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ABSTRACT 

 

HARDIK RAMESHBHAI GAJERA. Modeling and Identifying Factors Associated with Fatal 

Crashes Involving Vehicles with Advanced Driver Assistance Systems. (Under the direction of 

DR. SRINIVAS S. PULUGURTHA) 

 

Recent advancements in vehicular technology are expected to enhance traffic safety by 

either warning the drivers or by automating the tasks related to driving to reduce the human driver’s 

involvement. The driver warning systems (DWSs) are designed to warn drivers in unsafe situations 

such as forward collision, lane departure, or when changing lanes with vehicles in blind spot areas. 

These features only warn the driver but cannot perform the driving tasks. Advanced driver 

assistance systems (ADASs) can perform driving tasks such as accelerating, braking, and steering, 

thereby eliminating the role of the human driver in performing these tasks. However, ADASs 

currently require drivers to remain seated and regain control when the vehicle demands. 

A plethora of research is available on the operational and safety benefits of the DWSs and 

ADASs. Most of these studies focus on calibrating the driving behavior parameters to mimic 

vehicles with particular DWS or ADAS using microsimulation software or a driving simulator. 

Some researchers also performed field tests using vehicles equipped with DWSs or ADASs but in 

a controlled environment. The efficiency of DWSs or ADASs tested in laboratories or controlled 

environments may vary depending on driving conditions and the complexity of driving tasks, 

demanding research on the factors affecting crash occurrence when driving such vehicles in normal 

driving conditions with other vehicles. 

Existing literature documents numerous studies focused on identifying factors affecting 

fatal crashes. The studies on fatal crashes show that factors such as roadway geometry, traffic 

control devices, vehicular characteristics, and other on- and off-road characteristics affect fatal 

crash occurrence. The factors related to the driver, such as attentiveness, distraction, and fatigue, 
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also affect the crash occurrence. Although the DWSs and ADASs are designed to enhance safety, 

recent crash data shows that vehicles equipped with these systems still get involved in crashes. 

The reason for the same has been identified as either disengagement of the features or the risk 

other drivers possess to the drivers of vehicles with DWSs or ADASs. In addition, change in 

drivers’ behavior due to ADASs is also one of the factors influencing crash occurrence. The 

existing literature shows a dearth of research conducted to identify the factors influencing fatal 

crashes and fatal crash occurrence, considering the real-world crash data of vehicles equipped with 

varying DWSs and ADASs. Therefore, a comprehensive analysis considering the reported fatal 

crash data is imperative as it will help identify how the factors affecting fatal crash occurrence 

vary depending on the number and type of DWSs or ADASs equipped in the vehicles. In addition, 

conducting a study using a particular DWS or ADAS and the corresponding crash type for which 

the particular feature is designed would provide insights into the overall effectiveness of these 

features in terms of traffic safety. The findings from the study will assist in improving safety and 

proactively planning for infrastructure at higher penetration of vehicles with DWSs or ADASs. 

The objectives of the research, therefore, are (1) to collect and comprehensively evaluate 

data pertaining to the vehicles equipped with individual DWS and ADAS, (2) to identify, model, 

and compare factors affecting fatal crashes involving vehicles with individual DWS, and ADAS, 

(3) to identify, model, and compare factors affecting fatal crashes involving vehicles with one or 

more DWSs and ADASs with vehicles without any warning or assistance systems, and (4) to 

examine the effect of traffic characteristics, geometric characteristics, on-network, and off-

network characteristics, and vehicle characteristics on the safety of vehicles with varying numbers 

of DWSs and ADASs present in the vehicles involved in fatal crashes. 
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The fatal crash data is used to accomplish these objectives. The fatal crash data contains 

Vehicle Identification Numbers (VINs) of all vehicles involved in crashes, with information about 

all DWSs and ADASs equipped in the vehicles. In addition, the fatal crash data is more detailed 

and accurate than other crash severity data. Therefore, using only fatal crashes would provide 

reliable model estimates. 

The fatal crash data from 2016 to 2020 were obtained from the Fatality Analysis and 

Reporting System (FARS) database and considered for analysis and modeling in this study. Using 

VINs of all vehicles involved in crashes, information about vehicular characteristics such as type 

and the number of DWSs or ADASs was retrieved from the National Highway Traffic Safety 

Administration (NHTSA) database. The vehicular information is combined with fatal crash data 

to classify vehicles based on various DWSs or ADASs equipped in vehicles. In this study, DWSs 

such as Forward Collision Warning System (FCWS), Blind Spot Monitoring (BSM), Lane 

Departure Warning (LDW), and ADASs such as Lane-Keeping Assist (LKA), Adaptive Cruise 

Control (ACC), and Pedestrian Automatic Emergency Braking (PAEB) system were considered 

for the analysis. 

The combined dataset was further divided into three separate datasets, (a) multivehicle 

crashes, (b) single-vehicle and lane departure-related crashes, and (c) pedestrian crashes, to 

facilitate the analysis for different DWSs and ADASs depending on the type of crashes for which 

they are designed to enhance safety. A descriptive analysis of divided datasets was conducted, 

which showed that the proportion of crashes involving vehicles with DWSs or ADASs was less 

than 3% of the entire dataset. The locations of crashes were mapped to identify the spatial variation 

of crashes involving vehicles with various DWSs and ADASs. The temporal trends in the number 

of crashes involving vehicles with DWSs and ADASs were also plotted. The data visualization 
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results showed that crashes involving vehicles with a particular DWS or ADAS vary spatially and 

temporally. Therefore, a comprehensive methodological framework to incorporate unobserved 

heterogeneity due to varying spatial, temporal, and driving behavior characteristics is proposed. 

The aspect of heterogeneity was addressed in three parts. Nearest neighbor analysis was 

conducted for each year of crash data of a particular dataset to account for spatial heterogeneity 

and sample crashes involving vehicles without a DWS or ADAS. The three nearest neighbors were 

obtained as the most optimal. The data from nearest neighbors and corresponding crashes 

involving vehicles with DWSs or ADASs were considered for modeling. 

The dependent variable in this study is either ordinal (number of DWSs or ADASs) or 

binary (with or without DWS or ADSA), depending upon the type of DWS and ADAS and the 

corresponding crash type for which a particular feature is designed. Logistic regression is the most 

appropriate modeling approach for these types of problems and was therefore used in the study. A 

fixed parameter and correlated random parameters ordered logit models were developed to identify 

factors affecting fatal crashes involving vehicles equipped with one or more DWSs and ADASs. 

In the case of pedestrian, single-vehicle and roadside departure-related crashes, a fixed and 

correlated binary logistic regression modeling approach was employed for vehicles with and 

without PAEB and LDW systems. The sole reason for developing random parameters model was 

to incorporate unobserved heterogeneity in modeling. 

To account for temporal heterogeneity, a temporal variable in the form of linear effect of 

time elapsed was included while modeling. Driver-related parameters in the dataset were 

considered as random parameters in correlated random parameters models to incorporate 

heterogeneity due to varying driving behavior. The goodness of fit indices such as Log-likelihood 

statistics and McFadden pseudo-r-square were used to compare and identify the best-fitted model 
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amongst fixed and correlated random parameters models. Further, partial effects were obtained to 

derive inferences from the models. 

The results of the analysis conducted to identify factors affecting fatal crashes involving 

vehicles with and without DWSs or ADASs indicated that correlated random parameters models 

(ordered logit and binary logit) better fit the crash data. The correlated random parameters ordered 

logit model was significantly better compared to the fixed parameters ordered logit model. 

However, the difference in the goodness of fit indices was not statistically significant when the 

correlated random parameters binary logit model and fixed parameters binary logit model were 

compared, indicating that the improvement in model fit because of variation in driving behavior is 

not significant. 

The partial effects of models showed that vehicles with one or more DWSs or ADASs are 

more likely to get involved in fatal crashes in urban areas and on interstates. The probability of 

fatal crash occurrence for vehicles with LDW or PAEB during adverse weather conditions, such 

as ice, snow, smoke, or fog, was lower than for vehicles without those features. In wet or snowy 

road conditions, vehicles with DWSs, such as FCWS or BSM, and ADASs, such as LKA and 

ACC, are safer than vehicles without those features. However, vehicles with LDW and PAEB are 

unsafe during wet road surface conditions.  On the other hand, vehicles with BSM, FCWS, LKA, 

or ACC are less likely to get involved in fatal crashes in conditions when the vehicle is skidding 

laterally or longitudinally before the crash. Similarly, the probability of fatal crash occurrence for 

vehicles with LDW is less when a vehicle is skidding longitudinally before the crash. In contrast, 

vehicles with PAEB are safer when the vehicle is skidding laterally before a crash. 

During critical road conditions, such as in the presence of work zones, vehicles with an 

ADAS or LDW are safer compared to vehicles without those features. In addition, vehicles with 
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DWSs and ADASs, except those with PAEB, are safer at intersections than normal vehicles. In 

crashes related to speeding or driving under the influence of alcohol, vehicles with DWSs or 

ADASs are less likely to get involved in fatal multivehicle crashes. However, drivers traveling at 

a higher speed than the speed limit are more likely to get involved in fatal crashes in single-vehicle 

or lane departure-related and pedestrian-related crashes. 

From the results of all models, females and elderly drivers are more likely to get involved 

in fatal crashes when driving vehicles with any DWS or ADAS. In addition, it is notable that the 

probability of crash occurrence for vehicles with any DWSs or ADASs has increased from 2016 

to 2020, showing that it is necessary to take precautionary measures to ensure better safety at 

higher penetration of these vehicles in the future. 

The data processing framework, methodological findings, and study results help identify 

the factors affecting fatal crashes involving vehicles with one or more DWSs or ADASs. The 

results of this study also highlight critical factors affecting fatal crash occurrence for vehicles 

equipped with individual or multiple DWSs and ADASs. The results help identify the potential 

areas for improvement in vehicular technologies for the industry. It also provides insights about 

factors related to road geometry and on-road and off-road characteristics to the practitioners, 

assisting them in better preparing the infrastructure for fully automated vehicles in the future. 
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CHAPTER 1 INTRODUCTION 

 

This chapter presents details including the background and motivation, problem statement, 

research significance, objectives of the research, and organization of this Dissertation. 

 

1.1 Background and Motivation 

In the United States, vehicles with driver warning systems (DWSs) and advanced driver 

assistance systems (ADASs) have rapidly grown in the past decade. From common vehicle models 

to luxury cars, the majority of the manufacturers provide options to add DWSs, such as blind spot 

monitoring (BSM), lane departure warning (LDW), and forward collision warning system 

(FCWS). The manufacturers also provide options to equip vehicles with ADASs, such as adaptive 

cruise control (ACC), lane-keeping assistance (LKA), and pedestrian automatic emergency 

braking (PAEB) systems. The primary reason behind the increasing number of vehicles with these 

features is motor vehicle crashes, with human errors as a cause of approximately 94% of crashes 

(NHTSA, 2017). Motor vehicle crashes are among the top ten causes of fatalities in the United 

States (NCIPC, 2020), increasing safety and operational concerns. 

In 2019, over 2.35 million commuters were either injured or disabled, and approximately 

36,000 people lost their lives by getting involved in fatal road crashes (NHTSA, 2019). According 

to the report by the Centers for Disease Control and Prevention (CDC), the total cost of medical 

care and productivity losses due to vehicular crashes (injuries and fatalities) was reported to exceed 

$75 billion in the United States (NCIPC, 2018). Commuters are getting involved in crashes 

primarily due to their fault or someone else's fault while driving, regardless of their familiarity 

with the road conditions (Gajera et al., 2023a). 
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The factors related to driver errors, such as improper lookout when driving, speeding, 

drinking and driving, and inattentiveness, are among the major causes of crashes. As vehicles with 

DWSs or ADASs provide additional warning or assistance to the drivers, vehicles equipped with 

these features are expected to enhance traffic safety and operation. The vehicles with different 

combinations of ADASs to automate either steering, acceleration, and braking or all driving tasks 

are known as automated vehicles (AVs). In the past few years, a plethora of research work focusing 

on the effects of individual ADAS or AVs on traffic safety and operation has been published by 

researchers working in the field of transportation (Gajera et al., 2023b). 

While utilizing an ADAS and sitting idle in the driver's seat, drivers may engage in 

secondary tasks, like using mobile phones or other devices, which can lead to cognitive 

distractions. This can adversely affect drivers' attention and judgment (De Winter et al., 2014). 

Hence, it is crucial to analyze the changes in driver behavior when operating vehicles equipped 

with ADASs, as well as examine the safety benefits provided by these systems (Smiley, 2000). 

Investigating the effect of vehicles with either one or multiple ADASs or DWSs on fatal 

crashes will help identify the factors affecting the crashes and provide insights about the 

involvement of AVs equipped with varying smart features designed to enhance safety in certain 

types of crashes. Moreover, it is important to recognize that the effects of DWSs, such as FCWS, 

BSM, and LDW and ADASs, such as ACC, LKA, and PAEB, on fatal crashes might differ from 

the anticipated benefits observed during field tests conducted while developing these features. 

A comprehensive safety assessment to examine the trends in crashes involving vehicles 

with varying DWSs or ADASs to identify underlying risk factors affecting crashes involving 

vehicles with different DWSs and ADASs and compare them with factors influencing crashes 

involving non-automated vehicles will provide useful insights to the manufacturers and 
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practitioners. By doing so, manufacturers and practitioners can make appropriate modifications to 

existing DWSs and ADASs and develop new policies to enhance safety on the road. 

 

1.2 Problem Statement 

Vehicular technologies and driver interactions are expected to evolve more than they have 

evolved in the past in the next few decades due to ongoing technological enhancements and 

research in the automobile industry. Recent and ongoing vehicle advancements have raised 

expectations regarding operational performance, environmental benefits, safety enhancement, and 

user comfort. As human error is the leading cause of motor vehicle crashes in the United States, 

DWSs and ADASs are expected to reduce the number of crashes caused due to driving errors 

through the gradual removal of the human driver’s role in performing driving-related tasks and 

decision-making. 

Although the deployment of vehicles with varying DWSs and ADASs has increased over 

recent years, fully AVs are yet to be a reality. Apart from a few test vehicles, fully AVs are not 

available in the market for users. The safety benefits of vehicles with varying DWSs and ADASs 

also depend on the driver’s reliance on the features and their willingness to use them while driving. 

Additionally, some recent crashes involving vehicles with multiple ADASs resulting in deaths 

indicated that ADASs may not always be effective. Potential reasons for the same are related to 

the ability of ADASs to sense and control the driving tasks irrespective of the geographic location, 

geometric condition, traffic condition, and lighting condition. 

Understanding the effect of the transition from no automation to vehicles with DWSs and 

ADASs on traffic safety could be more challenging than expected, considering data limitations 

and their lower penetrations in the market. Conducting a comprehensive safety analysis to examine 
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the trends in fatal crashes and identifying potential risk-causing factors, coupled with the ongoing 

advancements in DWSs and ADASs, is the first task. Modeling analysis to identify risk factors 

associated with vehicles equipped with varying DWSs and ADASs when compared to vehicles 

without any DWS or ADAS during their crash involvement is an important step to determine the 

overall difference in safety that DWSs and ADASs provide. Recent fatal crash data (FARS, 2020) 

shows that vehicles with DWSs, such as LDW, FCWS, and BSM, and vehicles with ADASs, such 

as ACC, PAEB, FCWS, and LKA, are still getting involved in types of fatal crashes for which 

they were designed to provide additional assistance or warning. The variation in crash involvement 

also gets influenced due to drivers’ familiarity with these features and their driving behavior. 

Therefore, there is a need to analyze crash data and identify various factors that contribute to 

crashes involving vehicles with varying DWSs and ADASs. 

Due to the potential reduction in driving economies and the transition to fully AVs, the 

driving behavior when driving vehicles with varying technologies would also vary. Therefore, it 

is also necessary to incorporate heterogeneity due to spatial and temporal variation in crash data 

and varying driving behaviors. Conducting a similar analysis would help develop a readiness plan 

to proactively address the anticipated safety challenges in the upcoming years when the penetration 

of vehicles with DWSs and ADASs is expected to increase. 

 

1.3 Research Significance  

With the increasing penetration of vehicles with DWSs and ADASs over time, practitioners 

and industry experts need to identify their impacts on the infrastructure, safety, and operations to 

smoothen the transition from no automation to the scenario with fully AVs. A plethora of existing 

research on DWSs shows their benefits in terms of safety. However, a limited number of studies 
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were conducted using real-world crash data of vehicles with DWSs and ADASs to determine the 

crash risk factors involving these vehicles. 

Most of the studies on DWSs and ADASs to date focused on a simulation-based approach 

using either microsimulation software or driving simulators to generate virtual conditions 

involving vehicles with varying ADASs and identifying their impact under varying driving 

conditions and penetration rates. The cited reason for using such tools is the lack of availability of 

real-world data on vehicles with AVs. Some automobile manufacturing companies and researchers 

also tried to conduct studies using test vehicle data (Boggs et al., 2020; Chen et al., 2021). 

However, those studies were conducted primarily in selected areas, and almost negligible studies 

considered the involvement of these vehicles with varying ADASs in fatal crashes (Gajera et al., 

2022; Gajera et al., 2023a). This Dissertation highlights factors affecting fatal crashes involving 

vehicles with varying DWSs and ADASs. The effect of the driver characteristics such as age, 

gender, and drink and drive also provides an idea about variation in crash risk for different drivers. 

Incorporating heterogeneity while modeling and comparing the risk-causing factors for vehicles 

with and without DWSs and ADASs will also provide insights into the overall safety benefits of 

these features and required modifications in vehicular technologies. 

In order to identify the effect of various DWSs and ADASs on crashes, it is necessary to 

obtain information about DWSs and ADASs in vehicles. Fatal crash data is often more detailed 

and contains useful information such as Vehicle Identification Numbers (VINs), which are 

required to extract the information about DWSs and ADASs equipped in the vehicles involved in 

crashes. Besides it also contains detailed information about all the factors affecting crashes, 

including details about vehicular, road, crash, and driver characteristics. Therefore, considering 
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fatal crash data would provide detailed insights about the risk-causing factors and be considered 

for the analysis. 

The descriptive statistics of the crash data provide an overview of the number of crashes 

involving vehicles with varying DWSs or ADASs. The modeling results help compare the fatal 

crash occurrence for vehicles with and without DWSs and ADASs and identify the factors 

affecting the occurrence of fatal crashes involving these vehicles. The information about 

heterogeneity due to varying driving behavior is facilitated by comparing models with fixed and 

random driving behavior parameters. The findings help identify the factors related to the vehicle, 

road geometry and crashes for implementing policies to improve the safety of the existing 

transportation system and also serve as an overview of the current involvement of vehicles with 

DWSs and ADASs in fatal crashes. 

The scope of this Dissertation is limited to fatal crashes and identifying and comparing 

factors affecting fatal crashes involving vehicles with varying combinations of DWSs and ADASs. 

 

1.4 Research Objectives 

The goal of this study is to identify factors affecting fatal crashes involving vehicles with 

different combinations of DWSs and ADASs to enhance safety. The objectives of the proposed 

research are: 

1. To collect and comprehensively evaluate fatal crash data pertaining to vehicles with 

individual DWS and ADAS, 

2. to identify, model, and compare factors affecting fatal crashes involving vehicles with 

individual DWS and ADAS, 
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3. to identify, model, and compare factors affecting fatal crashes involving vehicles with one 

or more DWSs and ADASs with vehicles without any warning or assistance systems, and, 

4. to examine the effect of traffic characteristics, geometric characteristics, on-network and 

off-network characteristics, and vehicle characteristics on the safety of vehicles with 

varying numbers of DWSs and ADASs present in the vehicles involved in fatal crashes. 

 

1.5 Organization of the Report 

The remainder of the report comprises five chapters. Chapter 2 summarizes a 

comprehensive literature review of factors affecting fatal crashes, DWSs, ADASs, levels of 

automation, the effect of DWSs and ADASs on safety and operations, the effect of DWSs and 

ADASs on crash occurrence, limitations of the past research and need of the research on vehicles 

with DWSs and ADASs. All the methods used in this study are explained in Chapter 3. Chapter 4 

contains information about the study area, data collection, data processing framework used in this 

study, and data visualization. The descriptive statistics of the datasets used in this study and the 

goodness of fit indices of models are provided in Chapter 5, along with the modeling results and 

discussion. The findings from this study, policy recommendations, scientific contributions, 

limitations of the study, and future scope of work are discussed in Chapter 6.  
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CHAPTER 2 LITERATURE REVIEW 

 

This chapter presents an overview of past studies associated with factors affecting fatal 

crashes, DWSs and ADASs, levels of automation, and the effect of DWSs and ADASs on safety 

and operations. Further, additional discussions related to studies using microsimulation and real-

world data on the effect of DWSs and ADASs on safety are also discussed in this chapter. 

 

2.1 Factors Influencing Fatal Crashes 

Many researchers in the past focused on identifying factors influencing fatal crashes. The 

factors related to on-road and off-road characteristics identified in the past research are the 

dimension of the median (Molan et al., 2019), day of the week (Siskind et al., 2011), side traffic 

barriers (Penmetsa and Pulugurtha, 2018, 2019; Molan et al., 2020), speed limit (Wagenaar et al., 

2007; Tagar and Pulugurtha, 2021), road infrastructure (Noland and Oh, 2004; Tagar and 

Pulugurtha, 2021), highway class (Chen et al., 2019), road alignment (Siskind et al., 2011), socio-

demographic characteristics near the crash location (Noland and Oh, 2004), traffic control (Siskind 

et al., 2011), and adverse weather conditions (Pisano et al., 2008; Saha et al., 2016). Besides, some 

researchers also evaluated the effect of red-light cameras (Pulugurtha and Otturu, 2013; Hu and 

Cicchino, 2017), road surface (Pulugurtha et al., 2010, 2012; Tay, 2015; Chen et al., 2017), 

intersection type (Chen et al., 2017), and annual average daily traffic (AADT) (Pulugurtha and 

Nujjetty, 2012; Chen et al., 2017) on crashes at intersections. The aforementioned studies focused 

on either identifying the factors related to crashes or conducting a before and after analysis to 

determine the improvement in traffic safety. 

In addition to the crash and road characteristics, other factors such as vehicle characteristics 

(presence of advanced features, safety standards and ratings, size, and type of vehicle) are also 
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amongst factors influencing crash occurrence and injury severity. Secondary safety devices such 

as seat-belts (Farmer et al., 1997; Crandall et al., 2001; Cummings, 2002), airbags (Crandall et al., 

2001), and antilock braking systems (Farmer et al., 1997) are generally considered as measures to 

reduce the injury when involved in a crash because their presence can only reduce the severity of 

injury to the driver and passengers. These devices do not affect the crash occurrence of a vehicle. 

Other than road and vehicular characteristics, driver characteristics also affect fatal crash 

occurrence. Human errors are one of the most frequent causes of crashes in the United States 

(NHTSA, 2019). The causes of human error primarily vary depending on driver characteristics 

such as age, gender, and experience of a driver. Teen drivers are generally found to be aggressive 

and inexperienced, making them more vulnerable to crashes (Mathew et al., 2022). Findings from 

the research on teen drivers indicate that the crash rate per mile driven and crash rate per number 

of license holders for teen drivers are higher than for adults (Williams et al., 2005). In contrast, 

elderly drivers are found to have poor reaction time, ability to divide attention between multiple 

tasks, and vision (Gruber et al., 2013), due to which their probability of getting involved in a crash 

is higher compared to young drivers (Meng and Siren, 2012). In addition to age, several other 

factors, such as gender, distracted driving, and driving under the influence of alcohol or drugs, are 

also among the factors influencing the likelihood of getting involved in a crash. Therefore, 

considering driving behavior while analyzing crash data is necessary to get useful insights about 

variations in crash risk based on driver characteristics. 

