
USING FORMAL METHODS TOWARDS IMPROVING CLOUD IAAS
ENVIRONMENTS

by

Saeed Al-Haj

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computing and Information Systems

Charlotte

2016

Approved by:

Dr. William J. Tolone

Dr. Anita Raja

Dr. Weichao Wang

Dr. James Conrad

ii

c©2016
Saeed Al-Haj

ALL RIGHTS RESERVED

iii

ABSTRACT

SAEED AL-HAJ. Using formal methods towards improving cloud IaaS
environments. (Under the direction of DR. WILLIAM J. TOLONE)

Cloud computing has become a prominent technology with the potential for tremen-

dously positive effects on the future of computer networks and services. However, as

the resources are shared in cloud environments, cloud security is a major concern. As

such, for cloud computing to reach its full potential, better security solutions are re-

quired (particularly solutions to security issues that are unique and fundamental to the

cloud environment). In this dissertation, we present a formal method-based approach

to making clouds environments more secure and manageable. The scope of our work

addresses one of the three major types of cloud environments, Infrastructure as a Ser-

vice (IaaS) cloud environments, and is grounded in a common set of formal methods

(i.e., binary decision diagrams, constraint satisfaction problems, and computational

tree logic). First, we present a formal method-based, semi-automated framework for

access control list (ACL) generation to improve IaaS security manageability. Second,

we present a formal method-based cloud resource allocation framework that factors

in customer security requirements, specifically reachability and ACLs, at the time of

virtual machine provisioning. Third, we present a formal method-based framework for

virtual machine migration planning, in which a safe migration order is determined to

ensure the preservation of security requirement during migration. Fourth, we present

a formal method-based framework for virtual machine post migration reconfiguration

and verification. Fifth, we provide a formal method-based framework that detects and

resolves policy misconfigurations in Software Defined Networks (SDNs), an important,

emerging approach to managing cloud computing infrastructures. These frameworks

use a common formal method-based approach and were evaluated in simulated envi-

ronments for their effect on IaaS security. The results demonstrate the efficiency and

iv

usability of these frameworks to improve IaaS security and suggest promising further

areas of research.

v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1. Managing Access Control Policies for Virtual Machines 7

1.2. Security-aware Resource Allocation in Clouds 8

1.3. Virtual Machine Migration Planning 8

1.4. Virtual Machine Migration Verification 9

1.5. Software Defined Networks Misconfigurations 10

1.6. Methodology 11

1.7. Contributions 12

1.8. Document Outline 13

CHAPTER 2: RELATED WORK 14

2.1. Managing Access Control Policies for Virtual Machines and
Security-aware Resource Allocation in Clouds

14

2.2. Virtual Machine Migration Planning 16

2.3. Virtual Machine Migration Verification 17

2.4. Software Defined Networks Misconfigurations 18

CHAPTER 3: FOUNDATION AND BACKGROUND 20

3.1. Cloud Computing 20

3.2. Binary Decision Diagrams (BDDs) 21

vi

3.3. Software Defined Networks (SDNs) 22

3.3.1. OpenFlow Switches 22

CHAPTER 4: APPROACH AND METHODOLOGY 26

4.1. Managing Access Control Policies for Virtual Machines 26

4.1.1. Problem Statement 26

4.1.2. Framework Overview 28

4.1.3. Distance Matrix 30

4.1.4. Synthesizing Security Groups 32

4.1.5. Residual Risk for Security Groups 33

4.1.6. Residual Risk for Individual Virtual Machines 35

4.2. Security-aware Resource Allocation in Clouds 36

4.2.1. Problem Statement 36

4.2.2. Framework Overveiw 37

4.2.3. Resource Provisioning 39

4.3. Virtual Machine Migration Planning 43

4.3.1. Problem Statement 44

4.3.2. Framework Overview 47

4.3.3. Migration Planning 49

4.4. Virtual Machine Migration Verification 54

4.4.1. Virtual Machine Migration Verification Example 55

4.4.2. Problem Statement 55

4.4.3. Virtual Machine Migration Verification 56

4.4.4. Auto-Policy Reconfiguration 58

vii

4.5. Software Defined Networks Misconfigurations 62

4.5.1. Problem Statement 63

4.5.2. Framework Overview 64

4.5.3. Formal Modeling of OpenFlow SDN Configurations 65

4.5.4. Query Examples 67

4.5.5. FlowTable Pipeline Misconfiguration 70

4.5.6. Soundness and Completeness for OpenFlow
Configurations

73

4.6. Summary 74

CHAPTER 5: IMPLEMENTATION AND EVALUATION 76

5.1. Managing Access Control Policies for Virtual Machines 76

5.1.1. Experimental Setup 77

5.1.2. Results 78

5.2. Security-aware Resource Allocation in Clouds 80

5.2.1. Experimental Setup 82

5.2.2. Results 82

5.3. Virtual Machine Migration Planning 84

5.3.1. Experimental Setup 84

5.3.2. Results 85

5.4. Virtual Machine Migration Verification 89

5.4.1. Experimental Setup 90

5.4.2. Results 90

viii

5.5. Software Defined Networks Misconfigurations 92

5.5.1. FlowChecker 93

5.5.2. Experimental Setup 94

5.5.3. Results 95

CHAPTER 6: CONCLUSION 98

6.1. Contributions 99

REFERENCES 101

ix

LIST OF FIGURES

FIGURE 1.1: The overall methodology 6

FIGURE 3.1: A BDD example 22

FIGURE 3.2: The SDN architecture model 23

FIGURE 3.3: The basic components of an OpenFlow switch 24

FIGURE 3.4: OpenFlow protocol allows multi-users and multi-controller
management in IaaS cloud environments.

25

FIGURE 4.1: Security groups membership assignment framework 29

FIGURE 4.2: Resource allocation framework 37

FIGURE 4.3: An example of VMs migration. 47

FIGURE 4.4: VM migration planning framework 48

FIGURE 4.5: VM migration example (before migration) 54

FIGURE 4.6: VM migration example (after migrating VM2 from PM2 to
PM3)

54

FIGURE 4.7: Auto firewall policy generation 60

FIGURE 4.8: SDN configuration analysis framework 65

FIGURE 4.9: Example to illustrate FlowTable pipeline misconfigurations
caused by “set” and “goto table” actions.

71

FIGURE 5.1: The average number of rules required to write a policy for
two cases: EC2 grouping model and our grouping model.

78

FIGURE 5.2: The effect of T on the probability of finding a security group
memberships assignment.

79

FIGURE 5.3: The average risk per VM for four cases: no grouping, EC2
grouping model, firewall filtering, and our framework.

81

FIGURE 5.4: Fat-Tree Topology (k=4). 81

x

FIGURE 5.5: The effect of number of security enabled switches on the
probability of finding a resource allocation assignment.

83

FIGURE 5.6: Time overhead to assign security group memberships per
user.

84

FIGURE 5.7: Time overhead to allocate resources. 85

FIGURE 5.8: Running time overhead to find a migration plan. 86

FIGURE 5.9: The effect of number of placed VMs on fraction of violations. 87

FIGURE 5.10: The effect of percentage of critical VMs on running time
overhead.

87

FIGURE 5.11: The effect of the percentage of critical VMs on fraction of
violations.

88

FIGURE 5.12: The effect of dependency threshold (TD) on running time
overhead.

89

FIGURE 5.13: The effect of dependency threshold (TD) on fraction of
violations.

90

FIGURE 5.14: Time overhead to build firewall policy BDD. 90

FIGURE 5.15: Space requirement to build a BDD. 91

FIGURE 5.16: Time overhead to run verification constraints. 92

FIGURE 5.17: Time overhead to reconfigure a firewall policy. 93

FIGURE 5.18: FlowChecker connects multiple domains with multiple con-
trollers and OpenFlow switches.

94

FIGURE 5.19: Time overhead to build OpenFlow rules BDD. 95

FIGURE 5.20: Space requirement to build OpenFlow rules BDD. 96

FIGURE 5.21: FlowChecker time analysis for intra-federated verification. 97

FIGURE 5.22: Time overhead to detect pipeline misconfigurations in a
switch.

97

xi

LIST OF TABLES

TABLE 4.1: Glossary of all variables used in the model 27

TABLE 4.2: An example of reachability requirement matrix. 29

TABLE 4.3: An example of a security enforcement policy 38

xii

LIST OF ABBREVIATIONS

ACL Access Control List

BDD Binary Decision Diagram

CSP Constraint Satisfaction Problem

CTL Computational Tree Logic

IaaS Infrastructure as a Service

IDS Intrusion Detection System

IPSec Internet Protocol Security

PaaS Platform as a Service

PM Physical Machine

QoS Quality of Service

SaaS Software as a Service

SDN Software Defined Network

SLA Service Level Agreement

SMT Satisfiability Modulo Theories

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

CHAPTER 1: INTRODUCTION

In the recent years, cloud computing has become a prominent technology with the

potential for tremendously positive effects on the future of computer networks and

services. There are multiple factors that make cloud computing attractive. These

factors include, but are not limited to: scalability, efficiency, accessibility and the

ease of software integration. First, utilizing a pay-as-you-use scheme, cloud computing

supports the rapid scaling of computing solutions. Adding of virtual machines can

occur much faster than the purchasing of new physical machines. Second, users

can setup and/or (re)configure a fully functioning computing solution more quickly

and efficiently in a cloud environment as compared to the level of effort required to

accomplish the same task within a traditional enterprise network. Moreover, hardware

management and support are left to the cloud provider; thereby reducing overall costs

to cloud users through economies of scale. Third, data and services deployed in the

cloud have greater accessibility. Typically, cloud users require only Internet access

to be able to access their data and services. Furthermore, cloud computing not only

eases access to data and services, it also provides an efficient solution to system

backup and recovery (i.e., virtual machines provide a more flexible solution than

physical machines when addressing the issue of availability). Last but not least is the

ease of software integration. Cloud providers provide flexible integration platforms

for their customers to exchange data between applications. In other words, cloud

customers do not need to worry about integrating different business solutions and the

exchange of data across applications; it is up to cloud providers to solve these issues.

Oracle Fusion middleware [1] and IBM Websphere [2] are examples of platforms for

linking applications and services hosted in clouds.

2

These characteristics of cloud computing, although conceptually simple, are driv-

ing a major paradigm shift in the way computing infrastructures are designed and

computing services are delivered.

There are three primary types of cloud computing solutions offered by cloud providers:

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-

Service (IaaS). The research reported here focuses on security challenges associated

with IaaS clouds. Amazon, Microsoft, VMWare, Rackspace, IBM, Red Hat, and sev-

eral other vendors have IaaS cloud offerings. For IaaS clouds, the cloud provider owns

the servers, storage media, and networking infrastructure, and is responsible for their

operation and maintenance. The cloud customer is often charged by the provider

on a pay-as-you-use basis for cloud resources. Examples of cloud resources include

computing units, storage, operating systems, and networks.

Provisioning is the process of assigning cloud resources to an IaaS (realized as a

suite of one or more virtual machines). Once an IaaS is provisioned, cloud resources

are used by customers to run applications within an IaaS. Cloud computing utilizes

virtualization technology to provide resources to each IaaS. Cloud resources are shared

among IaaS instances and these resources are accessed over the network.

As the resources are shared in cloud environments, cloud security is a major con-

cern. Violation of security requirements may jeopardize the entire cloud environment

(i.e., all IaaS instances) rather than a single IaaS. Such security concerns make users

reluctant to utilize cloud environments, thus, missing out on the projected benefits

of cloud computing (i.e., scalability, efficiency, accessibility and the ease of software

integration). As such, for cloud computing to reach its full potential, better security

solutions are required – particularly solutions to security issues that are unique and

fundamental to the cloud environment.

Cloud environments are different from traditional enterprise networks in many as-

pects: boundaries are less rigid; resource allocation is more dynamic; and, there is

3

an additional control structure (the cloud infrastructure itself). Each difference is

described in greater detail below. First, on traditional enterprise networks, there is a

clear boundary between the inside network and the outside network – usually delim-

ited by a DMZ. To secure the inside network, the trusted practice is to deploy security

middle-boxes at network edges and entry points. In cloud environments, however, the

concepts of inside network and outside network do not apply; the “outside” of an IaaS

is still inside the cloud environment. Thus, there is no clear physical separation be-

tween the secure and insecure worlds. As such, the potential exists for every virtual

machine to reach – e.g., communicate, interact, access – any other virtual machine

within the cloud. Second, the dynamic nature of clouds makes cloud resource alloca-

tion (i.e., provisioning) subject to change. As a result of this dynamic nature, virtual

machines no longer have fixed locations. They can migrate from one physical host

to another physical host within the cloud. Moreover, migrating virtual machines re-

quires updating network configurations according to the new state. Third, cloud users

have no control over the cloud infrastructure (and the migrations of virtual machines

that may occur). They cannot directly access the physical cloud infrastructure. The

only way users can access cloud resources is via the Internet. Moreover, cloud users

do not participate in the design of the cloud network topology and the placement of

security middle-boxes. Although limiting physical access to the cloud infrastructure

and hiding the cloud network topology can provide security advantages, they create

doubts for users about how serious their security requirements are considered. These

differences between cloud environments and traditional enterprise networks introduce

new security threats that must be addressed for cloud computing to reach its full

potential.

There are many challenges facing cloud computing evolution. The challenges vary

from a cloud user perspective to a cloud provider perspective. These challenges

include, but are not limited to, manageability, configuration analytics, and security.

4

The unique characteristics of cloud environments require different approaches to these

challenges than traditional enterprise networks.

For the previously mentioned reasons, cloud security problems have to be addressed

carefully. We believe that the security solutions for clouds will be non-traditional.

In this dissertation, we present a formal method-based approach to making cloud

environments more secure and manageable. The presented approach improves cloud

security and manageability along three dimensions. First, we present a cloud re-

source allocation framework that factors in customer security requirements, specifi-

cally reachability and Access Control Lists (ACLs) for cloud virtual machines. Sec-

ond, we present a framework for virtual machine migration planning, in which a safe

migration order is determined to ensure the preservation of security requirements

during migration. Also, we present a framework for virtual machine post migration

verification and reconfiguration, in which cloud network configuration is verified after

migration and reconfigured if needed. Third, cloud networks are shifting towards

utilizing Software Defined Networks (SDNs) [3]. SDNs provide a centralized, global

view of the network. Also, SDNs offer management support to virtual environments;

which make a great benefit for clouds infrastructures. However, like any other network

type, SDNs are susceptible to misconfiguration. Towards solving misconfigurations in

SDNs, we include a framework within our formal method-based approach that detects

and resolves policy misconfigurations. Each of dimension of our approach (resource

allocation, virtual machine migration, and SDN policy misconfiguration detection and

resolution) while improving cloud security and manageability is grounded a common

formal method-based approach. In the following, we provide a high level overview of

our approach.

In our approach, cloud users are encouraged to play an active role in defining

the security requirements for their virtual machines. This collaboration between the

cloud provider and the cloud users can help to bridge the trust gap and make user

5

involvement in security decisions more practical. When requesting a new set of virtual

machines from the cloud provider, the user provides information about the security

needs to be fulfilled. The user declares which virtual machines need traffic inspec-

tion, traffic encryption/decryption, and anti-collocation requirements. These needs

are augmented with the network reachability requirements between all of the user’s

virtual machines to define the underlying IaaS instance. With our approach, virtual

machines for a specified IaaS instance are organized into several groups according to

the similarity of their reachability requirements. The resulting groups are used to

synthesize access control policies for all virtual machines to reduce the possibility for

policy misconfiguration as well as human errors. The formal method-based approach

to create access control policies removes the burden from the user and provides a semi-

automated tool for simplifying the management of security groups. After grouping all

virtual machines logically into security groups, a virtual machine reachability matrix

is updated to reflect any new possible communication due to the grouping process.

This matrix is used to calculate a security risk measure for each virtual machine.

By combining all user inputs – security needs and reachability requirements – with

virtual machines specifications – memory, CPU, storage, and bandwidth – the cloud

resources are provisioned using a formal method-based approach to run these virtual

machines.

After provisioning resources to virtual machines, the cloud provider may migrate

virtual machines across physical systems for more efficient resource utilization. The

process of migrating virtual machines requires that all security and capacity con-

straints be maintained during the intermediate transition states. In other words,

a proper migration plan is required to perform safe virtual machine migration. A

proper migration plan is not only necessary for safe transitioning, but also neces-

sary for updating network configurations properly due to migration changes. Here

again, we provide a formal method-based approach to developing a proper migration

6

plan. After developing a migration plan, it is important to verify that cloud network

configuration is preserved after migration. The framework compares cloud network

configurations before and after VM migration. The goal is to have an equivalent

configuration for the new state after migration to the old state before migration. We

provide a formal method-based approach to verify the cloud network configuration

after performing the migration.

The SDN architecture provides a crucial support for cloud infrastructure by provid-

ing a central and global view that make cloud management easier. The functionality

of a SDN depends on the proper configuration of its policy that is implemented in

a the controller and switch flowtables. The presence of policy misconfigurations af-

fects the behavior of the SDN and jeopardizes its security. We provide a formal

method-based approach to detect misconfigurations in switch flowtables.

Constraints	

VM	

Specs	

PM	

Specs	

User	

Input	
 Data	

Cloud	

Infrastructure	

Input

Recourse	
 Provisioning	

Management	

Security	
 Group	

Management	

VM	
 Migra>on	

Management	

SDN	

Management	

Management Functions

SMT	
 Solu/on	

Constraints Relaxation

Recommended Configurations

Constraints	
 SMT	

Constraints	
 SMT/BDD	

Constraints	
 BDD	

Solu/on	

Solu/on	

Solu/on	

Figure 1.1: The overall methodology

Figure 1.1 shows the overall methodology. All formal frameworks are grouped

7

into one formal method-based approach. Each dimension of the security function is

assigned a management function. There are four management functions: security

group management, resource provisioning management, VM migration management,

and SDN management. The inputs to the system include: Physical Machine (PM)

specifications, VM specifications, user input data, and cloud infrastructure informa-

tion. All inputs are encoded as constraints which in turn are fed to the Satisfiability

Modulo Theories (SMT) solver. The SMT solver will find a satisfiable solution to

all given problems and send as configurations recommendations to the SDN manage-

ment. If there is no satisfiable solution, some constraints will be relaxed to give more

flexibility to the SMT solver to find a satisfiable solution.

Next, we provide a more specific introduction to each security/manageability prob-

lem and outline the proposed solution to overcome its challenges.

1.1 Managing Access Control Policies for Virtual Machines

Within IaaS instances, each VM requires an ACL to manage network traffic from/to

that VM. Managing a single ACL for each VM is an error-prone task, especially as

the number of VMs increases [4]. To mitigate this risk, current cloud providers allow

VMs to be grouped together based on their incoming traffic similarity. All VMs in

such a group share a common ACL. Yet, it is the user’s responsibility to group similar

VMs and to configure VM access control lists. Both tasks are subject to human error.

Another limitation in the current approaches is the number of security groups that a

user can use and the size of the ACL for each group (i.e., the number of rules in a

single ACL). For instance, Amazon EC2-classic limits the number of security groups

to 500 and the number of rules that can be added to a security group to 100, while

in Amazon EC2-VPN the number of security groups and the number of rules are 5

and 50, respectively [5].

Whether there is a maximum of 250 or 50,000 rules, the possibility for human error

remains a concern. As such, a framework and semi-automated tool set for managing

8

and creating groups for IaaS VMs can reduce security configuration errors. In par-

ticular, such a framework can reduce the chances of having ACL misconfigurations

[6]. Under such a framework, group membership is determined according a predefined

threshold based on traffic similarity. By using this framework, a group can contain

VMs that are not exactly similar; the group will contain the common ACL and each

VM will be configured individually to fulfill the remaining requirements.

1.2 Security-aware Resource Allocation in Clouds

In current VM provisioning processes, several factors (such as CPU, memory, stor-

age, bandwidth) influence the final location of VMs. Unfortunately, security factors

are not among them. Instead, security requirements are considered after resources

are allocated (post-allocation). We argue that considering security requirement at the

time of resource allocation can reduce the vulnerabilities that result from allocating

VMs with conflicting security requirements on the same physical host. Also, it can

reduce the cost associated with the use of security middleboxes such as IPSec and IDS

devices. The cost reduction can be from minimizing VM migration due to security

conflicts, or from reducing the communication costs to reach security middleboxes.

