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ABSTRACT

HAO ZHANG. Essays on applied financial modeling. (Under the direction of DR.
STEVEN P. CLARK)

This dissertation explores the application of quantitative modeling to analyze the features

of different financial assets. This study investigates the dynamics of financial assets using

advanced mathematical, statistical approaches, and Machine Learning method. We aim

at contributing to the field of finance in empirical asset pricing, risk management, and

investment.

In the first chapter, we provide empirical analysis on Fixed Index Annuity (FIA) and Fixed

Index Linked Annuity (FILA) with insights on utility gains of different types of investors.

As one of the most recent financial product in the market, we find that this financial asset

provides higher and secured returns for investors and could be an alternative investment

especially in the era of low yield market. We also construct a multi-period utility frame-

work to model the utility preferences which provide many intuitive findings in the insurance

industry.

We investigate the conditional betas in the U.S. stock market based on individual stocks.

In this study, we not only use econometric modeling but also Machine Learning approach to

capture the conditional betas in stock market. Different from previous literature, we include

a comprehensive list of variables to model time-varying betas and examine the asset pricing

models such as Capital Asset Pricing Model (CAPM), Fama French models, and Q5 models

from the asset pricing model tests perspective.

As one of the most important investment in the market, Real Estate Investment Trusts

(REITs) has been constantly regarded as a diversification investment for many fund man-

agers. Especially in the 20008 financial crisis and 2020 Covid pandemic, REITs has played

an important role and achieved defensive role in the portfolio optimization. The findings

of this dissertation contribute to the understanding of quantitative modeling in finance and
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offer practical implications for asset pricing, risk management and investment. In summary,

these essays provide intuitive, economically insightful and interesting findings on financial

modeling for wide applications.
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CHAPTER 1: Narrow Framing application in Fixed Index Annuity and Fixed Index Linked

Annuity

ABSTRACT

HAO ZHANG. Essays on applied financial modeling. (Under the direction of DR.
STEVEN P. CLARK)

Recently, there has been increasing interest in Fixed Indexed Annuities (FIA). These insur-

ance products, specifically designed for retirement saving, are well-known for their ability

to offer higher potential returns compared to portfolios of traditional fixed income securities

while maintaining a lower level of risk relative to simply holding equities. This unique combi-

nation positions FIAs as attractive alternative investments, especially during periods of low

interest rates. However, the industry still lacks comprehensive research on the return fea-

tures of a particular variant of FIA known as the Fixed Indexed Linked Annuity (FILA). Our

findings suggest that FILAs can deliver superior return profiles relative to FIAs. Moreover,

FILAs offer increased flexibility to policyholders, a characteristic essential for managing long-

term investments like retirement funds. This study applies a numerical method to examine

the performance of FIAs and FILAs under various stock market conditions. In addition,

this study also introduces the examination of FIA performance within a recursive utility

framework. This innovative approach allows us to assess the performance of FIAs in a dy-

namic, recursive context, providing a more comprehensive and nuanced understanding of the

benefits FIAs offer as retirement savings products.
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1.1 Introduction

In recent years, there has been a growing interest in Fixed Index Annuities (FIAs) among

both academics and practitioners. Increasingly, investors are realizing that FIAs could be

an ideal investment, allowing them to take advantage of high equity market returns while

securing their principal without downside risk. In a low-interest market, FIAs can be par-

ticularly advantageous, offering better performance than bonds. As FIA products do not

carry the risk of losing principal and can potentially generate higher returns through op-

tion structures, more and more insurance companies are introducing them. However, the

feature of generating stable cash flows year by year requires complicated option structures,

resulting in higher premiums. Despite the benefits of FIA products, there are other costs

associated with the contract, such as rider fees and surrender charges. Rider fees are annual

fees charged based on the contract’s value, while surrender charges refer to fees charged by

insurance companies for withdrawing large sums of money from the original account.

Although the high return potential of Fixed Indexed Annuities (FIA) is widely acknowl-

edged in the market, several pertinent questions remain unanswered. For example, what

structuring choices should FIA holders select in order to optimize expected results? What

are the determining factors that motivate investors to allocate a portion of their retirement

savings to FIAs? At present, empirical evidence to guide these decisions is sparse.

Another important question concerns the utility gains of FIA products. While many

studies have investigated the returns perspective of FIA, they often ignore the utility aspect.

Specifically, the option allocation feature may be attractive to a group of investors, but not

to those who prefer to keep their money secure. Furthermore, most investments cannot

consistently perform well, meaning that performance tends to fluctuate over time. Would

this also apply to FIA, and how would it impact different types of investors? With all of

these questions in mind, we use a numerical method to gain a better understanding of this

popular insurance product and answer these questions.
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1.1.1 Structuring: From FIA to FILA

Every FIA contract is an FILA, but not every FILA contract is a FIA. The way that the

FILA structure generalizes the FIA structure is by allowing investors to put previously earned

interest credits at risk by selecting a floor rate below zero during the subsequent tracking

period. This modification gives FILA investors the flexibility to choose their desired tradeoff

between risk and return contingent on the realized crediting history of the contract.

1.1.1.1 Fixed Index Annuity(FIA)

In its most basic form, a FIA enables the holder to earn risk premia from an underlying

index of publicly-traded securities, while eliminating downside risk to principal from declines

in index value. Each year, a certain amount of the accumulation value is invested in the

insurance company’s general account, and the remainder (net of expenses) is used to pur-

chase options with one year expirations on the underlying index. The portion in the general

account guarantees the return of the accumulation value of the contract, and the options

provide upside exposure to the index. The amount available to purchase options, called

the options budget, depends on the expected return of the general account. Since general

accounts primarily hold fixed-income securities, the options budget will depend, in large

part, on the interest rate environment prevailing when the FIA is written. As interest rates

decrease (increase), option budgets become lower (higher) resulting in decreased (increased)

upside exposure to the index.

The potential share of the index return that the FIA will credit is specified either as a cap or

as a participation rate. In the case of a cap, the structuring agent buys at-the-money (ATM)

call options (European exercise style) on the underlying index in a notional amount equal

to the contract’s accumulation value, however the options budget will never be sufficient to

cover the full cost of these options. So the agent simultaneously sells out-of-the-money call

options on the underlying index so that the net option premium exactly equals the options
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budget (minus fees). Thus the cap is achieved using a long position in a call spread. In the

case of a participation rate, only ATM call options are used, but in a notional amount that

is less than the contract’s accumulation value. The notional value of the call options is set so

that the cost of the options exactly equals the options budget (minus fees). The participation

rate is then the ratio of the notional value of the call options to the contract’s accumulation

value. At the end of each crediting period, the index value realized over the term is used to

determine the option structure payoff and therefore the interest-credit realized by the con-

tract for this period. We construct the FIA structures following Clark and Dickson(2021)[1].

We compare two FIA structures in this paper, CAP and PAR. PAR structure could achieve

higher returns since it allows for investing the FIA premiums in at-the-money options as a

whole. In contrast, CAP structure invests all of the premiums in at-the-money options while

sells the out-of-money options to secure the minimum level of returns. Since both of these

two FIA structures have the equity index as the underlying asset,i.e., for the same return

of the equity return, PAR would be able to earn higher potential returns. Based on the

structures, FIA has become an attractive investment especially when the interest rate is low.

Except for the features of higher returns and secured minimum returns, the investors will

also need to pay rider fees and surrender charge. The policyholder need to pay the rider fee

for riders to guarantee a minimum level of returns within this contract. And if a policyholder

would like to cancel the annuity contract or withdraw a large amount of money from the

contract within the first couple of years, a surrender fee will be charged.

1.1.2 Fixed Index Linked Annuity (FILA)

Moenig and Samuelson(2023)[2] compares different Index Linked Annuities including FILA

and considers FILA as a sub-type of FIA product. In the FILA contract, when the holder

chooses an annual floor below zero, the floor is guaranteed by selling an at-the-money put

option and buying an out-of-the-money put option with strike price corresponding to the

chosen floor level. The combination of these two option legs is a short put spread. The

net premium collected by the structuring agent from selling the put spread is added to the
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options budget, thereby allowing the strike price of the OTM call in the call spread to be

increased in the case of a cap rate, or allowing an increase in the notional value of the ATM

call options purchased in the case of a participation rate. The effect of these changes is to

increase the cap rates and participation rates, respectively, and thus to increase the potential

interest credit for that year.

Given historical time-series data on relevant interest rates and credit spreads, along with

corresponding historical prices for options on a given index, it is possible to replicate histori-

cal FILA structures and, assuming competitive pricing and interest crediting terms, examine

the realized historical performance of FILA contracts that could have been offered by insur-

ance companies.1 In this study, we will generate realistic hypothetical FILAs on the S&P 500

index, of various contract lengths, commencing on each day starting on January 4th, 1996.

We will then be able to compare and contrast various FILA structures based on statistics

calculated from the realized performance of these contracts. FILA is a type of FIA with

unique features. FILA has the same features as FIA, investing in option positions and in

general account, securing the minimum level of returns, keeping the principal. The unique

characteristis include: first, different from traditional FIA strcture, FILA is a multi-year con-

tract. FILA links the underlying asset, i.e., the option structure has the equity index and the

allocation between option structures and equity index depends on the return achieved in the

previous’ year. We call the maximum level to invest in the option structures as ‘floor rate’.

Second, the FILA allows the investor to choose the minimum level of return. Specifically, for

investors are willing to take higher risk, for which would like to choose lower minimum level

of returns, they allocate more in the option positions and thus could achieve higher rate of

returns.
1A similar exercise is carried out by Clark and Dickson(2021)[1] for FIA contracts



6

1.1.2.1 Options Structures for FILAs and FILA returns

The periodic interest credit for a FILA is a function Gj(·), j = cap, par of the index return,

y = St+1

St
. At the end of the period, the accumulation value of the contract is reset to

At+1 = AtGcap

(
St+1

St

)
.

Let C(S,K, τ) and P (S,K, τ) be, respectively, the prices of European call and put index

options, when the level of the underlying index is S, strike price is K, and time until expi-

ration (in years) is τ . The risk-free rate of interest is r and the credit spread for the general

account is ν.

The periodic payoff function for a FILA with cap rate, Γ, and floor rate, F , is

Gcap(y) =


1 + Γ, y ≥ 1 + Γ

y, 1− F ≤ y < 1 + Γ

1− F, y < 1− F

Given option prices at time t, and choice of floor rate, the cap rate Γ is such that

C(St, St, τ)− C(St, St(1 + Γ), τ) + P (St, St(1− F ), τ)− P (St, St, τ) = St(1− e−(r+ν)τ ),

which can be solved numerically for the cap rate Γ.

The payoff function for a FILA with participation rate, δ, is

Gpar(y) =


1 + δ(y − 1), y ≥ 1

y, 1− F ≤ y < 1

1− F y < 1− F
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The participation rate, δ, satisfies

δC(St, St, τ) + P (St, St(1− F ), τ)− P (St, St, τ) = St(1− e−(r+ν)τ ),

Using homogeneity of degree one of the call and put price functions, this simplifies to

δC(1, 1, τ) + P (1, 1(1− F ), τ)− P (1, 1, τ) = 1− e−(r+ν)τ ,

which can be solved explicitly for δ,

δ =
1− e−(r+ν)τ − P (1, 1(1− F ), τ) + P (1, 1, τ)

C(1, 1, τ)
.

The Figure 1,2, and 3 represent the historical returns of FILA of 5,7, and 10 years, re-

spectively. From these three figures, we can clearly see that, first, with the contract term

increases, the returns of either Cap rate and Par rate increase. The average returns increase

from 0.35 of a 5-year FILA contract to 0.95 of a 10-year contract. Second, when the absolute

value of the floor rates increase, i.e., the potential to pursue higher returns increase, we can

clearly find that the returns of FILA increase, whatever Cap or Par. The FILA exactly

proves to be more valuable for investors since allowing more arbitrage opportunity to pursue

higher returns in the following contract terms. Another important finding is that FILA is

more valuable than the multi-year FIA contract. Compared with the same length of FIA,

FILA can always achieve higher returns.

1.2 Methodology

Fixed Indexed Linked Annuities (FILAs) have yet to become mainstream in the market.

However, considering their ability to generalize the terms present in Fixed Indexed Annuities

(FIAs), it is conceivable that most contract variations commonly found among FIA offerings

could also be applied to FILAs. This study focuses on FILAs with a one-year point-to-point

crediting method, based on either a participation rate (par rate) or a cap, with an annual
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(a) 5-year FILA returns with floor rates= 10% (b) 7-year FILA returns with floor rates= 10%

(c) 10-year FILA returns with floor rates= 10%

reset, serving as a standard for comparison. Modeling the historical performance of an FIA

is a complex task as it requires more than merely observing the historical returns of an

underlying index. As in the FIA case, the evolution of interest rates and index volatility are

the primary determinants of FILA parameters, which can fluctuate considerably over time.

