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ABSTRACT

DHANOOJ BOBBA. Thermomechanical Modeling and Analysis of Precision Glass
Molding Process. (Under the direction of DR. HARISH P. CHERUKURI)

The tremendous development in digital technology in the last few decades has

increased the demand for ultra-precision optical components with enhanced optical

performance, such as aspherical or freeform lenses. Typically, lenses made of polymers

have been widely used in the industry. But due to the superior optical properties of

glass, there is a steady increase in demand for glass-based optical components. How-

ever, conventional manufacturing processes become time-consuming and expensive

when used for manufacturing aspherical glass components. Precision glass molding

(PGM) technology offers an alternate method of production for aspherical glass lenses

and irregular optical products. Compared to the conventional manufacturing process,

it has the advantages of high forming accuracy, short manufacturing cycles, low cost,

and high-volume production. However, the process has a few drawbacks, such as lens

profile deviations, stress birefringence. These drawbacks must be addressed before the

glass molding process can be a viable option for mass-producing optical components.

As such, in this dissertation, a coupled thermo-mechanical finite element model

is established to simulate the precision glass molding process on two different glass

types, D-ZK3 (CDGM) and P-SK57 (Schott). The glass is modeled as a thermo-

viscoelastic material by defining the stress and structural relaxation parameters. A

new testing technique based on the cylinder compression test is developed in this

study to extract the viscoelastic parameters at different temperatures. The obtained

material parameters, when used in the numerical simulations, showed a good agree-

ment with the experimental data throughout the testing temperature range. Further,

the viscosity of the glass (a highly sought-after property of glass in precision mold-

ing) is obtained as a by-product of the proposed material calibration test. Finally,
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the structural relaxation parameters are obtained from the impulse excitation test

based on ASTM standard E1876. All the experiments required for fully calibrat-

ing the viscoelastic response of the glass are performed on a precision glass molding

machine, Moore Nanotech GPM170 machine. The obtained material parameters are

used in the finite element model to predict the lens deviations and the stresses in the

molded lens. A mold compensation technique is used to correct the mold profiles for

any deviations. The lens molded using the corrected molds is shown to fall within

the designer’s specifications. However, it was observed that the process parameters

used during the molding process have an influence on the deviations and the stresses

in the molded lens. Therefore, it is essential to optimize the molding process prior

to implementing mold compensation techniques. The developed numerical model is

used to analyze the impact of various process stages and parameters on the optical

quality of molded lenses. Based on the observations, a modified molding process was

developed, which is shown to minimize the influence of the molding parameters on

the deviations and the residual stress. In addition, it was demonstrated that the

modified manufacturing process reduces the total cycle time for producing a glass

lens of comparable optical quality by more than 50%, reducing the manufacturing

cost of a molded glass lens.
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CHAPTER 1: INTRODUCTION

The tremendous development in digital technology in the last few decades increased

the demand for ultra-precision optical components. Additionally, there has been a

corresponding increase in the need to enhance optical performance while reducing the

size of the optical modules. These requirements can only be satisfied by using highly

precise optical components with complex profiles, such as aspheric lenses. The surface

of the aspheric lens does not conform to the surface of the sphere, which allows them

to correct for distortions and aberrations in an image that would otherwise be present

in a spherical lens, as shown in Fig. 1.1. Additionally, one of the main benefits of

the aspheric lenses is that they can be designed to have a much flatter surface than

a spherical lens of the same focal length. This enables them to be much thinner

and lighter, which is particularly important in applications where weight and size are

important considerations, i.e., for example, phone camera modules, eyeglasses, etc.

There are many applications for aspherical optical elements, ranging from astro-

nomical applications, life systems, machine vision, and metrology, digital cameras, etc.

Most of these applications currently use polymer-based lenses as they are simple to

manufacture on a large scale and have low cost. Different polymers, including acrylic,

polystyrene, and polycarbonate, have been used for years to produce consumer-level

semi-precision optical systems. But when compared with glass, polymers have infe-

rior optical properties. Some of the relevant properties of glass and plastics as lens

materials are shown in the Table 1.1.

As shown in Table 1.1, glass has high abrasion resistance and higher transparency.

Also, the thermal expansion coefficient of glass is about 10 times lower than that

of polymers, which is a highly sought property for designing high-precision optical
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Figure 1.1: A schematic showing spherical aberration.

Table 1.1: Comparison of glass and plastic properties [1].

Property Glass Polymers

Moisture resistance high low

Scratch resistance high low

Transparency high moderate

Thermal stability high low

Impact strength brittle moderate

Specific gravity high low

Manufacturability hard easy

assemblies. Furthermore, plastics offer a limited range of refractive indices, have a

large variation in the refractive index with temperature, have coating instabilities,

and may have excessive surface irregularities, which make them unsuitable for preci-

sion applications. Despite these disadvantages, polymer-based lenses have been used
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extensively as they are light in weight and are simple to manufacture/mass produce.

However, the exponential growth in the consumer electronics industry (cameras,

telecommunications, projectors, AR/VR, etc) and the desire for high-performance and

high-precision products has led to increasing demand for aspherical glass lenses. It is

estimated that the aspherical lens market will grow at a rate of 6.5% for the forecast

period of 2021 to 2028. In fact, a report published by BIS Research [2] highlights

that the market was estimated at 19.50 billion units in 2019 and is projected to

reach 28.47 billion units by 2025. The glass segment contributed 68.58 % in terms

of volume in 2019 and dominated the high precision asphere market over the plastic

counterparts. However, complicated production processes and design-related issues

with the aspherical lens are the main factors that are restraining the further growth

of the aspheric lens market.

Conventionally, the optical surfaces in brittle materials like glass are generated

by an abrasive procedure followed by surface polishing. During the abrasive pro-

cess, a rough aspherical shape is generated on the surface of the glass by grinding

with abrasives. In the second step, the rough surface generated during the grind-

ing process is polished to obtain the desired roughness and shape accuracy. These

techniques provide satisfactory curve conformation in the case of spherical lenses but

become very time-consuming and costly when used for fabricating aspherical com-

ponents with complex profiles. The production of aspheric lenses necessitates more

sophisticated polishing techniques such as Magneto-rheological finishing (MRF), the

Precision polishing method, or ion beam finishing. While these techniques can pro-

duce high-quality surfaces, the cost involved in the production is significant and the

by-products such as the polishing slurries are not environmentally friendly [3].

1.1 Precision Glass Molding

Precision glass molding (PGM) was devised as an alternative technique to manufac-

ture aspherical optical components. It has the advantages of high forming accuracy,



4

a short manufacturing cycle, and low cost compared to the traditional process. Over

the past three decades some work has been done towards developing the molding

method for fabricating glass lenses [4–6]. A schematic of the steps involved in the

precision glass molding process is shown in the Fig. 1.2.

Figure 1.2: A schematic showing the precision glass molding process.

The process commences by loading a glass gob onto the lower mold. Generally,

glass gobs in the form of a cylinder, sphere, ellipse, or even a pre-machined lens are

used in the molding process to obtain the desired lens shape. The glass and the

mold assembly are then heated to a specific temperature above the glass transition

temperature. The objective is to heat the glass to a temperature just above its

softening point, so the glass viscosity lies in the range of 107 to 109 Pa-s. Typically,

infrared lamps are used as a heat source during the precision glass molding process.

Once the molding temperature is attained, the system is held at this temperature for

several minutes to obtain a uniform temperature distribution in the glass.

Once the system has attained a steady state molding temperature, the gap between

the top and bottom molds is reduced by applying a force or displacement to the top

mold. This deforms the glass into the shape of the molds. The molding temperature
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Figure 1.3: The temperature and force profiles during different steps of the molding
process.

is maintained constant during the pressing process. All the molding steps mentioned

so far are either carried out in a vacuum or nitrogen environment to prevent any

oxidation of the mold tooling. Next, the formed lens is gradually cooled by controlled

nitrogen flow with molds still in the closed position with a constant force. During the

annealing step, the temperature is slowly reduced from the molding temperature to

a temperature just below the transition point. And finally, the force is removed and

the lens is rapidly cooled and released from the mold below oxidation temperature,

or approximately 250°C.

The lens fabricated through the molding process is a near-net shape and requires

either no follow-up operations or a simple finishing operation. Compared to the con-

ventional lens manufacturing process, the part-to-part variation in glass lens molding

can be controlled to a higher precision and by having multiple cavity designs the

process can be customized for higher volume production. Apart from that, precision

glass molding is also an environmently-friendly procedure since it does not require the

use of any coolants and does not generate debris. In addition to fabricating aspher-

ical components, glass press molding can be used to manufacture microlens arrays
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as well as free-form lenses that are used in digital displays, for data storage, optical

communication, printing, scanning, etc.

1.2 Motivation

Despite being a better alternative to conventional manufacturing techniques, the

precision glass molding operation suffers from a few shortcomings that need to be

addressed before the process can be used economically to mass-produce glass lenses.

Some of the challenges that have prevented the process from extensively being used

for the production of glass lenses are as stated below.

One of the major issues in precision glass molding is the deviation of the lens

profile from the mold geometry after the molding process. Typically, in precision

glass molding the mold surfaces are machined to be exact negatives of the required

lens profile, assuming the lens would take the shape of the molds. But in reality, the

complex mechanical behavior of the glass and its high-temperature dependence affects

the final lens profile at room temperature. The molded lens profile might deviate from

the required profile by as much as 20 microns which is considered to be much higher

than the allowable deviation [7]. To address this issue, the often-used approach is to

correct the mold profile for deviations, commonly referred to as mold compensation.

In mold compensation, the deviations on the lens profile are subtracted from the mold

surface to satisfy the required specs. Typically, the molds are compensated by trial

and error, which is a time-intensive and costly process. Empirically compensating

the mold may take up to a few months to meet the required product specifications.

Whereas, numerical simulations have proved to be more efficient compared to trial

and error techniques. As such, one of the primary goals of this study is to develop

a reliable numerical model to simulate the precision glass molding process. The

developed model will then be used to predict the profile deviations at the end of the

molding process and to pre-compensate the molds. However, a reliable numerical

model necessitates a proper characterization of the viscoelastic response of the glass
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material used in the precision glass molding process. To that extent, a significant

portion of the literature is focused on the viscoelastic material characterization of

a few moldable glasses. Due to the ambiguity of commonly used material testing

experiments and the non-uniqueness of constitutive model parameters, various sets

of parameters for the same glass type have been reported in the literature [8, 9]. As

a consequence, one of the primary objectives of this study is to establish a more

reliable procedure for characterizing materials in order to obtain a unique set of

material parameters. In addition, the various material testing experiments required

for completely characterizing the glass will be consolidated so that they can be readily

implemented on any glass molding machine.

The precision glass molding process involves several process parameters, and the

appropriate selection of these parameters plays a vital role in achieving the required

profile accuracy as well as the optical quality of the molded lens. Typically, the process

parameters are adjusted by trial and error until the desired dimensional requirements

of the glass lens are achieved. But due to the complex and obscure nature of the

molding process, it often takes weeks or months to establish a process that satisfies

the required dimensional specifications. However, satisfying the required dimensional

specifications does not necessarily indicate an excellent optical quality, i.e., change in

refractive index [10] or high birefringence. As such, the developed numerical model

will be used to analyze the effect of different process steps and their corresponding

process parameters on the profile deviations and the residual stresses in the molded

lens. The observations and comments made in this study can be used as a reference

to expedite the manufacturing process of glass lenses.

1.3 Dissertation Organization

The contents of this dissertation are organized as follows: this chapter discusses the

advantages of glass lenses over polymer-based lenses and provides an introduction to



8

precision glass molding and its limitations. The next chapter discusses glass rheology

and the general terminology used in glass press molding. It also introduces the con-

stitutive models used to characterize stress relaxation and the structural relaxation

phenomenon of glass materials. In Chapter 3, the current literature on obtaining

viscoelastic material properties is discussed, and a new reliable technique is proposed

to extract a unique set of material parameters at different temperatures. Chapter 4

discusses the implementation of the impulse excitation test to obtain the structural

relaxation parameters using the TNM model. The obtained material parameters are

used in the developed finite element model to analyze the profile deviation of a bicon-

vex lens in Chapter 5. The experimental and numerical deviations are shown to be in

a similar range. Further, the developed model is used to analyze the curve deviation

in a double aspheric lens, and a mold compensation technique is used to minimize

the deviations in the molded lens. In Chapter 6, the influence of different process

parameters on the curve deviation and residual stresses is fully analyzed. Based on

the observations, a new molding process is proposed to minimize the influence of pro-

cess parameters on the deviations and residual stresses. Further, it is shown that the

proposed technique reduces the total molding time significantly.



CHAPTER 2: GLASS TRANSITION AND TERMINOLOGY

When compared to crystalline solids, glasses behave as amorphous solids at room

temperature. Crystalline solids tend to have a stable equilibrium state at room tem-

perature. In contrast, glass tends to be in a non-equilibrium form at room temper-

ature, also commonly referred to as a frozen liquid state or glassy state. Figure 2.1

shows the change in volume in a glass versus crystalline solid when cooled from a

temperature greater than the melting point (Tm) to the room temperature. At higher

temperatures, the glass and the crystalline solids behave as viscous liquids. However,

when cooled below the melting temperature, their paths deviate. The crystalline

solids exhibit elastic behavior below the melting point and immediately crystallize

into a solid state. But the glasses exhibit three distinct states: the super-cooled liq-

uid region, the transition region, and the glassy or frozen liquid region. And when a

mechanical load is applied, the glass behaves as a viscous liquid in the liquid region,

a viscoelastic solid in the glass transition region, and an elastic solid in the glassy

region. The viscoelastic nature of the glass in the transition region is used for forming

the glass into the desired shape in precision glass molding.

2.1 Glass transition and viscosity

The glass transition state is defined as the region of temperature at which the

equilibrium state is attained by molecular rearrangement on a scale ranging from a few

minutes or hours. The glass transition region is revealed by a shift in the temperature

dependency of a liquid’s property, such as volume, enthalpy, or entropy, as it cools to

room temperature [11]. Figure 2.1 shows the change in volume of the glassy liquid as it

cools through the transition region. At temperatures above TU , in the liquid state, the
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Figure 2.1: Change in volume with temperature in a glass vs crystalline solid.

viscosity is so low that any step change in temperature will result in an instantaneous

equilibrium state. But as the temperature decreases below TU , the viscosity increases,

increasing the time required to attain equilibrium. And as the temperature reaches

TL, the viscosity is so high that the liquid’s internal structure is essentially frozen,

resulting in a glassy state. The region that corresponds to the temperatures above TL

and below TU is the glass transition region. In the transition region, the slope dV/dT

(which corresponds to the coefficient of linear thermal expansion) from a high-value

characteristic of a liquid (αl) to a low-value characteristic of a glassy state (αg) as

shown in Fig. 2.2. The glass transition temperature Tg is arbitrarily defined as the

center of the transition region.

In precision glass molding, the viscosity of the glass being molded plays an impor-

tant role in determining the quality of the manufactured lens. Figure 2.3 shows the

change in viscosity of soda-lime-silicate glass as it is cooled through the transition

region [12]. Given the importance of the property, five standard viscosity reference

points are defined at different temperatures. At high temperatures, i.e., above the

melting point (Tm), the viscosity is very low (10 dPa.s), and the glass essentially
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Figure 2.2: Change in slope of dV
dT

during cooling of a glass forming liquid.

behaves as a liquid. As the temperature is decreased, the viscosity of the glass in-

creases as shown in Fig. 2.3. At a viscosity of 104 dPa.s (working point), the glass

transitions from a liquid-like state to a more viscoelastic state. The interval between

the 104 dPa.s (working point) and 107.6 dPa.s (Littleton softening point) is known

as the working range of the glass, which is used for glass forming operations. The

Littleton softening point is defined as the viscosity at which the glass deforms at a

rate of 1mm/min under its own weight. In precision glass molding, the temperatures

that correspond to viscosity above the softening point are used. At these tempera-

tures, the viscosity of the glass is low enough to dissipate the stresses in order of a

few seconds. With the further increase in viscosity to about 1013 dPa.s (Annealing

point), the time required to relieve stresses will be in the order of a few seconds to a

few minutes. During the gradual cooling stage of PGM, the molded glass is cooled to

a temperature just below the annealing point to relieve any internal stresses formed

during the molding process. With any further increase in viscosity, the time required

to attain equilibrium is so large that the glass can be deemed as solidified.
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Figure 2.3: Change in viscosity with respect to temperature [12].

