27:24 0:45:47

5 14 750 56.28% 71.86% 0:24:56 0:27:24 0:52:20



159

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

5 14 1000 57.56% 72.26% 0:31:58 0:27:24 0:59:22

5 14 1500 58.01% 72.49% 0:45:00 0:27:24 1:12:24

5 14 2000 58.59% 73.83% 0:59:21 0:27:24 1:26:45

5 16 100 45.96% 63.02% 0:08:01 0:31:23 0:39:24

5 16 250 50.40% 66.16% 0:12:07 0:31:23 0:43:30

5 16 500 54.93% 70.15% 0:19:01 0:31:23 0:50:24

5 16 750 56.81% 71.81% 0:25:56 0:31:23 0:57:19

5 16 1000 58.29% 72.67% 0:32:22 0:31:23 1:03:45

5 16 1500 59.71% 73.16% 0:46:06 0:31:23 1:17:29

5 16 2000 60.34% 74.33% 1:00:38 0:31:23 1:32:01

5 18 100 45.40% 62.30% 0:08:34 0:35:19 0:43:53

5 18 250 50.85% 65.84% 0:12:33 0:35:19 0:47:52

5 18 500 54.87% 70.47% 0:19:35 0:35:19 0:54:54

5 18 750 57.62% 72.17% 0:26:19 0:35:19 1:01:38

5 18 1000 58.38% 72.67% 0:33:25 0:35:19 1:08:44

5 18 1500 60.44% 74.55% 0:47:08 0:35:19 1:22:27

5 18 2000 60.69% 75.18% 1:01:39 0:35:19 1:36:58

5 20 100 46.20% 63.38% 0:09:12 0:38:28 0:47:40

5 20 250 51.77% 68.58% 0:13:17 0:38:28 0:51:45

5 20 500 55.64% 70.42% 0:20:05 0:38:28 0:58:33

5 20 750 57.36% 71.95% 0:27:04 0:38:28 1:05:32

5 20 1000 58.96% 73.11% 0:34:31 0:38:28 1:12:59

5 20 1500 59.63% 73.25% 0:48:08 0:38:28 1:26:36



160

Table 1: Extended results for Subset Distribution Selection. Time is in format
h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

5 20 2000 60.05% 73.97% 1:01:52 0:38:28 1:40:20



161

Appendix B: Extended Results for System Generated Data

The following table contains the complete list of experiments conducted for Sec. 5.5.2

of the main paper. One thing to notice is that all 750 iteration data points are miss-

ing from this section. Quite frankly, this was left out of our experiments on accident.

However, it makes no difference in identifying the trends in the data. Since we were

able to learn what we set out to understand with these experiments, we did not feel

the need to go back and retrain those networks. Considering the amount of training

needed for the experiments to follow, we decided our time and resources were better

spent training the networks for Sec. 5.5.2.

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 16 100 31.57% 46.86% 0:02:35 0:07:23 0:09:58

1 16 250 34.04% 49.60% 0:03:21 0:07:23 0:10:44

1 16 500 37.00% 52.47% 0:04:44 0:07:23 0:12:07

1 16 1000 38.71% 53.73% 0:07:26 0:07:23 0:14:49

1 16 1500 39.87% 54.40% 0:10:11 0:07:23 0:17:34

1 18 100 31.63% 47.58% 0:02:42 0:07:17 0:09:59

1 18 250 35.76% 52.06% 0:03:31 0:07:17 0:10:48

1 18 500 38.27% 54.31% 0:04:53 0:07:17 0:12:10

1 18 1000 39.79% 55.39% 0:07:38 0:07:17 0:14:55

1 18 1500 40.55% 55.97% 0:10:35 0:07:17 0:17:52

1 20 100 31.16% 47.67% 0:02:51 0:08:13 0:11:04

1 20 250 34.02% 49.46% 0:03:42 0:08:13 0:11:55

1 20 500 37.14% 53.50% 0:05:03 0:08:13 0:13:16



162

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

1 20 1000 38.48% 53.82% 0:07:50 0:08:13 0:16:03

1 20 1500 40.14% 55.83% 0:10:35 0:08:13 0:18:48

1 25 100 30.22% 47.22% 0:03:16 0:10:14 0:13:30

1 25 250 32.40% 49.69% 0:04:05 0:10:14 0:14:19

1 25 500 34.91% 51.84% 0:05:30 0:10:14 0:15:44

1 25 1000 37.55% 54.49% 0:08:25 0:10:14 0:18:39

1 25 1500 38.25% 54.98% 0:11:23 0:10:14 0:21:37

1 30 100 28.80% 44.97% 0:03:45 0:12:24 0:16:09

1 30 250 31.09% 48.29% 0:04:33 0:12:24 0:16:57

1 30 500 33.79% 50.54% 0:06:03 0:12:24 0:18:27

1 30 1000 35.26% 51.97% 0:08:53 0:12:24 0:21:17

1 30 1500 36.10% 52.74% 0:11:50 0:12:24 0:24:14

1 40 100 22.92% 38.82% 0:04:41 0:16:32 0:21:13

1 40 250 24.31% 40.93% 0:05:39 0:16:32 0:22:11

1 40 500 25.57% 42.77% 0:07:01 0:16:32 0:23:33

1 40 1000 27.02% 43.99% 0:10:00 0:16:32 0:26:32

1 40 1500 27.34% 45.29% 0:12:59 0:16:32 0:29:31

2 16 100 34.10% 49.42% 0:04:00 0:07:23 0:11:23

2 16 250 38.92% 55.21% 0:05:39 0:07:23 0:13:02

2 16 500 41.36% 56.37% 0:08:14 0:07:23 0:15:37

2 16 1000 44.03% 58.30% 0:13:57 0:07:23 0:21:20

2 16 1500 46.24% 61.22% 0:19:18 0:07:23 0:26:41

2 18 100 35.22% 51.30% 0:04:14 0:07:17 0:11:31



163

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

2 18 250 39.21% 55.52% 0:05:53 0:07:17 0:13:10

2 18 500 41.60% 57.05% 0:08:43 0:07:17 0:16:00

2 18 1000 44.64% 59.74% 0:14:09 0:07:17 0:21:26

2 18 1500 46.47% 61.04% 0:19:46 0:07:17 0:27:03

2 20 100 34.94% 51.75% 0:04:33 0:08:13 0:12:46

2 20 250 38.82% 54.80% 0:06:12 0:08:13 0:14:25

2 20 500 42.45% 58.57% 0:08:56 0:08:13 0:17:09

2 20 1000 45.06% 60.68% 0:14:34 0:08:13 0:22:47

2 20 1500 46.75% 62.21% 0:19:59 0:08:13 0:28:12

2 25 100 34.08% 50.90% 0:05:18 0:10:14 0:15:32

2 25 250 38.12% 54.44% 0:06:58 0:10:14 0:17:12

2 25 500 41.47% 57.81% 0:09:41 0:10:14 0:19:55

2 25 1000 43.87% 59.52% 0:15:26 0:10:14 0:25:40

2 25 1500 45.48% 61.22% 0:21:00 0:10:14 0:31:14

2 30 100 31.76% 48.52% 0:06:05 0:12:24 0:18:29

2 30 250 36.01% 52.42% 0:07:49 0:12:24 0:20:13

2 30 500 38.79% 55.75% 0:10:42 0:12:24 0:23:06

2 30 1000 41.34% 57.94% 0:16:32 0:12:24 0:28:56

2 30 1500 42.30% 57.94% 0:22:20 0:12:24 0:34:44

2 40 100 25.78% 42.50% 0:07:51 0:16:32 0:24:23

2 40 250 29.64% 47.08% 0:09:39 0:16:32 0:26:11

2 40 500 31.39% 48.65% 0:12:34 0:16:32 0:29:06

2 40 1000 34.23% 50.85% 0:18:40 0:16:32 0:35:12



164

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

2 40 1500 33.77% 50.90% 0:24:44 0:16:32 0:41:16

3 16 100 35.75% 51.97% 0:05:23 0:07:23 0:12:46

3 16 250 41.17% 56.69% 0:07:52 0:07:23 0:15:15

3 16 500 43.89% 59.20% 0:11:53 0:07:23 0:19:16

3 16 1000 47.18% 62.43% 0:20:09 0:07:23 0:27:32

3 16 1500 49.12% 64.63% 0:28:19 0:07:23 0:35:42

3 18 100 37.82% 54.26% 0:05:48 0:07:17 0:13:05

3 18 250 41.58% 57.94% 0:08:18 0:07:17 0:15:35

3 18 500 44.84% 60.32% 0:12:22 0:07:17 0:19:39

3 18 1000 48.47% 63.87% 0:20:30 0:07:17 0:27:47

3 18 1500 50.46% 65.84% 0:29:18 0:07:17 0:36:35

3 20 100 36.60% 53.41% 0:06:11 0:08:13 0:14:24

3 20 250 40.81% 55.97% 0:08:42 0:08:13 0:16:55

3 20 500 45.17% 60.68% 0:12:55 0:08:13 0:21:08

3 20 1000 48.91% 63.78% 0:21:24 0:08:13 0:29:37

3 20 1500 50.87% 65.57% 0:29:45 0:08:13 0:37:58

3 25 100 36.63% 53.59% 0:07:18 0:10:14 0:17:32

3 25 250 41.40% 58.26% 0:09:47 0:10:14 0:20:01

3 25 500 45.24% 60.73% 0:14:07 0:10:14 0:24:21

3 25 1000 47.86% 63.46% 0:22:28 0:10:14 0:32:42

3 25 1500 48.33% 64.59% 0:31:16 0:10:14 0:41:30

3 30 100 35.02% 51.66% 0:08:27 0:12:24 0:20:51

3 30 250 39.05% 56.10% 0:11:02 0:12:24 0:23:26



165

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

3 30 500 43.18% 58.98% 0:15:24 0:12:24 0:27:48

3 30 1000 45.76% 62.25% 0:24:04 0:12:24 0:36:28

3 30 1500 45.60% 61.31% 0:32:50 0:12:24 0:45:14

3 40 100 27.93% 45.87% 0:11:04 0:16:32 0:27:36

3 40 250 31.16% 49.10% 0:13:39 0:16:32 0:30:11

3 40 500 35.86% 53.10% 0:18:17 0:16:32 0:34:49

3 40 1000 40.09% 56.55% 0:27:13 0:16:32 0:43:45

3 40 1500 39.37% 55.75% 0:36:28 0:16:32 0:53:00

5 16 100 39.30% 55.43% 0:08:10 0:07:23 0:15:33

5 16 250 44.10% 59.38% 0:12:17 0:07:23 0:19:40

5 16 500 48.11% 64.14% 0:19:02 0:07:23 0:26:25

5 16 1000 50.75% 65.80% 0:32:46 0:07:23 0:40:09

5 16 1500 52.13% 67.24% 0:47:02 0:07:23 0:54:25

5 18 100 40.26% 56.96% 0:08:53 0:07:17 0:16:10

5 18 250 45.30% 60.05% 0:13:02 0:07:17 0:20:19

5 18 500 48.45% 63.46% 0:19:37 0:07:17 0:26:54

5 18 1000 51.11% 66.47% 0:34:02 0:07:17 0:41:19

5 18 1500 53.01% 67.73% 0:47:06 0:07:17 0:54:23

5 20 100 40.09% 56.55% 0:09:34 0:08:13 0:17:47

5 20 250 44.73% 61.00% 0:13:41 0:08:13 0:21:54

5 20 500 48.92% 64.00% 0:20:49 0:08:13 0:29:02

5 20 1000 53.03% 68.27% 0:34:32 0:08:13 0:42:45

5 20 1500 54.55% 69.34% 0:48:26 0:08:13 0:56:39



166

Table 2: Extended results for System Generated Data. Time is in format h:mm:ss.

Time

Epochs K Iterations mAP Top-1 Training SDS Total

5 25 100 39.16% 55.30% 0:11:22 0:10:14 0:21:36

5 25 250 44.90% 61.00% 0:15:32 0:10:14 0:25:46

5 25 500 49.02% 64.77% 0:22:24 0:10:14 0:32:38

5 25 1000 52.48% 67.46% 0:36:53 0:10:14 0:47:07

5 25 1500 55.03% 68.99% 0:51:27 0:10:14 1:01:41

5 30 100 36.79% 53.14% 0:13:19 0:12:24 0:25:43

5 30 250 42.55% 59.20% 0:17:32 0:12:24 0:29:56

5 30 500 47.81% 64.32% 0:24:49 0:12:24 0:37:13

5 30 1000 51.41% 66.56% 0:38:51 0:12:24 0:51:15

5 30 1500 52.54% 67.82% 0:54:06 0:12:24 1:06:30

5 40 100 29.58% 46.77% 0:17:21 0:16:32 0:33:53

5 40 250 36.14% 52.87% 0:21:46 0:16:32 0:38:18

5 40 500 39.39% 55.88% 0:29:24 0:16:32 0:45:56

5 40 1000 44.26% 60.95% 0:44:20 0:16:32 1:00:52

5 40 1500 46.12% 62.43% 0:59:27 0:16:32 1:15:59



167

Appendix C: Extended Results for R2MMT

The following tables contain the complete list of experiments conducted for Sec. 5.5.3

of the main paper.

Standard Configuration

Here we see the results of R2MMT in the standard configuration. Training time

does not include SDS time. Due to the pipeline structure of R2MMT, both the train-

ing time and the SDS time must be less than τ to be viable in the real world. Some

experiments were completed with τ = 10. However, due to their terrible accuracy,

inability to meet the real-world time constraint of R2OUDA, and the resources needed

to train that many extra models, it was dropped from our testing configurations. We

have included them here for anyone curious to see what a smaller time segment might

look like, even if the picture is incomplete. Absolute highest accuracy in this test,

ignoring the time constraint, is 74.96% Top-1. However, it takes around an hour of

training time for each time segment and is thus not valid for real-world deployment.

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 15 0 100 21.60% 36.40% 0:01:52

1 18 15 1 100 22.09% 35.68% 0:02:11

1 18 15 2 100 18.33% 30.92% 0:01:56

1 18 15 3 100 15.41% 26.93% 0:01:51

1 18 15 0 250 21.84% 35.28% 0:02:42

1 18 15 1 250 23.93% 38.11% 0:03:00

1 18 15 2 250 21.81% 34.25% 0:02:45

1 18 15 3 250 15.35% 26.30% 0:02:41

1 18 15 0 500 23.18% 38.20% 0:04:05



168

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 15 1 500 24.91% 38.29% 0:04:26

1 18 15 2 500 21.86% 34.20% 0:04:06

1 18 15 3 500 15.31% 26.84% 0:04:04

1 18 15 0 750 23.28% 37.88% 0:05:26

1 18 15 1 750 26.25% 40.57% 0:05:54

1 18 15 2 750 24.74% 38.96% 0:05:29

1 18 15 3 750 20.55% 34.43% 0:05:27

1 18 15 0 1000 23.60% 38.55% 0:06:48

1 18 15 1 1000 25.09% 38.29% 0:07:14

1 18 15 2 1000 22.19% 35.82% 0:06:54

1 18 15 3 1000 16.12% 28.28% 0:06:50

1 18 15 0 1500 24.37% 39.18% 0:09:30

1 18 15 1 1500 27.22% 41.43% 0:09:58

1 18 15 2 1500 24.91% 39.05% 0:09:39

1 18 15 3 1500 21.99% 36.13% 0:09:35

1 18 20 0 100 24.09% 39.00% 0:02:06

1 18 20 1 100 20.69% 33.75% 0:01:59

1 18 20 2 100 16.47% 28.73% 0:01:55

1 18 20 0 250 26.90% 42.10% 0:02:54

1 18 20 1 250 23.84% 37.03% 0:02:50

1 18 20 2 250 23.18% 35.86% 0:02:44

1 18 20 0 500 26.20% 40.66% 0:04:16

1 18 20 1 500 26.08% 39.86% 0:04:12

1 18 20 2 500 23.88% 36.62% 0:04:09



169

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 20 0 750 27.39% 41.97% 0:05:38

1 18 20 1 750 26.85% 39.90% 0:05:41

1 18 20 2 750 23.72% 36.22% 0:05:30

1 18 20 0 1000 28.06% 43.00% 0:07:00

1 18 20 1 1000 26.33% 39.72% 0:06:59

1 18 20 2 1000 21.50% 32.81% 0:06:55

1 18 20 0 1500 28.34% 42.73% 0:09:50

1 18 20 1 1500 28.80% 42.37% 0:09:45

1 18 20 2 1500 28.00% 41.43% 0:09:39

1 18 30 0 100 29.08% 45.06% 0:02:23

1 18 30 1 100 27.99% 43.22% 0:02:04

1 18 30 0 250 32.12% 48.07% 0:03:11

1 18 30 1 250 34.07% 49.87% 0:02:53

1 18 30 0 500 33.04% 49.42% 0:04:35

1 18 30 1 500 35.48% 50.76% 0:04:18

1 18 30 0 750 33.79% 49.64% 0:06:01

1 18 30 1 750 37.57% 53.23% 0:05:46

1 18 30 0 1000 34.23% 49.46% 0:07:20

1 18 30 1 1000 37.05% 52.20% 0:07:06

1 18 30 0 1500 34.65% 49.46% 0:10:08

1 18 30 1 1500 36.98% 51.75% 0:09:50

1 20 10 0 100 15.32% 27.11% 0:01:48

1 20 10 1 100 12.23% 22.26% 0:01:59

1 20 10 2 100 10.44% 20.20% 0:01:58



170

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 10 3 100 8.05% 16.56% 0:01:50

1 20 10 4 100 4.09% 10.64% 0:01:51

1 20 10 0 250 16.45% 30.39% 0:02:37

1 20 10 1 250 13.57% 24.69% 0:02:49

1 20 10 2 250 11.29% 20.92% 0:02:49

1 20 10 3 250 6.71% 14.81% 0:02:39

1 20 10 4 250 2.68% 7.85% 0:02:40

1 20 10 0 500 15.72% 28.46% 0:03:57

1 20 10 1 500 14.86% 25.76% 0:04:15

1 20 10 2 500 11.48% 20.47% 0:04:12

1 20 10 3 500 5.95% 13.69% 0:04:01

1 20 10 4 500 2.43% 6.78% 0:03:57

1 20 10 0 750 15.59% 28.59% 0:05:18

1 20 10 1 750 12.78% 22.44% 0:05:34

1 20 10 2 750 10.67% 19.97% 0:05:35

1 20 10 3 750 6.73% 15.22% 0:05:26

1 20 10 4 750 3.85% 10.37% 0:05:21

1 20 10 0 1000 16.22% 27.92% 0:06:40

1 20 10 1 1000 14.16% 24.91% 0:07:00

1 20 10 2 1000 10.59% 19.48% 0:06:58

1 20 10 3 1000 5.61% 13.46% 0:06:45

1 20 10 4 1000 2.23% 6.96% 0:06:44

1 20 10 0 1500 15.25% 27.51% 0:09:21

1 20 10 1 1500 11.83% 20.56% 0:09:45



171

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 10 2 1500 10.56% 19.52% 0:09:43

1 20 10 3 1500 5.23% 12.79% 0:09:31

1 20 10 4 1500 2.34% 6.60% 0:09:25

1 20 10 5 1500 0.54% 0.99% 0:09:28

1 20 10 0 2000 16.56% 28.73% 0:12:03

1 20 10 1 2000 11.75% 22.13% 0:12:32

1 20 10 2 2000 9.66% 18.00% 0:12:25

1 20 10 3 2000 5.08% 12.07% 0:12:10

1 20 10 4 2000 2.09% 6.33% 0:12:13

1 20 15 0 100 23.44% 38.96% 0:01:53

1 20 15 1 100 22.59% 36.09% 0:02:13

1 20 15 2 100 18.78% 31.51% 0:01:55

1 20 15 3 100 17.20% 30.88% 0:01:52

1 20 15 0 250 23.99% 38.24% 0:02:41

1 20 15 1 250 23.77% 36.54% 0:03:04

1 20 15 2 250 22.68% 35.64% 0:02:44

1 20 15 3 250 19.76% 32.50% 0:02:42

1 20 15 0 500 25.65% 39.90% 0:04:02

1 20 15 1 500 25.14% 39.27% 0:04:26

1 20 15 2 500 24.88% 37.61% 0:04:07

1 20 15 3 500 20.07% 32.99% 0:04:03

1 20 15 0 750 26.00% 41.20% 0:05:24

1 20 15 1 750 27.89% 42.46% 0:05:50

1 20 15 2 750 25.92% 39.05% 0:05:30



172

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 15 3 750 22.55% 36.40% 0:05:28

1 20 15 0 1000 26.40% 41.43% 0:06:46

1 20 15 1 1000 26.62% 39.99% 0:07:31

1 20 15 2 1000 24.62% 37.75% 0:06:52

1 20 15 3 1000 23.23% 37.34% 0:06:51

1 20 15 0 1500 27.33% 42.41% 0:09:29

1 20 15 1 1500 28.62% 42.59% 0:10:13

1 20 15 2 1500 25.90% 39.90% 0:09:37

1 20 15 3 1500 22.99% 36.62% 0:09:36

1 20 15 0 2000 26.77% 41.29% 0:12:13

1 20 15 1 2000 27.09% 40.57% 0:12:50

1 20 15 2 2000 23.84% 35.82% 0:12:21

1 20 15 3 2000 20.93% 33.17% 0:12:26

1 20 20 0 100 24.90% 39.50% 0:02:06

1 20 20 1 100 21.90% 35.64% 0:02:00

1 20 20 2 100 20.73% 33.39% 0:01:56

1 20 20 0 250 26.44% 41.34% 0:02:57

1 20 20 1 250 25.38% 39.59% 0:02:50

1 20 20 2 250 25.41% 38.64% 0:02:46

1 20 20 0 500 26.94% 41.88% 0:04:19

1 20 20 1 500 26.82% 39.77% 0:04:12

1 20 20 2 500 27.74% 41.38% 0:04:08

1 20 20 0 750 27.70% 42.10% 0:05:40

1 20 20 1 750 28.69% 42.59% 0:05:36



173

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 20 2 750 28.76% 41.70% 0:05:32

1 20 20 0 1000 27.26% 41.20% 0:07:06

1 20 20 1 1000 27.51% 40.35% 0:06:58

1 20 20 2 1000 26.00% 39.99% 0:06:55

1 20 20 0 1500 28.93% 43.72% 0:09:48

1 20 20 1 1500 29.16% 41.83% 0:09:45

1 20 20 2 1500 31.27% 45.56% 0:09:42

1 20 20 0 2000 28.76% 42.46% 0:12:34

1 20 20 1 2000 28.42% 41.38% 0:12:30

1 20 20 2 2000 27.89% 40.89% 0:12:28

1 20 30 0 100 29.26% 44.30% 0:02:27

1 20 30 1 100 28.99% 43.99% 0:02:05

1 20 30 0 250 32.19% 47.62% 0:03:16

1 20 30 1 250 33.11% 48.74% 0:02:54

1 20 30 0 500 34.09% 49.15% 0:04:40

1 20 30 1 500 36.81% 51.89% 0:04:20

1 20 30 0 750 34.60% 48.83% 0:06:04

1 20 30 1 750 38.37% 52.33% 0:05:48

1 20 30 0 1000 35.54% 49.96% 0:07:29

1 20 30 1 1000 39.85% 53.95% 0:07:05

1 20 30 0 1500 36.38% 50.94% 0:10:22

1 20 30 1 1500 40.49% 54.62% 0:09:50

1 20 30 0 2000 36.32% 49.78% 0:12:59

1 20 30 1 2000 39.51% 53.73% 0:12:41



174

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 25 15 0 100 25.13% 41.20% 0:01:57

1 25 15 1 100 26.65% 41.74% 0:02:24

1 25 15 2 100 23.31% 37.61% 0:01:59

1 25 15 3 100 22.16% 36.40% 0:01:55

1 25 15 0 250 27.38% 43.31% 0:02:46

1 25 15 1 250 30.43% 46.63% 0:03:13

1 25 15 2 250 29.46% 44.61% 0:02:48

1 25 15 3 250 29.49% 45.38% 0:02:46

1 25 15 0 500 29.62% 46.23% 0:04:08

1 25 15 1 500 33.71% 49.60% 0:04:38

1 25 15 2 500 33.44% 48.74% 0:04:12

1 25 15 3 500 30.54% 45.56% 0:04:08

1 25 15 0 750 30.78% 47.53% 0:05:29

1 25 15 1 750 34.31% 49.91% 0:06:08

1 25 15 2 750 34.49% 49.78% 0:05:36

1 25 15 3 750 33.05% 48.83% 0:05:32

1 25 15 0 1000 30.82% 47.35% 0:06:52

1 25 15 1 1000 34.12% 49.91% 0:07:31

1 25 15 2 1000 35.90% 51.35% 0:06:57

1 25 15 3 1000 34.08% 48.47% 0:06:59

1 25 15 0 1500 31.32% 46.95% 0:09:39

1 25 15 1 1500 35.47% 50.63% 0:10:15

1 25 15 2 1500 36.79% 51.97% 0:09:43

1 25 15 3 1500 35.71% 51.48% 0:09:46



175

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 25 20 0 100 28.81% 44.66% 0:02:16

1 25 20 1 100 29.49% 44.48% 0:02:18

1 25 20 2 100 28.19% 44.52% 0:02:00

1 25 20 0 250 31.07% 45.87% 0:03:05

1 25 20 1 250 34.53% 49.69% 0:03:07

1 25 20 2 250 35.04% 50.09% 0:02:51

1 25 20 0 500 32.38% 47.22% 0:04:31

1 25 20 1 500 37.08% 51.97% 0:04:32

1 25 20 2 500 40.42% 55.88% 0:04:14

1 25 20 0 750 33.16% 48.56% 0:05:51

1 25 20 1 750 38.22% 52.69% 0:05:56

1 25 20 2 750 40.57% 55.16% 0:05:37

1 25 20 0 1000 33.26% 48.88% 0:07:14

1 25 20 1 1000 38.19% 52.60% 0:07:18

1 25 20 2 1000 41.45% 56.64% 0:07:00

1 25 20 0 1500 33.55% 49.24% 0:09:58

1 25 20 1 1500 38.58% 52.83% 0:10:21

1 25 20 2 1500 41.85% 56.78% 0:09:45

1 25 30 0 100 33.82% 50.40% 0:02:41

1 25 30 1 100 33.06% 50.00% 0:02:12

1 25 30 0 250 36.14% 51.75% 0:03:30

1 25 30 1 250 39.28% 55.79% 0:03:02

1 25 30 0 500 38.65% 54.40% 0:04:54

1 25 30 1 500 42.86% 58.71% 0:04:25



176

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 25 30 0 750 39.81% 55.70% 0:06:28

1 25 30 1 750 43.57% 59.74% 0:05:55

1 25 30 0 1000 39.96% 55.57% 0:07:45

1 25 30 1 1000 45.45% 60.64% 0:07:15

1 25 30 0 1500 40.83% 56.51% 0:10:35

1 25 30 1 1500 45.78% 60.91% 0:10:02

1 30 15 0 100 26.40% 43.13% 0:02:01

1 30 15 1 100 28.72% 44.48% 0:02:33

1 30 15 2 100 25.38% 39.27% 0:02:03

1 30 15 3 100 23.81% 38.15% 0:01:57

1 30 15 0 250 28.49% 43.94% 0:02:49

1 30 15 1 250 33.04% 49.51% 0:03:24

1 30 15 2 250 32.66% 49.01% 0:02:51

1 30 15 3 250 32.11% 48.11% 0:02:46

1 30 15 0 500 31.14% 46.95% 0:04:11

1 30 15 1 500 35.54% 50.99% 0:04:48

1 30 15 2 500 36.66% 52.74% 0:04:15

1 30 15 3 500 36.07% 52.24% 0:04:10

1 30 15 0 750 31.52% 47.80% 0:05:33

1 30 15 1 750 37.21% 52.60% 0:06:19

1 30 15 2 750 38.86% 54.04% 0:05:40

1 30 15 3 750 38.52% 54.53% 0:05:33

1 30 15 0 1000 32.43% 48.70% 0:06:54

1 30 15 1 1000 37.86% 53.19% 0:07:39



177

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 30 15 2 1000 39.98% 56.33% 0:07:06

1 30 15 3 1000 38.10% 54.35% 0:06:57

1 30 15 0 1500 32.57% 47.62% 0:09:38

1 30 15 1 1500 37.44% 51.97% 0:10:30

1 30 15 2 1500 39.73% 55.03% 0:09:49

1 30 15 3 1500 38.34% 55.03% 0:09:45

1 30 20 0 100 30.48% 46.81% 0:02:24

1 30 20 1 100 32.30% 49.01% 0:02:26

1 30 20 2 100 31.63% 48.16% 0:02:03

1 30 20 0 250 32.21% 48.56% 0:03:13

1 30 20 1 250 36.86% 53.05% 0:03:15

1 30 20 2 250 38.52% 55.34% 0:02:53

1 30 20 0 500 34.40% 50.36% 0:04:36

1 30 20 1 500 40.65% 56.55% 0:04:39

1 30 20 2 500 42.83% 58.35% 0:04:16

1 30 20 0 750 35.03% 51.30% 0:06:02

1 30 20 1 750 41.38% 57.36% 0:06:04

1 30 20 2 750 43.98% 60.10% 0:05:45

1 30 20 0 1000 35.75% 51.71% 0:07:21

1 30 20 1 1000 42.31% 57.27% 0:07:27

1 30 20 2 1000 44.05% 59.16% 0:07:03

1 30 20 0 1500 36.11% 52.11% 0:10:07

1 30 20 1 1500 42.60% 57.72% 0:10:20

1 30 20 2 1500 46.01% 61.40% 0:09:50



178

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 30 30 0 100 33.48% 50.58% 0:02:58

1 30 30 1 100 35.22% 52.60% 0:02:19

1 30 30 0 250 36.70% 53.55% 0:03:47

1 30 30 1 250 40.43% 57.90% 0:03:08

1 30 30 0 500 38.79% 54.76% 0:05:14

1 30 30 1 500 43.80% 60.10% 0:04:31

1 30 30 0 750 39.94% 56.24% 0:06:42

1 30 30 1 750 45.82% 61.18% 0:06:05

1 30 30 0 1000 40.66% 57.27% 0:08:12

1 30 30 1 1000 47.14% 62.30% 0:07:22

1 30 30 0 1500 41.67% 57.45% 0:10:55

1 30 30 1 1500 48.23% 63.24% 0:10:13

1 40 15 0 100 28.47% 44.57% 0:02:08

1 40 15 1 100 32.91% 49.51% 0:02:55

1 40 15 2 100 33.16% 50.81% 0:02:10

1 40 15 3 100 31.92% 48.07% 0:02:01

1 40 15 0 250 31.51% 47.94% 0:02:57

1 40 15 1 250 36.58% 53.73% 0:03:46

1 40 15 2 250 38.55% 54.62% 0:02:58

1 40 15 3 250 37.68% 54.31% 0:02:52

1 40 15 0 500 33.62% 49.37% 0:04:19

1 40 15 1 500 39.57% 56.91% 0:05:10

1 40 15 2 500 41.90% 57.90% 0:04:23

1 40 15 3 500 42.58% 58.84% 0:04:16



179

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 40 15 0 750 34.68% 50.99% 0:05:40

1 40 15 1 750 40.98% 57.09% 0:06:37

1 40 15 2 750 43.47% 59.38% 0:05:46

1 40 15 3 750 43.74% 59.65% 0:05:41

1 40 15 0 1000 35.31% 52.06% 0:07:05

1 40 15 1 1000 41.63% 57.14% 0:08:10

1 40 15 2 1000 43.91% 60.10% 0:07:10

1 40 15 3 1000 44.43% 60.95% 0:07:00

1 40 15 0 1500 35.83% 52.47% 0:09:53

1 40 15 1 1500 43.20% 59.16% 0:10:55

1 40 15 2 1500 45.41% 59.92% 0:09:55

1 40 15 3 1500 45.99% 61.85% 0:09:47

1 40 20 0 100 33.24% 49.37% 0:02:39

1 40 20 1 100 35.17% 51.39% 0:02:41

1 40 20 2 100 35.75% 53.41% 0:02:11

1 40 20 0 250 35.41% 52.06% 0:03:30

1 40 20 1 250 39.99% 55.75% 0:03:32

1 40 20 2 250 40.80% 57.72% 0:02:59

1 40 20 0 500 36.80% 53.19% 0:04:58

1 40 20 1 500 44.01% 60.19% 0:04:56

1 40 20 2 500 45.35% 61.31% 0:04:23

1 40 20 0 750 37.81% 53.95% 0:06:19

1 40 20 1 750 44.74% 60.32% 0:06:20

1 40 20 2 750 47.22% 63.38% 0:05:46



180

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 40 20 0 1000 38.77% 55.07% 0:07:47

1 40 20 1 1000 46.16% 61.49% 0:07:50

1 40 20 2 1000 48.66% 64.68% 0:07:10

1 40 20 0 1500 39.66% 55.97% 0:10:29

1 40 20 1 1500 46.73% 61.18% 0:10:35

1 40 20 2 1500 49.68% 65.17% 0:09:56

1 40 30 0 100 32.16% 49.01% 0:03:31

1 40 30 1 100 34.42% 50.90% 0:02:33

1 40 30 0 250 36.20% 53.01% 0:04:22

1 40 30 1 250 41.36% 57.81% 0:03:21

1 40 30 0 500 38.54% 55.21% 0:05:49

1 40 30 1 500 45.71% 60.64% 0:04:49

1 40 30 0 750 40.14% 56.46% 0:07:18

1 40 30 1 750 47.09% 62.43% 0:06:12

1 40 30 0 1000 40.89% 57.00% 0:08:44

1 40 30 1 1000 48.44% 63.11% 0:07:38

1 40 30 0 1500 41.92% 57.99% 0:11:33

1 40 30 1 1500 49.88% 64.68% 0:10:21

1 50 15 0 100 29.53% 45.74% 0:02:15

1 50 15 1 100 32.76% 48.79% 0:03:18

1 50 15 2 100 33.63% 51.44% 0:02:15

1 50 15 3 100 33.18% 50.13% 0:02:06

1 50 15 0 250 32.96% 49.64% 0:03:05

1 50 15 1 250 38.28% 54.98% 0:04:08



181

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 50 15 2 250 40.09% 56.78% 0:03:06

1 50 15 3 250 38.78% 55.79% 0:02:55

1 50 15 0 500 34.63% 50.22% 0:04:27

1 50 15 1 500 40.47% 56.55% 0:05:42

1 50 15 2 500 43.66% 59.25% 0:04:29

1 50 15 3 500 42.52% 59.43% 0:04:19

1 50 15 0 750 36.44% 52.78% 0:05:51

1 50 15 1 750 44.05% 60.05% 0:07:04

1 50 15 2 750 46.90% 62.30% 0:05:50

1 50 15 3 750 44.73% 60.77% 0:05:42

1 50 15 0 1000 36.54% 52.65% 0:07:11

1 50 15 1 1000 43.41% 58.93% 0:08:31

1 50 15 2 1000 47.39% 63.02% 0:07:15

1 50 15 3 1000 45.53% 61.98% 0:07:19

1 50 15 0 1500 37.03% 53.05% 0:09:56

1 50 15 1 1500 44.76% 59.56% 0:11:28

1 50 15 2 1500 47.98% 63.11% 0:10:01

1 50 15 3 1500 46.67% 62.03% 0:09:59

1 50 20 0 100 32.19% 48.70% 0:03:00

1 50 20 1 100 35.04% 51.93% 0:03:00

1 50 20 2 100 35.86% 53.46% 0:02:18

1 50 20 0 250 34.82% 51.53% 0:03:49

1 50 20 1 250 40.78% 57.68% 0:03:50

1 50 20 2 250 42.14% 59.02% 0:03:07



182

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 50 20 0 500 37.01% 52.69% 0:05:14

1 50 20 1 500 45.06% 60.73% 0:05:18

1 50 20 2 500 46.69% 62.75% 0:04:30

1 50 20 0 750 38.30% 54.58% 0:06:39

1 50 20 1 750 45.18% 60.23% 0:06:43

1 50 20 2 750 47.59% 63.60% 0:05:55

1 50 20 0 1000 38.21% 54.31% 0:08:03

1 50 20 1 1000 46.53% 61.80% 0:08:15

1 50 20 2 1000 48.88% 64.72% 0:07:18

1 50 20 0 1500 40.06% 56.42% 0:10:56

1 50 20 1 1500 48.83% 63.82% 0:11:01

1 50 20 2 1500 50.99% 66.65% 0:10:09

1 50 30 0 100 31.99% 48.92% 0:04:10

1 50 30 1 100 36.87% 53.32% 0:02:46

1 50 30 0 250 36.17% 52.56% 0:04:59

1 50 30 1 250 41.30% 57.72% 0:03:35

1 50 30 0 500 38.76% 54.85% 0:06:31

1 50 30 1 500 46.30% 61.45% 0:05:01

1 50 30 0 750 40.00% 56.06% 0:07:55

1 50 30 1 750 48.16% 62.48% 0:06:29

1 50 30 0 1000 41.09% 57.59% 0:09:35

1 50 30 1 1000 50.06% 64.95% 0:07:52

1 50 30 0 1500 41.84% 57.09% 0:12:29

1 50 30 1 1500 51.69% 66.11% 0:10:42



183

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 18 15 0 100 24.87% 40.08% 0:02:36