1.2.1 Modeling Historically Realistic Hypothetical FILAs

The participation rates and caps for newly written FILAs are influenced by the prevail-

ing index volatility as well as the interest rate and credit environment. Historical option

prices encapsulate relevant index volatility information (and vice versa). Capturing the ef-

fects of interest rates and credit spreads on historical FILA structuring accurately presents

a considerable challenge. For FIAs, Ibbostson and Sinquefield(2018)[3] employed simulated

participation rates supplied by AnnGen Development, LLC, a prominent authority in an-

nuity product structuring. Regrettably, the specific calculation methodology is not publicly

disclosed. Recently, Phau, in his paper, utilized the Moody’s Seasoned BAA Corporate

Bond Yield to approximate the performance of a representative insurer’s general account.
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He subtracted a constant spread of 2.28% to account for internal expenses. Clark and

Dickson(2021)[1] approximated the general account return net of expenses using the yield to

worst (YTW) of the Bloomberg Barclays US Investment Grade Corporate Bond Index. This

index represents both a higher credit quality and shorter duration compared to the index

referenced by Pfau(2017)[4]. In this study, a slightly more conservative approach is adopted,

using the YTW of the Bloomberg Barclays Aggregate Bond Index (AGG). As a reference,

the average fixed rate as of May 26, 2021, was 2.39%, while the YTW of our chosen proxy

index stood at 2.11% on the same date.

To construct historical FILAs based on the S&P 500, we collected daily historical options

volatility surface data from January 1996 through December 2021. Using the YTW of AGG

plus the premium earned from selling the put spread as the options budget, we estimated

both a participation rate and cap rate for each day on a rolling 1-year term linked to the

S&P 500 price index. We created return series for such 1-year contracts using constant floor

levels of 0%, −2.5%, −5.0%, −7.5%, and −10.0%. Subsequently, we developed a sequence of

multi-year FILA contracts, starting each day in the sample, by determining annual interest

credits referencing the 1-year contract with a chosen floor. At the beginning of each year of

the multi-year contracts, we assumed that the holder opted for the lowest allowable floor to

ensure that the accumulation value at year-end would not be less than the initial premium.

1.3 Empirical results

1.3.1 Multi-year contract comparison

Figures 1.2 and 1.3 graph the estimated cap and participation rates, respectively, for

newly-written one-year FILAs for given floor values. Figures 1.4, 1.5, 1.6, and 1.7 graph

the ending accumulation values for the given floor rates for 3-, 5-, 7-, and 10-year FILAs,

respectively.
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Figure 1.2: Cap rates for one-year point to point FILAs

Figure 1.3: Participation rates for one-year point to point FILAs

1.3.2 Participation vs. Cap Rates

Table 1.2 reports the mean ending accumulation values per $1 of initial premium, the

standard deviation of the accumulation value, and the mean compound annual growth rate,

by number of contract years for both cap and par rate FILAs. Compared to cap rate FILAs,

par rate FILAs produce greater mean ending accumulation values (and mean CAGRs) with

lower standard deviations across all four contract maturities.

Over a slightly shorter time period (Jan 1996 - March 2021), Clark and Dickson(2021)[1]

document average annual cap rate FIA returns of 5.5% (std 4.1%) and average annual par
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Figure 1.4: Ending Accumulation Values, 3-year FILA

Figure 1.5: Ending Accumulation Values, 5-year FILA

rate FIA returns of 6.9% (std 6.9%). The FILA results in Table 1.2 illustrate the greater

return potential and also the higher risk inherent in the FILA compared to the FIA. (To

compare standard deviations reported in Table 1.2 to the annual return standard deviations

reported in Clark and Dickson(2021)[1], we need to divide the standard deviations of ending

accumulation values by
√
N where N = contract years.) Table 1.2 documents that par rate

FILAs across all contract lengths offer greater average returns while incurring lower risk

when compared to the cap rate FILA structure. In terms of the relative performance of cap

and par rate FILAs, these results are qualitatively similar to the cap and par rate comparison



12

Figure 1.6: Ending Accumulation Values, 7-year FILA

Figure 1.7: Ending Accumulation Values, 10-year FILA

for FIAs documented by Clark and Dickson(2021)[1].

Over a slightly shorter time period (Jan 1996 - March 2021), Clark and Dickson(2021)[1]

document average annual cap rate FIA returns of 5.5% (std 4.1%) and average annual par

rate FIA returns of 6.9% (std 6.9%). The FILA results in Table 1.2 illustrate the greater

return potential and also the higher risk inherent in the FILA compared to the FIA. (To

compare standard deviations reported in Table 1.2 to the annual return standard deviations

reported in Clark and Dickson(2021)[1], we need to divide the standard deviations of ending

accumulation values by
√
N where N = contract years.) Table 1.2 documents that par rate
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Table 1.1: Par vs. Cap Rates

Cap Rate FILA Par Rate FILA
Contract Number of Mean Std Mean Mean Std Mean
Years Contracts Ending Value Final Value CAGR Ending Value Final Value CAGR

3 5789 1.2378 0.193 0.0738 1.2915 0.1736 0.089
5 5285 1.3835 0.202 0.0671 1.4948 0.1866 0.0837
7 4781 1.567 0.1975 0.0663 1.7425 0.1884 0.0826
10 4025 1.9159 0.3269 0.0672 2.2098 0.3122 0.0825

Table 1.2: Par vs. Cap Rates

Cap Rate FILA Par Rate FILA
Contract Number of Mean Std Mean Mean Std Mean
Years Contracts Ending Value Final Value CAGR Ending Value Final Value CAGR

3 5789 1.2378 0.193 0.0738 1.2915 0.1736 0.089
5 5285 1.3835 0.202 0.0671 1.4948 0.1866 0.0837
7 4781 1.567 0.1975 0.0663 1.7425 0.1884 0.0826
10 4025 1.9159 0.3269 0.0672 2.2098 0.3122 0.0825

FILAs across all contract lengths offer greater average returns while incurring lower risk

when compared to the cap rate FILA structure. In terms of the relative performance of cap

and par rate FILAs, these results are qualitatively similar to the cap and par rate comparison

for FIAs documented by Clark and Dickson(2021)[1].

1.3.3 Consumption-Portfolio Problems

This section explores the optimal consumption strategies for investors who hold FIA con-

tracts. The investment strategy is demonstrated by solving a dynamic portfolio maximiza-

tion problem, which in essence, is a multi-period preference framework. At present, investors

have the choice to either consume or save their money in the account and seek higher returns

through the option structures. Investors can withdraw money from the insurance product

within a certain range (which is lower than the filter generating surrender fee) and avoid the

risk from the underlying asset, the equity market index. Alternatively, some investors might

decide to retain all the capital gains in the insurance account to chase potentially higher
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returns in the future. Our objective is to determine how to achieve utility maximization for

these investors.

Future returns depend on the underlying asset and the option structures in the FIA. The

cap rate measures the ratio of the options value to the total insurance premiums value.

1.3.4 FIA Payoff Function

For a cap rate FIA, the payoff function can be expressed as:

Gcap(y) =


1 + Γ, y ≥ 1 + Γ

y, 1 ≤ y < 1 + Γ

1, y < 1

Here, Γ denotes the cap rate and y refers to the underlying asset, the equity index.

Let C(S,K, τ) be the Black-Scholes call price. We can solve for Γ using the following

equation. The cap rate FIA is constructed by selling the out-of-the-money options and

buying the at-the-money options with the full FIA premiums to secure the principal. The

call spreads are used to purchase the underlying asset:

C(K,K, τ)− C(K,K(1 + Γ), τ) = K(1− e−(r+ν)τ ),

which simplifies to

C(1, 1, τ)− C(1, 1(1 + Γ), τ) = 1− e−(r+ν)τ .

We can solve for Γ numerically.

For a Par rate FIA, the payoff function can be expressed as

Gpar(y) =


1 + δ(y − 1), y ≥ 1

1, y < 1

where δ refers to the participation rate. We can solve for δ explicitly. Since the Par rate
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FIA allocates all of the money in the at-the-money options, i.e., the amount of money less

than the FIA premiums, the rest of the money is invested in the underlying asset to secure

the principal.

δC(St, St, τ) = St(1− e−(r+ν)τ ),

so that

δ =
1− e−(r+ν)τ

C(1, 1, τ)
.

1.3.4.1 The Distribution of Underlying Index

The performance of the underlying asset determines the payoff of the FIA product. In our

numerical method, we model the equity index using two different distributions.

Normal Distribution We first assume that the equity index follows a normal distribution.

This assumption provides several benefits. Firstly, it ensures computational efficiency as we

can easily obtain the option prices using the Black Scholes model. Secondly, the normal

distribution serves as our benchmark, which roughly depicts the stock market index.

Jump-Diffusion Process We also use the Jump-Diffusion process to model the equity

index. This model offers a couple of advantages as it allows for multi-dimensional effects on

the stock prices. The jump event is a Poisson process with intensity λ, a parameter of jump

size, and a parameter that measures the jump volatility. Through this distribution, we can

have a more comprehensive way to measure the market condition changes and thus observe

the effect on the FIA product.

Unlike the normal distribution that allows the application of the Black-Scholes model, we

need to use the Fourier Transform to estimate the expected value of option prices. Following

Lewis (2001)[5], we use the characteristic function below φT = E[exp(izXT )]

exp{izωT − 1

2
z2σ2T + λT (eizα−z

2δ2/2 − 1)},

With the characteristic function, we use the integration formula to estimate the call option
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price

C(S,K, T ) = Se−qT − 1

π

√
SKe−(r+q)T/2

∫ ∞
0

Re[eiukφT (u− i

2
)]

du

u2 + 1
4

1.3.5 Portfolio Utility Maximization

In this section, we derive the optimal strategies for consumption and savings in the FIA

account. In our discrete-time model, in addition to the utility gains from FIA investment,

we also consider the associated costs, such as the rider fee and the surrender fee. For

multi-year contract utility maximization, it becomes crucial to determine how much money

policyholders should consume and save within the FIA contract. Different from Moenig and

Samuelson(2023)[2], which applies Constant Relative Risk Aversion (CRRA) framework to

proxy investors’ utility gains, we apply a multi- period utility framework which incorporates

more features to model investors’ utility gains.

The Bellman equation for this scenario can be expressed as

J(Wt, It) = AtWt = A(It)Wt

The following maximization problem applies:

AtWt = max
Ct,j∈{cap,par}

[
(1− β)Cρ

t + β(Wt − Ct −m)ρµ(At+1Gj(R̃t+1)|It)
]
.

Here, m represents the sum of the income rider premium and the surrender fee.2 We can

also define some other important variables:

αt =
Ct
Wt

, dt =
m

Wt

, 1− αt − dt =
Wt − Ct −m

Wt

2In the context of a FIA, an income rider is an optional feature that policyholders can add to their annuity
contract to ensure a guaranteed lifetime income, regardless of the performance of the FIA’s underlying
investments. This feature usually comes with an additional annual fee, which is a percentage of the account
value. On the other hand, a surrender fee is a charge that policyholders must pay if they choose to withdraw
a portion or all of their money from the annuity before a certain period, typically within the first 5 to 10
years of the contract. This fee is in place to discourage early withdrawals.
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In this context, Ct is the consumption amount at time t, Wt is the total wealth at time t, α

represents the fraction of consumption to wealth, and dt is the proportion of the FIA cost

(rider premium and surrender fee) to the total wealth.

With these variables, the consumption and FIA structure choices are separable. Given an

optimal B∗t , we can express the following maximization problem:

A∗t = max
αt

[(1− β)αρt + β(1− αt − dt)ρ(B∗t )ρ]
1
ρ

By solving the first order conditions for optimal consumption α∗t , we can write At as:

A∗t = (1− β)
1
ρ (α∗t )

1− 1
ρ (1− dt)

1
ρ .

Then, we have:

B∗t = max
j∈{cap,par}

µ(A∗t+1Gj(R̃t+1)|It)

= max
j∈{cap,par}

µ((1− β)
1
ρ (α∗t+1)

1− 1
ρ (1− dt+1)

1
ρGj(R̃t+1)|It)

= max
j∈{cap,par}

E
[
((1− β)

1
ρ (α∗t+1)

1− 1
ρ (1− dt+1)

1
ρGj(R̃t+1))

ξ|It
] 1
ξ

= max
j∈{cap,par}

[∫ ∞
−∞

((1− β)
1
ρ (α∗t+1)

1− 1
ρ (1− dt+1)

1
ρGj(1 + x))ξg(x) dx

] 1
ξ

At this stage, given the parameters for the index return distribution and the parameters of

the recursive utility specification for a particular agent, we can solve for the agent’s optimal

consumption strategy and the optimal FIA structure (either a cap or participation rate).

1.3.5.1 FILA optimal consumption-portfolio

The consumption-portfolio problem under consideration now includes a floor-indexed life

annuity (FILA) contract, which introduces a safety net into the investment, guaranteeing a

minimum amount (the floor, denoted by F ) that investors receive regardless of how poorly

the underlying asset performs.
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The payoff function for the FILA contract is defined by the variable GF (y). If the under-

lying asset return y is greater than or equal to 1, the payoff includes a participation rate δ

which is the proportion of the gain in the underlying asset that the policyholder receives.

For returns that fall between 1−F and 1, the payoff is directly equivalent to the asset return

y. If the return drops below 1 − F , the payoff will be at the floor value of 1 − F . Thus in

each crediting period, the payoff function for a FILA contract is given by

GF (y) =


1 + δ(y − 1), y ≥ 1

y, 1− F ≤ y < 1

1− F, y < 1− F

The FILA purchaser seeks to solve the following problem:

B∗t = max
F

{
E

[
((1− β)

1
ρα

1− 1
ρ

t+1 GF (R̃t+1))
ξ|It
] 1
ξ

+ b0E
[
ν̄(GF (R̃t+1)− 1)|It

]}

= max
F

{[∫ ∞
−∞

((1− β)
1
ρα

1− 1
ρ

t+1 GF (1 + x))ξg(x) dx

] 1
ξ

+ b0

∫ ∞
−∞

ν̄(GF (1 + x)− 1)g(x) dx

The variable B∗t represents the optimal utility, which is maximized across different floor

values F . The first term in the maximization problem, which includes the expectation

of the future utility, considers how the FILA contract payoff GF (R̃t+1) affects the future

consumption level αt+1. The variable B∗t represents the optimal utility, which is maximized

across different floor values F . The first term in the maximization problem, which includes

the expectation of the future utility, considers how the FILA contract payoff GF (R̃t+1) affects

the future consumption level αt+1.

