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ABSTRACT

KRISTY ALEXANDRA HECHT. Advanced Metasurface Design and Integration
for Electromagnetic Systems. (Under the direction of DR. MARIO JUNIOR

MENCAGLI)

In the realm of metamaterials and electromagnetic engineering, a metasurface is

a two-dimensional array of subwavelength-scale structures meticulously engineered

to manipulate electromagnetic waves. Unlike conventional bulky optical elements,

metasurfaces represent a novel approach, providing ultra-compact, planar solutions

capable of controlling the wave’s phase, amplitude, and polarization across a broad

spectrum. This transformative technology finds multifaceted applications, spanning

from high-efficiency optical devices and advanced imaging systems to next-generation

communication systems and sensing platforms.

Within the context of this dissertation, I delve into four different designs and appli-

cations of metasurface research, each poised to push the boundaries of electromagnetic

engineering. These include a metascreen, two antennas, and a time-varying capacitor,

each contributing to the evolving landscape of metasurface technologies.

One of the pivotal contributions explored in this research is the development of

a dual-polarization metascreen. This innovation holds significant importance in the

realm of electromagnetic engineering and communication systems. A dual-polarization

metascreen, capable of manipulating both horizontal and vertical polarizations of elec-

tromagnetic waves simultaneously, unlocks a range of practical advantages. Firstly,

it enables versatile control over the polarization state of transmitted or received sig-

nals, making it invaluable for applications such as radar systems, where the ability

to switch between polarizations rapidly can enhance target detection and tracking.

Moreover, in wireless communication, dual-polarization metascreens offer increased

spectral efficiency by accommodating multiple data streams through polarization mul-

tiplexing. This results in improved data rates and network capacity. Additionally,
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these metascreens find applications in satellite communication and remote sensing,

where the capability to simultaneously capture diverse polarizations enhances data

acquisition and accuracy. In essence, the development and implementation of dual-

polarization metascreens pave the way for advanced and versatile electromagnetic

systems with enhanced performance and capabilities.

Building upon the breakthrough of dual-polarization metascreens, the subsequent

chapter in this dissertation embarks on the exploration of a dual-layered, Ka and

W band sinusoidally modulated antenna. These frequency bands, while individually

vital, have never been addressed together in a single antenna design. This novel

approach ventures into uncharted territory, as the integration of dual-band func-

tionality across these relatively far-apart frequencies presents unique challenges and

opportunities. This research breaks new ground by delving into the intricate de-

sign, characterization, and implementation of such dual-band metasurface antennas,

making significant contributions to the advancement of connectivity technology and

broader applications in radar systems, remote sensing, and millimeter-wave technolo-

gies. The exploration of this territory not only expands the boundaries of electromag-

netic engineering but also holds the promise of unlocking new capabilities for advanced

communication and sensing systems, thereby solidifying the progressive trajectory of

metasurface technologies in the field.

Furthermore, another sinusoidally modulated antenna examined within this dis-

sertation provides valuable insights into the calculation of dispersion characteristics

for a 3D printable antenna. The rapid calculation of dispersion curves and the swift

fabrication of antennas through 3D printing are pivotal advancements in the field of

electromagnetic engineering. Calculating dispersion curves efficiently allows for com-

prehensive characterization of the propagation properties of electromagnetic waves

within various materials and structures. Conversely, 3D printing offers a fast and

cost-effective method for prototyping and manufacturing antennas with intricate ge-
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ometries and tailored properties. This rapid turnaround time accelerates the research

and development process, fostering innovation and enabling the swift deployment of

custom-designed antennas for emerging technologies. Together, the expedited dis-

persion curve calculations and 3D printing capabilities seamlessly streamline the an-

tenna design process, thereby propelling advancements in communication, sensing,

and connectivity technologies. This approach to antenna research underscores the

interdisciplinary nature of this dissertation and its significant contributions to the

evolving field of electromagnetic engineering.

As we delve further into the realms of electromagnetics and photonics research, one

of the forefront areas involves the study of structures with time-varying parameters,

such as permittivity and permeability. This exploration of time as a new degree of

freedom for controlling electromagnetic waves has yielded structures with fascinating

functionalities, including time-Floquet topological insulators, temporal-based non-

reciprocity, and static-to-dynamic field conversion. These innovations have addressed

challenges faced by time-invariant structures, promising new avenues for wave-matter

interactions. Recently, the fusion of time-varying media with the concept of metama-

terials has opened another intriguing pathway to control and achieve desired function-

alities in electromagnetic systems. This work, however, focuses on a specific subset

of time-varying media, namely time-varying networks composed of lumped elements

like resistors, capacitors, and inductors with time-dependent properties. These net-

works offer an accessible platform for experimental demonstrations and have sparked

significant research interest. While previous studies predominantly explored periodi-

cally modulated lumped elements, this work introduces a novel approach employing

aperiodic time modulation of a single capacitor to capture the energy of arbitrary

pulses. This advancement addresses practical challenges and significantly expands

the potential applications of time-varying lumped elements in electromagnetic en-

ergy accumulation, highlighting the interdisciplinary and innovative spirit that drives
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research in this field.

In summary, this dissertation represents a comprehensive exploration of diverse

aspects within the field of electromagnetic engineering and photonics. From the

development of advanced metasurface technologies and their applications in commu-

nication and sensing systems to the utilization of time-varying media for innovative

energy accumulation techniques, this research underscores the multifaceted nature

of contemporary electromagnetics and photonics. Through theoretical analysis and

innovative design, this work not only contributes to the academic understanding of

these fields but also holds the potential to catalyze technological advancements with

far-reaching implications.
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CHAPTER 1: INTRODUCTION

Metamaterials are specially engineered materials that exhibit properties not found

in naturally occurring substances. The concept of an electromagnetic metamaterial

was first introduced by Viktor G. Veselago in 1968 [2], who proposed the idea of a ma-

terial with negative permittivity and permeability, often referred to as a "left-handed"

material. However, it was not until many decades later that John Pendry developed

a theoretical framework for determining the effective permittivity of a material using

microstructures made from non-magnetic sheets [3]. This work provided a foundation

for understanding how to create materials with unique electromagnetic properties. A

significant milestone in the field of metamaterials occurred in 2001 when D. R. Smith

achieved the physical realization of a material with a negative refractive index by

employing split ring resonators [4]. This groundbreaking experiment marked the first

successful creation of an electromagnetic metamaterial.

Metamaterials have inspired a two-dimensional counterpart known as metasurfaces

(MTSs), a concept originally proposed by Oliner in 1959 [5]. Oliner introduced the

idea of a sinusoidally modulated surface impedance, which laid the foundation for the

development of metasurfaces. In recent years, metasurfaces have gained significant at-

tention due to their versatility and the advantage of being low profile and lightweight.

A metasurface structure is comprised of periodic, sub-wavelength elements that col-

lectively create a surface impedance capable of manipulating incident waves. This

manipulation can involve controlling the amplitude, phase, or polarization of the

waves. The exploration of metasurfaces, particularly at millimeter wavelengths, has

been on the rise. They offer a range of benefits, setting them apart from other elec-

tromagnetic devices, such as phased arrays. As a result, there is growing interest in
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employing metasurfaces in various applications, including space technology, commu-

nication systems, flat optical components, energy harvesting, and terahertz devices.

There are three distinct approaches to designing MTS for controlling electromag-

netic waves: aperture antennas, wavefront control, and transmission field control.

Aperture antennas have been extensively explored for various applications. For in-

stance, in the work by Sievenpiper et al. [6], an innovative approach is presented,

leveraging the holographic principle to design artificial surface impedance. Another

method for designing MTS antennas is described in Maci’s research [7], which of-

fers a closed-form approach to design circularly polarized spiral leaky wave antennas.

Additionally, aperture antennas can be utilized to create isoflux shaped beams with

polarization control, as demonstrated in [8]. The utilization of MTS for aperture

antennas presents several advantages over traditional methods, addressing common

design challenges. These benefits include improved aperture efficiency, enhanced po-

larization purity, and the ability to shape the radiation beam. Notably, one of the key

advantages of aperture antennas with MTSs is their integrated feed system. Unlike

conventional antennas that require an external feed system, adding weight and com-

plexity, these antennas can be excited using a simple coaxial excitation or a waveguide

typically placed at the center of the antenna. This feed system excites a wave that

couples the surface wave to the surface impedance, exciting a transverse magnetic

(TM) wave. The power of the surface wave is then gradually modulated, allowing

for controlled leakage by exciting the -1 indexed Floquet mode. These modulations

are achieved through variations in the size or angle of the subwavelength metallic

patches.

Another type of application is designing a MTS in order to control the wavefront of

the surface wave (SW). One such application involves the creation of a Luneberg lens,

which can be achieved more efficiently and cost-effectively using MTSs compared to

the traditional method of layering dielectrics [9]. Several approaches can be taken
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to design a Luneberg lens with a MTS. One method involves altering the effective

permittivity through small cavities inside a parallel plate waveguide [10, 11, 12].

Another approach is to modify the surface impedance using metallic posts [13, 14].

Additionally, a Luneberg lens can be achieved with MTSs by adjusting the equivalent

boundary conditions for one wall of the parallel plate waveguide through changes in

the geometrical parameters of the metallic cladding [15]. The control of a wavefront

can be extended to MTSs utilizing specific materials, such as antimony sulfide [16]

and graphene [17], which offer the advantage of tunability.

A MTS can also be designed to function as a screen for controlling the transmission

field. One effective approach to achieve this is by employing a three-layer configura-

tion of unit cells. Each layer is engineered with specific impedance or phase properties

that interact with the incident wave, resulting in transformations of its polarization

[18]. This technique has been instrumental in various applications, including control-

ling light transmission over subwavelength distances [19], beam steering [20, 21], and

other spatial wave transformations. The three-layer approach has gained prominence

due to its versatility. Each layer introduces additional design parameters, thereby

increasing the degrees of freedom and enabling precise control over the reflection and

transmission of the incident wave.

Leveraging the distinctive properties of metasurfaces, antennas have emerged as a

promising avenue for transforming various applications in electromagnetic wave ma-

nipulation. The unique attributes and engineered structures of metasurfaces provide

an unprecedented level of control over incident wave properties, including ampli-

tude, phase, and polarization. This capability allows for the creation of compact,

lightweight, and highly efficient antenna systems. The fine-grained control of elec-

tromagnetic waves at the subwavelength scale opens up exciting possibilities across

numerous fields.

The objective of this dissertation is to make a meaningful contribution to the ex-
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panding body of knowledge in this domain. Through a combination of innovative

design methodologies, theoretical analyses, and practical implementations, this re-

search seeks to advance the comprehension of metasurface antenna performance and

its diverse applications. Comprehensive studies and numerical simulations are inte-

gral components of this effort, aimed at furthering the understanding of metasurface

antennas and their real-world potential.



CHAPTER 2: CONTRIBUTION

Metasurfaces (MTSs), a two-dimensional (2D) version of metamaterials, have gained

significant attention in recent years. They provide unprecedented degrees of freedom

in controlling and manipulating electromagnetic waves with low profile, low weight,

planar structures. MTSs are composed of periodic, sub-wavelength elements that

manipulate incident waves by controlling their amplitude, phase, or polarization. In

the microwave and millimeter-wave range, MTSs usually consist of a collection of

metallic and/or dielectric textures arranged in a regular lattice. This dissertation

focuses on four different and innovative projects that push the boundaries of cur-

rent research of such MTSs. The findings of these projects may find applications in

wireless communications, imaging, sensing, Earth science, and more.

While existing metascreens consisting of a stack of three MTSs have demonstrated

the ability to manipulate a single incident wave, the proposed metascreen pushes the

boundaries by enabling the manipulation of two distinct types of waves simultane-

ously. I designed and numerically tested a metascreen capable of steering at two

different arbitrary angles coming from two orthogonally polarized incident waves. By

expanding the capabilities of metasurfaces to independently control two orthogonally

polarized waves, a wide range of new applications become possible such as for imaging

systems and radars in applications such as concealed weapons detection, automotive

collision avoidance, missile guidance, and satellite tracking [22, 23]. By incorporating

this novel metascreen into such applications, it can achieve enhanced functionality,

improved performance, and greater versatility. In addition to the expanded range of

applications, the proposed metascreen offers practical advantages in terms of weight

and complexity reduction. By integrating the capability to independently manipu-



6

late two orthogonal waves into a single flat structure, the need for multiple separate

metascreens is eliminated. This reduction in the number of required metasurfaces not

only simplifies the overall system design but also leads to a significant reduction in

weight and complexity.

The second project focuses on a dual-layered MTS antenna capable of operating at

two significantly different frequencies. Dual-frequency MTS antennas have been stud-

ied in literature, but the frequencies covered by existing designs are usually within

a limited range. Previous approaches involve superimposing two different modulated

surface impedances or cascading two surface impedances obtained through optimiza-

tion techniques. However, these methods face challenges in discretizing continuous

impedance profiles accurately or require external excitation, leading to poor device

form factors. My proposed antenna overcomes these limitations by leveraging Foster’s

reactance theorem to independently control the performance of each layer, enabling

operation at widely separated frequencies excited with co-planar feed. This cutting-

edge technology opens up new possibilities in the field of multi-frequency antennas

with large frequency separations with finalized integration into space mission tech-

nology. The antenna proposed breaks new ground in the field by exploiting Foster’s

reactance theorem to isolate the performance of each layer and enable dual-frequency

operation across a significantly broader frequency range.

The final antenna that I propose incorporates commonly available 3D printing ma-

terials, making it highly accessible for design and manufacturing purposes. Through

the utilization of a numerical design approach, the antenna can be numerically de-

signed swiftly, taking only a matter of seconds. This approach addresses the limi-

tations posed by time constraints and restricted access to conventional fabrication

methods. The time-saving aspect of this approach is particularly beneficial during

the initial design phase, as it enables rapid design and adjustments to the antenna’s

parameters and overall structure. Moreover, the antenna’s design is specifically tai-
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lored to be compatible with any commercially accessible 3D printer, ensuring ease,

speed, and cost-effectiveness in the fabrication process. This feature eliminates the

need for specialized equipment or complex manufacturing procedures, making the

antenna readily available for all uses.

The final project presented examines the analysis of a time varying capacitor for

energy trapping applications. Time-varying media offer intriguing functionalities that

surpass the limitations of time-invariant structures. Combining the concept of time-

varying media with metamaterials has opened up new possibilities for controlling

wave-matter interaction. While most studies have focused on periodically modulated

lumped elements, aperiodic time modulation of these elements can provide an addi-

tional degree of freedom to engineer networks with novel functionalities. In particu-

lar, this work addresses the use of time-varying lumped elements for electromagnetic

energy accumulation. Previous approaches have demonstrated the absorption of in-

coming signals by modulating reactive elements, such as capacitors and inductors.

However, these approaches often require extreme values of capacitance, including

negative values, which may be challenging to achieve in practice. To overcome this

limitation, a proposed approach involves applying non-periodic modulation to a single

capacitor at the end of a transmission line. By combining an incoming pulse with a

DC signal, the extreme capacitance values can be avoided. The study explores the

reasons behind the challenges faced by previous approaches and demonstrates how

the combination of pulse and DC signal enables the capture of energy.



CHAPTER 3: DESIGN OF METASURFACES

Metasurfaces are fascinating structures that have gained significant attention in

recent years due to their unique ability to control electromagnetic waves at sub-

wavelength scales. These planar metamaterials consist of a periodic arrangement of

unit cells, which are typically much smaller than the operating wavelength of the

incident wave. By carefully designing the geometry and composition of these unit

cells, MTSs can manipulate various properties of electromagnetic waves, including

polarization, phase, and direction of propagation. One of the key advantages of MTSs

is their ability to impose impedance boundary conditions (IBC) on the electric and

magnetic fields. These boundary conditions govern the interaction of electromagnetic

waves with the MTS, allowing for precise control over the reflection, transmission,

and scattering of the incident waves. By engineering the impedance properties of the

individual metasurfaces, it is possible to achieve different functionalities and tailor the

electromagnetic response according to specific requirements. To fully understand and

characterize the electromagnetic behavior of periodic planar MTSs, various analytical

techniques are employed to apply Maxwell’s equations to solve for the scattering and

reflection properties of the MTSs. Analytical models and numerical methods, such as

the method of moments, finite element analysis, and rigorous coupled-wave analysis,

are commonly used to study the interaction between incident waves and metasurfaces.

This chapter will explore the physics and mathematical background needed to design

metasurface antennas.

In the analysis and design of MTSs, several assumptions are commonly made to

simplify the calculations. One key assumption is the concept of local periodicity, as

illustrated in Fig. 3.1. This concept is employed to describe the analysis of a unit cell,
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which serves as the fundamental building block of the periodic structure. The local

periodicity assumption enables the analysis of a single unit cell through the consid-

eration that this unit cell is replicated infinitely in both the x and y directions. This

simplifying assumption is justifiable because, when extended to the entire antenna

structure, the variations in the unit cell’s geometry between adjacent unit cells are

small enough to uphold the assumption’s validity.

Figure 3.1: The concept of the local periodicity assumption in the analysis of meta-
surfaces, enabling the examination of dispersion characteristics within a single unit
cell. By introducing a phase gradient ranging from 0 to π rad across parallel sides
of the unit cell, it becomes possible to investigate the impedance behavior. This as-
sumption remains valid due to the gradual transitions present within the metasurface
structure. These gradual changes ensure that variations between neighboring unit
cells remain sufficiently minimal, thereby preserving the precision of the analysis.

The unit cell analysis involves imposing a phase delay across two parallel walls,

ranging from 0 to π rad. The resulting dispersion curve from the phase analysis

establishes a relationship between the phase and the frequency for a specific variation

of the unit cell’s geometry. Extrapolating from this dispersion curve provides the

impedance at a specific frequency. To encompass a comprehensive range of impedance

values achievable by the unit cell, the dispersion analysis is conducted across various

geometric variations of the unit cell. In this manner, the analysis based on the local

periodicity assumption and their resulting dispersion curves facilitates the impedance
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characteristics over a spectrum of a large range geometrical variations for a chosen

frequency.

Another commonly employed assumption involves focusing on the dominant Flo-

quet modes. These modes are characterized by their significant contributions to the

overall behavior of the metasurface. By concentrating the analysis on the zeroth-order

Floquet mode, where n = m = 0, the fields and boundary conditions can be homoge-

nized, leading to a simplification of computation. This simplification streamlines the

analysis of the metasurface making it more manageable.

With a homogenized, periodic structure, the Floquet-Bloch theorem can be in-

corporated for analysis. The Floquet-Bloch theorem is a fundamental concept used

to study periodic differential equations and their application in understanding these

structures. The theorem facilitates the representation of fields within a periodic struc-

ture through a linear combination of Bloch waves. These Bloch waves are essentially

plane waves modulated by a periodic function, effectively encapsulating the periodic

nature of the structure. By leveraging the Floquet-Bloch theorem, it becomes pos-

sible to extract dispersion relations of periodic structures to help realize the surface

impedance. This theorem serves as a crucial tool for comprehending how periodic

structures interact with electromagnetic waves and will be discussed in detail in sec-

tion 3.1.

Transitioning from the section on periodic differential equation, the focus will shift

towards surface impedance characterization and surface wave dispersion character-

istics. Surface impedance refers to the effective impedance that an electromagnetic

wave encounters at the boundary of a material or structure. This characteristic has

a pivotal influence in dictating how the interface reflects, transmits, or absorbs elec-

tromagnetic waves. The comprehension of surface impedance underpins the capacity

to craft and fine-tune structures engineered to manipulate the behavior of electro-

magnetic waves at their interface. Concurrently, the examination of surface wave
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dispersion characteristics unfolds. These surface waves, which traverse along the in-

terface between the interfaces of medium, possess a dispersion relation linking their

wavevector and frequency.

The final section of this chapter hones in on the type of impedance the surface

wave experiences defined by the impedance boundary conditions (IBCs). The sur-

face impedance can be designed to either exhibit isotropic or anisotropic surface

impedance. An isotropic metasurface maintains consistent constitutive properties,

such as permittivity and permeability, in all directions. This uniform behavior is

captured by a constant or can also be described with a unity tensor, making it in-

variant to incident wave’s direction. On the contrasting side, anisotropic modulated

metasurfaces emerge with properties that are directionally dependent. These prop-

erties are described through an impedance tensor, as they can vary across different

directions. This anisotropic design bestows a higher degree of control over electro-

magnetic waves. The result is enhanced efficiency and the ability to achieve specific

functionalities with tailored precision.

Overall, the following three sections within this chapter provide a comprehensive

overview of the analysis of periodic structures using the Floquet-Bloch theorem, the

characterization of surface impedance and surface wave dispersion characteristics,

and the distinctions between isotropic and anisotropic modulated metasurfaces for

impedance boundary conditions.