2 18 15 1 100 26.40% 41.92% 0:03:10

2 18 15 2 100 23.72% 37.48% 0:02:39

2 18 15 3 100 19.56% 33.62% 0:02:32

2 18 15 0 250 25.61% 40.22% 0:04:15

2 18 15 1 250 27.31% 42.32% 0:04:49

2 18 15 2 250 24.98% 39.59% 0:04:17

2 18 15 3 250 16.43% 28.41% 0:04:12

2 18 15 0 500 26.84% 41.20% 0:07:00

2 18 15 1 500 29.79% 43.94% 0:07:36

2 18 15 2 500 26.00% 39.90% 0:07:03

2 18 15 3 500 21.40% 35.86% 0:06:57

2 18 15 0 750 26.51% 41.70% 0:09:51

2 18 15 1 750 28.10% 41.92% 0:10:29

2 18 15 2 750 25.05% 39.81% 0:09:48

2 18 15 3 750 22.43% 36.45% 0:09:43

2 18 15 0 1000 27.36% 42.15% 0:12:25

2 18 15 1 1000 26.83% 39.41% 0:13:15

2 18 15 2 1000 23.69% 37.07% 0:12:36

2 18 15 3 1000 16.40% 28.14% 0:12:45

2 18 15 0 1500 26.11% 39.36% 0:17:50

2 18 15 1 1500 26.68% 39.72% 0:18:49

2 18 15 2 1500 22.48% 34.38% 0:18:05

2 18 15 3 1500 15.72% 26.39% 0:17:58



184

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 18 20 0 100 26.57% 41.29% 0:03:01

2 18 20 1 100 22.88% 36.31% 0:02:48

2 18 20 2 100 23.26% 36.89% 0:02:39

2 18 20 0 250 28.19% 43.49% 0:04:43

2 18 20 1 250 26.29% 38.87% 0:04:26

2 18 20 2 250 24.65% 38.06% 0:04:18

2 18 20 0 500 29.33% 43.99% 0:07:27

2 18 20 1 500 28.83% 42.46% 0:07:15

2 18 20 2 500 26.59% 39.63% 0:07:07

2 18 20 0 750 29.73% 44.25% 0:10:06

2 18 20 1 750 29.65% 43.31% 0:09:58

2 18 20 2 750 29.05% 43.63% 0:09:52

2 18 20 0 1000 30.53% 44.93% 0:12:54

2 18 20 1 1000 30.52% 43.85% 0:12:43

2 18 20 2 1000 28.45% 41.97% 0:12:39

2 18 20 0 1500 29.54% 43.85% 0:18:20

2 18 20 1 1500 27.58% 39.81% 0:18:21

2 18 20 2 1500 24.83% 37.43% 0:18:12

2 18 30 0 100 31.28% 47.04% 0:03:36

2 18 30 1 100 31.25% 46.77% 0:02:56

2 18 30 0 250 34.05% 49.82% 0:05:14

2 18 30 1 250 35.48% 50.81% 0:04:38

2 18 30 0 500 35.68% 51.44% 0:08:02

2 18 30 1 500 38.15% 52.78% 0:07:23



185

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 18 30 0 750 36.55% 51.89% 0:10:48

2 18 30 1 750 39.47% 54.62% 0:10:07

2 18 30 0 1000 36.10% 50.67% 0:13:31

2 18 30 1 1000 39.73% 54.13% 0:12:59

2 18 30 0 1500 36.80% 51.39% 0:19:06

2 18 30 1 1500 38.76% 53.19% 0:18:33

2 20 10 0 100 16.24% 29.17% 0:02:30

2 20 10 1 100 13.81% 25.04% 0:02:49

2 20 10 2 100 10.78% 19.88% 0:02:47

2 20 10 3 100 6.20% 13.46% 0:02:32

2 20 10 4 100 2.22% 5.92% 0:02:30

2 20 10 0 250 16.98% 28.73% 0:04:07

2 20 10 1 250 13.56% 24.91% 0:04:28

2 20 10 2 250 10.59% 19.57% 0:04:26

2 20 10 3 250 4.79% 11.85% 0:04:10

2 20 10 4 250 3.30% 9.07% 0:04:05

2 20 10 0 500 16.73% 29.40% 0:06:49

2 20 10 1 500 13.08% 23.34% 0:07:28

2 20 10 2 500 10.29% 19.17% 0:07:15

2 20 10 3 500 4.01% 11.31% 0:06:51

2 20 10 4 500 1.43% 4.58% 0:06:51

2 20 10 0 750 16.83% 28.50% 0:09:32

2 20 10 1 750 10.81% 19.03% 0:10:06

2 20 10 2 750 6.75% 13.46% 0:09:58



186

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 10 3 750 0.80% 2.42% 0:09:36

2 20 10 4 750 0.32% 0.40% 0:09:35

2 20 10 5 750 0.23% 0.40% 0:09:33

2 20 10 0 1000 17.91% 30.39% 0:12:17

2 20 10 1 1000 13.57% 24.15% 0:12:47

2 20 10 2 1000 10.41% 19.17% 0:12:42

2 20 10 3 1000 3.54% 9.65% 0:12:21

2 20 10 4 1000 0.95% 2.47% 0:12:18

2 20 10 5 1000 0.21% 0.22% 0:12:12

2 20 10 0 1500 15.46% 25.85% 0:17:39

2 20 10 1 1500 10.66% 20.11% 0:18:25

2 20 10 2 1500 7.42% 14.86% 0:18:14

2 20 10 3 1500 2.19% 7.27% 0:17:50

2 20 10 4 1500 0.46% 1.30% 0:17:40

2 20 10 5 1500 0.19% 0.18% 0:17:47

2 20 10 0 2000 14.91% 25.90% 0:23:04

2 20 10 1 2000 9.41% 18.00% 0:24:03

2 20 10 2 2000 6.39% 13.55% 0:23:37

2 20 10 3 2000 1.13% 2.69% 0:23:18

2 20 10 4 2000 0.27% 0.40% 0:23:11

2 20 10 5 2000 0.13% 0.04% 0:23:16

2 20 15 0 100 25.19% 39.27% 0:02:38

2 20 15 1 100 22.46% 36.04% 0:03:17

2 20 15 2 100 22.20% 35.73% 0:02:41



187

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 15 3 100 21.27% 35.64% 0:02:34

2 20 15 0 250 26.63% 41.43% 0:04:16

2 20 15 1 250 25.86% 39.63% 0:04:57

2 20 15 2 250 22.81% 35.23% 0:04:19

2 20 15 3 250 19.18% 32.09% 0:04:13

2 20 15 0 500 28.16% 43.49% 0:07:00

2 20 15 1 500 28.05% 42.32% 0:07:43

2 20 15 2 500 27.28% 41.25% 0:07:05

2 20 15 3 500 22.67% 37.30% 0:07:04

2 20 15 0 750 28.76% 43.09% 0:09:42

2 20 15 1 750 30.10% 44.57% 0:10:31

2 20 15 2 750 28.46% 42.77% 0:09:54

2 20 15 3 750 26.42% 41.34% 0:09:45

2 20 15 0 1000 29.73% 45.92% 0:12:32

2 20 15 1 1000 29.37% 43.90% 0:13:21

2 20 15 2 1000 27.83% 41.97% 0:12:36

2 20 15 3 1000 25.68% 40.66% 0:12:31

2 20 15 0 1500 28.23% 42.28% 0:17:50

2 20 15 1 1500 28.23% 41.29% 0:18:57

2 20 15 2 1500 23.47% 36.18% 0:17:57

2 20 15 3 1500 19.27% 31.78% 0:17:59

2 20 15 0 2000 27.54% 41.74% 0:23:15

2 20 15 1 2000 28.93% 41.92% 0:24:31

2 20 15 2 2000 22.99% 35.91% 0:23:46



188

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 15 3 2000 19.41% 32.41% 0:23:31

2 20 20 0 100 26.78% 41.43% 0:03:07

2 20 20 1 100 24.63% 38.42% 0:02:51

2 20 20 2 100 23.52% 36.13% 0:02:42

2 20 20 0 250 28.94% 43.63% 0:04:44

2 20 20 1 250 28.59% 43.00% 0:04:30

2 20 20 2 250 29.38% 42.24% 0:04:21

2 20 20 0 500 29.21% 42.86% 0:07:32

2 20 20 1 500 28.93% 42.06% 0:07:17

2 20 20 2 500 27.70% 40.31% 0:07:06

2 20 20 0 750 29.80% 44.39% 0:10:15

2 20 20 1 750 30.76% 44.08% 0:10:03

2 20 20 2 750 31.13% 45.83% 0:09:55

2 20 20 0 1000 30.36% 44.79% 0:12:57

2 20 20 1 1000 29.02% 42.01% 0:12:48

2 20 20 2 1000 30.61% 44.34% 0:12:42

2 20 20 0 1500 29.48% 43.13% 0:18:23

2 20 20 1 1500 28.12% 40.04% 0:18:23

2 20 20 2 1500 25.96% 38.51% 0:18:07

2 20 20 0 2000 29.23% 42.59% 0:23:54

2 20 20 1 2000 26.76% 38.87% 0:24:35

2 20 20 2 2000 24.80% 37.30% 0:23:46

2 20 30 0 100 32.53% 49.51% 0:03:42

2 20 30 1 100 33.46% 50.13% 0:03:01



189

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 30 0 250 35.30% 50.58% 0:05:26

2 20 30 1 250 38.02% 53.46% 0:04:41

2 20 30 0 500 37.15% 51.97% 0:08:09

2 20 30 1 500 41.25% 56.19% 0:07:28

2 20 30 0 750 37.51% 51.30% 0:10:58

2 20 30 1 750 41.55% 55.92% 0:10:16

2 20 30 0 1000 38.44% 52.60% 0:13:42

2 20 30 1 1000 42.34% 56.42% 0:13:07

2 20 30 0 1500 38.41% 51.80% 0:19:14

2 20 30 1 1500 41.03% 54.08% 0:18:39

2 20 30 0 2000 37.29% 50.45% 0:25:04

2 20 30 1 2000 38.82% 50.94% 0:24:18

2 25 15 0 100 27.26% 42.91% 0:02:45

2 25 15 1 100 28.32% 43.63% 0:03:35

2 25 15 2 100 27.62% 40.80% 0:02:49

2 25 15 3 100 26.92% 40.89% 0:02:40

2 25 15 0 250 30.61% 47.85% 0:04:24

2 25 15 1 250 33.79% 50.72% 0:05:15

2 25 15 2 250 34.26% 49.42% 0:04:27

2 25 15 3 250 32.17% 47.53% 0:04:20

2 25 15 0 500 32.44% 48.79% 0:07:06

2 25 15 1 500 35.77% 51.17% 0:08:03

2 25 15 2 500 37.01% 51.80% 0:07:12

2 25 15 3 500 35.82% 51.93% 0:07:10



190

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 25 15 0 750 33.94% 50.76% 0:09:49

2 25 15 1 750 38.60% 54.35% 0:10:51

2 25 15 2 750 40.01% 54.76% 0:10:13

2 25 15 3 750 37.65% 53.50% 0:09:53

2 25 15 0 1000 33.48% 49.64% 0:12:32

2 25 15 1 1000 37.61% 53.05% 0:13:46

2 25 15 2 1000 38.64% 53.82% 0:12:46

2 25 15 3 1000 37.09% 52.74% 0:12:39

2 25 15 0 1500 34.16% 50.22% 0:17:59

2 25 15 1 1500 38.03% 53.23% 0:19:17

2 25 15 2 1500 38.41% 52.96% 0:18:20

2 25 15 3 1500 33.88% 48.74% 0:18:18

2 25 20 0 100 30.47% 45.78% 0:03:23

2 25 20 1 100 32.19% 48.11% 0:03:24

2 25 20 2 100 32.05% 47.31% 0:02:49

2 25 20 0 250 33.51% 49.91% 0:05:00

2 25 20 1 250 38.11% 53.05% 0:05:04

2 25 20 2 250 40.52% 56.96% 0:04:28

2 25 20 0 500 35.44% 51.26% 0:07:53

2 25 20 1 500 41.61% 56.37% 0:07:50

2 25 20 2 500 44.68% 60.59% 0:07:14

2 25 20 0 750 35.59% 50.85% 0:10:32

2 25 20 1 750 40.88% 55.70% 0:10:37

2 25 20 2 750 42.85% 58.12% 0:10:00



191

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 25 20 0 1000 35.92% 51.03% 0:13:15

2 25 20 1 1000 42.04% 55.92% 0:13:44

2 25 20 2 1000 44.07% 59.52% 0:12:54

2 25 20 0 1500 34.98% 49.87% 0:18:50

2 25 20 1 1500 41.14% 55.39% 0:19:12

2 25 20 2 1500 42.04% 56.33% 0:18:23

2 25 30 0 100 36.85% 53.64% 0:04:09

2 25 30 1 100 37.96% 55.30% 0:03:12

2 25 30 0 250 40.06% 55.97% 0:05:57

2 25 30 1 250 43.97% 60.37% 0:04:53

2 25 30 0 500 41.49% 57.14% 0:08:36

2 25 30 1 500 46.04% 61.45% 0:07:39

2 25 30 0 750 42.80% 58.66% 0:11:31

2 25 30 1 750 48.56% 63.91% 0:10:27

2 25 30 0 1000 43.90% 58.84% 0:14:23

2 25 30 1 1000 49.86% 64.59% 0:13:17

2 25 30 0 1500 44.57% 59.43% 0:19:55

2 25 30 1 1500 50.94% 65.62% 0:18:56

2 30 15 0 100 29.38% 45.06% 0:02:52

2 30 15 1 100 32.72% 48.88% 0:03:53

2 30 15 2 100 32.02% 48.34% 0:02:54

2 30 15 3 100 30.63% 46.05% 0:02:43

2 30 15 0 250 32.05% 48.29% 0:04:31

2 30 15 1 250 36.87% 53.14% 0:05:35



192

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 30 15 2 250 37.97% 54.22% 0:04:35

2 30 15 3 250 37.57% 54.04% 0:04:27

2 30 15 0 500 34.08% 50.31% 0:07:22

2 30 15 1 500 39.83% 54.85% 0:08:25

2 30 15 2 500 40.77% 56.33% 0:07:20

2 30 15 3 500 39.54% 55.70% 0:07:10

2 30 15 0 750 35.23% 51.62% 0:09:58

2 30 15 1 750 39.32% 54.49% 0:11:16

2 30 15 2 750 41.59% 56.91% 0:10:06

2 30 15 3 750 39.81% 55.97% 0:09:54

2 30 15 0 1000 36.11% 52.29% 0:12:48

2 30 15 1 1000 41.78% 57.05% 0:14:04

2 30 15 2 1000 43.79% 58.39% 0:12:50

2 30 15 3 1000 41.65% 58.08% 0:12:47

2 30 15 0 1500 35.22% 50.40% 0:18:04

2 30 15 1 1500 39.91% 54.13% 0:19:47

2 30 15 2 1500 41.35% 56.37% 0:18:25

2 30 15 3 1500 37.92% 53.64% 0:18:20

2 30 20 0 100 32.58% 48.88% 0:03:36

2 30 20 1 100 36.23% 52.60% 0:03:39

2 30 20 2 100 35.71% 52.65% 0:02:55

2 30 20 0 250 35.17% 52.38% 0:05:18

2 30 20 1 250 41.69% 57.54% 0:05:18

2 30 20 2 250 43.95% 59.61% 0:04:36



193

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 30 20 0 500 37.17% 53.41% 0:08:00

2 30 20 1 500 44.44% 60.05% 0:08:10

2 30 20 2 500 47.44% 62.97% 0:07:24

2 30 20 0 750 37.79% 53.64% 0:10:53

2 30 20 1 750 46.37% 61.13% 0:11:00

2 30 20 2 750 48.96% 64.59% 0:10:07

2 30 20 0 1000 38.77% 54.53% 0:13:34

2 30 20 1 1000 46.88% 61.36% 0:13:45

2 30 20 2 1000 49.85% 65.22% 0:12:57

2 30 20 0 1500 37.87% 53.50% 0:19:16

2 30 20 1 1500 45.94% 60.41% 0:19:26

2 30 20 2 1500 49.92% 65.57% 0:18:29

2 30 30 0 100 36.33% 53.73% 0:04:39

2 30 30 1 100 39.18% 56.96% 0:03:25

2 30 30 0 250 40.66% 57.54% 0:06:25

2 30 30 1 250 45.68% 62.25% 0:05:06

2 30 30 0 500 42.90% 58.98% 0:09:12

2 30 30 1 500 48.68% 64.59% 0:07:51

2 30 30 0 750 44.43% 60.68% 0:12:13

2 30 30 1 750 50.75% 66.29% 0:10:40

2 30 30 0 1000 44.72% 60.19% 0:15:06

2 30 30 1 1000 51.72% 67.32% 0:13:31

2 30 30 0 1500 46.91% 62.21% 0:20:34

2 30 30 1 1500 53.29% 68.04% 0:19:05



194

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 40 15 0 100 32.25% 47.62% 0:03:07

2 40 15 1 100 36.61% 53.82% 0:04:31

2 40 15 2 100 36.68% 53.46% 0:03:07

2 40 15 3 100 34.99% 52.47% 0:02:52

2 40 15 0 250 34.77% 50.36% 0:04:44

2 40 15 1 250 41.83% 58.26% 0:06:13

2 40 15 2 250 42.77% 58.93% 0:04:46

2 40 15 3 250 42.38% 58.66% 0:04:33

2 40 15 0 500 36.44% 53.19% 0:07:29

2 40 15 1 500 43.43% 59.29% 0:09:05

2 40 15 2 500 46.09% 62.12% 0:07:33

2 40 15 3 500 45.71% 61.89% 0:07:20

2 40 15 0 750 38.45% 54.62% 0:10:14

2 40 15 1 750 44.29% 60.23% 0:11:55

2 40 15 2 750 47.57% 63.15% 0:10:21

2 40 15 3 750 47.31% 63.20% 0:10:06

2 40 15 0 1000 38.67% 54.44% 0:13:01

2 40 15 1 1000 45.34% 60.55% 0:14:50

2 40 15 2 1000 48.14% 62.66% 0:13:11

2 40 15 3 1000 47.06% 62.21% 0:12:58

2 40 15 0 1500 39.37% 55.12% 0:18:26

2 40 15 1 1500 46.14% 61.22% 0:20:36

2 40 15 2 1500 48.68% 63.55% 0:18:57

2 40 15 3 1500 47.96% 64.45% 0:18:31



195

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 40 20 0 100 34.43% 50.99% 0:04:07

2 40 20 1 100 39.70% 56.60% 0:04:07

2 40 20 2 100 39.72% 57.18% 0:03:08

2 40 20 0 250 37.85% 54.26% 0:05:49

2 40 20 1 250 46.06% 62.21% 0:05:51

2 40 20 2 250 47.13% 63.42% 0:04:49

2 40 20 0 500 40.01% 56.33% 0:08:36

2 40 20 1 500 48.67% 63.91% 0:08:40

2 40 20 2 500 50.29% 65.66% 0:07:44

2 40 20 0 750 40.98% 57.23% 0:11:30

2 40 20 1 750 50.03% 64.45% 0:11:29

2 40 20 2 750 51.45% 66.61% 0:10:20

2 40 20 0 1000 42.12% 58.08% 0:14:11

2 40 20 1 1000 51.20% 65.39% 0:14:22

2 40 20 2 1000 52.19% 67.06% 0:13:18

2 40 20 0 1500 42.89% 58.89% 0:19:53

2 40 20 1 1500 51.52% 64.99% 0:20:03

2 40 20 2 1500 53.36% 67.91% 0:19:03

2 40 30 0 100 37.21% 53.90% 0:05:39

2 40 30 1 100 40.11% 56.78% 0:03:49

2 40 30 0 250 40.52% 56.91% 0:07:26

2 40 30 1 250 47.81% 63.55% 0:05:31

2 40 30 0 500 43.07% 59.11% 0:10:20

2 40 30 1 500 51.33% 66.47% 0:08:20



196

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 40 30 0 750 44.97% 61.62% 0:13:12

2 40 30 1 750 53.22% 68.22% 0:11:10

2 40 30 0 1000 46.02% 62.12% 0:16:04

2 40 30 1 1000 54.40% 68.85% 0:14:09

2 40 30 0 1500 47.97% 63.96% 0:21:57

2 40 30 1 1500 55.90% 69.66% 0:19:37

2 50 15 0 100 32.88% 49.10% 0:03:22

2 50 15 1 100 38.19% 55.66% 0:05:13

2 50 15 2 100 39.58% 57.18% 0:03:20

2 50 15 3 100 38.09% 56.06% 0:03:00

2 50 15 0 250 35.74% 52.06% 0:05:03

2 50 15 1 250 43.45% 59.83% 0:07:01

2 50 15 2 250 44.65% 60.64% 0:05:03

2 50 15 3 250 42.43% 59.34% 0:04:42

2 50 15 0 500 38.88% 55.43% 0:07:42

2 50 15 1 500 46.39% 62.43% 0:09:53

2 50 15 2 500 49.67% 65.80% 0:07:46

2 50 15 3 500 46.30% 62.34% 0:07:27

2 50 15 0 750 39.74% 56.42% 0:10:33

2 50 15 1 750 47.56% 63.29% 0:12:47

2 50 15 2 750 51.05% 66.61% 0:10:32

2 50 15 3 750 47.26% 62.93% 0:10:14

2 50 15 0 1000 39.94% 55.88% 0:13:15

2 50 15 1 1000 48.46% 64.00% 0:15:49



197

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 50 15 2 1000 51.68% 66.88% 0:13:22

2 50 15 3 1000 47.34% 62.61% 0:13:00

2 50 15 0 1500 40.59% 56.42% 0:18:51

2 50 15 1 1500 47.91% 62.34% 0:21:44

2 50 15 2 1500 51.78% 66.88% 0:19:25

2 50 15 3 1500 48.57% 63.87% 0:18:42

2 50 20 0 100 34.81% 52.42% 0:04:41

2 50 20 1 100 40.27% 57.23% 0:04:40

2 50 20 2 100 41.54% 58.80% 0:03:21

2 50 20 0 250 38.44% 55.07% 0:06:27

2 50 20 1 250 46.10% 62.12% 0:06:23

2 50 20 2 250 47.78% 64.09% 0:05:03

2 50 20 0 500 40.35% 56.42% 0:09:15

2 50 20 1 500 49.61% 64.95% 0:09:15

2 50 20 2 500 51.39% 67.24% 0:07:50

2 50 20 0 750 41.73% 58.08% 0:12:07

2 50 20 1 750 51.04% 65.62% 0:12:05

2 50 20 2 750 52.16% 67.73% 0:10:51

2 50 20 0 1000 42.54% 58.35% 0:14:54

2 50 20 1 1000 51.72% 66.07% 0:14:56

2 50 20 2 1000 53.63% 67.77% 0:13:45

2 50 20 0 1500 43.36% 59.16% 0:20:40

2 50 20 1 1500 52.80% 66.79% 0:20:47

2 50 20 2 1500 54.90% 69.30% 0:19:01



198

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 50 30 0 100 35.93% 52.96% 0:06:48

2 50 30 1 100 42.12% 59.38% 0:04:16

2 50 30 0 250 40.29% 56.91% 0:08:33

2 50 30 1 250 48.37% 63.73% 0:05:56

2 50 30 0 500 43.57% 60.01% 0:11:32

2 50 30 1 500 53.16% 67.46% 0:08:42

2 50 30 0 750 45.63% 60.86% 0:14:45

2 50 30 1 750 54.93% 68.99% 0:11:39

2 50 30 0 1000 46.70% 62.48% 0:17:42

2 50 30 1 1000 56.20% 70.69% 0:14:20

2 50 30 0 1500 47.87% 63.33% 0:23:21

2 50 30 1 1500 57.40% 71.50% 0:20:06

3 18 15 0 100 24.06% 37.66% 0:03:18

3 18 15 1 100 24.96% 39.41% 0:04:08

3 18 15 2 100 23.32% 36.71% 0:03:23

3 18 15 3 100 18.63% 32.23% 0:03:14

3 18 15 0 250 26.61% 40.08% 0:05:51

3 18 15 1 250 29.36% 43.63% 0:06:39

3 18 15 2 250 27.04% 41.25% 0:05:56

3 18 15 3 250 20.89% 33.75% 0:05:44

3 18 15 0 500 28.28% 42.50% 0:09:53

3 18 15 1 500 30.21% 43.90% 0:10:49

3 18 15 2 500 26.02% 40.53% 0:09:58

3 18 15 3 500 19.48% 32.76% 0:09:52



199

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 18 15 0 750 27.43% 42.10% 0:13:54

3 18 15 1 750 28.16% 41.38% 0:15:14

3 18 15 2 750 25.71% 39.68% 0:14:07

3 18 15 3 750 18.75% 31.96% 0:14:00

3 18 15 0 1000 26.58% 40.44% 0:18:06

3 18 15 1 1000 27.20% 40.08% 0:19:11

3 18 15 2 1000 22.66% 35.19% 0:18:16

3 18 15 3 1000 17.65% 29.49% 0:18:14

3 18 15 0 1500 25.15% 38.06% 0:26:08

3 18 15 1 1500 23.84% 35.91% 0:27:46

3 18 15 2 1500 15.66% 26.30% 0:26:19

3 18 15 3 1500 8.79% 16.92% 0:26:14

3 18 20 0 100 27.60% 43.18% 0:03:56

3 18 20 1 100 25.18% 39.00% 0:03:36

3 18 20 2 100 24.31% 36.76% 0:03:25

3 18 20 0 250 29.61% 45.20% 0:06:24

3 18 20 1 250 27.86% 41.52% 0:06:04

3 18 20 2 250 25.83% 38.42% 0:05:53

3 18 20 0 500 29.81% 43.67% 0:10:33

3 18 20 1 500 28.83% 42.32% 0:10:16

3 18 20 2 500 30.15% 44.88% 0:10:01

3 18 20 0 750 29.84% 43.67% 0:14:41

3 18 20 1 750 29.62% 42.32% 0:14:26

3 18 20 2 750 29.29% 43.09% 0:14:16



200

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 18 20 0 1000 30.28% 44.57% 0:18:39

3 18 20 1 1000 29.37% 42.06% 0:18:30

3 18 20 2 1000 22.95% 34.47% 0:18:22

3 18 20 0 1500 29.93% 43.94% 0:26:56

3 18 20 1 1500 24.25% 36.13% 0:27:08

3 18 20 2 1500 21.22% 33.80% 0:26:30

3 18 30 0 100 32.26% 47.80% 0:04:46

3 18 30 1 100 32.78% 48.11% 0:03:50

3 18 30 0 250 35.61% 51.12% 0:07:16

3 18 30 1 250 38.46% 54.17% 0:06:20

3 18 30 0 500 36.68% 51.71% 0:11:34

3 18 30 1 500 39.13% 54.22% 0:10:31

3 18 30 0 750 37.11% 51.75% 0:15:32

3 18 30 1 750 39.69% 53.82% 0:14:44

3 18 30 0 1000 37.85% 51.93% 0:19:46

3 18 30 1 1000 38.94% 52.87% 0:18:46

3 18 30 0 1500 36.86% 50.85% 0:28:07

3 18 30 1 1500 38.73% 53.50% 0:27:11

3 20 10 0 100 17.25% 30.97% 0:03:10

3 20 10 1 100 15.06% 26.03% 0:03:40

3 20 10 2 100 13.02% 23.07% 0:03:37

3 20 10 3 100 8.35% 17.01% 0:03:12

3 20 10 4 100 5.09% 12.03% 0:03:10

3 20 10 0 250 16.44% 28.28% 0:05:37



201

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 10 1 250 13.55% 23.83% 0:06:07

3 20 10 2 250 11.23% 20.60% 0:06:04

3 20 10 3 250 3.64% 10.95% 0:05:39

3 20 10 4 250 2.19% 7.23% 0:05:35

3 20 10 5 250 0.41% 0.99% 0:05:27

3 20 10 0 500 16.31% 28.41% 0:09:43

3 20 10 1 500 12.44% 22.22% 0:10:21

3 20 10 2 500 8.71% 17.06% 0:10:20

3 20 10 3 500 2.71% 7.36% 0:09:44

3 20 10 4 500 0.40% 0.67% 0:09:39

3 20 10 5 500 0.23% 0.27% 0:09:40

3 20 10 0 750 15.37% 26.80% 0:13:47

3 20 10 1 750 9.56% 18.13% 0:14:30

3 20 10 2 750 6.89% 13.78% 0:14:26

3 20 10 3 750 1.72% 4.35% 0:13:51

3 20 10 4 750 0.27% 0.31% 0:13:48

3 20 10 5 750 0.18% 0.27% 0:13:39

3 20 10 0 1000 14.76% 26.03% 0:17:52

3 20 10 1 1000 9.33% 17.64% 0:18:42

3 20 10 2 1000 6.74% 13.87% 0:18:34

3 20 10 3 1000 1.94% 5.92% 0:18:00

3 20 10 4 1000 0.34% 0.36% 0:17:47

3 20 10 5 1000 0.17% 0.18% 0:17:46

3 20 10 0 1500 14.98% 25.90% 0:25:53



202

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 10 1 1500 9.96% 18.04% 0:27:00

3 20 10 2 1500 5.99% 12.84% 0:26:54

3 20 10 3 1500 1.25% 3.37% 0:26:18

3 20 10 4 1500 0.21% 0.22% 0:25:53

3 20 10 5 1500 0.14% 0.13% 0:26:10

3 20 10 0 2000 12.38% 21.86% 0:34:08

3 20 10 1 2000 6.23% 12.75% 0:35:57

3 20 10 2 2000 1.95% 5.43% 0:35:13

3 20 10 3 2000 0.19% 0.04% 0:34:30

3 20 10 4 2000 0.13% 0.09% 0:34:05

3 20 10 5 2000 0.11% 0.00% 0:34:24

3 20 15 0 100 26.02% 40.93% 0:03:22

3 20 15 1 100 25.03% 39.63% 0:04:18

3 20 15 2 100 23.58% 36.89% 0:03:26

3 20 15 3 100 19.16% 31.42% 0:03:15

3 20 15 0 250 28.60% 44.03% 0:05:51

3 20 15 1 250 28.84% 43.40% 0:06:52

3 20 15 2 250 26.79% 40.62% 0:05:53

3 20 15 3 250 24.57% 38.78% 0:05:45

3 20 15 0 500 29.04% 44.79% 0:09:53

3 20 15 1 500 30.50% 44.17% 0:11:02

3 20 15 2 500 28.85% 43.81% 0:10:00

3 20 15 3 500 26.66% 42.55% 0:09:52

3 20 15 0 750 29.42% 44.39% 0:13:58



203

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 15 1 750 31.15% 45.69% 0:15:11

3 20 15 2 750 26.66% 40.22% 0:14:11

3 20 15 3 750 23.41% 37.66% 0:14:00

3 20 15 0 1000 29.51% 44.25% 0:18:04

3 20 15 1 1000 28.36% 42.01% 0:19:20

3 20 15 2 1000 23.78% 35.86% 0:18:18

3 20 15 3 1000 20.85% 33.71% 0:18:14

3 20 15 0 1500 26.06% 39.77% 0:26:12

3 20 15 1 1500 24.68% 37.12% 0:27:48

3 20 15 2 1500 14.59% 25.22% 0:26:15

3 20 15 3 1500 8.24% 15.84% 0:26:53

3 20 15 0 2000 25.05% 38.87% 0:34:25

3 20 15 1 2000 24.33% 36.49% 0:36:06

3 20 15 2 2000 15.71% 26.03% 0:34:44

3 20 15 3 2000 10.36% 18.81% 0:34:38

3 20 20 0 100 28.10% 42.86% 0:04:09

3 20 20 1 100 25.68% 39.45% 0:03:41

3 20 20 2 100 24.85% 38.29% 0:03:27

3 20 20 0 250 29.60% 44.17% 0:06:34

3 20 20 1 250 31.11% 46.05% 0:06:11

3 20 20 2 250 32.93% 47.40% 0:05:58

3 20 20 0 500 30.84% 45.29% 0:10:39

3 20 20 1 500 30.57% 43.85% 0:10:17

3 20 20 2 500 30.00% 43.54% 0:10:07



204

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 20 0 750 30.69% 45.20% 0:14:51

3 20 20 1 750 29.02% 41.20% 0:14:26

3 20 20 2 750 31.04% 45.24% 0:14:11

3 20 20 0 1000 29.96% 44.03% 0:19:01

3 20 20 1 1000 28.18% 40.71% 0:18:59

3 20 20 2 1000 28.53% 41.47% 0:18:35

3 20 20 0 1500 28.92% 42.24% 0:27:14

3 20 20 1 1500 26.57% 37.88% 0:26:54

3 20 20 2 1500 22.53% 33.89% 0:26:37

3 20 20 0 2000 27.60% 40.26% 0:35:28

3 20 20 1 2000 21.78% 31.01% 0:35:20

3 20 20 2 2000 17.48% 27.56% 0:35:04

3 20 30 0 100 34.12% 49.01% 0:05:01

3 20 30 1 100 35.82% 51.12% 0:03:56

3 20 30 0 250 36.99% 52.47% 0:07:32

3 20 30 1 250 39.83% 54.80% 0:06:24

3 20 30 0 500 38.76% 53.82% 0:11:39

3 20 30 1 500 42.72% 57.68% 0:10:36

3 20 30 0 750 39.61% 54.85% 0:15:48

3 20 30 1 750 42.98% 57.63% 0:14:49

3 20 30 0 1000 39.30% 53.32% 0:20:09

3 20 30 1 1000 41.87% 55.30% 0:19:08

3 20 30 0 1500 38.55% 51.48% 0:28:22

3 20 30 1 1500 40.75% 54.31% 0:27:12



205

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 30 0 2000 37.02% 49.78% 0:36:43

3 20 30 1 2000 36.21% 48.38% 0:35:46

3 25 15 0 100 29.42% 44.88% 0:03:35

3 25 15 1 100 31.96% 48.43% 0:04:48

3 25 15 2 100 31.57% 46.36% 0:03:36

3 25 15 3 100 29.45% 43.49% 0:03:25

3 25 15 0 250 31.76% 47.89% 0:06:03

3 25 15 1 250 35.51% 51.30% 0:07:16

3 25 15 2 250 36.24% 51.57% 0:06:09

3 25 15 3 250 35.10% 51.71% 0:05:52

3 25 15 0 500 34.34% 50.31% 0:10:05

3 25 15 1 500 37.29% 53.82% 0:11:27

3 25 15 2 500 39.07% 54.94% 0:10:14

3 25 15 3 500 37.02% 54.17% 0:10:10

3 25 15 0 750 34.46% 50.76% 0:14:20

3 25 15 1 750 38.29% 54.35% 0:15:42

3 25 15 2 750 39.35% 54.71% 0:14:26

3 25 15 3 750 35.63% 51.44% 0:14:09

3 25 15 0 1000 33.94% 50.31% 0:18:14

3 25 15 1 1000 38.99% 55.66% 0:20:01

3 25 15 2 1000 37.64% 52.96% 0:18:37

3 25 15 3 1000 31.95% 47.08% 0:18:25

3 25 15 0 1500 33.03% 48.16% 0:26:26

3 25 15 1 1500 36.97% 52.87% 0:28:26



206

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 25 15 2 1500 34.49% 49.60% 0:26:58