To determine the optimal floor value F , we consider both the normally distributed returns

and the jump-diffusion process. With the parameters of the utility function and the distribu-

tion of the returns, we can integrate numerically to solve for the optimal floor value F . This



19

yields the optimal consumption strategy and FILA contract that maximize the investor’s

utility.

1.3.6 Utility gains for investors in a Narrow Framing framework

Barberis and Huang(2009) [6] introduced the concept of Narrow Framing as a means to

measure utility, and Barberis , Huang and Thaler (2006)[7] further applies this concept to

model investors’ preferences under various scenarios. In this section, we compare the optimal

strategy for investors. Previous studies of FIA mention that FIA could bring higher returns

but ignore the utility perspective. Clark and Dickson(2021)[1], discuss that FIA provide

higher returns, higher Sharpe Ratio, and keep similar level of risk to US Corporate Bond

Index. One study finds that optimal portfolio allocation on FIA depends on investors’ risk

aversion in Constant Relative Risk Aversion (CRRA). However, there are some limits on the

application. First, FIA structures could provide investors different choices to choose their

investment behaviors. Different levels of consumption levels will lead to different prefer-

ence choice. Obviously, CRRA does not satisfy the FIA features. Second, as a multi-year

contract, not only the investors’ risk aversion should be considered, the patience, and time

preference also matter in the utility function. CRRA can only reflect the risk aversion, which

is not enough. Thus, we apply a recursive preference utility model to analyze FIA. Another

contribution is that we investigate the optimal strategy in the FILA consumption. In the

multi-year contract, to maximize the utility gains is important to both the investors and to

the insurance company as well. To more accurately reflect the market conditions, we model

the underlying asset (the equity index) following two different distributions: normal distribu-

tion as a benchmark, while the jump diffusion process as a more close-to-reality distribution

to model the equity index.

1.3.6.1 Normal distribution model

In Table 1.3 and 1.4, we assume the equity index follows normal distribution. Table 3

and 4 reflect the optimal choice in PAR/CAP and the optimal consumption level, which is
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shown in the alpha column.

When the market volatility is high, i.e., σ=0.15, the results show that for more risk-averse

investors( ξ = 0.1)3, they prefer to choose CAP over PAR. (Note:Banal and Yaron(2004)[?]

that 10 is supposed to be the upper bound for a risk aversion parameter.) The preference is

consistent with the FIA structures. Since CAP, which allocates all of the annuity premium

into the ATM options and sells the OTM options, is exposed less to the market risk (the

volatility of equity index), the CAP could provide a more secure investment for risk-averse

investors. While, the more risk-tolerant investors (ξ = 0.9), they prefer to choose PAR which

only buys ATM call options and could provide higher potential returns. It is also interesting

to see the relation between the time preference, β, and the optimal consumption ratio to

wealth, α. When the investors are more willing to consume more today, i.e., lower β, the

optimal consumption ratio, i.e. α, is higher. When β is 0.1, the optimal consumption ratio

exceeds 90%. On the other hand, more patient investors who would like to retain more

today and invest in the future, consume only 10%. The results from Table 1.3 show that the

preference among CAP and PAR FIA depends on the investors risk aversion.

Table 1.4 reflects the preference in a low-volatility market, PAR is always preferred to

CAP, no matter how risk-averse the investors are. It is consistent with the FIA structure,

commonly considered as an alternative to bonds, when the market risk is low, investors are

always willing to find a way to get more return. In this case, PAR, which only buys ATM

call options, can provide the chance. In addition, the investors prefer to consume more when

they have more certainty today.

1.3.6.2 Jump diffusion model

We further investigate the optimal choice for investors under more complex and realistic

market conditions. Empirically, the equity market index tends to exhibit fat tails and incon-

sistencies with the assumptions of the Black-Scholes model. Thus, we test investor preference

between CAP and PAR when the underlying equity index follows the Jump-Diffusion model
3Our choice of risk aversion parameter is reasonable for a long-run investors.
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Table 1.3: Preference between CAP and PAR FIA in a more volatile market condition.

Panel A: Preferences of risk-averse investors (ξ = 0.1)

Investor Type β=0.1 β=0.3 β=0.5 β=0.7 β=0.9 β=1.0

Alpha 0.90 0.60 0.40 0.25 0.15 0.10
Preference CAP CAP CAP CAP CAP CAP

Panel B: Preferences of risk-tolerant investors (ξ = 0.9)

Alpha 0.90 0.60 0.40 0.25 0.15 0.10
Preference PAR PAR PAR PAR PAR PAR

Note. The upper panel presents the preference of risk-averse investors (ξ = 0.1). The lower
panel presents the preference of risk-tolerant investors (ξ = 0.9). The solid dot represents
the preferred FIA structure. See Table 3 for the details.

Table 1.4: Preference between CAP and PAR FIA in a less volatile market condition.

Panel A: Preferences of risk-averse investors (ξ = 0.1)

Investor Type β=0.1 β=0.3 β=0.5 β=0.7 β=0.9 β=1.0

Alpha 0.90 0.60 0.40 0.25 0.15 0.10
Preference PAR PAR PAR PAR PAR PAR

Panel B: Preferences of risk-tolerant investors (ξ = 0.9)

Alpha 0.90 0.60 0.40 0.25 0.15 0.10
Preference PAR PAR PAR PAR PAR PAR

Note. The upper panel presents the preference of risk-averse investors (ξ = 0.1). The lower
panel presents the preference of risk-tolerant investors (ξ = 0.9). The solid dot represents
the preferred FIA structure. See Table 1.4 for the details.

as described in Merton(1976)[8]. Specifically, we examine how utility changes with varying

equity market conditions, such as the distribution of the underlying index under different

market volatility levels, jump intensities, and expected jump sizes. Another motivation for

using the Merton Jump-Diffusion process is that the jump component reflects the change

in the stock price when new information arrives. This distribution can also help us under-

stand the optimal choice of investors and their responses to stock market changes. Table

3 demonstrates that preference conversion occurs when market volatility is at a mid-level,

with a 7% annual risk, a jump intensity of 1, and a jump size ranging from -0.1 to -0.5.
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This is assuming that investors have mid-level risk aversion, prefer future consumption, and

exhibit mid-level elasticity of intertemporal substitution (which measures responsiveness).

We set up this model to understand how such representative investors react to various FIA

structures.

When the market volatility is low, i.e., at a 1% level, PAR is consistently preferred to

CAP. Meanwhile, the optimal consumption to wealth ratio remains above 90%, indicating

that consumers prefer to utilize most of their wealth. (Refer to Appendix table for the

results).

During periods of medium and high market volatility, the results become intuitively in-

teresting. Customers tend to choose PAR when the jump intensity is low. However, when

the jump intensity is high with a low jump size, PAR is preferred; but, if the jump size

is larger, CAP is favored. In essence, the preference switch depends on the equity market

index distribution. The results suggest that market conditions play a critical role in shaping

investors’ preferences.

As the jump size reflects the importance of new information arrival, the changes in prefer-

ence also indicate that investors are extremely sensitive to market condition changes. Hence,

FIA can indeed be a compelling investment opportunity for investors.

The first panel of Table 1.5 presents different investors’ FIA preferences. Under typical

market conditions based on historical data (i.e., when the annual market volatility is 12%,

the jump intensity is 1.0, and the jump size is -0.3), investors consistently choose PAR-style

FIA, regardless of whether they are patient or impatient investors. This result aligns with the

FIA structure wherein PAR generally provides higher returns compared to CAP, as shown

in the empirical results in Clark and Dickson(2021)[1].

The mid-panel of Table 1.6 indicates that different investors, with varying levels of risk

aversion, show divergent preferences among FIA structures. The less risk-averse investors,

signified by lower risk aversion parameters, prefer PAR. Conversely, the most risk-tolerant

investors, with a risk aversion parameter of 0.9, choose CAP. The optimal consumption-
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wealth ratio is above 70% for both CAP and PAR, suggesting that investors tend to spend

their wealth quickly. If there is a 10% return on the underlying asset, then CAP yields a

1.3% return while the PAR will earn 6.8%, which is less likely to happen since the historical

jump size is usually a negative value. While, if there is a decrease in the underlying index,

i.e., a negative return, then, the CAP holder is more beneficial since they spend more of

their money (very fast) and with a lower cap rate which means suffers less than PAR. From

the investors’ point of view, since the CAP holder could always spend most of their wealth

and thus earn utilities, thus keep at the similar utility gains level with the PAR. While, CAP

can effectively avoid unnecessary loss from the market index. Thus, we can understand why

the risk-tolerant investors are more willing to take the CAP.

The third panel compares the preference of different time-elasticity investors. The time

elasticity parameter actually measures the reaction of the comsumption growth to the real

interest rate. Particularly, this parameter reflect the net effect of real interest on the concur-

rent consumption. Investors will decrease today’s consumption since the increased interest

rate motivates the saving, while the increased consumption today will also bring more util-

ity gains to the investors. Thus, if this elasticity of intertemporal substitution is high, the

consumption is very sensitive to the change of interest rate, while a low value means the

consumption is insensitive to the real interest rate change.

Table 1.7 presents the utility comparison between CAP and PAR. From the first panel,

PAR is always prefered to CAP when the jump intensity is low,i.e., at 0.5 level. Similarly, in

a more volatile market (when the market volatility is relatively high), the jump intensity is

deterministic to investors making decisions. When the jump is more intense, specifically, at

1.0 and at 2.0 levels, CAP will be prefered when jump size is above mid-level. While, PAR

is chosen when the jump size is low.
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Table 1.5: This table reports the preference between CAP and PAR FIA under different
market conditions. The underlying equity index following Jump diffusion stochastic process.
The columns alpha represent the optimal consumption-wealth ratio. The solid dot represents
the preferred FIA strucuture.; see Table 1.3 for the details.

sigma=0.07

jump intensity =0.5 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.01486158 0.01050198

-0.3 • 0.05620521 0.04347361

-0.5 • 0.0859304 0.08029846

sigma=0.07

jump intensity =1.0 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.0309287 0.0231316

-0.3 • 0.0538723 0.0568619

-0.5 • 0.1470095 0.1517829

sigma=0.07

jump intensity =2.0 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.03885589 0.03130449

-0.3 • 0.08655362 0.09123504

-0.5 • 0.29342821 0.29876722
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Table 1.6: Investors preference between PAR and CAP This table presents the preference
between CAP and PAR FIA of different investors and the optimal consuption-wealth ratio.
The underlying equity index following Jump diffusion stochastic process. The columns alpha
represent the optimal consumption-wealth ratio. The solid dot represents the preferred FIA
structure.; see Table 1.4 for the details.

volatility=0.12 FIA structures and difference alpha

time preference cap par cap par

0.1 • 0.98192003 0.98189649

0.5 • 0.72800084 0.72741232

0.9 • 0.13552268 0.1336159

volatility=0.12 FIA structures and difference alpha

risk aversion cap par cap par

0.1 • 0.72841561 0.72768453

0.5 • 0.72800084 0.72741232

0.9 • 0.72781898 0.72799122

volatility=0.12 FIA structures and difference alpha

time elasticity cap par cap par

0.1 • 0.52976058 0.5296463

0.5 • 0.72800084 0.72741232

0.9 • 0.97890315 0.97889885
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Table 1.7: Investors preference between PAR and CAP.This table reports the preference
between CAP and PAR FIA under more volatile and different market conditions. The
underlying equity index following Jump diffusion stochastic process. The columns alpha
represent the optimal consumption-wealth ratio. The solid dot represents the preferred FIA
structure.; see Table 1.6 for the details.

volatility=0.12

jump intensity =0.5 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.033635 0.029962

-0.3 • 0.050594 0.045543

-0.5 • 0.082430 0.077919

volatility=0.12

jump intensity =1.0 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.037658 0.035533

-0.3 • 0.059127 0.060261

-0.5 • 0.146691 0.153156

volatility=0.12

jump intensity =2.0 FIA structures and difference alpha

jump size cap par cap par

-0.1 • 0.041828 0.040165

-0.3 • 0.093221 0.098795

-0.5 • 0.277351 0.285460
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Table 1.8: FILA contract and 5-year FIA returns

floor rates(%) 2.5 5 7.5 10 FIA

cap 0.35356 0.38636 0.38652 0.38449 0.30539

par 0.42547 0.47504 0.47028 0.46864 0.36647

diff -0.0719 -0.08869 -0.08376 -0.08415 -0.06107

Table 1.9: FILA contract and 7-year FIA returns

floor rates(%) 2.5 5 7.5 10 FIA

cap 0.56635 0.61034 0.61709 0.61774 0.469

par 0.73149 0.80779 0.81339 0.82099 0.60049

diff -0.16514 -0.19745 -0.19629 -0.20325 -0.13149

Table 1.10: FILA contract and 10-year FIA returns

floor rates(%) 2.5 5 7.5 10 FIA

cap 0.959823 1.059808 1.093561 1.108854 0.77544

par 1.431704 1.639481 1.71323 1.775979 1.130808

diff -0.47188 -0.57967 -0.61967 -0.66713 -0.35537
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1.4 Conclusion

FILA has garnered substantial interest among investors, chiefly due to its potential for

higher returns along with a secured floor rate of return. This paper offers both comprehensive

guidance for investors with diverse profiles and nuanced investment suggestions. Our derived

optimal investment strategy prescribes an consumption plan, the optimum choice between

FIA structures, and an intuitive rationale for investment choices amidst shifting market

conditions. The cumulative value of multi-year contracts may serve as a valuable guidepost

for both the insurance industry and investors.

