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ABSTRACT

MD SAJIDUL ISLAM SAJID. Autonomous malware deception and orchestration.
(Under the direction of DR. JINPENG WEI)

Traditional approaches to cyber defense lack the agility to effectively counter stealthy

and undetectable attacks, placing defenders at a disadvantage. In response to this

imbalance, Active Cyber Deception (ACD) has emerged as a promising solution by

dynamically orchestrating deceptive environments to mislead and disrupt attackers’

decision-making processes. However, developing efficient and effective deception sys-

tems necessitates the integration of human intelligence and comprehensive malware

analysis to comprehend attack behaviors and automate deception strategies.

This dissertation presents three innovative approaches in the field of ACD. Firstly,

DodgeTron combines dynamic analysis using symbolic execution tools and machine

learning to automate the creation of deception schemes against malware. It achieves

this by categorizing malware into known families and employing HoneyThings. Sec-

ondly, symbSODA performs dynamic analysis on real-world malware and conducts

data flow analysis to extract malicious sub-graphs (MSGs). These MSGs are then

mapped to the MITRE ATT&CK framework using Natural Language Processing, en-

abling the creation of a Deception Playbook for deceiving specific malicious behaviors

through deceptive API hookings. Finally, ranDecepter integrates active cyber decep-

tion to identify ransomware in its early stages and utilizes binary reset (orchestration)

methods to repurpose the malware to exhaustively transmit encryption information

(including keys) to the attacker, thereby effectively depleting their available resources.

Comprehensive evaluations validate the accuracy and effectiveness of these ap-

proaches in deceiving adversaries, reducing analysis time, and mitigating malware

threats. This research significantly contributes to the field of active cyber decep-

tion and offers efficient and scalable solutions for safeguarding digital systems against
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sophisticated attacks.
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CHAPTER 1: Introduction

The field of cybersecurity faces a significant challenge due to the lack of agility in

defending against cyber threats. Attackers often have the upper hand in discover-

ing targets and planning their attacks covertly, exploiting the limitations of existing

security measures. While extensive research has been conducted on detecting and pre-

dicting attacks, adversaries continuously adapt by scanning networks, learning about

countermeasures, and developing new evasion techniques. This dynamic nature of

cyber warfare demands a proactive and adaptable approach to counter these threats

effectively.

Active Cyber Deception (ACD) has emerged as effective means to reverse this asym-

metry in cyber warfare by dynamically orchestrating the cyber deception environment

to mislead attackers and corrupting their decision-making process. However, the de-

velopment of efficient active deception systems has relied heavily on manual analysis

and human intelligence to understand attackers’ behaviors based on malware actions.

This manual approach significantly limits the ability of cyber deception to respond

promptly to new threats, hindering its effectiveness.

Additionally, existing deception approaches suffer from limitations such as lack of

agility, robustness, and automation. These approaches often rely on static deployment

and configurations, making them easily distinguishable [1] from real systems by skilled

attackers [2–5]. To overcome these limitations, a systematic and automated approach

is required to identify the environmental values that need to be altered to deceive

malware effectively.

Furthermore, existing deception techniques primarily focus on thwarting attackers

at specific stages of the kill chain. For example, some well-known deception tech-
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niques use honeypots [1, 6, 7], honeyfiles [8–10], honeypatches [11], honeybugs [12],

decoys [13] and moving target defense [14–16] to mislead attackers during the collec-

tion and credential access phase. On the other hand, others employ malicious traffic

redirection [17] and network randomization [18] to deter attackers during the com-

mand and control phase. However, only a few approaches consider every phase of the

kill chain [13,19,20], and they often lack the ability to provide customized deception

plans to users based on their specific requirements. Network randomization [18] and

moving target defense [14–16]. This limitation calls for the development of compre-

hensive deception strategies that can adapt to different attack scenarios and provide

tailored deception tactics.

1.1 Objectives

The objective of this dissertation is to introduce an autonomous cyber deception

system that addresses the limitations mentioned earlier. The system combines dy-

namic malware analysis and symbolic execution techniques to identify and extract

deception features from malware execution traces. These features include deception

parameters related to system resources (files and registries), sequences of API calls as-

sociated with malicious behaviors, and critical addresses within the malware that can

be exploited to transform it into a communication channel for continuously providing

misleading information to attackers. The dissertation aims to provide deception as a

service through three different approaches: orchestrating a deceptive environment us-

ing HoneyThings, orchestrating API responses, or orchestrating the malware binary

itself. The specific objectives of this dissertation are as follows:

• Develop a system that combines symbolic execution with dynamic malware

analysis to automate the extraction of deception parameters from malware exe-

cution traces. This system aims to identify target systems and disrupt attackers’

objectives by dynamically orchestrating the cyber deception environment.
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• Create a highly configurable and verifiable autonomous cyber deception system

that analyzes real-world malware, identifies API patterns representing attack

techniques, and constructs conflict-free Deception Playbooks for effective real-

time deception orchestration.

• Introduce a deception-based ransomware detection approach that operates at

the API level, eliminating the need for managing decoy files. This approach

should extract critical addresses within ransomware binaries to reset the en-

cryption process, effectively transmitting encryption information and keys back

to the attacker repeatedly.

To achieve these objectives, three deception approaches are proposed and imple-

mented in this dissertation:

• DodgeTron: An autonomous cyber deception framework that combines dynamic

analysis, symbolic execution, and machine learning to automate the creation of

deception schemes using HoneyThings against malware.

• symbSODA: A dynamic security orchestration, automation, and deception sys-

tem that leverages symbolic execution and data flow analysis to extract compre-

hensive malicious sub-graphs (MSGs) from malware execution traces. MSGs are

mapped to the MITRE ATT&CK framework to determine malware behaviors

and activate relevant deception ploys.

• ranDecepter: A ransomware detection and mitigation approach that utilizes

API-level deception and binary orchestration. It identifies critical addresses

within ransomware binaries to establish a looping mechanism, depleting the

attacker’s resources and mitigating the impact of ransomware attacks.
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1.2 Contributions and Dissertation Structure

This dissertation consists of three main contributions, each presented in a separate

chapter. The contributions and the corresponding structure of the dissertation are as

follows:

Chapter 2: DodgeTron

• Contributions: The proposal and implementation of DodgeTron, an autonom-

ous cyber deception framework that combines dynamic analysis, symbolic exe-

cution tools, and machine learning to create real-time deception schemes using

HoneyThings against malware.

• Descriptions: DodgeTron performs deep analysis on malware using selective

symbolic execution, gathering malware traces through multipath exploration.

Clustering techniques are then used to categorize malware into known families,

identifying key representative samples. Deception-oriented parameter extrac-

tion is conducted on these key representatives, generating a deception playbook.

HoneyThings, such as honey-registry, honey-files, and fake configurations, are

generated and stored in the Deception Playbook, mapped to the key represen-

tative. When new malware is detected, the system classifies it into a known

family and utilizes the Deception Playbook and mapping to deploy necessary

HoneyThings for deceiving the malware.

• Evaluations: The accuracy of DodgeTron is evaluated with 953 recent mal-

ware samples, achieving an average accuracy of 91.18%. The analysis time is

optimized by 1.1x to 2.8x.

Chapter 3: symbSODA

• Contributions: The proposal and implementation of symbSODA, an au-

tonomous cyber deception system that uses symbolic execution and API hooking
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to extract malicious sub-graphs, map them to the MITRE ATT&CK framework,

and create a conflict-free deception playbook to detect and deceive unknown

malware.

• Descriptions: symbSODA extracts comprehensive malicious sub-graphs (MSGs)

from malware execution traces and maps them to the MITRE ATT&CK frame-

work. This knowledge base is used to create the Deception Playbook, which

contains deception course-of-actions for specific malicious behaviors. At run-

time, symbSODA detects MSGs in unknown malware and executes deception

ploys through embedded deceptive API hooks. It includes a Deception Planning

Verifier to ensure consistent and conflict-free deception actions.

• Evaluations: symbSODA is evaluated using recent malware, achieving a high

accuracy of 95% in deceiving malware with minimal overhead and deployment

time. It demonstrates a 97% recall value in MSG extraction and an 88.75%

top-1 accuracy in MSG-to-MITRE mapping.

Chapter 4: ranDecepter

• Contributions: This chapter presents the proposal and implementation of ran-

Decepter, an innovative API-level deception solution that detects ransomware

using API-level deception. It depletes attacker resources by employing binary

reset (orchestration) to establish a looping mechanism that continuously trans-

mits encryption information (including keys) back to the attacker.

• Descriptions: ranDecepter leverages the extracted malicious sub-graphs (MSGs)

obtained from symbSODA and employs API-level deception without making any

modifications to the original file system. This approach effectively determines

ransomware during its lifecycle without compromising sensitive resources. Fur-

thermore, it automates the identification of critical addresses within ransomware



6

binaries, enabling the establishment of a looping mechanism. By restarting the

ransomware from the beginning, this mechanism transmits encryption informa-

tion and keys back to the attacker, effectively depleting their resources. ranDe-

cepter eliminates the need for managing and distributing decoy files, making it

scalable and cost-effective.

• Evaluations: ranDecepter is extensively evaluated using 15 real-world mal-

ware samples and 8 benign applications. The evaluation results demonstrate

the outstanding performance of ranDecepter. It achieves 100% accuracy in ran-

somware detection without any false positives and minimal impact on response

time. Additionally, ranDecepter surpasses the VM reset approach in binary or-

chestration, delivering significant time savings. The evaluation results indicate

that ranDecepter can generate a maximum of 8,513 entries, with a minimum

of 2,532 entries, in the attacker’s database within a 24-hour period, effectively

depleting their resources.

1.3 A Comparative Analysis of DodgeTron, symbSODA, and ranDecepter

DodgeTron, symbSODA, and ranDecepter are three distinct approaches within the

field of active cyber deception. To comprehensively analyze the similarities and dif-

ferences among these approaches, it is essential to understand the four deception

strategies introduced in this dissertation: FakeFailure (FF), FakeSuccess (FS), Fake-

Execute (FE), and NativeExecute (NE). These strategies dictate our response when

encountering malware. FakeFailure simulates a failed operation, FakeSuccess simu-

lates a successful operation with static content, FakeExecute remotely performs the

malware’s actions, and NativeExecute allows the malware to run and observe its be-

havior. Each strategy presents a unique approach to deceiving attackers and disrupt-

ing their intentions. Despite their differences, these approaches share some common

elements. As integral components of the autonomous cyber deception framework,
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Table 1.1: A Comparison of Design Choices for Autonomous Cyber Deception Frame-
works - DodgeTron, symbSODA, and ranDecepter.

Design choices DodgeTron symbSODA ranDecepter
Target Autonomous Cyber Deception and Orchestration

Target malware type InfoStealer RAT, InfoStealer, Spyware, Ransomware Ransomware

4D Deception goals Diversion, Depletion, Discovery Diversion, Depletion,
Discovery and Distortion Diversion, Depletion

Deception features Deception parameter
(File and Register level)

MSG, MSG2MITRE and
API Hooking (API level)

Critical API detection to
fake response (API level)

Critical addresses
(Binary level)

these approaches focus on delivering malware deception and orchestration capabil-

ities. However, their distinctive strengths lie in targeting diverse malware families,

accomplishing specific deception goals, and leveraging a wide array of deception fea-

tures. A concise summary of their design choices can be found in Table 1.1.

In terms of their techniques and approaches, DodgeTron extracts deception pa-

rameters from malware execution traces, clusters malware into known families, and

deploys HoneyThings to create a deceptive environment. By running the malware

within this environment, DodgeTron utilizes the FakeExecute strategy to misinform

the malware about its actions and goals.

In contrast, symbSODA leverages symbolic execution and data flow analysis. It

extracts malicious sub-graphs from malware execution traces and maps them to the

MITRE ATT&CK framework to understand the high-level behavior of the malware.

symbSODA creates a deception playbook that includes various ploys tailored to each

sub-graph, employing different deception goals and strategies. During runtime, symb-

SODA detects malware behavior using the extracted sub-graphs, understands mal-

ware behavior using the MSG-to-MITRE mapping and executes the corresponding

deception ploys through embedded deceptive API hooks. This flexibility allows symb-

SODA to offer multiple deception modes, including FakeFailure, FakeSuccess, Fake-

Execute, and TrueScenario. If the FakeExecute strategy is chosen, symbSODA can

use DodgeTron for environment orchestration to perform remote execution.

ranDecepter, on the other hand, focuses on improving deception-based ransomware

detection approaches by utilizing API-level deception instead of file-level deception.
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It builds upon the MSGs obtained from symbSODA and employs API-level deception

with FakeSuccess as the chosen strategy. By monitoring the program’s runtime behav-

ior without modifying the original file system, ranDecepter can detect ransomware at

its early stages without compromising the integrity of the original files. Additionally,

ranDecepter introduces a novel orchestration method called "Binary reset," which

allows the malware to be reset to its initial state without restarting or modifying the

underlying environment (Host). This approach offers the advantage of scalability and

cost-effectiveness since it eliminates the need for managing and distributing decoy

files.

In conclusion, while DodgeTron, symbSODA, and ranDecepter share the common

goal of active cyber deception and utilize different deception strategies, they differ

in their techniques, focuses, deployment methods, and scalability. DodgeTron em-

phasizes environment orchestration, symbSODA leverages symbolic execution and

mapping to the MITRE ATT&CK framework, and ranDecepter places emphasis on

API-level deception and introduces a unique orchestration method through “Binary

reset."

The dissertation is based upon the following publications.

• Sajid, Md Sajidul Islam, et al. "Dodgetron: Towards autonomous cyber de-

ception using dynamic hybrid analysis of malware." 2020 IEEE Conference on

Communications and Network Security (CNS). 2020.

• Sajid, Md Sajidul Islam, et al. "SODA: A system for cyber deception orches-

tration and automation." Annual Computer Security Applications Conference

(ACSAC). 2021.

• Sajid, Md Sajidul Islam, et al. "symbSODA: Configurable and Verifiable Or-

chestration Automation for Active Malware Deception." ACM Transactions on

Privacy and Security (TOPS). 2023 (Minor revision).



CHAPTER 2: DodgeTron: Towards Autonomous Cyber Deception Using Dynamic

Hybrid Analysis of Malware

2.1 Introduction

Active cyber deception (ACD) has emerged as an effective and complementary

defense technique to overcome the challenges faced by traditional detection and pre-

vention strategies. The basic idea of cyber deception is to deliberately introduce

misinformation or misleading functionality into cyber space, which tricks adversaries

in such a way that their attacks become ineffective or infeasible. An effective ACD

mechanism can achieve 4D goals: (1) deflect adversaries to false targets, (2) distort

adversaries’ perception about the environment, (3) deplete adversaries’ resources and

(4) discover adversaries’ motives, tactics and techniques [21].

Although cyber deception has been successfully applied in numerous settings [7,

11, 22–31], existing deception techniques lack agility, resilience and automation. The

best-known technique to achieve deception is honeypot. However, it has complex

configuration issues and lacks randomness, which makes it distinguishable from real

systems [32]. Other well-known deception techniques are network randomization [18]

and moving target defense [14] [33]. Although these techniques have been successful in

deceiving the adversaries, they were designed in an ad-hoc manner to counter specific

attacks and they heavily relied on manual analysis and decision making. This manual

process is time-consuming and not scalable against the fast evolving nature of cyber

attacks. Therefore, we need an automated approach capable of decision making

through reasoning in real-time.

In this chapter, we present an autonomous cyber deception framework, called Dod-

geTron, that automatically analyzes malware and creates cyber deception schemes.
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We make an important observation that malware often interacts with the victim

system to determine the configuration (e.g., keyboard layout and IP address) and

valuable information (e.g., the files) of the environment in order to reach its goals.

Therefore, we can manipulate such interactions to deceive the adversary behind the

malware. For example, to deceive malware that steals login credentials stored in the

file system of the victim environment, we can plant files with honey credentials before

the malware runs. We call such values (e.g., keyboard layout and credential files),

which are necessary conditions for the success of attacks but are also configurable or

misrepresentable by the environment, deception parameters.

DodgeTron aims to have two desirable features: (1) autonomous, meaning that it

can take a piece of unknown malware and orchestrate and execute an effective decep-

tion scheme based on that malware without any human intervention; (2) practical,

meaning that the whole process can be finished within a reasonable amount of time.

To achieve the design goals, DodgeTron combines hybrid dynamic analysis and

machine learning. It performs deep dynamic analysis on known malware samples,

uses clustering of the execution logs to identify key representative samples and then

constructs a Deception Playbook that will be used later to deceive similar malware.

During deep analysis, DodgeTron executes malware samples using symbolic execu-

tion that facilitates analyzing malware’s interactions with the system through API

(system/library) calls. Such API call analysis utilizes multipath exploration to as-

sist DodgeTron in choosing feasible and cost-effective deception candidates. As these

candidates are associated with different accuracy and cost, DodgeTron solves an op-

timization problem to find out the most cost-effective candidate sets. Finally, the

chosen candidates (i.e., the deception parameters) are used to create deception ploys,

which are stored in a knowledge base called Deception Playbook. Because symbolic

execution is often slow and expensive, DodgeTron adopts a hybrid approach: it per-

forms deep analysis and learning of the knowledge base only offline; during runtime,
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it performs light-weight analysis on new malware samples and uses the execution logs

to map (classify) the samples to deception ploys. Our evaluation result shows that

this hybrid approach gives effective deception (e.g., 91.18% success rate) and good

performance (e.g., 1.1x to 2.8x speedup).

We note that DodgeTron is based on our previous work called gExtactor [34], which

performs deep analysis on malware samples to derive deception parameters. However,

gExtractor is too slow to support real time deception. Therefore, we add machine

learning and the hybrid dynamic analysis in this approach to overcome the limitations

of gExtractor.

To evaluate DodgeTron, this dissertation focuses on one major type of malware, in-

formation stealers, or simply InfoStealers. Such malware seeks sensitive and personal

information such as credit card numbers, cryptocurrency wallets, browser data and

email credentials. They come in many families (e.g., Emotet, Zbot, Zeus, Raccoon,

Khalesi and LokiBot) and have caused serious financial loss affecting hundreds of mil-

lions of people around the world. The InfoStealers are good candidates for deception

because we can feed them misinformation (such as honey passwords) to lure the ad-

versary to monitored networks. The challenge is how to automatically find out what

kind of misinformation to feed. We have experimentally confirmed the feasibility of

deceiving such InfoStealers. Specifically, we make the following contributions:

• We propose a deception-oriented autonomous framework named DodgeTron

that is capable of creating deception schemes against InfoStealers through sys-

tematic binary-level analysis and reasoning in real-time.

• We design a hybrid and machine learning-based approach that uses deep analysis

to ensure effectiveness and quick classification to achieve real-time deception.

• We evaluated DodgeTron with 953 recent InfoStealers, which demonstrates the

ability of DodgeTron to generate automated deception schemes against malware.
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The remainder of the chapter is organized as follows: Section 4.2 provides background

on information stealers. Section 4.3 gives an overview of our approach. Section 4.4

presents how deception playbooks are created offline. Section 4.5 presents how we

create Online Deception Schemes. Section 4.6 provides implementation details and

evaluation results. Related work is discussed in Section 4.7. Finally, limitations,

future work and conclusions are presented in Section 2.8.

2.2 on Background on Information Stealers

Information stealers are a type of malicious software (malware) designed to infil-

trate systems and surreptitiously extract sensitive and valuable information. These

sophisticated cyber threats pose a significant risk to individuals, organizations, and

even governments, as they can lead to data breaches, financial losses, and reputa-

tional damage. Understanding the capabilities and operations of information stealers

is crucial for developing effective defense mechanisms and mitigating their impact.

Capabilities of Information Stealers:

• Data Harvesting: Information stealers are adept at collecting various types

of data from compromised systems. This can include login credentials, bank-

ing details, personal identification information (PII), intellectual property, and

sensitive corporate information. They employ techniques such as keylogging,

clipboard monitoring, screen capturing, and browser session hijacking to obtain

this data.

• Communication and Exfiltration: Once information stealers have gathered the

desired data, they need a means to communicate with their operators and ex-

filtrate the stolen information. They establish command-and-control (C&C)

infrastructure, often using covert channels and encrypted communication pro-

tocols, to transmit the stolen data securely to remote servers under the control

of threat actors.
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2.3 DodgeTron: Approach Overview

The primary goal of DodgeTron is to design automated deception schemes against

InfoStealers in general and mislead adversary by presenting falsified data. To achieve

it, we need to analyze malware thoroughly, extract deception parameters, design a

deception scheme based on extracted deception parameters and execute the deception

scheme. We divide DodgeTron into four agents (Detection agent, Analysis agent,

Planning agent and Actuating agent) based on their activities and purposes. These

four agents operate in two phases: (1) Malware Deception Playbook Construction

phase and (2) Dynamic of Deception Scheme Creation phase.

Malware Deception Playbook Construction phase is also knows as the offline phase.

The goal of the offline phase (Fig 2.1) is to create the Deception Playbook, a knowledge-

base that stores optimal candidates to design effective deception schemes against

malware having specific set of behaviors. In this phase, the analysis agent performs

symbolic execution on the malware samples and collects execution traces in the form

of logs. This specific execution is called deep analysis. The reason for choosing sym-

bolic execution is that it supports multi-path exploration in a malicious program; thus

facilitate us understanding malicious behaviors closely. We train our clustering model

with the collected execution traces which supports two basic actions: (1) it automati-

cally generates clusters (groups) indicating samples containing similar behaviors. (2)

it identifies key representative samples from the cluster. To create deception play-

book, the analysis agent performs deception-oriented parameter extraction only from

these key representatives. Each of such extracted parameter is a candidate for design-

ing deception schemes. However, it is not feasible to consider all of these candidates.

Therefore, the analysis agent selects only a subset of the deception candidates based

on feasibility and cost. Next, we generate HoneyThings (honey-registry, honey-files

and fake configurations) for these selected candidatesstore them into the Deception

Playbook by keeping a mapping to the key representative . At this point, DodgeTron
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is equipped to create deception schemes for new malware samples.

Dynamic of Deception Scheme Creation phase is also known as the online phase.

In the online phase (Fig 2.4), the detection agent detects malware in a system and

forwards it to the analysis agent to perform light analysis. As the deep analysis is

costly and we need to design the deception scheme for the new malware sample within

a time constraint, we leverage light analysis to save time. We have already created

our clustering model in the previous phase. Now, on the arrival of new malware

instance (zero-day), analysis agent classifies the unknown malware (zero-day) to the

known clusters of malware and identifies the key representative sample that depicts

this new malware. Next, the planning agent identifies HoneyThings associated with

the selected key representative from Deception Playbook. Afterward, the planning

agent creates actuation tasks that are specific instructions about how to implant

HoneyThings in order to present falsified data. Finally, the actuating agent performs

these actuation tasks and configures other relevant settings.

2.4 Malware Deception Playbooks Construction (Offline) phase

During the malware deception playbooks construction phase, DodgeTron performs

deep analysis to collect execution traces. We train our clustering model with these

traces for finding key representative samples. DodgeTron derives Deception Playbook

from these key representative samples that will be used later on to deceive similar

malware. The trained clustering model facilitates in classifying new malware in the

next phase. Fig 2.1 shows the workflow of DodgeTron in the offline phase.

2.4.1 Malware Categorization

The analysis agent consists of a host machine that includes emulation and mon-

itoring tools and a guest machine that executes malware. We instrument the guest

machine and execute user-provided scripts from the host machine. These scripts are

written to intercept Windows API function calls. These scripts are called annotation
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Figure 2.1: Workflow of DodgeTron in the Malware Deception Playbooks Construc-
tion (Offline) phase

plugins, which provide monitoring control over the guest machine where malware

are executed. In the offline phase, the analysis agent performs two significant tasks.

First, it performs the deep analysis on the malware samples to train the cluster model

analyzer; and the trained model will be utilized later on to classify zero-day malware

samples. Second, the analysis agent groups malware samples into clusters and iden-

tifies key representative samples for the clusters.

Deep Analysis The primary goal of deep analysis is to perform an in-depth and

multi-path dynamic analysis on the malware samples. The deep analysis module

is built on top of a selective symbolic execution engine [35]. In deep analysis, our

annotation plugins can intercept and change the original API calls with both concrete

and symbolic parameter values. This mechanism facilitates us in collecting execution

traces on both sides of the conditional branching. For example, if the malware is

searching for a specific file, conditional branching would go either to the succeeded

branch (if the file exists) or to the failed branch (if the file does not exist), but

not both. As deep analysis employs symbolic execution, it can traverse both sides

of the branching by assigning symbolic values to the conditional variables during
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the analysis. Thus, deep analysis explores multi-paths within the malware, which is

crucial for observing more about the malware’s behaviors. After completion of the

deep analysis, the execution traces are forwarded to our cluster analyzer for training

and locating key representative samples.

Cluster Analyzer In the offline phase, the cluster analyzer takes the execution

traces as inputs and presents the key representative samples. The cluster analyzer

comprises four components, as depicted in Fig 2.2.

Execution 
Traces

Key
Representatives

Prototype
Analysis

Hierarchical
Clustering

Preprocessor Malware2Vec
Embedder

Figure 2.2: Architecture of Cluster Analyzer

• Preprocessor: Each execution trace is converted into an API trace vector by

appending the API names and their associated parameters to a vector. Given a trace

T with a sequence of APIs T = P1, P2, ..., Pn and their associated parameters Y =

y1, y2, ..., yn where yi = {ρi,1, ρi,2, ..., ρi,m} represents the set of parameters associated

with Pi. Each parameter in yi has an index, however, not all APIs have the same

number of parameters. Hence, to create an identical vector, we use padding to make

the lengths similar. The final vector generated by the preprocessor includes both

APIs and their parameters for each execution trace and can be represented as:

V = [P1(ρ1,1, ρ1,2, ..., ρ1,m), P2(ρ2,1, ρ2,2, ..., ρ2,m), ..., Pn(ρn,1, ρn,2, ..., ρn,m)] (2.1)

• MalTrace2Vec Embedder: It takes the API trace vectors and builds word embed-

ding vector representation (feature vector) for every malware family. MalTrace2Vec

is built upon Doc2Vec [36], which is an extended version of Word2Vec [37]. Word2Vec

is being widely used for text analytics and natural language processing to find simi-

larity between words, sentences and documents. It is an unsupervised framework that
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leverages neural networks to learn continuous distributed vector representation for a

piece of text. Our approach takes sequences of API calls (using a sliding window of

size h) and computes the embedding vector, which preserves the order of the APIs

recorded during the execution. We use Distributed Memory (DM) to calculate the

probability of the next word given context and the document ID:

DM = P (doc_id, wi−h, ..., wi|wi+1). (2.2)

where doc_id represents the class (family or sub-family), w denotes the words in the

corpus, and h represents the size of the sliding window.

• Hierarchical Clustering: This component takes the family embedding vectors

generated by MalTrace2Vec and represents them as a tree (or dendrogram) with

respect to their similarities. Since the families are categorized under one type of

malware, they are likely to have very similar behaviors and similar traces with minor

variations. The agglomerative hierarchical clustering technique enables us to append

the most similar traces to larger groups. To this end, every trace vector is considered

as a cluster. Next, we compute the distance matrix of each using the cosine similarity

metric. Similar groups are merged and formed as a single cluster. It keeps merging

two clusters until only one cluster persists.

• Prototype Analysis This component performs analysis on the hierarchically

represented clusters and returns key representatives for each cluster. To this end,

sampler takes each cluster as a mutually exclusive distribution and return a portion

of data points from each randomly.

2.4.2 Playbook Creation

At this stage, DodgeTron has already identified the key representative samples and

their traces. These traces are precisely related to malicious behaviors. Deception

Playbook is derived from these traces. The analysis agent performs three major
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tasks during this phase: deception parameter extraction, optimal deception parameter

selection and deception playbook creation. During deception parameter extraction, the

analysis agent performs deception-oriented analysis on the execution logs to extract

all possible deception candidates. It is not feasible to design deception schemes by

considering all of these deception candidates. Therefore, the analysis agent performs

optimal deception parameter selection to select only a few deception candidates based

on feasibility, optimization and cost-effectiveness. Finally the analysis agent creates

Deception Playbook with these optimal deception candidates.

