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ABSTRACT

YI SHEN. Structural learning for large scale image classification. (Under the
direction of DR. JIANPING FAN)

To leverage large-scale collaboratively-tagged (loosely-tagged) images for training

a large number of classifiers to support large-scale image classification, we need to

develop new frameworks to deal with the following issues: (1) spam tags, i.e., tags

are not relevant to the semantic of the images; (2) loose object tags, i.e., multiple

object tags are loosely given at the image level without their locations in the images;

(3) missing object tags, i.e. some object tags are missed due to incomplete tagging;

(4) inter-related object classes, i.e., some object classes are visually correlated and

their classifiers need to be trained jointly instead of independently; (5) large scale

object classes, which requires to limit the computational time complexity for classifier

training algorithms as well as the storage spaces for intermediate results.

To deal with these issues, we propose a structural learning framework which consists

of the following key components: (1) cluster-based junk image filtering to address the

issue of spam tags; (2) automatic tag-instance alignment to address the issue of loose

object tags; (3) automatic missing object tag prediction; (4) object correlation net-

work for inter-class visual correlation characterization to address the issue of missing

tags; (5) large-scale structural learning with object correlation network for enhancing

the discrimination power of object classifiers.

To obtain enough numbers of labeled training images, our proposed framework

leverages the abundant web images and their social tags. To make those web images
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usable, tag cleansing has to be done to neutralize the noise from user tagging prefer-

ences, in particularly junk tags, loose tags and missing tags. Then a discriminative

learning algorithm is developed to train a large number of inter-related classifiers for

achieving large-scale image classification, e.g., learning a large number of classifiers

for categorizing large-scale images into a large number of inter-related object classes

and image concepts. A visual concept network is first constructed for organizing

enumorus object classes and image concepts according to their inter-concept visual

correlations. The visual concept network is further used to: (a) identify inter-related

learning tasks for classifier training; (b) determine groups of visually-similar object

classes and image concepts; and (c) estimate the learning complexity for classifier

training. A large-scale discriminative learning algorithm is developed for supporting

multi-class classifier training and achieving accurate inter-group discrimination and

effective intra-group separation. Our discriminative learning algorithm can signifi-

cantly enhance the discrimination power of the classifiers and dramatically reduce

the computational cost for large-scale classifier training.
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CHAPTER 1: INTRODUCTION

For many image understanding tasks, such as object recognition and scene catego-

rization, machine learning techniques have been widely involved to learn the classifiers

from large amounts of labeled training images. Due to the tremendous number of

object classes existing in the real world and the diverse intra-class impurity for each

object category, large scale image classification (i.e., training a large number of classi-

fiers for recognizing or detecting large amounts of object classes and scene categories)

has become important and essential problem for the computer vision and multimedia

retrieval communities, where “large scale” means: (1) the number of object classes

is sufficiently large to cover all the most popular real-world object classes and scenes

(image concepts); (2) the number of labeled training images are adequante to describe

the intra-category diversity of the object appearances effectively and sufficiently.

1.1 Large-scale Image Annotation Systems

Large-scale image classification has been raised as the key problem in many appli-

cations such as automatic image annotation, object recognition, tag recommendation,

image query-by-example system, etc.

In the recent decade, with plentiful online social image systems (such as Flickr,

Picasa, Google+, etc.) emerged as well as the very ubiquity of mobile devices such as

smart phones and tablets, vast amounts of images have been uploaded on the web by
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users every day (according to the statistics of Flickr, in 2012, the number of photos

uploaded to Flickr per day has reached 1.42 million). To organize the enormous

number of images, it is attractive to leverage machine learning techniques for tag

recommendation and automatic tag generation.

One of the earliest automatic content-based image annotation engine was ALIPR[1]

made by Penn State University which supported real-time image auto-tagging with

hundreds of predefined concepts in real-time. Recently, Google Inc has released an

automatic image annotation system for android smart phones and iphones, Google

Goggle. It leverages both the knowledge of Google Image Search as well as the

mobility of smart phones, which make it possible to recognize text, landmarks, logos

as well as common objects.

Since the number of images on the web has reached in the order of billions, image

classification has also become a key component for content-based image search system.

For large scale query-by-example image retrieval systems, text annotations are still

exploited for indexing images in addition to low-level content feature indexes. For

instance, Google Search-by-Image generates a best-fit text annotation for each input

query image for accurately and fast retrieving images from its hybrid image index

(which utilizes both texts and image contents as keys).

However, multiple issues have made it challenging to learn large scale image clas-

sifiers, which can be basically summarized into three major points:

1. It is hard to obtain large amounts of labeled training images which are quali-

fied for classifier training. Professionally-labeled images are reliable but hiring
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Figure 1: The Google Search-by-Image System automatically generates the machine
label for each query image.

professionals to label large amounts of training samples is cost-sensitive. Even

large-scale collaboratively-labeled social images are available online, socially-

labeled images can not be directly utilized for classifier training due to low

reliability of social tags and huge diversity of user tagging intentions.

2. The number of object categories is large which causes the learning complexity for

classifier training becomes very high. In addition, object categories are visually

inter-correlated, thus independent training of their classifiers is not appropriate.

3. The representations of the images should not only be able to capture the dis-

criminative characteristics of the images, but also be efficient enough to be

capable for those tasks when more than millions of images are involved.
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Figure 2: Weakly-tagged Image v.s. Professional-tagged Image

1.2 Leveraging Collaboratively-Tagged Social Images for Classifier Training

Collaborative image tagging system, such as Flickr [29], is now a popular way

to obtain large-scale labeled images by relying on the collaborative effort of a large

population of Internet users. In a collaborative image tagging system, people can

tag the images according to their social or cultural backgrounds, personal expertise

and perception. We call such the collaboratively-tagged social images as loosely-

tagged social images because their social tags may not have exact correspondences

with the underlying image semantics. Large-scale loosely-tagged social images can

illustrate various visual properties of the object classes and their diverse appearances

more sufficiently, thus it is very attractive to develop new algorithms that are able to

leverage large-scale loosely-tagged social images for object classifier training.

It is not a trivial task to leverage large-scale loosely-tagged social images for object

classifier training because of the following three critical issues: (a) spam tags, e.g.,

some tags are more related to popular query terms rather than the image semantics

(spam tags are used to drive traffic to certain images for fun or profit), as long as

some tags are improperly labeled by user’s mistake; (b) loose object tags, e.g., multiple
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Figure 3: Images in collaborative image tagging system. Left: Google image search;
Right: Flickr

object tags are loosely given at the image level without identifying the object locations

in the images because it could be very time-consuming for providing object bounding

boxes; (c) missing object tags, e.g., some object tags are missed (social tags for the

loosely-tagged images are usually incomplete).

Without addressing the issue of spam tags, loosely-tagged images may contain large

amounts of junk images and such the junk images may mislead the underlying machine

learning tools for object classifier training. Without addressing the issue of loose object

tags, extracting global visual features from whole images for object representation

may dramatically decrease the discrimination power of the object classifiers. Without

addressing the issue of missing object tags, loosely-tagged images with missing object

tags may mislead the process for object classifier training because of the uncertainty

of labels for the missing parts, e.g., we may treat the positive images as the negative

images for object classifier training.

1.3 Constructing Large-Scale Multi-Class Classifiers

Classifier training is a critical issue for many computer vision tasks [12, 13, 14,

2], such as object detection and recognition, scene categorization, automatic image
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annotation. Many machine learning tools, such as multiple instance learning [38,

39, 40, 41], multi-label learning [42, 43, 44, 45, 46, 47, 48, 49], hierarchical learning

[3, 4, 5, 6, 7, 9, 10, 56], have been developed for classifier training. Leveraging large-

scale Web images for large-scale classifier training has recently become an attractive

research topic. Compared with traditional approaches for image classification, “large-

scale” reflects in both the input space and the output space: (a) the images that are

available for classifier training at the input space are huge, which usually exceeds 105

[106, 107]; (b) the number of categories (i.e., object classes and image concepts) at

the output space is also large, which usually includes hundreds or even thousands of

categories.

One fundamental solution for large-scale image classification is to support multi-

class classifier training [108, 114], and one popular approach for multi-class classifier

training is to learn a set of pairwise binary Support Vector Machine (SVM) classifiers

[111]. Because of the following problems, it is not a trivial task to simply extend such

pairwise multi-class classifier training approach for dealing with the issue of large-

scale image classification (e.g., learning a large number of classifiers for categorizing

large-scale images into a large number of object classes and image concepts):

• (1) Large Size of Output Space: As the number of object classes and image

concepts becomes large, traditional pairwise multi-class learning methods may

fail due to huge computational cost;

• (2) Inter-Concept Visual Correlations: Some object classes and image concepts

are visually-similar rather than independent, such inter-concept visual corre-



7

lations should be leveraged for large-scale classifier training to enhance their

discrimination power and improve their efficiency and robustness;

• (3) Imbalance of Training Images: It is worth noting that the numbers (sizes) of

available images for different categories (i.e., object classes and image concepts)

could vary significantly, e.g., some popular categories may contain millions of

images but some rare categories may contain just few images, which may bring

serious imbalance issue for classifier training.

For many large-scale image sets, the number of categories (i.e., object classes and

image concepts) has grown to the order of thousands or even more. For examples,

there are totally 3,819 object classes and 908 scene categories (image concepts) in SUN

image set [106] and the number of synsets in ImageNet[107] set has reached 21,841.

Because of huge computational complexity [108], it is very hard if not impossible to

simply extend traditional pairwise multi-class classifier training tools to learn a large

number of classifiers for thousands of object classes and image concepts. Thus there

is an urgent need to develop new machine learning frameworks which can deal with

thousands of object classes and image concepts effectively, e.g., learning thousands of

classifiers with reasonable computational cost.

In most existing approaches, each sample (image) belongs to only one category,

e.g., basic assumption of exclusive categories. For large-scale image classification, the

situation is much more complicated: (a) more than one label (category) could be

associated with each image because one single image may contain multiple significant

components (i.e., image regions for multiple object classes); (b) multiple labels (i.e.,
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text terms for interpreting the relevant object classes and image concepts) could be

dependent. Some existing work have leveraged the inter-label contexts to enhance

multi-class classifier training [109, 110]. For example, ImageNet[107] image set uses a

hierarchical tree (concept ontology) to organize a large number of object classes and

image concepts according to their semantic correlations at the label space. Because

both classifier training and automatic image classification are performed in the visual

feature space rather than in the semantic label space, we should pay more attentions

on inter-concept visual correlations rather than inter-label semantic correlations. To

enhance the discrimination power of the classifiers, it is very attractive to train the

classifiers for such visually-related object classes and image concepts jointly rather

than independently.

It is also worthy to emphasize that the sizes of available training images are crit-

ical to the accuracy rates of the classifiers, e.g., integrating more training images

for classifier training may usually result in higher accuracy rates on automatic im-

age classification. Even for large-scale image sets such as SUN image set [106] and

ImageNet[107] set, the numbers of available training images may vary significantly

for different categories. For examples, the category “Wall” in SUN image set contains

20,213 images, while only one single image is available for hundreds of categories (i.e.,

object classes and image concepts) in the same image set. For those categories which

contain small numbers of images, their available images may not be large enough to

illustrate the inner-concept visual diversity sufficiently and learn reliable classifiers

to discriminate themselves (i.e., those categories with insufficient images for classi-

fier training) from other categories effectively. Thus lack of sufficient training images
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could still be a critical issue for some rare categories (i.e., less popular object classes

and image concepts with small numbers of available images), which may further result

in imbalance issue for classifier training.

Most existing approaches for multi-class image classification treat every category

as equally important, while on the other hand, human beings may have different

sensitiveness of the misclassification errors of the classifiers, e.g., human beings may

be more sensitive to whether a classifier can distinguish the object class “trees” from

the object class “cars”, but they may be less sensitive to whether a classifier can

separate the object class “oaks” from the object class “aspens”.

To address these issues more effectively, a novel large-scale discriminative learn-

ing algorithm is developed in this paper to enable more effective multi-class classifier

training, which is able to: (a) deal with the issue of large-scale image classification

more effectively, e.g., handle not only large-scale training images at the input space

but also thousands of categories (i.e., object classes and image concepts) in the output

space; (b) leverage inter-concept visual correlations for large-scale classifier training

which may result in the classifiers with high discrimination power; (c) define the

importance of various image classification tasks for distributing more computation

resources to more critical sub-tasks, e.g., less penalty can be assigned with the mis-

classification error for classifying the object class “oak” as the object class “aspen”,

more penalty can be assigned with the misclassification error for classifying the ob-

ject class “oak” as the object class “car”; (d) learn from the training images that

are available for other visually-related categories to deal with the imbalance issue

and enhance the discrimination power of the classifiers, especially when the sizes of
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available training images for some categories are very small.

Our large-scale discriminative learning algorithm consists of following key compo-

nents: (1) a visual concept network is first constructed for organizing a large number

of object classes and image concepts according to their inter-concept visual correla-

tions (it is worth noting that the visual feature space is the common space for classifier

training and image classification); (2) a large number of object classes and image con-

cepts (i.e., categories) are partitioned into a set of groups, where the object classes

and image concepts in the same group share some common or similar visual proper-

ties and they are hard to be discriminated, on the other hand, the inter-group visual

correlations are much weaker and it is much easy to distinguish the visually-dissimilar

object classes and image concepts in different groups; (3) an importance factor is de-

fined to measure the importance of various classification tasks, thus our multi-class

image classification algorithm tends to put more efforts on inter-group classification

(i.e., discriminating the visually-dissimilar object classes and image concepts from dif-

ferent groups) than inner-group classification (i.e., discriminating the visually-similar

object classes and image concepts in the same group).

1.4 Structural Learning Framework

Motivated by the above issues, we propose our framework for large-scale image

classification (shown in Figure 4) by addressing the previously mentioned issues, it

consists of the following key components:

1. A clustering-based junk image filtering algorithm is developed to handle the

issue of spam tags by automatically removing the images which are irrelevant
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to the given tag.

2. To deal with loosely tagging issue, loosely-tagged images are partitioned into

image instances (i.e. image regions) and an automatic instance-tag alignment

algorithm is developed to assign multiple object tags to the most relevant image

instances.

3. Object co-occurrence contexts are leveraged to predict the missing object tags

for the uncertain image instances.

4. Inter-concept visual correlations are measured by inter-object visual similarity

and a object correlation network is built to characterize the inter-concept visual

correlations for large-scale object categories.

5. Structural Learning for leveraging the inter-object visual correlations to train

large scale inter-related object classifiers jointly to enhance their discrimination

power.

As the diagram in Figure 4 shows, our large scale image classification framework

starts with the automatic junk image filtering (in Chapter 4), automatic instance-

tag alignment (in Chapter 5.3), missing tag prediction (in Chapter 5.4). In Chapter

6, the GPU-accelerated clustering algorithm based on affinity propagation has been

introduced. We have also developed a multi-task learning approach (in Chapter 7)

to jointly train each object classifier for each object class with the classifiers for its

first-order neighbours on the object correlation network.
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Figure 4: The proposed large scale image classification framework which consists of:
junk image filtering, tag-instance alignment, missing tag prediction, object correlation
network and structural classifier learning
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Our structural multi-class classification method (in Chapter 8) is to address the

following issues: (a) It is capable for large-scale classification tasks in which not only

enormous image samples but also thousands of categories are involved; (b) The multi-

class classifier is constructed by a series of binary discriminative classifiers which can

be trained efficiently; (c) The inter-class visual correlations are leveraged to train the

classifiers jointly, which not only helps distributed limited computation resources for

sub-tasks, but also increases the discriminative power of the classifiers for visually-

related categories; (d) categories with small size of samples can collaborate with

their visually correlated categories and leverage their samples (images) to discrimi-

nate themselves with other non-correlated categories. Such process will increases the

discriminative power of the whole classifier.



CHAPTER 2: RELATED WORK

The work of learning from large scale web images can be broadly divided to several

sub-tasks: (1) preparing large amounts of web images with clean tags which are

capable for machine learning tasks, where spam tags are identified and eliminated

from the tag-list; (2) exploiting implicit tagging information from images and their

loose object tags by identifying the exact relationship between tags and their true

semantics in images, i.e., find and align the corresponding objects in the images with

the object tags; (3) leveraging multiple types of relatedness information among the

tags, including co-occurrence context, semantic dependency, feature space similarities,

etc., for inter-related classifier training; (4) constructing a uniform classifier to handle

the image classification problem with large scale inter-related classes.

2.1 Internet Images and their Applications

Some pioneering work have been done to leverage Internet images for computer

vision tasks [15, 16, 17, 18, 19, 20, 21]. Fergus et al. [15] and Ben-Haim et al. [19]

dealt with the precision problem by re-ranking the web images that are downloaded

from an image search engine. On the other hand, Berg et al. [16] directly crawl

large amounts of Internet images via a web search engine instead of an image search

engine. Recently, Schroff et al. [17] have developed a new algorithm for harvesting

image databases from the web by combining text, meta-data and visual information
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to achieve more precise image re-ranking. Cai et al. [20] have integrated the low-

level visual features of the images, text terms of the associated text documents and

linkage information of the relevant web pages for image clustering. All these existing

techniques have made a hidden assumption, e.g., image semantics have an explicit

correspondence with the associated text terms or nearby text terms [18, 21].

Some benchmark image sets have been generated for computer vision tasks. Catech

101 and Catech 256 have collected large amounts of images with clean background for

101 and 256 object classes [26, 27], where images are automatically downloaded from

search engines (Google, etc) but manually tagged by professionals. LabelMe [25] is

the first academic effort on collecting collaborative tags from a large number of users,

but the diversity of LabelMe images and their tags are still limited. ESP game has

been developed for acquiring large-scale labeled images through an online game [30].

On the other hand, ImageNet [28] has utilized commercial resources (Amazon Me-

chanic Turk) to hire social people (Internet users) to label its large scale dataset. By

using large amounts of synsets of WordNet for image crawling, ImageNet focuses on

collecting large amounts of Internet images and concept ontology is used for organiz-

ing large-scale image collections. These pioneering effects have generated some useful

benchmark image sets with reasonable sizes and visual diversities. The key problems

of these benchmark image sets can be broadly classified as two: the high labeling

cost and the existence of missing object tags, e.g., object tags for these images are

incomplete and some object classes in the images are not tagged.
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2.2 Image Content Representation

To utilize machine learning techniques for computer vision tasks and character the

visual properties of image data, image content representation, also known as “image

features” or “feature extraction”, has been a paramount topic in the area of computer

vision, in which lots of research efforts has been made for recent decades. There are

abundant types of image features which have been conducted, to characterize a variety

of properties, such as color, texture, shape, etc, extracted from various sources.

In some earlier researches, visual feature vectors are extracted from the whole un-

derlying image, using some statistical distribution to illustrate the visual outlook of

the image in various aspects. Among hundreds of features for the color information,

“Color Histograms” describes a global pixel distribution in some certain color space

(most are in RGB and HSV); “Color Moments” embeds rough spatial information

into color distribution and “Dominant Colors” describes the image with low-resolution

color patterns [60, 61, 77]. Besides image pixel colors, textures and shape information

in the image have also been characterized by multifarious visual features. One of the

pioneering works on the texture description of an underlying area is the “Tamura Fea-

tures” [63]. They defined the texture overview of a image by six high-level perceptual

attributes from the psychology perspective: coarseness, contrast, directionality, line-

linkness, regularity, roughness, which have widely used for the CBIR systems [64].

For texture discrimination, “Gabor Feature” [62], is one of the most frequent-used tex-

ture features, which capture orientated edge distribution by applying multiple Gabor

filters in different scales and orientation on the image. “Spatial Envelop” [65], also
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known as the “GIST feature”, leverages a set of discriminant structural templates to

illustrate the texture and shape contents in the image, which has been proved as a

great success especially in large scale scene classification.