Our formal method-based approach enhances security in clouds by providing a

security-aware resource allocation algorithm that takes security requirements in con-

sideration along with network, performance, and space requirements [6]. The user pro-

vides the security and risk requirements for the IaaS VMs. Then, the cloud provider

uses these requirements and our approach to allocate resources. The pre-allocation

mechanism involves the user in the decision process and increases the awareness of

user’s security requirements.

1.3 Virtual Machine Migration Planning

The dynamic nature of clouds requires moving VMs from one host to another host

to utilize resources efficiently. In some cases, the migration process may include

9

intermediate steps to migrate VMs to the final target host. During these steps,

safety conditions – including risk, performance, and network requirements – must be

preserved. Current cloud providers do not provide this guarantee. Therefore, it is

required to find a VM migration sequence in which the safety requirements are not

violated.

We offer a formal method-based approach to finding a safe sequence to migrate

VMs to their final host [7]. The resulting VM migration plan ensures that security

requirements along with performance and network requirements are preserved during

the entire life cycle of a VM, including the times of migration. Moreover, finding a safe

sequence to migrate VMs will also help in updating cloud configurations accordingly

using a consistent mechanism. The correct and automated updates of configurations

due to VM migration will reduce misconfigurations errors.

1.4 Virtual Machine Migration Verification

A successful VM migration process requires correctly updating cloud network mid-

dleboxes such as firewalls and switches to keep VMs work properly after migration.

The migrated VMs need to maintain all previous connections with other VMs. There-

fore, it is important to update network middleboxes at both locations, the old location

before migration and the new location after migration. Updating and reconfiguring

network middleboxes entails blocking all traffic to the migrated VMs at their old lo-

cation and allowing the traffic – that was previously allowed at the old location – at

the new destination. Migrating a VM to a new location may jeopardize its security

policy due to misconfigurations that result from updating network middleboxes. For

instance, unwanted traffic is allowed to reach the VM at the new location.

One approach to ensure proper reconfiguration is to execute automatically a com-

prehensive regeneration of all middlebox policies using VM reachability requirements

and associated security policies. An alternative, more lightweight approach is to in-

troduce incremental network reconfigurations to the existing network configuration.

10

This approach takes advantage of the previous network configuration - in particular,

those portions that are unaffected by the migration - and builds upon it.

We offer a formal method-based approach to verifying the preservation of cloud

network configuration after VM migration. The cloud network configuration is pre-

served if all migrated VMs maintain an equivalent network connectivity/policy after

migration. Also, we offer an automated formal method-based framework for incre-

mental reconfiguration of firewall policies to be executed as part of the VM migration

process. The framework translates cloud network access policies into a set of firewall

rules considering the physical topology of the cloud, the VMs to be migrated, and

the VM migration plans.

1.5 Software Defined Networks Misconfigurations

Managing traditional datacenters (multi-tier architectures) is a challenging task. It

requires a global view of the entire network to provide proper management decisions.

The SDN paradigm provides a central and global view of the network through a

centralized controller. For cloud infrastructures, SDNs provide crucial support for

virtualization by making cloud management simpler. The SDN architecture is mainly

formed from a centralized controller and distributed switches. The SDN controller

manages all switches in the network and is responsible for updating and configuring

the right policy for each switch in the network. Unfortunately, SDNs are susceptible

to misconfigurations and errors like any other network type.

SDN functionality depends on its policy and configuration; any misconfiguration

in the controller or switches can affect the behavior of the SDN. Network flow poli-

cies are translated into switch flowtables. Flowtables contain rules that perform

actions. Misconfigurations in flowtable rules can lead to the execution of unintended

actions. We propose formal method-based approach to detect misconfigurations in

switch flowtables [8]. Misconfigurations can occur within the same flowtable (intra-

policy), between different flowtables at the same switch (pipeline misconfigurations),

11

or between different flowtables at different switches (inter-policy). Our framework

checks for all possible policy misconfigurations.

1.6 Methodology

Throughout this dissertation, we used two main formal model checking techniques

to solve the outlined challenges. The techniques are Binary Decision Diagrams

(BDDs) [9, 10] and Constraint Satisfaction Problems (CSPs) [11].

Access control lists and policies are modeled as Boolean formulas using BDDs.

BDD modeling supports the use of algebraic operations such as intersection, union,

and negation. BDD modeling is used to construct access control lists, i.e., reachability

policies, for IaaS VMs. BDD modeling also provides a formal representation to solve

misconfigurations in SDN policies. We use BDDs to model a user’s incoming traffic

policy and manage VM security groups. We also use BDDs to calculate the similarity

between VM policies.

For VM migration verification problem, we model the cloud network access model

as a set of access routes between pairs of VMs. An access route between a source

VM and a destination VM defines a sequence of network devices in a single route

between two VMs. This sequence of devices is used to compute the combined policy

of all devices along this route. Each device policy is encoded as a BDD. The set of

all accessible routes between two VMs is represented a BDD.

In SDNs, BDDs are used to: encode OpenFlow configuration considering the

priority-based matching semantic, various actions, and the existence of multiple con-

trollers and multiple users; model the global behavior of the OpenFlow network based

on FlowTables over single or multiple federated infrastructures in a single state ma-

chine; and provide a generic property-based verification interface using BDD-based

symbolic model checking and temporal logic.

We formalize security-aware resource allocation problem and virtual machine mi-

gration problem as CSPs that factor in the cloud provider’s constraints, i.e., the

12

customer security and resource requirements, and the customer’s risk metrics. The

CSP problem formulation can be solved using a SMT solver (e.g., Yices [12]). Our

solution for security-aware resource allocation [6] can be used to guide the grouping

of VMs into security groups and the placement of virtual machines in a manner that

satisfies a customer’s security requirements, improves manageability, and reduces risk.

Our solution [7] can also be used to migrate the virtual machines in the right order

to preserve security constraints. Furthermore, it can also be used to update cloud

network configurations that are affected by the migration process.

Each problem, resource allocation problem and VM migration planning problem,

is encoded into a set of constraints. A SMT solver is then used then to find a solution

that satisfies the constraints.

1.7 Contributions

Within this dissertation, we provide a formal method-based approach to provide

better security and manageability of IaaS clouds environments.

This dissertation reports the following contributions.

• A formal method-based framework to synthesize access control lists for IaaS

virtual machines.

• A formal method-based security-aware resource allocation methodology.

• A formal method-based framework for virtual machine migration planning.

• A formal method-based automated framework to verify configuration consis-

tency before and after virtual machine migration.

• A formal method-based automated framework for post-migration reconfigura-

tion.

• A formal method-based approach to modeling SDN OpenFlow configurations.

13

• A formal method-based verification interface for SDNs using BDD-based sym-

bolic model checking and temporal logic.

• A formal method-based framework for detecting policy misconfigurations in

SDNs.

• A unified approach to combine all previous frameworks under a common method-

ology.

1.8 Document Outline

This dissertation is organized as follows: Chapter 2 discusses the related work;

Chapter 3 provides a background about the basic concepts discussed in this work;

Chapter 4 introduces the proposed approach in detail; Chapter 5 illustrates the eval-

uation mechanism, the implementation, and the results; and Chapter 6 concludes the

document with a summary of the proposed work and the potential work that could

be pursued in the future.

CHAPTER 2: RELATED WORK

This chapter discusses related work associated with the primary problem areas of

focus: managing access control policies for VMs, security-aware resource allocation

in clouds; virtual machine migration planning; and SDN misconfiguration.

2.1 Managing Access Control Policies for Virtual Machines and Security-aware

Resource Allocation in Clouds

Many recent studies – e.g., [13], [14], [15], and [16] – expose security risks associated

with cloud environments. Somorovsky et al. [14] provide a security study in which the

control interfaces of Amazon and Eucalyptus (private cloud software) are analyzed.

The outcomes from this study show that the control interfaces in Amazon and Euca-

lyptus can be compromised using signature wrapping and advanced XSS techniques.

Wei et al. point to the new risk coming from sharing virtual machine images in a

cloud’s image repository [16]. They propose an image management system to address

sharing risk. The proposed system uses an ACL to reduce the unauthorized access,

filters to remove unwanted information from the image, and a tracking mechanism for

the operations applied on the image. Sumter proposed in [15] a design that captures

the information flow on the cloud. A security analysis of Amazon’s EC2 service is

presented in [13]. In this analysis, an automated tool is used to analyze the security

of Amazon’s public Amazon Machine Images (AMIs). The finding of this analysis is

that AMIs may be vulnerable to security risks such as unauthorized access, malware

infections, and loss of sensitive information.

In light of the above studies, there is a heightened need for cloud providers to

consider customer security requirements at the time of customer onboarding and

15

resource provisioning rather than afterward. The security-aware resource allocation

framework we describe is a step toward addressing that need.

Several resource allocation approaches that consider various aspects of this prob-

lem have been published. Meng et al. present an algorithm for efficient resource

provisioning via VM multiplexing [17]. The approach uses statistical multiplexing

to find workloads patterns for VMs; VMs with complementary workload patterns

are allocated together. Alicherry et al. present an approximation algorithm for VM

placement in distributed clouds [18] and for allocation of resources in a single dat-

acenter. Lee et al. [19] present a “what-if” methodology to allocate VMs. In their

architecture, a prediction engine is used to estimate the performance, while genetic

algorithms are used to find the optimal allocation. Goudarzi et al. present an SLA-

based algorithm for resource allocation [20]. The algorithm uses forced-search to

provide an upper bound limit to maximize the profit. Calcavecchia et al. introduce

a backward speculative technique for VM placement in [21]. This technique projects

the past demand of already allocated VMs to the host machine for future allocation

decisions. Wei et al. [22] present a game theoretic approach, in which a constrained

cost-time optimization algorithm for scheduling dependent subtasks considering the

communications between these subtasks is presented. Srikantaiah et al. consider en-

ergy in their resource allocation algorithm [23], and present a heuristic approach for

consolidating VMs so as to minimize the total energy consumption of the system.

Other work considers minimizing energy while maximizing the profit [24].

While the above works consider a multitude of factors associated with ACL config-

uration and resource provisioning such as efficiency, performance, topology, cost, and

energy during the resource allocation process, none combines ACL generation and

security-aware resource provisioning within a single, effective methodology.

16

2.2 Virtual Machine Migration Planning

There are several efforts to address the problem of VM migration. The area of VM

migration is driven by several factors such as: resource utilization, energy consump-

tion, cooling and thermal concerns, network and application dependency, etc. Our

approach utilizes the existing work that has been done in the area and complements

it by providing a method for secure VM migration planning.

Piao et al. present a network-aware approach for placing and migrating VMs

considering the network condition between physical hosts [25]. In this approach,

VMs are placed and migrated to obtain shorter data access time. Shrivastava et al.

propose an approach to migrate VMs that have application dependencies between

them [26]. They present a greedy algorithm to place VMs on hosts considering the

application dependencies between VMs and the cloud’s physical network topology.

Wood et al. [27] propose an approach that uses black-box and grey-box like memory

monitoring, CPU utilization, and network utilization to detect hotspot hosts and

migrate VMs to more suitable hosts. Ma et al. present a memory-encoding approach

to decrease the total transferred data, migration time, and migration downtime by

identifying the useful memory pages to be transferred [28]. Al Shayeji et al. present

an algorithm to save energy in datacenters by migrating VMs off minimally utilized

hosts [29]. Mishra et al. discuss the components of VM migration — when to migrate,

which VM to migrate, and where to migrate — and different heuristics to apply VM

techniques [30]. Zhang et al. outline the problem of VM migration in over-committed

clouds [31]. They introduce an algorithm to minimize the number of VM migrations,

to balance VM resource utilization, and to reduce the risk of overload in the cloud.

Voorsluys et al. present a performance evaluation on the effects of live migration of

virtual machines on the performance of applications running on “Xen” VMs [32].

None of these works considers the preservation of security requirements during VM

migration planning.

17

The approach most similar to our approach is one by Ghorbani et al. [33]. They

address the problem of determining the order of VM migrations. A heuristic approach

is used to assign a migration score for each VM in the migration set. The score for

VMx reflects the number of migrations that would be feasible after the migration

of VMx . The approach considers the bandwidth limit as a migration constraint.

Compared to our approach, we consider several constraints that include: capacity,

dependency, security/risk, and VM workload characteristics.

Li et al. study the live migration features in load balancing scenario [34]. In their

experiments, they show the effect of VM workload characteristics on the migration

time and the migration downtime for different scenarios. We leverage the observations

and remarks presented in their work to assign a priority score for each VM based on

its workload.

2.3 Virtual Machine Migration Verification

The research in policy misconfigurations and anomaly detection is not new [4, 35,

36, 37, 38, 39]. Several works on configuration verification and equivalence checking

have been done [40, 41, 42]. Gawanmeh et al. [40] use Event-B and invariant checking

to verify the consistency of firewall verifications. Al-Shaer et al. [36] use Binary

Decision Diagrams (BDDs) and symbolic model checker to verify network reachability

and security properties. Gouda et al. [38] use firewall decision diagrams to verify the

accept and discard properties of a given firewall policy.

Jarraya et al. [43] present cloud calculus, a framework that allows the expression of

the cloud topology and the deployment and migration of VMs along with their secu-

rity policies. Cloud calculus framework is used to verify the preservation of security

constraints after migration. However, the framework does not support updating fire-

wall policies after migration. Our approach allows generating the new post-migration

configurations from the existing pre-migration configurations considering the VM mi-

gration updates.

18

The closest work to our work in post-migration verification is done by Jarraya

et al. [44]. They proposed an automated approach to verify firewall configuration

after VM migration. Their approach uses constraint satisfaction problems to verify

the semantic equivalence of the defined properties. However, the approach does not

address reconfiguring firewall policies after VM migration, it targets the verification

of policy equivalence after VM migration.

Another work that addresses configuration verification in clouds is done by Eght-

esadi et al. [45]. In this work, an automated framework is presented to verify the

compliance of intrusion detection systems and IPSec polices after VM migration. The

security policies are encoded as constraint satisfaction problems.

2.4 Software Defined Networks Misconfigurations

The concept of an OpenFlow switch as utilized in Software Defined Networks

(SDNs) was introduced in [46] and used in different applications such as [47] and

[48]. The work done on OpenFlow switches [46] does not address the problems of

conflict analysis and model verification. Instead, it shows the basic architecture of

OpenFlow model and how the architecture can be used to provide logically separated

networks on the physical network. The work done in [47] introduces network virtual-

ization in which a production network is sliced to multiple virtual networks that run

multiple experiments (network instances) with their own forwarding decisions all at

the same time.

Some work has been done on SDN configuration analysis. Flover [49] uses assertion

sets and modulo theories to verify flow policies. As each flow rule request is verified

against the non-bypass properties enforced in the network, Flover supports a batch

mode to improve the controller response time. Veri-Flow [50] proposes to slice the

OpenFlow network into equivalence classes to efficiently check for invariant property

violations. VeriFlow models the network as a graph to detect loops in the routing

tables, unavailable paths etc. Nice [51] uses symbolic execution to verify conformance

19

of OpenFlow applications. This solution enables the detection of when a network

reaches an inconsistent network state. FlowGuard [52] presents a solution to check

network flow path spaces to detect firewall policy violations when network states are

updated.

Some work has been done on conflict analysis and model verification for devices

other than SDN. For example, firewall modeling and conflict analysis was targeted

by [35], [37], [36], and [39]. Also, there is considerable work on detecting miscon-

figuration in routing (e.g., [53], [54], [55], and [56]). Other works have been done

on creating general model for network devices ([4], [57], and [58]).

Our work on SDN OpenFlow switch misconfiguration and model verification [8] uses

BDD-based model checker and Computational Tree Logic (CTL) to write queries to

describe properties that we are trying to verify. Our approach then uses BDDs to

model a state machine that encodes the entire behavior of OpenFlow switches in a

SDN. With our approach, we show that we are able to reduce the likelihood of SDN

misconfigurations.

CHAPTER 3: FOUNDATION AND BACKGROUND

3.1 Cloud Computing

Cloud computing has become an essential solution for processing, managing, and

storing large volumes of data. Cloud-based infrastructures are a main driver for the

emergence of big data analytics. There are three main deployment models of cloud

computing: private clouds, public clouds, and hybrid clouds. In private clouds, data

and services are managed within the organization in a private network without outside

exposure. In public clouds, data and services are located off-site and provided to the

organization over the internet. In hybrid clouds, data and services are split across

private and public environments.

There are three primary types of cloud computing solutions: Software-as-a-Service

(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). SaaS

Cloud providers host applications managed by third-party vendors. The applications

are accessed via a web browser and do not require installation at the client side.

Everything is managed by SaaS provider: applications, runtime, data, middleware,

O/S, virtualization, servers, storage, and networking. A common example of a SaaS

solution is the gmail web application.

PaaS cloud providers wrap computational resources in a platform. PaaS clients use

these platforms to develop and customize applications. The PaaS model eliminates

the need to buy the underlying layers of hardware and software. With PaaS, the cloud

provider still manages the runtime, middleware, O/S, virtualization, servers, storage,

and networking, but clients manage applications and data. GoogleApp Engine and

Microsoft Azure are examples of PaaS solutions.

IaaS Cloud providers offer computing resources, storage, and networks for users

21

to setup their own virtual network of virtual machines, applications and data. IaaS

cloud providers still manage virtualization, servers, hard drives, storage, and network-

ing. Compared to SaaS and PaaS, IaaS clients are responsible for managing more:

applications, data, runtime, middleware, and O/S. Consequently, there is a greater

risk for security misconfigurations. Amazon EC2 as an example of an IaaS solution.

3.2 Binary Decision Diagrams (BDDs)

A binary decision diagram is a tree-like structure that represents a boolean function.

Each boolean function is comprised of a set of decision variables. A BDD is modeled

as a directed acyclic graph (DAG) that has a root node, one or more non-terminal

nodes, and two terminal nodes representing the constants zero and one. Non-terminal

nodes represent decision variables. Each non-terminal has two outgoing edges: a high

edge and a low edge. The high edge represents a true assignment of the decision

variable and the low edge represents a false assignment of the same decision variable

[9].

Figure 3.1 shows an example BDD of the Boolean function B = (x∧ y∧¬z)∨ (x∧

¬y∧z). The BDD in Figure 3.1 has three decision variables in the following order: x,

y, and z, respectively. The solid line represents a true assignment (high edge) while

the dashed line represents a false assignment (low edge).

There are many variations of BDDs depending on variable ordering. In this work,

we use reduced ordered binary decision diagrams (ROBDDs) [9]. A ROBDD is a

canonical representation of a boolean function. This means that there is only one

ROBDD representation for a given boolean function. The sequence of decision vari-

ables along any path from the root to a terminal node in a ROBDD is guaranteed to

follow a specific order. The BDD shown in Figure 3.1 is a ROBDD with the following

order: x, y, z.

The BDD modeling supports algebraic operations such as intersection and negation

on boolean functions.

22

x	

y	

1	
 0	

z	
 z	

B = (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z)

Figure 3.1: A BDD example

3.3 Software Defined Networks (SDNs)

SDNs consist of three layers: an application layer, a control layer, and a data plane

layer [59]. Figure 3.2 shows the SDN architecture model. The Application layer con-

sists of end-users applications. This layer allows users to program a SDN controller

in the control layer through APIs. The SDN controller controls the forwarding be-

havior of the SDN network. The data plane layer includes the network devices, e.g.,

OpenFlow enabled switches and infrastructure that provide packet switching.

3.3.1 OpenFlow Switches

OpenFlow switches are used to partition a physical network to multiple logical

networks (i.e., SDNs) [46]. OpenFlow switch clients (users) operate IaaS without

conflict. Deploying OpenFlow switches on a physical network makes the network

programmable. This gives the SDN provider the ability to control the traffic in a

SDN. To prepare a physical network to operate multiple SDNs, cloud providers need

to partition the traffic. Clients have the right to control only their own IaaS traffic.