 

2.2 DWSs, ADASs and Levels of Automation 

Existing literature contains a plethora of research on DWSs, ADASs, and AVs with varying 

levels of automation. The DWS provides a warning to the drivers departing their travel lane or 
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making dangerous maneuvers, such as changing lanes while having a vehicle in a blind spot area 

or late-braking while having vehicles in front. The field tests on vehicles equipped with a DWS 

showed significant improvement in terms of safety. However, they are still getting involved in 

crashes primarily because of human errors irrespective of the warnings provided by the DWSs, 

due to which the manufacturers are shifting towards the development of ADASs to perform driving 

tasks and eliminate the role of human drivers from steering, accelerating, and braking. 

The number of vehicles equipped with DWSs and ADASs has increased rapidly in the past 

few years while transitioning from non-automated to fully AVs. The FCWS warns the vehicle in 

potential forward collision conditions, reducing the likelihood of getting involved in rear-end 

collisions (Jermakian, 2011). The ACC system can control the vehicle's acceleration and 

deceleration to drive while maintaining a significant gap from the leading vehicle (Li et al., 2017a). 

Therefore, ACC also affects the vehicle's likelihood of getting involved in a rear-end collision. 

The ACC works either on radar or lidar-based detection. In case if the leading vehicle slows down, 

the radar detects the movement and applies brakes to maintain a safe gap. If there is no vehicle in 

front of a vehicle with ACC, it travels at a speed set by the driver (Eichelberger and McCartt, 

2014). 

The LDW system warns drivers of conditions when a vehicle departs a lane. However, 

LKA pushes the vehicle toward the center of the lane instead of providing a warning when 

departing the lane. The PAEB system determines the path of a pedestrian using either a camera or 

radar and warns the driver if a pedestrian walks in the path of a moving vehicle and collision is 

imminent (Eichelberger and McCartt, 2014). If the driver does not react promptly, the PAEB 

feature automatically engages the brake, avoiding a potential pedestrian crash (Eichelberger and 

McCartt, 2014). 
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The BSM system, also known as the side view assist system, warns the driver during 

conditions when any vehicle or object is present in the vehicle's blind spot area (Jermakian, 2011). 

The BSM system is designed to improve safety by warning the driver of sideswiping or rear-to-

side collisions. 

The vehicles equipped with a specific combination of ADASs qualify for level 1 and level 

2 of levels of automation defined by SAE (SAE, 2018). Per the Society of Automotive Engineers 

(SAE), AVs will integrate on roads using six different automation levels (SAE, 2018). Vehicles 

without any smart features are categorized as level 0 vehicles (SAE, 2018; Jakob, 2018; Choksey 

and Wardlaw, 2021). Vehicles with ADASs, such as ACC and LKA, qualify for level 1 and level 

2 automation based on the number of ADASs present in the vehicle (Jakob, 2018; Choksey and 

Wardlaw, 2021). 

The vehicles with DWSs and ADASs are expected to reduce the number of crashes by 

providing additional warnings and assistance to the drivers. Vehicles equipped with these features 

are also known as smart vehicles due to their ability to interact with other vehicles and 

infrastructure through sensing. Due to additional assistance provided by vehicles with ADASs, 

they are driving the existing market because of the increasing emphasis on safety and operations. 

However, before transiting to the scenario with fully AVs, it is necessary to identify the safety 

effect of each DWS and ADAS and their combinations to improvise the technology and ultimately 

enhance the safety effectiveness of these vehicles. 

 

2.3 Effect of ADASs and AVs on Safety 

Several researchers examined the effects of individual ADAS on safety. Examples include 

studies to identify the effect of the automated braking system (ABS) (Eichelberger and McCartt, 
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2014), LKA (Jermakian, 2011), ACC (Eichelberger and McCartt, 2014; Li et al., 2017a), FCWS 

(Jermakian, 2011), and crash avoidance technology (Eichelberger and McCartt, 2014) on safety. 

Vehicles with ADASs can enhance traffic safety, as human error is the primary reason for crashes. 

The safety benefits are maximized at higher penetration of vehicles with smart features. 

Researchers in the past used microsimulation to identify the effect of vehicles with different 

ADASs on safety (Dijkstra et al., 2010; Fan et al., 2013). Fitch et al. (2014) investigated the 

effectiveness of using various DWSs in multiple near-crash scenarios with FCW and LDW 

systems. The results showed that vehicles with multiple smart features are safer than others. Li et 

al. (2016) investigated the effect of ACC while integrating it with variable speed limit signs. They 

compared it with non-automated vehicles for five scenarios varying from 10% to 100% penetration 

rate. The results showed vehicles with ACC yield higher safety by reducing time exposed time to 

collision (TET) and time-integrated time to collision (TIT) by 77.5% and 77.3%, respectively. 

Researchers in the past also evaluated the safety effects of AVs on safety using surrogate 

safety assessment models (Deluka Tibljaš et al., 2018; Virdi et al., 2019). While evaluating 

partially automated vehicles, Kikuchi et al. (2003) considered the effects of using ACC in 

platooning based on the different positioning of the vehicle using microsimulation. The results 

showed reduced reaction times for both vehicles equipped with ACC and without ACC, and both 

were observed to enhance safety. Similarly, Derbel et al. (2012) investigated the effect of mixed 

traffic including vehicles equipped with ACC for different crash scenarios. The results showed 

enhanced safety and reduced crash risk when vehicles with ACC were involved in a crash. Further, 

Jeong et al. (2014) studied the effect of an inter-vehicle safety warning information system 

(ISWS). The ISWS system communicates hazardous maneuvers of vehicles that could potentially 

lead to a crash. The driver behaviors captured using probe vehicle data were incorporated into the 
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PTV Vissim simulation software, and a surrogate safety assessment using SSAM tool was used to 

assess the number of conflicts. Rear-end conflicts were observed to reduce with the penetration 

rate while the congestion increased. 

While most studies showed enhanced safety benefits of ADASs, some also showed that 

they are still not safer than non-automated vehicles in several scenarios (Favarò et al., 2017; Gajera 

et al., 2022). Teoh and Kidd (2017) conducted a comparative analysis of the driving potential of 

human drivers and vehicles with ADAS. Favarò et al. (2017) compared real-world crashes 

involving non-automated vehicles and fully AVs considering crash frequency. The study showed 

that non-automated vehicles ran more moles compared to AVs before involving in a crash. Genders 

and Razavi (2016) showed that the market penetration of AVs under 40% contributes to safety. 

However, higher penetration rates reduce the safety benefits. Rahman et al. (2019) investigated 

the effect of fully and partially AVs on safety. They identified that for higher safety benefits of 

partially and fully AVs, a market penetration of 30% or more is needed. 

To analyze the effects of vehicles on safety, several researchers used different parametric 

as well as non-parametric models such as the negative binomial model (Gaweesh et al., 2019), 

spatial autoregressive model (Gaweesh et al., 2019), modified negative binomial regression (Kim 

et al., 2007), multivariate adaptive regression (Gaweesh et al., 2019), bootstrap-based binary 

logistic regression (Sze et al., 2014), fixed-parameters logit model (Anastasopoulos and 

Mannering, 2011), random parameters logit model (Anastasopoulos and Mannering, 2011; 

Venkataraman et al., 2013; Hou et al., 2022), grouped random parameters logit model (Itani et al., 

2020), and intelligent driver model (Li et al., 2017b). These modeling techniques were used to 

analyze crash data and identify factors affecting crash severity. Amongst these modeling 



14 

 

techniques, the grouped random parameters ordered logit model is considered superior to other 

models while analyzing ordered dependent variables. 

Logistic regression is proven reliable in modeling the relations between dependent and 

independent variables in many traffic safety studies (Zhang et al., 2000; Al-Ghamdi, 2002). There 

are a few studies in the highway safety domain, where logistic regression models were developed 

to identify the effect of independent variables on dependent variable. Kim et al. (2000a) identified 

behavioral predictors of vehicle crashes and injury severity. Kim et al. (2000b) used logistic 

regression modeling to identify the effect of different demographic factors associated with 

motorcycle crashes. Dissanayake and Lu (2002) also used a binary logit regression model to 

analyze the severity of young driver crashes as the dependent variable has only two values. 

Likewise, the binary logistic regression models were used to compare vehicles with and without 

the PAEB and LDW systems to assess their safety effectiveness in this study. 

 

2.4 Summary and Limitations of Past Research 

The increasing number of fatalities in motor vehicle crashes emphasize the need for 

identifying factors affecting fatal crashes. Researchers in the past studied fatal crash data and 

identified several factors related to road geometry, vehicles, drivers, and on- and off-road 

characteristics that directly or indirectly affect fatal crashes. However, the recent advancements in 

vehicular technology, especially the inclusion of ADASs, are expected to enhance safety, due to 

which research on ADASs is gaining popularity in the past few years. 

Most studies in the past related to individual DWS, ADAS and AVs were carried out using 

simulation analysis. The simulation analysis includes either microsimulation software or driving 

simulators (Gouribhatla and Pulugurtha, 2022) to mimic the behavior of AVs and identify their 
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effect on traffic operations and safety. The review of studies on microsimulation analysis showed 

mixed results, primarily due to varying assumptions and considerations related to each study. 

Another reason for the varying results from these studies is the varying accuracies of model 

calibration and the use of different surrogate safety measures, which significantly affect the degree 

of reliability of the microsimulation results (Sinha et al., 2020). 

The effectiveness of ADASs also varies depending on factors related to road geometry, 

crash occurrence, and vehicle. Thus, using real-world crash data involving information about 

factors affecting crashes may yield clearer results compared to microsimulation techniques as it 

also considers the human errors by drivers of non-automated vehicles and vehicles with ADASs, 

which are already penetrating the existing transportation system. 

The studies on identifying factors affecting the severity of crashes using crash data and 

parametric and non-parametric approaches showed better results than simulation-based studies, 

mainly due to consideration of affecting factors through existing data. However, the use of 

parametric and non-parametric approaches to analyze the effect of DWSs and ADASs is limited, 

primarily because of the lack of crash data availability. Amongst the techniques used to analyze 

crash data, correlated random parameters modeling is statistically superior because it allows 

parameters to vary across observations and also incorporates correlation between varying 

parameters while modeling. 

The recent analysis using fatal crash data showed that many vehicles with one or more 

DWSs and ADASs still get involved in fatal crashes. Thus, a comprehensive safety assessment 

using crash data and considering all the factors affecting fatal crashes is useful in gaining insights 

on the factors affecting fatal crashes involving vehicles equipped with one or more DWSs and 

ADASs. 
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2.5 Contribution of the Research 

There are potential barriers that AVs have to overcome to eliminate human interaction 

while performing driving tasks in a real-world scenario. Vehicles with DWSs or ADASs are 

considered safe and efficient but are still involved in crashes. The potential reasons for their 

involvement in crashes include disengagement of automated features, false detection of objects, 

and perception discrepancies (Xu et al., 2019; Sinha et al., 2021). Additionally, some recent 

crashes involving vehicles with DWSs or ADASs, resulting in deaths, indicate that smart features 

may not always be effective. 

Understanding the effect of ADASs on the transportation system's overall safety while 

transitioning from no automation to full automation could be more challenging than expected. In 

addition, a comparison of DWSs and ADASs will provide an idea about the effectiveness of 

automation compared to warning systems. The first step is a comprehensive safety analysis to 

examine the spatial and temporal trends in crash data, including vehicles equipped with varying 

DWSs or ADASs. It should be complemented with the modeling to identify the risk factors 

affecting fatal crashes involving vehicles with and without DWSs and ADASs. 

Therefore, this Dissertation focuses on bridging the research gap by identifying risk factors 

influencing fatal crashes involving vehicles with a DWS, an ADAS, and combinations of multiple 

DWSs or ADASs and synthesizing the difference in factors affecting fatal crashes involving 

vehicles with and without any DWS or ADAS. The research findings highlight factors related to 

on-road and off-road characteristics and vehicular characteristics, providing information about 

factors contributing to crashes involving various types of vehicles (with and without DWS or 
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ADAS), which would be helpful to practitioners in making policy decisions and to industry experts 

in further modifying the underlying technologies. 

The literature also indicates unobserved heterogeneity in crash data could affect the model 

results. The methodological framework used in this study incorporates three significant aspects 

due to which unobserved heterogeneity in crash data arises, making the model estimates more 

accurate. The comparison of the fixed parameters binary or ordered logit model and correlated 

random parameters binary or ordered logit model provides an overview of how the effect of DWSs 

and ADASs on various types of fatal crashes could vary. In addition, it also provides information 

about how the unobserved heterogeneity in crash data due to varying driving behavior affects the 

modeling results and accuracy. A comparative analysis of vehicles with one and two DWSs or 

ADASs is also provided to quantify the difference DWSs or ADASs could result in terms of safety 

compared to vehicles with single or no DWS or ADAS.  
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CHAPTER 3 STUDY METHODOLOGY 

 

This chapter illustrates the methodology adopted in this study. It includes an overview of 

the methodological framework, including data collection, data processing, data preparation for 

modeling purposes, heterogeneity in crash dataset, and considerations while modeling to account 

for heterogeneity. 

 

3.1 Methodological Framework 

 Figure 3-1 illustrates the methodological framework adopted for identifying the factors 

affecting fatal crashes involving vehicles with various DWSs and ADASs.  

The first step is defining the problem and conducting a literature review to gain insights on 

existing research on DWSs and ADASs. From the existing literature review, research gaps are 

identified and discussed in Chapter 2. After identifying the research gaps, the objectives of this 

study were formulated and the data was collected for the analysis. The collected data includes fatal 

crash data obtained from the Fatality Analysis Reporting System (FARS) database and information 

about smart features retrieved from the National Highway Traffic Safety Administration (NHTSA) 

database. The combined dataset was processed further to remove samples with unknown or null 

details. Detailed information about data processing is provided in Chapter 4. To visualize the 

spatial and temporal trends in crashes, data visualization was conducted and is presented in Chapter 

4. 
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Figure 3-1. Methodological framework for the analysis to identify factors affecting fatal 

crashes involving vehicles with various DWSs and ADASs. 
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Each DWS or ADAS is designed to enhance safety for a particular crash type. For example, 

PAEB system is designed to enhance safety in case of vehicle – pedestrian crashes. Therefore, 

determining the effect of PAEB including multivehicle crashes would not provide exact idea about 

the effectiveness of the feature. Hence, the dataset was further divided in three datasets to 

determine the effect of various DWSs and ADASs on fatal crash occurrence. The three datasets 

include multivehicle crashes, lane departure related or single-vehicle crashes, and pedestrian 

crashes respectively.  

The DWSs BSM and FCWS are designed to enhance safety in case of multivehicle crashes. 

Therefore, from multivehicle crashes database, vehicles with either BSM or FCWS were 

considered as vehicles with one DWS and vehicles with both features are considered as vehicles 

with two DWSs. Similar chronological order was used in case of vehicles with LKA and ACC. 

Vehicles with LDW and without LDW are coded as 1 and 0 respectively in lane departure related 

and single-vehicle crashes dataset. Vehicles with PAEB were coded as 1 and vehicles without 

PAEB were coded as 0 in pedestrian crash dataset. A descriptive statistics analysis was carried out 

to determine the frequency and percentage of samples for each DWS and ADAS. The results of 

descriptive statistics showed that number of vehicles with DWS or ADAS was very low (less than 

3%) of the entire dataset, making it difficult to compare with vehicles without DWS or ADAS.  

Further, as identified in the literature review, the crash dataset contains heterogeneity, and 

therefore, the heterogeneity needs to be incorporated for reliable model estimates. To account for 

spatial heterogeneity in the crash dataset and to sample vehicles without DWSs or ADASs 

corresponding to vehicles with DWSs or ADASs, a nearest neighbor analysis was carried out. 

Detailed information about nearest neighbor analysis is provided in Chapter 4. After conducting 
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nearest neighbor analysis, the dataset for vehicles with DWS and corresponding neighbors was 

merged to develop the DWS dataset. Similar analysis was conducted for all the datasets.  

Fixed parameters ordered logit and correlated random parameters ordered logit models 

were developed for DWS and ADAS dataset as the dependent variables in both the cases were 

ordered. For LDW and PAEB datasets, fixed parameters binary logit model and correlated random 

parameters binary logit model were developed. The modeling results were discussed in chapter 6 

along with identified factors affecting fatal crashes for each model. Finally, conclusions were 

provided in Chapter 7. 

 

3.2 Heterogeneity in Crash Dataset 

From the literature review, it is identified that crash dataset contains heterogeneity due to 

spatial variation in locations of crashes, temporal variation in time of crashes, and variation due to 

driver characteristics. The heterogeneity in crash dataset can be broken down in three aspects as 

shown in Figure 3-2.  

 
Figure 3-2. Method to incorporate unobserved heterogeneity in modeling approach. 
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As shown in Figure 3-2, the heterogeneity in crash dataset is incorporated while modeling 

in three stages. Initially, nearest neighbor sampling is used while sampling vehicles without any 

DWS or ADAS corresponding to vehicles with DWSs or ADASs. Nearest neighbor sampling 

optimizes number of nearest neighbors and provides the nearest corresponding samples for each 

crash involving vehicle with DWSs or ADASs. Detailed description of nearest neighbor analysis 

is provided in Chapter 4.  

The temporal heterogeneity primarily arises if crash data considered for analysis is for large 

time period. In present study, five-year crash data (2016 to 2020) is considered. Therefore, to 

account for temporal heterogeneity, a temporal variable “Year of crash” in the form of linear 

effects of time elapsed was incorporated in modeling. The variable was coded as 1 for 2016, 2 for 

2017, 3 for 2018, 4 for 2019, and 5 for 2020. Doing so provides estimates for year which describes 

the variation in probability of crash occurrence over the study years.  

Every individual has a different driving style and experience. The variation in driving 

behavior for each individual gives rise to heterogeneity in crash dataset. Correlated random 

parameters modeling technique is adopted to account for heterogeneity due to variation in driving 

behavior. Variables related to driving behavior parameters such as age, gender, drink and drive 

were kept as random parameters for all models, allowing them to vary across observations. To 

account for possible correlation between various random parameters, a correlated random 

parameters modeling technique is used. It is explained in the next section. 

 

3.3 Modeling Techniques 

The study objective includes identifying the factors affecting fatal crashes involving 

vehicles with varying DWSs and ADASs. Thus, logistic regression techniques, which are most 

suitable for the analysis of categorical variables, were explored as the potential analytical method. 
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Amongst logistic regression techniques, random parameters logistic regression is identified to have 

higher accuracy than other modeling techniques as it accounts for heterogeneity due to unobserved 

variables in the modeling (Anastasopoulos and Mannering, 2011). Further, a correlated random 

parameter modeling approach is used to account for the possible correlations between the random 

parameters. Therefore, correlated random parameters modeling is identified to be the most suitable 

as it allows parameters to vary across each observation (random parameters) and it also 

incorporates correlation between random parameters in modeling.  

Both fixed parameters and correlated random parameters models are developed in this 

study. The fixed parameters ordered logit model is useful to compare the effect of unobserved 

heterogeneity incorporated through correlated random parameters with the base model which does 

not have any random parameters. 

Depending upon the type of DWS and ADAS and the corresponding crash type for which 

a particular feature is designed, dependent variable in this study is either ordinal (number of DWSs 

or ADASs) or binary (with or without a DWS or ADAS). Therefore, ordered logistic and binary 

logistic regression models were developed. Fixed parameter and correlated random parameter 

models are developed in both the cases. The interpretations for both the logistic regression 

techniques used in this study are unidirectional, meaning the indicator variables are not predicting 

the modeled variable. However, the variation in coefficients of the indicator variables is compared 

for the different categories of the modeled variable. Moreover, partial effects were estimated for 

each model to explain the influence of dependent variables on categories of independent variables. 

The description of the modeling technique is provided in next subsection. 
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3.3.1. Fixed and Correlated Random Parameters Ordered Logit Models 

Ordered probability models (ordered probit or logit model), a class of logistic models, are 

regression models which can be used when the modeled variable has three or more categories, and 

the order of different categories is important (Sasidharan and Menéndez, 2014). As the DWSs 

provide warning messages to the drivers while ADASs perform certain driving tasks, the level of 

safety effectiveness is different for both systems. Thus, two separate models were developed. In 

the first model, the number of DWSs in the vehicles involved in fatal crashes was considered as 

the modeled variable. In the second model, the number of ADASs in the vehicles involved in fatal 

crashes was considered as the modeled variable. 

The order is determined depending on the information and assistance provided to the driver 

while performing various driving tasks (number of features available in the vehicle). Fixed 

parameters ordered logit model provides flexibility to compute the marginal effects (direct and 

cross marginal effects) for continuous or indicator variables and is also computationally less 

expensive compared to random parameters models. Thus, the fixed parameters ordered logit model 

is developed first. 

Let us assume i (i = 1,2,3,…..N, N= ) be an index to represent the observation and k (k = 

0,1,2,…..S, S= 2) be the index to represent number of DWSs or ADASs in vehicle i. The variable 

k takes a value (k = 0) for ‘vehicles without any DWS or ADAS,’ (k = 1) for ‘vehicles with one 

DWS or ADAS,’ and (k = 2) for ‘vehicles with two DWSs or ADASs.’ In the ordered outcome 

framework, the actual number of features in vehicle (𝑌𝑖) is assumed to be associated with a 

continuous latent variable (𝑌𝑖
∗). The latent propensity is represented as a linear function in 

Equation (1). 

                                                                𝑌𝑖
∗ =  𝛽𝑋𝑖 +  𝜀𝑖                                                                 (1) 
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where 𝑋𝑖 is the vector of observed independent variables, 𝛽 is the vector of estimable parameters 

and 𝜀 is the random error term. The latent propensity is mapped to the actual categories of 

dependent variable by the  
𝑘
 thresholds (

𝑘
=  −∞ 𝑎𝑛𝑑 

𝑘
=  ∞).  In equation (1), the term 𝛽 

is assumed to be fixed across observations. Therefore, Equation (1) converges to a fixed parameters 

ordered logit model.  

As the driver characteristics such as driver fatigue, drivers’ prior experience and expertise 

in driving, driver’s age and gender, and their reaction times accounts for possible unobserved 

heterogeneity, random parameters model is a vital option for modeling as it facilitates 

incorporating unobserved heterogeneity in dataset while modeling (Milton et al., 2008; 

Venkataraman et al., 2013, 2014; Mannering and Bhat, 2014; Mannering et al., 2016; Hou et al., 

2018). The random parameters ordered logit model assumes parameters in the model to vary across 

the observation, and the variation follows a specific distribution. In addition, it also provides the 

flexibility to vary the mean and variance across observations of the dataset (Hou et al., 2022).  

To relax the fixed parameters assumptions, i.e., the effect of (𝛽) is the same across 

observations, a correlated random parameters approach was employed, wherein the (𝛽) was 

allowed to vary systematically across each observation. The correlated random parameters can be 

expressed as shown in Equation (2) (Ali et al., 2022). 