There are also a number of global features defined in the MPEG-7 standards [76,

77, 78]: (1) the Texture Browsing Descriptor summarizes the texture overview in

a image by directionality, regularity and coarseness; (2) the Homogeneous Texture

Descriptor embeds Gabor features for extracting homogeneous texture regions. (3)

the Edge histogram Descriptor captures the spatial distribution of edges in the image.

Although the global features avoid a few hard issues such like object segmentation,

they only capture the global visual overview of the images which have their success

in some tasks like scene classification. For those tasks which required fine-grinded

analysis of the images such object detection and recognition, the global features may

provide insufficient information for object distinction.

For object detection and recognition, to find the discriminative characteristics of the

objects in the images, the local features are often extracted instead of the global fea-

tures. The most representative local feature is SIFT feature [66], which innovatively

introduce the keypoint/descriptor scheme for object matching. Differed from global

feature extraction, SIFT and its variants uses key-point detectors to locate the some

interesting parts of the images and extract some descriptors from the neighbourhoods

of the key-points. Later, a few variants of SIFT have been invented to improve both

the effectiveness and efficiency of SIFT. To reduce the risk of over-fitting, PCA-SIFT

[67] has combined SIFT descriptor extraction with principle component analysis. To

speed up the extraction of SIFT features, SURF [68] provides an efficient approxima-
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tion. ORB [70] replaces the SIFT key-point detector and descriptor extractor with

a fast key-point detector, FAST [71] and some binary descriptors, BRIEF [72], to

support real-time feature extraction. Taking the advantage of general purpose pro-

gramming on GPUs , GPU-SIFT [69] is able to extract the SIFT features from an

image in average milliseconds with a professional graphics adapter. Recently, Local

Binary Patterns [73] have been found as a descent descriptor cooperating with HOG

detector for object detection [74], especially for human detection [75].

To leverage the local features for classification tasks, the Bag of Words model

provides a histogram representation for the image based on independent local features

[79, 81], which quantize each local feature on an visual word from a pre-trained visual

dictionary [80]. Since the histogram representation failed to retain spatial contexts

among the local key-points, inherited from the idea of Pyramid Matching Kernel

[82], Spatial Pyramid Matching Kernel [83] has been conducted for both efficient key-

point matching as well as embedding spatial relationships into codeword histograms

for dictionary-base features. Later, ScSPM [84] takes advantage of sparse coding and

spatial pyramid matching kernel for image classification, and LLC [85] replaces the

matching kernel with the linear binary codes for efficiency.

In the opposite of human engineered image features, the recent researches show

that computers themselves are also capable for automatic feature learning. In [86]

and [87], A. Ng et al.uses sparse coding to learn patch-based histograms directly from

raw image pixels. Y. Bengio et al.[90] has proved that image representations can be

learned with generic priors from raw images instead of domain specific knowledge.

To justify, A. Krizhevsky et al.[91] have learned a strong image representation by a
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multi-layer deep learning network with abundant training images, which reaches the

state-of-art performance in object recognition.

2.3 Image Segmentation and Multiple Instance Learning

To address the loosely-tagging issue, it is necessary to partition the images into

regions, where each region is visually responsible to the semantic meaning of one

certain tag. Normalized Cut [23] and JSEG[22] are two representative unsupervised

methods to divide images into regions according to their visual contents. The first

one performed a graph cut on the graph constructed from the relatedness between

pixels, where the latter method utilized a region growth from a certain selected seed

pixels.

A few previous work have been done on leveraging the loosely-labeled images for

object classifier training by using multiple instance learning or semi-supervised learn-

ing. Multi-instance learning was first introduced by Dietterich to solve drug activity

prediction problem [103], where each molecule may have different shapes but only

one shape can bind a given protein. A typical multiple instance learning problem

can be described as following: Given a training set {(B1, y1), (B2, y2), . . . , (Bn, yn)},

where each sample is a bag Bi = {xij} contains several instances. For a positive bag,

at least one instance (positive instance) is responsible to the label, while no positive

instance is in negative bags. Current multiple instance learning approaches can be

generally classified into three categories: (1) assigning the labels to all the instances

to directly transform MIL problem to traditional supervised learning; (2) finding the

witness instances in the positive bags which are responsible to the given tag; (3)
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learning classifiers on bag level by exploiting the similarities between the bags which

are summarized from the instance similarities.

Dietterich proposed a class of methods which used axis-parallel rectangle to bound

the common instances of all positive bags with least known negative instances (in-

stances from negative bags) inside. Further Maron et al.[39] characterized the possi-

bility of an instance to be positive by Diverse Density which measured the degree of

a point to be close to the positive bags and far from the negative ones simultaneously

in the feature space, as Equation 1:

DD(x) = Pr(x = t|B1, B2, . . . , Bn)

∝ Pr(B1, B2, . . . Bn|x = t)

=
n∏
i=1

Pr(Bi|x = t)

∝ Pr(x = t|Bi)

Pr(x = t|B+
i ) = 1−

n∏
i

(1− Pr(x = t|xij))

Pr(x = t|B−i ) =
∏

in(1− Pr(x = t|xij))

Pr(x = t|xij) = e−||xij−t||
2

(1)

Since the formula for the diverse density is not convex and it is time consuming to

find the global optima, later on, Zhang et al. developed EM-DD algorithm to use the

centroids of the positive bags as the initials and utilize EM method to recursively find

the maxima of the diverse density. However, both original DD and EM-DD algorithm

didn’t work well on high dimensional data due to the dimensional curse and the loss

of generality.
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Since the discriminative models such as support vector machine has been proved

to gain competitive performance on high dimension data, MI-SVM and mi-SVM

[104] are two attempts to perform multi-instance learning along with support vector

machine. While mi-SVM directly embedded instance identification into SVM formula,

MI-SVM assigned the instance which is farthest to the margin as the witness (which

is responsible to the given tag) for each positive bag. However, so far there are no

efficient optimization methods to solve either MI-SVM or mi-SVM other than iterative

approximations. On the other hand, the assumption that the witnesses are far away

from the margin may not be always held when MIL is applied to multi-class problem,

especially when the classes are inter-related.

Another class of multiple instance learning algorithms tends to learn the classifiers

at the bag level. Chen et al. [40] has developed DD-SVM to map and aggregate the

instance features to a new space where the bases are DD local optimals. On the other

hand, a marginalized MIL kernel has been designed by Kwok et al. [105] to measure

the similarities between the bags.

Cour et al. [35] have developed a semi-supervised framework to learn the object

(face) detectors from the loosely-labeled images (multiple faces associated with several

names). Vijayanarasimhan et al. [32, 33] have developed a multi-label multiple

instance learning approach to leverage the loosely-labeled images for object classifier

training via active learning. Zhou et al. and Zha et al. have integrated multi-instance

learning with multi-label learning for classifier training [44, 45]. Most of these existing

techniques have made a hidden assumption that the object tags for each loosely-

tagged image are complete, e.g., each image instance can be assigned into one of
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multiple object tags that are available at the image level. Recently, Umar and Ben

[37] have developed a semi-supervised learning algorithm to leverage weakly-tagged

images with missing tags for object classifier training. Our MIL algorithm shares a

similar goal on dealing with the loose object tags and the missing object tags jointly,

but our algorithm for multiple instance learning (MIL) with missing tag prediction

focuses on an unsupervised approach rather than a semi-supervised approach.

2.4 Object Correlation and Structural Learning

The object co-occurrence contexts have been derived from large-scale image collec-

tions for supporting context-driven object detection and some pioneering work have

been done recently. Qi et al. [43] and Tang et al. [42] have exploited the concept

co-occurrences to enhance automatic image/video annotation, and some interesting

statistical models have been developed to leverage such concept co-occurrence con-

texts for concept classifier training. Rabinovich et al. have done a pioneering work

on integrating the object co-occurrence contexts to improve object detection [46].

Object co-occurrence context has provided more information in addition to visual

information for learning image classifiers, but the co-occurrence context may be not

consistent in different data sets due to the diversity of image sources.

Besides the object co-occurrence contexts, discovering class structure semantically

in the label space has gained even more attention in the computer vision society. With

different similarity (or distance) definitions, the structure of classes can be exploited

in various ways: Google similarity distance[128] utilized the rankings in Google search

engine to measure the relevance between keywords; ImageNet[107] inherits the seman-
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tic hierarchy of synsets in WordNet[129] to organize its image categories. Although

the semantic context is an informative source to exploiting relatedness among the

tags, due to the existence of semantic gap, there is a possibility that visually simi-

lar objects are not similar in the semantic space [], which has limited the usage of

semantic context.

Multi-task learning is one potential solution to leverage the inter-concept similar-

ity contexts for inter-related classifier training. One major problem for multi-task

learning is that there is no good solution to determine the inter-related learning tasks

automatically. Fan et al. have integrated the concept ontology and multi-task learning

for hierarchical image classification [55, 56]. Based on the idea of Conditional Ran-

dom Fields (directly modeling the posterior distribution as a Gibbs field) [51], Kumar

et al. have proposed Discriminative Random Fields (DRF) to exploit the inter-patch

correlations for object detection [47]. Yang et al. and Chen et al. have recently ex-

tended such the DRF technique for image/video concept detection [58, 59]. Structural

learning has been developed for leveraging the inter-concept contexts for enhancing

classifier training [51, 52, 53]. To utilize the structured information provided by ei-

ther the tree-formed hierarchy or similarity-based graph, there have been multiple

studies to embed the inter-class relationships for classifier training. Tsochantaridis

et al. [132] proposed structural support vector machine which take the inter-class

relationship into account in SVM optimization. Torralba et al. [134] developed Joint-

Boost to utilize the inter-object correlations to improve the performance of object

detection. Graphical models are also adapted to the computer vision tasks. Quattoni

et al. [135] and Xiang et al. [136] embedded the semantic context graph by integrat-
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ing discriminative conditional random field (CRF) for object recognition and image

annotation.

2.5 Multi-Class Learning

Multi-class classification has been well studied in statistical machine learning.

Many existing discriminative models, such as Multi-class SVM[111], are derived from

their single-label versions, i.e. binary classification. In general, those approaches

can be classified to three types based on the construction of binary classifiers: one-

against-rest, one-against-one and hierarchical one.

As one of the earliest extensions from binary support vector machine [112] to multi-

class problems, the simplest but so far still the most widely-applied is the 1-v-r (one

against rest) SVM, which models the multi-class classification problem as a label

ranking problem for each individual sample. It constructs K binary classifiers[113],

where each binary classifier takes the instances from one specific class as the positive

samples and treats the instances from other classes as the negative samples. Those

K binary classifiers can be trained independently or by solving a joint optimization

problem [114]as shown in Eqn. (2).

min
{wk},{ξi}

1

2

∑
k

|wk|2 +
∑
i

ξi

s.t. ∀y 6= yi : 〈wyi , xi〉 − 〈wy, xi〉 ≥ 1− ξi (2)

The decision for a test sample is made by taking the maximal responsibility from

K classifiers: y = maxk〈wk, x〉. Although the training time of 1-v-r SVM grows

linearly with the number of class K, some researches [115] have obtained that the
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generalization error of 1-v-r SVM is unbounded, which is a major weakness of 1-v-r

SVM.

The second type of methods construct multi-class SVMs from pair-wise 1-v-1 (one

against one) two-class sub-classifiers, i.e. each sub-classifier is a binary SVM which

in charge of discriminating two categories from K categories. Thus, there would

be K(K − 1)/2 sub-classifiers in total. Several methods have been developed for

combining those two-class sub-classifiers, varied by the ways of composition. Kn-

err’s method[116] and LibSVM[117] use “AND” gates to combine the sub-classifiers,

while Max-wins [118][119] approaches suggest a voting scheme over the outputs of

binary classifiers. Later on, motivated by the tendency of the over-fitness by these

two methods, Platt et al. introduced Decision Directed Acyclic Graph (DDAG)[115],

in which K(K−1)/2 two-class classifiers are organized through a decision tree. Each

binary classifier forms a node in DDAG, which eliminates one class from the candi-

date list. Besides the generalization performance, another major advantage of DDAG

is that the number of binary classifier (which a testing sample needs to go through

has been reduced to K − 1, compared to K(K − 1)/2 in previous 1-v-1 methods.

In spite of some computational efficiency concerns 1-v-1 methods on the quadratic

number of sub-classifiers, 1-v-1 SVMs are naturally adaptive to distributed comput-

ing environment[117], because of the small size of sub-classifier work sets and inde-

pendence between sub-classifier. Thus, 1-v-1 scheme is still an attractive potential

solution for multi-class problems.

In order to handle large scale data sets, in the recent decade, numerous researches

attempt to build hierarchical structure upon categories to reduce both training cost
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and testing time. Some methods exploited recursive top-down hierarchies through

employing standard clustering algorithm, such as K-means (Vural et al.[122], Liu et

al. [123]), spectral clustering (Griffin et al.[124], Bengio et al.[125]) over the inter-

class similarity matrix. On the other hand, Zhigang et al.[126] and Xia et al.[127]

construct the class hierarchy by merging classes in a bottom-up way. Despite the

top-down or bottom-up split of classes, there are two common problems which exist

in those approaches: (1) Binary partition of a set of classes does not always hold

good separability in term of binary classification [121]. (2) Neither training error

or generalization error of high level binary classifiers are equally distributed to sub-

classes Thus, Marzalek et al. [121] developed a method which splits a confusing class

into two sub-classes if the decision can not be made in the current node. Recently,

T. Gao et al.[120] embedded class partition and boundary estimation into the one

uniform optimization problem by maximizing the number of classes involved in each

binary classifier.

Recently, to handle the classification over millions of training images and thousands

of categories, classical machine learning techniques are no longer capable for large-

scale tasks. Bengio et al.[137] introduced an online linear classification techniques,

WASBIE model, taking the advantage of both hinge loss and passive-aggressive model

to train a multi-class classifier over 14,000 image categories iterativelly. With the in-

vention of deep learning network and the great leap of computational power brought

by general purpose graphics processing units, G. Hinton et al.has made a break-

though on large-scale image classification techniques by their deep convolution neural

networks [91], which has reached the state-of-art performance.



CHAPTER 3: IMAGE FEATURE EXTRACTION AND IMAGE
REPRESENTATION

To characterize the visual properties of the images more sufficiently, multiple fea-

ture descriptors have been extracted from the images. Generally, state-of-the-art

image features can be classified into three types: (1) Global Features, such as color

histogram, edge histogram descriptor, etc., which are used to characterize the global

distribution of some certain visual properties (i.e. color, texture, etc.) over the whole

image; (2) Local Features, which are used to capture the visual appearance of an

object or an image region; (3) Bag of Words representation, which is used to model

an image as a histogram vector of codewords from a visual dictionary.

3.1 Global Descriptors

Over last decades, multifarious global image descriptors have been invented to

describe various characteristics of the images in different perspectives such as color,

texture, shape etc. In the section, several types of global features are briefly reviewed:

color histograms, Gabor descriptors, GIST features and Tamura features, which have

been involved in our work.

As one of the most widely used image descriptors, Color histograms have been

used to characterize the empirical color distribution in the images. To construct the

color histograms from the images, the color space (usually RGB or HSV) is divided

into a number of histogram bins (64 in our implementation). Each bin of the color
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histogram quantifies the frequency of its corresponding range of colors occurred in

the image. The color histogram provides an overall layout of the colors in the image

and it is invariant to rotation. However, an apparent drawback of the color histogram

is that different views of the images may share the same distribution of pixel colors

but varied in textures and shapes. Thus, instead of stand-alone representation, color

histograms are usually utilized along with other types of features.

Gabor Descriptor [62] is a typical representation of gray scale image textures. A

bank of Gabor filters {gmn} in multiple scales and orientations are firstly constructed,

which results same number of filtered images by obtaining convolution with the orig-

inal image and Gabor functions (shown in Equation 3).

Wmn(x, y) =

∫
I(x, y)g∗mn(x− u, y − v) · du · dv (3)

where g∗mn denote the complex conjugate of gmn. The mean and standard deviation

in each Wmn are picked to form the dimensions of the Gabor descriptor, respectively

representing the intensity and diversity of the edges on the corresponding direction

and scale.

Some earlier research [62] on texture features have shown that Tamura Features

have reached a great performance on texture analysis on scene images. The Tamura

Features have been defined as the six factors corresponding to human visual per-

ception: coarseness, contrast, directionality, line-linkness, regularity and roughness,

while three most important ones are measured to form Tamura feature vectors:

• Coarseness: represents the size of textures. Similar to Gabor feature, the value

of coarseness is calculated by multi-scale operators. It aims to measure the size
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of largest texture exists in the image.

• Contrast: captures the difference in luminance, measured by the range of gray-

scale and distribution of black and white.

• Directionality: an edge histogram that aims to differentiate between different

oriented patterns and measure the distribution of directionality.

It is worth noting that one would utilize all aspects of global features simultaneously

to obtain a uniform and relatively robust global image representation. Composite-

kernel is one way to integrate several types of features by linear kernel combination,

as which Equation (4) shows:

K(u, v) = α ·Kc(u, v) + β ·Kg(u, v) + γ ·Kt(u, v) (4)

where Kc(·, ·), Kg(·, ·), Kt(·, ·) denote kernel functions which measure color, Gabor

and Tamura similarities respectively, and α, β, γ are weight parameters which can be

either predefined or estimated from a set of training data.

It has been proved that the global features can successfully capture the visual

overview of the image and successfully sustain scene classification in many applica-

tions. However, the major drawbacks of traditional global image features is that they

emphasize the global distribution of image pixels, equally taking all the pixels into

account. Thus, usually they do not achieve good performances in object recognition

because backgrounds usually take respectable portions in an image.
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3.2 Keypoint-based Local Features

The local features have achieved great success in the applications of object recog-

nition and invariant viewpoint matching. In spite of numerous kinds of local features

have been developed in recent years, the SIFT-like features have been demonstrated

to achieve the best performance and been widely applied in object matching tasks

[133].

Scale-invariant feature transform (SIFT) [66] is originally invented by D. Lowe for

invariant viewpoint object matching. Briefly, the extraction of the SIFT features takes

two steps: (1) key-point detection, in which local optima (both maxima and minima)

of Difference of Gaussian (DoG) mapping at multiple scale of the gray-scale image are

taken as the key-points; (2) descriptor extraction: for each key-point which has been

extracted in the previous step, a 128-bin edge orientation histogram was extracted

from the 4 × 4 neighbourhood of the key-point to capture the texture context near

the key-point.

Besides Lowe’s original implementation, multiple keypoint-based local features in-

herited from SIFT have been invented either to improve the generalization of SIFT

descriptors or speed up the detection and descriptor extraction of key-points. PCA-

SIFT [67] and GLOH [133] are two variants of SIFT where principal component

analysis (PCA) is used to reduce the dimensionality and increase the generalization

and distinctiveness.

Another well-known variant is SURF [68], which replaced DoG key-point extraction

by fast Hessian matrix-based measurement along with a Haar wavelet distribution as
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the key-point descriptor. SURF has gained comparable performance as SIFT does,

but it has achieved a significant reduction on the computational cost on both key-

point detection and descriptor extraction.

Another successful way to improve the computational efficiency of making the SIFT

features capable for real-time image feature extraction is GPU-SIFT [69], which uti-

lized CUDA techniques to parallelize the descriptor extraction on the key-points over

multiple GPU cores (there are hundreds of cores embedded in a typical graphic card

for general purpose computing) to dramatically reduce the running time of original

SIFT extraction to real-time, thanks to the increasing computational power of general

purpose GPUs. Recently some researchers have also developed the GPU implementa-

tions for multiple previous-mentioned detectors and descriptors such as FAST, ORB,

SURF, etc., which have been included in OpenCV, the most wide-used computer

vision library.