To that end, each client (i.e., IaaS instance) is given a slice [47] on the network

based on its needs. Operations on a IaaS instance should give a client the perception

of operating on a separate physical network. Also, different IaaS instances should not

23

Applica'on	
 Layer	

Control	
 Layer	

Data plane Layer

OpenFlow Protocol

API

Figure 3.2: The SDN architecture model

overlap each other. Thus, one of the security challenges is to make sure that different

IaaS instances do not overlap.

Conceptually, each SDN has four components: a controller, a secure channel, Open-

Flow switches, and the OpenFlow protocol [46]. Figure 3.3 shows the main compo-

nents of an OpenFlow switch. The OpenFlow protocol operates over a secure channel

as an interface between controller and the OpenFlow switch [46]. As shown in Figure

3.3, the controller is used by the client (user) to update the FlowTable in an OpenFlow

switch by adding and removing flow entries. Flow entries are actions used by a client

to control SDN traffic. A FlowTable contains rules comprised of actions that work

as commands on SDNs to impact SDN traffic. Potential actions include: forwarding,

drop, encapsulate, encrypt, limit, and classify/enqueue for QoS [46]. It is possible

for clients to add additional actions to a FlowTable via the OpenFlow protocol.

A FlowTable rule has three parts: header, action, and statistics. The header part

is used to define a specific flow; the action part is used as a command for processing

24

Figure 3.3: The basic components of an OpenFlow switch

purpose; and the statistics part is used for QoS operations. When a packet comes to

OpenFlow switch, it is matched against the FlowTable rules. An associated action

is triggered if the packet matches a rule header. If an action is executed, then the

associated statistics are updated [46]. If the packet does not match a FlowTable rule,

it is forwarded to the controller for more processing. If a packet matches multiple

rules, the rule with the highest priority is triggered.

The OpenFlow protocol supports having multiple FlowTables within a single switch,

which is referred to as a pipeline. The OpenFlow pipeline is composed of multiple

“stops”, or FlowTables, where various tasks are performed. These stops may perform

multiple actions on a single packet.

In the pipeline, FlowTables at each switch are numbered starting from 0. The

packet is matched against rules in table 0 first, then forwarded to next table in

increasing order. The network packet is forwarded from one table to another table if

its table ID is larger than current table ID, i.e., there is no backward processing. This

forwarding is achieved using the “goto table” command. Having multiple “goto table”

25

Figure 3.4: OpenFlow protocol allows multi-users and multi-controller management
in IaaS cloud environments.

commands in different FlowTables within a single switch creates several pipelines and

makes detecting policy misconfiguration a complex task.

In the face of multiple clients, the challenge of properly configuring SDNs is fur-

ther magnified. The OpenFlow protocol allows more than one controller to control

the same OpenFlow switch. It also allows one controller to manage multiple Open-

Flow switches (see Figure 3.4). As a result, misconfigurations may appear in the

FlowTables. The next chapter describes a common FlowTable misconfiguration (see

§4.5).

CHAPTER 4: APPROACH AND METHODOLOGY

The primary goal of this work is to provide a unified set of approaches and method-

ologies that make IaaS cloud environments more secure and make cloud configurations

management much simpler. To achieve this goal, we propose a formal method-based

approach to provide better solutions to the following problems: 1) managing and

creating access control lists for virtual machines running in IaaS clouds; 2) allo-

cating resources for virtual machines considering security and risk requirements; 3)

migrating virtual machines from one host to another host without violating security

requirements; 4) verifying that cloud network configuration is preserved after migra-

tion and reconfiguring cloud networks efficiently to reflect the new state after VM

migration; and, 5) detecting policy misconfigurations in Software Defined Networks.

A glossary of all variables used in the presentation of our approach is shown in

Table 4.1.

4.1 Managing Access Control Policies for Virtual Machines

In order to manage ACLs effectively and to perform security-aware provisioning of

required resources to VMs, we need to organize VMs into security groups based on

VM similarity.

4.1.1 Problem Statement

IaaS Cloud clients utilize cloud environments to deploy virtual networks. An es-

sential part of any IaaS deployment is proper specification and management of reach-

ability requirements between VMs. Reachability requirements are designed to control

how VMs communicate with each other. IaaS cloud clients are responsible for trans-

lating reachability requirements into ACLs. This activity requires clients to produce

27

Table 4.1: Glossary of all variables used in the model

Variable Type Description
VM Set The set of running VMs
PM Set The set of physical machines (PMs)
H Set The set of “’hotspot” (PMs) that is scheduled to be

switched off
M Set The set of VMs to be migrated
R Set The set of risk scores for all VMs
C Set The set of critical VMs
D Matrix The dependency matrix between VMs
n Integer Number of virtual machines
m Integer Number of physical machines
axi,j Boolean Decision variable to place VMi on PMj at the xth migra-

tion step
ai,j Boolean Decision variable to allocate VMi on PMj

ccpui , cmem
i Real cpu/memory capacity for VMi , respectively

Ccpu
j , Cmem

j Real cpu/memory capacity for PMj , respectively
sj Boolean A variable to indicate the status of PMj

oi Integer The priority score of VMi

πx Set The placement status for all VMs at the xth migration step
ρ(πx) Formula The safety condition for the placement status πx
ηi Boolean A variable to flag critical VMs
δki,j Boolean A variable to indicate that VMi is migrated to PMj at the

(k + 1)th migration step
ri Enumeration The risk score for the VMi

lv,w Integer The physical distance between PMv and PMw

TD Integer A threshold to set the max physical distance between two
dependent VMs

g Integer Number of security groups
si,k Boolean Decision variable to allocate VMi on security group k

(SGk)
di,j Integer The distance between VMi and VMj

Dx,y Integer Number of links between PMx and PMy

bi,j Boolean Decision variable to indicate whether VMj is reachable
from VMi or not

Bi BDD BDD representation for VMi

T Integer The maximum number of iptable rules in a VM
t1, t2 Integer Thresholds to set min/max values for risk categories
Pi,j Boolean Decision variable to indicate the traffic between VMi and

VMj is to be inspected
Qi,j Boolean Decision variable to indicate that VMi and VMj are not

be hosted on the same PM
E Integer QoS threshold to limit distance between PMs
ri Real Residual risk for VMi

Rk Real Residual risk for SGk

Gk Integer Vulnerability score for SGk

vi Integer Vulnerability score for VMi

Îk Integer Impact value for SGk

Ij Integer Impact value for VMj

li Integer The cost for VMi to access the closest middlebox
L Integer The maximum cost for inspecting traffic between two VMs

28

and manage a separate ACL for each VM - a process that can be both tedious and

complex. This process, however, can be simplified by grouping VMs that share sim-

ilar reachability requirements. Unfortunately, even with shared ACLs this process is

subject to misconfigurations.

To combat this problem, we present a semi-automated, formal methods-based

framework for creating security groups and managing ACLs for VM security groups.

Under our framework, VMs are group based on their incoming traffic similarity. The

framework allows VMs to be grouped whose incoming traffic requirements are not

identical. A threshold is defined to limit the degree of difference among reachability

requirements that is permitted for each VM security group. After grouping VMs, the

framework generates: (i) an ACL for each security group; and, (ii) a set of iptable

rules for each VM to manage the variance among reachability requirements within

the VM security group.

The proposed framework reduces the likelihood of conflicting ACLs and/or miscon-

figured ACLs. Furthermore, each VM security group serves as logical zone designed

to reduce residual risk for VMs.

4.1.2 Framework Overview

The security group membership assignment framework is shown in Figure 4.1. The

framework includes three stages. In the first stage, the client specifies the reacha-

bility requirements for each VM. The reachability requirements define how VMs can

communicate with each other. The reachability requirements are encoded as a reacha-

bility matrix. Table 4.2 shows an example reachability matrix. In this table, 0 means

that two VMs are not reachable, 1 means that two VMs are reachable using any port

number, and {x} means that two VMs are reachable using port number (x). The

second half of stage one involves the automatic construction of a distance matrix. A

distance matrix measures the similarity between VMs according to incoming network

traffic. More details about the distance matrix is discussed in §4.1.3.

29

Security	
 Groups’	

Membership	
 Assignment	

Reachability	

Requirements	

Distance	

Matrix	

Management	

Thresholds	

SMT	
 unsat core

Figure 4.1: Security groups membership assignment framework

Table 4.2: An example of reachability requirement matrix.

Distination
VM 1 VM 2 . . . VM n

Source

VM 1 0 1 . . . {80}
VM 2 {22} 0 . . . 0
...

...
...

VM n {22, 80} 1 . . . 0

The second stage of the security group membership assignment framework is the

encoding of the security group model that will be used to assign VM security group

membership. The security group model is encoded as constraints. An example secu-

rity model constraint might be the enforcement that all VMs to be a member of at

least one security group. Management thresholds are also defined as security model

constraints. An example of a management threshold constraint is T , the maximum

number of iptable rules for a single VM. More detail about the security group model

and encoded constraints is provided in §4.1.4.

In the final stage of the security group membership assignment framework, the

distance matrix, security group model, and the management thresholds constraints are

inputted into the SMT solver to generate automatically security group membership

30

assignments for each VM. If the SMT solver determines that all the constraints cannot

be simultaneously satisfied (i.e., unsat core), the reachability requirements and/or

management thresholds must be relaxed.

4.1.3 Distance Matrix

The framework utilizes BDDs to encode incoming traffic policies for each VM.

BDD modeling gives us the ability to employ useful algebraic operations such as

intersection and negation [9, 10]. These operations are the basis for the distance

metric. The distance metric is calculated based on aggregate incoming traffic to all

VMs. The computed metric captures the main function of security groups in Amazon

EC2 [5]. However, all members in an Amazon EC2 security group permit the same

incoming traffic. Therefore, it is possible within an Amazon EC2 security group to

find a VM accepting more traffic than what is supposed to accept. In this case, we

call the unwanted traffic spurious traffic.

There are two limitations in Amazon EC2 security groups model that permits

spurious traffic [5]. First, the rule structure used in writing security group ACLs

has three fields to control traffic: protocol, source IP address, and destination port

number. This can negatively impact VM security because of a lack of fine grain

control over destination addresses. Second, all rules are accept rules, there are no

deny rules except the default deny rule. Thus, no exceptions can be made using

Amazon EC2 security group ACLs.

Furthermore, spurious traffic jeopardizes VM security because of the additional

accepted traffic that may conflict with the security policy for a given VM. One way

to solve this problem is to use iptable rules to deny the spurious traffic. Iptable rules

operate as firewall rules for a given VM. Each flow that correlates to spurious traffic

needs an iptable rule to deny it. The presence of iptable rules, however, degrades the

performance of the IaaS proportionally to the number of rules.

The challenge here is to keep the number of iptable rules for a given VM within a

31

specified limit (threshold T) while properly modeling the permitted incoming traffic.

This can be done by grouping VMs having similar incoming traffic.

Definition 1 The distance between two virtual machines, di,j, is the size of the traffic

accepted by VM i and denied by VM j.

The incoming traffic at a single VM is modeled as a BDD. Security group rule

structure is used to model acceptable incoming traffic for each VM. The BDD repre-

sentation for a single security group filtering rule, fz, encodes three fields: protocol,

source IP address, and destination port number. Formally:

fz protocol ∧ source_address ∧ dest_port_number

Bx =
∨

z∈filtering rule

fz

where Bx is the BDD representation for all incoming traffic rules for VM x. Rule

ordering inBx has no effect because all rules have the same action; accept the incoming

traffic.

The distance, then, between two VMs, VM i and VM j, is denoted as di,j. Definition

1 represents this formally as follows:

di,j = pathCount(Bi ∧ ¬Bj) (4.1)

Where BDD operations (∧) and (¬) represent intersection and negation operations,

respectively.

Equation 4.1 finds the count of all traffic flows accepted by Bi and denied by Bj;

pathCount(x) function finds the number of paths leading to the true leaf node in

BDD Bx. Each path leading to the true node represents a satisfiable solution. The

advantage of using the pathCount(x) function is that wildcard fields in a single path

are counted once.

32

4.1.4 Synthesizing Security Groups

In an IaaS cloud environment, VMs often interact with one another to provide

desired functionality. Constraints on this interaction are encoded as reachability

requirements and represented in a reachability matrix. Table 4.2 shows an example

of a reachability matrix. In this table, 0 means that two VMs are not reachable, 1

means that two VMs are reachable using any port number, and {x} means that two

VMs are reachable using port number (x).

The mechanism for enforcing reachability requirements is known as security groups.

Among cloud providers, there are different mechanisms for the specification of security

groups. Without loss of generality, we use the Amazon EC2 security group mechanism

to illustrate our research contribution.

VM operation is affected by security group membership. A VM can belong to

more than one security group [5]. Placing VMs into security groups without proper

consideration of reachability and security requirements can jeopardize the security

of all VMs. Therefore, grouping VMs into security groups is the first step toward

securing an IaaS instance.

The distance matrix, D, is the basis of our method for synthesizing security groups

and assigning VM membership. The distance metric is used to constrain security

groups membership: the pair-wise distance between all VMs in a security group should

not exceed a specific threshold T . To synthesize security group rules, we use SMT

solver to find VM membership based on the following constraints:

Membership Constraint. A VM can belong to multiple security groups. The

following equations ensure that each VM will be mapped to at least one security

group. The variable si,k is a Boolean variable that indicates the membership of VM i

in security group SGk.

∀i ∈ VM , ∀k ∈ SG si,k ∈ {0, 1} (4.2)

33

∀i ∈ VM
g∑

k=1

si,k ≥ 1 (4.3)

Constraint 4.3 ensures that each VM will have membership in at least one security

group. We can restrict a VM to be member of one security group by changing the

(≥) operator in the constraint to the (=) operator.

Distance Constraint. Two VMs cannot be placed in the same security group

if the distance measure between them is larger than the specified threshold T . The

threshold T is used to set the maximum number of iptable rules that can be used to

block traffic for a single VM.

∀i, j ∈ VM (di,j > T ∨ dj,i > T)→

∃k, l ∈ SG (si,k ∧ sj,l ∧ k 6= l) (4.4)

Access Control Policy Model Constraint. Allowing two different security

groups to communicate with each other means allowing any VM of one security group

to communicate with any VM of the other security group. This constraint is enforced

by the format of security group rules. Amazon EC2 [60], for example, includes the

security group name in the source address field to open a port for communication

between security groups.

∀i, j ∈ VM

(
bi,j 6= 0 ∧ si,k ∧ sj,l ∧ k 6= l

)
→

∃x, y ∈ VM

(
bx,y 6= 0 ∧ sx,k ∧ sy,l

)
(4.5)

The reachability between two VMs, VMi and VMj , is represented by the variable bi,j.

4.1.5 Residual Risk for Security Groups

Managing the risk associated with security group interaction is a major factor in

implementing a defense-in-depth strategy. A defense-in-depth strategy suggests using

34

multiple security techniques to mitigate the risk of compromised machines [61]. A

common first layer in a defense-in-depth strategy is to create logical zones for the

deployment of VMs. Security groups can define these logical zones that can be used

as this first layer in a defense-in-depth strategy. The second layer in a defense-in-

depth strategy is to deploy security devices such as IDSs and IPSec gateways to

control interaction by VMs in different zones.

Thus, to synthesize security groups in a secure manner, we need to consider the

residual risk introduced by the allocation of VMs to security groups. Residual risk

can be estimated by considering two measures: 1) VM vulnerability score and 2) VM

impact score.

The vulnerability score of a security group, therefore, is determined by the vul-

nerability of all VMs belong to this group. Without loss of generality, we consider

the highest VM vulnerability score to be assigned for the vulnerability for the whole

group. Formally:

Gk = max(vj), {j|VMj ∈ SGk} (4.6)

where vj, 0 ≤ vj < 1, is the vulnerability score for VM j. The vulnerability score

for a single VM is determined based on the widely accepted Common Vulnerability

Scoring System (CVSS) [62].

The impact score of a security group measures the potential damage for all VMs

belonging to a security group. Formally,

Îk =
∑

VMj∈SGk

Ij (4.7)

where Îk is the total impact for SGk and Ij is the impact for VM j. The impact score

is a function of damage cost (data sensitivity) and the attack propagation from one

VM to another VM. Our method for impact calculation is similar to Ahmed et al.

[63]. The impact score for a VM is computed based on sensitivity of the VM data

35

and the cost of damage to the business resulting from the VM insecurity.

Using VM vulnerability and impacts scores, the following equation calculates the

residual risk for a security group, SGs, resulting from its exposure to other security

groups by combining these two VM risk measures.

Rs =

∑g
i=1 yis ∗Gi∑g

i=1Gi

∗ Îs (4.8)

where Rs is the residual risk for SGs, yis is a Boolean variable indicating the reach-

ability between two security groups SGs and SG i, Gi is the vulnerability score for

SG i, and Îs is the impact score of SGs.

4.1.6 Residual Risk for Individual Virtual Machines

Just as residual risk can be calculated for each security group, residual risk can also

be calculated for each VM. The residual risk for a VM is determined by its security

group membership. In our approach, the residual risk for a single VM inherits the

residual risk value from the security groups of which it is a member. In other words,

all VMs belong to the same security group inherit the same residual risk value.

Definition 2 The residual risk for an individual VM is equal to the maximum of the

residual risks of the security groups to which it belongs.

Formally:

ri = max(Rk), i ∈ VM , k ∈ SG , si,k = 1 (4.9)

Specifying a risk value for each VM opens the door for risk-aware resource provi-

sioning. In addition to allocating VMs to physical machines based on capacity and

performance metrics, residual risk values can be used to determine which VMs to

allocate to the same host in order to minimize risk, thus adding another layer to a

defense-in-depth strategy. For example, forcing a high risk VM and a high impact

VM to be allocated to different hosts can add another layer of defense-in-depth.

36

4.2 Security-aware Resource Allocation in Clouds

Cloud providers may specify criteria such as availability, performance, cost, data

security, and disaster recovery as part of their Service Level Agreements (SLAs).

While the cloud provider may utilize a long list of technologies and products to en-

sure the security of the cloud infrastructure, the number of security control knobs

made available to the cloud customer may be limited. For example, VPNs, VLANs,

encryption of stored/transmitted data may be offered by the cloud provider to the

cloud customer, whereas more advanced intrusion prevention, detection, and avoid-

ance technologies may be entirely the customer’s responsibility. Within an in-house

data center, customers may be able to install firewalls to partition their network into

dozens or even hundreds of security zones. However, such flexibility is not common

on IaaS clouds today.

4.2.1 Problem Statement

Typical parameters specified by the IaaS cloud customer at the time of resource

provisioning include the number of VMs and performance requirements such as CPU,

memory, network bandwidth, storage capacity, etc. Based on the number of VMs

and these requirements, cloud providers allocate VMs to available physical resources.

Currently, however, cloud providers do not reveal how allocations are done. One

can reasonably assume that the allocation is done in a way to maximize resource

usage and minimize costs to the provider (e.g., through economies of scale). Security

specifications at the time of resource request currently are limited to basic options such

as anti-collocation constraints, i.e., the customer may specify that a virtual machine

should not be collocated on the same physical server as another virtual machine (e.g.,

IBM SmartCloud Enterprise R© [64]).

We consider the problem of security-aware resource allocation – i.e., resource allo-

cation that factors in a customer’s security requirements in additional to the regular

37

Risk	
 Parameters	

Resource	
 Alloca1on	
 	

Security	
 Groups’	

Membership	
 Assignment	

Network	

Specifica1ons	

VM’s	

Impact	

VM’s	

CVSS	

NVD	

Security/Risk	

Enforcement	

Requirements	

SMT	
 unsat core

Figure 4.2: Resource allocation framework

resource specifications – with a focus on reachability and (network flow) access control

for the IaaS VMs.