We pioneer the application of recursive utility preference setup to model the utilities of

FILA structures. Through this framework, we delineate the superior choices for patient

investors, risk-averse investors, and those sensitive to interest rates. Consideration of such

investment choices is pivotal when providing investment advice. As such, we have applied

various mathematical approaches to model the underlying assets, ensuring a holistic evalua-

tion of market factors. Our empirical findings underscore the influence of dynamic economic

indicators on investment decisions. Most crucially, our evidence indicates that FILA can be

a profitable investment avenue, accommodating a diverse range of investors across various

economic cycles.
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CHAPTER 2: Conditional betas

Conventional practice that assumes constant betas in asset pricing models is likely to be

misleading because it ignores changing firm attributes and/or economic conditions that lead

to time-variation in betas. Existing attempts to model time-varying betas are confined by

limited scope, curse of dimensionality, estimation errors, or lack of economic tractability.

To address these issues, we compare several econometric or machine-learning methods and

examine their performance in (1) tests of asset pricing models, (2) tests of market anomalies,

and (3) out-of-sample return forecasts. Our results show that the new conditional betas im-

prove the power of the asset pricing tests; in particular, models featuring conditional betas

estimated using firm-level LASSO deliver significant risk prices and insignificant mispricing.

When testing market anomalies, models with conditional betas estimated using panel re-

gressions address more anomalies, such as value, turnover, and momentum. Finally, CAPM

featuring our conditional betas outperform the unconditional CAPM in out-of-sample return

forecasts. (JEL: C22; G12; G14; G17)

Keywords: conditioning information; conditional betas; asset pricing models; anamolies;

return predictability; performance evaluation
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2.1 Introduction

Asset pricing models are the foundation of finance. Researchers and practitioners use asset

pricing models to obtain expected returns of assets. Portfolio managers use these expected

returns to determine asset allocations to enhance portfolio performance. Clients of managed

portfolios use asset pricing models to evaluate money managers’ performance and determine

their compensation. Corporate finance managers use asset pricing models to obtain cost of

capital estimates that assist them to arrive capital budgeting decisions.

An asset pricing model is commonly expressed in the following factor form (see, e.g.,

Merton (1973) [1]):

Et(Ri,t+1) = Rf,t +
K∑
k=1

βki,tλ
k
t , (2.1)

where Et(·) is the conditional expectation given time-t information set, Ri,t+1 is asset i’s

return at time t+ 1, Rf,t is the risk-free rate known at time t, βki,t is asset i’s beta with the

kth factor, known at time t, and λkt is the factor premium of the kth factor, also known at time

t. Such an asset pricing model can be motivated by the intertemporal choices of investors

with conditioning information to optimize portfolio risk-return trade-off and hedging demand

for state variables affecting consumption and investment opportunity sets.

Among the three components of asset pricing models, including a risk-free rate, betas, and

factor premiums, betas are the only component that drives the cross sectional variation in

expected returns. Arbitrage pricing theory (Ross (1976) [2]) suggests that betas represent the

“systematic” portion of the asset risk because they capture the co-movement between asset

returns and systematic factors.1 Modern portfolio theory indicates that betas should be time-

varying because they reflect investors’ time-varying information sets. Intertemporal asset

pricing models have time-varying betas, too, because consumption or investment opportunity
1An equivalent representation is the stochastic discount factor representation that postulates that the

product of the stochastic discount factor and an asset excess return is zero in expectation conditionally,
where the stochastic discount factor is linear in the factors with proportionality determined by conditioning
information.
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sets change over time. Hence, the conventional implementation that assumes constant betas

is likely misleading because unconditional models are misspecified models. When a model

holds conditionally, its unconditional counterpart does not hold. Clearly,

E[Et(Ri,t+1)−Rf,t] =
K∑
k=1

E(βki,tλ
k
t ) (2.2)

=
K∑
k=1

[E(βki,t)E(λkt ) + cov(βki,t, λ
k
t )] 6=

K∑
k=1

E(βki,t)E(λkt ). (2.3)

The goal of this paper is to implement econometric and machine-learning methods to

estimate the conditional betas which are functions of both firm characteristics and macroe-

conomic variables, so that they reflect firms’ operational and financial status under changing

economic conditions. We examine these novel conditional betas’ performance in (1) tests

of asset pricing models, (2) tests of asset pricing anomalies, and (3) return forecasts. Es-

timating betas has been a central issue in financial economics. While many researchers or

practitioners assume unconditional betas, they are likely to be misspecified because, as de-

scribed above, when a model holds conditionally, its naive fixed-beta version does not hold.

To find conditional betas, researchers or practitioners may use some sort of filters to approxi-

mate conditional betas. For example, starting with Fama Macbeth(1973) [3], researchers use

rolling estimates of betas to approximate the conditional betas, and such a method remains

popular today. In practice, financial media such as Google, Yahoo, Value Line, etc., report

rolling betas using a 36-month or 52-week rolling window. There are also other parametric

or nonparametric filters, such as multivariate GARCH by Bollerslev, Engle and Wooldridge

(1988) [4] and Markov Chain Monte Carlo and Gibbs sampling estimation method by Ang

and Chen (2007) [5]. While these filters are certainly improvements over the unconditional

counterpart, they typically do not have direct link to the firms’ operations or financials, or

to the macroeconomic conditions.

Starting in 1990s, betas begin to link to the real economy by researchers. Ferson and

Harvey (1991) [6] find that risk premiums are related to the macroeconomic variables. This
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finding motivates the formulation of betas as linear functions of macroeconomic variables,

such as level of interest rates, the spread between long-term and short-term bonds, the

spread between low-quality and high-quality bonds, the dividend yields, among others. Such

a linearity can be obtained from a first-order Taylor-series expansion. Ferson and Harvey

(1999) [7] use conditional betas to perform asset pricing test and find the unconditional

and conditional versions of Fama and French (1993) [8] three-factor model are strongly re-

jected. Ferson and Schadt (1996) [9], Christopherson, Ferson, and Glassman (1998) [10], and

Buttimer , Chen, and Chiang (2012) [11] use conditional betas to capture the performance of

mutual funds, pension funds, and real estate investment trusts, respectively, and obtain very

different performance measures than the unconditional counterparts. Simin (2008) [12] uses

conditional CAPM and Fama-French three-factor model to predict stock returns. All of the

above models show that macroeconomic variables may matter in modeling conditional betas,

but they ignore that the nature of the firms can be yet another channel for the time-variation

in betas.

It is intuitive that firm characteristics should affect the stock beta of a company, when its

operations, product lines, and product markets change over time. For example, when Nokia

switched its focus from forestry to telecommunication, its beta must change accordingly.

Theory and empirical analysis show that firm characteristics may drive the time-series and

cross-sectional variation in betas. For example, Hamada (1972) [13] shows that firm betas in

CAPM are linearly increasing in leverage. Gomes, Kogan, and Zhang (2003) [14] theoretically

show that betas are functions of firm size and book-to-market ratio. Lin and Zhang (2003)

[15] empirically show that betas are dominated by firm characteristics. Chiang (2016) [16]

shows that firm characteristics, such as size, book-to-market, and momentum, affect stock

betas. These findings reinforce the need to include not only macroeconomic variables but

also firm-specific characteristics in conditional betas.

Avramov and Chordia (2006) [17] make the first attempt to model conditional betas as

both firm characteristics and macroeconomic variables. Their scope is rather limited however:
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it includes only two firm characteristic variables (size and book-to-market ratio) and one

macroeconomic variable (default spread). With such a reduced-form formulation, Avramov

and Chordia (2006) [17] find that only under a specific setting that conditional betas may

help address some of the asset pricing anomalies. With the rapid growth of new drivers of the

risk premiums in the past decades, the Avramov and Chordia (2006) [17] setting may need

substantial extensions. However, including more firm attributes to beta modelling increases

the number of parameters to be estimated. For example, if we want to include K factors,

L macroeconomic variables, and M firm characteristics, we need to estimate K × L ×M

variables, i.e., a curse of dimensionality issue.

The curse of dimensionality issue amplifies and compounds with yet another well-known

issue in beta estimation: estimation errors. Researchers such as Fama and MacBeth (1973)

[3] and Fama and French (1993) [8], among numerous others, form characteristic sorted

portfolios and use them as test assets. While forming portfolios may mitigate estimation

errors within a given portfolio, this method significantly reduces the power of the asset

pricing tests because the number of observations is greatly reduced. Another method is to

correct the biases directly, but these bias adjustments, e.g. Shanken (1992) [18], do not allow

for conditional betas.

As a summary, the current state of the finance literature calls for conditional betas that

(1) include both firm characteristics and macroeconomic information, (2) deliver rich and

interpretable economic implications, (3) overcome the curse of dimensionality, and (4) mit-

igate estimation errors. With these objectives in mind, we propose to use panel regression

or machine learning methods, see below for more details, to estimate the conditional be-

tas and compare their performance. To the best of our knowledge, we are the first to use

these dimension-reducing methods to estimate conditional betas whose variations are jointly

driven by firm characteristics and macroeconomic variables. Such betas are useful in portfolio

management, asset pricing, portfolio performance evaluation, and capital budgeting.

Regarding tests of asset pricing models, our results show that all unconditional models
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are rejected in tests of asset pricing models, due to the significant average excess return on

zero-beta portfolio and to the lack of significant risk prices. Among the conditional models,

models with conditional betas estimated using firm-level LASSO deliver more robust results,

especially for asset pricing models with fewer factors.

For tests of asset pricing anomalies, conditional asset pricing models with betas condi-

tional on the full set of firm characteristics and macroeconomic variables help address mar-

ket anomalies, especially those with betas estimated using a panel regression and a “panel

LASSO” method. However, size and short-term momentum effects remain pervasive. We

further test anomalies considering conditional models with alpha conditional on macroeco-

nomic variables. Our results show that “kitchen sink” and “individual LASSO” help address

market anomalies including short-term momentum, while the size effects remain pervasive.

We also find promising return forecasting evidence using our conditional betas.

2.2 Methodology

2.2.1 Formulation of Conditional Betas

Following Avramov and Chordia (2006) [17], we assume betas are linear in L macroeco-

nomic variables Zt, in M firm attributes Xi,t, and in their interactions, where both Z and

X vectors have the first element being 1. The beta of firm i with the kth factor is

βki,t = (Xi,t ⊗ Zt)>bki , (2.4)

where ⊗ is the Kronecker product operator. Note that not only firm attributes and macroe-

conomic variables drive the time-series and/or cross-sectional variations in betas, but their

interactions also drive the variations. Hence, we can ask whether the sensitivity of an at-

tribute to beta may change over different economic conditions, e.g., “do small firms have

higher betas when the aggregate default risk is higher?”. Note this linear structure does

not prohibit nonlinear transformations. For example, to include squared terms to capture

concavity or convexity with respect to Z, one can simply augment Z to include both Z and
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Z2; to capture seasonality with respect to X, one can include sin(X) or cos(X).

We estimate the following K-factor model

Ri,t+1 −Rf,t = ai +
K∑
k=1

βki,tf
k
t+1 + εi,t, t = 1, . . . , T, (2.5)

where fk is the kth factor, and T is the number of observations.

2.2.2 Estimation Methods for Conditional Betas

When estimating Equation (2.5) without imposing any parameter restrictions or employing

any dimensionality reduction method, we call it a “kitchen sink” model. While it is the full-

fledged model, the kitchen sink model may be subject to substantial estimation errors. A

common practice to reduce estimation error is to form portfolios, but it reduces the size

of cross section substantially and lowers the power of statistical tests. In this paper, to

reduce the dimensionality of the estimation problem and mitigate estimation errors, while

preserving the size of the cross section without forming portfolios, we consider the following

estimation methods:

1. Machine learning methods, such as LASSO regressions (Tibshirani (1996) [19]) that

optimize

min
ai,bi

T∑
t=1

(
Ri,t+1 −Rf,t − ai −

K∑
k=1

βki,tf
k
t+1

)2

, (2.6)

where βki,t = (Xi,t ⊗ Zt)>bki , subject to

|bki |>1 ≤ θi (2.7)

where θi is the penalty parameter, which is determined by a cross validation. We call

this method “LASSO.”

2. Panel regressions (i.e., time-series and cross-sectional pooled regressions): We assume
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all bi’s are equal, i.e., bi = bj ∀i 6= j. Although this restriction is rather strong, the

efficiency of the estimates is also significantly improved at the same time.

3. A mixture of the panel regression and the machine-learning techniques: run the LASSO

pooled regressions. We term this method as “Panel-LASSO.”

4. Instrumental Principal Component Analysis (IPCA): follow Kelly (2019) [20], we choose

different numbers of factors in IPCA exercise. And then get respective latent factors

and coefficients accordingly. This method is named ’IPCA’ then.

As a comparison, Avramov and Chordia (2006) [17] run separate time-series regression

(3.1) for each individual stock, without using panel regressions and/or machine learning

methods to reduce the dimensions. Hence, Avramov and Chordia (2006) [17] need to employ

a much smaller set of firm attributes and macroeconomic variables. Specifically, Avramov

and Chordia (2006) [17] set Xi,t to (1, SIZE,BM), and Zt to (1,DEF).