3 25 15 3 1500 28.30% 43.22% 0:26:40

3 25 20 0 100 31.99% 49.10% 0:04:30

3 25 20 1 100 36.27% 52.06% 0:04:28

3 25 20 2 100 36.55% 52.47% 0:03:39

3 25 20 0 250 33.94% 49.60% 0:06:56

3 25 20 1 250 39.19% 54.85% 0:06:59

3 25 20 2 250 42.03% 57.23% 0:06:08

3 25 20 0 500 35.31% 50.45% 0:11:02

3 25 20 1 500 41.80% 56.64% 0:11:10

3 25 20 2 500 44.79% 60.28% 0:10:23

3 25 20 0 750 36.13% 52.02% 0:15:11

3 25 20 1 750 42.12% 55.83% 0:15:23

3 25 20 2 750 46.45% 62.12% 0:14:28

3 25 20 0 1000 35.35% 50.45% 0:19:31

3 25 20 1 1000 40.98% 55.25% 0:19:38

3 25 20 2 1000 40.69% 55.61% 0:18:40

3 25 20 0 1500 35.67% 49.78% 0:27:31

3 25 20 1 1500 41.06% 55.12% 0:28:17

3 25 20 2 1500 39.60% 54.17% 0:26:56

3 25 30 0 100 39.01% 54.80% 0:05:41

3 25 30 1 100 40.99% 57.90% 0:04:13

3 25 30 0 250 41.61% 56.91% 0:08:11

3 25 30 1 250 46.55% 62.97% 0:06:44



207

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 25 30 0 500 44.02% 58.93% 0:12:24

3 25 30 1 500 50.38% 65.44% 0:10:56

3 25 30 0 750 45.60% 60.64% 0:17:01

3 25 30 1 750 52.96% 68.04% 0:15:08

3 25 30 0 1000 46.28% 61.18% 0:20:48

3 25 30 1 1000 52.58% 67.28% 0:19:16

3 25 30 0 1500 46.13% 61.49% 0:29:15

3 25 30 1 1500 52.61% 67.15% 0:27:37

3 30 15 0 100 30.54% 46.01% 0:03:47

3 30 15 1 100 35.40% 51.66% 0:05:15

3 30 15 2 100 34.29% 50.94% 0:03:45

3 30 15 3 100 33.66% 50.31% 0:03:30

3 30 15 0 250 34.10% 50.09% 0:06:13

3 30 15 1 250 39.49% 55.75% 0:07:47

3 30 15 2 250 41.39% 57.90% 0:06:16

3 30 15 3 250 40.67% 57.81% 0:06:01

3 30 15 0 500 35.35% 51.30% 0:10:19

3 30 15 1 500 41.17% 56.78% 0:11:57

3 30 15 2 500 43.26% 58.84% 0:10:26

3 30 15 3 500 40.96% 57.59% 0:10:12

3 30 15 0 750 36.74% 51.84% 0:14:36

3 30 15 1 750 41.86% 57.50% 0:16:18

3 30 15 2 750 43.94% 59.11% 0:14:33

3 30 15 3 750 41.66% 58.17% 0:14:18



208

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 30 15 0 1000 36.75% 51.84% 0:18:38

3 30 15 1 1000 43.25% 58.12% 0:20:22

3 30 15 2 1000 45.25% 60.50% 0:18:39

3 30 15 3 1000 43.27% 59.52% 0:18:29

3 30 15 0 1500 36.68% 52.15% 0:26:58

3 30 15 1 1500 41.14% 56.06% 0:29:09

3 30 15 2 1500 42.80% 57.76% 0:26:53

3 30 15 3 1500 36.24% 50.76% 0:26:53

3 30 20 0 100 34.28% 51.17% 0:04:51

3 30 20 1 100 38.62% 55.39% 0:04:50

3 30 20 2 100 39.14% 55.43% 0:03:47

3 30 20 0 250 36.85% 53.01% 0:07:19

3 30 20 1 250 44.87% 60.23% 0:07:22

3 30 20 2 250 46.72% 62.75% 0:06:18

3 30 20 0 500 39.53% 55.52% 0:11:26

3 30 20 1 500 47.13% 62.75% 0:11:38

3 30 20 2 500 49.63% 65.22% 0:10:36

3 30 20 0 750 40.17% 56.46% 0:15:56

3 30 20 1 750 49.12% 63.33% 0:15:46

3 30 20 2 750 52.24% 67.46% 0:14:37

3 30 20 0 1000 40.45% 56.10% 0:20:05

3 30 20 1 1000 49.29% 64.23% 0:20:03

3 30 20 2 1000 51.77% 65.98% 0:18:43

3 30 20 0 1500 39.87% 55.12% 0:28:24



209

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 30 20 1 1500 48.06% 62.70% 0:28:24

3 30 20 2 1500 50.53% 65.84% 0:27:04

3 30 30 0 100 38.87% 55.66% 0:06:23

3 30 30 1 100 41.57% 57.72% 0:04:33

3 30 30 0 250 43.55% 60.14% 0:08:56

3 30 30 1 250 48.46% 64.18% 0:07:02

3 30 30 0 500 45.32% 61.45% 0:13:13

3 30 30 1 500 51.53% 67.28% 0:11:17

3 30 30 0 750 47.55% 62.07% 0:17:45

3 30 30 1 750 53.16% 67.91% 0:15:22

3 30 30 0 1000 48.30% 64.09% 0:22:07

3 30 30 1 1000 54.89% 69.17% 0:19:36

3 30 30 0 1500 48.97% 64.00% 0:30:56

3 30 30 1 1500 56.20% 70.38% 0:28:04

3 40 15 0 100 33.19% 49.01% 0:04:08

3 40 15 1 100 38.74% 56.28% 0:06:07

3 40 15 2 100 39.13% 56.01% 0:04:04

3 40 15 3 100 37.33% 54.08% 0:03:41

3 40 15 0 250 36.82% 53.23% 0:06:37

3 40 15 1 250 44.08% 60.86% 0:08:41

3 40 15 2 250 46.22% 61.76% 0:06:31

3 40 15 3 250 44.96% 61.13% 0:06:11

3 40 15 0 500 38.74% 55.48% 0:10:44

3 40 15 1 500 46.47% 62.16% 0:13:05



210

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 40 15 2 500 48.63% 64.36% 0:10:42

3 40 15 3 500 47.38% 63.96% 0:10:22

3 40 15 0 750 40.40% 56.69% 0:14:58

3 40 15 1 750 47.70% 62.97% 0:17:13

3 40 15 2 750 50.03% 65.35% 0:14:48

3 40 15 3 750 48.78% 64.68% 0:14:29

3 40 15 0 1000 40.83% 56.96% 0:19:02

3 40 15 1 1000 47.62% 62.07% 0:21:26

3 40 15 2 1000 50.07% 65.26% 0:19:14

3 40 15 3 1000 47.70% 64.14% 0:18:44

3 40 15 0 1500 41.26% 57.14% 0:27:15

3 40 15 1 1500 48.75% 64.05% 0:30:11

3 40 15 2 1500 50.65% 65.26% 0:27:27

3 40 15 3 1500 45.97% 60.95% 0:27:11

3 40 20 0 100 36.77% 54.08% 0:05:43

3 40 20 1 100 42.50% 58.98% 0:05:34

3 40 20 2 100 43.04% 59.65% 0:04:06

3 40 20 0 250 40.61% 57.81% 0:08:19

3 40 20 1 250 48.81% 64.72% 0:08:04

3 40 20 2 250 49.16% 65.04% 0:06:34

3 40 20 0 500 42.70% 59.20% 0:12:27

3 40 20 1 500 51.14% 66.34% 0:12:31

3 40 20 2 500 52.33% 67.32% 0:10:44

3 40 20 0 750 43.73% 59.78% 0:16:43



211

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 40 20 1 750 52.95% 67.19% 0:16:38

3 40 20 2 750 53.59% 67.95% 0:14:57

3 40 20 0 1000 43.79% 59.25% 0:20:59

3 40 20 1 1000 53.42% 67.82% 0:20:56

3 40 20 2 1000 54.08% 68.22% 0:19:08

3 40 20 0 1500 44.15% 59.52% 0:29:27

3 40 20 1 1500 53.56% 67.59% 0:29:31

3 40 20 2 1500 53.49% 67.32% 0:27:18

3 40 30 0 100 38.67% 56.33% 0:08:10

3 40 30 1 100 43.86% 60.86% 0:05:06

3 40 30 0 250 43.27% 59.47% 0:10:49

3 40 30 1 250 50.16% 65.98% 0:07:40

3 40 30 0 500 46.66% 62.97% 0:15:14

3 40 30 1 500 53.76% 69.34% 0:11:50

3 40 30 0 750 48.74% 64.59% 0:19:56

3 40 30 1 750 56.35% 70.83% 0:16:07

3 40 30 0 1000 49.41% 64.99% 0:24:11

3 40 30 1 1000 57.43% 72.08% 0:20:20

3 40 30 0 1500 51.42% 65.62% 0:33:02

3 40 30 1 1500 59.22% 72.35% 0:28:34

3 50 15 0 100 34.60% 50.58% 0:04:28

3 50 15 1 100 41.12% 57.76% 0:07:10

3 50 15 2 100 42.90% 60.10% 0:04:23

3 50 15 3 100 41.12% 58.98% 0:03:55



212

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 50 15 0 250 37.79% 54.08% 0:06:59

3 50 15 1 250 45.66% 61.89% 0:09:48

3 50 15 2 250 48.41% 64.27% 0:06:52

3 50 15 3 250 45.29% 61.67% 0:06:23

3 50 15 0 500 41.08% 57.05% 0:11:11

3 50 15 1 500 48.26% 63.91% 0:14:09

3 50 15 2 500 52.19% 67.37% 0:11:09

3 50 15 3 500 48.47% 64.68% 0:10:34

3 50 15 0 750 41.98% 57.36% 0:15:25

3 50 15 1 750 49.77% 64.23% 0:18:53

3 50 15 2 750 52.46% 66.88% 0:15:10

3 50 15 3 750 47.63% 62.66% 0:14:49

3 50 15 0 1000 42.63% 58.80% 0:19:32

3 50 15 1 1000 50.48% 65.66% 0:22:55

3 50 15 2 1000 53.51% 68.58% 0:19:24

3 50 15 3 1000 46.94% 62.61% 0:18:57

3 50 15 0 1500 42.52% 58.12% 0:27:48

3 50 15 1 1500 50.36% 65.08% 0:31:31

3 50 15 2 1500 54.05% 68.40% 0:27:33

3 50 15 3 1500 44.49% 61.04% 0:27:18

3 50 20 0 100 37.42% 54.13% 0:06:38

3 50 20 1 100 43.08% 60.55% 0:06:20

3 50 20 2 100 44.24% 60.77% 0:04:26

3 50 20 0 250 40.52% 57.00% 0:09:13



213

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 50 20 1 250 49.04% 64.54% 0:08:53

3 50 20 2 250 50.38% 66.11% 0:06:54

3 50 20 0 500 42.75% 59.29% 0:13:28

3 50 20 1 500 51.41% 65.75% 0:13:05

3 50 20 2 500 53.01% 68.00% 0:11:09

3 50 20 0 750 44.05% 60.28% 0:17:44

3 50 20 1 750 53.72% 68.27% 0:17:38

3 50 20 2 750 54.45% 68.90% 0:15:20

3 50 20 0 1000 45.12% 60.64% 0:22:09

3 50 20 1 1000 54.09% 68.49% 0:21:51

3 50 20 2 1000 55.24% 69.39% 0:19:39

3 50 20 0 1500 45.55% 61.36% 0:30:49

3 50 20 1 1500 55.62% 68.94% 0:30:21

3 50 20 2 1500 55.62% 69.25% 0:27:54

3 50 30 0 100 38.05% 55.30% 0:09:55

3 50 30 1 100 45.03% 61.49% 0:05:43

3 50 30 0 250 43.87% 59.96% 0:12:36

3 50 30 1 250 51.76% 67.32% 0:08:13

3 50 30 0 500 46.26% 62.43% 0:17:18

3 50 30 1 500 55.24% 70.11% 0:12:31

3 50 30 0 750 49.40% 64.54% 0:22:05

3 50 30 1 750 58.08% 71.99% 0:16:45

3 50 30 0 1000 49.77% 64.90% 0:26:45

3 50 30 1 1000 58.77% 72.35% 0:21:13



214

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 50 30 0 1500 51.41% 65.80% 0:36:03

3 50 30 1 1500 59.67% 72.85% 0:29:25

4 18 15 0 100 26.77% 41.34% 0:04:03

4 18 15 1 100 27.51% 42.28% 0:05:12

4 18 15 2 100 24.96% 38.87% 0:04:08

4 18 15 3 100 19.86% 32.72% 0:03:54

4 18 15 0 250 27.66% 42.24% 0:07:19

4 18 15 1 250 28.22% 41.65% 0:08:30

4 18 15 2 250 25.39% 38.73% 0:07:23

4 18 15 3 250 19.24% 32.14% 0:07:14

4 18 15 0 500 27.76% 41.97% 0:12:43

4 18 15 1 500 30.30% 44.08% 0:14:08

4 18 15 2 500 26.58% 40.44% 0:13:01

4 18 15 3 500 20.29% 33.53% 0:12:48

4 18 15 0 750 26.85% 39.68% 0:18:14

4 18 15 1 750 27.09% 39.81% 0:19:47

4 18 15 2 750 20.16% 32.59% 0:18:24

4 18 15 3 750 14.97% 25.04% 0:18:09

4 18 15 0 1000 26.43% 40.26% 0:23:44

4 18 15 1 1000 26.07% 39.41% 0:25:12

4 18 15 2 1000 17.04% 27.74% 0:24:01

4 18 15 3 1000 10.09% 17.95% 0:23:40

4 18 15 0 1500 23.45% 36.31% 0:34:37

4 18 15 1 1500 20.41% 31.64% 0:36:24



215

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 18 15 2 1500 7.99% 14.81% 0:34:32

4 18 15 3 1500 1.06% 2.87% 0:34:31

4 18 20 0 100 28.65% 43.90% 0:04:52

4 18 20 1 100 26.43% 39.68% 0:04:25

4 18 20 2 100 27.42% 40.93% 0:04:10

4 18 20 0 250 30.71% 45.87% 0:08:10

4 18 20 1 250 30.54% 44.84% 0:07:47

4 18 20 2 250 32.20% 47.49% 0:07:28

4 18 20 0 500 30.91% 45.56% 0:13:35

4 18 20 1 500 30.10% 43.67% 0:13:16

4 18 20 2 500 30.53% 44.75% 0:13:00

4 18 20 0 750 29.49% 43.18% 0:19:05

4 18 20 1 750 27.18% 38.64% 0:18:47

4 18 20 2 750 25.15% 38.15% 0:18:34

4 18 20 0 1000 30.38% 44.17% 0:24:37

4 18 20 1 1000 27.30% 39.05% 0:24:29

4 18 20 2 1000 22.41% 34.69% 0:23:59

4 18 20 0 1500 28.18% 40.98% 0:35:30

4 18 20 1 1500 22.28% 34.11% 0:35:25

4 18 20 2 1500 14.07% 23.38% 0:35:00

4 18 30 0 100 33.36% 48.97% 0:06:01

4 18 30 1 100 33.72% 49.28% 0:04:44

4 18 30 0 250 36.72% 52.06% 0:09:24

4 18 30 1 250 38.40% 53.68% 0:08:00



216

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 18 30 0 500 37.97% 53.05% 0:14:45

4 18 30 1 500 40.53% 55.30% 0:13:31

4 18 30 0 750 37.75% 52.87% 0:20:24

4 18 30 1 750 40.74% 56.46% 0:19:13

4 18 30 0 1000 38.57% 52.96% 0:25:47

4 18 30 1 1000 39.85% 55.12% 0:24:50

4 18 30 0 1500 36.02% 48.79% 0:37:02

4 18 30 1 1500 33.42% 46.54% 0:35:52

4 20 10 0 100 16.97% 28.59% 0:03:51

4 20 10 1 100 14.02% 24.15% 0:04:28

4 20 10 2 100 12.09% 21.54% 0:04:25

4 20 10 3 100 6.03% 14.23% 0:03:53

4 20 10 4 100 2.86% 8.44% 0:03:50

4 20 10 5 100 0.69% 1.84% 0:03:41

4 20 10 0 250 16.73% 27.92% 0:07:08

4 20 10 1 250 12.94% 22.31% 0:07:50

4 20 10 2 250 8.31% 15.44% 0:07:44

4 20 10 3 250 1.71% 4.22% 0:07:10

4 20 10 4 250 0.40% 0.63% 0:07:03

4 20 10 5 250 0.19% 0.31% 0:06:51

4 20 10 0 500 17.26% 29.22% 0:12:40

4 20 10 1 500 13.07% 23.20% 0:13:20

4 20 10 2 500 10.07% 18.58% 0:13:10

4 20 10 3 500 4.43% 11.58% 0:12:38



217

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 10 4 500 1.03% 2.69% 0:12:26

4 20 10 5 500 0.17% 0.09% 0:12:18

4 20 10 0 750 14.53% 25.67% 0:17:55

4 20 10 1 750 9.97% 19.43% 0:19:32

4 20 10 2 750 6.49% 13.55% 0:18:48

4 20 10 3 750 1.37% 3.99% 0:18:01

4 20 10 4 750 0.25% 0.22% 0:17:53

4 20 10 5 750 0.13% 0.13% 0:18:22

4 20 10 0 1000 13.69% 25.09% 0:23:26

4 20 10 1 1000 8.56% 16.88% 0:24:30

4 20 10 2 1000 5.68% 12.43% 0:24:24

4 20 10 3 1000 1.34% 4.35% 0:23:32

4 20 10 4 1000 0.17% 0.13% 0:23:21

4 20 10 5 1000 0.13% 0.09% 0:23:25

4 20 10 0 1500 13.90% 25.81% 0:34:14

4 20 10 1 1500 7.83% 15.22% 0:35:26

4 20 10 2 1500 3.35% 8.35% 0:35:40

4 20 10 3 1500 0.28% 0.18% 0:34:30

4 20 10 4 1500 0.19% 0.13% 0:34:30

4 20 10 5 1500 0.15% 0.09% 0:34:09

4 20 10 0 2000 12.43% 22.71% 0:45:16

4 20 10 1 2000 5.13% 10.77% 0:46:32

4 20 10 2 2000 1.58% 4.40% 0:46:30

4 20 10 3 2000 0.20% 0.18% 0:45:32



218

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 10 4 2000 0.17% 0.04% 0:46:25

4 20 10 5 2000 0.14% 0.22% 0:45:23

4 20 15 0 100 26.16% 41.02% 0:04:09

4 20 15 1 100 25.50% 40.26% 0:05:23

4 20 15 2 100 22.24% 34.52% 0:04:10

4 20 15 3 100 19.01% 31.51% 0:03:56

4 20 15 0 250 29.24% 45.24% 0:07:25

4 20 15 1 250 27.99% 42.37% 0:08:42

4 20 15 2 250 26.72% 41.20% 0:07:28

4 20 15 3 250 24.11% 39.18% 0:07:14

4 20 15 0 500 30.28% 46.10% 0:12:50

4 20 15 1 500 29.62% 44.43% 0:14:17

4 20 15 2 500 27.82% 41.56% 0:12:53

4 20 15 3 500 22.35% 36.94% 0:12:46

4 20 15 0 750 29.32% 44.08% 0:18:17

4 20 15 1 750 29.04% 43.13% 0:19:54

4 20 15 2 750 23.21% 36.85% 0:18:33

4 20 15 3 750 19.36% 32.18% 0:18:16

4 20 15 0 1000 28.25% 43.09% 0:23:44

4 20 15 1 1000 29.22% 42.50% 0:25:22

4 20 15 2 1000 23.12% 36.31% 0:24:01

4 20 15 3 1000 17.77% 30.12% 0:23:49

4 20 15 0 1500 25.56% 40.22% 0:34:25

4 20 15 1 1500 24.47% 36.31% 0:36:59



219

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 15 2 1500 14.49% 23.83% 0:34:50

4 20 15 3 1500 9.36% 17.41% 0:34:54

4 20 15 0 2000 24.05% 37.16% 0:45:04

4 20 15 1 2000 20.95% 32.63% 0:47:37

4 20 15 2 2000 9.78% 17.19% 0:45:28

4 20 15 3 2000 1.09% 3.23% 0:45:41

4 20 20 0 100 28.98% 44.75% 0:05:03

4 20 20 1 100 27.13% 40.93% 0:04:31

4 20 20 2 100 29.21% 43.13% 0:04:13

4 20 20 0 250 30.41% 45.78% 0:08:21

4 20 20 1 250 30.30% 44.93% 0:07:50

4 20 20 2 250 32.35% 46.63% 0:07:31

4 20 20 0 500 30.84% 45.42% 0:14:00

4 20 20 1 500 29.71% 42.37% 0:13:32

4 20 20 2 500 32.59% 45.96% 0:13:06

4 20 20 0 750 30.49% 44.43% 0:19:20

4 20 20 1 750 28.44% 40.62% 0:18:50

4 20 20 2 750 30.50% 45.15% 0:18:38

4 20 20 0 1000 29.60% 42.68% 0:24:57

4 20 20 1 1000 25.00% 35.95% 0:24:19

4 20 20 2 1000 24.02% 36.54% 0:23:55

4 20 20 0 1500 28.32% 41.52% 0:35:42

4 20 20 1 1500 22.96% 33.17% 0:35:28

4 20 20 2 1500 18.91% 29.08% 0:34:59



220

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 20 0 2000 27.41% 40.26% 0:47:15

4 20 20 1 2000 19.46% 29.22% 0:46:38

4 20 20 2 2000 15.12% 24.82% 0:46:08

4 20 30 0 100 34.98% 51.03% 0:06:15

4 20 30 1 100 37.31% 54.08% 0:04:49

4 20 30 0 250 37.49% 53.46% 0:09:39

4 20 30 1 250 41.91% 57.05% 0:08:14

4 20 30 0 500 38.66% 53.73% 0:15:11

4 20 30 1 500 42.18% 56.06% 0:13:42

4 20 30 0 750 40.27% 54.62% 0:20:44

4 20 30 1 750 44.35% 58.08% 0:19:29

4 20 30 0 1000 40.02% 53.77% 0:26:16

4 20 30 1 1000 42.48% 55.70% 0:24:47

4 20 30 0 1500 37.53% 51.48% 0:37:22

4 20 30 1 1500 36.20% 48.25% 0:36:03

4 20 30 0 2000 37.09% 49.69% 0:49:16

4 20 30 1 2000 37.41% 50.40% 0:47:03

5 18 15 0 100 26.49% 40.66% 0:04:46

5 18 15 1 100 26.72% 40.84% 0:06:08

5 18 15 2 100 23.90% 37.48% 0:04:50

5 18 15 3 100 17.65% 29.22% 0:04:35

5 18 15 0 250 28.90% 43.49% 0:08:52

5 18 15 1 250 30.37% 45.02% 0:10:24

5 18 15 2 250 26.78% 41.65% 0:08:58



221

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 18 15 3 250 20.19% 33.17% 0:08:44

5 18 15 0 500 28.33% 43.18% 0:15:44

5 18 15 1 500 27.72% 41.20% 0:17:19

5 18 15 2 500 22.84% 35.59% 0:15:49

5 18 15 3 500 15.33% 25.99% 0:15:34

5 18 15 0 750 26.78% 40.17% 0:22:40

5 18 15 1 750 26.36% 39.09% 0:24:15

5 18 15 2 750 21.36% 32.85% 0:22:33

5 18 15 3 750 13.88% 24.87% 0:22:29

5 18 15 0 1000 25.69% 38.51% 0:29:12

5 18 15 1 1000 24.54% 36.40% 0:31:22

5 18 15 2 1000 15.78% 25.85% 0:29:21

5 18 15 3 1000 9.17% 17.15% 0:29:14

5 18 15 0 1500 23.58% 36.36% 0:42:52

5 18 15 1 1500 19.63% 31.06% 0:46:11

5 18 15 2 1500 7.57% 14.50% 0:44:10

5 18 15 3 1500 1.30% 3.41% 0:42:54

5 18 20 0 100 28.20% 43.63% 0:05:50

5 18 20 1 100 26.08% 39.95% 0:05:14

5 18 20 2 100 26.95% 40.08% 0:04:53

5 18 20 0 250 30.59% 45.47% 0:09:56

5 18 20 1 250 28.95% 41.83% 0:09:24

5 18 20 2 250 29.55% 44.03% 0:09:01

5 18 20 0 500 30.67% 45.47% 0:16:47



222

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 18 20 1 500 31.74% 46.05% 0:16:15

5 18 20 2 500 32.79% 47.62% 0:15:57

5 18 20 0 750 31.18% 46.05% 0:23:38

5 18 20 1 750 29.48% 41.74% 0:23:40

5 18 20 2 750 28.59% 42.68% 0:22:55

5 18 20 0 1000 30.97% 45.92% 0:30:41

5 18 20 1 1000 26.35% 38.06% 0:29:58

5 18 20 2 1000 20.58% 33.03% 0:29:50

5 18 20 0 1500 26.50% 39.77% 0:44:15

5 18 20 1 1500 18.63% 28.23% 0:43:46

5 18 20 2 1500 11.52% 19.75% 0:43:22

5 18 30 0 100 33.71% 49.69% 0:07:09

5 18 30 1 100 34.02% 49.33% 0:05:35

5 18 30 0 250 37.78% 53.41% 0:11:18

5 18 30 1 250 40.62% 56.15% 0:09:42

5 18 30 0 500 39.30% 54.40% 0:18:13

5 18 30 1 500 42.73% 56.96% 0:16:41

5 18 30 0 750 38.34% 53.05% 0:25:16

5 18 30 1 750 39.52% 53.86% 0:23:35

5 18 30 0 1000 37.48% 51.26% 0:32:05

5 18 30 1 1000 37.93% 52.02% 0:30:30

5 18 30 0 1500 36.70% 49.73% 0:46:00

5 18 30 1 1500 33.63% 46.05% 0:44:18

5 20 10 0 100 15.66% 27.69% 0:04:33



223

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 10 1 100 11.28% 20.20% 0:05:18

5 20 10 2 100 7.36% 14.32% 0:05:19

5 20 10 3 100 2.21% 6.33% 0:04:35

5 20 10 4 100 0.87% 1.97% 0:04:29

5 20 10 5 100 0.47% 1.03% 0:04:16

5 20 10 0 250 17.36% 29.58% 0:08:36

5 20 10 1 250 13.92% 24.87% 0:09:28

5 20 10 2 250 9.43% 17.91% 0:09:24

5 20 10 3 250 2.15% 6.01% 0:08:38

5 20 10 4 250 0.34% 0.40% 0:08:38

5 20 10 5 250 0.20% 0.22% 0:08:18

5 20 10 0 500 15.35% 26.75% 0:15:23

5 20 10 1 500 10.27% 19.25% 0:16:24

5 20 10 2 500 7.65% 15.08% 0:16:22

5 20 10 3 500 2.31% 6.69% 0:15:31

5 20 10 4 500 0.42% 0.40% 0:15:22

5 20 10 5 500 0.21% 0.27% 0:15:08

5 20 10 0 750 14.49% 26.26% 0:22:18

5 20 10 1 750 9.45% 18.13% 0:23:24

5 20 10 2 750 7.17% 15.13% 0:23:22

5 20 10 3 750 2.64% 7.63% 0:22:17

5 20 10 4 750 0.31% 0.40% 0:22:08

5 20 10 0 1000 14.09% 24.69% 0:28:53

5 20 10 1 1000 7.13% 14.81% 0:30:27



224

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 10 2 1000 2.76% 7.45% 0:30:03

5 20 10 3 1000 0.17% 0.09% 0:29:04

5 20 10 4 1000 0.15% 0.04% 0:29:09

5 20 10 5 1000 0.12% 0.00% 0:28:57

5 20 10 0 1500 12.39% 22.58% 0:42:43

5 20 10 1 1500 6.04% 12.48% 0:44:15

5 20 10 2 1500 1.13% 2.74% 0:44:00

5 20 10 3 1500 0.16% 0.04% 0:43:00

5 20 10 4 1500 0.17% 0.00% 0:42:41

5 20 10 5 1500 0.13% 0.22% 0:42:48

5 20 10 0 2000 10.62% 20.15% 0:56:09

5 20 10 1 2000 3.65% 8.30% 0:58:01

5 20 10 2 2000 0.41% 0.31% 0:57:37

5 20 10 3 2000 0.16% 0.04% 0:56:32

5 20 10 4 2000 0.16% 0.04% 0:56:21

5 20 10 5 2000 0.13% 0.04% 0:56:22

5 20 15 0 100 26.00% 40.80% 0:04:53

5 20 15 1 100 24.71% 39.72% 0:06:26

5 20 15 2 100 23.04% 36.09% 0:04:57

5 20 15 3 100 18.69% 31.69% 0:04:41

5 20 15 0 250 28.42% 43.76% 0:08:59

5 20 15 1 250 27.83% 41.88% 0:10:38

5 20 15 2 250 24.67% 38.20% 0:09:08

5 20 15 3 250 22.26% 37.03% 0:08:49



225

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 15 0 500 29.49% 44.34% 0:15:42

5 20 15 1 500 30.92% 45.15% 0:17:30

5 20 15 2 500 25.04% 38.91% 0:15:58

5 20 15 3 500 22.19% 36.22% 0:15:41

5 20 15 0 750 29.00% 44.79% 0:22:37

5 20 15 1 750 29.51% 43.99% 0:24:36

5 20 15 2 750 22.61% 35.50% 0:22:42

5 20 15 3 750 18.62% 30.92% 0:22:39

5 20 15 0 1000 27.04% 42.15% 0:29:19

5 20 15 1 1000 26.36% 38.82% 0:31:33

5 20 15 2 1000 18.39% 28.86% 0:30:16

5 20 15 3 1000 14.20% 26.21% 0:29:36

5 20 15 0 1500 25.17% 38.96% 0:43:01

5 20 15 1 1500 22.39% 34.20% 0:46:04

5 20 15 2 1500 10.36% 19.12% 0:43:12

5 20 15 3 1500 2.41% 5.92% 0:43:04

5 20 15 0 2000 21.98% 34.65% 0:56:18

5 20 15 1 2000 20.00% 31.01% 0:59:37

5 20 15 2 2000 6.61% 13.78% 0:56:31

5 20 15 3 2000 1.77% 5.03% 0:56:32

5 20 20 0 100 28.64% 44.39% 0:06:03

5 20 20 1 100 28.22% 42.77% 0:05:25

5 20 20 2 100 27.33% 41.02% 0:04:57

5 20 20 0 250 31.11% 46.01% 0:10:05



226

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 20 1 250 30.72% 44.84% 0:09:30

5 20 20 2 250 29.87% 42.59% 0:09:10

5 20 20 0 500 30.77% 44.48% 0:17:02

5 20 20 1 500 29.05% 41.43% 0:16:27

5 20 20 2 500 31.85% 46.18% 0:16:05

5 20 20 0 750 29.99% 43.67% 0:23:50

5 20 20 1 750 27.66% 40.22% 0:23:22

5 20 20 2 750 27.64% 41.74% 0:22:56

5 20 20 0 1000 29.87% 42.86% 0:30:44

5 20 20 1 1000 24.39% 34.87% 0:30:12

5 20 20 2 1000 23.23% 34.25% 0:30:06

5 20 20 0 1500 27.44% 40.26% 0:44:28

5 20 20 1 1500 19.41% 28.82% 0:44:14

5 20 20 2 1500 18.05% 28.68% 0:44:28

5 20 20 0 2000 25.74% 37.97% 0:58:10

5 20 20 1 2000 17.42% 26.08% 0:58:09

5 20 20 2 2000 13.99% 22.58% 0:57:20

5 20 30 0 100 35.05% 50.54% 0:07:38

5 20 30 1 100 36.92% 53.50% 0:05:47

5 20 30 0 250 39.15% 54.67% 0:11:47

5 20 30 1 250 43.13% 59.38% 0:10:06

5 20 30 0 500 40.08% 54.44% 0:18:51

5 20 30 1 500 43.91% 58.53% 0:17:01

5 20 30 0 750 40.35% 54.58% 0:25:34



227

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 30 1 750 45.16% 60.59% 0:23:50

5 20 30 0 1000 40.98% 54.94% 0:32:39

5 20 30 1 1000 44.08% 58.12% 0:30:52

5 20 30 0 1500 39.10% 52.56% 0:46:32

5 20 30 1 1500 38.48% 51.08% 0:44:49

5 20 30 0 2000 37.38% 50.81% 1:01:31

5 20 30 1 2000 35.44% 47.17% 0:58:21

5 25 15 0 100 30.27% 45.87% 0:05:17

5 25 15 1 100 32.55% 49.19% 0:07:08

5 25 15 2 100 32.36% 47.17% 0:05:12

5 25 15 3 100 33.07% 47.76% 0:04:50

5 25 15 0 250 32.98% 48.43% 0:09:20

5 25 15 1 250 36.00% 52.20% 0:11:19

5 25 15 2 250 38.18% 53.73% 0:09:22

5 25 15 3 250 34.95% 50.58% 0:08:56

5 25 15 0 500 35.12% 51.44% 0:16:24

5 25 15 1 500 38.78% 55.25% 0:18:18

5 25 15 2 500 39.36% 54.98% 0:16:15

5 25 15 3 500 34.88% 50.45% 0:15:50

5 25 15 0 750 35.05% 51.12% 0:23:14

5 25 15 1 750 38.05% 53.86% 0:25:20

5 25 15 2 750 37.88% 53.95% 0:23:06

5 25 15 3 750 29.92% 45.33% 0:22:49

5 25 15 0 1000 33.25% 49.15% 0:30:07



228

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 25 15 1 1000 36.59% 52.20% 0:32:58

5 25 15 2 1000 32.90% 48.03% 0:29:55

5 25 15 3 1000 26.48% 41.97% 0:29:48

5 25 15 0 1500 32.65% 47.67% 0:43:52

5 25 15 1 1500 33.97% 49.46% 0:47:29

5 25 15 2 1500 31.34% 44.57% 0:43:54

5 25 15 3 1500 22.96% 36.62% 0:43:23

5 25 20 0 100 33.63% 49.73% 0:06:44

5 25 20 1 100 37.39% 53.23% 0:06:41

5 25 20 2 100 37.90% 53.05% 0:05:14

5 25 20 0 250 35.06% 50.27% 0:10:57

5 25 20 1 250 41.85% 56.51% 0:10:51

5 25 20 2 250 44.39% 59.43% 0:09:25

5 25 20 0 500 37.13% 52.56% 0:17:51

5 25 20 1 500 43.84% 58.44% 0:17:49

5 25 20 2 500 46.55% 61.13% 0:16:14

5 25 20 0 750 37.27% 52.69% 0:24:57

5 25 20 1 750 43.75% 58.39% 0:24:43

5 25 20 2 750 45.84% 61.80% 0:23:14

5 25 20 0 1000 36.81% 52.74% 0:31:56

5 25 20 1 1000 44.50% 58.84% 0:32:00

5 25 20 2 1000 46.93% 62.34% 0:30:08

5 25 20 0 1500 34.88% 49.37% 0:45:58

5 25 20 1 1500 40.80% 55.03% 0:45:43



229

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 25 20 2 1500 41.57% 56.87% 0:43:58

5 25 30 0 100 39.97% 56.19% 0:08:47

5 25 30 1 100 43.28% 60.05% 0:06:11

5 25 30 0 250 45.12% 61.49% 0:13:04

5 25 30 1 250 49.31% 65.39% 0:10:20

5 25 30 0 500 47.46% 62.61% 0:20:07

5 25 30 1 500 53.25% 68.09% 0:17:18

5 25 30 0 750 48.88% 64.23% 0:27:20

5 25 30 1 750 55.19% 70.29% 0:25:45

5 25 30 0 1000 50.00% 64.99% 0:34:22

5 25 30 1 1000 55.59% 69.97% 0:31:16

5 25 30 0 1500 49.72% 64.18% 0:48:37

5 25 30 1 1500 55.17% 68.67% 0:46:04

5 30 15 0 100 31.90% 47.44% 0:05:33

5 30 15 1 100 37.78% 54.67% 0:07:50

5 30 15 2 100 37.53% 53.90% 0:05:28

5 30 15 3 100 35.32% 50.63% 0:05:02

5 30 15 0 250 35.49% 51.71% 0:09:36

5 30 15 1 250 41.51% 56.96% 0:12:02

5 30 15 2 250 44.11% 59.92% 0:09:37

5 30 15 3 250 41.07% 56.96% 0:09:11

5 30 15 0 500 37.70% 53.50% 0:16:35

5 30 15 1 500 43.00% 58.08% 0:19:05

5 30 15 2 500 45.57% 60.37% 0:16:26



230

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 30 15 3 500 42.07% 58.48% 0:16:02