Deception Parameter Extraction (DPE) All the collected system parameters

from the deep analysis are not crucial in designing deception. Therefore, the analysis

agent extracts parameters based on the following three criteria (T1, T2, T3) that are

significant in designing deception schemes:

• Completeness for Resilience: (T1): We extract deception parameters from

all paths that lead to the malicious goal in order to construct resilient coverage of

all behaviors. For example, one of the behaviors of InfoStealers is to perform file-

scanning. Therefore, All the APIs related to scanning should be considered. Malware

can perform scanning using either FindFirstFile or NtQueryAttributeFile, even both.

As we are creating deception schemes against InfoStealers, we focus on all those APIs

related to information stealing for deception parameter extraction. Fig 2.3 indicates

the APIs that are considered to comply with T1.

• Goal Dependency (T2): If selected APIs have several parameters, we ex-

clude those parameters that do not lead to malicious goals. For example, if the API

FindFirstFileExA is selected, it has 6 parameters: lpFileName, fInfoLevelId, lpFind-

FileData, fSearchOp, lpSearchFilter and dwAdditionalFlags. However, only the first

parameter lpFileName holds file related information and indicates both the name

and location of the file from where the malware is stealing information which can be

replaced with a honey-file.
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• Consistency (T3): We preserve the integrity of the system from attackers’

point of view while presenting falsified data. We must consider the inter-dependency

of the deception parameters because lying about one parameter without lying about

its dependents might expose the deception. For example, if an InfoStealer checks the

version of FileZilla from Windows registry before stealing the credential, we must put

falsified data both in the registry and file-system to preserve the integrity.

There might be multiple deception parameters that satisfy criteria T2. For exam-

ple, an InfoStealer may steal from various FTP clients. The analysis agent extracts

several parameters that are related to these multiple FTP clients. Let V be the set

of deception candidates obtained by the analysis agent. Each of the candidates in set

V might be associated with different costs, as inter-dependent parameters must be

selected with each of these parameters to satisfy T3. All of these potential system

parameters are called deception candidates that fulfill T1, T2 and T3. The analysis

agent calculates the cost of all possible candidates in set V to find out the optimal

cost-effective candidates set.

Optimal Deception Parameter Selection (ODP) The deception parameter

selection can be defined as a problem of selecting a subset from the set V, such that:

(1) At least one parameter is selected from V to comply with T1, (2) If a parameter

is chosen, all its dependencies are also selected (to comply with T3), (3) The selected

Malicious  Goal Related  APIs

Directory path 
retrieval

GetSystemDirectory, GetCurrentDirectory

File scanning FindFirstFile, SearchPath, FindNextFile, 
NtQueryAttributesFile, GetFileAttributes, GetFileSize

Operation on file 
content

NtReadFile, NtWriteFile

Registry value 
query

RegQueryValueExW

Exfiltration InternetCrackUrlA, ObtainUserAgentString, socket, 
connect, setsocketopt, send, closesocket

Figure 2.3: Potential Candidate APIs for DPE
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subset must be cost-optimal. To model this optimization problem, we define another

set consisting of boolean variables d1, d2, .., dm for each of the parameters extracted

by the analysis agent, where di is set to 1 if the i-th parameter in V is selected for

deception; otherwise, di is 0. Then, We compute the total deception cost, C, that

represents the cumulative cost of all the selected deception parameters.

C =
∑

i∈[1,m]

(di ? δ(vi) : 0) (2.3)

Here, δ(.) : V → Z* is a function that determines the cost of deception through each

candidate parameter, Z* is the set of non-negative integers, vi is the i-th element in the

set V and (ψ ? v1 : v2) represents the if-then-else construct that evaluates to the value

v1 if ψ is true and to the value v2 if ψ is false. To satisfy T3, we add another set of

constraints to capture the dependencies of each selected candidate. The dependency

constraints can be represented as follows:

∧vi∈V (di → ∧j∈ϵ(vi)dj) (2.4)

We solve the constraints optimization problem using a solver [38]. The objective

of this optimization is to minimize the cumulative deception cost denoted by C in

Equation 1. The outcome would be a set of deception parameters that satisfies our

T1, T2, T3 criteria with optimal cost.

Deception Playbook Creation and Population At this stage, we obtain a set

of system parameters that satisfy T1, T2, T3 criteria. These finalized system parame-

ters are called deception candidates. The selected deception candidates are critical for

malware to achieve their goals and potential entities that can be replaced with Hon-

eyThings to mislead the adversary. Based on these selected deception candidates,

we generate relevant HoneyThings. It is not feasible to model these HoneyThings
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with automated file/registry/configuration generator as each of these files/registries/

configurations maintains different structures and hold unpredictable contents. There-

fore, we create all the HoneyThings by installing the actual software and learn which

values can be altered to produce more valid HoneyThings. Such an approach also

ensures the generated HoneyThings are indistinguishable from the real system. The

analysis agent stores these generated HoneyThings derived from the deception candi-

dates into the Deception Playbook with a mapping to the key representative samples.

Therefore, the deception playbook holds details of HoneyThings with reference to a

malware sample indicating how to deceive the particular malware or similar malware

and thus the adversary with the same intent; we design deception schemes with cor-

responding HoneyThings.

2.5 Dynamic Deception Scheme Creation (online) phase

During the dynamic deception scheme creation phase, DodgeTron detects zero-day

malware and performs light analysis on the malware. By utilizing the clustering

model we built in the offline, analysis agent classifies the new malware based on light

analysis traces and maps the new malware to its key representative. The planning

agent selects the deception scheme associated with the key representative and cre-

ates actuation task. The actuating agent executes the actuation tasks to deploy the

deception scheme. Fig 2.4 shows the workflow of DodgeTron in the online phase.

2.5.1 Detection Agent in the online phase

The detection agent is the entry point of DodgeTron during the online phase and

part of a production server. As DodgeTron is capable of designing deception schemes

for zero-day malware variants, our detection agent must be competent in detecting

zero-day malware. However, the main focus of this research is not to detect malware

samples. Instead, we are solving the research problem of designing an automated

deception system to deceive the attackers without human intervention. Therefore,
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we can integrate zero-day malware detection mechanisms such as [39] that can have

high accuracy (97.09%). Once the detection agent identifies a malware, it pushes the

malicious executable to the analysis agent.

2.5.2 Analysis Agent in the online phase

Once the analysis agent receives a malware from the detection agent, it performs

the light analysis on the sample. Based on the light analysis, the analysis agent

classifies the new malware sample and identifies the key representative sample for it.

Light analysis The primary goal of light analysis is to perform a quick analysis

so that the classifier can classify the malware according to its behavior. One state-

of-the-arts is to implement malware classification based on execution traces retrieved

from a sandbox like Cuckoo. Cuckoo reports detailed information about 318 Windows

APIs along with parameter values. On the other hand, our light analysis provides

two advantages over Cuckoo. Firstly, it reports all the invoked APIs during the

execution. Secondly, we implemented annotation-plugins for 390 Windows APIs to

retrieve parameter values which is 78 more than Cuckoo. We believe these APIs are

significant to malicious behaviors. Such advantages help classifiers to achieve higher
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accuracy.

Classification After the light analysis, the analysis agent uses the execution trace

to classify the new malware sample with the trained clustering model acquired in

the offline phase. In the next phase, a key representative sample is identified for the

new malware sample and the actuating agent proceeds with the deception playbook

created by the planning agent for the selected key representative sample.

2.5.3 Planning Agent in the online phase

Once the analysis agent notifies the planning agent about the closest key repre-

sentative of the new malware sample, the planning agent selects HoneyThings from

the Deception Playbook associated with the selected key representative and creates

actuation tasks that are specific instructions about how to implant HoneyThings.

Created actuation tasks are forwarded to actuating agent for further action.

2.5.4 Actuating Agent in the online phase

At first, accordingly to actuation tasks, the actuating agent downloads all the

necessary honey-files and copies them into the referred locations. These honey-files

contain honey-credentials, honey-financial information, etc. If the Deception Playbook

includes registry values, the actuating agent modifies the necessary registry values and

adjusts necessary configurations. These honey-registries contain honey-credentials

and configuration values to make the system consistent from the attacker’s point of

view. Once download-copy-reconfiguration processes are completed, it executes the

malware samples so that the malware collects and exfiltrates false information to the

C&C server.

Other than creating actuation tasks, the actuating agent performs two major auto-

mated configurations: (1) configure honey server and (2) configure necessary settings

so that the network-packets containing HoneyThings can flow towards the remote

host (attackers). The honey server is instrumented with monitoring tools so that we
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can capture an attacker’s activities when the attacker logs into our honey server. The

honey server is configured with honey-credentials placed in the actuating agent. For

acquiring randomness, we randomize some of the values within the HoneyThings such

as IP addresses, username, etc.

2.6 Implementation and Evaluations

We developed a prototype of DodgeTron using several technologies. (1) To au-

tomate the agents, DodgeTron contains more than 2,000 lines of python and bash

scripts. (2) To develop 390 annotation plugins, we wrote around 18,000 lines of LUA

code. (3) To create optimal deception parameter selection, we developed a heuristic-

based approach consisting of 150 lines of Python code. We plan to put the codes in

Github in the near future and a demonstration of DodgeTron can be found at [40].

For our evaluation measurements, we assess DodgeTron with different types of In-

foStealers aging less than two years (2017-19). In the following section, we explain

the outcomes of our experiments intended to verify the accuracy and effectiveness of

DodgeTron. We evaluated the precision of DodgeTron in terms of creating the decep-

tion playbook in the offline phase. This metric is vital as the accuracy of designing

deception for the new malware variants depend on it. We also evaluated the effec-

tiveness of DodgeTron in terms of creating accurate automated deception schemes.

We also performed a time evaluation of DodgeTron and showed time optimization we

could gain due to hybrid analysis. As DodgeTron makes crucial decisions based on

the clustering algorithm, we provide a rigorous performance outline of our classifying

module.

2.6.1 Dataset

We collected malware samples and their AV labels from four sources: VirusShare,

MalShare, Hybrid-Analysis and VirusTotal. As each AV has its own methodology of

labeling malware, it is difficult to extract one unique label for each malware. Further-
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more, many antivirus use generic labels such as trojan for InfoStealers. To verify the

accuracy of our approach, we need labeled data. We construct an automated labeler

to label samples based on keyword and a threshold value. Our strategy is to search

a keyword (for example, LokiBot, Stealer, Khalesi, Emotet) within the VirusTotal

provided AV signatures, if matches, we consider the label if the number of AV that

labeled the sample with the given keyword is higher than a threshold value. For

example, if the keyword is ‘ramnit’ and the threshold value is 10, then our auto-

mated labeler labels the sample as ramnit if at least 10 AV engines label this sample

as ’ramnit’. Our dataset includes around 5000 malware samples consisting of In-

foStealers from different families (e.g., Emotet, LokiBot, Generic.Password.Stealers,

Trojan.Delf.Agent, Zeus, Khalesi, Dridex, Ramnit, etc). Out of 5000 malware sam-

ples, we randomly picked 4000 to train the clustering model and create Deception

Playbook and used the remaining 1000 for evaluating DodgeTron. Therefore, both

our training dataset and testing dataset are consistent in terms of containing a variety

of InfoStealers types.

2.6.2 Experiment I: Evaluating the precision of DodgeTron in extracting

deception parameters

We performed this experiment with 122 malware samples containing InfoStealers

such as Azorult, Raccoon, Khalesi, Vidar, LokiBot and Ramnit. The ground truth of

these samples for the verification are the technical analysis reports provided by secu-

rity analysts such as [41,42]. For simplicity, we explain the experiment in this section

using a single sample, m1 (MD5: eccad903b4c27d149e159338f58481a9).However, our

experiment is repeated for all 122 malware samples. On average the precision of our

deception parameter extraction is 91.45%. Fig 2.5 summarizes the results of exper-

iment I.

Ground truth for verifying precision: We uploaded the sample to ANY.RUN.

It identified it as LokiBot. According to the SANS [42] report, m1 steals information
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Figure 2.5: Precision of DodgeTron across different malware families in term of de-
ception parameter extraction

from around 120 various applications that store sensitive data at the Windows registry

and the local file system and later exfiltrates stolen data to the C&C server. Therefore,

to verify the precision of our deception parameter extraction and deception playbook

creation, we compared our result with the SANS report which is the ground-truth

here.

Verifying the precision of deception parameter extraction: We observed the

filtered traces after DPE extracted all possible deception candidates that satisfy T1,

T2, T3 criteria. We found the malware tried to collect sensitive information such as

credentials of the browsers, FTP clients and other applications from different registry

entries and files. For example, to steal stored credentials from Google Chrome, m1 re-

trieves the version and installation directory of Google Chrome by performing queries

using RegQueryValueExW and SHGetValue APIs on HKEY_LOCAL_MACHINE

registry. Then it calls NtQueryAttributeFile with "C:\Users\USERNAME\AppData

\Local\Google\Chrome\User Data\Default\Login Data" as "ObjectAttributes" to che-

ck the existence of the file. "Login Data" is an SQLite DB file where Google Chrome

stores credentials. Later, m1 opens it and performs SQL queries to read site URL,

username and password and decrypts the passwords using CryptUnprotectData API

and stores them into allocated heap. Later, it exfiltrates the data from the heap.
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Therefore, the "Login Data" satisfies T2 and is considered as one of the deception

candidates. Another victim of m1 is BlazeFTP ; m1 identifies the path that con-

tains the credential file "site.dat" from the Windows registry under the key: "Soft-

ware\FlashPeak\BlazeFtp\Settings." On success, it recursively enumerates the values

such as hostname, username and password from the "site.dat" and exfiltrates the data

to the C&C server. Here, selecting all these aforementioned APIs comply with T1, the

"site.dat" file satisfies T2 and the "Settings" satisfies T3. These registries and files

(e.g., "site.dat" and "Login Data") are potential deception candidates as they can be

substituted by HoneyThings (honey-registry and honey-files). DodgeTron was able

to extract 109 candidates out of 120 mentioned in the SANS report from m1, which

is almost 91% consistent. In addition, DodgeTron identified 195 other dependent

candidates that needed to be replaced to comply with T3 which keeps the system

consistent from the attackers point of view.

2.6.3 Experiment II: Evaluating the accuracy of DodgeTron in the online phase

We performed this experiment with 953 malware samples randomly picked from our

dataset. We observed and confirmed 869 of these 953 samples were successfully de-

ceived by DodgeTron with an accuracy of 91.18%. However, in many cases, we could

not confirm the malware got deceived or not due to unknown encryption algorithm. If

we could verify them, our accuracy could have gone higher to 95.9%. Fig 2.6 summa-

rizes the results of experiment II. For simplicity, we explain the experiment using two

infoStealers, where m2 (MD5: 68119dd7fb9ecb099de50227162bd82f ) is a new malware

that we didn’t use while training our classifier. On the arrival of m2, the classifier

performs fine-grained classification based on light analysis to classify it. Our clas-

sifier identifies a key representative m3 (MD5: ea722bea2a44cd06d797107d5ff9da92

that can represent m2.

Ground truth about m3: We have already performed in-depth analysis and

deception parameter extraction on m3 during the offline phase and identified m3 is
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Figure 2.6: Overall accuracy of DodgeTron across different malware families in term
of deceiving the malware

capable of retrieving five distinct digital wallets: Ethereum, mSIGNA, Electrum, Bit-

coin and Armory. It queries subkey values using RegQueryValueExW to locate the

path of digital wallets client. In the next step, m3 targets one by one each client

directory and iterates to find specific files such as *.dat using NtQueryAttributeFile

API. For example, in the case of Ethereum, m3 tried to capture information from

C:\Users\sajid\AppData\Roaming\Electrum\wallets \wallet.dat. Therefore, we cre-

ated a honey wallet.dat file containing a fake private key in the retrieved location and

a honey-registry containing honey values at HKEY\appdata\Ethereum\wallets.

Verification set up: To verify that our deception worked, we set up a proxy C&C

server for redirecting the traffic towards our proxy server using ApateDNS. In this

case, DodgeTron implanted a honey-file named wallet.dat at C:\Users\sajid\AppData

\Roaming\Electrum\wallets and a honey-registry values in the HKEY\appdata\Ethe-

reum\wall ets registry. At this stage, we let the malware run and steal information.

Within a few minutes, our proxy C&C server started to receive packets from the

infected machine. We found that a zip file had been uploaded to our proxy server.

We extracted this zip file and found it contained a folder named "Ethereum". We

observed and found the exfiltrated file contained the contents of honey-file that Dod-

geTron implanted.
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The explanation for the failed cases: If malware does not send any traffic to

the malicious C&C server, we consider such cases as "Not Deceived" by DodgeTron.

However, in some cases, we observed malware samples forwarded traffics to the C&C

server. However, as the traffic was encrypted with an unknown algorithm, we could

not verify whether the traffic contained the content of honey-files or not.

2.6.4 Performance analysis of DodgeTron in terms of execution time

In the offline phase, DodgeTron performs costly operations such as deep analysis

to train the clustering model. On average, for each sample, the deep analysis was

performed in 72 minutes. Therefore, to minimize the analysis time, we perform light

analysis during the online phase to classify the new malware, which takes 27.7 minutes

on average. The clustering in the offline phase is completed within 19.7 minutes, which

is very small compared to the total time required by the deep analysis. Therefore,

to minimize the analysis time, we perform light analysis during the online phase to

classify the new malware, which takes 27.7 minutes on average. The clustering in

the offline phase is completed within 19.7 minutes, which is very "small number"

compared to the total time required by the deep analysis. Therefore, we ignore it

in performance analysis. In addition, the time required to classify new malware in

the online phase is also ignored as it takes only a few seconds to classify the new

malware. Hence, by utilizing the hybrid analysis, DodgeTron speeds up the analysis

process and saves time. Fig 2.7 shows the speedup DodgeTron gained across different

malware families due to hybrid analysis.

2.6.5 Performance analysis of our classifier

We extract API names and their parameters from the execution traces and encode

them as numerical vectors. The embedder produces 32-dimensional vectors repre-

senting each trace. These vectors are then grouped into multiple clusters according

to their cosine similarities using agglomerative hierarchical clustering technique.
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Figure 2.7: Time Comparison of deep analysis vs light analysis across different mal-
ware families and the speedup factor

In order to find the optimal number of clusters, we calculate the homogeneity score

at each level of hierarchical clustering. In a perfectly homogeneous clustering case,

every cluster contains only data points belonging to a single class, which indicates

zero entropy in the clusters. Hence, the objective is to maximize the homogeneity

score by increasing the number of clusters. Given N data points, a set of clusters

K = {ki|i = 1, ...,m}, and a set of classes C = {cj|j = 1, ..., n}, we calculate the

homogeneity score hs as follows:

hs =


1, if H(C|K) or H(C) = 0

1− H(C|K)
H(C)

, otherwise.
(2.5)

In fact, as the knowledge of H(C) reduces, the uncertainty of H(K), the conditional

entropy H(H(C)|H(K)), becomes smaller. Fig 2.8 shows the trade off between ho-

mogeneity score and the number of clusters generated by agglomerative hierarchical

clustering technique. It demonstrates that increasing the number of clusters results

in higher homogeneity score until the cluster count reaches 275. From that point on,
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the homogeneity score does not change. Therefore, the total number of 275 clusters

is maintained as the optimal cluster count. The 91% homogeneity score means that,

in each cluster, slightly 91% of the samples belong to a common class. The approach

showed good results for the following reasons:

1. Malware from the same family usually follows analogous execution patterns.

Thus, simple clustering failed to precisely cluster different families. However,

this approach mainly focuses on representing mutually exclusive groups where

each one demonstrates a unique behavior regardless of the associated family.

2. In simple clustering, key representatives are selected randomly. Here prototypes

are selected more systematically in which it takes samples from various distri-

butions where each one displays a unique pattern.

Figure 2.8: The trade-off between homogeneity score and number of clusters in hier-
archy

2.7 Related Work

To the best of our knowledge, only a few research works have focused in obtaining

useful information from the InfoStealers through automated analysis. In [43] and [44]

the authors proposed automated systems capable of analyzing banking-trojans based

on their web-injection behaviors. However, these approaches only considered banking-

trojans, which are a subset of InfoStealers. In addition, they assumed that the attack
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mechanism is web-injection based, which is not true for all types of InfoStealers.

Honeypots [11] and honeynets [45] have been widely adopted to complement tradi-

tional detection and prevention mechanisms. Such methods offer attractive artificial

information (i.e., baits) to attackers to divert them from the real targets. However,

lack of randomness is a fundamental hurdle for these approaches. A few studies such

as [32] proposed alternative solutions to formulate honeypots that are indistinguish-

able from the real system. Unfortunately, these approaches work only theoretically

and are not directly applicable to real world scenarios as an attacker can adapt tech-

niques such as [46] to detect both low-interaction and high-interaction honeypots. In

addition, these techniques assume the malware will take the baits as they are lucra-

tive. However, malware may not take the planted baits.

Advanced honeypot and honeynet techniques such as shadow honeypot [7] hinders

information on the production system from the attackers. In this approach, both the

real production system and an instrumented shadow version of the actual system are

deployed separately. Anomaly detection sensor forwards suspicious network flow to

the shadow copy, while legitimate flows are directed to the real system. Thus the

precision of such a mechanism solely relies on the accuracy of the anomaly detection

sensor to be able to detect the malicious payload, which is not always accurate [47].

In [22], the authors proposed to instrument production systems with fake services and

mock vulnerabilities to attract attackers. However, it is possible the attackers might

launch attacks with specific services or vulnerabilities that are not fabricated. Besides,

the approach has a dependency on the sysadmin, so it requires manual assistance.

An orthogonal line of works utilized decoy files or honey accounts to detect ran-

somware [23, 24], general malware [25, 26], or DDoS attacks [27]. In [28] and [29],

researchers employed honeypots and honeytokens to detect and prevent web-based

attacks. Such strategies are out of the scope of our work as they mainly focus on de-

tection where we are interested in deception. Moreover, these techniques are designed
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to detect only a particular type of malware where our approach is intended for the

general type of InfoStealers.

DodgeTron is built upon and can benefit from an extensive body of research on

dynamic analysis of malware [48, 49], such as forced execution [50], multipath explo-

ration [51] and symbolic execution [35]. While our work needs to analyze malware,

we have a different goal: to automatically discover system parameters that can be

leveraged to deceive, rather than detect, malware.

2.8 Discussion & Conclusion

We acknowledge a few technical challenges concerning our approach. As we intend

to maintain the honey-files close to the real system, we generate all the honey-files by

installing the actual software, which requires a lot of manual effort. Since we utilize

symbolic execution, we inherit the limitations (e.g., state-space explosion) of symbolic

execution. To minimize the state space explosion, we limit path exploration. Limita-

tion of path exploration is not effective in discovering interesting malware execution

code. However, we plan to generate honey-files automatically by implementing ma-

chine learning algorithms. Currently, we do not have an implementation to counter

malware evasion. We plan to incorporate strategies in future to address this issue.

We present the first autonomous cyber deception framework that is capable of

creating a deception scheme through rigorous dynamic malware analysis, automated

reasoning and decision making. We execute malware samples through a selective

symbolic execution engine to classify the malware samples based on their interactions

with the system. Based on classifier results, we perform deception oriented analysis to

extract cost-effective deception candidates to design consistent and resilient deception

schemes. We have experimentally verified the effectiveness of DodgeTron against

recent malware.



CHAPTER 3: symbSODA: Configurable and Verifiable Orchestration Automation

for Active Malware Deception

3.1 Introduction

Active cyber deception (ACD), which complements and overcomes the shortcom-

ings of traditional detect-then-prevent strategies, has emerged and developed into an

effective defense technique. ACD creates doubts and ambiguity in the adversary’s

mind by intentionally, actively and deliberately concealing or falsifying actual sys-

tem configurations (such as the keyboard layout, registry values, and IP address).

In other words, ACD corrupts the adversary’s perception of the victim system and

decision-making processes. Best practice cyber deception systems have been primar-

ily high-interaction decoy systems that contain fake files, user accounts, credentials,

and other components. However, cyber deception has a wider range of benefits than

only catching attackers in a controlled environment [6, 8, 23, 24]. An effective cyber

deception can achieve 4D goals: (1) deflect adversaries to false targets, (2) distort

adversaries’ perception about the environment, (3) deplete adversaries’ resources and

(4) discover adversaries’ motives, tactics and techniques [21].

Although cyber deception has been applied effectively in numerous settings, exist-

ing deception approaches lack agility, resilience, and automation. Furthermore, these

approaches fall behind with static deployment and configurations that are easily dis-

tinguishable from the real systems [1], which skilled attackers can quickly discover

and circumvent [2–5]. Existing deception techniques are largely intended to thwart

attackers at a certain stage of the kill-chain phase. For instance, some well-known

deception techniques use honeypots [1,6,7], honeyfiles [8–10], honeypatches [11], hon-

eybugs [12] and decoys [13] to mislead attackers during the collection and credential
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access phase. On the other hand, others use malicious traffic rerouting, such as [17],

to deter attackers at the command and control phase. Only a few approaches take

into account every kill chain phase [13,19,20]; however, they cannot provide program-

able and configurable deception plans to their users, which enables them to create

and design their deceptive playbook based on their own requirements. Network ran-

domization [18] and moving target defense [14–16] are other well-known deception

strategies.

Existing sandbox-based malware analysis agents suffer from two major drawbacks:

1) malware evasion mechanisms against the well-known systems and 2) inability to

execute malware in multipath exploration settings. The anti-malware systems such as

detection, investigation, response, prevention, and deception-oriented systems depend

on these analyses to design countermeasures against the malware, while the malware

implements evasion techniques, trigger-based conditions and logic bombs to corrupt

the analysis results. If the analysis data is corrupted, the countermeasure is no

longer effective. Besides, the malware can have environment sensitivity checks to

target only specific systems. Therefore, it is essential to discover these conditions

to uncover the interesting malicious behaviors and learn from them to design an

accurate anti-malware system. Multipath exploration techniques such as symbolic

execution can explore both sides of the conditional branching within the malware.

Therefore, they can generate comprehensive execution logs and provide more insights

into how multiple paths can lead toward malicious goals. In summary, accurate

and more malicious sub-graph (MSG) extraction is a key for designing a precise

deception-oriented system. Therefore, a multipath exploration-based analysis system

can observe more MSGs than a single path exploration-based analysis system like

Cuckoo Sandbox. Hence, such an analysis agent provides us with a more exciting

malware execution path to play the deception game.

This work addresses these limitations by introducing an autonomous cyber decep-
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tion system called symbSODA that provides deception as a service and orchestrates

a deceptive environment at run-time. First, symbSODA execute malware symboli-

cally and extracts malicious sub-graphs from the execution traces. A malicious sub-

graph (MSG) represents a sequence of WinAPI calls that work together to perform

a malicious task. During extraction, we traverse different execution paths within

the malware in order to extract comprehensive number of MSGs. Next, symbSODA

maps these extracted MSGs to the MITRE ATT&CK framework to determine the

malware’s behaviors at the kill chain tactical level. Later, this knowledge base is

utilized to create the Deception Playbook, a set of deception course-of-actions to be

performed to deceive specified malicious behavior with a given deception goal and

strategy. Users can weaponize their systems using these pre-built deception playbook

profiles or can create their own. Based on deception playbook profile selection/cre-

ation, symbSODA provides deception as a service where orchestration is performed

automatically.

This chapter is a major extension of SODA, presented in a previous conference pa-

per [52]. We extend SODA in the following ways: (1) Adding symbolic execution

capabilities. In our conference paper, we used concrete execution analysis based on

Cuckoo sandboxing. The analysis was limited due to a lack of multi-path exploration

of malware code. Thus, in this version we developed a significantly improved API Call

Tracer (discussed in Section 3.3.1.1), which employs symbolic execution capability to

provide us with better system call monitoring via kernel-level hooking. In addition,

symbolic execution allows the API Call Tracer to explore multiple paths within the

malware, which helps extract more MSGs that were not explored with SODA. (2)

Adding verifiable orchestration. We developed a Deception Planning Verifier us-

ing the Assume-Guarantee technique to ensure consistent and conflict-free deception

actions (Section 3.3.3.5). In our conference paper, SODA deployed deception actions

without considering potential conflicts among them. Such conflicts can cause incon-
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sistency among the deceptive actions leading to malfunctioning deception plans that

can be leveraged by attackers. Therefore, it is important to keep the system consis-

tent from the API and the attackers’ point of view [53,54]. We developed a deception

planing verifier that uses the assume-guarantee technique to identify conflicts among

the deception actions and remove them during user configuration. This process can

also guide the deception developers to implement deceptive programs that are consis-

tent and valid. (3) Enriching honey factory. We enhanced the implementation of

the SODA honey factory with a more comprehensive set of capabilities; previously,

we had only a few honey files and registry values inside the honey factory. (4) Im-

proving evaluation and case studies. We improved the evaluation by including

the comparison of symbSODA with other related tools in terms of detecting differ-

ent MITRE ATT&CK techniques within malware execution. We also added new

case studies (Section 3.5.1) on three different types of malware to demonstrate how

symbSODA can advance SODA by overcoming the triggering conditions within the

malware and extracting new MSGs.