3.1 Floquet-Bloch Theorem For Describing Periodic Structures

In the late 19th century, mathematician Gaston Floquet made significant contribu-

tions to the field by publishing his research and derivation for solving one-dimensional

differential equations with periodic coefficients [24]. His work provided a mathemat-

ical framework for analyzing one-dimensional systems with periodic properties. A

periodic structure is one that exhibits periodic expansion in a defined direction, char-

acterized by variations in shape, size, and material properties. Periodicity represents
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a fundamental concept in various fields, ranging from electromagnetics to mechanics

and crystallography. Almost fifty years after Floquet published his research on one-

dimensional periodic differential equations, Felix Bloch further advanced Floquet’s

work by extending it to three-dimensional systems, specifically focusing on electrons

traveling across periodic crystal lattices [25]. Bloch’s seminal work revealed that the

solution for a three-dimensional periodic function can be expressed as the product

of a plane wave and a periodic function, with both components sharing the same

periodicity as the lattice. This mathematical framework is particularly useful when

studying the behavior of electrons in crystal lattices, where Bloch wave functions

provide a comprehensive description of their periodic properties and behavior. The

contributions of Floquet and Bloch have had a profound impact on the understanding

of periodic structures and their mathematical analysis. Their works serve as pillars in

the study of various physical phenomena, facilitating the exploration of electromag-

netic waves, mechanical systems, and quantum mechanics in periodic structures.

With this historical groundwork in mind, the discussion shifts toward an explo-

ration of the concept of an infinite structure characterized by a spatial periodicity

designated as Dx along the x axis of a Cartesian coordinate system. This structure is

represented by a wave vector (kix, k
i
y, k

i
z), which serves as the embodiment of a plane

wave. Within this structure, the diffraction phenomenon unfolds between two clearly

defined sections indicated by x1 and x2. Notably, the interval x1−x2 aligns with nDx,

an indicator of periodic behavior. In the context of a one-dimensional derivation, the

relationship of the electric field is solely dependent on the coordinate x as expressed

in Eq. 3.1.

E(x2) = E(x1 + nDx) = E(x1)e
−jkixnDx (3.1)

Equation 3.1 demonstrates that the field at position x2 can be expressed as the field

at position x1 multiplied by a phase factor e−jkixnDx . This phase factor accounts for
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the difference in position along the periodic structure. It is important to note that

in this one-dimensional derivation, the relationship between fields is not influenced

by either the y or z coordinates. This equation highlights the periodic behavior of

the fields within the structure. The diffracted field at x2 is related to the field at x1

through the phase factor, which depends on the wave vector and the periodicity of

the structure.

Equation 3.1 can be manipulated into a generic equation for a diffracted field, as

shown in Eq. 3.2:

E(x) = E(ρ)(x)e−jkix (3.2)

In this equation, E(ρ)(x) represents a function that satisfies the periodicity property,

such that E(ρ)(x) = E(ρ)(x + nDx) for any integer n. Consequently, for any integer

multiple of Dx along the x axis, the boundary conditions for the diffraction problem

are identical. The only difference is seen in the phase factor when excited by an

incident wave. According to Maxwell’s equations and the properties of uniqueness, it

can be assumed that the fields at these distances are the same, differing only by the

aforementioned phase factor. The property of uniqueness refers to the principle that

a physical system or a solution to a problem is uniquely determined by its defining

characteristics or boundary conditions. In other words, if a certain set of conditions

or constraints are specified, there can only exist one solution that satisfies those

conditions.

Taking advantage of the uniqueness properties of Maxwell’s equations, the expres-

sion E(ρ)(x) can be developed into a Fourier series expansion, as expressed in Eq. 3.3:

E(ρ)(x) =
∞∑

n=−∞

E(ρ)
n ej2πn

x
Dx (3.3)

In this equation, E(ρ)
n represents the coefficient of the Fourier series, which can be
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obtained by evaluating the integral given in Eq. 3.4:

E(ρ)
n =

1

Dx

∫ Dx

0

E(ρ)(x)ej2πn
x

Dx dx (3.4)

The Fourier series expansion allows the representation of E(ρ)(x) as a sum of com-

plex exponential functions, each with a specific spatial frequency determined by the

integer n. The coefficients E(ρ)
n capture the contribution of each spatial frequency

component to the overall field.

This Fourier series representation is valuable in the analysis of periodic structures

as it provides a systematic way to describe the diffracted field and its harmonic

components. By determining the coefficients E(ρ)
n , the field can be fully characterize

within the periodic structure.

By substituting Eq. 3.3 into Eq. 3.2, the field for the periodic structure can be

rewritten as:

E(x) =
∞∑

n=−∞

E(ρ)
n e−j(kix− 2πn

Dx
)x (3.5)

Equation 3.5 represents the summation of plane waves with constant propagation

along the x axis. Each term in the summation corresponds to a specific spatial

frequency component characterized by the coefficient E(ρ)
n . These coefficients capture

the contribution of each spatial frequency component to the overall diffracted field.

The term kx in Eq. 3.5 represents the spatial periodicity of the structure propagat-

ing along the x axis. It is given by Eq. 3.6:

kx = kix −
2πn

Dx

(3.6)

Here, kix represents the transverse wave vector of the incident plane wave, and the

term 2πn
Dx

accounts for the possible different modes dependent on n. Depending on

whether the wave number is real or imaginary determines if the plane wave is an
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oblique propagating wave or an evanescent mode respectively.

The spatial periodicity of a planar periodic structure, characterized by a purely

real wave vector, plays a crucial role in determining the direction of propagation for

transmitted and reflected waves, as illustrated in Fig. 3.2. The figure depicts the

wave vectors that arise when a metasurface is modulated with a spatial periodicity

βρ, where spatial harmonics (represented here as −3 ≤ m ≤ 1) propagate while others

become evanescent with R = kx,m > k0.

Figure 3.2: Wave vectors describing the spatial harmonics that arise when a meta-
surface is modulated with a spatial frequency

According to Maxwell’s equations, the propagation vectors for Floquet modes must

match the wave number in the medium through which they propagate. This prin-

ciple dictates that the propagation vectors terminate at the curvature of the circle.
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However, it is important to note that due to the limitations of Maxwell’s equations

and the properties of uniqueness, the direction of wave propagation along the x axis

is ultimately determined by Equation 3.6.

The foundational principles of Floquet’s theorem, originally developed for one-

dimensional structures, find extension in both two-dimensional and three-dimensional

periodic systems. In particular, the two-dimensional version is highly relevant to

metasurfaces, while the three-dimensional adaptation is pertinent to metamaterials.

To illustrate this concept for a metasurface, consider a scenario in which a plane

wave with the wave vector (kix, kiy, kiz) impinging upon an infinite, impenetrable struc-

ture characterized by spatial periodicity along the x and y directions. The periodic

nature of this structure is determined by the parameters Dx and Dy, respectively. An

example of such a periodic structure is visually represented in Fig. 3.3, wherein the

unit cell is replicated in both the x and y directions, with additional considerations

for variations in rotation, which will be discussed further in this dissertation.

Recall Eq. 3.2 used to describe a one dimensional periodic structure propagating

along the x direction which can be expanded to a metasurface or a metamaterial

by adding more dimensions. With new spatial dimensions, the electric field, E, is

dependent on the variables x, y, and z. With the added dimension of periodicity in

the y direction, the spatial periodicity of the field is now described with both Dx and

Dy for the x and y directions, respectively. This extension into the y direction is also

seen in the description of the phase. The phase dependence of the electric field is

given by e−j(kixx+kiyy), where kix and kiy are the wave vectors of the incident plane wave

giving the electric field below.

E(x, y, z) = E(ρ)(x, y, z)e−j(kixx+kiyy) (3.7)

This two-dimensional periodic structure can be studied through a plane wave pass-

ing through a two-dimensional structure in free space at an arbitrary angle. The
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Figure 3.3: Example of a structure periodic along x and y

electric field is analyzed through imposing periodic boundary conditions and port

boundary conditions while defining the direction of propagation and polarization of

the incident wave.

Similarly to its one-dimensional counterpart, the electric field can be expressed as

a summation of different modes described with its equivalent Fourier series expansion

shown in Eq. 3.8.

E(ρ)(x, y, z) =
∞∑

n=−∞

∞∑
m=−∞

E(ρ)
nme

j2π
(
n x

Dx
+m y

Dy

)
(3.8)

The electric field in this two-dimensional periodic structure can be expressed as

a summation of different modes through its equivalent Fourier series expansion, as

shown in Eq. 3.8. The coefficients of this Fourier series expansion, denoted as E(ρ)
nm(z),

are given by the following expression:
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E(ρ)
nm(z) =

1

DxDy

∫ Dx

0

∫ Dy

0

E(ρ)(x, y, z)e
j2π

(
n x

Dx
+m y

Dy

)
dxdy (3.9)

Upon substituting Eq. 3.8 into Eq. 3.7, the electric field can be represented as:

E(x, y, z) =
∞∑

n=−∞

∞∑
m=−∞

E(ρ)
nm(z)e

−j(kxnx+kymy) (3.10)

Here, kxn and kym represent the wave numbers in the x and y directions, respec-

tively, and are defined as:

kxn = kix −
2πn

Dx

(3.11)

kym = kiy −
2πm

Dy

(3.12)

The wave number k corresponds to the wave number of the medium in which the

structure is situated. Additionally, it is worth emphasizing that the electric field

described by Equation 3.10 must adhere to the Helmholtz equation, which is derived

from Maxwell’s equations. This Helmholtz equation, as denoted by Eq. 3.13, governs

the behavior of the electric field, denoted as E, within the periodic structure.

By substituting Equation 3.10 into Equation 3.13, the Helmholtz equation simplifies

to:

∇2E + k2E = 0 (3.13)

The above equation can be expanded as shown in Equation 3.14, where the terms

have been separated and rearranged:

∞∑
n=−∞

∞∑
m=−∞

[
∂2

∂z2
E(ρ)

nm(z)− k2xnE
(ρ)
nm(z)− k2ymE

(ρ)
nm(z) + k2E(ρ)

nm(z)

]
= 0 (3.14)



19

To simplify further and combine constant terms while introducing a variable to

represent the wave numbers, Eq. 3.14 can be rewritten as:

∞∑
n=−∞

∞∑
m=−∞

[
∂2

∂z2
E(ρ)

nm(z) + k2znmE
(ρ)
nm(z)

]
= 0 (3.15)

In this refined form, the variable k2znm is explicitly defined as:

k2znm = k2 − k2xn − k2ym (3.16)

Solving the wave equation presented in Equation 3.15 leads to the following solu-

tion:

E(ρ)
nm(z) = E(ρ0)

nm e−jkznmz (3.17)

Here, E(ρ0)
nm represents a constant. Substituting Equation 3.17 into Equation 3.10

results in the final expression for the electric field within a two-dimensional periodic

structure:

E(x, y, z) =
∞∑

n=−∞

∞∑
m=−∞

E(ρ0)
nm e−j(kxnx+kymy+kznmz) (3.18)

Equation 3.18 represents the electric field within a two-dimensional periodic struc-

ture as a superposition of plane waves. Each plane wave is characterized by distinct

coefficients denoted as E(ρ0)
nm and associated wave vectors (kxn, kym, kznm). When both

n and m equal zero, this corresponds to exciting the fundamental Floquet mode.

These wave vectors collectively account for the periodicity along the x, y, and z

directions and dictate the spatial variation of the electric field within the periodic

structure.

In scenarios where the sum of the squares of the wave vectors in the x and y

directions, namely k2xn and k2ym, is less than the square of the wave number k (as
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expressed in Equation 3.19), it results in the z component of the wave vector being a

real quantity.

k2xn + k2ym ≤ k2 (3.19)

This condition ensures that the z component of the wave vector, denoted as kznm,

can be expressed as:

kznm =
√
k2 − k2xn − k2ym (3.20)

When Eq. 3.20 yields a real value for kznm, it signifies that the harmonics represent

conventional plane waves. These waves are characterized as homogeneous and non-

evanescent. In this context, the phase of the wave remains constant across the entire

wavefront, and the amplitude is also constant within the plane perpendicular to the

direction of propagation.

Conversely, when the sum of the squares of the x and y components of the wave

vector exceeds the square of the wave number of the medium, as outlined in Equa-

tion 3.21, the z component of the wave vector becomes purely imaginary.

k2xn + k2ym > k2 (3.21)

In such cases, the wave vector kznm is expressed as:

kznm = −j
√
k2 − k2xn − k2ym (3.22)

When the z component of the wave vector becomes purely imaginary, it indicates

the propagation of evanescent modes. These waves propagate in a direction orthog-

onal to a surface while maintaining a constant phase. Their magnitude decreases

exponentially perpendicular to the surface. In the absence of losses, these waves
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propagate primarily within the xy plane and attenuate as they extend along the z

direction.

Understanding these evanescent modes is crucial for the characteristics and func-

tionalities of metasurfaces and other periodic structures, forming the foundation for

exploring their properties and applications in electromagnetic phenomena.

3.2 Surface Wave Characteristics and Analysis

Building upon the insights gained in the previous section regarding evanescent

waves and their significance in periodic structures, this section delves deeper into the

analysis of waves and more specifically the characterization of surface waves. The

initial part of this section is dedicated to the analysis and characterization of surface

waves, exploring their properties and behaviors in various contexts. The latter half

of this section, discusses the application of equivalent circuit theory for studying

transverse electric (TE) and transverse magnetic (TM) waves to help construct the

dispersion curves for the unit cells that carry the surface waves.

3.2.1 Surface Impedance and Wave Characterization

A surface wave is an electromagnetic wave that is bound to the interface of two

materials, typically air and a metallic surface in the context of MTSs. Typically,

the surface impedance between the two interfaces control the properties of the elec-

tromagnetic wave. In particular, when dealing with metallic surfaces, the surface

impedance can be effectively manipulated by introducing textures or patterns. This

manipulation allows for precise control over various surface wave properties, includ-

ing whether the surface behaves inductively or capacitively, as well as controlling the

magnitude and phase of the surface wave.

For instance, consider a surface with an impedance denoted as Zs and an associated

electric field with an attenuation constant, α, as illustrated in Fig. 3.4. Controlling the

parameters, such as the attenuation controls the rate at which the wave exponentially
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decays as it travels across the surface.

Figure 3.4: Surface impedance, Zs, controls the electric field through an associated
attenuation constant α, showcasing the ability to control the decay rate of surface
waves, influencing their behavior and properties.

The classification of a surface wave is based on whether the impedance is positive

or negative, which, in turn, influences the type of surface wave that occurs. According

to Maxwell’s equations applied to the context of surface impedance and its relation

to surface waves, TM waves are observed on inductive surfaces. This behavior is

mathematically expressed as:

Zs,TM =
jα

ωϵ
(3.23)

Conversely, TE waves are found on capacitive surfaces, and this is mathematically

described as:

Zs,TE =
−jωµ
α

(3.24)

In the above equations, µ and ϵ represent the permeability and permittivity, re-
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spectively, of the materials involved, while ω denotes the angular frequency of the

electromagnetic wave. It is important to note that both equations describe purely re-

active components and adhere to Foster’s reactance theorem, which is a fundamental

principle in electromagnetic theory discussed more extensively in a later chapter.

TE waves, excited with an inductive reactive surface, are a category of electromag-

netic waves characterized by having an electric field perpendicular to the direction

of wave propagation. For instance, in the case of a wave propagating along the x

direction, the electric field will oscillate in the y direction. TM waves, on the other

hand, share the same fundamental concept but exhibit a magnetic field that is per-

pendicular to the direction of wave propagation. Again, using the example of a wave

traveling along the x direction, the magnetic field will be oriented in the transverse

direction, typically in the y or z direction [26].

In the realm of metasurfaces, the effective impedance of the surface hinges on the de-

sign of its metallic patches and the spacing that separates them. When these patches

feature narrow gaps, the effective impedance takes on a capacitive nature. Con-

versely, when there’s oscillating current between neighboring patches due to metallic

patches with apertures, the impedance becomes inductive. In many practical cases,

the surface exhibits a combination of both capacitive and inductive elements, and

this complex behavior can be modeled using a parallel LC resonant circuit expressed

by the following equation:

Zs =
jωL

1− ω2LC
(3.25)

Figure 3.5(a) illustrates the capacitance due to the presence of a gap and inductance

arising from the circulation of current. These reactances can be effectively modeled as

a parallel resonant circuit, as demonstrated in Fig. 3.5(b). It is important to empha-

size that the values relevant to this model are not the capacitance and inductance of

individual components but rather the sheet capacitance and sheet inductance, which
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are employed to characterize the surface impedance. These properties depend on both

the inherent attributes of each element and their specific spatial arrangement for to

resonance of the surface.

Figure 3.5: (a) Illustration of the capacitance acquired through the presence of a gap
and the inductance arising from the circulation of current within the structure. (b)
Representation of the structure’s behavior as a parallel resonant circuit, emphasizing
the importance of sheet capacitance and sheet inductance in characterizing the surface
impedance.

The resonant frequency, denoted as ω0, is determined by 1/
√
LC. As per Eq. 3.25,

below the resonant frequency, the surface exhibits inductive behavior, which supports

TM waves. Conversely, above the resonant frequency, it displays capacitive charac-

teristics, supporting TE waves. As the frequency approaches the resonant value, the

impedance tends to become purely real, indicating a lack of support for surface waves.

To describe the impedance characteristics of these surfaces, an effective surface

impedance model is often employed. This approach, utilizing an equivalent lumped
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element circuit, remains valid when the unit cells of the metasurface are significantly

smaller than the wavelength. The behavior of these unit cells can be described through

their dispersion characteristics, as shown in the equation below.

k2 = µ0ϵ0ω
2 + α2 (3.26)

In Eq. 3.26, the symbol k corresponds to the wave number, µ0 denotes the per-

meability of free space, ϵ0 represents the permittivity of free space, ω stands for

the angular frequency, and α is the attenuation constant, also known as the decay

constant.

By combining Eq. 3.23 and Eq. 3.26, the wave number for a TM wave can be ex-

pressed as a function of the angular frequency and the free space impedance, denoted

as η, which equals the √
µ0ϵ0, with c, defined as

√
µ0/ϵ0, representing the speed of

light in a vacuum:

kTM =
ω

c

√
1− Z2

s

η2
(3.27)

A similar approach can be applied to TE waves by combining Eq. 3.24 and Eq. 3.26:

kTE =
ω

c

√
1− η2

Z2
s

(3.28)

Substituting Eq. 3.25 into both Eq. 3.27 and Eq. 3.28 yields the dispersion diagram

used to find the impedance values of the unit cells. An example of a dispersion

diagram is presented in Fig. 3.6, with the resonant frequency denoted as f0. Below

the resonance frequency, the diagram shows support for TM modes, while TE waves

are supported for frequencies above the resonance point. It is worth noting that at

the lower end of the dispersion curve, the waves closely align with the light line and

exhibit weaker binding to the surface. However, as the frequency increases, the curves
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deviate from the light line, indicating a stronger binding of waves to the surface.

Figure 3.6: Example of a surface wave dispersion diagram for a surface wave displaying
the light line, f , the design frequency, f0, and a TE and TM wave

The model discussed above provides a means to predict electromagnetic proper-

ties, including beam shape, polarization, and reflection phase, based on the surface

impedance of the metasurface. It offers insights into surface wave behavior and facil-

itates the design and optimization of metasurface-based devices.

3.3 Incorporation of Modulated Metasurfaces for Achieving Wave Manipulation

This section delves into the concept of impedance boundary conditions, which

govern the interaction of surface waves with material interfaces. Impedance boundary

conditions, categorized as isotropic and anisotropic, establish the relationship between

electric and magnetic fields at these boundaries. The section explores their theoretical

foundations, mathematical expressions, and highlights the key differences between
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these two categories.

3.3.1 Impedance Boundary Conditions

Metamaterials and metasurfaces make clever use of wave scattering within a medium

to achieve specific characteristics. However, modeling this phenomenon can be quite

challenging. The complexity arises because the electromagnetic field extends both

inside and outside the scattering material. This necessitates the use of volume inte-

grals to solve for the field behavior. Nevertheless, a simplification becomes possible

when an electromagnetic wave interacts with a surface. This simplification is achieved

through the incorporation of impedance boundary conditions.

These boundary conditions establish a relationship between the tangential com-

ponents of the electric and magnetic fields. They depend on surface properties like

capacitance and inductance, as well as the characteristics of the incident field. When

analyzing the interface between two non-perfectly conducting, isotropic, and homo-

geneous media in the context of electromagnetic wave interactions, specific boundary

conditions can be applied.

These boundary conditions are characterized by two properties. The first property

states that the cross product between the normal vector to the electric field and the

normal vector to the magnetic field must equal zero at the surface. The second prop-

erty states that the dot product between the normal vector to the electric field density

and the normal vector dotted with the magnetic field density must also be zero at

the surface. Importantly, these properties are interdependent and together establish

an impedance boundary condition. This condition serves to relate the characteristics

of the first medium to those of the second.

However, when the second medium is a perfect electric conductor (PEC), the anal-

ysis narrows down to the fields in free space or dielectric. In this context, the initial

conditions for these boundary conditions become as follows:
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n̂× E = 0 (3.29)

n̂ ·B = 0 (3.30)

n̂ ·D = δ (3.31)

n̂×H = K (3.32)

where δ is the charge distribution andK is the current distribution. Particularly, when

the refractive index of the PEC significantly exceeds that of free space, it simplifies

the situation, with only Eq. 3.29 and Eq. 3.30 manifesting in free space.