3.3 Dense Sampled Local Descriptors

Despite the success of keypoint-based local features in object detection, key-point

detectors have yet been proved to be as effective as global features for the tasks of

general image classification such as object recognition or scene classification. Due

to the fact that the local descriptors only capture the local characteristics of the

pixels around the key-points without addressing the context from the whole image,

In the particular circumstance of scene classification, simple matching of the local

descriptors does not perform well as which has been achieved in object detection, for

the following reasons: (1) Local descriptors rely on the detection of the key-points,
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the visual property of an image is described only by the key-points which has been

determined by the local maxima and minima of the DoG, where the key-points are

usually located near the edges or complex textures of the objects. However, in some

cases of scene classification, there can be few key-points detected for the some region

with simply texture, which may be responsible for some tag such as ”water” or ”sky”,

no matter how large the region is.

(2) It has been observed that the number of key-points in an image can be varied

due to some issues irrelevant to the semantic of the image. For examples: (a) the

number of key-points is sensitive to the size of the image. Usually in the same level

of texture complexity, there are more key-points in a larger image than which in a

smaller image. (b) the contrast of the image impacts to the number of key-points

in the image. There are less key-points in a image with low contrast than a high

contrast.

To neutralize the variance of key-points extraction, in some researches, key-point

detectors are replaced by dense sampling for classification problems. The local de-

scriptors are extracted from image regions which indicated by moving windows with

different scales instead of neighbourhoods of key-points, covering all the pixels over

the entire image. In opposite to doing a pair-wise matching for similarity comparison,

the local descriptors extracted from moving windows are quantized into codewords

from a pre-trained code book and similarity between two images are defined upon

the histograms of codewords from each image. Further details will be discussed in

Section 3.4 and 3.5.
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3.4 Bag of Words Representations

Bag of Words (BoW), which is also known as Bag of Features (BoF), stands for

a feature representation method which leverages a series of local features extracted

from patches (which can be obtained by either a key-point detector or dense sampling)

from a image in various locations and scales. Each single local feature is mapped into

one or several codewords from a pre-trained visual dictionary (code book), where

each codeword in the dictionary is taken as the representative of an area in the local

feature space. Further, since the local features have been mapped to the codewords,

the histogram of codewords is computed to represent the visual content of the image.

There are basically three advantages of bag of words representation: (a) The bag of

words representation is developed as a feasible way to leverage multiple local features

from different locations and scales in an image to generate a histogram-based feature

vector with the same form as global features, which can fit into general image clas-

sification/retrieval pipelines. (b) For computing the visual similarity of two images,

it only requires the comparison of two histograms in BoW representation instead of

pairwise feature matching, which reduced the time complexity of similarity between

two images from quadratic to linear to the number of patches. (c) Since the local fea-

tures have been mapped into the codewords which are taken as representatives of the

local feature space and the number of codewords is much less than the number of pos-

sible values of local descriptors, it can be considered that the BoW histogram feature

space is a quantized subspace of the local feature histogram space, which improves

the generalization power of further classifier training with Bow representation.
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Normally learning a Bag of Words model consists of two sub-problems: (1) Learn

a visual dictionary from a set of local features. (2) Map a local feature into one or

several codewords from a trained visual dictionary.

3.4.1 Visual Dictionary Learning

There are abundant researches on visual dictionary learning. Current visual dic-

tionary learning can be basically classified into two types according to the training

samples: (1) unsupervised dictionary learning, where codewords are trained from un-

labeled images; (2) supervised dictionary learning, where not only images but also

their labels are available during the training processes. Although some researches

suggest that the supervised dictionary learning approach tends to improve discrim-

inative power than the unsupervised dictionary learning approach, because we need

our dictionary-based features to be compatible for multiple large scale classifica-

tion/retrieval tasks over thousands of categories, we tend to learn a universal dic-

tionary for all the tasks from a relative smaller reference image set. Thereby, the

dictionary we use for feature extraction has been trained by a unsupervised learning

algorithm.

One simple but effective method of unsupervised dictionary learning is to cluster

the local features into a limited number of representatives of the local feature universe.

To get a visual dictionary viable for further feature extraction on large real image

database, we have picked VOC image set which contains roughly 10k photos as the

reference image set for codeword learning. For each image in the reference image set,

we first went through the color SIFT local feature pipeline, which detected 300-1000
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SIFT key-points in the image and extracted a 384-dimension color SIFT descriptor for

each key-point. Thus, 1 million color SIFT descriptors extracted from the key-point

neighbourhoods have been randomly picked to form a sample pool for clustering into

4096 groups.

One typical and widely-used class of clustering algorithms is k-means. However,

although visual dictionary learning only needs to be done offline, the trivial k-means

algorithm requires running time in order of O(nmd), where n stands for the number

of samples, m is the number of groups and d represents the dimensions of feature

vectors. There have been multiple feasible approaches to reduce the running time for

dictionary training into an acceptable period of time:

• distribute the distance computation of k-means algorithms over multiple pro-

cessors.

• leverage CUDA framework to distribute computational cost over GPUs.

• use some approximated k-means algorithm such as Hierarchical k-means algo-

rithm.

In our particular case, Map-Reduce [50], one of the most popular computing frame-

work has been leveraged to distribute the computation cost of hierarchical k-means

clustering over a 48-core Hadoop cluster. Within Map-Reduce framework, the k-

means algorithm has been decomposed into a few mappers and reducers which can

be automatically distributed by the Hadoop Map-Reduce scheduler: (1) each mapper

computes the distance/similarity from a particular sample point to all cluster cen-
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troids. The nearest centroid is assigned to be the cluster center for the sample point

and emitted, as Algorithm 1;

for i← 1 . . . k do
di ← ||v − ci||2

end for
i∗ = arg mini di
emit (key =ci∗ , value = v)

Algorithm 1: K-Means-Mapper(v, {c1, . . . , ck})

(2) All the samples, which shared the same particular cluster centroid, have been

automatically fed to a single reducer by map-reducer shuffler and the coordinates of

the new cluster centroid are recomputed by the current samples in the reducer, as

Algorithm 2, where n is the total number of points assigned to cluster centroid c.

c← 1
n

∑n
i=1 vi

emit c

Algorithm 2: K-Means-Reducer(c, {v1, . . . , vn})

We iteratively and hierarchically run the map-reduce process until all the cluster

centroids have been converged. The 384-dimensional coordinates of the centroid point

in the leaf node corresponds to the representation of a codeword of the visual dictio-

nary in the local feature space. With the visual dictionary, for an input image, we

can quantized each local descriptor into codeword in the visual dictionary, and use a

series of codewords to represent the visual content of the image instead of multiple

local descriptors, which will be further discusses in Section 3.4.2

3.4.2 BoW Feature Code Extraction

To extract the dictionary-base feature (BoW Feature) for an input extraction,

the image is first dense-sampled by moving windows in multiple scales. For each
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patch enclosed by the moving window, a 384-dimensional color SIFT descriptor is

extracted to quantify the color and texture characteristics of the local patch area. The

remaining problem of BoW Feature Extraction is to represent each 384-dimensional

by the codewords in the pre-trained visual dictionary in Section 3.4.1.

For an input image, suppose there are totally r descriptors {s1, . . . , sr} extracted

by dense-sampling and the codewords in the visual dictionary are denoted by k vec-

tors {b1, . . . , bk} in the same local feature space. The intuitive method is Vector

Quantization, which replaces each descriptor by the closest codeword in the visual

dictionary:

min
{aij}

∑
i

||si − aij · bj||2

s.t. aij ∈ {0, 1}∑
jaij = 1,∀i (5)

However, hard vector quantization with a large dictionary may cause the curse of

dimensions which leads to over-fit, sparse coding [86] has been advocated for map-

ping the local descriptors to the codewords in the dictionary. Rather than each raw

descriptor has been assigned to a single representative codeword, sparse coding rep-

resents the descriptor by a linear combination of multiple codewords, with sparsity

constraints to improve discriminative power. The coding coefficients {a∗ij} for the i-th

color SIFT descriptor si is determined by a sparse coding optimization problem [86]

in Equation (6).

{a∗ij} = arg min
{aij}
||si − aij · bj||2 + λ · ||aij||1 (6)
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To obtain the feature vector for the input image, the coding coefficients for its local

descriptors needs to be aggregated into a vector of coefficients x which dimension

equals to the size of the dictionary m, by either average pooling strategy,

∀j ∈ {1 . . .m} : xj =
1

n

∑
i

a∗ij (7)

or max pooling strategy,

∀j ∈ {1 . . .m} : xj = max
i
|a∗ij|1 (8)

where each coefficient of the dictionary-based feature vector, xj, representing the

strongest occurrence of the j-th codeword in the input image.

The χ kernel function, which usually appears for comparing histograms, is advo-

cated to measure the visual similarity context κ(x, y) between two dictionary-based

feature vectors x and y:

κ(x, y) = e−χ
2(x,y)/σ =

m∏
j=1

e−χ
2
j (xj ,yj/σj (9)

where σ = [σ1, · · · , σm] is the set of the mean values of the χ2 distances. The χ2

distance χ2
j(xj, yj) between xj and yj is defined as:

χ2
j(xj, yj) =

1

2
· |xj − yj|

2

xj + yj
(10)

where xj and yj are the j-th coefficient of two codeword histograms.

The major advantage of BoW presentation in object recognition and scene catego-

rization is that BoW not only captures the local characteristics around the key-points

but also provides a global distribution of the the local features. In addition, the uti-
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lization of codewords can further enhance the generalization of BoW representation,

which improves the robustness and distinctiveness in object/scene classification tasks.

Despite the proficiency of Bag of Words representation in classification/retrieval

cases, in many applications such as image retrieval or online image classification,

feature extraction for an input image needs to be done within one second in real-

time. On the other hand, both vector quantization and sparse coding requires fast k-

nearest neighbour retrieval in high dimensional feature space, yet brute-force ranking

to locate k-nearest neighbour goes through every codeword in the visual dictionary

and computes the pairwise distance/similarity between the query descriptor and each

codeword, which demands O(md) running time for a single descriptor and O(rmd)

for an image, where r is denoted for the number of patches in the image.

To support real-time Bag of Words coding extraction, k-nearest neighbours are

enforced to be retrieved within sub-linear time complexity. Therefore, a high dimen-

sional kd-tree index has built on top of the visual dictionary to support approximated

nearest neighbour search, as Algorithm 3 shows.

i← random mod d
vm ← the median of {v1(i) . . . , vn(i)}.
node.idx ← i
node.value ← vm
node.left ← kd-tree({vj|vj(i) <= m}, depth+ 1)
node.right ← kd-tree({vj|vj(i) <= m}, depth+ 1)

Algorithm 3: kd-tree({v1, . . . , vn}, depth)

With the codeword index available, the time complexity of approximated k-nearest

neighbour search has been reduced to O(d log n) by a heuristic searching algorithm

(Algorithm 4).
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i← node.idx
vm ← node.value
if s > ||v∗k − vq||1 then

break
end if
if ||vm − vq||1 < ||v∗k − vq||1 then

replace v∗k with vm and re-sort {v∗}
end if
if vm(i) ≤ vq(i) then

kd-search(vq, s+ vq(i)− vm(i), node.left)
kd-search(vq, s, node.right)

else
kd-search(vq, s, node.left)
kd-search(vq, s+ vm(i)− vq(i), node.right)

end if

Algorithm 4: kd-search(vq, s, node)

Table 1: Speed boost with dictionary index

Brute Force Search kd-tree Index
300 color SIFT descriptors 25 secs < 1 sec
1000 color SIFT descriptors 83 secs < 1 sec
300 raw SIFT descriptors 40 secs < 1 sec
1000 raw SIFT descriptors 107 secs 3 secs

Table 1 shows that compared to the brute-force search, k-d tree index has success-

fully reduced the running time to meet the requirement of real-time feature extraction.

3.5 Spatial Pyramid Matching Kernel

In the Bag of Words model, similarity between two images can be efficiently calcu-

lated by comparing two dictionary-based histograms rather than pairwise matching.

Nevertheless, though the histogram-based global features as well as BoW represen-

tation still enjoy their success in large-scale whole-image classification, as a matter

of fact, spatial contexts among local image patterns have been completely lost when

the visual contents of the images are only characterized by histograms: Once a set of
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local descriptors of the input image are encoded into a dictionary-based feature, no

spatial correlations between those local keypoints/patches have been preserved.

Spatial Pyramid Matching Kernel [83], derived from Pyramid Matching Kernel [82],

has been invented to embed spatial locality information of local patches into histogram

kernel computation. Pyramid Matching Kernel was originated to approximately ag-

gregate of pairwise correspondence kernels between two sets of descriptors by dividing

the local feature space by a series of cascaded grids with multiple levels. At each level

l, the whole feature space is evenly divided into 2dl high dimensional cells. While the

descriptors fall into the same cell of level l are counted in the same histogram bin,

the min kernel function of two image X and Y at level l is defined as Equation 11,

I(H l
X , H

l
Y ) =

2dl∑
i=1

min(H l
X(i), H l

Y (i)), (11)

where H l
X(i) and H l

Y (i) respectively stands for the value of the i-th histogram bin of

image X and Y at level l.

With the min kernel function at each cascaded level, the Pyramid Matching Kernel

κ(X, Y ) of two images X, Y has been aggregated with exponentially-decayed weights,

in Equation 12,

κ(X, Y ) = IL +
L−1∑
l=0

1

2L−l
(I l − I l+1)

=
1

2L
I0 +

L∑
l=1

I l

2L−l+1
, (12)

where I l was the abbreviation of I(H l
X , H

l
Y ).

As the Pyramid Matching Kernel plays as the role of an alternative of dictionary-
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based histogram to speed up local descriptor matching, the Spatial Pyramid Matching

Kernel has been motivated by taking the advantage of spatial relationship among local

patches/keypoints, though it has inherited the exact same form from the Pyramid

Matching Kernel in calculation. Instead of separating high level feature space, the

Spatial Pyramid Matching Kernel divides the image by multiple 2-D cascaded grid

in multiple level, and kernel function I l at level l is redefined by,

I l =
2l∑
i=1

I(HX , HY |gl(i)), (13)

where HX and HY respectively stands for the dictionary-based features for the images

X and Y , I(HX , HY |gl(i)) denotes the intersection of HX and HY within the i-th grid

of level l.

Similar to the Pyramid Matching Kernel, the Spatial Pyramid Matching Kernel

also sum up kernel function from all the levels with decayed weights, as Equation

12, for the matching in a smaller grid gain more weight than one in a larger grid.

Therefore the global spatial contexts have been enforced by applying the spatial

pyramid matching, but with a slight increase of computation.



CHAPTER 4: OBJECT TOPIC EXTRACTION AND JUNK IMAGE FILTERING

Since there are huge amount of images available on the Internet, collaborative im-

age tagging system (such as Flickr) and Google Image search has become popular

resources to obtain large scale images for many computer vision tasks. It is very at-

tractive to leverage those online images for automatic image annotation applications.

Although abundant social images are available on the Internet, it is not a trivial task

to obtain the images which are associated appropriately with desired object tags.

As we mentioned previously, many online images are not helpful for object classifier

training because of the following cases: (1) one image is improperly associated to its

corresponding tag, i.e. the visual content of the image does not match the semantic

meaning of the tag (error tags or spam tags); (2) the image tag itself is not interesting

in term of object classification, i.e. little relevance is observed between the seman-

tics of those tag (e.g. date tags, action tags, etc.) and the most popular real-world

object classes. Thus, our desired large scale image sets should be associated with

high-quality tags and satisfy: (a) There are sufficient images associated to each tag,

which provides enough information to illustrate the principal visual properties of the

relevant images for the given tag; (b) The image-tag association is reliable: for each

image, the associated tags can correctly reflect the semantics of its visual content

(although loosely tagging is accepted and one image may be associated to multiple

tags). The goal of the first step of our image classification system is to obtain such a
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clean image with reliable tag-image associations.

There are various ways to download massive amounts of images from the Internet.

The classic way is to design a web crawler, which starts from a list of seed web sites,

recursively goes though the links on the web pages and downloads the images and

their corresponding texts from the current web pages. However, nowadays Internet

search services (including search engines like Google and built-in search services such

as Flickr keyword search) are highly developed and open to users. Even the quality of

returned images are unsatisfied due to the existence of large number of junk images

(which are irrelevant to the semantic to the keyword that is used as query term), there

is a simplified way to obtain large scale images just by utilizing the results returned

by search engines. Therefore, the task for image collection has been basically reduced

to two problems: (1) determine a set of interesting tags and use them as the keywords

(query terms) to search engines; (2) filter junk images (which are irrelevant to the

given tags) from the returned images.

4.1 Object Topic Extraction

In a collaborative image tagging space, each loosely-tagged image is associated

with the image holder’s tags of the underlying image content and other users’ tags or

comments. It is worth noting that entity extraction can be done more effectively in

a collaborative image tagging space. In this paper, we first focus on extracting the

social tags which are strongly related to the most popular real-world object classes and

their actions. The social tags, which are related to image capture time and place, are

also very attractive, but they are beyond the scope of our work. Thus the image tags
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Figure 5: Sample Image with Collaborative Tags: not all tags are useful for object
classification (wrong tags or uninteresting tags) and some objects are missed from
tags

are first partitioned into two categories: noun phrases versus verb phrases. The noun

phrases are further partitioned into two categories automatically: object-relevant tags

(i.e., object tags) and object-irrelevant tags. The verb phrases are further partitioned

into two categories automatically: action-relevant tags (i.e., object action tags) and

action-irrelevant tags.

The occurrence frequency for each object-relevant tag and each action-relevant tag

is counted automatically by using the number of relevant loosely-tagged images. The

misspelling tags may have low frequencies (i.e., different people may make different

typing mistakes), thus it is easy for us to correct such the misspelling tags and their

images are added into the relevant tags automatically. Two tags, which are used

for tagging the same image, are considered to co-occur once without considering

their orders. A co-occurrence matrix is obtained by counting the frequencies of such

pairwise tag co-occurrences.
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The object-relevant tags and the action-relevant tags are further partitioned into

two categories according to their interestingness scores: interesting tags and unin-

teresting tags. In this research, multiple information sources have been exploited for

determining the interesting tags more accurately. For a given tag C, its interesting-

ness score ω(C) depends on: (1) its occurrence frequency t(C) (e.g., higher occurrence

frequency corresponds to higher interestingness score); and (2) its co-occurrence fre-

quency ϑ(C) with any other tag in the vocabulary (e.g., higher co-occurrence fre-

quency corresponds to higher interestingness score). The occurrence frequency t(C)

for a given tag C is equal to the number of loosely-tagged images that are tagged by

the given tag C. The co-occurrence frequency ϑ(C) for the given tag C is equal to

the number of loosely-tagged images that are tagged jointly by the given tag C and

any other tag in the vocabulary.

The interestingness score ω(C) for a given tag C is defined as:

ω(C) = ξ · log(t(C) +
√
t2(C) + 1) + (1− ξ) · log(ϑ(C) +

√
ϑ2(C) + 1) (14)

where ξ is the weighting factor.

All the interesting tags, which have large values of Ω(·) (i.e., top 5000 tags in our

current experiments), are treated as image topics. In this work, we focus on only

the image topics that are used to interpret the most popular real-world object classes

and object actions (i.e., object tags). It is worth noting that one single loosely-

tagged image may be assigned into multiple object classes when the relevant object

tags are used for tagging the loosely-tagged image jointly. Collecting large-scale

training images for the most popular real-world object classes and learning their
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object classifiers more accurately are crucial for many computer vision tasks.