Specifically, we make the following contributions:

• We propose a dynamic security orchestration, automation, and deception sys-

tem, symbSODA, which enables users to orchestrate deception ploys with ap-

propriate strategies and goals dynamically.

• We propose a symbolic execution driven analysis agent that satisfies malware

condition checkings to extract comprehensive MSGs. The analysis agent in our

earlier work, SODA, was developed on top of the Cuckoo Sandbox, which could

only perform concrete execution and had limitations against evasive/environment-

aware malware.

• We propose a systematic way of removing conflicting deception actions by per-

forming assume-guarantee analysis on selected deception actions to detect po-
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tential conflicts and warn the users and deception developers to resolve them.

• We propose automated MSG extraction and MSG-to-MITRE mapping, allowing

symbSODA to understand malware behaviors at runtime to activate relevant

deception ploys.

• We propose an embedded deception technique based on API hooking, allowing

symbSODA to execute deception ploys in real time.

• We evaluated symbSODA with recent malware to determine the accuracy and

the scalability of our approach. We observed an accuracy of 95% in deceiv-

ing malware with negligible overhead and deployment time. Furthermore, our

approach successfully extracted MSGs with a 97% recall value and MSG-to-

MITRE mapping achieved a top-1 accuracy of 88.75%.

The remainder of the chapter is organized as follows: In Section 4.2, we discuss the

threat model and assumptions. Section 4.3 explains how MSG extraction and MSG-

to-MITRE mapping are used to develop deception playbooks offline. Section 4.4

presents how symbSODA provides deception as a service in real-time. The outcomes

of the evaluation are presented in Section 4.5. Related work is discussed in Section

4.6. Finally, limitations, future work and conclusions are presented in Section 4.7.

3.2 Threat Model and Assumptions

We used symbSODA to analyze thousands of malware samples and extract rele-

vant MSGs (malicious sub-graphs) that are readily usable by users to define deception

ploys. In addition, users can extend the collected library of MSGs in sympSODA as-

suming there exist sufficient and representative malware repositories for each major

malware type (e.g., RATs, ransomware, and InfoStealers) to be used to extract MSGs.

This will enable users to effectively define custom-made deception ploys for new mal-

ware types. Users can obtain a repository of malware samples from public malware
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sharing sites (such as VirusTotal [55] and MalShare [56]), which provide both mal-

ware samples and their labels that can be used to infer malware type.

Users can use symbSODA to define fixed ploys for each MSG applied for all mal-

ware. In this scenario, users will enable all defined ploys simultaneously and only

the ploys that belong to an MSG related to analyzed malware will be activated at

run-time. On the other hand, users of symbSODA can define various profiles based

on the anticipated types of malware (e.g., ransomware). In this case, the same MSG

can be associated with different ploys in each profile according to the malware type

and user selection. We assume that the malware type can be obtained by the malware

detector or analyzer [10]. Thus, each profile can have its specific ploys designed based

on the deception objective of this malware type. As discussed in Section 4.4, we can

make these kinds of custom-built deception profiles free of errors.

3.3 Deception Playbook Creation

A single malware can contain multiple malicious behaviors. These malicious be-

haviors can be deceived in multiple ways depending on different deception goals and

strategies. Depending on the deception goals and strategies, each malicious action

can be deceived in various ways. For example, suppose a malware behavior is to steal

a credential file. One way to deceive the malware is to supply honey credentials in

the form of a honeyfile. Another option is to pretend the credential file doesn’t exist

on the system. Each action is referred to as a Deception Ploy. Therefore, Deception

Ploys or simply ploys are the actions or measures we can perform to deceive mali-

cious behaviors with given strategies and deception goals. If a malware (m1) has the

following behaviors: B1, B2 and B3 and T1, T2 and T3 are the ploys used to deceive

these behaviors respectively, then Deception Playbook of m1, DP (m1) = {T1, T2, T3}.

Therefore, we can say that the Deception Playbook is a collection of deception ploys

intended to deceive a certain set of malicious behaviors.

The Deception Playbook Creation phase aims to create Deception Playbooks for
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given malware and store them so that if the same/similar malware compromises our

system in the future, we can deceive it using the stored Deception Playbooks. The

Deception Playbook Creation phase can be divided into three parts: Malicious Sub-

graphs (MSGs) Extraction, MSG-to-MITRE Mapping and Deception Playbook Syn-

thesis. Firstly, we extract MSGs from real-world malware. Secondly, we map these

retrieved MSGs to MITRE techniques as well as to our defined malicious behaviors.

As MSGs represent the malware’s low-level implementation details, they might be

complicated or ambiguous for those who are not experts or familiar with WinAPIs.

Behaviors are high-level descriptions of malware actions or capabilities. We perform

MSG-to-MITRE mapping to assist the users in understanding what and how the

malware is trying to execute malicious action and how the deception mechanism will

combat that action. Finally, we develop deception ploys for various malware behav-

iors in the Deception Playbook Synthesis. Then, using the deception techniques, we

create and store Deception Playbook. Finally, we implement the Deception Factory,

which includes developing hooks and REST APIs and creating HoneyFactories (HF)

to perform the actions outlined in Deception Playbooks. The whole procedure of this

phase is depicted in Figure 3.1 and explained in the following sections.

3.3.1 Malicious Sub-graphs (MSG) Extraction

The malware must call a sequence of WinAPIs to achieve a particular malicious

objective/goal/behavior. If each WinAPI in this sequence is represented as a node

and the data flow between two WinAPIs is represented as an edge, then this WinAPI

sequence can be represented as a graph. These graphs are defined as malicious sub-

graphs (MSGs). We note that an MSG is related to, but not strictly a sub-graph of,

the malware’s control flow graph. Specifically, nodes in an MSG represent Windows

API calls, not basic blocks as in a control flow graph; and edges in an MSG represent

data flows among API calls, not jumps (or control transfers) as in a control flow

graph. A control flow graph can contain API call information in its nodes, but it
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Figure 3.1: Deception Playbook Creation

does not directly represent data flows.

Identifying these MSGs from malware traces is necessary to understand malware

execution flow, and these execution flows will lead us to design an accurate deception

plan. We need an environment where we can execute hundreds of malware and collect

their execution traces to extract MSGs. We build the API Call Tracer (also referred

to as the Analysis Agent) by utilizing the sandboxing idea and it’s built on top of

a selective symbolic execution engine [9, 10, 35]. We also automated the process of

uploading malware, collecting traces, and extracting MSGs.

3.3.1.1 Symbolic execution based API Call Tracer

We use the sandboxing technique to collect malware execution traces. The API

Call Tracer consists of three modules: a) Template Code Generator, b) Hooking En-

gine and c) Symbolic Execution Engine. The Template Code Generator automates

the generation of the corresponding C++ source code for the Hooking Engine, which

is required for basic API monitoring. The Hooking Engine is used to intercept the
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selected APIs and then, based on different reasoning, switch to the Symbolic Execu-

tion Engine. The Hooking Engine is implemented using EaskHook [57] and is used to

intercept the desired API calls and then switch to symbolic execution mode based on

necessity. The Symbolic Execution Engine is built on top of S2E, a selective symbolic

execution engine [35]. Inside API call traces, our combined EasyHook-S2E plugins

can intercept and change the original API calls with both concrete and symbolic pa-

rameter values. This mechanism facilitates us in collecting execution traces on both

sides of the conditional branching. For example, if the malware is searching for a

specific file, conditional branching would go either to the success branch (if the file

exists) or to the failed branch (if the file does not exist), but not both. As the API

call tracer employs symbolic execution, it can traverse both sides of the branching

by assigning symbolic values to the conditional variables during the analysis. Thus,

it explores multi-paths within the malware; as a result, our execution traces are rich

and enhance the quality of MSG extraction.

As MSGs are the first building block of our system, our MSG extraction needs to be

comprehensive, i.e., ideally we want our API Call Tracer to log all possible WinAPIs

with all parameter values. Unfortunately, doing that will impact the performance

of both the API Call Tracer and the MSG Extractor. Therefore, we choose the

middle ground where the API Call Tracer will have the maximum WinAPI coverage

with a reasonable performance overhead. Hence, we select only those WinAPIs that

are significant among the malware. To find the significant WinAPIs, we leveraged

gExtractor [9], a dynamic analysis tool that can report all WinAPIs that are invoked

by a given piece of malware. We ran 1,000 representative malware samples using

gExtractor and identified 516 unique WinAPIs. Therefore, we decide to cover these

516 WinAPIs with all parameter values in the API Call Tracer.

However, we still need to write the template codes inside the Hooking Engine for

each of these 516 WinAPIs that we want to monitor, which is a non-trivial task.
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Figure 3.2: API Call Tracer: (a) Our implemented approach automates the template
code generation process, (b) The Hooking Engine is responsible for intercepting API
calls, and (c) The Symbolic Execution Engine is responsible of executing the malware
symbolically. (Rectangular shapes indicate agents (scripts) capable of processing,
while parallelograms indicate I/O data for respective agents.

Therefore, we automated the process of C++ template code generation for the hook-

ing engine. Firstly, we provide a list of WinAPIs to be monitored to our tool. For

each WinAPI, our tool retrieves its definition from the corresponding MSDN web-

site. Secondly, using the scripts and retrieved definitions, our tool generates the

bare-minimum necessary C++ code for each API that is required for monitoring in-

dividual API. We implemented Python scripts (we refer to it as "Template Code

Generator") to automate this code generation process. Finally, some of these API

codes are changed based on the condition of symbolic exploration.

Each module within the API Call Tracer and its workflow is depicted in Figure 3.2.

Let’s explain the workflow of the API Call Tracer with an example. At first, the

Hooking Engine starts the malware in a suspended state, injects a DLL and then

resumes the suspended process. Now, let’s assume the malware calls GetLocalTime

API, and we have a hook function for this API inside the Hooking Engine, which

intercepts the original API call. Again, it’s unnecessary to execute every single API

called by the malware symbolically; we selectively enable the symbolic execution based

on our domain knowledge. Now, let’s say we want to enable the symbolic execution for

the GetLocalTime API. We can call S2EMakeSymbolic (a function offered by S2E for
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1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

RegOpenKey {'key_handle': '0x000000bc', 'regkey': 'HKEY_LOCAL_MACHINE\\SOFTWARE\\Mozilla\\Mozilla Firefox'}
CreateToolhelp32Snapshot('out_handle': '0x000000f8'}
RegQueryValue {'key_handle': '0x000000bc', 'value': '41.0.2 (x86 en-US)', 'regkey': 'HKEY_LOCAL_MACHINE\\SOFTWARE\\Wow6432Node\\Mozilla\\Mozilla
Firefox\\CurrentVersion'}
RegCloseKey {'key_handle': '0x000000bc'}
........
Process32First {'process_name': '[System Process]', 'snapshot_handle': '0x000000f8'}
Process32Next {'process_name': 'System', 'snapshot_handle': '0x000000f8'}
Process32Next...
........
FindFirstFile{'filepath': 'C:\\Users\\Administrator\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\Login Data'}
CreateFile{'out_file_handle': '0x000000de', 'filepath: 'C:\\Users\\Administrator\\AppData\\Local\\Google\\Chrome\\User Data\\Default\\Login Data'}
GetFileType {'file_handle': '0x000000de'}
........
ReadFile {'file_handle': '0x000000de', buffer,: 'FileContent', 'length': 260, 'offset': 0}
SetFilePointer {'file_handle': '0x000000de', 'move_method': 1, 'offset': 260}
ReadFile {'file_handle': '0x000000de', 'buffer': 'FileContent', 'length': 4096, 'offset': 0}
CloseHandle {'handle': '0x000000de'}
........

Figure 3.3: Execution trace of a malware sample generated in Cuckoo Sandbox (N.B.
The size of the parameter“buffer" is large hence denoted as “FileContent" instead of
the original content)
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Figure 3.4: MSGs generated from malware traces

marking a particular variable/set of variables symbolic) with the variable we pass to

GetLocalTime, which is lpSystemTime. By doing so, the selective symbolic execution

engine will mark lpSystemTime symbolic and will execute the GetLocalTime API

call. Suppose the malware performs any checking on this variable to make a decision.

In that case, we can find out the concrete value of this variable that satisfies the

conditional check using the SMT solver within the Symbolic Execution Engine. The

evaluation section provides more insights about the API Call Tracer.

3.3.1.2 MSG Extractor

Once we have run malware samples via the API Call Tracer and collected traces,

we’ll utilize them to extract MSG. MSG extractor extracts MSGs from traces where
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node denotes WinAPI and edge represents the data dependency between APIs’ pa-

rameters. Figure 3.3 is an example trace generated by the API Call Tracer. Please

note that the traces depicted in Figure 3.3 are not sequential but instead picked from

three separate locations inside a single log file to demonstrate how the graph genera-

tion and extraction work.

In Figure 3.3, lines 1,3,4 illustrate that the malware opens a registry, executes a

query and then closes the registry after the query is complete. Lines 2,6-8 show that

the malware enumerates currently running processes. The malware scans, harvests

and steals credentials from the Google Chrome browser on lines 10-17. In Figure 3.4,

G1, G2, and G3 are three MSGs created from lines 1,3,4, lines 2,6-8, and lines 10-17

in Figure 3.3, respectively.

The pseudocode of our MSG extraction is listed in Algorithm 1. It takes a log

file as input and generates MSGs. It uses API calls from the execution trace to

construct graph nodes and the arguments/parameters to link API calls based on data

dependencies. It uses variable G to represent the MSG and four lists of (key, value)

pairs to find the data dependencies among API calls. In each (key, value) pair, the

key represents a concrete parameter (such as 0x000000bc), and the value represents

an API node in the MSG. The four lists (i.e., Active_ids, Active_files, Active_regs

and Active_bufs) correspond to four common types of parameters: handler, file path,

registry path, and buffer.

Let’s see how our algorithm extracts MSG G1 from the log file in Figure 3.3. When

the function MSG_Extractor processes line 1 of Figure 3.3, it recognizes the param-

eter value 0x000000bc as an identifier (in line 21) and therefore inserts a (key, value)

pair (0x000000bc, RegOpenKey) into Active_ids (in line 32). Next, when it pro-

cesses line 2 of Figure 3.3, because the parameter value 0x000000f8 does not belong

to the keyset of Active_ids (line 29), it inserts a new pair (0x000000f8, CreateTool-

help32Snapshot) into Active_ids (line 32). When it processes line 3 of Figure 3.3,
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Algorithm 1 MSG Extraction Algorithm
1: function Add_Edge(API, item, action, targetList)
2: Add Edge into G from node2 to node1
3: where: node1 = API
4: node2 = targetList[item] ▷ Add the closure API to the MSG before removing
5: if action=="remove" then
6: Remove item from targetList
7: else
8: Update targetList
9: end if

10: end function
11: function MSG_Extractor (logF ile)
12: Variable Initialization
13: G = {} ▷ Empty Directed Graph
14: Active_ids = {} ▷ Key holds identifier and value holds latest node to use this identifier
15: Active_files = {} ▷ Key holds file name and value holds latest node to use this file
16: Active_regs = {} ▷ Key holds registry key and value holds latest node to use this registry
17: Active_bufs = {} ▷ Key holds starting address of buffer and value holds latest node to use

this buffer
18: closure = [CloseHandle, RegCloseKey, FindClose, VirtualFree, ...]
19: for <each line of the input logFile> do
20: API = the API call on this line
21: returnValue = Return value of the API call on this line
22: param = [Param1_value, Param2_value,..., Param_n_value]
23: Identify Files as f, Registry as reg, Identifier as id and Buffer as buf from param and

insert into RELATION ▷ Identification is performed using regex
24: if API in closure then
25: for each param do
26: if item in Param belongs to TARGET: {Active_ids or Active_files or Ac-

tive_regs or Active_bufs}
27: ADD_EDGE (API, item, "remove", TARGET)
28: end for
29: else
30: if item in Param belongs to keyset of TARGET: {Active_ids or Active_files or

Active_regs or Active_bufs} and API not in TARGET[item] then
31: ADD_EDGE (API, item, "update", TARGET)
32: else
33: for each item in RELATION do
34: if item is not Null then
35: Insert into (Active_ids if item: id) or (Active_files if item: f) or (Ac-

tive_regs if item: reg) or (Active_bufs if item: buf), where (Key, Value): (item, API)
36: end if
37: end for
38: end if
39: end if
40: end for
41: return Directed Graph: G
42: end function
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Figure 3.5: An MSG that corresponds to malware actions in a real-world attack
scenario

because the parameter value 0x000000bc belongs to the keyset of Active_ids and

the API RegQueryValue is not equal to Active_ids [0x000000bc], i.e., RegOpenKey

(line 27), it invokes ADD_EDGE with (RegQueryValue, 0x000000bc, “update”, Ac-

tive_ids) as parameters in line 28. As a result, a new edge RegOpenKey → Reg-

QueryValue is inserted to the MSG (lines 2-4) and the (key, value) pair in Active_ids

is updated to (0x000000bc, RegQueryValue) in line 8. When MSG_Extractor pro-

cesses line 4 of Figure 3.3, because the API RegCloseKey is in the “closure” set (i.e.,

the condition checked in line 22 is true) and the parameter value 0x000000bc belongs

to the keyset of Active_ids (line 24), it invokes ADD_EDGE with (RegCloseKey,

0x000000bc, “remove”, Active_ids) as parameters in line 25. As a result, a new edge

RegQueryValue → RegCloseKey is inserted to the MSG (lines 2-4) and the (key,

value) pair (0x000000bc, RegQueryValue) is removed from Active_ids (lines 5-6).

Note that MSGs can be created using multiple dependencies too. For example,

for lines 10 to 17, graph G3 is formed where the first two nodes, FindFirstFile and

CreateFile, are connected using filepath. However, CreateFile and the next five nodes

are linked with the handle value 0x000000de. Moreover, MSGs that describe the
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real-world attack scenarios can be more complex than the ones in Figure 3.4. For

example, the MSG in Figure 3.5 corresponds to malware actions that (1) read the

content from a file, (2) call a network API to get some malicious code/data from

a remote server, (3) add the malicious code/data to the content, and (4) write the

manipulated content to another file. There are multiple parameters associated with

this MSG but each one is used independently to infer the dependency among APIs.

For example, the parameter lpbuffer of ReadFile is a reference to the memory block

to hold the read-in content in step 1, and it becomes one input parameter of the

memcat API in step 3. Thus, using this parameter (which is of “Active_bufs” type),

we can discover the link between ReadFile and memcat in the extracted MSG.”

Finally, if a WinAPI call is followed by the same WinAPI call and parameter

values, the MSG extractor considers these multiple calls as a single call and creates

only one node. In the case of G2, Process32Next is followed by multiple Process32Next

calls with the identical parameter values; as a result, the MSG extractor ignores the

following calls and creates only one Process32Next node. The MSG extractor extracts

all these possible malicious sub-graphs and stores them for MSG classification.

3.3.2 MSG Classifier

To implement a successful deception framework, it is inevitable to understand what

the malware is trying to achieve at the time of deception, hence, enabling us to design

a deception ploy for the malware strategically. MSGs are a low-level characterization

of malware that is semantically distant from high-level descriptions of malware behav-

iors and goals. This semantic gap needs to be bridged in order to identify the adver-

sary’s actions achieved by the malware. To attain this understanding, we map MSGs

to their corresponding MITRE ATT&CK techniques. MSGs’ mapping to MITRE

ATT&CK techniques provides insight into the malware’s various characteristics, thus

enabling us to design an appropriate deception ploy. MITRE ATT&CK is a publicly

accessible, structured knowledge base that contains adversaries’ various tactics and
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Figure 3.7: MSG to MITRE technique classification

techniques illustrating the attack lifecycle of the adversary. Each MITRE ATT&CK

technique has a text description that explains the attack’s procedures and objectives.

As MSGs consist of a set of Windows APIs, and since rich information about each

API can be collected from online resources, MSG Classifier performs MSG-to-MITRE

ATT&CK techniques mapping by analyzing descriptions of APIs from MSDN, online

API-related data, and descriptions of MITRE ATT&CK techniques. MSG Classifier

consists of two main components. First is vector representation extraction, where the

MSG Classifier generates a vector representation of each API and MITRE technique

based on the collected related text. The second is MSG to MITRE classification,

where MSG Classifier uses the generated vectors for real-time MSG to MITRE clas-

sification.

Figure 3.6 and Figure 3.7 show the process of the vector representation extraction

and MSG to MITRE classification, respectively. This section describes the MSG

Classifier’s data, components, and classification process.

Data Collection: MSG Classifier maps MSG to a MITRE technique using MITRE
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techniques’ descriptions, APIs’ descriptions, and Stack Overflow Windows-related

question-answer pairs. Stack Overflow is a website where users discuss programming-

related problems [58]. Each Stack Overflow post consists of a question and multiple

answers provided by users. Since APIs’ are low-level malware characteristics, whereas

MITRE techniques are high-level attack descriptions, Stack Overflow was leveraged

to bridge this knowledge gap. For example, a MITRE technique description can

mention the "taking a screenshot" behavior, which is a high-level action that can be

achieved in Windows using several APIs. Stack Overflow questions regarding taking

a screenshot are leveraged by extracting APIs from users’ highly rated answers.

The accuracy of our MSG to MITRE technique mapping critically depends on

the quality of the StackOverflow dataset because StackOverflow is an open forum

where users talk about many different things. To this end, we preprocess the origi-

nal question-answer pairs to filter noise. Specifically, we include only StackOverflow

questions with Windows-related tags such as winapi and win32. We extract APIs

from the answers by first tokenizing the code part of the answers and only retrieving

tokens that match an API from our predefined API list. Additionally, we consider

an answer only if it mentions at least one APIs. To address the potential inac-

curacies inherent in Stack Overflow content, such as incorrect answers or outdated

information, we have implemented a set of rigorous criteria and mechanisms. These

measures leverage the quantitative evaluation provided by Stack Overflow for each

question and answer, ensuring that any noise introduced is statistically insignificant

and does not affect the accuracy of our model. Firstly, we employ a filtering process

to eliminate outdated answers. This involves verifying the validity of the mentioned

APIs by cross-referencing them with the current API documentation. Answers that

reference deprecated or non-existent APIs from MSDN are promptly removed from

consideration. This meticulous approach guarantees that the data collected for our

purposes remain entirely relevant and up-to-date. Secondly, a significant majority
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(approximately 80%) of the collected data we consider has undergone validation and

approval by the Stack Overflow user community, as indicated in the posts them-

selves. This validation is essential as it reflects the consensus reached by experts and

knowledgeable individuals within the community. For the remaining data, we adopt

a selective approach by only considering answers that have received a positive score.

This implies that the number of positive reviewers significantly outweighs the num-

ber of negative reviewers. By incorporating this criterion, we further ensure that the

information included in our dataset is not only validated but also favorably acknowl-

edged by the Stack Overflow community. Through the careful application of these

criteria and mechanisms, we have effectively filtered out any outdated or highly in-

accurate information that could potentially compromise the integrity of our collected

data. As a result, the noisy information is statistically insignificant in terms of its

potential impact on our overall data accuracy.

After performing pre-processing and filtration, we ended up with a dataset con-

sisting of 525 MITRE enterprise techniques, 7,241 APIs, and 10,289 StackOverflow

question-answer pairs. We consider this dataset sufficient for the classification task

described in the chapter. Our evaluation (Section 3.5.5) shows that our API repre-

sentation is robust, as it can classify MSGs from real-world malware to the correct

MITRE ATT&CK techniques.

Preprocessing: MITRE techniques’ descriptions, APIs’ descriptions, and Stack

Overflow questions contain many unessential words called stop words, which are words

that frequently occur in a text but with no contribution to its meaning. Examples of

stop words are to-do verbs and prepositions (e.g., about, in, and below). We adopt

the stop words list introduced by NLTK [59] in our analysis. We also added to the

list some Windows-specific words such as "windows" and "c." We filtered out stop

words from our data prior to any analysis. We also filter out low occurring words

that occur less than a predefined number of times that we denote as minimum word
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frequency. Low occurring words expand the space complexity of our task while not

contributing to the overall results. Finally, we filter out punctuations and numbers,

lemmatize verbs to their base form, and convert all text to lowercase.

MITRE and API text representation: We represent each MITRE technique by

its main description and its procedure examples’ description. A technique’s procedure

examples are a brief description provided by MITRE of how different malicious entities

use the corresponding technique. For techniques that have sub-techniques, we merged

all the sub-techniques descriptions and appended them to the parent technique’s

description.

We represent each API by three types of text: the API description taken from

MSDN, all Stack Overflow questions’ titles in which the API exists in the answers, and

words that form the API name. For example, words that form the API CreateFile

are Create and File. We merged all these texts for each API and used them as API text

representation. We denote the new merged API description as API full description.

MITRE vector representation: We represent each MITRE technique by a

vector. Each index of the vector corresponds to a word and its value is the TF-IDF

score of the word. A TF-IDF score reflects the importance of a word in a document

in comparison to other documents. This importance is measured based on the word’s

frequency in the current document compared to other documents. The TF-IDF score

of a word w in a document d from the set of documents S is:

tf-idf(w,d,S) = tf (w,d).idf(w,S)

Where:

tf (w,d) = log(1 + freq(w, d))

idf (w,S) = log(
N

count(d ∈ S : w ∈ d)
)

Here, freq(w,d) is the number of times the word w appears in document d, count(d
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∈ S : w ∈ d) is the number of documents in which the word w appears and N is

the number of documents in S. Therefore, the TF score corresponds to the frequency

of a word occurrence in a document, and the IDF score corresponds to the number

of documents that contain the word. The TF score is directly proportional to the

frequency of occurrence, while the IDF score is inversely proportional to the number

of documents that contain the word.

The vector representation V of a MITRE technique m1:

Vm1 = [tf-idf(w1, dm1 , S), tf-idf(w2, dm1 , S), ..., tf-idf(wn, dm1 , S)]

We only keep the highest-scored words in each technique representation and set

other words’ scores to zero.

API vector representation: We extract each API vector representation in three

steps: keywords extraction, enriching, and TF-IDF extraction. First, we calculate

the TF-IDF score of all words in each API full description and extract nouns with

a score above a predefined threshold. We denote these words as keywords. Second,

we enrich each description using a Word2vec model we trained on MITRE technique

descriptions, API descriptions, and Stack Overflow questions. Word2vec [60] is a word

embedding model that represents words by vectors of multiple dimensions based on

their co-occurrence. In Word2vec vector representation, words that highly co-occur

in the training text will get similar vectors. This Word2vec behavior helps us to find

words similar to words in API full description. We enrich each API full description by

adding words similar to the description’s keywords with a similarity above a predefined

threshold. Third, we extract the TF-IDF score from the enriched descriptions, which

will output a vector for each API similar to the MITRE technique vector we mentioned

before.

Classification: When MSG Classifier gets an MSG as an input, it generates a
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vector representation of the MSG by computing the average of the APIs’ vectors

of the MSG. When computing the average vector, all elements with a value of zero

are discarded. For example, if an MSG containing 3 APIs and the values of the

first element of each API’s vector are 20%, 30%, and 0, the first element of the

generated vector will have a value of 25%. MSG Classifier then calculates the cosine

similarity between the average vector and all MITRE techniques’ vectors. The higher

the similarity, the more likely the MSG belongs to a technique. MSG Classifier

outputs all MITRE techniques ranked by their similarity to the MSG. The MSG is

then mapped to the highest-ranked technique.

3.3.3 Deception Factory Synthesis

In this section, we enumerate all possible Deception Ploys for different malicious

behaviors, strategies and 4D deception goals (Section 3.3.3.1). It is possible to create

a Deception Playbook covering all the ploys we listed. However, we choose to break

down these ploys and build profiles based on the co-occurrence of certain behaviors.