To comprehend the radiative properties of metasurfaces, a common approach in-

volves investigating scattering from an infinite two-dimensional dielectric slab, as

illustrated in Fig. 3.7. On the left side of the illustration, an electric field parallel to

the direction of propagation excites a TM wave. Conversely, on the right side, the

electric field is perpendicular to the propagation dire ion, characterizing it as a TE

wave. These incident waves interact with a grounded dielectric, which can be effec-

tively modeled and analyzed using an equivalent local transmission line model. In this

model, a grounded dielectric slab is considered, with the colored arrows (both purple

and red) representing the transmitted waves for both TM and TE polarizations, and

the grey arrow indicating the reflected wave. Additionally, the yellow components in

the local transmission line model represent the dielectric in the slab, while the grey

components represent the air above it.
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Figure 3.7: An incident wave impinging on a grounded dielectric slab, illustrating
TM (left) and TE (right) wave configurations. These scenarios can be equivalently
modeled as a local transmission line setup for the study of scattering characteristics
on a MTS as shown below the slab where the colored arrows show the transmission
and the grey arrows show reflection.

3.3.2 Sinusoidal Modulation of Impedance

By introducing a textured metallic surface to the grounded dielectric slab, a reactive

element is incorporated into the model as an IBC which can either consist of isotropic

or anisotropic reactance.

3.3.2.1 Isotropic Modulated Metasurfaces

Under the assumption of a sinusoidally modulated surface with a uniform IBC

characterized by a constant inductive reactance, this surface is considered isotropic.

In this case, the impedance factor denoted as Xs takes on the form of a positive scalar

value, determining the inductive reactance of the surface. The primary wave excited

on this surface is the TM wave, as discussed in Section 3.2.1. Consequently, this

implies that the relationship between the tangential components of the electric field
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and the tangential components of the magnetic field can be expressed as follows:

jXsz × (H × z)|z=0 = E × z|z=0 (3.33)

This equation establishes connection between the tangential electric and magnetic

fields at the surface, derived directly from Maxwell’s equations. The tangential com-

ponents of the electric and magnetic surface waves are given by:

Etan
sw = ITMjXsH

(2)
1 (βswρ)ρ̂ (3.34)

H tan
sw = −ITMXsH

(2)
1 (βswρ)Φ̂ (3.35)

In the above equations, key variables are defined as follows: ITM stands for the

current, Xs represents the surface impedance, H(2)
1 is the first-order Hankel function

of the second kind, and ρ̂ and Φ̂ denote the unit vectors in the radial and azimuthal

directions, respectively, within a cylindrical coordinate system. In addition, the phase

constant characterizing the surface wave, is denoted as βsw, determined by achieving

resonance for a free space propagating TM wave. The phase constant of the surface

is described by its relationship of Xs, ζ,and k.

βsw = k

√
1 +

(
Xs

ζ

)2

(3.36)

In the equation of the phase constant, k signifies the wave number, while ζ corre-

sponds to the characteristic impedance of the medium. The phase constant can be

tailored by adjusting the surface impedance in order to aid in the design of a MTS in

order to match to specifications such as realizability.

The surface impedance gradient is commonly implemented through metallic cladding

on top of the dielectric slab transforming the grounded dielectric slab and equivalent
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transmission line model in Fig. 3.7 to Fig. 3.8. This additional element introduces a

novel reactive component into the transmission line model that accounts for the sheet

reactance on the dielectric. Considering the reactance is uniform as stated earlier,

the metallic cladding similarly has to be symmetric with the direction of propagation

for the supported mode. In this regard, the direction of propagation does not alter

the results of the metasurface because the shape and impedance appears identical to

the wave.

Figure 3.8: An incident wave impinging on a grounded dielectric slab with metallic
cladding, illustrating TM (left) and TE (right) wave configurations. The structure
can be locally modelled as a transmission line with a shunt impedance representing
Xs.

Two examples of this type of symmetry producing an isotropic impedance is illus-

trated in Fig. 3.9. In the first example, the antenna is designed with square metallic

elements of varying sizes embedded on a dielectric slab. For this type of element, the

shape is symmetric for the orthogonal polarizations resulting in the same radiation
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pattern for both polarizations. Similarly, the metallic elements on the right side of the

figure, also embedded on a dielectric slab, have a radial symmetry. In both of these

antenna designs, circular polarization is the designed polarization. It is worth noting

that the individual elements that compose this antenna are significantly smaller than

the wavelength of the operating frequency, allowing the surface wave to travel across

the antenna. The isotropic nature of the modulated surface impedance enables it to

interact with the incident waves in a consistent manner, irrespective of the direction

of propagation.

Figure 3.9: Two antenna designs of metallic patches embedded on a grounded di-
electric slab demonstrating symmetry for isotropic impedance for a circularly polar-
ized wave with square(left) and circle (right) unit cells used to discretize the surface
impedance [1]

The modulated surface impedance is defined through a sinusoidal pattern and im-

plemented with the elements, such as those exemplified in Fig. 3.9. These elements,

called unit cells, are used to discretize the impedance of the surface in order to realize

the sinusoidal modulation. Through various geometric varieties of the unit cell, the

range of impedance values can be created in order to match to the discetized sur-

face. Each unit cell is mapped to the surface impedance to have a specific geometry

at each point on the antenna creating a smooth and continuous modulation of the

surface impedance. Due to the symmetry of the unit cell, lending to the impedance

being isotropic, the impedance, Xs, is considered a scalar. The scalar factor jXs(ρ)
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relates the transverse components of the electric and magnetic fields.

In the context of TE and TM waves, the amplitude of the transverse wave vector

is defined as kt = kt(ρ)k̂t(ρ), where kt(ρ) represents the radial dependence, and k̂t(ρ)

is the corresponding unit vector. This wave vector plays a crucial role in describing

the dispersion equation, denoted as Eq. 3.37, which is derived using the transverse

resonance method.

ktn(ρ) = k

√
1 +

(
Xs(ρ)

ζ

)2

(3.37)

The transverse resonance method is a valuable technique employed to ascertain the

propagation constant of waves. This method capitalizes on the presence of standing

waves occurring in a specific direction, which is transverse to the primary propaga-

tion direction. These standing waves emerge as a consequence of purely reactive loads

positioned at both ends of the transmission line, symbolizing the path of wave prop-

agation. Under these circumstances, the transmission line terminated with reactive

loads is considered a resonant structure. This resonance condition dictates that the

input impedance when looking forward, must be equal in magnitude but opposite in

sign to the input impedance, when looking backward. In other words, the sum of

these two impedance values must equal zero to satisfy the conditions for resonance.

Recalling back to Eq. 3.37, the term ktn(ρ) characterizes the modified transverse

wave vector associated with the modulated impedance. This equation reveals that

when ktn exceeds the wave number in free space, the fields undergo exponential atten-

uation perpendicular to the metasurface. This phenomenon is illustrated in Fig. 3.10,

where the spiral pattern indicates the presence of impedance modulation.

The exponential attenuation observed in fields perpendicular to the metasurface

is a consequence of the interaction between the incident wave and the modulated

impedance profile. This modulation of impedance effectively alters the local refrac-

tive index and phase velocity, consequently influencing the propagation path of the
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Figure 3.10: Field attenuating exponentially normal to a metasurface with a spiral
pattered impedance [1]

supported surface wave.

The modulation of the wave vector, achieved through the introduction of a modu-

lated surface impedance, brings about changes in the phase velocity and propagation

trajectory of the surface wave supported by the metasurface. This modulation is

realized by imposing boundary conditions that locally adjust the value of kt, ensuring

that the wave follows the evolving impedance profile. The path of the propagating

wave is dictated by the local refractive index, adhering to Fermat’s principle, which

dictates that the wave follows the minimum optical path. Through precise control of

surface impedance modulation, the metasurface gains the capability to manipulate

the direction and behavior of the surface wave, allowing for the achievement of specific

desired functionalities.

3.3.2.2 Anisotropic Modulated Metasurfaces

When transitioning from isotropic to anisotropic impedance, a fundamental shift

occurs in the complexity of boundary conditions. Unlike isotropic impedance, which

exhibits uniform characteristics in all directions, anisotropic impedance introduces an

interplay of field behaviors. An anisotropic impedance boundary condition is created
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when the tangential fields on the surface satisfy the relationship: Esw|z = 0+ = Z ·

(z × Hsw)|z=0+ . In this case, the impedance is described by a tensor that captures

the relationship between the tangential electric and magnetic fields on the surface.

This coupling of TE and TM modes, facilitated by the impedance tensor, results in a

more intricate wave propagation environment. It allows for tailoring the response of

the electromagnetic wave to possibly improve the behavior of the antenna or present

other design benefits.

Figure 3.11: Anisotropic surface impedance on an infinite dielectric slab showing the
TE and TM coupling effect. The equivalent transmission line model accounts for
both modes which adjusts the local model such that both modes are included in the
analysis.
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Figure 3.11 visually illustrates the anisotropic nature of such impedance conditions,

emphasizing the interaction of both the TE and TM modes and the two corresponding

transmission line models used to describe them which takes into account both the

inductance and capacitance of the surface exciting both a TE and TM wave.

Anisotropy is achieved through the use of metallic cladding, which introduces asym-

metry, allowing different angles of propagation to interact with the surface in unique

ways. This asymmetry necessitates the use of an impedance tensor, as mentioned in

the preceding paragraph.

To design an anisotropic surface, it is crucial to create shapes that lack symmetry

in relation to surface wave propagation. Figure 3.12 illustrates this concept with four

different unit cell examples, each designed to fulfill anisotropic boundary conditions.

Notably, these unit cells exhibit differences in symmetry compared to the examples

provided in the section on isotropy. These four unit cells lack both orthogonal and

radial symmetry, which means that different directions of propagation will encounter

the unit cell’s properties differently.

Figure 3.12: Four unit cell examples demonstrating designs for achieving anisotropic
boundary conditions. These unit cells lack symmetry, allowing different directions of
propagation to interact with them in distinct ways. The asymmetry also introduces
the capability to rotate the unit cell, providing an additional parameter for expanding
the impedance profile.

The introduced asymmetry also brings forth an intriguing capability: the ability

to rotate the unit cell. This additional variable offers a way to expand the range
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of achievable impedance variations with the unit cell. It enhances the design flex-

ibility and tunability of anisotropic metasurfaces, allowing for even more versatile

applications.



CHAPTER 4: DUAL POLARIZATION METASCREEN

In today’s rapidly advancing electromagnetic technology, there is a growing de-

mand for devices that can support multiple functions while simultaneously reducing

in size and weight. These advancements are crucial for various applications, includ-

ing point-to-multi-point communication, wireless tracking, and radar systems. To

achieve desired functionalities such as phase delays, polarization control, and wave

redirection[27, 28], reflect arrays have traditionally been employed[29, 30]. However,

due to their bulky nature, there is a need for smaller alternatives that offer comparable

or even improved performance.

An increasingly popular solution for downsizing of electromagnetic devices is the use

of MTSs. There are many different types of metasurfaces including lenses, antennas,

and imaging structures. They can be designed with a multitude of different methods

and different elements types such as diodes or metallic patches [31, 32, 33, 34]. This

chapter discusses the utilization of a MTS in the usage of a metascreen: a MTS

placed in-between an transmitting source and receiving source to perform a space

wave transformation. The most basic design of a metascreen is one layer of metallic

patches [35], but this limits design flexibility and, in turn, can introduce an abundance

of loss through scattering. To help reduce the excessive scattering, more layers can

be used for extra degrees of freedom in the design. This has been done in [36, 37, 38]

to achieve beam steering. These designs, although less lossy, are restricted in their

use to steering an incident wave in one polarization direction.

In order to overcome this limitation, a space wave transforming metascreen is pro-

posed that overcomes this limitation by creating a dual polarization steering structure.

In the interest of conserving space, this structure is able to perform the task of two
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metasurfaces in the space, weight, and resources of one metascreen. This dual po-

larization effect relies on the surface impedances to be independent for the vertical

and horizontal modes. The independent beam steering is accomplished through a

three-layer design of metallic patches separated by dielectric slabs.

The structure of this chapter is as follows; the first section delves into the equivalent

local transmission line model and provides essential background theory. The subse-

quent section conducts an in-depth analysis of the unit cell and its varying admittance

in the context of the complete MTS design. Following that, the chapter presents and

discusses the numerical results obtained from the fully designed structure. Finally,

the last section offers concluding remarks on the outcomes and findings.

4.1 Analysis of Metascreen with Anisotropic Admittance Profiles and

Independent Polarization Behavior

A metascreen can be described using the generalized Snell’s Law, as outlined

in [39] and shown in Fig. 4.1, where a phase gradient is introduced at the inter-

face of two mediums to influence the reflection and refraction of the wave. The

phase gradient introduced adapts the typical Snell’s Law equation, described by
√
ϵr1 sin θ1 =

√
ϵ2 sin θ2 to include the phase with an addition to the equation mak-

ing it
√
ϵr1 sin θ1 +

1
k
δϕ
δx

=
√
ϵ2 sin θ2. The linear phase gradient is implemented by

discretizing the phase through unit cells, resulting in a phase discontinuity at the

interface. In the proposed structure, the metascreen consists of three slotted metal-

lic layers separated by a dielectric layer with a thickness d, to create the periodic

structure.

The layers of the metascreen are arranged such that each side of a middle layer

contains identical admittance profiles, while the middle layer itself has a separate ad-

mittance profile. The identical external layers add an extra degree of freedom into the

design canceling out introduced reflection commonly seen in screens with two layers.

Fig. 4.2 shows a cross-sectional view illustrating the two identical outer layers defined
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with one impedance profile, Y
1
(x), and the middle layer with an impedance profile

of Y
2
(x). The layered metascreen is excited with two orthogonal polarizations; the

black diagram representing an x polarized wave and the green diagram representing

a y polarized wave.

Figure 4.1: Comparison of Snell’s Law versus generalized Snell’s Law where a phase
gradient is introduced at the interface of a medium.

To further analyze the metascreen, a local transmission line model can be employed,

as shown in the right half of Fig. 4.2. The transmission line consists of two distinct

transmission line models connected together. The left half of the local transmission

line model describes the behavior for an x-polarized incident wave, while the right

half is utilized for a y-polarized incident wave. By exciting the metascreen with

either of the two orthogonal polarizations, the transmitted wave can be steered, and

the steering angle is dependent on the admittance profiles. Since the layers possess

anisotropic admittance profiles, the steering angles vary based on the polarization,

resulting in independent angles for different excitations.

The anisotropy of the admittance is expressed in Eq. 4.1 and Eq. 4.2 for the outer

and middle admittance layers respectively. Upon examining the equations, it becomes

evident that the 2 × 2 matrix exhibits position dependence for the two different

polarization directions.
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Figure 4.2: Left: Cross-sectional view of the metascreen with Y1(x) and Y2(x) repre-
senting the admittance layers with the blue layers representing one admittance tensor
and the red layer representing a separate admittance tensor. This also shows the two
polarizations depicted in black and green. This is locally modeled for analysis using
a local transmission line model to the right showing the three metascreen layers sep-
arated by layers of dielectric.

Y1 → Y
1
=

Y xx
1 Y xy

1

Y yx
1 Y yy

1

 (4.1)

Y2 → Y
2
=

Y xx
2 Y xy

2

Y yx
2 Y yy

2

 (4.2)

With the simplified model, the scattering parameters describing the structure can

easily be determined using common transmission line equations. It can be noted

that there are no closed-form solutions for the transmission line model using these

admittance profiles that ensure full transmission due to coupling between the two

modes notated by Yxy and Yyx. To achieve a wave that has minimal reflection with the

maximum amount of transmission for each polarization, the modes need to be excited

independently to prevent the occurrence of coupling between them. To achieve this,

the off-diagonal values of both admittance tensors are set to equal zero. Consequently,
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Yxy and Yyx are set to equal zero, two independent local transmission line models

are used, shown as the inset in Fig. 4.4, with each one separately describing one

polarization. Subsequently, the simplified local models can be solved using the ABCD

method [39] to find each admittance profile. The full admittance profile is constructed

by superimposing the individual admittances into the admittance tensor in their

respective positions to fully capture the behavior.

4.2 Unit Cell Design and Validation for Independent Polarization Behavior

The impedance tensor provides an ideal mapping of the metascreen to achieve the

desired independent polarization effect. This is implemented through discretizing the

impedance using sub-wavelength unit cells. Using the local periodicity assumption,

different geometries of the unit cell are studied to find the appropriate shape to fulfill

the impedance. Local periodicity allows the unit cell to be analyzed assuming the

adjacent unit cells in the screen will exhibit minimal geometric differences. Local

periodicity also dictates that the size of the unit cell has to be much much less than

the wavelength. The period of the unit cell, p, chosen for this design is λo/5 where

λo is the free-space wavelength.

The choice of the proposed unit cell was guided by several key advantages it offers

to the overall design. Firstly, simplicity of the unit cell’s geometry while still being

able to encompass the full impedance variation needed for all layers and polarizations

is advantageous. The simplicity would streamline the design process, requiring only

a single database that can be applied consistently across all layers of the metascreen.

Additionally, symmetry plays a critical role in achieving the desired independent

polarization effect. To achieve this, the unit cell’s layers must exhibit symmetry across

both the x and y axes. This symmetry ensures that the metascreen can effectively

manipulate and control two orthogonal polarizations independently.

The selected unit cell geometry that aligns with the design requirements of simplic-

ity and symmetry is the slotted modified Jerusalem cross, as illustrated in Fig. 4.3.
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The Jerusalem cross offers a host of advantages, making it a suitable choice for the

metascreen design. These advantages include its inherent symmetry, structural in-

tegrity, rigidity, and compactness. Moreover, the Jerusalem cross exhibits the nec-

essary geometrical variation to cover the impedance range required for the specific

structural design of this metascreen. This variation is achieved by adjusting the

lengths of its arms. When an x-polarized wave is incident, the length of the arm,

Lx, which runs parallel to the y direction, is modified to control the impedance en-

countered by the x-polarized wave. Similarly, the arm length Ly, which is parallel to

the x direction, is adjusted to manage the incident y-polarized wave. The variation

in arm lengths in both directions is achieved by altering the length, which ranges

from 1 mm to 10 mm. It’s worth noting that each slotted arm maintains a consistent

width, denoted as w, measuring 0.5 mm. Additionally, the height, h, of each of the

longer cross slots situated in the center of the unit cell is 12 mm for both arms.

Figure 4.3: Left: Example of a layer of the slotted metallic unit cell annotated with
its geometric parameters. Right: Three-dimensional view of the layered unit cell
separated by layers of dielectric wit height, d, and a period, p.

The metallic slots within the unit cell are arranged in layers and separated by a

dielectric material, as illustrated in the right half of Fig. 4.3. The choice of the separa-
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tion distance, denoted as d, is selected to strike a balance between allowing sufficient

transmission of waves and preventing unwanted reflections while avoiding coupling

between the layers that could alter the admittance characteristics. To maintain the

independence of the admittance of each layer, the unit cell is rigorously analyzed at

its individual interfaces. Specifically, it is assessed for the interface between air and

dielectric for the outer layers and the interface between dielectric layers for the cen-

tral section. The chosen separation distance that has demonstrated optimal results,

preventing excessive scattering and providing the best performance, is λo/8.

The combination of the layered metallic slots and the dielectric material between

them forms the complete unit cell for the metascreen. The outer layers, depicted

in blue, contribute to the impedance characteristics for Y1(x), while the central red

layer contributes to the impedance characteristics for Y2(x). This careful arrangement

ensures that the metascreen can effectively manipulate and control the two orthogonal

polarizations independently.

4.2.1 Validation of Unit Cell Performance through Floquet Analysis and

Admittance Study

The unit cell is thoroughly examined through Floquet analysis, employing periodic

boundaries to acquire the scattering parameters. Subsequently, the admittance values

are extracted from these scattering parameters for both the x and y polarized modes.

The individual components of the admittance tensor are studied as the length along

Lx is systematically varied to ensure that the unit cell meets its specified requirements

while also providing sufficient variability to match the impedance values presented

in Fig. 4.5. First, the off-diagonal values, Yxy and Yyx, from Eq. 4.1 and Eq. 4.2 are

varied to prove they are equal to zero. This verification is essential to confirm the

feasibility of finding a solution, and the resultant zero admittance values are visually

represented in Fig. 4.4. Fig. 4.4 (a) exhibits both the normalized admittances for

the boundaries between dielectric to dielectric, depicted as a solid blue line, and the
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boundaries between air and dielectric, illustrated by a dashed red line. The scaling

of the y-axis in this plot is intentionally minimized to emphasize the close proximity

of the admittance values to zero across all lengths of Lx. These minute values are

indicative of the metascreen’s ability to function independently, as there is negligible

coupling between the two modes.

The admittance database as Lx is increased is looked at for both Yxx and Yyy in

Fig. 4.4 (b)-(c) for both medium interfaces. As expected, the Yyy is constant value

across all lengths of Lx for both the interfaces of air to dielectric and for dielectric to

dielectric. This consistent flat line indicates that changes in the unit cell’s geometry,

intended to vary the admittance for an x-polarized wave, do not have any impact on

the admittance for the orthogonal polarization (y-polarized wave). This observation

reaffirms the independence of these two modes. Again, this also confirms the indepen-

dence of the modes. Accordingly, there is a smooth gradient of increasing admittance

values over the lengths of Lx when the unit cell is excited with an x-polarized wave

that encompasses the full range of values to match to the theoretical values. This

admittance database in Fig. 4.4 (c) is the same that is used for Yyy for the design of

the metascreen as well.