4.2 Junk Image Filtering

Since current search engines index images by either the keywords which are ex-

tracted from surrounding texts of images or noisy user tags, there may not have

exact correspondence between the tags and their linked images. Junk images, which

show little semantic relevance to a given tag, may exist. To utilize the online images

for computer vision tasks, a junk image filtering algorithm needs to be developed to

eliminate those irrelevant images from the image list of each tag.

For different users, their motivations for spam tagging are significantly different,

thus the junk images for spam tagging should contain different visual content and have

different visual properties with the relevant images. Thus, junk images, which come

from different users with different motivations, should be distributed more diversely

in appearances than the relevant images do. Since the intrinsic appearances among

relevant images might be diverse as well, for each tag, a three-step junk image filtering

approach has been developed to eliminate the junk images and identify those relevant

images:

1. K-way Min-Max Cut Clustering algorithm to partition the whole set of images

(which are associated with a given tag) into K groups according to their visual

similarity.

2. One-class SVM algorithm to eliminate the outliers which have significant visual

inconsistency with other images in the same group.
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Figure 6: Overview of Three-step Junk Image Filtering Approach

3. Random walk algorithm to identify those groups which are most relevant to the

given topic (i.e, the given tag).

For a given image concept (tag) C with n associating images, a image graph is

constructed according to their visual similarity, where the nodes are the images and

the edges are weighted by their visual similarity κ(·, ·). All the images associated

with the tag C can be partitioned into K groups automatically by minimizing the

following objective function for K-way Min-Max Cut:

min
G
J(C,K,G) =

K∑
i=1

s(Gi, G\Gi)

s(Gi, Gi)
(15)
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where G = {Gi|i = 1 . . . K} is used to represent K image clusters (groups), G\Gi

denotes the set of image clusters without Gi. The cumulative intra-cluster similarity

and inter-cluster similarity are defined respectively as:

s(Gi, Gi) =
1

|Gi|2
∑
u∈Gi

∑
v∈Gi

κ(u, v),

s(Gi, G\Gi) =
1

|Gi| · (n− |Gi|)
∑
u∈Gi

∑
v/∈Gi

κ(u, v). (16)

To solve the optimization problem Equation (15) in matrix form, we define X =

[X1, . . . , Xi, . . . , XK ] where Xi is the binary indicator vector in which each element is

to identify whether the corresponding image has been assigned to cluster i, i.e.:

Xi(u) =


1 u ∈ Gi

0 u /∈ Gi

and W is defined as a n×n symmetric matrix with entries Wuv = κ(u, v), D is defined

as a diagonal matrix which is calculated from W : Duu =
∑n

i=1Wuv.

The optimal partition of the image set associated with tag C can be obtained by

solving:

min
X

J(X) =
K∑
i=1

Xtr
i (D −W )Xi

Xtr
i WXi

=
∑
i

Xtr
i DXi

Xtr
i WXi

−K (17)

Further let W̃ = D−1/2WD−1/2 and X̃i = D1/2Xi/||D1/2Xi||, the above objective

function can be reduced to a standard spectral graph cut problem:

min
X̃

K∑
i=1

1

X̃tr
i WX̃i

(18)
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Therefore, the optimal solution for Equation (15) can be obtained by solving the

eigen-problem:

W̃ · X̃i = λi · X̃i, i ∈ [1 . . . K] (19)

By the K-way Min-Max cut, the whole set of images tagged by concept C have been

partitioned K groups. Due to the high diversity of junk images, there are two possible

situations: (1) Some junk images have been distributed to some clusters which the

majority image of the cluster are relevant to the given concept; (2) Some junk images

have formed some junk clusters in which most images are irrelevant to the concept.

To eliminate the junk images in the first case, one-class support vector machine is

utilized to generate a core set from each group individually, where as minority, junk

images are guaranteed to sit outside the core set.

One-class SVM [130] is a unsupervised method, which find the smallest possible

hyper-sphere to enclose all samples {xi} with an error-tolerated boundary. The al-

gorithm makes a trade off between the size of hyper-sphere and the error penalty by

solving the optimization problem in Equation (20):

min R2 + C
∑
i

ξi

s.t. ∀xi : ||xi − z||2 ≤ R2 + ξi, ξi ≥ 0 (20)

where R and z indicate the radius and the center of the hyper-sphere, xii is the error

penalty and C is the regulation parameter. The core of the category is formed by those

xi which tightly enclosed by the hyper-sphere, which satisfies ξi = 0 correspondingly.

The core set of samples {xi} is formed according to distances (similarities) to the
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center z: {xi | ||xi−z||2 ≤ R2}. Further, image samples outside the core are discarded

from each group due to the higher possibility to be the junk images.

Since all the image groups have been cleansed by one-class SVM, the remaining

problem is to identify the relevance between the groups and the given tag C. In order

to leverage the inter-cluster visual correlations for achieving more effective relevance

measurement, a random walk process is performed for automatic relevance score

refinement. For the given object tag C, an inter-cluster correlation network (i.e.,

K image clusters and their inter-cluster visual correlations) can be automatically

determined upon the image clusters filtered by one-class SVM. We use ρl(Gi) to

denote the relevance score for the ith image cluster Gi at the lth iteration. The

relevance scores for all these K image clusters at the lth iteration will form a column

vector
−−−→
ρ(Gi) ≡ [ρl(Gi)]K×1. We further define Φ as an K × K transition matrix,

its element φGi,Gj
is used to define the probability of the transition from the image

cluster Gi to its inter-related image cluster Gj. φGi,Gj
is defined as:

φGi,Gj
=

c(Gi, Gj)∑
Gh∈C c(Gi, Gh)

(21)

where c(Gi, Gj) is the inter-cluster visual similarity context between two image clus-

ters Gi and Gj as defined as following:

c(Gi, Gj) =
2s(Gi, Gj)

s(Gi, Gi) + s(Gj, Gj)
(22)

The random walk process is then formulated as:

ρl(Gi) = θ
∑
j∈Ωj

ρl−1(Gj)φGi,Gj
+ (1− θ)ρ(C,Gi) (23)
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(a)

(b)

Figure 7: Image clustering results: (a) inter-cluster correlation network; (b) filtered
junk images.
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where Ωj is the first-order nearest neighbors of the image cluster Gj on the cluster

correlation network, ρ(C,Gi) = |xi | rC(xi) ≤ R and xi ∈ Gi| is the initial relevance

score for the image cluster Gi which is derived from ranking function rC(xi) of the

search engine and θ is a weight parameter.

This random walk process will promote the image clusters that have many connec-

tions on the inter-cluster correlation network, e.g., the image clusters that have close

visual properties (i.e., stronger visual similarity contexts) with other image clusters.

On the other hand, this random walk process will also weaken the isolated image clus-

ters on the inter-cluster correlation network, e.g., the image clusters that have weak

visual correlations with other image clusters. This random walk process is terminated

when the relevance scores converge.

By performing random walk over the inter-cluster correlation network, our rele-

vance score refinement algorithm can re-rank the relevance between the image clusters

and the given object tag C more precisely. Thus the top-k image clusters, which have

higher relevance scores with the given object tag C, are selected as the most relevant

image clusters for the given object tag C. Through integrating the cluster correlation

network and random walk for relevance re-ranking, our spam tag detection algorithm

can filter out the junk images effectively.

Although it can be observed from results that our junk image filtering algorithm

is performing with a low recall rate, it is worth noting that since images return by

search engine are usually enormous, there always be enough image available in spite

of strictness of relevance measurement. Figure 9 shows the results of junk image

filtering upon returned images from Flickr and Figure 8 measures the effectiveness
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Figure 8: The comparison on the accuracy rates after and before performing junk
image filtering

.

of our algorithm in the classification task. By filtering out the junk images, we can

automatically create large-scale training images with more reliable labels for object

classifier training.
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(a)

(b)

Figure 9: Junk image filtering results on Flickr. (a): relevant cluster. (b): junk
cluster



CHAPTER 5: MULTIPLE INSTANCE LEARNING WITH MISSING OBJECT
TAGS

Multiple object tags are usually associated with the loosely-tagged images, but

some object tags may be missed because of time limitation or lack of patience for

tagging the object classes completely. Thus it is not a trivial task to leverage large-

scale loosely-tagged images with missing tags for object classifier training: (a) each

object may possess only a small part of the loosely-tagged images and the information

for object locations and sizes are missed, extracting the global visual features from

whole images may not be representative and discriminative for object representation

and incorporating such global visual features for object classifier training may result

in low discrimination power; (b) because of the appearances of missing object tags,

positive images (which contain the relevant object classes but they are not tagged)

may be treated as negative bags, and the appearances of positive instances in the

negative bags will seriously mislead the underlying machine learning tools for object

classifier training.

To address both the issues of loose object tags and missing object tags more ef-

fectively, a novel algorithm for multiple instance learning (MIL) with missing tag

prediction is developed and its flowchart is illustrated in Figure 10. To achieve auto-

matic instance-tag assignment and missing tag prediction, each loosely-tagged image

is first partitioned into multiple image regions by integrating the segmentation results



57

Figure 10: The flowchart for our multiple instance learning algorithm with missing
tag prediction.

of JSEG and NCut [22, 23, 24]. Each image region (i.e., image instance) is considered

as a semantic atom and only one object tag can be assigned to such semantic atom,

e.g., instance semantics is unique.

5.1 Bag of Instances

For a given object tag Cl, two bags of loosely-tagged images are labeled for object

classifier training: positive bags (positive images) Ωl versus negative bags (negative

images) Ω̄l. For the given object tag Cl, its positive bag (positive image) contains at

least one positive instance, e.g., at least one image region is relevant with the given

object class (object tag). On the other hand, its negative bag (negative image) may

also contain positive instances because of the existence of missing object tags, e.g.,

some loosely-tagged images, which contain the object class Cl but the object tag Cl
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is missed, may be treated as negative images for Cl. Thus one important assumption

for traditional MIL scenario, e.g., all the instances in the negative bags are negative,

is not true in our MIL scenario. Therefore, it is very attractive to develop new MIL

algorithms that are able to address both the issues of loose object tags and missing

object tags jointly. In this research, we have developed a novel MIL algorithm by

assigning multiple object tags into the most relevant image instances, determining

uncertain image instances whose object tags are not available on the tag list (missing

object tags), and predicting the missing object tags for the uncertain image instances

automatically.

The existence of missing object tags may fail most existing MIL algorithms because

most of them share a common assumption: positive instances from positive bags

should be close each other and be far away from the instances in negative bags, e.g.,

positive bags contain at least one positive instance and negative bags should strictly

contain no positive instance. Such assumption is true and reasonable in traditional

MIL scenarios because they assume that the bag-level labels are complete (missing

object labels are not permitted).

Because of the appearances of missing object tags, it is worthy to re-consider

the common assumption for multiple instance learning. When some object tags are

missed, the common assumption for positive bags is still reliable, but the common

assumption for negative bags is not always true because the negative bags may also

contain positive instances e.g., positive images may be treated as the negative bags

when the corresponding object tags are missed.
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5.2 Distributed Affinity Propagation for Instance Clustering

Working with large scale image set, the size of image instances has been grown

even enormous which is far out of the computational capability of classical clustering

algorithms (that require to store huge size of pairwise similarity matrix for large

amounts of image instances) on a single computer. Therefore it is necessary to take

the advantage of distributed computing environments to enable clustering on large

scale data set.

Affinity Propagation (AP) [131] is a clustering algorithm that takes the pairwise

similarities as the input, and it works by sending two types of messages, Responsibility

R(ri, rj) and Availability A(rk, ri), between the data items (loosely-tagged images).

By iteratively computing Responsibilities and Availabilities, the algorithm assigns a

most likely cluster center to each instance.

• Responsibility R(ri, rj) updates:

t1(ri) = arg max
rj
{A(rj, ri)+κ(ri, rj)}; t2(ri) = arg max

rj :rj 6=t1(ri)
{A(rj, ri)+κ(ri, rj)}

(24)

R(ri, rk) = κ(ri, rk)− [A(tl(ri), ri)) + κ(ri, tl(ri))] (25)

where l = 2 when t1(ri) = rk, otherwise l = 1, κ(ri, rj) is the visual similarity

context between the web images ri and rj.

• Availability updates:

q(rk) =
∑
rj

max{0, R(rj, rk)}; A(rk, rk) = q(rk)−R(rk, rk) (26)
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A(rk, ri) = min{0, q(rk)−max{0, R(ri, rk)}} (27)

Though the classic Affinity Propagation [131] can be seamlessly integrated with Map-

Reduce framework, with the growing number of instances, the computation cost for

pairwise responsibility/availability has even exceeded the computational capability of

a typical Hadoop cluster. Hence, instead of parallelize the classic Affinity Propaga-

tion, an approximated Affinity Propagation algorithm has developed, taking advan-

tage of the acceleration from the latest general purpose GPUs, which will be further

introduced in Chapter 6. By applying such GPU-accelerated clustering algorithm,

visually similar image instances are grouped into the instance clusters according to

their visual similarity contexts κ(·, ·).

5.3 Automatic Instance-tag Alignment

For a given object tag Cl, two bags of loosely-tagged images are labeled for object

classifier training: positive bags (positive images) Ωl versus negative bags (negative

images) Ω̄l. For a given object tag, all the image instances in its positive bags and

negative bags are grouped into a set of clusters by using our distributed clustering

algorithm as described in Section 4. The image instances in the same cluster will share

similar visual properties and their semantics can be described effectively by using the

same object tag, e.g., consistency between the visual similarity and the semantic

similarity. It is worth noting that the relevant image instances for the same object

tags may have huge inner-class visual diversity and they may be partitioned into

multiple instance clusters but their semantics can be described effectively by the same

object tag. Because of the consistency between the visual similarity and the semantic
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similarity, such distributed instance clustering process can significantly reduce the

uncertainty on the relatedness between the semantics of the image instances and the

given object tag Cl.

For the given object tag Cl, an agreement value P (Cl|ri) is calculated for each

instance ri to characterize its relatedness with the given object tag Cl. To address

the issues of loose object tags and missing object tags jointly, we make the follow-

ing assumptions: (a) Tag-Instance Consistency: In our MIL scenario, if two image

instances ri and rj (they may be positive or negative with the given object tag Cl)

are similar on their visual properties, they should have similar agreement value to be

assigned into the same object tag yp, e.g., P (yp|ri) = P (yp|rj), where P (yp|ri) and

P (yp|rj) are the agreement values for ri and rj to be assigned with the object tag

yp. For the given object tag Cl, we focus on assigning the given object tag Cl into

its positive instances with maximum agreement values P (Cl|ri), but we will com-

pletely ignore the object tags for Cl’s negative instances. (b) Instance-Cluster Tag

Consistency: The semantics for all the image instances in the same clusters can be

interpreted effectively and efficiently by using a small set of available object tags,

e.g., instance-cluster tag consistency (consistency between the visual similarity and

the semantic similarity).

Based on these assumptions, all the image instances in the same cluster Gi con-

tribute cumulatively on cluster agreement value f(yp|Gi) and it is defined as:

f(yp|Gi) ∝
1

|Gi|
∑
ri∈Gi

P (yp|ri) (28)

where |Gi| is the total number of image instances in the same instance cluster Gi. If
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Figure 11: Automatic instance-tag alignment and uncertain instance identification

the instance cluster Gi is detected as the positive cluster for the given object class

(object tag) Cl, the object tag for the instance cluster Gi is set as yp = Cl.

For the given object tag Cl, the cumulative visual similarity context δ̄(ri,Φl) be-

tween the image instance ri and all its positive instances in its most positive clusters

Φl is defined as:

δ̄(ri,Φl) =
1

|Φl|
∑
v∈Φl

κ(ri, v) (29)

where κ(ri, v) is the visual similarity context between two image instance ri and v.

The cumulative visual similarity context δ̄(ri,Ψl) between the image instance ri and

all the negative instances in Cl’s most negative clusters Ψl is defined as:

δ̄(ri,Ψl) =
1

|Ψl|
∑
u∈Ψl

κ(ri, u) (30)

where κ(ri, u) is the visual similarity context between two image instance ri and u.

To assess the agreement between the image instance ri and the given object tag Cl

(i.e., whether ri is positive with Cl), it is very important to make sure that ri is far

from Cl’s most negative clusters Ψl and close to Cl’s most positive clusters Φl. Thus

the agreement value P (Cl|ri) between the image instance ri and the given object tag
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Cl is defined as:

P (Cl|ri) ∝

 1

|Φl|
∑
Gj∈Φl

δ̄(ri,Φl)f(Cl|Gj)−
1

|Ψl|
∑
Gk∈Ψl

δ̄(ri,Ψl)f(Cl|Gk)

 (31)

where Φl and Ψl are the most positive clusters and the most negative clusters for

the given object tag Cl, |Φl| and |Ψl| are the total numbers of positive instances and

negative instances in Φl and Ψl.

If the agreement value P (Cl|ri) for the image instance ri is positive, P (Cl|ri) > 0,

ri is treated as the positive instance for the given object tag Cl and Cl is used to

tag the positive instance ri. If the agreement value P (Cl|ri) for the image instance

ri is negative, P (Cl|ri) < 0, it is treated as the negative instance for the given object

tag Cl and we will completely ignore the object tag for the negative instance ri. If

the agreement value P (Cl|ri) for the image instance ri is close to zero, P (Cl|ri) ≈ 0,

it is treated as uncertain image instance and we will further leverage the object co-

occurrence contexts to predict the missing object tag for the uncertain image instance

ri. Some experimental results on automatic instance-tag alignment and uncertain

instance identification are given in Figure 13.

5.4 Missing Tag Prediction

After all the available object tags are assigned into their most relevant image in-

stances automatically, we can obtain large amounts of labeled image instances (most

positive instances) for all these available object tags and we can also count their

pairwise co-occurrences in large-scale loosely-tagged images. An object co-occurrence

network is constructed to represent such the object co-occurrence contexts explicitly
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Figure 12: Our object co-occurrence network for missing tag prediction.

Figure 13: The F scores for instance identification algorithm on MSRC image set
(using ground truth segmentation)
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and provide a good environment to leverage such the object co-occurrence contexts

for missing tag prediction.

For two given object tags Ci and Cj, their co-occurrence context ω(Ci, Cj) is defined

as:

ω(Ci, Cj) = −P (Ci, Cj) log
P (Ci, Cj)

P (Ci) + P (Cj)
(32)

where P (Ci, Cj) is the co-occurrence probability for two object tags Ci and Cj in

large-scale loosely-tagged images, and P (Ci), P (Cj) are the individual occurrence

probabilities for Ci and Cj in large-scale loosely-tagged images.

The object tags (object classes), which have large values of the co-occurrence

contexts, are connected to form an object co-occurrence network. The object co-

occurrence network for our image collections is shown in Figure 12, where each object

tag is linked with multiple co-occurrence object tags with larger values of ω(·, ·).

Our object co-occurrence network can provide a good environment for predicting the

object classes (object tags) that are frequently used for tagging the same images.

For the given object class Cl, we completely ignore the object tags for its negative

instances in the negative bags and the positive bags. Thus we will not predict the

missing object tags for the uncertain image instances in Cl’s positive bags because

such uncertain image instances are irrelevant with the given object tag Cl (negative

instances for Cl). As a result, the issue of predicting missing object tags for the

uncertain image instances is simplified as an easier problem: assessing the relatedness

between the uncertain image instances (in the negative bags) and the given object

tag Cl, e.g., assessing whether the uncertain image instances in Cl’s negative bags are



66

Figure 14: Missing tag prediction: (a) original images; (b) instance-tag alignment
and uncertain instance identification; (c) missing tag prediction.

positive with the given object tag Cl.