After building these profiles, we use the mapped MSGs to develop WinAPI hooks.

We can use WinAPI hooks to intercept malware execution and change the response

as we see fit. The specifics are provided in the following sections.

3.3.3.1 4D Deception Goals

An attacker can be deceived in multiple ways. To design a deception framework,

we must consider 4D deception goals: diversion, distortion, depletion, and discovery.

Details are given as follows:

• Diversion: Diversion means leading an adversary to a fake target instead of

a real one by giving deceptive responses to any adversary queries or providing

honey information. For instance, diversion can be achieved by redirecting the

adversary’s exfiltration traffic to a decoy server.

• Distortion: Distortion creates confusion in the adversary’s mind by providing
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too many options and ambiguity in cyberspace. For instance, while an adversary

searches for user credentials, providing multiple yet honey credentials will distort

the adversary’s view of the system.

• Depletion: Depletion means delaying the adversary’s propagation in the attack

kill-chain by consuming his power or resources. As an example, we can deplete

a Ransomware by creating a delayed response without doing any encryption,

but responding that encryption is not done yet.

• Discovery: Discovery means figuring out new attack techniques by letting an

adversary executes its desired action but in a contained environment. It can be

done by running malware inside a deception framework such as symbSODA.

3.3.3.2 Deception Strategies

Since we implement the deception through API hooking, there are four ways we can

respond to the malware: FakeFailure, FakeSuccess, FakeExecute, and NativeExecute.

We call these approaches Deception Strategies and more details are given as follow:

• FakeFailure: By FakeFailure, we mean denying something that exists or the

falsification of a true property or fact. Under this strategy, symbSODA responds

to the malware as if the operation failed while the actual WinAPI has never

been called. For example, if the malware calls CreateProcess to create a

child process, symbSODA responds back to the malware that the child process

creation failed without invoking the actual CreateProcess call.

• FakeSuccess: By FakeSuccess, we mean confirming something that doesn’t

exist or the confirmation of an invalid property or fact. Under this strategy,

symbSODA responds to the malware as if the operation was successful but the

actual WinAPI has never been called. For example, the malware calls ReadFile

to read the content of a file, symbSODA can respond back to the malware that
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Table 3.1: Deception ploy creation and verification (D1 = diversion, D2 = distortion,
D3 = depletion, D4 = discovery).

Malware
Behavior Mapped MSG (API Sequence) Strategy Deception Goal Deception Actions

D1 D2 D3 D4

Stealing from
credentials files

1) Search file and steal: FindFirstFile, PathFileExist, CreateFile,
GetFileSize, VirtualAlloc, ReadFile, CloseHandle, VirtualFree,
FindNextFile, FindClose
2) Read sensitive file (known file). CreateFile, ReadFile
3) Steal from the browsers. CreateFile, GetFileSize,
VirtualAlloc, ReadFile, CryptUnprotectData, CreateFile,
WriteFile, CloseHandle

FakeFaliure ✓ - - - Diversion: pretend the File doesn’t exist by
returning false when PathFileExist is called

FakeSuccess - - ✓ ✓

1) Depletion: replace sensitive file reading with
static HoneyFile containing Honey Credentials.
2) Discovery: watch out for Exfiltration.

FakeExecute ✓ - ✓ ✓

1) Diversion: forward the execution to HoneyFactory
(false target).
2) Depletion: communicate with HoneyFactory. Ask
for HoneyFile containing Honey Credentials. Replace
sensitive data with the content of HoneyFile.
3) Discovery: watch out for Exfiltration.

NativeExecute - - - ✓ Discovery: watch out for Exfiltration

the file is opened and content is read without invoking the actual ReadFile call.

In addition, static content can be provided by symbSODA for this ReadFile

call. For instance, if the malware wants to read the content of a file named

“input.txt," where the content is “It’s a text file", symbSODA pretends the

ReadFile was called and content of “input.txt" is read; however, it returns “It’s

not a text file" instead of “It’s a text file" to the attacker.

• FakeExecute: By FakeExecute, we mean executing (on a remote honey fac-

tory) something that doesn’t execute (on the victim machine). Under this

strategy, the action of the malware is performed on a remote machine and

symbSODA sends back the response it received by running the action on a re-

mote machine. For example, the attacker wants to know the IP address of the

victim machine; hence the malware is designed to run the “ipconfig" command

on the victim machine. In this scenario, symbSODA intercepts this call and

runs the “ipconfig" command on a remote machine (HoneyFactory) and sends

the response back to the attacker. Therefore, the attacker receives the IP ad-

dress of the remote machine (HoneyFactory).

• NativeExecute: Under this strategy, symbSODA lets the malware run so that

it can discover the current/future actions of the malware.



57

3.3.3.3 Deception Ploy Creation

Given 4D deception goals and four strategies, we can design sixteen possible de-

ception techniques (or deception ploys) for each malicious behavior. However, not

all of these techniques will make sense or applicable to deploy. As a result, we start

by devising all possible/feasible deception techniques, then verify each technique and

eliminate those that do not make sense. Even though multiple deception actions can

be taken for a particular malware behavior, we only allow one ploy for each malicious

behavior to be selected by users. For better understanding, we explain the creation,

verification and filtration process in Table 3.1.

Assume the malware behavior is “Stealing from credential files." If we want to de-

ceive this behavior with the FakeFailure strategy and Diversion, the deception

action would be to pretend the sensitive file doesn’t exist on the system; hence, the

malware is diverted to no target. Now, if the deception strategy is FakeSuccess,

we can achieve both Depletion and Discovery. In the instance of Depletion,

the credential files can be leveraged to provide the attacker with fake login credentials

and deplete her resources and effort. An even better strategy is to generate an en-

crypted version of an invalid password and forward it to the attacker, who must then

decrypt the password, further depleting the attacker’s resources. Since we provide the

fake credentials and the malware performs read operations, the malware will likely

try to exfiltrate the data to the attacker. As a result, this strategy also allows us

to Discover another malicious behavior of the malware. This is how we identify

all possible combinations of Deception Strategies and Goals that are valid and create

deception actions for them. These valid deception actions are considered deception

ploys and then utilized to develop Deception Playbook.
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3.3.3.4 Deception Playbook Creation

We perform frequent itemset mining to identify highly associated MSGs, which we

then utilize to create Deception Playbook profiles. For example, let’s say deception

ploys (or deception techniques) T1, T2, T3, ..., T6 are designed for malicious behaviors

B1, B2, B3, ..., B6, respectively. If B1, B2 and B3 are in a frequently used itemset, we

can create a profile P1 that consists of T1, T2 and T3. If the victim is infected with

malware with the behaviors B1, B2 and B3, we can deploy P1 to deceive the malware.

Frequent itemset mining is a data mining approach that identifies items that fre-

quently appear together. In this scenario, a set of items (malicious behaviors) is

considered frequent if it satisfies a minimal threshold value for support and confi-

dence. The support indicates how frequently the set of malicious behaviors appears

in the dataset, and confidence is the likelihood that if one behavior appears, the other

behavior also appears. Let B = {B1, B2, B3, ..} be a set of n binary attributes called

Malware Behaviors (items), then Support and Confidence can be defined as:

Support(B) = Number of malware in which B appears
Total number of Malware in the dataset

Confidence(B1 → B2) = Support(B1∪B2)
Support(B1)

The frequent pattern mining technique is used to discover relationships between dif-

ferent items (malware behaviors) in a dataset (malware dataset). These relationships

are represented in the form of association rules. Let L = {L1, L2, L3, ...} be a set of

log files collected from malware as execution traces. Each log in L represents a unique

malware from our dataset and contains a subset of the Malware Behaviors (items)

in B. An association rule is defined as an implication of the form B1 → B2 where

B1, B2 ∈ B, and the strength of the association between B1 and B2 can be measured

by Confidence(B1 → B2) defined above. To discover frequent itemsets (malware be-

haviors) and association rules, we leveraged a well-known algorithm called APRIORI.
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We calculate support and confidence for extracted MSGs and identify frequent mal-

ware behavior sets above the threshold value. Deception ploys for those MSGs with

a high association are grouped and stored as profiles.

Deception Playbook stores all the profiles that have been developed, and only the

relevant profile is deployed. Furthermore, symbSODA allows users to create their

own custom profiles. Profiles indicate which deception ploys to be activated. A

configuration file (in JSON format) is generated when a profile is created or selected,

and it is then utilized by WinAPI hooks to determine which ploys to activate.

3.3.3.5 Assume-guarantee analysis to ensure non-conflicting deception actions

selection

As we let the users create their profiles with desired deception actions, users may

select conflicting deception actions. Therefore, we introduced an Deception Planning

Verifier, which utilizes assume-guarantee analysis to ensure the users select valid

deception actions while creating their profiles. In this way, we keep the deception

actions consistent to the attacker throughout the execution of the malware.

Assume-guarantee reasoning [61] is used to address the issue of compositional sys-

tem analysis by applying verification to individual components and merging the

results without analyzing the whole system. In checking components individually,

it is often necessary to incorporate some knowledge of the context in which each

component is expected to operate correctly. Assume-guarantee reasoning tries to

capture the expectations that a component has about its environment by using as-

sumptions. Therefore in our case, if we have N number of deception actions such as

{DA1, DA2..., DN}, if a user selects DA1 at first, then DA2, while selecting DA2, we

perform the assume-guarantee analysis with the context of prior selections (in this

case, DA1) to ensure the selected deception actions do not conflict hence operate

correctly.

Now, let’s rephrase this idea at the API level. The deception actions are focused on
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the extracted MSGs, and multiple MSGs might share a common subset of APIs. Since

the hooking is done at the API level, it is essential to keep track of the previously

visited APIs to understand the exact context. We use flags across these API hooks

to track the context as well as relevant system values, such as handles, filenames,

and registry names. These system values indicate the state of the system before

and after the malware/application calls a particular API. We call these before and

after state values "pre-condition" and "post-condition," respectively. Therefore (a)

the pre-condition of the current API depends on the historical data (the APIs that

are called before the current API), and (b) the post-condition relies on identifying

the current state (it belongs to which MSG) and the deception action taken based on

user selection. Therefore, the values of the pre-conditions and the post-conditions can

be different. The common APIs among different MSGs might be subject to create

conflicting pre-condition and post-condition values.

We apply Assume-guarantee analysis to automatically validate the chosen decep-

tion actions by the users and guide them in selecting non-conflicting deception ac-

tions. For all the API calls (attack actions), we generate the pre-conditions and

post-conditions of the four possible deceptions. For every pair of attack actions A1

and A2 that may happen consecutively, we check the post-condition of deception ac-

tions NativeExecution, FakeExecute, FakeSuccess, FakeFailure of A1, and pre-

condition of all other deception actions for A2, A3, ..., An pairwise. For simplicity,

we formalize the following equations in a way that we check the pre-conditions and

the post-conditions of A1 and A2. However, in reality, we repeat this for each possible

attack action pair. Since for each API, we can take four possible deception actions,

we have 16 possible combinations of deception actions for an API pair (A1 and A2),

which can be denoted as:

(POST1i, PRE2j), 1 ≤ i, j ≤ 4
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For every such combination, we verify if the following logical condition is satisfied

POST1i → PRE2j, 1 ≤ i, j ≤ 4

Note that here POST1i and PRE2j can be formulated as:

a1 = 1|2|3, a2 > 10, a3! = 2

where comma means logical AND, | means logical OR. If the post-condition POST1i

is

a1 = 1, a2 = 1|2, a3 < 2

and the pre-condition PRE2j is

a1 = 1|2|3, a2 > 0, a3 < 2

the logical condition can be satisfied and and the two deception actions can be

composed.

As another example, if the post-condition POST1i is

a1 = 1, a2 = 1|2|3, a3 = 2

and the pre-condition PRE2j is

a1 > 0, a2 = 2, a3 > 1

the logical condition is not satisfied, since a2 must be 2 but in the post-condition

in POST1i, a2 can be 1, 2, or 3. This means the two deception actions cannot be

composed. With this analysis, we can provide users the guidance of choosing feasible
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Table 3.2: List of the Pre and Post conditions for each API(selective cases, the actual
table consists of all possible combinations)

Pre-Conditions API Strategy Post-Condition
1. -

CreateFile (Any)
FakeFailure fileHandle = 0

2. fileExist=True NativeExecution fileHandle = 1
3. fileExist=False NativeExecution fileHandle = 0
4. fileExist=True|False, searching_flag=1, exist_path_flag=1, internetHandle=0 CreateFile (Credential Stealing) FakeSuccess/FakeExecute fileHandle = 1, credential_flag=1, uploadfile_flag=0
5. fileExist=True|False, searching_flag=0, exist_path_flag=0, internetHandle=1 CreateFile (Upload File) FakeSuccess/FakeExecute fileHandle = 1, credential_flag=0, uploadfile_flag=1
6. - ReadFile (Any) FakeFailure -
7. createprocess_flag=0, searching_flag=1, exist_path_flag=1, internetHandle=0,
uploadfile_flag=0, credential_flag=1, remote_flag=0, fileHandle=1 ReadFile (Credential Stealing)

FakeSuccess Buffer=StaticBuffer

8. createprocess_flag=0, searching_flag=1, exist_path_flag=1, internetHandle=0,
uploadfile_flag=0, credential_flag=1, remote_flag=0, fileHandle=1 FakeExecute Buffer=HoneyBuffer

9. createprocess_flag=0, searching_flag=1, exist_path_flag=1, internetHandle=0,
uploadfile_flag=0, credential_flag=1, remote_flag=0, fileHandle=1 NativeExecution Buffer=DefaultBuffer

10. createprocess_flag=0, searching_flag=0, exist_path_flag=0, internetHandle=1,
uploadfile_flag=1, credential_flag=0, remote_flag=0, fileHandle=1 ReadFile (Upload File)

FakeSuccess Buffer=StaticBuffer

11. createprocess_flag=0, searching_flag=0, exist_path_flag=0, internetHandle=1,
uploadfile_flag=1, credential_flag=0, remote_flag=0, fileHandle=1 FakeExecute Buffer=HoneyBuffer

12. createprocess_flag=0, searching_flag=0, exist_path_flag=0, internetHandle=1,
uploadfile_flag=1, credential_flag=0, remote_flag=0, fileHandle=1 NativeExecution Buffer=DefaultBuffer

deception actions. Note this analysis can be extended to attack action sequence

longer than 2. We implemented this algorithm to automate the deception feasibility

verification process. Table 3.2 depicts the pre-conditions and the post-conditions that

we list out for representative APIs.

In addition, the assume-guarantee not only helps the users in selecting correct non-

conflicting deception actions but also helps the deception action developers to identify

the conflicts they may create while developing the deception actions. Let’s explain

the process of removing conflicts using an example with reference to Table 3.2.

For the users: An attacker may use malware that directly reads from the sen-

sitive file and exfiltrates the credentials. Alternatively, the attacker can upload the

credential file and perform the read operation later on the attacker’s machine. If the

user selects different deception actions for these two behaviors, the attacker can easily

detect the inconsistency and realize our deceptive system. For example, in Table ??,

we can see the user selected the "FakeSuccess" strategy for the behavior "Credential

Stealing"; as a result, honey static credentials are exfiltrated to the attacker. Now,

if the user selects "FakeFailure" for the "Upload file," then the system will pretend

that the credentials file doesn’t exist, hence nothing is extracted. Unfortunately, the

selection of these conflicting deception actions will reveal our deception to the at-

tacker through inconsistent data (i.e., the existence of the credentials). We identify

these conflicts using assume-guarantee during the deception action selection by the

users and disable the conflicting actions. In Section 4.4, we discuss in details how the
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users select deception actions through an interface and how we disable the conflicting

deceptions by performing the assume-guarantee analysis.

For the deception developers: Let’s say the user selects "FakeFailure" strategy

to deceive the behavior "Upload File" and "FakeSuccess" strategy to deceive the

behavior "Credential Stealing". As we can see from Table ??, CreateFile and ReadFile

are shared between two MSGs, and therefore, it is necessary to identify the MSG these

shared APIs belong to at runtime. To do so, it is essential to set the correct flags and

track the system properties. However, the developers might set the wrong flags or fail

to track the system properties correctly. As a result, the deception system will not

behave as expected. Based on the API invocation history, it is possible for the same

API to have different flags as the post/pre conditions. For example, in Table ??,

we can see that ReadFile is part of two malware behaviors (Credential Stealing and

Upload File); however, the sets of APIs being called before ReadFile are different. It

is essential to understand which behavior a particular ReadFile invocation belongs to

and exactly which deception action to deploy. To do so, developers can use the flags

listed in the 1st column of Table 3.2 (such as uploadfile_flag and credential_flag) to

keep track of the context. If any of these flags are set incorrectly, our system will

become inconsistent or even crash. As a result, our deception might get revealed to

the attacker.

In this paragraph, we discuss exactly how these conflicts arise and how they are

identified using assume-guarantee. For example, in the case of the first row of Table

??, where the malware behavior is "Credential Stealing" and the strategy is "Fake-

Success", the corresponding MSG has both CreateFile and ReadFile. Now, let’s

assume the developer sets the uploadfile_flag=1 instead of the credential_flag=1

during the CreateFile invocation (cross reference to the 4th row of Table 3.2) by

mistake, then the system won’t be able to execute the correct deception action for

"Credential Stealing" as it won’t identify the ReadFile call as part of this behav-



64

ior. In such scenarios, the assume-guarantee checking will let the developer iden-

tify setting the wrong flags. The developer creates the pre and post conditions

for each hook function and feeds them to the Deception Planning Verifier to iden-

tify potential mistakes. The expected outcome for the user selected "FakeSuccess"

strategy for "Credential Stealing" is to fill the ReadFile buffer with "StaticBuffer"

(row 7 in Table 3.2). To achieve that, the flag values in the precondition should be

createprocess_flag=0, searching_flag=1, exist_path_flag=1, internetHandle=0, up-

loadfile_flag=0, credential_flag=1, remote_flag=0, and fileHandle=1. Since the de-

veloper by mistake sets the uploadfile_flag=1 and credential_flag=0, the Deception

Planning Verifier notifies the developer that the expected outcome/post condition

cannot be achieved because the required precondition is not satisfied.

We run the Deception Planning Verifier twice: 1) while the user selects deception

actions and 2) after the developer writes new hook functions. Hence, we ensure the

removal of conflicts in both cases.

3.3.3.6 Deception Factory Implementation

The deception factory is the implementation of the actions of the deception play-

book. We use WinAPI hooking (also known as API hooking) to implement deception

actions. Our API hooks are created as DLL files (which we refer to as End-Point

DLL) and injected into malware via the DLL injection approach. API hooking is

a well-known technique for intercepting API calls made by the targeted executable,

allowing us to monitor or alter API responses. We implemented API hooking using

EasyHook [57].

How API hooking works: EasyHook [57] is a free, open-source hooking library

for 32-bit and 64-bit Windows processes released under the MIT license in this project.

EasyHook provides a generic template for APIs hooking and ensures thread safety by

using a thread deadlock barrier. EasyHook utilizes the CreateRemoteThread function

to create a thread in the target process and use it to load the desired DLL. We install
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the hook by defining a detouring function for each original WinAPI call we want

to intercept. As a result, the detouring functions take control of the malware and

provide us with the option to enforce our code to modify the execution. Without

API hooking, the API call flow is depicted in Figure 3.8A, where the original API

is responsible for performing the task and returning a response. With API hooking,

the call is jumped from the original API to our detour function (Figure 3.8B), where

we process the call and execute our deception techniques and respond back to the

malware.

How deception technique works inside the hooks: We hook some WinAPIs

(MSG) mapped to each malicious behavior to deceive it. Inside these hooks, deception

ploys are implemented and embedded. The following will discuss how the deception

technique is implemented inside API hooks using Table 1, where the malicious behav-

ior is Stealing from credentials files. To be more specific, we focus on the deception

action “providing a HoneyFile containing Honey Credentials from the HoneyFactory"

where the strategy is FakeExecute and Deception Goal is Depletion. Let’s focus
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Figure 3.9: A code snippet: How the deception technique is implemented inside API
hooks

on the mapped MSG for this behavior: CreateFile-GetFileSize-VirtualAlloc-ReadFile-

CloseHandle-CryptUnprotectData-CreateFile-WriteFile-CloseHandle. We don’t need

to hook all of these APIs to implement or achieve our deception strategy; only

CreateFile, ReadFile and CryptUnprotectData need to be hooked. Let’s

explain how the deception is implemented inside the API hook using Figure 3.9.

The variable known_sensitive_files_browsers stores a list of known browser

files that the attackers usually target for stealing credentials (at line 1). We used

the variable malicious_behavior to flag what/which malicious behavior is likely

to occur. We assign an ID to each malicious behavior, which we set to this vari-

able for internal tracking. When the CreateFile API is called, we check which

file the malware opened (at line 6). If the file is a sensitive file (in line 1), we set

malicious_behavior to 5 (ID:5 indicates stealing credentials from browsers).

It means there is a high possibility of malicious behavior “stealing credentials from

browsers" to occur. We assign the current file handle to the variable Handle_
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under_observation as any operation on this file handle is suspicious and should

be under investigation. On the next ReadFile invocation, we check the file han-

dle to ensure the malware performs a read operation on the target file (at line

20). The ReadFile operation assigns the data read from the sensitive file to

lpBuffer. The data held by lpBuffer is critical because it contains the cre-

dentials. However, as the data is encrypted, the malware uses CryptUnprotect-

Data to decrypt data that reveals the credentials as plaintext. Therefore, when

CryptUnprotectData is called, we check if the data to be decrypted is the same

as the buffer_under_observation (at line 33), and if it is, we interact with

HoneyFactory through REST API and request for a HoneyFile containing HoneyCre-

dentials (at line 38). CryptUnprotectData decrypts data and stores the data in

pDataOut->pbData. We replace this pbData buffer with the content of the Hon-

eyFile received from the HoneyFactory (at line 41). Ultimately, the credential the

malware obtains is the HoneyCredentials instead of the actual user credentials. Note

that we check if the API belongs to the activated ploys depending on a configuration

file at the start of each detour function (lines 5, 18, and 30).

Honey Factory (HF) Creation: symbSODA often depends on external Hon-

eyFactory (HF) to deceive malware, mainly when the Deception Strategy is Fake-

Execute. We develop HF offline based on the requirements of these actions/ploys

since deception ploys are pre-defined and their actions are known. The HF consists of

honey files, credentials, passwords, decoy user accounts, email accounts, web pages,

decoy process lists, honey registry files etc. HF also hosts REST APIs to provide

service to the API hooks.

3.4 Real-time Orchestration

This section discusses how symbSODA orchestrates and tackles real-world mal-

ware at run-time. This phase consists of four components: Orchestration Engine

Server (OES), Orchestration Engine Client (OEC), Detection Agent and HoneyFac-
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tory (HF). The OES is the core component since it provides deception as a service and

controls HF. The components use REST APIs to communicate among themselves.

HF scripts, End-Point DLL, and deception profiles developed in the preceding stage

are stored in OES. At first, the users install the OEC, which serves as an interface

between the victims and the OES. Users can choose to use the pre-built profiles or

create new profiles based on their needs. The whole procedure of this phase is de-

picted in Figure 3.10 and explained in the rest of this section.

Profile Creation through interface: The user sends a profile creation request

to the OES through a user interface. First, OEC shows the user all the malicious

behaviors and their corresponding valid deception ploys (actions). Next, the user

selects the ploys she wants to use for orchestration. Our user interface is depicted

in Figure 3.11. We carefully control the allowed combinations of deception ploys in

the user interface to avoid potential conflicts. For each chosen ploy we perform the

assume-guarantee based conflict checking and disable the actions that might cause

conflict from the interface so that the user can not select them. Recall that in Ta-

ble ??, if the user selects "FakeSuccess" for the behavior "Credential Stealing", we
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Figure 3.11: User interface to select deception actions for different malware behavior.

disable the "FakeFailure" strategy under the behavior "Upload file", hence avoid po-

tential conflicts. We described the whole procedure in Figure 3.12. At first, for the

selected deception action (A1) involving the behavior (B1), the Deception Planning

Verifier identifies APIs representing the behavior (B1). Then, the Deception Plan-

ning Verifier analyzes the pre/post conditions of the involving APIs with all other

APIs for different deception actions using Assume-Guarantee to identify conflicts and

their involving APIs. Next, it determines behaviors (B2..Bn) involving conflicting

APIs and corresponding Deception Actions (A2....An) and disables them from the

interface so that the user can no longer select them. Based on the selection, OES

prepares HF and generates a configuration file. This configuration file is an input to

the End-Point DLL and is responsible for enabling and disabling ploys. Next, OES

forwards the configuration file and the End-Point DLL to the user and deploys the

required HF automatically.

Pre-built Profile Selection: Users can choose from one of our pre-built profiles
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Figure 3.12: The process of identifying conflicting deception actions and disabling
them on the interface level

rather than generating a new one. The user is shown suitable deception ploys for each

pre-built profile. Once the user makes a selection based on her requirements, the rest

of the process is the same: HF preparation, config file generation and deployment.

At this point, symbSODA is equipped to deceive malware with its arsenals.

Detection Agent: The detection agent is the entry point of symbSODA, which

detects malware and initiates the rest of the orchestration process. However, the

primary goal of this research is not to detect malware samples; instead, we are solv-

ing the research problem of designing a cyber deception system that can provide

dynamic orchestration at run-time. Therefore, symbSODA can leverage existing de-

fense/mitigation systems and zero-day malware detection approaches as our detection

agent [10, 39]. When the detection agent detects a malware process, it notifies the

OEC. OEC injects the End-Point DLL into malware memory via the DLL injection

approach, triggering real-time orchestration.

Real-time deception using embedded API-hooking: Once the detection

agent confirms malware presence, OEC injects the End-Point DLL into the malware

process. Such injections must happen in time to deceive the entire malware execution
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period, which is feasible because malware detection systems usually suspend a process

while checking and resume it if not malicious. For example, Windows Defender regis-

ters a process-creation callback routine (in its device driver WdFilter.sys [62]), which is

called whenever a process is created. This callback routine checks if a new process is a

malware before it runs. symbSODA can be integrated with Windows Defender’s call-

back mechanism so that when a malware process starts, the OEC receives a notifica-

tion and injects the end-point DLL into the malware process. Now, Let’s describe how

the orchestration works in this phase with an InfoStealer named LokiBot, which tries

to steal credentials from the browsers. The user-selected strategy is FakeExecute and

the 4D goal is Depletion. The deception action for the aforementioned adversarial ac-

tion is redirecting the calls to a HoneyFactory and altering the actual credentials (Lo-

gin Data) with honey credentials. We observed the malware tried to read from the file:

(C:\Users\Administrator\AppData\Local\Google\Chrome\UserData-

\Default\Login Data), then to decrypt credentials it calls CryptUnprotect

Data. The injected DLL monitored the invocation of these APIs and determined

the malware attempting to steal credentials from browsers. Hence, when the mal-

ware invoked CryptUnprotectData, the embedded hooking communicates with

HF, asks for a HoneyFile containing HoneyCredentials and replaces the read result

buffer with the content of the HoneyFile. As a result, ultimately, the malware gets

the HoneyCredentials instead of the actual user credentials.

3.5 Evaluations

We assess symbSODA with different types of recent malware (InfoStealers, RATs,

ransomware and spyware) created between 2019 and 2021. The objective of our

experiments is to validate the accuracy, effectiveness, overhead and scalability of

symbSODA, as well as the recall of MSG extraction and MSG-to-MITRE mapping.

In addition, we performed case studies with three different malware to show how

symbolic execution facilitates going past the malware triggering conditions, evasion
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Figure 3.13: Malware source code: evasion check

technique within the malware, and extracting new MSGs that could not be retrieved

without multipath exploration.

3.5.1 Case studies

3.5.1.1 Bypassing evasion techniques

Malware authors use various techniques to identify a sandbox. For example, most

sandbox solutions are designed to analyze multiple samples in parallel. To achieve

this, they assign minimum hardware resources to each sandbox instance — includ-

ing the least possible amount of RAM, disk space, and processing power. However,

because very powerful systems are widely available today at inexpensive prices, real

systems tend to be configured with maximum, or at least numerous, resources. Mal-

ware utilize these discrepancies in hardware to evade the analysis. Malware can call

GetProcessAffinityMask API to obtain the CPU core count. The API returns the

mask, which easily identifies the number of cores in use. If the returned core num-

bers is not as expected the malware will simply quit without showing any malicious

behavior.