Fortunately, the problems of managing VM ACLs and performing security-aware

resource allocation are closely related. It turns out that the automatically generated

security groups that are used to reduce risk not only can positively impact ACL man-

ageability, they also can support security-aware resource allocation. The allocation

process, however, requires different types of inputs as shown in Figure 4.2. To sup-

port security-aware resource allocation, security enforcement constraints are defined

to enable allocation decisions that will increase security levels and add extra security

layers to a defense-in-depth strategy.

4.2.2 Framework Overveiw

The framework for security-aware resource allocation (Figure 4.2) works in three

stages. The first stage collects input data and translates the data into constraints.

Input data encompass: (i) cloud provider constraints; (ii) the customer resource re-

38

quirements; (iii) the customer security requirements; and (iv) the customer risk mea-

sures.

Cloud provider constraints include the number and size of physical and virtual

resources, the cloud topology information (e.g., a three-tiered fat-tree topology), the

security mechanism used for grouping VMs into logical security zones (e.g., EC2’s

security groups), and cloud management thresholds such as limits on the number of

security groups (g), the number of rules per group, and the maximum number of

iptable rules (T) that can be written in a single VM.

Customer resource requirements include the number of VMs and performance re-

quirements about CPU, memory, network bandwidth, storage capacity, etc.

Customer security requirements include VM reachability restrictions, security/risk

enforcement specifications, and anti-collocation constraints. Security/risk enforce-

ment specifications define when and how the security actions are enforced between

the interacting VMs. Table 4.3 shows an example of a security/risk enforcement spec-

ification, which defines the type(s) of security mechanism(s) to be employed based

on the risk level of two communicating VMs. In this example, access, deny, inspect,

and encrypt mean allowing, denying, inspecting, and encrypting communications be-

tween VMs, respectively. Anti-collocate means provisioning VMs to different physical

machines (PMs).

Table 4.3: An example of a security enforcement policy

Risk (To)
High Medium Low

Risk
(From)

High inspect encrypt deny
Medium encrypt access anti-collocate
Low deny anti-collocate access

Customer risk metrics include VM vulnerability scores and impact scores. The

vulnerability scores can be obtained from the National Vulnerability Database (NVD),

which provides the Common Vulnerability Scoring System (CVSS) scores for almost

39

all known vulnerabilities [62]. The impact score [63] for a VM can be computed

based on sensitivity of the VM data and the cost of damage to the business resulting

from the VM insecurity. Once input data are collected, the data are translated into

satisfiability constraints to complete stage one.

Stage two of the framework for security-aware resource allocation involves auto-

matic VM assignment to security groups as previously discussed in §4.1.

The final stage of the framework for security-aware resource allocation is the allo-

cation of resources to the requesting VMs. In this stage, the various input data such

as security groups membership, network specifications, risk parameters, and security

enforcement requirements are translated into satisfiability constraints and inputted

into the SMT solver.

The problem is formulated as a satisfiability problem not as an optimization prob-

lem. Our objective is to find a assignment that satisfies both the customer require-

ments and the cloud provider requirements. The solution will not necessarily be the

optimal one, but it is guaranteed to satisfy all input constraints if such a solution

exists.

The proposed framework for security-aware resource allocation is both flexible and

extensible. It does not require complete specification of all input data (i.e., (i) cloud

provider constraints; (ii) the customer resource requirements; (iii) the customer se-

curity requirements; and (iv) the customer risk measures) in order to generate useful

results. Moreover, additional user-defined constraints may be included to influence

resource allocation in desirable ways. The additional constraints can be used to define

extra security layers in a defense-in-depth strategy.

4.2.3 Resource Provisioning

Resource sharing and multi-tenancy are fundamental principles to the design of

cloud infrastructures. In cloud environments, resources are designed be shared be-

tween multiple VMs - e.g., resources are linked to physical machines but utilized

40

by multiple virtual machines. When a VM requests a resource, the cloud provider

satisfies the request by assigning a VM to a physical machine that is linked to the

resource. This process is called provisioning. When provisioning resources, cloud

providers must satisfy all resource requests while ensuring a proper isolation between

the shared resources.

Within our framework for security-aware resource provisioning, we define the fol-

lowing constraints to preserve the integrity of the provisioning process.

Boolean Decision Variables. In a cloud environment, a decision variable is

needed to control the assignment of virtual machines to physical machines (PMs).

This decision variable is a Boolean variable defined as follows:

∀i ∈ VM , ∀j ∈ PM ai,j ∈ {0, 1} (4.10)

The variable ai,j indicates if the VMi is mapped to the PMj .

Mutual Exclusion. In a cloud environment, a physical machine hosts zero or

more virtual machines. A virtual machine, however, may be hosted by exactly one

physical machine at any given time.
m∑
j=1

ai,j = 1 (4.11)

Constraint 4.11 ensures that for every virtual machine VMi , there is only one

decision variable, ai,j, set to one. The mutual exclusion constraint sets all other

decision variables to zero for a given VM once a physical machine is assigned.

Capacity Limits. In a cloud environment, the capacity of VMs hosted in a single

PM should not exceed the capacity limits of that PM. CPU, memory, disk space and

bandwidth are the main specification dimensions to be used in resources provisioning.

Without loss of generality, we consider only CPU and memory dimensions in the

current framework. Constraint 4.12 represents the CPU constraint ensuring that

capacity limitations will not be violated.

∀j ∈ PM
n∑
i=1

ai,j ∗ ccpui < Ccpuj , i ∈ VM (4.12)

41

where variables ccpui and Ccpu
j represent CPU specs for VMi and PMj , respectively.

This constraint limits the total CPU capacity of VMs hosted on a single physical

machine to the CPU capacity of the physical machine. Similar constraints can be

defined for other resources such as memory, disk space, and bandwidth. The generality

of the framework allows more than one resource dimension to be considered at a time.

While Constraints 4.10, 4.11, and 4.12 model VM resource requirements, the fol-

lowing constraints model VM security requirements. Both sets of constraints are used

during security-aware resource provisioning.

Security requirements are defined to enhance the overall security for the IaaS using

a defense-in-depth approach. Several security devices can be used to enhance the

security: firewalls, IDSs, and IPSec gateways. Firewalls are used to control the traffic

between VMs. Firewall requirements are modeled by the security groups and iptable

rules. IDSs are used to inspect the traffic between VMs. IPSec gateways are used to

encrypt/decrypt the communication between VMs.

In this discussion, we use the residual risk equations presented in §4.1.5 and §4.1.6

to add more layers to a defense-in-depth security strategy. Risk and impact values

are organized into three categories: high, medium, and low. Thresholds, t1 and t2, are

defined to set boundaries for each category. VMs that have risk values greater than

t2 are considered high risk VMs, VMs with risk values less than t1 are considered low

risk VMs. Medium risk VMs have a risk value between t1 and t2.

Security requirements are given by the user as shown in Table 4.3. Each cell in Table

4.3 becomes a security constraint within our model. We illustrate two such constraints

here: inspection enforcement (Pi,j) and anti-collocation enforcement (Qi,j).

Inspection Enforcement. The inspection enforcement (Pi,j) constraint specifies

that traffic is to be inspected between two high risk VMs:

ri > t2 ∧ rj > t2 → Pi,j (4.13)

42

Formally, inspection enforcement is represented as follows:

∀i, j ∈ VM Pi,j ∈ {0, 1} (4.14)

∀i, j ∈ VM Pi,j → ∃x, y ∈ PM (ai,x ∧ aj,y ∧ x 6= y ∧ lx + ly < L) (4.15)

In Constraint 4.15, lx is the cost for PMx to access the closest inspection middlebox.

The inspection enforcement constraint requires that both of the communicating VMs

be allocated on different hosts that can access an IDS middlebox with an acceptable

cost L. Providing a threshold L for the inspection cost gives preference to those PMs

close to IDS middleboxes to host VMs requiring traffic inspection. The cost L can be

defined as the number of links needed to reach the IDS middlebox. We used a similar

cost function to the one defined in [65].

This cost function increases the total cost as the distance between the hosting

machine and the IDS middlebox increases. Preference is given to place VMs subject to

this constraint on PMs that are closer to IDS middleboxes. Thus, for cloud providers,

placement of IDS middleboxes within the cloud infrastructure is an important design

consideration. Given the typical hierarchical structure where the lowest level contains

the hosting PMs, placing IDS middleboxes high in this structure reduces the number

of required middleboxes but increases the distance to the PMs. Conversely, placing

the IDS middleboxes close to the PMs reduces the distances but increases the number

of required middleboxes.

Anti-collocation Enforcement. Anti-collocation enforcement (Qi,j) adds an

extra layer of defense-in-depth. In this layer, an extra level of physical isolation is

enforced by allocating VMs on different PMs within a QoS threshold.

Formally, anti-collocation enforcement is represented as follows:

∀i, j ∈ VM Qi,j ∈ {0, 1} (4.16)

∀i, j ∈ VM Qi,j → ∃x, y ∈ PM (ai,x ∧ aj,y ∧ x 6= y ∧Dx,y < E) (4.17)

43

In Constraint 4.17, Dx,y represents the distance (number of links) between PMx

and PMy, E is a threshold for QoS checking. Cloud providers can use risk-aware

enforcement across multiple users to provide secure isolation.

4.3 Virtual Machine Migration Planning

VM migration is the process of changing VM assignment from one physical machine

to another. VM migration is an elementary part in managing cloud environments.

The VM migration planning problem considers the case in which there is a tempo-

ral relationship between VM migration steps. Several factors affect the temporal

relationship and consequently the sequence in which VMs are migrated. One factor

that influences the temporal relationship is physical network bandwidth limits. The

optimal migration plan from an efficiency standpoint is to migrate all VMs simulta-

neously. However, bandwidth capacity typically limits the number of VMs that can

be migrated at any one time.

A second factor that influences the temporal relationship of VM migration planning

is collocation dependencies between VMs. For example, consider a situation in which

an application VM and a database VM are running on two different PMs. The

application VM has frequent data-intensive communication to the database VM; thus,

it is desirable to allocate both VMs to PMs in close physical proximity to one another

for performance reasons. During the VM migration process, the sequence of VM

migrations may cause communication latencies if the collocation dependency is not

enforced, which can lead to SLA violations. An example of such requirements is

shown in §4.3.1.1.

Other factors that influence the temporal relationship of VM migration planning

are related to security configurations and workload characteristics. For example,

migrating one VM before another can result in a loss of communication between

both VMs due to the security context of a VM that depends on its old location [66].

The workload characteristics of VMs affect the migration cost in terms of migration

44

downtime and migration transfer time [34]. As observed in the experiments done by

[34], a memory-dirty workload VM or a web server workload VM will affect those

VMs migrated before them; therefore, it is recommended to give higher priority for

memory-dirty workload VMs and web server workload VMs to be migrated before

other VMs to reduce the cost of migrations.

All of these examples demonstrate that VM migration planning is both complex

and, at the same time, vital to the proper operation of IaaS instances. It is important

to avoid cases in which the migration process incurs extra cost or violates resource,

performance, or security requirements.

4.3.1 Problem Statement

Virtual machine migration planning is the problem moving VMs among PMs while

satisfying temporal relationships associated with bandwidth, collocation, security,

and workload constraints. In the following, we formalize the problem and provide an

illustrative example.

Let PM , |PM | = m, represent the set of available physical machines (PMs). PMs

are specified by their resources, e.g., CPU, memory, disk space, etc., capacities. Let

VM , |VM | = n, represent the set of running virtual machines. VMs are similarly

specified by their resources requirements such as CPU, memory, disk space, etc. With-

out loss of generality, we consider only CPU and memory resources dimensions in this

presentation.

Let M , M ⊂ VM , represent the set of virtual machines to be migrated. Let H ,

H ⊂ PM , represent the set of hotspot physical machines that are scheduled to be

switched off. Let D represent the dependency matrix for the running VMs. In D ,

Dx,y = 1 means that both VMx and VMy have communication dependency. Let C ,

C ⊂ VM , represent the set of critical VMs; these are VMs that cannot be migrated

or reallocated after their first allocation assignment.

Let R represent the risk score for all VMs. Ri is the risk score for VMi . Risk scores

45

for VMs depend on several factors such as: reachability and connectivity between

VMs, the vulnerability of VMs, and the impact value (cost of damage) for VMs.

More details about calculating VM risk scores can be found in §4.1.6 and [6]. In this

work, the risk constraints require a VM to be placed on a physical machine (PM) that

hosts VMs with a similar risk score. Risk constraints are also required to be enforced

during intermediate migration steps.

Let πx represent the placement status for all virtual machines at time x, π0 repre-

sents the initial placement, and πτ represents the target placement. Let σ represent

the transition from one placement status to another. For example, σ1 : π0
1−→ π1

represents one transition from π0 to π1. The transition of a VM from one placement

status to another placement status correlates to a migration step in the VM migration

plan. In a single migration step, either one VM migration (serial) or multiple VM

migrations (parallel) can be performed.

Let ρ(πx) represent the safety constraints for the placement status πx. The safety

constraints include capacity, dependency, and security constraints. At each interme-

diate migration step, safety constraints must be enforced.

The migration planning problem is defined as follows: given a set of physical ma-

chines, a set of VMs allocated on the physical hosts, the set of VMs to be migrated,

the set of hotspot PMs, the set of critical VMs, and the target placement of VMs, find

a migration plan (i.e., a sequence of migration steps) that converges the initial place-

ment to the target placement such that the cost is feasible, but for which the capacity

constraints of individual hosts, the communication dependency constraints, and the

security migration constraints are not violated. Costs may include data storage and

transfer, migration interruptions, migration time, and number of migrations.

Formally, we state the problem as follows:

Given:

PM ,VM ,H ,M ,D ,C ,R, π0, πτ

46

Find:

σk | σk : π0
k−→ πτ ∧

(∧
k

ρ(πk)

)

The problem is modeled as a constraints satisfaction problem not as an optimization

problem. Our goal is to find a satisfiable migration plan, i.e., one that satisfies all

the constraints and thresholds. The solution includes the migration steps required to

assemble resources and make the space needed for the target assignment.

4.3.1.1 Virtual Machine Migration Example

We illustrate the VM migration problem using the example configuration depicted

in Figure 4.3. For simplicity, we consider only the memory capacity and communica-

tion dependency requirements as safety requirements in this example.

Using the same notations presented in §4.3.1, the system is described as follows:

VM = {VM 1,VM 2,VM 3,VM 4}, PM = {PM 1,PM 2,PM 3}, M = {VM 1,VM 2},

D = {(VM 1,VM 2)}, H = {PM 1}, and C = {VM 3}. In this example, the communi-

cation dependency threshold is set to one, TD = 1, which means that any two VMs

having dependency between them are required to be allocated on hosts within one

link distance from each other. In this example, PM 1 and PM 2 are within one link

distance; PM 2 and PM 3 are also within one link distance.

The initial placement state, π0, is:

π0 = {(VM 1,PM 1), (VM 2,PM 1), (VM 3,PM 2), (VM 4,PM 3)}

The target placement state, πτ , is:

πτ = {(VM 1,PM 3), (VM 2,PM 2), (VM 3,PM 2), (VM 4,PM 3)}

The goal is to find a migration plan that makes π0 converge to πτ without violating

safety constraints. Our framework provides the following migration plan:

1. σ1 : (VM 2,PM 1)
1−→ (VM 2,PM 2)

2. σ2 : (VM 1,PM 1)
2−→ (VM 1,PM 3)

47

PM1 PM3 PM2

VM2

VM1 VM3 VM4

PM1 PM3 PM2

VM2

VM1 VM3 VM4

PM1 PM3 PM2

VM2 VM1

VM3 VM4

Figure 4.3: An example of VMs migration.

This migration plan maintains the dependency requirements between VM 1 and

VM 2 at all intermediate states. Note that migrating VM 1 before VM 2 will break the

dependency requirement at the first migration step; PM1 and PM3 are within 2 links

distance and the threshold is 1. Therefore, this migration sequence is not safe and

will be avoided.

This example illustrates importance of the migration sequence to preserving ca-

pacity and safety requirements, especially when the size of the problem increases.

Building an automated framework to produce migration plans is a great benefit for

complex migration situations, including ones that may appear to be infeasible at

first glance. Another example that shows the importance of VM migration planning

is shown in [33]. This example considers the link bandwidth limits as constraints

for VM migration. Our methodology handles both examples (and others) under a

common framework.

4.3.2 Framework Overview

Our automatic framework for VM migration planning (see Figure 4.4) is a three

stage process. The first stage includes the specification of the initial placement, π0, of

virtual machines in the cloud infrastructure; the specification of the target placement,

48

Risk	
 Parameters	

(R)	

VM	
 Migra1on	
 Plan	

Dependency	

Constraints	

VM’s	

Impact	

VM’s	

CVSS	

NVD	

Dependency	

Matrix	

(D)	

Security	

Constraints	

SMT	
 unsat core

Capacity	

Constraints	

PMs	

Hotspot	
 PMs	

(H)	

Π0	

Πτ	

VMs	

VMs	
 to	
 be	

Migrated	

(M)	

Cri1cal	
 VMs	

(C)	

Workload	

Constraints	

Figure 4.4: VM migration planning framework

πτ ; the specification of hotspot PMs, H ; the specification of critical VMs, C ; and the

calculation of the distance matix, D , and risk parameters, R. Note that the set of

VMs to be migrated, M , can be derived from π0 and πτ .

Stage two of our framework involves the specification of dependency, capacity,

security and workload constraints. These constraints address collocation, bandwidth,

security and workload requirements, respectively.

The final stage of our framework for VM migration planning is the generation of

a migration plan. In this stage, the various parameters are inputted into the SMT

solver. Modeled as a Constraint Satisfaction Problem, the SMT solver then finds a

migration plan, represented as a sequence of migration steps, that converges the initial

VM placement to the target VM placement with a feasible cost, without violating the

dependency, capacity, and security constraints. Costs may include data storage and

transfer, migration interruptions, migration time, and the number of migrations.

49

4.3.3 Migration Planning

In order to generate a VM migration plan that satisfies the dependency, capac-

ity, security and workload requirements, as well as the other framework parameters

including risk, we define the following constraints.

Placement Boolean Variable. A decision variable is needed to control the place-

ment of virtual machines on physical machines. This decision variable is restricted to

be a Boolean variable as follows:

aki,j ∈ {0, 1} (4.18)

The variable aki,j indicates if the VMi is mapped to the PMj at the kth migration

step.

Mutual Exclusion. In a cloud environment, while more than one VM may run

simultaneously on a single PM, a given VM can only run on one PM at a time.

∀k
m∑
j=1

aki,j = 1 (4.19)

Constraint 4.19 ensures that for every virtual machine VMi , there is only one

decision variable, aki,j, is set to one at every migration step k. The mutual exclusion

constraint sets all other decision variables to zero once a virtual machine is allocated

to a physical machine.

Capacity Limits. The capacity of VMs hosted in a single PM should not exceed

the capacity limits of that PM. CPU, memory, disk space, and bandwidth are the

main specification dimensions to be used in resources provisioning. Without loss

of generality, we consider only CPU and memory dimensions in the current model.

Constraint 4.20 represents the CPU constraint ensuring that capacity limitations will

50

not be violated.

∀k,∀j ∈ PM
n∑
i=1

(
aki,j ∗ ccpui

)
< Ccpu

j , i ∈ VM (4.20)

This constraint limits the total CPU capacity of VMs allocated in a single physical

machine not to exceed the CPU capacity of the hosting physical machine. Variables

ccpui and Ccpu
j represent CPU requirement and capacity for VMi and PMj , respec-

tively. Similarly, other constraints such as memory, disk space, and bandwidth can

be modeled using the same notations used in Constraint 4.20. The generality of the

model allows more than one specification dimension to be considered at a time.

Single Migration per VM. Let δki,j represent the change of placement status for

VM i at two consecutive migration steps, k and k + 1. Formally:

δki,j ∈ {0, 1} (4.21)

(δki,j = 1)⇔ (
k∧
q=0

¬aqi,j) ∧ (
τ∧

r=k+1

ari,j) (4.22)

The Boolean variable, δki,j, is set to 1 if the VM i is migrated from a hosting machine

to a different host, PM j, at the (k + 1)th migration step. To avoid unnecessary

migrations in which a VM is migrated several times, we limit each VM to be migrated

at most one time. Constraint 4.22 ensures this by setting ari,j equal to one for all steps

from (k+1) and onward. Also, this constraint helps to prevent situations where the

allocation of a VM is flipped in a loop between PMs.