For the given object tag Cl, there is a small set of object classes, Θl, which co-

occur most frequently with Cl in large-scale loosely-tagged images and they have large

values of ω(Cl, Ci), Ci ∈ Θl. Uncertain image instances in the negative bags of Cl

may belong to four categories: (a) negative instances for Cl and Cl’s most frequently

co-occurring object tags in Θl are also not used to tag Cl’s negative images; (b)

negative instances for Cl and some Cl’s most frequently co-occurring object tags in

Θl are used to tag Cl’s negative images; (c) positive instances for Cl and some Cl’s

most frequently co-occurring object tags in Θl are used to tag Cl’s negative images;

(d) positive instances for Cl and all Cl’s most frequently co-occurring object tags in

Θl are not used to tag Cl’s negative images.

For the first case, the uncertain image instance ru is negative with Cl and it should

be close to Cl’s most negative clusters Ψl, thus its agreement value λ1(Cl, ru) with
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the given object tag Cl is then refined as:

λ1(Cl, ru) = P (Cl|ru) +
1

|Ψl|
∑
Gk∈Ψl

δ̄(ru,Ψl)f(Cl|Gk) (33)

where P (Cl|ru) is the agreement value for the uncertain image instance ru to be

assigned into the given object tag Cl by using Equation (31).

For the second case, the uncertain image instance ru is negative with Cl and it

should be close to all these most negative clusters for Cl and its most frequently co-

occurring object tags in Θl, thus its agreement value λ2(Cl, ru) with the given object

tag Cl is then refined as:

λ2(Cl, ru) = P (Cl|ru) +
1

|Ψl|
∑
Gk∈Ψl

δ̄(ru,Ψl)f(Cl|Gk)

+
1

|Θl|
∑
Ci∈Θl

∆iu

|Ψi|
ω(Cl, Ci)

∑
Gk∈Ψi

δ̄(ru,Ψi)f(Ci|Gk) (34)

where Ψi is the most negative clusters for the object tag Ci, Ci ∈ Θl, |Θl| is the total

number of object classes in Θl, ∆iu = 0 if Ci ∈ Θl is used to tag the corresponding

negative image that contains ru, otherwise, ∆iu = 1.

For the third case, the uncertain image instance ru is positive with Cl and it should

be close to all these most positive clusters for Cl and its most frequently co-occurring

object tags in Θl, thus its agreement value λ3(Cl, ru) with the given object tag Cl is

then refined as:

λ3(Cl, ru) = P (Cl|ru) +
1

|Φl|
∑
Gk∈Φl

δ̄(ru,Φl)f(Cl|Gk)

+
1

|Θl|
∑
Cj∈Θl

∆ju

|Φj|
ω(Cl, Cj)

∑
Gk∈Φj

δ̄(ru,Φj)f(Cj|Gk) (35)
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where Φj is the most positive clusters for the object tag Cj, Cj ∈ Θl, ∆ju = 0 if Cj

∈ Θl is used to tag the corresponding negative image that contains ru, otherwise, ∆ju

= 1.

For the fourth case, the uncertain image instance ru is positive with Cl and it

should be close to Cl’s most positive clusters, thus its agreement value λ4(Cl, ru) with

the given object tag Cl is then refined as:

λ4(Cl, ru) = P (Cl|ru) +
1

|Φl|
∑
Gk∈Φl

δ̄(ru,Φl)f(Cl|Gk) (36)

The maximum agreement value λmax(Cl, ru) between the uncertain image instance

ru and the given object tag Cl is then determined by:

λmax(Cl, ru) = arg max {λi(Cl, ru)|i = 1, 2, 3, 4} (37)

If λmax(Cl, ru) is equal to λ3(Cl, ru) or λmax(Cl, ru) is equal to λ4(Cl, ru), e.g., λmax(Cl, ru)

= λ3(Cl, ru) or λmax(Cl, ru) = λ4(Cl, ru), the uncertain image instance ru is treated

as positive instance for Cl and the given object tag Cl is assigned with ru. Other-

wise, the uncertain image instance ru is treated as negative instance for Cl. Some

experimental results on missing tag prediction are given in Figure 14 .



CHAPTER 6: GPU-ACCELERATED AFFINITY PROPAGATION FOR LARGE
SCALE DATA SETS

Given a set of data points and their pair-wise similarities, Affinity Propagation

[131] is an unsupervised clustering algorithm, which finds a subset of exemplars by

passing messages between data points. By performing affinity propagation, each data

point is associated with an exemplar, which results in data points associated to same

exemplars are grouped into clusters.

Compared to classic clustering algorithms such as K-means, K-medoids, graph cut,

etc, affinity propagation takes two advantages on large scale data set: (1) Since the

structure for large scale data set is usually unknown, the number of clusters usually

need to be given as an input parameter for most classic clustering algorithms. In

comparison, affinity propagation automatically determines the number of clustering

from the similarity matrix and the preferences of data points which are provided

by users; (2) In some applications such as text or image clustering, correspondences

among sample points are provided by kernel matrices with unknown high dimensional

coordinates for samples. As long as affinity propagation takes only the similarity

matrix and the preferences of data points as the input, it can be directly applied to

work with user-defined similarities without making any changes.

However, like all similarity-based methods, affinity propagation has encountered

the problem of limited size of storage devices. For Instance, it is almost impossible to
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obtain a dense similarity matrix when the number of data points reaches as large as 1

million. Moreover, since the messages passed between the data points are also in the

order of O(n2) (where n stands for the number of data points) without truncation,

both the time complexity and the space complexity of original affinity propagation

are beyond the computational capability of a single computer when it is applied

on some large scale data sets. One way to solve the problem is to utilize modern

parallel/distributed computing frameworks, such as Map-reduce, GPGPU, etc, to

collaborate thousands or more computing units, while another way is to reduce the

computational cost by sparsifying the similarity matrix.

In this chapter, a GPU-based solution of approximated affinity propagation will

be introduced, by taking the advantage of both matrix sparsification and parallel

computing. Firstly, we have developed a top-down hierarchical affinity propagation

algorithm, which partitions the large-scale clustering problem into thousands of small

problems which normal processors can handle. Second, thanks to CUDA technology,

we spread those small problems over hundreds of GPU cores. By achieving parallel

computing over GPUs, it has dramatically improved the efficiency of affinity propaga-

tion and significantly reduced the running time. Combined approximated hierarchical

algorithm with CUDA technology, it is capable to group large-scale high dimensional

data points with a small cluster of computer or even with a single computer equipped

with a latest CUDA graphic card.
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Table 2: Notations in Chapter 6

n number of points
m number of edges in the graph
s(i, j) similarity between point xi and point xj
r(i, k) responsibility transferred from xi to xk
a(i, k) availability from exemplar xk to xi
e(i) if data point i is nominated as an exemplar
c(k) the preference of data point xk to be an exemplar

6.1 Classic Affinity Propagation Algorithm

Affinity propagation algorithm transfers two types of messages between data points:

(a) Responsibility r(i, k), which is passed from data point i to candidate exemplar

point k, indicates the preference of data point i to select the point k as its exemplar;

(b) Availability a(i, k), which is a feedback from the exemplar point k to the data

point i, shows what degree does the point k fit to be a cluster center for the data

point i. Responsibilities are calculated as Equation 38,

r(i, k) = s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)} (38)

and Equation 39 and 40 shows the update of Availabilities, for i 6= k,

a(i, k) = min

0, c(k) + r(k, k) +
∑

i′ /∈{i,k}

max{0, s(i′, k)}

 , (39)

and self-availabilities indicate preferences,

a(k, k) = c(k) +
∑
i′ 6=k

max{0, r(i′, k)}. (40)

.

The algorithm iteratively updates responsibilities and availabilities until conver-
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Figure 15: Single point in Binary Factor Graph

gence. The exemplar associated to the data point xi is determined by Equation 41:

f(i) = arg max
k
{r(i, k) + a(i, k)} (41)

Theoretically, affinity propagation is derived from max-product algorithm (max-

sum in log domain) in a binary factor graph as shown in Fig. 15 [93], where {hij}

are hidden binary variables which indicate whether the point xi has chosen the point

xj as its exemplar. The goal is to maximize the object function in Equation 42,

which models a joint energy combined with the similarities (weights on edges) and

preferences (weights on nodes).

∑
ij

Sij(hij) +
∑
j

Cj(ej) (42)

, subjects to following constraints:

Cj(ej) = c(j)e(j), Sij(hij) = s(i, j)hij (43)

∑
j

hij = 1 (44)

ej = hjj = max
i
hij (45)
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Equation 44 constrains that each point only be associated with one exemplar and

Equation 45 ensures the basic fact that if the point xj is selected as the exemplar of

some other points, it must be the exemplar of itself. As discussed in [131, 93, 94],

the optimization problem in Equation 42 has been proved to be an NP-hard problem

and the passing message algorithm in [131] is an approximated MAP solution, which

has been working well in most cases.

The classic affinity propagation algorithm takes full similarity matrix as the input

and passes the messages between the points. Therefore without any optimization to

reduce the cost, the time complexity is O(tn2), where t is the number of iterations.

It also requires O(n2) space to store the pair-wise similarity matrix, availabilities

and responsibilities. Apparently O(n2) space complexity is not acceptable for large

scale data points. However, if affinity propagation is performed on a pre-constructed

sparse graph, since the messages are only passed though the edges, the running time

complexity will be reduced to O(tm) and only O(m) space is needed.

6.2 Previous Optimization over Affinity Propagation

There are some pioneering works which attempted to reduce the cost of affinity

propagation by approximations. Y. Jia et al.. proposed a two-step method, known as

FSAP [95]. Instead of passing the message on the whole fully-connected graph, FSAP

does a pre-processing step which prunes the graph by performing a k-nearest-neighbor

search on each data points. Later, another graph pruning method[96] was developed

by Y. Fujiwara and T. Kitahara. Differed from FSAP, Fujiwara’s method prunes the

graph by estimating upper and lower bound of availability and responsibility on each
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pair of data points, which tends to yield the exact same clustering results as which

the classic algorithm [131] produces. However, both these two methods rely on the

calculation of the complete similarity matrix, which limits their performance on large

scale data. FSAP requires the pair-wise similarities to perform k-NN search unless the

structure of data points is pre-computed (like with a k-d tree); Fujiwara’s method goes

through all the pairs of data points to estimate lower and upper bounds of messages,

where also complete similarity matrix is also computed. Alternatively, besides those

approximated solution, W. Wang et al.have moved affinity propagation algorithm

under map-reduce framework, which takes the advantage of cloud computing instead

of running with large scale data on a single computer [97].

In the recent decades, thanks to the development of general purpose computing

on GPUs, a remarkable number of machine learning methods has been refined to be

compatible for GPU acceleration, e.g., GPU-accelerated K-means was developed by

J. Hart and J. Hall in [98]. In [99], V. Garcia et al.speeded up K-nearest neighbour

search by using Nvidia’s CUDA technique [100]. More generally, M. Hussein and W.

Abd-Almageed have developed a band approximation which uses GPU to accelerate

all kernel methods on sparse Gram matrices [101]. As an application, the performance

of affinity propagation algorithm can also be improved by [101] in case the similarity

matrix is sparse.

We also would like to mention hierarchical affinity propagation [94] , which is

developed by I. Givoni et al.. Although neither is motivated by efficiency issue nor

it improved performance in practice, our proposed method actually comes from the

idea of hierarchical affinity propagation.
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6.3 Approximated Affinity Propagation and CUDA Implementation

Our proposed algorithm works on a bottom-up framework as shown in Fig. 16.

Differed from directly bottom-up aggregation in hierarchical affinity propagation [94],

which is shown in Fig. 17, it is not possible to propagate the responsibilities and

availabilities over huge amounts of data points on lower layers. Instead, we conduct

a top-down work set selection scheme to ensure the number of points on each layer is

small enough for a single processor to handle. At the certain layer l, if the number of

data points in current work set exceeds a pre-defined limit Tn (which is related to the

computation power of a processor unit and its storage size), the current work set will

be partitioned into p (which is determined by Tn) overlapped sub-worksets and the

algorithm proceeds to layer l + 1 to find exemplars for each sub-workset separately.

Only the exemplars from all p sub-worksets take part in the clustering in layer l,

which means to be an exemplar in layer l, that point must be an exemplar in layer

l + 1. The algorithm is described as in Algorithm 5.

6.3.1 Workset Selection

As we stated in Algorithm 5, work set partition (or sub-workset selection) is per-

formed on each layer except the bottom one. The ideal partition method meets

following conditions: (a) the partition method is simple enough that it does not take

a lot of resources; (b) the structure of data points is approximately preserved that

the close points tend to be close after partition and no points disappear from all

sub-worksets. (c) it computes as less pair-wise similarities as possible, because O(n2)

time/space complexity is too expensive in most large scale cases. (d) The lost mes-
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Figure 16: Proposed Affinity Propagation

Figure 17: Hierarchical Affinity Propagation
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APCluster (l, n, {xi})
if n ≤ Tn then

Calculate the similarity matrix S over {xi}
Perform normal affinity propagation based on S
return {f(xi)}

else
Partition {xi} into p sub-workset: {(nk, {xki })}
for each sub-workset {(nk, {xki })} do

APCluster(l + 1, nk, {xki })
end for
Yl+1 = {yki |yki is an exemplar of sub-workset k}
Calculate similarity matrix S over Yl+1

Perform normal affinity propagation based on S and get a exemplar set Yl
Calculate similarity matrix S ′ between {xi} and Yl
Iteratively update availabilities and responsibilities between {xi} and Yl
Update f(xi) by Eq. 41, where f(xi) ∈ Yl
return {f(xi)}

end if

Algorithm 5: the Proposed Approximated Affinity Propagation Algorithm

sages due to partition are less important, e.g., the messages, which are transmitted

between data points that far away from each other, tend to be unnecessary.

It seems to be a way to partition work set by the results from k-nearest-neighbor

search. However, in case that the similarities can be arbitrary and no additional graph

information is provided, it actually takes O(n2) time to find k-nearest neighbors for

all the data points. We have conducted a much simpler but more efficient way for the

partition, as shown in Fig. 18. It starts from a random point xi. With its k-nearest

neighbours, these k + 1 points form a sub-workset. To ensure every data point has

been picked by some sub-workset, a frequency list {d(i)} is maintained, where d(i)

records how many times point xi has been chosen to form sub-workset in the current

work set. We randomly pick a point with least d(i) as the start point to generate a

sub-workset, until any data point belongs to at least one sub-workset and the number
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Figure 18: Starting point xi and its k-nearest neighbours form a sub-workset.

of sub-worksets reaches p. The total complexity of this selection method is O(pn).

6.3.2 Message between Layers

Since the exemplars are the representatives of low-layer data points in a upper layer,

it is reasonable and necessary to make sure that candidate exemplars in upper layers

are assigned with different preferences. According to [94], inter-layer messages have

been introduced for addressing such differences, as shown in Fig. 19. The message

τ l−1(k) from lower layer to high layer, affected responsibility of exemplar k at layer

l − 1 and the message φl+1(k) is a preference feedback of exemplar k from layer l to

layer l + 1, which are calculated as Eq. 46 and Eq. 47:

τ l−1(k) = cl(k) + rl(k, k) +
∑
k′ 6=k

max{0, rl(k′, k)} (46)

φl+1(k) = max
k′

{
al(k, k′) + s(k, k′)

}
(47)
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Figure 19: Messages passed between adjacent layers.

Correspondingly, responsibility updating formula in Eq. 38 is changed to Eq. 48:

rl(i, k) = sl(i, k) + min

{
τ li ,−max

k′ 6=k
(al(k, k′) + sl(k, k′))

}
(48)

and preference cl(k) is updated by ĉl(k) = cl(k) + φl(k). There is a detail proof of

layer-wise message transferring in [94], which is omit in this paper.

6.3.3 GPU-accelerated Implementation

Nowadays, Graphics Processing Units (GPUs) are used to render fancy graphics

on monitors. Thanks to the recent development on general purpose computing on

GPU (GPGPU), not only a remarkable number of gaming graphic cards are capable

to perform scientific computing, but also some graphic card (such as Tesla series)

are specifically designed for super computing. As a main stream model of GPGPU,

CUDA and its tools provide an easy way for researchers to make their programs

adaptive to GPUs.

For scientific programming, CUDA provides a high-level programming interface
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Figure 20: CUDA Architecture

that programmers are able to take advantage of general purpose computing by GPUs

easily. Users are required to specify a series of code segments which are called “ker-

nels”. Kernels are independent to each other that each kernel will be allocated with a

streaming processor and its corresponding storage automatically by CUDA, as shown

in Fig. 20. In our implementation, each kernel handles the affinity propagation of

a single work set. It is important to mention that the storage on a graphic card is

limited, so CUDA is not a good candidate solution to directly handle those prob-

lems which can not fit into the size of main memory, e.g., the huge similarity matrix

of affinity propagation. Therefore, it is necessary to prune the matrix computation

before trying to speed up with CUDA, which we have done in previous sections.

In our framework, as shown in Fig. 21, a dispatcher, which is running on CPU,

controls if a work set is ready to be running or is good for output. When a new work
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Figure 21: CUDA implementation of proposed affinity propagation algorithm

set is generated, dispatcher first allocate the work set a spare streaming processor, if

it is available. As in Algorithm 5, if the number of points in the work set exceeds

the limit, the streaming processor generates a series of new sub-worksets and return

them to the dispatcher. In that case, the dispatcher suspends the original work set

and spreads new sub-worksets to streaming processors. When all sub-worksets have

finished and returned their outputs, the dispatcher disturbs the original work set

again, as well as those outputs collected from sub-worksets. This process continues

until the last work set, which is the topmost layer with all data points, returns its

results.

6.3.4 Efficiency

For each work set which contains nk data points, if nk < Tn, normal affinity prop-

agation are simply applied on the work set, which requires at most O(T 2
n) time and
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O(T 2
n) space. For those work sets with nk > Tn, we partition the work set into small

sub-worksets by doing k-nearest neighbor search p times. Therefore, the time cost

of partition is O(pnk) and the space used is O(nk). In practice, since each steaming

process is able to handle brute force AP cluster over thousands of data points, a

two-layer hierarchy is enough to cluster up to 106 data points. Therefore, as we set

nk =
√
n and p = O(

√
n), the total time complexity is O(n1.5) and the space needed

is O(n), which is theoretically lower than which in [95] and [96].

With the help of CUDA framework, the work sets are spread over hundreds of

processor units (GPU cores). Ideally, the total running time will be reduced to

O(n1.5/nc), where nc stands for the number of processor units. However, since data

transferring between stream-processors and shared memory is time-consuming, the

real running time is approximated to O(n1.5/nc + nc · n).

6.4 Experiments

We implemented our proposed approximated affinity propagation algorithm both

on CUDA framework and normal CPU. The experiment platform is a laptop with

a Nvidia Geforce GT 555M display card, which contains 144 GPU cores and 3GB

display memory, installed with Intel Core i7-2630QM 2.0Hz CPU (8 cores), 8GB

main memory, running 64-bit Windows 7.

In order to demonstrate both robustness and efficiency of our proposed algorithm,

our experiments consists of two parts: in the first part, clustering accuracy is focused.

we have tested both the proposed method and reference methods on some relatively

small data sets, which normal CPU-based methods are able to handle, to compare
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our results with both ground truths and outputs from reference methods; in the

second part, we have moved onto large scale data sets. Since the sizes of such data

sets reach or exceed the limit of traditional CPU-based methods, we mainly focused

on demonstrating speed boost of our proposed method. Besides the original affinity

propagation algorithm, two reference methods, FSAP [95] and Fujiwara’s method

[96], are involved in our evaluation to compare with.

6.4.1 Clustering Accuracy

Because Fujiwara’s method always produces the same results as which the original

method does, it is meaningless to take Fujiwara’s method into accuracy evaluation.