2.2 Viscoelasticity

If a glass is subjected to a mechanical load in the transition region, a time-

dependent change in the dimension is observed. This time-dependent behavior is

known as viscoelasticity. Figure 2.4 shows the typical behavior of a linear viscoelastic

material under constant load. Unlike elastic materials, which show an instantaneous

strain response to the applied stress, viscoelastic materials exhibit three distinct strain

components; the instantaneous elastic strain εE, the delayed elastic strain εD that ap-

pears over a period of time, and the viscous flow strain εv. When the load is removed,

the instantaneous strain is immediately recovered, followed by a gradual recovery of

the delayed elastic strain. But the strain produced by viscous flow does not recover,

resulting in a permanent change in the shape of the viscoelastic material. For an

accurate representation of the viscoelastic material, the constitutive model should be

able to model the three strain components.

Historically, viscoelastic material behavior has been represented by rheological
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Figure 2.4: Viscoelastic response of a material subjected to constant stress.

models consisting of different combinations of linear springs (elastic element) and

dashpots (viscous element). The stress-strain relation of a spring and a dashpot are

as given in Eqs. 2.1 and 2.2, respectively.

σ = Eε (2.1)

σ = ηε̇ (2.2)

where E is the spring constant or Young’s modulus and η is the coefficient of vis-

cosity. When subject to a step of constant stress, the spring element will exhibit an

instantaneous strain response. In comparison, a dashpot will deform continuously at

a constant rate when subject to constant stress.

Figure 2.5 shows some of the rheological models used to represent the glass material

behavior during molding. The Maxwell model, shown in Fig. 2.5a, consists of a
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Figure 2.5: Viscoelastic models of glass a) Maxwell model, b) Kelvin model, and c)
Burgers model.

spring and dashpot connected in series. When subjected to constant stress, the

stress-strain relation of the Maxwell model is given by Eq. 2.3. Figure 2.5b shows

the Kelvin model where a spring and a dashpot are connected in parallel. When

subjected to constant stress, the stress-strain relationship of a Kelvin model is given

by Eq. 2.4. It was observed that neither the Maxwell model nor the Kelvin model

described the viscoelastic response accurately [13]. While the Maxwell model shows no

time-dependent elastic response, the Kelvin model does not exhibit the instantaneous

elastic and the viscous response of a viscoelastic material.

ε =
σ

E
+
σt

η
(2.3)

ε =
σ

E

(
1− e

−Et
η

)
(2.4)

Evidently, the simplest model that can represent all the components of the vis-

coelastic model is obtained by connecting a Maxwell model in series with the Kelvin

model. Figure 2.5c shows the Burger model which is the combination of Maxwell
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and Kelvin models connected in series. The stress-strain relation of a Burgers model

when subjected to constant stress is given by Eq. 2.5.

ε =

[
1

E1

+
1

E2

(
1− e

−E2t
η2

)
+

t

η1

]
σ (2.5)

where E1 and η1 are the spring constant and the viscosity coefficient of the Maxwell

element and E2 and η2, are the spring constant and the viscosity of the Kelvin element.

The first term in Eq. 2.5 represents the instantaneous elastic response followed by

the delayed elastic response, and the final term represents the permanent viscous

response of the viscoelastic material.

The constitutive equations of linear viscoelasticity are given as follows,

Sij(t) =

∫ t

0

G1(t− t′)
∂eij(t

′)

∂t′
dt′ (2.6)

σ(t) =

∫ t

0

G2(t− t′)
∂ε(t′)

∂t′
dt′ (2.7)

where Sij and σ are the deviatoric and dilatational stresses, eij and ε are the cor-

responding strains. G1(t) and G2(t) are the relaxation moduli that correspond to

the deviatoric and the dilatational responses, respectively. The total stress in the

viscoelastic element can be obtained by combining the deviatoric and dilatational

responses as shown in Eq. 2.8

σij = Sij +
1

3
δijσ (2.8)

The relaxation moduli in Eqs. 2.6 and 2.7 are obtained from the rheological models

[11]. In the literature, the Generalized Maxwell model is the most widely used to

describe the linear viscoelastic behavior of the materials. It consists of several Maxwell

elements connected in parallel, and the relaxation moduli have the form,
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G1 = 2Go

n∑
i=1

wie
−t/τi (2.9)

G2 = 3K∞ − 3(K∞ −Ko)
n∑
j=1

wie
−t/λi (2.10)

where Go and Ko are the instantaneous shear and bulk modulus, respectively. K∞ is

the equilibrium bulk modulus, τi and λi are the deviatoric and dilatational relaxation

times, and wi are the corresponding weight functions. The series of weighted expo-

nential terms in Eqs. 2.9 and 2.10 are called the Prony series, and the weights and

relaxation times of the series are known as the Prony coefficients. The Prony series

coefficients are obtained by curve fitting the experimentally obtained stress-strain

curve.

2.3 Thermorheological simplicity

In a viscoelastic material, the rate of relaxation varies significantly with a change

in temperature. It was observed that the rate of relaxation is slow at low tempera-

tures and increases rapidly with an increase in temperature. That is, if a constant

strain is applied to a glass, the uniaxial stress relaxation function ψu will vary with

temperature, as shown in Fig. 2.6. If the relaxation moduli at different temperatures

are plotted with respect to time in log scale, the curves are identical in shape but are

only shifted by a factor (A(T )) in time scale, as shown in Fig. 2.6. This behavior of

the viscoelastic materials is called thermorheological simple material.

The shift factor in a TRS material is given by,

A(T ) =
τ(T )

τ(TR)
(2.11)

where τ(T ) is the relaxation time at a temperature T, and τ(TR) is the relaxation

time at a reference temperature, TR. The temperature dependence of the shift factor
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Figure 2.6: Thermorheological simple behavior of glass.

is approximated by the Williams-Landel-Ferry (WLF) equation given by

log(A(T )) = − C1(T − TR)

C2 + (T − TR)
(2.12)

where T is the temperature at which the shift factor is being calculated, TR is the

reference temperature, and C1 and C2 are constants.

2.4 Structural relaxation

When glass in the transition region is subjected to a sudden change in temperature,

a time-dependent property change is observed. This time-dependent behavior of glass

to a temperature jump is referred to as structural relaxation. Figure 2.7 shows the

response of the volume of a glass subjected to a sudden change in temperature. Sim-

ilar to stress relaxation, the structural relaxation response exhibits an instantaneous

change in the property and then a time-dependent change. That is when a glass

equilibrated at a temperature T1 with volume V (∞, T1) is suddenly subjected to a

temperature T2 at time to, will see an instantaneously change in volume to V (0, T2)

at time to and then a slow time-dependent change to a final value of V (∞, T2) when

equilibrated at temperature T2, as shown in Fig. 2.7. Different properties of glass,

such as specific heat, viscosity, Young’s modulus, etc., show a similar time-dependent
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response in the transition region [7].

Figure 2.7: Structural relaxation behavior of glass.

In Fig. 2.7, the instantaneous change in property is characterized by αV G, the

glassy thermal expansion coefficient of the material, and the total change after equi-

libration is characterized by αV L, the liquid thermal expansion coefficient. As shown

in Fig. 2.7, the instantaneous response of the property follows the slope αV G, and the

time-dependent response of the property occurs in the vertical direction towards the

equilibrium.

An important aspect of structural relaxation is that the rate of relaxation depends

on the thermal history [11]. That is, if one sample is equilibrated at a temperature

T1 = T2+∆T and the other sample at a temperature T3 = T2−∆T and then suddenly

subjected to a temperature T2 which is in between T1 and T3. The sample at a higher

temperature (T1) relaxes faster than the sample at a lower temperature (T3), as shown

in Fig. 2.8. In the sample that is equilibrated at a higher temperature, the atoms

have more mobility than those in the sample at a lower temperature.

One of the most important concepts in the theory of structural relaxation is the

introduction of the concept of fictive temperature by A. Q. Tool [14]. The fictive
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Figure 2.8: Temperature-dependent nonlinear behavior of glass.

temperature is a theoretical concept that determines the amount of structural relax-

ation in a glass. It is a hypothetical temperature at which a glass would need to

be equilibrated for a sufficient time to reach it’s current state of internal structural

relaxation. Based on the concept of fictive temperature, Tool described the structural

relaxation in glass using Eq. 2.13.

dTf
dt

=
T − Tf
τp

(2.13)

Tf is the fictive temperature, T the actual temperature of the glass and τp the struc-

tural relaxation time. Using the analogy to viscoelasticity, Tool initially defined the

relaxation time as a function of the actual temperature, Eq. 2.14, which he found to
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be inadequate to describe the experimental data. He modified Eq. 2.14 to include

the influence of changing structure of the glass and developed the Eq. 2.15

τp = τo ∗ exp(−AT ) (2.14)

τp = τo ∗ exp(−A1T − A2Tf ) (2.15)

where τo, and Ai are constants. The inclusion of the dependence on the fictive tem-

perature in Eq. 2.15 made Tool’s equation non-linear. It was later realized that the

Tool’s equation is not adequate to describe structural relaxation [11].

A successful theory of the structural relaxation was introduced by Narayanaswamy

[15], where the differential equation given by Tool is replaced with an integral equation

given below

Tf (t) = T (t)−
∫ t

0

Mp(t− t′)
dT

dt′
dt′ (2.16)

Where Mp is the relaxation function for the property p and is given by equation 2.17

Mp(t) = exp

[
−
(
t

τp

)b]
(2.17)

Where b is a constant such that 0 ≤ b ≤ 1, and τp is the relaxation time defined by

Eq. 2.18

τp = τ0

(
x∆h

RT
+

(1− x)∆h

RTf

)
(2.18)

Where τo is a constant; ∆h is an activation energy constant; x is a constant such

that 0 ≤ x ≤ 1; and R is the ideal gas constant. To remove the non-linearity due

to the time dependence of the relaxation time, he used the concept of reduced time,

ξ = τpr
∫ t
0
dt′/τp, where τpr is the relaxation time at an arbitrary reference temperature
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Tr which is generally taken to be 50 to 100 ◦C above the glass transition temperature.

Later, Moynihan [16] replaced the single relaxation time in Eq. 2.17 with a se-

ries of relaxation times and modified the single nonlinear differential equation in

Narayanaswamy’s model with a series of linear differential equations as shown below,

Tfi = T −
∫ t

0

Mp(t− t′)
dT

dt′
dt′ (2.19)

Where the structural relaxation function Mp is given by the Prony series as shown in

Eq. 2.20

Mp =
n∑
i=1

wiexp(−
t

τi
) (2.20)

Where wi are the weights such that the sum of the weights is equal to 1. They

defined the effective fictive temperature of the glass as the weighted average of the

fictive temperatures.

Tf =
n∑
i=1

wiTfi (2.21)

Equations 2.18 to 2.21 are referred to as the TNM model and are widely used in

the literature to describe the structural relaxation process of glass during glass press

molding.



CHAPTER 3: VISCOELASTIC MATERIAL CHARACTERIZATION USING

CONSTANT STRAIN RATE TEST

3.1 Introduction

The precision glass molding process involves a glass blank deformed into a desired

lens shape by applying pressure at high temperatures. Typically, the molding tem-

peratures range from about 40 to 50°C above the glass transition temperature. As

stated in the previous chapter, glass when subjected to mechanical and thermal loads

above the transition temperature, behaves as a viscoelastic material, i.e., it exhibits

stress relaxation and structural relaxation when subjected to mechanical and thermal

loads, respectively. As such, the viscoelastic material properties play a crucial role

in determining the final form of the molded lens [17, 18]. The numerical modeling of

the precision glass molding process requires a coupled thermo-mechanical constitutive

model to understand the response of the glass deformation throughout the molding

process.

The early numerical studies on the PGM process are limited due to the lack of

experimental data available on the viscoelastic parameters. Initially, the behavior

of the glass is assumed to be purely Newtonian, where the stress is considered to be

directly proportional to the strain rate [17,19]. While few studies used simple Maxwell

or Kelvin models to approximate the stress relaxation or creep responses, respectively

[8,10]. Zhou et al. [20] studied different mechanical models and reported that neither

the Maxwell nor the Kelvin models were able to accurately describe the experimental

data. But they showed that the Burgers model, which is a combination of the Maxwell

and Kelvin models, could describe the experimental data. The generalized Maxwell

model is extensively used in the literature for modeling the viscoelastic behavior of
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glass during the molding process. Anathasayanam et al. [21] used the ring compression

test to characterize the linear viscoelastic behavior of the L-BAL35 glass. They used

a hybrid approach where the parameters, i.e., the weights and the relaxation times,

of the generalized viscoelastic model, were varied manually until the displacement

curves from the simulations matched the experiments. Arai et al. [22] used creep

experiments on cylindrical glass samples to characterize the properties of BK7 and

TaF-3 glass. They used a generalized Voigt model to fit the creep data and used

Laplace transforms to convert the creep compliance into a relaxation modulus in the

form of a generalized Maxwell model. Although the generalized Maxwell model is

able to accurately model the viscoelastic response, it is emphasized that the number

of parameters to be estimated varies depending on the temperature chosen during the

experimental characterization. In contrast, the Burgers model has the fewest fitting

parameters and can represent the complete viscoelastic material behavior [13].

For characterizing the thermo-viscoelastic material behavior of the glass, the ex-

perimental methods used in the literature can be divided into two categories: the

dynamic method and the static method. In the dynamic method, usually called dy-

namic thermo-mechanical analysis (DMA), a sinusoidal load or stress is applied to

the specimen, and the resulting displacement or strain is measured, which is used to

quantify the material properties. The major drawback of the DMA method is that

the testing equipment used to measure the viscoelastic properties is unsuitable for

evaluating glasses with transition temperatures above 500°C [22]. The static meth-

ods, which consist of either the stress relaxation experiments or creep experiments,

are commonly used test methods to calibrate the viscoelastic material properties of

the glass used in precision glass molding. Of these, the stress relaxation experiment is

more favorable because the viscoelastic model parameters can be directly obtained by

fitting the relaxation data [23,24]. However, the major limitation of the relaxation ex-

periment is the instantaneous application of strain on the glass specimen at different
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temperatures. This limits the experiments to the temperatures in the vicinity of the

transition temperature, which are different from the typical temperatures used during

glass molding. In contrast, the creep experiments, which require the application of

constant load/stress, are more suitable for characterizing the viscoelastic properties

at the molding temperatures.

Jain et al. [25] used cylindrical compression tests on two different types of glass to

determine the viscosity data at high temperatures. They used custom-built equipment

to perform the experiments and found that the viscosity values obtained from the

compression test are similar to the values obtained from traditional methods. Zhou

et al. [13] were the first to use a precision molding machine to perform the creep

compression test to evaluate the viscoelastic material properties. Joshi et al. [26]

used the creep compression test and reported that the friction between the glass

specimen and the molds has a significant effect on the measurement of the viscoelastic

material properties of glass. In a later paper [9], the same authors developed a no-slip

compression test where they used a fused silica disc between the glass and the molds

creating a no-slip condition. Zhou et al. [27] used the creep compression test and

modified the obtained stress relaxation function to compensate for the influence of

friction. They numerically analyzed the change in thickness of the glass sample at

different friction conditions and compared it to the thickness change in experiments.

Yu et al. [28] used different substrates between the glass sample and the molds during

the compression test to reduce the effect of friction on the viscoelastic data and showed

that by diminishing the effects of friction on the experimental data, more accurate

viscoelastic properties can be obtained from the creep tests.

One of the major drawbacks of the creep compression test is the application of

instantaneous initial stress which has to be maintained constant throughout the ex-

periment. However, when a cylindrical glass sample is compressed with a constant

load, the sample expands in the radial direction which results in a decrease in com-
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pressive stress. Typically to account for the change in load during the experiment,

the true stress and true strain are calculated using the experimental data by consid-

ering the constant volume of the glass sample [29]. This is applicable if the cylindrical

shape of the glass sample holds true during the entire compression test. However, due

to the presence of friction, the sample bulges at the mid-section as shown in figure

3.1. To minimize the effect of the shape change, a few authors have restricted the

maximum deformation of the sample or used a different substrate between the glass

sample and the mold to reduce the effects of friction on the viscoelastic data [28,30].