                                                         𝛽𝑖 =  𝛽 +  Ω𝜙                                                                  (2) 

where 𝛽 is the mean of the random parameter, Ω is a lower triangular Cholesky matrix containing 

information about covariances and it also accounts for possible correlations amongst the 

coefficients, and 𝜙 is a column vector of independent standard normally distributed variables. It is 

assumed that 𝛽𝑖 follows a multivariate normal distribution with mean 𝛽 and a covariance matrix  

ΩΩ′. In this study, unrestricted form of Cholesky matrix is used, which allows to capture 

correlations between multiple random parameters. 
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One of the practical limitations of this modeling framework is that the effect of the 

independent variables on latent propensity cannot quantify the effect of each variable on the 

probability of various categories of dependent variable (Washington et al., 2020). Therefore, 

average marginal effects are computed to obtain the effect of explanatory variables for each ordinal 

outcome. For an explanatory variable 𝑋𝑖, the average marginal effects are estimated using the 

difference in the estimated probabilities when the variable is changing from zero to one, while all 

other variables (𝑋�̅�) are equal to the average values of the sample observations. The average 

marginal effects for the indicator variable is mathematically expressed as shown in Equation (3) 

(Washington et al., 2020). 

                                𝐴𝑀𝐸 =  𝑃(𝑌 = 𝑘|𝑋�̅�, 𝑋𝑖 = 1) − 𝑃(𝑌 = 𝑘|𝑋�̅�, 𝑋𝑖 = 0)                                        (3) 

The random function can follow any distribution, such as normal, lognormal, uniform, 

Weibull, or triangular distribution. The selection of distribution influences the accuracy of the 

results. The existing literature shows that using normal distribution for random function provides 

better accuracy of the results. Therefore, random parameters are assumed to be normally 

distributed. The random values considered for modeling may affect the result outcomes, due to 

which multiple draws of the random sample must be tested for specific random functions.  

The existing literature suggests that the Halton sequence approach is one of the best ways 

to draw random values (Halton, 1960; Bhat, 2003; Train, 2009). The Halton sequence is a sequence 

of dimensional numbers, and it is generated using the deterministic method. The Halton numbers 

are designed to give fairly even coverage through the domain of the selected distribution (Train, 

2000). Thus, Halton draws were selected in this study instead of random draws of the selected 

distributions.  
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3.3.2. Fixed and Correlated Random Parameters Binary Logit Models 

Let us assume i (i = 1,2,3,…..N, N= ) be an index to represent the observation and k be the 

index to represent whether a vehicle i  has PAEB or LDW. The variable k takes a value (k = 0) for 

‘vehicles without PAEB or LDW,’ (k = 1) for ‘vehicles with PAEB or LDW.’ In the binary 

outcome framework, let (𝑈𝑖) be the function which determines a vehicle has a PAEB or LDW or 

not. It can be mathematically expressed as shown in Equation (4). 

                                                                𝑈𝑖 =  𝛽𝑋𝑖 +  𝜀𝑖                                                                 (4) 

where 𝑋𝑖 is the vector of observed independent variables, 𝛽 is the vector of estimable parameters 

and 𝜀 is the random error term.  In Equation (4), the term 𝛽 is assumed to be fixed across 

observations. Therefore, Equation (4) converges to a fixed parameters binary logit model.  

As discussed earlier, driver characteristics accounts for possible unobserved heterogeneity. 

The random parameters model is suitable technique as it facilitates incorporating unobserved 

heterogeneity in dataset (Milton et al., 2008; Venkataraman et al., 2013, 2014; Mannering and 

Bhat, 2014; Mannering et al., 2016; Hou et al., 2018). The random parameters binary logit model 

assumes model parameters to vary across the observation, and the variation follows a specific 

distribution.  

To relax the fixed parameter assumptions, i.e., the effect of (𝛽) is the same across 

observations, a correlated random parameters approach was employed, wherein the (𝛽) was 

allowed to vary systematically across each observation. The correlated random parameters can be 

expressed as shown in Equation (5) (Ali et al., 2022). 

                                                         𝛽𝑖 =  𝛽 +  Ω𝜙                                                                  (5) 

where 𝛽 is the mean of the random parameter, Ω is a lower triangular Cholesky matrix with 

information about covariances and correlations amongst coefficients, and 𝜙 is a column vector of 

independent standard normally distributed variables. It is assumed that 𝛽𝑖 follows a multivariate 
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normal distribution with mean 𝛽 and a covariance matrix  ΩΩ′. In this study, unrestricted form of 

Cholesky matrix is used, which allows to capture correlations between multiple random 

parameters. 

The average marginal effects are computed to investigate the effect of explanatory 

variables on the probability of crash occurrence for vehicles with PAEB or LDW. For an 

explanatory variable 𝑋𝑖, the average marginal effects are computed similar to the ordered models 

as the difference in the probability estimates with the variable shifting from zero to one, when all 

other variables (𝑋�̅�) are equal to the average values. The average marginal effects for an indicator 

variable can be written as shown in Equation (3) (Washington et al., 2020). 

In order to compare the goodness of fit of fixed and correlated random parameters models, 

indices such as McFadden Pseudo R-squared and Log-likelihood were considered. The McFadden 

pseudo-𝜌2 provides information about model fit for logistic regression models fitted using the 

method of maximum likelihood (McFadden, 1981). The comparison between models is to identify 

the difference between the accuracies of modeling methods and determine the model fit statistics 

rather than to compare the models with different modeled variables. The models with the highest 

McFadden pseudo R-squared and lowest Log-likelihood were considered as statistically better fit 

models. In addition, Log-likelihood ratio test was also conducted to determine whether the 

correlated random parameters models are significantly different from fixed parameters models or 

not.  
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CHAPTER 4 STUDY AREA, DATA COLLECTION, DATA PROCESSING 

 

This chapter presents the study area, data collection, data processing, and data 

visualization. 

 

4.1 Study Area and Data Collection 

The study area should be selected to get the maximum number of samples i.e., fatal crashes 

involving vehicles equipped with varying number of DWSs and ADASs. Further, the study area 

should be large enough to consider the spatial effects and the effect of varying geometry depending 

on the locations and road types. Thus, to identify the effect of DWSs and ADASs on safety for the 

United States transportation system, the whole United States is considered as the study area. 

In order to identify the effect of various DWSs and ADASs on fatal crashes, crash data was 

collected from the FARS database. Further, the VINs of all the vehicles were used, and data on 

smart features were retrieved from the NHTSA database. The VINs data showed that the number 

of vehicles with ADASs, especially ACC and LKA, was much lower in the year 2016. 

The FARS database contains information related to factors affecting crashes, vehicles 

involved in the crashes, pedestrian involvement in the crashes, the geometric condition of the road, 

weather conditions, and the time of the day. All the factors were considered initially for the 

analysis. Further, the FARS data were combined with the VIN information to generate a combined 

dataset involving information about all the variables. 
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4.2 Data Processing 

This section includes information about processing raw data from the FARS and NHTSA 

databases to create a combined data set. It also included processing data to obtain separate datasets 

for analysis of multivehicle, lane departure or single-vehicle, and pedestrian involved crashes. 

The raw FARS data are available in different files related to crashes, vehicles, pedestrians, 

and other characteristics. Initially, the obtained data in separate files for each year from 2016 to 

2020 was linked using the assigned ID and year, which were the common fields in all files of the 

FARS database. The data from each year were combined in a complete dataset. Some of the 

samples had missing values or not-reported data, which were removed using filtering. 

The VINs of all vehicles in the combined dataset were extracted as a separate file. A Python 

script was used to extract data related to DWSs and ADASs. Initially, a loop was created for 

extraction to identify all the vehicles' information in a single trial. The loop looks up a single VIN 

in the input list and connects it with the information from VIN dataset of NHTSA. The loop then 

returns the information of all smart features as a list. Further, the information in the list is 

transformed into a single raw data frame in the same loop. Finally, the data including the VINs 

and the information about smart features in the vehicle was combined with the FARS data. 

The obtained dataset contained information about DWSs, such as LDW, FCWS, and BSM, 

along with information about ADASs, such as ACC, LKA, and PAEB. The dataset showed that 

various regions had no to a negligible number of crashes involving vehicles with DWSs or ADASs, 

compared to crashes involving vehicles without a DWS or ADAS. The samples involving one or 

more vehicles equipped with different DWSs or ADASs were also identified and considered as 

separate data points in the analysis. Before modeling, the samples with unknown or unidentified 
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values were eliminated using a filtering technique to reduce the redundancies in the result. The 

data processing framework used in this study is summarized as shown in Figure 4-1. 

 

 

Figure 4-1. Data processing framework. 

 

Using VIN's and the NHTSA VIN decoder the generic information on DWSs and ADASs 

availability for vehicles is obtained. However, there are limitations associated with this which 

needs to be handled meticulously. For instance, for most DWSs and ADASs, the VIN decoder 

provides DWS or ADAS availability for the vehicle as "Standard", "Optional", "Not Available", 

or has missing values. This is based on the make, model, model year, and trim level of the vehicle. 

If the code is "Standard", it is known that DWS or ADAS feature is on the vehicle. If the code is 
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"Not Available", DWS or ADAS is not available on the vehicle. To address this, only VIN code 

“Standard” was used in this study.  DWS or ADAS and its type are provided to deal with specific 

crash types. For instance, PAEB a type of ADAS is effective only under pedestrian crashes. 

Similarly, LKA (type of ADAS) or LDW (type of DWS) is effective for single-vehicle or lane 

departure crashes. Therefore, to account for this aspect, the resultant crash data is bifurcated by 

type of crash.  

The VIN data showed that only 85 out of 52,714 vehicles involved in the crash in 2016 had 

either LKA, ACC, or PAEB systems. Therefore, the crash data of previous years was not 

considered, and data from 2016 to 2020 was used in this study. Figure 4-2 shows the location of 

fatal crashes from 2016 to 2020 involving vehicles with one or more DWSs. 
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Figure 4-2. Spatial variation of fatal crashes involving vehicles with one or more DWSs. 

 

The major clusters, including vehicles with one or multiple DWSs involved in fatal crashes, 

are in the eastern regions, as shown in Figure 4-2. The number of crashes involving vehicles with 

DWSs in central and mountain regions is low compared to both east and west coasts. The figures 

showing locations of fatal crashes involving vehicles with individual DWSs are shown separately 

in Appendix A.  

Figure 4-3 shows the location of crashes in the United States from 2016 to 2020 involving 

vehicles with one or more ADASs. The trends in the case of vehicles with ADASs are similar to 
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those with DWSs, with higher density clusters near the east and west coasts. However, the number 

of fatal crashes in the central region involving vehicles with ADASs is low compared to the fatal 

crashes involving vehicles with DWSs. 

 

 

Figure 4-3. Spatial variation of fatal crashes involving vehicles with one or more ADASs. 

 

Although the location shows crashes throughout the considered time period, it is necessary 

to identify the trends in fatal crashes with the time. Thus, number of crashes involving vehicles 

with various ADASs is shown in Figure 4-4. Figure 4-4 illustrates that the number of crashes 

involving vehicles with various ADASs, such as ACC, LKA, and PAEB, increased from 2016 to 

2020. In addition, the involvement of vehicles with LKA in fatal crashes increased rapidly 
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compared to the involvement of vehicles with PAEB, which is due to the lower penetration of 

vehicles with PAEB in the existing system. Crashes involving vehicles with LKA increased from 

33 in 2016 to 2,437 in 2020. Similarly, the number of crashes involving vehicles with ACC and 

PAEB increased from 36 and 16 in 2016 to 2,093 and 1,484 in 2020, respectively. The increasing 

involvement of vehicles with ADASs, as shown in Figure 4-4, indicates a requirement to identify 

potential factors affecting their crash involvement. 

 

Figure 4-4. Temporal variation of fatal crashes involving vehicles with ADASs. 

 

To compare the fatal crash involvement of vehicles with DWSs and ADASs and visualize 

the temporal variation in the number of crashes, crashes involving vehicles with DWSs per year is 

plotted as shown in Figure 4-5. Figure 4-5 also shows that the involvement of vehicles with DWSs 

in fatal crashes increased over the years. However, there was a sudden increase in the involvement 

after 2019 for the three considered DWSs. Thus, vehicles with DWSs were also considered in the 

analysis for comparison with vehicles with ADASs. 
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Figure 4-5. Temporal variation of fatal crashes involving vehicles with DWSs. 

 

To model the effect of various DWS and ADAS, separate datasets were generated based 

on the crash type. Multivehicle crashes were separated to determine the effect of number of DWSs 

and ADASs on safety. The LDW and PAEB systems were not considered in the analysis of number 

of DWSs and ADASs as the LDW provides warning to vehicles departing lane or roadway, which 

generally influences single-vehicle crashes or crashes related to lane departure and PAEB is 

designed to prevent pedestrian crashes. To determine the effect of vehicles with LDW on single-

vehicle and lane departure related fatal crash occurrence, dataset with all single-vehicle crashes 

and lane departure related multivehicle crashes is separated and used for modeling. In case of 

PAEB, all pedestrian crashes were considered for modeling. The final modeling framework 

includes four models: Model 1 to determine effect of number of DWSs, Model 2 to determine 

effect of number of ADASs, Model 3 to determine the effect of LDW on single-vehicle and lane 
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departure related fatal crashes; and, Model 4 to determine the effect of PAEB on pedestrian 

crashes.   

As the number of crashes involving vehicles with DWSs and ADASs varies spatially as 

well as temporarily, descriptive analysis is carried out to identify the frequency and proportion of 

samples in each categories of the indicator variables. The descriptive analysis results showed that 

proportion of crashes involving vehicles with varying number of DWSs or ADASs is less than 3% 

of the total number of samples. Therefore, for even comparison of vehicles with and without DWSs 

and ADASs, a sampling is required to select representative crashes involving vehicles without 

DWSs and ADASs.  

Nearest neighbor analysis is recommended in the existing literature for sampling in cases 

where sample size is too large (Cover and Hart, 1967). In the nearest neighbor analysis, the number 

of nearest neighbors from locations of crashes involving vehicles with DWSs or ADASs is 

optimized to identify the optimum number of crashes. The optimization considers the average 

distance of ith nearest neighbors from all crashes. The use of nearest neighbor sampling also 

ensures that the comparison groups (crashes involving vehicles with and without DWS and ADAS) 

are in spatial proximity as past research findings indicates that crashes are correlated spatially 

(Aguero-Valverde and Jovanis, 2006; Mitra, 2009). Therefore, the nearest neighbor analysis was 

used for sampling crashes involving vehicles without DWSs or ADASs for modeling. The 

optimum number of nearest neighbors is identified as three and the maximum distance of third 

neighbor (in entire dataset) is within 3,300 feet.  

 The snapshot of three nearest neighbors corresponding to a crash involving vehicle with 

DWSs or ADASs is shown in Figure 4-6. The nearest neighbor sampling is carried separately for 
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each year (i.e., 2016, 2017, 2018, 2019, 2020) and type of crash (i.e., multivehicle, single-vehicle 

and pedestrian crashes).  

 

 

Figure 4-6. Nearest Neighbor Sampling (3 Nearest Neighbors). 

 

 The snapshot provides representation of ArcGIS interface with information on how nearest 

neighbors are sampled in ArcGIS using the nearest neighbor table tool. To determine the variation 

in frequency and percentage of samples across various categories of independent variables, 

descriptive statistics analysis was carried out at model level. The results of descriptive statistics 

are presented in the next chapter.  



39 

 

CHAPTER 5 RESULTS AND DISCUSSIONS 

 

This chapter presents the results to determine the effect of DWSs and ADASs on fatal 

crash occurrence. It includes the following. 

1. Descriptive analysis results for developed models by crash type and smart features. 

2. The goodness of fit indices to compare fixed and correlated random parameters model. 

3. Model results 

• Analysis of multivehicle crashes involving vehicles with and without DWSs. 

• Analysis of multivehicle crashes involving vehicles with and without ADASs. 

• Analysis of single-vehicle and lane departure-related crashes involving vehicles with 

and without LDW. 

• Analysis of pedestrian crashes involving vehicles with and without PAEB. 

As discussed previously, four datasets were created to determine factors affecting fatal 

crashes and identify the effect of various DWSs and ADASs on safety. Four models were 

developed, which included one model for each dataset. Model 1 includes multivehicle crashes 

involving vehicles with and without DWSs. The DWSs considered for model 1 are BSM and 

FCWS since both the features remain engaged all the time and are designed to improve safety in 

case of multivehicle crashes. Model 2 includes multivehicle crashes involving vehicles with and 

without ADASs. The ADASs considered in Model 2 are LKA and ACC. Again, both features are 

designed to automate driving-related tasks, preventing multivehicle crashes. Model 3 includes 

single-vehicle and lane departure-related crashes involving vehicles with and without LDW. One 

of the reasons for developing a separate model for LDW is that the LDW feature comes with a 

button on the steering wheel to turn it on or off. Therefore, the feature does not remain engaged all 

the time, and it depends on the driver whether to use it or not. Another reason is that LDW prevents 
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vehicles from departing the lane, which is a primary cause of single-vehicle roadside departure or 

lane departure-related crashes. Therefore, considering single-vehicle and lane departure-related 

crashes in the case of the model for LDW would provide a better idea about how LDW would 

affect factors related to single-vehicle and lane departure-related fatal crashes and the overall 

difference in fatal crash occurrence for vehicles with and without LDW. Model 4 includes 

pedestrian crashes involving vehicles with and without PAEB. The PAEB feature is designed to 

prevent vehicle-pedestrian crashes. Therefore, only pedestrian crashes are considered in the case 

of the model for PAEB. 

Since multiple models are developed to determine the effect of various DWSs and ADASs 

on safety, from here onwards, the model numbers are considered in the results and discussion 

section.  

5.1 Descriptive analysis 

A descriptive analysis was conducted to identify the frequency distribution across different 

categories of independent variables for each model. The frequency as well as percentage of 

samples in each category of the four models are shown in Table 5-1. 
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Table 5-1. Frequency and percentage of samples with varying number of DWSs and 

ADASs in the modeling datasets. 

Model # Variable Category Frequency (%) 

Model 1 Presence of DWSs 

No FCWS or BSM 6366 (72.696) 

Either FCWS or BSM 1628 (18.591) 

Both FCWS and BSM 763 (8.713) 

Model 2 Presence of ADASs 

No LKA or ACC 4757 (73.162) 

Either LKA or ACC 649 (9.982) 

Both LKA and ACC 1096 (16.856) 

Model 3 Presence of LDW system 
No 1613 (71.721) 

Yes 636 (28.279) 

Model 4 Presence of PAEB system 
No 749 (72.158) 

Yes 289 (27.842) 

 

 

The descriptive statistics summarized in Table 5-1 indicate the frequency and percentage 

of samples for various categories of dependent variables in four models. In model 1, the proportion 

of vehicles with two DWSs is lowest (8.71%), followed by vehicles with one DWS (18.59%). In 

the case of Model 2, the proportion of vehicles with two ADASs is higher than that of vehicles 

with one ADAS. In all the models, the proportion of vehicles without any DWS or ADAS varies 

from 71.72% to 73.16%. The primary reason for a similar proportion of vehicles without DWS or 

ADAS in each model is the use of nearest neighbor sampling, which is optimized at three nearest 

neighbors for all the models. Therefore, the proportion of vehicles without DWS or ADAS in each 

model should be 75%. However, there are instances in the dataset where the nearest neighbor for 

two crashes involving vehicle with DWSs or ADASs is similar. Therefore, duplicate records are 

eliminated, and the resulting proportion of vehicles without DWS or ADAS for each model is 

slightly lower than the ideal proportion i.e., 75%. 

The frequency of vehicles equipped with two ADAS (LKA and ACC) is higher than that 

of vehicles with two DWSs (FCWS and LDW). However, the frequency of vehicles with one 
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ADAS is lower than those with one DWS, indicating that fatal crash involvement of vehicles with 

multiple ADASs is higher than vehicles with single DWS. Another reason could be the higher 

penetration of vehicles with two ADASs than vehicles with one ADAS. The descriptive statistics 

results of the dataset used for each model are discussed in the following sections. 

 

5.1.1. Descriptive statistics results of dataset for Model 1 

The descriptive statistics of all the variables related to driver, road, and crash characteristics 

included in Model 1 is shown in Table 5-2. 

 

Table 5-2. Descriptive statistics results of the dataset used for Model 1. 

Variables Frequency (Percentage) 

Driver characteristics 

Age (Less than 24 years) 1,392 (15.896) 

Age (>=24, <=40 years) 2,765 (31.575) 

Age (>40, <=65 years) 3,112 (35.537) 

Age (Greater than 65 years) 1,488 (16.992) 

Drink and drive related 923 (10.54) 

Not related to drink and drive 7,834 (89.46) 

Gender (Female) 2,781 (31.757) 

Gender (Male) 5,976 (68.243) 

Road characteristics 

Area type (Urban) 5,248 (59.929) 

Area type (Rural) 3,509 (40.071) 

Functional class (Interstate) 1,149 (13.121) 

Functional class (Freeway or expressway) 408 (4.659) 

Functional class (Principal arterial) 3,394 (38.758) 

Functional class (Minor arterial) 2,062 (23.547) 

Functional class (Major collector) 1,029 (11.751) 

Functional class (Minor collector) 196 (2.238) 

Functional class (Local) 519 (5.927) 

Intersection 5,231 (59.735) 

Non-intersection 3,526 (40.265) 

Number of lanes (No traffic way access) 84 (0.959) 

Number of lanes (One lane) 85 (0.971) 

Number of lanes (Two lanes) 5,001 (57.109) 

Number of lanes (Three lanes) 1,281 (14.628) 

Number of lanes (Four lanes) 1,112 (12.698) 
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Variables Frequency (Percentage) 

Number of lanes (Five lanes) 842 (9.615) 

Number of lanes (Six lanes) 209 (2.387) 

Number of lanes (Seven or more lanes) 143 (1.633) 

Work zone 254 (2.901) 

No work zone 8,503 (97.099) 

Crash characteristics 

Light condition (Daylight) 5,387 (61.517) 

Light condition (Dark) 3,008 (34.35) 

Light condition (Dawn) 173 (1.976) 

Light condition (Dusk) 189 (2.158) 

Pre-crash stability (Tracking) 6,682 (76.305) 

Pre-crash stability (Skidding laterally) 148 (1.69) 

Pre-crash stability (Skidding longitudinally) 103 (1.176) 

Pre-crash stability (Not specific) 1,824 (20.829) 

Surface condition (Dry) 7,483 (85.452) 

Surface condition (Wet) 1,036 (11.831) 

Surface condition (Ice, snow, mud, dirt, oil, or water) 238 (2.718) 

Season (Winter) 1,863 (21.274) 

Season (Spring) 1,939 (22.142) 

Season (Summer) 2,511 (28.674) 

Season (Fall) 2,444 (27.909) 

Speeding 978 (11.168) 

Not speeding 7,779 (88.832) 

Time of the day (12 AM to 3 AM) 597 (6.817) 

Time of the day (3 AM to 6 AM) 524 (5.984) 

Time of the day (6 AM to 9 AM) 947 (10.814) 

Time of the day (9 AM to 12 PM) 1,106 (12.63) 

Time of the day (12 PM to 3 PM) 1,500 (17.129) 

Time of the day (3 PM to 6 PM) 1,815 (20.726) 

Time of the day (6 PM to 9 PM) 1,297 (14.811) 

Time of the day (9 PM to 12 AM) 971 (11.088) 

Weather condition (Clear) 6,576 (75.094) 

Weather condition (Cloudy) 1,281 (14.628) 

Weather condition (Rain) 668 (7.628) 

Weather conditions (Snow, fog/smoke/smog, or other adverse 

condition) 
232 (2.649) 

Manner of collision (Head-on) 2,439 (27.852) 

Manner of collision (Rear-end) 1,799 (20.544) 

Manner of collision (Angle) 3,825 (43.679) 

Manner of collision (Sideswipe - opposite direction) 389 (4.442) 

Manner of collision (Sideswipe - same direction) 305 (3.483) 

 

Most drivers involved in a fatal crash fall within the age range of 24 to 65 years, with the 

highest percentage in the 40 to 65 years category. It suggests that middle-aged drivers are more 
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frequently involved in crashes. Additionally, a considerable proportion of crashes (10.54%) are 

related to drinking and driving incidents. Male drivers account for a higher percentage (68.243%) 

than their female counterparts (31.757%), indicating potential disparities in driving behavior and 

a tendency for risk-taking. 