Thus, in this section, it’s obviously a comparison between two approximations, our

proposed method and FSAP. We begin to conduct our experiment by constructing and

testing on a synthetic 2D data set. The data set contains 20K 2-D points, generated by

the mixture of 15 random 2-D Gaussian functions [102]. The similarity between two

data points is defined as the negative of their Euclidean distance. To quantitatively

evaluate the performance, we run the original affinity propagation algorithm [131]

on the synthetic data set to obtain benchmark results which further compared with

the results output by other methods with the same preference setting. The degree of

preserving original outputs is measured by exactness as Eq. 49 .

Exactness =

∑
ij(I(f(i), f(j)) · I(f0(i), f0(j)) + 1)

2 · n2
(49)

where f0(i) is the ground truth outputs by the original affinity propagation, f(i) is

the output from current candidate method, I(·, ·) is an identical function which is
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Table 3: Exactness comparison on the synthetic 2D dataset with benchmark output
contains 150 exemplars.

Number of Exemplars Exactness
Proposed Algorithm 147 0.844
FSAP 145 0.885

Figure 22: Exactness vs. number of Exemplars. x-axis indicates the number of
exemplars found by the original algorithm. y-axis shows the exactness calculated by
Eq.49.

defined by:

I(f(i), f(j)) =


1, f(i) = f(j)

0, f(i) 6= f(j)

(50)

Table 3 shows the exactness of our proposed on the synthetic 2D data set, with the

number of exemplars is around 150. Although the number of exemplars found by

our proposed algorithm is closer to the benchmark than FSAP’s results, the proposed

method seems not tend to preserve the same output by the original algorithm. This

is principally because the proposed method only calculates part of the similarities,

rather than FSAP goes through the complete similarity matrix. We have also tuned

preferences of input data points which changed the number of exemplars, to evaluate

the exactness with different number of exemplars, in Fig. 22. Besides exactness,
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error within clusters is also a reasonable and convincing measurement. Since affinity

propagation is a similarity-based algorithm, alternatively, we have calculated average

in-cluster similarity, as Eq. eqn:ap:similarity. Higher average in-cluster similarity

tend to indicate better clustering.

S̄ =

∑
f(i)=f(j) s(i, j)∑
I(f(i) = f(j))

(51)

As shown in Fig. 23, the proposed algorithm has not only achieved better approxi-

mation than FSAP, it also produces as good results as original algorithm does under

the measurement of average in-cluster similarity.
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6.5 Clustering Efficiency

As we mentioned, our proposed work is an approximation which significantly re-

duces the running time and the space requirement of affinity propagation. To support

the theoretically analysis in Section 6.3.4, we have examined our algorithm, as well

as some preference methods, on several data sets.

To begin with, running time evaluation is performed on the synthetic 2D data

set. Fig. 24 shows the running time over different sizes of data sets, the GPU-

accelerated algorithm significantly have taken significantly less running time than

other approximation of affinity propagation.

To demonstrate our method can be used to perform large scale data clustering, we

also evaluated our method on a selected data set from ImageNet [107] which consists

of 1,044,396 images. Fig. 25 shows our algorithm is capable to perform AP clustering

on large scale data set. Sample image clustering results on ImageNet are provided in

supplementary materials.
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6.6 Conclusion

In this chapter, we have proposed a novel affinity propagation approximation, which

(a) found an approximation which make affinity propagation capable to large scale

data clustering; (b) significantly reduced the running time of affinity propagation. It

has combined the idea of graph pruning and hierarchical affinity propagation, also

taken the advantage of general purpose computing. To summarize, we provide a

conclusive comparison between our proposed work and other methods, as shown in

Table. 4



CHAPTER 7: NETWORK-ORIENTED MULTI-TASK LEARNING FOR
OBJECT CLASSIFIER TRAINING

To address the inter-relatedness among object categories in classifier training, gen-

erally two fundamental problems are conducted: (1) how to characterize and measure

the inter-relatedness among object categories; (2) with object inter-relatedness avail-

able, how to utilize those information to achieve better classification performance.

Since the relationships among object categories are complicated, we constructed

a object correlation network which simplified object inter-relatedness by pair-wise

object correlations without losing the inter-class structure. With the pair-wise object

correlations and the object structure, a multi-task learning framework is designed to

jointly train the classifiers for the inter-correlated object categories.

7.1 Object Correlation Network

In order to determine the inter-related learning tasks and support discriminative

learning, a visual concept network is constructed in this paper for organizing a large

number of object classes and image concepts according to their inter-concept visual

correlations in the visual feature space. The visual concept network consists of two

key components: (a) categories (i.e., object classes and image concepts); and (b) inter-

concept cumulative visual similarity contexts between their relevant image instances.

Our algorithm for visual concept network construction consists of three key steps:

(a) For each category, one-class SVM algorithm [130] is used to determine a small set
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of most representative image instances for characterizing its principal visual properties

effectively and sufficiently; (b) For two given categories, their pairwise inter-concept

visual correlation is computed by simulating the visual similarity contexts among

their relevant image instances in the visual feature space; (c) The categories (i.e.,

object classes and image concepts), which have large values of the inter-concept visual

correlations, are linked together to form the visual concept network.

7.1.1 Extracting Most Representative Images

The first step for visual concept network construction is to determine a set of the

most popular real-world object classes and image concepts. In this paper, more than

1, 000 most popular real-world object classes and image concepts are extracted from

ImageNet image set [107], and their most representative images are extracted from

ImageNet images for characterizing their principal visual properties effectively.

To reduce the computational cost as well as the influence from noise images, a

one-class SVM algorithm is used to automatically determine the most representative

images for each category. One-class SVM algorithm [130] is a unsupervised method,

which can find the smallest possible hyper-sphere to enclose all the most representative

images with an error-tolerated boundary. The one-class SVM algorithm makes a trade

off between the size of hyper-sphere and the error penalty by solving the optimization

problem in Equation (52):

min R2 + C
∑
i

ξi

s.t. ∀xi : ||xi − z||2 ≤ R2 + ξi, ξi ≥ 0 (52)
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where R and z indicate the radius and the center of the hyper-sphere, xii is the error

penalty and C is the regulation parameter. The cores of the given category (i.e., the

most representative images for the given object class or image concept) are formed by

those image instances xi which are tightly enclosed by the hyper-sphere and satisfy

xii = 0 correspondingly.

One example is shown in Fig. (26) to illustrate the results for most representa-

tive image extraction for the category “owl”, one can observe that our algorithm can

extract the most representative images effectively from large amounts of ImageNet

images by filtering out less representative images. For a given category, there are

two purposes to extract such the cores (i.e., the most representative images) instead

of directly using entire set of ImageNet images to characterize its principal visual

properties: (a) The most representative images (i.e., cores) can represent the princi-

pal visual properties for the given category effectively and sufficiently and the outliers

(i.e., less representative images whose visual properties are significantly different from

the principal visual properties for the given category) have been eliminated automat-

ically; (b) For a given category, the number of most representative images remaining

in the core is much less than the original number of ImageNet images, thus the com-

putational cost for calculating the inter-concept visual correlations can be reduced

dramatically.

7.1.2 Inter-Concept Visual Correlation

An object correlation network is constructed to characterize the inter-object vi-

sual correlations explicitly and provide a good environment to determine the inter-
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(a)

(b)

Figure 26: Core-image Extraction: (a) the original images for the category “owl”; (b)
the extracted core images for the category “owl”.
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related learning tasks directly in the feature space. Our object correlation network

consists of two key components: object classes and their inter-object correlations.

For two given categories (i.e., object classes and image concepts) Cu and Cv, their

inter-concept visual correlation γ(Cu, Cv) is characterized by simulating the pairwise

similarity contexts among their most representative images. The average-max aggre-

gation is enforced to compute the visual similarity context between two image sets

for two given categories Cu and Cv:

Su(Cu, Cv) =
1

Nu

Nu∑
i=1

max
j=1...Nv

K(ui, vj)

Sv(Cu, Cv) =
1

Nv

Nv∑
j=1

max
i=1...Nu

K(ui, vj)

γ(Cu, Cv) =
1

2
(Su(Cu, Cv) + Sv(Cu, Cv)) (53)

where ui is the ith representative image for the category Cu, vj is the j-th represen-

tative image for the category Cv, Nu and Nv are the sizes of the most representative

images for the categories Cu and Cv, and K(ui, vj) is the kernel function to calcu-

late the visual similarity between two most representative images ui and vj from two

categories Cu and Cv.

Because the number of object classes and image concepts could be very large and

the size of their most representative images is even enormous, it is time-consuming to

obtain the pairwise inter-concept visual correlations. An alternative way for calculat-

ing the inter-concept visual correlations is to apply min-max pulling to determine the

most representative vectors for each category. Let L be the length of the ith feature

vector and ui(l) denotes the value of l-th dimension of the ith feature vector ui, the
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min-max pulling approach constructs a new feature vector su for each category u by

taking the strongest occurrence of each dimension in its core, as shown in Equation

(54):

∀l = 1 . . . L : su(l) = max
i=1...Nu

|ui(l)| (54)

The inter-concept visual similarity between the categories u and v is measured by the

similarity between their most representative vectors: γ∗(Cu, Cv) = K(su, sv).



98

T
ab

le
5:

In
te

r-
ob

je
ct

co
rr

el
at

io
n
s.

ob
je

ct
p
ai

r
φ

ob
je

ct
p
ai

r
φ

ob
je

ct
p
ai

r
φ

ob
je

ct
p
ai

r
φ

gr
as

s-
b
u
il
d
in

g
0.

04
h
or

se
-c

ow
0.

31
ca

t-
d
og

0.
85

ca
r-

b
ic

y
cl

e
0.

53
b
ir

d
-a

er
op

la
n
e

0.
54

ca
r-

ae
ro

p
la

n
e

0.
55

b
oa

t-
gr

as
s

0.
02

d
og

-c
ow

0.
51

si
gn

-b
u
il
d
in

g
0.

63
sh

ee
p
-h

or
se

0.
66

b
o
d
y
-d

og
0.

83
b

o
d
y
-c

at
0.

79
ro

ad
-b

u
il
d
in

g
0.

72
ro

ad
-s

ig
n

0.
59

b
oa

t-
ae

ro
p
la

n
e

0.
73

m
ou

n
ta

in
-r

oa
d

0.
62

ca
t-

gr
as

s
0.

03
tr

ee
-c

at
0.

72
b

o
ok

-g
ra

ss
0.

06
sk

y
-b

o
ok

0.
02

b
oa

t-
sk

y
0.

06
ae

ro
p
la

n
e-

m
ou

n
ta

in
0.

43
m

ou
n
ta

in
-w

at
er

0.
75

b
o
d
y
-s

k
y

0.
06



99

Figure 27: The visual concept network for our experimental image set.
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The co-occurrence correlation ρ(Cu, Cv) between two object classes Cu and Cv is

defined as:

ρ(Cu, Cv) = −P (Cu, Cv)log
P (Cu, Cv)

P (Cu) + P (Cv)
(55)

where P (Cu, Cv) is the co-occurrence probability for two object classes Cu and Cv in

our image collections, P (Cu) and P (Cv) are the occurrence probabilities for Cu and

Cv.

For two given object classes Cu and Cv, their visual similarity context γ(Cu, Cv)

and their co-occurrence correlation ρ(Cu, Cv) are first normalized into the same scale.

The inter-object correlation φ(Cu, Cv) between two object classes Cu and Cv is finally

defined as:

φ(Cu, Cv) = η · γ̄(Cu, Cv) + (1− η) · ρ̄(Cu, Cv) (56)

where η is the weighting factor, γ̄(Cu, Cv) and ρ̄(Cu, Cv) are the normalized visual sim-

ilarity context and co-occurrence correlation. The weighting factor is set as η = 0.7 in

our current implementation because the visual similarity contexts are more important

than the co-occurrence correlations for inter-object correlation characterization.

The visual concept network for 1,000 most popular real-world object classes and

image concepts from ImageNet is shown in Fig. (27) and Fig. (28), where each object

class or image concept is linked with multiple visually-similar object classes and image

concepts with larger values of S(·, ·). It is worth noting that different object classes

and image concepts can have different numbers of visually-similar object classes image

concepts on our visual concept network. Our hyperbolic visualization algorithm is

performed to layout the visual concept network according to the strengths of the
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inter-concept visual correlations S(·, ·), where the inter-concept visual correlations

are represented as the weighted undirected edges and the length of such weighted

undirected edges are inversely proportional to the strengths of their inter-concept

visual correlations S(·, ·). Thus the geometric closeness between the object classes

and image concepts is directly related to the strengths of their inter-concept visual

correlations, so that such graphical representation of the visual concept network can

reveal a great deal about how these object classes and image concepts are visually

correlated.

Our visual concept network can provide a good environment for: (1) characterizing

the inter-concept correlations directly in the visual feature space and such inter-

concept visual correlations can also indicate the potential correlations among the

classifiers for the visually-similar categories; (2) identifying seed categories and es-

timating the learning complexity for classifier training, e.g., it is much harder to

distinguish two visually-similar categories than discriminating two visually-dissimilar

categories; (3) categorizing a large number of object classes and image concepts on

the visual concept network into a set of groups, where the visually-similar object

classes and image concepts are clustered in the same group and their classifiers are

strongly inter-related and should be trained jointly rather than independently. For

the visually-similar object classes and image concepts in the same group, learning

their inter-related classifiers jointly can bring powerful inference scheme to enhance

their discrimination power significantly.

Since the object classes are inter-related and such inter-object correlations can be

represented explicitly by the object correlation network and can be represented pre-
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Figure 29: The inter-related object classes which may easily confuse the machine
learning tools.

cisely by the strengths of their inter-object correlations φ(·, ·). When a large number

of object classes come into view, directly modeling of such the inter-object correla-

tions over the whole object correlation network becomes computationally intractable.

In this paper, a multi-task structural SVM scheme is developed by incorporating the

first-order nearest neighbors (i.e., clique for each object class on the object correlation

network), multi-task learning and structural SVM to leverage the inter-object corre-

lations to achieve more accurate training of a large number of inter-related object

classifiers.

For a given object class, its first-order nearest neighbors on the object correlation

network are strongly correlated and their training instances may share similar visual

properties. Some examples for such inter-related object classes are illustrated in

Figure 29 and Figure 30. Isolating these inter-related object classes and training their

classifiers independently are not appropriate. In order to leverage the inter-object

correlations for training the inter-related object classifiers jointly, it is very important

to develop new algorithms for integrating multi-task learning with structural SVM to
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Figure 30: Some examples for the inter-related object classes and image concepts.

model the inter-task relatedness more precisely. The idea behind multi-task learning

is that if multiple inter-related learning tasks share a common prediction component,

such common prediction component can be estimated more accurately by considering

these inter-related learning tasks together. When multiple object tags are jointly used

for image tagging, the corresponding object classes should be inter-related rather than

independent and thus learning the classifiers for these inter-related object classes

should be considered jointly. Our object correlation network can provide a good

environment for identifying such the inter-related learning tasks directly in the feature

space. The idea behind structural SVM is to exploit the inter-label correlations in

the label space for supporting structural prediction.
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Table 6: Examples of category groups, where the categories with similar visual prop-
erties are clustered into the same group.

Group 1: hammerhead, axolotl, tree frog, green snake, dugong, mouse, pudding,
trifle, French loaf, pretzel, cheeseburger, hotdog, nacho, zucchini,
carbonara, dough, pizza, potpie, burrito, eggnog

Group 2: ostrich, barbell, bassoon, bell cote, bolo tie, bow, canteen, hook,
megalith, nailfile, oboe, padlock, pinion, plunger, shovel, swing,
thimble, torch, tuning fork

Group 3: magpie, hornbill, toucan, admiral, giant panda, rock beauty,
jake-o’-lantern, mortarboard, puck, ski mask, chocolate sauce

Group 4: kite, European swift, headset
Group 5: vine snake, nematode, soup bowl, consomme, espresso
Group 6: harvestman, black and gold garden spider, black widow, tiger beetle,

long-horned beetle, monarch, manhole cover
Group 7: bee eater, adjustable wrench, bib, cap opener, circular saw, corkscrew,

face powder, garrison cap, hacksaw, hammer, letter opener, plane,
radio telescope, stethoscope, stupa, switchblade, toilet seat, wing tip,
wire cutter, toilet tissue

Group 8: black swan, flat-coated retriever, Tibetan mastiff, Newfoundland,
American black bear, sloth bear, gorilla, chimpanzee, gibbon, siamang,
guenon, colobus, capuchin, howler monkey, lesser panda, bearskin,
car wheel, bell pepper

Group 9: echidna, sea anemone, bittern, limpkin, sea urchin, zebra, lionfish,
spider web, cardoon

Group 10: abaya, academic gown, metronome, obelisk, suit
Group 11: baseball, basketball, croquet ball, ping-pong ball, rugby ball,

soccer ball, volleyball, rapeseed, gravel
Group 12: beer bottle, beer glass, broom, church, cocktail shaker, hourglass,

mosquito net, perfume, pop bottle, punching bag, wine bottle,
cider vinegar

7.1.3 Group Generation via Affinity Propagation

When the visual concept network is available, it can provide a good environment

to determine the groups of visually-similar object classes and image concepts. In

this paper, Affinity Propagation algorithm [131] is performed over the visual con-

cept network (i.e., inter-concept visual similarity matrix) to determine the groups of

visually-similar object classes and image concepts.
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We conclude this section with a brief comparison between our visual concept net-

work and some concept hierarchies. Compared with semantic [107] or co-occurrence

networks [11], our visual concept network is constructed directly in the visual feature

space. It is worth noting that the visual feature space is the common space for classi-

fier training and automatic image classification. Some tree-structured hierarchies are

also constructed in the visual feature space [122, 123, 126, 121] and some of them also

employ graph-based partition over the visual similarity matrix, but our visual concept

network treats all these object classes and image concepts to be equally important

rather than organizing them in a hierarchical way. There is no evidence that the

“super-classifiers” for the high-level image concepts in a concept hierarchy (which are

modeled by using hierarchical support vector machine) can have good separability or

bounded generalization errors, thus it is not a good idea to make a restriction on the

object classes and image concepts as done in the hierarchical SVM algorithm. On the

other hand, our visual concept network may bring more powerful inference scheme

for classifier training, and it is further used to: (1) determine inter-related learning

tasks and identify the seed categories for classifier training; (2) detect the groups of

visually-similar object classes and image concepts, and (3) estimate their learning

complexity for classifier training.

7.2 Multi-task Support Vector Machine

A multi-task structural SVM scheme is developed by incorporating the object corre-

lation network, multi-task learning and structural SVM to enhance the discrimination

power of a large number of inter-related object classifiers: (a) The object correlation
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network is used to identify the inter-related learning tasks directly in the feature

space, e.g., training multiple inter-related object classifiers jointly; (b) The inter-task

relatedness is characterized explicitly by using the strengths of the inter-object cor-

relations φ(·, ·) and a common prediction component is used to model the inter-task

relatedness and shared among these inter-related object classifiers; (c) The structural

SVM is integrated with multi-task learning to model the inter-task relatedness more

precisely and estimate the common prediction component more accurately. By seam-

lessly integrating multi-task learning with structural SVM, our multi-task structural

SVM algorithm is able to exploit the inter-object correlations explicitly in the input

space (i.e., the feature space for classifier training and testing), thus it can provide

a new approach for inter-related classifier training and address the issue of multiple

tags more effectively.

In our multi-task structural SVM scheme, a common regularization term W0 of the

SVM classifier is used to model the inter-task relatedness among multiple SVM clas-

sifiers for the inter-related object classes. For one given object class Cj, its classifier

is defined as:

fCj
(x) =

∑
Ct∈T

γt(W0 + Vt)
trΦt(x) (57)

where W0 is the common regularization term shared among the classifiers for multiple

inter-related object classes centered by Cj as shown in Figure 29, Vt is the individual

regularization term for the classifier between the given object class Cj and its neighbor

Ct, γt is the weight how class Ct contributes the classification of Cj.