Analysis We perform analysis on a recent malware (MD5: 53f6f9a0d0867c10841b81

5a1eea1468) that utilizes this evasion technique. This is a cradle ransomware. There-

fore, to uncover it’s malicious behavior we want to go past this evasion check and

let the malware reach a point where it starts the encryption. We ran the sample in

both SODA and any.run [63] and the sample didn’t show any significant behavior.

Execution with symbSODA Now we try to uncover the malware behavior us-

ing symbSODA. We hooked GetProcessAffinityMask API; as a result, when malware

invokes this API, the call comes to our detour function. Before talking about the
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symbolic execution, let’s first focus on the malware source code and how the malware

evades through this trick. In Figure 3.13, we can see the malware checks the affinity

mask for the system, which indicates the number of cores the system has and if it is

equal to one (1), then the malware process exits.

At this moment, we enable the symbolic execution and mark the variable that

receives the affinity mask for the specified process as symbolic. As a result, we could

observe a fork at the If condition checking and symbSODA keeps logging the execution

traces of both paths. Now, one path doesn’t show much as the malware quits in that

path. However, the other path leads the malware to its encryption process. At the end

of the exploration, we utilize the constraint solver to concretize the symbolic variable.

We obtain the value for dwSystemAffinity, which reports a value greater than 0x2 for

the CPU’s number of cores. By concretizing these solutions in the memory of the

concrete process, we can observe the execution of the malicious code hence the MSGs,

which we couldn’t observe using SODA.

3.5.1.2 Detecting killswitch within a piece of malware

The famous WannaCry contains a kill switch that can cause the malware to ter-

minate itself and thus stop spreading, according to security researchers. WannaCry

infects systems through a malicious program that first tries to connect to a given web

domain. The kill switch appears to work like this: If the malicious program can’t

connect to the domain, it’ll proceed with the infection. If the connection succeeds,

the program will stop the attack.

Analysis In this case study, we analyzed a recent malware (SHA1 hash 24d004a104d

4d54034dbcffc2a4b19a11f390 08a575aa614ea04703480b1022c) containing the killswitch

and explained how to detect and react accordingly using symbSODA. Therefore, our

target is to fool the malware by pretending the web domain is up and running using

symbSODA and thus activate the killswitch within the malware to shut it down.

Execution with symbSODA Therefore, we performed some manual analysis on
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the malware to find that the malware calls InternetOpenA, InternetOpenUrlA and In-

ternetCloseHandle to open a connection to the killswitch URL (hxxp://www[.]iuqerfso

dp9ifjaposdfjhgosurijfaewrwergwea[.]com). Since the malware doesn’t check the re-

turn value of InternetOpenA, we do not have to hook InternetOpenA. Otherwise, we

might have to hook InternetOpenA and force it to return some dummy, non-NULL

value. Therefore, hooking InternetOpenUrlA and executing it symbolically should be

enough to trigger the killswitch.

In this case, we mark the return value of InternetOpenUrlA as symbolic. As a

result, the program is forked, resulting in one state where InternetOpenUrlA returns

a dummy handle and another state where InternetOpenUrlA returns NULL (which

means failure). We followed the steps we did earlier and kept logging the execution

traces. With respect to the API calls made by the WannaCry executable, we could see

that in state 0, the malware called TerminateProcess right after the InternetOpenUrlA

call was successful and InternetCloseHandle closed the handle. This indicates that the

killswitch was triggered. Now, in the other state 1, we could see the malware called

APIs to start service, load resource, create a child process, and perform encryption.

In this scenario, symbSODA helped us identify the killswitch and enable it while the

regular SODA could not.

3.5.1.3 Detecting exfiltration behavior

Information stealers, or simply InfoStealers, are a type of malware that searches

and collects sensitive and personal information (such as credit card numbers, cryp-

tocurrency wallets, browser data and email credentials) from the victim machine and

exfiltrates the sensitive data to the adversary. This kind of malware targets specific

applications or files to collect information. Therefore, if the target files and applica-

tions do not exist on the system, the malware cannot exfiltrate them.

Analysis In this case study, we analyzed a recent malware (MD5: eccad903b4c27d1

49e159338f58481a9) known as LokiBot. The malware targets the browsers and FTP
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clients to collect sensitive information and exfiltrate them. Therefore, the malware

doesn’t show the exfiltration capability if the target files do not exist on the system.

In the following paragraph, we explain how symbSODA can detect the exfiltration

behavior of the malware and deceive it with fake credentials.

Execution with symbSODA We analyzed the malware manually and observed

that the malware has a list of target applications/files. At first it performs file search

operation using APIs such as FindFirstFile and PathFileExists. If these APIs do

not return the expected result then the malware doesn’t perform the file reading

or exfiltration operation. As a result, we won’t be able to observe this path of the

execution. Therefore, to uncover this behavior, we mark the return values of these two

APIs as symbolic. However, just marking the return value symbolic is not sufficient;

we also created the files being searched by the malware with honey content using

the approach mentioned in [10]. As a result, we observed with symbSODA that the

malware performed the read operation on the honey files and eventually exfiltrated

their content. Therefore, we could identify the MSGs regarding operations like file

read and exfiltration which we couldn’t observe using SODA.

3.5.2 Evaluation of MSG extraction

3.5.2.1 Ground-Truth (GT1)

We created a ground truth that can be utilized to validate the accuracy of the

MSG extraction. Malware source codes can be found on GitHub; specifically, we

are interested in the malware source code written using WinAPIs and C++. We

downloaded 45 malware source codes from GitHub such as [64, 65], along with the

comments and descriptions explaining the malware’s capabilities. In our context, we

consider the malware capabilities as malware behaviors. We manually went through

these source codes, identified the 98 distinct API sequences (in our context, MSGs),

and mapped them to 34 associate malware behaviors (according to comments and

description). In addition, we manually mapped these 34 malware behaviors to MITRE
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techniques. This ground truth is referred to as GT1 and will be used in further

evaluations.

3.5.2.2 Evaluation Metrics and Expectations

We obtain the binaries by building the source code of the downloaded malware.

We ran them through our API Call Tracer and extracted the execution traces. The

expectation for GT1 is that the MSG extractor should extract these 98 distinct API

sequences (in our context, MSGs) from the traces. However, the MSG extractor may

extract more MSGs than expected due to two reasons, 1) Some WinAPIs contain

internal calls to other WinAPIs that are not apparent in the source code. 2) If the

program does not specify memory management, Windows manages it (APIs such as

VirtualAlloc and VirtualFree appear in the trace even though they are not in the

source code). As a result, accuracy/precision is not the appropriate metric for eval-

uating our MSG extraction; instead, recall is the ideal metric for evaluation because

it represents relevant instances that were retrieved.

3.5.2.3 Result obtained from the malware datasets regarding GT1

We then fed the retrieved traces from the previous step into the MSG extractor,

which retrieved 121 unique MSGs. We manually went through these MSGs and

confirmed 96 of them are as expected (belonging to the ground-truth). However,

we validated that the remaining two expected MSGs were retrieved as well, but the

extracted API sequences differed from the expected ones due to an internal call to

other WinAPIs. We also ran the same experiment with our previous work, SODA [52],

which could identify 92 out of these expected 98 MSGs. SODA couldn’t identify the

other four as the environment didn’t meet the malware expectation and the malware

evaded the analysis or quit early. In such cases, symSODA outperforms SODA as it

has symbolic execution capability to provide the correct environmental values and go

past the evasive point. MSG extraction result is shown in Table 3.3. Recall value for
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Table 3.3: Comparison with other State-of-the-art tools in terms of discovering mal-
ware behaviors/capabilities using GT1 and their individual recall values

Tools
Malware Behavior/Capability
Identification (Using GT1)

Identified Not
Identified Recall

Kris et al. [66] 60 38 0.61
FORECAST [67] 33 65 0.34
DodgeTron [10] 9 89 0.09

SODA [52] 92 6 0.94
symSODA 96 2 0.98

our MSG extraction approach is:

RecallGT1 =
TP

TP + FN
=

96

96 + 2
= 0.979

The recall value is promising and demonstrate the effectiveness of our MSG extrac-

tion procedure.

3.5.3 Comparison with other state-of-the-art tools in terms of discovering

malware behaviors/capabilities

We empirically compared symbSODA with Kris et al. [66], FORECAST [67], Dod-

geTron [10] and SODA [52] that are capable of discovering malware behavior/capa-

bilities. For comparison, we used the collected traces (obtained by the API tracer)

of the 42 malware used to build GT1. We fed these traces to different tools and

observed how many behaviors/capabilities were found by each tool. The comparison

is presented in Table 3.3. We found that symbSODA outperforms them at identifying

malware capabilities. In Table 3.4, we provide more comparative results to demon-

strate symbSODA’s better coverage in detecting malware capabilities and presenting

them in the MITRE ATT&CK framework as compared to the existing tools.

3.5.4 Comparison with existing Sandboxes

Identification of malware behavior at the run-time is critical for symbSODA to

select accurate deception ploys. Thus, we also compared symbSODA with existing
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Table 3.4: Comparison of symbSODA with other related tools in terms of detecting
different MITRE ATT&CK techniques within malware execution.

MITRE Tactics MITRE Techniques Tools

symbSODA Kris et
al. [66] FORECAST DodgeTron

Execution

Execution Through API ✓ ✓ - -
Rundll32 ✓ ✓ - -

Command-line Interface ✓ ✓ - -
Service Execution ✓ ✓ - -

Powershell ✓ ✓ - -
WMI - ✓ - -

Shared Module ✓ - - -

Persistance

Registry Run/Keys Start Folder ✓ ✓ ✓ -
New Service ✓ ✓ - -

Modify Existing Service ✓ ✓ - -
Hooking - ✓ - -

Scheduled Tasks - ✓ - -
Image File Execution - ✓ - -

Create of Modify System Process ✓ - - -
Boot or Logon Autostart Execution ✓ - - -

Privilege
Escalation

Process Injection ✓ ✓ ✓ -
Access Token Manipulation ✓ ✓ - -

Exploitation for Privilege Escalation ✓ ✓ - -

Defense
Evasion

Obfuscated Files ✓ ✓ - -
Software Packing ✓ ✓ - -

Deobfuscated/Decode Files ✓ ✓ - -
Masquerading ✓ ✓ - -

DLL Side-Loading - ✓ - -
Modify Registry ✓ - - -

File Deletion ✓ - - -
Virtualization/Sandbox Evasion ✓ - - -

File Deletion ✓ - - -

Credential
Access

Input Capture ✓ ✓ - -
Credential Dumping ✓ ✓ - ✓

Data from local system ✓ - - ✓

Unsecured Credentials:
Credentials in Files ✓ - - ✓

Credentials from Password Stores:
Credentials from Web Browsers ✓ - - ✓

Unsecured Credentials:
Credentials in Registry ✓ - - ✓

Discovery

Query Registry ✓ ✓ - -
Security Software Discover ✓ ✓ - -

Process Discovery ✓ ✓ - -
System Information Discovery ✓ ✓ ✓ -
System Network Configuration

Discovery ✓ ✓ - -

File and Directory Discovery ✓ - - -
Application Window Discovery ✓ - - -

System Service Discovery ✓ - - -
System Owner/User Discovery ✓ - - -

Software Discovery ✓ - - -

Lateral
Movement

Remote File Copy ✓ ✓ - -
Remote Desktop Connection - ✓ - -

Replication Through Removeable
Media - ✓ - -

Collection

Clipboard Data ✓ ✓ - -
Screen Capture ✓ ✓ ✓ -
Email Collection ✓ ✓ - -
Audio Collection ✓ - - -
Video Collection ✓ - - -

Exfiltration Generic ✓ ✓ ✓ ✓

C&C
Generic ✓ ✓ ✓ -

File Transfer Protocols ✓ - - -
Ingression Tool Transfer ✓ - - -

Impact
System Shutdown/Reboot ✓ - - -

Service Stop ✓ - - -
Data Encrypted for Impact ✓ - - -
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Table 3.5: Number of techniques (T) and procedures (P) discovered by symbSODA
compared to Cuckoo sandbox, Any.run and SODA

Family Malware
Family Discovery Cuckoo Any.run SODA symbSODA

InfoStealer

Fareit T 8 7 8 8
P 39 126 149 149

LokiBot T 7 2 11 11
P 21 173 243 258

Pony T 8 4 17 17
P 231 191 582 597

Racoon T 7 8 16 16
P 45 23 51 53

Ransomware
Ryuk T 6 3 6 6

P 27 32 102 107

GandCrab T 8 10 10 10
P 192 109 245 248

RAT

Gh0st T 2 2 6 6
P 4 57 69 71

VanilaRat T 1 0 12 12
P 1 0 12 12

Quasar T 5 2 13 13
P 14 4 16 16

Sandboxes such as Cuckoo [68] and Any.run [69]. Both Cuckoo and Any.run presents

the observed malware behaviors in the form of MITRE ATT&CK framework. In

this experiment, we specifically focus on Techniques and Procedures. A Technique

represents how an adversary accomplishes the tactic by performing an action and a

Procedure indicates the specific details of how an adversary carries out a technique.

In this experiment, we ran nine (9) distinct malware across Cuckoo, Any.run, SODA,

and symbSODA and listed the observed malware behaviors in the form of Technique

(T) and Procedure (P) in Table 3.5. Clearly, symbSODA discovers more techniques

and procedures than Cuckoo, Any.run, and SODA.

3.5.5 MSG Classifier Evaluation

3.5.5.1 Ground-Truth (GT2)

We created a ground truth that can be utilized to evaluate the MSG-to-MITRE

mapping using a remote access Trojan (RAT). RAT is a type of malware that incor-

porates a backdoor for gaining administrative access over the infected system. RATs

usually have two modules, one runs on the attackers-end (commonly referred to as

"server" or "command and control server" or "C&C server") and the
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other runs on the victim-end (client). The C&C server establishes remote commu-

nication on the victim’s machine and sends commands to perform malicious tasks.

Typically, each command is associated with a specific malicious behavior. We took

advantage of this to create our second ground truth. According to the descriptions

provided in GitHub, we obtained the source code for 13 different RATs from GitHub

capable of performing 33 distinct malicious behaviors. We obtain the binary files by

compiling the source codes. We run the client in the API Call Tracer and the C&C

server on another VM connected to our API Call Tracer. We use the C&C server to

perform each command one at a time and store the traces in a log file. This design

implies that each log file corresponds to a particular malicious behavior. We manually

extract MSGs from each log file and map them to malicious behaviors and MITRE

techniques. From these traces, the MSG extractor retrieved 80 distinct MSGs. We

manually filtered and mapped these 80 MSGs to 28 distinct malicious behaviors (as we

obtained previously from the 13 RATs), which are mapped to 31 MITRE techniques.

This ground truth is referred to as GT2 and will be used in further evaluations.

3.5.5.2 Evaluation results

In our experiment, we classify eighty (80) MSGs mapped to thirty-one (31) MITRE

techniques, where each MSG is mapped to one or more techniques. Out of the eighty

(80) MSGs only twelve (12) are mapped to more than one techniques, nine (9) of them

are mapped to two (2) techniques and three (3) are mapped to four (4) techniques.

This multiple-techniques mapping occurs because some MSGs can achieve multiple

behaviours that can be mapped to multiple techniques.

Table 3.6 shows MSG Classifier parameters we used for the experiment. We used

three metrics to evaluate our tool: top-n accuracy and median and average ranking

of the correct technique. Top-n accuracy is the accuracy of the predictions where we

consider a prediction as true when the correct technique falls in the n highest-ranked

techniques.
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Table 3.6: MSG Classifier Parameters

Minimum word frequency 4
API TF-IDF enriching threshold 20%
Word2Vec similarity threshold 70%
Maximum number of words per MITRE technique 40

Table 3.7: Top-n Accuracy of MSG Classifier

n 1 2 3 4 5 13 16
Top-n accuracy 63.75% 81.25% 82.5% 86.3% 90.0% 96.2% 98.7%

Table 3.7 shows the top-n accuracy for n being 1 to 5, 13 and 16. MSG Classifier

was able to rank the correct technique as the first out of 31 techniques with an

accuracy of 63.75%. This accuracy jumped to 81.25% for top-2 and 90.0% for top-5.

After that, accuracy reached 96.2% for top-13 and 98.7% for top-16. MSG Classifier

also achieved a median ranking of 1 and an average ranking of 2.68 of the correct

technique.

3.5.5.3 Analysis of MSG Classifier’s results

We first investigated outputs where the top-1 predicted technique was incorrect.

In many cases, the mapped technique was similar to the correct technique (GT2).

Although most MSGs in our ground truth are mapped to only one technique, these

MSGs can also be used to achieve other techniques. To study this, we analyze the

results of incorrectly mapped MSGs by investigating if the corresponding MSG can

achieve the highest two ranked techniques. For the highest-ranked technique, out of

the 29 incorrectly mapped MSG, we found that 20 of them can be used to achieve a

different technique than the one it mapped to (In the GT2). This implies that our

mapping (by our tool) was correct. For example, an MSG that contains the APIs:

"ControlService" and "CreateService" are mapped to the "Stop Service" technique in

our ground truth, which is a technique used by adversaries to stop or disable services.

However, MSG Classifier mapped it to the "System Services" technique, a technique

used by adversaries to abuse system services to execute commands. The MSG can be

used to achieve these two techniques, but our ground truth only maps it to the "Stop
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Table 3.8: Top-n accuracies after analysis as well as excluding StackOverflow and
enriching component.

Experiment Original Excluding
Stackoverflow

Excluding
Enriching

After Result
Analysis

Top-1 Accuracy 63.75% 48.75% 58.75% 88.75%
Top-2 Accuracy 81.25% 62.5% 73.75% 96.25%

service" technique because the RAT that we used to extract the MSG behavior from

used the MSG to stop service and not to use services to execute commands. When

updating the ground truth based on our results analysis, the actual top-1 accuracy of

the MSG Classifier increased to 88.75%, and the top-2 accuracy increased to 96.25%

as shown in Table 3.8.

We then investigated cases where the algorithm fails to predict the correct technique

in top-2 techniques and discovered two reasons: 1) The semantic gap between MSG

and the correct MITRE technique. MSG Classifier could not bridge this gap as it

requires a deeper understanding of the API behavior and MITRE techniques. For

example, an MSG containing "IsDebuggerPresent," which checks if the calling process

is being debugged, should be mapped to the MITRE technique "System Information

Discovery," a technique an attacker uses to gather information from the OS. This

mapping represents a high semantic gap as the algorithm needs to understand that

checking if a process is being debugged means the adversary is gathering information

about the system. 2) MSGs that consist of general-purpose APIs like CreateFile or

CreateProcess that can be used by many techniques, making it difficult to identify the

correct technique without checking the API’s arguments. This excluding of arguments

is a limitation of the tool that we leave for future work.

3.5.5.4 MSG Classifier components importance

We studied the importance of adding Stack Overflow data and the enriching com-

ponent of the MSG Classifier by running two experiments. In the first experiment, we

run MSG Classifier using only MSDN for API text description and excluding Stack

Overflow question-answer pairs. In the second experiment, we run MSG Classifier
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without the enriching step. Table 3.8 shows the top-1 and top-2 accuracies for the

original MSG Classifier and the two experiments. When we excluded Stack Overflow,

top-1 accuracy dropped to 48.75% with a decrement of 23.53%, and top-2 accuracy

dropped to 62.5% with a decrement of 23.07%. When excluding the enrichment

component, top-1 accuracy dropped to 58.75% with a decrement of 7.84%, where

the top-2 accuracy dropped to 73.75%, with a 9.23% decrements. These accuracies’

decrements show the importance of Stack Overflow and the enriching component in

MSG Classifier, while Stack Overlow contributed more to the results than the enrich-

ing component.

3.5.6 Performance Analysis of symbSODA

In this subsection, we evaluate the performance of symbSODA. We first evaluate

the time required by symbSODA to orchestrate the deception actions, which can be

divided into 1) Deployment time and 2) Overhead (Malware response time). We

also evaluated symbSODA with multiple OECs and a single OES to demonstrate the

scalability of our approach.

3.5.6.1 Deployment time

We allow users to create new profiles or select pre-built ones. Users essentially

choose which deception ploys to deploy by selecting/creating profiles. This deploy-

ment consists of the following three aspects: 1) generating the configuration file, 2)

preparing the necessary HF, and 3) forwarding the End-Point DLL and the configu-

ration file to the OEC.

Experiment setup and result In our evaluation, a user creates her profile based

on a total of 50 ploys that symbSODA provides. Notably, the default deception

strategy is NativeExecute, in which symbSODA allows the malware to run to dis-

cover the malware’s actions in run-time. For NativeExecute, HF preparation is not

required as symbSODA does not modify the response; instead, it only monitors the
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Table 3.9: Malware deception overhead (T1 = time without deception, T2 = time with
symbSODA deception, O = Overhead).

Malware Type Focused Malicious
Behavior Strategy Deception

Goal Deception Action Expectation (Observance to
consider deception ploy worked)

T1
(sec)

T2
(sec)

O
(%)

RAT Remote command
Execution FakeExecute Depletion Execute the remote command in

HF and show it to the malware

Command executed in HF
and is shown to the attacker
(C&C server is in our control)

13 15 15%

InfoStealer Steal credentials
from the browsers FakeExecute Depletion Show honey credentials from

the HF
Honey credentials is seen to be
exfiltrated (using packet capture) 38 43 13%

Ransomware Encrypt files for
Impact FakeSuccess Diversion Pretend the encryption took

place without performing it

This malware creates a ransom
note after successful encryption
(observe the note being created)

126 144 14%

Spyware Capture screen FakeExecute Discovery Capture screen from the HF
and send it to the attacker

Captured screen of the HF is
uploaded to our FTP server
(redirected using ApateDNS)

61 65 7%

API calls for discovery. Therefore, the deployment time will be minimal. We repeat

the experiment five times, changing the deception ploys by increasing NativeExecute.

Figure 3.14 depicts the various deployment timelines for various ploys. Deployment

time decreases as expected as NativeExecute increases and HF configuration time is

also reduced. The maximum deployment time recorded is 72 sec. As the deployment

occurred before any malware entered the system, the required deployment time is

reasonable.

3.5.6.2 Determine overhead/response delay time by comparing with the

native execution

When a malicious process is confirmed by the detection agent, the OEC injects the

End-Point DLL into the malware process. At first, we calculated the dynamic decep-

tion delay by running a malware sample in a machine without symbSODA and then

with symbSODA. Finally, we calculated the time difference as system overhead due

to the orchestration. The deployment time is not considered as we already evaluated

it in the previous experiment. This experiment is performed on four types of mal-

ware (RAT, InfoStealer, Ransomware and Spyware). For each malware, we selected a

malicious behavior and a relevant ploy to deceive it and recorded the malware execu-

tion time to complete the chosen behavior execution. We ran the experiment twice,

once without symbSODA and then with symbSODA, recorded the execution time

and calculated the overhead time. The experimental result is presented in Table 3.9.

Our data shows that the maximum overhead time was 18 seconds (15% increment
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Figure 3.14: symbSODA deployment
time with different ploys
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Figure 3.17: Accuracy of symbSODA
across different malware types

compared to the normal malware execution) which is minimal/insignificant compared

to the running/campaign period of malware.

3.5.6.3 Measuring Scalability

To evaluate the scalability of our approach, we run multiple OECs that send service

requests to the OES at the same time. The purpose of this experiment is to investigate

how the OES performs when several OECs request services simultaneously.

Experimental setup: To maintain consistency, we used the same malware across

all the OECs and created the same profile from each of them. Initially, we started

the experiment using two OECs (clients) sending requests to the OES for profile

selection/creation and recorded the deployment time. Then we increased the number

of OECs by two and continued to monitor deployment time until the OECs count

reached ten. Finally, we repeated the same experiment while simultaneously running

the malware on different OECs to record malware response time and calculated the
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overhead. Note that the execution time of the malware without symbSODA is 15

seconds.

Actual result Our obtained result is presented in Figure 3.15. As we can see, the

overall orchestration time has increased as the number of OECs increases (the right-

most bars). From this experimental result, we can infer that even if the orchestration

time increased, OES could still serve its service successfully with a minor/negligible

overhead (maximum of 7s) compared to the malware’s entire execution time (127s).

3.5.6.4 Assume Guarantee Verification Time

Figure 3.16 shows the time to run the assume-guarantee verification. We imple-

mented the verification algorithm that can handle any Boolean formula with an arbi-

trary number of parenthesis and variables. We can observe that for hundreds of API

pairs, the running time is less than one second and almost linear with the number of

pairings.

3.5.7 End-to-End Accuracy of symbSODA

In this section, we discuss the overall accuracy of symbSODA in terms of deceiving

malware successfully. In this experiment, we first used the 42 open-source malware

samples for GT1 (mentioned in Section 3.5.2) and 13 open-source RATs for GT2

(mentioned in Section 3.5.5) to create the deception ploys and prepare the End-Point

DLL. Then we used four types of malware (RATs, InfoStealers, Ransomware and

Spyware) for testing.

Datasets and evaluation metrics In this experiment, we used six (6) RATs,

122 InfoStealers, 96 Ransomware, and 31 spyware. We ensure that these malware

samples are not used to create the deception ploys. Malware can be deceived at dif-

ferent MITRE tactics and techniques levels or just at a single point. For example, a

malware collects some critical information about the system and exfiltrates it to the

C2 server. We can deceive the malware at each phase separately or both phases. In
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other words, we can use different ploys to deceive malware. To assess the accuracy

of symbSODA, we verify how many used ploys were successful in deceiving the mal-

ware. The evaluation metrics: if the user selects N-number of deception ploys and if

symbSODA uses M of them to deceive malware then, we calculate our accuracy to

be (M/N)*100%.

Observation criteria to consider deception ploy worked For RATs, it’s easy

to observe the effectiveness of our detection ploys since we have the C&C by ourselves

created from the source code. For each ploy, we observe the effect via the C&C server.

For InfoStealers, we use Wireshark to examine the exfiltrated credentials to determine

whether our deception ploys are working. For Ransomware, malicious activities are

clearly visible (ransom note creation, file encryption). Typically Ransomware cre-

ates a ransom note after successfully encrypting the files on the host machine. The

successful indication of our deception would be to fool the malware in creating the

ransom note, even if the encryption did not take place. In the case of Spyware, it

collects information about the victims and uploads it to the attacker. Using Wire-

shark, we identify the IP address where Spyware supposes to upload the file and used

ApateDNS (proxy) to redirect the packet to our hosted FTP server.

3.5.7.1 Experimental setup, expectations and results

To evaluate symbSODA with RATs, we used six (6) RATs with 37 distinct malicious

behaviors. Based on different deception strategies and goals, we identified 116 valid

deception ploys that can be deployed to deceive these RATs. We selected and deployed

these 116 ploys and observed that symbSODA could deceive the RATs in 107 of

them. In the case of InfoStealers, we observed eight (8) distinct malicious behaviors

for which we identified 49 valid deception ploys. We selected and deployed these 49

ploys and observed that symbSODA could deceive the InfoStealers in 47 of them.

For Ransomware, we observed eleven (11) distinct malicious behaviors for which we

identified 28 valid deception ploys. We selected and deployed these 28 ploys and
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observed that symbSODA could deceive the Ransomware in 27 of them. Finally,

for Spyware, we observed thirteen (13) distinct malicious behaviors for which we

identified 33 valid deception ploys. We selected and deployed these 33 ploys and

observed that symbSODA could deceive the Spyware in 31 of them. Figure 3.17

presents the accuracy of symbSODA across different malware types. Overall, on

average symbSODA achieved an accuracy of 95% (224 out of 237 ploys were successful

in deceiving malware).