5 30 15 0 750 38.16% 53.90% 0:23:30

5 30 15 1 750 44.10% 58.71% 0:26:22

5 30 15 2 750 45.63% 61.04% 0:23:24

5 30 15 3 750 39.71% 56.06% 0:23:01

5 30 15 0 1000 37.05% 52.87% 0:30:30

5 30 15 1 1000 44.24% 58.98% 0:33:15

5 30 15 2 1000 42.56% 57.32% 0:30:22

5 30 15 3 1000 34.34% 50.49% 0:29:47

5 30 15 0 1500 36.76% 52.56% 0:44:20

5 30 15 1 1500 41.08% 56.55% 0:48:23

5 30 15 2 1500 39.24% 55.25% 0:44:26

5 30 15 3 1500 34.39% 50.18% 0:43:41

5 30 20 0 100 35.97% 52.47% 0:07:25

5 30 20 1 100 42.20% 58.66% 0:07:11

5 30 20 2 100 42.93% 59.25% 0:05:31

5 30 20 0 250 39.97% 56.37% 0:11:40

5 30 20 1 250 47.50% 62.97% 0:11:25

5 30 20 2 250 49.97% 65.48% 0:09:42

5 30 20 0 500 41.37% 56.60% 0:18:29

5 30 20 1 500 50.44% 65.44% 0:18:25

5 30 20 2 500 53.55% 68.36% 0:16:35

5 30 20 0 750 40.48% 56.15% 0:25:37

5 30 20 1 750 50.62% 64.95% 0:25:56



231

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 30 20 2 750 52.89% 67.15% 0:23:39

5 30 20 0 1000 41.32% 57.09% 0:32:52

5 30 20 1 1000 51.09% 64.95% 0:32:27

5 30 20 2 1000 53.02% 67.91% 0:30:29

5 30 20 0 1500 40.02% 54.94% 0:46:40

5 30 20 1 1500 48.27% 62.12% 0:46:33

5 30 20 2 1500 50.57% 65.22% 0:44:39

5 30 30 0 100 41.62% 57.63% 0:09:57

5 30 30 1 100 45.53% 61.62% 0:06:41

5 30 30 0 250 45.93% 62.52% 0:14:16

5 30 30 1 250 50.87% 66.74% 0:10:54

5 30 30 0 500 48.83% 64.86% 0:21:42

5 30 30 1 500 55.03% 70.11% 0:17:53

5 30 30 0 750 50.26% 65.66% 0:28:51

5 30 30 1 750 56.90% 71.27% 0:24:48

5 30 30 0 1000 51.46% 66.43% 0:35:49

5 30 30 1 1000 57.76% 71.63% 0:32:02

5 30 30 0 1500 52.29% 67.19% 0:51:01

5 30 30 1 1500 58.68% 72.58% 0:45:43

5 40 15 0 100 36.20% 52.11% 0:06:06

5 40 15 1 100 41.14% 58.08% 0:09:21

5 40 15 2 100 41.57% 58.17% 0:05:58

5 40 15 3 100 40.30% 56.46% 0:05:25

5 40 15 0 250 39.15% 56.01% 0:10:13



232

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 15 1 250 46.16% 61.76% 0:13:35

5 40 15 2 250 48.50% 64.18% 0:10:07

5 40 15 3 250 46.75% 62.93% 0:09:32

5 40 15 0 500 41.60% 57.76% 0:17:07

5 40 15 1 500 49.35% 65.26% 0:20:48

5 40 15 2 500 51.64% 66.43% 0:17:02

5 40 15 3 500 47.82% 63.11% 0:16:27

5 40 15 0 750 41.66% 57.36% 0:24:00

5 40 15 1 750 49.82% 64.72% 0:27:53

5 40 15 2 750 51.22% 65.57% 0:23:55

5 40 15 3 750 46.06% 61.58% 0:23:18

5 40 15 0 1000 41.83% 57.54% 0:30:59

5 40 15 1 1000 49.58% 64.27% 0:35:09

5 40 15 2 1000 51.69% 66.34% 0:30:59

5 40 15 3 1000 47.90% 64.14% 0:30:19

5 40 15 0 1500 41.79% 57.09% 0:45:10

5 40 15 1 1500 49.25% 63.64% 0:49:28

5 40 15 2 1500 50.10% 64.72% 0:45:09

5 40 15 3 1500 44.77% 60.59% 0:45:02

5 40 20 0 100 37.99% 54.40% 0:08:41

5 40 20 1 100 45.54% 62.21% 0:08:24

5 40 20 2 100 46.40% 63.11% 0:06:01

5 40 20 0 250 41.88% 58.57% 0:12:54

5 40 20 1 250 50.17% 64.95% 0:12:35



233

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 20 2 250 50.99% 66.47% 0:10:13

5 40 20 0 500 44.61% 60.55% 0:20:04

5 40 20 1 500 53.27% 67.59% 0:19:48

5 40 20 2 500 54.36% 69.08% 0:17:05

5 40 20 0 750 45.46% 61.49% 0:27:06

5 40 20 1 750 54.97% 68.40% 0:26:38

5 40 20 2 750 54.75% 68.67% 0:24:13

5 40 20 0 1000 45.74% 61.22% 0:34:10

5 40 20 1 1000 55.33% 68.81% 0:33:56

5 40 20 2 1000 55.07% 69.30% 0:31:07

5 40 20 0 1500 45.59% 59.92% 0:48:39

5 40 20 1 1500 55.10% 68.18% 0:48:11

5 40 20 2 1500 54.64% 68.31% 0:44:42

5 40 30 0 100 41.28% 58.26% 0:12:32

5 40 30 1 100 47.31% 63.96% 0:07:37

5 40 30 0 250 46.23% 63.02% 0:17:01

5 40 30 1 250 53.08% 68.40% 0:11:53

5 40 30 0 500 49.59% 65.22% 0:24:34

5 40 30 1 500 57.53% 71.23% 0:18:45

5 40 30 0 750 51.78% 67.64% 0:31:50

5 40 30 1 750 59.07% 73.29% 0:25:51

5 40 30 0 1000 53.43% 68.63% 0:39:22

5 40 30 1 1000 60.59% 73.65% 0:32:57

5 40 30 0 1500 54.85% 69.30% 0:54:23



234

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 30 1 1500 60.49% 73.56% 0:46:54

5 50 15 0 100 36.63% 53.68% 0:06:39

5 50 15 1 100 44.02% 61.76% 0:10:59

5 50 15 2 100 45.99% 63.06% 0:06:28

5 50 15 3 100 43.31% 60.10% 0:05:43

5 50 15 0 250 41.42% 57.59% 0:10:52

5 50 15 1 250 48.36% 64.14% 0:15:20

5 50 15 2 250 50.51% 66.47% 0:10:36

5 50 15 3 250 47.25% 62.79% 0:09:51

5 50 15 0 500 42.40% 57.85% 0:17:42

5 50 15 1 500 51.24% 66.07% 0:22:32

5 50 15 2 500 54.53% 69.17% 0:17:32

5 50 15 3 500 48.10% 63.42% 0:16:52

5 50 15 0 750 43.07% 59.07% 0:24:41

5 50 15 1 750 51.01% 65.84% 0:30:00

5 50 15 2 750 54.17% 68.49% 0:24:36

5 50 15 3 750 45.49% 60.55% 0:23:44

5 50 15 0 1000 43.44% 59.43% 0:32:10

5 50 15 1 1000 50.85% 64.86% 0:37:28

5 50 15 2 1000 54.40% 68.72% 0:31:21

5 50 15 3 1000 44.80% 60.32% 0:30:52

5 50 15 0 1500 44.33% 58.66% 0:45:33

5 50 15 1 1500 52.25% 66.92% 0:52:14

5 50 15 2 1500 54.45% 68.00% 0:45:16



235

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 50 15 3 1500 44.39% 60.59% 0:44:39

5 50 20 0 100 39.27% 55.97% 0:10:09

5 50 20 1 100 46.57% 62.88% 0:09:39

5 50 20 2 100 47.71% 64.36% 0:06:37

5 50 20 0 250 43.01% 58.80% 0:14:29

5 50 20 1 250 51.29% 66.79% 0:13:54

5 50 20 2 250 51.82% 67.41% 0:10:46

5 50 20 0 500 45.49% 61.62% 0:21:35

5 50 20 1 500 54.56% 68.76% 0:21:05

5 50 20 2 500 55.57% 69.97% 0:17:48

5 50 20 0 750 46.00% 61.71% 0:29:26

5 50 20 1 750 56.47% 70.51% 0:28:32

5 50 20 2 750 56.22% 70.06% 0:24:42

5 50 20 0 1000 46.73% 61.85% 0:36:12

5 50 20 1 1000 57.03% 70.42% 0:35:18

5 50 20 2 1000 56.01% 70.47% 0:31:35

5 50 20 0 1500 47.78% 62.88% 0:50:34

5 50 20 1 1500 57.73% 70.92% 0:49:39

5 50 20 2 1500 55.90% 69.79% 0:45:20

5 50 30 0 100 41.33% 57.68% 0:15:44

5 50 30 1 100 49.40% 65.84% 0:08:35

5 50 30 0 250 46.76% 63.38% 0:20:13

5 50 30 1 250 55.02% 70.06% 0:12:48

5 50 30 0 500 50.77% 65.66% 0:27:50



236

Table 3: Extended results for R2MMT, standard configuration. Time is in format
h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 50 30 1 500 59.08% 72.98% 0:19:55

5 50 30 0 750 51.33% 66.07% 0:35:49

5 50 30 1 750 60.14% 73.11% 0:27:04

5 50 30 0 1000 53.08% 68.04% 0:43:31

5 50 30 1 1000 61.30% 74.28% 0:33:55

5 50 30 0 1500 55.61% 69.88% 0:58:52

5 50 30 1 1500 62.64% 74.96% 0:48:17

Configuration with Memory

Here we see the results of R2MMT in the configuration with memory. Training

time does not include SDS time. Due to the pipeline structure of R2MMT, both the

training time and the SDS time must be less than τ to be viable in the real world.

Similar to Chapter 6 there are some results for τ = 10 included. Accuracies for the

same K are generally higher here, at the expense of greater SDS times. The highest

Top-1 here, ignoring the time constraint, is 76.53%. However, it is impossible to

reach this within the time constraint in our system. While algorithmically possible,

achieving this level of accuracy in the real-world would require further optimization

of the R2MMT system. There is the possibility of just using more capable hardware

to achieve this. However, considering the GPU server we use is already high-end,

attempting to do so would quickly become cost prohibitive.

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 15 0 100 19.54% 33.21% 0:01:51



237

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 15 1 100 23.11% 36.94% 0:02:25

1 18 15 2 100 26.40% 39.95% 0:02:44

1 18 15 3 100 28.49% 43.27% 0:02:56

1 18 15 0 250 20.76% 34.11% 0:02:41

1 18 15 1 250 25.67% 39.63% 0:03:16

1 18 15 2 250 30.78% 44.88% 0:03:33

1 18 15 3 250 35.06% 49.33% 0:03:46

1 18 15 0 500 21.13% 33.80% 0:04:04

1 18 15 1 500 26.88% 40.89% 0:04:41

1 18 15 2 500 32.45% 46.14% 0:05:01

1 18 15 3 500 37.62% 51.57% 0:05:13

1 18 15 0 750 21.44% 34.96% 0:05:36

1 18 15 1 750 28.88% 43.00% 0:06:16

1 18 15 2 750 33.80% 48.07% 0:06:21

1 18 15 3 750 39.22% 53.10% 0:06:36

1 18 15 0 1000 22.76% 36.18% 0:06:50

1 18 15 1 1000 29.56% 43.13% 0:07:28

1 18 15 2 1000 35.28% 48.92% 0:07:48

1 18 15 3 1000 41.01% 54.17% 0:08:04

1 18 15 0 1500 21.58% 35.19% 0:09:31

1 18 15 1 1500 29.18% 42.55% 0:10:20

1 18 15 2 1500 34.60% 47.31% 0:10:37

1 18 15 3 1500 39.72% 52.92% 0:10:53

1 18 20 0 100 23.79% 40.44% 0:02:05



238

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 20 1 100 24.46% 38.42% 0:02:17

1 18 20 2 100 24.60% 37.88% 0:02:29

1 18 20 0 250 24.72% 39.72% 0:02:53

1 18 20 1 250 26.76% 40.26% 0:03:06

1 18 20 2 250 27.91% 41.56% 0:03:19

1 18 20 0 500 26.72% 41.29% 0:04:18

1 18 20 1 500 29.82% 43.72% 0:04:31

1 18 20 2 500 33.34% 46.72% 0:04:45

1 18 20 0 750 26.76% 41.88% 0:05:38

1 18 20 1 750 31.65% 45.60% 0:05:53

1 18 20 2 750 34.40% 47.44% 0:06:08

1 18 20 0 1000 26.96% 41.47% 0:06:58

1 18 20 1 1000 32.16% 46.32% 0:07:17

1 18 20 2 1000 35.32% 47.89% 0:07:32

1 18 20 0 1500 27.28% 42.01% 0:10:02

1 18 20 1 1500 31.98% 45.29% 0:10:08

1 18 20 2 1500 35.58% 47.40% 0:10:22

1 18 30 0 100 28.51% 44.25% 0:02:22

1 18 30 1 100 32.52% 47.58% 0:02:56

1 18 30 0 250 30.25% 46.23% 0:03:12

1 18 30 1 250 35.97% 51.35% 0:03:45

1 18 30 0 500 31.37% 46.32% 0:04:36

1 18 30 1 500 38.35% 52.92% 0:05:14

1 18 30 0 750 32.78% 47.85% 0:06:02



239

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 18 30 1 750 40.53% 55.66% 0:06:37

1 18 30 0 1000 33.15% 48.07% 0:07:28

1 18 30 1 1000 41.17% 55.75% 0:08:02

1 18 30 0 1500 33.73% 49.06% 0:10:07

1 18 30 1 1500 42.01% 56.19% 0:10:55

1 20 10 0 100 16.20% 29.04% 0:01:49

1 20 10 1 100 18.41% 30.83% 0:02:09

1 20 10 2 100 20.88% 32.09% 0:02:32

1 20 10 3 100 21.75% 33.26% 0:02:44

1 20 10 4 100 23.94% 36.40% 0:02:55

1 20 10 5 100 27.51% 41.07% 0:03:18

1 20 10 0 250 16.69% 29.08% 0:02:37

1 20 10 1 250 22.12% 35.41% 0:03:01

1 20 10 2 250 24.40% 36.40% 0:03:22

1 20 10 3 250 27.82% 40.98% 0:03:34

1 20 10 4 250 31.07% 44.48% 0:03:47

1 20 10 5 250 35.39% 49.37% 0:04:09

1 20 10 0 500 17.22% 29.89% 0:04:02

1 20 10 1 500 22.00% 34.29% 0:04:26

1 20 10 2 500 25.51% 37.93% 0:04:44

1 20 10 3 500 29.59% 42.24% 0:04:58

1 20 10 4 500 33.98% 46.68% 0:05:17

1 20 10 5 500 38.24% 51.08% 0:05:38

1 20 10 0 750 16.99% 29.58% 0:05:22



240

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 10 1 750 22.56% 35.28% 0:05:49

1 20 10 2 750 25.15% 37.07% 0:06:08

1 20 10 3 750 28.50% 40.22% 0:06:22

1 20 10 4 750 32.10% 43.81% 0:06:39

1 20 10 5 750 36.50% 48.88% 0:07:05

1 20 10 0 1000 17.19% 28.99% 0:06:41

1 20 10 1 1000 21.14% 33.26% 0:07:11

1 20 10 2 1000 23.70% 34.65% 0:07:37

1 20 10 3 1000 27.34% 38.73% 0:07:51

1 20 10 4 1000 31.88% 43.72% 0:08:06

1 20 10 5 1000 37.22% 49.60% 0:08:40

1 20 10 0 1500 17.88% 31.33% 0:09:24

1 20 10 1 1500 22.30% 34.07% 0:10:01

1 20 10 2 1500 26.26% 38.38% 0:10:27

1 20 10 3 1500 30.90% 42.68% 0:10:38

1 20 10 4 1500 35.39% 48.20% 0:10:54

1 20 10 5 1500 39.32% 51.57% 0:11:36

1 20 10 0 2000 16.98% 29.94% 0:12:07

1 20 10 1 2000 21.78% 33.12% 0:12:46

1 20 10 2 2000 24.93% 36.54% 0:13:13

1 20 10 3 2000 27.11% 37.21% 0:13:33

1 20 10 4 2000 31.77% 42.32% 0:14:00

1 20 10 5 2000 34.77% 45.29% 0:14:39

1 20 15 0 100 23.41% 38.64% 0:01:53



241

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 15 1 100 25.75% 40.53% 0:02:31

1 20 15 2 100 27.82% 42.46% 0:02:49

1 20 15 3 100 30.69% 45.60% 0:03:03

1 20 15 0 250 25.33% 40.17% 0:02:43

1 20 15 1 250 29.24% 44.08% 0:03:21

1 20 15 2 250 32.97% 47.80% 0:03:40

1 20 15 3 250 37.71% 53.68% 0:03:55

1 20 15 0 500 26.88% 42.28% 0:04:04

1 20 15 1 500 32.09% 47.13% 0:04:45

1 20 15 2 500 36.79% 52.20% 0:05:09

1 20 15 3 500 42.11% 57.81% 0:05:21

1 20 15 0 750 26.36% 40.89% 0:05:25

1 20 15 1 750 32.26% 46.99% 0:06:12

1 20 15 2 750 38.05% 53.01% 0:06:29

1 20 15 3 750 43.07% 58.12% 0:06:53

1 20 15 0 1000 27.10% 42.28% 0:06:46

1 20 15 1 1000 33.07% 48.61% 0:07:34

1 20 15 2 1000 38.49% 53.73% 0:08:00

1 20 15 3 1000 45.24% 60.73% 0:08:14

1 20 15 0 1500 27.74% 42.64% 0:09:33

1 20 15 1 1500 33.78% 47.80% 0:10:29

1 20 15 2 1500 39.43% 53.82% 0:10:47

1 20 15 3 1500 44.79% 59.25% 0:11:18

1 20 15 0 2000 27.27% 41.25% 0:12:10



242

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 15 1 2000 32.75% 46.50% 0:13:12

1 20 15 2 2000 38.98% 53.19% 0:13:40

1 20 15 3 2000 45.17% 59.11% 0:13:58

1 20 20 0 100 25.20% 40.66% 0:02:07

1 20 20 1 100 25.55% 39.23% 0:02:20

1 20 20 2 100 25.81% 39.63% 0:02:34

1 20 20 0 250 25.93% 40.62% 0:02:59

1 20 20 1 250 29.39% 43.54% 0:03:11

1 20 20 2 250 32.83% 46.59% 0:03:25

1 20 20 0 500 27.53% 42.19% 0:04:21

1 20 20 1 500 32.29% 46.68% 0:04:34

1 20 20 2 500 36.92% 50.31% 0:04:48

1 20 20 0 750 29.12% 43.81% 0:05:41

1 20 20 1 750 33.94% 47.22% 0:05:56

1 20 20 2 750 38.06% 50.94% 0:06:15

1 20 20 0 1000 28.49% 43.22% 0:07:05

1 20 20 1 1000 34.66% 48.29% 0:07:21

1 20 20 2 1000 38.63% 51.48% 0:07:45

1 20 20 0 1500 28.32% 42.77% 0:09:47

1 20 20 1 1500 34.73% 48.29% 0:10:23

1 20 20 2 1500 39.10% 51.97% 0:10:29

1 20 20 0 2000 28.06% 41.83% 0:12:33

1 20 20 1 2000 35.08% 47.98% 0:13:02

1 20 20 2 2000 38.92% 50.18% 0:13:18



243

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 20 30 0 100 32.06% 48.11% 0:02:27

1 20 30 1 100 35.09% 51.89% 0:03:02

1 20 30 0 250 33.58% 49.01% 0:03:17

1 20 30 1 250 39.62% 55.57% 0:03:54

1 20 30 0 500 35.52% 51.08% 0:04:41

1 20 30 1 500 42.95% 57.85% 0:05:23

1 20 30 0 750 36.94% 52.92% 0:06:03

1 20 30 1 750 45.37% 61.04% 0:06:53

1 20 30 0 1000 37.24% 52.24% 0:07:27

1 20 30 1 1000 44.98% 60.64% 0:08:16

1 20 30 0 1500 37.91% 53.01% 0:10:12

1 20 30 1 1500 45.96% 60.55% 0:11:16

1 20 30 0 2000 38.88% 54.08% 0:13:06

1 20 30 1 2000 46.48% 60.55% 0:14:13

1 25 15 0 100 26.26% 42.64% 0:01:57

1 25 15 1 100 31.51% 47.35% 0:02:46

1 25 15 2 100 33.21% 49.46% 0:03:11

1 25 15 3 100 35.86% 52.87% 0:03:32

1 25 15 0 250 27.56% 43.13% 0:02:46

1 25 15 1 250 33.97% 50.63% 0:03:36

1 25 15 2 250 39.84% 56.64% 0:04:03

1 25 15 3 250 43.90% 60.50% 0:04:23

1 25 15 0 500 30.04% 46.59% 0:04:07

1 25 15 1 500 37.43% 53.95% 0:05:03



244

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 25 15 2 500 43.63% 59.83% 0:05:30

1 25 15 3 500 48.71% 64.23% 0:05:51

1 25 15 0 750 29.45% 46.27% 0:05:29

1 25 15 1 750 38.89% 55.66% 0:06:27

1 25 15 2 750 44.88% 61.27% 0:06:58

1 25 15 3 750 50.74% 65.48% 0:07:21

1 25 15 0 1000 30.67% 47.31% 0:06:51

1 25 15 1 1000 38.53% 54.76% 0:07:51

1 25 15 2 1000 45.12% 60.73% 0:08:25

1 25 15 3 1000 50.40% 64.68% 0:08:50

1 25 15 0 1500 30.54% 47.26% 0:09:35

1 25 15 1 1500 40.18% 55.52% 0:10:43

1 25 15 2 1500 47.00% 61.85% 0:11:31

1 25 15 3 1500 53.20% 67.64% 0:11:40

1 25 20 0 100 27.22% 42.86% 0:02:16

1 25 20 1 100 33.56% 49.60% 0:03:04

1 25 20 2 100 36.60% 53.28% 0:03:30

1 25 20 0 250 29.55% 44.93% 0:03:06

1 25 20 1 250 37.13% 52.78% 0:03:55

1 25 20 2 250 41.79% 57.85% 0:04:23

1 25 20 0 500 32.26% 47.80% 0:04:27

1 25 20 1 500 40.32% 56.42% 0:05:22

1 25 20 2 500 45.44% 60.82% 0:05:55

1 25 20 0 750 32.63% 47.76% 0:05:48



245

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 25 20 1 750 40.96% 56.64% 0:06:48

1 25 20 2 750 47.38% 62.84% 0:07:21

1 25 20 0 1000 32.65% 48.11% 0:07:14

1 25 20 1 1000 41.48% 55.79% 0:08:15

1 25 20 2 1000 48.50% 63.06% 0:08:51

1 25 20 0 1500 33.32% 48.74% 0:09:56

1 25 20 1 1500 41.58% 55.48% 0:11:05

1 25 20 2 1500 48.50% 62.30% 0:11:44

1 25 30 0 100 32.55% 49.06% 0:02:41

1 25 30 1 100 36.10% 53.46% 0:03:30

1 25 30 0 250 34.92% 51.39% 0:03:31

1 25 30 1 250 40.00% 56.24% 0:04:23

1 25 30 0 500 36.66% 52.56% 0:04:56

1 25 30 1 500 44.89% 59.96% 0:05:53

1 25 30 0 750 38.30% 52.96% 0:06:20

1 25 30 1 750 46.74% 61.40% 0:07:20

1 25 30 0 1000 38.69% 53.86% 0:07:43

1 25 30 1 1000 47.12% 62.16% 0:08:49

1 25 30 0 1500 39.55% 55.07% 0:10:30

1 25 30 1 1500 49.43% 64.00% 0:11:47

1 30 15 0 100 27.14% 43.31% 0:01:59

1 30 15 1 100 31.85% 48.43% 0:03:01

1 30 15 2 100 35.44% 53.59% 0:03:34

1 30 15 3 100 37.50% 55.12% 0:03:59



246

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 30 15 0 250 28.53% 44.34% 0:02:50

1 30 15 1 250 36.33% 53.90% 0:03:54

1 30 15 2 250 41.74% 58.84% 0:04:27

1 30 15 3 250 45.16% 61.45% 0:04:54

1 30 15 0 500 31.05% 46.99% 0:04:12

1 30 15 1 500 39.58% 55.79% 0:05:19

1 30 15 2 500 45.82% 61.67% 0:05:58

1 30 15 3 500 50.55% 66.29% 0:06:26

1 30 15 0 750 31.72% 48.29% 0:05:35

1 30 15 1 750 40.19% 56.24% 0:06:47

1 30 15 2 750 47.36% 63.24% 0:07:25

1 30 15 3 750 52.15% 67.32% 0:07:57

1 30 15 0 1000 31.84% 47.98% 0:06:54

1 30 15 1 1000 40.57% 56.33% 0:08:21

1 30 15 2 1000 47.56% 62.48% 0:09:03

1 30 15 3 1000 53.53% 68.04% 0:09:24

1 30 15 0 1500 31.90% 47.76% 0:09:57

1 30 15 1 1500 40.92% 55.97% 0:11:12

1 30 15 2 1500 49.01% 64.14% 0:12:01

1 30 15 3 1500 54.27% 68.90% 0:12:27

1 30 20 0 100 29.61% 45.74% 0:02:24

1 30 20 1 100 34.79% 51.84% 0:03:24

1 30 20 2 100 35.66% 52.51% 0:04:00

1 30 20 0 250 32.07% 49.10% 0:03:12



247

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 30 20 1 250 39.55% 56.37% 0:04:16

1 30 20 2 250 43.56% 60.73% 0:04:54

1 30 20 0 500 33.98% 50.18% 0:04:36

1 30 20 1 500 42.23% 58.80% 0:05:44

1 30 20 2 500 47.36% 63.11% 0:06:26

1 30 20 0 750 34.92% 50.99% 0:05:58

1 30 20 1 750 43.65% 59.69% 0:07:11

1 30 20 2 750 50.43% 66.02% 0:07:57

1 30 20 0 1000 34.94% 51.30% 0:07:22

1 30 20 1 1000 44.43% 59.96% 0:08:40

1 30 20 2 1000 50.72% 65.80% 0:09:25

1 30 20 0 1500 35.53% 51.93% 0:10:22

1 30 20 1 1500 46.66% 61.71% 0:11:39

1 30 20 2 1500 52.64% 67.41% 0:12:31

1 30 30 0 100 33.27% 50.27% 0:02:55

1 30 30 1 100 36.36% 53.41% 0:04:00

1 30 30 0 250 37.94% 54.53% 0:03:47

1 30 30 1 250 42.38% 58.75% 0:04:55

1 30 30 0 500 38.70% 54.13% 0:05:13

1 30 30 1 500 45.91% 62.16% 0:06:26

1 30 30 0 750 40.48% 56.06% 0:06:40

1 30 30 1 750 47.91% 62.21% 0:07:56

1 30 30 0 1000 40.80% 55.66% 0:08:00

1 30 30 1 1000 48.55% 63.33% 0:09:29



248

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 30 30 0 1500 42.19% 57.59% 0:10:51

1 30 30 1 1500 51.08% 66.07% 0:12:32

1 40 15 0 100 28.61% 44.97% 0:02:08

1 40 15 1 100 33.51% 50.40% 0:03:37

1 40 15 2 100 35.77% 53.10% 0:04:26

1 40 15 3 100 36.42% 52.83% 0:05:06

1 40 15 0 250 31.27% 46.90% 0:03:00

1 40 15 1 250 38.38% 54.76% 0:04:31

1 40 15 2 250 42.54% 58.98% 0:05:24

1 40 15 3 250 45.66% 62.16% 0:06:02

1 40 15 0 500 33.80% 49.82% 0:04:19

1 40 15 1 500 42.51% 59.11% 0:05:59

1 40 15 2 500 47.24% 63.06% 0:06:55

1 40 15 3 500 51.45% 66.61% 0:07:43

1 40 15 0 750 35.13% 51.48% 0:05:40

1 40 15 1 750 44.51% 61.04% 0:07:30

1 40 15 2 750 50.53% 66.34% 0:08:29

1 40 15 3 750 54.45% 69.34% 0:09:15

1 40 15 0 1000 35.37% 52.69% 0:07:04

1 40 15 1 1000 44.77% 60.46% 0:09:02

1 40 15 2 1000 51.42% 66.07% 0:10:09

1 40 15 3 1000 55.67% 70.38% 0:10:51

1 40 15 0 1500 36.37% 53.14% 0:09:46

1 40 15 1 1500 45.90% 61.22% 0:11:58



249

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 40 15 2 1500 53.13% 68.40% 0:13:13

1 40 15 3 1500 57.40% 70.74% 0:14:09

1 40 20 0 100 31.95% 47.40% 0:02:41

1 40 20 1 100 35.61% 53.05% 0:04:12

1 40 20 2 100 35.67% 52.78% 0:05:05

1 40 20 0 250 34.88% 50.72% 0:03:30

1 40 20 1 250 40.32% 56.55% 0:05:05

1 40 20 2 250 42.92% 59.20% 0:06:01

1 40 20 0 500 37.07% 53.55% 0:04:59

1 40 20 1 500 45.45% 61.89% 0:06:38

1 40 20 2 500 51.11% 67.15% 0:07:38

1 40 20 0 750 37.76% 54.67% 0:06:18

1 40 20 1 750 46.08% 61.71% 0:08:14

1 40 20 2 750 50.77% 65.04% 0:09:13

1 40 20 0 1000 37.66% 53.95% 0:07:40

1 40 20 1 1000 47.20% 62.57% 0:09:50

1 40 20 2 1000 52.83% 67.37% 0:10:58

1 40 20 0 1500 38.70% 54.89% 0:10:29

1 40 20 1 1500 49.80% 65.22% 0:12:50

1 40 20 2 1500 55.30% 70.38% 0:14:20

1 40 30 0 100 33.46% 49.24% 0:03:29

1 40 30 1 100 34.46% 51.30% 0:05:04

1 40 30 0 250 36.92% 52.96% 0:04:22

1 40 30 1 250 39.44% 55.52% 0:06:02



250

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 40 30 0 500 39.32% 55.30% 0:05:46

1 40 30 1 500 44.62% 61.00% 0:07:44

1 40 30 0 750 40.57% 56.01% 0:07:15

1 40 30 1 750 47.81% 63.73% 0:09:21

1 40 30 0 1000 41.82% 57.41% 0:08:41

1 40 30 1 1000 49.35% 64.90% 0:10:55

1 40 30 0 1500 42.53% 58.44% 0:11:37

1 40 30 1 1500 50.90% 65.22% 0:14:20

1 50 15 0 100 30.52% 46.81% 0:02:15

1 50 15 1 100 33.62% 50.27% 0:04:18

1 50 15 0 250 33.45% 50.04% 0:03:05

1 50 15 1 250 38.27% 54.85% 0:05:15

1 50 15 0 500 35.51% 51.57% 0:04:28

1 50 15 1 500 42.97% 58.93% 0:06:49

1 50 15 0 750 36.73% 52.15% 0:05:49

1 50 15 1 750 44.83% 61.00% 0:08:20

1 50 15 0 1000 37.16% 53.59% 0:07:11

1 50 15 1 1000 45.97% 60.91% 0:09:51

1 50 15 0 1500 38.30% 55.21% 0:09:57

1 50 15 1 1500 47.08% 62.52% 0:13:04

1 50 20 0 100 32.79% 50.04% 0:02:59

1 50 20 1 100 34.92% 51.44% 0:05:02

1 50 20 0 250 35.84% 52.96% 0:03:48

1 50 20 1 250 39.62% 56.96% 0:05:59



251

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

1 50 20 0 500 37.95% 54.80% 0:05:14

1 50 20 1 500 44.08% 61.80% 0:07:38

1 50 20 0 750 38.78% 55.30% 0:06:42

1 50 20 1 750 45.82% 62.39% 0:09:16

1 50 20 0 1000 38.87% 55.16% 0:08:11

1 50 20 1 1000 46.99% 62.75% 0:11:00

1 50 20 0 1500 40.52% 56.55% 0:10:53

1 50 20 1 1500 49.00% 65.17% 0:14:04

1 50 30 0 100 32.80% 50.13% 0:04:05

1 50 30 0 250 35.78% 52.15% 0:04:56

1 50 30 0 500 38.63% 55.34% 0:06:25

1 50 30 0 750 40.09% 57.00% 0:07:55

1 50 30 0 1000 40.74% 57.09% 0:09:23

1 50 30 0 1500 42.56% 58.39% 0:12:34

2 18 15 0 100 22.07% 35.73% 0:02:35

2 18 15 1 100 27.44% 42.32% 0:03:39

2 18 15 2 100 32.95% 48.83% 0:04:09

2 18 15 3 100 36.67% 52.56% 0:04:31

2 18 15 0 250 22.40% 36.54% 0:04:19

2 18 15 1 250 27.53% 40.75% 0:05:23

2 18 15 2 250 33.76% 48.03% 0:05:51

2 18 15 3 250 40.64% 55.97% 0:06:15

2 18 15 0 500 23.42% 36.89% 0:06:58

2 18 15 1 500 30.05% 44.25% 0:08:08



252

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 18 15 2 500 36.48% 50.72% 0:08:48

2 18 15 3 500 42.44% 56.24% 0:09:08

2 18 15 0 750 24.69% 38.42% 0:09:42

2 18 15 1 750 31.68% 45.60% 0:10:56

2 18 15 2 750 38.90% 53.14% 0:11:30

2 18 15 3 750 45.18% 59.25% 0:11:56

2 18 15 0 1000 23.81% 36.89% 0:12:22

2 18 15 1 1000 30.03% 42.59% 0:13:52

2 18 15 2 1000 36.29% 49.10% 0:14:17

2 18 15 3 1000 42.90% 55.30% 0:14:49

2 18 15 0 1500 23.74% 37.07% 0:17:55

2 18 15 1 1500 30.08% 42.55% 0:19:28

2 18 15 2 1500 35.48% 47.13% 0:20:13

2 18 15 3 1500 41.81% 52.51% 0:20:36

2 18 20 0 100 24.48% 38.87% 0:03:02

2 18 20 1 100 26.44% 40.93% 0:03:21

2 18 20 2 100 29.18% 42.77% 0:03:46

2 18 20 0 250 26.93% 40.84% 0:04:43

2 18 20 1 250 30.41% 43.09% 0:05:06

2 18 20 2 250 33.79% 47.44% 0:05:27

2 18 20 0 500 28.35% 42.50% 0:07:28

2 18 20 1 500 34.81% 48.47% 0:07:48

2 18 20 2 500 38.37% 51.75% 0:08:14

2 18 20 0 750 28.94% 43.13% 0:10:06



253

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 18 20 1 750 34.55% 48.79% 0:10:36

2 18 20 2 750 37.52% 50.31% 0:11:07

2 18 20 0 1000 28.91% 43.49% 0:12:54

2 18 20 1 1000 35.64% 49.69% 0:13:28

2 18 20 2 1000 39.47% 51.75% 0:13:52

2 18 20 0 1500 28.91% 42.73% 0:18:40

2 18 20 1 1500 33.99% 47.49% 0:18:57

2 18 20 2 1500 38.34% 50.58% 0:19:36

2 18 30 0 100 30.70% 46.10% 0:03:34

2 18 30 1 100 35.66% 50.76% 0:04:31

2 18 30 0 250 32.46% 47.71% 0:05:14

2 18 30 1 250 40.84% 56.51% 0:06:17

2 18 30 0 500 33.85% 48.56% 0:08:00

2 18 30 1 500 42.34% 56.78% 0:09:06

2 18 30 0 750 34.97% 49.60% 0:10:46

2 18 30 1 750 44.06% 58.84% 0:12:05

2 18 30 0 1000 34.92% 49.24% 0:13:30

2 18 30 1 1000 44.13% 58.17% 0:14:50

2 18 30 0 1500 35.16% 49.24% 0:19:09

2 18 30 1 1500 43.94% 57.27% 0:20:33

2 20 10 0 100 16.49% 29.62% 0:02:30

2 20 10 1 100 21.07% 33.98% 0:03:08

2 20 10 2 100 24.56% 37.39% 0:03:49

2 20 10 3 100 26.41% 38.55% 0:04:12



254

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 10 4 100 30.57% 43.94% 0:04:37