The theoretical admittance values are examined and shown as the solid, blue line

in Fig. 4.5. Using the admittance profile in Fig. 4.4 (c), the unit cell geometries are

chosen to match the necessary admittances to create the phase discontinuity. The unit

cells utilized on the screen for a design of 20◦ for both layers is conveyed in Fig. 4.5.

Each individual unit cell’s admittance is represented by a red dot. Notably, the unit

cells closely approximate the theoretical values, aligning well with nearly every point

across the modulation period. However, there is a slight deviation in the last unit cell

of the Y1 profile. This discrepancy arises from the asymptotic nature of the tangential

function in the theoretical design, and the chosen geometry’s inability to reach the

required admittance value at that specific point. To address this asymptotic behavior,
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Figure 4.4: a) Normalized admittance, Yxy, across the variations of Lx showing to be 0
for all values, Inset: Transmission lines for each polarization shown to be independent
of each other (b) Normalized admittance, Yyy across all variations of Lx illustrating
the cross-pol admittance does not change based on variation of the co-pol geometry
(c) Database of impedance values for both x and y polarized waves.

a phase shift is introduced, ensuring that the modulation period begins and ends with

the asymptotes. This strategic placement of asymptotes at the modulation period’s

endpoints eliminates abrupt jumps in the admittance. Moreover, these asymptotes are

conveniently positioned where the electric field across the modulation period exhibits

the lowest magnitude.

4.3 Simulation and Analysis of the Full Metascreen

The full simulated metascreen is constructed using 77 unit cells which corresponds

to 7 modulation periods for a design of 30◦ and just over 5 modulation periods for a

design of 20◦. The modulation periods are aligned such that one is centered in the
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Figure 4.5: (a) Theoretical admittance value (solid, blue line) for a steering angle of
20◦ and the admittance value of the unit cells used (red dots) for Y1 (b) Theoretical
admittance value (solid, blue line) for a steering angle of 20◦ and the admittance value
of the unit cells used (red dots) for Y2

middle of the screen and repeated out towards the edges. Using Comsol’s Electro-

magnetics simulator, the entire metascreen, spanning just over a meter in length, is

positioned within a parallel plate waveguide. This configuration allows the excitation

of orthogonal polarizations. Excitation is achieved at the center of the metascreen

using a Gaussian beam. The radius of this beam varies depending on the size of the

modulation period, which, in turn, changes with different steering angles. The results

of the simulation are illustrated in Fig. 4.6, depicting the behavior of the x-polarized

and y-polarized waves as they steer at angles of 20◦ and 30◦, respectively.

The results are quite evident in illustrating the results of the Gaussian beam in-

cident on the metascreen, as denoted by the three black lines at the center of the

graphic. Notably, this incident beam undergoes an abrupt phase shift at the inter-

face, effectively steering the angle in the intended direction. It is worth observing how

the field spreads and how the design angle influences the scattering of transmitted

fields. As the design angle increases, there is an inverse relationship with the size of

the modulation period, primarily due to a 1/sin(θ) dependency. Consequently, for

higher angle designs, there are fewer unit cells within each modulation period, leading



48

(a) (b)

Figure 4.6: (a) Gaussian beam excited electric field incident of a screen steered at an
angle of 20◦ for an x polarized wave (b) Gaussian beam excited electric field incident
of a screen steered at an angle of 30◦ for an y polarized wave

to increased scattering resulting from the non-continuous discretization of the admit-

tance. Nevertheless, the metascreen’s efficiency remains adequate for a wide range of

angles, only becoming a limiting factor at more extreme steering angles.

In this chapter, the design and simulation of a metascreen for beam steering pur-

poses are thoroughly explored. The selection of a slotted modified Jerusalem cross as

the unit cell geometry is explained, emphasizing its advantages in achieving simplicity,

symmetry, structural integrity, and the ability to vary impedance. The study employs

Floquet analysis with periodic boundaries to obtain scattering parameters and extract

the admittance values for both x and y polarized modes. Notably, the investigation

ensures the independence of modes by confirming zero off-diagonal admittance values

and reveals smooth variations in admittance along the length. The results of the full

simulated metascreen demonstrate effective beam steering capabilities, with efficiency

remaining acceptable for various angles.



CHAPTER 5: DUAL BAND METASURFACE ANTENNAS

The demand for multifrequency medium-to-high gain antennas is rapidly increasing

in many application areas, including Earth and climate science, remote sensing, and

satellite communications. These antennas, which are able to operate at different

frequency bands with the same shared aperture, offer the possibility to increase the

channel capacity, improve the isolation between the transmitted and received signals,

and provide multiple functionalities.

Reflectarrays [40, 41, 42, 43, 44, 45] and transmitarrays [46, 47, 48, 49, 50, 51] have

been largely explored as radiators operating in multiple frequency bands. Among

other advantages, these antenna solutions are low cost, low weight, and ease of fab-

rication. However, they usually require an external feed, which makes them less

appealing for applications with severe space constraints. Thus, it is of significant

interest to propose multifrequency antenna solutions with an integrated feed.

Metasurface antennas have raised a great deal of interest in recent years [52, 53,

54, 55, 33, 56, 57]. Key features they offer include lightweight, ultra-thin form factor,

polarization control, and a simple feeding mechanism. In the simplest cases, the feed

structure is a vertical monopole placed inside the slab and coaxially powered from the

ground plane. The monopole located at the center of the antenna excites a cylindrical

surface wave that is gradually converted into a radiative wave, known as a leaky wave,

through the interaction with the periodic metallic texture. The metallic texture can

be modeled by a spatially modulated surface impedance [58]. This impedance relates

tangential components of the electric and magnetic fields and is usually assumed to be

purely imaginary (reactive), implying lossless metallic elements which is a reasonable

assumption in the microwave and millimeter-wave regimes. As stated by the Foster’s
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Reactance theorem, such a reactance must be a monotonically increasing function of

the frequency alternating poles and zeros [59].

In this chapter, the investigation of a new strategy for designing dual-frequency

MTS antennas is based on exploiting the behavior of the MTS surface impedance

versus frequency. Previous research on dual-band MTS antennas has typically relied

on two different strategies. The first strategy involves superimposing two different

modulated surface impedances, with each one responsible for controlling radiation

at a specific frequency [60, 61]. This approach requires subwavelength unit cells

to accurately discretize the continuous impedance profile, making it challenging for

radiative systems operating at two widely separated frequency bands. The second

strategy involves cascading two surface impedances whose profiles are determined

using the optimization technique of the gradient-descent method [62].

While this approach potentially has no restriction on the separation between the

two operating frequencies, it requires an external excitation, resulting in a poor device

form factor. In this proposed antenna, it allows overcoming such issues. It consists of a

dual-layered MTS antenna capable of performing at two broadly different frequencies

with a coplanar excitation. The key point in this dissertation is to make the layer

working at the frequency f1 transparent at the frequency f2, and vice-versa. As

mentioned above, this behavior can be achieved by exploiting the Foster’s Reactance

theorem. Namely, the equivalent impedance of the metallic layer operating at f1 (f2)

has to be close to a pole at f2 (f1).

The work begins with a concise review of the design principles for single-layered

MTSs intended to operate within a single frequency band. This serves as a founda-

tion for the subsequent stages of the analysis, which initiates with the design and

examination of a single-layered, single-frequency x-polarized antenna. This initial

step accelerates the process, aiding in the understanding of simulation and fabrica-

tion limitations. The subsequent sections expand upon Foster’s Reactance theorem
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to facilitate the design of double-layered MTS antennas capable of functioning across

two distinct frequency bands. The research provides a practical implementation of

this approach, wherein a double-layered MTS antenna designed to emit circularly

polarized broadside beams at two commonly used frequencies in cloud and precip-

itation radar applications, namely 35.75 GHz and 94.05 GHz, is developed. The

antenna’s performance is rigorously verified through full-wave simulations, ensuring

its effectiveness and suitability for the specified dual-frequency operation in cloud and

precipitation radar systems [63].

An ejωt time convention is used and suppressed throughout.

5.1 Single Frequency Anisotropic Antenna

Firstly, a concise overview is presented on the fundamental principles involved in

designing single-layered MTS antennas. Building upon these principles, an initial

antenna design is introduced, which serves as the foundation for further development

into a dual-band, dual-layered antenna configuration.

The design of single-layered MTS antennas is rooted in a two-dimensional (2D)

canonical problem, as depicted in Fig. 5.1(a). This problem comprises a periodically

modulated impedance sheet situated on a dielectric substrate that is backed by a

metallic ground plane. The structure is assumed to exhibit invariance along the y

direction. The dielectric slab’s relative permittivity, εr, and thickness,h, are denoted

by their respective symbols. Typically, the impedance sheet is characterized by a

cosine or cosinusoidal function.

Zs (x) = −jXs (x) = −jX0

(
1 +Mcos

(
2πx

d

))
(5.1)

In this equation, X0 represents the average impedance (with X0 > 0), M is the

modulation index, and d is the modulation period. Due to the periodic nature of

Xs, the solution of the 2D canonical problem can be represented through an infinite



52

GND𝜀!
ℎ𝑥

𝑦
𝑧

𝑑

𝑋"

(𝑎)

GND
𝜀!

ℎ

𝑑

𝑎

(𝑏)
𝑎

(𝑐)
𝑋!

ℎ

Figure 5.1: (a) A 2D canonical problem consisting of a penetrable sinusoidally mod-
ulated surface impedance (Zs) on top of a grounded dielectric slab. The geometry
is assumed to be invariant along the y-direction and spatially variant along the x-
and z-directions. (b) Zs is conceptually implemented through gradually varying sub-
wavelength patches. The inset shows the locally periodic problem utilized to map
the patches into an equivalent impedance (Zp) through (c) the local transmission line
model.

set of Floquet modes (FMs) [5, 58]. The longitudinal (along x) wavenumber of the

n-indexed FM is

k(n)x = k(0)x +
2πn

d
(5.2)

where kx,0, which is the solution of the dispersion equation, is the propagation con-

stant of the 0-indexed TM FM. For d larger than a critical value [5], at least one

of the higher-order FMs ends up inside the light cone, and leaky waves occur. In

this case, the solution of the dispersion equation takes a complex value and can be

represented as
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k(0)x = βsw +∆β − jα (5.3)

The positive real numbers ∆β and α account for the perturbation in the phase and

amplitude, respectively, induced by the modulation into the surface wave propagating

in the unmodulated surface impedance (M = 0) with wavenumber βsw. The period

(d) of modulated surface impedances modeling MTS antennas is usually selected such

that only the (−1)-indexed FM is inside the light cone. As a result, the pointing angle

(θ), which is defined with respect to the z axis, and d are related as follows

βsw +∆β − 2π

d
= ksinθ (5.4)

with k being the free-space wavenumber.

To accurately synthesize the desired continuous impedance profile, the approach in-

volves the use of subwavelength metallic patches that smoothly vary along the surface,

as illustrated in Fig. 5.1(b) [58]. The gradual variation of the patches allows using

the local periodicity approximation. Namely, the equivalent impedance of each patch

can be extracted as it was embedded in a periodic environment [inset of Fig. 5.1(b)].

A periodic pattern modeled with the transmission line shown in Fig. 5.1(c) is studied

to build databases linking the equivalent impedance (Zp = jXp) with the geomet-

rical parameters of the unit cell. Various techniques for efficiently and accurately

extracting impedance from periodic metallic patches printed on a grounded slab are

available in the published literature. These techniques can be found in references

such as [64, 65, 66].

5.1.1 Designing a Single-Layer MTS Antenna for 94.05 GHz Operation

The initial focus under investigation is a linearly polarized single-layered MTS an-

tenna designed for operation at 94.05 GHz. Starting with the single-layer antenna at

the higher frequency allows the assessment of the limitations of simulation capabili-
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ties and the feasibility of fabrication. Adding a second layer will introduce significant

complexity to the computational efforts, making it more challenging to evaluate these

factors effectively.

In the design of the initial single-layer antenna, a method suitable for a single-layer

anisotropic antenna is employed to create an x-polarized antenna capable of operating

at 94.05 GHz. The introduction of anisotropy into the surface impedance is a key fac-

tor in enhancing the antenna’s efficiency, as it enables greater directivity in the main

lobe compared to the side lobes. The surface impedance can be mathematically ex-

pressed using the tensor-based representation as X =Xρρρ̂ρ̂+Xρϕ(ρ̂ϕ̂+ ϕ̂ρ̂) +Xϕϕϕ̂ϕ̂

[67]. This tensor-based representation allows for an accurate description of the

impedance properties of the antenna.

The aspects of the tensor can broken into its components in the equations below.

Xρρ = Xρ [1 +mρ(ρ) cos(Ks(ρ) + Φρ(ρ))] (5.5)

Xρϕ = Xρmϕ(ρ) cos(Ks(ρ) + Φϕ(ρ)) (5.6)

Xϕϕ = Xϕ [1−mϕ(ρ) cos(Ks(ρ) + Φϕ(ρ))] (5.7)

With the equations provided, it becomes possible to generate the physical layout

required for antenna design. By assigning a tapered modulation determined through

[33, 68] and aiming for an average impedance of approximately -270 Ω, the plots for

Xρρ, Xρϕ, Xϕρ, and Xϕϕ can be constructed as illustrated in Fig. 5.2. These plots

serve as a crucial reference for shaping the surface impedance profile and are essential

for achieving the desired antenna performance.

This transparent, lossless reactance tensor nicely describes the surface impedance

that will provide the antenna with the appropriate pointing angle. As shown in

Fig. 5.2, the antenna needs a large range of impedance values to be able to cover the

theoretical impedance values meaning that a large database is needed to fulfill the



55

Figure 5.2: In order from top left to bottom right, Xρρ, Xρϕ, Xϕρ, Xϕϕ, for the
impedance tensor for the single layer, x polarized antenna with a 20λ radius designed
for 94.05 GHz

full range of values. This also means that the unit cells used to realize this antenna

needs to have some complexity to introduce a full range of capacitance values within

the desired range. The unit cell chosen that is capable of this behavior is a double

π shape [69]. The full unit cell is shown in Fig. 5.3 with its dimensions of Lx, Lx,

w, w1, and ψ with a unit cell period of d with it residing on a dielectric slab with a

height, hd. Here, it shown that the height of the dielectric is 203 µm and has an εr

of 3.55. The material chosen as the dielectric for the patches to reside of is Rogers

4003c which has relative permittivity as shown and can be manufactured as small as

203 µm. At this height of dielectric, only one mode is able to propagate. In addition

to the design aspect of the height, the unit cell period, d, is set to 580 µm so the
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antenna will radiate broadside.

The last design element is varying the dimensions of the unit cell to create the

impedance range covered in Fig. 5.2. To achieve the variation needed to meet the

specifications for the impedance, the database is made by varying the lengths Lx and

Ly, as well as the rotation of the metallic patch itself.

Figure 5.3: Double π shaped unit cell used to fulfill the required impedance range in
order to make a linearly polarized antenna at 94.05 GHz

Given the variation of three parameters of the two lengths and rotation, the

database becomes three-dimensional and covers a very large range of values suit-

able to design the antenna. Fig. 5.4 provides the completed database for all the

components of the impedance including Xρρ, Xρϕ, and Xϕϕ.
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(a) (b)

(c)

Figure 5.4: The impedance database elements, (a) Xρρ, (b) Xρϕ, (c) Xϕϕ], in terms
of length in x and y and ϕ for the anisotropic 94.05 GHz antenna

5.1.1.1 Accommodating Effects of Spatial Dispersion

In the initial antenna design, it was assumed that all unit cells would encounter an

incident wave perpendicular to them. The error in a quarter of Xρρ can be observed in

Fig. 5.5, illustrating an increase in error towards the center and a subsequent decrease

as it approaches the orthogonal side. This behavior highlights the dependence on

spatial dispersion.

When applying this design to the complete antenna, the actual radiation behav-

ior did not align with the initial predictions. This discrepancy indicated a strong

dependence on the lattice structure. In response to the lower-than-expected direc-



58

Figure 5.5: Error of one quarter of Xρρ when spatial dispersion is neglected

tivity, a new objective was established: designing the antenna in a way that makes

the impedance of the unit cells dependent on the angle of the incident wave. This

concept is illustrated in Fig. 5.6, which provides examples of four different unit cells.

This approach considers that the placement of the unit cell on the antenna has

a significant influence on how the incident wave interacts with it. As a result, this

approach effectively reduces errors, as illustrated in Fig. 5.7 for Xρρ, Xρϕ, and Xϕϕ.

To account for the lattice dependency, the antenna was divided into sixteen distinct

slices of the phase, effectively discretizing the dispersive sections. This choice of

sixteen sections was made to strike a balance between maintaining accuracy with small

increments and providing granularity for designing a database for each section. In

Fig. 5.8, the diagram illustrates the different colored sections, representing the sixteen

divisions in which the antenna is segmented. The dotted line at the center of each

colored section signifies the value used to describe the corresponding phase slice for

that particular section. This partitioned phase approach allows for the incorporation

of lattice dependency into the antenna design.

Combining the database and the partitioning of the phase to achieve spatial disper-
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Figure 5.6: Examples of the different angles of incidence needed due to the lattice
dependency of the unit cells.

sion, the unit cells are constructed for a design of 10λ seen in Fig. 5.9a with the error

in Fig. 5.9b. As shown, the error for the antenna is mostly under 5Ω and the max

is under 30Ω showing that the database is efficient and should produce an effective

antenna.

Using Ansys’s High Frequency Structure Simulator (HFSS), the antenna is excited

by a Hertzian dipole centered in the middle of the antenna and positioned at the

center of the dielectric. The results regarding the antenna’s directivity are presented

in Fig. 5.10. It is worth noting that the antenna is originally designed to operate

optimally at 20λ, but for computational reasons, it was simulated with a radius

half its intended size. Consequently, the directivity is lower compared to what it

would achieve with a design based and optimized on a radius of 10λ. Despite this

limitation, the antenna still demonstrates the proof of concept effectively. It produces
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Figure 5.7: Error of one quarter of Xρρ, Xρϕ, and Xϕϕ when spatial dispersion is
considered.

a directivity pattern that, although not reaching its full potential, remains relatively

high it exhibits low side lobes.

To ensure the method’s efficiency in designing high-efficiency antennas with either

linear or circular polarization, smaller antennas were designed, not constrained by

computational limitations. Continuing with the linearly polarized antenna, one with a

radius of 5λ was designed to incorporate attenuation tapering, resulting in a radiation

pattern with 45% efficiency. The tensorial impedance values, namely Xρρ, Xρϕ, and

Xϕϕ, required to achieve the desired attenuation, are illustrated in Fig. 5.11.

The radiation pattern of the linearly polarized antenna is visualized in Fig. 5.12,

offering several significant insights. Firstly, the efficiency of this antenna design is

approximately 25%. This efficiency level can be ascribed to the intrinsic limitations of

linear polarization in achieving complete anisotropy. Secondly, the cross-polarization,
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Figure 5.8: The antenna is partitioned into phase sections where each section is
indicative of the angle of propagation due to the lattice dependency. Each color
represents a different section of one angle and it calculated using the center of the
area notated by the dotted line.

(a) (b)

Figure 5.9: (a) Top view of the single layer, anisotropic, MTS antenna designed for
94.05 GHZ with a radius of 10 λ sitting on a dielectric slab with a thickness of 203 µm
and excited with a Hertzian dipole at the center and middle of the dielectric. (b) The
error of the impedance of the unit cells used in (a) in comparison to the required
impedance values
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Figure 5.10: The directivity results in the x direction of the antenna in the Fig. 5.9a
excited with a Hertzian dipole

Figure 5.11: Xρρ, Xρϕ, and Xϕϕ for a linearly polarized antenna designed to have a
radius of 5λ and efficiency of 45%

which is around -25dB at the broadside direction, is so minimal that it does not even

appear on the plot.

To illustrate that this unit cell and design approach can also be adapted for circular

polarization, another antenna of the same size has been designed. This circularly

polarized antenna shares similar size and efficiency parameters with the 5λ linearly

polarized antenna. The impedance values required for the circularly polarized antenna

are shown in Fig. 5.13.

The directivity of the circularly polarized antenna is depicted in Fig. 5.14. It is

evident that the efficiency has improved, although this enhancement comes at the ex-

pense of cross-polarization, which still remains lower compared to the co-polarization.
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Figure 5.12: Directivity of a linearly polarized antenna optimized for a radius of 5λ
and designed to have an efficiency of 45% using the double π unit cell.

Figure 5.13: Xρρ, Xρϕ, and Xϕϕ for a circularly polarized antenna designed to have a
radius of 5λ and efficiency of 45%

5.2 Dual Band Metasurface Antenna

The next phase in the development of this antenna involves the incorporation of a

second frequency by adding a second layer. This enhancement is explored within the

context of a circularly polarized dual-layer antenna, where the impedance is changed

to isotropic, and the polarization is designed to be circular. This design modification

simplifies the antenna’s structure and behavior. Simultaneously, the antenna from the

previous section continues to be developed and optimized. Both aspects-designing the
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Figure 5.14: Directivity of a linearly polarized antenna optimized for a radius of 5λ
and designed to have an efficiency of 45% using the double π unit cell.

dual-layer, dual-frequency antenna and refining the single-layer antenna are pursued

in parallel, ensuring efficient progress in both areas. Each component of the antennas

is carefully designed and fine-tuned to achieve the desired performance objectives.