3.6 Related Work

Honeypots [6, 46], honeynets [45] and honeypatches [11] are frequently used to

complement traditional detection and prevention mechanisms. Such techniques en-

tice attackers with attractive false information (i.e., baits) to deflect them from real

targets. Advanced honeypot and honeynet strategies, such as shadow honeypot [7],

conceal information from the attacker by producing an instrumented shadow replica

of the original system with fake information. Anomaly detection sensors redirect ma-

licious network traffic to the shadow copy, while legitimate traffic is routed to the

actual system. As a result, the precision of such a mechanism is dependent on the

accuracy of the anomaly detection sensor in detecting the malicious payload, which

is not always accurate [47]. In [22], the authors suggested instrumenting production

systems with fake services and mock vulnerabilities to entice attackers. However, the

fundamental hurdle for these approaches is the lack of randomness. In [1], the authors

provided alternative solutions for creating indistinguishable honeypots from the real

system. Unfortunately, these approaches are only theoretical and not directly appli-

cable to real-world situations. Furthermore, skilled attackers may utilize techniques

such as [46] to identify and evade these approaches. In contrast, our method uses

embedded deception through API hooking and is deployed in the real environment,

allowing us to overcome the lack of randomness. Furthermore, the approaches men-

tioned above do not consider the malware’s running context. As these approaches
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presume the malware will perform a specific set of malicious actions, all possible

deception ploys are deployed ahead of time. Our approach considers the malware’s

current execution and context, hence only activates the deception ploys required to

deceive the task malware is currently performing.

In [9], authors proposed a framework to extract deception parameters - the en-

vironmental variables on which the attackers rely to achieve their malicious goal.

These deception parameters can be altered or misrepresented to achieve cyber decep-

tion. However, the framework neither supports real-time deception nor automated

orchestration. In both [5,10], the authors presented an autonomous deception system

capable of creating deception schemes by identifying potential HoneyThing candi-

dates and orchestrating a deceptive environment with these HoneyThings. However,

the approach provides static deception orchestration using HoneyThings and can

only deceive a few malicious behaviors specific to credential stealing. Furthermore,

as the approach focuses on deceiving a few malicious behaviors, the API to behav-

ior mapping was limited and created by human experts. In contrast, our method

outperforms both mentioned approaches by providing configurable deception as ser-

vice (in real-time) and automated dynamic orchestration. We also automated the

API(MSG)-to-MITRE mapping in order to understand the ongoing context within

malware execution to be able to select the appropriate deception ploys at run-time.

We note that Scarecrow [70] covers one of the 4D goals (deflect, distort, deplete, and

discover), while symbSODA is capable of all 4D goals.

An orthogonal line of works utilized decoy files or honey accounts to detect ran-

somware [23, 24], general malware [25, 26], or DDoS attacks [27]. In [28] and [29],

researchers employed honeypots and honeytokens to detect and prevent web-based

attacks. Such strategies are out of the scope of our work as they mainly focus on de-

tection where we are interested in deception. Moreover, these techniques are designed

to detect only a particular type of malware (e.g., ransomware and banking trojans).
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Our approach is generic and applicable to any malware as long as it has the malicious

behaviors for which we designed deception ploys. Our MSG extraction approach is

similar to malware behavior graph proposed in [71] but we have a different purpose:

MSG is used for deception while malware behavior graphs are used for malware de-

tection. In [66] and [67], the authors attempted to detect malware capabilities and

presented them in the form of MITRE ATT&CK framework. However, their map-

pings were created manually based on their domain knowledge, where our tool can

perform automatic malware behavior to MITRE ATT&CK framework mapping.

The importance of keeping deception actions consistent lies in the fact that incon-

sistent deception can alert attackers to the presence of deception and thus reduce its

effectiveness. Inconsistent or conflicting deception actions might also lead to a system

crash and compromise the security of the system. A few notable contributions in this

area are [53, 54, 72], in which the authors proposed methods for generating logically

consistent resource-deception plans that involve using logical inference to identify in-

consistencies and iteratively refining the plan to ensure consistency. The series of

works also offered an example of applying the method to a hypothetical scenario

involving military networks under attack and explained a useful framework for devel-

oping effective resource-deception plans. The proposed planners for deception take in

a sequence of commands for the operating system and identify potential deceptions

that are logically consistent according to the constraints. Since the deception actions

of symbSODA are based on MSGs, it performs deception consistency checks at the

API level and based on their parameter values rather than at the OS commands level.

Therefore, the granularity of the inconsistency checks in symbSODA differs from the

methods proposed in [53, 54, 72]. Moreover, API calls cover a broader space of the

system’s resources than commands.
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3.7 Discussion and Conclusion

This chapter presents symbSODA, a dynamic cyber deception orchestration system

capable of analyzing real-world malware, discovering attack techniques, constructing

Deception Playbooks, and orchestrating the environment to deceive malware. symb-

SODA enhances the state-of-the-art by providing dynamic real-time deception and

customization options for users to choose their own deception ploys. Our proposed

method of MSG extraction, followed by MSG-to-MITRE mapping, showed a promis-

ing result in bridging the gap between malware traces and the MITRE ATT&CK

framework. Our extracted MSGs and MSG-to-MITRE mapping can play a vital role

in improving the existing tools.

We conducted rigorous evaluations to validate and confirm symbSODA’s efficiency

and scalability against 225 recent malware and observed accuracy of 95% in deceiving

them. Additionally, our approach extracted MSGs with a 97% recall, and our MSG-

to-MITRE mapping attained a top-1 accuracy of 88.75%.

We acknowledge a few technical challenges regarding our approach. First, the

semantic gap between API description and MITRE ATT&CK description makes au-

tomated API-to-MITRE mapping challenging. Additionally, since symbSODA re-

lies on existing malware detection approaches that are imperfect, it can occasionally

impact the normal usage of benign processes if they are misclassified as malicious.

However, existing detection systems have a reasonably low false-positive rate, which

can alleviate the problem. Moreover, malware evasion is a significant and practi-

cal issue for symbSODA. Given that we used API hooking to implement deception,

symbSODA will be unable to deceive it if any malware can detect and evade API

hooking. However, the symbSODA framework can leverage existing techniques that

are resistant to malware evasion. For example, the API Call Tracer can be built on

top of Barebox [73], which traces system calls via kernel-level hooking. We leave

such improvements for future work. It is important to point out that symbSODA
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can deceive polymorphic malware for which known samples are available. Although

polymorphism changes malware’s instructions, it may not change its functionality

and the library APIs that its functionality depends on. Therefore, the underlying

malicious subgraphs (MSGs) of the malware may remain similar or even the same.

Thus, symbSODA would be expected to work against polymorphic malware. How-

ever, it’s worth noting that the run-time deception ploy component of symbSODA

may not successfully deceive malware that contains MSGs that have never been ex-

tracted before. However, considering that symbSODA can expand its knowledge base

of malicious subgraphs (MSGs) by continuously analyzing more malware samples to

learn new MSGs, symbSODA can include sufficient MSGs that enable effective de-

ception ploys against novel malware.



CHAPTER 4: ranDecepter: Empowering Defense Against Ransomware Attacks

through Active Cyber Deception and Binary Reset

4.1 Introduction

Recently, there has been a significant increase in cyber-attacks globally, with ran-

somware being one of the prevalent threats. The number of ransomware variants has

been rapidly rising each year, as reported by the Symantec Security report, show-

ing a 46% increase in 2017 [74]. Money-driven ransomware doesn’t discriminate and

targets various sectors, including police departments and the healthcare industry.

Rather than focusing on a specific set of computers, ransomware typically aims to

infect a large number of victims. A notable example is the widespread attack of the

Wannacry ransomware, which exploited the EthernalBlue vulnerability and affected

thousands of victims [75].

Ransomware, a form of malware, shares common characteristics with other mal-

ware but also possesses distinct properties of its own. It employs similar strategies

as other malware to avoid detection, spread, and target users. By injecting processes

into target programs, extracting valuable user data, and establishing secure commu-

nication channels with Command & Control (C&C) servers, ransomware operates

with sophistication. However, unlike traditional malware, its primary objective is to

encrypt all private files on the victim’s system and demand a ransom for their recov-

ery, rather than operating stealthily in the background. These modern ransomware

families, commonly referred to as crypto ransomware, employ encryption to restrict

users’ access to their computers or lock their screens until the ransom is paid. The

relative simplicity of coding and customization, coupled with its lucrative nature, has

led to an exponential proliferation of ransomware variants.
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The field of ransomware detection is experiencing significant activity, and numer-

ous studies have been conducted in this domain. However, the alarming surge in ran-

somware attacks indicates that current detection methods can still be evaded. Many

of the techniques developed for ransomware detection involve static analysis com-

bined with machine learning or signature-driven approaches [76, 77]. Although these

methods boast high precision in detecting ransomware, modern advanced malware

employs sophisticated obfuscation techniques that easily evade such approaches. To

address these limitations, researchers have introduced dynamic analysis approaches

for detecting ransomware [78–80]. However, a drawback of these approaches is that

they rely on observing system behavior to make decisions, which means that some

sensitive files may already be encrypted by the time the system takes action. But

since ransomware attacks deal with sensitive data and the encryption process is ir-

reversible unless a ransom is paid, meaning those initial encrypted file may not be

recovered. In order to mitigate this challenge, recent studies propose the use of iso-

lated sandboxes to subject new binaries to dynamic analysis before their execution

on production systems [81–83]. However, it is important to acknowledge that the

feasibility of this approach may vary in real-world scenarios.

Hence, there is a need to develop a proactive and dynamic solution for detecting

ransomware in real systems without compromising sensitive files. The use of deception

as a means to detect ransomware has been explored previously, focusing on effectively

halting its operations. Deception-based approaches have garnered significant atten-

tion due to their ability to proactively identify new and emerging attacks [24,84–88].

These methods involve the distribution of simulated or “honey" files throughout the

file system. Any process attempting to access these files is flagged as anomalous.

This approach proves advantageous for ransomware detection as it minimizes data

loss, given that encrypting a honey file does not result in any actual loss of data due

to their fictitious nature. Moreover, these approaches leverage the ransomware’s file
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search methodology. Ransomware typically scans and encrypts files by traversing the

file system and performing read/write operations. By exploiting this behavior, decoy

files are strategically placed for the ransomware to encounter and act upon, providing

confirmation to users of a ransomware attack. However, there are certain limitations

to this approach. Firstly, it can be costly as honey files need to be implanted at

various locations within the system, and they must be designed to always appear first

within a sorted directory. Secondly, ransomware can easily bypass this solution by

specifically targeting certain files, proving this deception strategy ineffective.

To overcome this limitation, we propose an alternative approach, ranDecepter that

focuses on deceiving ransomware at the API level rather than the file-system level.

This approach capitalizes on the fact that despite the ransomware’s operation on

multiple targeted files, the sequence of operations (e.g., searching, listing, reading,

encrypting, deleting/overwriting) remains consistent. Therefore, by intercepting and

monitoring these APIs, we can make informed decisions regarding ransomware activ-

ities. In this scenario, there is no need to track individual files or distribute decoy

files across various locations. Consequently, the evasion techniques employed by ran-

somware in the previous approach become obsolete. Even if the ransomware attempts

to evade a decoy-based detector by targeting specific files, it still must execute the

same API calls to carry out malicious actions on those files. Hence, ranDecepter can

identify the malicious behavior and detect the ransomware-related API sequences.

Addressing the information and resource asymmetry between attackers and de-

fenders is a key challenge in cybersecurity. Attackers operate stealthily, conducting

prolonged reconnaissance, while defenders must respond swiftly to emerging threats.

Defenders are tasked with safeguarding vast infrastructures, while attackers can inflict

significant damage with a single breach. In this study, we demonstrate how malware

can be leveraged to retaliate against attackers and deplete their resources by inun-

dating them with misleading or irrelevant information. Malware serves as a channel
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between defenders and attackers, with the latter utilizing it to sabotage defenders’

resources and sensitive data. However, defenders can also employ techniques to feed

misinformation back to attackers through malware, thus depleting their resources.

ranDecepter employs an automated method to identify the crucial addresses within

a ransomware binary. This effectively establishes a loop within the malware, causing

it to repeatedly initiate from the beginning and transmit encryption information/no-

tifications back to the attacker. Consequently, this depletes the attacker’s resources

as they are required to store each victim’s information. Our experimental findings

validate the practicality, precision, and scalability of ranDecepter. Our contributions

can be summarized as follows:

• Our approach employs API-level deception to detect ransomware in its initial

stages without compromising any sensitive files.

• Our approach is the first within our knowledge to incorporate an automated

process to identify key addresses within ransomware binaries, establishing a

looping mechanism that strategically depletes the attacker’s resources by con-

tinuously confirming encryption and transmitting keys pertaining to the victim.

• Our approach undergoes evaluation with real-world malware and benign appli-

cations, showcasing 100% accuracy in ransomware detection without any false

positives, accompanied by minimal response time increment. Additionally, in

terms of binary orchestration, our approach effectively depletes attackers’ re-

sources, achieving 100% accuracy and substantial resource depletion.

The rest of this work is organized as follows: Firstly, in Section 4.2, we provide

background information about the topic and define key terms. Then, in Section 4.3,

we present the threat model and the assumptions we have made. Section 4.4 explains

the framework in detail, while Section 4.5 showcases the evaluations conducted to

determine accuracy and performance analysis. Section 4.6 discusses related work
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in the field. Finally, in Section 4.7, we present the limitations, future work, and

conclusions drawn from our study.

4.2 Background

4.2.1 Ransomware and it’s behaviors

It is a form of malware designed to encrypt files or lock down systems, rendering

them inaccessible to users until a ransom is paid to the attacker. Understanding the

major behaviors associated with ransomware is crucial for developing effective defense

strategies. This section delves into the key characteristics and behaviors exhibited by

ransomware.

• Search and List Targeted Files for Encryption: Ransomware exhibits the

behavior of searching for and listing specific files on the victim’s system for

targeted encryption. The malware typically employs various techniques, such

as file extension filters, to identify files that hold significant value or are likely to

contain sensitive information. By selectively targeting specific files, ransomware

aims to maximize the impact of the attack and increase the likelihood of victims

paying the ransom.

• Encryption Key and Unique ID Generation: Ransomware generates a

strong encryption key and scans the victim’s system to encrypt files using this

key. Simultaneously, it establishes a unique victim ID by incorporating system

variables, such as system information, timestamps, random number generation,

cryptographic hash functions, and network information. This ID associates

encrypted files with the victim, ensuring that only the corresponding decryption

key can unlock them. Attackers use the victim ID to identify the victim and

associate the correct decryption key with their payment, facilitating file recovery

upon successful ransom payment.

• File System Encryption: One of the primary behaviors of ransomware is the
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encryption of files stored on the victim’s system. Ransomware targets a wide

range of file types, including documents, images, videos, and databases. By

employing robust encryption algorithms, the malware ensures that the victim’s

files become inaccessible without the decryption key possessed by the attacker.

This behavior serves as the basis for extortion, as the victim is compelled to

pay the ransom to regain access to their valuable data.

• Communication with Command and Control (C&C) Servers: Ran-

somware often establishes communication channels with Command and Control

(C&C) servers operated by the attackers. This connection enables the malware

to send status updates, receive decryption keys upon payment, and potentially

exfiltrate stolen data from the victim’s system. The communication with C&C

servers allows the attacker to maintain control over the ransomware and facili-

tates the coordination of ransom payment and data retrieval processes.

• Ransom Notes and Instructions: Ransomware commonly generates and

presents ransom notes to the victim after encrypting their files. These notes,

often in the form of text files or desktop backgrounds, provide instructions on

how to make the ransom payment and regain access to the encrypted data.

They typically include details such as the ransom amount, the cryptocurrency

address for payment, and a deadline to incentivize prompt action. The language

used in these notes can vary, ranging from professional to threatening, aiming

to instill a sense of urgency and fear in the victim.

4.2.2 Malicious Sub-graphs (MSGs)

To accomplish its malicious objectives, malware utilizes a series of WinAPI calls.

By representing each WinAPI as a node and the data flow between them as edges, we

can construct a graph representing the sequence of WinAPIs. These graphs, known

as malicious subgraphs (MSGs), play a crucial role in identifying and understanding
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the execution flow of malware from traces. Analyzing these execution flows enables

the design of precise deception plans to counteract malware activities effectively.

1. RegOpenKey {'key_handle': '0x000000bc', 'regkey': 'HKEY_LOCAL_MACHINE\\SOFTWARE\\Mozilla\\Mozilla Firefox’}
2. RegQueryValue {'key_handle': '0x000000bc', 'value': '41.0.2 (x86 en-US)', 'regkey': 'HKEY_LOCAL_MACHINE\\SOFTWARE\\Wow6432Node\\Mozilla\\Mozilla Firefox\\CurrentVersion’}
3. RegCloseKey {'key_handle': '0x000000bc'}

RegOpenKey RegCloseKeyRegQueryValue
0x000000bc 0x000000bc

Figure 4.1: Malware execution trace to MSG conversion

Malicious subgraphs extraction: Recalling the definition of Malicious sub-

graphs (MSGs) from the background section, Malware achieves malicious objectives

by executing a series of WinAPI calls, forming malicious subgraphs (MSGs) where

each WinAPI represents a node and the data flow between them represents edges in

a graph structure. As depicted in Figure 4.1, where lines 1-3 depict a concise segment

of a ransomware execution trace that can be transformed into an MSG by considering

the interdependencies (data-flow) among the nodes, exemplified by the key_handle

attribute with a value of “0x000000bc".

4.2.3 Deception Strategies

In our implementation of API hooking-based deception, we employ four distinct

approaches to respond to malware: FakeFailure, FakeSuccess, FakeExecute, and Na-

tiveExecute. These approaches, collectively termed “Deception Strategies", determine

our chosen course of action when encountering malware. In this research, our primary

focus has been on utilizing the FakeSuccess deception strategy.

• FakeFailure simulates a failed operation response to the malware without in-

voking the actual WinAPI call, deceiving the malware into thinking the opera-

tion was unsuccessful.

• FakeSuccess simulates a successful operation response to the malware without

invoking the actual WinAPI call, providing static content for the operation.

• FakeExecute performs the malware’s action on a remote machine and sends
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back the response, tricking the attacker into receiving information from the

remote machine.

• NativeExecute allows the malware to run to observe its current and future

actions.

4.3 Threat Model and Assumptions

In the context of this research, we examine the behavior of ransomware, which

may be combined with other malware variants, such as information stealers, to ex-

tract additional information from the victim system while simultaneously inflicting

encryption-based impact. However, our primary focus is on the behavior of ran-

somware itself, which primarily involves operations related to file system encryption

and the exfiltration of encrypted key(s) to the attacker for future use in decrypting

infected files for ransom. In cases where combined malware is involved, we can incor-

porate deception techniques mentioned in previous works [10,52,89] to orchestrate a

comprehensive deception strategy that addresses various malicious behaviors.

The Win32 API (Application Programming Interface) is a comprehensive set of

functions and services provided by the Windows operating system. It offers developers

access to diverse system resources, including file systems, networking capabilities,

user interface elements, and hardware devices. It is important to note that this work

assumes the ransomware relies on win32 API calls to carry out malicious actions,

specifically related to searching and listing targeted files, reading, encrypting, and

ultimately deleting/overwriting files.

Various research efforts have focused on detecting ransomware prior to its execution.

These approaches involve static analysis of the binary without running the application

or dynamic analysis within a controlled environment to uncover the true intent of such

programs. However, our approach concentrates on providing a solution for detection

once the malware has infiltrated the system and is already executing.



101

Ransomware

dataset
MSG analyzer

Decep�on ploys 
(FakeSuccess)

Decep�on DLL

Detec�on agent

New process

Inject
Ransom

ware?

Monitor and modify (if 
necessary) API calls

Reset point agent

Detected
Rese�ng 
addresses

Dynamic analysis using 
symbolic executor

O
ff

li
n

e
P

h
as

e
R

ea
lt

im
e

P
h

as
e

R
es

et
 

P
h

as
e

Figure 4.2: Overall system and data flow

In summary, the threat model for our approach involves: a) the infiltration of a

ransomware into the system through channels such as email or social engineering,

and b) the execution of the malware with the objective of encrypting specific files,

utilizing Win32 APIs to carry out these malicious actions.

4.4 System overview

This section provides a comprehensive overview of our system and its workflow, as

depicted in Figure 4.2. The system comprises three main phases: the offline phase,

the real-time phase, and the reset phase.

In the offline phase , we initiate the process by collecting ransomware samples and

their corresponding antivirus (AV) labels from diverse sources such as VirusShare,

MalShare, Hybrid-Analysis, and VirusTotal. Using Cuckoo Sandbox, we execute

these malware samples to gather their runtime execution traces. These traces undergo

MSG analysis, as detailed in [soda], resulting in the creation of a knowledge base

that encompasses ransomware-related MSGs. To deceive and detect ransomware,

we developed deception ploys in the form of “FakeSuccess" hooks at the API level.

For example, if the malicious action of a particular malware involves encryption,

we develop detour functions for encryption-related APIs that return success without

actually performing the encryption. The hooks and detour functions for the relevant

APIs, as listed in the ransomware MSG knowledge base, are implemented in C++

using the EasyHook library. The outcome is a Deception DLL that contains the
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necessary APIs for monitoring and embedding deception ploys.

In the real-time phase, we create a Detection Agent using VBScript, which ac-

tively monitors and identifies newly initiated processes on the victim’s machine. When

a new process is detected, the Deception DLL is injected into it for further monitoring.

The Deception DLL has the capability to monitor invoked APIs and their parameters,

as well as manipulate input parameters and return values. In simpler terms, it can 1)

determine if the current process invokes APIs in a sequence that matches the MSGs

within the offline knowledge base, and 2) modify API calls to neutralize their actions,

such as encryption. If ransomware is detected during this phase, the executable file

associated with the ransomware is transferred to a deceptive environment for further

analysis aimed at identifying critical addresses within the ransomware binary.

In the reset phase , we employ dynamic analysis using a symbolic executor [89]

to pinpoint critical addresses within the malware, enabling the creation of a loop-

ing mechanism. By establishing a loop within the malware, our approach triggers

repeated execution of the malware, leading to the continuous transmission of encryp-

tion information, notifications, and secret keys back to the attacker. This strategy

depletes the attacker’s resources, as they must store information for each victim.

4.4.1 Offline Phase: Deception DLL Creation

This phase comprises two main steps: (a) Building a knowledge base of relevant

malicious subgraphs associated with ransomware, and (b) Designing and implement-

ing a deception DLL using the knowledge base, primarily employing the FakeSuccess

deception strategy. Under this strategy, ranDecepter provides deceptive responses to

the malware, simulating successful operations without invoking the actual WinAPIs.

For instance, when the ransomware attempts to delete the original file after encryp-

tion by calling the DeleteFile API, our system intercepts the call and returns a “true"

value without executing the actual DeleteFile operation.

To extract malicious subgraphs (MSGs) from malware, we adopt the approach
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outlined in [90]. We customize the Cuckoo Sandbox to create a dynamic malware

analysis environment, where we execute the malware and capture their corresponding

execution traces. Subsequently, we apply an MSG extraction algorithm based on [90]

to these traces, generating the MSG knowledge base. At the end of this stage, we

extract all the MSGs as well as APIs corresponding to ransomware in a form of a

knowledge base, which serves as the foundation for planning deception ploys.

Deception ploys planning. We have devised and implemented deception ploys

using the “FakeSuccess" deception strategy, in which fake successful outcomes are

returned for the operations executed by the malware. The primary objective is to

create an illusion of successful execution to the malware and the attacker, making

them believe that the attack has been carried out successfully. However, under the

hood, our system refrains from actually performing these operations, thereby preserv-

ing the system’s resources and preventing further infection.

Let us now delve into the meticulous planning of our deception ploys, as outlined

in Table 4.1. It should be noted that the table presents only a subset of our deception

ploys and their corresponding malicious subgraphs (MSGs) for the purpose of in-

depth discussion and enhanced comprehension. Our system incorporates additional

ploys and MSGs that are not listed here.

Taking the “File encryption" behavior as an example, Table 4.1 illustrates three

MSGs associated with different malware implementations. In the first scenario, the

malware derives a session key from a hardcoded password embedded within its code.

Alternatively, the password could be obtained dynamically from the command-and-

control (C&C) server at runtime. In the second and third scenarios, the malware

directly generates the session key using the CryptGenKey API and subsequently

employs it for file encryption.

Across all three cases, the malware follows a consistent pattern: it creates a new

file, writes the encrypted content into this newly generated file, and later deletes the
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Table 4.1: Deception ploy planning for ransomware (O=original file, D=Destination
file, Pwd= password, S=session key, CO=content of the original file, P= public key).
N.B. FileHeader writing is optional, hence noted in italic font.

Malware Behavior Malicious subgraph Deception Actions

File encryption

Case 1: If session key is derived from password
CreateFile(O)-CreateFile(D)-CryptAcquireContext-
CryptCreateHash(Pwd)-CryptDeriveKey(S)-WriteFile(D)[FileHeader] -
ReadFile(O)-CryptEncrypt(CO)-WriteFile(D)-CloseHandle(O)-
CloseHandle(D)-CryptDestroyHash-CryptDestroyKey-
CryptReleaseContext

Case 2: If session key is not derived from password
CreateFile(O)-CreateFile(D)-CryptAcquireContext-CryptGenKey(S)-
CryptExportKey-WriteFile(D)[FileHeader] -ReadFile(O)-
CryptEncrypt(CO)-WriteFile(D)-CloseHandle(O)-CloseHandle(D)-
CryptDestroyKey-CryptReleaseContext

Case 3: If public key is used in addition to session key for key exchange
CreateFile(O)-CreateFile(D)-CryptAcquireContext-CryptGenKey(S)-
CryptGetUserKey(P)-CryptExportKey-CryptDestroyKey(P)-
WriteFile(D)[FileHeader] -ReadFile(O)-CryptEncrypt(O)-WriteFile(D)-
CloseHandle(O)-CloseHandle(D)-CryptDestroyKey-
CryptReleaseContext

In all three scenarios, the process involves the creation
of a new destination file where the encrypted data is
written. The specific actions undertaken are as follows:
1. Upon the invocation of CreateFile(D), a new
destination file is generated.
2. When CryptEncrypt(CO) is called, our detour
function intercepts the execution and returns a “True"
value without actually executing CryptEncrypt, ensuring
that the original file’s content remains unencrypted.
3. WriteFile(D) is used to write the encrypted content
into the destination file. However, we return a success
status (True) without actually performing the write
operation.
4. The completion of the operation on the destination
file is indicated by CloseHandle(D). Consequently, we
delete the destination file, retaining only the original files
within the system.

File deletion DeleteFile(O)
Ransomware calls DeleteFile(O) to delete the target file.
Upon invocation of this API we return true without
deleting the file.

original file. To deceive this behavior using the FakeSuccess strategy, our objective

is to make the malware believe that it has successfully executed all these operations,

including the creation of the new file, encryption of the original file’s content, writing

the content into the new file, and ultimately deleting the original file. However,

our ultimate aim is to retain the integrity of the original file, ensuring it remains

undeleted and conserving system resources by avoiding the creation of unnecessary

files. To achieve this, we employ API hooking on the CryptEncrypt API. Upon

invocation, we intercept the call and return a “True" value without actually executing

CryptEncrypt. Consequently, the content of the original file remains unencrypted.

In theory, the plaintext data from the original file is expected to be written to the

new file. However, to prevent the creation of these superfluous files and conserve

system disk space, we also ensure that the WriteFile operation on the newly created

destination file returns a success status (“True") without actually performing the write

operation.

Now, one may question why we did not apply the same strategy to the CreateFile

operation on the destination file. The reason lies in the intricacy of the CreateFile

operation, as it returns a file handle that is subsequently utilized in many subsequent
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operations. To achieve FakeSuccess for all these operations would be cumbersome

and, in some cases, unpredictable from the outset. Therefore, we adopt a simple

workaround: allowing the malware to create these files and, when the malware per-

ceives that the operations on these files are complete, it invokes the CloseHandle API

with the file handle generated during the CreateFile API call. During this invocation,

our detour function calls the DeleteFile API to eliminate the destination file, ensuring

that no extraneous files are created. This approach effectively simulates the effect of

performing FakeSuccess on the CreateFile API.

At the completion of this stage, we compile an extensive table akin to Table 4.1,

which serves as a comprehensive guide outlining the APIs that require hooking, the

appropriate response strategies, and their potential sequencing. In essence, this stage

provides us with the blueprint for implementation and the requisite features to effec-

tively deceive and detect ransomware.

Deception ploys implementation in the form of Deception DLL. In this

phase, we proceed to programmatically implement the actions described in the previ-

ous step. The deception actions are implemented using API hooking. Our approach

involves creating a DLL file, referred to as Deception DLL, which is injected into mal-

ware using the DLL injection method. API hooking is a widely recognized technique

for intercepting API calls made by targeted executables and enabling the monitoring

and modification of API responses. To accomplish this, we employ the EasyHook li-

brary [57], a free and open-source hooking library designed for both 32-bit and 64-bit

Windows processes. We implement a detouring function for each original WinAPI

call we want to intercept. As a result, the detouring functions take control of the

malware and provide us with the option to enforce our defined deception actions to

modify the execution.