Dependency Constraint. Migrating VMs may break the communication de-

pendency between VMs. Dependent VMs are required to be placed within a pre-

determined physical distance threshold, TD. In our framework, we define the distance

between physical hosts as number of links between the pair of machines hosting de-

pendent VMs. Enforcing dependency constraints eliminates a primary factor for

51

performance degradation by maintaining the proximity of dependent VMs. The de-

pendency requirement is given as an input to our framework. A Boolean dependency

matrix, D, is defined to encode the dependency between each pair of VMs. Formally:

Dx,y ∈ {0, 1}, x, y ∈ VM (4.23)

∀x∀y ∈ D akx,v ∧ aky,w → lv,w ≤ TD (4.24)

where lv,w is the physical distance between PMv and PMw.

Constraint 4.24 checks the dependency between all VMs at each migration step.

In some cases, dependency constraints may result in the migration of VMs that were

not scheduled for migration to maintain their dependency distance thresholds, TD.

Prioritized Migration. The workload characteristics can affect the total migra-

tion overhead of all VMs to be migrated [34]. In our framework, we leverage the

observations and conclusions that are suggested in the work done in [34]. A VM can

be characterized by its workload as follows: memory-dirty workload, disk I/O load,

NET I/O load, CPU load, and web server workload. Each workload affects the mi-

gration process to a certain extent. For example: a web server workload VM affects

both the migration time and the migration downtime of its co-hosted VMs.

To model these observations, each VM is assigned a priority score based on its

workload characteristics; thus, the sequence of migrations can be prioritized to de-

crease the downtime for VMs. VMs are migrated based on their priority score, i.e.,

the lower the priority score, the higher the migration priority. Let ox represent the

priority score for VMx . The priority score is given based on the observations provided

in [34].

∀x∀y ∈ M ox < oy → δkx,v ∧ δqy,w ∧ k < q (4.25)

Constraint 4.25 enforces the migration order of VMs; VMs with higher priority will

be migrated before VMs with lower priority. The prioritized migration constraint

52

provides partial information to the solver about the sequence ordering.

Critical VMs. Some VMs require specific settings and dedicated hardware. Such

VMs are considered as critical VMs. Critical VMs are non-migratable. Let ηi represent

a Boolean variable to flag critical VMs.

ηi ∈ {0, 1}, i ∈ VM (4.26)

ηi →
τ−1∑
l=0

δli,j = 0 (4.27)

where δli,j represents the count of how many times a VM is migrated.

Constraint 4.27 asserts the count of migrations for a critical VM to be zero. The

critical VMs constraint can also be utilized to fix the allocation of VMs that have

specific workload; memory-dirty workload for example.

Hotspot PMs Constraint. The set of hotspot PMs, H , identifies PMs scheduled

to be switched off. As such, no PM ∈ H should host a VM at the final placement,

πτ . Let skj indicate the status of a PM at the kth migration step.

skj ∈ {0, 1} (4.28)

∀j ∈ H sτj →
∑
i∈VM

aτi,j = 0 (4.29)

Constraint 4.29 ensures that the hotspot physical hosts are excluded at the final

migration step, τ , and thus are not hosting any VMs.

Risk Anti-Collocation. The security of a VM in virtualized environments re-

lies on resource isolation among VMs. There is no complete isolation between VMs

hosted on the cloud; it is possible to have cross-VM attack from VMs that are collo-

cated on the same host [67]. Thus, during the migration process and before the final

allocation of the migrated VMs, VM risk requirements could be violated - e.g., a VM

can be allocated intermediately on a PM that hosts other VMs with conflicting risk

53

requirements.

To provide more secure isolation during the live migration process, we will enforce

that no two VMs with conflicting security/risk requirements are hosted on the same

PM. For more details about risk calculation, refer to §4.1.5 and §4.1.6. For simplicity,

we organize VM risk into three different categories: high, medium, and low. Each

PM has a risk tag indicating the type of VMs that it can host according to their

risk category. The following constraint ensures that risk requirements are maintained

during all steps of the migration plan, including intermediate steps.

∀k aki,j ∧ akx,j → ri = rx x, i ∈ VM (4.30)

where ri is the risk score for VMi .

Constraint 4.30 ensures that during all migration steps, VMs that are collocated

on the same PM have the same risk score.

As previously described, during stage three our framework unwraps all the above

constraints to their valid combinations and inputs them into the SMT solver. The

solver, in turn, assembles the given combinations and finds a satisfiable assignment, if

one exists. In the case where there are no satisfiable solutions, relaxation of constraints

may be required. Examples of potential relaxation options included:

• Changing the target placement πτ : by changing the target placement, it is

possible to find a VM migration sequence that leads to πτ .

• Changing the dependency threshold TD.

• Allowing VMs to be migrated multiple times.

• Changing the set of critical VMs, C .

Note that the input values such as π0 and H are asserted as satisfied variables.

Furthermore, note that the generality of our framework suggests that it can be easily

54

extended to include other constraints to serve different requirements and applications.

FW1 FW2

FW3

VM2

VM1

PM2

PM3 PM1

Figure 4.5: VM migration ex-
ample (before migration)

FW1 FW2

FW3

VM2 VM1

PM2

PM3 PM1

Figure 4.6: VM migration ex-
ample (after migrating VM2

from PM2 to PM3)

4.4 Virtual Machine Migration Verification

VM migration plays an important role in maximizing resource utilization and per-

formance within cloud computing environments.VM migration, however, results in

cloud computing environments whose state is dynamic rather than static, as VMs

may be relocated to several different host machines during their life cycles. Migrating

VMs between physical hosts changes the deployment of virtual network topologies,

which in turn requires changes to physical network middleboxes, such as firewalls and

switches, to preserve security and connectivity policies.

It is important to ensure the security/connectivity of all VMs post migration. In

other words, the configuration of the virtual network topology under the new physical

network deployment must be equivalent to the configuration prior to VM migration

in terms of its security and network connectivity policies. The potential for miscon-

55

figuration of these devices, however, is high, due to inherent configuration complexity,

which can lead to policy violations. To illustrate, we provide the following example.

4.4.1 Virtual Machine Migration Verification Example

Figure 4.5 presents an illustrative virtual network deployed to a simple cloud com-

puting environment comprised of three physical hosts and three firewalls. In this

example, VM1 is hosted in PM1 and VM2 is hosted in PM2. Assume for this ex-

ample that the reachability requirements for this set of VMs allows VM1 and VM2

to reach (i.e., communicate mutually) with each other. Therefore, firewall FW1 is

configured to allow network traffic sourced from VM1 and destined to VM2, and vice

versa.

Assume for performance reasons, however, that the decision is made to migrate

VM2 from PM2 to PM3. To maintain an equivalent configuration for the virtual

network, all VMs post migration must maintain equivalent reachability requirements

relative to the pre-migration configuration. In this simple example, after VM migra-

tion, firewalls FW1 and FW3 must be reconfigured to: i) block all network traffic

between VM1 and VM2 via FW1, traffic that was allowed prior to VM migration;

and ii) enable all network traffic between VM1 and VM2 via FW3, traffic that was

blocked prior to migration (see Figure 4.6).

4.4.2 Problem Statement

Reconfiguring firewall policies, however, under most circumstances is a non-trivial

task. In particular, reconfiguring firewall policies may require the addition, deletion,

and/or modification of multiple firewall rules. When multiple VMs are migrated,

the complexity can increase significantly. Practice has demonstrated that the iden-

tification and modification of these rules are both challenging and prone to error.

Incorrect or inconsistent modifications will introduce policy misconfigurations that

affect the security policy and reachability requirements of the virtual network. In-

56

cremental, automated, formal techniques to reconfiguration can provide an efficient

and configuration-preserving solution to this challenge. In the following sections we

present our approach to meeting this challenge.

4.4.3 Virtual Machine Migration Verification

As previously indicated, cloud network reconfiguration post VM migration may

lead to policy misconfigurations – misconfigurations that can jeopardize the security

of the cloud computing environment. There are numerous potential sources for mis-

configuration such as failure to update properly a network firewall/switch policy or a

sequence of policies on a path of network links between old/new VM locations. Thus,

proper verification of cloud network configuration equivalency post VM migration is

essential to ensure the preservation of cloud security.

Using our model for cloud network configurations, however, formal verification of

cloud network configuration equivalency post migration is possible. In particular,

cloud network configuration equivalency may be verified via a series of constraints.

To define these constraints, consider the following:

• Let VMi be a migrating VM.

• Let xi be the location of VMi before migration, and yi be the location of VMi

after migration.

• Let ARP (xi,∗)
b and ARP (∗,xi)

b be the access route policy at location xi from/to

VMi and all other VMs before migration.

• Let ARP (xi,∗)
a and ARP (∗,xi)

a be the access route policy at location xi from/to

VMi and all other VMs after migration.

• Let ARP (yi,∗)
a and ARP

(∗,yi)
a be the access route policy at location yi from/to

VMi and all other VMs after migration.

57

• Let fxi ∈ NF be a network firewall that controls network traffic from/to the

migrating VM, VMi, at the old location xi, i.e. fxi ∈ {AR(xi,∗) ∨ AR(∗,xi)}.

Similarly, f yi ∈ NF is defined to be a network firewall that controls network

traffic from/to the migrating VM, VMi, at the new location yi, i.e. f yi ∈

{AR(yi,∗) ∨ AR(∗,yi)}.

• Let Pfxia
and Pfxib

be the firewall policy after and before migration, respectively.

Given these assumptions, cloud network configuration equivalency may be verified

post migration by determining the satisfiability of the following constraints.

Blocked Traffic Constraint. For all migrated VMs, VMi ∈ {VM1, ..., V Mn},

all accepted traffic at xi to and from VMi post migration must be blocked.

∀VMi ∈ {VM1, ..., V Mn}.ARP (xi,∗)
a = φ (4.31)

∀VMi ∈ {VM1, ..., V Mn}.ARP (∗,xi)
a = φ (4.32)

Similar Traffic Constraint. For all migrated VMs, VMi ∈ {VM1, ..., V Mn},

all accepted traffic at yi to and from VMi post migration must be the same as all

accepted traffic at xi to and from VMi pre migration.

∀VMi ∈ {VM1, ..., V Mn}.ARP (yi,∗)
a = ARP

(xi,∗)
b (4.33)

∀VMi ∈ {VM1, ..., V Mn}.ARP (∗,yi)
a = ARP

(∗,xi)
b (4.34)

Unaffected Traffic Constraint. For all non-migrating VMs, VMj /∈ {VM1, ..., V Mn},

all accepted traffic to and from VMj must be unaffected.

∀VMj ∈ {VM1, ..., V Mn}.
∧
u,v 6=x

ARP (u,v)
a =

∧
u,v 6=x

ARP
(u,v)
b (4.35)

Filtering Rules Removal Constraint. For all network firewalls fxi ∈ NF for

58

all migrated VMs, VMi ∈ {VM1, ..., V Mn}, must be updated to remove all filtering

rules that allow traffic sourced or destined to VMi.

∀fxi ∈ NF, VMi ∈ {VM1, ..., V Mn}.

Pfxia
= Pfxib

\ Pfxib
|source=xi ∨ destination=xi (4.36)

where Pfxib
|source=xi ∨ destination=xi is the restricted BDD after assigning source and

destination variables to xi.

Filtering Rules Addition Constraint. For all network firewalls f yi ∈ NF for

all migrated VMs, VMi ∈ {VM1, ..., V Mn}, must be updated to include all filtering

rules that allow traffic sourced or destined to VMi.

∀f yi ∈ NF, VMi ∈ {VM1, ..., V Mn}.

Pfyia
= Pfyib

∧
Pfxib
|source=xi→yi ∨ destination=xi→yi (4.37)

where Pfxib
|source=xi→yi ∨ destination=xi→yi is the restricted BDD after assigning source

and destination variables to xi and then replacing xi with yi. In other words, the

filtering rules that are removed by Constraint 4.36 will be updated to reflect the new

location, yi, and then added to the firewall policy.

4.4.4 Auto-Policy Reconfiguration

In the previous section, we presented an approach for modeling a cloud network

configuration as a set of access routes and a formal approach for verifying the correct-

ness of post VM migration cloud network configurations. In this section we present

an automated approach to reconfigure firewall policies post VM migration.

Our approach to cloud network reconfiguration is unique in that it is incremental.

Consequently, it offers an effective alternative to a complete regeneration of firewall

policies from reachability requirements and security policies for all network switches

59

and firewalls.

There are two main drawbacks to the complete regeneration approach. The first

drawback is one of efficiency. Every time a VM migration is performed, the entire

cloud network configuration must be generated, including for those devices that are

unaffected by the migration. The second drawback is that the new cloud network

configuration requires an additional, complete verification to ensure the proper trans-

lation of reachability requirements and security policies.

Our incremental reconfiguration approach leverages the prior cloud network con-

figuration and introduces modifications to update selected network switches and fire-

walls. In particular, we process each affected firewall policy, represented as a BDD, by

removing all network flows that are related to the migrating VMs at the old location

and leaving the remaining non-migrating VMs network flows. The resulting BDD is

the new firewall policy. The removed network flows are then added to the firewall

policies that control the migrated VM at the new location. Then, we translate this

BDD into a set of firewall rules by traversing all paths from the root to the terminal

node.

Our approach leverages previous work on building and verifying network configura-

tions [42]. ConfigLEGO is an imperative framework that provides an open program-

ming platform for building and analyzing the entire network security configuration

both globally and systematically based on user requirements [42]. The ConfigLEGO

framework provides a C/C++ API as a software wrapper on top of a BDD engine to

allow users to define network topologies and configurations and then perform verifica-

tion and diagnostic analyses at various abstraction levels, without requiring knowledge

of BDD representation or operations.

To develop our incremental reconfiguration approach, we added new features and

functions to ConfigLEGO to enable the framework to deal with virtual environments.

An extra level of reachability analysis is defined to verify VM reachability and VM

60

Algorithm 1: Auto Firewall Policy Generation
Data: devices configuration
Data: network topolgy
Result: Updated firewall policies affected by VM

migration
1 create and initialize network;
2 add network devices;
3 connect network devices;
4 assign VMs to hosts;
5 build devices BDDs;
6 build network BDD;
7 migrate VMs;
8 for every migrated VM (v) do
9 get r = accessible route (any VM, v);

10 for every firewall (f) in accessible route (r) do
11 extract network flows between (any VM, v) from

firewall f BDD;
12 translate firewall f BDD into firewall rules;
13 end
14 end

N.link(PM1, ANY_IFACE, R1, 1);

This statement will link PM1 through any interface to router
R1 through interface “1” in network N.

After linking all components in network N, a BDD for the
network is generated – first by generating a BDD for each
device, then by generating a BDD for the entire network. This
task is acomplished by invoking the statement:

N.buildDeviceBDD();
N.buildGlobalBDD();

After building the network, we calculate the accessible
routes, e.g., from V M1 and V M2 or AR(V M1,V M2) in the
example. Knowing the access routes will provide the list of
network devices that are affected by V M2 migration. The
following code filters all firewall devices in AR(V M1,V M2):

N.getPathObjects(src, dst, fwVec, FIREWALL);

In this code, the getPathObjects(. . .) function returns a vector,
fwV ec, of all firewall objects between a source domain src
and a destination domain dst. Each firewall policy in the
accessible route AR(V M1,V M2) is updated by extracting all
network flows between V M1 and V M2 from its BDD. This
step is done using the ”restrict(. . .)” function. The restrict
function sets the variable values in a BDD as specified in
the given parameters. The following restrict example, sets
all source IP address values in BDD FW1 to the value
(10.11.12.13).

restrict(FW1, SRC_IP, "10.11.12.13");

After restricting the firewall BDD and removing network flows

affected by the VM migration, the resulting BDD represents
the firewall policy post migration. To translate a BDD into
a set of firewall rules, we use ”satone(. . .)” function. This
function returns a satisfiable variable assignment in a given
BDD. A satisfiable assignment represents a firewall rule. Then
we continue extracting all satisfiable assignments, one by one,
until we traverse the entire BDD.

bdd r = satone(FW1);

However, at this point, the generated firewall rules are not
ordered in the optimal order. The optimal rule ordering places
the rules with high matching rate at the top. To obtain the best
results, we update the rule ordering by comparing matching
rates in the firewall log files.

The result is a new network cloud configuration, one that is
a reconfiguration of the previous cloud network configuration.

VI. EVALUATION

A. Environment Setup

The datacenter architecture model used in this test is fat-tree
three-tier topology. We simulated the topology using k-port
switches to build 128 PMs datacenters (k=8). Using k-port
switches in a fat-tree topology gives k2

2 aggregator switches
in total; we have k pods and k

2 aggregator switches in each pod
[5]. All physical machines have the same specifications, each
physical machine has an 8 core CPU and 64 GB memory. All
security middleboxes (firewalls) are placed randomly between
switches of different layers. We leverage our previous work to
allocate VMs [2] and to find a migration sequence plan for the
migrated VMs [6]. Firewall policies are generated randomly.

B. Results

All evaluation results were simulated on 3.10 GHz quad
core CPU with 32 GB memory. The framework is imple-
mented in C++ and all firewall policies are encoded in BDDs
using BuDDy library [7].
BDD Building Time: Figure 3 shows the running time
overhead to generate a BDD for a firewall policy. In this
experiment, the firewall policies for the cloud network are
generated randomly. The policy size (i.e. number of rules)
ranges from 1000 to 10000 rules. The figure depicts that the
BDD size is linearly dependent on the firewall policy size and
it takes around 1.14 seconds to build a BDD that represents
10000 rules firewall policy.
BDD Space Requirement: Figure 4 shows the space require-
ment (i.e. BDD size) for generating a BDD. The figure shows
that the space requirement for a firewall policy of size 10000
rules is around 3.3 Mb. The BDD size grows linearly as the
policy size increases.
VM Migration Verification Overhead: In this experiment, a
set of VMs is randomly chosen to be migrated from one host
to another host. The migration sequence plan is determined as
described in [6]. Firewalls are updated according the migration
sequence plan, not all firewall are updated, only the affected

Figure 4.7: Auto firewall policy generation

migration.

Figure 4.7 shows the algorithm that summarizes the general steps performed to

reconfigure incrementally firewall policies affected by VM migration.

The following ConfigLEGO code illustrates how we update the firewall policies

after VM migration. The cloud network and VM migration used in this example is

the example shown in Figure 4.5 and Figure 4.6.

First, the network is initialized:

Network N;

Second, all devices are added to the network. Each type of device has a given

configuration file. The configuration file contain information about each object such

61

as: IP address, open ports, firewall policy, routing table, etc.

Host PM1("h1.txt");

VM V1("v1.txt");

Firewall FW1("f1.txt");

Router R1("r1.txt");

After adding network devices, the network links are defined. For example, PM1

and R1 are connected as follows:

N.link(PM1, ANY_IFACE, R1, 1);

This statement will link PM1 through any interface to router R1 through interface

“1” in network N.

After linking all components in network N, a BDD for the network is generated –

first by generating a BDD for each device, then by generating a BDD for the entire

network. This task is acomplished by invoking the statement:

N.buildDeviceBDD();

N.buildGlobalBDD();

After building the network, we calculate the accessible routes, e.g., from VM1 and

VM2 or AR(VM1,V M2) in the example. Knowing the access routes will provide the list

of network devices that are affected by VM2 migration. The following code filters all

firewall devices in AR(VM1,V M2):

N.getPathObjects(src, dst, fwVec, FIREWALL);

62

In this code, the getPathObjects(. . .) function returns a vector, fwV ec, of all firewall

objects between a source domain src and a destination domain dst. Each firewall

policy in the accessible route AR(VM1,V M2) is updated by extracting all network flows

between VM1 and VM2 from its BDD. This step is done using the “restrict(. . .)”

function. The restrict function sets the variable values in a BDD as specified in the

given parameters. The following restrict example, sets all source IP address values in

BDD FW1 to the value (10.11.12.13).

restrict(FW1, SRC_IP, "10.11.12.13");

After restricting the firewall BDD and removing network flows affected by the VM

migration, the resulting BDD represents the firewall policy post migration. To trans-

late a BDD into a set of firewall rules, we use “satone(. . .)” function. This function

returns a satisfiable variable assignment in a given BDD. A satisfiable assignment

represents a firewall rule. Then, we continue extracting all satisfiable assignments,

one by one, until we traverse the entire BDD.

bdd r = satone(FW1);

However, at this point, the generated firewall rules are not ordered in the optimal

order. The optimal rule ordering places the rules with high matching rate at the top.