Zhang et al. [30] used a minimal uniaxial creep testing method, where the samples

are compressed to only a few microns essentially preserving the cylindrical shape of

the sample. While these techniques reduced the effect of friction on the compression

tests, they require specialized equipment so that enough material data is captured to

obtain the viscoelastic material parameters.

Figure 3.1: Cylindrical glass samples before and after the compression test.

In this study, a new testing method is developed to accurately characterize the

viscoelastic material properties of the glass samples using the precision glass molding

machine. The creep compression tests are replaced with constant strain rate tests

where the bulging effect of the glass samples on the viscoelastic data is minimized.

Apart from the viscoelastic material data, the constant strain rate tests are used to

obtain the viscosity of the glass samples at different temperatures. The proposed

method is used on two different glass types commonly used in compression glass

molding.
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3.2 Experimental setup

The experimental setup used for characterizing the viscoelastic material properties

of the glass is similar to that of the parallel plate viscometer, as given in ASTM

C1351M-96 [31]. The experiments are conducted in a precision glass molding machine,

Moore Nanotech GPM170, shown in Fig. 3.2. The different types of glass used in

this study and their thermal and mechanical properties are provided in table 1.1. It

should be noted that, in this study, P-SK57 is used to establish the material model

and D-ZK3 is used to verify the material model. For the compression tests, cylindrical

glass samples with a diameter of 19.02 mm and a thickness of 6.35 mm are used for

the compression test. As shown in Fig. 3.3, the glass is compressed between flat

molds made of high-temperature resistant tungsten carbide material. The molds are

fine polished with a roughness of Ra = 2 nm. Such an ultraprecision mold surface

enables a small friction coefficient between the glass and the molds [29]. The molds

are coated with DLC (diamond-like carbon) coating to prevent the glass from sticking

to the mold surface at high temperatures.

To characterize the viscoelastic material properties two types of tests are performed

using the cylinder compression method. In the first test, a cylindrical glass sample is

compressed at a constant strain rate by applying a constant velocity to the top mold.

It is shown in the literature, that for a given temperature, there exists a critical strain

rate, which increases with increasing temperature. Exceeding the critical strain rate

causes the glass to crack [32, 33]. Based on the data provided in [32], a strain rate

of 5 × 10−4 to 5 × 10−3 are used which corresponds to a velocity of 0.2 mm/min to

2 mm/min, with higher velocities used at higher temperatures. A constant velocity

is maintained on the top mold till a purely viscous deformation was reached, i.e.,

when the stress remained constant with further deformation. Once the viscous flow is

attained, the velocity of the top mold is reduced to zero, i.e., it is held in its current

position, to perform the relaxation test. The displacement profile and the resulting
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Figure 3.2: Precision glass molding machine (Moore Nanotech GPM170).

Figure 3.3: Cylindrical compression test.

force profile during the compression test are shown in Fig. 3.4. Initially, as the

displacement increases with a constant velocity the force tends to increase and then

converges to a maximum value with further increase in the displacement, i.e., a pure
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Table 3.1: Mechanical and thermal properties of the molds and the glass.

Property Tungsten
carbide molds P-SK57 D-ZK3

Young,s modulus, E
(GPa) 570 93 97.67

Poissons ratio, ν 0.22 0.249 0.234

Density, ρ (Kg/m3) 14650 3010 2830

Expansion coefficient, α
(10−6/K) 4.9 9.1 9.3

Specific heat, Cp
(J/Kg-K) 314 760 1100

Conductivity, λ
(W/m-K) 38 1.010 1.126

Tg (◦C) - 493 511

Sp (◦C) - 593 605

viscous deformation is achieved. At this moment, the top mold is fixed in its current

position to start the relaxation test. During the relaxation test, the force tends to

relax back to zero as the material tends to expand in the horizontal direction to relax

the internal stresses induced during the compression as shown in Fig. 3.4.

One of the major concerns with the creep compression tests used in the literature

is the effect of the bulge on the stress calculations used to evaluate the viscoelastic

parameters. The advantage of the current testing procedure is that pure viscous

deformation is achieved by inducing only a minimum amount of deformation to the

glass sample as evident in Fig. 3.5. Figure 3.5 shows the glass sample before and after

the compression test, showing that the cylindricity of the glass sample is preserved

throughout the test.
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Figure 3.4: The displacement and the force profiles during the compression test.

The compression experiments are performed at five different temperatures around

the softening point of the glass (Sp), which corresponds to a viscosity range of 109.5

- 106.6 Pas. This viscosity range is of interest because this corresponds to the typical

temperatures used during the precision glass molding process. Initially, during the

compression test, the cylindrical glass samples are placed on the bottom mold and

slowly heated to the molding temperature at a rate of 10°C/min and then undergo

a sufficient soak of approximately 15 minutes. This soaking time allows for the glass

specimen to equilibrate at the molding temperature.

3.3 Linear Thermo-viscoelasticity Theory

The constitutive equations of the linear viscoelastic model in their integral form

are:

σ(t) =

∫ t

0

G(t− t′)∂ε(t
′)

∂t′
dt′ (3.1)
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Figure 3.5: Cylindrical glass samples before and after the compression test.

ε(t) =

∫ t

0

J(t− t′)∂σ(t′)

∂t′
dt′ (3.2)

where G(t) and J(t) are the relaxation modulus and the creep compliance function

respectively. The relation between the creep compliance function and the relaxation

modulus is given by Eq. 3.3.

Ĵ(s)Ĝ(s) =
1

s2
(3.3)

where Ĝ(s) and Ĵ(s) are the Laplace transforms of the relaxation modulus and the

creep compliance function in the Laplace domain. In general, to obtain the viscoelas-

tic material parameters, the experimental data from the creep compression test is

used to obtain the creep compliance function by discretizing Eq. 3.2 using a finite

difference scheme [34]. Then by using Eq. 3.3, the relaxation modulus is obtained

through Laplace and inverse Laplace transforms. Finally, the viscoelastic parameters

are obtained by performing a second fitting operation on the calculated relaxation

modulus.

Typically, the generalized Kelvin and Maxwell models are used in the literature

to describe the creep and stress relaxation behavior respectively. While the gener-

alized models were able to well describe the viscoelastic behavior of the glass, the
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number of parameters required to be estimated varies with the temperature (6 term

Maxwell model is commonly used in literature which requires 12 material parameters

to be estimated). Often, the fit parameters are chosen by trial and error methods [7].

In contrast, the Burgers model, also shown to well describe the glass behavior [13],

consists of only four material parameters that are to be estimated at different tem-

peratures. In addition, the Burgers model is shown to be equivalent to the two-term

generalized Maxwell model, and the parameters from the Burgers model can be used

to directly calculate the relaxation function thereby avoiding the second fitting pro-

cedure [35] and can be used in most of the commercial FEM software (Abaqus, Ansys

etc.). The mathematical equivalency and the procedure to calculate the Prony series

parameters from Burgers model parameters is given in Appendix A.

As such, to model the viscoelastic behavior of the glass, the Burgers model was

used in this study. The constitutive equation of the Burgers model in the differential

form is given in Eq. 3.4 [35].

σ + p1σ̇ + p2σ̈ = q1ε̇+ q2ε̈ (3.4)

where
p1 =

η1
E1

+
η1
E2

+
η2
E2

; p2 =
η1η2
E1E2

q1 = η1; q2 =
η1η2
E2

(3.5)

E1, E2, η1, and η2 are the material parameters of the Burgers model. The Laplace

transform of Eq. 3.4 is given by Eq. 3.6.

σ(s) + p1sσ(s) + p2s
2σ(s) = q1sε(s) + q2s

2ε(s) (3.6)

The constant strain rate boundary condition used for the compression test is ex-

pressed by Eq. 3.7 and its Laplace transform is given by Eq. 3.6.
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ε̇(t) = εo = constant (3.7)

ε(s) = εo/s
2 (3.8)

Substituting Eq. 3.8 into Eq. 3.6, we obtain

σ(s)

εo
=

q1/s+ q2
1 + p1s+ p2s2

(3.9)

Equation 3.9 can be simplified as Eq. 3.10

σ(s)

εo
=
A

s
+

B

s+ r1
+

C

s+ r2
(3.10)

where A, B, and C are introduced for the convenience of Laplace transform and are

calculated by using partial fractions

A =
q1
r1r2

B =
q1 − r1q2
r1Ā

C = −q1 − r2q2
r2Ā

(3.11)

where r1, r2 are the roots of the denominator in Eq. 3.9, given by

r1,2 =
p1 ± Ā

2p2

Ā =
√
p21 − 4p2

(3.12)

Substituting Eq. 3.11 into Eq. 3.10 and applying the inverse Laplace transform

gives the final form of Burgers equation under constant strain rate:

σ(t) = η1ε̇

[
1 +

1− r1η2/E2

r1Ā
e−r1t − 1− r2η2/E2

r2Ā
e−r2t

]
(3.13)
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Here it should be noted that, as time goes to infinity, Eq. 3.13 reduces to 3.14, an

equation representing a dashpot.

σ(t) = η1ε̇ (3.14)

where η1 is the bulk viscosity of the material. Hence, by fitting Eq. 3.13 to the

experimental data obtained from the constant strain rate tests, one should be able to

determine the viscoelastic parameters as well as the viscosity of the material being

tested.

The response of the Burgers model to constant strain (stress relaxation) is obtained

by solving Eq. 3.4 using a constant strain condition. The derivation is similar to the

constant strain rate test and can be found at [35]. The Burgers model equation to

represent the stress relaxation test is given below

σ(t) =
ε

Ā

[
(q1 − r2q2) e−r2t − (q1 − r1q2) e−r1t

]
(3.15)

Equations 3.13 and 3.15 are used to represent the constant strain rate and the

stress relaxation test respectively in this study.

3.4 Estimation of viscoelastic parameters

To characterize the viscoelastic response of the glass, the four parameters of the

Burgers model (E1, η1, E2, and η2) are to be estimated by curve fitting the Eqs. 3.13

and 3.15 to the experimental data. As mentioned in the previous chapter, Burgers

model is a combination of a single Maxwell element and a Kelvin element in a series.

While the Kelvin element represents the delayed elastic response, the spring, E1, and

the dashpot, η1, in the Maxwell element represent the instantaneous elastic response

and the viscous response of the viscoelastic material, respectively. Young’s modulus

of the glass material accounts for the elastic response and is presumed to be constant,

the value at room temperature. This reduces the number of fit parameters to three.
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The computational procedure to estimate the viscoelastic parameters of the glass

is as follows. First, the true stress, σ(t), is calculated from the displacement u(t) and

the force F (t) data obtained from the compression test, as given by Eq. 3.16.

σ(t) =
F (t)

A(t)
=
F (t)L(t)

AoLo
(3.16)

where A(t) and Ao are the current and initial cross-sectional area of the glass spec-

imen, and L(t) and Lo are the current and the initial thickness of the specimen.

Equation 3.16 is typically used in the literature to calculate the true stress consid-

ering the incompressibility. However, the effects of bulging of glass samples due to

interface friction are often neglected. This leads to an estimation error of the relax-

ation parameters [30]. However, with the testing procedure used in this study, and as

shown in Fig. 3.5, the glass samples are shown to retain the original shape, thereby

avoiding any errors in stress calculations. The strain rate used in the test is calculated

by dividing the velocity by the original thickness of the sample.

Figure 3.6: Curve fit of the Burgers model to the constant strain rate test.
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Initially, to determine the Burgers parameters, Eq. 3.13 is fit to the stress data

obtained from the constant strain rate tests. A non-linear curve fitting algorithm

is used to obtain the fit parameters. Figure 3.6 shows the experimental data and

the resulting curve fit from the constant strain rate test on a P-SK57 sample at a

temperature of 550°C. As shown, the Burgers model derived for constant strain rate is

able to describe the experimental data well. Next, to verify the model, the obtained fit

parameters are used in Eq. 3.15 to model the stress relaxation and then compared to

the experimental data from the stress relaxation test, as shown in Fig. 3.7. This shows

that just the strain rate test data can be used to obtain the viscoelastic parameters

that are able to describe the relaxation phenomenon as well. However, for better

accuracy of the fit parameters, both the Eqs. 3.13 and 3.15 are fit simultaneously to

the experimental data.

Figure 3.7: The relaxation function from experiments vs calculated.

To obtain the viscoelastic parameters at different temperatures, the Burgers model

is fit to the experimental data acquired at different temperatures. Figure 3.8 shows

that the Burgers model provides an accurate fit over different temperatures used in
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Figure 3.8: The stress profiles at different temperatures under constant strain rate
and stress relaxation.

this study. Further, to verify the fit parameters, η1, which corresponds to the bulk

viscosity of the glass, is compared to the manufacturer’s data. Figure 3.9 shows that

the viscosity values obtained by the current testing method agree well with the Schott

data [36].

As stated in Section 3.3, the Burgers model is mathematically equivalent to a two-

term Prony series; therefore, the parameters obtained from the fitting function can

be directly used to obtain the Prony series parameters, i.e., the weights wi and the

relaxation times, τi, as given in Eq. 2.9. Details of the mathematical equivalency

between the Burgers model and the Prony series are given in Appendix A. The shear

parameters of the Burgers model are readily obtained from the four fitting parameters

as shown in Eq. 3.17.

G1 =
E1

2(1 + ν)
, µ1 =

η1
2(1 + ν)

G2 =
E2

2(1 + ν)
, µ2 =

η2
2(1 + ν)

(3.17)
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Figure 3.9: The viscosity values obtained from the constant strain rate test at different
temperatures compared to the manufactures data.

where ν is the Poisson’s ratio given in Table 3.1. Using the shear parameters, Prony

series coefficients, the weights wi, and the relaxation times τi are calculated as shown

in Appendix A. Table 3.2 shows the computed Prony series parameters at the different

temperatures used in this study.

Table 3.2: P-SK57 relaxation parameters at different temperatures.

Temperature

(°C)

Weights Relaxation time

w1 w2 τ1 τ2

540 9.42e-4 99.905e-2 33.09 9.43e-06

550 6.04e-4 99.939e-2 17.40 6.04e-06

565 3.30e-4 99.966e-2 7.29 3.31e-06

575 2.29e-4 99.977e-2 4.31 2.29e-06

590 1.38e-4 99.986e-2 2.10 1.39e-06
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3.5 Numerical Verification of the viscoelastic parameters

A coupled temperature-displacement finite element model is developed in ABAQUS

to verify the viscoelastic parameters obtained from the compression test. Figure 3.10

shows the axisymmetric model used in this study. The glass specimen is modeled

as a deformable viscoelastic body, while the molds are defined as deformable elastic

bodies. The material parameters of the molds and the glass are given in Tables 3.1

and 3.2. The displacement boundary conditions on the top and the bottom mold are

applied by defining a coupling constraint on the bottom surface of the bottom mold

and the top surface of the top mold, as shown in Fig. 3.10.

Figure 3.10: Axisymmetric finite element model to verify the viscoelastic parameters.

To verify the viscoelastic model, three steps of the experimental process are modeled

in ABAQUS. Initially, the molds and the glass are heated to the molding tempera-

ture by applying a temperature boundary condition on the outer surface of the molds.

Isothermal conditions are assumed in the model. In fact, as shown in [37], the current

setup of GPM 170 is shown to hold the temperatures accurately throughout the mold-
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ing process. The vertical displacement of the bottom mold is constrained throughout

the simulation. To model the constant strain rate test, a velocity boundary condition

is applied to the top mold for a duration similar to that of the experiments, and

then, the top mold is fixed in its current position to simulate the relaxation test.

The inputs provided to the simulations are set with respect to the same experimental

temperatures.

To verify the material parameters, the force profiles obtained from the simula-

tions at different temperatures are compared to the force profiles obtained from the

experiments, Fig. 3.11. The simulated results show a good agreement with the exper-

imental data. This validates the viscoelastic parameters derived from the compression

test at individual testing temperatures. However, for the glass molding simulations,

temperature-dependent viscoelastic properties are required. As stated in Chapter 2,

the glass is considered to obey the TRS assumption widely used in the literature to

model the thermo-viscoelastic response. The next section focuses on the temperature

dependence of the viscoelastic parameters.

Figure 3.11: Experimental vs simulated force profiles at different temperatures.
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3.6 Temperature Dependence of the viscoelastic parameters

3.6.1 TRS assumption

As stated in Chapter 2, in a viscoelastic material, the rate of relaxation varies sig-

nificantly with a change in temperature. But when the relaxation moduli at different

temperatures are plotted with respect to time in log scale, the curves tend to be in

identical shape but are shifted horizontally by a scale factor (TRS behavior). Us-

ing the Prony series coefficient from Table 3.2, Fig. 3.12 plots the normalized shear

relaxation moduli of the five testing temperatures.