The outcome of this offline phase is a DLL file encompassing all the necessary

deception actions required to deceive and detect ransomware (shown in Figure 4.3
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in yellow). This Deception DLL is then prepared for injection into the monitored

processes during the realtime phase.
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Figure 4.3: Detailed illustration showcasing the various phases and components of
our system, depicting their data flow and decision-making processes.

4.4.2 Realtime Phase: Ransomware Detection using Embedded Deception (API)

Hooks

In this phase, we inject the Deception DLL created in the previous phase into

various processes to observe their runtime behaviors and determine whether they

exhibit ransomware-related behaviors. We will discuss this section with the help

of Figure 4.3 (specifically, the part marked in green), which provides the details of

different phases and components of our system as well as their data flow and decision-

making processes.

The realtime phase starts with a detection agent which looks out for the creation

of new process. Upon new process creation, it suspends the process at it’s entry point

and checks the process against a whitelist, created by the user of the system as well
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as experts that lists well-known benign processes. If the process is already whitelisted

then the detection agent does nothing. Otherwise, the process is not yet whitelisted,

and the detection agent injects the Deception DLL into this new process (marked

as 1 and 2 in Figure 4.3). In the following paragraphs, we describe which APIs are

hooked and the rationale behind it and the steps taken on the invocation:

CreateFile, MoveFile, MoveFileWithProgress and Sleep: One of the criti-

cal behaviors exhibited by ransomware involves file creation, encryption, and deletion.

Therefore, the CreateFile API call plays a vital role in providing insights into ran-

somware activities. Specifically, we focus on the “dwCreationDisposition" parameter,

which includes values such as “CREATE_ALWAYS" and “CREATE_NEW," indicat-

ing the creation of a new file. Furthermore, we examine the “lpFileName" parameter

to determine the file name. To identify ransomware attacks, we consult an extensive

list of known ransomware file extensions provided by security analysts [91]. If we

detect any of these extensions during the CreateFile call, it serves as a clear indica-

tion of a ransomware attack as shown in Figure 4.3 (marked as 3). In such cases,

our system immediately terminates the process and informs the Transport Agent for

proceeding to the next phase, known as the reset phase (marked blue in Figure 4.3).

However, some ransomware variants append these known extensions after complet-

ing the encryption process, using the MoveFile/MoveFileWithProgress API call for

file renaming. Therefore, we also perform the ransomware extension check during the

MoveFile/MoveFileWithProgress API call (marked as 7 in Figure 4.3).

Now a question can be raised regarding the potential presence of benign applica-

tions frequently utilizing the CreateFile API. To address this concern, we employ a

tracking mechanism for a specific duration. Through extensive experimentation, we

have determined that the delay introduced by our hooking functions is negligible, as

detailed in Section 4.5.3. Moreover, our system offers the flexibility of incorporating a

configurable timer, which is managed through a global variable. Nevertheless, based
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on our comprehensive evaluations, we have determined that the introduction of hooks

in our system incurs minimal delay. Consequently, the use of a timer for operating

the hooks is optional and can be configured according to the user’s preferences and

specific system requirements. To facilitate this tracking process, our deception DLL

maintains a comprehensive record of file names and their associated handles in a des-

ignated text file, referred to as “files_in_action". When the CloseHandle function is

invoked with the corresponding handle, the corresponding entry is promptly removed

from the text file.

Considering that malware often employs the Sleep API to introduce delays for

evasion purposes, we also hook the Sleep API and include its duration in the timer

variable. This ensures that malware cannot evade our approach by utilizing sleep

operations.

WriteFile, CloseHandle, CryptAcquireContext and CryptEncrypt: Given

that CloseHandle and WriteFile are frequently invoked by benign processes, the de-

tour functions for these APIs will also be called numerous times. In these cases, the

detour functions simply execute the original CloseHandle and WriteFile APIs without

any modifications, until evidence of encryption-related operations is discovered.

Referring to the MSGs listed in Table 4.1, we identify CryptAcquireContext as

the entry API call for encryption operations. When the process calls CryptAcquire-

Context, we set the Encryption flag (marked as 5 in Figure 4.3). As long as the

Encryption flag is not set, the detour functions for CloseHandle and WriteFile inter-

cept the calls and execute the original APIs.

Regarding the CryptEncrypt API, a nonzero (TRUE) return value indicates a suc-

cessful encryption operation. Notably, the *pbData parameter holds significance, as it

refers to a buffer containing the plaintext to be encrypted. In our detour function for

CryptEncrypt, we return True without performing the encryption operation, leaving

the pbData buffer unchanged, containing the plaintext rather than the ciphertext. We



109

store the address of this buffer and check if any subsequent WriteFile calls utilize it as

the lpBuffer parameter, which represents the buffer containing the data to be written

to the file. Consequently, when the Encryption flag is set and the lpBuffer matches

the pbData within the WriteFile call, the deception DLL returns True, simulating a

successful write operation without actually writing anything to the destination file.

Additionally, if the Encryption flag is active and CloseHandle is invoked with the

stored handle in the “files_in_action" list, it signifies that the ransomware has com-

pleted operations on the corresponding newly created file. As a result, we remove this

file to ensure no extraneous files remain in the system (marked as 6 in Figure 4.3).

DeleteFile: Once the ransomware finishes encrypting the files, it proceeds to

delete the original user files or overwrite them with the encrypted content. Our

system addresses the overwriting case through the previously described MoveFile/-

MoveFileWithProgress API hooking. Regarding the DeleteFile API call, our system

intercepts the call and returns a True value without executing the actual DeleteFile

operation. This approach preserves the original files while giving the malware the

impression that the deletion was successful. This specific case is denoted as 7 in Fig-

ure 4.3.

If the process does not attempt to delete or overwrite files, even after the encryption

process within the given timeout period (if given), we mark the process as clean and

add it to the whitelist. The rationale behind this decision is that users sometimes

use legitimate software to encrypt files before transferring or sharing them. In such

cases, there are two possibilities: either the original file is deleted or overwritten, or

the legitimate software creates a new file for the user’s operations while leaving the

original files untouched. If the original files remain unaffected, we consider it safe to

mark the process as clean.

However, in scenarios involving deletion or overwriting, as mentioned earlier, we

employ the deception technique to keep the original files intact. One might ques-
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tion the impact on legitimate applications that perform encryption, file deletion, or

overwriting, as our deception strategy inhibits their intended operations. The main

reason behind this approach is that ransomware exhibits behaviors that closely resem-

ble those of benign applications that perform similar operations. As a result, many

systems mistakenly categorize ransomware as benign. In such situations, we rely on

the distinct characteristics of ransomware, such as ransom notes or changes to the

desktop background displaying ransom payment details.

We continue applying the FakeSuccess deception strategy to the application under

investigation and actively search for ransom notes or changes in the desktop back-

ground at well-known locations within the system for a predefined timer. If no such

indications are found, the system considered it to be a benign application, hence added

it to the whitelist and unhooked the Deception DLL; at the same time, the system

notifies the user that it has blocked the application’s operation due to its similarity

to ransomware behavior (as it performed encryption and deletion). We then request

the user to restart the process (application) with their desired operation again. Con-

sequently, our system will not interfere with this process in the future, as it is marked

as a whitelisted application. However, we acknowledge that our interference with the

benign application in this scenario may cause a delay of up to five minutes and require

the application to be rerun. We believe that this temporary inconvenience is a small

price to pay for the overall safety and protection of the user’s system, considering the

potential disastrous consequences that can arise from a ransomware attack.

Ransom note creation: In order to identify ransomware notes, we leverage the

CreateFile API, specifically focusing on key locations such as Desktop, Documents,

Downloads, Music, Pictures, and Videos. When a new file is created, we perform

a keyword search within these locations, looking for terms such as “ransom," “en-

crypt(ed)," “pay(ment)," “bitcoin," “lose," “decrypt(ed)," and “delete(d)." If any of

these keywords are found, we notify the user to review the file(s) and confirm whether
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their system is under a ransomware attack. Additionally, to detect ransom notes

through background changes, we utilize image-to-text conversion using the Google

Cloud Vision API [92]. We have also implemented effective strategies from [76] to

enhance the detection of ransom notes. Furthermore, we have incorporated effective

strategies from [76] to enhance the accuracy of ransom note detection. In our future

work, we plan to implement an approach similar to [93], which integrates Latent Se-

mantic Analysis (LSA) - an NLP-based analysis to assess the similarities between file

contents and known ransom notes, further improving the effectiveness of ransom note

detection.

To summarize, during the realtime phase, we employ deception techniques to detect

malicious processes, specifically ransomware. Once a malicious process is identified,

we proceed to transfer the corresponding executable file associated with the process

to a carefully controlled deceptive environment. This transfer is facilitated by a

transport agent, ensuring the secure relocation of the file for further analysis.

4.4.3 Reset Phase: Exhausting attackers’ resources by repeatedly initiating

malware through binary orchestration

In this phase, we conduct dynamic analysis on the malware to identify critical

addresses within its code. This analysis enables the creation of a looping mechanism

within the malware, resulting in the repetitive execution of its operations. Through

this loop, the malware continuously transmits encryption keys to the attacker, which

will be utilized for decrypting the files upon ransom payment. As a result, the attacker

must store these keys for future decryption operations.

To accomplish the task of identifying these crucial addresses, we leverage gExtrac-

tor, a dynamic malware analysis tool built upon a selective symbolic execution engine.

It provides comprehensive reporting of user-level APIs invoked by the malware, along

with associated parameters for 390 Windows APIs. It also reports the entry point of

the binary using objdump [94], which serves as the starting point for program exe-
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Figure 4.4: This figure shows the identified execution chains (EC1 and EC2). On the
left side, we presented the MSGs ransomware use to perform “Transfer Key(s)". Red
colored APIs indicate the end of their respective MSG.

cution. Furthermore, gExtractor captures the active call stack chain of an API call,

encompassing the caller’s (virtual) address and the first address block of the called

API. As the chain grows with subsequent function calls, gExtractor removes entries

as the execution returns to the caller.

Within the context of binary orchestration, a crucial step involves understanding

the sequence of operations performed by the malware. This understanding is essen-

tial for identifying the points at which the malware generates encryption keys. By

analyzing the execution traces provided by gExtractor and utilizing the knowledge

acquired during the offline phase regarding the malware’s operation-specific mali-

cious subgraphs (MSGs), we can automatically identify the execution chain, which

represents the order of these operations. Through experiments conducted on seven

ransomware samples from different families (CryptoLocker, WannaCry, Ryuk, Gand-

Crab), we have identified two major distinct execution chains, visually presented in

Figure 4.4 as EC1 and EC2. In addition, there are a few other variations, where the

loop operation depicted in Figure 4.4 is divided into two parts: the first for target file

listing and the second for encryption and original file deletion.

Next, we strategically insert JMP instructions among these operations to create a
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Figure 4.5: Workflow of binary orchestration.

loop. This process involves several critical determinations. Firstly, we determine the

address of the malware’s entry point, which is provided by gExtractor. Additionally,

we need to determine the initial state of the stack (i.e., stack base and limit) at the

entry point. We extract such information by running the code shown in Listing 4.1.

The next crucial step involves determining the appropriate insertion point for the

JMP instruction. This requires identifying where the key transfer operation concludes

within the malware’s execution. Utilizing gExtractor, which captures the call stack

chain of each API call, we can precisely locate this insertion point. Specifically, we

focus on the call stack chain of the last APIs marked in Figure 4.4 in red. This call

stack chain reveals the invocation location of the API or set of APIs and the return

address within the malware upon the completion of the API call. We insert the JMP

instruction at the next address following the return to the malware address pointing

to our customized function. The customized function’s tasks include restoring the call

stack to its initial state as described in the previous step, and JMPing to the malware’s

entry point. To streamline this process, we employ EasyHook for automation. By

implementing these steps, the malware enters a continuous loop, repeatedly restarting

and transferring keys to the attacker.

Figure 4.5 illustrates the sequential workflow of binary orchestration after the dy-
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namic analysis stage conducted by gExtractor. Through dynamic analysis, we extract

the stack call chains (including from and return addresses) of the relevant APIs and

determine the malware’s execution order. In the next step, we create a "Deceptor

DLL," a DLL responsible for randomizing collected data, inserting JMP instructions,

and resetting the call stack. Ransomware typically collects system information, times-

tamps, random numbers, cryptographic hash functions, and network information to

generate a unique victim ID. The Deceptor DLL hooks these APIs and ensures that

the collected values are randomized, resulting in a new victim ID each time. Once

gExtractor completes the dynamic analysis and provides the stack call chains and ex-

ecution order, the Actuating agent determines the appropriate locations for inserting

JMP instructions. The Actuating agent then starts the malware in a suspended mode

and injects the Deceptor DLL into the malware process (steps 4 and 5 in Figure 4.5).

The Deceptor DLL identifies the initial call stack values by running the code provided

in Listing 4.1.

Listing 4.1: Code to find stack values

void *pStackBase;

void *pStackLimit;

_asm {

mov eax, fs:[04h]

mov pStackBase, eax

mov eax, fs:[08h]

mov pStackLimit, eax

}

Then, the Deceptor DLL inserts the JMP instruction to the customized function,

which resets the call stack to its initial state and jumps to the entry point, notifying

the Actuating agent to resume the malware process. As a result, we create a loop

inside the malware (depicted on the right side of Figure 4.5), ensuring its repetitive

execution. This loop facilitates the collection of random values during the collection
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stage and enables the continuous transmission of new unique IDs and keys to the

attacker for storage.

4.5 Evaluations

In this section, we present the comprehensive evaluation of our proposed approach

utilizing a diverse range of ransomware variants. Our evaluation experiments aim to

validate the accuracy, effectiveness, and overhead of our method, shedding light on

its performance and capabilities.

4.5.1 Dataset

To evaluate the robustness of our approach in real-time ransomware detection, we

curated a dataset consisting of fifteen (15) samples from nine (9) distinct ransomware

families. This dataset encompasses a wide spectrum of ransomware variants, enabling

us to thoroughly assess the performance and effectiveness of our method. A summary

of the dataset is provided in Table 4.2.

Furthermore, to accurately assess the accuracy and effectiveness of our binary

orchestration approach, we conducted resource depletion assessments utilizing four

publicly available malware samples, such as those found on GitHub [95–98]. These

samples allow us to precisely evaluate the efficiency and effectiveness of our approach

in terms of resource consumption and depletion at the attacker’s side.

4.5.2 Evaluation of Accuracy and Effectiveness against Ransomware

In order to assess the accuracy and effectiveness of our approach in real-time ran-

somware detection, we conducted rigorous evaluations using a dataset comprising 15

real-world ransomware samples, as outlined in Table 4.2. Our system demonstrated

exceptional performance, achieving a 100% detection rate for all the evaluated mal-

ware instances. The results of the evaluation are presented in Table 4.3.

Upon analyzing the results, we observed that some malware samples, such as m1,

m2, and m3 from the WannaCry family, were detected at an early stage during the
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Table 4.2: Ransomware dataset

Sample
ID

Malware
Family MD5 hash

m1 WannaCry 84c82835a5d21bbcf75a61706d8ab549
m2 WannaCry 80d2cfccef17caa46226147c1b0648e6
m3 WannaCry db349b97c37d22f5ea1d1841e3c89eb4
m4 Dharma 3dcabb52d7b4c9d0ea8e0182732b39fd
m5 Cerber 8b6bc16fd137c09a08b02bbe1bb7d670
m6 Lockbit 927426bafb84fe8daff84cff77258e0d
m7 Lockbit 33228a20a7e985f02e2ddd73cccde729
m8 Cyborg f98d999b7bb31c89f9ec7094723a78ab
m9 Cyborg b8208e696f51195e59d1a8f7e7d7e4cd
m10 Cyborg 74bfab32741f15b9fcfb32aacffab584
m11 Saturn bbd4c2d2c72648c8f871b36261be23fd
m12 GandCrab e8e19525aa73d1714f15552d166aaa84
m13 GandCrab e6b43b1028b6000009253344632e69c4
m14 TeslaCrypt 6e080aa085293bb9fbdcc9015337d309
m15 Xorist 4a71a07c9c742751044e2197ee8234a8

Table 4.3: Ransomware detecting stages and the required time comparison with and
without our system.

Sample ID Detection stage

Time(t) required
to reach point “A"
by the malware

without our system

Time(t) required
to reach point “A"
by the malware
with our system

m1, m2,
m3, m4
m12, 13

CreateFile
called

with known
ransomware
extension

“A" here is the first CreateFile call with
known ransomware extension.

For m1, m2, m3:
Avg(t) = 0.0013 ms

For, m4
Avg(t) = 1.23 ms
For, m12, m13

Avg (t) = 7.8 ms

For m1, m2, m3:
Avg(t) = 0.00142 ms

For, m4
Avg(t) = 1.37 ms
For, m12, m13

Avg (t) = 8.18 ms

m5, m6,
m7, m8

m9, m10,
m11,m14,

m15

Encryption ✓

File deletion
/overwrite ✓

Ransom
note creation ✓

“A" here is the first
DeleteFile/MoveFile/MoveFileWithProgress

called to delete/overwrite file.
For m5

Avg(t) = 3.41 ms
For, m6, m7

Avg(t) = 7.16 ms
For, m8, m9, m10
Avg (t) = 4.83 ms

For, m11
Avg (t) = 1.63 ms

For, m14
Avg (t) = 9.44 ms

For, m15
Avg (t) = 6.78 ms

For m5
Avg(t) = 3.55 ms

For, m6, m7
Avg(t) = 7.33 ms
For, m8, m9, m10
Avg (t) = 5.01 ms

For, m11
Avg (t) = 1.76 ms

For, m14
Avg (t) = 9.71 ms

For, m15
Avg (t) = 6.93 ms
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creation of files with the .wnry extension. This is due to our system’s ability to identify

known ransomware extensions and detect suspicious activity during the CreateFile

operation. Similarly, malware samples m4 with the .roger extension, and m12 and

m13 with the .krab extension, were promptly detected by our system, following the

same principle.

Unlike the aforementioned cases, the other nine samples do not employ the known

ransomware extensions early in their lifecycle. Instead, they encrypt the files first

and subsequently utilize functions such as MoveFile or MoveFileWithProgress to re-

name the encrypted files with their preferred extensions. Among these nine malware

samples, six both created ransom note as file(s) and changed the background to ef-

fectively convey the message of encryption and provide payment details. Conversely,

the remaining three samples opted for a simpler approach, generating a readme-like

file that solely contained the necessary payment instructions to notify the user of the

compromised state of their system.

We have conducted an analysis to measure the time difference between the exe-

cution with and without the implementation of our approach, in order to assess the

additional overhead introduced by our hookings. The results are presented in Ta-

ble 4.3. Based on the findings, it is evident that our hookings introduce a maximum

response time increase of 11%. The lowest observed increase is approximately 1%,

while the average increase ranges between 2% and 3%. These increments are minimal

and negligible considering the significance of timely ransomware detection. Moreover,

the observed increases are in the order of milliseconds, further emphasizing their neg-

ligible impact on the overall system performance.

4.5.3 Evaluation against the Benign Applications

To comprehensively evaluate our system, it is crucial to assess its performance in

terms of false positives and response delay when tested against common benign ap-

plications. In this evaluation, we selected several widely used applications, including
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Mozilla Firefox (Browser), Notepad, Calculator, MS Word, MS PowerPoint, Zoom,

7Zip, and WinSCP. The results of this assessment are presented in Table 4.4.

During the evaluation, we executed these benign applications and performed basic

operations to determine if our system flagged them as ransomware. Additionally, we

measured the additional response time incurred by the API hooking and the accom-

panying MSG/Extension checks. As expected, our system accurately identified these

benign applications as non-ransomware instances, as they did not exhibit any behav-

ior indicative of ransomware activity. Although a few instances of encryption and

file deletion/renaming were observed, they were not classified as ransomware since no

files with known ransomware extensions or ransom notes were created. Consequently,

these benign applications were registered in the whitelist after a designated timeout

period.

To assess the response delay attributed to the API hookings and associated checks,

we conducted the same tasks using the aforementioned benign applications, both

with and without our system, while utilizing the Selenium automation tool to ensure

precise measurements. Table 4.4 reveals that none of the applications were flagged as

ransomware during the CreateFile stage, as anticipated. Although Mozilla Firefox,

7Zip, and WinSCP exhibited ransomware-like behavior such as encryption and file

deletion/overwriting, their absence of ransom note creation prevented them from

being classified as ransomware.

Furthermore, we performed an analysis to quantify the additional overhead intro-

duced by our hookings, as reflected in the response time. The results indicate a

maximum response time increment of 28.26% for 7Zip, followed by Mozilla Firefox

(23.002%) and WinSCP (21.12%). In comparison, the remaining applications demon-

strated response time increments ranging from 0.91% to 1.71%, which are negligible

and have minimal impact on system performance.
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Table 4.4: Comparison of false positives using benign applications to test our sys-
tem. The table displays the presence of ransomware-like behavior and relevant MSGs
indicated by a checkmark (✓). The abbreviations CF, ENC, FD, and RN represent
CreateFile with known ransomware extensions, Encryption, File deletion/overwrite,
and Ransom note creation, respectively. The last two columns compare the response
delay for the same task conducted without and with our system, with the increment
(INC) of response time provided in the last column within brackets.

Benign
application Detection stage

Time(t) required
to reach point “A"
by the application
without our system

Time(t) required
to reach point “A"
by the application

with our system (INC)
CF ENC FD RN

Notepad X X X X 2.10 s 2.13 s (1.42%)
Calculator X X X X 1.17 s 1.19s (1.71%)
MS Word X X X X 3.28 s 3.31 s (0.91%)

MS PowerPoint X X X X 5.66 s 5.72 s (1.06%)
Mozilla Firefox X ✓ ✓ X 12.39 s 15.24 s (23.002%)

Zoom X X X X 6.23 s 6.31s (0.96%)
7zip X ✓ ✓ X 32.7 s 41.94 s (28.26%)

WinSCP X ✓ ✓ X 25.9 s 31.37 s (21.12%)

4.5.4 Accuracy and Performance Analysis of Binary Orchestration in the Reset

Phase

To thoroughly evaluate the efficacy and precision of our binary orchestration ap-

proach, it is imperative to have access to the server-side code of ransomware, which

enables us to observe the ongoing transmission of encryption keys from the malware

to the server. While acquiring the server-side code presents certain challenges, we

have managed to obtain four publicly available ransomware samples, namely NekRos

Ransomware [95], Cryptonite [96], Jasmin Ransomware [97], and a proof-of-concept

Windows crypto-ransomware [98]. These samples are accompanied by their corre-

sponding server code, and we employ them to assess the accuracy and performance

of our system during the reset phase. In subsequent sections, we will refer to them

as r1, r2, r3, and r4, respectively.

Accuracy Assessment: To conduct the accuracy assessment, we acquired the

source code of these four malware samples and compiled them to generate the cor-

responding executables. Subsequently, we executed the client component (intended

for the victim’s system) within gExtractor and extracted the relevant addresses. The
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Table 4.5: Comparison of Time Between Binary Orchestration/Reset and VM Reset
Approaches

Sample

Time required to
extract addresses

from the
gExtractor

Time recorded to
receive the first

key entry from the
client (using binary
orchestration/reset)

Time recorded to
receive the first
key entry from
the client (using

VM restart)

Time recorded to
receive the second

key entry from
the client (using binary

orchestration/reset)

Time recorded to
receive the first
key entry from
the client (using

VM restart)
r1 11 s 24 s 192 s 38 s 378 s
r2 15 s 48 s 216 s 78 s 442 s
r3 9 s 19 s 188 s 31s 379 s
r4 13 s 31 s 203 s 46 s 397 s
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execution chains and operations of all four samples were identified as expected, as

depicted in Figure 4.4. The Actuating agent then prepared the Deceptor DLL based

on the extracted addresses from gExtractor, injecting it into the malware process.

Following this step, we observed the arrival of new notifications indicating victim

infections, accompanied by associated decryption keys and unique victim IDs, being

transmitted repeatedly. This confirmation affirms the successful and accurate imple-

mentation of binary orchestration.

Performance Assessment: The time required by the gExtractor to execute mal-

ware and collect execution information is not taken into consideration, as it is a

standalone module used from a previous study [89] to facilitate binary orchestration.

Once we receive the execution trace from the gExtractor, we proceed with extracting

addresses from the generated trace and configuring the Deceptor DLL, which is then

injected into the malware process through the Actuating agent. Therefore, our focus

is on the time required for address extraction from the gExtractor log and the time
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taken to receive the first and second key storage requests at the server’s (attacker’s)

end.

Alternatively, we can achieve the same effect by repeatedly running the malware

from a clean state. However, this requires rerunning the malware in a Virtual Machine

(VM) capable of varying the data collected during the collection phase. Each time

the server receives a key storage request, it stores the sent information in its database

and sends a request to a controller that restarts the VM hosting the malware from a

clean state, repeating the steps again. While this VM reset approach can achieve the

desired result, it is time-consuming and resource-intensive. Therefore, we compared

our binary orchestration approach with this setup to highlight the significant time

savings achieved. The findings are presented in Table 4.5, clearly demonstrating the

efficiency of our approach in quickly restarting the malware from a fresh state. From

Table 4.5, it is evident that the VM reset approach requires 350% to 1123% more

time to achieve the same impact at the attacker’s side.

Once the binary orchestration successfully establishes a loop within the malware,

the malware continuously sends key storage requests, resulting in the population

of the database on the attacker’s side. We conducted an experiment running this

setup for a full day and recorded the number of entries created in the attacker’s

database at intervals of 1 hour, 12 hours, and 24 hours. Additionally, we measured the

increment in database size caused by these extra entries. The recorded measurements

are presented in Table 4.6.

At the end of the full day, our system generated a maximum of 8,513 entries for the

ransomware sample r3, and a minimum of 2,532 entries for the ransomware sample r2.

In terms of memory consumption, our system utilized a maximum of 1,479.87 KB in

the attacker’s database for the ransomware sample r4, and a minimum of 592.49 KB

for the ransomware sample r2 using a single agent. These results confirm the memory

consumption at the attacker’s side achieved by our approach. It is worth noting that
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Table 4.6: Resource Depletion at the Attacker’s End: Extra Database Entries Gen-
erated by Binary Orchestration and the Additional Space Required to Store Them

sample
Extra DB Entries
(misinformation)

Additional space required
due to extra DB entries

1 Hour 12 Hours 24 Hours 1 Hour 12 Hours 24 Hours
r1 268 3198 6484 27.751 KB 334.34 KB 671.39 KB
r2 107 1284 2532 23.647 KB 292.75 KB 592.49 KB
r3 356 4189 8513 46.28 KB 565.52 KB 1132.23 KB
r4 197 2319 4728 60.87 KB 730.48 KB 1479.87 KB

with multiple agents in action, we have the potential to consume even more memory

at the attacker’s side.

Our evaluation demonstrates that our proposed ransomware detection approach

is accurate, effective, and efficient. It achieved a 100% detection rate for real-world

ransomware samples and minimized false positives with benign applications. The

additional response time introduced by the system was negligible. Binary orchestra-

tion proved to be faster and more efficient than the VM reset approach, resulting

in significant time savings. The resource depletion analysis highlighted the impact

on database size and memory consumption. Overall, our approach offers a robust

solution for real-time ransomware detection and mitigation.
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systems
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file
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by [11, 12, 13, 14, 15, 16], ensure that ransomware
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Figure 4.6: Our system integrates deception mechanisms during the Staging and
Encryption stages to identify and neutralize/defuse ransomware encryption within
its kill chain
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4.6 Related work

This section provides an overview of pertinent studies that address various aspects

of ransomware defense. Initially, we explore different approaches to ransomware de-

tection and recovery, aligning them with the context of the ransomware kill chain, as

depicted in Figure 4.6. As depicted in Figure 4.6, certain approaches, such as those

proposed by [76], [77], [81], [82], [83], focus on mitigating ransomware at the "Infec-

tion" stage prior to execution. Ideally, addressing ransomware at this stage allows

for isolated analysis within a secure environment to ascertain malicious intent. Since

these approaches primarily target the pre-"Staging" phase of the kill chain, they fall

outside the scope of comparison in this research work.