We also include the unconditional betas in our analysis as a benchmark setting. Following

the terminology of Avramov and Chordia (2006) [17], we call them “unscaled” betas.

2.2.3 Empirical Setup

We use monthly stock trading data from CRSP, and company accounting information

from COMPUSTAT, of NYSE, AMEX, and Nasdaq-listed firms, for the period July 1963 to

December 2019, to construct our dataset. We consider five predominant models in finance:

1. Sharpe (1964) [21] and Lintner (1965) [22] CAPM: the sole factor is the market excess

return (MKT).

2. Fama and French (1993) [8] three-factor model: the factors are MKT, small-minus

big (SMB, to capture the size effect), and high-minus-low (HML, to capture the value

effect).

3. Carhart (1997)[23]: the factors are MKT, SMB, HML, and the momentum factor

(MOM).
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4. Fama and French (2015)[24] five-factor model: the factors are MKT, SMB, HML,

robust-minus-weak (RMW, to capture operational profitability), and conservative-

minus-aggressive (CMA, to capture investment effects).

5. q5 model by Hou et al., (2019)[25] and Hou et al.(2021)[26]: the factors are MKT,

SMB, spread of ROE-sorted portfolios (OP, to capture operating profitability), spread

of investment-to-asset sorted portfolios (IA, to capture investment), and spread of

expected growth sorted portfolios (EG). This model nests the q-factor model by Hou,

Xue, and Zhang(2015)[27].

MKT, SMB, HML, MOM, RMW, and CMA are available from Kenneth French’s website

at Dartmouth College. OP, IA, and EG are available from Kewei Hou, Chen Xue, and Lu

Zhang’s website. Note that, while both Fama and French (2015)[24] five-factor model and

q5 model intend to capture profitability and investment effects, they use different measures

for profitability (RMW vs. OP) and investment (CMA vs. IA).

IPCA approach could apply a comprehensive predictors affecting the stock returns, and

then achieve dimension reduction by using pre-specified number of latent factors and coeffi-

cients. This approach could also cover substantial factors to predict stock returns. Following

Ferson and Harvey (1999)[7], we consider the following macroeconomic variables: interest

rate (one-month T-bill rate), dividend yield, default spread (yield spread between BBB and

AAA-rated bonds), and term spread (yield spread between 10-year and one-year Treasury

bonds). We also follow Goyal and Welch (2007)[28] and add aggregate book-to-market ratio,

long-term yield, net equity expansion, overall stock variance, and inflation rate to the set

of macroeconomic variables. The macroeconomic variables are available from Amit Goyal’s

website.

For the firm characteristics, motivated by Stambaugh, Yu and Yuan (2012)[29], we con-

sider the following variables: size, book-to-market (the ratio of book equity to market equity),

return on assets (as a profitability measure), momentum, and incremental investments scaled

by assets (as an investment measure). We use Compustat and CRSP data to construct these
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firm characteristics; see the Appendix for details. Our selection of variables, compared with

Avramov and Chordia (2006)[17] who only use two firm characteristics and one macroeco-

nomic variable, results in a much larger set of variables that might potentially drive the

time-series and cross-sectional variation in conditional betas.

2.2.4 Empirical Strategy

We consider four empirical exercises that exploit the conditional betas:

1. Cross-sectional regression tests of asset pricing models: We run cross sectional regres-

sions of excess returns on conditional beta estimates to obtain estimates of λ, the “risk

prices.” We then test whether the (averages of) risk prices significantly different from

zero. If a beta is with a risk factor (instead of being with a hedge), we expect the risk

price to be significantly positive. This exercise extends Ferson and Harvey (1999) [7].

2. Cross-sectional tests of asset pricing anomalies: We run the “risk-adjusted returns”

(= Ri,t+1 − Rf,t − âi −
∑K

k=1 β̂i,k,tfk,t+1), on the anomalies variables in Avramov and

Chordia (2006) [17], including a Nasdaq dummy, book to market ratio, size, Nasdaq

turnover, NYSE turnover, short term momentum, intermediate term momentum, and

long-term momentum. This exercise extends Avramov and Chordia (2006) [17].

3. Out-of-sample return forecast: We begin with an “in-sample” period to estimate βi,k,t

and forecast fk,t+1, to obtain out-of-sample forecasts of Ri,t+1 − Rf,t. Then we use

the forecasts to construct portfolios and, after reiterating for many periods, assess the

economic value—in terms of performance measures or equivalent management fees—

of modeling a set of more comprehensive conditional betas. This exercise extends

the return forecasting exercise in Simin (2008) [12]. Following Simin (2008) [12], in

this study, we also implement the out-of-sample forecast using CAPM. Due to the high

demand for computation, this exercise is implemented on CAPM which is the approach

requires lowest computing power. Further study would be done in future research.

In the following sections, we exploit conditional betas in three applications.
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2.3 Test of Asset Pricing Models

In this section, we conduct tests of asset pricing models: We run cross sectional regressions

of excess returns on conditional beta estimates to obtain estimates of λkt , the “risk prices.”

We then test whether the (averages of) risk prices are significantly different from zero. If

a beta is with a risk factor (instead of being with a hedge), we expect its risk price to be

significantly positive. This exercise extends the analysis of Ferson and Harvey (1999)[7].

Table 2.1 compares the results for Sharpe (1964)[21] and Lintner (1965)[22] CAPM. The

average of risk price for the unconditional MKT factor beta is 0.3% with a t-ratio of 1.66,

while the zero-beta asset has a significantly positive average excess return (0.5% per month

with a t-ratio of 4.16). Throughout, the t-ratios are based on Fama and Macbeth (1973)[3]

standard errors. Clearly, the unconditional CAPM is rejected. The average risk prices for

the conditional MKT factor beta, modeled by Avramov and Chordia (2006) [17], is 0.7%

per month (with a t-ratio of 4.24). The average risk price for the conditional MKT factor

beta, estimated using the full set of firm characteristics and macroeconomic variables, is

0.5% per month with a t-ratio of 3.62. Employing LASSO selection in the conditional beta

estimation helps to reduce the dimensionality of the estimation problem for the “kitchen sink”

method. The average risk prices for the conditional MKT factor beta is 0.9% per month

with a t-ratio of 4.28. And the zero-beta asset cannot generate abnormal return under

our “Individual LASSO” method. The risk prices for MKT beta under panel regression

and panel with LASSO are insignificantly different from zero. Overall speaking, conditional

CAPM performs better than unconditional CAPM. Among them, models with Avramov

and Chordia (2006)[17] and “individual LASSO” betas perform the best, because they have

statistically significant risk prices and insignificant zero-beta premium.

Figure 2.1 plots the cross-sectional averages of CAPM betas throughout the sample period.

The average of unscaled betas is smooth over time,2 and does not vary with economic condi-

tions. Avramov and Chordia (2006) [17] betas have more fluctuations, but they still mostly
2It is not constant over time due to the changing number of stocks over time.
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around 1. Conditional betas by panel regression display different patterns from Avramov and

Chordia (2006)[17]. Interestingly, when LASSO technique is employed, betas become less

volatile. Figure 2.2 plots the the cross-sectional standard deviation throughout the sample

period. Across all conditional methods, the volatility of MKT beta estimating under “kitchen

sink” is the highest. Panel regression reduces the dispersion, and LASSO methods further

reduce the volatilities. Figure 2.3 plots the risk prices of MKT beta for CAPM. They have

larger ranges when conditional betas are estimated using firm-level LASSO, or panel-related

methods.

Table 2.2 compares the results for Fama and French (1993)[8] three-factor models. None

of the three factors has a significantly positive risk price for unconditional betas, and the

zero-beta portfolio has an abnormal return of 0.4% per month (with a t-ratio of 2.41). Again,

the unconditional Fama and French (1993)[8] three-factor model is rejected. Now turn to

the conditional Fama and French (1993)[8] three-factor models. The average risk prices for

SMB beta is significantly positive under the formulation of Avramov and Chordia (2006)[17],

while the zero-beta asset can still generate significantly positive abnormal return of 0.6%

per month. The risk price for all three factor betas (MKT, SMB, HML) are significantly

positive when we use “kitchen sink” or “individual LASSO” to estimate conditional betas for

each factor, showing that all of these conditional factor betas can drive the cross-sectional

variation in stocks’ expected returns. And the zero-beta asset yields a significantly negative

return under these two beta-estimation methods (−0.17% with a t-ratio of −3.61 for “kitchen

sink” and −0.10% with a t-ratio of −3.96 for individual LASSO). The average risk prices for

SMB and HML beta are significantly positive using panel regression or panel regression with

LASSO, showing that these two conditional betas can drive the cross-sectional variation

in expected returns. The zero-beta asset does not generate abnormal returns under the

conditional beta models estimating through panel or “panel LASSO” approaches. Overall

speaking, none of the conditional Fama and French (1993)[8] three-factor model is supported

by the data, although kitchen-sink and individual LASSO models work better.
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The results for Carhart (1997)[23] four-factor model are in Table 2.3. Even adding the

momentum factor (MOM), the unscaled four-factor asset pricing model cannot explain the

cross-sectional variation in stocks’ expected returns except for SMB with a marginally sig-

nificant risk price of 0.3% per month with a t-ratio of 2.00. The zero-beta return is 0.4% per

month with a t-ratio of 2.93. Once again the unconditional model is rejected. The conditional

asset pricing model introduced by Avramov and Chordia (2006)[17] improves the explanatory

power of factors a lot by including a limited set of firm characteristics and macroeconomic

variables. All four conditional betas can positively explain the cross-sectional variation in

expected returns. And the zero-beta return is insignificantly negative. Including more firm

characteristics and macroeconomic variables, all four factors in the “kitchen sink” model can

significantly drive the cross-sectional variation in stock’s returns. And the abnormal return

for the zero-beta asset is −0.02% with t-ratio of −0.93. Individual LASSO also performs

well, although the risk price associated with size is merely marginally significant at 0.2% per

month. Panel and Panel with LASSO methods show some improvements, too.

Similarly, the results of Fama and French (2015)[24] five-factor model show that the un-

conditional five factor betas do not drive the stock returns’ cross-sectional variation (Table

2.2). The zero-beta asset can still generate abnormal return of 0.60% per month with a

t-ratio of 6.68. Four factor betas except for MKT beta in the model of Avramov and Chor-

dia (2006)[17] model can positively explain the cross-sectional variation, while the zero-beta

return remains significantly positive (0.6% per month with a t-ratio of 2.99). Including more

firm characteristics and macroeconomic variables do help: All factor betas except for SMB

can positively explain the cross-sectional stock return variation under the “kitchen-sink”

model. The zero-beta asset has a significantly negative return of −0.1% per month with

a t-ratio of −7.08, however. Employing LASSO in the “kitchen sink” method, MKT and

SMB betas have significantly positive risk prices, but the HML, CMA, and RMW betas do

not deliver significant risk prices. The zero-beta asset cannot generate any abnormal return

under this individual LASSO method. On the other hand, in panel regression and panel
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regression with LASSO, CMA beta has a significantly positive risk price, and the zero-beta

asset does not generate significantly positive return. Overall speaking, conditional betas

show some improvements.

Table 2.5 presents the results for the q5 model by Hou, Mo, Xue, and Zhang (2019)[25]

and Hou, Mo, Xue, and Zhang (2021)[26]. None of the five unconditional factor betas

can significantly drive the cross-sectional stock return variation, while zero-beta asset can

generate abnormal return with 0.6% per month. All five factors have significantly positive

risk prices under “kitchen sink” and “individual LASSO”. The OP beta has a significant risk

price of 1.00% per month under panel regression. The risk prices for both OP beta and EG

beta are significantly positive under “panel-LASSO” method. The zero-beta asset cannot

generate abnormal return under panel regression and “panel LASSO” method.

We also perform the IPCA approach following Kelly, Pruitt, and Su (2019) [20], we test the

IPCA asset pricing models of 1-, 2-, 3-, 4-, 5- factors,respectively. The 1-factor model achieves

an average price of risk is 0.8% with a t-ratio of 3.54. And the intercept is insignificant with

a t-ratio of -1.41. The three-factor model also has a insignificant intercept of 0.0112 with a

t-ratio of 1.20. One out of three factor is priced with a t-ratio of 2.20. For 3- and 4-factor

models, there are also factors priced with a t-ratio higher than 2. From the results, we

can get to the conclusion that the IPCA conditional model also performs better than the

unconditional models in the perspective of asset pricing model tests.

In summary, our cross-sectional regressions show that the unconditional models are uni-

formly rejected, due to the significant average excess return on zero-beta portfolio and to

the lack of significant risk prices. Among the conditional formulations considered, individual

LASSO delivers more robust results, especially for asset pricing models with fewer factors.

2.4 Test of Anomalies

2.4.1 Models with Time-invariant Alphas

In this section, we perform cross-sectional tests of asset pricing anomalies. We regress

the “risk-adjusted returns” (= Ri,t+1 − Rf,t −
∑K

k=1 β̂
k
i,tf

k
t+1 = âi + ε̂i,t) on the anomaly
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variables in Brennan et al.,(1998)[30] and Avramov and Chordia (2006)[17], including a

Nasdaq dummy, size, book to market ratio, NYSE turnover, Nasdaq turnover, short-term

momentum, intermediate term momentum, and long-term momentum. This exercise extends

Brennan, Chordia, and Subrahmanyam (1998)[30] and Avramov and Chordia (2006)[17].