Figure 3.12: Normalized shear modulus at different temperatures.

To determine the shift factor (A(T)), first, a relaxation curve at an arbitrary exper-

imental temperature, i.e., a reference temperature Tr, is selected as a master curve.

In this study, the shear relaxation function at 550°C is considered the master curve.

Next, the master curve is shifted in the horizontal direction to match the relaxation

curves at other temperatures. The shift factor is given by the difference in abscissa

between the two curves. The temperature dependence of the shift factor is defined
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by the Williams-Landel-Ferry (WLF) equation,

log(A(T )) =
−C1(T − Tr)
C2 + (T − Tr)

(3.18)

where C1 and C2 are constants obtained by fitting the shift factor obtained from the

master curve to each individual temperature. Figure 3.13 shows the shift factor at

different temperatures and the corresponding curve fit by the WLF equation.

Figure 3.13: WLF shift factor with respect to temperature.

The TRS assumption can be readily implemented in the FEMmodel by defining the

WLF constants in ABAQUS. To verify the temperature dependence, the simulations

were rerun at five different temperatures. The temperature dependence is defined in

the simulation by providing the viscoelastic material properties (Prony coefficients)

at the reference temperature (Tr) and the constants of the WLF equation. Figure

3.14 shows the experimental force profiles at 560°C and the force profiles obtained

from the simulations using the TRS assumption. As expected, the experimental and

simulated results at the reference temperature (550 °C) are validated. However, at
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other temperatures where the viscoelastic parameters are obtained from the TRS

assumption, the simulated results deviate from the experimental results, especially at

higher temperatures. This shows the inadequate implementation of the TRS behavior

at a wide temperature range. In principle, the application of the TRS behavior is

valid if and only if the master curve and the shifted curves are fully identical. To

verify the TRS assumption, in Fig. 3.15 the master curve and the shifted curves

at different temperatures are plotted on the log time scale. It shows the relaxation

curves at different temperatures are not fully identical. Similar discrepancies were

observed in the literature [27–29].

Figure 3.14: Experimental vs simulated force profiles at 560°C using the TRS as-
sumption.

While different attempts have been made to enhance the TRS model predictions

in the literature [38,39] to reduce the differences between the master and the shifted

curves, these are again assumptions that are only valid if the curves are fully identical.

Considering the above drawbacks, in the following section, an alternative approach,

similar to the one used by Vu et. al. [29], is used to model the temperature dependence
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Figure 3.15: The master curve and the shifted functions at different temperatures.

of the viscoelastic material properties without assuming the TRS behavior.

3.6.2 Temperature dependent Burgers parameters

As demonstrated in Section 3.5, the Burgers model is completely adequate for sim-

ulating the viscoelastic behavior of glass at any given temperature. This suggests

that, if a relationship between the Burgers parameters and the corresponding tem-

perature can be established, the temperature-dependent viscoelastic parameters can

be derived without using the relaxation moduli and the shift factor. As shown before,

the relaxation parameters, weights wi, and the relaxation times τi, can be directly

calculated from the Burgers parameters. Hence if a temperature-dependent function

is established for each Burgers parameter, the relaxation parameters can be obtained

at any temperature without making any assumptions regarding the shift factor [29].

To obtain the temperature-dependent functions, the compression test data from the

five experimental temperatures, shown in Fig. 3.8, is used to obtain the four Burgers

parameters (E1, η1, E2, and η2) at each temperature by curve fitting. As mentioned
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Figure 3.16: Temperature dependent Burgers model parameters, P-SK57.

in Section 3.4, the parameter E1 represents the instantaneous elastic response and is

assumed to be equal to Young’s modulus of the material at room temperature, hence

temperature independent. The relations of the other parameters, i.e., E2, η1, and η2,

with temperature as plotted in Fig. 3.16, show that the values of these properties

decrease with increasing temperature.

The next step is to identify a mathematical model to describe the temperature

dependence of the Burgers parameters. From Fig. 3.16 it is observed that the param-

eters show a trend that is similar to that of the glass viscosity [40]. In fact, as shown

in Eq. 3.14, the parameter η1 of the Burgers model represents the bulk viscosity of

the glass material. And in the literature [17,29], the Vogel-Fulcher-Tammann (VFT)

equation is commonly used to describe the temperature dependence of the equilib-

rium glass viscosity. As such, the VFT equation is chosen in this study to model the

temperature dependence of the Burgers parameters. The VFT equation is given as

follows,
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log(ϕ) = A(ϕ) +
B(ϕ)

T − To(ϕ)
(3.19)

where ϕ is each of the three parameters of the Burgers model, T is the temperature,

and A, B, and To are the fit parameters. To reduce the number of fit parameters, To

which corresponds to the Kauzmann temperature [29], is considered to be the same

for all three parameters, i.e., To(η1) = To(E2) = To(η2). Also, as observed in Fig. 3.16,

the temperature dependence of the parameter E2 is similar to that of the parameter

η2 (the Kelvin component parameters of the Burger model), this shows that both the

parameters have similar B coefficients, i.e., B(E2) = B(η2).

As shown in Fig. 3.16, the VFT model using a set of six fitting coefficients, i.e.,

A(η1), B(η1), A(E2), B(E2), A(η2), To, is able to describe the temperature dependence

of the Burger parameters. Using the determined coefficients, the Burgers parameters

can be determined at any given temperature eventually obtaining the relaxation pa-

rameters without the need for the relaxation moduli or the shift factor.

Table 3.3: Temperature dependent viscoelastic parameters.

VFT coefficients P-SK57 D-ZK3

A(η1) -2.5 -6.71

B(η1) 2677.37 4653.02

A(E2) 3.25 -0.8

B(E2) 1094.30 2605.78

A(η2) 1.25 -2.8

To 306.79 244.5

3.7 Numerical Validation

In order to validate the proposed viscoelastic characterization method developed

in this study, the numerical model shown in Fig. 3.10 is used to perform the com-

pression tests at different temperatures. To include the thermal dependency in the
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Figure 3.17: Validation of the temperature dependency of the Burgers model.

viscoelastic model, a UMAT sub-routine is programmed in ABAQUS. The viscoelas-

tic parameters that are used as input to the UMAT are as given in Table 3.3. To

validate the viscoelastic model as well as the temperature dependency, the simula-

tions are performed at different temperatures that are not used in the VFT fitting

function. Figure 3.17 shows the simulation results as well as the experimental data at

five different temperatures. As shown, the simulation results obtained by using the

VFT function are in good agreement with the experimental data over the temperature

range used in this study.

To further validate the model, compression tests are carried out on other types of

glass that are commonly used in glass press molding. For this purpose, a dense barium

crown optical glass D-ZK3 (CDGM) is chosen. The thermomechanical properties of

the glass material are given in Table 3.1. To obtain the viscoelastic parameters, the

compression tests are performed at different temperatures. Figure 3.18 shows the

Burgers model fit to the experimental data at five different temperatures. It shows

good fitting accuracy over the entire temperature range. To verify the obtained
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Figure 3.18: Stress profiles of D-ZK3 at different temperatures and the corresponding
curve fit of Burgers model.

viscoelastic parameters, the FE simulations are performed at different temperatures.

Figure 3.19 compares the experimental force profiles to the simulated results at five

different temperatures.

Figure 3.20 shows the Burgers parameters of the D-ZK3 glass at different tem-

peratures. The VFT function, as described in Section 3.6.2, is used to obtain the

temperature-dependent viscoelastic parameters. The corresponding values are as pro-

vided in Table 3.3. Figure 3.21 shows the experimental force profiles compared to

simulated results at four different temperatures that are not used in the fitting func-

tions. These data show that the numerical calculations are accurate at other temper-

atures within the glass molding range. The validation results of two different glass

categories reinforce the proposed method’s validity in describing and modeling the

thermo-viscoelastic nature of glass for FEM simulation in the glass molding process.
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Figure 3.19: Numerical verification of the force profiles at different temperatures,
D-ZK3.

Figure 3.20: Temperature dependent Burgers model parameters, D-ZK3.

3.8 Conclusions

Utilizing a constant strain rate and stress relaxation test, this chapter overcomes

the current limitations of modeling viscoelastic materials. The Burgers model is used
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Figure 3.21: Validation of the temperature dependency of the Burgers model, D-ZK3.

to simulate the viscoelastic response under conditions of constant strain rate and

constant strain. It is demonstrated that the obtained model parameters accurately

depict the viscoelastic response of the glass material over a broad range of molding

temperatures. In addition, the parameter η1 of the Burgers model is correlated with

the material’s bulk viscosity. The obtained viscosity values at various temperatures

are in close agreement with the viscosity data provided by the manufacturer. In this

investigation, temperature-dependent Burgers parameters based on the VFT func-

tion are used to model the temperature-dependent viscoelasticity. The temperature

dependence is incorporated into the numerical model using the ABAQUS user sub-

routine UMAT. Excellent agreement between the experimental and simulated results

of two distinct glass types at differing molding temperatures enhances the validity of

the proposed model.



CHAPTER 4: EVALUATION OF STRUCTURAL RELAXATION PARAMETERS

USING IMPULSE EXCITATION TEST

As stated in Chapter 1, when a glass within the transition range is subjected

to a sudden change in temperature, it shows a time-dependent change in property.

This time-dependent behavior is known as structural relaxation. The TNM model

that explained the changes in the fictive temperature Tf , (as discussed in Chapter

2 and represented by Eqs. 2.19 - 2.21) with respect to time and temperature has

been successfully used in literature to describe the structural relaxation behavior

of glass [7, 11]. Typically, the structural relaxation of a material is characterized

by observing the change in the physical property of the glass when subjected to a

sudden temperature jump. Ideally, one can use to thermal expansion of the glass

to define the structural relaxation behavior. But due to difficulties associated with

accurately and precisely obtaining the expansion behavior of the glass in the transition

region, researchers have used properties such as the refractive index, density, heat

capacity, etc, to identify the structural relaxation parameters [41–43]. But in the

aforementioned studies, the relaxation-induced property changes were generally very

small, leading to insufficient experimental data on the structural relaxation of the

glass.

Compared to other properties, the Young’s modulus is utilized considerably less

as an observable parameter for studying structural relaxation. It has been shown,

however, to be an outstanding indicator of relaxation behavior [44,45]. Also, contrary

to the density or refractive index, the variation of the elastic modulus in the glass

transition range is much higher, allowing for a more accurate characterization of the

structural relaxation parameters [46]. Typically, to measure the elastic modulus at
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high temperatures, experimental methods such as ultrasonic echography, Brillouin

light scattering technique, or direct mechanical vibration methods are commonly

used [7,45]. As such, in this study, the structural relaxation parameters of an optical

glass D-ZK3 are obtained by measuring the variation of the Youngs modulus above the

glass transition temperature. The change in the elastic modulus was obtained from

the impulse excitation test (IET) performed on a precision glass molding machine,

according to the American Society for Testing and Materials (ASTM) standard E1876

[47]. The TNM model is used to describe the variation of modulus with time and

temperature.

4.1 Theory

4.1.1 Impulse excitation test

The impulse excitation test is a non-destructive testing method used to determine

the mechanical properties of a material. It is commonly used for characterizing the

elastic modulus, shear modulus, and Poisson’s ratio. During the IET experiment,

the sample is excited by applying a small mechanical impulse using a striker, and

the resulting fundamental resonant frequency of the sample is measured. From these

measurements, the elastic properties of the material being tested are determined.

In order to determine Young’s modulus of the glass sample using the excitation test,

a rectangular sample is supported at a distance of 0.224 × L (L is the length of the

sample) from each end, as depicted in Fig. 4.4. The specimen is then gently tapped

in the center, and the resulting vibrations are recorded by a microphone placed close

to the specimen. The acquired vibration signal is then converted to the frequency

domain using the fast Fourier transformations, and the resulting resonant frequency is

determined. Utilizing the classical beam theory [47], the measured resonant frequency

is used to calculate the Youngs modulus of the material, which is given by the Eq.

4.1 [47].
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Figure 4.1: IET specimen setup for measuring Young’s modulus [30].

E = 0.9465

(
mf 2

f

b

)(
L3

t3

)
T1 (4.1)

where m is the mass, b is the width, L is the length, and t is the thickness of the glass

sample. ff is the fundamental resonant frequency in Hz, and T1 is the correction

factor given by Eq. 4.2.

T1 = 1 + 6.585

(
t

L

)2

(4.2)

4.1.2 TNM model

The TNM model, described in Chapter 2, utilizes the fictive temperature Tf to

describe the unique characteristics of the change in glass properties with respect to

temperature through the glass transition region. As such, once the fictive temperature

is known, any property that obeys the structural relaxation can be determined, or

vice-versa. In fact, as shown in Schere [11], when a glass sample equilibrated at

temperature T1 is suddenly subjected to a different temperature T2, the changes in

the glass properties and the fictive temperature with time satisfy the proportionality
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given in Eq. 4.3

Mp(t) =
p(t)− p2
p1 − p2

=
Tf (t)− T2
T1 − T2

(4.3)

where p is the measured property of the glass sample, p1, and p2 are the equilibrium

values of the property at the temperatures T1 and T2, respectively. Tf is the fictive

temperature and Mp is the structural response function. According to the TNM

model, the structural response function is given by the below equations,

Mp(t) = exp

[
−
(
t

τp

)b]
(4.4)

where b is a constant, and τp is the relaxation time given by Eq. 4.5.

τp = τ0

(
x∆h

RT
+

(1− x)∆h

RTf

)
(4.5)

where τo is a constant, ∆h is the activation energy, R is the ideal gas constant, and

x is a non-linearity constant reflecting the influence of temperature and structure on

the relaxation time [15]. According to Eq. 4.4, to model the structural relaxation

function a total of four parameters, which are τo, ∆h, b, and x, are to be determined

experimentally.

4.2 Experimental setup

The structural relaxation function is determined experimentally by using the im-

pulse excitation technique. The relaxation parameters of D-ZK3 (CDGM) glass, a

commonly used glass type in precision glass molding with a transition temperature of

511°C are determined. The thermal and mechanical properties of the glass material

are as given in Table 3.1. A rectangular glass sample of dimensions 60 mm × 2.5 mm

× 2 mm is used in the IET tests. The surface of the samples is highly polished to

reduce any surface roughness effects. The glass samples are freely supported at the
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Figure 4.2: Glass sample suspended at the two nodes of their first vibration mode.

nodes corresponding to their first mode of vibration using a ceramic support structure

as shown in Fig. 4.2.

A precision glass molding machine (Moore Nanotech GPM170) was used for the

impulse excitation tests. The test setup inside the molding machine is as shown in

Fig. 4.3. The glass sample was excited by applying an impulse load at the mid-

section of the glass beam. To impart an impulse load on the glass sample, a striker

at the top of the setup is actuated in regular intervals, which then hits a spring-

loaded hammer that gently taps the suspended glass sample. The resulting audio was

recorded using a high temperature-resistant microphone placed at a certain distance

from the glass sample. Figure 4.4 shows the audio signal and calculated the resonant

frequency of the sample, which can be used to calculate Young’s modulus according

to ASTM-E1876 [47]. A thermocouple is placed close to the glass sample to record

the temperature during the experiments.

Initially, the IET setup was used to do a crawl test, where the glass samples are

heated from room temperature to 550°C with a heating rate of 5°C/min. During

the test, the glass sample is excited at regular intervals to measure the change in

Young’s modulus with respect to temperature. The results from the crawl test are
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Figure 4.3: Impulse excitation test setup in Moore Nanotech GPM170.

Figure 4.4: Audio sample and the resulting resonant frequency obtained using IET.

used to calibrate the thermocouple used for feedback control during the excitation

testing. Once the thermocouple is calibrated, the temperature step tests were carried

out at four different temperature ranges to characterize the structural relaxation

parameters. The temperature jumps were from 480°C, 510°C, 525°C, and 540°C to

525°C, 525°C, 540°C, and 525°C, respectively. During the step test, the glass samples

are slowly heated to the initial temperature at 2°C/min and soaked until the modulus

is equilibrated. Then by using full power heating or cooling (about 20°C/min), a
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temperature jump is applied to the glass sample, and the corresponding change in

the Young’s modulus is recorded till equilibrium is achieved.