2 20 10 5 100 35.76% 49.82% 0:05:14

2 20 10 0 250 17.61% 30.75% 0:04:07

2 20 10 1 250 22.89% 36.27% 0:04:49

2 20 10 2 250 25.97% 38.29% 0:05:29

2 20 10 3 250 29.82% 42.68% 0:05:55

2 20 10 4 250 34.16% 47.89% 0:06:15

2 20 10 5 250 39.15% 53.46% 0:06:58

2 20 10 0 500 17.67% 29.98% 0:06:51

2 20 10 1 500 21.45% 32.85% 0:07:40

2 20 10 2 500 24.06% 35.19% 0:08:19

2 20 10 3 500 28.23% 40.08% 0:08:45

2 20 10 4 500 33.76% 46.32% 0:09:06

2 20 10 5 500 39.32% 52.15% 0:09:54

2 20 10 0 750 17.25% 29.58% 0:09:34

2 20 10 1 750 21.16% 31.82% 0:10:27

2 20 10 2 750 25.15% 35.59% 0:11:07

2 20 10 3 750 30.23% 41.02% 0:11:40

2 20 10 4 750 35.26% 47.04% 0:12:00

2 20 10 5 750 40.72% 52.33% 0:12:58

2 20 10 0 1000 17.43% 29.58% 0:12:16

2 20 10 1 1000 21.43% 32.72% 0:13:18

2 20 10 2 1000 24.38% 33.98% 0:14:03

2 20 10 3 1000 29.26% 39.50% 0:14:26



255

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 10 4 1000 34.15% 44.84% 0:14:50

2 20 10 5 1000 38.70% 49.73% 0:15:46

2 20 10 0 1500 17.39% 28.86% 0:17:43

2 20 10 1 1500 20.58% 31.24% 0:19:15

2 20 10 2 1500 23.13% 33.17% 0:19:58

2 20 10 3 1500 25.69% 35.01% 0:20:15

2 20 10 4 1500 28.98% 37.93% 0:20:32

2 20 10 5 1500 33.29% 42.10% 0:21:34

2 20 10 0 2000 14.59% 25.31% 0:23:08

2 20 10 1 2000 17.38% 27.51% 0:24:16

2 20 10 2 2000 18.97% 27.78% 0:25:13

2 20 10 3 2000 20.80% 28.59% 0:25:53

2 20 10 4 2000 23.77% 32.23% 0:26:22

2 20 10 5 2000 26.55% 35.32% 0:27:35

2 20 15 0 100 26.25% 41.61% 0:02:39

2 20 15 1 100 29.38% 44.84% 0:03:48

2 20 15 2 100 34.37% 50.27% 0:04:22

2 20 15 3 100 38.07% 54.08% 0:04:49

2 20 15 0 250 27.54% 42.32% 0:04:16

2 20 15 1 250 32.11% 47.26% 0:05:34

2 20 15 2 250 38.47% 53.82% 0:06:04

2 20 15 3 250 45.16% 61.00% 0:06:32

2 20 15 0 500 28.83% 43.72% 0:07:04

2 20 15 1 500 33.80% 48.79% 0:08:19



256

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 15 2 500 40.50% 55.66% 0:08:57

2 20 15 3 500 47.48% 62.21% 0:09:28

2 20 15 0 750 29.37% 44.34% 0:09:45

2 20 15 1 750 34.04% 49.01% 0:11:09

2 20 15 2 750 41.15% 56.37% 0:11:55

2 20 15 3 750 48.13% 62.70% 0:12:33

2 20 15 0 1000 28.29% 43.67% 0:12:24

2 20 15 1 1000 32.95% 47.49% 0:14:04

2 20 15 2 1000 40.74% 54.71% 0:14:52

2 20 15 3 1000 47.36% 61.62% 0:15:11

2 20 15 0 1500 28.78% 43.49% 0:17:47

2 20 15 1 1500 32.79% 46.36% 0:19:37

2 20 15 2 1500 39.71% 53.19% 0:20:18

2 20 15 3 1500 46.76% 60.64% 0:21:03

2 20 15 0 2000 28.27% 42.59% 0:23:15

2 20 15 1 2000 33.30% 46.54% 0:25:07

2 20 15 2 2000 39.36% 52.42% 0:26:03

2 20 15 3 2000 45.72% 58.66% 0:26:48

2 20 20 0 100 27.58% 42.50% 0:03:06

2 20 20 1 100 28.89% 42.77% 0:03:28

2 20 20 2 100 30.73% 45.29% 0:03:56

2 20 20 0 250 28.15% 42.86% 0:04:45

2 20 20 1 250 33.15% 48.03% 0:05:08

2 20 20 2 250 38.20% 52.38% 0:05:37



257

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 20 0 500 29.53% 44.21% 0:07:31

2 20 20 1 500 36.55% 51.93% 0:07:52

2 20 20 2 500 42.28% 56.73% 0:08:34

2 20 20 0 750 29.57% 43.36% 0:10:15

2 20 20 1 750 36.74% 50.72% 0:10:44

2 20 20 2 750 42.16% 55.34% 0:11:13

2 20 20 0 1000 29.51% 43.99% 0:12:59

2 20 20 1 1000 36.96% 50.22% 0:13:32

2 20 20 2 1000 42.73% 55.70% 0:14:02

2 20 20 0 1500 28.88% 42.73% 0:18:26

2 20 20 1 1500 35.68% 47.80% 0:19:01

2 20 20 2 1500 40.70% 52.24% 0:19:47

2 20 20 0 2000 28.25% 41.02% 0:23:49

2 20 20 1 2000 35.57% 47.53% 0:24:36

2 20 20 2 2000 38.93% 50.22% 0:25:17

2 20 30 0 100 33.65% 48.70% 0:03:46

2 20 30 1 100 38.95% 54.89% 0:04:50

2 20 30 0 250 36.83% 52.02% 0:05:24

2 20 30 1 250 44.81% 60.73% 0:06:34

2 20 30 0 500 39.63% 55.34% 0:08:09

2 20 30 1 500 48.79% 64.32% 0:09:32

2 20 30 0 750 40.14% 55.12% 0:11:02

2 20 30 1 750 50.11% 65.13% 0:12:19

2 20 30 0 1000 40.55% 55.16% 0:14:01



258

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 20 30 1 1000 50.52% 64.72% 0:15:26

2 20 30 0 1500 40.94% 55.34% 0:19:16

2 20 30 1 1500 50.97% 65.31% 0:20:52

2 20 30 0 2000 41.17% 55.52% 0:24:49

2 20 30 1 2000 50.30% 64.05% 0:27:08

2 25 15 0 100 29.21% 45.69% 0:02:46

2 25 15 1 100 35.36% 51.03% 0:04:17

2 25 15 2 100 39.50% 55.97% 0:05:04

2 25 15 3 100 44.13% 60.50% 0:05:37

2 25 15 0 250 32.04% 48.79% 0:04:24

2 25 15 1 250 39.79% 56.51% 0:05:56

2 25 15 2 250 45.72% 61.98% 0:06:46

2 25 15 3 250 51.17% 67.01% 0:07:23

2 25 15 0 500 32.91% 48.79% 0:07:04

2 25 15 1 500 40.69% 56.87% 0:08:49

2 25 15 2 500 48.33% 64.05% 0:09:44

2 25 15 3 500 54.69% 69.17% 0:10:25

2 25 15 0 750 33.39% 50.58% 0:09:51

2 25 15 1 750 42.27% 58.26% 0:11:42

2 25 15 2 750 49.22% 64.54% 0:12:31

2 25 15 3 750 55.57% 69.39% 0:13:17

2 25 15 0 1000 33.77% 51.17% 0:12:32

2 25 15 1 1000 42.27% 57.94% 0:14:31

2 25 15 2 1000 49.72% 64.90% 0:15:27



259

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 25 15 3 1000 56.28% 69.61% 0:16:15

2 25 15 0 1500 33.30% 50.63% 0:17:59

2 25 15 1 1500 42.33% 57.32% 0:20:10

2 25 15 2 1500 50.18% 65.62% 0:21:17

2 25 15 3 1500 56.37% 69.17% 0:22:09

2 25 20 0 100 30.15% 46.95% 0:03:22

2 25 20 1 100 36.71% 53.90% 0:04:48

2 25 20 2 100 41.61% 58.30% 0:05:39

2 25 20 0 250 32.91% 48.11% 0:05:04

2 25 20 1 250 41.06% 57.99% 0:06:32

2 25 20 2 250 48.30% 63.42% 0:07:23

2 25 20 0 500 34.37% 50.18% 0:07:49

2 25 20 1 500 44.50% 60.41% 0:09:24

2 25 20 2 500 51.99% 67.55% 0:10:23

2 25 20 0 750 34.64% 50.49% 0:10:32

2 25 20 1 750 44.94% 59.96% 0:12:16

2 25 20 2 750 52.63% 67.19% 0:13:15

2 25 20 0 1000 35.19% 50.27% 0:13:15

2 25 20 1 1000 45.78% 59.87% 0:15:10

2 25 20 2 1000 53.99% 68.76% 0:16:16

2 25 20 0 1500 34.81% 49.55% 0:19:01

2 25 20 1 1500 45.04% 58.17% 0:20:58

2 25 20 2 1500 53.77% 66.65% 0:22:10

2 25 30 0 100 34.67% 50.49% 0:04:10



260

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 25 30 1 100 41.20% 58.53% 0:05:38

2 25 30 0 250 37.40% 52.60% 0:05:51

2 25 30 1 250 46.44% 61.76% 0:07:24

2 25 30 0 500 40.77% 56.46% 0:08:40

2 25 30 1 500 50.93% 66.20% 0:10:19

2 25 30 0 750 41.29% 56.60% 0:11:36

2 25 30 1 750 51.09% 65.17% 0:13:18

2 25 30 0 1000 42.69% 58.08% 0:14:14

2 25 30 1 1000 53.48% 67.06% 0:16:12

2 25 30 0 1500 44.01% 58.48% 0:19:50

2 25 30 1 1500 53.93% 67.10% 0:22:11

2 30 15 0 100 29.52% 46.32% 0:02:53

2 30 15 1 100 36.39% 53.77% 0:04:46

2 30 15 2 100 42.14% 60.73% 0:05:46

2 30 15 3 100 45.38% 62.48% 0:06:30

2 30 15 0 250 32.41% 48.88% 0:04:30

2 30 15 1 250 41.66% 58.30% 0:06:35

2 30 15 2 250 48.14% 63.96% 0:07:32

2 30 15 3 250 52.83% 68.04% 0:08:22

2 30 15 0 500 33.50% 50.04% 0:07:16

2 30 15 1 500 43.99% 60.05% 0:09:27

2 30 15 2 500 51.43% 66.29% 0:10:36

2 30 15 3 500 56.63% 71.32% 0:11:20

2 30 15 0 750 34.98% 51.97% 0:10:00



261

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 30 15 1 750 45.59% 61.09% 0:12:29

2 30 15 2 750 53.86% 68.36% 0:13:29

2 30 15 3 750 59.41% 71.68% 0:14:25

2 30 15 0 1000 35.56% 51.80% 0:12:44

2 30 15 1 1000 45.63% 61.13% 0:15:06

2 30 15 2 1000 54.15% 68.18% 0:16:28

2 30 15 3 1000 59.46% 71.86% 0:17:31

2 30 15 0 1500 36.42% 53.05% 0:18:07

2 30 15 1 1500 47.44% 61.76% 0:20:58

2 30 15 2 1500 55.15% 68.90% 0:22:21

2 30 15 3 1500 60.31% 72.62% 0:23:43

2 30 20 0 100 32.20% 49.96% 0:03:38

2 30 20 1 100 38.73% 55.70% 0:05:27

2 30 20 2 100 41.95% 58.84% 0:06:34

2 30 20 0 250 35.40% 52.33% 0:05:17

2 30 20 1 250 44.67% 61.58% 0:07:17

2 30 20 2 250 49.93% 65.66% 0:08:25

2 30 20 0 500 37.30% 54.22% 0:08:02

2 30 20 1 500 47.28% 63.33% 0:10:18

2 30 20 2 500 54.07% 69.03% 0:11:26

2 30 20 0 750 37.18% 54.08% 0:10:51

2 30 20 1 750 47.90% 63.87% 0:13:06

2 30 20 2 750 55.40% 70.15% 0:14:39

2 30 20 0 1000 38.06% 54.67% 0:13:34



262

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 30 20 1 1000 50.15% 64.86% 0:16:05

2 30 20 2 1000 58.27% 71.95% 0:17:26

2 30 20 0 1500 38.01% 54.22% 0:19:06

2 30 20 1 1500 50.70% 65.62% 0:21:57

2 30 20 2 1500 58.36% 71.63% 0:23:32

2 30 30 0 100 37.36% 54.22% 0:04:40

2 30 30 1 100 42.04% 58.35% 0:06:32

2 30 30 0 250 40.67% 56.78% 0:06:21

2 30 30 1 250 49.18% 65.04% 0:08:22

2 30 30 0 500 43.56% 58.89% 0:09:19

2 30 30 1 500 51.84% 67.10% 0:11:27

2 30 30 0 750 44.54% 59.69% 0:12:00

2 30 30 1 750 54.39% 68.76% 0:14:40

2 30 30 0 1000 45.72% 61.18% 0:14:51

2 30 30 1 1000 55.38% 69.43% 0:17:29

2 30 30 0 1500 46.78% 61.27% 0:20:53

2 30 30 1 1500 56.56% 70.51% 0:23:34

2 40 15 0 100 31.75% 48.29% 0:03:05

2 40 15 1 100 38.05% 56.06% 0:05:55

2 40 15 2 100 41.57% 58.53% 0:07:21

2 40 15 3 100 44.05% 60.46% 0:08:32

2 40 15 0 250 34.35% 50.27% 0:04:46

2 40 15 1 250 43.91% 60.14% 0:07:41

2 40 15 2 250 49.79% 65.71% 0:09:12



263

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 40 15 3 250 53.14% 68.36% 0:10:25

2 40 15 0 500 37.36% 53.50% 0:07:31

2 40 15 1 500 46.75% 62.61% 0:10:42

2 40 15 2 500 54.11% 69.57% 0:12:19

2 40 15 3 500 57.64% 71.95% 0:13:40

2 40 15 0 750 38.44% 54.67% 0:10:16

2 40 15 1 750 50.19% 66.02% 0:13:34

2 40 15 2 750 57.08% 71.27% 0:15:28

2 40 15 3 750 60.68% 73.88% 0:16:52

2 40 15 0 1000 39.22% 56.46% 0:12:55

2 40 15 1 1000 50.81% 65.75% 0:16:46

2 40 15 2 1000 57.31% 71.18% 0:18:36

2 40 15 3 1000 61.41% 74.01% 0:20:09

2 40 15 0 1500 39.78% 56.10% 0:19:15

2 40 15 1 1500 50.74% 65.17% 0:22:30

2 40 15 2 1500 57.94% 71.59% 0:24:56

2 40 15 3 1500 62.13% 74.24% 0:26:43

2 40 20 0 100 35.05% 52.60% 0:04:08

2 40 20 1 100 40.48% 58.12% 0:06:53

2 40 20 2 100 42.82% 60.05% 0:08:29

2 40 20 0 250 37.59% 53.90% 0:05:50

2 40 20 1 250 45.00% 61.27% 0:08:43

2 40 20 2 250 50.91% 67.01% 0:10:25

2 40 20 0 500 40.47% 56.42% 0:08:36



264

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 40 20 1 500 50.79% 67.15% 0:11:49

2 40 20 2 500 55.86% 70.83% 0:13:39

2 40 20 0 750 40.97% 57.18% 0:11:25

2 40 20 1 750 51.28% 66.02% 0:14:54

2 40 20 2 750 57.44% 71.72% 0:16:56

2 40 20 0 1000 42.24% 57.90% 0:14:16

2 40 20 1 1000 53.44% 68.45% 0:17:59

2 40 20 2 1000 59.45% 72.62% 0:20:08

2 40 20 0 1500 42.30% 58.26% 0:19:47

2 40 20 1 1500 54.11% 67.95% 0:24:13

2 40 20 2 1500 60.13% 72.94% 0:26:41

2 40 30 0 100 37.27% 54.13% 0:05:39

2 40 30 1 100 39.62% 56.46% 0:08:31

2 40 30 0 250 41.80% 58.39% 0:07:27

2 40 30 1 250 47.40% 62.84% 0:10:28

2 40 30 0 500 44.34% 60.01% 0:10:24

2 40 30 1 500 52.70% 67.59% 0:13:45

2 40 30 0 750 45.91% 61.49% 0:13:10

2 40 30 1 750 55.40% 69.39% 0:17:00

2 40 30 0 1000 47.54% 62.34% 0:16:06

2 40 30 1 1000 56.81% 70.51% 0:20:11

2 40 30 0 1500 48.94% 63.24% 0:21:58

2 40 30 1 1500 57.88% 71.36% 0:27:04

2 50 15 0 100 33.25% 49.82% 0:03:19



265

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 50 15 1 100 38.25% 54.94% 0:07:07

2 50 15 0 250 36.54% 53.46% 0:05:03

2 50 15 1 250 43.58% 60.68% 0:08:57

2 50 15 0 500 39.17% 55.75% 0:07:45

2 50 15 1 500 48.46% 64.50% 0:12:10

2 50 15 0 750 39.94% 56.28% 0:10:27

2 50 15 1 750 49.51% 64.81% 0:15:11

2 50 15 0 1000 41.19% 57.36% 0:13:13

2 50 15 1 1000 50.89% 66.34% 0:18:28

2 50 15 0 1500 42.06% 57.27% 0:18:48

2 50 15 1 1500 52.61% 67.86% 0:24:34

2 50 20 0 100 35.87% 53.28% 0:04:43

2 50 20 1 100 38.99% 55.75% 0:08:30

2 50 20 0 250 38.80% 55.43% 0:06:25

2 50 20 1 250 44.97% 60.77% 0:10:43

2 50 20 0 500 40.92% 56.96% 0:09:16

2 50 20 1 500 49.38% 64.95% 0:13:41

2 50 20 0 750 42.24% 58.21% 0:12:06

2 50 20 1 750 51.58% 67.24% 0:16:55

2 50 20 0 1000 43.67% 59.25% 0:14:54

2 50 20 1 1000 53.22% 67.55% 0:20:09

2 50 20 0 1500 44.40% 60.55% 0:20:36

2 50 20 1 1500 55.53% 69.70% 0:26:42

2 50 30 0 100 36.69% 53.46% 0:06:50



266

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

2 50 30 0 250 40.21% 56.55% 0:08:32

2 50 30 0 500 43.27% 59.78% 0:11:40

2 50 30 0 750 45.28% 61.09% 0:14:28

2 50 30 0 1000 46.39% 61.94% 0:17:33

2 50 30 0 1500 47.40% 62.48% 0:23:45

3 18 15 0 100 22.46% 36.00% 0:03:20

3 18 15 1 100 28.36% 42.55% 0:04:53

3 18 15 2 100 33.06% 47.85% 0:05:41

3 18 15 3 100 38.49% 53.90% 0:06:10

3 18 15 0 250 23.30% 36.49% 0:05:49

3 18 15 1 250 29.72% 44.39% 0:07:25

3 18 15 2 250 36.64% 50.85% 0:08:12

3 18 15 3 250 42.56% 57.27% 0:08:45

3 18 15 0 500 24.25% 38.20% 0:09:51

3 18 15 1 500 30.60% 43.94% 0:11:38

3 18 15 2 500 37.24% 50.54% 0:12:24

3 18 15 3 500 44.44% 58.12% 0:13:03

3 18 15 0 750 24.85% 38.42% 0:13:57

3 18 15 1 750 31.01% 44.30% 0:15:48

3 18 15 2 750 37.22% 50.27% 0:16:38

3 18 15 3 750 44.16% 56.64% 0:17:16

3 18 15 0 1000 24.69% 37.16% 0:18:08

3 18 15 1 1000 29.40% 41.20% 0:20:04

3 18 15 2 1000 34.38% 46.41% 0:20:58



267

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 18 15 3 1000 41.34% 52.92% 0:21:37

3 18 15 0 1500 23.47% 35.64% 0:26:25

3 18 15 1 1500 27.02% 38.73% 0:28:32

3 18 15 2 1500 30.87% 41.25% 0:29:22

3 18 15 3 1500 36.21% 45.87% 0:30:43

3 18 20 0 100 26.13% 40.57% 0:03:56

3 18 20 1 100 27.95% 42.46% 0:04:25

3 18 20 2 100 31.00% 45.56% 0:05:02

3 18 20 0 250 27.89% 42.55% 0:06:28

3 18 20 1 250 31.50% 45.11% 0:07:01

3 18 20 2 250 35.98% 49.37% 0:07:33

3 18 20 0 500 29.86% 44.66% 0:10:33

3 18 20 1 500 34.58% 48.07% 0:11:16

3 18 20 2 500 40.38% 52.38% 0:11:46

3 18 20 0 750 28.62% 42.86% 0:14:37

3 18 20 1 750 35.15% 48.70% 0:15:30

3 18 20 2 750 39.33% 51.35% 0:16:01

3 18 20 0 1000 29.17% 43.36% 0:18:49

3 18 20 1 1000 34.66% 47.31% 0:19:31

3 18 20 2 1000 39.86% 51.84% 0:20:13

3 18 20 0 1500 26.77% 39.41% 0:26:58

3 18 20 1 1500 32.14% 44.57% 0:28:00

3 18 20 2 1500 34.09% 46.01% 0:28:40

3 18 30 0 100 31.61% 47.04% 0:04:47



268

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 18 30 1 100 39.23% 54.98% 0:06:11

3 18 30 0 250 34.49% 50.13% 0:07:17

3 18 30 1 250 43.86% 60.01% 0:08:45

3 18 30 0 500 35.64% 50.40% 0:11:34

3 18 30 1 500 45.48% 60.73% 0:13:00

3 18 30 0 750 36.16% 50.58% 0:15:36

3 18 30 1 750 46.75% 61.36% 0:17:28

3 18 30 0 1000 36.67% 50.49% 0:19:42

3 18 30 1 1000 47.30% 61.13% 0:21:37

3 18 30 0 1500 35.01% 49.15% 0:28:05

3 18 30 1 1500 45.50% 59.43% 0:30:27

3 20 10 0 100 17.66% 29.71% 0:03:11

3 20 10 1 100 21.63% 34.47% 0:04:08

3 20 10 2 100 24.21% 36.45% 0:05:07

3 20 10 3 100 28.36% 41.70% 0:05:43

3 20 10 4 100 32.23% 46.05% 0:06:12

3 20 10 5 100 37.30% 51.89% 0:07:08

3 20 10 0 250 17.23% 29.22% 0:05:37

3 20 10 1 250 21.52% 33.30% 0:06:40

3 20 10 2 250 24.19% 35.05% 0:07:45

3 20 10 3 250 28.78% 40.53% 0:08:13

3 20 10 4 250 34.97% 48.07% 0:08:47

3 20 10 5 250 41.16% 55.75% 0:09:44

3 20 10 0 500 17.40% 28.99% 0:09:43



269

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 10 1 500 22.34% 33.66% 0:11:02

3 20 10 2 500 26.05% 37.30% 0:11:51

3 20 10 3 500 32.70% 44.61% 0:12:35

3 20 10 4 500 38.50% 50.36% 0:13:12

3 20 10 5 500 45.57% 57.90% 0:14:12

3 20 10 0 750 17.94% 29.76% 0:13:47

3 20 10 1 750 23.29% 35.14% 0:15:01

3 20 10 2 750 26.39% 36.89% 0:16:04

3 20 10 3 750 31.15% 41.61% 0:16:40

3 20 10 4 750 36.31% 47.17% 0:17:18

3 20 10 5 750 42.40% 53.73% 0:18:27

3 20 10 0 1000 17.60% 29.80% 0:17:56

3 20 10 1 1000 21.07% 31.82% 0:19:16

3 20 10 2 1000 24.87% 34.92% 0:20:18

3 20 10 3 1000 28.95% 39.59% 0:21:17

3 20 10 4 1000 32.19% 42.01% 0:21:38

3 20 10 5 1000 38.44% 49.24% 0:23:20

3 20 10 0 1500 13.89% 23.83% 0:26:09

3 20 10 1 1500 15.23% 24.69% 0:27:34

3 20 10 2 1500 16.93% 25.13% 0:28:51

3 20 10 3 1500 18.00% 24.60% 0:29:50

3 20 10 4 1500 19.12% 26.53% 0:30:29

3 20 10 5 1500 21.22% 28.64% 0:31:34

3 20 10 0 2000 13.38% 23.52% 0:34:12



270

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 10 1 2000 14.89% 24.19% 0:36:39

3 20 10 2 2000 16.14% 24.60% 0:37:22

3 20 10 3 2000 15.88% 23.16% 0:38:26

3 20 10 4 2000 17.07% 23.97% 0:38:54

3 20 10 5 2000 18.77% 25.94% 0:40:28

3 20 15 0 100 26.69% 42.46% 0:03:24

3 20 15 1 100 30.85% 46.27% 0:05:07

3 20 15 2 100 36.80% 52.29% 0:05:56

3 20 15 3 100 41.26% 57.94% 0:06:35

3 20 15 0 250 28.36% 44.39% 0:05:51

3 20 15 1 250 33.32% 49.24% 0:07:42

3 20 15 2 250 40.82% 56.64% 0:08:33

3 20 15 3 250 47.29% 62.79% 0:09:15

3 20 15 0 500 29.76% 45.06% 0:09:52

3 20 15 1 500 33.89% 48.38% 0:11:51

3 20 15 2 500 41.59% 56.33% 0:12:51

3 20 15 3 500 49.74% 63.64% 0:13:30

3 20 15 0 750 29.70% 44.88% 0:14:01

3 20 15 1 750 35.53% 50.18% 0:16:09

3 20 15 2 750 43.82% 58.12% 0:17:09

3 20 15 3 750 51.44% 65.80% 0:17:53

3 20 15 0 1000 29.05% 43.54% 0:18:20

3 20 15 1 1000 34.30% 48.38% 0:20:18

3 20 15 2 1000 40.42% 53.68% 0:21:36



271

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 15 3 1000 47.90% 61.22% 0:22:06

3 20 15 0 1500 26.99% 41.52% 0:26:16

3 20 15 1 1500 32.66% 46.10% 0:29:12

3 20 15 2 1500 38.59% 51.80% 0:30:00

3 20 15 3 1500 46.04% 58.98% 0:30:46

3 20 15 0 2000 26.27% 41.02% 0:34:22

3 20 15 1 2000 30.75% 44.70% 0:37:29

3 20 15 2 2000 34.87% 47.26% 0:38:29

3 20 15 3 2000 39.99% 51.93% 0:39:39

3 20 20 0 100 27.76% 42.01% 0:04:05

3 20 20 1 100 31.68% 46.32% 0:04:38

3 20 20 2 100 34.95% 49.37% 0:05:16

3 20 20 0 250 29.12% 43.99% 0:06:32

3 20 20 1 250 36.14% 51.08% 0:07:09

3 20 20 2 250 41.45% 54.98% 0:07:50

3 20 20 0 500 30.25% 44.70% 0:10:44

3 20 20 1 500 38.71% 52.42% 0:11:16

3 20 20 2 500 43.74% 57.18% 0:12:05

3 20 20 0 750 29.93% 44.03% 0:14:56

3 20 20 1 750 38.91% 52.83% 0:15:28

3 20 20 2 750 44.39% 57.54% 0:16:17

3 20 20 0 1000 28.65% 42.01% 0:18:55

3 20 20 1 1000 38.13% 51.26% 0:19:53

3 20 20 2 1000 44.45% 57.59% 0:20:35



272

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 20 20 0 1500 27.84% 41.16% 0:27:10

3 20 20 1 1500 35.45% 47.17% 0:28:36

3 20 20 2 1500 40.10% 51.62% 0:28:51

3 20 20 0 2000 26.22% 38.64% 0:35:18

3 20 20 1 2000 32.73% 44.08% 0:36:25

3 20 20 2 2000 36.89% 46.99% 0:37:23

3 20 30 0 100 35.23% 50.22% 0:05:01

3 20 30 1 100 42.72% 59.83% 0:06:33

3 20 30 0 250 38.83% 54.13% 0:07:29

3 20 30 1 250 47.97% 63.06% 0:09:13

3 20 30 0 500 42.30% 58.08% 0:11:39

3 20 30 1 500 51.93% 66.83% 0:13:40

3 20 30 0 750 41.82% 56.82% 0:15:52

3 20 30 1 750 52.90% 67.64% 0:17:45

3 20 30 0 1000 42.25% 57.18% 0:20:00

3 20 30 1 1000 53.23% 67.41% 0:22:11

3 20 30 0 1500 42.40% 56.33% 0:28:19

3 20 30 1 1500 53.89% 67.59% 0:30:54

3 20 30 0 2000 42.42% 56.46% 0:36:50

3 20 30 1 2000 52.80% 66.74% 0:39:48

3 25 15 0 100 30.43% 46.59% 0:03:34

3 25 15 1 100 38.37% 55.57% 0:05:47

3 25 15 2 100 43.72% 60.46% 0:06:55

3 25 15 3 100 48.14% 63.91% 0:07:49



273

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 25 15 0 250 32.44% 50.18% 0:06:01

3 25 15 1 250 41.76% 58.17% 0:08:20

3 25 15 2 250 48.86% 65.13% 0:09:30

3 25 15 3 250 54.33% 68.90% 0:10:24

3 25 15 0 500 33.84% 50.40% 0:10:06

3 25 15 1 500 43.61% 59.25% 0:12:34

3 25 15 2 500 51.64% 67.15% 0:13:49

3 25 15 3 500 58.27% 72.31% 0:14:43

3 25 15 0 750 33.61% 49.96% 0:14:10

3 25 15 1 750 43.54% 59.43% 0:16:46

3 25 15 2 750 52.33% 67.73% 0:18:11

3 25 15 3 750 58.88% 72.17% 0:19:10

3 25 15 0 1000 34.19% 50.63% 0:18:10

3 25 15 1 1000 44.15% 58.98% 0:21:13

3 25 15 2 1000 52.25% 67.41% 0:22:41

3 25 15 3 1000 58.52% 71.10% 0:24:01

3 25 15 0 1500 33.18% 49.33% 0:26:24

3 25 15 1 1500 41.80% 56.51% 0:29:43

3 25 15 2 1500 49.59% 63.78% 0:31:12

3 25 15 3 1500 56.05% 68.54% 0:33:07

3 25 20 0 100 31.23% 47.58% 0:04:28

3 25 20 1 100 39.86% 56.60% 0:06:36

3 25 20 2 100 44.65% 60.95% 0:07:44

3 25 20 0 250 34.39% 50.22% 0:06:55



274

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 25 20 1 250 43.96% 59.38% 0:09:08

3 25 20 2 250 51.12% 66.47% 0:10:23

3 25 20 0 500 35.79% 51.89% 0:11:02

3 25 20 1 500 47.62% 63.20% 0:13:30

3 25 20 2 500 55.37% 69.52% 0:14:51

3 25 20 0 750 35.90% 51.71% 0:15:29

3 25 20 1 750 47.81% 62.75% 0:17:44

3 25 20 2 750 56.61% 70.29% 0:19:18

3 25 20 0 1000 35.57% 50.31% 0:19:23

3 25 20 1 1000 47.25% 61.76% 0:22:09

3 25 20 2 1000 55.80% 68.67% 0:23:38

3 25 20 0 1500 34.64% 49.60% 0:27:42

3 25 20 1 1500 46.11% 60.68% 0:30:51

3 25 20 2 1500 54.65% 68.13% 0:33:08

3 25 30 0 100 36.51% 52.96% 0:05:40

3 25 30 1 100 43.31% 60.23% 0:07:45

3 25 30 0 250 40.75% 57.09% 0:08:11

3 25 30 1 250 50.35% 66.11% 0:10:24

3 25 30 0 500 42.09% 57.76% 0:12:28

3 25 30 1 500 53.15% 67.55% 0:14:48

3 25 30 0 750 44.41% 60.32% 0:16:34

3 25 30 1 750 55.02% 69.39% 0:19:14

3 25 30 0 1000 44.66% 59.92% 0:20:55

3 25 30 1 1000 55.87% 70.11% 0:24:02



275

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 25 30 0 1500 45.16% 59.87% 0:29:31

3 25 30 1 1500 57.40% 70.38% 0:32:51

3 30 15 0 100 30.42% 46.81% 0:03:43

3 30 15 1 100 39.10% 56.78% 0:06:34

3 30 15 2 100 44.92% 62.03% 0:07:57

3 30 15 3 100 48.45% 64.23% 0:09:04

3 30 15 0 250 33.98% 51.12% 0:06:15

3 30 15 1 250 43.27% 60.01% 0:09:08

3 30 15 2 250 51.20% 67.06% 0:10:39

3 30 15 3 250 56.23% 71.36% 0:11:45

3 30 15 0 500 35.65% 52.33% 0:10:21

3 30 15 1 500 46.22% 61.76% 0:13:25

3 30 15 2 500 54.60% 69.61% 0:15:01

3 30 15 3 500 59.74% 73.43% 0:16:18

3 30 15 0 750 35.88% 52.15% 0:14:23

3 30 15 1 750 46.33% 61.67% 0:17:46

3 30 15 2 750 55.85% 70.15% 0:19:28

3 30 15 3 750 61.58% 74.06% 0:20:50

3 30 15 0 1000 36.44% 52.24% 0:18:43

3 30 15 1 1000 48.56% 64.59% 0:22:15

3 30 15 2 1000 57.15% 70.65% 0:24:00

3 30 15 3 1000 61.92% 73.83% 0:25:30

3 30 15 0 1500 37.11% 52.65% 0:26:32

3 30 15 1 1500 48.69% 64.18% 0:30:46



276

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 30 15 2 1500 56.88% 70.24% 0:33:31

3 30 15 3 1500 61.82% 73.83% 0:34:32

3 30 20 0 100 33.15% 50.00% 0:04:51

3 30 20 1 100 41.91% 58.66% 0:07:30

3 30 20 2 100 46.84% 62.88% 0:09:05

3 30 20 0 250 37.52% 54.62% 0:07:21

3 30 20 1 250 48.35% 64.23% 0:10:13

3 30 20 2 250 54.59% 69.75% 0:11:43

3 30 20 0 500 37.41% 53.95% 0:11:29

3 30 20 1 500 50.08% 65.35% 0:14:35

3 30 20 2 500 57.90% 71.95% 0:16:22

3 30 20 0 750 39.34% 55.75% 0:15:41

3 30 20 1 750 51.62% 66.25% 0:19:09

3 30 20 2 750 59.32% 73.03% 0:20:49

3 30 20 0 1000 39.74% 56.37% 0:19:50

3 30 20 1 1000 52.64% 66.97% 0:23:19

3 30 20 2 1000 59.93% 72.31% 0:25:49

3 30 20 0 1500 39.32% 55.92% 0:28:04

3 30 20 1 1500 52.53% 66.56% 0:32:31

3 30 20 2 1500 59.48% 71.54% 0:35:10

3 30 30 0 100 38.85% 56.10% 0:06:24

3 30 30 1 100 45.20% 62.21% 0:09:04

3 30 30 0 250 43.58% 59.56% 0:08:54

3 30 30 1 250 51.88% 67.73% 0:11:47



277

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 30 30 0 500 45.84% 61.00% 0:13:15

3 30 30 1 500 55.10% 69.08% 0:16:17

3 30 30 0 750 47.85% 62.57% 0:17:42

3 30 30 1 750 57.56% 71.14% 0:20:55

3 30 30 0 1000 48.43% 62.70% 0:21:42

3 30 30 1 1000 59.29% 72.62% 0:25:28

3 30 30 0 1500 49.28% 63.64% 0:30:15

3 30 30 1 1500 60.16% 72.35% 0:34:37

3 40 15 0 100 33.87% 50.09% 0:04:06

3 40 15 1 100 41.03% 58.21% 0:08:05

3 40 15 2 100 45.79% 62.84% 0:10:19

3 40 15 3 100 48.87% 65.53% 0:11:58

3 40 15 0 250 37.10% 53.41% 0:06:32

3 40 15 1 250 46.80% 62.88% 0:10:47

3 40 15 2 250 53.25% 68.99% 0:13:03

3 40 15 3 250 57.70% 71.41% 0:14:46

3 40 15 0 500 38.66% 55.92% 0:10:40

3 40 15 1 500 49.86% 65.35% 0:15:12

3 40 15 2 500 56.78% 70.69% 0:17:45

3 40 15 3 500 61.00% 73.56% 0:19:34

3 40 15 0 750 41.04% 57.41% 0:14:42

3 40 15 1 750 52.30% 67.15% 0:19:44

3 40 15 2 750 59.07% 72.58% 0:22:26

3 40 15 3 750 63.49% 75.31% 0:24:28



278

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 40 15 0 1000 41.50% 57.54% 0:18:59