We run cross-sectional regressions of monthly individual stock excess returns on anomalies

in Table 2.13. Among these anomaly variables, coefficients on book-to-market, short-term

momentum, intermediate term momentum, and long-term momentum are significantly pos-

itive; and the coefficient on size is significantly negative. We further study whether our

conditional asset pricing model help address these anomalies.

Table 2.8 summarizes how Sharpe (1964)[21] and Lintner (1965) [22] CAPM works in

addressing asset pricing anomalies. Avramov and Chordia (2006)[17] documents that uncon-

ditional and conditional versions of CAPM do not capture any of the size, book-to-market,

turnover, and momentum effects in stock returns. We find the similar results with Avramov

and Chordia (2006) [17]. Across all methods, the coefficients on size and NYSE turnover are

significantly negative; and the coefficients on book-to-market, short term momentum, inter-

mediate term momentum, and long-term momentum are significantly positive. Adding more

sets of firm characteristic and macroeconomic variables when estimating the MKT beta,

conditional CAPM can capture some impact of firm characteristics on risk-adjusted returns:

The coefficient on book-to-market is insignificantly different from zero under “kitchen sink”

method. The NYSE turnover is insignificantly different from zero under panel regression

and panel with LASSO methods.

Table 2.9 summarizes that the unscaled Fama-French three-factor model performs similarly

with the unscaled single-factor CAPM. Most coefficients are significant. When the Fama-

French three factors are scaled by two firm characteristic variables and one macroeconomic

variables, as shown in Avramov and Chordia (2006) [17], the coefficient on book-to-market

is no longer significant. When factors are scaled by a larger set of firm characteristic and

macroeconomic variables, the coefficient on book-to-market is no longer significant using
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“kitchen sink” and “individual LASSO”, and the coefficients on book-to-market and NYSE

turnover are not significant under panel regression and “panel LASSO” method.

The time-series averages of estimates from cross-sectional regressions of monthly individual

stock risk-adjusted returns on the lagged firm attributes for Carhart (1997) [23] four-factor

model are in Table 2.10. Adding additional factors for unscaled model has limited improve-

ment in addressing market anomalies, only the coefficient on NYSE turnovers is insignificant

under Carhart (1997) [23] four-factor model. Note that the coefficient on NYSE turnovers

is insignificant under single-factor CAPM using our panel regression and “panel LASSO”

method (see Table 2.8), adding more variables when estimating conditional betas helps in

improving the performance of asset pricing models with fewer factors. Regarding the condi-

tional Carhart (1997) [23] four-factor model, the coefficient on book-to-market is insignificant

for “individual LASSO”; the coefficients on book-to-market, NYSE turnover, and long-term

momentum are no longer significant under panel regression and “panel LASSO” method.

The results for Fama and French (2015) [24] five-factor model reported in Table 2.11 show

that adding two more factors (CMA and RMW) under the unscaled Fama-French three-factor

model does not help in mitigating market anomalies. All of the firm characteristics, except for

the Nasdaq dummy, are associated with significant coefficients in the unconditional Carhart

(1997) [23] model. The coefficient associated with book-to-market become insignificant if

we use the Avramov and Chordia (2006) [17] method to estimate the conditional betas,

compared with the single-factor CAPM. Among the conditional beta models including the

full set of firm characteristic and macroeconomic variables, the coefficient of book-to-market

becomes insignificant under “kitchen sink” method; the coefficients of book-to-market, NYSE

turnover, and intermediate term momentum become insignificant under “individual LASSO”;

the coefficients of book-to-market, NYSE turnover become insignificant for panel regression

and “panel LASSO” method.

Table 2.12 reports the results for q5 model by Hou, Mo, Xue, and Zhang (2019) [25] and

Hou, Mo, Xue, and Zhang (2021) [26]. Under unscaled q5 model, the NYSE turnover becomes



46

insignificant. The coefficient on book-to-market is insignificant under “individual LASSO”,

and the coefficients on book-to-market, NYSE turnover, intermediate term momentum, and

long term momentum are insignificant under panel regression and “panel LASSO” method.

We perform the IPCA conditional models using 1-,2-,3-,4-,and 5- factors. The one-factor

model cannot capture most of the market anomalies including firm size, book to market

ratio, and return momentum. Conditional beta models with 3 factors have an insignificant

coefficients of size, and return momentum. And 4-factor model can also effectively capture

return momentum, i.e., the coefficients of RET23, RET46 and RET712 are insignificant. The

5-factor model can capture size, BM ratio, and return momentum effectively, with t-ratios

lower than 2 constantly.

Overall, the conditional models with more factors help address market anomalies. Espe-

cially the 5-factor model can capture the famous market anomalies. Another finding is that

the adjusted R-square decreases with the number of factors included. The 5-factor model

achieves a 3.85% R-square and shows that conditional models can capture anomalies effec-

tively. Overall, conditional-beta asset pricing models scaling with more firm characteristics

and macroeconomic variables help address market anomalies, especially in our panel regres-

sion and “panel LASSO” methods. However, size and short-term momentum effects remain

pervasive.

2.4.2 Models with Conditional Alphas

Avramov and Chordia (2006) [17] find that, when allowing alpha to be time-varying with

macroeconomic variables, conditional asset pricing models may mitigate market anomalies

further. Thus, we reconsider the asset pricing models, while allowing for conditional alphas,

and then test the market anomalies.

We first run the following time-series regression

Ri,t+1 −Rf,t = a>i Zt +
K∑
k=1

βki,tf
k
t+1 + εi,t, t = 1, . . . , T, (2.8)
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where βki,t = (Xi,t ⊗ Zt)>bki , and ai is an L× 1 vector with the first element being ai1. Then

we run cross-sectional regression of âi1 + ε̂i,t on a constant and the anomalies, and compute

the average each slope coefficient and its standard error. For comparison, we consider models

with constant betas (unscaled) or time-varying betas, which are estimated using Avramov

and Chordia (2006) [17], kitchen-sink, LASSO, panel, and panel LASSO methods.

Table 2.14 summarizes how Sharpe (1964) [21] and Lintner (1965) [22] CAPM with condi-

tional alpha works in addressing asset pricing anomalies. When taking into account of time-

varying alphas without modeling time-variation in betas, coefficients on NYSE turnover and

long-term momentum are insignificant. Under Avramov and Chordia (2006) [17] formulation,

where betas are scaled by firm size, book-to-market, and default spread, the coefficients on

book-to-market and NYSE turnover are insignificant. “Kitchen sink” CAPM mitigates short-

term, intermediate-term, and long-term momentum, where coefficients on these anomalies

become insignificant. “Individual LASSO” performs similarly with “kitchen sink”, except that

the coefficient on long-term momentum is significant. Panel regression and “panel LASSO”

do not help address any of the asset pricing anomalies. Again, CAPM with conditional al-

pha and beta cannot explain all market anomalies. Among them, “kitchen sink” CAPM with

conditional alpha and beta works best, which mitigate the short-term, intermediate-term,

and long-term momentum.

Table 2.15 presents results for the Fama and French (1993) [8] three-factor model with

a time-varying alpha. The coefficient on book-to-market becomes insignificant for unscaled

Fama and French (1993) [8] three-factor model, compared with the unscaled single-factor

CAPM. Among all methods with conditional betas, coefficients on size, book-to-market, and

NYSE turnover are insignificant for Avramov and Chordia (2006) [17] framework; coefficients

on size, short-term momentum, and long-term momentum are insignificant for “kitchen sink”

and “individual LASSO”; coefficients on book-to-market are insignificant for panel regression

and “panel LASSO.”

The time-series averages of estimates from cross-sectional regressions of monthly individual
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stock risk-adjusted returns on the lagged firm attributes for Carhart (1997) [23] four-factor

model are in Table 2.16. Adding momentum factor in the Fama and French (1993) [8]

three-factor model with conditional alpha and beta does not help mitigate market anomalies.

Among all methods, “kitchen sink” and “individual LASSO” perform better, where coefficients

associated with book-to-market and short-term momentum are insignificant.

The results for Fama and French (2015) [24] five-factor model with conditional alpha,

reported in Table 2.17, are very similar with the Fama-French three factor model. Coefficients

associated with book-to-market, NYSE turnover, and long-term momentum are insignificant

for unscaled model; coefficients on NYSE turnover, intermediate-term momentum, and long-

term momentum are insignificant. Both “kitchen sink” and “individual LASSO” help in

mitigating book-to-market, turnover, and momentum anomalies, while the coefficient on

size anomaly is still significant. Panel regression and “panel LASSO” help in mitigating

book-to-market and turnover anomalies, while coefficients on size and momentum are still

significant.

Table 2.18 reports the results for q5 model by Hou, Mo, Xue, and Zhang (2019) [25] and

Hou, Mo, Xue, and Zhang (2021) [26]. Similarly to unscaled CAPM, coefficients on book-to-

market, NYSE turnover, and long-term momentum are insignificant for unscaled q5 model.

Coefficients on Nasdaq turnover and intermediate-term momentum become insignificant un-

der Avramov and Chordia (2006) [17] method. Among our four methods, “kitchen sink” and

“individual LASSO” can help in mitigating all anomalies except for size. Panel regression

and “panel LASSO” can help in mitigating book-to-market and turnover anomalies, while

coefficients on size and momentum remain significant.

Overall, conditional-beta asset pricing models scaling with more firm characteristics and

macroeconomic variables help address market anomalies, especially in our “kitchen sink” and

“individual LASSO” method. However, size effects remain pervasive.
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2.5 Return Forecasts

In this section, we form out-of-sample return forecast: We begin with a 60-month “in-

sample” period to estimate βki,t and forecast fkt+1, to obtain step-ahead out-of-sample forecasts

of Ri,t+1−Rf,t. We use recursive estimation window forward to obtain more step-ahead excess

return forecasts. Then we compute the root mean square forecast error (RMSFE) for each

stock to assess each method’s performance. This exercise extends the return forecasting

exercise of Simin (2008) [12], who finds that unconditional models have better forecasting

performance than conditional models.

Our results are in sharp contrast to the results of Simin (2008) [12]. Table 2.19 reports

the RMSFEs of return forecasts produced by unconditional CAPM, and conditional CAPM

featuring betas estimated by Avramov and Chordia (2006) [17] model, kitchen sink model,

individual LASSO, panel regression, and a mix of panel regression and LASSO. The cross-

sectional mean (median) of RMSFEs by the unconditional CAPM is 9.38% (8.54%), with a

standard deviation of 3.19%. The Avramov and Chordia (2006) [17] model is outperformed

by the unconditional model: its cross-sectional mean (median) of RMSFEs is 9.58% (8.59%),

with a larger dispersion of 3.32%. However, our conditional betas improve the forecasting

performance: all versions of our conditional models produce lower average RMSFEs with

smaller dispersions. For example, when we use panel-LASSO approach to beta estimation,

the average RMSFE is 8.85%, with a standard deviation of 3.08%.

2.6 Conclusion

We implement econometric and machine-learning methods to estimate the conditional

betas which are functions of both firm characteristics and macroeconomic variables and

compare how these conditional betas perform in tests of asset pricing models, tests of asset

pricing anomalies, and return forecasts. We consider four estimation methods: “kitchen

sink” method includes seven firm characteristic variables and eight macroeconomic variables

to estimate conditional betas. “Individual LASSO”, which helps reduce the dimensionality
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of the estimation problem for “kitchen sink” method, selects the optimal set of variables for

each firm when estimating conditional betas. Panel regression can significantly improve the

efficiency of the estimates. And lastly “panel LASSO” is a combination of panel regression

and the machine-learning techniques. We compare their performance with unscaled asset

pricing model and Avramov and Chordia (2006) [17] model.

Our results show that unconditional models are strongly rejected, due to the significant

average excess return on zero-beta portfolio and to the lack of significant risk prices. Condi-

tional models work better, especially models with betas estimated using “individual LASSO”.

Regarding tests of market anomalies, unconditional models with fewer factors cannot

address size, value, momentum, and turnover effects. Value and turnover effects are gone

when there are five factors in the asset pricing models. On the other hand, conditional

models help address the anomalies, especially the panel-related methods, except that size

and short-term momentum are still pervasive.

Considering time-varying alpha when estimating conditional betas may also help address

anomalies. Both “kitchen sink” and “individual LASSO” mitigate most market anomalies

except for the size effect when there are five factors in the asset pricing model.

Finally, in terms of out-of-sample return predictive power, while the unconditional CAPM

outperforms the Avramov and Chordia (2006) [17] version of conditional CAPM, all ver-

sions of our conditional CAPM uniformly outperform the unconditional CAPM, with lower

RMSFEs. This evidence is in sharp contrast with existing evidence, e.g., Simin (2008) [12].

In sum, our new conditional betas improve the power of the asset pricing tests, mitigate

asset pricing anomalies, and form better return forecasts.
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2.7 Appendix

2.7.1 Variable Construction

We form the following firm characteristic variables, using data available from CRSP and

Compustat:

• Firm size: the natural logarithm of market value of equity measured in billions of

dollars. The market value of equity is calculated as the product of share price and the

number of shares outstanding.

• BM ratio: the natural logarithm of the book-to-market ratio. We use book and market

value of equity in the end of year t− 1 to calculate the book-to-market ratio for July

of year t to June of year t + 1. If the book-to-market ratio is greater than the 0.995

fractile or less than the 0.005 fractile, we set them equal to the 0.995 and 0.005 fractile

value.

• Turnover: the natural logarithm of monthly turnover. The monthly turnover is trading

volume divided by the number of shares outstanding.