4.3 Estimation of structural relaxation parameters

Figure 4.5 shows the results from the crawl test where the sample is heated from

room temperature to 550°C at a rate of 5°C/min. Initially, the modulus tends to

decrease progressively as the temperature increases. This is due to the fact that the

viscosity of the glass material is high at low temperatures preventing any atomic

rearrangements on the experimental time scale [11]. As observed from Fig. 4.5, the

change in modulus is gradual below a temperature of 510°C. However, when heated

above this temperature, the rate of change of the elastic modulus increases suddenly,

indicating the glass transition, i.e., 510°C is the transition temperature. In fact, the

transition temperature obtained from the IET test closely matches to the transition

temperature reported in the manufacturer’s data sheet [48] and shown in Table 3.1.

Figure 4.5: Change in Young’s modulus with respect to temperature during the crawl
test.

Figure 4.6 shows the change in Young’s modulus with a change in temperature
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from 480°C to 525°C. During the crawl test, Young’s modulus at 480°C is observed

to be about 91 GPa. Even when the glass sample is held at this temperature for

hours, Young’s modulus did not change any further. However, this is not the case at

higher temperatures. When the sample temperature is increased from 480°C to 525°C

using full power heating, the change in temperature takes about 2 min. However, the

variation in Young’s modulus does not synchronize with the temperature change, as

shown in Fig. 4.6. After about 50 min, the modulus levels off at 84.5 GPa. The time

needed to equilibrate the material reduces with the increase of either the starting

temperature or the ending temperature. For the case of the temperature jump from

510°C to 525°C, the equilibration takes about 25 min, and the modulus changes from

87.5 to 84.5 GPa, as shown in Fig. 4.7. From 525°C to 540°C, the modulus reduces

from 84.5 to 81 GPa in only 15 min, as shown in Fig. 4.8. If the specimen is cooled

from 540°C to 525°C by flowing nitrogen, the modulus increases again from 81 to 84.5

GPa, as shown in Fig. 4.9. However, the relaxation process takes a shorter time as

the initial temperature is high. As explained in Chapter 2, even with the same target

temperature, the thermal history of the sample affects the relaxation process [11].

For comparison, the approach curve from 510°C to 525°C has also been added to Fig.

4.9. Even though both tests have the same target temperature and magnitude of

temperature variation, the relaxation rate in the case of cooling is faster than that in

heating.

To determine the structural relaxation parameters, the TNM model (Eq. 4.4) is

fit to the experimental data obtained from the initial temperature step tests simul-

taneously. A non-linear curve fitting algorithm is used to obtain the fit parameters.

The TNM model parameters for D-ZK3 glass are as follows: τo = 8.07e-09 , ∆h =

24975.89, b = 0.66, and x = 0.34. The resulting theoretical curves for the different

tests are as shown in Figs. 4.6 - 4.8, respectively, showing an excellent agreement.

Further, to verify the fit parameters, the theoretically obtained is compared to the
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experimental data obtained from 540°C to 525°C temperature jump test. Figure 4.9

shows a good agreement between the TNM model and the experimental data.

Figure 4.6: Change in Young’s modulus with respect to time and the corresponding
TNM model fit at a temperature jump from 480°C to 525°C.

4.4 Implementation of structural relaxation behavior in FE model

The structural relaxation of glass is implemented in the FE model by adding a

time dependency to the thermal expansion coefficient. The coefficient of thermal

expansion of a glass cooled through the transition region follows the path shown in

Fig. 4.10. The expansion coefficient is constant when the glass is above or below

the transition range. However, in between the transition region, when cooled, the

expansion coefficient changes non-linearly depending on the cooling rate and the

structural relaxation parameters. When the glass is above the transition region, the

resulting thermal strain is given by Eq. 4.6

dεv = αLdT (4.6)
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Figure 4.7: Change in Young’s modulus with respect to time and the corresponding
TNM model fit at a temperature jump from 510°C to 525°C.

Figure 4.8: Change in Young’s modulus with respect to time and the corresponding
TNM model fit at a temperature jump from 525°C to 525°C.
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Figure 4.9: Change in Young’s modulus with respect to time and the corresponding
TNM model fit at a temperature jump from 510 °C and 540°C to 525°C.

Figure 4.10: Coefficient of thermal expansion of glass cooled through transition region.

where αL is the liquid thermal expansion coefficient. When the glass is below the

transition region, i.e., solid or glassy state, the strain is given by Eq. 4.7

dεv = αGdT (4.7)
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where αG is the solid thermal expansion coefficient. However, when the glass is the

transition region, the strain is dependent on both the temperature and the fictive

temperature, as shown below:

dεv = αGdT + (αL − αG)dTf (4.8)

where Tf is the fictive temperature given by the TNM model as described in Chapter

2.

A semi-implicit finite difference scheme provided by Moarvosky et al [49] is used to

solve the TNMmodel (Eqs. 2.19-2.21) numerically to evaluate the fictive temperature,

which is given by,

Tf (t) =
n∑
i=1

wi (τpi ∗ Tfi(t− dt) + T (t)∆t)

τpi + ∆t
(4.9)

τpi = τpirefexp

[
−∆h

R

(
1

Tr
− x

T (t)
− 1− x
Tf (t− dt)

)]
(4.10)

where ∆h, and x are the relaxation parameters, wi, and τpiref are the weights and the

relaxation times of the Prony series, respectively, obtained at a reference temperature

Tr. The Prony series coefficients are obtained from the stretched exponential function

form of the relaxation function calculated at the reference temperature, as given

below:

Mp = exp

[
−
(

t

τp(Tr)

)b]
=

n∑
i=1

wiexp

(
− t

τpi

)
(4.11)

where wi are the weights whose sum is equal to 1, and τp(Tr) is the structural relax-

ation time, given by Eq. 4.5, evaluated at the reference temperature Tr. The reference

temperature is selected to be 50-100°C higher than the transition temperature of the

glass. As at higher temperatures, the structural relaxation process is faster, and the
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difference between the actual and fictive temperatures will be negligible [7,50]. Hence,

by substituting Tf = Tr, Eq. 4.5 reduces to,

τp(Tr) = τoexp

(
∆h

R ∗ Tr

)
(4.12)

The structural relaxation behavior, given by Eqs. 4.6 - 4.12, is implemented in

ABAQUS by using a user subroutine UEXPAN. A six-term Prony series is used to

define the relaxation behavior by choosing a reference temperature of 600°C, which

is well above the transition temperature of the glass (511°C) used in this study. The

relaxation parameters and the Prony series coefficients used in this study are given

in Table 4.1

4.5 Conclusions

In this study, the impulse excitation test is used to characterize the structural

relaxation parameters of the glass material. The structural relaxation of the glass is

modeled using the TNM model. Four different temperature jump tests are used to

obtain and verify the TNM model parameters in this study. It was shown that the

obtained model parameters accurately depict the structural relaxation response of the

glass material. Finally, in this study, the material testing required for characterizing

the glass material is designed to be implemented on the glass molding machine. This

helps to streamline the development and testing of new glass materials that can be

used in precision glass molding.
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Table 4.1: Structural relaxation parameters used in the numerical model.

Solid expansion coefficient, αG (10−6/K) 9.3

Liquid expansion coefficient, αL (10−5/K) [51] 3.3

Activation energy, ∆h 24975.89

Nonlinearity parameter, x 0.34

Relaxation function

Stretched exponential Prony series (T=600°C )

b τo wi τi

0.66 8.07e−09

0.0055 0.042

0.279 30.562

0.459 10.033

0.001 1.006

0.202 1.924

0.003 0.631



CHAPTER 5: FINITE ELEMENT MODEL OF PRECISION GLASS MOLDING

PROCESS AND MOLD COMPENSATION

5.1 Introduction

As stated previously, one of the major drawbacks of the precision glass molding

process is the deviation of the lens profile at the end of the molding process. Gen-

erally, during the cooling cycle of the glass molding process, the mold tooling and

the lens undergo thermal shrinkage. However, due to different thermal properties

(typically, glass has a higher thermal expansion coefficient than molds), the profile

of the glass lens tends to deviate from the mold shape, affecting the optical quality.

To compensate for the deviations empirically, the mold surface profile is modified

iteratively by trial and error until the desired lens profile is achieved. Often, this

requires a few weeks to months of design iterations to manufacture the molds to meet

the product specifications. On the other hand, numerical simulations provide a faster

and more viable option to compensate the molds.

A review article by Brown [52] shows the research done in developing numerical

models for glass pressing operations. The initial numerical models assumed the glass

to be Newtonian viscous fluid and ignored the viscoelastic and structural relaxation

characteristics [53–55]. Jain et al. [8,17] used a finite element model with a standard

linear solid (SLS) material model to represent the loading conditions and a single

Maxwell model to represent the relaxation part of the molding process. They showed

that the material model used in their study needs to be revised to model the molding

process accurately. Later studies [7, 50, 56] used the generalized Maxwell model,

a more accurate material model, to simulate the precision glass molding process.

However, as stated previously, due to the complexity of the model and a high number
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of fitting parameters, the models used in these studies are accurate only at the testing

temperatures used in these studies.

As such, this chapter develops a finite element model to simulate the glass molding

process by incorporating the material model developed in this study. The material

properties obtained in previous chapters are used in the developed model to ana-

lyze the lens curve deviation. The experimentally obtained profile deviations are

compared to the numerical simulation of a biconvex lens. Finally, a double-sided

aspherical lens is numerically molded to analyze the profile deviations, and the molds

are compensated accordingly.

5.2 Molding Process details and the molding machine

The Moore Nanotech precision glass molding machine (GPM170), as shown in Fig.

3.2, is used in this study to mold a biconvex lens made of D-ZK3 (CDGM) and P-

SK57 (Schott) type glass. The process steps, the corresponding thermal profile, and

the mold displacement during the molding process are shown in Fig. 5.1. It shows

the different stages used in the precision glass molding process. Initially, the entire

molding assembly is heated from 250°C to the molding temperature at 25°C/min.

Typically, IR lamps heat the molding assembly in precision molding machines. How-

ever, the amount of heating power available is limited by the exposure of the molds

to IR radiation during the molding process. Especially when the molds are close

together during the pressing stage of the molding process, the lamps are turned off to

prevent any damage to the mold tooling. This leads to temperature non-uniformity

during the pressing stage. In this study, to maintain isothermal temperature condi-

tions during molding, conductive-based platen heaters are used along with the lamps

for molding the glass lens [37]. As shown in Fig. 5.2, the platen heaters are placed

directly below the molds and constantly heat the molds throughout the molding cycle.

After isothermal conditions are achieved in the heating cycle, the glass preform is

pressed into the final lens shape by applying a constant velocity to the top mold until
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Figure 5.1: Process data from GPM170 molding machine (Nanotech), for a lens made
of D-ZK3 at 570°C.

the desired center thickness is achieved. Then, the molding setup is gradually cooled

by pumping nitrogen into the molding chamber. The nitrogen flow rate is controlled

to achieve the desired cooling rate (25°C/min). During the gradual cooling step, the

loading is switched from displacement controlled to force-controlled to apply a hold-

up force of 30 N. The hold-up force helps to prevent any gross changes in the shape

of the lens, as the glass is still above the transition temperature during the gradual

cooling step. Finally, the top mold is displaced by about 0.15 mm from its current

position, and the mold assembly is cooled to the release temperature at 75°C/min.

Typically, both the spherical and aspherical lens profiles are defined using the sag

equation, given below
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Figure 5.2: Molding process with a) only IR lamps, and b) IR lamps and platen
heaters

z =
x2

R

(
1 +

√
1− (1 + k) x2

R2

) +
n∑
i=1

A2ix
2i (5.1)

where x is the radial distance from the central axis, Z is the sag height, k is the conic

constant, R is the radius of curvature, and A2i are the aspheric coefficients. The first

term on the right-hand side of Eq. 5.1 is the spherical term used to define the spherical

surfaces. The aspherical surfaces are defined by adding the aspheric coefficients A2i,

to the spherical term. Initially, to compare the experimental and numerical results,

spherical molds with an aperture diameter of 3.01 mm and a radius of curvature of 3

mm is used. The molds are as shown in Fig. 5.3.
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Figure 5.3: The biconvex molds used in the experiment.

5.3 Finite Element Model

Numerical simulations of the precision glass molding process are carried out using

the commercially available finite element software ABAQUS/Standard [57]. Consid-

ering the geometry of the molds and the ball preform used in this study and the

symmetry of the loading conditions, the process is simulated using an axisymmetric

model. The molds are modeled as elastic components, while the glass is modeled as

a viscoelastic material. The elastic and thermal properties used in the simulation are

given in Table 3.1. The viscoelastic properties of the glass are incorporated into the

model by defining a user-subroutine UMAT to include temperature-dependent vis-

coelasticity. Moreover, finally, the structural relaxation parameters are defined using

a UEXPAN user subroutine in ABAQUS.

The different stages of the molding process are modeled as fully coupled temper-

ature displacement analysis to simulate the thermal and mechanical aspects of the
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Figure 5.4: Finite element model

molding process. Assuming isothermal conditions during the molding process, the

heating step is modeled as a steady-state analysis (time-independent), while the rest

of the process steps (pressing, gradual cooling, and rapid cooling) are modeled as

transient analysis to simulate the time-dependent material response. The initial ge-

ometry of the molds and the glass are as shown in Fig. 5.4. The upper and lower

molds are meshed with 4600 and 4583 linear quadrilateral elements of type CAX4T,

respectively, and the ball preform is discretized with 25,251 CAX4T elements. A

refined mesh is used at the interface between the glass and the molds to better define

the geometry of the mold surface (the spherical and radius segments of the mold

surface) and the pressed lens, as shown in Fig. 5.5.
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The interaction between the glass and the molds is defined using a surface-to-surface

contact algorithm in ABAQUS. The mold surfaces are chosen as the main surface,

and the outer edge of the ball preform is defined as the secondary surface in the

contact definition, shown in Fig. 5.4. The normal behavior of the contact interface

is defined using the hard contact formulation, and the tangential behavior is defined

using the penalty contact algorithm with a friction coefficient of 0.05 in ABAQUS.

Based on the model developed by Anathasam [7], heat transfer across the contact

interface is also included. Finally, the mechanical boundary conditions are defined in

the model by using two kinematic coupling constraints, one between a reference point

(RF-1) and the top surface of the top mold and the other between a reference point

(RF-2) and the bottom surface of the bottom mold, as shown in Fig. 5.4. However,

in the definition of the coupling constraints, only the vertical degree of freedom of

the mold surfaces is restricted to move along with that of their respective reference

points. Gravity is also included in the model.

Figure 5.5: Finite element mesh

During the initial heating stage of the model, both the top and bottom molds
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are fixed in their positions. In fact, the bottom mold is fixed at its initial position

throughout the simulation. In the pressing step of the model, a constant velocity is

applied on the top mold to deform the glass preform until the desired center thickness.

During the gradual cooling cycle, the velocity boundary condition is switched to the

force boundary condition, and a concentrated load (hold-up force) is applied to the

top mold. Finally, the top mold is displaced by 0.15 mm in the opposite direction

to simulate the release of the lens from the molds in the final step of the simulation.

The temperature boundary conditions are defined on the outer edges of the mold,

and the duration of the different stages is adjusted based on the cooling and loading

rates used in the simulation.

5.4 Experimental vs. Numerical lens profile

A D-ZK3 glass gob of diameter 3.1 mm is molded into a biconvex lens at a molding

temperature of 570°C on a GPM170 using the mold set shown in Fig. 5.3. The process

data from the machine is shown in Fig. 5.1. A molding velocity of 1 mm/min is used

during the pressing stage, and a hold-up force of 25N is applied during the gradual

cooling cycle. The mold tooling, along with the pressed lens, is cooled from 570°C

to 490°C at a cooling rate of 25°C/min during the gradual cooling cycle, and finally,

the lens is cooled to the release temperature of 250°C at 50°C/min during the rapid

cooling cycle. The temperature and force profiles from the experiment are defined as

boundary conditions in the FEM model.

The experimental lens profile is measured using a profilometer, whereas the nu-

merical lens profile is determined using the coordinates of the deformed FE mesh

nodes at the end of the simulation. The deviation of the lens profile is calculated

by subtracting the measured lens profiles from the surface of the original mold. The

deviations measured numerically and experimentally with respect to the radius of the

lens are depicted in Fig. 5.6. While the experimental and numerical deviations are

comparable at the lens’s center, the difference nears 0.15 µm at the lens’s outer edge.
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Figure 5.6: Experimental vs Numerical profile deviation.