3 40 15 1 1000 53.42% 67.82% 0:24:11

3 40 15 2 1000 59.77% 72.62% 0:27:07

3 40 15 3 1000 63.90% 75.36% 0:29:37

3 40 15 0 1500 41.36% 57.41% 0:27:06

3 40 15 1 1500 53.83% 67.24% 0:33:08

3 40 15 2 1500 60.60% 72.85% 0:36:36

3 40 15 3 1500 63.96% 74.96% 0:39:02

3 40 20 0 100 36.03% 52.74% 0:05:38

3 40 20 1 100 43.01% 60.23% 0:09:34

3 40 20 2 100 46.19% 63.02% 0:11:55

3 40 20 0 250 40.10% 56.51% 0:08:07

3 40 20 1 250 49.11% 64.77% 0:12:18

3 40 20 2 250 54.41% 68.94% 0:14:48

3 40 20 0 500 41.75% 57.63% 0:12:18

3 40 20 1 500 53.17% 68.94% 0:16:58

3 40 20 2 500 57.93% 71.99% 0:19:37

3 40 20 0 750 42.95% 58.57% 0:16:33

3 40 20 1 750 54.67% 69.12% 0:21:31

3 40 20 2 750 60.58% 73.47% 0:24:33

3 40 20 0 1000 43.18% 58.93% 0:20:56

3 40 20 1 1000 54.27% 68.49% 0:26:17

3 40 20 2 1000 60.25% 73.34% 0:29:23

3 40 20 0 1500 44.27% 59.61% 0:29:04



279

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 40 20 1 1500 56.95% 70.06% 0:35:31

3 40 20 2 1500 62.28% 74.73% 0:39:08

3 40 30 0 100 39.16% 56.42% 0:07:50

3 40 30 1 100 42.12% 58.75% 0:11:56

3 40 30 0 250 44.42% 60.50% 0:10:26

3 40 30 1 250 51.24% 66.20% 0:14:49

3 40 30 0 500 46.43% 62.48% 0:14:47

3 40 30 1 500 55.13% 69.66% 0:19:40

3 40 30 0 750 48.96% 64.50% 0:19:16

3 40 30 1 750 58.31% 71.50% 0:24:47

3 40 30 0 1000 49.27% 63.51% 0:23:32

3 40 30 1 1000 59.95% 73.34% 0:29:29

3 40 30 0 1500 51.89% 65.35% 0:32:12

3 40 30 1 1500 61.28% 73.38% 0:39:44

3 50 15 0 100 35.71% 52.47% 0:04:25

3 50 15 1 100 41.13% 57.94% 0:09:57

3 50 15 0 250 38.64% 55.52% 0:06:55

3 50 15 1 250 47.60% 63.64% 0:12:41

3 50 15 0 500 41.41% 57.41% 0:11:04

3 50 15 1 500 50.82% 65.89% 0:17:27

3 50 15 0 750 42.46% 58.30% 0:15:20

3 50 15 1 750 53.20% 67.15% 0:22:03

3 50 15 0 1000 42.98% 58.35% 0:19:20

3 50 15 1 1000 54.31% 68.67% 0:26:48



280

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

3 50 15 0 1500 43.35% 58.84% 0:27:33

3 50 15 1 1500 54.02% 67.95% 0:36:04

3 50 20 0 100 37.33% 53.32% 0:06:27

3 50 20 1 100 41.48% 57.90% 0:11:52

3 50 20 0 250 40.46% 56.91% 0:09:01

3 50 20 1 250 48.74% 65.04% 0:14:49

3 50 20 0 500 43.96% 60.19% 0:13:12

3 50 20 1 500 53.29% 69.25% 0:19:51

3 50 20 0 750 43.98% 60.41% 0:17:45

3 50 20 1 750 55.05% 69.03% 0:24:33

3 50 20 0 1000 45.10% 61.04% 0:21:43

3 50 20 1 1000 56.35% 70.69% 0:29:21

3 50 20 0 1500 45.99% 60.82% 0:30:33

3 50 20 1 1500 56.42% 70.38% 0:39:46

3 50 30 0 100 38.49% 55.39% 0:09:27

3 50 30 0 250 43.21% 59.96% 0:12:06

3 50 30 0 500 46.75% 62.93% 0:16:47

3 50 30 0 750 48.26% 63.46% 0:20:58

3 50 30 0 1000 49.38% 64.77% 0:25:25

3 50 30 0 1500 50.26% 65.35% 0:34:18

4 18 15 0 100 23.45% 38.11% 0:04:04

4 18 15 1 100 30.21% 45.02% 0:06:05

4 18 15 2 100 36.92% 53.23% 0:07:05

4 18 15 3 100 41.05% 57.63% 0:07:48



281

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 18 15 0 250 24.62% 38.24% 0:07:19

4 18 15 1 250 30.17% 43.36% 0:09:24

4 18 15 2 250 38.44% 53.01% 0:10:23

4 18 15 3 250 44.97% 59.92% 0:11:12

4 18 15 0 500 25.98% 39.90% 0:12:46

4 18 15 1 500 33.08% 46.86% 0:15:03

4 18 15 2 500 40.71% 54.17% 0:16:03

4 18 15 3 500 48.34% 62.57% 0:16:58

4 18 15 0 750 25.55% 38.51% 0:18:14

4 18 15 1 750 30.61% 43.99% 0:20:46

4 18 15 2 750 37.96% 51.48% 0:21:46

4 18 15 3 750 45.01% 58.35% 0:22:32

4 18 15 0 1000 24.99% 37.43% 0:23:43

4 18 15 1 1000 29.54% 40.53% 0:26:15

4 18 15 2 1000 33.72% 45.38% 0:27:29

4 18 15 3 1000 40.56% 52.33% 0:28:27

4 18 15 0 1500 23.21% 36.45% 0:34:42

4 18 15 1 1500 26.90% 38.11% 0:37:37

4 18 15 2 1500 29.64% 40.13% 0:39:03

4 18 15 3 1500 34.15% 43.85% 0:40:13

4 18 20 0 100 26.32% 41.79% 0:04:54

4 18 20 1 100 28.69% 42.46% 0:05:32

4 18 20 2 100 32.14% 46.27% 0:06:19

4 18 20 0 250 28.59% 43.90% 0:08:09



282

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 18 20 1 250 34.01% 48.43% 0:08:49

4 18 20 2 250 39.19% 52.69% 0:09:38

4 18 20 0 500 29.79% 44.43% 0:13:40

4 18 20 1 500 36.33% 49.42% 0:14:27

4 18 20 2 500 41.60% 54.67% 0:15:23

4 18 20 0 750 28.44% 42.50% 0:19:14

4 18 20 1 750 34.85% 47.85% 0:19:56

4 18 20 2 750 40.28% 52.51% 0:20:45

4 18 20 0 1000 28.64% 43.72% 0:24:40

4 18 20 1 1000 33.12% 45.92% 0:25:34

4 18 20 2 1000 36.67% 48.56% 0:26:32

4 18 20 0 1500 25.75% 38.78% 0:35:32

4 18 20 1 1500 27.96% 39.18% 0:36:38

4 18 20 2 1500 30.88% 41.16% 0:38:09

4 18 30 0 100 32.45% 48.20% 0:05:59

4 18 30 1 100 39.85% 56.24% 0:07:45

4 18 30 0 250 34.91% 50.27% 0:09:16

4 18 30 1 250 44.96% 60.68% 0:11:12

4 18 30 0 500 37.01% 52.15% 0:14:56

4 18 30 1 500 47.78% 62.88% 0:16:57

4 18 30 0 750 37.20% 51.53% 0:20:21

4 18 30 1 750 48.60% 63.02% 0:22:44

4 18 30 0 1000 36.06% 50.36% 0:26:42

4 18 30 1 1000 47.89% 61.27% 0:28:34



283

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 18 30 0 1500 34.79% 49.01% 0:37:15

4 18 30 1 1500 46.35% 59.20% 0:39:58

4 20 10 0 100 16.83% 28.99% 0:03:51

4 20 10 1 100 20.34% 32.18% 0:05:09

4 20 10 2 100 24.41% 37.30% 0:06:25

4 20 10 3 100 29.23% 41.83% 0:07:12

4 20 10 4 100 33.59% 47.85% 0:07:50

4 20 10 5 100 38.98% 54.08% 0:09:05

4 20 10 0 250 17.26% 28.55% 0:07:06

4 20 10 1 250 22.02% 33.30% 0:08:32

4 20 10 2 250 25.66% 37.21% 0:09:47

4 20 10 3 250 32.06% 44.52% 0:10:36

4 20 10 4 250 36.87% 49.37% 0:11:17

4 20 10 5 250 44.20% 58.35% 0:12:35

4 20 10 0 500 16.67% 28.46% 0:12:31

4 20 10 1 500 19.60% 29.94% 0:14:03

4 20 10 2 500 22.61% 31.82% 0:15:33

4 20 10 3 500 26.46% 35.77% 0:16:18

4 20 10 4 500 31.68% 41.34% 0:16:55

4 20 10 5 500 37.13% 47.35% 0:18:27

4 20 10 0 750 16.81% 28.32% 0:18:02

4 20 10 1 750 20.01% 30.12% 0:19:39

4 20 10 2 750 23.37% 33.21% 0:21:03

4 20 10 3 750 26.16% 35.37% 0:21:50



284

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 10 4 750 30.98% 39.90% 0:22:48

4 20 10 5 750 37.41% 47.67% 0:24:15

4 20 10 0 1000 15.78% 27.33% 0:23:26

4 20 10 1 1000 17.98% 28.23% 0:25:32

4 20 10 2 1000 19.82% 29.13% 0:26:38

4 20 10 3 1000 21.04% 29.31% 0:27:32

4 20 10 4 1000 23.89% 31.91% 0:28:41

4 20 10 5 1000 28.14% 36.94% 0:30:17

4 20 10 0 1500 13.41% 24.28% 0:34:28

4 20 10 1 1500 13.91% 22.80% 0:36:19

4 20 10 2 1500 14.36% 21.99% 0:38:26

4 20 10 3 1500 13.75% 21.23% 0:38:54

4 20 10 4 1500 14.88% 22.26% 0:39:48

4 20 10 5 1500 16.42% 23.88% 0:41:44

4 20 10 0 2000 13.57% 23.52% 0:45:16

4 20 10 1 2000 13.20% 21.72% 0:47:20

4 20 10 2 2000 13.22% 21.14% 0:49:33

4 20 10 3 2000 11.98% 19.21% 0:50:34

4 20 10 4 2000 12.41% 18.99% 0:51:14

4 20 10 5 2000 13.97% 21.05% 0:53:15

4 20 15 0 100 26.76% 41.83% 0:04:08

4 20 15 1 100 31.60% 47.62% 0:06:26

4 20 15 2 100 37.68% 53.10% 0:07:34

4 20 15 3 100 43.62% 60.14% 0:08:21



285

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 15 0 250 28.11% 42.46% 0:07:24

4 20 15 1 250 33.33% 48.65% 0:09:46

4 20 15 2 250 40.78% 56.10% 0:11:18

4 20 15 3 250 47.68% 61.89% 0:11:47

4 20 15 0 500 29.27% 44.79% 0:12:51

4 20 15 1 500 35.01% 49.82% 0:15:23

4 20 15 2 500 43.13% 58.17% 0:16:51

4 20 15 3 500 50.66% 65.66% 0:17:27

4 20 15 0 750 28.73% 43.36% 0:18:14

4 20 15 1 750 33.98% 47.35% 0:21:15

4 20 15 2 750 42.55% 56.33% 0:22:17

4 20 15 3 750 49.76% 62.84% 0:23:26

4 20 15 0 1000 27.05% 41.65% 0:23:44

4 20 15 1 1000 32.72% 46.14% 0:26:48

4 20 15 2 1000 40.08% 54.53% 0:28:00

4 20 15 3 1000 47.87% 61.45% 0:29:09

4 20 15 0 1500 25.47% 39.09% 0:34:40

4 20 15 1 1500 29.69% 42.82% 0:38:38

4 20 15 2 1500 35.51% 47.80% 0:40:19

4 20 15 3 1500 41.40% 54.17% 0:40:41

4 20 15 0 2000 23.75% 37.39% 0:45:35

4 20 15 1 2000 26.15% 37.79% 0:48:59

4 20 15 2 2000 31.31% 43.09% 0:50:49

4 20 15 3 2000 34.79% 46.32% 0:52:11



286

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 20 0 100 27.84% 43.22% 0:05:04

4 20 20 1 100 32.58% 47.04% 0:05:44

4 20 20 2 100 36.26% 50.13% 0:06:40

4 20 20 0 250 29.06% 43.58% 0:08:21

4 20 20 1 250 36.01% 50.09% 0:09:07

4 20 20 2 250 40.33% 53.95% 0:09:59

4 20 20 0 500 30.33% 44.66% 0:13:50

4 20 20 1 500 39.44% 53.10% 0:14:44

4 20 20 2 500 45.56% 59.29% 0:15:36

4 20 20 0 750 30.30% 43.94% 0:19:36

4 20 20 1 750 38.44% 51.48% 0:20:19

4 20 20 2 750 44.51% 56.69% 0:21:10

4 20 20 0 1000 29.56% 42.91% 0:24:47

4 20 20 1 1000 38.18% 50.76% 0:25:51

4 20 20 2 1000 45.30% 57.63% 0:26:51

4 20 20 0 1500 27.48% 40.39% 0:35:44

4 20 20 1 1500 32.78% 43.94% 0:36:56

4 20 20 2 1500 37.73% 47.67% 0:38:04

4 20 20 0 2000 26.05% 39.05% 0:46:45

4 20 20 1 2000 31.06% 41.83% 0:48:23

4 20 20 2 2000 34.55% 44.21% 0:49:48

4 20 30 0 100 36.88% 52.74% 0:06:16

4 20 30 1 100 44.31% 60.55% 0:08:22

4 20 30 0 250 40.59% 56.28% 0:09:36



287

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 20 30 1 250 49.81% 65.39% 0:11:47

4 20 30 0 500 42.84% 58.66% 0:15:15

4 20 30 1 500 53.79% 68.85% 0:17:28

4 20 30 0 750 43.18% 58.80% 0:20:44

4 20 30 1 750 54.27% 68.85% 0:23:15

4 20 30 0 1000 43.67% 57.76% 0:26:12

4 20 30 1 1000 55.51% 69.48% 0:29:14

4 20 30 0 1500 43.45% 57.36% 0:37:27

4 20 30 1 1500 55.38% 69.12% 0:40:42

4 20 30 0 2000 41.61% 55.66% 0:48:50

4 20 30 1 2000 52.15% 65.35% 0:52:31

4 25 15 0 100 31.76% 48.70% 0:04:22

4 25 15 1 100 38.56% 54.85% 0:07:20

4 25 15 2 100 44.81% 61.18% 0:08:44

4 25 15 3 100 49.57% 65.66% 0:09:53

4 25 15 0 250 33.71% 50.99% 0:07:38

4 25 15 1 250 43.22% 60.28% 0:10:39

4 25 15 2 250 51.46% 67.19% 0:12:11

4 25 15 3 250 56.93% 71.27% 0:13:20

4 25 15 0 500 35.00% 52.47% 0:13:08

4 25 15 1 500 45.05% 60.95% 0:16:24

4 25 15 2 500 52.64% 67.73% 0:18:01

4 25 15 3 500 59.56% 72.85% 0:19:21

4 25 15 0 750 34.63% 51.12% 0:18:37



288

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

4 25 15 1 750 44.34% 59.25% 0:22:06

4 25 15 2 750 53.64% 67.50% 0:23:50

4 25 15 3 750 60.25% 72.08% 0:25:03

4 25 20 0 100 33.51% 49.91% 0:05:37

4 25 20 1 100 40.83% 56.51% 0:08:19

4 25 20 2 100 47.24% 62.43% 0:09:58

4 25 20 0 250 34.28% 50.09% 0:08:52

4 25 20 1 250 45.27% 60.32% 0:11:44

4 25 20 2 250 53.14% 68.00% 0:13:21

4 25 20 0 500 36.84% 53.28% 0:14:17

4 25 20 1 500 48.82% 63.42% 0:17:36

4 25 20 2 500 56.61% 70.47% 0:19:15

4 25 20 0 750 36.04% 50.85% 0:19:51

4 25 20 1 750 48.77% 63.29% 0:23:16

4 25 30 0 100 38.82% 55.30% 0:07:08

4 25 30 1 100 45.66% 61.49% 0:09:55

4 25 30 0 250 41.83% 57.59% 0:10:34

4 25 30 1 250 51.77% 66.79% 0:13:25

4 25 30 0 500 44.55% 59.87% 0:16:11

4 25 30 1 500 55.80% 70.15% 0:19:17

5 18 15 0 100 22.74% 35.95% 0:04:50

5 18 15 1 100 28.73% 42.77% 0:07:18

5 18 15 2 100 36.05% 51.21% 0:08:30

5 18 15 3 100 42.23% 57.76% 0:09:22



289

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 18 15 0 250 26.09% 39.23% 0:08:53

5 18 15 1 250 32.28% 46.05% 0:11:30

5 18 15 2 250 39.25% 54.08% 0:12:43

5 18 15 3 250 47.04% 61.54% 0:13:41

5 18 15 0 500 25.68% 39.09% 0:15:37

5 18 15 1 500 33.11% 46.54% 0:18:34

5 18 15 2 500 40.20% 54.44% 0:19:47

5 18 15 3 500 46.90% 59.78% 0:20:44

5 18 15 0 750 26.00% 39.90% 0:22:37

5 18 15 1 750 30.54% 44.52% 0:25:38

5 18 15 2 750 37.57% 50.18% 0:26:49

5 18 15 3 750 44.04% 57.00% 0:28:00

5 18 15 0 1000 24.35% 37.16% 0:29:13

5 18 15 1 1000 28.37% 40.39% 0:32:39

5 18 15 2 1000 31.92% 43.09% 0:34:09

5 18 15 3 1000 38.75% 49.64% 0:35:09

5 18 15 0 1500 22.60% 35.59% 0:42:58

5 18 15 1 1500 24.44% 35.46% 0:46:33

5 18 15 2 1500 27.54% 37.61% 0:48:13

5 18 15 3 1500 31.34% 41.29% 0:49:43

5 18 20 0 100 26.69% 40.31% 0:05:50

5 18 20 1 100 31.93% 46.81% 0:06:37

5 18 20 2 100 35.67% 50.81% 0:07:33

5 18 20 0 250 28.62% 42.82% 0:10:03



290

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 18 20 1 250 34.00% 48.11% 0:10:42

5 18 20 2 250 39.37% 52.96% 0:11:42

5 18 20 0 500 29.05% 43.09% 0:16:50

5 18 20 1 500 36.11% 50.04% 0:17:53

5 18 20 2 500 41.82% 54.85% 0:18:47

5 18 20 0 750 29.25% 43.76% 0:23:33

5 18 20 1 750 35.23% 48.56% 0:24:45

5 18 20 2 750 38.41% 50.58% 0:25:55

5 18 20 0 1000 27.23% 40.89% 0:30:32

5 18 20 1 1000 32.37% 44.57% 0:31:37

5 18 20 2 1000 35.40% 47.26% 0:32:53

5 18 20 0 1500 25.42% 38.73% 0:44:07

5 18 20 1 1500 26.35% 36.09% 0:45:41

5 18 20 2 1500 27.66% 37.75% 0:46:55

5 18 30 0 100 31.89% 46.81% 0:07:09

5 18 30 1 100 40.43% 56.33% 0:09:24

5 18 30 0 250 34.67% 50.63% 0:11:22

5 18 30 1 250 44.40% 60.10% 0:13:37

5 18 30 0 500 36.48% 52.29% 0:18:15

5 18 30 1 500 47.48% 61.85% 0:20:45

5 18 30 0 750 37.97% 53.28% 0:25:12

5 18 30 1 750 51.01% 64.72% 0:28:07

5 18 30 0 1000 36.85% 51.89% 0:32:18

5 18 30 1 1000 48.89% 62.30% 0:35:17



291

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 18 30 0 1500 34.83% 48.34% 0:45:59

5 18 30 1 1500 45.49% 58.17% 0:49:36

5 20 10 0 100 15.73% 27.83% 0:04:31

5 20 10 1 100 19.48% 30.66% 0:06:10

5 20 10 2 100 22.93% 34.56% 0:07:50

5 20 10 3 100 27.80% 39.81% 0:08:43

5 20 10 4 100 32.57% 45.87% 0:09:28

5 20 10 5 100 38.50% 52.69% 0:11:00

5 20 10 0 250 18.09% 30.75% 0:08:34

5 20 10 1 250 21.82% 33.80% 0:10:25

5 20 10 2 250 26.62% 38.33% 0:11:54

5 20 10 3 250 32.63% 45.02% 0:12:50

5 20 10 4 250 40.56% 53.10% 0:13:44

5 20 10 5 250 48.36% 62.34% 0:15:29

5 20 10 0 500 16.46% 28.01% 0:15:28

5 20 10 1 500 20.26% 30.88% 0:17:16

5 20 10 2 500 23.06% 32.09% 0:19:01

5 20 10 3 500 27.72% 37.07% 0:19:58

5 20 10 4 500 33.06% 43.45% 0:20:59

5 20 10 5 500 38.74% 49.69% 0:22:47

5 20 10 0 750 15.11% 26.71% 0:22:13

5 20 10 1 750 18.06% 28.55% 0:24:27

5 20 10 2 750 20.24% 28.77% 0:26:02

5 20 10 3 750 21.65% 30.39% 0:27:01



292

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 10 4 750 24.60% 33.98% 0:28:02

5 20 10 5 750 28.99% 37.48% 0:30:14

5 20 10 0 1000 14.12% 25.72% 0:29:00

5 20 10 1 1000 14.70% 23.88% 0:31:17

5 20 10 2 1000 15.19% 23.56% 0:33:20

5 20 10 3 1000 15.40% 22.89% 0:34:11

5 20 10 4 1000 15.99% 23.20% 0:35:05

5 20 10 5 1000 17.16% 25.04% 0:37:27

5 20 10 0 1500 12.34% 22.67% 0:42:22

5 20 10 1 1500 12.16% 20.60% 0:44:48

5 20 10 2 1500 11.18% 18.40% 0:47:01

5 20 10 3 1500 10.17% 16.83% 0:48:33

5 20 10 4 1500 10.54% 17.15% 0:49:42

5 20 10 5 1500 10.87% 18.09% 0:51:55

5 20 10 0 2000 10.75% 19.93% 0:56:12

5 20 10 1 2000 10.78% 19.03% 0:58:55

5 20 10 2 2000 9.29% 16.38% 1:01:38

5 20 10 3 2000 8.02% 14.72% 1:02:43

5 20 10 4 2000 7.42% 14.27% 1:03:45

5 20 10 5 2000 8.03% 14.77% 1:06:37

5 20 15 0 100 27.63% 42.82% 0:04:56

5 20 15 1 100 32.04% 47.67% 0:07:45

5 20 15 2 100 40.23% 55.70% 0:09:01

5 20 15 3 100 45.32% 61.13% 0:10:05



293

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 15 0 250 29.17% 44.52% 0:08:57

5 20 15 1 250 35.18% 50.45% 0:11:55

5 20 15 2 250 43.37% 59.16% 0:13:17

5 20 15 3 250 51.45% 66.02% 0:14:25

5 20 15 0 500 30.30% 44.79% 0:15:51

5 20 15 1 500 36.22% 50.94% 0:18:58

5 20 15 2 500 45.57% 60.32% 0:20:21

5 20 15 3 500 52.73% 66.47% 0:21:33

5 20 15 0 750 28.48% 43.27% 0:22:35

5 20 15 1 750 34.15% 48.65% 0:26:21

5 20 15 2 750 42.57% 56.73% 0:27:37

5 20 15 3 750 51.40% 65.71% 0:28:54

5 20 15 0 1000 27.91% 42.73% 0:30:16

5 20 15 1 1000 33.49% 47.71% 0:32:55

5 20 15 2 1000 41.39% 54.85% 0:34:41

5 20 15 3 1000 48.06% 61.22% 0:36:25

5 20 15 0 1500 26.33% 40.75% 0:42:58

5 20 15 1 1500 28.38% 41.83% 0:47:08

5 20 15 2 1500 34.21% 46.77% 0:49:21

5 20 15 3 1500 40.32% 52.29% 0:50:39

5 20 15 0 2000 23.06% 36.89% 0:56:27

5 20 15 1 2000 24.81% 36.71% 1:01:15

5 20 15 2 2000 27.65% 38.96% 1:03:37

5 20 15 3 2000 32.67% 43.40% 1:05:13



294

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 20 0 100 27.94% 43.45% 0:06:05

5 20 20 1 100 34.26% 48.88% 0:06:53

5 20 20 2 100 37.54% 51.48% 0:07:59

5 20 20 0 250 30.45% 45.33% 0:10:13

5 20 20 1 250 38.26% 53.10% 0:11:04

5 20 20 2 250 42.88% 56.64% 0:12:15

5 20 20 0 500 31.32% 46.36% 0:17:06

5 20 20 1 500 41.11% 54.26% 0:17:59

5 20 20 2 500 47.19% 60.73% 0:19:08

5 20 20 0 750 28.89% 42.91% 0:23:59

5 20 20 1 750 38.40% 51.93% 0:25:04

5 20 20 2 750 45.43% 58.30% 0:26:17

5 20 20 0 1000 28.60% 42.15% 0:31:29

5 20 20 1 1000 37.77% 50.63% 0:31:54

5 20 20 2 1000 43.69% 55.57% 0:33:32

5 20 20 0 1500 25.76% 37.97% 0:44:16

5 20 20 1 1500 32.76% 44.48% 0:45:52

5 20 20 2 1500 38.80% 49.64% 0:47:42

5 20 20 0 2000 24.29% 36.22% 0:58:14

5 20 20 1 2000 28.51% 38.78% 1:00:43

5 20 20 2 2000 30.93% 39.86% 1:01:59

5 20 30 0 100 38.58% 54.76% 0:07:40

5 20 30 1 100 46.21% 62.57% 0:10:02

5 20 30 0 250 41.22% 57.32% 0:11:42



295

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 20 30 1 250 51.63% 66.61% 0:14:23

5 20 30 0 500 43.08% 58.62% 0:18:42

5 20 30 1 500 55.01% 69.61% 0:21:33

5 20 30 0 750 44.10% 59.38% 0:25:40

5 20 30 1 750 55.22% 69.30% 0:29:08

5 20 30 0 1000 44.58% 60.37% 0:32:50

5 20 30 1 1000 56.11% 69.70% 0:36:08

5 20 30 0 1500 44.54% 58.80% 0:46:52

5 20 30 1 1500 56.71% 70.24% 0:50:51

5 20 30 0 2000 41.94% 55.57% 1:00:34

5 20 30 1 2000 52.78% 65.66% 1:04:50

5 25 15 0 100 30.44% 46.41% 0:05:11

5 25 15 1 100 39.65% 56.42% 0:08:51

5 25 15 2 100 45.97% 62.61% 0:10:43

5 25 15 3 100 52.61% 67.15% 0:12:02

5 25 15 0 250 33.54% 49.87% 0:09:17

5 25 15 1 250 43.36% 59.20% 0:13:05

5 25 15 2 250 51.43% 67.24% 0:14:49

5 25 15 3 250 57.65% 71.59% 0:16:21

5 25 15 0 500 35.26% 51.97% 0:16:04

5 25 15 1 500 44.96% 60.14% 0:20:10

5 25 15 2 500 53.21% 68.09% 0:22:07

5 25 15 3 500 59.27% 72.13% 0:23:52

5 25 15 0 750 33.65% 49.69% 0:22:51



296

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 25 15 1 750 45.35% 60.91% 0:27:20

5 25 15 2 750 54.00% 67.95% 0:29:52

5 25 15 3 750 60.22% 72.67% 0:31:01

5 25 15 0 1000 33.56% 49.51% 0:29:39

5 25 15 1 1000 42.97% 57.50% 0:34:26

5 25 15 2 1000 51.52% 65.48% 0:36:42

5 25 15 3 1000 58.85% 71.18% 0:38:32

5 25 15 0 1500 31.41% 46.23% 0:43:15

5 25 15 1 1500 41.53% 55.57% 0:48:44

5 25 15 2 1500 51.72% 64.36% 0:51:11

5 25 15 3 1500 58.88% 70.20% 0:53:18

5 25 20 0 100 33.18% 49.33% 0:06:42

5 25 20 1 100 42.02% 58.57% 0:10:06

5 25 20 2 100 47.86% 63.91% 0:12:00

5 25 20 0 250 35.58% 51.71% 0:10:50

5 25 20 1 250 47.63% 63.51% 0:14:22

5 25 20 2 250 55.02% 69.34% 0:16:23

5 25 20 0 500 36.99% 53.14% 0:17:40

5 25 20 1 500 49.82% 64.63% 0:21:37

5 25 20 2 500 57.79% 71.23% 0:23:43

5 25 20 0 750 36.61% 52.15% 0:24:39

5 25 20 1 750 50.40% 64.95% 0:29:16

5 25 20 2 750 58.12% 71.14% 0:31:13

5 25 20 0 1000 35.73% 50.45% 0:31:26



297

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 25 20 1 1000 49.72% 64.59% 0:35:57

5 25 20 2 1000 57.44% 69.93% 0:38:35

5 25 20 0 1500 34.37% 48.16% 0:45:11

5 25 20 1 1500 46.30% 60.19% 0:50:37

5 25 20 2 1500 55.03% 67.15% 0:53:31

5 25 30 0 100 39.38% 56.15% 0:08:39

5 25 30 1 100 47.08% 63.24% 0:12:02

5 25 30 0 250 43.22% 58.93% 0:12:52

5 25 30 1 250 53.09% 68.00% 0:16:25

5 25 30 0 500 46.05% 61.36% 0:19:54

5 25 30 1 500 57.30% 71.18% 0:23:40

5 25 30 0 750 47.01% 61.71% 0:26:48

5 25 30 1 750 58.10% 71.10% 0:31:12

5 25 30 0 1000 46.46% 61.40% 0:34:00

5 25 30 1 1000 59.47% 72.08% 0:38:31

5 25 30 0 1500 46.59% 60.95% 0:47:56

5 25 30 1 1500 59.03% 71.41% 0:54:07

5 30 15 0 100 31.45% 46.99% 0:05:29

5 30 15 1 100 42.25% 59.34% 0:09:59

5 30 15 2 100 48.65% 64.68% 0:12:17

5 30 15 3 100 52.78% 68.36% 0:14:12

5 30 15 0 250 36.02% 51.84% 0:09:31

5 30 15 1 250 47.68% 63.46% 0:14:19

5 30 15 2 250 55.92% 71.05% 0:16:44



298

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 30 15 3 250 60.82% 74.42% 0:18:32

5 30 15 0 500 37.49% 53.50% 0:16:29

5 30 15 1 500 50.16% 65.57% 0:21:24

5 30 15 2 500 59.02% 72.67% 0:24:06

5 30 15 3 500 63.17% 75.18% 0:26:08

5 30 15 0 750 37.09% 52.96% 0:23:08

5 30 15 1 750 50.86% 66.11% 0:29:04

5 30 15 2 750 59.84% 71.86% 0:31:39

5 30 15 3 750 63.34% 74.82% 0:33:54

5 30 15 0 1000 37.01% 52.02% 0:29:56

5 30 15 1 1000 50.25% 65.62% 0:35:46

5 30 15 2 1000 58.52% 71.63% 0:38:59

5 30 15 3 1000 62.46% 73.16% 0:41:26

5 30 15 0 1500 36.54% 51.39% 0:43:32

5 30 15 1 1500 48.62% 63.73% 0:50:45

5 30 15 2 1500 57.30% 69.75% 0:53:39

5 30 15 3 1500 62.35% 73.29% 0:56:36

5 30 20 0 100 36.37% 52.96% 0:07:18

5 30 20 1 100 45.57% 61.98% 0:11:42

5 30 20 2 100 51.67% 67.41% 0:14:05

5 30 20 0 250 38.75% 55.43% 0:11:27

5 30 20 1 250 50.66% 66.02% 0:16:01

5 30 20 2 250 57.21% 71.68% 0:18:38

5 30 20 0 500 39.96% 56.33% 0:18:24



299

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 30 20 1 500 53.56% 68.36% 0:23:20

5 30 20 2 500 60.07% 73.25% 0:26:09

5 30 20 0 750 39.83% 56.37% 0:25:15

5 30 20 1 750 53.82% 67.91% 0:30:41

5 30 20 2 750 60.73% 72.76% 0:33:40

5 30 20 0 1000 40.13% 55.92% 0:32:19

5 30 20 1 1000 54.48% 67.46% 0:38:01

5 30 20 2 1000 61.74% 73.43% 0:41:18

5 30 20 0 1500 39.33% 55.16% 0:45:59

5 30 20 1 1500 52.87% 66.70% 0:52:34

5 30 20 2 1500 60.67% 72.44% 0:56:34

5 30 30 0 100 42.37% 59.56% 0:09:55

5 30 30 1 100 49.37% 65.62% 0:14:06

5 30 30 0 250 45.93% 62.48% 0:14:01

5 30 30 1 250 54.66% 69.84% 0:18:40

5 30 30 0 500 49.07% 64.36% 0:21:18

5 30 30 1 500 59.28% 73.20% 0:26:13

5 30 30 0 750 50.87% 65.35% 0:28:12

5 30 30 1 750 61.66% 73.97% 0:33:49

5 30 30 0 1000 51.49% 66.25% 0:35:53

5 30 30 1 1000 62.34% 74.10% 0:41:28

5 30 30 0 1500 51.54% 65.80% 0:49:28

5 30 30 1 1500 62.59% 74.51% 0:56:45

5 40 15 0 100 34.74% 50.76% 0:06:01



300

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 15 1 100 44.73% 61.89% 0:12:36

5 40 15 2 100 50.24% 65.93% 0:16:04

5 40 15 3 100 53.80% 68.58% 0:18:44

5 40 15 0 250 38.37% 54.08% 0:10:08

5 40 15 1 250 50.56% 66.16% 0:17:03

5 40 15 2 250 56.75% 70.51% 0:20:41

5 40 15 3 250 61.00% 74.06% 0:23:23

5 40 15 0 500 41.56% 57.27% 0:16:59

5 40 15 1 500 53.98% 69.03% 0:24:38

5 40 15 2 500 60.74% 74.06% 0:28:29

5 40 15 3 500 63.93% 75.85% 0:31:32

5 40 15 0 750 41.62% 58.03% 0:23:49

5 40 15 1 750 54.55% 68.63% 0:31:53

5 40 15 2 750 61.45% 74.51% 0:36:25

5 40 15 3 750 64.84% 76.30% 0:39:40

5 40 15 0 1000 42.26% 57.90% 0:30:43

5 40 15 1 1000 54.11% 67.59% 0:39:39

5 40 15 2 1000 61.05% 72.80% 0:44:13

5 40 15 3 1000 63.94% 74.87% 0:47:49

5 40 15 0 1500 41.40% 56.24% 0:44:46

5 40 15 1 1500 54.89% 68.85% 0:54:46

5 40 15 2 1500 61.39% 72.94% 1:00:00

5 40 15 3 1500 65.24% 76.53% 1:04:13

5 40 20 0 100 38.66% 55.39% 0:08:35



301

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 20 1 100 47.33% 64.14% 0:15:04

5 40 20 2 100 52.00% 68.00% 0:18:47

5 40 20 0 250 42.44% 59.16% 0:12:45

5 40 20 1 250 52.39% 67.46% 0:19:33

5 40 20 2 250 57.82% 71.50% 0:23:31

5 40 20 0 500 44.25% 60.10% 0:19:40

5 40 20 1 500 56.45% 70.74% 0:27:12

5 40 20 2 500 62.63% 74.42% 0:31:28

5 40 20 0 750 44.86% 60.41% 0:26:38

5 40 20 1 750 57.27% 70.38% 0:34:50

5 40 20 2 750 62.90% 75.40% 0:39:43

5 40 20 0 1000 45.03% 59.87% 0:33:33

5 40 20 1 1000 57.90% 70.51% 0:43:05

5 40 20 2 1000 63.26% 75.00% 0:47:47

5 40 20 0 1500 45.10% 59.83% 0:47:46

5 40 20 1 1500 58.10% 70.69% 0:59:00

5 40 20 2 1500 63.03% 74.46% 1:04:50

5 40 30 0 100 42.00% 59.61% 0:12:20

5 40 30 1 100 47.78% 64.45% 0:18:46

5 40 30 0 250 47.80% 63.78% 0:16:33

5 40 30 1 250 55.34% 70.02% 0:23:36

5 40 30 0 500 51.19% 66.56% 0:23:49

5 40 30 1 500 60.25% 72.94% 0:31:30

5 40 30 0 750 52.67% 67.10% 0:31:04



302

Table 4: Extended results for R2MMT, configuration with memory. Time is in
format h:mm:ss.

Epochs K τ t Iterations mAP Top-1 Training Time

5 40 30 1 750 62.07% 74.73% 0:39:55

5 40 30 0 1000 53.83% 68.04% 0:38:07

5 40 30 1 1000 63.33% 74.69% 0:48:32

5 40 30 0 1500 55.07% 69.43% 0:53:21

5 40 30 1 1500 64.78% 75.90% 1:04:23

.0.0.1 Subset Distribution Selection

Here we see the time it takes to perform our SDS algorithm for each camera for

each time segment in Sec. 5.5.3. Even though we use a greedy implementation, SDS

time scales poorly with the amount of data provided. Any K that has an SDS time

greater than τ for any camera for any time segment does not meet the time constraint

for RW-OUDA for that τ .