Road characteristics reveal that crashes are more prevalent in urban areas (59.929%) 

compared to rural areas (40.071%). The functional class of roads indicates that multivehicle 

crashes in the dataset primarily occurred on principal and minor arterials. Intersections account for 

a substantial portion of crashes (59.735%). The number of lanes also influences crash occurrence, 

with roads having two lanes being the most common (57.109%). 

Crash characteristics shed light on various factors contributing to crashes. Daylight 

conditions (61.517%) and dry surface conditions (85.452%) are predominant in crash incidents. 

The most frequent manner of collision is the "Angle" category (43.679%). The analysis also 

highlights the significance of driver behavior, with speeding being a factor in 11.168% of crashes. 

Moreover, crashes occur more during peak afternoon hours (3 PM to 6 PM), indicating the 

importance of considering the time of day in crash prevention strategies. 

 

5.1.2. Descriptive statistics results of the dataset for Model 2 

The descriptive statistics of all the variables related to driver, road, and crash characteristics 

included in Model 2 is shown in Table 5-3. 

Table 5-3. Descriptive statistics results of the dataset used for Model 2. 

Variables Frequency (Percentage) 

Driver characteristics 

Age (Less than 24 years) 857 (13.181) 

Age (>=24, <=40 years) 2,121 (32.621) 

Age (>40, <=65 years) 2,406 (37.004) 

Age (Greater than 65 years) 1,118 (17.195) 

Drink and drive related 767 (11.796) 
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Variables Frequency (Percentage) 

Not related to drink and drive 5,735 (88.204) 

Gender (Female) 2,014 (30.975) 

Gender (Male) 4,488 (69.025) 

Road characteristics 

Area type (Urban) 3,942 (60.627) 

Area type (Rural) 2,560 (39.373) 

Functional class (Interstate) 894 (13.75) 

Functional class (Freeway or expressway) 328 (5.045) 

Functional class (Principal arterial) 2,454 (37.742) 

Functional class (Minor arterial) 1,514 (23.285) 

Functional class (Major collector) 800 (12.304) 

Functional class (Minor collector) 140 (2.153) 

Functional class (Local) 372 (5.721) 

Intersection 2,541 (39.08) 

Non-intersection 3,961 (60.92) 

Number of lanes (No traffic way access) 71 (1.092) 

Number of lanes (One lane) 66 (1.015) 

Number of lanes (Two lanes) 3,747 (57.628) 

Number of lanes (Three lanes) 876 (13.473) 

Number of lanes (Four lanes) 871 (13.396) 

Number of lanes (Five lanes) 590 (9.074) 

Number of lanes (Six lanes) 175 (2.691) 

Number of lanes (Seven or more lanes) 106 (1.63) 

Work zone 223 (3.43) 

No work zone 6,279 (96.57) 

Crash characteristics 

Light condition (Daylight) 3,897 (59.935) 

Light condition (Dark) 2,328 (35.804) 

Light condition (Dawn) 120 (1.846) 

Light condition (Dusk) 157 (2.415) 

Pre-crash stability (Tracking) 4,927 (75.777) 

Pre-crash stability (Skidding laterally) 131 (2.015) 

Pre-crash stability (Skidding longitudinally) 82 (1.261) 

Pre-crash stability (Not specific) 1,362 (20.947) 

Surface condition (Dry) 5,551 (85.374) 

Surface condition (Wet) 758 (11.658) 

Surface condition (Ice, snow, mud, dirt, oil, or water) 193 (2.968) 

Season (Winter) 1,357 (20.871) 

Season (Spring) 1,419 (21.824) 

Season (Summer) 1,866 (28.699) 

Season (Fall) 1,860 (28.607) 

Speeding 854 (13.134) 

Not speeding 5,648 (86.866) 

Time of the day (12 AM to 3 AM) 473 (7.275) 

Time of the day (3 AM to 6 AM) 394 (6.06) 

Time of the day (6 AM to 9 AM) 643 (9.889) 
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Variables Frequency (Percentage) 

Time of the day (9 AM to 12 PM) 832 (12.796) 

Time of the day (12 PM to 3 PM) 1,110 (17.072) 

Time of the day (3 PM to 6 PM) 1,319 (20.286) 

Time of the day (6 PM to 9 PM) 942 (14.488) 

Time of the day (9 PM to 12 AM) 789 (12.135) 

Weather condition (Clear) 4,869 (74.885) 

Weather condition (Cloudy) 974 (14.98) 

Weather condition (Rain) 463 (7.121) 

Weather conditions (Snow, fog/smoke/smog, or other adverse 

condition) 
196 (3.014) 

Manner of collision (Head-on) 1,804 (27.745) 

Manner of collision (Rear-end) 1,380 (21.224) 

Manner of collision (Angle) 2,800 (43.064) 

Manner of collision (Sideswipe - opposite direction) 290 (4.46) 

Manner of collision (Sideswipe - same direction) 228 (3.507) 

 

Driver characteristics play a significant role in crash occurrences. Most drivers involved in 

the crashes in the dataset for Model 2 fall within the age range of 24 to 65 years, with the highest 

percentage in the 40 to 65 years category. Additionally, a significant portion of crashes (11.796%) 

is related to drink and drive incidents, emphasizing the importance of addressing this dangerous 

behavior and through strict enforcement and education campaigns the impact of this can be 

controlled. Male drivers account for a higher percentage (69.025%) than female drivers (30.975%), 

indicating potential differences in driving behavior and risk-taking tendencies. 

Road characteristics show that crashes are more prevalent in urban areas (60.627%) 

compared to rural areas (39.373%). The functional class of roads reveals that multivehicle crashes 

in the dataset mostly occurred on principal and minor arterials. Intersections account for a 

significant portion of crashes (39.08%). The number of lanes also influences crash occurrence, 

with roads having two lanes being the most common (57.628%). 

Crash characteristics shed light on various factors contributing to crashes. Crashes 

predominantly occurred during daylight (59.935%) and under dry surface conditions (85.374%). 
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The most common manner of collision is the "Angle" category (43.064%). The analysis also 

highlights the significance of driver behavior, with speeding being a factor in 13.134% of crashes. 

Time of the day shows higher crashes during peak afternoon hours (3 PM to 6 PM). 

 

5.1.3. Descriptive statistics results of the dataset for Model 3 

The descriptive statistics of all the variables related to driver, road, and crash characteristics 

included in Model 3 is shown in Table 5-4.  

Table 5-4. Descriptive statistics results of the dataset used for Model 3. 

Variables Frequency (Percentage) 

Driver characteristics 

Age (Less than 24 years) 458 (20.365) 

Age (>=24, <=40 years) 786 (34.949) 

Age (>40, <=65 years) 718 (31.925) 

Age (Greater than 65 years) 287 (12.761) 

Drink and drive related 652 (28.991) 

Not related to drink and drive 1,597 (71.009) 

Gender (Female) 588 (26.145) 

Gender (Male) 1,661 (73.855) 

Road characteristics 

Area type (Urban) 1,105 (49.133) 

Area type (Rural) 1,144 (50.867) 

Functional class (Interstate) 378 (16.807) 

Functional class (Freeway or expressway) 140 (6.225) 

Functional class (Principal arterial) 542 (24.1) 

Functional class (Minor arterial) 449 (19.964) 

Functional class (Major collector) 362 (16.096) 

Functional class (Minor collector) 104 (4.624) 

Functional class (Local) 274 (12.183) 

Number of lanes (No traffic way access) 23 (1.023) 

Number of lanes (One lane) 42 (1.867) 

Number of lanes (Two lanes) 1,612 (71.676) 

Number of lanes (Three lanes) 242 (10.76) 

Number of lanes (Four lanes) 170 (7.559) 

Number of lanes (Five lanes) 120 (5.336) 

Number of lanes (Six lanes) 28 (1.245) 

Number of lanes (Seven or more lanes) 12 (0.534) 

Work zone 59 (2.623) 

No work zone 2,190 (97.377) 
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Variables Frequency (Percentage) 

Crash characteristics 

Light condition (Daylight) 1,112 (49.444) 

Light condition (Dark) 1,043 (46.376) 

Light condition (Dawn) 44 (1.956) 

Light condition (Dusk) 50 (2.223) 

Pre-crash stability (Tracking) 1,417 (63.006) 

Pre-crash stability (Skidding longitudinally) 755 (33.57) 

Pre-crash stability (Not specific) 77 (3.424) 

Surface condition (Dry) 1,865 (82.926) 

Surface condition (Wet) 287 (12.761) 

Surface condition (Ice, snow, mud, dirt, oil, or water) 97 (4.313) 

Season (Winter) 490 (21.787) 

Season (Spring) 486 (21.61) 

Season (Summer) 608 (27.034) 

Season (Fall) 665 (29.569) 

Speeding 704 (31.303) 

Not speeding 1,545 (68.697) 

Time of the day (12 AM to 3 AM) 296 (13.161) 

Time of the day (3 AM to 6 AM) 207 (9.204) 

Time of the day (6 AM to 9 AM) 230 (10.227) 

Time of the day (9 AM to 12 PM) 212 (9.426) 

Time of the day (12 PM to 3 PM) 317 (14.095) 

Time of the day (3 PM to 6 PM) 365 (16.229) 

Time of the day (6 PM to 9 PM) 330 (14.673) 

Time of the day (9 PM to 12 AM) 292 (12.984) 

Weather condition (Clear) 1,645 (73.144) 

Weather condition (Cloudy) 362 (16.096) 

Weather condition (Rain) 179 (7.959) 

Weather conditions (Snow, fog/smoke/smog, or other adverse 

condition) 
63 (2.801) 

Manner of collision (Single-vehicle roadside departure) 1,491 (66.296) 

Manner of collision (Head-on) 375 (16.674) 

Manner of collision (Rear-end) 78 (3.468) 

Manner of collision (Angle) 205 (9.115) 

Manner of collision (Sideswipe - opposite direction) 55 (2.446) 

Manner of collision (Sideswipe - same direction) 45 (2.001) 

 

Drivers within the age range of 24 to 40 years constitute the highest percentage (34.949%) 

of crashes, followed by drivers aged over 40 but less than or equal to 65 years (31.925%). 

Moreover, a significant proportion of crashes (28.991%) are related to drink and drive incidents, 

emphasizing the need for targeted interventions to address this risky behavior. Male drivers 
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(73.855%) are more frequently involved in crashes compared to their female counterparts 

(26.145%). 

Urban areas (49.133%) experience slightly fewer crashes than rural areas (50.867%). 

Principal and minor arterials are the most common types of roads where crashes occur, with 

interstate roads accounting for 16.807% of the crashes. Furthermore, intersections contribute 

significantly to crash occurrences (12.183%), highlighting the importance of implementing 

effective intersection safety measures. The majority of crashes happen on roads with two lanes 

(71.676%). 

Examining crash characteristics, it is evident that crashes predominantly occur during 

daylight (49.444%) and under dry surface conditions (82.926%). The most common manner of 

collision is a single-vehicle roadside departure (66.296%). Additionally, speeding plays a 

significant role in crashes, accounting for 31.303% of cases. 

 

5.1.4. Descriptive statistics results of the dataset for Model 4 

The descriptive statistics of all the variables related to driver, road, and crash characteristics 

included in Model 4 is shown in Table 5-5.  

Table 5-5. Descriptive statistics results of the dataset used for Model 4. 

Variables Frequency (Percentage) 

Driver characteristics 

Age (Less than 24 years) 180 (17.341) 

Age (>=24, <=40 years) 352 (33.911) 

Age (>40, <=65 years) 376 (36.224) 

Age (Greater than 65 years) 130 (12.524) 

Drink and drive related 69 (6.647) 

Not related to drink and drive 969 (93.353) 

Gender (Female) 308 (29.672) 

Gender (Male) 730 (70.328) 

Road characteristics 

Area type (Urban) 891 (85.838) 
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Variables Frequency (Percentage) 

Area type (Rural) 147 (14.162) 

Functional class (Interstate) 152 (14.644) 

Functional class (Freeway or expressway) 52 (5.01) 

Functional class (Principal arterial) 404 (38.921) 

Functional class (Minor arterial) 228 (21.965) 

Functional class (Major collector) 82 (7.9) 

Functional class (Minor collector) 18 (1.734) 

Functional class (Local) 102 (9.827) 

Intersection 286 (27.553) 

Non-intersection 752 (72.447) 

Number of lanes (No traffic way access) 3 (0.289) 

Number of lanes (One lane) 23 (2.216) 

Number of lanes (Two lanes) 411 (39.595) 

Number of lanes (Three lanes) 202 (19.461) 

Number of lanes (Four lanes) 176 (16.956) 

Number of lanes (Five lanes) 154 (14.836) 

Number of lanes (Six lanes) 43 (4.143) 

Number of lanes (Seven or more lanes) 26 (2.505) 

Work zone 19 (1.83) 

No work zone 1,019 (98.17) 

Crash characteristics 

Light condition (Daylight) 221 (21.291) 

Light condition (Dark) 779 (75.048) 

Light condition (Dawn) 23 (2.216) 

Light condition (Dusk) 15 (1.445) 

Pre-crash stability (Tracking) 887 (85.453) 

Pre-crash stability (Skidding laterally) 75 (7.225) 

Pre-crash stability (Skidding longitudinally or not specific) 76 (7.322) 

Surface condition (Dry) 901 (86.802) 

Surface condition (Wet) 130 (12.524) 

Surface condition (Ice, snow, mud, dirt, oil, or water) 7 (0.674) 

Season (Winter) 286 (27.553) 

Season (Spring) 203 (19.557) 

Season (Summer) 232 (22.351) 

Season (Fall) 317 (30.539) 

Speeding 76 (7.322) 

Not speeding 962 (92.678) 

Time of the day (12 AM to 3 AM) 95 (9.152) 

Time of the day (3 AM to 6 AM) 113 (10.886) 

Time of the day (6 AM to 9 AM) 89 (8.574) 

Time of the day (9 AM to 12 PM) 52 (5.01) 

Time of the day (12 PM to 3 PM) 61 (5.877) 

Time of the day (3 PM to 6 PM) 112 (10.79) 

Time of the day (6 PM to 9 PM) 274 (26.397) 

Time of the day (9 PM to 12 AM) 242 (23.314) 

Weather condition (Clear) 789 (76.012) 
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Variables Frequency (Percentage) 

Weather condition (Cloudy) 165 (15.896) 

Weather condition (Rain) 67 (6.455) 

Weather conditions (Snow, fog/smoke/smog, or other adverse 

condition) 
17 (1.638) 

 

The descriptive statistics results in Table 5-5 include only pedestrian crashes, providing 

valuable insights into the characteristics of such incidents. Drivers in the age range of 40 to 65 

years account for the highest percentage (36.224%) of pedestrian crashes, followed by drivers in 

the age range of 24 to 40 years (36.224%). Additionally, a small proportion of pedestrian crashes 

(6.647%) are related to drink and drive incidents, underscoring the need for interventions targeting 

this dangerous behavior. Male drivers (70.328%) are more frequently involved in crashes 

compared to their female counterparts (29.672%). 

Shifting the focus to road characteristics, it is apparent that the majority of pedestrian 

crashes occur in urban areas (85.838%) compared to rural areas (14.162%). Principal arterials 

constitute the most common road type where pedestrian crashes occur (38.921%), followed by 

minor arterials (21.965%). Intersections also play a significant role, contributing to 27.553% of 

pedestrian crashes. The analysis of the number of lanes indicates that roads with two lanes 

(39.595%) have a higher frequency of pedestrian crashes. 

It is observed that pedestrian crashes frequently occur during dark conditions (75.048%) 

and under dry surface conditions (86.802%). The most prevalent pre-crash stability condition is 

tracking (85.453%). Furthermore, pedestrian crashes exhibit seasonal variations, with fall 

(30.539%) being the season with the highest number of pedestrian crashes. Speeding contributes 

to a notable proportion of pedestrian crashes (7.322%). 

The descriptive statistics provided in the analysis reveal notable variations in the frequency 

and percentage of samples across different categories of independent variables. While these 
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statistics offer valuable insights into the distribution of factors, drawing direct inferences regarding 

the influencing factors for various types of crashes involving vehicles with and without DWSs or 

ADASs solely based on these statistics is not feasible. The complexity and interplay of multiple 

variables necessitate a more comprehensive approach. 

To gain a deeper understanding of the critical factors influencing the occurrence of fatal 

crashes for vehicles with varying numbers of DWSs or ADASs, it is essential to employ modeling 

techniques and conduct further analysis. Incorporating modeling-driven analysis facilitates 

identifying the intricate relationships between different variables and determining significant 

factors that impact crash outcomes. Using a modeling approach also enables a more precise 

exploration of the data, providing insights beyond surface-level descriptive statistics. 

The modeling-driven analysis allows for a more rigorous and comprehensive investigation, 

enabling practitioners to make informed decisions and develop targeted interventions to enhance 

road safety and mitigate the risks associated with crashes involving vehicles with varying DWSs 

or ADASs. 

 

5.2 Goodness of fit indices comparison 

Log-Likelihood and McFadden pseudo R-squares are used to measure the goodness of fit 

for different models developed in the study. The results of goodness of fit indices are shown in 

Table 5-6. Table 5-6 shows that the Log-likelihood values for the correlated random parameters 

model are lower for all the models compared to the log-likelihood of fixed parameters models, 

indicating that correlated random parameters models are better in all the cases. The McFadden 

Pseudo R-squared values for all correlated random parameters models are higher compared to 

fixed parameters models indicating the same. 
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Table 5-6. Goodness of fit test results. 

Goodness of 

Fit Index 
Model Type Model 1 Model 2 Model 3 Model 4 

Log likelihood 

Function 

Fixed Parameters Model -6138.570 -4584.504 -1083.047 -506.629 

Correlated Random 

parameters model 
-6124.668 -4572.380 -1076.154 -502.602 

Restricted log-likelihood -6631.102 -4933.469 -1339.440 -613.930 

McFadden 

Pseudo R-

squared 

Fixed Parameters Model 0.074 0.071 0.191 0.175 

Correlated Random 

parameters model 
0.076 0.073 0.197 0.181 

  

The comparison of the goodness of fit indices shows that correlated random parameters 

models are superior in terms of model fit compared to fixed parameters ordered or binary logit 

models. In the case of both ordered models (model for DWSs and ADASs), the log-likelihood 

statistics of fixed and correlated random parameters model is statistically significant, meaning the 

difference in both the models is significant. However, in the case of both binary models, although 

the log-likelihood statistics and McFadden R-squared value shows that the correlated random 

parameters model is better, the difference in log-likelihood statistics is not significant. The results 

are not significantly improved after incorporating heterogeneity due to varying driver 

characteristics in the case of both binary logit models. 

Further, partial effects are determined for all the models to compare the factors identified 

using fixed and correlated random parameters models. The partial effects of all the models show 

that in the case of fixed parameters and correlated random parameters models, the partial effects 

vary, but the overall effect of factors on fatal crash occurrence (for all categories of dependent 

variables) is the same. The variables indicating vehicles with one or more DWSs are safe in the 

case of fixed effects models are also showing the same in the case of correlated random parameters 

models. Considering the better fit in the correlated random parameters model, the results of same 
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are discussed. The results of fixed parameters logit models and their partial effects are provided in 

Appendix B. 

 

5.3 Modeling Results 

5.3.1 Analysis for multivehicle crashes involving vehicles with and without DWSs 

The correlated random parameters model to identify the factors affecting multivehicle fatal 

crashes involving vehicles with and without DWSs is shown in Table 5-7. 

Table 5-7. Correlated random parameters ordered logit Model 1 estimates. 