The misalignment of the top and bottom molds in the experiments is the primary

cause of the discrepancy between the simulation and the experimental data. It was

observed that, in the molding experiments the decentration between the top and bot-

tom mold is around 0.2 mm. The experimental mold misalignment contradicts the

axisymmetric assumptions used in the simulation and also results in a lens of poor

quality. Therefore, the mold tooling must be correctly aligned before any additional

experiments can be conducted.

5.5 Double Aspheric Lens

The numerical model developed in this chapter is utilized to simulate the molding

process for a D-ZK3 glass double aspheric lens. The sag equation (Eq. 5.1) is used to

define the mold profiles. The spherical term of the sag equation contains the following

constants: for the bottom mold, a radius of curvature of 5.9 and a conic constant of

-10; and for the top mold, a radius of curvature of -8.895 and a conic constant of

-1.420. The aspherical coefficients of the upper and lower molds are shown in the
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Table 5.1. The required center thickness of the lens is set to 0.8 mm. The glass is

formed with a molding velocity of 1 mm/min, a progressive cooling rate of 25°C/min,

and a hold-up force of approximately 4 N, 10 N, and 22 N at a molding temperature

of 570°C, 560°C, and 570°C, respectively. To minimize additional lens deformation

during the gradual cooling phase and to meet center thickness requirements, it was

necessary to vary the hold-up force at the different temperatures.

Table 5.1: Asphere lens profile parameters.

Aspheric Coefficients Bottom Profile Top Profile

A2 0.06718649 -0.0137811255

A4 -0.011428 0.0419097220

A6 -0.05311931 -0.1069610314

A8 0.06260547 0.1301152752

A10 -0.05230059 -0.0768102593

A12 0.03178715 0.0248841417

A14 -0.01241399 -0.0042105655

A16 0.002695199 0.0002883259

A18 -0.000242262 -

Figures 5.7a and 5.7b depict the deviation of the bottom and top profiles of the

molded lens at various molding temperatures, respectively. The maximum profile

deviation of the bottom and upper surfaces is observed at a molding temperature of

550°C. In addition, irrespective of the molding temperature, the magnitude of the

deviation increased as the distance from the lens center increased.

5.6 Mold compensation

In order to compensate the molds for the form deviation, the lens profile at a

molding temperature of 550°C is considered. The deformed lens profile obtained by

molding on the original molds is initially fitted to the sag equation given by Eq. 5.1.
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Figure 5.7: Double aspheric lens profile deviation a) Bottom profile, and b) Top
profile.
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In the curve fitting process, it is presumed that the spherical terms of the sag equation

are equivalent to those of the mold profile, and only the aspherical coefficients are

used in the curve fit. The aspherical coefficients (Acm) of the compensated mold are

given by Eq. 5.2.

Acm = Aom + (Aom − Ad) (5.2)

where Aom are the aspherical coefficients of the original mold, and Ad, are the curve fit

aspherical coefficients of the deformed lens. The aspherical coefficients of the original

mold, the deformed lens, and the compensated mold, for the bottom and top profiles

are as given in Table 5.2 and Table 5.3, respectively.

Table 5.2: Aspherical coefficients of compensated bottom mold.

Aspheric
Coefficients Original Mold Deformed Lens Compensated

Mold

A2 0.06718649 0.06785004 0.06652293

A4 -0.011428 -0.01249589 -0.01036010

A6 -0.05311931 -0.05073405 -0.05550457

A8 0.06260547 0.05882566 0.06638528

A10 -0.05230059 -0.04909461 -0.05550657

A12 0.03178715 0.03037483 0.03319947

A14 -0.01241399 -0.01214345 -0.01268452

A16 0.002695199 0.00269505 0.00269535

A18 -0.000242262 -0.00024681 -0.00023770

Figures 5.8a and 5.8b show the deviation in the bottom and top profile, respec-

tively, before and after molding compensation. The form error (peak-to-valley) of the

deviations in the molded lens has been reduced from 1.2 µm to 0.13 µm in the bottom

lens surface and from 1.43 µm to 0.11 µm in the top surface.
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Table 5.3: Aspherical coefficients of compensated top mold.

Aspheric
Coefficients Original Mold Deformed Lens Compensated

Mold

A2 -0.0137811255 -0.01393081 -0.01363144

A4 0.0419097220 0.04162174 0.042197700

A6 -0.1069610314 -0.10785713 -0.10606493

A8 0.1301152752 0.13259938 0.12763117

A10 -0.0768102593 -0.07895323 -0.07466728

A12 0.0248841417 0.02578786 0.02398042

A14 -0.0042105655 -0.00439848 -0.00402265

A16 0.0002883259 0.00030358 0.00027306

5.7 Conclusions

This study simulates the precision glass manufacturing process using an axisym-

metric finite element model. Using the D-ZK3 glass material, a bi-convex lens is

formed, and the derived lens profile deviations are compared to the experimentally

formed lens. The numerical profile resembles the experimental lens profile in the

center but deviates toward the lens periphery. In the experimental arrangement, the

misalignment of the molds is the cause of the error. In addition, the model is used

to simulate the molding process of a double aspheric lens at various molding tem-

peratures. Using a mold compensation technique, the mold surfaces are modified to

account for deviations in the lens profile. The profile deviations of the lenses produced

with the modified molds were significantly reduced. However, it is observed that as

the molding temperature decreased, the deviation between the top and bottom lens

profiles increased. This demonstrates that appropriate molding parameters must be

determined before mold compensation techniques can be implemented.
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Figure 5.8: Profile deviations before and after mold compensation a) Bottom profile,
and b) Top profile.



CHAPTER 6: SELECTION OF PROCESS PARAMETERS IN PRECISION

GLASS MOLDING PROCESS

6.1 Introduction

The precision glass molding process involves several process parameters, and the

proper selection of these parameters plays a vital role in achieving the required profile

accuracy as well as the optical quality of the molded lens. Empirically, the parameters

of the molding process are altered by trial and error until the desired center of the

thickness (CT) of the glass lens is achieved. However, due to the complex and obscure

nature of the molding process, it often takes weeks or months of process development

to meet the dimensional requirements. Nevertheless, fulfilling the required dimen-

sional specifications does not necessarily equate to high optical quality. As seen in

the previous chapter, various parameter sets used for molding the lens may provide

the required center thickness but will result in lenses with varying optical quality.

Hence it is imperative to study the mechanism of different process parameters and

develop a sustainable technique to realize Industry 4.0 of the precision glass molding

process.

A few empirical evaluations of the effect of process parameters on the glass molding

process have been published in the literature. The early studies were limited to

analyzing the influence of molding temperature on the molding process [58,59]. Waqas

[60] was the first to use the design of experiments using a three-level approach to

obtain a parameter set with minimum cycle time and better repeatability. Cha et

al. [61] investigated the influence of a few molding process parameters on aspheric

glass lenses experimentally. The influence of the parameters on the peak-to-valley

form error was investigated using a two-level strategy. Gleason et al. [62] analyzed
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the effect of various process parameters on the center thickness of the molded lens

using the design of experiments. They had to reduce the number of process parameters

from seven to four in order to better interpret the results of the DOE. In their initial

DOE, they utilized two glass types, N-BK7 and L-BAL35, and concluded that the

influence of glass type (within a glass family) on the final thickness of molded optic

is negligible. Although the experimental studies provided some useful insights into

the effects of glass molding parameters, their scope and interpretation of the effects

of individual molding process parameters were limited.

In contrast, precise numerical simulations provide a cost-effective, in-depth anal-

ysis of the molding process and aid in minimizing issues throughout the precision

glass molding manufacturing process. Zhou et al. [63] used a finite element model to

analyze the sensitivity of various process parameters on the profile deviation of the

molded lens. The results indicated that the cooling rate has no effect on the profile

deviation, whereas increasing the hold-up force decreased the magnitude of the devia-

tion. A similar analysis was used by Kejun et al. [64] to examine the effect of process

parameters on the curve deviation of a double aspheric lens. Contrary to the findings

of Zhou et al. [63], Tao et al. [65] analyzed the residual stresses in the molded lens

at various cooling rates and demonstrated that the residual stresses increased as the

cooling rate increased, while the profile deviations decreased. Although numerical

models are shown to be able to predict the deviations of the molded lens in the pre-

cision glass molding process, the lack of proper material characterization at different

molding temperatures and a proper understanding of the influence of various process

steps and their parameters has led to contradictory conclusions in the literature.

In this chapter, the finite element model and the material parameters derived in

this study are used to conduct an in-depth analysis of the effect of various process pa-

rameters on the curve deviation and residual stresses for two distinct glass materials.

On the basis of the observations, a novel molding process is proposed to reduce the
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influence of molding parameters on the curve deviation and residual stresses in the

molded lens. In addition, the molding process devised in this chapter significantly

reduces the total cycle time of the molding process.

Figure 6.1: Process parameters in precision glass molding process.

6.2 Overview of the Molding Process

Historically, the molding process consisted of five stages, as depicted in Fig. 6.1:

Heating, soaking, pressing, Gradual cooling, and rapid cooling. During the heating

and soaking phase, the glass sample is heated from room temperature to molding tem-

perature and held at that temperature for a predetermined amount of time. Proper

selection of heating and soaking periods is essential for achieving a uniform sample

temperature. However, once the isothermal conditions are established and maintained

throughout the molding cycle, the heating and soaking parameters will have no effect

on the lens’s deviations or residual stresses. Therefore, once the effect of other process

parameters has been determined, it is simple to empirically optimize the heating and

soaking cycles. As such, the heating and soaking stages of the molding process are

not considered for parameter optimization. Similarly, during the rapid cooling stage

of the molding process, the pressed lens is cooled from the annealing temperature

to the release temperature or room temperature. Below the annealing temperature,
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glass can be regarded as an elastic solid [11], and the cooling rates employed during

this step have no influence on the deviation or residual stresses. And therefore, the

rapid cooling rate is considered to be constant in this study.

Figure 6.1 identifies the process parameters in the pressing and the gradual cooling

stages of the molding process. The parameters are as follows: molding temperature

(Tm), molding velocity (Pv), gradual cooling rate (qg), and the hold-up force (Fm).

Zhou et al. [63] demonstrated that the annealing temperature (Tc) has a negligible

influence on the curve deviation if it is set below the transition point of the glass.

Typically, the annealing point can be optimized to reduce the gradual cooling step

time. However, in this study, the temperature at the end of the gradual cooling

phase is set to the annealing temperature of the glass (viscosity of 14 Pa-s), which is

approximately 470°C for both the glasses analyzed.

6.3 Issues with Hold-up Force

A force is applied to the molded lens in the annealing stage of the molding process

to help to maintain the shape of the lens as it is cooled below the annealing point.

The magnitude of the force required is highly dependent on the molding temperature

and the gradual cooling rate used during the molding process. As illustrated in Fig.

6.2, if the magnitude is too large, the lens is further deformed during the annealing

step, and if it is too small, the molded lens shrinks significantly. Typically, if the

molding temperatures are close to the transition point of the glass [21, 63], a higher

magnitude force can be applied without further deforming the molded lens. However,

if molding temperatures well above the transition temperature are used, the force

required might be on the order of a few Newtons to milliNewtons depending on the

size of the optic. And applying forces of such low magnitude on a typical glass press

molding machine is unrealistic.

Due to the aforementioned limitations, the hold-up force is substituted by displacement-

controlled unloading during the annealing phase in this study. To release the lens
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Figure 6.2: The final profile of the lens when molded with a) appropriate hold-up
force, b) low hold-up force, and c) excessive hold-up force.

during the annealing phase, the top mold is retracted from the molded lens at a

predetermined speed, designated as the release velocity in this study. The effect of

the release velocity on the curve deviation and the residual stresses will be addressed

during the course of this chapter.

6.4 Influence of Molding Step Parameters

The double aspheric lens described in the preceding chapter is used in this section

to analyze the influence of the compression stage parameters on the curve deviation

and the residual stresses. For this purpose, the cooling rate during the annealing

phase is set to 25°C/min, and the top mold release velocity is set to 0.2 mm/min. It

should be noted that the center thickness of the molded lens is maintained at 0.8 mm

in all the simulations in this study.

6.4.1 Effect of viscoelastic material properties

In order to compare the influence of viscoelastic properties of the two glass mate-

rials used in this study, the viscosity of the glass is chosen as the control parameter

as opposed to the molding temperature. As observed in Chapter 3, the viscosity-

temperature curve of each glass material is distinct. Therefore, selecting a molding
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viscosity rather than a molding temperature normalizes the impact of the glass ma-

terial. [62]. Typically, in precision glass molding, a molding viscosity between 108.0

- 106.8 Pa.s is recommended to reduce the forces required during the molding pro-

cess [66]. As such, in this investigation the viscosity range of 108.0 - 106.8 Pa.s is

utilized. The molding viscosity and the corresponding molding temperature of D-

ZK3 and P-SK57 glass are as given in Table 6.1.

Table 6.1: Temperature of different materials at similar viscosity.

Log(η) Pa.s 8.0 7.8 7.6 7.4 7.2 7.0 6.8

D-ZK3 (°C) 560.814 565.188 569.686 574.311 579.07 583.012 589.012

P-SK57 (°C) 561.904 566.86 572.012 577.373 582.954 588.771 594.838

Figure 6.3: Maximum force at the end of the pressing cycle.

The double aspherical lens is molded using the two materials at each molding

viscosity given in Table 6.1. At each viscosity, molding velocities ranging from 0.5

mm/min to 3.0 mm/min are used to form the final shape of the lens. Figure 6.3 shows

the maximum reaction force at the end of the pressing step for both the materials
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at different viscosity and molding velocities. It is observed that when subjected to

similar molding conditions, the viscoelastic response of both materials is similar. In

fact, looking back at Chapter 3, despite the distinct temperature response of the

two glasses, their Burgers parameters at similar viscosity are identical. A similar

observation was made by Gleason et al. [62] in their initial design of experiments

between L-BAL35 and N-BK7 glass. The materials used in this study and by Gleason

et al. [62] are members of the same family of oxide glasses, with only minor variations

in modifier concentrations. As such, using viscosity as a control parameter in the

molding process normalizes the effect of glass material (for oxide glasses). And thus,

the optimized molding process parameters will be similar between different materials.

Hence, for further analysis of different parameters, only P-SK57 glass is considered.

6.4.2 Effect of molding viscosity

The pressing velocity is set to 1.5 mm/min in order to examine the influence of

molding viscosity on the curve deviation of the lens. Figures 6.4a and 6.4b illustrate

the deviation in the bottom and top profile of the double aspheric lens for various

viscosities. The maximal deviation of the bottom and top profiles tends to increase as

the viscosity increases from 106.8 Pa.s to 108.0 Pa.s (i.e. as the molding temperature

decreases). Figure 6.5 illustrates the form error (peak-to-valley, PV) of the deviations

at various viscosities. The form error increased from approximately one micron to 7.8

µm for the bottom profile and from 1.5 µm to 4.7 µm for the top profile. Although

the results indicate that selecting a lower viscosity is advantageous, this can often

contribute to high molding temperatures depending on the type of glass (e.g., for

BK7, around 700°C), resulting in a longer process time and glass-to-mold sticking

issues [67].
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Figure 6.4: Effect of molding viscosity on profile deviation a) Bottom profile, and b)
Top profile.

Figure 6.5: Form error of the molded lens at different viscosities.

6.4.3 Effect of molding velocity

To analyze the effect of molding velocity on the curve deviation of the molded lens,

the molding viscosity is set to 107.6 Pa.s. Figure 6.6a and 6.6b depict, respectively, the

deviation in the bottom and upper profiles of the molded lens at various velocities. As

the molding velocity was increased from 0.5 mm/min to 3.0 mm/min, the deviation
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of the bottom and upper profiles increased. Figure 6.7 shows the form error (PV) of

the deviations at different velocities. The form error increased from 1.3 µm to 5.4 µm

on the bottom profile, and it increased from 1.57 µm to 3.57µm on the top profile as

the molding velocities increased.

Figure 6.6: Effect of molding velocity on profile deviation a) Bottom profile, and b)
Top profile.