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

8 1 15 0 0:00:06 8 1 15 0 0:00:06

8 1 15 1 0:03:46 8 1 15 1 0:04:58

8 1 15 2 0:00:03 8 1 15 2 0:05:58

8 1 15 3 0:00:02 8 1 15 3 0:06:48

8 2 15 0 0:00:01 8 2 15 0 0:00:01

8 2 15 1 0:00:07 8 2 15 1 0:00:15

8 2 15 2 0:00:05 8 2 15 2 0:00:36

8 2 15 3 0:00:05 8 2 15 3 0:01:05



303

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

8 3 15 0 0:00:00 8 3 15 0 0:00:00

8 3 15 1 0:00:01 8 3 15 1 0:00:02

8 3 15 2 0:00:00 8 3 15 2 0:00:04

8 3 15 3 0:00:00 8 3 15 3 0:00:06

8 4 15 0 0:00:01 8 4 15 0 0:00:01

8 4 15 1 0:00:03 8 4 15 1 0:00:08

8 4 15 2 0:00:01 8 4 15 2 0:00:17

8 4 15 3 0:00:00 8 4 15 3 0:00:22

8 5 15 0 0:00:02 8 5 15 0 0:00:02

8 5 15 1 0:00:02 8 5 15 1 0:00:08

8 5 15 2 0:00:01 8 5 15 2 0:00:15

8 5 15 3 0:00:01 8 5 15 3 0:00:25

8 6 15 0 0:00:04 8 6 15 0 0:00:04

8 6 15 1 0:00:10 8 6 15 1 0:00:27

8 6 15 2 0:00:06 8 6 15 2 0:00:54

8 6 15 3 0:00:04 8 6 15 3 0:01:23

8 7 15 0 0:00:01 8 7 15 0 0:00:01

8 7 15 1 0:00:02 8 7 15 1 0:00:06

8 7 15 2 0:00:01 8 7 15 2 0:00:10

8 7 15 3 0:00:00 8 7 15 3 0:00:13

8 8 15 0 0:00:19 8 8 15 0 0:00:19

8 8 15 1 0:00:14 8 8 15 1 0:00:59

8 8 15 2 0:00:08 8 8 15 2 0:01:44



304

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

8 8 15 3 0:00:01 8 8 15 3 0:02:00

8 1 20 0 0:01:52 8 1 20 0 0:01:52

8 2 20 0 0:00:03 8 2 20 0 0:00:03

8 2 20 1 0:00:13 8 2 20 1 0:00:29

8 2 20 2 0:00:09 8 2 20 2 0:01:05

8 3 20 0 0:00:01 8 3 20 0 0:00:01

8 3 20 1 0:00:01 8 3 20 1 0:00:03

8 3 20 2 0:00:00 8 3 20 2 0:00:06

8 4 20 0 0:00:03 8 4 20 0 0:00:03

8 4 20 1 0:00:04 8 4 20 1 0:00:14

8 4 20 2 0:00:01 8 4 20 2 0:00:22

8 5 20 0 0:00:03 8 5 20 0 0:00:03

8 5 20 1 0:00:03 8 5 20 1 0:00:13

8 5 20 2 0:00:02 8 5 20 2 0:00:25

8 6 20 0 0:00:09 8 6 20 0 0:00:09

8 6 20 1 0:00:13 8 6 20 1 0:00:42

8 6 20 2 0:00:09 8 6 20 2 0:01:23

8 7 20 0 0:00:02 8 7 20 0 0:00:02

8 7 20 1 0:00:02 8 7 20 1 0:00:08

8 7 20 2 0:00:01 8 7 20 2 0:00:13

8 8 20 0 0:00:33 8 8 20 0 0:00:33

8 8 20 1 0:00:17 8 8 20 1 0:01:30

8 8 20 2 0:00:02 8 8 20 2 0:02:00



305

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

8 1 30 0 0:04:58 8 1 30 0 0:04:59

8 1 30 1 0:00:10 8 1 30 1 0:06:49

8 2 30 0 0:00:15 8 2 30 0 0:00:15

8 2 30 1 0:00:21 8 2 30 1 0:01:05

8 3 30 0 0:00:02 8 3 30 0 0:00:02

8 3 30 1 0:00:01 8 3 30 1 0:00:06

8 4 30 0 0:00:08 8 4 30 0 0:00:08

8 4 30 1 0:00:03 8 4 30 1 0:00:22

8 5 30 0 0:00:08 8 5 30 0 0:00:08

8 5 30 1 0:00:04 8 5 30 1 0:00:25

8 6 30 0 0:00:27 8 6 30 0 0:00:27

8 6 30 1 0:00:19 8 6 30 1 0:01:23

8 7 30 0 0:00:06 8 7 30 0 0:00:06

8 7 30 1 0:00:02 8 7 30 1 0:00:13

8 8 30 0 0:01:00 8 8 30 0 0:01:00

8 8 30 1 0:00:13 8 8 30 1 0:02:00

10 1 15 0 0:00:07 10 1 15 0 0:00:07

10 1 15 1 0:04:44 10 1 15 1 0:06:13

10 1 15 2 0:00:04 10 1 15 2 0:07:29

10 1 15 3 0:00:03 10 1 15 3 0:08:31

10 2 15 0 0:00:02 10 2 15 0 0:00:02

10 2 15 1 0:00:09 10 2 15 1 0:00:18

10 2 15 2 0:00:06 10 2 15 2 0:00:44



306

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

10 2 15 3 0:00:07 10 2 15 3 0:01:21

10 3 15 0 0:00:00 10 3 15 0 0:00:00

10 3 15 1 0:00:01 10 3 15 1 0:00:03

10 3 15 2 0:00:00 10 3 15 2 0:00:05

10 3 15 3 0:00:00 10 3 15 3 0:00:07

10 4 15 0 0:00:01 10 4 15 0 0:00:01

10 4 15 1 0:00:04 10 4 15 1 0:00:10

10 4 15 2 0:00:02 10 4 15 2 0:00:21

10 4 15 3 0:00:01 10 4 15 3 0:00:28

10 5 15 0 0:00:02 10 5 15 0 0:00:02

10 5 15 1 0:00:03 10 5 15 1 0:00:10

10 5 15 2 0:00:01 10 5 15 2 0:00:19

10 5 15 3 0:00:02 10 5 15 3 0:00:31

10 6 15 0 0:00:05 10 6 15 0 0:00:05

10 6 15 1 0:00:13 10 6 15 1 0:00:33

10 6 15 2 0:00:07 10 6 15 2 0:01:08

10 6 15 3 0:00:05 10 6 15 3 0:01:43

10 7 15 0 0:00:01 10 7 15 0 0:00:01

10 7 15 1 0:00:02 10 7 15 1 0:00:07

10 7 15 2 0:00:01 10 7 15 2 0:00:12

10 7 15 3 0:00:00 10 7 15 3 0:00:17

10 8 15 0 0:00:23 10 8 15 0 0:00:23

10 8 15 1 0:00:17 10 8 15 1 0:01:14



307

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

10 8 15 2 0:00:10 10 8 15 2 0:02:11

10 8 15 3 0:00:01 10 8 15 3 0:02:30

10 1 20 0 0:02:21 10 1 20 0 0:02:21

10 1 20 2 0:00:05 10 2 20 0 0:00:04

10 2 20 0 0:00:04 10 2 20 1 0:00:36

10 2 20 1 0:00:16 10 2 20 2 0:01:21

10 2 20 2 0:00:11 10 3 20 0 0:00:01

10 3 20 0 0:00:01 10 3 20 1 0:00:04

10 3 20 1 0:00:01 10 3 20 2 0:00:07

10 3 20 2 0:00:00 10 4 20 0 0:00:04

10 4 20 0 0:00:04 10 4 20 1 0:00:18

10 4 20 1 0:00:05 10 4 20 2 0:00:28

10 4 20 2 0:00:01 10 5 20 0 0:00:04

10 5 20 0 0:00:04 10 5 20 1 0:00:16

10 5 20 1 0:00:04 10 5 20 2 0:00:31

10 5 20 2 0:00:03 10 6 20 0 0:00:11

10 6 20 0 0:00:11 10 6 20 1 0:00:52

10 6 20 1 0:00:16 10 6 20 2 0:01:43

10 6 20 2 0:00:11 10 7 20 0 0:00:03

10 7 20 0 0:00:03 10 7 20 1 0:00:10

10 7 20 1 0:00:03 10 7 20 2 0:00:17

10 7 20 2 0:00:01 10 8 20 0 0:00:42

10 8 20 0 0:00:42 10 8 20 1 0:01:53



308

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

10 8 20 1 0:00:21 10 8 20 2 0:02:30

10 8 20 2 0:00:03 10 1 30 0 0:06:14

10 1 30 0 0:06:14 10 1 30 1 0:08:32

10 1 30 1 0:00:13 10 2 30 0 0:00:18

10 2 30 0 0:00:18 10 2 30 1 0:01:21

10 2 30 1 0:00:26 10 3 30 0 0:00:03

10 3 30 0 0:00:03 10 3 30 1 0:00:07

10 3 30 1 0:00:01 10 4 30 0 0:00:10

10 4 30 0 0:00:10 10 4 30 1 0:00:28

10 4 30 1 0:00:04 10 5 30 0 0:00:11

10 5 30 0 0:00:11 10 5 30 1 0:00:31

10 5 30 1 0:00:06 10 6 30 0 0:00:34

10 6 30 0 0:00:33 10 6 30 1 0:01:43

10 6 30 1 0:00:24 10 7 30 0 0:00:07

10 7 30 0 0:00:07 10 7 30 1 0:00:17

10 7 30 1 0:00:02 10 8 30 0 0:01:14

10 8 30 0 0:01:15 10 8 30 1 0:02:30

10 8 30 1 0:00:16 12 1 15 0 0:00:09

12 1 15 0 0:00:09 12 1 15 1 0:07:30

12 1 15 1 0:05:40 12 1 15 2 0:08:56

12 1 15 2 0:00:05 12 1 15 3 0:10:15

12 1 15 3 0:00:03 12 2 15 0 0:00:02

12 2 15 0 0:00:02 12 2 15 1 0:00:22



309

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

12 2 15 1 0:00:10 12 2 15 2 0:00:53

12 2 15 2 0:00:07 12 2 15 3 0:01:37

12 2 15 3 0:00:08 12 3 15 0 0:00:00

12 3 15 0 0:00:00 12 3 15 1 0:00:03

12 3 15 1 0:00:02 12 3 15 2 0:00:06

12 3 15 2 0:00:00 12 3 15 3 0:00:09

12 3 15 3 0:00:00 12 4 15 0 0:00:02

12 4 15 0 0:00:02 12 4 15 1 0:00:12

12 4 15 1 0:00:05 12 4 15 2 0:00:25

12 4 15 2 0:00:02 12 4 15 3 0:00:33

12 4 15 3 0:00:01 12 5 15 0 0:00:03

12 5 15 0 0:00:03 12 5 15 1 0:00:13

12 5 15 1 0:00:03 12 5 15 2 0:00:22

12 5 15 2 0:00:01 12 5 15 3 0:00:38

12 5 15 3 0:00:02 12 6 15 0 0:00:06

12 6 15 0 0:00:06 12 6 15 1 0:00:40

12 6 15 1 0:00:16 12 6 15 2 0:01:22

12 6 15 2 0:00:09 12 6 15 3 0:02:04

12 6 15 3 0:00:06 12 7 15 0 0:00:01

12 7 15 0 0:00:01 12 7 15 1 0:00:08

12 7 15 1 0:00:03 12 7 15 2 0:00:15

12 7 15 2 0:00:01 12 7 15 3 0:00:20

12 7 15 3 0:00:00 12 8 15 0 0:00:28



310

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

12 8 15 0 0:00:28 12 8 15 1 0:01:29

12 8 15 1 0:00:21 12 8 15 2 0:02:37

12 8 15 2 0:00:11 12 8 15 3 0:03:00

12 8 15 3 0:00:01 12 1 20 0 0:02:50

12 1 20 0 0:02:49 12 2 20 0 0:00:05

12 1 20 2 0:00:06 12 2 20 1 0:00:44

12 2 20 0 0:00:05 12 2 20 2 0:01:37

12 2 20 1 0:00:19 12 3 20 0 0:00:01

12 2 20 2 0:00:13 12 3 20 1 0:00:05

12 3 20 0 0:00:01 12 3 20 2 0:00:09

12 3 20 1 0:00:02 12 4 20 0 0:00:05

12 3 20 2 0:00:01 12 4 20 1 0:00:21

12 4 20 0 0:00:05 12 4 20 2 0:00:33

12 4 20 1 0:00:05 12 5 20 0 0:00:05

12 4 20 2 0:00:01 12 5 20 1 0:00:19

12 5 20 0 0:00:05 12 5 20 2 0:00:37

12 5 20 1 0:00:05 12 6 20 0 0:00:14

12 5 20 2 0:00:03 12 6 20 1 0:01:03

12 6 20 0 0:00:14 12 6 20 2 0:02:04

12 6 20 1 0:00:19 12 7 20 0 0:00:03

12 6 20 2 0:00:13 12 7 20 1 0:00:13

12 7 20 0 0:00:03 12 7 20 2 0:00:20

12 7 20 1 0:00:03 12 8 20 0 0:00:50



311

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

12 7 20 2 0:00:01 12 8 20 1 0:02:16

12 8 20 0 0:00:50 12 8 20 2 0:02:59

12 8 20 1 0:00:26 12 1 30 0 0:07:28

12 8 20 2 0:00:04 12 1 30 1 0:10:13

12 1 30 0 0:07:29 12 2 30 0 0:00:22

12 1 30 1 0:00:16 12 2 30 1 0:01:37

12 2 30 0 0:00:22 12 3 30 0 0:00:03

12 2 30 1 0:00:31 12 3 30 1 0:00:09

12 3 30 0 0:00:03 12 4 30 0 0:00:12

12 3 30 1 0:00:01 12 4 30 1 0:00:33

12 4 30 0 0:00:12 12 5 30 0 0:00:13

12 4 30 1 0:00:05 12 5 30 1 0:00:37

12 5 30 0 0:00:13 12 6 30 0 0:00:40

12 5 30 1 0:00:07 12 6 30 1 0:02:04

12 6 30 0 0:00:40 12 7 30 0 0:00:08

12 6 30 1 0:00:28 12 7 30 1 0:00:20

12 7 30 0 0:00:08 12 8 30 0 0:01:30

12 7 30 1 0:00:03 12 8 30 1 0:03:00

12 8 30 0 0:01:30 14 1 10 0 0:00:07

12 8 30 1 0:00:19 14 1 10 1 0:03:18

14 1 10 0 0:00:07 14 1 10 2 0:08:42

14 1 10 1 0:02:16 14 1 10 3 0:09:59

14 1 10 2 0:01:23 14 1 10 4 0:10:57



312

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

14 1 10 3 0:00:03 14 1 10 5 0:16:45

14 1 10 4 0:00:02 14 2 10 0 0:00:01

14 2 10 0 0:00:01 14 2 10 1 0:00:06

14 2 10 1 0:00:02 14 2 10 2 0:00:26

14 2 10 2 0:00:07 14 2 10 3 0:00:51

14 2 10 3 0:00:04 14 2 10 4 0:01:18

14 2 10 4 0:00:03 14 2 10 5 0:01:53

14 2 10 5 0:00:04 14 3 10 0 0:00:00

14 3 10 0 0:00:00 14 3 10 1 0:00:01

14 3 10 1 0:00:01 14 3 10 2 0:00:04

14 3 10 2 0:00:01 14 3 10 3 0:00:06

14 3 10 3 0:00:00 14 3 10 4 0:00:08

14 3 10 4 0:00:00 14 3 10 5 0:00:10

14 3 10 5 0:00:00 14 4 10 0 0:00:00

14 4 10 0 0:00:00 14 4 10 1 0:00:06

14 4 10 1 0:00:03 14 4 10 2 0:00:15

14 4 10 2 0:00:02 14 4 10 3 0:00:25

14 4 10 3 0:00:01 14 4 10 4 0:00:34

14 4 10 4 0:00:01 14 4 10 5 0:00:39

14 4 10 5 0:00:00 14 5 10 0 0:00:03

14 5 10 0 0:00:03 14 5 10 1 0:00:06

14 5 10 1 0:00:00 14 5 10 2 0:00:15

14 5 10 2 0:00:02 14 5 10 3 0:00:22



313

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

14 5 10 3 0:00:01 14 5 10 4 0:00:32

14 5 10 4 0:00:01 14 5 10 5 0:00:44

14 5 10 5 0:00:01 14 6 10 0 0:00:02

14 6 10 0 0:00:02 14 6 10 1 0:00:16

14 6 10 1 0:00:07 14 6 10 2 0:00:46

14 6 10 2 0:00:08 14 6 10 3 0:01:13

14 6 10 3 0:00:04 14 6 10 4 0:02:00

14 6 10 4 0:00:07 14 6 10 5 0:02:23

14 6 10 5 0:00:01 14 7 10 0 0:00:01

14 7 10 0 0:00:01 14 7 10 1 0:00:04

14 7 10 1 0:00:01 14 7 10 2 0:00:10

14 7 10 2 0:00:02 14 7 10 3 0:00:15

14 7 10 3 0:00:01 14 7 10 4 0:00:20

14 7 10 4 0:00:00 14 7 10 5 0:00:24

14 7 10 5 0:00:00 14 8 10 0 0:00:13

14 8 10 0 0:00:13 14 8 10 1 0:00:59

14 8 10 1 0:00:17 14 8 10 2 0:01:45

14 8 10 2 0:00:08 14 8 10 3 0:02:38

14 8 10 3 0:00:07 14 8 10 4 0:03:28

14 8 10 4 0:00:04 14 8 10 5 0:03:31

14 8 10 5 0:00:00 14 1 15 0 0:00:10

14 1 15 0 0:00:10 14 1 15 1 0:08:45

14 1 15 1 0:06:36 14 1 15 2 0:10:28



314

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

14 1 15 2 0:00:05 14 1 15 3 0:11:57

14 1 15 3 0:00:04 14 2 15 0 0:00:03

14 2 15 0 0:00:03 14 2 15 1 0:00:26

14 2 15 1 0:00:12 14 2 15 2 0:01:03

14 2 15 2 0:00:09 14 2 15 3 0:01:53

14 2 15 3 0:00:09 14 3 15 0 0:00:00

14 3 15 0 0:00:00 14 3 15 1 0:00:04

14 3 15 1 0:00:02 14 3 15 2 0:00:07

14 3 15 2 0:00:01 14 3 15 3 0:00:10

14 3 15 3 0:00:00 14 4 15 0 0:00:02

14 4 15 0 0:00:02 14 4 15 1 0:00:15

14 4 15 1 0:00:06 14 4 15 2 0:00:29

14 4 15 2 0:00:02 14 4 15 3 0:00:39

14 4 15 3 0:00:01 14 5 15 0 0:00:03

14 5 15 0 0:00:03 14 5 15 1 0:00:15

14 5 15 1 0:00:04 14 5 15 2 0:00:26

14 5 15 2 0:00:02 14 5 15 3 0:00:44

14 5 15 3 0:00:02 14 6 15 0 0:00:07

14 6 15 0 0:00:07 14 6 15 1 0:00:47

14 6 15 1 0:00:18 14 6 15 2 0:01:35

14 6 15 2 0:00:10 14 6 15 3 0:02:25

14 6 15 3 0:00:06 14 7 15 0 0:00:02

14 7 15 0 0:00:02 14 7 15 1 0:00:10



315

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

14 7 15 1 0:00:03 14 7 15 2 0:00:17

14 7 15 2 0:00:01 14 7 15 3 0:00:23

14 7 15 3 0:00:01 14 8 15 0 0:00:33

14 8 15 0 0:00:33 14 8 15 1 0:01:45

14 8 15 1 0:00:24 14 8 15 2 0:03:03

14 8 15 2 0:00:13 14 8 15 3 0:03:31

14 8 15 3 0:00:01 14 1 20 0 0:03:17

14 1 20 0 0:03:17 14 2 20 0 0:00:06

14 1 20 2 0:00:07 14 2 20 1 0:00:51

14 2 20 0 0:00:06 14 2 20 2 0:01:53

14 2 20 1 0:00:22 14 3 20 0 0:00:01

14 2 20 2 0:00:15 14 3 20 1 0:00:06

14 3 20 0 0:00:01 14 3 20 2 0:00:10

14 3 20 1 0:00:02 14 4 20 0 0:00:06

14 3 20 2 0:00:01 14 4 20 1 0:00:25

14 4 20 0 0:00:06 14 4 20 2 0:00:39

14 4 20 1 0:00:06 14 5 20 0 0:00:06

14 4 20 2 0:00:02 14 5 20 1 0:00:22

14 5 20 0 0:00:06 14 5 20 2 0:00:44

14 5 20 1 0:00:05 14 6 20 0 0:00:16

14 5 20 2 0:00:04 14 6 20 1 0:01:14

14 6 20 0 0:00:16 14 6 20 2 0:02:25

14 6 20 1 0:00:23 14 7 20 0 0:00:04



316

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

14 6 20 2 0:00:15 14 7 20 1 0:00:15

14 7 20 0 0:00:04 14 7 20 2 0:00:23

14 7 20 1 0:00:04 14 8 20 0 0:00:59

14 7 20 2 0:00:01 14 8 20 1 0:02:38

14 8 20 0 0:00:58 14 8 20 2 0:03:30

14 8 20 1 0:00:30 14 1 30 0 0:08:43

14 8 20 2 0:00:04 14 1 30 1 0:11:58

14 1 30 0 0:08:44 14 2 30 0 0:00:26

14 1 30 1 0:00:18 14 2 30 1 0:01:53

14 2 30 0 0:00:26 14 3 30 0 0:00:04

14 2 30 1 0:00:36 14 3 30 1 0:00:10

14 3 30 0 0:00:04 14 4 30 0 0:00:15

14 3 30 1 0:00:02 14 4 30 1 0:00:39

14 4 30 0 0:00:15 14 5 30 0 0:00:15

14 4 30 1 0:00:06 14 5 30 1 0:00:44

14 5 30 0 0:00:15 14 6 30 0 0:00:47

14 5 30 1 0:00:08 14 6 30 1 0:02:24

14 6 30 0 0:00:47 14 7 30 0 0:00:10

14 6 30 1 0:00:33 14 7 30 1 0:00:24

14 7 30 0 0:00:10 14 8 30 0 0:01:45

14 7 30 1 0:00:03 14 8 30 1 0:03:30

14 8 30 0 0:01:44 16 1 10 0 0:00:08

14 8 30 1 0:00:22 16 1 10 1 0:03:45



317

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 1 10 0 0:00:08 16 1 10 2 0:09:59

16 1 10 1 0:02:35 16 1 10 3 0:11:25

16 1 10 2 0:01:35 16 1 10 4 0:12:33

16 1 10 3 0:00:03 16 1 10 5 0:19:08

16 1 10 4 0:00:02 16 2 10 0 0:00:02

16 2 10 0 0:00:02 16 2 10 1 0:00:07

16 2 10 1 0:00:02 16 2 10 2 0:00:29

16 2 10 2 0:00:08 16 2 10 3 0:00:58

16 2 10 3 0:00:05 16 2 10 4 0:01:29

16 2 10 4 0:00:04 16 2 10 5 0:02:09

16 2 10 5 0:00:05 16 3 10 0 0:00:00

16 3 10 0 0:00:00 16 3 10 1 0:00:01

16 3 10 1 0:00:01 16 3 10 2 0:00:04

16 3 10 2 0:00:01 16 3 10 3 0:00:07

16 3 10 3 0:00:00 16 3 10 4 0:00:10

16 3 10 4 0:00:00 16 3 10 5 0:00:11

16 3 10 5 0:00:00 16 4 10 0 0:00:00

16 4 10 0 0:00:00 16 4 10 1 0:00:07

16 4 10 1 0:00:04 16 4 10 2 0:00:17

16 4 10 2 0:00:02 16 4 10 3 0:00:28

16 4 10 3 0:00:02 16 4 10 4 0:00:39

16 4 10 4 0:00:01 16 4 10 5 0:00:45

16 4 10 5 0:00:00 16 5 10 0 0:00:03



318

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 5 10 0 0:00:03 16 5 10 1 0:00:07

16 5 10 1 0:00:01 16 5 10 2 0:00:17

16 5 10 2 0:00:02 16 5 10 3 0:00:26

16 5 10 3 0:00:01 16 5 10 4 0:00:37

16 5 10 4 0:00:01 16 5 10 5 0:00:50

16 5 10 5 0:00:01 16 6 10 0 0:00:02

16 6 10 0 0:00:02 16 6 10 1 0:00:18

16 6 10 1 0:00:08 16 6 10 2 0:00:53

16 6 10 2 0:00:10 16 6 10 3 0:01:23

16 6 10 3 0:00:04 16 6 10 4 0:02:17

16 6 10 4 0:00:08 16 6 10 5 0:02:44

16 6 10 5 0:00:02 16 7 10 0 0:00:01

16 7 10 0 0:00:01 16 7 10 1 0:00:04

16 7 10 1 0:00:01 16 7 10 2 0:00:11

16 7 10 2 0:00:02 16 7 10 3 0:00:17

16 7 10 3 0:00:01 16 7 10 4 0:00:22

16 7 10 4 0:00:00 16 7 10 5 0:00:27

16 7 10 5 0:00:00 16 8 10 0 0:00:15

16 8 10 0 0:00:15 16 8 10 1 0:01:07

16 8 10 1 0:00:20 16 8 10 2 0:02:00

16 8 10 2 0:00:09 16 8 10 3 0:03:01

16 8 10 3 0:00:08 16 8 10 4 0:03:59

16 8 10 4 0:00:05 16 8 10 5 0:04:00



319

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 8 10 5 0:00:00 16 1 15 0 0:00:11

16 1 15 0 0:00:11 16 1 15 1 0:10:00

16 1 15 1 0:07:32 16 1 15 2 0:12:00

16 1 15 2 0:00:06 16 1 15 3 0:13:40

16 1 15 3 0:00:04 16 2 15 0 0:00:03

16 2 15 0 0:00:03 16 2 15 1 0:00:30

16 2 15 1 0:00:14 16 2 15 2 0:01:11

16 2 15 2 0:00:10 16 2 15 3 0:02:09

16 2 15 3 0:00:11 16 3 15 0 0:00:00

16 3 15 0 0:00:00 16 3 15 1 0:00:04

16 3 15 1 0:00:02 16 3 15 2 0:00:08

16 3 15 2 0:00:01 16 3 15 3 0:00:11

16 3 15 3 0:00:00 16 4 15 0 0:00:02

16 4 15 0 0:00:02 16 4 15 1 0:00:17

16 4 15 1 0:00:07 16 4 15 2 0:00:33

16 4 15 2 0:00:03 16 4 15 3 0:00:44

16 4 15 3 0:00:01 16 5 15 0 0:00:04

16 5 15 0 0:00:04 16 5 15 1 0:00:17

16 5 15 1 0:00:05 16 5 15 2 0:00:30

16 5 15 2 0:00:02 16 5 15 3 0:00:50

16 5 15 3 0:00:03 16 6 15 0 0:00:08

16 6 15 0 0:00:08 16 6 15 1 0:00:53

16 6 15 1 0:00:21 16 6 15 2 0:01:48



320

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 6 15 2 0:00:12 16 6 15 3 0:02:46

16 6 15 3 0:00:07 16 7 15 0 0:00:02

16 7 15 0 0:00:02 16 7 15 1 0:00:11

16 7 15 1 0:00:04 16 7 15 2 0:00:20

16 7 15 2 0:00:01 16 7 15 3 0:00:27

16 7 15 3 0:00:01 16 8 15 0 0:00:37

16 8 15 0 0:00:37 16 8 15 1 0:01:59

16 8 15 1 0:00:28 16 8 15 2 0:03:30

16 8 15 2 0:00:15 16 8 15 3 0:04:00

16 8 15 3 0:00:01 16 1 20 0 0:03:45

16 1 20 0 0:03:45 16 2 20 0 0:00:07

16 1 20 2 0:00:08 16 2 20 1 0:00:58

16 2 20 0 0:00:07 16 2 20 2 0:02:09

16 2 20 1 0:00:26 16 3 20 0 0:00:01

16 2 20 2 0:00:18 16 3 20 1 0:00:06

16 3 20 0 0:00:01 16 3 20 2 0:00:11

16 3 20 1 0:00:02 16 4 20 0 0:00:07

16 3 20 2 0:00:01 16 4 20 1 0:00:28

16 4 20 0 0:00:07 16 4 20 2 0:00:45

16 4 20 1 0:00:07 16 5 20 0 0:00:07

16 4 20 2 0:00:02 16 5 20 1 0:00:26

16 5 20 0 0:00:07 16 5 20 2 0:00:50

16 5 20 1 0:00:06 16 6 20 0 0:00:18



321

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 5 20 2 0:00:04 16 6 20 1 0:01:24