However, in scenarios where ransomware manages to execute either unintentionally

or by utilizing evasion techniques to reach the staging phase, approaches such as those

proposed by [84], [24], [85], [86], [87], [88], and our proposed approach can still provide

protection to users. These post-"Infection" stage detection methods are discussed and

compared with our approach in the following section.

4.6.1 Non-Deception Based Ransomware Detection

Various techniques have been proposed for ransomware detection, targeting differ-

ent stages of the attack lifecycle. Static analysis methods utilize machine learning

or signature-based approaches to identify ransomware samples based on their code

or behavioral patterns [76, 77]. While these techniques exhibit high precision, they

can be easily evaded by sophisticated obfuscation techniques employed by modern

ransomware variants. Machine learning-based approaches that rely on static analysis

data inherit these limitations.

Dynamic analysis approaches aim to detect ransomware based on its behavior dur-

ing runtime. These techniques monitor system activities and identify malicious be-

havior patterns associated with ransomware operations [78–80]. However, a drawback
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of these approaches is that they rely on observing system behavior to make decisions,

which means that some sensitive files may already be encrypted by the time the sys-

tem takes action. Machine learning-based approaches that utilize dynamic analysis

data face similar limitations.

Isolated sandbox environments have also been used for ransomware detection. New

binaries are executed within isolated environments, allowing for dynamic analysis and

the identification of malicious behavior before execution on production systems [81–

83]. While effective, the practicality of this approach in real-world scenarios may vary,

as it assumes that the malware executable will be uploaded to a sandbox environment,

which is not always the case.

In a key escrow-based solution called PayBreak [99], the authors propose saving

the information related to symmetric keys generated to decrypt the locked files after

the infection process. This proactive approach relies on a secure key escrow where

only the user has exclusive access. While this approach can recover the encrypted

data, it does not stop the attack and requires additional storage to store these keys.

Furthermore, it includes keys belonging to benign processes, resulting in unnecessary

overhead and storage requirements.

A few approaches, such as [78,100], utilize data backup mechanisms to continuously

update and maintain a duplicate copy of the original system, enabling data recovery

after a ransomware attack. However, these approaches do not detect or stop the

attack itself and incur additional storage costs to store backup data.

4.6.2 Deception-Based Ransomware Detection

Deception-based approaches leverage decoy files or deceptive techniques to identify

and deceive ransomware. These methods strategically place simulated or "honey" files

throughout the file system, monitoring any attempts to access these files as anomalous

behavior [24,84–88]. While effective in minimizing data loss, ransomware can bypass

this approach by specifically targeting certain files, rendering the deception strategy
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ineffective.

Our approach diverges from file-based deception by focusing on deceiving ran-

somware at the API level. Through the interception and monitoring of ransomware

API calls, we can detect and analyze ransomware activities without compromising

sensitive files. Moreover, our solution offers cost-effectiveness and scalability advan-

tages. Unlike file/directory-based solutions that necessitate the management and

maintenance of decoy files throughout the entire file system, our approach centers

around a single point (API call), resulting in improved scalability and cost efficiency.

Additionally, our approach does not rely on the placement of decoy files or the tar-

geting of specific file locations, making it resilient against ransomware that selectively

searches and encrypts files. Furthermore, our system prevents non-whitelisted appli-

cations from engaging in actual encryption, deletion, or overwriting of files, effectively

safeguarding the integrity of the original files and eliminating the need for additional

storage expenses.

Furthermore, we introduce an automated method to identify critical addresses

within ransomware binaries, facilitating the establishment of a looping mechanism.

This mechanism compels the ransomware to repeatedly initiate from the beginning,

transmitting encryption information and keys back to the attacker. Consequently,

the attacker’s resources are depleted, effectively mitigating the impact of ransomware

attacks. This unique aspect of our work differentiates it from previous studies in the

field.

4.7 Discussion & Conclusion

While our approach exhibits promising outcomes in the detection of ransomware

and resource depletion, it is important to acknowledge certain limitations. Firstly, our

method relies on identifying specific malicious subgraphs (MSGs) during the real-time

phase and using them to extract crucial addresses in the reset phase. This may result

in reduced effectiveness against ransomware variants that employ different MSGs.
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Additionally, the efficacy of our approach may be influenced by evasion techniques

employed by ransomware.

To further enhance our approach, future research can focus on developing a more

comprehensive understanding of evolving ransomware behaviors by incorporating a

broader range of relevant MSGs and their associated evasion strategies. Furthermore,

investigating the scalability and performance of our method in larger-scale environ-

ments would ensure its practicality and efficiency.

In this study, we introduced a proactive and dynamic approach for detecting ran-

somware, utilizing API-level deception and automated binary orchestration to deplete

attackers’ resources. Our method demonstrated notable accuracy in identifying ran-

somware without any false positives, effectively mitigating the risks of file encryption

and data loss. By strategically depleting attackers’ resources through continuous con-

firmation of encryption and transmission of relevant information, our approach serves

as a significant deterrent against ransomware attacks. The experimental evaluation

conducted with real-world malware and benign applications validated the effective-

ness, accuracy, and resource depletion capability of our proposed method. Despite

certain limitations, our approach constitutes a valuable contribution to the field of

ransomware detection and opens avenues for further research and improvement.



CHAPTER 5: Conclusion and Future Work

5.1 Conclusion

In conclusion, the field of cybersecurity faces significant challenges in detecting

and preventing advanced cyber threats. Existing methods for detecting malware be-

haviors have limitations, as attackers continuously evolve their techniques to evade

detection. Active Cyber Deception (ACD) has emerged as a promising approach

to overcome these limitations by actively misleading attackers and disrupting their

decision-making processes. However, current deception techniques lack agility, re-

silience, and automation, making them easily detectable and circumventable by skilled

attackers.

To address these shortcomings, this dissertation presents three innovative approaches.

The first approach introduces DodgeTron, an autonomous cyber deception framework

that combines hybrid dynamic analysis and machine learning to automate the cre-

ation of deception schemes against malware. DodgeTron leverages deep analysis and

clustering techniques to extract deception parameters and categorize malware into

known families. This knowledge is used to create a Deception Playbook consisting

of HoneyThings for orchestrating deceptive environments. When new malware is

detected, the system classifies it into a known family and utilizes the Deception Play-

book to deploy the necessary HoneyThings to deceive the malware.

The second approach introduces symbSODA, an autonomous cyber deception sys-

tem that combines symbolic execution capabilities with API hooking to extract com-

prehensive malicious sub-graphs (MSGs). These MSGs are then mapped to the

MITRE ATT&CK framework to understand the high-level behavior of the malware.

symbSODA creates a deception playbook consisting of various ploys tailored to each
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MSG, employing different deception goals and strategies. During runtime, symb-

SODA detects these MSGs within unknown malware and executes the corresponding

deception ploys through embedded deceptive API hooks. The approach also incorpo-

rates a Deception Planning Verifier to ensure consistent and conflict-free deception

actions. In certain cases, if the FakeExecute deception strategy is selected, symb-

SODA can also leverage DodgeTron to orchestrate the deceptive environment with

HoneyThings alongside deceptive API hooks.

The third approach is centered on early detection of ransomware during its lifecy-

cle through the use of API-level deception, as opposed to file-level deception. This

approach leverages the extracted malicious sub-graphs (MSGs) obtained from symb-

SODA and employs API-level deception with FakeSuccess as the chosen deception

strategy. By monitoring the runtime behavior of the program without making any

modifications to the original file system, this approach eliminates the need for manag-

ing and distributing decoy files, resulting in a more scalable and cost-effective solution.

Additionally, it establishes a strategic loop within the malware that effectively turns

the malware into a channel to feed misinformation back to the attacker. This process

depletes the attacker’s resources by continuously confirming encryption and transmit-

ting keys relevant to the victim.

Key takeaways from these approaches include the importance of agile and auto-

mated deception techniques that can adapt to evolving cyber threats. By combining

dynamic malware analysis and symbolic execution, these approaches effectively ex-

tract important deception features and provide proactive strategies for defenders to

mitigate cyber threats. They bridge the information and resource asymmetry be-

tween attackers and defenders, offering effective ways to detect and mislead attackers

while minimizing the impact on sensitive files and resources.

Overall, these innovative approaches demonstrate the potential of active cyber de-

ception as a powerful defense technique in the ever-evolving landscape of cybersecurity
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and ways of orchestration. They offer new avenues for detecting and mitigating cyber

threats while minimizing the impact on sensitive files and resources.

5.2 Limitations and Future Work

While this dissertation effectively addresses several critical challenges related to

automated deception feature extraction and orchestration, it also presents some lim-

itations that pave the way for future research directions.

One limitation of our current approach is the manual effort required to generate

honeyfiles by installing actual software to maintain their close resemblance to real

systems. As a future research direction, we are exploring the feasibility of leveraging

ChatGPT to automatically generate these honeyfiles. By utilizing ChatGPT, we

anticipate a reduction in manual work and storage requirements, as the honeyfiles

can be generated on the fly.

Another limitation arises from the use of symbolic execution, which inherits cer-

tain constraints such as state-space explosion. To mitigate the impact of state space

explosion, we currently impose limitations on path exploration. However, this ap-

proach may not effectively discover interesting malware execution code. Future work

could focus on addressing the challenges associated with symbolic execution’s path

explosion by designing an optimized symbolic execution-based analysis agent that can

assist in more efficient malware analysis.

While our approach incorporates both dynamic and static deception ploys, they

are predefined and may not cover all possible scenarios encountered during runtime,

especially when encountering new malicious sub-graphs (MSGs). To overcome this

limitation, an interesting future direction would be the generation of autonomous de-

ception strategies and actions based on the analysis of attacker behaviors and system

vulnerabilities. The MSG2MITRE framework plays a significant role in achieving this

objective. By mapping our MSG2MITRE framework with recently introduced threat

intelligence frameworks that provide generic deception actions, it becomes possible to



130

generate autonomous deception ploys at runtime under specific circumstances. This

advancement can greatly enhance the flexibility and adaptability of the deception

system.



131

REFERENCES

[1] M. L. Bringer, C. A. Chelmecki, and H. Fujinoki, “A survey: Recent advances
and future trends in honeypot research,” International Journal of Computer
Network and Information Security, vol. 4, no. 10, p. 63, 2012.

[2] J. Rrushi, “Honeypot evader: Activity-guided propagation versus counter-
evasion via decoy os activity,” in Proceedings of the 14th IEEE International
Conference on Malicious and Unwanted Software, 2019.

[3] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale,” in 12th {USENIX} Work-
shop on Offensive Technologies ({WOOT} 18), 2018.

[4] L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits with de-
greaser,” in Proceedings of the 30th Annual Computer Security Applications
Conference, pp. 156–165, 2014.

[5] M. M. Islam and E. Al-Shaer, “Active deception framework: an extensible de-
velopment environment for adaptive cyber deception,” in 2020 IEEE Secure
Development (SecDev), pp. 41–48, IEEE, 2020.

[6] N. Provos et al., “A virtual honeypot framework.,” in USENIX Security Sym-
posium, vol. 173, pp. 1–14, 2004.

[7] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. D. Keromytis, “Detecting targeted attacks using shadow honeypots,” in
USENIX Security Symposium, 2005.

[8] J. Yuill, M. Zappe, D. Denning, and F. Feer, “Honeyfiles: deceptive files for
intrusion detection,” in Proceedings from the Fifth Annual IEEE SMC Infor-
mation Assurance Workshop, 2004., pp. 116–122, IEEE, 2004.

[9] M. N. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “gextractor: Towards
automated extraction of malware deception parameters,” in Proceedings of the
8th Software Security, Protection, and Reverse Engineering Workshop, pp. 1–
12, 2018.

[10] M. S. I. Sajid, J. Wei, M. R. Alam, E. Aghaei, and E. Al-Shaer, “Dodgetron: To-
wards autonomous cyber deception using dynamic hybrid analysis of malware,”
in 2020 IEEE Conference on Communications and Network Security (CNS),
pp. 1–9, IEEE, 2020.

[11] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinfor-
mation,” CCS ’14.



132

[12] A. Niakanlahiji, J. H. Jafarian, B.-T. Chu, and E. Al-Shaer, “Honeybug: Per-
sonalized cyber deception for web applications,” 2020.

[13] K. J. Ferguson-Walter, M. M. Major, C. K. Johnson, and D. H. Muhleman,
“Examining the efficacy of decoy-based and psychological cyber deception,” in
30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[14] S. Jajodia, A. K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and X. S.
Wang, Moving Target Defense II: Application of Game Theory and Adversarial
Modeling. Springer, 2012.

[15] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer Pub-
lishing Company, Incorporated, 1st ed., 2011.

[16] M. M. Islam, Q. Duan, and E. Al-Shaer, “Specification-driven moving target
defense synthesis,” in Proceedings of the 6th ACM Workshop on Moving Target
Defense, pp. 13–24, 2019.

[17] M. Janbeglou, M. Zamani, and S. Ibrahim, “Redirecting network traffic toward
a fake dns server on a lan,” in 2010 3rd International Conference on Computer
Science and Information Technology, vol. 2, pp. 429–433, IEEE, 2010.

[18] E. Al-Shaer, Toward Network Configuration Randomization for Moving Target
Defense, pp. 153–159. Springer New York, 2011.

[19] Q. Duan, E. Al-Shaer, M. Islam, and H. Jafarian, “Conceal: A strategy compo-
sition for resilient cyber deception-framework, metrics and deployment,” in 2018
IEEE Conference on Communications and Network Security (CNS), pp. 1–9,
IEEE, 2018.

[20] M. M. Islam, A. Dutta, M. S. I. Sajid, E. Al-Shaer, J. Wei, and S. Farhang,
“Chimera: Autonomous planning and orchestration for malware deception,”
in 2021 IEEE Conference on Communications and Network Security (CNS),
IEEE, 2021.

[21] E. Al-Shaer, J. Wei, W. Kevin, and C. Wang, Autonomous Cyber Deception.
Springer, 2019.

[22] F. De Gaspari, S. Jajodia, L. V. Mancini, and A. Panico, “Ahead: A new
architecture for active defense,” in Proceedings of the 2016 ACM Workshop on
Automated Decision Making for Active Cyber Defense, SafeConfig ’16, (New
York, NY, USA), p. 11–16, Association for Computing Machinery, 2016.

[23] Z. A. Genç, G. Lenzini, and D. Sgandurra, “On deception-based protection
against cryptographic ransomware,” in DIMVA, 2019.

[24] C. Moore, “Detecting ransomware with honeypot techniques,” in CCC, 2016.



133

[25] M. Akiyama, T. Yagi, K. Aoki, T. Hariu, and Y. Kadobayashi, “Active credential
leakage for observing web-based attack cycle,” in RAID, 2013.

[26] B. M. Bowen, P. Prabhu, V. P. Kemerlis, S. Sidiroglou, A. D. Keromytis, and
S. J. Stolfo, “Botswindler: Tamper resistant injection of believable decoys in
vm-based hosts for crimeware detection,” in RAID, 2010.

[27] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow, “Amppot: Monitoring and defending against amplification ddos
attacks,” in RAID, 2015.

[28] M. Akiyama, T. Yagi, T. Hariu, and Y. Kadobayashi, “Honeycirculator: dis-
tributing credential honeytoken for introspection of web-based attack cycle,”
International Journal of Information Security, 2018.

[29] M. Akiyama, T. Yagi, T. Yada, T. Mori, and Y. Kadobayashi, “Analyzing the
ecosystem of malicious url redirection through longitudinal observation from
honeypots,” Computers & Security, 2017.

[30] X. Fu, B. Graham, R. Bettati, and W. Zhao, “On countermeasures to traffic
analysis attacks,” in IEEE Systems, Man and Cybernetics SocietyInformation
Assurance Workshop, 2003.

[31] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff, and S. Graham, “On recognizing
virtual honeypots and countermeasures,” in 2nd IEEE International Symposium
on Dependable, Autonomic and Secure Computing, 2006.

[32] M. L. Bringer, C. A. Chelmecki, and H. Fujinoki, “A survey: Recent advances
and future trends in honeypot research,” International Journal of Computer
Network and Information Security, vol. 4, no. 10, p. 63, 2012.

[33] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu, “A practical approach for
adaptive data structure layout randomization,” in ESORICS 2015.

[34] M. N. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “gextractor: Towards
automated extraction of malware deception parameters,” SSPREW’18.

[35] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo
multi-path analysis of software systems,” ACM Sigplan Notices’11.

[36] Q. Le and T. Mikolov, “Distributed representations of sentences and docu-
ments,” in International conference on machine learning, 2014.

[37] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, 2013.

[38] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, 2008.



134

[39] M. Zolotukhin and T. Hämäläinen, “Detection of zero-day malware based on
the analysis of opcode sequences,” in CCNC, 2014.

[40] DodgeTron Demo. https://drive.google.com/drive/folders/
1wQcfVf-rWDe1vrOl4KDGDbdnGOvmq5Av?usp=sharing.

[41] Hunting Raccoon: The new masked bandit on the block. https:
//www.cybereason.com/blog/hunting-raccoon-stealer-the-
new-masked-bandit-on-the-block.

[42] Rob Pantazopoulos, “Loki-Bot: Information Stealer, Keylogger, More!.”

[43] A. Continella, M. Carminati, M. Polino, A. Lanzi, S. Zanero, and F. Maggi,
“Prometheus: Analyzing webinject-based information stealers,” Journal of
Computer Security, 2017.

[44] A. Buescher, F. Leder, and T. Siebert, “Banksafe information stealer detection
inside the web browser,” in RAID, 2011.

[45] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao, A. Doupé,
and G.-J. Ahn, “Honeyproxy: Design and implementation of next-generation
honeynet via sdn,” in 2017 IEEE Conference on Communications and Network
Security (CNS), pp. 1–9, IEEE, 2017.

[46] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to intrusion
detection. 2007.

[47] R. Di Pietro and L. V. Mancini, Intrusion Detection Systems. Springer Pub-
lishing Company, Incorporated, 1 ed., 2008.

[48] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna,
“Efficient detection of split personalities in malware,” in NDSS’10.

[49] M. L, C. K., and M.Paolo, “Detecting Environment-Sensitive Malware,” in Proc.
of RAID’11.

[50] J. Wilhelm and T. Chiueh, “A forced sampled execution approach to kernel
rootkit identification.,” in Proc. of RAID 2007.

[51] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for
Malware Analysis,” in Proc. of S&P 2007.

[52] M. S. I. Sajid, J. Wei, B. Abdeen, E. Al-Shaer, M. M. Islam, W. Diong, and
L. Khan, “Soda: A system for cyber deception orchestration and automation,”
in Annual Computer Security Applications Conference, pp. 675–689, 2021.

[53] N. C. Rowe, “Counterplanning deceptions to foil cyber-attack plans,” in IEEE
Systems, Man and Cybernetics SocietyInformation Assurance Workshop, 2003.,
pp. 203–210, IEEE, 2003.

https://drive.google.com/drive/folders/1wQcfVf-rWDe1vrOl4KDGDbdnGOvmq5Av?usp=sharing
https://drive.google.com/drive/folders/1wQcfVf-rWDe1vrOl4KDGDbdnGOvmq5Av?usp=sharing
https://www.cybereason.com/blog/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block
https://www.cybereason.com/blog/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block
https://www.cybereason.com/blog/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block


135

[54] N. C. Rowe, “Finding logically consistent resource-deception plans for defense
in cyberspace,” in 21st International Conference on Advanced Information Net-
working and Applications Workshops (AINAW’07), vol. 1, pp. 563–568, IEEE,
2007.

[55] VirusTotal, “Internet security, file and url analyzer.” https://www.
virustotal.com.

[56] MalShare. https://malshare.com/index.php. Online; accessed 10 May
2019.

[57] “Easyhook - the reinvention of windows api hooking,” Online.

[58] S. E. Inc., “Stack Overflow - Where Developers Learn, Share, & Build Careers.”
https://stackoverflow.com/, 2023.

[59] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: an-
alyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[60] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[61] M. Bobaru, C. Pasareanu, and D. Giannakopoulou, “Automated assume-
guarantee reasoning by abstraction refinement,” pp. 135–148, 07 2008.

[62] “Dissecting the windows defender driver - wdfilter (part 1),” Online.

[63] “Interactive analysis: Any.run,” Online.

[64] popescuadi, “Ransomware - simple c++ ransomware, prove the concept..”
https://github.com/popescuadi/Ransomware, 2017.

[65] “Keylogger-screen-capture,” Online.

[66] K. Oosthoek and C. Doerr, “Sok: Att&ck techniques and trends in windows
malware,” in International Conference on Security and Privacy in Communi-
cation Systems, pp. 406–425, Springer, 2019.

[67] O. Alrawi, M. Ike, M. Pruett, R. P. Kasturi, S. Barua, T. Hirani, B. Hill, and
B. Saltaformaggio, “Forecasting malware capabilities from cyber attack memory
images,” in 30th USENIX Security Symposium, 2021.

[68] “Cuckoo sandbox,” Online.

[69] “Any.run,” Online.

[70] J. Zhang, Z. Gu, J. Jang, D. Kirat, M. Stoecklin, X. Shu, and H. Huang,
“Scarecrow: Deactivating evasive malware via its own evasive logic,” in 2020
50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 76–87, IEEE, 2020.

https://www.virustotal.com
https://www.virustotal.com
https://malshare.com/index.php
https://stackoverflow.com/
https://github.com/popescuadi/Ransomware


136

[71] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang,
“Effective and efficient malware detection at the end host,” in Proceedings
of the 18th Conference on USENIX Security Symposium, SSYM’09, (USA),
p. 351–366, USENIX Association, 2009.

[72] N. C. Rowe, J. Rrushi, et al., Introduction to cyberdeception. Springer, 2016.

[73] D. Kirat, G. Vigna, and C. Kruegel, “Barebox: efficient malware analysis on
bare-metal,” in Proceedings of the 27th Annual Computer Security Applications
Conference, pp. 403–412, 2011.

[74] “Internet security threat report, ransomware, 2017..”

[75] “Smb exploited: Wannacry use of eternalblue.”

[76] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “{UNVEIL}:
A {Large-Scale}, automated approach to detecting ransomware,” in 25th
USENIX security symposium (USENIX Security 16), pp. 757–772, 2016.

[77] J. Baldwin and A. Dehghantanha, “Leveraging support vector machine for op-
code density based detection of crypto-ransomware,” Cyber threat intelligence,
pp. 107–136, 2018.

[78] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “Shieldfs: a self-healing, ransomware-aware filesys-
tem,” in Proceedings of the 32nd annual conference on computer security appli-
cations, pp. 336–347, 2016.

[79] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated
dynamic analysis of ransomware: Benefits, limitations and use for detection,”
arXiv preprint arXiv:1609.03020, 2016.

[80] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and drop
it): stopping ransomware attacks on user data,” in 2016 IEEE 36th inter-
national conference on distributed computing systems (ICDCS), pp. 303–312,
IEEE, 2016.

[81] O. M. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging machine learning
techniques for windows ransomware network traffic detection,” Cyber threat
intelligence, pp. 93–106, 2018.

[82] S. Kok, A. Abdullah, and N. Jhanjhi, “Early detection of crypto-ransomware
using pre-encryption detection algorithm,” Journal of King Saud University-
Computer and Information Sciences, vol. 34, no. 5, pp. 1984–1999, 2022.

[83] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-stage ransomware detection using
dynamic analysis and machine learning techniques,” Wireless Personal Com-
munications, vol. 112, pp. 2597–2609, 2020.



137

[84] J. A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro, “R-
locker: Thwarting ransomware action through a honeyfile-based approach,”
Computers & Security, vol. 73, pp. 389–398, 2018.

[85] Y. Feng, C. Liu, and B. Liu, “Poster: A new approach to detecting ransomware
with deception,” in 38th IEEE symposium on security and privacy, 2017.

[86] S. Mehnaz, A. Mudgerikar, and E. Bertino, “Rwguard: A real-time detection
system against cryptographic ransomware,” in International symposium on re-
search in attacks, intrusions, and defenses, pp. 114–136, Springer, 2018.

[87] Z. Wang, X. Wu, C. Liu, Q. Liu, and J. Zhang, “Ransomtracer: exploiting
cyber deception for ransomware tracing,” in 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC), pp. 227–234, IEEE, 2018.

[88] S. Sheen, K. Asmitha, and S. Venkatesan, “R-sentry: Deception based ran-
somware detection using file access patterns,” Computers and Electrical Engi-
neering, vol. 103, p. 108346, 2022.

[89] M. N. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed, “gextractor: Towards auto-
mated extraction of malware deception parameters,” in the 8th Software Secu-
rity, Protection, and Reverse Engineering Workshop (SSPREW 2018), ACM,
2018.

[90] M. S. I. Sajid, J. Wei, E. Al-Shaer, Q. Duan, B. Abdeen, and L. Khan, “symb-
soda: Configurable and verifiable orchestration automation for active malware
deception,” ACM Transactions on Privacy and Security, 2023.

[91] “Ransomware encrypted file extension list.”

[92] “Google cloud vision api documentation.”

[93] Y. Lemmou, J.-L. Lanet, and E. M. Souidi, “In-depth analysis of ransom note
files,” Computers, vol. 10, no. 11, p. 145, 2021.

[94] “objdump is a command-line program for displaying various information about
object files and binary files.”

[95] “Nekros is an open-source ransomeware.”

[96] “Open source ransomware toolkit cryptonite.”

[97] “Jasmin ransomware is an advanced red team tool (wannacry clone) used for
simulating real ransomware attacks..”

[98] “A poc windows crypto-ransomware (academic).”

[99] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense
against cryptographic ransomware,” in Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pp. 599–611, 2017.



138

[100] S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang, “Ssd-insider: Internal
defense of solid-state drive against ransomware with perfect data recovery,” in
2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), pp. 875–884, IEEE, 2018.


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Objectives
	Contributions and Dissertation Structure
	A Comparative Analysis of DodgeTron, symbSODA, and ranDecepter

	DodgeTron: Towards Autonomous Cyber Deception Using Dynamic Hybrid Analysis of Malware
	Introduction
	on Background on Information Stealers
	DodgeTron: Approach Overview
	Malware Deception Playbooks Construction (Offline) phase
	Malware Categorization
	Playbook Creation

	Dynamic Deception Scheme Creation (online) phase
	Detection Agent in the online phase
	Analysis Agent in the online phase
	Planning Agent in the online phase
	Actuating Agent in the online phase

	Implementation and Evaluations
	Dataset
	Experiment I: Evaluating the precision of DodgeTron in extracting deception parameters
	Experiment II: Evaluating the accuracy of DodgeTron in the online phase
	Performance analysis of DodgeTron in terms of execution time
	Performance analysis of our classifier

	Related Work
	Discussion & Conclusion

	symbSODA: Configurable and Verifiable Orchestration Automation for Active Malware Deception
	Introduction
	Threat Model and Assumptions
	Deception Playbook Creation
	Malicious Sub-graphs (MSG) Extraction
	MSG Classifier
	Deception Factory Synthesis

	Real-time Orchestration
	Evaluations
	Case studies
	Evaluation of MSG extraction
	Comparison with other state-of-the-art tools in terms of discovering malware behaviors/capabilities
	Comparison with existing Sandboxes
	MSG Classifier Evaluation
	Performance Analysis of symbSODA
	End-to-End Accuracy of symbSODA

	Related Work
	Discussion and Conclusion

	ranDecepter: Empowering Defense Against Ransomware Attacks through Active Cyber Deception and Binary Reset
	Introduction
	Background
	Ransomware and it's behaviors
	Malicious Sub-graphs (MSGs)
	Deception Strategies

	Threat Model and Assumptions
	System overview
	Offline Phase: Deception DLL Creation
	Realtime Phase: Ransomware Detection using Embedded Deception (API) Hooks
	Reset Phase: Exhausting attackers' resources by repeatedly initiating malware through binary orchestration

	Evaluations
	Dataset
	Evaluation of Accuracy and Effectiveness against Ransomware
	Evaluation against the Benign Applications
	Accuracy and Performance Analysis of Binary Orchestration in the Reset Phase

	Related work
	Non-Deception Based Ransomware Detection
	Deception-Based Ransomware Detection

	Discussion & Conclusion

	Conclusion and Future Work
	Conclusion
	Limitations and Future Work

	REFERENCES