Ultimately, the findings and outcomes from both aspects will be combined to create

the final prototype of the dual-layered, dual-frequency antenna, offering enhanced

functionality and broader operational capabilities.

5.2.1 Foster Reactance Theorem For Dual Layer Design of Two Distant

Frequencies

The ability to operate with two vastly different frequencies is accomplished through

layering two individually designed MTS layers and placing the lower frequency MTS

on top of a dielectric and embedding the second MTS of the higher frequency in the

middle of the dielectric. It can be assumed that there are two canonical problems

shown in Figs. 5.15(a) and (b). The first one [Fig. 5.15(a)], which is identical to

that shown in Fig. 5.1(a) with a surface reactance sheet Xs1 and slab thickness h1,

is set up to perform at f1 with a pointing angle θ1. The second one [Fig. 5.15(b)] is
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slightly different than the previous one. That is, the sinusoidally modulated reactance

sheet (Xs2) is embedded in the dielectric slab and located at a distance h2 from the

ground plane, with h2 < h1. However, its design principle remains unchanged and

it is set up to operate at f2 with a pointing angle θ2. The two reactance sheets can

be implemented by gradually changing subwavelength patches [see Figs. 5.15(c) and

(d)]. Each patch is linked to an equivalent impedance through the local periodicity

approximation. The impedance can be studies using the local transmission line models

as shown in the insets of Figs. 5.15(c) and (d), with Xp1 and Xp2 representing the

equivalent impedance of the patches in a locally periodic environment.

Now, given two MTSs of Fig. 5.15(c) and (d) operating at f1 and f2, respectively,

it is desired that their combination [Fig. 5.15(e)] is capable of performing at both fre-

quencies of interest. At first sight, the obtained double-layered MTSs cannot perform

equally well as the two single-layered MTSs. When the two metallic patterns, which

have been designed independently, are placed closely one to another, it is expected

they are coupled through the near-field interactions. This implies a change in the

equivalent impedance of each pattern and, as a result, the radiation performances in

terms of pointing angle and side-lobe level can be noticeably affected. The coupling

between the metallic layers can be handled at the synthesis level of the continuous

reactance sheets. The extraction of the patch equivalent reactance needs to account

for the presence of the other layer. This will involve a complicated technique for

impedance extraction that deviates from the well-established techniques available for

the design of MTSs [64, 65, 66]. Also, it will impose a restriction on the size of the

unit cells: a1 must be a multiple integer of a2. An alternative approach that avoids

extracting impedance in double-layered periodic structures with no restrictions on

the unit cell size would be preferable. The proposed approach focuses on a suitable

impedance synthesis of the two single-layered MTSs [Figs. 5.15(c) and (d)] such that

they perform equally well when they are combined together [Fig. 5.15(e)].
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Figure 5.15: (a) and (b) 2D canonical problems operating at f1 and f2, respectively.
(c) and (d) conceptual implementation with metallic patches. The insets in (c) and
(d) show the local periodic problem and transmission line model. (e) Combination of
the structures in (c) and (d) performing at f1 and f2.

Based on the procedure summarized in the previous section, the goal now is to

develop a new methodology that allows designing two independent MTS antennas,

operating at two different frequencies, that can be merged together, resulting in a

single flat dual-band radiator. It is assumed that the two frequencies of interest are

f1 and f2, with f1 << f2. Henceforth, all the frequency-dependent physical quantities

introduced in the previous section are assigned with subscripts 1 and 2, corresponding

to f1 and f2, respectively.

It is indeed well-known that the equivalent reactance provided by a periodic ar-

ray of metallic patches is purely imaginary and displays a capacitive behavior in the

low-frequency regime. According to Foster’s Reactance theorem, in a lossless trans-

mission line or network, the reactance changes monotonically with frequency and the

poles and zeros alternate. Given the subwavelength unit cells required in the MTS
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design, Xp1 and Xp2 reside between the first zero and the first pole. See Xp1 and

Xp2 in Figs. 5.16(a) and (b), respectively. Now, the question is: what is the local

equivalent reactance of the patches designed for f2 (red patches in Fig. 5.15(e)) seen

from the wave supported by the single-layered MTS operating at f1 [Fig. 5.15(c)]?

To address this question, Xp2 is evaluated by forcing the local periodic problem for

f2 a TM surface wave with frequency f1 and wavenumber βsw1 (see the bottom inset

of Fig. 5.16(a)). This process implies extracting Xp2 outside the dispersion curve and

can be carried out through, for example, the periodic Method of Moment (MoM)

described in [70]. Since f1 << f2 is assumed, a2 will be much smaller than a1. Thus,

Xp2 evaluated at f1 and βsw1 will be very close to the pole at zero frequency, corre-

sponding to a quasi open-circuit [Fig. 5.16(a)]. As a result, the MTS operating at f2

[red patches in Fig. 5.15(e)] are almost transparent at f1. The same procedure can be

repeated to evaluate Xp1 at f2 and βsw2. However, now a1 is electrically large at f2.

The patches working at f1 [blue patches in Fig. 5.16(b)] needs to be properly design

such that Xp1 presents a pole at f2 becoming a quasi-open circuit [Fig. 5.16(b)]. Note

that this pole will be after the first zero. It could be the second or third poles depend-

ing on the separation between f1 and f2. Following this strategy, the double-layered

MTS of Fig. 5.15(e) obtained from the combination of the two single-layered MTSs

of Figs. 5.15(c) and (d) operating at f1 and f2, respectively, is expected to perform

at the two frequencies of interest.

Fig. 5.17 provides a clear illustration of the two distinct scenarios. The first sce-

nario occurs when the antenna is excited at frequency f1. At this specific frequency,

the impedance experienced by the electromagnetic wave is primarily determined by

the top layer, such that the metallic patches represented in blue contribute to the

radiation pattern. Concurrently, the embedded patches within the dielectric exhibit

extremely high impedance, resembling an open circuit. This behavior aligns with Fos-

ter’s Reactance Theory, where the reactance demonstrates poles near the asymptote.



68

𝑓

𝑋!

𝑓"

𝑋!"

𝑋!#(f", 𝛽$%")

𝑎"

𝑎#

𝑋!"

𝑋!#

𝑓
𝑓#

𝑋!"

𝑋!#

𝑋!#

𝑎"

𝑎#

(𝑎) (𝑏)

𝑋!"(f#, 𝛽$%#)

𝜷𝒔𝒘𝟏

𝜷𝒔𝒘𝟐

𝑋!

Figure 5.16: (a) Frequency dependence of the equivalent impedance resulting from
the local periodic problem (top inset) of the patches working at f1 (left curve). The
right curve shows the equivalent impedance of the patches designed to work at f2
(bottom inset) seen from the wave supported by the locally periodic structure in the
top inset. (b) The same as in (a), but around f2. The resonant curve represents the
equivalent impedance of the patches designed to work at f1 (bottom inset) seen from
the wave supported by the locally periodic structure in the bottom inset.

Consequently, considering the middle layer as an open circuit simplifies the analysis to

a grounded dielectric slab, conveniently modeled using a transmission line, as demon-

strated previously. Similarly, the same principle applies when exciting the structure

at frequency f2. However, in this case, the top layer acts as an open circuit due

to the high impedance experienced by the electromagnetic wave. By understanding

the specific impedance characteristics at different frequencies, it becomes possible to

analyze and model the antenna structure, considering the relevant layers as either

open circuits or grounded dielectric slabs.
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Figure 5.17: The two different possible operating scenarios for the antenna. The
top figure shows how the impedance appears very high and consequently transparent
when the antenna is excited at 35.75 GHz. The bottom figure shows that the top
layer appears transparent from the high impedance when simulated at 94.05 GHz.

5.2.2 Realization of Antenna Through Double-Anchor Unit Cells

To demonstrate the accuracy of the proposed approach in the design of dual-band

double-layered MTS antennas, two popular frequencies are chosen in climate science

radars such as 35.75 GHz (f1) and 94.05 GHz (f2) [63]. The dielectric substrate used is

Roger 4003C with an εr = 3.55 and thickness h1 = 406um. The canonical problem at

two frequencies [Figs. 5.15(a) and (b)] are studied with the approach proposed in [58].

For the canonical problem at f2 [Fig. 5.15(b)], the Green’s function in [58] is suitably

changed to consider that the modulated reactance sheet sits inside the dielectric slab

(h2 = h1/2) instead of on the top. Characterizing Xs1 and Xs2 with M1 =M2 = 0.3,

X01 = 150Ω, X02 = 100Ω, d1 = 7.4mm, and d2 = 2.15mm, the canonical problem

at f1 and f2 support a fundamental (0-indexed) TM FM with wavenumbers k(0)x1 =

778.7−j0.08[rad/m] and k(0)x2 = 2985.5−j5.5[rad/m], respectively. WithM1 =M2 = 0

(unmodulated surface impedances), k(0)x1 and k
(0)
x2 reduces to βsw1 = 777.8[rad/m]
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(∆β1 = 0.9) and βsw2 = 2981.27[rad/m] (∆β2 = 4.23), respectively. With this setup,

it is straightforward to verify through Eq. (5.4) that the (−1)-indexed FM at both

frequencies resides inside the light cone generating a broadside beam (θ1 = θ2 = 0).

Xs1 and Xs2 are synthesized with the square unit cells shown in the top-left and

bottom-right insets, respectively, of Fig. 5.18. Both unit cells are based on the same

metallic element topology consisting of double-anchor patch [69]. The patch sits at

the air-dielectric interface and within the dielectric slab (h2 = h1/2) in the unit cell

for f1 and f2, respectively. See the insets of Fig. 5.18. The two unit cells with side

a1 = 1.29mm and a2 = 0.43mm are studied with the MoM in [70]. The database of

the reactance (Xp1 and Xp2) as a function of the patch size are shown in Fig. 5.18.

By using the same MoM, Xp2 was extracted by forcing in the periodic problem with

the unit cell designed for f2 (bottom-right inset of Fig. 5.18) a surface wave with

frequency f1 and propagation constant βsw1 [Fig. 5.19(a)]. With this setup, one can

observe that such a unit cell operates in extremely small impedance regime (quasi-

open circuit). The same process is repeated with the unit cell designed for f1 (top-left

inset of Fig. 5.18) imposing a surface wave with frequency f2 and propagation constant

βsw2. The extracted Xp1 is shown in Fig. 5.19(b). The range of L1 is extended with

respect to the one of Fig. 5.18 to show the presence of a pole. One can observe that

the location of the pole is right before the range of operation assumed in the reactance

database of Fig. 5.18. Thus, the patches designed for f1 operate in extremely small

impedance regime at f2 (quasi-open circuit), as can be seen in the inset of Fig. 5.19(b).

It is worth emphasizing that, although, in the design, under consideration the relation

between the sides of the two unit cells ended up being a1 = 3a2, our approach, as

discussed in the previous section, does not prevent using unit cells whose sides are

not related by an integer number.

An initial small-scale design is created to assess the capabilities of the dual-layered

antenna theory. This design focuses on a linear segment of the antenna, exemplified by
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Figure 5.18: Equivalent surface reactance versus the patch size for the unit cell op-
erating at 35.75 GHz (top-left inset) and 94.05 GHz (bottom-right inset). a1 and a2
are 1.29mm and 0.43mm, respectively.

the portion depicted in Fig. 5.20. Through varying the pointing angles of each layer,

this setup effectively demonstrates the isolation achieved between the two layers.

To demonstrate the isolation and the influence of pointing angles on the antenna’s

performance, the top layer is designed to point at -20o, while the middle layer is ad-

justed to showcase both broadside and non-broadside configurations. In Fig. 5.21a,

the middle layer is designed for broadside. When this antenna is illuminated for

35.75 GHz, the antenna propagates at an angle of -20o. As shown in Fig. 5.21a, the

antenna is illuminated at 94.05 GHz and the radiation pattern shows that the an-

tenna is pointing broadside. To ensure a consistent comparison, the impedance of the

top layer remains the same, designed to radiate at -20o. However, the impedance of

the middle layer is modified to achieve a pointing angle of -20o at 94.05 GHz. Subse-

quently, the antenna is illuminated at 94.05 GHz and the results for the directivity are

shown in Fig. 5.21b. With the same directivity maximum and very similar radiation

pattern as in Fig. 5.21a, these results show a clear shift of -20o.
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Figure 5.19: Driven equivalent surface reactance versus the patch size. (a) The surface
reactance is extracted by forcing a TM surface wave with frequency 35.75 GHz and
wavenumber βsw1 = 777.8[rad/m] in the local periodic problem with the unit cell
operating at 94.05 GHz shown in the inset. (b) The same process as in (a) is repeated
for the local periodic problem with the unit cell operating at 35.75 GHz shown in the
bottom inset. The TM surface wave has the frequency 94.05 GHz and wavenumber
βsw2 = 2981.27[rad/m]. The top inset shows a zoom-in of the equivalent surface
reactance with size of the patch ranging as in Fig. 5.18.
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Figure 5.20: Initial linear design used for testing the concept of the dual layer and its
ability to work at both broadside and non-broadside pointing angles

(a) (b)

Figure 5.21: (a) Directivity of the linear antenna when the 35.75 GHz layer is designed
for -20o and the 94.05 GHz antenna is designed for 0o. The results are for the antenna
illuminated at 94.05 GHz. (b) Directivity of the linear antenna when the 35.75 GHz
layer is designed for -20o and the 94.05 GHz antenna is designed for -20o. The results
are for the antenna illuminated at 94.05 GHz.

The directivity plots serve to demonstrate two distinct aspects. Firstly, they illus-

trate the antenna’s capability to function effectively at angles beyond the broadside.

This indicates its suitability for applications requiring wide-angle coverage. Secondly,

the plots reveal that the antenna’s performance is only influenced by the frequency at

which it is excited. Importantly, the two frequencies exhibit independence from each

other, emphasizing the significance of frequency selection in achieving desired results.

Based on these findings, the antenna design progresses towards the development of
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the complete circular antenna.

By using the reactance databases of Fig. 5.18, a double-layered 3D MTS an-

tenna radiating a right-handed circular polarized (RHCP) wave at both frequen-

cies is designed. Due to the nature of the MTS where the metallic patches are

modulated in two directions patterning the following modulated reactance sheets:

X2D
s1,2 (ρ, ϕ) = X01,2

(
1 +M1,2cos

(
2π
d1,2

ρ− ϕ
))

with ρ and ϕ representing the position

in polar coordinates, the MTS is considered to be 3D. The ϕ-dependence in X2D
s1,2

ensures that any two sectors on the antennas separated by 90◦ radiates an electric

field with orthogonal and quadrature-phased components resulting in a circularly po-

larized wave. Note that the design of 3D MTS antennas is usually based on the 2D

canonical problem of Fig. 5.1. Each sector can be seen as a 2D canonical problem

rotated by an angle ϕ around the z-axis. Hence, the approach proposed in this dis-

sertation can be applied to designing both 2D and 3D dual-band double-layered MTS

antennas. For ease of visualization, Fig. 5.22 displays only a portion of the antenna

layout. The sizes of the two MTSs are equal, although the approach proposed in this

dissertation does not prevent MTSs with different sizes. The antenna radius is 3λ

and 5λ at the operating frequency f1 and f2, respectively. A smaller radius is selected

at the lower frequency because, at this frequency, the size of the MTS designed for f2

is electrically large, and very computational intensive and difficult to simulate with

the available resources. The antenna is fed by an electrically small dipole exciting

a cylindrical TM mode. The dipole is displaced by h2 upward relative to the center

of the ground place. The antenna is simulated with the commercial software Ansys

HFSS. Figs. 5.23(a) and (b) show the obtained co-pol directivity patterns at f1 and f2,

respectively, for the single- and double-layered MTSs. At both frequencies, a notable

correspondence can be observed between the patterns generated by the single-layered

and double-layered MTSs, indicating a satisfactory agreement.

In conclusion, this chapter has focused on designing a single-layered MTS antenna
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Figure 5.22: A portion of the layout of the designed double-layered metasurface
antenna operating at 35.75 GHz and 94.05 GHz. The structure consists of two metallic
claddings (blue and red patches) supported by a grounded dielectric slab. The top
and bottom claddings (blue and red patches) control the radiation at 35.75 GHz and
94.05 GHz, respectively. The bluish and reddish beams conceptually sketch radiation
patterns at f1 and f2, respectively.

for operation at 94.05 GHz to find the limitations on simulation and realizability. It

demonstrates the creation of a specialized impedance profile using a tensor-based to

accomodate the complex design of the antenna. The process of designing the antenna

involves generating a 3D database by systematically varying unit cell dimensions

and rotations, essential for handling spatial dispersion and lattice dependency. The

resulting antenna exhibits impressive directivity and minimal side lobes.

Furthermore, this chapter introduces a groundbreaking approach for designing

dual-band double-layered MTS antenna. The proposed antenna structure comprises

two MTS layers, each tasked with controlling radiation at specific frequencies. These

layers are combined to achieve dual-frequency operation. The key concept lies in lever-

aging Foster’s Reactance theorem, which governs the behavior of reactance sheets in
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Figure 5.23: Right-handed circularly polarized directivity patterns for the single- and
double-layered MTS antenna of Fig. 5.22 at (a) 35.75 GHz and (b) 94.05 GHz.

MTS designs. By ensuring that the equivalent reactance of one MTS layer aligns

with a pole at the other frequency, this approach enables the independent design of

the two layers. The practical implementation of this method is exemplified through

dual-band operation at 35.75 GHz and 94.05 GHz, resulting in circularly polarized
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radiation patterns that closely match single-layered MTS designs at both frequencies.

Looking ahead, the future research directions for this antenna involve further im-

proving the efficiency of its individual layers, incorporating anisotropic impedance,

and integrating tapered modulation techniques. As the optimization process in the

design phase continues to advance, the next steps will involve fabricating the antenna

and subjecting it to comprehensive testing. Upon successfully completing these de-

sign and testing phases, the antenna will be ready for integration into space-based

technology, with a specific focus on applications in weather research and analysis.



CHAPTER 6: DESIGN OF ADDITIVE MANUFACTURABLE METASURFACE

ANTENNA

MTS technology has found applications in designing leaky-wave (LW) antennas

that enable control over the radiative properties of electromagnetic waves [71, 72,

73, 74]. It achieves this by manipulating either the radiative surface waves [75, 76,

77] or the surface waves themselves. This control is usually achieved through the

discretization of the designed surface impedance via unit cells, allowing for precise

tailoring of the antenna’s performance and radiation characteristics.

One of the ways to accomplish the discretization of impedance for symmetrical

shapes is the method of moments; this symmetry makes the antenna isotropic limit-

ing its applications [78, 79]. In contrast, metasurfaces offer the flexibility to design

antennas with asymmetrical patches or shapes, enabling the creation of anisotropic

antennas for tasks such as polarization control [65]. These effects can also be achieved

using electromagnetic structures composed solely of dielectric materials, offering ad-

vantages such as reduced weight, particularly valuable in applications like satellites

and wireless communication [80, 81, 82]. One specific type of metasurface, known

as air-perforated dielectrics, finds applications across a wide range of fields, includ-

ing physics, material science, civil engineering, and electrical engineering [83]. These

air-perforated dielectrics can also be used in the design of leaky-wave antennas [84].

Similar to patch-based metasurfaces, the initial step often involves finding the homo-

geneous equivalent of the dielectric slab through effective permittivity. This approach

has been extended to anisotropic metasurfaces, employing various methods, including

mathematical techniques and full-wave simulations, to characterize their dispersive

behavior [83].
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The unit cell analyzed in this dissertation is a dielectric, cylindrical pin. This

approach involves modeling the unit cell as a uniaxial, dielectric slab. The grounded

slab can be effectively represented using a transmission line model, and its dispersion

characteristics can be derived using fundamental equations. A full-wave approach is

also introduced to study the method comprehensively, covering a range of radial sizes

for the pin. Furthermore, this novel approach is applied to the design and simulation

of a leaky-wave antenna. This antenna is constructed using additive manufacturable

materials and is intended to operate efficiently at various pointing angles.

6.1 Dispersion Study of Dielectric Cylindrical Pin

This section presents a numerical approach to analyze the dielectric pin unit cell’s

dispersion characteristics. To simplify the complex geometry of the unit cell, it is

treated as a uniaxial slab with an effective permittivity. Classical Maxwell-Garnett

mixing equations are employed to determine the effective relative permittivity for dif-

ferent modes. The dispersion behavior is derived through a transmission line model,

offering valuable insights into how the dielectric pin unit cell behaves within meta-

surfaces and antennas.