To obtain the best results, we update the rule ordering by comparing matching rates

in the firewall log files.

The result is a new network cloud configuration, one that is a reconfiguration of

the previous cloud network configuration.

4.5 Software Defined Networks Misconfigurations

The SDN paradigm provides a centralized, programmable, global view of a network

environment. Abstracting network control from the underlying physical network is

63

attractive to cloud infrastructures as SDNs can reduce management overhead and

provide additional benefits by easing cloud provider efforts to monitor network usage,

provide network isolation, manage network configuration, provision infrastructure

resources, and plan for virtual machines migration.

Among several protocols used to run and implement SDNs, OpenFlow is a very

prominent, open standard. The OpenFlow standard separates the data plane and

control plane [46, 48], the two elements that form the core of a SDN. By separat-

ing the data and control plans, cloud providers leverage the OpenFlow controllers

to install filters (e.g., match, count and action) on OpenFlow switches to manage

in a centralized and programmable manner the flow and processing of data across

the network. We use the OpenFlow protocol to characterize the problem of SDN

misconfiguration and illustrate the power of our formal methods-based framework to

mitigate such misconfigurations.

4.5.1 Problem Statement

SDNs, like any other network architecture, are susceptible to network misconfigura-

tions. There are two main components in any SDN, the controller and the forwarding

switches. The controller inserts, modifies, and removes filters in switches in order

to enforce network-wide policies or properties (e.g., guests should access the internet

only through a proxy) for data flow and processing [46].

It is assumed that the integrated behavior of the installed filters will implement the

desired network policies and properties. However, the complexity of these policies and

properties, particularly in the aggregate, can give rise to the following situations: (1)

the presence of a semantic gap between the controller platform (e.g., NOX [48]) and

the filter tables in the data processing units; (2) the distribution of access control that

supports aggregate flows (wildcards) and many different actions; (3) the ability for

different users to share one controller; and, (4) the ability to use multiple controllers

within the same domain. These situations individually as well as collectively increase

64

the potential for both intra-federated (single domain) OpenFlow configuration con-

flicts and inter-federated conflicts (multi-domain) OpenFlow configuration conflicts.

The result can lead to a violation of end-to-end policy enforcement.

Our formal methods-based framework attempts to address these situations by: (1)

encoding OpenFlow configurations using BDDs to disambiguate policies through the

use of a priority-based matching semantic to manage competing actions; (2) con-

structing a unified model of the global behavior of an OpenFlow SDN in the presence

of multiple controllers and users; and, (3) providing a generic policy verification inter-

face using BDD-based symbolic model checking and temporal logic of the OpenFlow

SDN configuration.

Our framework therefore can be used to: (a) verify the consistency of different

switches and controllers across federated OpenFlow infrastructures; (b) validate the

correctness of the configuration synthesis; (c) debug reachability and security prob-

lems; and, (d) assess the consistency of SDN policies. Our framework can also be

used as a foundational methodology to conduct “what-if” analysis to study the im-

pact of the new SDN network configurations by simply changing the state in the

FlowTables and then analyzing the effects. For cloud infrastructures, SDNs provide

valuable support for virtualization by making cloud management simpler and, under

our framework, less susceptible to misconfigurations.

4.5.2 Framework Overview

Our framework for SDN configuration analyses (see Figure 4.8) involves two stages.

Stage one includes the specification of OpenFlow SDN rules and policies as well as

the establishment of rule prioritizations. Stage two involves query specification and

validation. The set of valid queries is defined to include any well-formed temporal

logic formula.

65

SMT	

Queries	

SDN	
 Controller	

Policies	

OpenFlow	
 SDN	

Rules	

Consistency	

Outcomes	

Figure 4.8: SDN configuration analysis framework

4.5.3 Formal Modeling of OpenFlow SDN Configurations

OpenFlow SDN configurations are collections of policies, each defined by a sequence

of rules that are deployed by controllers within the OpenFlow switches. Each rule

acts, when applicable, as a filter that affects data flow and processing. As such, the

terms “rule” and “filter” are often used interchangeably in this context. Formally, a

rule is defined as follows:

Definition 3 An OpenFlow SDN Rule, Ri, consists of a set of constraints on a set

of k filtering fields, F = {fv1, fv2, . . . , fvk}, together with an action, ai, from the set

of all actions, A.

Each rule can be written in the form:

Ri := Ci ai

where Ci is the constraint on the filtering fields that must be satisfied in order for

the action ai ∈ A to be triggered. The condition Ci can be represented as a Boolean

expression over the filtering field values fv1, fv2, . . . , fvk as follows:

Ci = fv1 ∧ fv2 ∧ · · · ∧ fvk

66

Example field values include IP addresses, port numbers, user IDs, and controller

IDs. An OpenFlow SDN policy, therefore, is defined as a sequence of rules (or filters).

More formally:

Definition 4 An OpenFlow SDN Policy, P = R1, R2, . . . , Rn, is a sequence of n

rules that determine the appropriate action performed on any incoming packet.

A priority-based matching semantic is applied to the FlowTable at each OpenFlow

switch. This semantic is equivalent to the first-matching semantic of firewalls since

the first rule can be reduced to the second rule by simply ordering the rules based on

their priorities. We assume that if two rules have the same priority the first match

will take precedence. Therefore, the FlowTable matching semantic fits very well with

the If-else Normal Form (INF) and can be encoded using BDDs as follows:

Pa =
∨

i∈index(a)

(¬C1 ∧ ¬C2 . . .¬Ci−1 ∧ Ci) =
∨

i∈index(a)

i−1∧
j=1

¬Cj ∧ Ci (4.38)

Such that priority(Ci+1) < priority(Ci), and index(a) = {i | Ri = Ci a}

Formally, the representation of the entire FlowTable (for all actions, users and

controllers) for switch j is defined as follows:

P (j) =
∨

∀n = ai ∈ Action

Pn. (4.39)

Let us assume that user and controller IDs are encoded as Boolean variables as u

and c, respectively. Under this assumption we can represent the FlowTable for filters

of action a created by user u on controller c as follows: P u,c
a = Pa|u,c where | is a

restrict operation in the BDD. Therefore, the representation of all FlowTables in the

federated network N that belongs to user u and controller c can be defined as:

φu,c(N) =
∨

∀j=switch∈N

∨
∀n = ai∈ Actions

P u,c
n (j). (4.40)

67

Assuming that the default action when a traffic flow does not match any of the

filters at a switch is to encapsulate and forward to the controller, then this traffic

space that represents these flows will be ¬P (j).

4.5.4 Query Examples

Our framework provides a generic policy verification interface for symbolic model

checking of the OpenFlow SDN configuration. Any temporal logic formulae can be

used. In this section, we classify the types of verification experiments that can be per-

formed on multiple OpenFlow infrastructures. We also present examples of important

properties to be verified in an OpenFlow network.

Intra-Federated Consistency Verification (Intra-Federated Flow Isola-

tion). As the OpenFlow protocol allows for wildcard (flow aggregation) of access

control configuration, the interdependency between different access control policies

installed by the same user over time, or multiple users working on the same or differ-

ent controllers might conflict with each other causing errors in the OpenFlow opera-

tion such as reachability problems or a security violation. General examples of this

type of conflicts (e.g., shadowing, correlation) are described in [68, 35, 69]. Examples

within an OpenFlow environment are as follows (refer to § 4.5.3 for notation):

Example (1): “User flow spaces should be completely disjoint/isolated,” formally:

n−1∨
j=1

n−1∧
i=j

P i,C ∧ P i+1,C = FALSE (4.41)

such that users i, j ∈ Controller(C).

Example (2): “All production (non-experiment) flows should be forwarded nor-

mally,” formally:

Ψ→
n∨
j=1

Pai(j) = TRUE (4.42)

such that Ψ is a BDD that represents the production traffic flows and ai equals the

68

normal_forward action. Notice that this does not impose any restriction on non-

production traffic.

Inter-Federated Consistency Verification (Inter-Federated Flow Isola-

tion). This query explores inconsistencies between any two rules within FlowTables

across the network. For example, “FlowTables contained in switches with different

controllers within the same domain exhibit consistent action for the same overlapping

flows”. This can be formally defined as follows:

n−1∨
j=2

∧
ai∈Actions

n−1∧
j=1

Pai(j) ∧ ¬Pai(j + 1) = FALSE (4.43)

such that the switch j ∈ Controller(C).

Intuitively, this means that no two FlowTables will execute filters of different ac-

tions on the same traffic flow. This eliminates both rule shadowing and spuriousness

between switches in the path [36]. It is worth mentioning that this property might

only be used with actions that require path consistency/stability, such as forward,

limit, and QoS-classes, but not necessarily for any general action such as encrypt that

can be performed by certain switches.

Property-based Verification for Inter-federated Flow. Using model checker

technique like in ConfigChecker [4], our framework can verify general network prop-

erties using temporal logic. Some OpenFlow examples are presented in the following:

Example(1): “If a packet is ever encrypted, it will eventually reach the destination

as plain text”, formally:

Q = (src = a1 ∧ dest = a2 ∧ loc(a1) ∧ encrypt → AF decrypt ∧ loc(a2)) (4.44)

where encrypt/decrypt are flags to mark whether a packet is encrypted or decrypted

and loc(a1) indicates the current location of a packet is at address a1.

Example(2): “Guests in the network can only access the Internet through a proxy

69

server” [46], formally:

(loc(a1) ∧ src = a1 ∧ guest(a1) ∧ dest = a2 ∧ Internet(a2))

→ ¬EF (src = a1 ∧ dest = a2 ∧ loc(a2) ∧ ¬proxy) (4.45)

In this example, guest(a1) means that the source address a1 is used by the guest,

Internet(a2) means that the destination address a2 is outside the domain, and proxy

is a flag to indicate if a packet is sent through a proxy server or not. Literally, if a

packet is located at an IP address used by a guest and it is destined to an address

outside the domain, then the packet should pass through a proxy server.

Example(3): “VoIP phones are not allowed to communicate with laptops” [46],

formally:

(loc(a1) ∧ src = a1 ∧ V oIP (a1) ∧ dest = a2 ∧ laptop(a2))

→ ¬EF (src = a1 ∧ dest = a2 ∧ loc(a2)) (4.46)

In this example, V oIP (a1) means that a1 is assigned to a VoIP phone; similarly,

laptop(a2) indicates that a2 is a laptop machine.

Flow Isolation. The configurations given to a user describe the flows that should

be isolated from the other user flows. This means that the flows cannot be shared by

other users. Assuming Si and Sj are BDDs for different flows, we can formally verify

this as follows: Si ∩ Sj = φ, such that i, j ∈ Users.

Flow Actions. Our framework responds to a message m from a controller by:

allowing it if m matches the user configuration; rewriting it if m does not match the

user slice but it can be restricted to match it; or, dropping it if m does not match

70

and cannot be restricted to match it. This can be formally checked as follows:

((m → Si = TRUE) → allow)

((m → Si = FALSE) → drop)

((m → Si = Exp) → rewrite)

where m is a message, Si is the policy for user i, and Exp is a Boolean expression.

Interactive Debugging via Counter Examples. For each one of these exam-

ples, if the property was not satisfied, our framework can present a counter example

(i.e., misconfiguration) that would invalidate this property in the network. This can

be used for interactive debugging by fixing and changing the configuration iteratively

until the property is satisfied.

4.5.5 FlowTable Pipeline Misconfiguration

The OpenFlow protocol permits the specification of multiple FlowTables within

a single network switch. The multiple FlowTables are collectively referred to as a

pipeline. In other words, an OpenFlow pipeline is composed of multiple “stops” where

at each stop various tasks are performed. The effect of a pipeline is to have multiple

FlowTables performing multiple actions on a packet at a given network switch.

OpenFlow defines mechanisms to constrain pipeline specifications. For example, in

a pipeline, FlowTables at each switch are numbered starting from 0. A network packet

is matched against rules in table 0 first, then forwarded to next table in increasing

order. OpenFlow packet forwarding from one table to another if the table ID of the

destination is larger than current table ID, i.e., backward flow is not allowed. Network

packets are forwarded from one table to the next within a pipeline using the “goto

table” command. OpenFlow rules may also change the status of a packet via the

“set” operation. Having multiple “goto table” commands in different FlowTables at a

single switch creates several pipelines and can make detecting policy misconfigurations

71

Rule	
 #	
 src	
 IP	
 	
 dest	
 IP	
 	
 instruc0ons	

1	
 105.4.*.*	
 105.3.1.1	
 {	
 drop	
 }	

2	
 105.5.1.1	
 105.15.10.*	
 {	
 set	
 src	
 IP	
 à	
 105.4.1.1,	

goto	
 table	
 1	
 }	

flow#1	
 105.4.1.1	
 105.3.1.1	

flow#2	
 105.5.1.1	
 105.15.10.10	

Rule	
 #	
 src	
 IP	
 dest	
 IP	
 instruc0ons	

1	
 105.4.1.1	
 105.15.10.*	

	

{	
 set	
 dest	
 IP	
 à	
 105.3.1.1,	

	
 forward	
 p1	
 }	

table0

table1

Figure 4.9: Example to illustrate FlowTable pipeline misconfigurations caused by
“set” and “goto table” actions.

a complex task. The presence of “set” operations in FlowTable rules can make it

difficult to track updates and verify compliance with desired security policies. As

such, the dynamic nature of the SDN architecture and the presence of complex rules

that can change packet headers, such as “set” and “goto table” commands, create an

environment that is rich for misconfigurations.

Our framework models the aggregate behavior of all FlowTables in a single switch

using BDDs. Our framework also can verify and detect misconfigurations in all pos-

sible pipelines that result from using the “goto table” command in FlowTables.

To understand better how the power and complexity of SDNs can lead to FlowTable

pipeline misconfigurations, we offer the following example. This example, shown

in Figure 4.9, illustrates how the “set” command can lead to a misconfiguration of

an OpenFlow pipeline. Let us assume that the desired network flow policy should

block all network traffic coming to (105.3.1.1) from subnet (105.4.*.*). In network

FlowTable table0, rule#1 implements this policy and blocks all traffic from (105.4.*.*)

72

to (105.3.1.1). When a network packet is matched against this rule, rule#1 in table0,

the packet will be dropped. Thus, when packet representing incoming flow #1 arrives

at the network switch and is processed by Flow Table table0, the packet will be

dropped and the network flow policy will not be violated.

The packet representing incoming flow #2 coming from (105.5.1.1) to (105.15.10.10)

arrives at the switch, it also will be processed in the pipeline starting from table0.

This packet, however, will not match rule #1 in table0; therefore, it will be matched

against the next rule, rule #2 in table0. In this situation, the packet matches the

rule header and the associate actions are triggered. There are two actions in rule #2.

The first action includes a “set” command that modifies the source IP of the packet

to (105.4.1.1). This modification does not affect the matching of rule #2 - the header

need only be matched successfully once prior to the execution of the action(s). The

second action includes a “goto table” command that forwards the “modified”network

flow to table1 in the pipeline. In table1, the packet will match rule #1 and the

associated actions will be activated. The “set” action will modify the dest IP to

(105.3.1.1) and then the packet is forwarded. This example illustrates how multiple

“set” and “goto table” actions can be used to modify network flows in ways that violate

desired network policies. Such situations represent a misconfiguration of the SDN,

yet they are not readily obvious to the end user.

FlowTable Pipeline Verification. Using CTL queries, we can write the following

query to detect FlowTable pipeline (intra-pipeline) misconfiguration that is discussed

in the example above:

[(loc(switch(j)b) ∧ src = a1 ∧ dest = a3 ∧ drop(a1, a2)

→ ¬EF (loc(switch(j)a)) ∧ src = a1 ∧ dest = a2

(4.47)

where loc(switch(j)b) and loc(switch(j)a) represent the actual location of the packet

73

before the switch and after the switch, respectively. The function drop(a1, a2) means

that there is a rule implemented at the switch to drop flows between a1 and a2.

To capture intra-pipeline misconfiguration at a switch, we need to detect all mod-

ifications by the “set” and “goto table” actions that cause conflict with the actual

implemented policy.

Intuitively, equation 4.47 means that there should not be any modification on the

flow at the FlowTable pipeline in which the result is different from the encoded rules

(i.e., the flow destination should not be modified from a3 to a2 when the flow source

is a1 and there is a rule drops flows between a1 and a2).

4.5.6 Soundness and Completeness for OpenFlow

Configurations

Using CTL queries, we can verify the soundness and completeness of OpenFlow

configurations. We do not assume all flows can be targeted from any source IP to

any destination IP, even if there is a physical connectivity between IP addresses.

The valid connectivity is determined based on the Connectivity Requirement Policy

(CRP), which considers the authorization access of all FlowTables users. Let us define

FlowConnect(src, dst) as a characterization function for all sets of allowed flows from

src to dst that represent CRP.

Definition 5 A configuration, C, is sound if, for all nodes u and w, all possible paths

from u to w are subset of (or implies) authorized paths in FlowConnect(u, w).

Intuitively, no node u can communicate with node w using C if this is not allowed

in the CRP. Formally, this soundness property can be written as the following CTL

query:

[(loc(a1) ∧ src = a1 ∧ dest = a2 ∧ EF (loc(a2))→ FlowConnect(a1, a2)) (4.48)

Definition 6 A configuration, C, is complete if, for all nodes u and w, FlowCon-

74

nect(u, w) contains all possible paths from u to w.

In other words, if u is allowed to communicate with w in CRP, then there must be a

path from u to w to allow this communication. Formally,

FlowConnect(a1, a2) → [loc(a1) ∧ src = a1 ∧ dest = a2 → EF (loc(a2))]

(4.49)

4.6 Summary

In this chapter, we addressed and investigated some challenges of secure and man-

ageable cloud computing infrastructure services. A formal-method based approach

composed of five frameworks was presented to address these challenges. We summa-

rize these frameworks as follows.

In §4.1, we addressed the problem of managing VMs access control lists. By utiliz-

ing the traffic similarity of VMs, VMs are grouped into groups in which each group is

managed by a single ACL. The presented framework used formal-method based ap-

proach to encode the distance between VMs using BDDs. The groups are synthesized

using a SMT solver. The automatic creation of VMs groups reduces the potential of

having policy misconfigurations by reducing the number of ACLs required to manage

all VMs by sharing ACLs.

In §4.2, we addressed the problem of secure resource allocation. The presented

formal-method based framework considers security requirements at the decision time

to allocate resource. The framework reduces the residual risk that result from allocat-

ing VMs that have conflicting security requirements on the same host. It also reduces

the cost that result from post-security decisions that are needed to solve conflicting

requirements.

In §4.3, we addressed the problem of preserving capacity, dependency, and security

requirements during VM migration. To meet the challenges of preserving security and

performance requirements while VMs are migrated, we presented a formal-method

75

based framework to find the sequence in which VMs need to be migrated in order

to preserve security and performance requirements. The migration plan framework

models security and performance requirements as constraints satisfaction problem

and relies on SMT solver to find the migration sequence.

In §4.4, we addressed the problem of verifying the equivalence of cloud network

configuration before and after VM migration. We presented a formal-method based

framework to verify that the updated cloud network configuration is equivalent to the

configuration prior to VM migration in terms of its security and network connectivity

policies.

Moreover, we addressed the problem of reconfiguring cloud network after VM mi-

gration due to the changes of virtual network topologies. Incorrect or inconsistent

modifications will introduce policy misconfigurations that affect the security policy

and reachability requirements of the virtual network. We presented an incremen-

tal, automated, and formal technique to reconfiguration to provide an efficient and

configuration-preserving solution to this challenge.