16 6 20 0 0:00:18 16 6 20 2 0:02:46

16 6 20 1 0:00:26 16 7 20 0 0:00:04

16 6 20 2 0:00:17 16 7 20 1 0:00:17

16 7 20 0 0:00:04 16 7 20 2 0:00:27

16 7 20 1 0:00:04 16 8 20 0 0:01:07

16 7 20 2 0:00:01 16 8 20 1 0:03:01

16 8 20 0 0:01:07 16 8 20 2 0:04:00

16 8 20 1 0:00:34 16 1 30 0 0:10:00

16 8 20 2 0:00:05 16 1 30 1 0:13:36

16 1 30 0 0:09:58 16 2 30 0 0:00:30

16 1 30 1 0:00:21 16 2 30 1 0:02:10

16 2 30 0 0:00:30 16 3 30 0 0:00:04

16 2 30 1 0:00:41 16 3 30 1 0:00:11

16 3 30 0 0:00:04 16 4 30 0 0:00:17

16 3 30 1 0:00:02 16 4 30 1 0:00:45

16 4 30 0 0:00:17 16 5 30 0 0:00:17

16 4 30 1 0:00:07 16 5 30 1 0:00:50

16 5 30 0 0:00:17 16 6 30 0 0:00:54

16 5 30 1 0:00:09 16 6 30 1 0:02:45

16 6 30 0 0:00:54 16 7 30 0 0:00:11

16 6 30 1 0:00:38 16 7 30 1 0:00:27

16 7 30 0 0:00:11 16 8 30 0 0:01:59



322

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

16 7 30 1 0:00:03 16 8 30 1 0:04:01

16 8 30 0 0:02:00 18 1 10 0 0:00:09

16 8 30 1 0:00:25 18 1 10 1 0:04:14

18 1 10 0 0:00:09 18 1 10 2 0:11:12

18 1 10 1 0:02:54 18 1 10 3 0:12:50

18 1 10 2 0:01:46 18 1 10 4 0:14:08

18 1 10 3 0:00:04 18 1 10 5 0:21:38

18 1 10 4 0:00:02 18 2 10 0 0:00:02

18 2 10 0 0:00:02 18 2 10 1 0:00:08

18 2 10 1 0:00:02 18 2 10 2 0:00:33

18 2 10 2 0:00:09 18 2 10 3 0:01:05

18 2 10 3 0:00:06 18 2 10 4 0:01:40

18 2 10 4 0:00:04 18 2 10 5 0:02:25

18 2 10 5 0:00:06 18 3 10 0 0:00:00

18 3 10 0 0:00:00 18 3 10 1 0:00:01

18 3 10 1 0:00:01 18 3 10 2 0:00:05

18 3 10 2 0:00:01 18 3 10 3 0:00:08

18 3 10 3 0:00:00 18 3 10 4 0:00:11

18 3 10 4 0:00:00 18 3 10 5 0:00:13

18 3 10 5 0:00:00 18 4 10 0 0:00:01

18 4 10 0 0:00:01 18 4 10 1 0:00:08

18 4 10 1 0:00:04 18 4 10 2 0:00:19

18 4 10 2 0:00:02 18 4 10 3 0:00:32



323

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

18 4 10 3 0:00:02 18 4 10 4 0:00:44

18 4 10 4 0:00:01 18 4 10 5 0:00:50

18 4 10 5 0:00:00 18 5 10 0 0:00:04

18 5 10 0 0:00:04 18 5 10 1 0:00:08

18 5 10 1 0:00:01 18 5 10 2 0:00:19

18 5 10 2 0:00:03 18 5 10 3 0:00:29

18 5 10 3 0:00:01 18 5 10 4 0:00:42

18 5 10 4 0:00:01 18 5 10 5 0:00:56

18 5 10 5 0:00:01 18 6 10 0 0:00:02

18 6 10 0 0:00:02 18 6 10 1 0:00:20

18 6 10 1 0:00:09 18 6 10 2 0:01:00

18 6 10 2 0:00:11 18 6 10 3 0:01:34

18 6 10 3 0:00:05 18 6 10 4 0:02:34

18 6 10 4 0:00:09 18 6 10 5 0:03:06

18 6 10 5 0:00:02 18 7 10 0 0:00:01

18 7 10 0 0:00:01 18 7 10 1 0:00:05

18 7 10 1 0:00:02 18 7 10 2 0:00:13

18 7 10 2 0:00:02 18 7 10 3 0:00:19

18 7 10 3 0:00:01 18 7 10 4 0:00:25

18 7 10 4 0:00:00 18 7 10 5 0:00:30

18 7 10 5 0:00:00 18 8 10 0 0:00:17

18 8 10 0 0:00:17 18 8 10 1 0:01:16

18 8 10 1 0:00:22 18 8 10 2 0:02:14



324

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

18 8 10 2 0:00:11 18 8 10 3 0:03:23

18 8 10 3 0:00:09 18 8 10 4 0:04:28

18 8 10 4 0:00:05 18 8 10 5 0:04:30

18 8 10 5 0:00:00 18 1 15 0 0:00:13

18 1 15 0 0:00:13 18 1 15 1 0:11:14

18 1 15 1 0:08:29 18 1 15 2 0:13:29

18 1 15 2 0:00:07 18 1 15 3 0:15:23

18 1 15 3 0:00:05 18 2 15 0 0:00:03

18 2 15 0 0:00:03 18 2 15 1 0:00:33

18 2 15 1 0:00:16 18 2 15 2 0:01:20

18 2 15 2 0:00:11 18 2 15 3 0:02:25

18 2 15 3 0:00:12 18 3 15 0 0:00:00

18 3 15 0 0:00:00 18 3 15 1 0:00:05

18 3 15 1 0:00:03 18 3 15 2 0:00:09

18 3 15 2 0:00:01 18 3 15 3 0:00:13

18 3 15 3 0:00:00 18 4 15 0 0:00:03

18 4 15 0 0:00:03 18 4 15 1 0:00:19

18 4 15 1 0:00:07 18 4 15 2 0:00:37

18 4 15 2 0:00:03 18 4 15 3 0:00:50

18 4 15 3 0:00:01 18 5 15 0 0:00:04

18 5 15 0 0:00:04 18 5 15 1 0:00:19

18 5 15 1 0:00:05 18 5 15 2 0:00:34

18 5 15 2 0:00:02 18 5 15 3 0:00:56



325

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

18 5 15 3 0:00:03 18 6 15 0 0:00:09

18 6 15 0 0:00:09 18 6 15 1 0:01:01

18 6 15 1 0:00:23 18 6 15 2 0:02:02

18 6 15 2 0:00:13 18 6 15 3 0:03:06

18 6 15 3 0:00:08 18 7 15 0 0:00:02

18 7 15 0 0:00:02 18 7 15 1 0:00:13

18 7 15 1 0:00:04 18 7 15 2 0:00:22

18 7 15 2 0:00:01 18 7 15 3 0:00:30

18 7 15 3 0:00:01 18 8 15 0 0:00:42

18 8 15 0 0:00:42 18 8 15 1 0:02:15

18 8 15 1 0:00:31 18 8 15 2 0:03:55

18 8 15 2 0:00:17 18 8 15 3 0:04:30

18 8 15 3 0:00:01 18 1 20 0 0:04:13

18 1 20 0 0:04:14 18 2 20 0 0:00:08

18 1 20 1 0:02:23 18 2 20 1 0:01:05

18 1 20 2 0:00:09 18 2 20 2 0:02:25

18 2 20 0 0:00:08 18 3 20 0 0:00:01

18 2 20 1 0:00:29 18 3 20 1 0:00:08

18 2 20 2 0:00:20 18 3 20 2 0:00:13

18 3 20 0 0:00:01 18 4 20 0 0:00:08

18 3 20 1 0:00:03 18 4 20 1 0:00:32

18 3 20 2 0:00:01 18 4 20 2 0:00:50

18 4 20 0 0:00:08 18 5 20 0 0:00:08



326

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

18 4 20 1 0:00:08 18 5 20 1 0:00:29

18 4 20 2 0:00:02 18 5 20 2 0:00:56

18 5 20 0 0:00:08 18 6 20 0 0:00:21

18 5 20 1 0:00:07 18 6 20 1 0:01:35

18 5 20 2 0:00:05 18 6 20 2 0:03:06

18 6 20 0 0:00:21 18 7 20 0 0:00:05

18 6 20 1 0:00:29 18 7 20 1 0:00:19

18 6 20 2 0:00:19 18 7 20 2 0:00:30

18 7 20 0 0:00:05 18 8 20 0 0:01:15

18 7 20 1 0:00:05 18 8 20 1 0:03:23

18 7 20 2 0:00:01 18 8 20 2 0:04:30

18 8 20 0 0:01:16 18 1 20 1 0:12:52

18 8 20 1 0:00:38 18 1 20 2 0:15:26

18 8 20 2 0:00:06 18 1 30 0 0:11:12

18 1 30 0 0:11:13 18 1 30 1 0:15:26

18 1 30 1 0:00:24 18 2 30 0 0:00:33

18 2 30 0 0:00:33 18 2 30 1 0:02:26

18 2 30 1 0:00:47 18 3 30 0 0:00:05

18 3 30 0 0:00:05 18 3 30 1 0:00:13

18 3 30 1 0:00:02 18 4 30 0 0:00:19

18 4 30 0 0:00:19 18 4 30 1 0:00:51

18 4 30 1 0:00:07 18 5 30 0 0:00:19

18 5 30 0 0:00:19 18 5 30 1 0:00:56



327

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

18 5 30 1 0:00:10 18 6 30 0 0:01:01

18 6 30 0 0:01:01 18 6 30 1 0:03:07

18 6 30 1 0:00:43 18 7 30 0 0:00:13

18 7 30 0 0:00:13 18 7 30 1 0:00:30

18 7 30 1 0:00:04 18 8 30 0 0:02:14

18 8 30 0 0:02:14 18 8 30 1 0:04:31

18 8 30 1 0:00:28 20 1 10 0 0:00:10

20 1 10 0 0:00:10 20 1 10 1 0:04:41

20 1 10 1 0:03:14 20 1 10 2 0:12:30

20 1 10 2 0:01:58 20 1 10 3 0:14:12

20 1 10 3 0:00:04 20 1 10 4 0:15:43

20 1 10 4 0:00:03 20 1 10 5 0:23:55

20 2 10 0 0:00:02 20 2 10 0 0:00:02

20 2 10 1 0:00:02 20 2 10 1 0:00:08

20 2 10 2 0:00:10 20 2 10 2 0:00:37

20 2 10 3 0:00:06 20 2 10 3 0:01:12

20 2 10 4 0:00:05 20 2 10 4 0:01:52

20 2 10 5 0:00:06 20 2 10 5 0:02:42

20 3 10 0 0:00:00 20 3 10 0 0:00:00

20 3 10 1 0:00:01 20 3 10 1 0:00:01

20 3 10 2 0:00:01 20 3 10 2 0:00:05

20 3 10 3 0:00:00 20 3 10 3 0:00:08

20 3 10 4 0:00:00 20 3 10 4 0:00:12



328

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

20 3 10 5 0:00:00 20 3 10 5 0:00:14

20 4 10 0 0:00:01 20 4 10 0 0:00:01

20 4 10 1 0:00:05 20 4 10 1 0:00:09

20 4 10 2 0:00:03 20 4 10 2 0:00:21

20 4 10 3 0:00:02 20 4 10 3 0:00:35

20 4 10 4 0:00:01 20 4 10 4 0:00:50

20 4 10 5 0:00:00 20 4 10 5 0:00:56

20 5 10 0 0:00:04 20 5 10 0 0:00:04

20 5 10 1 0:00:01 20 5 10 1 0:00:08

20 5 10 2 0:00:03 20 5 10 2 0:00:21

20 5 10 3 0:00:01 20 5 10 3 0:00:32

20 5 10 4 0:00:01 20 5 10 4 0:00:46

20 5 10 5 0:00:01 20 5 10 5 0:01:02

20 6 10 0 0:00:03 20 6 10 0 0:00:03

20 6 10 1 0:00:10 20 6 10 1 0:00:22

20 6 10 2 0:00:12 20 6 10 2 0:01:06

20 6 10 3 0:00:05 20 6 10 3 0:01:44

20 6 10 4 0:00:11 20 6 10 4 0:02:51

20 6 10 5 0:00:02 20 6 10 5 0:03:25

20 7 10 0 0:00:01 20 7 10 0 0:00:01

20 7 10 1 0:00:02 20 7 10 1 0:00:05

20 7 10 2 0:00:02 20 7 10 2 0:00:14

20 7 10 3 0:00:01 20 7 10 3 0:00:21



329

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

20 7 10 4 0:00:01 20 7 10 4 0:00:28

20 7 10 5 0:00:00 20 7 10 5 0:00:34

20 8 10 0 0:00:19 20 8 10 0 0:00:19

20 8 10 1 0:00:24 20 8 10 1 0:01:24

20 8 10 2 0:00:12 20 8 10 2 0:02:30

20 8 10 3 0:00:10 20 8 10 3 0:03:46

20 8 10 4 0:00:06 20 8 10 4 0:04:58

20 8 10 5 0:00:00 20 8 10 5 0:04:59

20 1 15 0 0:00:14 20 1 15 0 0:00:14

20 1 15 1 0:09:27 20 1 15 1 0:12:37

20 1 15 2 0:00:08 20 1 15 2 0:15:00

20 1 15 3 0:00:05 20 1 15 3 0:17:02

20 2 15 0 0:00:04 20 2 15 0 0:00:04

20 2 15 1 0:00:18 20 2 15 1 0:00:37

20 2 15 2 0:00:12 20 2 15 2 0:01:29

20 2 15 3 0:00:13 20 2 15 3 0:02:42

20 3 15 0 0:00:00 20 3 15 0 0:00:00

20 3 15 1 0:00:03 20 3 15 1 0:00:05

20 3 15 2 0:00:01 20 3 15 2 0:00:10

20 3 15 3 0:00:00 20 3 15 3 0:00:14

20 4 15 0 0:00:03 20 4 15 0 0:00:03

20 4 15 1 0:00:08 20 4 15 1 0:00:21

20 4 15 2 0:00:04 20 4 15 2 0:00:42



330

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

20 4 15 3 0:00:01 20 4 15 3 0:00:56

20 5 15 0 0:00:05 20 5 15 0 0:00:05

20 5 15 1 0:00:06 20 5 15 1 0:00:21

20 5 15 2 0:00:02 20 5 15 2 0:00:38

20 5 15 3 0:00:03 20 5 15 3 0:01:03

20 6 15 0 0:00:10 20 6 15 0 0:00:10

20 6 15 1 0:00:26 20 6 15 1 0:01:07

20 6 15 2 0:00:15 20 6 15 2 0:02:16

20 6 15 3 0:00:09 20 6 15 3 0:03:28

20 7 15 0 0:00:02 20 7 15 0 0:00:02

20 7 15 1 0:00:05 20 7 15 1 0:00:14

20 7 15 2 0:00:02 20 7 15 2 0:00:25

20 7 15 3 0:00:01 20 7 15 3 0:00:34

20 8 15 0 0:00:47 20 8 15 0 0:00:47

20 8 15 1 0:00:34 20 8 15 1 0:02:30

20 8 15 2 0:00:19 20 8 15 2 0:04:21

20 8 15 3 0:00:02 20 8 15 3 0:05:00

20 1 20 0 0:04:43 20 1 20 0 0:04:40

20 1 20 1 0:02:39 20 2 20 0 0:00:09

20 1 20 2 0:00:10 20 2 20 1 0:01:13

20 2 20 0 0:00:09 20 2 20 2 0:02:42

20 2 20 1 0:00:32 20 3 20 0 0:00:01

20 2 20 2 0:00:22 20 3 20 1 0:00:08



331

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

20 3 20 0 0:00:01 20 3 20 2 0:00:14

20 3 20 1 0:00:03 20 4 20 0 0:00:09

20 3 20 2 0:00:01 20 4 20 1 0:00:35

20 4 20 0 0:00:09 20 4 20 2 0:00:56

20 4 20 1 0:00:09 20 5 20 0 0:00:08

20 4 20 2 0:00:02 20 5 20 1 0:00:32

20 5 20 0 0:00:08 20 5 20 2 0:01:03

20 5 20 1 0:00:08 20 6 20 0 0:00:23

20 5 20 2 0:00:05 20 6 20 1 0:01:45

20 6 20 0 0:00:23 20 6 20 2 0:03:27

20 6 20 1 0:00:32 20 7 20 0 0:00:05

20 6 20 2 0:00:22 20 7 20 1 0:00:21

20 7 20 0 0:00:05 20 7 20 2 0:00:34

20 7 20 1 0:00:05 20 8 20 0 0:01:24

20 7 20 2 0:00:01 20 8 20 1 0:03:46

20 8 20 0 0:01:24 20 8 20 2 0:05:00

20 8 20 1 0:00:43 20 1 20 1 0:14:16

20 8 20 2 0:00:06 20 1 20 2 0:17:07

20 1 30 0 0:12:28 20 1 30 0 0:12:29

20 1 30 1 0:00:26 20 1 30 1 0:17:07

20 2 30 0 0:00:37 20 2 30 0 0:00:37

20 2 30 1 0:00:52 20 2 30 1 0:02:42

20 3 30 0 0:00:05 20 3 30 0 0:00:05



332

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

20 3 30 1 0:00:02 20 3 30 1 0:00:14

20 4 30 0 0:00:21 20 4 30 0 0:00:21

20 4 30 1 0:00:08 20 4 30 1 0:00:56

20 5 30 0 0:00:21 20 5 30 0 0:00:21

20 5 30 1 0:00:11 20 5 30 1 0:01:03

20 6 30 0 0:01:07 20 6 30 0 0:01:08

20 6 30 1 0:00:47 20 6 30 1 0:03:27

20 7 30 0 0:00:14 20 7 30 0 0:00:14

20 7 30 1 0:00:04 20 7 30 1 0:00:34

20 8 30 0 0:02:30 20 8 30 0 0:02:30

20 8 30 1 0:00:31 20 8 30 1 0:05:00

25 1 15 0 0:00:18 25 1 15 0 0:00:18

25 1 15 0 0:00:18 25 1 15 0 0:00:18

25 1 15 1 0:11:54 25 1 15 1 0:15:57

25 1 15 2 0:00:10 25 1 15 2 0:19:05

25 1 15 3 0:00:07 25 1 15 3 0:21:46

25 2 15 0 0:00:05 25 2 15 0 0:00:05

25 2 15 1 0:00:22 25 2 15 1 0:00:47

25 2 15 2 0:00:16 25 2 15 2 0:01:54

25 2 15 3 0:00:17 25 2 15 3 0:03:26

25 3 15 0 0:00:00 25 3 15 0 0:00:00

25 3 15 1 0:00:04 25 3 15 1 0:00:07

25 3 15 2 0:00:01 25 3 15 2 0:00:13



333

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

25 3 15 3 0:00:01 25 3 15 3 0:00:19

25 4 15 0 0:00:04 25 4 15 0 0:00:04

25 4 15 1 0:00:10 25 4 15 1 0:00:27

25 4 15 2 0:00:05 25 4 15 2 0:00:53

25 4 15 3 0:00:01 25 4 15 3 0:01:11

25 5 15 0 0:00:06 25 5 15 0 0:00:06

25 5 15 1 0:00:07 25 5 15 1 0:00:27

25 5 15 2 0:00:03 25 5 15 2 0:00:48

25 5 15 3 0:00:04 25 5 15 3 0:01:21

25 6 15 0 0:00:13 25 6 15 0 0:00:13

25 6 15 1 0:00:33 25 6 15 1 0:01:27

25 6 15 2 0:00:19 25 6 15 2 0:02:55

25 6 15 3 0:00:12 25 6 15 3 0:04:26

25 7 15 0 0:00:03 25 7 15 0 0:00:03

25 7 15 1 0:00:06 25 7 15 1 0:00:18

25 7 15 2 0:00:02 25 7 15 2 0:00:32

25 7 15 3 0:00:01 25 7 15 3 0:00:43

25 8 15 0 0:01:01 25 8 15 0 0:01:01

25 8 15 1 0:00:44 25 8 15 1 0:03:12

25 8 15 2 0:00:25 25 8 15 2 0:05:38

25 8 15 3 0:00:02 25 8 15 3 0:06:34

25 1 20 0 0:06:00 25 1 20 0 0:06:00

25 1 20 1 0:03:19 25 2 20 0 0:00:11



334

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

25 1 20 2 0:00:12 25 2 20 1 0:01:33

25 2 20 0 0:00:11 25 2 20 2 0:03:27

25 2 20 1 0:00:41 25 3 20 0 0:00:02

25 2 20 2 0:00:28 25 3 20 1 0:00:11

25 3 20 0 0:00:02 25 3 20 2 0:00:18

25 3 20 1 0:00:04 25 4 20 0 0:00:11

25 3 20 2 0:00:01 25 4 20 1 0:00:45

25 4 20 0 0:00:11 25 4 20 2 0:01:11

25 4 20 1 0:00:12 25 5 20 0 0:00:11

25 4 20 2 0:00:03 25 5 20 1 0:00:41

25 5 20 0 0:00:11 25 5 20 2 0:01:21

25 5 20 1 0:00:10 25 6 20 0 0:00:30

25 5 20 2 0:00:07 25 6 20 1 0:02:16

25 6 20 0 0:00:30 25 6 20 2 0:04:26

25 6 20 1 0:00:42 25 7 20 0 0:00:07

25 6 20 2 0:00:28 25 7 20 1 0:00:27

25 7 20 0 0:00:07 25 7 20 2 0:00:43

25 7 20 1 0:00:07 25 8 20 0 0:01:49

25 7 20 2 0:00:02 25 8 20 1 0:04:50

25 8 20 0 0:01:49 25 8 20 2 0:06:28

25 8 20 1 0:00:55 25 1 20 1 0:17:51

25 8 20 2 0:00:08 25 1 20 2 0:21:26

25 1 30 0 0:15:56 25 1 30 0 0:15:57



335

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

25 1 30 1 0:00:33 25 1 30 1 0:21:54

25 2 30 0 0:00:48 25 2 30 0 0:00:47

25 2 30 1 0:01:06 25 2 30 1 0:03:26

25 3 30 0 0:00:07 25 3 30 0 0:00:07

25 3 30 1 0:00:03 25 3 30 1 0:00:19

25 4 30 0 0:00:27 25 4 30 0 0:00:27

25 4 30 1 0:00:11 25 4 30 1 0:01:12

25 5 30 0 0:00:27 25 5 30 0 0:00:27

25 5 30 1 0:00:15 25 5 30 1 0:01:20

25 6 30 0 0:01:27 25 6 30 0 0:01:27

25 6 30 1 0:01:02 25 6 30 1 0:04:27

25 7 30 0 0:00:19 25 7 30 0 0:00:18

25 7 30 1 0:00:06 25 7 30 1 0:00:43

25 8 30 0 0:03:11 25 8 30 0 0:03:15

25 8 30 1 0:00:41 25 8 30 1 0:06:29

30 1 15 0 0:00:23 30 1 15 0 0:00:22

30 1 15 1 0:14:43 30 1 15 1 0:19:14

30 1 15 2 0:00:12 30 1 15 2 0:23:00

30 1 15 3 0:00:08 30 1 15 3 0:26:08

30 2 15 0 0:00:06 30 2 15 0 0:00:06

30 2 15 1 0:00:27 30 2 15 1 0:00:57

30 2 15 2 0:00:19 30 2 15 2 0:02:17

30 2 15 3 0:00:21 30 2 15 3 0:04:07



336

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

30 3 15 0 0:00:01 30 3 15 0 0:00:01

30 3 15 1 0:00:04 30 3 15 1 0:00:08

30 3 15 2 0:00:01 30 3 15 2 0:00:15

30 3 15 3 0:00:01 30 3 15 3 0:00:22

30 4 15 0 0:00:05 30 4 15 0 0:00:05

30 4 15 1 0:00:13 30 4 15 1 0:00:32

30 4 15 2 0:00:05 30 4 15 2 0:01:04

30 4 15 3 0:00:02 30 4 15 3 0:01:25

30 5 15 0 0:00:07 30 5 15 0 0:00:07

30 5 15 1 0:00:09 30 5 15 1 0:00:32

30 5 15 2 0:00:04 30 5 15 2 0:00:58

30 5 15 3 0:00:05 30 5 15 3 0:01:36

30 6 15 0 0:00:16 30 6 15 0 0:00:16

30 6 15 1 0:00:40 30 6 15 1 0:01:43

30 6 15 2 0:00:23 30 6 15 2 0:03:28

30 6 15 3 0:00:14 30 6 15 3 0:05:19

30 7 15 0 0:00:04 30 7 15 0 0:00:04

30 7 15 1 0:00:07 30 7 15 1 0:00:21

30 7 15 2 0:00:02 30 7 15 2 0:00:38

30 7 15 3 0:00:01 30 7 15 3 0:00:52

30 8 15 0 0:01:12 30 8 15 0 0:01:12

30 8 15 1 0:00:53 30 8 15 1 0:03:50

30 8 15 2 0:00:30 30 8 15 2 0:06:42



337

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

30 8 15 3 0:00:02 30 8 15 3 0:07:40

30 1 20 0 0:07:13 30 1 20 0 0:07:14

30 1 20 2 0:00:15 30 2 20 0 0:00:13

30 2 20 0 0:00:13 30 2 20 1 0:01:52

30 2 20 1 0:00:50 30 2 20 2 0:04:08

30 2 20 2 0:00:34 30 3 20 0 0:00:02

30 3 20 0 0:00:02 30 3 20 1 0:00:13

30 3 20 1 0:00:04 30 3 20 2 0:00:22

30 3 20 2 0:00:01 30 4 20 0 0:00:13

30 4 20 0 0:00:13 30 4 20 1 0:00:54

30 4 20 1 0:00:14 30 4 20 2 0:01:26

30 4 20 2 0:00:04 30 5 20 0 0:00:13

30 5 20 0 0:00:13 30 5 20 1 0:00:49

30 5 20 1 0:00:12 30 5 20 2 0:01:36

30 5 20 2 0:00:08 30 6 20 0 0:00:35

30 6 20 0 0:00:35 30 6 20 1 0:02:42

30 6 20 1 0:00:50 30 6 20 2 0:05:18

30 6 20 2 0:00:33 30 7 20 0 0:00:08

30 7 20 0 0:00:08 30 7 20 1 0:00:32

30 7 20 1 0:00:08 30 7 20 2 0:00:52

30 7 20 2 0:00:02 30 8 20 0 0:02:09

30 8 20 0 0:02:09 30 8 20 1 0:05:48

30 8 20 1 0:01:07 30 8 20 2 0:07:42



338

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

30 8 20 2 0:00:10 30 1 20 1 0:21:27

30 1 20 1 0:03:59 30 1 20 2 0:25:46

30 1 30 0 0:19:07 30 1 30 0 0:19:06

30 1 30 1 0:00:40 30 1 30 1 0:26:14

30 2 30 0 0:00:57 30 2 30 0 0:00:57

30 2 30 1 0:01:20 30 2 30 1 0:04:07

30 3 30 0 0:00:08 30 3 30 0 0:00:08

30 3 30 1 0:00:04 30 3 30 1 0:00:22

30 4 30 0 0:00:32 30 4 30 0 0:00:32

30 4 30 1 0:00:13 30 4 30 1 0:01:26

30 5 30 0 0:00:32 30 5 30 0 0:00:32

30 5 30 1 0:00:17 30 5 30 1 0:01:36

30 6 30 0 0:01:44 30 6 30 0 0:01:43

30 6 30 1 0:01:13 30 6 30 1 0:05:19

30 7 30 0 0:00:22 30 7 30 0 0:00:21

30 7 30 1 0:00:07 30 7 30 1 0:00:52

30 8 30 0 0:03:49 30 8 30 0 0:03:49

30 8 30 1 0:00:49 30 8 30 1 0:07:41

40 1 15 0 0:00:29 40 1 15 0 0:00:29

40 1 15 1 0:19:12 40 1 15 1 0:25:29

40 1 15 2 0:00:16 40 1 15 2 0:30:39

40 1 15 3 0:00:11 40 1 15 3 0:35:06

40 2 15 0 0:00:07 40 2 15 0 0:00:07



339

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

40 2 15 1 0:00:37 40 2 15 1 0:01:16

40 2 15 2 0:00:26 40 2 15 2 0:03:05

40 2 15 3 0:00:28 40 2 15 3 0:05:32

40 3 15 0 0:00:01 40 3 15 0 0:00:01

40 3 15 1 0:00:06 40 3 15 1 0:00:11

40 3 15 2 0:00:02 40 3 15 2 0:00:21

40 3 15 3 0:00:01 40 3 15 3 0:00:30

40 4 15 0 0:00:06 40 4 15 0 0:00:06

40 4 15 1 0:00:17 40 4 15 1 0:00:43

40 4 15 2 0:00:07 40 4 15 2 0:01:26

40 4 15 3 0:00:02 40 4 15 3 0:01:55

40 5 15 0 0:00:10 40 5 15 0 0:00:10

40 5 15 1 0:00:13 40 5 15 1 0:00:44

40 5 15 2 0:00:05 40 5 15 2 0:01:18

40 5 15 3 0:00:07 40 5 15 3 0:02:10

40 6 15 0 0:00:21 40 6 15 0 0:00:21

40 6 15 1 0:00:53 40 6 15 1 0:02:20

40 6 15 2 0:00:31 40 6 15 2 0:04:45

40 6 15 3 0:00:19 40 6 15 3 0:07:06

40 7 15 0 0:00:05 40 7 15 0 0:00:05

40 7 15 1 0:00:11 40 7 15 1 0:00:29

40 7 15 2 0:00:03 40 7 15 2 0:00:51

40 7 15 3 0:00:02 40 7 15 3 0:01:10



340

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

40 8 15 0 0:01:37 40 8 15 0 0:01:36

40 8 15 1 0:01:12 40 8 15 1 0:05:11

40 8 15 2 0:00:40 40 8 15 2 0:08:56

40 8 15 3 0:00:03 40 8 15 3 0:10:20

40 1 20 0 0:09:41 40 1 20 0 0:09:42

40 1 20 2 0:00:20 40 2 20 0 0:00:18

40 2 20 0 0:00:18 40 2 20 1 0:02:30

40 2 20 1 0:01:07 40 2 20 2 0:05:33

40 2 20 2 0:00:45 40 3 20 0 0:00:03

40 3 20 0 0:00:03 40 3 20 1 0:00:18

40 3 20 1 0:00:06 40 3 20 2 0:00:30

40 3 20 2 0:00:02 40 4 20 0 0:00:18

40 4 20 0 0:00:18 40 4 20 1 0:01:13

40 4 20 1 0:00:19 40 4 20 2 0:01:56

40 4 20 2 0:00:05 40 5 20 0 0:00:18

40 5 20 0 0:00:17 40 5 20 1 0:01:07

40 5 20 1 0:00:16 40 5 20 2 0:02:10

40 5 20 2 0:00:11 40 6 20 0 0:00:48

40 6 20 0 0:00:48 40 6 20 1 0:03:38

40 6 20 1 0:01:08 40 6 20 2 0:07:11

40 6 20 2 0:00:45 40 7 20 0 0:00:11

40 7 20 0 0:00:11 40 7 20 1 0:00:44

40 7 20 1 0:00:12 40 7 20 2 0:01:10



341

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

40 7 20 2 0:00:03 40 8 20 0 0:02:55

40 8 20 0 0:02:53 40 8 20 1 0:07:46

40 8 20 1 0:01:31 40 8 20 2 0:10:22

40 8 20 2 0:00:13 40 1 20 1 0:28:48

40 1 20 1 0:05:20 40 1 20 2 0:34:27

40 1 30 0 0:25:42 40 1 30 0 0:25:34

40 1 30 1 0:00:54 40 1 30 1 0:35:11

40 2 30 0 0:01:16 40 2 30 0 0:01:16

40 2 30 1 0:01:46 40 2 30 1 0:05:32

40 3 30 0 0:00:11 40 3 30 0 0:00:11

40 3 30 1 0:00:05 40 3 30 1 0:00:30

40 4 30 0 0:00:43 40 4 30 0 0:00:43

40 4 30 1 0:00:18 40 4 30 1 0:01:55

40 5 30 0 0:00:45 40 5 30 0 0:00:44

40 5 30 1 0:00:24 40 5 30 1 0:02:11

40 6 30 0 0:02:21 40 6 30 0 0:02:19

40 6 30 1 0:01:38 40 6 30 1 0:07:09

40 7 30 0 0:00:29 40 7 30 0 0:00:29

40 7 30 1 0:00:09 40 7 30 1 0:01:10

40 8 30 0 0:05:10 40 8 30 0 0:05:10

40 8 30 1 0:01:05 40 8 30 1 0:10:23

50 1 15 0 0:00:37 50 1 15 0 0:00:37

50 1 15 1 0:24:16 50 1 15 1 0:31:59



342

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

50 1 15 2 0:00:20 50 1 15 2 0:38:42

50 1 15 3 0:00:14 50 1 15 3 0:44:11

50 2 15 0 0:00:09 50 2 15 0 0:00:09

50 2 15 1 0:00:45 50 2 15 1 0:01:35

50 2 15 2 0:00:32 50 2 15 2 0:03:50

50 2 15 3 0:00:35 50 2 15 3 0:06:55

50 3 15 0 0:00:01 50 3 15 0 0:00:01

50 3 15 1 0:00:07 50 3 15 1 0:00:13

50 3 15 2 0:00:02 50 3 15 2 0:00:26

50 3 15 3 0:00:01 50 3 15 3 0:00:37

50 4 15 0 0:00:08 50 4 15 0 0:00:08

50 4 15 1 0:00:21 50 4 15 1 0:00:54

50 4 15 2 0:00:09 50 4 15 2 0:01:47

50 4 15 3 0:00:03 50 4 15 3 0:02:23

50 5 15 0 0:00:12 50 5 15 0 0:00:12

50 5 15 1 0:00:15 50 5 15 1 0:00:54

50 5 15 2 0:00:06 50 5 15 2 0:01:36

50 5 15 3 0:00:08 50 5 15 3 0:02:41

50 6 15 0 0:00:26 50 6 15 0 0:00:26

50 6 15 1 0:01:07 50 6 15 1 0:02:52

50 6 15 2 0:00:38 50 6 15 2 0:05:51

50 6 15 3 0:00:24 50 6 15 3 0:08:50

50 7 15 0 0:00:06 50 7 15 0 0:00:06



343

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

50 7 15 1 0:00:12 50 7 15 1 0:00:36

50 7 15 2 0:00:04 50 7 15 2 0:01:03

50 7 15 3 0:00:02 50 7 15 3 0:01:26

50 8 15 0 0:02:00 50 8 15 0 0:02:00

50 8 15 1 0:01:28 50 8 15 1 0:06:24

50 8 15 2 0:00:49 50 8 15 2 0:11:10

50 8 15 3 0:00:04 50 8 15 3 0:12:49

50 1 20 0 0:12:02 50 1 20 0 0:12:02

50 1 20 2 0:00:25 50 2 20 0 0:00:22

50 2 20 0 0:00:22 50 2 20 1 0:03:06

50 2 20 1 0:01:23 50 2 20 2 0:06:54

50 2 20 2 0:00:57 50 3 20 0 0:00:04

50 3 20 0 0:00:04 50 3 20 1 0:00:22

50 3 20 1 0:00:07 50 3 20 2 0:00:37

50 3 20 2 0:00:02 50 4 20 0 0:00:22

50 4 20 0 0:00:22 50 4 20 1 0:01:31

50 4 20 1 0:00:24 50 4 20 2 0:02:23

50 4 20 2 0:00:06 50 5 20 0 0:00:22

50 5 20 0 0:00:21 50 5 20 1 0:01:23

50 5 20 1 0:00:20 50 5 20 2 0:02:41

50 5 20 2 0:00:14 50 6 20 0 0:00:59

50 6 20 0 0:00:59 50 6 20 1 0:04:31

50 6 20 1 0:01:24 50 6 20 2 0:08:53



344

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

50 6 20 2 0:00:55 50 7 20 0 0:00:13

50 7 20 0 0:00:13 50 7 20 1 0:00:54

50 7 20 1 0:00:14 50 7 20 2 0:01:27

50 7 20 2 0:00:04 50 8 20 0 0:03:34

50 8 20 0 0:03:34 50 8 20 1 0:09:38

50 8 20 1 0:01:52 50 8 20 2 0:12:47

50 8 20 2 0:00:16 50 1 20 1 0:35:59

50 1 20 1 0:06:40 50 1 20 2 0:43:07

50 1 30 0 0:31:52 50 1 30 0 0:31:50

50 1 30 1 0:01:07 50 1 30 1 0:43:41

50 2 30 0 0:01:35 50 2 30 0 0:01:35

50 2 30 1 0:02:12 50 2 30 1 0:06:55

50 3 30 0 0:00:13 50 3 30 0 0:00:13

50 3 30 1 0:00:06 50 3 30 1 0:00:37

50 4 30 0 0:00:54 50 4 30 0 0:00:54

50 4 30 1 0:00:22 50 4 30 1 0:02:24

50 5 30 0 0:00:54 50 5 30 0 0:00:54

50 5 30 1 0:00:29 50 5 30 1 0:02:41

50 6 30 0 0:02:53 50 6 30 0 0:02:52

50 6 30 1 0:02:02 50 6 30 1 0:08:51

50 7 30 0 0:00:36 50 7 30 0 0:00:36

50 7 30 1 0:00:11 50 7 30 1 0:01:27

50 8 30 0 0:06:24 50 8 30 0 0:06:24



345

Table 5: SDS time for each camera at each time segment in R2MMT. Time is in
format h:mm:ss.

Standard Configuration Configuration with Memory

K Camera τ t Time K Camera τ t Time

50 8 30 1 0:01:21 50 8 30 1 0:12:49

.0.0.2 Person Crop Distribution by Camera

This shows the distribution of person crops generated by R2MMT on DukeMTMC-

video [1] for each camera for each time segment for each value of τ . This is used in

Equations 3 and 4 of the main paper. Note that Percent here is noted for that

particular camera.

Table 6: Distribution of person crops for each camera at each time segment.

Camera 1 t Number Percent Camera 2 t Number Percent

Total 29121 Total 11360

τ=10

0 2681 0.092

τ=10

0 1227 0.108

1 12511 0.430 1 1269 0.112

2 9556 0.328 2 2709 0.238

3 1714 0.059 3 2151 0.189

4 1355 0.047 4 1897 0.167

5 1304 0.045 5 2107 0.185

τ=15

0 3235 0.111

τ=15

0 1618 0.142

1 21513 0.739 1 3587 0.316

2 2388 0.082 2 3019 0.266

3 1985 0.068 3 3136 0.276

τ=20

0 15192 0.522

τ=20

0 2496 0.220

1 11271 0.387 1 4860 0.428



346

Camera 1 t Number Percent Camera 2 t Number Percent

2 2659 0.091 2 4004 0.352

τ=30
0 24749 0.850

τ=30
0 5205 0.458

1 4373 0.150 1 6155 0.542

Camera 3 t Number Percent Camera 4 t Number Percent

Total 3250 Total 6402

τ=10

0 212 0.065

τ=10

0 631 0.099

1 813 0.250 1 1873 0.293

2 915 0.282 2 1406 0.220

3 536 0.165 3 1179 0.184

4 501 0.154 4 914 0.143

5 273 0.084 5 399 0.062

τ=15

0 516 0.159

τ=15

0 1467 0.229

1 1424 0.438 1 2443 0.382

2 762 0.234 2 1606 0.251

3 548 0.169 3 886 0.138

τ=20

0 1025 0.315

τ=20

0 2504 0.391

1 1451 0.446 1 2585 0.404

2 774 0.238 2 1313 0.205

τ=30
0 1940 0.597

τ=30
0 3910 0.611

1 1310 0.403 1 2492 0.389

Camera 5 t Number Percent Camera 6 t Number Percent

Total 6802 Total 12951

τ=10

0 1771 0.260

τ=10

0 1424 0.110

1 705 0.104 1 2676 0.207

2 1453 0.214 2 2961 0.229

3 926 0.136 3 1918 0.148



347

Camera 1 t Number Percent Camera 2 t Number Percent

4 967 0.142 4 2773 0.214

5 980 0.144 5 1199 0.093

τ=15

0 1875 0.276

τ=15

0 2709 0.209

1 2054 0.302 1 4352 0.336

2 1324 0.195 2 3302 0.255

3 1549 0.228 3 2588 0.200

τ=20

0 2476 0.364

τ=20

0 4100 0.317

1 2379 0.350 1 4879 0.377

2 1947 0.286 2 3972 0.307

τ=30
0 3929 0.578

τ=30
0 7061 0.545

1 2873 0.422 1 5890 0.455

Camera 7 t Number Percent Camera 8 t Number Percent

Total 4967 Total 15685

τ=10

0 805 0.162

τ=10

0 3720 0.237

1 1144 0.230 1 4217 0.269

2 1247 0.251 2 2947 0.188

3 728 0.147 3 2678 0.171

4 603 0.121 4 2064 0.132

5 440 0.089 5 57 0.004

τ=15

0 1326 0.267

τ=15

0 5859 0.374

1 1870 0.376 1 5025 0.320

2 1045 0.210 2 3741 0.239

3 726 0.146 3 1058 0.067

τ=20

0 1949 0.392

τ=20

0 7937 0.506

1 1975 0.398 1 5625 0.359



348

Camera 1 t Number Percent Camera 2 t Number Percent

2 1043 0.210 2 2121 0.135

τ=30
0 3196 0.643

τ=30
0 10884 0.694

1 1771 0.357 1 4799 0.306


	LIST OF FIGURES10pt
	LIST OF TABLES10pt
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Contributions to the Body of Knowledge

	REVAMP2T: Real-time Edge Video Analytics for Multi-camera Privacy-aware Pedestrian Tracking
	Introduction
	Related Work
	Pedestrian Detection, Re-Identification, and Tracking
	IoT Systems for Edge Video Analytics

	Privacy Requirements and Threat Modeling
	REVAMP2T: Algorithmic Constructs
	Feature Extractor Network
	Pedestrians Tracking
	Integration of Video Analytic Pipeline

	REVAMP2T: System Constructs
	System Hyperparameters and Processing Flow
	Databases
	System Communication / Synchronization
	Computation and Optimization

	Experimental Results and Evaluation
	Algorithm Evaluation
	System Evaluation
	Scalability
	Design Flexibility and Adaptation

	Conclusions

	Ancilia: Scalable Intelligent Video Surveillance for the Artificial Intelligence of Things
	Individual Contributions to Jointly Authored Work
	Introduction
	Related Work
	Ethical Concerns
	Ancilia Algorithmic Framework
	Single Camera Vision Pipeline
	Multi-Camera Person Re-identification
	higher Level Tasks

	System Design
	Parallelism
	Data Batching
	Local Node
	Global Node

	Experimental Results
	Algorithmic Core
	High-level Tasks
	Real-time System Performance
	Effect of Batch Size on Real-time Performance

	Conclusion

	Efficient and Scalable High-Resolution Networks for Real-Time Multi-Person 2D Human Pose Estimation
	Introduction
	Related Work
	Top-down Methods
	Bottom-up Methods
	Top-down vs Bottom-up
	Multi-scale High-Resolution Networks
	Model Scaling
	Real-Time Pose Estimation

	EfficientHRNet
	Network Architecture and Formulation
	Compound Scaling Method

	Experimental Results
	Classification for Compact EfficientNet
	2D Human Pose Estimation for EfficientHRNet
	Real-Time Execution Analysis on Edge
	Qualitative Analysis

	Conclusions

	Real-Time Online Unsupervised Domain Adaptation for Real-World Person Re-identification
	Introduction
	Related Work
	Style Transfer
	Target Domain Clustering
	Online Unsupervised Domain Adaptation

	Proposed R2OUDA Setting
	Real-World Real-Time Online Streaming MMT
	Experimental Results
	Subset Distribution Selection
	System Generated Data
	R2MMT

	Conclusion

	Conclusions
	REFERENCES

	Appendix A: Extended Results for Subset Distribution Selection
	Appendix B: Extended Results for System Generated Data
	Appendix C: Extended Results for R2MMT