6.1.1 Numerical Approach Through Classical Mixing Equations

In order to analyze the unit cell, the reference plane can be considered as the

(x, y, z) coordinate system, with the optical axis along the z direction. Assuming

local periodicity in the x and y directions, the unit cells sinusoidally varying can

be represented as shown in Fig.6.1 where the sinusoidal modulation is featured by

the dashed red and blue lines. Each dielectric pin, highlighted in Fig. 6.2a, resides

within a unit cell characterized by parameters such as period a, height h, and radius

r. However, analytical investigation becomes challenging with this representation,

prompting the need for a different modeling approach to facilitate a more straight-

forward analysis. Alternatively, Fig.6.2a can be viewed using the local periodicity
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assumption where the highlighted pin is repeating in both the x and y directions so

it is studied as visually described in Fig. 6.2b. In order to numerically solve for the

dispersion characteristics of the unit cell, the repeating pins of the same height can

be modeled as a uniaxial slab with the same height, as illustrated in Fig. 6.3. In this

approach, the slab is assigned an effective permittivity denoted as ϵ, which considers

its anisotropic properties.

Figure 6.1: Sample of the metasurface antenna with unit cells sinusoidally modulated
in all directions with the dashed lines highlighting the sinusoidal modulations.

(a) (b)

Figure 6.2: (a) Left: Isotropic, cylindrical pin unit cell on a ground plane with
an effective permittivity, ϵr, period, a, height, h, and radius r. Right: Equivalent
uniaxial, grounded dielectric slab of the left figure with the same h and a tensorial
permittivity ϵeff described by its effective parallel and perpendicular permittivity.

The effective relative permittivity for each mode is determined using classical

Maxwell-Garnett mixing equations, originally developed for homogeneous elliptical
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Figure 6.3: Dielectric slab used to model the cylindrical pin unit cell using a tensor to
describe the relative permittivity allowing the unit cells to be modeled as a uniaxial
slab.

scatterers, as described in [83]. These equations are extended to analyze the behavior

of the uniaxial slab representing the pins in this context. The total effective permit-

tivity of the dielectric slab model is defined as ϵ = ϵ0ϵr, where ϵ0 is the free space

permittivity, and ϵr is a tensor represented as:

ϵ
r
=


ϵ⊥ 0 0

0 ϵ⊥ 0

0 0 ϵ||

 (6.1)

Here, ϵ⊥ represents the permittivity for TE polarization, while ϵ|| represents the

permittivity for TM polarization. The values of ϵ⊥ and ϵ|| depend on the material’s

permittivity and the fill factor. The fill factor is a measure of the ratio of the volume

occupied by the dielectric pin to the volume of an airbox with the same height and

period as the pin.

After substituting in the depolarization factor [85] for the transverse axis, the

permittivity for the ordinary wave is:
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ϵ⊥ = ϵ0

[
1 + 2fill × ϵm − ϵ0

ϵm + ϵ0 − f(ϵm − ϵ0)

]
(6.2)

where ϵm is the dielectric matrix and ϵ0 is the free space permittivity. The dielectric

matrix accounts for the isotropic behavior of the dielectric and can be described as

ϵm = ϵrmϵ0 where ϵrm is the relative permittivity of the dielectric.

The extraordinary wave is defined by the behavior of the depolarization consider-

ing the longitudinal axis. For this structure, there are no dielectric pins along the

longitudinal axis so the depolarization factor is 0. This reduces the classical mixing

equation for the extraordinary mode to Eq. 6.3.

ϵ|| = fill × ϵm + (1− fill)ϵ0 (6.3)

The resulting behavior from Eq. 6.2 and Eq. 6.3 can be portrayed graphically in

its relationship to the fill factor of the unit cell in Fig. 6.4 ranging from a fill of 0%

to a fill of 100%. Notice how with zero fill, the dielectric slab behaves just as air and

a 100% fill is representative of an isotropic dielectric slab. Due to the nature of the

geometry, the maximum fill is determined via the instance of the radius equalling half

of the size of the period. Because of this, the porosity of this geometry is maximum

at 78.54%, but there is no lower limit to the accuracy of this analytical approach.

The dispersion characteristics can be derived via a transmission line model illus-

trated in Fig. 6.5 [86]. The tensorial permittivity is contained in the grounded dielec-

tric with impedance Zin. Since the grounded slab is contained in air, the latter half

of the transmission line is composed of an open circuit of free space impedance, Z0.

Looking into the input impedance, the transmission line is shorted by the grounded

slab. This simplifies the equation to describe the impedance as Zin = jZc tan(βh)

where h is the height of the dielectric slab, Zc is the characteristic impedance of the

the dielectric slab, and β is the propagation constant. The characteristic impedance
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Figure 6.4: Relationship of the the ϵ⊥ and ϵ|| in respect to the percentage of the fill.
These ϵ values are used to compose the diagonal of the tensor representation of the
total effective permittivity of the slab.

and propagation constant are defined as Zc =
kz
ωϵ

√
ϵ⊥
ϵ||

and β =
√

ϵ⊥
ϵ||
kz respectively.

The z component of the wave vector, kz, is described in Eq. 6.4 where ω is the

radial frequency and kρ is the summation of the squares of the x and y component of

the wave vector shown in Eq. 6.5. Since the optical axis of this antenna is defined to

be z, kρ is also considered to be the plane on the surface of the antenna acting as a

surface wave.

kz =
√
ω2µ0ϵ|| − k2ρ (6.4)

kρ = k2x + k2y (6.5)
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Figure 6.5: Local transmission line model of the grounded uniaxial slab in the Fig. 6.3
where Zslab is he impedance of the uniaxial slab with height, h, and Z0 is the
impedance of free space.

With the individual components of the wave number defined, the wave number can

be expressed in two different ways: k = k2ρ+k
2
z = ω

√
u0ϵ||. Similarly, the characteristic

impedance and wave number can be expressed for the wave propagating in air where

Zin0 = Zc0.

Zc0 =
kz0
ωϵ0

(6.6)

kz0 =
√
ω2µ0ϵ0 − k2ρ (6.7)

The dispersion of the dielectric slab is found by finding kρ through satisfying the

transverse resonance such that Zin0 + Zin = 0. Through applying the above

equations, the dispersion equation thus becomes:
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Zc0 + jZc tan(βh) = 0 (6.8)

By solving for the surface wave number, kρ, in Eq. 6.8 using the tensorial permit-

tivity and corresponding fill of the unit cell, the dispersive behavior is found for a

unit cell with a cylindrical pin with a certain fill modeled as the anisotropic grounded

slab.

6.1.2 Full-Wave Analysis Comparison to Numerical Approach

The second approach presented involves using the traditional method to determine

the dispersive behavior. This approach relies on a full-wave simulation of a unit cell

and is used to assess the accuracy of the numerical method discussed earlier. In this

method, a unit cell is created in HFSS by placing an isotropic dielectric pin with

radius, r, and height, h, in a grounded air box, with period a. The unit cell structure

is analyzed with local periodicity such that it is infinitely periodically expanding in

both the x and y direction using periodic boundary conditions (BCs). Using eigen-

mode analysis, the phase is swept gradually from 0o to 180o for one set of BCs while

maintaining no phase shift for the orthogonal set of BCs. This iterative procedure is

focused on determining the dispersion characteristics for a specific height and necessi-

tates replication across a spectrum of heights to construct a comprehensive database,

a task demanding significant time investments. In practice, acquiring dispersion data

for a wide range of heights can be time-consuming, with each design iteration taking

multiple hours. This challenge becomes more pronounced when investigating diverse

unit cells for various applications or frequencies, amplifying the cumulative time in-

vestment.

The numerical method introduced in this context significantly accelerates the pro-

cess of characterizing the dispersive behavior for a specific height. The method is

so efficient that it takes less than a second to obtain the relevant data for a singu-
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lar height. Furthermore, the creation of a comprehensive database encompassing a

range of heights for each unit cell is achieved in a remarkably short period, typically

requiring less than a minute. This efficiency stands in stark contrast to traditional

approaches that demand substantial time investments in setting up and waiting for

simulations to complete. The advantages of this expedited method become evident

when comparing its performance to the conventional approach across various fill lev-

els, or porosity values, as illustrated in Figure 6.6. To maintain consistency, a uniform

height of 10 mm is employed for all three unit cells under examination, although this

height selection is arbitrary, and various values within the operational range could

have been chosen. Similarly, the unit cell period remains constant across all three

curves, with the unit cell designed for 15 GHz and featuring 6 cells per modulation

period. Since this approach relies on the fill ratio, its applicability extends across a

wide frequency range. Figure 6.6 showcases three distinct examples, each associated

with a unit cell having a radius of 0.25 mm, 1.6 mm, and the maximum fill achieved

when the radius is equal to half the size of the period. Correspondingly, these val-

ues yield porosities of 0.92%, 37.65%, and 78.54%, as indicated by the solid lines.

The full-wave simulation results for each porosity are superimposed on the analytical

method presented, depicted as dotted lines, to highlight the accuracy of the method.

Notably, both approaches demonstrate a high degree of agreement with each other.

6.2 Implementation of Numerical Method for Antenna Design

From solving the transverse resonance, the value of kρ is found which is used to

find the dispersion behavior. The surface wave on the xy plane can be described as

its real and imaginary components of αsw+ jβsw or the attenuation constant plus the

phase constant respectively. Since kρ is purely imaginary, it can be simplified to only

be described by βsw for a modulated surface. According to [1], the phase constant on

a modulated surface is defined in Eq. 6.9
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Figure 6.6: Dispersion curves for three different radius values (0.25 mm, 1.6 mm,
2.3 mm) that range from very small to the largest possible radius size for a unit cell
size of 4.6 mm. All of the unit cells were ran at the arbitrary height of 10 mm.
The solid, colorful lines are the results from using numerical method. The black dots
describe their respective results when the dispersion information is found using HFSS.

βsw = k

√
1 +

(
X/ζ

)2 (6.9)

where X is the average reactance of the modulated metasurface. Oliner and Hessel

[5] describe the relationship of a guided plane wave along a modulating structure to

have a surface impedance of Xs(x) = X[1 +M cos(2πx/d)], along the xy plane for a

broadside pointing angle with M describing the modulation index. Utilizing Oliner

and Hessel’s equation for a broadside pointing angle, Minatti et al. extended it from

the linear Cartesian case to a cylindrical coordinate system, thereby accommodating

non-zero pointing angles due to the dependence on ρ and ϕ. Equation 6.10 illustrates

the sinusoidal modulation of the surface reactance for any angle, with θ0 representing
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the pointing angle, while ρ and ϕ denote the positions of the cylindrical pins on the

surface.

Xs(ρ, ϕ) = X(1 +M sin(βswρ− k0ρ sin θ0 cosϕ± Φ)) (6.10)

The equation above considers a few design parameters that are chosen to control

the average impedance, rate of attenuation, and the size of the antenna. The average

impedance is chosen to be X = 0.7ηo, the modulation index is set to m = 0.65, and

the radius of the antenna is 10 times the modulation period. In addition, the size of

the cylinder radius is chosen to be the unit cell size divided by 2.1.

Figure 6.7: Relationship describing the height of the cylindrical pin to the impedance
to serve as a database for the surface impedance of the antenna
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6.2.1 Design of a Broadside Radiating Antenna

Equation 6.10 provides the full impedance profile for an antenna designed to oper-

ate at 25 GHz, chosen based on the size restraints of a 3D printer, given in Fig. 6.14a

in respect to the placement of each unit cell position in order to achieve the appro-

priate pointing angle. The height of each pin corresponds to a specific impedance

and is carefully tailored to match the impedance profile, forming the foundation of

the antenna design. As depicted in Fig.6.14b, the range of heights for the dielec-

tric cylinders spans from very small values to approximately 12 mm, ensuring the

necessary impedance variation is achieved. To assess the design’s accuracy, valida-

tion is conducted by examining the error, as presented in Fig. 6.14c. This figure

demonstrates the minimal discrepancy between the ideal impedance value and the

impedance provided by the various cylinders, affirming the design’s efficacy.

In light of the extremely small error, the subsequent phase of this antenna design

entails simulating the designed antenna using HFSS. Within the HFSS simulation,

the antenna is excited with a coaxial-type excitation, customized to match with the

surface impedance. This excitation is accomplished by extending the inner PEC a

few millimeters into the antenna. The additional length of the inner PEC aids in

exciting a wave that couples effectively with the pins, facilitating the propagation of

the surface wave. The antenna’s configuration with the coaxial excitation is visually

represented in Fig. 6.9.

The results of the directivity for the left hand circular polarized (LHCP) wave

is provided in Fig. 6.10. The directivity shows main beam pointing broadside with

a maximum value around 25 dB. In addition, the side lobes for this antenna are

sufficiently low.
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(a) (b)

(c)

Figure 6.8: (a) Impedance profile for an antenna with a radius of 10 modulation peri-
ods designed for 25 GHz for broadside propagation (b) The heights of the cylindrical
dielectric pins corresponding to the impedance profile (c) The error is the difference
between the values used via the dielectric pins and the ideal impedance values.

6.2.2 Design of Non-Broadside Radiating Antennas

Furthermore, this method extends its applicability beyond broadside designs and

proves effective in creating antennas with pointing angles significantly deviating from

broadside. To illustrate the method’s versatility, all parameters of the previous an-

tenna are maintained, except for the pointing angle, which is adjusted to 15o. Conse-

quently, this new angle results in an impedance profile, along with its corresponding

cylinder heights and error, as displayed in Fig. 6.11. It is worth noting that the

impedance shape exhibits more pronounced spatial spirals on one side, while the
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Figure 6.9: Screenshot of the antenna in Ansys HFSS with a radius of 10 modulation
periods designed for 25 GHz and broadside propagation excited with a coaxial cable

Figure 6.10: Directivity of a circularly polarized wave for the full dielectric antenna
with a modulation index of 0.65, an average impedance of 0.6η, and a radius of 10
modulation periods designed to radiate broadside.

other half of the antenna displays a closer spiraling pattern. This asymmetric sizing

is a direct consequence of the non-broadside pointing angle, effectively steering the

wave to the desired direction.

Using the same coaxial excitation method as employed for the previous antenna,

simulations of this design produce the LHCP, depicted in Fig. 6.12. The plot clearly

illustrates a well-defined main lobe direction with an equivalent level of directivity,
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(a) (b)

(c)

Figure 6.11: (a) Impedance profile for an antenna with a radius of 10 modulation pe-
riods designed for 25 GHz for broadside propagation (b) The heights of the cylindrical
dielectric pins corresponding to the impedance profile (c) The error is the difference
between the values used via the dielectric pins and the ideal impedance values

maintaining the same performance as when originally designed for broadside propa-

gation.

6.3 Fabrication and Testing

The antennas are simulated using a relative permittivity (ϵr) of 2.5 and a dielec-

tric loss tangent (δ) of 0.018, as reported in Boussatour et al. [87], to emulate the

empirically tested values of polylactic acid (PLA). The chosen material properties

accurately represent the electromagnetic behavior of PLA in the simulations. The

antennas are printed using the Raise3D Pro printer and PLA material. To optimize
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Figure 6.12: Directivity of a circularly polarized wave for the full dielectric antenna
with a modulation index of 0.65, an average impedance of 0.6eta, and a radius of 10
modulation periods designed to radiate at 15o.

printing accuracy, careful considerations were made. The radius of the pins, which

serve as the aperture elements, was selected based on the printer’s nozzle size. The

printer’s nozzle has a diameter of 0.4 mm, and the pin radii were chosen as multiples

of this value to ensure precise printing and alignment between the pins and the nozzle,

resulting in improved printing resolution and accuracy. Various printing parameters,

including speed, layer height, and temperatures, were adjusted to achieve smoothness

and accuracy in the printed antennas. These parameter adjustments helped enhance

the overall quality of the printed structures, including the aperture elements. To avoid

the need for additional supports during printing, such as a raft or extra structural

supports, a 0.2 mm thick layer was added to the bottom of the antenna. This addi-

tional layer provided sufficient support for the pins and facilitated the removal of the

antenna from the printer after printing. Although the added layer slightly affected

the impedance of the antenna’s surface, its impact on the overall performance was

taken into careful consideration. Since PLA is not a perfect dielectric, it introduces

some level of loss. Therefore, a thorough study was conducted to examine the impact

of the dielectric loss tangent (δ) on the antenna’s radiation pattern. The simulations

included the effects of material loss to accurately evaluate the antenna’s performance.
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The directivity and gain of the antennas, accounting for the losses introduced by the

material properties, were analyzed. The results, as presented in Fig. 6.13, indicate

that the dielectric loss tangent (δ) has only a minor effect on the radiation pattern.

This demonstrates that the chosen δ value enables the antenna to maintain a radiation

pattern that meets the desired specifications.

Figure 6.13: Directivity versus gain for the full dielectric antenna when a dielectric
loss tangent, δ of 0.018, is introduced into the dielectric properties.

To ensure accurate printing of this antenna, specific adjustments were made to

optimize adhesion and smoothness. The initial layer was printed at a significantly

reduced speed of 10 mm/s to enhance filament adhesion to the bed and minimize the

risk of lifting. Additionally, to further prevent lifting issues, the designed raft, which

acts as the attachment point for the ground plane, was modified to have a circular

shape instead of a square. This circular design eliminates corners that might be sus-

ceptible to lifting due to insufficient adhesion or inadvertent displacement caused by

the extruder. In terms of temperature settings, the bed temperature for PLA printing

is typically set around 60oC. However, for this particular print, the bed temperature

was raised to 65oC. This adjustment promotes a smoother base layer and improves

the adhesion of the printed object to the printing surface. Moreover, while the stan-

dard extruder temperature for PLA printing is approximately 205oC, the temperature
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(a) (b)

(c)

Figure 6.14: Various angles showing the additive manufactured final prototype of the
broadside, fully dielectric antenna made of cylindrical pins.

was slightly lessened to 195oC for this specific print. The lower extruder temperature

contributes to improved smoothness during the extrusion process and minimizes the

occurrence of stringiness. Furthermore, additional settings were carefully fine-tuned

to optimize print quality. The layer heights for the pin layer were reduced to 0.1

mm, resulting in finer details and a more refined surface finish. Additionally, the

print speed was increased to 25 mm/s to ensure a consistently smooth surface with-

out the appearance of a stacked coin-like texture along the edges. By meticulously

adjusting these printing parameters, the objective was to achieve a high-quality print

characterized by strong adhesion, enhanced smoothness, and an aesthetically pleasing

appearance.
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This chapter presented an efficient and accurate approach for characterizing additive-

manufactured MTSs consisting of dielectric pins on a dielectric slab. It presents a

way to model the MTS composed of purely dielectric pins as a uniaxially anisotropic

grounded slab, providing a dispersion equation for the fundamental TM mode. Nu-

merical results demonstrate the accuracy of the proposed approach for the antenna

design. The antennas were simulated using PLA. The Raise3D Pro printer and PLA

material were utilized for printing, with careful considerations made to optimize print-

ing accuracy. Parameters such as pin radius, printing speed, layer height, and tem-

peratures were adjusted to ensure precise printing and smoothness. The impact of

dielectric loss was studied, and results indicated that the chosen loss tangent had only

a minor effect on the antenna’s radiation pattern, demonstrating its suitability for

the design’s specifications.



CHAPTER 7: TIME VARYING CAPACITOR AND ENERGY BALANCE

One of the hottest topics in current electromagnetics and photonics research is the

study of structures with parameters, such as permittivity and/or permeability, varying

in time. Exploiting time as a new degree of freedom for the control of electromagnetic

waves has enabled the development of structures with intriguing functionalities, such

as time-Floquet topological insulators [88, 89, 90], temporal-based non-reciprocity [91,

92, 93], static-to-dynamic field conversion [94], that overcome most of the challenges

faced by time-invariant structures. Recently, the platform of time-varying media has

also been combined with the concept of metamaterials, opening up another interesting

avenue to control and achieve desired functionalities in wave-matter interaction [95,

96, 97, 98, 99, 100, 101, 102, 103]. In addition to physics and engineering, research

on time-variant systems has been aggressively pursued in mechanics [104], acoustics

[105], and water-wave [106].

An important subclass of electromagnetic time-varying media is represented by

time-varying networks consisting of lumped elements, such as resistors, capacitors,

and inductors with time-dependent properties. These networks have stimulated a

great deal of research interest [107, 108, 109, 110, 92, 111, 112]. In addition to

providing an interesting platform to control and manipulate electromagnetic waves,

they are also more amenable for experimental demonstrations than the conventional

time-varying media [92, 111, 112]. The vast majority of studies related to temporal-

dependent networks have been limited to lumped elements periodically modulated

in time. On the other hand, lumped elements with aperiodic time modulation can

provide an extra degree of freedom to engineer time-variant networks with new func-

tionalities. Indeed, it has been recently shown how reactive elements, like capacitors
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and inductors, judiciously modulated in time can provide an alternative for electro-

magnetic energy accumulation in a transmission line scenario [113, 114]. For exam-

ple, [113] showed how reactive elements, albeit lossless, when experiencing a temporal

variation, exhibit a resistive behavior responsible for the incoming signal absorption.

However, this approach requires capacitors or inductors with extreme values, includ-

ing negative ones, which may be challenging to achieve from a practical standpoint.

A follow-up proposal [114] showed that this issue can be overcome if modulation is

applied to a coupling network between an LC-resonator and a feeding transmission

line, which allows transferring the incoming energy to the LC network by applying

slow modulation. Both of these approaches work for harmonic input signals and no

technique exists for capturing of arbitrary pulses.