In §4.5, we addressed the SDNs misconfigurations. We argued that cloud data-

centers will utilize SDNs to provide better manageability. Before adopting SDNs to

host cloud solutions, the risk of SDN misconfigurations needs to be addressed. We

presented a formal-method based framework to detect inter/intra policy misconfigu-

rations and FlowTable pipeline misconfigurations in SDNs.

The presented frameworks use formal-method based approaches to provide solu-

tions to the discussed challenges. Across these frameworks, we use BDDs to model

policies and ACLs, and constraint satisfaction modeling to encode satisfiability prob-

lems.

CHAPTER 5: IMPLEMENTATION AND EVALUATION

In the previous chapter we presented a unified set of frameworks under our formal

methodology designed to make IaaS cloud environments more secure and cloud con-

figuration management much simpler. In particular we presented a formal methods-

based approach to provide better solutions to the following problems: 1) creating

and managing access control lists for virtual machines running in IaaS cloud environ-

ments; 2) allocating resources to virtual machines in a manner that considers both

security and risk at the time of provisioning; 3) migrating virtual machines from one

host to another in a manner that does not violate security requirements; 4) verifying

that cloud network configuration is preserved after migration and reconfiguring the

cloud network to reflect the new state after VM migration; and, 5) detecting policy

misconfigurations in Software Defined Networks. In this chapter, we present the im-

plementation and evaluation methodology for each aspect of our approach as well as

discuss evaluation results.

5.1 Managing Access Control Policies for Virtual Machines

We have presented a semi-automatic, formal methods-based framework for creating

security groups and managing ACLs for VM security groups. Under our framework,

VMs are group based on their incoming traffic similarity. The framework allows VMs

to be grouped whose incoming traffic requirements are not identical. A threshold

is defined to limit the degree of difference among reachability requirements that is

permitted for each VM security group. After grouping VMs, the framework generates

(i) an ACL for each security group, and (ii) a set of iptable rules for each VM to

manage the variance among reachability requirements within the VM security group.

77

The proposed framework reduces the likelihood of conflicting ACLs and/or miscon-

figured ACLs. Furthermore, each VM security group serves as logical zone designed

to reduce residual risk for VMs. In the following, we present experimental evaluation

of our framework. We begin by describing the experimental setup and conclude with

a summary of results.

5.1.1 Experimental Setup

In this experiment, we compare our framework for the formation of VM security

groups with the Amazon EC2 grouping model. All evaluation results were simulated

on 3.10 GHz quad core CPU with 8 GB memory. For SMT formalization, we used

Yices 1.0.36 SMT solver [12] to encode the presented constraints.

The framework is implemented in C++ and all constraints are asserted by invok-

ing Yices C API [12]. All input data and thresholds for the framework are provided

through configuration files, which are then parsed and translated into Yices con-

straints using API functions provided by the solver. The following example shows

how to translate an instance of constraint 4.2, namely s12, into an assertion:

yices_expr args[2];

args[0]=yices_mk_eq(ctx, s[1][2], zero);

args[1]=yices_mk_eq(ctx, s[1][2], one);

yices_assert(ctx, yices_mk_or(ctx, args, 2));

After asserting all constraints, the encoded problem instance is checked using the

following Yices API function:

yices_check(ctx);

The parameter ctx is the context, which stores a collection of declarations and asser-

tions. If a satisfiable assignment is found, the output displays the values that satisfy

for the asserted variables.

78

10 20 30 40 50
Number of VMs

20

30

40

50

60

Av
er

ag
e

N
um

be
r o

f R
ul

es

EC2 Grouping Model
Our Model

Figure 5.1: The average number of rules required to write a policy for two cases: EC2
grouping model and our grouping model.

5.1.2 Results

We evaluate our framework both in terms of manageability and risk reduction.

Manageability is evaluated in terms of the number of rules required to produce the

VM security groups. Risk reduction is evaluated in terms of the average VM residual

risk.

Manageability. In this round of experiments, we measure manageability based

on the average number of rules required for writing an ACL policy for all VMs. We

used the following setup to evaluate the manageability. A set of 100 different flows

is created randomly, each VM has an average of 50 flows to define the reachability

requirements, T =25, and 10%-20% of the VMs are set to be similar. Figure 5.1

compares the average number of rules required to write a policy for our approach

against the EC2 model in which only the similar VMs are grouped together. Without

grouping, the average number of rules per VM is 50. The average number of rules

decreases according the similarity percentage between VMs using EC2 model. The

results show that our approach achieves better manageability in term of average

79

10 15 20 25 30 35 40
Number of VMs

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
of

 A
ss

ig
nm

en
t

T = 10
T = 25

Figure 5.2: The effect of T on the probability of finding a security group memberships
assignment.

number of rules required to implement the policy. In this experiment, we used the

same rule format to write ACLs for our grouping model and Amazon EC2 model. A

rule in the ACL contains five fields: protocol number, source IP address, source port

number, destination IP address, and destination port number.

We also assessed the effect of the maximum number of iptable rules per VM, T , on

the probability of finding a satisfiable security group membership assignment. Figure

5.2 shows the evaluation for two cases: T = 10 and T = 25. The probability of

finding an assignment decreases dramatically as T threshold decreases and number

of VMs increases.

Risk Reduction. We evaluate the average risk introduced in the system for

four cases: (1) no grouping; (2) grouping using the EC2 security group model; (3)

grouping using firewalls only; and (4) our model which includes security groups and

applying all risk reduction countermeasures. In the no grouping case, we assume

that the VMs have no security restrictions to communicate with each other. Thus,

we set the reachability variable bxy to 1 for every pair of VMs. In the case of the

EC2 model, the reachability is decided at the security group level. The reachability

80

variable for our model’s case is set based on the reachability requirement. We assigned

reachability requirements for the VMs randomly, based on Boolean reachability (i.e.,

two VMs are either reachable or not reachable). In the case of our model, we used the

following rates for various risk reduction countermeasures: allow(0%), deny(100%),

inspect(80%), encrypt(50%), and anti-collocate(100%). We assumed that security

services are provided by aggregator switches [70].

In order to perform a proper comparative analysis, we need to adjust our calculation

of VM residua risk (see §4.1.6) to account for the test case where security groups

are not employed. As such, the risk metric for VM x is calculated as follows for

comparative analysis.

rx =

∑n
y=1 byx ∗ vy∑n

y=1 vy
∗ Ix (5.1)

where rx is the risk for VM x, byx is the reachability between VM y and VM x, vy

is the vulnerability score for VM y, and Ix is the impact score for VM x. Each VM

is randomly assigned a vulnerability score in the range [0.01-0.99] and an impact

score in the range [1-100]. Figure 5.3 shows the average risk for the four cases.

Compared to the no grouping case, our model (showed by the line graph labeled

“Security Enforcement”) achieved around 64% risk reduction, while the EC2 model

achieved around 11% risk reduction.

5.2 Security-aware Resource Allocation in Clouds

We have presented a framework for security-aware resource allocation. This frame-

work builds on our framework for VM security group assignment. Our objective is

to find a resource provisioning that satisfies both the customer requirements and the

cloud provider requirements. The solution will not necessarily be the optimal one, but

it is guaranteed to satisfy all input constraints if such a solution exists. We contend

that our framework increases the likelihood finding a satisfiable provisioning. We

demonstrate the effect of the number of security-enabled switches on the probability

81

50 100 150 200 250 300 350
Number of VMs

20

40

60

80

100

Av
er

ag
e

R
is

k
pe

r V
M

No Grouping
EC2 Grouping
Firewall
Security Enforcement

Figure 5.3: The average risk per VM for four cases: no grouping, EC2 grouping
model, firewall filtering, and our framework.

of identifying a satisfiable solution. We also evaluate the performance characteristics

of our approach. In the following, we begin by describing the experimental setup and

conclude with a summary of results.

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

Core Switches

Agg. Switches

Access Switches

PMs

Pod

Figure 5.4: Fat-Tree Topology (k=4).

82

5.2.1 Experimental Setup

In this experiment, all results are simulated using identical VMs types as listed in

[71]. In Amazon EC2, the concept of computing units is used to measure the cpu

capacity for VMs, each compute unit provides an equivalent cpu capacity of a 1.0-1.2

GHz 2007 Opteron or 2007 Xeon processor [71]. Without loss of generality, we only

specify cpu specification dimension for the resource allocation. All physical machines

have the same specifications, each physical machine has an 8 core CPU and 64 GB

memory. The CPU utilization for each PM is kept under 80%.

The datacenter architecture model used in this experiment is fat-tree, three-tier

topology. We simulated the topology using k-port switches to build 128 PMs dat-

acenters (k=8). Using k-port switches in a fat-tree topology gives k2

2
aggregator

switches in total; we have k pods and k
2
aggregator switches in each pod [65]. Fig-

ure 5.4 shows an example of a fat-tree datacenter topology for (k=4). All security

middleboxes are placed randomly between switches of different layers.

The SMT solver setup and the machine specifications used to conduct this set of

experiments is similar to the experiments explained in §5.1.1.

5.2.2 Results

We evaluate our framework both in terms of the likelihood of finding a satisfiable

provisioning and the performance of the provisioning process.

The Effect of Number of Security-enabled Switches on the Probability of

Resource Allocation Assignments. Figure. 5.5 shows the probability of successful

allocation as the percentage of security enabled switched in the datacenter changes.

In this experiment, we assume that the aggregator switches have security services

[70]. We use 8-port switches to build a datacenter with 128 PMs. We calculate

the probability of a successful allocation for three cases by dedicating: 1, 2, and 4

aggregator switch(es) in each pod to provide security services. The experiment shows

83

50 100 150 200 250 300 350
Number of VMs

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
of

 A
ss

ig
nm

en
t

1 Switch
2 Switches
4 Switches

Figure 5.5: The effect of number of security enabled switches on the probability of
finding a resource allocation assignment.

that the probability to allocate securely the resources decreases when the percentage

of security enabled switched decreases.

Run-Time Overhead. In this set of experiments, we evaluate the run-time over-

head to assign security group memberships (i.e., the cloud client perspective) and

the run-time overhead to allocate resources (i.e., the cloud provider perspective). We

used the following thresholds: g=10, T =25. The distance between VMs is generated

randomly in the range [0, 50]. It takes around 0.2 seconds to assign security group

memberships for a cloud client with 40 VMs using our grouping model as shown in

Figure 5.6. The run-time overhead to assign security groups using EC2 grouping

model is slightly less than our grouping model; in our model, more time is needed

to find the closest existing group. The run-time overhead for the cloud provider to

allocate resources is shown in Figure 5.7. The results show that the time increases

exponentially as the number of VMs increases. Yet, it is still within the practical

limits to allocate 350 VMs on 128 PMs, the figure shows it takes around 1.5 minutes

to allocate such a case.

84

10 15 20 25 30 35 40
Number of VMs

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ti
m

e
(S

ec
on

ds
)

Our Grouping Model
EC2 Grouping Model

Figure 5.6: Time overhead to assign security group memberships per user.

5.3 Virtual Machine Migration Planning

We have presented a framework for virtual machine migration planning that satis-

fies temporal relationships associated with bandwidth, collocation, security and work-

load constraints. Our goal is to find a satisfiable migration plan, i.e., one that satisfies

all the constraints and thresholds. The solution includes the migration steps required

to assemble resources and make the space needed for the target assignment. We eval-

uate the framework based on its performance characteristics. We begin by describing

the experimental setup and conclude with a summary of results.

5.3.1 Experimental Setup

Without loss of generality, we only specify cpu and memory specification dimen-

sions for the resources regarding the migration process. The datacenter architecture

model used in this experiment is fat-tree, three-tier topology. We simulated the topol-

ogy using k-port switches to build 16 PMs datacenters (k=4) as shown in Figure 5.4.

Using k-port switches in a fat-tree topology gives k2

2
aggregator switches in total; we

have k pods and k
2
aggregator switches and access switches in each pod, each pod

85

50 100 150 200 250 300 350
Number of VMs

0

20

40

60

80

Ti
m

e
(S

ec
on

ds
)

Figure 5.7: Time overhead to allocate resources.

connects k2

4
PMs with k2

4
core switches [65]. All physical machines have the same

specifications, each physical machine has an 8 core CPU and 64 GB memory. All VM

types used in our simulation are similar to the types used in Amazon EC2 cloud [71].

All evaluation results were simulated on 3.10 GHz quad core CPU with 16 GB

memory; the framework uses only one core because it is not a multi-threaded appli-

cation. For SMT formalization, we used Yices 1.0.36 SMT solver [12] to encode the

presented constraints.

The framework is implemented in C++ and all constraints are asserted by invok-

ing Yices C API [12]. All input data and thresholds for the framework are provided

through configuration files, which are then parsed and translated into Yices con-

straints using API functions provided by the solver.

5.3.2 Results

The following set of experiments was conducted to measure the run time overhead

to find a migration plan and to measure the percentage of safety violations for the

migrated VMs. These two measures depends on several factors: size of migration

set, resource utilization percentage, the percentage of critical VMs, the dependency

86

0 5 10 15 20
Number of Migrated VMs

12

14

16

18

20

22

24

26

28

30

Ti
m

e
(s

ec
on

ds
)

Figure 5.8: Running time overhead to find a migration plan.

threshold (TD), and the dependency percentage between VMs.

The initial placement of all VMs, π0, is randomly mapped to the available resources.

Then, we randomly select the hotspot PMs that will be switched off. The dependency

between VMs is also randomly assigned.

The Impact of Migration Set Size. In this experiment, we evaluate the effect

of migration set size on (1) running time overhead to find a satisfiable migration

plan, and (2) the fraction of safe migration plans. The fraction of safe migration

plans represents the percentage of satisfiable assignments reported by the solver. An

unsafe VM migration plan means that some safety requirements are violated. Figure

5.8 depicts the time required to find a VM migration plan. In this experiment, we

placed 80 VMs evenly on 16 PMs to achieve 5:1 consolidation ratio; then, we select

some PMs to be switched off. We set the percentage of critical VMs to be 30% and

the dependency threshold (TD) to be 2. The linear trend is shown in Figure 5.8, as

the number of migrated VMs increases, the running overhead increases linearly. The

effect of total number of VMs placed in the datacenter on finding a successful VM

migration plan is shown in Figure 5.9. In this experiment, we placed 80, 100, 120

87

1 2 3 4
Number of Hotspot PMs

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 S

af
e

M
ig

ra
tio

n
Pl

an
s 80 VMs

100 VMs
120 VMs

Figure 5.9: The effect of number of placed VMs on fraction of violations.

VMs on the datacenter, respectively. Increasing the number of placed VMs means

increasing the consolidation ratio, and means less available resources. As shown in

Figure 5.9, placing more VMs in the datacenter affects finding a satisfiable migration

plans. The high resource utilization status means that the system cannot accept more

VMs to be allocated.

0 5 10 15 20
Number of Migrated VMs

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

30% Critical VMs
50% Critical VMs
75% Critical VMs

Figure 5.10: The effect of percentage of critical VMs on running time overhead.

88

1 2 3 4
Number of Hotspot PMs

0.4

0.6

0.8

1

Fr
ac

tio
n

of
 S

af
e

M
ig

ra
tio

n
Pl

an
s 25% Critical VMs

50% Critical VMs
75% Critical VMs

Figure 5.11: The effect of the percentage of critical VMs on fraction of violations.

The Impact of Critical VMs: The effect of the percentage of critical VMs is

evaluated in this set of experiments. A critical VM is a VM that cannot be migrated

or reallocated, it has to stay on the same PM all the time. Critical VMs limit the

search space for the solver and add more restrictions on the migration plan. This,

in turn, reduces the time required to find a migration plan. Figure 5.10 shows that

increasing the percentage of critical VMs from 30% to 75% reduces the running time

overhead from 31 seconds to 22 seconds. The added restrictions by critical VMs

decreases the chances to get a migration plan. This restricts the solver to move the

VMs around and assemble the needed resources for the migration plan. Figure 5.11

shows that setting 30% of total 80 VMs to be critical VMs does not affect finding

satisfiable assignments; while setting the percentage to 75% reduces the percentage of

satisfiable migration plans to 60% when switching off 4 PMs (20 VMs to be migrated).

The Impact of Dependency Cost (TD). Setting TD = 2 means that any two

dependent VMs have to be accessible to each other using one access switch at most.

While setting TD = 4 means that the dependent VMs are placed in the same pod;

otherwise, they can be placed anywhere in the datacenter. In this experiment, we

89

evaluate the effect of changing the dependency threshold (TD) on the running time

overhead and on the fraction of finding a safe migration plan. Figure 5.12 depicts

that there is no extra overhead added as a result of changing the threshold. On the

other hand, changing the dependency threshold affects the percentage of finding a

migration plan as shown in Figure 5.13. Lowering the dependency threshold (TD)

forces the solver to keep VMs closer to each other during the migration process; in

turn, this limits the search space and decreases the chances of getting a safe migration

plan.

5 10 15 20
Number of Migrated VMs

10

15

20

25

30

Ti
m

e
(s

ec
on

ds
)

TD = 2
TD = 4
TD = 6

Figure 5.12: The effect of dependency threshold (TD) on running time overhead.

5.4 Virtual Machine Migration Verification

We have presented a framework for virtual machine migration verification to verify

that cloud network configuration is preserved after migration. Our goal is to ensure

that the cloud network configuration after VM migration is equivalent to cloud net-

work configuration before migration. Also, we have presented an automated approach

to reconfigure firewall policies post VM migration. We evaluate the framework based

on its performance characteristics. We begin by describing the experimental setup

and conclude with a summary of results.

90

1 2 3 4
Number of Hotspot PMs

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 S

af
e

M
ig

ra
tio

n
Pl

an
s TD = 2

TD = 4
TD = 6

Figure 5.13: The effect of dependency threshold (TD) on fraction of violations.

5.4.1 Experimental Setup

The experimental setup for this experiment is similar to the experiment performed

in section 5.3.1. The framework is implemented in C++ and all firewall policies are

encoded in BDDs using BuDDy library [72].

5.4.2 Results

2000 4000 6000 8000 10000
Policy Size (number of rules)

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
(s

ec
on

ds
)

Figure 5.14: Time overhead to build firewall policy BDD.

91

2000 4000 6000 8000 10000
Policy Size (number of rules)

0.5

1

1.5

2

2.5

3

M
em

or
y

Si
ze

 (M
b)

Figure 5.15: Space requirement to build a BDD.

BDD Building Time: Figure 5.14 shows the running time overhead to generate

a BDD for a firewall policy. In this experiment, the firewall policies for the cloud

network are generated randomly. The policy size (i.e., number of rules) ranges from

1000 to 10000 rules. The figure depicts that the BDD size is linearly dependent on

the firewall policy size and it that it takes around 1.14 seconds to build a BDD that

represents 10000 rule firewall policy.

BDD Space Requirement: Figure 5.15 shows the space requirement (i.e., BDD

size) for generating a BDD. The figure shows that the space requirement for a firewall

policy of size 10000 rules is around 3.3 Mb. The BDD size grows linearly as the policy

size increases.

VM Migration Verification Overhead: In this experiment, a set of VMs is ran-

domly chosen to be migrated from one host to another host. The migration sequence

plan is determined as described in section 4.3. Firewalls are updated according the

migration sequence plan, not all firewalls are updated, only the firewalls affected by

the VM migration process. Figure 5.16 shows the average time to run all verification

constraints. The results show that verification time increases quadratically as the

92

2000 4000 6000 8000 10000
Policy Size (number of rules)

0

5

10

15

20

Ti
m

e
(S

ec
on

ds
)

Figure 5.16: Time overhead to run verification constraints.

number of rules increases.

Policy Reconfiguration Overhead: Figure 5.17 shows the average time to gen-

erate firewall rules from an existing BDD. Firewall rules are generated by traversing

the BDD, every path from the root to a leaf in the BDD will be a firewall rule.