Variables Coefficient 
Standard 

error 
z-value p-value 

Constant -3.898 0.175 -22.320 0.000 

Year 0.584 0.026 22.310 0.000 

Area type (Urban) 0.240 0.061 3.910 0.000 

Season (Winter) -0.086 0.081 -1.060 0.288 

Season (Spring) -0.050 0.075 -0.660 0.509 

Season (Fall) 0.171 0.069 2.470 0.014 

Time of the day (12 AM to 3 AM) -0.140 0.164 -0.860 0.392 

Time of the day (3 AM to 6 AM) -0.204 0.164 -1.250 0.212 

Time of the day (9 AM to 12 PM) 0.306 0.115 2.650 0.008 

Time of the day (12 PM to 3 PM) 0.227 0.110 2.070 0.039 

Time of the day (3 PM to 6 PM) 0.175 0.105 1.660 0.096 

Time of the day (6 PM to 9 PM) 0.106 0.122 0.870 0.385 

Time of the day (9 PM to 12 AM) -0.047 0.147 -0.320 0.748 

Manner of collision (Head-on) 0.215 0.077 2.790 0.005 

Manner of collision (Rear-end) 0.029 0.082 0.360 0.721 

Manner of collision (Sideswipe - opposite 

direction) 
0.114 0.132 0.860 0.388 

Manner of collision (Sideswipe - same direction) 0.247 0.153 1.610 0.107 

Speeding -0.139 0.093 -1.490 0.136 

Number of lanes (No trafficway access) 0.318 0.274 1.160 0.245 

Number of lanes (one lane) 0.304 0.257 1.180 0.237 

Number of lanes (Three lanes) 0.025 0.083 0.300 0.766 

Number of lanes (Four lanes) 0.242 0.085 2.840 0.005 

Number of lanes (Five lanes) 0.211 0.094 2.230 0.026 
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Number of lanes (Six lanes) 0.165 0.174 0.950 0.341 

Number of lanes (Seven or more lanes) 0.268 0.214 1.260 0.209 

Surface condition (Wet) -0.048 0.136 -0.350 0.725 

Surface condition (Ice, snow, mud, dirt, oil or 

water) 
-0.652 0.266 -2.450 0.014 

Pre-crash stability (Skidding laterally) -0.157 0.215 -0.730 0.466 

Pre-crash stability (Skidding longitudinally) -0.483 0.282 -1.710 0.087 

Pre-crash stability (Not specific) -0.263 0.073 -3.600 0.000 

Functional class (Interstate) 0.284 0.093 3.060 0.002 

Functional class (Freeway or expressway) 0.376 0.127 2.970 0.003 

Functional class (Minor arterial) -0.096 0.069 -1.380 0.167 

Functional class (Major collector) -0.123 0.092 -1.330 0.184 

Functional class (Minor collector) 0.173 0.177 0.980 0.328 

Functional class (Local) 0.058 0.120 0.480 0.631 

Intersection -0.138 0.071 -1.940 0.053 

Work zone 0.160 0.158 1.020 0.310 

Light condition (Dark) 0.248 0.109 2.270 0.023 

Light condition (Dawn) -0.175 0.215 -0.810 0.415 

Light condition (Dusk) 0.182 0.195 0.930 0.350 

Weather condition (Cloudy) -0.041 0.079 -0.520 0.603 

Weather condition (Rain) 0.011 0.165 0.060 0.949 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
0.494 0.194 2.540 0.011 

Means of random parameters 

Drink and drive -0.429 0.101 -4.250 0.000 

Gender (Female) 0.684 0.055 12.370 0.000 

Age (Less than 24 years) -0.296 0.084 -3.520 0.000 

Age (>40, <=65 years) -0.347 0.068 -5.100 0.000 

Age (Greater than 65 years) 0.196 0.078 2.500 0.013 

Diagonal elements of Cholesky matrix 

Drink and drive 0.453 0.092 4.900 0.000 

Gender (Female) 0.779 0.051 15.180 0.000 

Age (Less than 24 years) 0.387 0.069 5.650 0.000 

Age (>40, <=65 years) 0.383 0.047 8.210 0.000 

Age (Greater than 65 years) 0.197 0.060 3.310 0.001 

Below diagonal elements of Cholesky matrix 

Gender (Female) - Drink and drive 0.242 0.050 4.830 0.000 

Age (Less than 24 years) - Drink and drive -0.619 0.073 -8.510 0.000 

Age (Less than 24 years) - Gender (Female) -0.484 0.071 -6.830 0.000 

Age (>40, <=65 years) - Drink and drive -0.890 0.054 -16.560 0.000 

Age (>40, <=65 years) - Gender (Female) 0.194 0.050 3.910 0.000 

Age (>40, <=65 years) - Age (Less than 24 years) -0.385 0.047 -8.250 0.000 
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Age (Greater than 65 years) - Drink and drive -0.209 0.062 -3.340 0.001 

Age (Greater than 65 years) - Gender (Female) -0.912 0.066 -13.820 0.000 

Age (Greater than 65 years) - Age (Less than 24 

years) 
0.030 0.059 0.510 0.612 

Age (Greater than 65 years) - Age (>40, <=65 

years) 
-0.253 0.060 -4.240 0.000 

Threshold parameters for probabilities 

Threshold parameters for probabilities 1.644 0.039 42.530 0.000 

 

The estimates show that most variables are statistically significant at more than 90% 

confidence level. To ensure the identifiability of the classification thresholds, the threshold 

delineating vehicles without any DWS and vehicles with one DWS is fixed to zero. The threshold 

delineating vehicles with one and two DWSs is identified to be 1.644. The coefficients show the 

loading for a particular variable in the model, which determines the number of DWSs in the 

vehicles using the established thresholds. A negative coefficient value indicates that the presence 

of a particular variable is shifting the predictions towards vehicles without any DWS while a 

positive coefficient indicates the presence of a specific variable is adding to the estimates towards 

one or more DWSs. 

The p-value of all the means of random parameters is less than 0.013, indicating that all 

the random parameters are highly significant. The diagonal elements of the Cholesky matrix and 

the below diagonal elements of the Cholesky matrix indicate the correlation between various 

variables and the significance of the correlation. All other possible combinations of random 

parameters are significantly correlated except for ages greater than 65 years and less than 24 years. 

It shows that incorporating a correlated parameters model in the present case, which considers the 

correlation between variables, is better.  

The model coefficients are not directly interpretable regarding their contribution to the 

crash occurrence. Therefore, partial effects were obtained, as shown in Table 5-8. 
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Table 5-8. Partial effects of correlated random parameters Model 1. 

Variables 

Y = 0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Year -0.099 0.000 0.071 0.000 0.028 0.000 

Area type (Urban) -0.040 0.000 0.029 0.000 0.011 0.000 

Season (Winter) 0.014 0.281 -0.010 0.282 -0.004 0.277 

Season (Spring) 0.008 0.506 -0.006 0.507 -0.002 0.504 

Season (Fall) -0.030 0.015 0.021 0.015 0.008 0.017 

Time of the day (12 AM to 3 AM) 0.023 0.374 -0.017 0.378 -0.006 0.366 

Time of the day (3 AM to 6 AM) 0.033 0.188 -0.024 0.192 -0.009 0.176 

Time of the day (9 AM to 12 PM) -0.055 0.012 0.039 0.011 0.016 0.017 

Time of the day (12 PM to 3 PM) -0.040 0.047 0.028 0.044 0.012 0.053 

Time of the day (3 PM to 6 PM) -0.030 0.106 0.022 0.103 0.009 0.112 

Time of the day (6 PM to 9 PM) -0.018 0.395 0.013 0.392 0.005 0.401 

Time of the day (9 PM to 12 AM) 0.008 0.746 -0.006 0.746 -0.002 0.744 

Manner of collision (Head-on) -0.037 0.007 0.027 0.006 0.011 0.008 

Manner of collision (Rear-end) -0.005 0.722 0.004 0.722 0.001 0.723 

Manner of collision (Sideswipe - 

opposite direction) 
-0.020 0.401 0.014 0.398 0.006 0.409 

Manner of collision (Sideswipe - 

same direction) 
-0.044 0.129 0.031 0.122 0.013 0.145 

Speeding 0.023 0.123 -0.016 0.126 -0.006 0.117 

Number of lanes (No trafficway 

access) 
-0.058 0.282 0.041 0.269 0.018 0.310 

Number of lanes (one lane) -0.056 0.272 0.039 0.260 0.017 0.299 

Number of lanes (Three lanes) -0.004 0.767 0.003 0.767 0.001 0.768 

Number of lanes (Four lanes) -0.043 0.007 0.030 0.006 0.013 0.009 

Number of lanes (Five lanes) -0.037 0.033 0.026 0.031 0.011 0.039 

Number of lanes (Six lanes) -0.029 0.362 0.021 0.356 0.009 0.375 

Number of lanes (Seven or more 

lanes) 
-0.049 0.239 0.034 0.229 0.014 0.261 

Surface condition (Wet) 0.008 0.722 -0.006 0.723 -0.002 0.721 

Surface condition (Ice, snow, mud, 

dirt, oil or water) 
0.091 0.002 -0.067 0.003 -0.024 0.001 

Pre-crash stability (Skidding 

laterally) 
0.025 0.446 -0.018 0.450 -0.007 0.435 

Pre-crash stability (Skidding 

longitudinally) 
0.071 0.045 -0.052 0.050 -0.019 0.032 

Pre-crash stability (Not specific) 0.043 0.000 -0.031 0.000 -0.012 0.000 

Functional class (Interstate) -0.051 0.004 0.036 0.003 0.015 0.005 
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Functional class (Freeway or 

expressway) 
-0.070 0.006 0.049 0.005 0.021 0.010 

Functional class (Minor arterial) 0.016 0.161 -0.011 0.162 -0.004 0.158 

Functional class (Major collector) 0.020 0.172 -0.015 0.175 -0.006 0.166 

Functional class (Minor collector) -0.031 0.349 0.022 0.343 0.009 0.363 

Functional class (Local) -0.010 0.635 0.007 0.634 0.003 0.638 

Intersection 0.023 0.051 -0.017 0.052 -0.007 0.051 

Work zone -0.028 0.329 0.020 0.324 0.008 0.342 

Light condition (Dark) -0.043 0.026 0.031 0.025 0.012 0.029 

Light condition (Dawn) 0.028 0.391 -0.020 0.396 -0.008 0.379 

Light condition (Dusk) -0.032 0.372 0.023 0.366 0.009 0.387 

Weather condition (Cloudy) 0.007 0.600 -0.005 0.600 -0.002 0.598 

Weather condition (Rain) -0.002 0.949 0.001 0.949 0.001 0.949 

Weather condition (Snow, 

fog/smoke/smog, or other adverse 

condition) 

-0.094 0.022 0.065 0.017 0.029 0.037 

Drink and drive 0.066 0.000 -0.048 0.000 -0.018 0.000 

Gender (Female) -0.124 0.000 0.087 0.000 0.037 0.000 

Age (Less than 24 years) 0.047 0.000 -0.034 0.000 -0.013 0.000 

Age (>40, <=65 years) 0.057 0.000 -0.041 0.000 -0.016 0.000 

Age (Greater than 65 years) -0.034 0.016 0.024 0.015 0.010 0.019 

  

The partial effects shown in Table 5-8, along with the p-value, indicate that the effect of 

variables on crashes involving vehicles with one or more DWSs compared to vehicles without 

DWSs is varying. The negative values of partial effects indicate that vehicles without DWSs have 

less probability of getting involved in a fatal multivehicle crash according to particular variables. 

The variable year is added to the model to account for the temporal heterogeneity. It shows that 

the probability of fatal crash occurrence for vehicles without any DWS decreased over the study 

years. However, for vehicles with one or more DWSs, the probability of fatal crash occurrence 

increased. Considering that the penetration of vehicles with DWSs increased over the study years 

in the data, it is apparent that the partial effect for the variable “year of crash” is positive for one 

or more than one DWSs.   
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           The road geometry and location-related variables such as urban areas, number of lanes (one 

to seven or more lanes), and functional class (intestate, freeways and expressways, and local) show 

that vehicles with one or more DWSs have a higher probability of crash occurrence. In contrast, 

on major collector, major arterial, and minor arterial roads, and at intersections, vehicles with one 

or more DWSs have a lower probability of crash occurrence than vehicles without DWSs. During 

night time, in winter and spring seasons, in conditions when a driver is speeding, in wet, ice or 

snow, or muddy road surface conditions, in conditions when a vehicle is skidding laterally or 

longitudinally, during dawn light conditions, and in cloudy weather conditions, vehicles with one 

or more DWSs have a lower probability of crash occurrence. Similarly, in drink and drive-related 

crashes, vehicles with one or more DWSs are safer than those without DWSs. 

           The driver characteristics-related variables are highly significant and show that the 

probability of crash occurrence is higher for females when driving vehicles with one or more 

DWSs. Similarly, for elderly drivers (age greater than 65 years), the probability of crash 

occurrence when driving a vehicle with DWSs is higher. In contrast, for teens and younger drivers, 

the probability of fatal crash occurrence is lower when driving vehicles with DWSs. Potential 

reasons for the same could be the familiarity of younger drivers with warning systems and their 

reaction time after receiving alerts from the DWS. 

 

5.3.2 Analysis for multivehicle crashes involving vehicles with and without ADASs 

The correlated random parameters model to identify the factors affecting multivehicle fatal 

crashes involving vehicles with one or more ADASs and without ADAS is shown in Table 5-9.  
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Table 5-9. Correlated random parameters ordered logit Model 2 estimates. 

Variables Coefficient 
Standard 

error 
z-value p-value 

Constant -3.481 0.208 -16.710 0.000 

Year 0.543 0.031 17.350 0.000 

Area type (Urban) 0.294 0.070 4.200 0.000 

Season (Winter) 0.046 0.095 0.490 0.627 

Season (Spring) -0.038 0.090 -0.420 0.676 

Season (Fall) 0.234 0.082 2.860 0.004 

Time of the day (12 AM to 3 AM) -0.151 0.195 -0.780 0.437 

Time of the day (3 AM to 6 AM) -0.183 0.194 -0.940 0.345 

Time of the day (9 AM to 12 PM) 0.068 0.139 0.490 0.624 

Time of the day (12 PM to 3 PM) 0.007 0.133 0.050 0.957 

Time of the day (3 PM to 6 PM) -0.004 0.128 -0.030 0.977 

Time of the day (6 PM to 9 PM) 0.002 0.149 0.010 0.990 

Time of the day (9 PM to 12 AM) -0.242 0.176 -1.380 0.169 

Manner of collision (Head-on) 0.296 0.091 3.250 0.001 

Manner of collision (Rear-end) 0.034 0.097 0.350 0.728 

Manner of collision (Sideswipe - opposite 

direction) 
0.057 0.161 0.360 0.722 

Manner of collision (Sideswipe - same direction) 0.270 0.178 1.520 0.130 

Speeding -0.170 0.102 -1.660 0.098 

Number of lanes (No trafficway access) -0.291 0.341 -0.850 0.395 

Number of lanes (one lane) 0.709 0.277 2.560 0.010 

Number of lanes (Three lanes) 0.106 0.094 1.120 0.261 

Number of lanes (Four lanes) 0.075 0.095 0.790 0.431 

Number of lanes (Six lanes) 0.043 0.189 0.230 0.820 

Number of lanes (Seven or more lanes) 0.084 0.243 0.350 0.728 

Surface condition (Wet) -0.051 0.165 -0.310 0.759 

Surface condition (Ice, snow, mud, dirt, oil or 

water) 
-0.705 0.337 -2.090 0.036 

Pre-crash stability (Skidding laterally) -0.474 0.240 -1.980 0.048 

Pre-crash stability (Skidding longitudinally) -0.437 0.338 -1.290 0.196 

Pre-crash stability (Not specific) -0.264 0.085 -3.110 0.002 

Functional class (Interstate) 0.165 0.108 1.520 0.127 

Functional class (Freeway or expressway) 0.188 0.148 1.270 0.203 

Functional class (Minor arterial) -0.191 0.083 -2.320 0.020 

Functional class (Major collector) -0.270 0.108 -2.510 0.012 

Functional class (Minor collector) 0.395 0.198 2.000 0.046 

Functional class (Local) -0.126 0.142 -0.890 0.375 

Intersection -0.089 0.086 -1.030 0.303 
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Work zone -0.109 0.175 -0.620 0.532 

Light condition (Dark) 0.107 0.133 0.800 0.422 

Light condition (Dawn) -0.069 0.246 -0.280 0.777 

Light condition (Dusk) -0.115 0.226 -0.510 0.611 

Weather condition (Cloudy) -0.236 0.096 -2.470 0.014 

Weather condition (Rain) 0.052 0.200 0.260 0.794 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
0.172 0.240 0.720 0.474 

Means of random parameters 

Drink and drive -0.580 0.117 -4.950 0.000 

Gender (Female) 0.754 0.065 11.520 0.000 

Age (Less than 24 years) -0.610 0.120 -5.100 0.000 

Age (>40, <=65 years) -0.285 0.076 -3.760 0.000 

Age (Greater than 65 years) 0.060 0.094 0.630 0.527 

Diagonal elements of Cholesky matrix 

Drink and drive 0.110 0.108 1.020 0.307 

Gender (Female) 0.719 0.062 11.620 0.000 

Age (Less than 24 years) 1.383 0.111 12.480 0.000 

Age (>40, <=65 years) 0.625 0.054 11.520 0.000 

Age (Greater than 65 years) 0.153 0.071 2.150 0.031 

Below diagonal elements of Cholesky matrix 

Gender (Female) - Drink and drive 0.278 0.060 4.640 0.000 

Age (Less than 24 years) - Drink and drive -0.491 0.099 -4.970 0.000 

Age (Less than 24 years) - Gender (Female) 0.586 0.096 6.120 0.000 

Age (>40, <=65 years) - Drink and drive 0.039 0.057 0.690 0.487 

Age (>40, <=65 years) - Gender (Female) 0.216 0.058 3.750 0.000 

Age (>40, <=65 years) - Age (Less than 24 years) -0.129 0.052 -2.490 0.013 

Age (Greater than 65 years) - Drink and drive 0.485 0.078 6.190 0.000 

Age (Greater than 65 years) - Gender (Female) -0.370 0.076 -4.900 0.000 

Age (Greater than 65 years) - Age (Less than 24 

years) 
0.884 0.079 11.240 0.000 

Age (Greater than 65 years) - Age (>40, <=65 

years) 
0.116 0.071 1.620 0.104 

Threshold parameters for probabilities 

Threshold 0.743 0.028 26.630 0.000 

 

The estimates show similar results as shown in Model 1, indicating that the majority of 

variables possess statistical significance at a level exceeding 90%. To ensure the distinguishability 

of the thresholds, the fixed threshold between vehicles without one and no ADAS is set to zero. 
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The threshold separating vehicles with one and two ADASs is identified as 0.743. The coefficients 

represent the loading of a specific variable in the model, which delineates predictions of the 

number of ADASs in vehicles based on the established thresholds. A negative coefficient value 

implies that a particular variable shifts the predictions toward vehicles without any ADAS. In 

contrast, positive coefficients indicate that the presence of a specific variable contributes to the 

estimations of one or two ADASs. The constant for the model is -3.481 showing without any 

additional variable, the model would predict a vehicle without any ADAS, which is a base category 

of the dependent variable. 

In the case of Model 2, the p-value for all the means of random parameters except age 

greater than 65 years is less than 0.001, indicating the high significance of these random 

parameters. Considering that the other two categories of variable age are highly significant, all 

three categories were considered random parameters in the model. The diagonal and below-

diagonal elements of the Cholesky matrix reflect the correlation between various variables and the 

significance of that correlation. The diagonal elements of all random parameters are statistically 

significant except for variable drink and drive, indicating no correlation between random values 

following normal distribution considered for the variable drink and drive. The below diagonal 

elements are also statistically significant except for two combinations (age between 40 and 65 

years and drink and drive and age greater than 65 years and age 40 to 65 years). Since the majority 

of the correlations are statistically significant, the exceptions in the correlation matrix are kept 

while modeling to incorporate the collinearity between random parameters in the model estimates. 

Similar to Model 1, the model estimates do not directly show the crash occurrence 

likelihood. Therefore, partial effects were derived as presented in Table 5-10. 
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Table 5-10. Partial effects of correlated random parameters Model 2. 

Variables 

Y = 0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Year -0.091 0.000 0.036 0.000 0.055 0.000 

Area type (Urban) -0.048 0.000 0.019 0.000 0.029 0.000 

Season (Winter) -0.008 0.629 0.003 0.628 0.005 0.630 

Season (Spring) 0.006 0.674 -0.002 0.675 -0.004 0.673 

Season (Fall) -0.040 0.005 0.016 0.005 0.025 0.006 

Time of the day (12 AM to 3 AM) 0.024 0.419 -0.010 0.427 -0.014 0.414 

Time of the day (3 AM to 6 AM) 0.029 0.321 -0.012 0.332 -0.017 0.314 

Time of the day (9 AM to 12 PM) -0.012 0.628 0.005 0.626 0.007 0.630 

Time of the day (12 PM to 3 PM) -0.001 0.957 0.000 0.957 0.001 0.957 

Time of the day (3 PM to 6 PM) 0.001 0.977 0.000 0.977 0.000 0.977 

Time of the day (6 PM to 9 PM) 0.000 0.990 0.000 0.990 0.000 0.990 

Time of the day (9 PM to 12 AM) 0.038 0.146 -0.016 0.155 -0.023 0.139 

Manner of collision (Head-on) -0.051 0.002 0.020 0.001 0.031 0.002 

Manner of collision (Rear-end) -0.006 0.729 0.002 0.729 0.003 0.730 

Manner of collision (Sideswipe - 

opposite direction) 
-0.010 0.726 0.004 0.724 0.006 0.727 

Manner of collision (Sideswipe - 

same direction) 
-0.048 0.155 0.018 0.137 0.030 0.167 

Speeding 0.027 0.085 -0.011 0.090 -0.016 0.082 

Number of lanes (No trafficway 

access) 
0.045 0.351 -0.018 0.368 -0.026 0.339 

Number of lanes (one lane) -0.141 0.025 0.049 0.007 0.093 0.040 

Number of lanes (Three lanes) -0.018 0.271 0.007 0.265 0.011 0.275 

Number of lanes (Four lanes) -0.013 0.438 0.005 0.434 0.008 0.441 

Number of lanes (Six lanes) -0.007 0.822 0.003 0.821 0.004 0.823 

Number of lanes (Seven or more 

lanes) 
-0.014 0.734 0.006 0.730 0.009 0.736 

Surface condition (Wet) 0.008 0.756 -0.003 0.757 -0.005 0.755 

Surface condition (Ice, snow, mud, 

dirt, oil or water) 
0.096 0.007 -0.041 0.012 -0.055 0.005 

Pre-crash stability (Skidding 

laterally) 
0.069 0.021 -0.029 0.028 -0.040 0.016 

Pre-crash stability (Skidding 

longitudinally) 
0.064 0.136 -0.027 0.155 -0.037 0.122 

Pre-crash stability (Not specific) 0.042 0.001 -0.017 0.001 -0.025 0.001 

Functional class (Interstate) -0.028 0.140 0.011 0.132 0.017 0.145 

Functional class (Freeway or 

expressway) 
-0.033 0.224 0.013 0.211 0.020 0.232 

Functional class (Minor arterial) 0.031 0.017 -0.013 0.018 -0.019 0.016 
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Functional class (Major collector) 0.043 0.007 -0.017 0.009 -0.025 0.006 

Functional class (Minor collector) -0.073 0.068 0.027 0.049 0.046 0.080 

Functional class (Local) 0.020 0.359 -0.008 0.366 -0.012 0.354 

Intersection 0.015 0.300 -0.006 0.301 -0.009 0.299 

Work zone 0.018 0.519 -0.007 0.525 -0.011 0.515 

Light condition (Dark) -0.018 0.426 0.007 0.424 0.011 0.428 

Light condition (Dawn) 0.011 0.773 -0.005 0.775 -0.007 0.772 

Light condition (Dusk) 0.019 0.599 -0.008 0.604 -0.011 0.595 

Weather condition (Cloudy) 0.038 0.010 -0.015 0.011 -0.022 0.009 

Weather condition (Rain) -0.009 0.797 0.003 0.795 0.005 0.798 

Weather condition (Snow, 

fog/smoke/smog, or other adverse 

condition) 

-0.030 0.492 0.012 0.481 0.018 0.500 

Drink and drive 0.085 0.000 -0.036 0.000 -0.049 0.000 

Gender (Female) -0.136 0.000 0.051 0.000 0.085 0.000 

Age (Less than 24 years) 0.089 0.000 -0.037 0.000 -0.052 0.000 

Age (>40, <=65 years) 0.047 0.000 -0.019 0.000 -0.028 0.000 

Age (Greater than 65 years) -0.010 0.532 0.004 0.529 0.006 0.534 

 

The partial effects and their p-values, as shown in Table 5-10, indicate that the effect of 

variables on crashes involving vehicles with one and two ADASs compared to vehicles without 

DWSs is different for all the variables. The interpretation of partial effects is similar to the 

interpretations described in section 5.3.1.  

The penetration of vehicles with ADASs is increasing over the study years (2016 – 2020). 