6.5 Stress Relaxation in Molded Lens

As demonstrated in Section 6.3, employing a lower molding viscosity and molding

velocity will reduce profile deviation and improve the lens’ optical quality. However,

as previously mentioned, using a reduced viscosity may result in higher molding

temperatures (depending on the type of glass; for BK7 glass, around 700°C) and longer

molding process times (increased heating and soaking time). Similarly, choosing a

slower molding speed will also prolong the pressing step time required to achieve the

specified center thickness of the molded lens. Therefore, in order to attain optimal

lens quality and reduce manufacturing cycle time, it is essential to comprehend the

lens deviation mechanism in the molded lens.

Generally, in the glass molding process, the lens tends to deviate from the mold

profile during the gradual cooling step of the manufacturing process due to thermal

shrinkage and the relaxation of the residual stresses induced during the pressing stage.
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Figure 6.7: Form error of the molded lens at different molding velocities.

The deviation of the lens profile due to thermal shrinkage is a material characteristic

that can only be eliminated through mold compensation. However, the deviation due

to the relaxation of residual stresses is a property of the process parameters and can

be minimized or even avoided by the proper selection of the molding parameters. As

such, analyzing the stress profiles in the molded lens during the pressing and gradual

cooling step will help to optimize the molding process.

Figures 6.8a and 6.8b shows the Mises stress distribution in the molded lens at a

molding viscosity of 108.0 Pa.s and 106.8 Pa.s, respectively, at the end of the pressing

stage and the gradual cooling stage. During the pressing stage, in both instances, the

stresses that are induced into the lens by the end of the pressing stage are completely

relaxed by the end of the gradual cooling stage. A similar stress distribution is

observed at varied molding viscosities and velocities used in this study. However, the

magnitude of the stresses increased as the molding viscosity or the molding velocity

increased. Figures 6.9 and 6.10 depict the change in the maximum Mises stress in

the lens during the pressing and gradual cooling steps with different viscosities and
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Figure 6.8: Stress distribution in the molded lens at the end of pressing and gradual
cooling step a) at a viscosity of 108 Pa.s and b) at a viscosity of 106.8 Pa.s.

velocities, respectively. It is observed that the magnitude of deviation in the lens

profile is directly proportional to the magnitude of the stress at the commencement

of the gradual cooling phase. For example, the test case with a viscosity of 107.4 Pa.s

and velocity of 1.5 mm/min has a maximum stress of 4.92 MPa with a form error of

2.16 µm and 2.04 µm in the bottom and top profiles respectively. Similarly, in the

test case with a viscosity of 107.6 Pa.s and velocity of 1 mm/min has a maximum

stress of 5.33 MPa with a form error of 2.32 µm and 2.08 µm in the bottom and top

profiles respectively. This indicates that minimizing the stresses at the end of the

pressing phase will minimize the deviation in the molded lens.

As seen in Chapter 3, the stresses in the glass can be minimized by using the

constant strain approach. To that extent, a relaxation step is incorporated between

the pressing and gradual cooling stages of the molding process. During the relaxation

phase, the molding temperature is held constant. It is evident from stress relaxation

experimental data that the stresses relax quicker at higher temperatures. As such,

relaxing the glass at the molding temperature rather than during the gradual cooling

phase should take a reduced period of time. However, adding a relaxation step to the

process might increase the total manufacturing time, it might enable the use of faster

cooling rates during the gradual cooling phase without any adverse effects on the
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Figure 6.9: Maximum Mises stress in the molded lens at different viscosities a) Press-
ing step b) Gradual cooling step.

Figure 6.10: Maximum Mises stress in the molded lens at different velocities a) Press-
ing step b) Gradual cooling step.

optical quality. To implement the constant strain conditions during the relaxation

phase, the top mold is held in position for a specific duration depending on the

molding viscosity.

The simulations used in Section 6.3.2 and Section 6.3.3 are repeated by adding

a relaxation phase to the molding process. Figure 6.11 shows the form error in

the profile deviation at various viscosities with and without the relaxation step. It

is observed that with the modified molding process, the molding viscosity has no

influence on the profile deviation. The form error on the bottom profile is around

0.6 µm and 1.2 µm on the top profile at different molding viscosities used in this
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investigation. Similarly, Fig. 6.12 depicts the form error in the profile deviation

of the molded lens at different molding velocities before and after modifying the

molding process. Similar to viscosity, molding velocity has no influence on the profile

deviation with the modified molding process. As such, by adding a relaxation phase

to the molding process, any influence of the pressing step parameters is eliminated.

Figure 6.11: Form error (PV) vs molding viscosity in the top and bottom lens profile
with and without relaxation.

6.6 Influence of Gradual Cooling Parameters

The modified molding process, i.e., with the relaxation step, is used to analyze

the influence of the release velocity and the cooling rate applied during the gradual

cooling stage of the molding process. Since the pressing step parameters have no

effect, a molding viscosity of 107.6 Pa.s and a molding velocity of 3.0 mm/min are

used in the simulations. The rapid cooling rate is set to 70°C/min
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Figure 6.12: Form error (PV) vs molding velocity in the top and bottom lens profile
with and without relaxation.

6.6.1 Effect of Release Velocity

To investigate the effect of release velocity on the profile deviation, the gradual

cooling rate is set to 25°C/min. The release velocities used are as follows, 0.2, 0.5, 1.0,

1.5, 2.0, 2.5, and 3.0 mm/min. Figure 6.13 shows the form error remained the same

in both the bottom and top profiles of the molded lens at various release velocities. It

should be noted that the center thickness of the molded lens is approximately 0.8 mm

(the required CT), even when the top mold is removed swiftly from the lens. This

shows that the commonly used hold-up force during the gradual cooling stage is not

necessary if the stresses in the molded lens are relaxed prior to the cooling phase.

6.6.2 Effect of Gradual Cooling rate

To study the influence of gradual cooling rate on the profile deviation on the profile

deviation, a release velocity of 3 mm/min is used in the simulations. Cooling rates of

5, 10, 20, 40, 70, and 100°C/min are used in the analysis. Figure 6.14 shows the form
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Figure 6.13: Form error (PV) of the molded lens at different release velocities.

Figure 6.14: Form error (PV) of the molded lens at different gradual cooling rates.

error in the top and bottom profiles at various gradual cooling rates. It is observed

that the cooling rate had no effect on the profile deviation with the inclusion of a

relaxation phase in the molding process.
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Figure 6.15: Maximum residual stress in the molded lens at different gradual cooling
rates.

Figure 6.15 shows the maximum Mises stress in the molded lens at the end of the

molding process. As observed, the magnitude of the stress increased with an increase

in the cooling rate. However, even with a higher cooling rate of 100°C/min, the

residual stress in the molded glass is below 1 kPa, considered to be negligible to affect

the optical quality of the molded lens [68].

6.7 Effect of Friction Coefficient

Finally, the modified molding process is used to analyze the effect of the friction

coefficient between the glass and the mold interface. The molding viscosity is set to

107.6 Pa.s, molding velocity of 3 mm/min, release velocity of 3 mm/min, and gradual

cooling rate of 25°C/min are used in the analysis. Figure 6.16 shows the effect of

friction coefficient on the form error of the molded lens. As the friction coefficient

increased, the stresses in the molded lens increased during the pressing step, increasing

the relaxation time. But similar to the response of molding viscosity or the molding

velocity, if the stresses are relaxed completely before cooling the molded lens, the
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friction coefficient has no effect on the lens quality.

Figure 6.16: Form error (PV) vs friction coefficient in the top and bottom lens profile
with and without relaxation.

6.8 Conventional vs Modified Molding Process

Based on the observations in this study, it is evident that by using a distinct

relaxation phase in the molding process, both the pressing and gradual cooling steps

have no adverse effects on the molded lens. As such, to shorten the total molding cycle

time, the conventionally used two-step cooling process is consolidated into a single

rapid cooling step. Figure 6.17 shows the temperature profile with respect to time

using the conventional versus the proposed molding process. The parameters in both

simulations are selected such that the deviations and residual stresses in the molded

lens profile are comparable. In both cases, a P-SK57 glass sample is molded into a

double aspheric lens at a molding viscosity of 108.0 Pa.s, with a molding velocity of

3.0 mm/min. In the conventional process, the pressing step is followed by a gradual

cooling step with a cooling rate of 10°C/min and a hold-up force of 20N. In the

modified process, the glass is relaxed for a minute and then rapidly cooled with a
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cooling rate of 70°C/min. The rapid cooling rate is the same in both cases. As

observed, in both cases, the heating and pressing time remained but by eliminating

the gradual cooling phase, the total process time was reduced significantly, thereby

decreasing the production cost of a single molded lens.

Figure 6.17: Temperature profile with respect to cycle time in a conventional vs
modified molding process.

Figure 6.18 shows the profile deviation in P-SK57 and D-ZK3 double aspherical

lens. It is observed that deviations in D-ZK3 are slightly higher than that of the

P-SK57 glass type under similar molding conditions. While the stress relaxation

parameters are similar for both materials at similar molding viscosity, the structural

relaxation parameters (i.e., the volume expansion) differ for both materials. As such,

the deviations observed in the lens profile using the modified molding process are

solely dependent on the volume expansion of the glass material.

6.9 Conclusion

The selection of process parameters in precision glass manufacturing has a signif-

icant impact on the optical quality and profile deviation of the molded lens. In this
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Figure 6.18: Profile deviation in different glass materials under similar molding con-
ditions a) bottom profile and b) top profile

study, the developed numerical model is utilized to examine the effect of molding

parameters on profile deviation and residual stresses. It was observed that using

molding viscosity as a control parameter instead of molding temperature normalizes

the influence of viscoelastic material properties on the molding process. Based on

the observations in this study, a modified molding process is proposed to minimize

the influence of various process parameters on the lens’s profile deviation and residual

stresses. This study demonstrates that the modified molding process reduces molding

cycle time by more than 50% compared to the conventional molding process.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The precision glass molding process provides several advantages over conventional

glass manufacturing techniques by enabling the production of intricate and precise

glass components with close tolerances. It has been demonstrated to be a cost-effective

method for producing glass components, as it eliminates the need for post-processing

stages such as grinding and polishing. Despite its numerous benefits, the technique’s

application is constrained by a few drawbacks, such as lens profile deviations and the

lack of clarity regarding the impact of the involved process parameters on the optical

quality of the molded lens. Typically, manufacturing a new lens design or producing a

lens with a different glass material can require several months of process development

in order to achieve the required optical quality. As such, the development of a reliable

numerical model to simulate the precision glass molding process will contribute to the

realization of Industry 4.0 for the glass molding process.

The accurate characterization of the thermo-viscoelastic properties of the glass

material is one of the essential factors for simulating the precision glass molding

process. As a result, a novel material testing procedure is devised in this study,

which is shown to accurately model the viscoelastic response of the glass material

over a broad range of molding temperatures. The creep compression tests that are

typically used in the literature are replaced with constant strain rate and stress re-

laxation tests. The viscoelastic parameters at various temperatures are determined

using the Burgers model under constant strain rate conditions. In addition, the

Burgers parameter η1 is shown to be correlated to the bulk viscosity of the glass

material and to accurately predict the viscosity of the material over the temperature
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range used in this investigation. The TRS assumption commonly used in the litera-

ture to model temperature-dependent viscoelasticity is shown to be deficient over the

temperature range used in this study. Instead, the temperature dependence is mod-

eled using the VFT function’s temperature-dependent Burgers parameters. Using an

ABAQUS UMAT subroutine, the temperature-dependent viscoelastic parameters are

implemented in the numerical model. It is demonstrated that the proposed model

accurately predicts the thermo-viscoelastic response of two distinct glass types across

a wide range of molding temperatures.

The structural relaxation parameters are obtained from the impulse excitation test

based on ASTM standard E1876. In this investigation, the Tool-Narayanaswamy-

Moynihan model is used to model the structural relaxation response of glass. The

parameters of the TNM model are obtained from the relaxation response of Young’s

modulus of the glass to a sudden change in temperature. The particle swarm opti-

mization algorithm is used to fit the experimental data. The obtained TNM model

parameters are shown to accurately characterize the relaxation phenomenon over the

entire temperature range tested. Finally, in this study, the material testing required

for characterizing the glass material is designed to be implemented on the glass mold-

ing machine. This helps to streamline the development and testing of new glass

materials that can be used in precision glass molding.

This study establishes a coupled thermo-mechanical axisymmetric finite element

model to simulate the precision glass molding process on two distinct glass types.

ABAQUS UMAT and UEXPAN subroutines are developed to incorporate the de-

rived stress relaxation and structural relaxation parameters into the FE model. The

developed numerical model is used to simulate the molding process of the biconvex

lens, and the obtained deviations in the lens profile are compared to experimental

data. The results demonstrated a fair agreement with minor deviations toward the

lens’s periphery. A thorough analysis revealed that the experimentally shaped lens
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has a significant decentration error that deviates from the numerical model’s axisym-

metric postulate. In addition, the developed model is utilized to perform a numerical

analysis of the profile deviation of a double aspheric lens. A mold compensation

technique is implemented to modify the mold profiles for deviations. The profile de-

viations of lenses molded on compensated molds are shown to be within the design

parameters. However, the magnitude of the deviation of the molded lens depends

on the molding parameters, implying that the molds’ compensation depends on the

chosen process parameters.

Finally, to address the dependency of the optical quality of the molded lens on the

process parameters, the developed numerical model is used in this study to analyze

the influence of different process steps and the corresponding process parameters on

the profile deviations and residual stresses. Rather than the molding temperature,

the molding viscosity is used as the control parameter to normalize the influence of

various glass materials. This demonstrated that the viscoelastic response of the two

distinct glass types utilized in this study is comparable at similar molding viscosities.

This shows that the influence of the viscoelastic material on the optical quality is

negligible under similar molding conditions. The evolution of the stresses in the

lens during the various molding stages is analyzed, and it is demonstrated that the

influence of the molding parameters on the profile deviation is eliminated by relaxing

the stresses in the lens at the molding temperature rather than during the gradual

cooling phase. With the modified molding process, it was observed that during the

gradual cooling phase, the residual stresses in the molded lens increased as the cooling

rate increased. However, the maximal stress is less than 1 kPa, which is negligible,

even when cooled at 100°C/min. Based on the observation, the conventional molding

process is modified by adding a relaxation phase prior to lens cooling, and the two-step

lens cooling process is replaced with a single rapid cooling step. It is demonstrated

that the modified precision glass molding process reduces the total process time by
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more than 50 percent compared to the conventional process for producing an optical

lens of comparable quality. The proposed molding process substantially reduces the

cost of producing a molded lens.

7.2 Future Work

Future work could potentially focus on the following topics:

1. Viscoelastic material properties are known to be a key factor in developing a

reliable numerical model. While this study establishes a novel testing technique

to obtain the unique set of material parameters, the uncertainty associated

with each parameter needs to be further evaluated to improve confidence in the

predicted results.

2. The accuracy of the developed model in this study can be further evaluated

by scaling the numerical model. Although scaling the model to micrometers

might be advantageous, it might introduce numerical errors into the simulation

by inadvertently scaling the material properties. A tradeoff between the scaling

factor and the numerical accuracy should be analyzed to accurately predict the

deviations that are in microns and sub-microns.

3. The material testing developed in this study can be extended to analyze chalco-

genide glass materials used in IR optics.

4. The developed model can be extended to simulate glass molding of diffractive

and freeform optics.



101

REFERENCES

[1] A. Jain, Experimental study and numerical analysis of compression molding pro-
cess for manufacturing precision aspherical glass lenses. PhD thesis, The Ohio
State University, 2006.

[2] “Glass aspherical lens demand.” https://bisresearch.com/news/glass-aspherical-
lens-generating-the-highest-demand-among-high-precision-asphere-products.

[3] S. D. Jacobs, “International progress on advanced optics and sensors,” pp. 3–14,
2003.

[4] B. G. Angle, M. and C. Maier, “Method for molding glass lenses.,” U.S. Patent
3,833,347., 1974.

[5] C. K. Wu, “Optical articles prepared from hydrated glasses.,” U.S. Patent
4,073,654., 1978.

[6] G. A. Meden-Piesslinger and J. H. Van de Heuvel, “Precision pressed optical
components made of glass and glass suitable therefor.,” U.S. Patent 4,391,915.,
1983.

[7] B. Ananthasayanam, Computational modeling of precision molding of aspheric
glass optics. PhD thesis, Clemson University, 2008.