The overhead time measured in this experiment includes: 1) the time required to

extract/add all network flows related to the migrated VMs from a firewall BDD and

2) the time overhead to traverse all paths in the BDD. The results show that recon-

figuration time increases linearly as the number of rules increases.

5.5 Software Defined Networks Misconfigurations

We have presented a framework to mitigate SDN misconfigurations. Our frame-

work can can be used to: (a) verify the consistency of different switches and con-

trollers across federated OpenFlow infrastructures; (b) validate the correctness of

the configuration synthesis; (c) debug reachability and security problems; and, (d)

assess the consistency of SDN policies. Our framework can also be used as a foun-

dational methodology to conduct “what-if” analysis to study the impact of the new

SDN network configurations by simply changing the state in the FlowTables and then

93

2000 4000 6000 8000 10000
Policy Size (number of rules)

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

Figure 5.17: Time overhead to reconfigure a firewall policy.

analyzing the effects. In the following, we present an experimental evaluation of our

framework. We begin by describing FlowChecker, the simulation environment used

to validate our framework. Next, we describe the experimental setup and conclude

with a summary of results.

5.5.1 FlowChecker

FlowChecker [8] is an independent centralized server application that receives

queries from OpenFlow applications to verify, analyze or debug OpenFlow config-

uration using our framework. Figure 5.18 shows the architecture for a FlowChecker

deployment. Queries can be limited to one domain or extended across federated

domains. FlowChecker can run on a master controller (spans number of federated

OpenFlow infrastructures). Using FlowChecker, users may write queries to check the

validity of certain properties using CTL logic. A validation is done by comparing

suggested configuration polices with FlowTables. A report is generated to indicate

the conflicts and misconfigurations in the domain.

94

Figure 5.18: FlowChecker connects multiple domains with multiple controllers and
OpenFlow switches.

5.5.2 Experimental Setup

In this set of experiments, we examine the performance analysis of our framework

as realized in FlowChecker with respect to time and memory space overhead. In order

to test many OpenFlow switches policies, a random FlowTable generator was imple-

mented. The FlowTable generator is controlled by many parameters like FlowTable

size and the overlapping between FlowTable entries such as redundancy and subset-

superset relationship that can appear by using aggregated entries. FlowChecker is

implemented using C/C++ language and BuDDy library [72]. BuDDy library pro-

vides a rich environment to use BDDs. As we described is section 4.5.3, BDDs are

needed to encode FlowTables.

95

200 400 600 800 1000
Number of FlowTable Rules

20

40

60

80

100

Ti
m

e
(m

illi
se

co
nd

s)

Figure 5.19: Time overhead to build OpenFlow rules BDD.

All evaluation results were simulated on 3.10 GHz quad core CPU with 32 GB

memory.

5.5.3 Results

BDD Building Time Overhead: Figure 5.19 shows the running time overhead

to generate a BDD for all OpenFlow switches. In this experiment, the FlowTable

rules are generated randomly. The policy size (i.e., number of rules) ranges from 100

to 1000 rules. The figure depicts that the BDD size is linearly dependent on the total

number of rules and it takes around 110 milliseconds to build a BDD that represents

FlowTable 1000 rules.

BDD Space Requirement: Figure 5.20 shows the space requirement (i.e., BDD

size) for generating a BDD. The figure shows that the space requirement for 1000

FlowTable rules is around 0.34 Mb. The BDD size grows linearly as the total number

of rules increases.

Intra/inter-federated Verification Overhead: We ran many experiments to

measure the impact of FlowTable size on the time performance. Figure 5.21 shows

96

200 400 600 800 1000
Number of FlowTable Rules

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
em

or
y

Si
ze

 (M
b)

Figure 5.20: Space requirement to build OpenFlow rules BDD.

the time analysis for intra-federated verification for different FlowTable sizes. The

quadratic trend appears clearly in Figure 5.21 as the number of OpenFlow switches

increase. In the case of intra-federated verification, we need to make pair-wise com-

parisons for each pair in the domain, as this will give a complexity of O(n2) to find if

there is an inter-switch conflict between n OpenFlow switches.

For inter-federated performance analysis, the quadratic trend will appear as in

Figure 5.21 because we still need to do a pairwise comparison for all OpenFlow

switches across all domains that we are looking to verify.

Inter-pipeline Verification Overhead: In this experiment, each OpenFlow

switch is configured using several FlowTables that are chained together. The ag-

gregate policy of all FlowTables in a switch represents the switch configurations. We

injected misconfigured FlowTable rules in several locations. The number of the intro-

duced “set” and “goto table” misconfigured rules is about 10% of the total FlowTable

rules. Figure 5.22 shows the average time to run all verification constraints to de-

tect pipeline misconfigurations. The results show that the detection time increases

quadratically as the number of misconfigured rules increases.

97

Figure 5.21: FlowChecker time analysis for intra-federated verification.

200 400 600 800 1000
Number of FlowTable Rules

0

200

400

600

800

1000

1200

Ti
m

e
(m

illi
se

co
nd

s)

Figure 5.22: Time overhead to detect pipeline misconfigurations in a switch.

CHAPTER 6: CONCLUSION

In this dissertation, we addressed and investigated some challenges of secure and

manageable cloud computing infrastructure services. A formal-method based ap-

proach composed of five frameworks was presented to address these challenges. We

summarize these frameworks as follows.

In §4.1, we addressed the problem of managing VMs ACLs. By utilizing the traffic

similarity of VMs, VMs are grouped into groups in which each group is managed by a

single ACL. The presented framework used formal-method based approach to encode

the distance between VMs using BDDs. The groups are synthesized using a SMT

solver. The automatic creation of VMs groups reduces the potential of having policy

misconfigurations by reducing the number of ACLs required to manage all VMs by

sharing ACLs.

In §4.2, we addressed the problem of secure resource allocation. The presented

formal-method based framework considers security requirements at the decision time

to allocate resources. The framework reduces the residual risk that result from al-

locating VMs that have conflicting security requirements on the same host. It also

reduces the cost that result from post-security decisions that are needed to solve

conflicting requirements.

In §4.3, we addressed the problem of preserving capacity, dependency, and security

requirements during VM migration. To meet the challenges of preserving security and

performance requirements while VMs are migrated, we presented a formal-method

based framework to find the sequence in which VMs need to be migrated in order

to preserve security and performance requirements. The migration plan framework

models security and performance requirements as constraints satisfaction problem

99

and relies on SMT solver to find the migration sequence.

In §4.4, we addressed the problem of verifying the equivalence of cloud network

configuration before and after VM migration. We presented a formal-method based

framework to verify that the updated cloud network configuration is equivalent to the

configuration prior to VM migration in terms of its security and network connectivity

policies.

Moreover, we addressed the problem of reconfiguring cloud network after VM mi-

gration due to the changes of virtual network topologies. Incorrect or inconsistent

modifications will introduce policy misconfigurations that affect the security policy

and reachability requirements of the virtual network. We presented an incremen-

tal, automated, and formal technique to reconfiguration to provide an efficient and

configuration-preserving solution to this challenge.

In §4.5, we addressed the SDNs misconfigurations. We argued that cloud data-

centers will utilize SDNs to provide better manageability. Before adopting SDNs to

host cloud solutions, the risk of SDN misconfigurations needs to be addressed. We

presented a formal-method based framework to detect inter/intra policy misconfigu-

rations and FlowTable pipeline misconfigurations in SDNs.

The presented frameworks use formal-method based approaches to provide solu-

tions to the discussed challenges. Across these frameworks, we use BDDs to model

policies and ACLs, and constraint satisfaction modeling to encode satisfiability prob-

lems.

6.1 Contributions

This dissertation makes the following contributions.

• A formal method-based framework to synthesize access control lists for IaaS

virtual machines.

• A formal method-based security-aware resource allocation methodology.

100

• A formal method-based framework for virtual machine migration planning.

• A formal method-based automated framework to verify configuration consis-

tency before and after virtual machine migration.

• A formal method-based automated framework for post-migration reconfigura-

tion.

• A formal method-based approach to modeling SDN OpenFlow configurations.

• A formal method-based verification interface for SDNs using BDD-based sym-

bolic model checking and temporal logic.

• A formal method-based framework for detecting policy misconfigurations in

SDNs.

• A unified approach to combine all previous frameworks under a common method-

ology.

101

REFERENCES

[1] “Oracle Fusion Middleware: oracle.com/middleware/index.html.”

[2] “IBM WebSphere: www-01.ibm.com/software/websphere/.”

[3] G. Menegaz, “The future of cloud is software defined environments: www
.ibm.com/developerworks/community/blogs/ibmsyssw/entry/the_future_of_
cloud_is_software_defined_environments?lang=en.”

[4] E. Al-Shaer, W. Marrero, and A. El-Atawy, “Network configuration in a box:
Towards end-to-end verification of network reachability and security,” in IEEE
International Conference of Network Protocols (ICNP’2009), October 2009.

[5] “Amazon EC2 Security Groups: docs.amazonwebservices.com/awsec2/latest/
userguide/using-network-security.html.”

[6] S. Al-Haj, E. Al-Shaer, and H. Ramasamy, “Security-aware resource allocation
in clouds,” in The 10th International Conference on Services Computing (SCC),
IEEE, 2013.

[7] S. Al-Haj and E. Al-Shaer, “A formal approach for virtual machine migration
planning,” in Network and Service Management (CNSM), 2013 9th International
Conference on, pp. 51–58, October 2013.

[8] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and verification
of federated openflow infrastructures,” in Proceedings of the 3rd ACM Workshop
on Assurable and Usable Security Configuration, SafeConfig ’10, (New York, NY,
USA), pp. 37–44, ACM, 2010.

[9] R. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. Comput., vol. 35, pp. 677–691, August 1986.

[10] H. Andersen, “An introduction to binary decision diagrams,” tech. rep., Course
Notes on the WWW, 1997.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Upper
Saddle River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.

[12] “Yices SMT solver: yices.csl.sri.com.”

[13] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro, “A Security
Analysis of Amazon’s Elastic Compute Cloud Service,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC ’12, (New York,
NY, USA), pp. 1427–1434, ACM, 2012.

[14] J. Somorovsky, M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and L. Lo Ia-
cono, “All your clouds are belong to us: security analysis of cloud management
interfaces,” in Proceedings of the 3rd ACM CCSW, (New York, NY, USA), pp. 3–
14, ACM, 2011.

102

[15] L. Sumter, “Cloud computing: Security risk,” in Proceedings of the 48th Annual
Southeast Regional Conference, ACM SE ’10, (New York, NY, USA), pp. 112:1–
112:4, ACM, 2010.

[16] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security of
virtual machine images in a cloud environment,” in Proceedings of the 2009 ACM
CCSW, (New York, NY, USA), pp. 91–96, ACM, 2009.

[17] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, “Efficient
resource provisioning in compute clouds via vm multiplexing,” ICAC ’10, (New
York, NY, USA), pp. 11–20, ACM, 2010.

[18] M. Alicherry and T. Lakshman, “Network aware resource allocation in distributed
clouds,” in INFOCOM, 2012 Proceedings IEEE, pp. 963 –971, March 2012.

[19] G. Lee, N. Tolia, P. Ranganathan, and R. Katz, “Topology-aware resource alloca-
tion for data-intensive workloads,” SIGCOMM Comput. Commun. Rev., vol. 41,
pp. 120–124, January 2011.

[20] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based resource allocation
for multi-tier cloud computing systems,” in Proceedings of the 2011 IEEE 4th In-
ternational Conference on Cloud Computing, CLOUD, (Washington, DC, USA),
pp. 324–331, IEEE Computer Society, 2011.

[21] N. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “VM placement strategies
for cloud scenarios,” in IEEE 5th International Conference on Cloud Computing
(CLOUD), pp. 852 –859, June 2012.

[22] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic method of
fair resource allocation for cloud computing services,” J. Supercomput., vol. 54,
pp. 252–269, November 2010.

[23] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for cloud
computing,” in Proceedings of the 2008 conference on Power aware computing
and systems, HotPower’08, (Berkeley, CA, USA), pp. 10–10, USENIX Associa-
tion, 2008.

[24] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-aware autonomic
resource allocation in multitier virtualized environments,” IEEE Transactions on
Services Computing, vol. 5, pp. 2 –19, Jan-Mar 2012.

[25] J. Piao and J. Yan, “A network-aware virtual machine placement and migration
approach in cloud computing,” in Grid and Cooperative Computing (GCC), 2010
9th International Conference on, pp. 87–92, 2010.

[26] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and S. Banerjee,
“Application-aware virtual machine migration in data centers,” in INFOCOM,
2011 Proceedings IEEE, pp. 66–70, 2011.

103

[27] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box
strategies for virtual machine migration,” in Proceedings of the 4th USENIX con-
ference on Networked systems design & implementation, NSDI’07, (Berke-
ley, CA, USA), pp. 17–17, USENIX Association, 2007.

[28] Y. Ma, H. Wang, J. Dong, Y. Li, and S. Cheng, “Me2: Efficient live migration of
virtual machine with memory exploration and encoding,” in Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, pp. 610–613, 2012.

[29] M. Al Shayeji and M. Samrajesh, “An energy-aware virtual machine migration
algorithm,” in Advances in Computing and Communications (ICACC), 2012 In-
ternational Conference on, pp. 242–246, 2012.

[30] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic resource management
using virtual machine migrations,” Communications Magazine, IEEE, vol. 50,
no. 9, pp. 34–40, 2012.

[31] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine migration in
an over-committed cloud,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE, pp. 196–203, 2012.

[32] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine
live migration in clouds: A performance evaluation,” in Proceedings of the 1st
International Conference on Cloud Computing, CloudCom ’09, (Berlin, Heidel-
berg), pp. 254–265, Springer-Verlag, 2009.

[33] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates with
bandwidth guarantees,” in Proceedings of the first workshop on Hot topics in
software defined networks, HotSDN ’12, (New York, NY, USA), pp. 67–72, ACM,
2012.

[34] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed live migration strategies
of virtual machines for cluster load balancing,” in Proceedings of the 8th IFIP
international conference on Network and parallel computing, NPC’11, (Berlin,
Heidelberg), pp. 111–122, Springer-Verlag, 2011.

[35] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in distributed fire-
walls,” in In IEEE INFOCOM ’04, pp. 2605–2616, 2004.

[36] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification of ipsec and
vpn security policies,” in ICNP ’05: Proceedings of the 13TH IEEE International
Conference on Network Protocols, pp. 259–278, 2005.

[37] M. Gouda and X. Liu, “Firewall design: Consistency, completeness, and com-
pactness,” in The 24th IEEE Int. Conference on Distributed Computing Systems
(ICDCS’04), March 2004.

104

[38] M. Gouda, A. Liu, and M. Jafry, “Verification of distributed firewalls,” in Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pp. 1–5,
November 2008.

[39] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra, “FIREMAN: A
toolkit for firewall modeling and analysis,” in IEEE Symposium on Security and
Privacy (SSP’06), May 2006.

[40] A. Gawanmeh and S. Tahar, “Modeling and verification of firewall configurations
using domain restriction method,” in Internet Technology and Secured Trans-
actions (ICITST), 2011 International Conference for, pp. 642–647, December
2011.

[41] H. Acharya and M. Gouda, “Firewall verification and redundancy checking are
equivalent,” in INFOCOM, 2011 Proceedings IEEE, pp. 2123–2128, April 2011.

[42] S. Al-Haj, P. Bera, and E. Al-Shaer, “Build and test your own network configu-
ration,” in Security and Privacy in Communication Networks, vol. 96 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pp. 522–532, Springer Berlin Heidelberg, 2012.

[43] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi, “Cloud cal-
culus: Security verification in elastic cloud computing platform,” in Collaboration
Technologies and Systems (CTS), 2012 International Conference on, pp. 447–
454, May 2012.

[44] Y. Jarraya, A. Eghtesadi, S. Sadri, M. Debbabi, and M. Pourzandi, “Verification
of firewall reconfiguration for virtual machines migrations in the cloud,” Com-
puter Networks, vol. 93, Part 3, pp. 480 – 491, 2015. Cloud Networking and
Communications {II}.

[45] A. Eghtesadi, Y. Jarraya, M. Debbabi, and M. Pourzandi, “Preservation of se-
curity configurations in the cloud,” in Cloud Engineering (IC2E), 2014 IEEE
International Conference on, pp. 17–26, March 2014.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[47] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar, “Flowvisor: A network virtualization layer,” Tech. Rep. OpenFlow
Technical Report 2009-1, Deutsche Telekom Inc. R&D Lab, Stanford University,
Nicira Networks, October 2009.

[48] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” SIGCOMM Com-
put. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

105

[49] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model checking invari-
ant security properties in openflow,” in 2013 IEEE International Conference on
Communications (ICC), pp. 1974–1979, June 2013.

[50] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying network-
wide invariants in real time,” in Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, HotSDN ’12, (New York, NY, USA), pp. 49–54,
ACM, 2012.

[51] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford, “A nice way to
test openflow applications,” in Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, (Berkeley, CA, USA),
pp. 10–10, USENIX Association, 2012.

[52] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: Building robust firewalls
for software-defined networks,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14, (New York, NY, USA),
pp. 97–102, ACM, 2014.

[53] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults with
static analysis,” in NSDI, 2005.

[54] T. Griffin and G. Wilfong, “On the correctness of IBGP configuration,” in SIG-
COMM ’02: Proceedings of the 2002 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, (New York, NY, USA),
pp. 17–29, ACM, 2002.

[55] R. Alimi, Y. Wang, and Y. Yang, “Shadow configuration as a network manage-
ment primitive,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 111–122,
2008.

[56] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP misconfigu-
ration,” in SIGCOMM ’02: Proceedings of the 2002 conference on Applications,
technologies, architectures, and protocols for computer communications, (New
York, NY, USA), pp. 3–16, ACM, 2002.

[57] R. Bush and T. Griffin, “Integrity for virtual private routed networks,” in IEEE
INFOCOM 2003, vol. 2, pp. 1467– 1476, 2003.

[58] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and J. Rex-
ford, “On static reachability analysis of ip networks,” in IEEE INFOCOM 2005,
vol. 3, pp. 2170– 2183, 2005.

[59] ONF, “SDN security considerations in the data center,” October 2013.
https://www.opennetworking.org/solution-brief-sdn-security-
considerations-in-the-data-center.

[60] “Amazon EC2: aws.amazon.com/ec2.”

106

[61] O. Santos, End-to-end Network Security: Defense-in-depth. Cisco Press, first ed.,
2007.

[62] “Common Vulnerability Scoring System (CVSS): www .first.org/cvss.”

[63] M. Ahmed, E. Al-Shaer, M. Taibah, and L. Khan, “Objective risk evaluation for
automated security management,” J. Netw. Syst. Manage., vol. 19, pp. 343–366,
September 2011.

[64] “IBM SmartCloud Enterprise server configurations: www-
935.ibm.com/services/bn/en/cloud-enterprise/tab-details-server-
configurations.html.”

[65] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center
networks with traffic-aware virtual machine placement,” INFOCOM’10, (Piscat-
away, NJ, USA), pp. 1154–1162, IEEE Press, 2010.

[66] Z. Tavakoli, S. Meier, and A. Vensmer, “A framework for security context mi-
gration in a firewall secured virtual machine environment,” in Information and
Communication Technologies (R. Szabó and A. Vidács, eds.), vol. 7479 of Lecture
Notes in Computer Science, pp. 41–51, Springer Berlin Heidelberg, 2012.

[67] Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart, “Cross-vm side channels and
their use to extract private keys,” in Proceedings of the 2012 ACM CCS, (New
York, NY, USA), pp. 305–316, ACM, 2012.

[68] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly detection and
rule editing,” in IEEE/IFIP Integrated Management (IM’2003), March 2003.

[69] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classification and
analysis of distributed firewall policies,” IEEE Journal on Selected Areas in Com-
munications (JSAC), vol. 23, October 2005.

[70] “Cisco data center infrastructure 2.5 design guide.”

[71] “Amazon EC2 instance types: aws.amazon.com/ec2/instance-types.”

[72] J. Lind-Nielsen, “The BuDDy OBDD package.” http://www.bdd-
portal.org/buddy.html.