Hence, a variable year is added while modeling to determine the effect of features on fatal crashes 

over the years. The results show that over the study years, the likelihood of crash occurrence for 

vehicles with one and two ADASs has increased. The increment is higher in the case of vehicles 

with two ADASs compared to vehicles with one ADAS. The results emphasize the trends shown 

in Figure 4-4, which indicates that penetration of vehicles with one or more ADASs increased over 

the study years, resulting in a higher number of crashes involving vehicles with one or more 

ADASs. 
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The results show that in urban areas, the probability of a crash involving a vehicle with one 

or two ADASs is higher than vehicles without any ADAS, possibly due to the higher penetration 

of vehicles with ADASs in urban areas. The road geometry-related variables, such as the number 

of lanes (one to seven or more lanes) and functional class (intestate, freeways and expressways, 

and minor collector), show that the probability of fatal crash occurrence is higher for vehicles with 

one or more ADASs. For all the variables, the probability is higher for vehicles with two ADASs 

than vehicles with one ADAS. In contrast, on major arterial, minor arterial roads, and local roads, 

at intersections, and at work zones, vehicles with one or more ADASs have a lower probability of 

crash occurrence than vehicles without ADAS. Notably, the results of work zone-related crashes 

vary in Model 1 and Model 2, showing that vehicles with ADASs are safer at work zones, whereas 

vehicles with DWSs are not safer at work zones. 

Vehicles with one as well as two ADASs have a lower likelihood of getting involved in 

fatal crashes during the spring season, night, afternoon, and evening time, in conditions when the 

driver is speeding, in drink and drive related crashes, in wet, ice or snow, or muddy road surface 

conditions, in conditions when the vehicle is skidding laterally or longitudinally, in dawn or dusk 

light conditions, and in cloudy weather conditions. In contrast, during adverse weather conditions, 

or dark lighting conditions, the likelihood of fatal crash occurrence is higher for vehicles with one 

or more ADASs, which is possibly due to poor detection capabilities of smart features during these 

conditions as identified in the existing literature. 

The driver characteristics are significant and show that the probability of crash occurrence 

is higher for females when driving vehicles with one or more ADASs. Similarly, the probability 

of crash occurrence when driving a vehicle with ADASs is higher for older drivers (age greater 

than 65 years). In contrast, the probability of fatal crash occurrence is lower when driving a vehicle 
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with ADASs for teens and younger drivers. The driver characteristics related variables showed 

similar results in Model 1 and Model 2, indicating that familiarity of drivers with technology highly 

affects their probability of crash occurrence when driving vehicles with DWSs or ADASs. 

 

5.3.3 Analysis for single-vehicle and lane departure-related crashes involving vehicles with and 

without LDW 

The correlated random parameters model to identify the factors affecting single-vehicle 

and lane departure related fatal crashes involving vehicles with and without LDW is shown in 

Table 5-11.  

Table 5-11. Correlated random parameters ordered logit Model 3 estimates. 

Variables Coefficient 
Standard 

error 
z-value p-value 

Constant -3.665 0.280 -13.100 0.000 

Year 0.709 0.045 15.690 0.000 

Area type (Urban) 0.321 0.090 3.560 0.000 

Season (Winter) -0.050 0.131 -0.380 0.703 

Season (Spring) -0.015 0.121 -0.120 0.902 

Season (Fall) 0.135 0.113 1.200 0.231 

Time of the day (12 AM to 3 AM) -0.242 0.230 -1.050 0.292 

Time of the day (3 AM to 6 AM) -0.276 0.228 -1.210 0.227 

Time of the day (9 AM to 12 PM) -0.070 0.201 -0.350 0.727 

Time of the day (12 PM to 3 PM) -0.364 0.186 -1.960 0.050 

Time of the day (3 PM to 6 PM) -0.363 0.177 -2.050 0.041 

Time of the day (6 PM to 9 PM) -0.607 0.193 -3.140 0.002 

Time of the day (9 PM to 12 AM) -0.424 0.227 -1.870 0.062 

Manner of collision (Head-on) 0.530 0.149 3.550 0.000 

Manner of collision (Rear-end) 0.648 0.232 2.800 0.005 

Manner of collision (Sideswipe - opposite 

direction) 
0.325 0.262 1.240 0.216 

Manner of collision (Sideswipe - same direction) 0.331 0.315 1.050 0.293 

Speeding 0.095 0.098 0.970 0.331 

Number of lanes (No trafficway access) 0.205 0.517 0.400 0.692 

Number of lanes (one lane) -0.344 0.345 -1.000 0.319 

Number of lanes (Three lanes) -0.005 0.141 -0.040 0.971 
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Number of lanes (Four lanes) -0.026 0.166 -0.150 0.877 

Number of lanes (Six lanes) 0.402 0.327 1.230 0.219 

Number of lanes (Seven or more lanes) 0.131 0.642 0.200 0.838 

Surface condition (Wet) 0.129 0.204 0.630 0.528 

Surface condition (Ice, snow, mud, dirt, oil or 

water) 
-0.316 0.339 -0.930 0.351 

Pre-crash stability (Skidding Longitudinally) -0.309 0.309 -1.000 0.318 

Pre-crash stability (Not specific) 0.047 0.127 0.370 0.714 

Functional class (Interstate) 0.079 0.139 0.570 0.568 

Functional class (Freeway or expressway) 0.064 0.183 0.350 0.728 

Functional class (Minor arterial) -0.018 0.127 -0.140 0.888 

Functional class (Major collector) -0.188 0.141 -1.330 0.182 

Functional class (Minor collector) -0.193 0.229 -0.850 0.398 

Functional class (Local) 0.105 0.156 0.670 0.501 

Work zone -0.250 0.292 -0.860 0.391 

Light condition (Dark) 0.254 0.181 1.400 0.162 

Light condition (Dawn) 0.033 0.348 0.090 0.925 

Light condition (Dusk) 0.126 0.284 0.440 0.658 

Weather condition (Cloudy) -0.289 0.129 -2.230 0.026 

Weather condition (Rain) -0.322 0.246 -1.310 0.191 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
-0.023 0.317 -0.070 0.942 

Means of random parameters 

Gender (Female) 0.399 0.096 4.150 0.000 

Age (Less than 24 years) -0.208 0.120 -1.730 0.085 

Age (>40, <=65 years) -0.200 0.108 -1.850 0.065 

Age (Greater than 65 years) 0.601 0.140 4.300 0.000 

Drink and drive -0.152 0.109 -1.400 0.163 

Diagonal elements of Cholesky matrix 

Gender (Female) 0.881 0.139 6.340 0.000 

Age (Less than 24 years) 0.061 0.136 0.450 0.655 

Age (>40, <=65 years) 0.150 0.114 1.310 0.190 

Age (Greater than 65 years) 0.635 0.164 3.860 0.000 

Drink and drive 0.177 0.116 1.530 0.127 

Below diagonal elements of Cholesky matrix 

Gender (Female) - Age (Less than 24 years) 1.242 0.159 7.800 0.000 

Gender (Female) - Age (>40, <=65 years) -0.986 0.136 -7.250 0.000 

Age (Less than 24 years) - Age (>40, <=65 years) 0.256 0.114 2.250 0.025 

Gender (Female) - Age (Greater than 65 years) 0.509 0.164 3.100 0.002 

Age (Less than 24 years) - Age (Greater than 65 

years) 
0.898 0.172 5.210 0.000 
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Age (>40, <=65 years) - Age (Greater than 65 

years) 
0.482 0.166 2.900 0.004 

Gender (Female) - Drink and drive -0.382 0.132 -2.900 0.004 

Age (Less than 24 years) - Drink and drive 0.149 0.125 1.190 0.234 

Age (>40, <=65 years) - Drink and drive 0.765 0.129 5.910 0.000 

Age (Greater than 65 years) - Drink and drive -0.018 0.116 -0.150 0.880 

 

The estimates in the group random parameters binary logit model developed to determine 

factors affecting fatal crashes involving vehicles with and without LDW show that most of the 

variables are statistically significant at more than a 90% confidence level. Negative estimates 

contribute to the prediction of vehicles without LDW, and positive estimates for any variable 

contribute to the prediction of a vehicle with LDW. 

The results of Model 3 show that the probability of crash occurrence for vehicles with 

LDW has increased over the study years, and the variation is statistically significant at a 99% 

confidence level. Similar to Model 2, the means of random parameters are statistically significant 

for all the random parameters except drink and drive. Further, the correlation results show that the 

diagonal element of the Cholesky matrix for ages less than 24 years, ages between 40 to 65 years, 

and drinking and driving are not significant at a 90% confidence level. There is no correlation 

across the observations for particular variables. However, all below the diagonal elements of the 

Cholesky matrix representing the correlation between various random parameters are statistically 

significant at a 95% confidence level except for the correlation between age less than 24 years and 

drink and drive and age greater than 65 years and drink and drive. Similar to Model 2, considering 

the significance of the majority of the correlations and means of random parameters, all the random 

parameters are included in the model. 
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In the case of Model 3, the estimates represent the contribution of various variables in the 

model prediction of vehicles with and without LDW and not the effect of individual factors on the 

probability of crash occurrence. Therefore, partial effects for both models with binary dependent 

variables are estimated. The partial effects for Model 3, along with p and z statistics and standard 

error of the estimates, are shown in Table 5-12.  

Table 5-12. Partial effects of correlated random parameters Model 3. 

Variables 
Partial 

effect 

Standard 

error 
z-value p-value 

Year 0.132 1.854 15.350 0.000 

Area type (Urban) 0.060 0.119 3.550 0.000 

Season (Winter) -0.009 -0.008 -0.380 0.703 

Season (Spring) -0.003 -0.002 -0.120 0.902 

Season (Fall) 0.025 0.030 1.200 0.231 

Time of the day (12 AM to 3 AM) -0.045 -0.024 -1.050 0.293 

Time of the day (3 AM to 6 AM) -0.051 -0.019 -1.210 0.228 

Time of the day (9 AM to 12 PM) -0.013 -0.005 -0.350 0.727 

Time of the day (12 PM to 3 PM) -0.068 -0.039 -1.960 0.050 

Time of the day (3 PM to 6 PM) -0.068 -0.044 -2.040 0.041 

Time of the day (6 PM to 9 PM) -0.113 -0.067 -3.130 0.002 

Time of the day (9 PM to 12 AM) -0.079 -0.041 -1.860 0.063 

Manner of collision (Head-on) 0.099 0.067 3.560 0.000 

Manner of collision (Rear-end) 0.121 0.017 2.790 0.005 

Manner of collision (Sideswipe - opposite 

direction) 
0.061 0.006 1.240 0.216 

Manner of collision (Sideswipe - same direction) 0.062 0.005 1.050 0.293 

Speeding 0.018 0.022 0.970 0.330 

Number of lanes (No trafficway access) 0.038 0.002 0.400 0.692 

Number of lanes (one lane) -0.064 -0.005 -1.000 0.319 

Number of lanes (Three lanes) -0.001 0.000 -0.040 0.971 

Number of lanes (Four lanes) -0.005 -0.001 -0.150 0.877 

Number of lanes (Six lanes) 0.075 0.004 1.230 0.219 

Number of lanes (Seven or more lanes) 0.024 0.001 0.200 0.838 

Surface condition (Wet) 0.024 0.012 0.630 0.528 

Surface condition (Ice, snow, mud, dirt, oil or 

water) 
-0.059 -0.008 -0.930 0.351 

Pre-crash stability (Skidding Longitudinally) -0.058 -0.008 -1.000 0.318 

Pre-crash stability (Not specific) 0.009 0.012 0.370 0.714 
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Functional class (Interstate) 0.015 0.010 0.570 0.568 

Functional class (Freeway or expressway) 0.012 0.003 0.350 0.728 

Functional class (Minor arterial) -0.003 -0.003 -0.140 0.888 

Functional class (Major collector) -0.035 -0.023 -1.330 0.183 

Functional class (Minor collector) -0.036 -0.007 -0.840 0.399 

Functional class (Local) 0.020 0.010 0.670 0.501 

Work zone -0.047 -0.005 -0.860 0.391 

Light condition (Dark) 0.047 0.089 1.400 0.161 

Light condition (Dawn) 0.006 0.000 0.090 0.925 

Light condition (Dusk) 0.023 0.002 0.440 0.658 

Weather condition (Cloudy) -0.054 -0.035 -2.230 0.026 

Weather condition (Rain) -0.060 -0.019 -1.310 0.190 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
-0.004 0.000 -0.070 0.942 

Gender (Female) 0.074 0.078 4.130 0.000 

Age (Less than 24 years) -0.039 -0.032 -1.730 0.084 

Age (>40, <=65 years) -0.037 -0.048 -1.850 0.065 

Age (Greater than 65 years) 0.112 0.058 4.270 0.000 

Drink and drive -0.028 -0.033 -1.430 0.153 

 

The partial effects for the variable year show that the probability of crash occurrence for 

vehicles with LDW increased with the increase in time (from 2016 to 2020). The reason for the 

same is the increasing number of vehicles in the sample over the study years, as shown in Figure 

4-5. 

In the case of both the models with binary variables, the positive value of partial effect 

indicates a higher likelihood of fatal crash occurrence for vehicles with particular DWS or ADAS. 

In Model 3, the positive coefficient shows a higher probability of crash occurrence for vehicles 

with DWS. For example, the partial effect of 0.06 for urban areas shows that vehicles with LDW 

are 6% more likely to get involved in a fatal single-vehicle or lane departure-related crash than 

vehicles without LDW. Similarly, during the fall season, vehicles with LDW have a 2.5% higher 

probability of fatal crash occurrence than vehicles without LDW. In contrast, the likelihood of 



71 

 

crash occurrence for vehicles with LDW is 0.95 and 0.3% less in winter and spring compared to 

vehicles without LDW. 

Unlike the results of Model 1 and Model 2, the results of Model 3 show that for single-

vehicle or lane departure crashes, vehicles with LDW are safer during daytime and nighttime 

compared to vehicles without LDW. Similarly, the likelihood of fatal crash occurrence for vehicles 

with LDW is higher when the driver is speeding, which is contradictory compared to vehicles with 

BSM, FCWS, LKA, or ACC. 

The probability of crash occurrence for vehicles with LDW is higher than those without 

LDW on roads with six or more lanes, during wet surface conditions, on interstates, freeways and 

expressways, and local roads, and during dark, dawn, or dusk light conditions. In contrast, the 

likelihood of single-vehicle or lane departure related fatal crash occurrence is lower for a vehicle 

with LDW compared to vehicles without LDW on roads with one to four lanes, during icy, snowy, 

or muddy road surface conditions, in conditions when the vehicle is skidding longitudinally, on 

minor arterial, major collector, and minor collector roads, at work zones, and during cloudy, rainy, 

or other adverse conditions. This means that vehicles with LDW are safer in the most adverse 

weather or road surface conditions. 

The driver characteristics are significant and show that females and drivers with ages 

greater than 65 years are more likely to get involved in a fatal crash when driving a vehicle with 

LDW compared to vehicles without LDW. In contrast, the likelihood of fatal crash occurrence is 

lower for drivers with age less than 65 years when driving a vehicle with LDW. In drink and drive 

relate crashes, the likelihood of fatal crash occurrence is lower when driving a vehicle with LDW. 

It is noteworthy that for elderly drivers, the likelihood of fatal crash occurrence is 11% higher 

when driving a vehicle with LDW than those without LDW. 
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5.3.4. Analysis for pedestrian crashes involving vehicles with and without PAEB 

The correlated random parameters model to identify the factors affecting fatal pedestrian 

crashes involving vehicles with and without PAEB system is shown in Table 5-13.  

 

Table 5-13. Correlated random parameters ordered logit Model 4 estimates. 

Variables Coefficient 
Standard 

error 
z-value p-value 

Constant -3.987 0.517 -7.710 0.000 

Year 0.683 0.066 10.270 0.000 

Area type (Urban) 0.332 0.214 1.550 0.120 

Season (Winter) 0.043 0.200 0.220 0.829 

Season (Spring) -0.106 0.211 -0.500 0.614 

Season (Fall) 0.752 0.183 4.100 0.000 

Time of the day (12 AM to 3 AM) 0.332 0.386 0.860 0.390 

Time of the day (3 AM to 6 AM) 0.735 0.353 2.080 0.037 

Time of the day (9 AM to 12 PM) 0.079 0.437 0.180 0.857 

Time of the day (12 PM to 3 PM) 0.235 0.424 0.560 0.579 

Time of the day (3 PM to 6 PM) 0.087 0.354 0.250 0.805 

Time of the day (6 PM to 9 PM) 0.557 0.323 1.730 0.084 

Time of the day (9 PM to 12 AM) 0.422 0.339 1.240 0.214 

Speeding 0.261 0.234 1.120 0.264 

Number of lanes (No trafficway access) 2.555 1.372 1.860 0.063 

Number of lanes (one lane) 0.146 0.541 0.270 0.788 

Number of lanes (Three lanes) 0.032 0.175 0.180 0.854 

Number of lanes (Four lanes) 0.026 0.181 0.150 0.885 

Number of lanes (Six lanes) -0.325 0.328 -0.990 0.323 

Number of lanes (Seven or more lanes) 0.196 0.352 0.560 0.577 

Surface condition (Wet) 0.023 0.309 0.070 0.941 

Pre-crash stability (Skidding laterally) -0.443 0.287 -1.540 0.123 

Pre-crash stability (Skidding longitudinally) 0.047 0.241 0.200 0.845 

Functional class (Interstate) -0.035 0.200 -0.170 0.862 

Functional class (Freeway or expressway) 0.085 0.307 0.280 0.782 

Functional class (Minor arterial) -0.262 0.178 -1.470 0.141 

Functional class (Major collector) 0.088 0.278 0.320 0.751 

Functional class (Minor collector) 0.388 0.563 0.690 0.491 

Functional class (Local) -0.167 0.250 -0.670 0.505 
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Work zone -0.741 0.542 -1.370 0.172 

Light condition (Dark) -0.325 0.302 -1.080 0.282 

Light condition (Dawn) 1.137 0.521 2.180 0.029 

Light condition (Dusk) -1.370 0.704 -1.950 0.052 

Weather condition (Cloudy) -0.178 0.203 -0.880 0.382 

Weather condition (Rain) 0.199 0.417 0.480 0.633 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
-0.038 0.655 -0.060 0.954 

Intersection 0.065 0.158 0.410 0.679 

Means of random parameters 

Gender (Female) 0.014 0.153 0.090 0.928 

Age (Less than 24 years) -0.085 0.199 -0.430 0.669 

Age (>40, <=65 years) -0.405 0.165 -2.450 0.014 

Age (Greater than 65 years) 0.388 0.209 1.850 0.064 

Drink and drive 0.022 0.333 0.060 0.948 

Diagonal elements of Cholesky matrix 

Gender (Female) 1.874 0.234 8.000 0.000 

Age (Less than 24 years) 1.170 0.254 4.620 0.000 

Age (>40, <=65 years) 0.971 0.177 5.470 0.000 

Age (Greater than 65 years) 0.752 0.249 3.020 0.003 

Drink and drive 0.137 0.415 0.330 0.741 

Below diagonal elements of Cholesky matrix 

Gender (Female) - Age (Less than 24 years) -0.171 0.234 -0.730 0.463 

Gender (Female) - Age (>40, <=65 years) 0.564 0.176 3.210 0.001 

Age (Less than 24 years) - Age (>40, <=65 years) -1.271 0.188 -6.760 0.000 

Gender (Female) - Age (Greater than 65 years) -0.127 0.252 -0.500 0.614 

Age (Less than 24 years) - Age (Greater than 65 

years) 
0.129 0.240 0.540 0.590 

Age (>40, <=65 years) - Age (Greater than 65 

years) 
-0.273 0.238 -1.150 0.250 

Gender (Female) - Drink and drive 1.323 0.475 2.790 0.005 

Age (Less than 24 years) - Drink and drive -0.151 0.463 -0.330 0.745 

Age (>40, <=65 years) - Drink and drive 0.305 0.429 0.710 0.477 

Age (Greater than 65 years) - Drink and drive -0.307 0.420 -0.730 0.465 

 

The grouped random parameters binary logit model developed to determine factors 

affecting fatal pedestrian crashes involving vehicles with and without LDW shows that the 

majority of the variables are statistically significant at more than a 90% confidence level. The 

interpretation of model coefficients is similar to Model 3. 
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           The results of the model for pedestrian crashes show that the probability of crash occurrence 

for vehicles with PAEB has increased over the study years, and the variation is statistically 

significant at a 99% confidence level. Unlike Model 2, the means of random parameters are 

statistically significant only for drivers aged 40 to 65 years and greater than 65 years. For all other 

random parameters, the means are not statistically significant. Further, the correlation results show 

that the diagonal element of the Cholesky matrix for all variables except drink and drive are 

statistically significant at a 99% confidence level. In the case of correlation between various 

random parameters, as shown in the results for below diagonal elements of the Cholesky matrix, 

the correlation between female and age less than 24 years, female and age greater than 65 years, 

age less than 24 years, and age greater than 65 years, age from 40 to 65 years and age greater than 

65 years, age all categories of variable age with drink and drive is not significant. The correlation 

between these variables is not significant, and hence correlated random parameters model does not 

improve the results significantly by incorporating these correlations in the model estimation 

procedure.  

           The partial effects for Model 4 are estimated to determine the factors affecting fatal crashes 

involving pedestrians and vehicles with and without PAEB and to compare the results. The partial 

effects for Model 4, along with p and z statistics and standard error of the estimates, are shown in 

Table 5-14. 

Table 5-14. Partial effects of correlated random parameters Model 4. 

Variables 
Partial 

effect 

Standard 

error 
z-value p-value 

Year 0.122 1.780 10.200 0.000 

Area type (Urban) 0.059 0.218 1.550 0.120 

Season (Winter) 0.008 0.009 0.220 0.829 

Season (Spring) -0.019 -0.016 -0.500 0.614 
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Season (Fall) 0.135 0.176 4.110 0.000 

Time of the day (12 AM to 3 AM) 0.059 0.023 0.860 0.389 

Time of the day (3 AM to 6 AM) 0.132 0.061 2.080 0.037 

Time of the day (9 AM to 12 PM) 0.014 0.003 0.180 0.857 

Time of the day (12 PM to 3 PM) 0.042 0.011 0.560 0.579 

Time of the day (3 PM to 6 PM) 0.016 0.007 0.250 0.805 

Time of the day (6 PM to 9 PM) 0.100 0.113 1.730 0.084 

Time of the day (9 PM to 12 AM) 0.075 0.075 1.250 0.213 

Speeding 0.047 0.015 1.120 0.264 

Number of lanes (No trafficway access) 0.457 0.006 1.860 0.063 

Number of lanes (one lane) 0.026 0.002 0.270 0.788 

Number of lanes (Three lanes) 0.006 0.005 0.180 0.854 

Number of lanes (Four lanes) 0.005 0.003 0.150 0.885 

Number of lanes (Six lanes) -0.058 -0.010 -0.990 0.323 

Number of lanes (Seven or more lanes) 0.035 0.004 0.560 0.577 

Surface condition (Wet) 0.004 0.002 0.070 0.941 

Pre-crash stability (Skidding laterally) -0.079 -0.025 -1.540 0.124 

Pre-crash stability (Skidding longitudinally) 0.008 0.003 0.200 0.845 

Functional class (Interstate) -0.006 -0.004 -0.170 0.862 

Functional class (Freeway or expressway) 0.015 0.003 0.280 0.782 

Functional class (Minor arterial) -0.047 -0.044 -1.470 0.141 

Functional class (Major collector) 0.016 0.005 0.320 0.751 

Functional class (Minor collector) 0.069 0.005 0.690 0.491 

Functional class (Local) -0.030 -0.013 -0.670 0.505 

Work zone -0.133 -0.010 -1.360 0.174 

Light condition (Dark) -0.058 -0.187 -1.080 0.282 

Light condition (Dawn) 0.203 0.019 2.180 0.029 

Light condition (Dusk) -0.245 -0.015 -1.940 0.052 

Weather condition (Cloudy) -0.032 -0.022 -0.870 0.382 

Weather condition (Rain) 0.036 0.010 0.480 0.633 

Weather condition (Snow, fog/smoke/smog, or 

other adverse condition) 
-0.007 0.000 -0.060 0.954 

Intersection 0.012 0.014 0.410 0.679 

Gender (Female) 0.002 0.003 0.090 0.928 

Age (Less than 24 years) -0.015 -0.011 -0.430 0.669 

Age (>40, <=65 years) -0.072 -0.112 -2.450 0.015 

Age (Greater than 65 years) 0.069 0.037 1.850 0.064 

Drink and drive 0.004 0.001 0.060 0.948 
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The partial effects for the variable year show that the probability of crash occurrence for 

vehicles with PAEB increased over the study years (from 2016 to 2020). The reason for the same 

is the increasing number of vehicles in the sample over the study years, as shown in Figure 4-4. 