This work is motivated by the recent interest in harnessing electromagnetic energy

accumulation through time-varying lumped elements. It presents a novel approach for

capturing the energy of any arbitrary pulse by introducing non-periodic modulation

to a single capacitor located at the end of a transmission line. The study clarifies

the limitations of a previously proposed method and explains how combining an

incoming pulse with a DC signal effectively mitigates the need for extreme capacitance

values. Furthermore, the research includes a fundamental derivation of the system’s

energy balance, demonstrating that the energy from the pulse is transferred to the

modulation source rather than being stored in the capacitor. This investigation aims

to advance the understanding of energy capture and storage in time-varying systems.

This chapter is structured as follows: Section 7.1 introduces the investigated sys-

tem, comprising a transmission line terminated with a time-varying capacitor charged

by a DC voltage connected at the opposite end of the transmission line. Section 7.2

presents the derivation of the required temporal capacitance profile for achieving a

reflectionless system, which is further examined through the analysis of two specific

incoming voltage pulses in Sections 7.2.1 and 7.2.2. Section 7.3 focuses on deriv-
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ing the system’s energy balance from first principles, while Sections 7.3.1 and 7.3.2

elaborate on the energy exchange mechanisms for the incoming pulses discussed in

Sections 7.2.1 and 7.2.2, respectively. Finally, Section 7.4 presents the conclusions

drawn from this study.

7.1 Statement of the problem

Figure 7.1 provides a schematic representation of the studied system: a lossless

transmission line terminated with a time-varying capacitor. The input port is con-

nected to a DC voltage source (Vdc). After the DC source has charged the capacitor

completely, initially at t = −∞, a voltage pulse [v+ (t, z)] begins propagating along

the transmission line towards the capacitive load. It is assumed that the DC voltage

source remains connected to the system even for t > −∞, and for simplicity, through-

out the paper, it is assumed that Vdc > 0. The combined instantaneous voltage and

current at the load position (z = 0) can be expressed as follows:

v (t) = v+ (t, 0) + v− (t, 0) + Vdc (7.1a)

i (t) =
v+ (t, 0)− v− (t, 0)

Z0

(7.1b)

Here, Z0 represents the characteristic impedance of the transmission line. To explore

the possibility of trapping the energy of the incoming voltage pulse in the capacitor,

the first step is to determine the temporal variation of its capacitance to fully eliminate

the reflected pulse, which will be discussed in the next section.

7.2 Reflectionless time-dependent capacitor

The elimination of reflected pulses in a time-varying capacitive load is demonstrated

by exploiting the temporal dependence of capacitance. Unlike stationary purely ca-

pacitive loads, which exhibit a reflection coefficient with a magnitude of one, resulting

in total pulse reflection, this work reveals a method to fully eliminate the reflected
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Figure 7.1: A DC voltage source Vdc is connected to a time-varying capacitor through
a transmission line with characteristic impedance Z0. The incoming voltage pulse
v+(t, z) (red arrow) travels toward the capacitor, while the reflected voltage pulse
v−(t, z) (blue arrow) travels away from the same capacitive load. The capacitor can
eliminate the reflected pulse as long as its capacitance experiences a suitable temporal
modulation.

pulse. To achieve this, zero reflection (v− (t, z) = 0) is first imposed, and then, by

substituting Eqs. 7.1a and 7.1b into the capacitor equation for current and voltage

(i = d
dt
(Cv)), a first-order ordinary differential equation is obtained:

dC (t)

dt
+

C (t)

v+ (t, 0) + Vdc

dv+ (t, 0)

dt
=

v+ (t, 0)

Z0 (v+ (t, 0) + Vdc)
(7.2)

with a solution with respect to C (t) as

C (t) =
v+ (−∞, 0) + Vdc
v+ (t, 0) + Vdc

 1

Z0 (v+ (−∞, 0) + Vdc)

t∫
−∞

v+ (ε, 0) dε+ Ci

 (7.3)

This equation, given the incoming pulse v+ (t, z), provides the required temporal

variation of the capacitance with initial value Ci to eliminate the reflected pulse in

the system of Fig. 7.1. Inspecting Eq. 7.3, one can observe that C (t) diverges for

v+ (t, 0) = −Vdc. In order to avoid extreme capacitive values, it is important to have

a DC voltage across the capacitor outside the range of values of the incoming voltage

pulse (Vdc > |v+ (t, 0) |). This simple analysis elucidates the extreme capacitive values

required in the approach proposed in [113], which did not include a DC source and,



101

as a result, required a capacitive value tending to infinity.

Another important physical quantity to bring into the discussion, as will become

clear shortly, is the temporal variation of the charge in the capacitor to cancel the

reflected pulse. Recalling the capacitor charge-voltage relationship (q = Cv), it is

straightforward to derive the temporal variation of the charge in the capacitor with

respect to its initial value (qi = CiVdc) from Eq. 7.3

∆q (t) = C (t)
[
Vdc + v+ (t, 0)

]
− CiVdc (7.4)

To delve deeper into the implications of the previously mentioned equations and

their underlying physical principles, two distinct temporal shapes of incoming voltage

pulses are now considered.

7.2.1 First-order derivative of a Gaussian pulse

The mathematical expression of a normalized voltage pulse with a temporal profile

of the first-order derivative of the Gaussian function, which is shown in the inset of

Fig. 7.2(a), can be written as v+dg (t, z) = − t−vpz−µ

σ2 e−
(t−vpz−µ)2−σ2

2σ2 , with µ being the

zero crossing position, vp the phase velocity, and σ a positive real number controlling

the width of the pulse. Substituting v+dg (t, z) into Eq. 7.3 and simplifying, it becomes

Cdg (t) =
Vdc

v+dg (t, 0) + Vdc

[
σ

Z0Vdc
e−

(t−µ)2−σ2

2σ2 +Ci

]
(7.5)

which is the required modulation of the capacitor to eliminate the reflected pulse in

the transmission line of Fig. 7.1 with v+ (t, z) = v+dg (t, z). Fig. 7.2(a) displays the

temporal evolution of Cdg for three different values of Vdc. One can observe that as

the incoming pulse approaches the capacitor its capacitance (Cdg) starts varying in

time, as expected. During the transient time, the range of variation of Cdg depends on

Vdc. The larger Vdc is, the smaller the range of variation of Cdg is. After the transient
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time, Cdg returns to its initial value (Ci) for all the three Vdc values. This fact can

also be rigorously seen by taking the limit t → ∞ in Eq. 7.5. To comprehend the

underlying physical rationale for this outcome, the time-dependent equation of the

charge in the capacitor is derived by combining Eq.7.5 with Eq.7.4.

∆qdg (t) =
σ

Z0

e−
(t−µ)2−σ2

2σ2 (7.6)

The temporal evolution of the charge is shown in Fig. 7.2(b). ∆qdg exhibits a

Gaussian-like temporal variation and tends to zero for t → ∞. As a result, the

charge stored in the capacitor is identical before and after the transient time. And,

in contrast to Cdg, ∆qdg does not depend on Vdc. This behavior of ∆qdg is expectedly

consistent with the law of charge conservation, which, for the system under study,

can be expressed as ∆qdg (t) =
t∫

−∞
i+dg (ε, 0) dε with i+dg = v+dg/Z0. As can be seen from

the former equation, ∆qdg depends only on the voltage of the pulse, but not on Vdc.

For large t (after the transient time), given the odd symmetry of v+dg [see the inset of

Fig. 7.2(a)], the previous integral is zero, which implies that the amount of current

flowing in and out of the capacitor during the transient time is the same, resulting

in a zero net flow of charge. Thus, the initial and final capacitance/charge values are

identical. Therefore, for an incoming pulse with the temporal profile given by the

derivative of a Gaussian pulse, the capacitor of the system under study (Fig. 7.1),

with a capacitance variation as in Eq. 7.5, eliminates the reflected pulse and does not

accumulate any additional charge with respect to the initial one provided by the DC

source. This analysis also explains why the peak value of C decreases with increasing

Vdc and can be generalized to any pulse with a zero net charge.

7.2.2 Gaussian pulse

Now, let us consider the following incoming Gaussian pulse: v+g (t, z) = Ae−
(t−vpz−µ)2

2σ2

with µ the position of the peak A, which it is assumed to be a real number, and σ,
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the standard deviation, controlling the temporal extension of the pulse. Substituting

v+g (t, z) into Eq. 7.3, the required modulation of the capacitive load in the system

under investigation (Fig. 7.1) to achieve the reflectionless condition for an incoming

Gaussian pulse is obtained

Cg (t) =
Vdc

Ae−
(t−µ)2

2σ2 + Vdc

[
Aσ

√
π
2

Z0Vdc

(
1 + erf

(
t− µ√
2σ

))
+ Ci

]
(7.7)

with erf being the Gauss error function [erf (y) = 2√
π

y∫
0

e−y2dy]. Combining the

previous equation with Eq. 7.4, the time-dependent equation of the charge is obtained.

∆qg (t) =
Aσ

√
π
2

Z0

(
1 + erf

(
t− µ√
2σ

))
(7.8)

Eqs. 7.7 and 7.8 for large t, simplifies to

Cg (t→ ∞) =
√
2π

Aσ

Z0Vdc
+ Ci (7.9)

and

∆qg (t→ ∞) =
Aσ

√
2π

Z0

, (7.10)

respectively. From Eqs. 7.7 and 7.8, it can be seen that Cg and ∆qg may behave dif-

ferently depending on the sign of the Gaussian pulse amplitude (A). Let us consider,

first, the case with A > 0, say A = 1. With this amplitude of the Gaussian pulse, the

temporal evolution of Cg (t) is shown in Fig. 7.2(c) for three different Vdc values. As

observed, Cg (t) varies during the transient time, and then stabilizes at a certain value,

reaching a value that is higher than the initial one. The range of variation decreases

with increasing Vdc. Thus, the value of Cg (t) after the transient time (for large t) gets

closer to the initial one for higher Vdc, as predicted by Eq. 7.9. According to Eq. 7.8,

the temporal evolution of ∆qg (t), which is shown in Fig. 7.2(d), is independent of Vdc.
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Figure 7.2: Time dependence of the capacitance and charge experienced by the capac-
itor in the system of Fig. 7.1 to achieve the reflectionless condition for three different
temporal shapes of the incoming pulse: (a) and (b) first-order derivative of the Gaus-
sian function; (c) and (d) Gaussian function with positive peak: (e) and (f) Gaussian
function with negative peak. Each panel display three curves corresponding to three
different values of Vdc indicated above the panels (a) and (b). The insets in (a), (c),
and (d) show the profile of the considered incoming pulse. The results were obtained
for Z0 = 50Ω, Ci = 4pF, µ = 0.8ns, and σ = 0.08ns.

And, after the transient time, the charge stored in the capacitor is increased. As can

be seen in Eq. 7.10, the amount of charge stored in the capacitor after the transient

depends on the parameters characterizing the Gaussian pulse, specifically the ampli-

tude A and the standard deviation σ. Note that the discussion on the law of charge

conservation carried out for the incoming pulse considered in the previous section can

be repeated for an incoming pulse with an arbitrary temporal shape. Accordingly,
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the growth of charge experienced by the capacitor for the incoming Gaussian pulse

with positive amplitude results from the current (v
+
g (t,z)

Z0
) that this pulse induces in the

transmission line, which implies a positive net flow of charge toward the capacitor.

This charge is accumulated in the capacitor and is responsible for the different final

capacitor value than the initial one.

Now, let us consider the case when the amplitude of the incoming Gaussian pulse

[v+g (t, z)] is a negative real number, A < 0. The profile of v+g (t, z) with A = −1

is shown in the inset of Fig. 7.2(e). To eliminate the reflection from this pulse the

capacitor of the system in Fig. 7.1 needs to experience the temporal variation of its

capacitance and charge shown in Figs. 7.2(e) and (f), respectively. These plots are

obtained from Eqs. 7.7 and 7.8 and, to differentiate the notation between these results

and the ones of Figs. 7.2(c) and (d) (corresponding to A = 1), Cg (t) and ∆qg (t)

have been replaced with Cng (t) and ∆qng (t), respectively. As one can observe from

Figs. 7.2(e) and (f), the temporal evolution of Cng (t) and ∆qng (t) is flipped along

the vertical axis with respect to the case with A = 1 (see Figs. 7.2(c) and (d)). With

A = −1, or more generally when the amplitude of the Gaussian pulse is negative, the

current associated to this pulse flows toward the DC source. This current, according

to the law of charge conservation, induces a flow of charge out of the capacitor. As

a result, the charge stored in the capacitor and its capacitance after the transient

decrease, as predicted by Eqs. 7.9 and (7.10) with A < 0. Thus, when the peak of

the Gaussian pulse is negative, the capacitor experiencing a temporal modulation of

its capacitance given by Eq. 7.7 eliminates the reflected pulse and releases part of its

charge into the transmission line.

7.3 Energy exchange process

Another essential aspect of the system in Fig. 7.1 is the energy exchange process

between the dynamic energy associated to the incoming pulse and the electrostatic en-

ergy stored in the capacitor before and after the transient time. Exploring this aspect
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will address the following fundamental question: How much of the incoming pulse’s

energy is trapped in the capacitor, and how much is transferred to the modulation

source? The dynamic energy associated to the pulse is given by

W d
i =

∞∫
−∞

(
v+ (t, z) + VDC

)
i+ (t, z) dt =

∞∫
−∞

v+ (t, z) i+ (t, z) dt+ Vdc

∞∫
−∞

i+ (t, z) dt

(7.11)

On the right-hand side of the previous equation, the first and second terms are the

energy carried by the pulse (W p) and the energy due to the current of a pulse flowing

in a charged transmission line (W c), respectively. The latter, upon applying the law

of charge conservation and considering that the charge is conserved in time-varying

capacitor, becomes W c = Vdc∆q
∞ = Vdc (qf − qi), with qf denoting the final charge

stored in the capacitor. Note that ∆q∞ coincides with Eq. 7.4 by letting t → ∞.

Thus, Eq. 7.11 can be expressed in a compact form as W d
i = W p +W c. Then, the

energy balance is expressed as ∆W = W s
f − W d

i − W s
i , where W s

i = 1
2
qiVdc and

W s
f = 1

2
qfVdc are the electrostatic energy stored in the capacitor before and after the

transient time, respectively, ∆W is equal to the energy given by the modulation agent

to the network. It is easy to show that

∆W = −W p − 1

2
Vdc∆q

∞ (7.12)

The energy-balance equation presented here is general and not restricted to a specific

temporal shape of the incoming pulse. It allows for an understanding, from first

principles, of the energy exchange mechanism in the system of Fig. 7.1 operating in

the reflectionless mode. Inspecting Eq. 7.12, one can observe that the first term on

the right-hand side, which is related to the energy of the incoming pulse, is a negative

term in the energy balance regardless of the pulse time shape and the DC source. This

implies that a time-varying capacitor terminating a transmission line cannot trap the
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energy of the incoming pulse, which is transferred to the modulation source. On the

other hand, the second term on the right-hand side of Eq. 7.12, which is related to

the energy associated to the current of the pulse flowing in a charged transmission

line (W c), implies different energetic changes in the system depending on the sign of

∆q∞.

For ∆q∞ < 0, which occurs for incoming pulses such as the Gaussian pulse with

negative peak investigated above, the energy exchange process undergoing in the

system is schematically shown in Fig. 7.3(a). As indicated in Sec. 7.1, Vdc > 0 is

assumed. The following discussion can be easily extended to the case with Vdc < 0.

The energy associated to the current of the pulse flowing in a charged transmission

line is a negative quantity (W c = Vdc∆q
∞ < 0) resulting in a depletion of the energy

in the transmission of an amount equal to W c that ends up being accumulated in the

DC source. As emerged from the second term on the right-hand side of Eq. 7.12, which

is a positive quantity with ∆q∞ < 0 and equals to W c except for a factor 1/2, half

of the energy in the transmission line is restored by the modulation source pumping

energy into the system. The other half of the transmission line energy is restored

by the capacitor losing part of its charge during the transient time (∆q∞ < 0). As

discussed above and shown in Fig. 7.3(a), the energy of the incoming pulse is captured

by the modulation source. With ∆q∞ < 0, Eq. 7.12 results in three different energy

exchange regimes depending on the DC voltage across the capacitor (Vdc). By setting

∆W = 0 in Eq. 7.12, the DC voltage across the capacitor (V ∗
dc = 2W p/|∆q∞|) can

be determined, ensuring that the energy of the system is “conserved.” As shown in

Fig. 7.3(a), the modulation source pumps energy into system to restore the energy

in the transmission line and captures the energy of the incoming pulse. These two

energies balance out when Vdc = V ∗
dc and, as a result, ∆W = 0. This implies that the

energy accumulated in the DC source and the energy captured by the modulation

source are identical. When Vdc < V ∗
dc, ∆W < 0 implying that the energy of the pulse
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transferred to the modulation source exceeds the energy that the modulation source

pumps into the system and accumulates in the DC source. On the other hand, when

Vdc > V ∗
dc, the modulation source pumps into the system an amount of energy, which

is accumulated in the DC source, that is higher the one received from the incoming

pulse (∆W > 0).

For ∆q∞ = 0, which indicates that the initial and final energy stored in the capac-

itor are identical, according to Eq. 7.12, the only energy exchange taking place in the

system is the transfer of the pulse energy to the modulation source [see Fig. 7.3(b)].

This scenario occurs for the family of incoming pulses whose current induces a no net

flow of charge along the transmission line, such as the pulse investigated in Sec. 7.2.1

and shown in the inset of Fig.7.2(a).

The last case that needs to be considered is when ∆q∞ > 0, which is shown in

Fig. 7.3(c). In this case, the energy associated to the current of the pulse flowing

in a charged transmission line (W c = Vdc∆q
∞ > 0) travels toward the capacitor.

By comparing W c with the expression of the difference between the initial and final

energy stored in the capacitor (1
2
∆q∞Vdc), one can observe that they are equal except

for a factor 1/2. Hence, the capacitor is only able to capture half of W c. The other

half of W c, in addition to the energy of the incoming pulse (W p), is transferred to

the modulation source, as emerged from the energy balance equation [Eq. 7.12] that

results in ∆W < 0. For the set of incoming pulses that induce a net flow of charge

moving toward the capacitor (∆q∞ > 0), such as the Gaussian pulse with a positive

peak investigated in Sec. 7.2.2, the capacitor captures only half of the energy induced

by the current of the pulse flowing in a charged transmission line. The other half of

this energy and the pulse’s energy are transferred to the modulation source.

In the first part of this section, the energy exchange process in the system under

study (Fig.7.1) was discussed in a general sense, without limiting it to incoming pulses

with specific temporal evolution. To further investigate this process, including the
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Figure 7.3: Schematic representation of the energy exchange process experienced by
the system in Fig. 7.1 operating in the reflectionless regime for incoming pulses that
induce (a) a flow of charge moving away from capacitor (∆q∞ < 0), (b) a zero flow
of charge (∆q∞ = 0), and (c) a flow of charge toward the capacitor (∆q∞ > 0).

temporal evolution of the energy balance, the focus will now be on the incoming

pulses studied in Secs.7.2.1 and 7.2.2.

7.3.1 Energy balance for an incoming pulse with the temporal profile of the

first-derivative of a Gaussian function

As can be seen in Fig. 7.2(b), for an incoming pulse consisting of the first-order

derivative of the Gaussian function [v+dg (t, z)], the final charge in the capacitor (after

the transient) is identical to the initial one. When the capacitor accumulates no addi-

tional charge during the transient (∆q∞ = 0), the energy-balance equation [Eq. 7.12]
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becomes

∆Wdg = −W p
dg (7.13)

with W p
dg the energy carried by v+dg (t, z), which is transferred to the modulation

source, as discussed in the previous section. Since ∆Wdg is independent of Vdc [see

Fig. 7.4(a)], to get a better understanding of the role played by the DC voltage source

from energetic standpoint, in Fig. 7.4(b), the temporal evolution of the energy balance

has been plotted, and it can be expressed as:

∆Wdg (t) =
1

2

(
v+dg (t, z) + Vdc

)
v+dg (t, z)Cdg (t)−

1

2
Vdc∆qdg (t)−

t∫
−∞

(
v+dg (ε, z)

)2
Z0

dε

(7.14)

One can observe that, during the transient time, ∆Wdg (t) depends on Vdc exhibiting

a larger swing for higher Vdc values. This behavior seems to be related to the fact

that more energy is stored in the capacitor for higher Vdc values. And while the

capacitance is experiencing a temporal modulation, more energy is exchanged between

the capacitor and the modulation source. After the transient time, the three curves

expectedly converge to the same constant negative quantity (−W p
dg). It can be further

investigate this energy exchange mechanism by looking at the instantaneous power

balance (Pdg), obtained as the derivative of ∆Wdg (t) with respect to time. The

temporal evolution of Pdg for three values of Vdc is shown in Fig. 7.4(c). When Pdg

is positive (see orangish filled boxes in Fig. 7.4(c)), the instantaneous energy of the

pulse is lower than the energy required to modulate the capacitor, which, assuming

a mechanical capacitor, is given by Wmech (t) =
1
2

(
v+dg (t, z) + VDC

)2
Cdg (t), and the

modulation source needs to supply energy into the system. On the other hand, when

Pdg is negative (see cyanish filled box in Fig. 7.4(c)), the instantaneous energy of the

pulse exceeds the energy required to modulate the capacitor, and a portion of it ends

up to the modulation source.
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Figure 7.4: Energy exchange process of the system in Fig. 7.1 operating in the reflec-
tionless regime for an incoming pulse given by the first-order derivative of a Gaussian
function [v+dg (t, z)]. (a) Energy balance as a function of the DC voltage across the
capacitor. (b) Instantaneous energy balance and (c) its temporal derivative for three
different values of Vdc, which are indicated above these panels. The results were ob-
tained for Z0 = 50Ω, Ci = 4pF, µ = 0.8ns, and σ = 0.08ns.