• ROE: the natural logarithm of one plus return on equity, which is measured as the

income before extraordinary items divided by one-year lagged book value of equity.

The ROE from July of year t to June of year t+ 1 is computed from ROE at the end

of year t.

• ROA: the natural logarithm of one plus return on assets, which is measured as the

income before extraordinary items divided by one-year lagged total assets. The ROA

from July of year t to June of year t+ 1 is computed from ROA at the end of year t.

• Momentum: the natural logarithm of prior cumulative stock return from t−12 to t−2

month.



52

• Investments: the natural logarithm of the change of total assets divided by one-year

lagged total assets. The Investments from July of year t to June of year t + 1 is

computed from Investments at the end of year t.

We employ the following macroeconomic variables using data available from Amit Goyal’s

website:

• Aggregate dividend yield: the dividend yield for the S&P 500 index is measured as 12

month moving sum of dividends divided by the price for S&P 500.

• Aggregate book-to-market ratio: the book-to-market ratio for the Dow Jones Industrial

Average.

• Treasury bills: 3-month Treasury-bill rates.

• Default spread: the difference between AAA-rated and BAA-rated corporate bonds

yields.

• Term spread: the spread between 10-year Treasury yield and one-month Treasury bill

rate.

• Aggregate net equity expansion: the ratio of 12-month moving sums of net issues by

NYSE listed stocks divided by the total end-of-year capitalization of NYSE stocks.

• Aggregate stock variance: the sum of squared daily returns on S&P 500.

• Inflation rate: the growth rate of CPI.
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Table 2.1: Test of Asset Pricing Model: CAPM

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the beta associated
with the market (MKT) factor. t-ratios, based on Fama and Macbeth (1973) [3] standard
errors, are reported below the averages and in parentheses. Betas are estimated using differ-
ent versions of time-series regressions. “Unscaled” betas are time-invariant, or unconditional,
betas. Five versions of conditional betas, that are functions of firm characteristics, macroe-
conomic variables, and their interactions, are considered. “Avramov and Chordia” betas
consider only two characteristics (size and book-to-market) and one macroeconomic vari-
able (default premium). “Kitchen Sink” betas include all characteristics and macroeconomic
variables. “Individual LASSO” betas are estimated using a LASSO with cross-validation for
each stock. “Panel” assumes that all time-series regression coefficients being equal across all
stocks. “Panel with LASSO” uses a LASSO with cross-validation when running the panel
regression to obtain betas.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Constant 0.51 0.15 0.24 0.06 0.46 0.97
(4.16) (1.32) (2.06) (0.51) (0.72) (1.90)

MKT 0.32 0.71 0.53 0.92 0.38 0.14
(1.66) (4.24) (3.62) (4.28) (0.91) (0.23)
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Table 2.2: Test of Asset Pricing Model: Fama and French (1993) [8] Three-factor Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the beta associated
with market (MKT), size (SMB), and value (HML) factors. See Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Constant 0.41 0.61 -0.17 -0.14 -0.06 -0.12
(2.41) (2.91) (-3.61) (-3.96) (-0.11) (-0.20)

MKT 0.41 0.01 0.51 0.53 0.34 0.41
(1.34) (1.55) (3.46) (2.83) (0.07) (0.01)

SMB 0.22 0.33 0.25 0.22 1.65 1.63
(1.84) (4.07) (2.22) (2.16) (3.67) (3.75)

HML -2.69 -0.00 0.26 0.35 0.74 0.71
(-0.95) (-0.30) (2.55) (2.70) (4.80) (4.79)
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Table 2.3: Test of Asset Pricing Model: Carhart (1997) [23] Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the beta associated
with market (MKT), size (SMB), value (HML), and momentum (MOM) factors. See Table
2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Constant 0.41 -0.15 -0.02 0.00 2.59 2.41
(2.93) (-1.84) (-0.93) (0.37) (3.17) (3.26)

MKT 0.33 0.66 0.55 0.54 2.36 2.22
(1.62) (3.93) (3.03) (2.83) (3.06) (3.09)

SMB 0.24 0.41 0.26 0.24 0.51 0.51
(2.00) (2.86) (2.03) (1.84) (1.72) (1.48)

HML -0.16 0.25 0.37 0.34 0.36 0.36
(-1.06) (1.98) (2.59) (2.67) (1.93) (1.87)

MOM 0.39 0.64 0.64 0.69 1.47 1.12
(1.29) (3.66) (3.76) (3.85) (5.59) (5.52)
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Table 2.4: Test of Asset Pricing Model: Fama and French (2015) [24] Five-factor Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the beta associ-
ated with market (MKT), size (SMB), value (HML), operating profitability (RMW), and
investment (CMA) factors. See Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Constant 0.61 0.63 -0.14 0.17 1.57 0.21
(6.68) (2.99) (-7.08) (0.82) (0.59) (0.06)

MKT 0.22 0.01 0.55 0.44 0.91 0.20
(0.99) (1.04) (2.96) (5.54) (0.52) (0.10)

SMB 0.23 0.34 0.26 0.23 0.74 0.66
(1.69) (4.15) (1.83) (3.54) (0.77) (0.79)

HML -0.17 0.00 0.38 0.06 1.42 0.90
(-0.66) (0.53) (2.71) (0.01) (0.81) (1.25)

CMA -0.12 0.12 0.22 -0.00 1.46 1.42
(-1.46) (2.13) (3.45) (-0.71) (2.73) (3.26)

RMW 0.02 0.11 0.24 -0.00 2.32 2.51
(0.17) (2.52) (2.79) (-0.28) (1.56) (2.32)
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Table 2.5: Test of Asset Pricing Model: q5 Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the beta associated
with market (MKT), size (SMB), operating profitability (OP), investment (IA), and expected
growth (EG) factors. See Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Constant 0.61 0.12 0.12 0.12 1.63 1.71
(5.99) (1.84) (4.60) (6.74) (1.19) (1.37)

MKT 0.22 0.63 0.55 0.51 1.42 0.88
(1.20) (3.41) (3.02) (2.78) (1.14) (0.77)

SMB 0.21 0.34 0.33 0.32 0.81 0.11
(1.45) (2.92) (2.57) (2.44) (1.16) (0.21)

OP 0.18 0.36 0.59 0.55 1.22 1.15
(1.10) (3.59) (4.91) (4.93) (2.94) (3.30)

IA -0.15 0.39 0.31 0.33 0.61 0.44
(-1.18) (3.69) (4.57) (4.62) (1.84) (1.52)

EG 0.05 0.60 0.74 0.71 1.04 1.34
(0.60) (8.70) (10.36) (10.27) (1.76) (2.23)
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Table 2.6: Test of Asset Pricing Model: IPCA model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the betas using
IPCA approach. See Table 2.6 for details.

1factor 2factor 3factor 4factor 5factor
beta1 0.862*** -0.1828 0.000254 0.105*** 0.100*

(3.54) (-0.16) (0.00) (3.96) (2.50)

beta2 -0.6683 0.137 -0.0154 0.00271
(-0.51) (1.13) (-0.59) (0.10)

beta3 0.392* 0.0153 0.0279*
(2.20) (0.81) (2.15)

beta4 0.0451** 0.00265
(2.89) (0.13)

beta5 0.0618***
(7.11)

cons -0.00584 0.0265 0.0112 0.0136* 0.0140**
(-1.41) (0.61) (1.20) (2.40) (2.75)
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Table 2.7: Cross-sectional regression of excess returns on anomalies

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock excess returns on a constant and the lagged firm
attributes, including firm size (SIZE), book-to-market ratio (BM), NYSE turnover (NY-
TURN), Nasdaq Turnover (NASDTURN), return over t − 3 to t − 2 months, return over
t− 6 to t− 4 months, and return over t− 12 to t− 6 months. t-ratios, based on Fama and
Macbeth(1973)[3] standard errors, are reported below the averages and in parentheses.

Estimates
Intercept 4.72

(8.06)
Nasd 0.61

(1.26)
SIZE -0.33

(-7.60)
BM 0.18

(4.16)
NYTURN -0.03

(-0.59)
NASDTURN -0.92

(-1.17)
RET2-3 0.91

(3.86)
RET4-6 0.92

(4.55)
RET7-12 0.67

(4.76)
R2 5.47
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Table 2.8: Test of Market Anomalies: CAPM

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes, including firm size (SIZE), book-to-market ratio (BM), NYSE turnover (NY-
TURN), Nasdaq Turnover (NASDTURN), return over t − 3 to t − 2 months, return over
t − 6 to t − 4 months, and return over t − 12 to t − 6 months. t-ratios, based on Fama
and Macbeth (1973) [3] standard errors, are reported below the averages and in parentheses.
Risk-adjustment is based on CAPM, where betas are estimated using various methods; see
Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 4.35 4.10 2.01 3.87 4.29 4.31
(7.93) (7.65) (7.35) (7.61) (7.67) (7.79)

Nasd 0.42 0.41 0.48 0.52 0.46 0.45
(0.84) (0.84) (1.02) (1.04) (0.91) (0.90)

SIZE -0.33 -0.30 -0.14 -0.27 -0.34 -0.34
(-7.62) (-7.23) (-6.73) (-6.97) (-7.85) (-7.78)

BM 0.18 0.15 -0.05 0.17 0.15 0.18
(3.92) (3.44) (-1.43) (4.01) (3.07) (3.88)

NYTURN -0.12 -0.11 -0.11 -0.11 -0.04 -0.05
(-2.46) (-2.42) (-3.67) (-2.43) (-0.72) (-0.82)

NASDTURN -0.64 -0.59 -0.71 -0.72 -0.64 -0.65
(-0.71) (-0.66) (-0.86) (-0.86) (-0.71) (-0.72)

RET2-3 1.04 1.10 1.55 1.13 1.23 1.13
(4.75) (5.22) (7.87) (5.58) (5.56) (5.16)

RET4-6 0.82 0.95 1.16 0.90 1.05 0.96
(4.42) (5.40) (8.64) (5.30) (5.39) (4.97)

RET7-12 0.75 0.82 0.87 0.86 0.92 0.81
(5.87) (6.79) (8.66) (7.49) (6.89) (6.09)

R2 6.06 5.85 4.03 5.83 6.65 6.60
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Table 2.9: Test of Market Anomalies: Fama and French (1993) [8] Three-factor Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported below
the averages and in parentheses. Risk-adjustment is based on Fama and French (1993) [8]
three-factor model, where betas are estimated using various methods; see Table 2.1 for the
details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 3.57 2.67 -0.91 -0.88 3.29 3.30
(8.75) (8.16) (-9.76) (-7.52) (7.67) (7.68)

Nasd 0.45 0.59 0.22 0.14 0.45 0.45
(0.92) (1.22) (2.38) (1.99) (0.91) (0.91)

SIZE -0.28 -0.20 0.07 0.07 -0.27 -0.27
(-8.40) (-7.52) (8.66) (7.95) (-7.62) (-7.63)

BM 0.13 0.02 -0.01 0.03 0.07 0.07
(3.58) (0.55) (-0.83) (1.92) (1.83) (1.83)

NYTURN -0.11 -0.12 -0.14 -0.11 -0.05 -0.05
(-2.54) (-2.81) (-9.67) (-6.80) (-0.83) (-0.83)

NASDTURN -0.61 -1.46 -0.20 -0.14 -0.64 -0.64
(-0.69) (-1.45) (-1.31) (-0.86) (-0.72) (-0.72)

RET2-3 1.03 1.07 1.25 1.14 1.41 1.41
(5.33) (5.43) (12.67) (10.31) (6.43) (6.42)

RET4-6 0.94 1.04 1.12 1.08 1.24 1.24
(5.68) (7.09) (14.64) (15.21) (6.43) (6.43)

RET7-12 0.71 0.88 0.84 0.82 1.09 1.09
(5.88) (8.36) (16.19) (17.65) (7.60) (7.60)

R2 4.66 4.38 2.78 2.87 5.76 5.76
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Table 2.10: Test of Market Anomalies: Carhart (1997) [23] Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported below
the averages and in parentheses. Risk-adjustment is based on Carhart(1997)[23] model,
where betas are estimated using various methods; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 3.54 2.32 -1.31 -1.01 3.16 3.17
(8.88) (7.49) (-12.30) (-10.43) (7.41) (7.44)

Nasd 0.44 0.31 -0.00 0.03 0.45 0.45
(0.92) (0.74) (-0.03) (0.58) (0.92) (0.92)

SIZE -0.27 -0.16 0.11 0.09 -0.24 -0.24
(-8.33) (-6.60) (12.85) (11.35) (-6.81) (-6.84)

BM 0.14 0.01 0.03 0.01 0.06 0.06
(3.90) (0.32) (2.92) (0.39) (1.51) (1.51)

NYTURN -0.08 -0.13 -0.13 -0.06 -0.04 -0.04
(-1.95) (-3.22) (-12.07) (-5.30) (-0.76) (-0.77)

NASDTURN -0.55 -0.69 0.17 0.18 -0.64 -0.64
(-0.64) (-1.02) (0.90) (1.18) (-0.72) (-0.72)

RET2-3 1.00 0.98 0.92 0.93 0.49 0.49
(5.41) (5.27) (11.54) (10.67) (2.78) (2.79)

RET4-6 0.91 0.92 0.75 0.88 0.31 0.31
(5.80) (6.72) (12.08) (16.11) (2.21) (2.22)

RET7-12 0.72 0.80 0.56 0.68 0.16 0.17
(6.29) (8.85) (11.92) (17.90) (1.53) (1.54)