The common regularization term W0 is used to model the inter-task relatedness
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and shared among the classifiers for multiple inter-related object classes. W0 can be

estimated more reliably by minimizing their joint objective function J for T inter-

related learning tasks.

J =
1

2
(‖W0‖2 +

T∑
t=1

λt‖Vt‖2) + c0

T∑
t=1

nj∑
i=1

ξti +
T∑
t=1

ct

nt∑
i=1

ηti (58)

where ξti ≥ 0, ηti ≥ 0, nj and nt are the total number of training instances for the

object classes Cj and Ct.

7.3 Optimizing the joint SVM problem

To solve the joint optimization problem, we use the Lagrangian Principle. We

add a dual set of variables, one for each constraint and get the Lagrangian L of the

optimization problem:

L = J −
T∑
t=1

nj∑
i=1

βti (〈W0 + Vt,Φt(xji)〉+ ξti − 1) +
T∑
t=1

nt∑
i=1

βti (〈W0 + Vt,Φt(xti)〉 − ηti + 1)

−
T∑
t=1

nj∑
i=1

σtiξti −
T∑
t=1

nt∑
i=1

σtiηti

We now seek a saddle point of the Lagrangian L, e.g., the partial difference of L

satisfied:

∂L

∂W0

= W0 −
T∑
t=1

nj∑
i=1

βtiΦt(xji) +
T∑
t=1

nt∑
i=1

βtiΦt(xti)

∂L

∂Vt
= λtVt −

nj∑
i=1

βtiΦt(xji) +
nt∑
i=1

βtiΦt(xti)

∂L

∂ξti
= c0 − βti − σti,

∂L

∂ηti
= ct − βti − σ̄ti
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and we can get:

W0 =
T∑
t=1

nj∑
i=1

βtiΦt(xji)−
T∑
t=1

nt∑
i=1

βtiΦt(xti)

Vt =
1

λt

(
nj∑
i=1

βtiΦt(xji)−
nt∑
i=1

βtiΦt(xti)

)
c0 = βti + σti, ct = βti + σti

The dual form of the problem is then simplified as:

L =
T∑
t=1

nj∑
i=1

βti +
T∑
t=1

nt∑
i=1

βti −
1

2

(
‖W0‖2 +

T∑
t=1

λt‖Vt‖2

)

Given the training image instances for T inter-related object classes on the object

correlation network (i.e.,the object classes in the same group), the margin maximiza-

tion process for object classifier training is then transformed into a quadratic problem:

max
βti,β̄ti

L =
T∑
t=1

nj∑
i=1

βti +
T∑
t=1

nt∑
i=1

βti −
1

2
[
T∑

t,s=1

nj∑
i=1

nl∑
l=1

βtiβslKts(xji, xjl)

−
T∑

t,s=1

nj∑
i=1

ns∑
l=1

βtiβslKts(xji, xsl)−
T∑

t,s=1

nt∑
i=1

nj∑
k=1

βtiβskKts(xti, xkj)

+
T∑

t,s=1

nt∑
i=1

ns∑
k=1

βtiβskKts(xti, xsk) +
T∑
t=1

1

λt
(

nj∑
i,l=1

βtiβtlKt(xji, xjl)

−2

nj∑
i=1

nt∑
l=1

βtiβtlKt(xji, xjl) +
nt∑
i,l=1

βtiβtlKt(xti, xtl))]

subject to: ∀i : ∀t : βti ≥ 0, βti ≥ 0

To deal with the structural prediction problem, it is very attractive to construct a

joint kernel function that is better suited to joint-space support estimation. In this

research, a tensor products is incorporated to define the joint kernel κ((xi, yi), (xj, yj))
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as:

κ((xi, yi), (xj, yj)) = κ(xi, xj)κs(yi, yj) (30)

where κ(xi, xj) is the visual kernel for the visual features and κs(yi, yj) is the semantic

kernel to characterize the semantic similarity context between two object classes and

their labels yi and yj (i.e., inter-object correlation on the label space).

By learning from a joint training image set Ω = {(xit, yit)|i = 1, · · · , n; t = 1, · · · ,

T} for T inter-related object classes on the object correlation network, the classifier

for the given object class Cj can be determined as:

fCj
(x) =

T∑
h,t=1

γtκ(t, h)

(
nj∑
i=1

βhiκ(xji, x)−
nh∑
i=1

βhiκ(xhi, x)

)

+
T∑
t=1

γt
λt

(
nj∑
i=1

βtiκ(xji, x)−
nt∑
i=1

βtiκ(xti, x)

)
(59)

One can observe that our classifiers for the inter-related object classes consist of

two components: (a) individual prediction component; and (b) common prediction

component.

By learning two different sets of the weights β and β̄ for the training instances

simultaneously, our multi-task structural SVM algorithm can automatically estab-

lish two independent decision boundaries for both the common prediction component

(shared among the inter-related discriminant functions) and the individual prediction

component of the discriminant function for each particular object class. The training

instances, which are used to construct the common prediction component for mul-

tiple inter-related object classifiers (i.e., support vectors with large values of β̄), are

less important for the individual prediction components for these inter-related object
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Table 7: Object detection results by our multi-task structural SVM algorithm.

classifiers (i.e., with smaller values or even zero values of weights β).

The weights β̄ are fixed for all these T inter-related discriminant functions to char-

acterize their common prediction component. By integrating the training instances

for multiple inter-related object classes to learn a common prediction component and

separating it from their individual prediction components, our multi-task structural

SVM algorithm can significantly enhance the discrimination power and the general-

ization ability of the inter-related object classifiers.

The inter-related object classifiers for a set of object classes are trained in our

current implementation. After the object classifiers are trained, they are further

used to identify the objects from the test images and recommend the suitable tags

for automatic image annotation. Some experimental results on object detection (tag

recommendation) are given in Table 7 and further classification results accompanied

with multiple learning are shown in Figure 31 and Figure 32. One can observe that

our multi-task structural SVM scheme can directly learn the object detectors from

the loosely-tagged images and precisely localize the objects in the images.
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Figure 31: ROC curves for performance comparison: our multi-task structural SVM
(MTS-MLMIL) algorithm versus other most relevant algorithms.

Figure 32: AUC (area under ROC curve) rate for performance comparison: our new
MIL algorithm vs MLMIL algorithm.



CHAPTER 8: STRUCTURAL LEARNING WITH CONCEPT NETWORK

To support large scale image classification, one of the fundamental problems is to

design a multi-class classification framework: (1) The proposed multi-class classifier is

constructed by a series of binary discriminative classifiers (SVM) which possess good

generalization in computer vision tasks. Obviously, to intuitively learn O(m2) (m

denotes the number of the object categories) pair-wise binary SVM is not acceptable

due to the computational complexity when m has become very large. Thus, only a

relatively small number of selected classifiers can be learned, which handle specific

sub-tasks but are sufficient to the discriminant logic of the whole multi-class classifi-

cation problem; (2) In the perspective of a single object category, its classifier should

be jointly learned with the classifiers for its highly visually-correlated categories, not

only to improved the discriminative power of the classifier but also to leverage samples

from inter-correlated classes for those classes with relatively fewer samples.

It is also worth noted that as an effective way to boost the computational capability

for large scale problems, distributed computing has been playing an important role in

large scale computing. Specifically in our classifier training task, there are two aspects

to parallelize our multi-class classifier training: (1) the training process of binary

SVM which takes large amounts of training samples can be parallelized intuitively

by invoking existing parallel-SVM toolkits; (2) the construction of the multi-class

meta-classifier from binary SVMs needs to be adaptive to parallelization, thus the
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training process of binary SVMs can respectively distributed to different computing

units. Our parallelization concerns are mainly focus on the latter term. However, as

the common sense of parallel computing, the difficulty of parallelization comes from

poor separability of the problem. In another word, less inter-dependency between

subtasks leads better parallelization performance, which somehow conflicts with our

joint classifier design. Thus, a potential trade-off may have to be made to balance

the computational cost and the accuracy of the correlated classifiers.

With the object correlation network in Chapter 7.1, the inter-class correlations

are explicitly measured by the pair-wise object similarities. Therefore, the remain-

ing problem is to construct an acceptable number of binary classifiers to complete

the discriminative logic in term of multi-class classification, which also explicitly or

implicitly take the inter-object correlations into account.

8.1 Classifiers on Edges

As it has been observed that the object correlation network which has been built in

Chapter 7.1 is a sparse connected graph, i.e., all the nodes are connected by at least

one route with each other. One way to construct the multi-class classifier is to learn

a pair of binary classifiers f(x|ci, cj) and f(x|cj, ci) for each pair of object nodes ci, cj

which are linked by an edge in the object correlation network, where each f(x|ci, cj)

is a binary SVM which functions to:

f(x|ci, cj) =


1 P (x ∈ ci) > P (x ∈ cj)

−1 P (x ∈ cj) > P (x ∈ ci)
(60)

Derived from Multi-task Learning which has been described in Chapter 7, f(x|ci, cj)
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Figure 33: Classifier on Edges: two binary classifiers are trained for each pair of
connected object nodes

can be modeled as following:

f(x|ci, cj) = Wci + λcicjVcicj (61)

where Wci is the common part of all classifiers which are relative to ci and Vcicj is

the individual part which discriminates the samples of ci from cj. The classifier in

Equation (61) can be learning by solving the optimization problem in Equation (58)

in Chapter 7.

For the decision process of the potential framework, a random walk algorithm is

performed to find out the object node which can best describe the incoming sample

x, which can be formulated as following:

Pt(ci|x) = (1−θ1−θ2)·Pt−1(ci|x)+θ1·
∑

cj∈Ω(ci)

f(x|ci, cj)·Pt−1(cj|x)−θ2·
∑

cj∈Ω(ci)

f(x|cj, ci)·Pt−1(cj|x)

(62)
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where Ω(ci) denotes the first-order neighbours of ci and θ1, θ2 are weight parameters

and initially Pt(ci|x) = 1/m.

In the above proposed framework, only m joint optimization problems need to be

solved in the training process which are efficient enough for large scale joint classifier

training. However, since the existence of bridges in the object correlation graph, the

proposed method has the same disadvantage which many tree-structured hierarchi-

cal methods (where all links are bridges) share: the performances of bridge classifiers

plays more important roles in the random walk process than the performances of non-

bridge classifiers. Nevertheless, no evidence shows those bridge classifiers can achieve

are guaranteed to return correct results. Since in the object correlation network,

highly correlated object concepts are linked, which indicates the generalization power

of classifiers for discriminating linked concepts is usually low. On the other hand,

with more bridges in the object network, it requires less time for both the training

process and the testing process. Thus, a potential trade-off between the computa-

tional complexity and the robustness of the proposed framework need to be made in

order to achieve reliable performance. However, the good news is that it is intuitive

to parallelize this approach since the classifier training process at t-th iteration only

depends on the classifiers at (t − 1)-th iteration, which may be another potential

perspective to bound the training time.

8.2 Multi-class Classifier Hierarchy

As mentioned previously, the performance of the classifier-on-edge approaches highly

depends on those bridge classifiers on the object network. Thus instead of directly
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Figure 34: Group-based Approach: It is constructed by two kinds of classifiers: inter-
group meta-classifiers and intra-group classifiers

working on the object correlation network, an alternative approach is to only parti-

tion the object correlation network into a certain number of sub-graphs. Objects in

the same sub-graph form an object group.

In practice, a clustering method, Affinity Propagation [131] is utilized to partition

the object similarity matrix (which is calculated in Chapter 7.1) into K groups.

Ideally, the inter-group class correlations are lower than the intra-group ones. Thus

the proposed approach attempts to reduce the multi-class classification into a two-

layer problem. As Figure 34 shows, the meta-classifier fGiGj
is trained to discriminate

between two groups of classes and the intra-group classifier fcicj is trained jointly by

multi-task learning which has been described in Chapter 7 if and only if ci and cj are
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in the same group.

The decision process of the group-based approach is intuitive: for an incoming

testing sample x, the meta-classifiers {fGiGj
} firstly decide which group x should

goes in and the intra-group classifiers of the corresponding group further make the

final decision which the object category that x belongs to. The total number of

binary classifiers need to be trained is in the order of O(K2 +m). In the best case, if

the graph is evenly partition into K groups, where K ≈
√
m, the number of binary

classifiers would be reduced to the order of O(m).

Compared to the classifier-on-edge method which has been described previously,

meta-classifiers between relatively-low correlated groups seems to be more reliable

than the classifiers of randomly occurred bridges in the object correlation graph.

However, it worth noting that as a two-layer hierarchical method, the proposed meth-

ods share the common problem with other hierarchical approaches: Neither training

error or generalization error of high level binary classifiers are equally distributed

to sub-classes (as shown in Figure 35). Moreover, T. Gao et al.[120] addressed the

issue that the measurement of separability in class partition and which in boundary

estimation are not consistent in those two-layer hierarchical methods.

8.3 Discriminative Learning for Large-Scale Classifier Training

In this section, we introduce the details for designing our multi-class classification

method: (a) a large set of L sub-classifiers fl(x) → {−1,+1} are first trained and

each sub-classifier focuses on distinguishing two given categories; (b) the large set of

L sub-classifiers are further used to generate the multi-class classifier F (x).
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Figure 35: The figure shows a classifier to separate the 1st and 2nd from 3rd. Errors
are unequally distributed among class 1 and class 2 with hierarchical methods

Given a test sample (image instance) x, the output of our multi-class classifier is

aggregated from the binary outputs of all these L binary sub-classifiers by using a

voting scheme, which is shown as Equation (63):

F (x) =
L∑
l=1

Il · fl(x) (63)

where Il denotes the coding vector of the l-th sub-classifier. The coding vector

Il ∈ {−1, 0,+1}m is a m-dimension column vector (m is the number of the rele-

vant categories) and it is used to indicate the function of the l-th sub-classifier fl

when the sub-classifier fl is used to separate two given categories. If Il(ci) = +1, the

category ci is in the positive set for training the sub-classifier fl, while Il(ci) = −1

indicates that the category ci is in the negative set for training the sub-classifier fl.

The category ci is ignored for training the sub-classifier fl if Il(ci) = 0. The output

of multi-class classifier F (x)→ Rm is also an m-dimension column vector, where the

value of each dimension is used to indicate the voting to the corresponding category

from all these L binary sub-classifiers. The final decision is made by a max-voting
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strategy [119]:

y = arg max
c
F (x, c) (64)

where F (x, c) is the value of c-th dimension of F (x).

The remaining issues are to determine the code vector Il for each binary sub-

classifier fl(x) and train the sub-classifier fl for the relevant categories which are

involved in the coding vector Il. Rather than performing a two-step method which

first sets Il and then learns the sub-classifier fl according to the given Il, our approach

is to learn the pair {Il, fl} simultaneously, where a pair of seed categories {c+
l , c−l }

is automatically identified from our visual concept network (e.g., category clustering

over our visual concept network for group generation).

8.3.1 Learning sub-classifiers

Given a pair of seed categories {c+, c−}, the goal of our sub-classifier learning

algorithm is to train a binary sub-classifier f as well as its coding vector I. The

sub-classifier f should be able to separate the positive category c+ from the negative

category c− (i.e., I(c+) = +1 and I(c−) = −1 are satisfied). Unlike [120] maximizing

the number of categories which participate in the binary classification task (i.e., the

number of non-zero elements in I), our learning algorithm focuses on only those

categories in the positive group G+ and the negative group G− (c+ ∈ G+ and c− ∈

G−). For a given binary classification task, the positive group G+ and the negative

group G− are identified automatically by performing AP clustering over our visual

concept network for group generation (see Chapter 7.1). Our algorithm tends to learn

a binary SVM classifier to minimize the training error while maximizing the number
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of categories in G+ ∪G−. Given a set of training instances {xi, yi}, the sub-classifier

f(x) = wT · x+ b is learned by solving the optimization problem in Equation (65) in

case c+ and c− are not in the same group (i.e. c+ 6= G−):

min
w,b,I,{ξi}

1

2
||w||2 + C

N∑
i=1

|I(yi)|ξi − A
N∑
i=1

|I(yi)|

s.t. ∀c ∈ G+ : I(c) ∈ {0,+1},

∀c ∈ G− : I(c) ∈ {0,−1},

∀c /∈ G+ ∪G− : I(c) = 0

I(c+) = +1, I(c−) = −1,

∀i : I(yi)(w
Txi + b) ≥ 1− ξi, ξi ≥ 0 (65)

where N is the total number of training instances (only the instances with yi ∈

G+ ∪G− are actually involved in the training process for the sub-classifier fl), C and

A are the regularization parameters which also bound the average slack (hinge loss)

of each category [120]:

∀c, I(c) 6= 0 :
1

Nc

∑
i:yi=c

ξi ≤
A

C
(66)

Because it is a NP-Hardness issue for optimizing the problem in Equation (65),

an iterative approximation [120] is introduced to solve the problem in practice. The

optimization variables are divided into 2 sets: (1) the coding vector: I; (2) SVM

decision plane and boundaries: {w, b, {ξi}}. We alternatively optimize over two sets

of variables, until the condition in Equation (66) is violated.

When the coding vector I is fixed, the optimization problem in Equation (65) is

reduced to a standard binary SVM problem. We can use any kind of SVM classifier
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training algorithms, such as SMO [117], to optimize over {w, b, {ξi}}. When the SVM

decision plane {w, b} is fixed, I can be refined by adding a currently unconcerned

category c∗ (I(c∗) = 0) with the least average slack under current configuration

{w, b}:

L(c|w, b) =
1

Nc

∑
i:yi=c

max{0, 1− (2 · 1[c ∈ G+]− 1)(wTxi + b)}

c∗ = argmax
c:c∈G+∪G−∧I(c)=0

L(c|w, b) (67)

where 1[·] is the indicator function. The optimization process stops when the condition

in Equation (66) is not met by c∗, and thus we get the optimal I and {w, b}.

To reduce the total number of binary sub-classifiers, it is worth considering that

our multi-class classifier may also be used to classify other categories which are not

either in the positive group G+ or in the negative G− in case all the instances for

these categories c /∈ G+∪G− happen to lie on the same side of the hyper-plane of the

sub-classifier f(x) = wTx+ b. Thus, for all the categories c not in the seed groups, a

post evaluation is done to get the best average slack of the sub-classifier f(x) for the

category c:

L(
ct) =

1

Nc

∑
yi=c

max{0, 1− t · (wTxi + b)}

L∗c = min
t∈{−1,1}

Lc(t)

t∗ = argmin
t∈{−1,1}

Lc(t) (68)

We add the category c with the code t∗ into the code vector I if the best average

slack (hinge loss) L∗c is below the threshold A
C

, and it indicates that the category c

meets the condition in Equation (66). Unlike those categories in the seed groups,
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the categories, which are added recently and are not included in the seed groups, are

only taken as the bonuses. Such bonus categories do not affect the effectiveness for

training the sub-classifier f(x).

It is also possible that two seed categories c+ and c− are in the same group G,

thus training such intra-group sub-classifier is similar to the process for training the

inter-group sub-classifier. The only difference is that the sub-classifier has to decide

a sign for the codes of the categories in G other than c+ and c−:

min
w,b,I,{ξi}

1

2
||w||2 + C

N∑
i=1

|I(yi)|ξi − A
N∑
i=1

|I(yi)|

s.t. ∀c ∈ G : I(c) ∈ {−1, 0,+1},

∀c /∈ G : I(c) = 0,

I(c+) = +1, I(c−) = −1,

∀i : I(yi)(w
Txi + b) ≥ 1− ξi, ξi ≥ 0. (69)

The post evaluation process is meaningless for the intra-group sub-classifier because

the visually-similar categories (i.e., object classes and image concepts) in the same

group have higher inter-concept visual correlations than the visually-dissimilar cate-

gories in different groups have. The complete algorithm for training a sub-classifier

{f(x), I} is described as Algorithm 6.