The increment in the probability of crash occurrence over the study years is lowest in Model 4 

compared to all other models, which is due to the lower penetration of PAEB over the study years 

compared to other DWSs or ADASs. 

            The positive value of partial effects in Model 4 shows a higher probability of crash 

occurrence for vehicles with PAEB. In urban areas, the likelihood of getting involved in pedestrian 

crashes is 5.95% higher for vehicles with PAEB than those without PAEB. Similarly, during the 

fall season, vehicles with PAEB have a 13.5% higher probability of getting involved in a fatal 

crash than a vehicle without PAEB. In contrast, the likelihood of pedestrian crashes for a vehicle 

with PAEB is 1.9% less in the spring than for a vehicle without PAEB. 

           Unlike Model 3, Model 4 shows that vehicles with PAEB are not safer during daytime and 

nighttime compared to vehicles without PAEB. Similarly, when a driver is speeding, the likelihood 

of fatal crash occurrence for vehicles with PAEB is higher, which is contradictory compared to 

vehicles with BSM, FCWS, LKA, or ACC and similar to vehicles with LDW. 

The probability of fatal pedestrian crash occurrence for vehicles with PAEB is higher 

compared to vehicles without PAEB in the case of roads with one to four lanes or more than seven 

lanes, during wet road surface conditions, when a vehicle is skidding longitudinally, at 

intersections, on freeways and expressways, major collector, and minor collector roads, and during 

dawn light conditions, and rainy weather conditions. In contrast, on roads with six lanes, in 

conditions when a vehicle is skidding laterally, the likelihood of fatal pedestrian crash occurrence 

is lower for vehicles with PAEB compared to vehicles without PAEB on interstates, minor arterial, 
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and local roads, at work zones, and during dark or dusk light conditions, during cloudy or other 

adverse conditions such as snow, fog/smoke/smog. This means that vehicles with PAEB are safer 

in most adverse weather conditions. 

Females and drivers with age greater than 65 years are more likely to get involved in fatal 

pedestrian crashes for vehicles with PAEB compared to vehicles without PAEB. In contrast, the 

likelihood of fatal pedestrian crash occurrence is lower for drivers with age less than 65 years when 

driving a vehicle with PAEB. For crashes related to drink and drive, the likelihood of fatal crash 

occurrence is higher for vehicles with PAEB. For elderly drivers, the likelihood of fatal crash 

occurrence is 6.9% higher when driving a vehicle with PAEB compared to vehicles without PAEB. 
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CHAPTER 6 CONCLUSIONS 

 

Traffic crashes are among the top ten causes of fatalities in the United States. Existing 

literature documents that human errors are one of the primary causes of crashes in the United 

States. Varying driving behaviors due to variations in experience, reaction times, age, gender, and 

on-road and off-road characteristics are also associated with crash occurrence. Through the 

"Vision Zero" strategies, agencies worldwide under the Safe System Approach (SSA) aim to 

implement strategic and emerging technology-based solutions to reduce traffic-related crashes and 

fatalities. 

Recent advancements in vehicle technologies are expected to change existing traffic 

systems fundamentally. DWSs and ADASs have drawn much attention from researchers in 

transportation engineering and other disciplines, particularly investigating the potential benefits of 

vehicles with varying DWSs or ADASs. Vehicles with DWSs or ADASs are expected to mitigate 

human errors while performing driving-related tasks by either providing warning to drivers in 

unsafe situations or by eliminating the role of human drivers from performing various driving 

tasks, thereby reducing traffic-related crashes and fatalities. 

The existing literature shows numerous benefits of DWSs and ADASs in terms of safety. 

However, most of the existing studies on DWSs or ADASs are related to simulation analysis or 

analysis of test vehicles operating in a controlled environment. Although vehicles with DWSs or 

ADASs are expected to reduce traffic-related crashes, the crash data of the United States from the 

2016 to 2020 shows that more than 5,000 vehicles equipped with either DWS or ADAS got 

involved in a fatal crash for which those DWSs or ADASs were designed to enhance the safety, 

demanding research on identifying potential causes and factors affecting those crashes. This study 
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focuses on identifying fatal crashes involving vehicles equipped with DWSs or ADASs and 

determining the factors affecting fatal crashes involving vehicles with and without particular DWS 

or ADAS. 

The methodology involved collecting fatal crash data for the United States from 2016 to 

2020. After collecting the fatal crash data, the VINs of all the vehicles involved in fatal crashes 

were used to retrieve information about DWSs or ADASs in the vehicles. Depending on the Make, 

Model, and year of a vehicle, some vehicles offer the buyer an option for adding on a particular 

DWS or ADAS. Whereas for other models, the features are standard and come with a particular 

model. Vehicles with "standard" features are considered in this study. 

The crash dataset was separated into three datasets based on crash types. The first dataset 

included all multivehicle crashes, in which DWSs, such as FCWS and BSM, and ADASs, such as 

LKA and ACC, play a vital role in enhancing safety. The second dataset was explicitly used to 

determine the effect of the LDW feature. It included single-vehicle and lane departure-related 

crashes, in which the LDW feature provides additional safety per its design. The third dataset 

included pedestrian crashes involving vehicles with and without the PAEB system. After 

segregating datasets, spatial maps, and temporal variation plots were developed to visualize the 

spatial and temporal variation in crashes. The trends showed that crashes varied throughout the 

United States, and the number of crashes involving vehicles with particular DWS or ADAS 

increased over the study years. 

In separated datasets, descriptive statistics analysis showed that the share of vehicles 

equipped with particular DWS or ADAS was less than 3% in all datasets. Therefore, for even 

comparison and to eliminate spatial heterogeneity, nearest neighbor analysis was conducted for 

each dataset and each year of the crash. Per the nearest neighbor sampling results, three nearest 
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neighbors (crashes involving vehicles without DWSs or ADASs) corresponding to each crash 

involving a vehicle with DWSs or ADASs were considered for modeling. After conducting nearest 

neighbor analysis, separate descriptive analysis was conducted for each dataset to determine the 

variation in frequency and proportion of samples in each category of independent variables and to 

identify the most suitable modeling technique. 

The dependent variable was ordinal for models to identify the effect of DWSs or ADASs 

on multivehicle crashes. Therefore, fixed and correlated random parameters ordered logit models 

were employed in this study. Using a correlated random parameters model ensures the 

incorporation of heterogeneity due to varying driving behaviors and possible correlation between 

the random parameters. The dependent variable was binary in the case of models to identify the 

factors affecting crashes involving vehicles with LDW and PAEB. Therefore, fixed and correlated 

random parameters binary logit models were developed for those datasets. 

The fixed and correlated random parameters modeling results provided valuable insights 

into the factors affecting fatal crashes involving vehicles with and without particular DWSs or 

ADASs. The following are the concluding remarks. 

• Although vehicles with varying DWSs or ADASs are designed to enhance traffic safety in 

particular crash types, they are still involved in the same type of fatal crashes. 

• Due to spatial and temporal heterogeneity in crash data, modeling results may be most 

accurate if various types of heterogeneity are incorporated when modeling. 

• The trends in crash data showed that the number of fatal crashes involving vehicles with 

DWSs or ADASs varies spatially and temporally; using the methodological framework 

proposed in this study would help break down and incorporate various types of 

heterogeneity in crash datasets when modeling. 
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• Descriptive statistics analysis conducted in this study shows that the frequency and 

proportion of samples for various crash types varies; therefore, crash modeling is necessary 

to gain deeper insights into factors affecting fatal crashes and identify their effect on the 

probability of crash occurrence. 

• The models developed in this study to determine the effect of vehicles with one or more 

DWSs or ADASs on factors affecting fatal crash occurrence showed that correlated random 

parameters ordered logit models significantly improve the model accuracy compared to 

fixed parameters ordered logit models. 

• Although correlated random parameters binary logit models employed in the study 

provided better model accuracies than fixed parameters binary logit models, the Chi-square 

test results showed that both (fixed and correlated random parameters) models are not 

significantly different. The improvement in model accuracy by incorporating unobserved 

heterogeneity due to varying driving behavior parameters does not significantly improve 

the model fit. 

• The factors affecting fatal crashes involving vehicles with zero, one, and two DWSs or 

ADASs varied over the study years. The probability of crash occurrence of vehicles with 

DWSs and ADASs increased over the study years, possibly due to the increasing 

penetration of vehicles with DWSs and ADASs in the transportation system. 

• Vehicles equipped with one or more DWSs or ADASs are more likely to be involved in 

fatal crashes in urban areas and on interstates. 

• Vehicles with LDW or PAEB features have a lower probability of being involved in fatal 

crashes during adverse weather conditions, such as ice, snow, smoke, or fog, than vehicles 

without these features. 
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• During wet or snowy road conditions, vehicles equipped with DWSs features like FCWS 

or BSM and ADASs features like LKA and ACC are safer than vehicles without these 

features. However, vehicles with LDW and PAEB are unsafe on wet road surfaces. 

•  Vehicles equipped with BSM, FCWS, LKA or ACC are less likely to be involved in fatal 

crashes in conditions where the vehicle is skidding laterally or longitudinally before a 

crash. Similarly, the likelihood of fatal crashes involving vehicles with LDW is lower when 

the vehicle is skidding longitudinally before the crash. On the other hand, vehicles with 

PAEB are safer when the vehicle is skidding laterally before a crash. 

• The modeling results indicated that the effect of vehicles with DWSs and ADASs on a 

crash occurrence at work zones varies significantly. Vehicles equipped with ADASs or 

LDW are safer compared to vehicles without these features. 

• At intersections, vehicles with DWSs and ADASs, except those with PAEB, are safer 

compared to vehicles without any DWS or ADAS. 

• In crashes related to speeding or driving under the influence, vehicles equipped with DWSs 

or ADASs are less likely to be involved in fatal multivehicle crashes. However, drivers 

who exceed the speed limit are more likely to be involved in single-vehicle or lane 

departure-related and pedestrian-related fatal crashes. 

• Female and elderly drivers are more likely to be involved in fatal crashes when driving 

vehicles with any DWSs or ADASs, demanding modifications in vehicular technology 

considering those drivers. 

• The effect of driver age, gender, and drink and drive on fatal crash occurrence varied across 

observations. Incorporating these variables as random parameters while modeling yields 

better model estimates. 
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6.1 Practical Implications 

   The factors affecting various types of fatal crashes involving vehicles with different 

DWSs or ADASs, as highlighted in the study results, could be used by practitioners for making 

policy decisions and modifying the existing infrastructure before higher penetration of vehicles 

with warning and assistance systems in the transportation system. The modeling results of vehicles 

with and without LDW showed that vehicles with LDW still get involved in fatal crashes. One of 

the potential reasons for the same could be the underutilization of the feature because the option 

could be turned on or off by the drivers. Making policy decisions mandating these warning features 

could help enhance safety. 

DWSs provides warnings to the drivers who responsible for performing various driving 

tasks, meaning they are enhancing safety by providing additional warning to the drivers (decision 

makers). Considering the usefulness of DWSs during adverse weather and road conditions as 

shown in the study results, policymakers can make decisions to mandate using these features in 

those circumstances to enhance safety.  

The method used in this study relies on information about the VINs provided in the crash 

dataset. Considering the increasing penetration of vehicles with varying DWSs and ADASs, 

practitioners could consider planning to involve VIN number-related details in the dataset for 

varying levels of injury severity to gain deeper insights about factors affecting crash severity in 

the future. 

The factors affecting fatal crashes involving vehicles with and without DWSs or ADASs 

could be used by industry experts to enhance the vehicular technology related to these warning 

and assistance systems to enhance their safety under critical circumstances identified in this study. 
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6.2 Scientific Contribution of the Study 

 This study focuses on an analysis of crash data involving various types of vehicles. The 

data preparation and processing framework used in this study to determine vehicles with and 

without DWSs and ADASs using VINs could be used by researchers in the future to determine 

vehicle-specific information for any dataset which contains VINs. The methodological framework 

used in this study provides an overview of various types of unobserved heterogeneity in crash data, 

along with a step-wise method to incorporate it while modeling. Separate consideration of 

heterogeneity due to spatial, temporal, and driving behavior variation while modeling provides an 

overview of the contribution of each aspect of unobserved heterogeneity in model accuracy. The 

temporal trends of fatal crashes involving vehicles with varying DWSs and ADASs show that the 

number of fatal crashes involving these vehicles increased over the study years. This study to 

identify the factors affecting fatal crashes involving vehicles with various DWSs and ADASs is 

the first of its kind to conduct crash data driven analysis. The factors identified in this study provide 

useful insights about required modifications in vehicular technology and can be used by 

researchers in the future. 

 

6.3 Limitations and Scope for Future Work 

The crash data from 2016 to 2020 were considered for the analysis. The trends in the 

number of crashes involving vehicles with DWSs and ADASs were increasing, demanding future 

research at higher penetration of these vehicles to get better insights about factors affecting fatal 

crashes. Further, due to data limitation, all vehicles with ADASs or LDW as standard features 

were considered in the analysis, considering that vehicles with these features should always use 
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them. Using details of whether a particular feature was on or not at the time of the crash would 

provide more abstract results related to factors affecting crash occurrence for those vehicles. 

 The crash dataset used in this study included only fatal crashes as fatal crash data is more 

detailed and includes VIN information. Considering crash data of varying injury severity levels to 

determine the factors affecting injury severity is also a future research scope.  

Another limitation of the study is that complete data on vehicles without DWSs or ADASs 

is not utilized since the penetration of vehicles with DWSs and ADASs was very low compared to 

those without DWS or ADAS. A study using all the crashes could be conducted at higher 

penetration of vehicles with DWSs and ADASs to gain detailed insights about the crash data.  

One of the objectives of this study was to identify factors affecting fatal crashes involving 

vehicles with and without a particular DWS or ADAS. Statistical methods are used in this study 

since they provide detailed insights about each factor and its effect on the probability of crash 

occurrence. Using advanced machine learning or deep learning methods to determine the 

probability of crash occurrence could be another approach to explore and is identified as the future 

scope of the work. 
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APPENDIX A: SPATIAL VARIATION OF FATAL CRASHES 

 

 
Figure A-1. Fatal multivehicle crashes involving vehicles with ACC. 

 

 
Figure A-2. Fatal multivehicle crashes involving vehicles with LKA. 
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Figure A-3. Fatal multivehicle crashes involving vehicles with both LKA and ACC systems. 

 

 

 
Figure A-4. Fatal multivehicle crashes involving vehicles with FCWS. 
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Figure A-5. Fatal multivehicle crashes involving vehicles with BSM. 

 

 

 
Figure A-6. Fatal multivehicle crashes involving vehicles with both BSM and FCWS. 
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Figure A-6. Fatal single-vehicle and lane departure crashes involving vehicles with LDW. 

 

 
Figure A-6. Fatal pedestrian crashes involving vehicles with PAEB. 
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APPENDIX B: FIXED PARAMETERS MODEL ESTIMATES 

 

Table B-1. Fixed Parameters Model 1 Estimates. 

Variables Coefficient 
Standard 

error 
z-value p-value 

Constant -3.566 0.162 -22.050 0.000 

Year 0.524 0.023 22.730 0.000 

Area type (Urban) 0.214 0.058 3.670 0.000 

Age (Less than 24 years) -0.174 0.078 -2.220 0.026 

Age (>40, <=65 years) -0.119 0.062 -1.920 0.055 

Age (Greater than 65 years) 0.262 0.074 3.540 0.000 

Gender (Female) 0.659 0.052 12.710 0.000 

Season (Winter) -0.085 0.076 -1.120 0.264 

Season (Spring) -0.056 0.072 -0.780 0.435 

Season (Fall) 0.142 0.066 2.140 0.032 

Time of the day (12 AM to 3 AM) -0.159 0.156 -1.020 0.308 

Time of the day (3 AM to 6 AM) -0.208 0.155 -1.340 0.179 

Time of the day (9 AM to 12 PM) 0.263 0.110 2.390 0.017 

Time of the day (12 PM to 3 PM) 0.192 0.105 1.830 0.067 

Time of the day (3 PM to 6 PM) 0.151 0.101 1.490 0.137 

Time of the day (6 PM to 9 PM) 0.076 0.117 0.650 0.514 

Time of the day (9 PM to 12 AM) -0.073 0.141 -0.520 0.605 

Manner of collision (Head-on) 0.194 0.072 2.690 0.007 

Manner of collision (Rear-end) 0.027 0.078 0.350 0.729 

Manner of collision (Sideswipe - opposite direction) 0.070 0.131 0.540 0.592 

Manner of collision (Sideswipe - same direction) 0.207 0.143 1.450 0.148 

Speeding -0.104 0.087 -1.200 0.230 

Number of lanes (No trafficway access) 0.335 0.244 1.370 0.169 

Number of lanes (one lane) 0.277 0.237 1.170 0.243 

Number of lanes (Three lanes) 0.017 0.079 0.210 0.831 

Number of lanes (Four lanes) 0.210 0.081 2.600 0.009 

Number of lanes (Five lanes) 0.204 0.090 2.260 0.024 

Number of lanes (Six lanes) 0.149 0.163 0.920 0.360 

Number of lanes (Seven or more lanes) 0.239 0.192 1.240 0.214 

Surface condition (Wet) -0.028 0.131 -0.210 0.832 

Surface condition (Ice, snow, mud, dirt, oil or water) -0.582 0.251 -2.320 0.020 

Pre-crash stability (Skidding laterally) -0.093 0.201 -0.460 0.645 

Pre-crash stability (Skidding longitudinally) -0.428 0.251 -1.710 0.088 

Pre-crash stability (Not specific) -0.242 0.069 -3.510 0.001 

Drink and drive -0.369 0.094 -3.910 0.000 
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Variables Coefficient 
Standard 

error 
z-value p-value 

Functional class (Interstate) 0.254 0.089 2.840 0.005 

Functional class (Freeway or expressway) 0.350 0.119 2.930 0.003 

Functional class (Minor arterial) -0.084 0.067 -1.260 0.209 

Functional class (Major collector) -0.106 0.087 -1.220 0.224 

Functional class (Minor collector) 0.152 0.172 0.880 0.378 

Functional class (Local) 0.054 0.113 0.480 0.633 

Intersection -0.123 0.067 -1.830 0.067 

Work zone 0.140 0.145 0.960 0.335 

Light condition (Dark) 0.234 0.104 2.240 0.025 

Light condition (Dawn) -0.174 0.211 -0.820 0.410 

Light condition (Dusk) 0.198 0.178 1.110 0.267 

Weather condition (Cloudy) -0.046 0.077 -0.600 0.550 

Weather condition (Rain) -0.004 0.158 -0.020 0.981 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
0.437 0.186 2.350 0.019 

Threshold parameters for probabilities 

Threshold 1.478 0.035 42.170 0.000 

 

Table B-2. Fixed Parameters Model 1 Partial Effects. 

Variables 

Y=0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Year -0.096 0.000 0.063 0.000 0.033 0.000 

Area type (Urban) -0.039 0.000 0.026 0.000 0.013 0.000 

Age (Less than 24 years) 0.031 0.022 -0.021 0.023 -0.011 0.019 

Age (>40, <=65 years) 0.022 0.052 -0.014 0.053 -0.007 0.051 

Age (Greater than 65 years) -0.050 0.001 0.032 0.001 0.018 0.001 

Gender (Female) -0.128 0.000 0.081 0.000 0.047 0.000 

Season (Winter) 0.015 0.258 -0.010 0.260 -0.005 0.254 

Season (Spring) 0.010 0.432 -0.007 0.433 -0.004 0.429 

Season (Fall) -0.027 0.035 0.017 0.034 0.009 0.037 

Time of the day (12 AM to 3 AM) 0.028 0.290 -0.019 0.295 -0.010 0.279 

Time of the day (3 AM to 6 AM) 0.037 0.157 -0.024 0.163 -0.012 0.145 

Time of the day (9 AM to 12 PM) -0.051 0.022 0.033 0.019 0.018 0.028 

Time of the day (12 PM to 3 PM) -0.036 0.075 0.024 0.072 0.013 0.083 

Time of the day (3 PM to 6 PM) -0.028 0.145 0.018 0.142 0.010 0.152 

Time of the day (6 PM to 9 PM) -0.014 0.520 0.009 0.517 0.005 0.524 

Time of the day (9 PM to 12 AM) 0.013 0.600 -0.009 0.601 -0.005 0.596 

Manner of collision (Head-on) -0.037 0.008 0.024 0.008 0.013 0.010 
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Variables 

Y=0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Manner of collision (Rear-end) -0.005 0.730 0.003 0.729 0.002 0.730 

Manner of collision (Sideswipe - 

opposite direction) 
-0.013 0.598 0.009 0.596 0.005 0.602 

Manner of collision (Sideswipe - same 

direction) 
-0.040 0.166 0.026 0.157 0.014 0.182 

Speeding 0.019 0.220 -0.012 0.223 -0.006 0.214 

Number of lanes (No trafficway access) -0.067 0.200 0.042 0.182 0.025 0.229 

Number of lanes (one lane) -0.054 0.272 0.035 0.257 0.020 0.297 

Number of lanes (Three lanes) -0.003 0.832 0.002 0.831 0.001 0.832 

Number of lanes (Four lanes) -0.040 0.012 0.026 0.011 0.014 0.015 

Number of lanes (Five lanes) -0.039 0.030 0.025 0.027 0.014 0.035 

Number of lanes (Six lanes) -0.028 0.376 0.018 0.369 0.010 0.388 

Number of lanes (Seven or more lanes) -0.047 0.238 0.030 0.226 0.017 0.259 

Surface condition (Wet) 0.005 0.832 -0.003 0.832 -0.002 0.831 

Surface condition (Ice, snow, mud, dirt, 

oil or water) 
0.092 0.005 -0.062 0.007 -0.029 0.003 

Pre-crash stability (Skidding laterally) 0.017 0.637 -0.011 0.639 -0.006 0.632 

Pre-crash stability (Skidding 

longitudinally) 
0.070 0.052 -0.047 0.059 -0.023 0.039 

Pre-crash stability (Not specific) 0.043 0.000 -0.028 0.000 -0.015 0.000 

Drink and drive 0.063 0.000 -0.042 0.000 -0.021 0.000 

Functional class (Interstate) -0.049 0.007 0.031 0.005 0.018 0.009 

Functional class (Freeway or 

expressway) 
-0.070 0.006 0.044 0.004 0.026 0.010 

Functional class (Minor arterial) 0.015 0.203 -0.010 0.205 -0.005 0.200 

Functional class (Major collector) 0.019 0.214 -0.013 0.217 -0.007 0.208 

Functional class (Minor collector) -0.029 0.394 0.019 0.387 0.010 0.407 

Functional class (Local) -0.010 0.637 0.007 0.635 0.004 0.640 

Intersection 0.023 0.066 -0.015 0.066 -0.008 0.065 

Work zone -0.027 0.350 0.017 0.344 0.009 0.362 

Light condition (Dark) -0.044 0.028 0.028 0.026 0.015 0.030 

Light condition (Dawn) 0.031 0.388 -0.020 0.394 -0.010 0.375 

Light condition (Dusk) -0.038 0.288 0.025 0.278 0.014 0.305 

Weather condition (Cloudy) 0.008 0.546 -0.006 0.548 -0.003 0.544 

Weather condition (Rain) 0.001 0.981 0.001 0.981 0.001 0.981 

Weather condition (Snow, 

fog/smoke/smog, or other adverse 

condition) 

-0.089 0.030 0.055 0.022 0.033 0.046 
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Table B-3. Fixed Parameters Model 2 Estimates. 