7.3.2 Energy balance for an incoming pulse with the temporal profile of a

Gaussian function

Combining Eq. 7.10 with Eq. 7.12, the energy-balance equation for the incoming

Gaussian pulse v+g (t, z) [Sec. 7.2.2] is obtained

∆Wg = −Aσ
Z0

√
π

2
Vdc −W p

g (7.15)

with W p
g representing its energy. One can observe that this energy-balance equation

may involve different energetic considerations depending on the sign of A (the peak of

the Gaussian pulse). First, let us assume A > 0, say A = 1 for the sake of consistency

with the results shown in Figs. 7.2(c) and (d). With an incoming Gaussian pulse
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with this peak, which induces an increase of the final charge stored in the capacitor

[see Fig. 7.2(d)], the system experiences the energy exchange mechanism discussed in

Sec. 7.3 for the general class of incoming pulses with ∆q∞ > 0 [see Fig. 7.3(c)]. The

energy of the pulse (W p
g ) and half of the energy associated to the current of the pulse

flowing in a charged transmission are transferred to the modulation source, resulting

in ∆Wg < 0 that decreases linearly with Vdc, as shown in Fig. 7.5(a). The temporal

evolution of ∆Wg, which has been obtained by replacing in 7.14 v+dg (t, z), Cdg (t), and

∆qdg (t) with v+g (t, z), Cg (t), and ∆qg (t), respectively, is shown in Fig. 7.5(b). As

observed, higher Vdc implies that more energy is exchanged between the capacitor

and the modulation source, resulting in a large amount of energy transferred the

modulation source, as predicted by Eq. 7.15. Fig. 7.5(c) displays the instantaneous

power balance, Pg (t). During the transient time the modulation source, first, supplies

power to the system (Pg (t) > 0) and, then takes power from the system (Pg (t) < 0).

Overall, the power taken from the modulation source exceeds the power gain by the

system, resulting in a flow power moving toward the modulation source, as expected.

Now, let us consider the case when the peak of the Gaussian pulse is a negative real

number, say A = −1 for consistency with the results in Figs. 7.2(e) and (f). With

this incoming pulse, which induces a decrease of the charge stored in the capacitor

(see Fig. 7.2(f)), the system experiences the energy exchange mechanism discussed in

Sec. 7.3 for the general class of incoming pulses with ∆q∞ < 0 [see Fig. 7.3(a)] and

there are three different energetic regimes depending upon the DC voltage across the

capacitor, as can be seen in Fig. 7.6(a). Note that to differentiate this result from

the one in Fig.7.5(a), both obtained from Eq.(7.12), we have replaced ∆Wg with

∆Wng. In Fig. 7.6(a), one can observe that there is a specific value of the DC voltage

(V ∗
dc = 1.415[V]) for which ∆Wng = 0, meaning that the system transfers and receives

the same amount of energy from the modulation source. To better understand this

energetic regime, the blue-solid curves can be looked at in Figs. 7.6(b) and (c) showing
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Figure 7.5: Energy exchange process of the system in Fig. 7.1 for an incoming pulse
given by a Gaussian function [v+g (t, z)] with the peak A = 1. (a) Energy balance as
a function of the DC voltage across the capacitor. (b) Instantaneous energy balance
and (c) its temporal derivative for three different values of Vdc, which are indicated
above these panels. The results were obtained for Z0 = 50Ω, Ci = 4pF, µ = 0.8ns,
and σ = 0.08ns.

the temporal evolution of the energy balance [∆Wng (t)] and power balance [Png (t)],

respectively, for Vdc = V ∗
dc. ∆Wng (t) converging to zero after the transient indicates

that the amount of instantaneous energy flowing from the modulation source to the

system and accumulate in the DC source is equal to the energy of the pulse captured

by the modulation source. This is also confirmed from the temporal profile of Png (t).

During the transient, the portion of the curve with Png (t) < 0 is the upside down

image of that with Png (t) > 0. This symmetry implies that systems loses and gains

the same amount of power, resulting in a power balance equal to zero as a whole.

When the DC voltage across the capacitor is larger than V ∗
dc, ∆Wng > 0 (see orangish

filled box in Fig. 7.6(a)). The amount of energy pumped into the system by the



114

modulation source that accumulates in the DC source exceeds the energy of the pulse

captured by the modulation source. Figs. 7.6(b) and (c) show the temporal evolution

of ∆Wng (t) and Png (t), respectively, for two different values of Vdc larger than V ∗
dc

(red- and green-solid curves). ∆Wng (t) exhibits higher swing for larger Vdc resulting

in more energy accumulated by the DC source. Similar physical consideration can be

made from the temporal profile of Png (t), which deviates from its symmetric behavior

observed for Vdc = V ∗
dc. The portion of the curve with Png (t) > 0 increases faster

than the one with Png (t) < 0, indicating that the modulation source pumps into the

system more energy than the one that it receives from the incoming pulse. Finally,

for Vdc < V ∗
dc, ∆Wng < 0 (see cyanish filled box in Fig. 7.6(a)), which is analogous to

the cases of Figs. 7.4(c) and 7.5(c). The modulation source pumps less energy into

the system than it captures from the incoming pulse.

7.4 Potential Experimental Verification

Before concluding the chapter, a potential pathway for experimentally testing the

theoretical phenomenon described above is briefly discussed. In the current state-of-

art, two of the most common variable capacitors are represented by MEMS capacitors

and varactors, which are mechanically and electronically controlled capacitors, respec-

tively. Using these capacitors, which can typically withstand a maximum voltage of

20 volts, the envisioned experiment would follow these subsequent steps. 1) Given

the pulse that needs to be absorbed, the required temporal variation of the capacitor

is obtained by Eq. 3. 2) From C(t), the modulation signal that needs to be applied

to the capacitor is retrieved according to the capacitor specs. For example, suppose

the time-varying capacitor is implemented with a varactor diode. In that case, the

modulation signal is represented by the biasing signal and can be obtained from the

varactor characteristic curve that relates the capacitance as a function of the reverse

bias voltage. 3) Then, the capacitor is connected to a DC voltage source. Once the

capacitor is fully charged, the incoming pulse is sent, and the level of reflection is
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Figure 7.6: Energy exchange process of the system in Fig. 7.1 for an incoming pulse
given by a Gaussian function [v+ng (t, z)] with the peak A = −1. (a) Energy balance as
a function of the DC voltage across the capacitor. (b) Instantaneous energy balance
and (c) its temporal derivative for three different values of Vdc, which are indicated
above these panels. The results were obtained for Z0 = 50Ω, Ci = 4pF, µ = 0.8ns,
and σ = 0.08ns.

measured.

As the equations governing the system are linear, any reflections resulting from

perturbations in the system’s parameters are expected to be of first order in the per-

turbations. Therefore, small perturbations on the incoming pulse and/or the temporal

profile of the capacitance, as well as nonidealities of the capacitor, are not expected

to have a significant effect on the phenomenon presented here.

In this chapter, a theoretical investigation was conducted to explore the capability

of a transmission line terminated with a time-varying capacitor to eliminate reflected

signals. The study demonstrated that by charging the capacitor with a DC voltage

source, it is possible to derive an analytical expression for the required temporal

variation of its capacitance, thus avoiding the need for extreme or negative values.
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The temporal variation of the capacitance and the resulting evolution of the charge

in the capacitor were discussed in detail for two different types of incoming pulses.

Furthermore, the energy balance of such a reflectionless time-varying capacitor was

derived from first principles, revealing that regardless of the temporal shape of the

incoming pulse, its energy is transferred to the modulation source. These findings

have the potential to impact a range of applications, including energy storage systems,

electrically small antennas, and the conversion of electromagnetic energy into other

forms, such as mechanical energy.



CHAPTER 8: CONCLUSION

This dissertation delved into the world of metasurfaces, which have gained recog-

nition for their compactness and lightweight characteristics, promising innovative ap-

plications across various domains. These investigations expanded the horizons of

metasurface utilization, driven by the potential to transform diverse fields. Whether

through the enhancement of functionalities, the streamlining of system designs, or

the facilitation of widespread accessibility via inventive fabrication methods, the dis-

sertation highlights the transformative capabilities of metasurfaces.

Metasurfaces are structures highly regarded for their ability to manipulate elec-

tromagnetic waves by utilizing periodic elements significantly smaller than the wave-

length. Their geometric and sinusoidal arrangement of unit cells offers precise control

over properties such as polarization, phase, and wave propagation direction. These

unit cells are designed to impose impedance boundary conditions, interacting with

electric and magnetic fields. By investigating transverse electric and transverse mag-

netic waves and applying equivalent circuit theory through a parallel LC resonant

circuit model, the surface impedance can be characterized using sheet reactance to

account for inductive or capacitive elements. Analyzing individual unit cells results in

dispersion curves that provide the necessary impedance information to create the si-

nusoidal surface gradient. Various analytical techniques, including the Floquet-Bloch

theorem, surface impedance characterization, whether it is isotropic or anisotropic,

and surface wave dispersion, serve as mathematical methods to describe the behavior

of this periodic surface.

Building upon this mathematical and theoretical background, a dual-polarization

metascreen was investigated. In an era characterized by a growing demand for com-
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pact and multifunctional electromagnetic devices, metasurfaces have emerged as a

compelling solution due to their versatile capabilities and lightweight design. Tra-

ditional reflect arrays, while effective, often suffer from bulkiness, which led to the

exploration of metasurfaces as an alternative approach. In contrast to conventional

single-layer metascreens, the proposed three-layer innovative design allowed for the

independent control of two orthogonal polarizations, effectively doubling the device’s

functionality. This achievement was made possible by the metascreen’s multiple lay-

ers introducing an extra degree of freedom for impedance matching. The metascreen,

composed of metallic patches separated by dielectric slabs, was accurately modeled

using a local transmission line approach, highlighting its capability to steer incident

waves in both the x and y directions, thus introducing much-needed flexibility. The

comprehensive analysis, encompassing impedance modeling, unit cell design, and nu-

merical simulations, demonstrated the metascreen’s capability to achieve its design

objectives of independently steering two polarizations, even at relatively high steering

angles. As the boundaries of metasurface design and engineering were continuously

pushed, the metascreen held the potential to unlock exciting possibilities in connec-

tivity, sensing, and various other applications.

Another multi-functional antenna was proposed capable of radiating at two dif-

ferent frequencies. The increasing demand for multifrequency medium-to-high gain

antennas had spurred innovation in antenna design. Reflectarrays and transmitar-

rays have been explored but often require external feeds, limiting their suitability

for space-constrained applications. This work has introduced a novel approach using

MTS antennas with integrated feeds. By leveraging Foster’s reactance theorem, the

approach demonstrated the design of dual-frequency MTS antenna with a coplanar

excitation, addressing the challenges of separation between two distant frequencies

in a condensed space. The proposed double-layered MTS antenna had been specifi-

cally designed for cloud and precipitation radar applications, showcasing its potential
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for operating at common telecommunication frequencies. This work represented a

promising avenue for the development of multifrequency antennas with improved

performance and versatility.

The antenna design was split into two different antennas with the first antenna in-

vestigated being a single layered, single frequency anisotropic antenna operable at W

band. The key design elements included a sinusoidally modulated surface impedance

described by the impedance tensor components X11, X12, and X22. To achieve the

desired impedance profiles, a database of unit cells with varying dimensions based on

its spatial dispersion and orientations was created, allowing for an accurate represen-

tation of the impedance tensor across the antenna surface. Furthermore, the design

process was validated through electromagnetic simulations using Ansys HFSS. The

antenna exhibited excellent directivity and low sidelobes, even when operated with

a radius smaller than the optimal 20λ, showcasing its potential for efficient radiative

performance.

The successful design of an anisotropic MTS antenna operating at 94.05 GHz served

as a stepping stone toward more intricate dual-band, dual-layered antenna configu-

rations. Leveraging Foster’s reactance theorem, an isotropic antenna was devised,

featuring two isolated antennas stacked in a manner that assumed the impedance at

the opposite frequency effectively acted as an open circuit, rendering it transparent.

Simulation results convincingly demonstrated the efficacy of this approach, with two

specific frequencies, 35.75 GHz and 94.05 GHz, chosen as illustrative examples. Re-

actance databases played a pivotal role in the design of patches for these frequencies,

ensuring their efficient operation when integrated into the dual-layered antenna struc-

ture. Directivity analysis conclusively confirmed the antenna’s capability to efficiently

radiate circularly polarized waves at both frequencies, with the directivity patterns

of the dual-layered antenna closely mirroring those of the single-layered counterparts.

An additional sinusoidally modulated antenna concept was proposed, featuring
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fully dielectric unit cells in its construction. The antenna’s design was based on

a numerical approach that modeled the unit cell as a uniaxial grounded dielectric

slab with an effective anisotropic permittivity. This methodology facilitated a swift

and precise analysis of the unit cell’s dispersion characteristics, considering various

radial or height sizes of the dielectric cylindrical pins for any frequency. To validate

the approach, its results were rigorously compared to those found from full-wave

simulations, and an impressive level of agreement between the two methodologies was

observed. Furthermore, this numerical method demonstrated its versatility by being

successfully applied to design antennas for different pointing angles, offering a rapid

and efficient design solution for parameter variations. This approach proved effective

for designing both broadside and non-broadside radiating antennas with minimal

computational time. To align with the expedited design process, the antenna was

optimized for easy commercial production using 3D printing technology. This involved

fine-tuning printing parameters such as speed, layer height, and temperature settings

to enhance adhesion, surface smoothness, and overall print quality. Although the

selected dielectric properties introduced some minor dielectric losses, the antennas

displayed negligible alterations in their radiation patterns, confirming the suitability

of the chosen dielectric parameters for the intended application. Overall, this study

demonstrated an efficient numerical method for designing dielectric antennas and

showcased the successful fabrication of these antennas using 3D printing technology.

The last project explored the idea of time-varying electromagnetic systems, specifi-

cally focusing on structures with varying parameters like permittivity and permeabil-

ity. This emerging field has opened exciting possibilities for manipulating electromag-

netic waves and achieving unique functionalities not attainable with time-invariant

structures for various applications of time-varying systems, including topological in-

sulators, non-reciprocal devices, and energy conversion. The subclass of time-varying

networks composed of lumped elements, such as capacitors and inductors, with time-
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dependent properties are more cooperative to experimental demonstrations than con-

tinuous media and offered a platform for controlling electromagnetic waves. While

much research has focused on periodically modulated elements, a novel approach us-

ing aperiodic time modulation to capture the energy of arbitrary pulses is proposed.

The central focus of this chapter involved an exhaustive investigation into the pre-

requisites necessary to achieve reflectionless energy absorption in a transmission line,

particularly when terminated with a time-varying capacitor. The equations govern-

ing the temporal variation of capacitance, a critical factor in realizing reflectionless

behavior were presented. To illustrate these concepts, two compelling cases were

analyzed: one involving the first-order derivative of a Gaussian pulse and the other

featuring a Gaussian pulse in its entirety were shown.

The discovery stemming from this was that by orchestrating the deliberate mod-

ulation of the capacitor’s characteristics over time, it becomes feasible to eradicate

reflected pulses and efficiently accumulate energy. Notably, this achievement does

not necessitate the deployment of impractical capacitance values, thanks to the intro-

duction of a DC voltage source into the system. Furthermore, emphasis was placed

on demonstrating the preservation of charge throughout this intricate process, cast-

ing light on the underlying physical principles at play. The approach centered on

the active modulation of capacitance within the termination capacitor, enabling the

elimination of pulse reflection, regardless of the temporal shape of the incoming elec-

tromagnetic pulse.

Furthermore, the research delved into the energy exchange dynamics within the

system, culminating in the development of an energy balance equation. This equa-

tion served to quantify the energy absorbed by the time-varying capacitor and its

subsequent transfer to the modulation source. This analysis unveiled distinct energy

exchange regimes contingent upon the DC voltage applied across the capacitor and

the temporal characteristics of the incoming pulse.
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The time-varying capacitor and derivations open promising avenues for the devel-

opment of innovative devices and systems capable of efficiently absorbing and har-

nessing electromagnetic energy, all while circumventing reflections. With potential

applications spanning various fields, this research paves the way for the advancement

of energy-efficient technologies and novel electromagnetic systems. This concept car-

ries the potential to revolutionize various domains, ranging from RF engineering to

energy harvesting and electromagnetic wave manipulation. The research commenced

with the derivation of a crucial analytical expression defining the requisite tempo-

ral variation of capacitance for reflectionless absorption, offering valuable insights for

practical system design.

8.1 Future Work

In the relentless pursuit of advancing the capabilities and performance of the MTS

antennas, this future work section outlines a comprehensive plan for further research

and development. The primary objective is to prepare the dual-band antenna for

seamless integration into space-bound technology, dedicated to weather research and

analysis. This progression begins with a focus on optimizing the individual layers

of the antenna, achieved through the careful tapering of the modulation index. Ad-

ditionally, the decision to maintain circular polarization is guided by the improved

efficiency of circularly polarized antennas compared to their linearly polarized coun-

terparts.

With optimized results, the next stage of development involves the fabrication of

single band antennas, which will be thoroughly tested. This testing phase is designed

to address any potential errors stemming from fabrication and the use of non-ideal

materials. To tackle this challenge, a series of design iterations will be undertaken.

These iterations will involve slight adjustments to the size of individual patches,

both slightly larger and slightly smaller than the original design size. Although the

overall dimensions of the antenna will remain constant, these minute variations in
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patch size will be important in fine-tuning the design. This iterative process will

be applied separately to the single band antennas and then collectively to the dual

band antenna. The goal is to identify the most effective antenna design through this

methodical approach.

Upon achieving a high-efficiency antenna design that has undergone fabrication and

rigorous testing, the antenna technology will be ready for flight applications. This

type of antenna holds a distinct advantage in the context of flight readiness due to

its ease of fabrication when compared with other flight-certified materials, such as

all-metal constructions. Nonetheless, it is essential to acknowledge that the use of

dielectric materials, while simplifying fabrication, introduces a trade-off in the form

of dielectric losses. This represents a distinction between antenna designs utilizing

dielectric materials and those opting for all-metal construction. Antennas designed

to be entirely metal-based do not encounter additional losses attributed to dielectrics.

This trade-off is a consideration in the selection of materials and designs.

Moreover, the pursuit of a dual band antenna extends to the investigation of an

antenna using an all-metal approach. This dual-band antenna targets two frequencies

within the Ka band, specifically 32 GHz and 34 GHz. Given the proximity of these

frequencies, the two-layer method is not applicable; instead, the design incorporates

aperture sharing techniques. This all-metal, dual band antenna will follow a parallel

optimization process to its dual layered counterpart. The design of the all metal

antenna will evolve from a single-frequency isotropic antenna and then gradually

get more complex with two frequencies, anisotropy, and tapering introduced to the

impedance profile. The overarching objective remains the same with optimization

of this design for maximum efficiency. Upon achieving the optimized design, it will

transition to the fabrication and testing phases in preparation for flight.

The all-dielectric antenna will also undergo optimization, focusing on both effi-

ciency and size. The first step for optimization is to determine the optimal size and
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materials capable of significantly enhancing the antenna’s performance. Once the

design and material is finalized, the antenna will be reprinted, and additional compo-

nents will be integrated, including a ground plane and an SMA connector. The SMA

connector will have the center rod tailored to the correct length to ensure impedance

matching with the antenna. The connector tuning enables accurate excitation of the

surface wave. This antenna will then enter its testing phase to ensure the predicted

results match the realized results.

In conclusion, this dissertation has explored the diverse and transformative realms

of metasurfaces, multifrequency antennas, and time-varying electromagnetic systems.

MTSs enable precise control over electromagnetic wave properties like polarization

and phase through impedance boundary conditions, utilizing analytical methods such

as equivalent circuit theory and dispersion analysis. This was first shown through a

three-layer metascreen that offers independent control of two orthogonal polariza-

tions, expanding its functionality beyond traditional single-layer metascreens. It was

then demonstrated with a dual-layered, dual-frequency antenna that operates in dif-

ferent frequency bands for telecommunications. A second MTS antenna presented

an efficient numerical approach for designing dielectric antennas with fully dielec-

tric unit cells, successfully validated through comparisons with full-wave simulations.

Lastly, MTS technology was demonstrated through investigating the prerequisites

for achieving reflectionless energy absorption in transmission lines using time-varying

capacitors. This comprehensive research opens exciting possibilities for advanced

electromagnetic systems and their applications, promising innovation in a wide range

of fields and contributing to the ongoing evolution of communication and energy

technologies.
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