8.3.2 Selection of Seed Categories

One single sub-classifier in Chapter 8.3.1, which focuses on discriminating two given

categories, is only one component of our multi-class classifier. When all these sub-

classifiers are available, the remaining problem is how to utilize them to generate the
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Initial: I(c+)⇐ +1, I(c−)⇐ −1, ∀c /∈ {c+, c−} : I(c)⇐ 0
repeat

Train {w, b} by standard binary SVM algorithm with fixed I
if G+ 6= G− then
∀c ∈ G+ ∧ I(c) = 0 : t(c)⇐ +1
∀c ∈ G− ∧ I(c) = 0 : t(c)⇐ −1

else
∀c ∈ G ∧ I(c) = 0 : t(c)⇐ argmin

y∈{−1,1}

1
Nc

∑
i:yi=c

max{0, 1− y · (wTxi + b)}

end if
∀c ∈ G+ ∪G− ∧ I(c) = 0 : L(c)⇐ 1

Nc

∑
i:yi=c

max{0, 1− t(c) · (wTxi + b)}
c∗ ⇐ argmin

∀c∈G+∪G−∧I(c)=0

L(c)

if L(c∗) < A
C

then
I(c∗)⇐ t(c∗)

end if
until L(c∗) ≥ A

C
or ∀c ∈ G+ ∪G− : I(c) 6= 0

if G+ 6= G− then
for ∀c /∈ G+ ∪G− do
∀t ∈ {−1, 1} : L(t)⇐ 1

Nc

∑
i:yi=c

max{0, 1− t · (wTxi + b)}
t∗ ⇐ argmin

∀t∈{−1,1}
L(t)

if L(t∗) < A
C

then
I(c)⇐ t∗

end if
end for

end if
return {f(x)⇐ sign(wTx+ b), I}

Algorithm 6: The algorithm for training a sub-classifier {f(x), I}.
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multi-class classifier by covering all the aspects for multi-class image classification, as

defined in Equation (63). The functionality of a sub-classifier fl can be characterized

by an m×m indicator matrix Bl which is derived from its coding vector Il:

Bl(u, v) = 1[Il · ITl (u, v) < 0],∀u,∀v. (70)

The binary value at the position (u, v) in Bl indicates whether the sub-classifier f + l

can separate the category cu from the category cv.

To train a reliable multi-class classifier, we need to train a minimum number of sub-

classifiers which can handle the multi-class image classification task for all the pairs

of the relevant categories completely. Since the training process of a sub-classifier fl

is initialed by a pair of seed categories {c+
l , c

−
l }, our remaining problem is to select

a set of such seed pairs with smallest size which their sub-classifiers can completely

handle the multi-class image classification task. Thus the seed selection problem can

be modeled as the following matrix decomposition problem:

min
dij

∑
i,j∈{1...m}

dij

s.t. ∀u, v ∈ {1 . . .m} :
∑

i,j=1...m

dij · Bij(u, v) > 0

dij ∈ {0, 1},∀i, j ∈ 1 . . .m

where Bij is the indicator matrix of the sub-classifier fij and it is initialed by the seed

pair {ci, cj} and dij is the variable to indicate whether fij is selected. Unfortunately,

it is not possible to optimize on Equation (71) because the indicator matrix Bij is not

available until the sub-classifier fij is trained. Alternatively, a greedy algorithm is

developed by sequentially adding the sub-classifiers until all the pairs of the relevant
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categories are separated.

Our discriminative learning algorithm prefers to choose the category pair {cu, cv}

with small values of the inter-concept visual similarity contexts S(·, ·) as the seed

categories. The reason is that discriminating two visually-dissimilar categories from

different groups (with less inter-concept visual similarity S(·, ·)) is a more common

task and the corresponding sub-classifier has more possibility to be shared with other

tasks, on the other hand, discriminating two visually-similar categories in the same

group (with big inter-concept visual similarity S(·, ·)) is a more strict task and the

corresponding sub-classifier has less possibility to be shared with other tasks. For

example, we can use the sub-classifier for tiger vs. tree to discriminate lion from tree

and the sub-classifier may still get good performance, on the other hand, it could be

very difficult to use the sub-classifier for tiger vs. lion to discriminate the visually-

dissimilar pairs tiger and tree. Another reason why the visually-dissimilar category

pairs get more priority is that the visually-dissimilar categories are easy to be sepa-

rated and users may have low error tolerance for such easy tasks. For some highly

visually-similar categories, it is very important to train an individual sub-classifier

to discriminate them specifically. Our multi-class classifier training algorithm is de-

scribed in Algorithm 7.

Our multi-class classifier training algorithm has the following advantages: (1) Our

multi-class classifier tends to minimize the number of sub-classifiers for achieving

multi-class classification task, which is very attractive for large-scale image classifi-

cation. (2) All the sub-classifiers are trained independently without incorporating

an inter-concept (inter-classifier) hierarchy. Thus the error of one sub-classifier does
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Initial: B⇐ Em×m, l⇐ 0
repeat
l⇐ l + 1
u∗, v∗ ⇐ argmax

u,v∈Y
(1− S(u, v)) · 1[B(u, v) = 0]

{fl, Il} ⇐ Invoke Algorithm 6 to train the sub-classifier initialized by u, v
Bl ⇐ 1m×m[Il · ITl < 0]
B⇐ B +Bl

until (|B|1 = m2) ∨ (l > limit)
L = l
F (x)⇐

∑L
l=1 fl(x) · Il

return F (x)

Algorithm 7: Our proposed multi-class classification algorithm.

not affect others, which may guarantee the robustness of our multi-class classifier.

(3) The inter-concept visual correlations are leveraged to identify the seed groups

for classifier training. The pairwise sub-classifiers for the visually-similar categories

are trained jointly, which can reduce the computational cost but also increase the

discrimination power of the sub-classifiers.

8.4 Algorithm Evaluation and Experimental Results

Our experimental studies are carried on two image sets: VOC 2007 and the Im-

ageNet 1K[107]. VOC 2007 is a benchmark for image classification which contains

around 24,000 annotated object images for 20 categories. While the number of cate-

gories VOC 2007 is relatively small and it provides a good environment with reliable

annotations for sanity check of our algorithm, ImageNet 1k image set contains 1.2

million images for 1,000 object classes which are crawled from Internet. Even not

all those 1,000 object classes have atomic semantic meaning (i.e., to be on the leaf

nodes of a concept ontology), their semantics are mutually exclusive. In addition,

the annotations of the object bounding boxes are provided over a subset of images:
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345,685 object images with at least 100 images for each category are annotated in

the training set, while the testing set contains 110,627 object images. We have com-

pared our proposed method with other representative methods on both of these image

sets, such experiments can be used to compare the performance differences for these

algorithms and provide good evidence of the correctness of our proposed algorithm.

As the inter-concept similarity matrix S(u, v) is calculated according to the tech-

niques in Chapter 7.1, we can visualize the inter-concept similarity matrix on a 2-D

plane by using Multi-Dimensional Scaling (MDS) in Equation 71.

min
{x1...xm}

∑
u,v∈Y

(1− ||xu − xv|| − S(u, v))2 (71)

Even human eyes cannot find an explicit structure from Fig. (36), it still reflects

that some categories are close enough to form the groups of visually-similar object

classes. After all the object classes are partitioned into a set of groups, the scatter

plot in Fig. (37) clearly shows that the pixels near the main diagram diagonal are

lighter than others, which indicates there is a significant gap between the values of

the intra-group visual similarity and the values of the inter-group visual similarity.
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Table (8) shows some examples of the groups of visually-similar object classes. As

we can see, the visually-similar object classes in the same group have good semantic

consistency, which demonstrates the good evidence of the correctness and effectiveness

of our algorithms for feature extraction and visual concept network construction.
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Figure 37: Scatter plot of the inter-concept visual similarity matrix, axes are sorted
according to groups.
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Figure 38: Classification accuracy on VOC 2007 image set for our algorithm, Mars-
zlek’s algorithm, Gao’s algorithm and DAGSVM.

Our classification performance evaluation starts with a popular benchmark for

image classification: VOC 2007 image set. Three representative and well-known

approaches for multi-class classification are selected for algorithm comparison: (1)

DAGSVM [115]; (2) Marszalek’s algorithm [121]; (3) Gao’s algorithm [120]. Fig. (38)

shows the classification accuracy comparison between our algorithm and three repre-

sentative algorithms. Our algorithm has reached significant better performance than

Gao’s and Marszlek’s algorithm in term of classification accuracy. Since the number

of object classes in VOC 2007 are too small, the inter-concept visual correlations

are not significant and thus our algorithm did not achieve a remarkable win against

DAGSVM.

Though the VOC 2007 image set is not large enough to show the viability of our

algorithm on large scale image classification, the evaluation on VOC 2007 has still

provide the evidence of the correctness of our multi-class classification algorithm.

To demonstrate the advantage of our algorithm on large scale image set, ImageNet
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Figure 39: Category-specified performance comparison among our algorithm,
DAGSVM, Marszlek’s algorithm and Gao’s algorithm, in flat error: class IDs on
x-axis have been sorted by the classification error of our algorithm.

1k can be treated as the an excellent benchmark set. Because ImageNet 1K[107]

set is organized according to a concept hierarchy, two types of classification errors

are considered in this paper to calculate the classification accuracy for algorithm

evaluation: flat error fe and hierarchical error he, as in Equation (72).

fe =
1

n

n∑
i=1

1[f(xi) 6= yi]

he =
1

n

n∑
i=1

d(f(xi), yi)/(2 · h) (72)

where d(f(xi), yi) is the length of short path between the predicted object class f(xi)

(which is predicted by the object classifier f(xi)) and its real object class yi for the

given object image xi in the concept hierarchy and h is the maximum height of the

hierarchy tree.

The performance differences are shown in Fig. (39) for flat error and Fig. (40) in

an error histogram manner. As we can see, our proposed method is slightly better
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Figure 40: Flat-error distribution of our algorithm over categories: for most cate-
gories, the flat error rate of our algorithm is around 50%.

than other three methods on flat error, while DAGSVM’s performance is just about

the same as ours. If we take the semantic distance between the object classes into

account (i.e., hierarchical errors), our approach has gained a significant improvement

over all other three methods. Furthermore, the inter-concept visual similarity is used

in our visual concept network rather than the inter-concept semantic relationship,

thus it is not fair to employ the semantic inter-concept distance measures to penalize

the degree of misclassification in our visual concept network. Thus a local hierarchical

error lhe is defined, which inherits from he:

lhe =
1

n

n∑
i=1

(1− S(f(xi), yi)) . (73)

Table (9) clearly shows that our proposed method can reach a significant increase on

the performance in term of hierarchical error. Both he and lhe have proved that our

theoretical analysis in Section 8.3 is correct.

We have also discovered how the number of sub-classifiers affects the classification
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Table 9: Overall classification performance comparison in both flat error and local
hierarchical error among four algorithms: our algorithm, DAGSVM, Marszlek’s algo-
rithm and Gao’s algorithm.

Flat Error Local Hierarchical Error
The proposed algorithm 0.4675 0.1837
DAGSVM 0.4956 0.3386
Marszlek’s algorithm 0.5660 0.3743
Gao’s algorithm 0.5171 0.3605
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Figure 41: Number of sub-classifiers versus Performance.

performance. As our algorithm finally stopped at 6,000 sub-classifiers (i.e., a pre-set

limitation), we made a few stop points at 1000, 2000, 3500, 5000 sub-classifiers and

evaluate these existing sub-classifiers. Fig. (41) presents the difference between those

incomplete sub-classifiers and the final classifier on their error rates. There is actually

very slight difference between 3,500 sub-classifiers and 6,000 ones, which has proved

that our assumption is correct (i.e., local intra-group sub-classifiers contribute less

than global inter-group sub-classifiers).

8.5 Conclusion

A novel discriminative learning algorithm is developed in this chapter for achieving

large-scale image classification (e.g., learning a large number of classifiers to categorize
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large-scale images into a large number of object classes and image concepts). A visual

concept network is constructed for: (a) determining the groups of visually-similar

object classes and image concepts and identifying the seed categories; (b) detecting the

inter-related learning tasks; and (c) estimating the learning complexity for classifier

training, e.g., it is much hard to discriminate the visually-similar object classes and

image concepts in the same group than discriminating the visually-dissimilar object

classes and image concepts in different groups. Our large-scale discriminative learning

algorithm can dramatically reduce the computational cost for large-scale classifier

training and significantly enhance their discrimination power. Our experiments on

large-scale image set (ImageNet [107]) have obtained very competitive results.



CHAPTER 9: CONCLUSIONS

In this dissertation, a structural learning framework for large-scale image classi-

fication has been proposed to leverage large amounts of loosely tagged images for

training a large number of inter-related classifiers. To ensemble web images for com-

puter vision tasks, we have concluded the following three issues: (1) junk tags; (2)

loosely tags; (3) missing tags. Some accomplished key components of the proposed

framework have been introduced to respectively address different issues: (a) a junk

image filtering algorithm has been developed to handle spam tagging issue; (b) a

cluster-based tag-instance alignment approach has been conducted to assign image

level tags into regions; (c) missing object tags are discovered by a missing tag pre-

diction method; (d) object correlation network is built to characterize inter-concept

correlations; (e) for large scale problems, a multi-task structured learning algorithm

has been enforced, which constructed the multi-class classifier by joint-trained binary

sub-classifier.

9.1 Junk Image Filtering for Image Cleansing

To leverage online images to enrich the training images for supervised learning, we

have developed a junk image filtering algorithm to cleanse the spam user tags from

large-scale collaboratively-tagged social images, which takes three major steps:

1. The images tagged by one particular tag have been gathered and separated into
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multiple groups by an efficient clustering algorithm.

2. For each group, the one-class SVM algorithm has been enforced to discard the

outlier images, which ensures the remaining images in the group are visually

consistent.

3. The correlation between groups has been analyzed to determine the positive

groups with high precision but low recall. The images from the negative groups

have been removed.

It has been proved and observed that the remaining images must be visually similar

to the majority of the society of images labeled by the particular tag, where the

improper label-image relationships have been removed.

9.2 Multi-Instance Learning with Missing Tags

Our multi-instance learning algorithm consists of two parts, tag instance alignment

and missing object prediction, have dealt with two issues respectively: loosely tag and

missing tag.

For the tag instance alignment, we further segmented each image into a number

of regions and grouped the millions of regions into homogeneous instance clusters by

our efficient clustering algorithm. Our clustering algorithm takes advantage of both

GPU acceleration from CUDA techniques and high performances inherited from the

affinity propagation algorithm. The dominant label of each group is extracted as

the representative tag of the homogeneous instance cluster, taking account of both

in-group election and inter-group correlation, and finally be transferred to instance

tags.
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For missing tag prediction, we have concluded the sources of missing tags into

four cases, by the coherence of the unlabeled instance with the labeled homogeneous

instance clusters. For each instance which tag is missing, its nearby labeled instance

clustered determines whether and which it should be labeled.

By our tag instance alignment algorithm and missing object prediction scheme,

the following two goals have been accomplished: (1) The labels at the image level

have been transferred to the instance tags which are compatible to most traditional

machine learning techniques; (2) The labeling noises by user’s tagging preferences

have been highly diminished due to the cleansing of improper tags.

9.3 Network-oriented Multi-task Structured Learning Algorithm

We have also proposed a network-based structured learning approach for large scale

image classification, taking advantage of the joint learning for correlated classes and

the network-guided multi-class classifier.

The most important part of our approach is the object correlation network. The

correlation between the object categories have been analyzed by only the visual coher-

ence of the representative images from each image category, but also the co-occurrence

of object tags. With the object correlation network, the structure of large scale ob-

ject categories have visually and quantitatively exposed, which guided the further

classifier training process.

From the pair-wise relationships of the objects on the the object correlation net-

work, the classifiers for highly-correlated categories have been trained jointly by our

proposed multi-task supervised learning algorithm derived from support vector ma-
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chine. Since the generalization power of the discriminative models are task-driven and

determined by the correlation between two sets of samples, object classifiers among

the visually-correlated categories are strongly inter-related and should be trained

jointly rather than independently.

To deal with large scale image classification with thousands of categories, a multi-

class classification scheme is proposed, which ensembles a group of binary classifiers

with a structured hierarchy guided by the object correlation network. Despite the

influence from the object correlation network, the structure hierarchy has been deter-

mined but the discriminant power of actual binary sub-classifiers, which guarantees

the correctness and efficiency of our multi-class classifier to be capable for large scale

problems with thousands of categories.

9.4 Future Work

From the perspective of applications, our proposed algorithm can be potentially

utilized in the follow tasks:

1. The social media website can take advantage of our algorithm to generate ma-

chine tags for user-uploaded photos and return the recommended machine tags

to users to saving the cost of user tagging.

2. For present image search engines, our algorithm can provides a machine label

for the query images from users as well as indexes in the database, which tends

to produce more accurate results and reduce the response time.

However, the principal issue which prevents our system from the capability of real-

time image classification is the efficiency. Despite the limitation of our accessible
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computational power, the multi-step design of our framework naturally increases the

response time of our system. In our framework, the time-consuming parts for in-

put query prediction are image segmentation, feature extraction and multi-classifier

response computation.

In modern computing theory, it is important to reduce the dependency among time-

consuming components for taking advantage of parallel computing. One of potential

solution to reduce the response time of our system is to embed a coarse-to-fine image

feature scheme into our framework, in which coarse but efficient features are used in

the high-level classifiers and accurate but slow features are taken by the fine level

classifiers as the opposite. Thereby the extraction of finer features and high-level

classifier responses can be computed simultaneously.

Besides, another issue of our system is that image segmentation has cost too much

computation. As a matter of fact, for natural photos uploaded by users, attention

maps seem to be a better candidate to locate objects than general purpose unsuper-

vised image segmentation, for the following reasons: (1) it is not necessary to classify

objects or scenes which users are not interested in; (2) the interesting objects in a real

photo are far less than its segmentation regions; (3) general purpose image segmen-

tation on real photos is not as reliable as it is on benchmark image sets. (4) the cost

of attention map generation is far less than which image segmentation costs. For the

above four reasons, it looks attractive to embed user attention detection as a viable

replacement for image segmentation.

However, thanks to the recent breakthrough on deep learning network, both the

accuracy and efficiency of large-scale image classification can be potentially improved.
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It is also worth noting that in our proposed framework, the computation of the

components such as image segmentation, multiple feature extraction are coupled, e.g.,

some lower-level computation such as pixel gradient calculation may have been done

multiple times in feature extraction as well as in image segmentation. In contrast, if we

integrate deep learning network into our framework, attention map detection, feature

extraction, inter-category visual correlation and classifier outputs can be unified in

the same network. Since multi-layer deep learning network sensors semantics from

bottom levels to top levels and receives decayed supervision from top levels to bottom

levels, we can potentially design our framework as following: (1) The bottom level

is the sensor level, which observes pixel intensities with multi-resolution bounding

boxes and clusters similar boxes into groups via self-organized maps. (2) The second

level calculates the attention map from the outputs of bottom levels; (3) The third

level is the soft-max level, which functions similar to codeword feature extraction to

quantize outputs from lower level into codewords; (4) for the upper levels but not

top level, soft-max level design for classical deep learning network are inherited to

unsupervised group similar contents from low-level edges to high-level objects; (5) In

contrast to the classification level in classical deep learning network, in our potential

design, the top level is replaced by our structured learning framework; Thus, our

framework can potentially co-operate with the deep learning networks, which unifies

the image representation and discovery of inter-category visual correlations, which

tends to get multi-level image representation compatible to both fast inter-category

distinction and fine-grinded classification.
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