Variable Coefficient 
Standard 

error 
z-value p-value 

Constant -3.153 0.189 -16.720 0.000 

Year 0.474 0.027 17.830 0.000 

Area type (Urban) 0.248 0.066 3.770 0.000 

Age (Less than 24 years) -0.173 0.097 -1.790 0.074 

Age (>40, <=65 years) -0.158 0.071 -2.210 0.027 

Age (Greater than 65 years) 0.226 0.086 2.620 0.009 

Gender (Female) 0.731 0.061 12.060 0.000 

Season (Winter) 0.047 0.088 0.530 0.597 

Season (Spring) -0.052 0.085 -0.620 0.537 

Season (Fall) 0.188 0.077 2.450 0.014 

Time of the day (12 AM to 3 AM) -0.121 0.184 -0.650 0.513 

Time of the day (3 AM to 6 AM) -0.144 0.184 -0.780 0.434 

Time of the day (9 AM to 12 PM) 0.034 0.130 0.260 0.792 

Time of the day (12 PM to 3 PM) -0.017 0.124 -0.130 0.893 

Time of the day (3 PM to 6 PM) -0.017 0.120 -0.140 0.885 

Time of the day (6 PM to 9 PM) -0.012 0.141 -0.080 0.934 

Time of the day (9 PM to 12 AM) -0.245 0.168 -1.450 0.146 

Manner of collision (Head-on) 0.258 0.085 3.010 0.003 

Manner of collision (Rear-end) 0.039 0.091 0.430 0.669 

Manner of collision (Sideswipe - opposite direction) 0.056 0.152 0.370 0.712 

Manner of collision (Sideswipe - same direction) 0.253 0.168 1.500 0.132 

Speeding -0.118 0.096 -1.220 0.221 

Number of lanes (No trafficway access) -0.259 0.301 -0.860 0.389 

Number of lanes (one lane) 0.579 0.263 2.210 0.027 

Number of lanes (Three lanes) 0.086 0.090 0.960 0.335 

Number of lanes (Four lanes) 0.050 0.091 0.560 0.579 

Number of lanes (Six lanes) 0.041 0.183 0.230 0.821 

Number of lanes (Seven or more lanes) 0.093 0.220 0.420 0.671 

Surface condition (Wet) -0.063 0.154 -0.410 0.683 

Surface condition (Ice, snow, mud, dirt, oil or 

water) 
-0.664 0.301 -2.200 0.028 

Pre-crash stability (Skidding laterally) -0.384 0.228 -1.690 0.092 

Pre-crash stability (Skidding longitudinally) -0.343 0.302 -1.130 0.257 

Pre-crash stability (Not specific) -0.224 0.080 -2.790 0.005 

Drink and drive -0.521 0.109 -4.790 0.000 

Functional class (Interstate) 0.146 0.104 1.410 0.157 

Functional class (Freeway or expressway) 0.177 0.138 1.280 0.200 

Functional class (Minor arterial) -0.151 0.078 -1.950 0.051 
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Variable Coefficient 
Standard 

error 
z-value p-value 

Functional class (Major collector) -0.249 0.101 -2.460 0.014 

Functional class (Minor collector) 0.328 0.194 1.690 0.091 

Functional class (Local) -0.088 0.135 -0.650 0.516 

Intersection -0.075 0.080 -0.940 0.348 

Work zone -0.066 0.164 -0.400 0.686 

Light condition (Dark) 0.089 0.127 0.700 0.483 

Light condition (Dawn) -0.055 0.236 -0.230 0.815 

Light condition (Dusk) -0.100 0.214 -0.470 0.639 

Weather condition (Cloudy) -0.208 0.090 -2.320 0.020 

Weather condition (Rain) 0.058 0.186 0.310 0.755 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
0.135 0.216 0.630 0.531 

Threshold parameters for probabilities 

Threshold 0.649 0.024 26.650 0.000 

 

Table B-4. Fixed Parameters Model 2 Partial Effects. 

Variables 

Y = 0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Year -0.087 0.000 0.029 0.000 0.058 0.000 

Area type (Urban) -0.045 0.000 0.015 0.000 0.030 0.000 

Age (Less than 24 years) 0.031 0.064 -0.010 0.070 -0.020 0.061 

Age (>40, <=65 years) 0.029 0.025 -0.010 0.026 -0.019 0.025 

Age (Greater than 65 years) -0.043 0.011 0.014 0.009 0.029 0.013 

Gender (Female) -0.143 0.000 0.044 0.000 0.099 0.000 

Season (Winter) -0.009 0.599 0.003 0.597 0.006 0.600 

Season (Spring) 0.010 0.534 -0.003 0.536 -0.006 0.533 

Season (Fall) -0.035 0.016 0.012 0.014 0.024 0.017 

Time of the day (12 AM to 3 AM) 0.022 0.501 -0.007 0.509 -0.014 0.497 

Time of the day (3 AM to 6 AM) 0.026 0.418 -0.009 0.428 -0.017 0.412 

Time of the day (9 AM to 12 PM) -0.006 0.794 0.002 0.793 0.004 0.794 

Time of the day (12 PM to 3 PM) 0.003 0.893 -0.001 0.893 -0.002 0.893 

Time of the day (3 PM to 6 PM) 0.003 0.885 -0.001 0.885 -0.002 0.885 

Time of the day (6 PM to 9 PM) 0.002 0.934 -0.001 0.934 -0.001 0.934 

Time of the day (9 PM to 12 AM) 0.043 0.125 -0.015 0.137 -0.028 0.119 

Manner of collision (Head-on) -0.049 0.003 0.016 0.003 0.033 0.004 

Manner of collision (Rear-end) -0.007 0.671 0.002 0.670 0.005 0.672 

Manner of collision (Sideswipe - 

opposite direction) 
-0.010 0.716 0.003 0.713 0.007 0.717 
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Variables 

Y = 0 Y=1 Y=2 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Partial 

effect 
p-value 

Manner of collision (Sideswipe - same 

direction) 
-0.049 0.154 0.015 0.131 0.034 0.164 

Speeding 0.021 0.210 -0.007 0.218 -0.014 0.207 

Number of lanes (No trafficway 

access) 
0.044 0.354 -0.015 0.374 -0.029 0.343 

Number of lanes (one lane) -0.121 0.046 0.035 0.016 0.086 0.062 

Number of lanes (Three lanes) -0.016 0.342 0.005 0.336 0.011 0.346 

Number of lanes (Four lanes) -0.009 0.582 0.003 0.580 0.006 0.584 

Number of lanes (Six lanes) -0.008 0.822 0.003 0.821 0.005 0.823 

Number of lanes (Seven or more lanes) -0.017 0.678 0.006 0.672 0.012 0.681 

Surface condition (Wet) 0.011 0.680 -0.004 0.682 -0.008 0.678 

Surface condition (Ice, snow, mud, 

dirt, oil or water) 
0.101 0.006 -0.037 0.012 -0.064 0.004 

Pre-crash stability (Skidding laterally) 0.064 0.059 -0.022 0.074 -0.041 0.051 

Pre-crash stability (Skidding 

longitudinally) 
0.057 0.210 -0.020 0.234 -0.037 0.197 

Pre-crash stability (Not specific) 0.040 0.004 -0.014 0.005 -0.026 0.003 

Drink and drive 0.086 0.000 -0.030 0.000 -0.055 0.000 

Functional class (Interstate) -0.028 0.168 0.009 0.158 0.019 0.173 

Functional class (Freeway or 

expressway) 
-0.034 0.217 0.011 0.201 0.023 0.225 

Functional class (Minor arterial) 0.027 0.046 -0.009 0.049 -0.018 0.045 

Functional class (Major collector) 0.043 0.010 -0.015 0.012 -0.028 0.008 

Functional class (Minor collector) -0.065 0.114 0.020 0.086 0.045 0.126 

Functional class (Local) 0.016 0.508 -0.005 0.514 -0.010 0.504 

Intersection 0.014 0.346 -0.005 0.347 -0.009 0.345 

Work zone 0.012 0.681 -0.004 0.684 -0.008 0.679 

Light condition (Dark) -0.016 0.486 0.005 0.483 0.011 0.487 

Light condition (Dawn) 0.010 0.812 -0.003 0.814 -0.007 0.811 

Light condition (Dusk) 0.018 0.630 -0.006 0.636 -0.012 0.627 

Weather condition (Cloudy) 0.037 0.015 -0.013 0.018 -0.024 0.014 

Weather condition (Rain) -0.011 0.758 0.004 0.756 0.007 0.759 

Weather condition (Snow, 

fog/smoke/smog, or other adverse 

condition) 

-0.026 0.544 0.008 0.533 0.017 0.549 
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Table B-5. Fixed Parameters Model 3 Estimates. 

Variable Coefficient 
Standard 

error 
z-value p-value 

Constant -4.410 0.334 -13.210 0.000 

Year 0.828 0.051 16.320 0.000 

Area type (Urban) 0.380 0.116 3.280 0.001 

Age (Less than 24 years) -0.138 0.153 -0.900 0.367 

Age (>40, <=65 years) -0.045 0.133 -0.340 0.733 

Age (Greater than 65 years) 0.815 0.177 4.610 0.000 

Gender (Female) 0.559 0.119 4.700 0.000 

Season (Winter) -0.010 0.165 -0.060 0.954 

Season (Spring) 0.001 0.157 0.010 0.994 

Season (Fall) 0.210 0.142 1.480 0.140 

Time of the day (12 AM to 3 AM) -0.306 0.292 -1.050 0.295 

Time of the day (3 AM to 6 AM) -0.290 0.290 -1.000 0.318 

Time of the day (9 AM to 12 PM) -0.126 0.252 -0.500 0.616 

Time of the day (12 PM to 3 PM) -0.419 0.236 -1.780 0.075 

Time of the day (3 PM to 6 PM) -0.427 0.224 -1.910 0.057 

Time of the day (6 PM to 9 PM) -0.731 0.249 -2.930 0.003 

Time of the day (9 PM to 12 AM) -0.467 0.286 -1.630 0.103 

Manner of collision (Head-on) 0.597 0.191 3.120 0.002 

Manner of collision (Rear-end) 0.783 0.289 2.710 0.007 

Manner of collision (Sideswipe - opposite direction) 0.374 0.357 1.050 0.295 

Manner of collision (Sideswipe - same direction) 0.337 0.400 0.840 0.399 

Speeding 0.102 0.123 0.820 0.410 

Number of lanes (No trafficway access) 0.159 0.643 0.250 0.805 

Number of lanes (one lane) -0.351 0.390 -0.900 0.368 

Number of lanes (Three lanes) -0.067 0.184 -0.370 0.714 

Number of lanes (Four lanes) 0.021 0.213 0.100 0.920 

Number of lanes (Six lanes) 0.495 0.430 1.150 0.250 

Number of lanes (Seven or more lanes) 0.167 0.662 0.250 0.801 

Surface condition (Wet) 0.137 0.260 0.530 0.598 

Surface condition (Ice, snow, mud, dirt, oil or water) -0.360 0.397 -0.910 0.365 

Pre-crash stability (Skidding Longitudinally) -0.369 0.407 -0.910 0.365 

Pre-crash stability (Not specific) 0.065 0.164 0.400 0.689 

Drink and drive -0.062 0.132 -0.470 0.636 

Functional class (Interstate) 0.056 0.176 0.320 0.752 

Functional class (Freeway or expressway) 0.054 0.239 0.230 0.820 

Functional class (Minor arterial) -0.058 0.161 -0.360 0.717 

Functional class (Major collector) -0.207 0.177 -1.170 0.243 

Functional class (Minor collector) -0.274 0.283 -0.970 0.333 
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Variable Coefficient 
Standard 

error 
z-value p-value 

Functional class (Local) 0.069 0.195 0.350 0.726 

Work zone -0.311 0.343 -0.910 0.364 

Light condition (Dark) 0.275 0.231 1.190 0.235 

Light condition (Dawn) 0.050 0.416 0.120 0.904 

Light condition (Dusk) 0.123 0.392 0.310 0.754 

Weather condition (Cloudy) -0.323 0.167 -1.930 0.053 

Weather condition (Rain) -0.394 0.317 -1.240 0.214 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
-0.021 0.401 -0.050 0.958 

 

Table B-6. Fixed Parameters Model 3 Partial Effects. 

Variable 
Partial 

effect 

Standard 

error 
z-value p-value 

Year 0.132 0.008 15.770 0.000 

Area type (Urban) 0.061 0.019 3.290 0.001 

Age (Less than 24 years) -0.022 0.024 -0.910 0.362 

Age (>40, <=65 years) -0.007 0.021 -0.340 0.733 

Age (Greater than 65 years) 0.139 0.031 4.470 0.000 

Gender (Female) 0.093 0.020 4.610 0.000 

Season (Winter) -0.002 0.026 -0.060 0.954 

Season (Spring) 0.000 0.025 0.010 0.994 

Season (Fall) 0.034 0.023 1.460 0.144 

Time of the day (12 AM to 3 AM) -0.047 0.044 -1.090 0.278 

Time of the day (3 AM to 6 AM) -0.045 0.043 -1.040 0.300 

Time of the day (9 AM to 12 PM) -0.020 0.039 -0.510 0.611 

Time of the day (12 PM to 3 PM) -0.064 0.034 -1.880 0.061 

Time of the day (3 PM to 6 PM) -0.065 0.033 -2.010 0.045 

Time of the day (6 PM to 9 PM) -0.108 0.033 -3.250 0.001 

Time of the day (9 PM to 12 AM) -0.071 0.041 -1.730 0.083 

Manner of collision (Head-on) 0.100 0.033 3.030 0.002 

Manner of collision (Rear-end) 0.135 0.052 2.590 0.010 

Manner of collision (Sideswipe - opposite direction) 0.062 0.061 1.010 0.311 

Manner of collision (Sideswipe - same direction) 0.056 0.068 0.820 0.414 

Speeding 0.016 0.020 0.820 0.412 

Number of lanes (No trafficway access) 0.026 0.107 0.240 0.809 

Number of lanes (one lane) -0.053 0.056 -0.950 0.342 

Number of lanes (Three lanes) -0.011 0.029 -0.370 0.712 

Number of lanes (Four lanes) 0.003 0.034 0.100 0.920 

Number of lanes (Six lanes) 0.083 0.076 1.100 0.269 
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Variable 
Partial 

effect 

Standard 

error 
z-value p-value 

Number of lanes (Seven or more lanes) 0.027 0.110 0.250 0.804 

Surface condition (Wet) 0.022 0.043 0.520 0.603 

Surface condition (Ice, snow, mud, dirt, oil or water) -0.055 0.057 -0.960 0.338 

Pre-crash stability (Skidding Longitudinally) -0.056 0.059 -0.960 0.338 

Pre-crash stability (Not specific) 0.011 0.026 0.400 0.690 

Drink and drive -0.010 0.021 -0.480 0.635 

Functional class (Interstate) 0.009 0.028 0.310 0.753 

Functional class (Freeway or expressway) 0.009 0.039 0.230 0.821 

Functional class (Minor arterial) -0.009 0.025 -0.360 0.716 

Functional class (Major collector) -0.032 0.027 -1.190 0.234 

Functional class (Minor collector) -0.042 0.042 -1.000 0.315 

Functional class (Local) 0.011 0.032 0.350 0.727 

Work zone -0.048 0.050 -0.950 0.341 

Light condition (Dark) 0.044 0.037 1.190 0.233 

Light condition (Dawn) 0.008 0.067 0.120 0.904 

Light condition (Dusk) 0.020 0.064 0.310 0.758 

Weather condition (Cloudy) -0.050 0.025 -2.000 0.045 

Weather condition (Rain) -0.060 0.046 -1.320 0.188 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
-0.003 0.064 -0.050 0.958 

 

Table B-7. Fixed Parameters Model 4 Estimates. 

Variable Coefficient 
Standard 

error 
z-value p-value 

Constant -4.490 0.600 -7.490 0.000 

Year 0.737 0.070 10.540 0.000 

Area type (Urban) 0.373 0.251 1.490 0.137 

Season (Winter) 0.056 0.250 0.230 0.821 

Season (Spring) -0.084 0.258 -0.330 0.745 

Season (Fall) 0.777 0.228 3.410 0.001 

Time of the day (12 AM to 3 AM) 0.342 0.452 0.760 0.449 

Time of the day (3 AM to 6 AM) 0.750 0.409 1.840 0.067 

Time of the day (9 AM to 12 PM) -0.067 0.533 -0.130 0.900 

Time of the day (12 PM to 3 PM) 0.260 0.513 0.510 0.612 

Time of the day (3 PM to 6 PM) 0.005 0.419 0.010 0.991 

Time of the day (6 PM to 9 PM) 0.598 0.370 1.620 0.106 

Time of the day (9 PM to 12 AM) 0.456 0.392 1.160 0.245 

Speeding 0.345 0.297 1.160 0.246 

Number of lanes (No trafficway access) 3.149 1.415 2.230 0.026 
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Variable Coefficient 
Standard 

error 
z-value p-value 

Number of lanes (one lane) 0.164 0.585 0.280 0.780 

Number of lanes (Three lanes) 0.024 0.211 0.110 0.909 

Number of lanes (Four lanes) -0.008 0.224 -0.040 0.970 

Number of lanes (Six lanes) -0.409 0.440 -0.930 0.352 

Number of lanes (Seven or more lanes) 0.068 0.503 0.140 0.892 

Surface condition (Wet) 0.042 0.366 0.110 0.909 

Pre-crash stability (Skidding laterally) -0.431 0.361 -1.190 0.233 

Pre-crash stability (Skidding longitudinally) 0.112 0.291 0.380 0.700 

Functional class (Interstate) 0.094 0.255 0.370 0.711 

Functional class (Freeway or expressway) 0.056 0.365 0.150 0.879 

Functional class (Minor arterial) -0.311 0.216 -1.440 0.150 

Functional class (Major collector) 0.204 0.307 0.670 0.506 

Functional class (Minor collector) 0.516 0.611 0.840 0.399 

Functional class (Local) -0.148 0.301 -0.490 0.623 

Work zone -0.786 0.598 -1.310 0.189 

Light condition (Dark) -0.344 0.357 -0.970 0.334 

Light condition (Dawn) 1.139 0.598 1.900 0.057 

Light condition (Dusk) -1.818 0.891 -2.040 0.041 

Weather condition (Cloudy) -0.217 0.239 -0.910 0.365 

Weather condition (Rain) 0.238 0.471 0.510 0.613 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
-0.077 0.754 -0.100 0.919 

Intersection 0.098 0.188 0.520 0.603 

Gender (Female) 0.215 0.172 1.250 0.213 

Age (Less than 24 years) 0.026 0.235 0.110 0.914 

Age (>40, <=65 years) -0.191 0.192 -0.990 0.320 

Age (Greater than 65 years) 0.548 0.253 2.160 0.031 

Drink and drive 0.215 0.347 0.620 0.536 

 

Table B-8. Fixed Parameters Model 4 Partial Effects. 

Variable 
Partial 

effect 

Standard 

error 
z-value p-value 

Year 0.119 0.012 10.190 0.000 

Area type (Urban) 0.058 0.037 1.560 0.119 

Age (Less than 24 years) 0.004 0.038 0.110 0.914 

Age (>40, <=65 years) -0.031 0.031 -1.000 0.316 

Age (Greater than 65 years) 0.093 0.045 2.080 0.037 

Gender (Female) 0.035 0.028 1.230 0.217 

Season (Winter) 0.009 0.041 0.230 0.822 
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Variable 
Partial 

effect 

Standard 

error 
z-value p-value 

Season (Spring) -0.013 0.041 -0.330 0.743 

Season (Fall) 0.132 0.040 3.340 0.001 

Time of the day (12 AM to 3 AM) 0.057 0.078 0.740 0.462 

Time of the day (3 AM to 6 AM) 0.130 0.074 1.760 0.078 

Time of the day (9 AM to 12 PM) -0.011 0.085 -0.130 0.899 

Time of the day (12 PM to 3 PM) 0.043 0.088 0.490 0.621 

Time of the day (3 PM to 6 PM) 0.001 0.068 0.010 0.991 

Time of the day (6 PM to 9 PM) 0.100 0.063 1.590 0.112 

Time of the day (9 PM to 12 AM) 0.076 0.066 1.150 0.252 

Speeding 0.058 0.052 1.120 0.262 

Number of lanes (No trafficway access) 0.535 0.173 3.090 0.002 

Number of lanes (one lane) 0.027 0.098 0.270 0.784 

Number of lanes (Three lanes) 0.004 0.034 0.110 0.909 

Number of lanes (Four lanes) -0.001 0.036 -0.040 0.970 

Number of lanes (Six lanes) -0.062 0.063 -1.000 0.319 

Number of lanes (Seven or more lanes) 0.011 0.083 0.130 0.893 

Surface condition (Wet) 0.007 0.060 0.110 0.909 

Pre-crash stability (Skidding laterally) -0.066 0.052 -1.280 0.202 

Pre-crash stability (Skidding longitudinally) 0.018 0.048 0.380 0.704 

Drink and drive 0.036 0.059 0.610 0.545 

Functional class (Interstate) 0.015 0.042 0.370 0.714 

Functional class (Freeway or expressway) 0.009 0.060 0.150 0.880 

Functional class (Minor arterial) -0.049 0.033 -1.480 0.138 

Functional class (Major collector) 0.034 0.052 0.650 0.515 

Functional class (Minor collector) 0.088 0.110 0.810 0.420 

Functional class (Local) -0.024 0.047 -0.500 0.617 

Work zone -0.112 0.072 -1.550 0.122 

Light condition (Dark) -0.057 0.060 -0.950 0.342 

Light condition (Dawn) 0.205 0.113 1.810 0.070 

Light condition (Dusk) -0.206 0.058 -3.540 0.000 

Weather condition (Cloudy) -0.034 0.037 -0.930 0.353 

Weather condition (Rain) 0.040 0.080 0.490 0.622 

Weather condition (Snow, fog/smoke/smog, or other 

adverse condition) 
-0.012 0.119 -0.100 0.918 

Intersection 0.016 0.031 0.520 0.605 

 