[8] A. Jain and A. Y. Yi, “Finite element modeling of structural relaxation during
annealing of a precision-molded glass lens.,” Journal of Manufacturing Science
and Engineering, vol. 128, no. 3, pp. 683–690, 2006.

[9] D. Joshi, M. Peiman, M. J. David, R. Kathleen, C., and J. Paul, F., “Thermo-
mechanical characterization of glass at high temperature using the cylinder com-
pression test. part ii: No-slip experiments, viscoelastic constants, and sensitiv-
ity.,” Journal of Rheology, vol. 57, no. 5, pp. 1391–1410, 2013.

[10] L. Su, P. He, and Y. Y. Allen, “Investigation of glass thickness effect on ther-
mal slumping by experimental and numerical methods.,” Journal of Materials
Processing Technology, vol. 221, no. 12, pp. 1995–2003, 2011.

[11] G. W. Scherer, Relaxation in glass and composites. John Wiley & Sons, 1986.

[12] M. Garcia-Valles, H. S. Hafez, I. Cruz-Matias, and etc., “Calculation of viscosity-
temperature curves for glass obtained from four wastewater treatment plants in
egypt.,” Journal of Thermal Analysis and Calorimetry, vol. 111, no. 1, pp. 107–
114, 2013.

[13] T. Zhou, J. Yan, and T. Kuriyagawa, “Evaluating the viscoelastic properties
of glass above transition temperature for numerical modeling of lens molding
process.,” in International Symposium on Photoelectronic Detection and Imaging
2007: Optoelectronic System Design, Manufacturing, and Testing, vol. 6624.



102

[14] A. Q. Tool, “Relation between inelastic deformability and thermal expansion of
glass in its annealing range.,” Journal of the American Ceramic Society, vol. 29,
no. 9, pp. 240–253, 1946.

[15] O. S. Narayanaswamy, “A model of structural relaxation in glass.,” Journal of
the American Ceramic Society, vol. 54, no. 10, pp. 491–498, 1971.

[16] C. T. Moynihan, A. J. Easteal, and a. T. J. De Bolt, M. A., “Dependence of the
fictive temperature of glass on cooling rate.,” Journal of the American Ceramic
Society, vol. 59, no. 1-2, pp. 12–16, 1976.

[17] A. Jain and A. Y. Yi, “Numerical modeling of viscoelastic stress relaxation during
glass lens forming process.,” Journal of the American Ceramic Society, vol. 88,
no. 3, pp. 530–535, 2005.

[18] D. Joshi, P. Mosaddegh, J. David Musgraves, K. C. Richardson, and P. F.
Joseph, “Thermo-mechanical characterization of glass at high temperature us-
ing the cylinder compression test. part i: Viscoelasticity, friction, and ppv.,”
Journal of Rheology, vol. 57, no. 5, pp. 1367–1389, 2013.

[19] Y. Jiwang, T. Zhou, N. Yoshihara, and T. Kuriyagawa, “Shape transferability and
microscopic deformation of molding dies in aspherical glass lens molding press.,”
Journal of Manufacturing Technology Research, vol. 1, no. 1-2, pp. 85–102, 2009.

[20] T. Zhou, J. Yan, J. Masuda, and T. Kuriyagawa, “Investigation on the vis-
coelasticity of optical glass in ultraprecision lens molding process.,” Journal of
Materials Processing Technology, vol. 209, no. 9, pp. 4484–4489, 2009.

[21] B. Ananthasayanam, P. F. Joseph, D. Joshi, S. Gaylord, L. Petit, V. Y. Blouin,
K. C. Richardson, D. L. Cler, M. Stairiker, and M. Tardiff, “Final shape of
precision molded optics: Part iâcomputational approach, material definitions and
the effect of lens shape.,” Journal of Thermal stresses, vol. 35, no. 6, pp. 550–578,
2012.

[22] M. Arai, Y. Kato, and T. Kodera, “Characterization of the thermo-viscoelastic
property of glass and numerical simulation of the press molding of glass lens.,”
Journal of Thermal Stresses, vol. 32, no. 12, pp. 1235–1255, 2009.

[23] J. De Bast and P. Gilard, “Variation of the viscosity of glass and the relaxation of
stresses during stabilization.,” Physics Chemistry Glasses, vol. 4, no. 4, pp. 117–
128, 1963.

[24] S. M. Rekhson, “Viscosity and stress relaxation in commercial glasses in the glass
transition region.,” Journal of non-crystalline solids, vol. 38, pp. 457–462, 1980.

[25] A. Jain, F. Gregory, C., and Y. Allen, Y., “Viscosity measurement by cylindrical
compression for numerical modeling of precision lens molding process.,” Journal
of the American Ceramic Society, vol. 88, no. 9, pp. 2409–2414, 2005.



103

[26] D. Joshi, M. Peiman, M. J. David, R. Kathleen, C., and J. Paul, F., “Thermo-
mechanical characterization of glass at high temperature using the cylinder com-
pression test. part i: Viscoelasticity, friction, and ppv.,” Journal of Rheology,
vol. 57, no. 5, pp. 1367–1389, 2013.

[27] J. Zhou, Y. Jianfeng, L. L., James, S. Lianguan, and Y. Allen, “Stress relaxation
and refractive index change of as2s3 in compression molding.,” International
Journal of Applied Glass Science, vol. 8, no. 3, pp. 255–265, 2017.

[28] J. Yu, L. Hong, Z. Yingying, N. Thai, V., J. Xiaomo, and H. Junzhi, “Stress
relaxation and refractive index change of as2s3 in compression molding.,” Journal
of the American Ceramic Society, vol. 102, no. 11, pp. 6606–6617, 2019.

[29] T. Vu, Anh, V. Anh, Ngoc, G. Tim, and B. Thomas, “Modeling of thermoâvis-
coelastic material behavior of glass over a wide temperature range in glass com-
pression molding.,” Journal of the American Ceramic Society, vol. 103, no. 4,
pp. 2791–2807, 2020.

[30] Y. Zhang, Y. Shaohui, L. Rongguang, L. Hong, X. Huapan, and Y. Ningxiao,
“New testing and calculation method for determination viscoelasticity of optical
glass.,” Optics Express, vol. 28, no. 1, pp. 626–640, 2020.

[31] ASTM:C1351M-96, “Standard test method for measurement of viscosity of glass
between 104 pa.s and 108 pa.s by viscous compression of a solid right cylinder
[metric].,” ASTM International, West Conshohocken, PA, vol. 15.02, 2022.

[32] H. Meinhard, F. Wolfgang, and G. Peter, “Viscosity of glass below the trans-
formation temperature.,” in Glass Science and Technology (Frankfurt), vol. 74,
2001.

[33] R. Bruckner, Y. Yue, and A. Habeck, “Determination of the rheological properties
of high-viscous melts by the cylinder compression method.,” Glass Science and
Technology, vol. 67, no. 5, pp. 114–29, 1994.

[34] L. Zhang, Z. Wenchen, and A. Y. Yi, “Investigation of thermoforming mechanism
and optical propertiesâ change of chalcogenide glass in precision glass molding.,”
Applied Optics, vol. 57, no. 22, pp. 6358–6368, 2018.

[35] N. Findley, W, S. Lai, J, and K. Onaran, Creep and relaxation of nonlinear vis-
coelastic materials, with an introduction to linear viscoelasticity. North-Holland
Publishing, 1976.

[36] Schott P-SK57 datasheet. United States: SCHOTT, 2014.

[37] B. Dhanooj and M. Christopher, “Reduction of cycle time during press molding
of glass lenses.,” In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, vol. 12219, p. 1221904, 2022.



104

[38] J. M. Caruthers and R. E. Cohen, “Consequences of thermorheological complex-
ity in viscoelastic materials.,” Rheologica Acta, vol. 19, pp. 606–613, 1980.

[39] E. R. Pierik, W. J. B. Grouve, M. van Drongelen, and R. Akkerman, “The
influence of physical ageing on the in-plane shear creep compliance of 5hs c/pps.,”
Mechanics of Time-Dependent Materials, vol. 24, pp. 197–220, 2020.

[40] A. Fluegel, “Glass viscosity calculation based on a global statistical modelling
approach.,” Journal of Glass Science and Technology Part A, vol. 48, no. 1,
pp. 13–30, 2007.

[41] M. Hara and S. Suetoshi, “Density change of glass in transformation range.,”
Rep. Res. Lab. Asahi Glass Co, vol. 5, p. 126, 1955.

[42] A. Sipp and R. Pascal, “Equivalence of volume, enthalpy and viscosity relaxation
kinetics in glass-forming silicate liquids.,” Journal of Non-Crystalline Solids,
vol. 298, no. 2-3, pp. 202–212, 2002.

[43] P. B. Macedo and N. Albert, “Effects of a distribution of volume relaxation times
in the annealing of bsc glass.,” Journal of Research of the National Bureau of
Standards. Section A, Physics and Chemistry, vol. 71, no. 3, p. 231, 1967.

[44] B. Olsen, Niels, C. D. Jeppe, and C. Tage, “Structural relaxation monitored by
instantaneous shear modulus.,” Physical review letters, vol. 81, no. 5, pp. 1031–
1033, 1998.

[45] H. R. Liu, Weidong and Z. Liangchi, “Revealing structural relaxation of optical
glass through the temperature dependence of young’s modulus.,” Journal of the
American Ceramic Society, vol. 97, no. 11, pp. 3475–3482, 2014.

[46] H. S. Chen, “The influence of structural relaxation on the density and youngâs
modulus of metallic glasses.,” Journal of Applied Physics, vol. 49, no. 6, pp. 3289–
3291, 1978.

[47] ASTM:E1876-15, “Standard test method for dynamic youngâs modulus, shear
modulus, and poissonâs ratio by impulse excitation of vibration.,” ASTM Inter-
national, West Conshohocken, PA, 2015.

[48] CDGM D-ZK3 datasheet. United States: Universal Photonics incorporated,
2013.

[49] A. Markovsky, F. S. Thomas, and D. C. Boyd, “An efficient and stable algorithm
for calculating fictive temperatures.,” Journal of the American Ceramic society,
vol. 67, no. 4, pp. c56–c57, 1984.

[50] D. Pallicity, Tarkes, V. AnhâTuan, P. M. Krishnamurthi, Ramesh, L. Gang, and
D. Olaf, “An efficient and stable algorithm for calculating fictive temperatures.,”
Journal of the American Ceramic society, vol. 100, no. 10, pp. 4680–4698, 2017.



105

[51] Y. Zhang, Y. Kaiyuan, and F. Fengzhou, “Pre-compensation of mold in precision
glass molding based on mathematical analysis.,” Micromachines, vol. 11, no. 12,
p. 1069, 2020.

[52] M. Brown, “A review of research in numerical simulation for the glass-pressing
process.,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, vol. 221, no. 9, pp. 1377–1386, 2007.

[53] G. Weidmann, K. Holtberg, and H. Eisermann, “Pressing of drinking glass
stems,” Mathematical Simulation in Glass Technology, pp. 307–317, 2002.

[54] M. Hyre, “Numerical simulation of glass forming and conditioning.,” Journal of
the American Ceramic Society, vol. 85, no. 5, pp. 1047–1056, 2002.

[55] M. Hyre, “Numerical modeling of glass container forming.,” in American Institute
of Physics Conference Proceedings, Materials Processing and Design: Modeling,
Simulation and Applications; NUMIFORM 2004, pp. 245–250.

[56] T. F. Soules, R. F. Busbey, S. M. Rekhson, A. Markovsky, and M. A. Burke., “Fi-
nite element calculation of stresses in glass parts undergoing viscous relaxation.,”
Journal of the American Ceramic Society, vol. 70, no. 2, pp. 90–95, 1987.

[57] ABAQUS/Standard User’s Manual, Version 2021. United States: Dassault Sys-
tèmes Simulia Corp, 2021.

[58] G. C. Firestone, J. Anurag, and Y. Y. Allen, “Precision laboratory apparatus
for high temperature compression molding of glass lenses.,” Review of scientific
instruments, vol. 76, no. 6, 2005.

[59] Y.-C. Tsai, H. Chinghua, and H. Jung-Chung, “Glass material model for the
forming stage of the glass molding process.,” Journal of Materials Processing
Technology, vol. 201, no. 1-3, pp. 751–754, 2008.

[60] W. Iqbal, Identifying the optimum process parameters of precision glass molding
for aspherical lenses. PhD thesis, Clemson University, 2009.

[61] D. H. Cha, H. S. Park, Y. Hwang, J.-H. Kim, and H.-J. Kim, “Experimental
study of glass molding process and transcription characteristics of mold surface
in molding of aspheric glass lenses.,” Optical review, vol. 18, no. 2, pp. 241–246,
2011.

[62] B. Gleason, W. Peter, M. J. David, and R. Kathleen, “Using design of exper-
iments to improve precision glass moulding.,” International Journal of Experi-
mental Design and Process Optimisation, vol. 3, no. 3, pp. 263–275, 2013.

[63] J. Zhou, L. Mujun, H. Yang, S. Tianyi, J. Yueliang, and S. Lianguan, “Nu-
merical evaluation on the curve deviation of the molded glass lens.,” Journal of
Manufacturing Science and Engineering, vol. 136, no. 5, pp. 1–11, 2014.



106

[64] Z. Kejun, S. Shi, Z. Chen, Z. Liu, and Y. Zhang, “Prediction of profile deviation
during glass molding of double-aspheric lens.,” Journal of Engineering Science
Technology Review, vol. 13, no. 2, pp. 50–56, 2020.

[65] B. Tao, H. Peng, S. Lianguan, and Y. Allen, “Quantitatively measurement and
analysis of residual stresses in molded aspherical glass lenses.,” The International
Journal of Advanced Manufacturing Technology, vol. 74, pp. 1167–1174, 2014.

[66] S. Gaylord, A. Balajee, T. Benjamin, P. Laeticia, C. Chris, F. Ulrich, J. Paul, and
R. Kathleen, “Thermal and structural property characterization of commercially
moldable glasses.,” Journal of the American Ceramic Society, vol. 93, no. 8,
pp. 2207–2214, 2010.

[67] D. Rieser, S. Gerd, and M. Peter, “Investigations on glass-to-mold sticking in
the hot forming process.,” Journal of Non-Crystalline Solids, vol. 354, no. 12-13,
pp. 1393–1397, 2008.

[68] H. Aben and C. Guillemet, Photoelasticity ofglass. New York, United States:
Springer, 1993.



107

APPENDIX A: Equivalency between the Burgers model and the two-term

generalized Maxwell model

The constitutive equation of the Burgers model in the differential form is given in

Eq. A.1 [35].

σ + p1σ̇ + p2σ̈ = q1ε̇+ q2ε̈ (A.1)

where
p1 =

η1
E1

+
η1
E2

+
η2
E2

; p2 =
η1η2
E1E2

q1 = η1; q2 =
η1η2
E2

(A.2)

The stress relaxation response of the Burgers model obtained by Laplace transform

is as follows,

σ(t) =
ε

Ā

[(
q1 −

q2
τ2

)
e−t/τ2 −

(
q1 −

q2

τ1

)
e−t/τ1

]
(A.3)

where τ1 and τ2 are the relaxation times given by,

τ1 =
2p2

p1 + Ā
; τ2 =

2p2
p1 − Ā

(A.4)

The shear parameters of the Burgers model are calculated using the Burgers pa-

rameters obtained from the experimental data,

G1 =
E1

2(1 + ν)
, µ1 =

η1
2(1 + ν)

G2 =
E2

2(1 + ν)
, µ2 =

η2
2(1 + ν)

(A.5)

Substituting equation A.5 into equation A.3, the shear relaxation modulus is ob-

tained
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G(t) =
G1τ1τ2
τ2 − τ1

[(
G2

µ2

− 1

τ2

)
e−t/τ2 +

(
1

τ1
− G2

µ2

)
e−t/τ1

]
(A.6)

Equation A.6 can also be written as,

G(t) = G1

[
w1e

−t/τ2 + w2e
−t/τ1

]
(A.7)

where w1 and w2 are the weights of the shear function given by equations A.8 and

their sum is always equal to one.

w1 =
τ1τ2
τ2 − τ1

(
G2

µ2

− 1

τ2

)
(A.8)

w2 =
τ1τ2
τ2 − τ1

(
1

τ1
− G2

µ2

)
(A.9)