R2 4.55 4.11 3.02 3.67 4.72 4.71
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Table 2.11: Test of Market Anomalies: Fama and French (2015) [24] Five-factor Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported below
the averages and in parentheses. Risk-adjustment is based on Fama and French(2015)[24]
five-factor model, where betas are estimated using various methods; see Table 2.1 for the
details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 3.98 2.47 -1.64 -0.62 3.12 3.13
(10.11) (8.35) (-26.63) (-0.82) (7.63) (7.66)

Nasd 0.46 0.38 -0.10 2.83 0.46 0.46
(0.94) (0.85) (-1.88) (1.46) (0.92) (0.92)

SIZE -0.32 -0.19 0.13 0.01 -0.25 -0.25
(-10.10) (-8.04) (23.80) (0.17) (-7.43) (-7.46)

BM 0.08 -0.06 0.00 -0.01 0.00 0.00
(2.14) (-1.84) (0.10) (-0.06) (0.01) (0.02)

NYTURN -0.09 -0.08 -0.17 -0.07 -0.04 -0.04
(-2.11) (-2.06) (-19.68) (-0.57) (-0.69) (-0.68)

NASDTURN -0.61 -0.65 0.13 -0.65 -0.65 -0.65
(-0.69) (-0.86) (1.24) (-0.57) (-0.73) (-0.73)

RET2-3 1.00 1.05 1.01 2.92 1.08 1.08
(5.33) (5.50) (16.60) (2.18) (5.04) (5.05)

RET4-6 0.82 0.89 0.87 1.05 0.90 0.90
(5.08) (6.47) (18.33) (1.38) (4.86) (4.87)

RET7-12 0.70 0.78 0.67 0.79 0.76 0.76
(5.96) (7.88) (21.95) (1.93) (5.54) (5.55)

R2 4.47 4.08 3.49 3.98 5.49 5.48
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Table 2.12: Test of Market Anomalies: q5 Model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported below
the averages and in parentheses. Risk-adjustment is based on the q5 model, where betas are
estimated using various methods; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 4.44 2.64 -0.86 -0.80 3.29 3.30
(10.80) (8.86) (-12.64) (-12.00) (7.79) (7.79)

Nasd 0.47 0.33 0.21 0.18 0.48 0.48
(0.93) (0.87) (2.54) (2.84) (0.93) (0.93)

SIZE -0.34 -0.18 0.09 0.08 -0.24 -0.24
(-10.26) (-7.71) (14.69) (14.02) (-7.05) (-7.06)

BM 0.13 -0.01 0.02 -0.00 0.02 0.02
(3.70) (-0.36) (2.38) (-0.00) (0.55) (0.54)

NYTURN -0.04 -0.08 -0.04 -0.04 -0.05 -0.05
(-1.04) (-2.30) (-4.25) (-4.51) (-0.89) (-0.89)

NASDTURN -0.59 -0.78 -0.10 -0.13 -0.66 -0.66
(-0.65) (-1.22) (-0.97) (-2.61) (-0.71) (-0.71)

RET2-3 0.99 1.02 0.96 0.94 0.49 0.49
(5.33) (5.69) (12.67) (13.29) (2.40) (2.40)

RET4-6 0.76 0.80 0.83 0.85 0.29 0.29
(4.60) (5.72) (13.71) (16.21) (1.65) (1.66)

RET7-12 0.59 0.72 0.66 0.71 0.10 0.10
(5.25) (7.67) (16.35) (20.14) (0.82) (0.83)

R2 2.78 2.28 1.57 1.84 3.49 3.48
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Table 2.13: Test of Asset Pricing Model: IPCA model

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; t-ratios are reported below in parentheses.

1factor 2factor 3factor 4factor 5factor
Nasd 0.518 0.51 0.511 0.516 0.513

(1.12) (1.11) (1.12) (1.13) (1.12)
SIZE -0.240 -0.25 -0.00557 -0.0338 -0.0175

(-7.01) (-9.50) (-0.33) (-2.15) (-1.15)
BM 0.265 0.18 0.171 -0.0747 -0.0362

(5.45) (4.22) (4.31) (-3.48) (-1.97)
NYTURN -0.000626 -0.01 -0.00370 0.00281 0.0141

(-0.01) (-0.10) (-0.07) (0.05) (0.26)
NASDTURN -0.581 -0.58 -0.581 -0.586 -0.574

(-0.69) (-0.69) (-0.71) (-0.71) (-0.69)
RET2-3 1.053 1.10 0.260 0.302 0.315

(4.83) (5.88) (1.59) (1.88) (1.97)
RET4-6 0.910 0.96 0.120 0.158 0.140

(4.79) (6.59) (1.00) (1.35) (1.22)
RET7-12 0.748 0.80 -0.0292 -0.00519 -0.0159

(5.77) (7.81) (-0.33) (-0.06) (-0.19)
Intercept 2.741 2.83 0.157 0.317 0.122

(7.03) (9.33) (0.88) (1.91) (0.80)
R2 7.19 5.72 4.51 3.99 3.85
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Table 2.14: Test of Market Anomalies: CAPM with Conditional Alpha

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes, including firm size (SIZE), book-to-market ratio (BM), NYSE turnover (NY-
TURN), Nasdaq Turnover (NASDTURN), return over t − 3 to t − 2 months, return over
t − 6 to t − 4 months, and return over t − 12 to t − 6 months. t-ratios, based on Fama
and Macbeth(1973) [3] standard errors, are reported below the averages and in parentheses.
Risk-adjustment is based on CAPM, where betas are estimated using various methods and
alphas are conditional to macroeconomic variables; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 10.92 3.10 11.80 10.06 4.45 4.34
(15.09) (7.22) (11.92) (11.65) (8.08) (7.87)

Nasd 0.18 0.52 3.97 1.39 0.46 0.46
(0.39) (1.04) (5.71) (3.18) (0.92) (0.92)

SIZE -0.85 -0.22 -0.99 -0.77 -0.35 -0.34
(-14.53) (-6.66) (-13.35) (-12.25) (-8.03) (-7.82)

BM -0.31 0.07 -0.78 -0.43 0.17 0.19
(-3.45) (1.75) (-5.83) (-5.18) (3.39) (3.88)

NYTURN -0.56 -0.67 -2.27 -1.19 -0.64 -0.65
(-0.74) (-0.81) (-3.19) (-2.25) (-0.71) (-0.72)

NASDTURN 0.28 -0.13 0.24 0.14 -0.03 -0.03
(3.93) (-3.11) (2.32) (2.04) (-0.56) (-0.61)

RET2-3 -2.25 1.36 1.48 -0.90 1.08 1.06
(-4.25) (6.49) (1.73) (-1.34) (4.79) (4.74)

RET4-6 -1.56 1.10 1.01 -0.48 0.91 0.88
(-3.81) (7.12) (1.54) (-1.07) (4.53) (4.44)

RET7-12 -0.48 0.98 0.09 -0.60 0.78 0.75
(-1.69) (9.39) (0.22) (-2.20) (5.53) (5.49)

R2 4.21 5.49 2.41 3.49 6.75 6.71
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Table 2.15: Test of Market Anomalies: Fama and French(1993) [8] Three-factor Model with
Conditional Alpha

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported
below the averages and in parentheses. Risk-adjustment is based on Fama and French(1993)
[8] three-factor model, where betas are estimated using various methods and alphas are
conditional to macroeconomic variables; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 5.69 5.24 2.52 2.98 3.35 3.69
(9.88) (-6.88) (3.46) (5.54) (7.86) (5.01)

Nasd -0.23 1.23 -1.73 -0.88 0.46 0.46
(-0.47) (0.60) (-2.64) (-2.14) (0.93) (-0.88)

SIZE -0.45 -0.12 -0.07 -0.05 -0.27 -0.23
(-9.52) (-1.51) (-1.24) (-1.01) (-7.83) (-6.98)

BM -0.03 -0.01 1.16 0.99 0.06 0.05
(-0.36) (-0.15) (11.20) (6.33) (1.51) (-1.34)

NYTURN -0.48 -1.00 -1.39 -1.19 -0.65 -0.62
(-0.53) (-0.86) (-1.24) (-1.02) (-0.72) (-0.59)

NASDTURN 0.27 0.18 0.06 0.02 -0.04 -0.03
(4.07) (3.07) (0.59) (0.03) (-0.63) (-0.55)

RET2-3 -2.24 -1.89 -1.19 -1.11 1.23 1.10
(-4.40) (-2.40) (-1.34) (-1.01) (5.56) (5.19)

RET4-6 -1.31 -1.58 -1.02 -1.13 1.05 1.98
(-3.23) (-2.23) (-1.47) (-1.90) (5.45) (5.22)

RET7-12 -0.30 -0.28 -1.15 -1.87 0.93 0.59
(-1.11) (-1.95) (-2.17) (-2.79) (6.75) (3.26)

R2 3.53 3.23 2.01 1.69 5.71 5.46
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Table 2.16: Test of Market Anomalies: Carhart(1997) [23] Model with Conditional Alpha

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported be-
low the averages and in parentheses. Risk-adjustment is based on Carhart(1997) [23] model,
where betas are estimated using various methods and alphas are conditional to macroeco-
nomic variables; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 5.95 3.16 -2.09 -1.80 3.13 3.14
(10.88) (5.88) (5.10) (-4.61) (7.42) (7.44)

Nasd -0.49 -0.59 0.50 0.70 0.45 0.45
(-1.01) (-1.30) (2.59) (2.37) (0.92) (0.92)

SIZE -0.50 -0.69 0.11 0.15 -0.24 -0.24
(-11.29) (-13.27) (5.28) (4.57) (-6.80) (-6.82)

BM -0.48 0.30 -0.01 -0.01 0.05 0.05
(-4.99) (1.99) (-0.20) (-0.09) (1.48) (1.48)

NYTURN -0.09 0.07 -1.66 -1.59 -0.64 -0.64
(-0.11) (1.10) (-1.99) (-1.42) (-0.72) (-0.72)

NASDTURN 0.31 0.29 0.08 0.08 -0.04 -0.04
(4.54) (2.55) (1.59) (1.52) (-0.75) (-0.75)

RET2-3 -1.66 -0.90 0.39 0.24 0.49 0.49
(-3.23) (-1.17) (0.69) (0.60) (2.78) (2.79)

RET4-6 -0.86 -0.95 0.90 0.72 0.31 0.31
(-2.12) (-2.26) (2.56) (2.43) (2.21) (2.22)

RET7-12 0.16 -0.90 1.13 0.68 0.16 0.17
(0.60) (-2.46) (3.97) (3.25) (1.53) (1.55)

R2 3.45 3.54 2.91 2.97 4.72 4.61
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Table 2.17: Test of Market Anomalies: Fama and French(2015) [24] Five-factor Model with
Conditional Alpha

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported
below the averages and in parentheses. Risk-adjustment is based on Fama and French(2015)
[24] five-factor model, where betas are estimated using various methods and alphas are
conditional to macroeconomic variables; see Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 4.25 6.00 -5.68 -8.33 3.14 5.42
(7.49) (8.74) (-12.17) (-8.17) (7.73) (9.60)

Nasd -0.09 0.85 0.05 0.03 0.46 0.42
(-0.18) (1.03) (0.12) (0.10) (0.92) (1.18)

SIZE -0.35 -0.55 0.46 0.65 -0.25 -0.29
(-7.59) (-8.26) (11.55) (13.16) (-7.42) (-8.41)

BM 0.12 0.55 -0.15 0.25 -0.00 -0.00
(1.35) (2.01) (-1.57) (0.09) (-0.02) (-0.01)

NYTURN -0.51 -1.04 -0.80 -0.76 -0.65 -0.96
(-0.58) (-0.95) (-1.22) (-1.03) (-0.73) (-0.64)

NASDTURN 0.26 -0.20 -0.11 -0.21 -0.04 -0.05
(3.74) (-1.21) (-1.42) (-1.90) (-0.67) (-1.24)

RET2-3 -1.63 1.21 0.92 0.88 1.08 1.59
(-3.18) (2.16) (1.64) (1.54) (5.04) (6.10)

RET4-6 -1.08 0.96 0.68 0.42 0.90 0.85
(-2.67) (1.19) (1.57) (1.33) (4.86) (2.97)

RET7-12 0.11 0.90 0.27 -0.12 0.76 0.41
(0.41) (1.07) (0.83) (-0.04) (5.54) (2.25)

R2 3.28 4.21 2.56 2.54 5.49 5.28
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Table 2.18: Test of Market Anomalies: q5 Model with Conditional Alpha

This table reports the time-series averages (in percentage) of estimates from cross-sectional
regressions of monthly individual stock risk-adjusted returns on a constant and the lagged
firm attributes; see Table 2.8 for the description of the attributes. t-ratios are reported below
the averages and in parentheses. Risk-adjustment is based on the q5 model, where betas are
estimated using various methods and alphas are conditional to macroeconomic variables; see
Table 2.1 for the details.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Intercept 4.13 4.76 3.51 5.51 4.53 6.55
(7.04) (7.99) (7.25) (8.66) (8.70) (10.18)

Nasd -0.53 -0.23 -0.34 -0.12 0.48 0.22
(-0.96) (-0.40) (-1.15) (-1.36) (0.90) (0.50)

SIZE -0.33 -0.75 -0.23 -0.19 -0.35 -0.46
(-6.96) (-10.96) (-6.06) (-2.14) (-7.32) (-8.99)

BM 0.28 0.08 0.02 0.04 0.21 0.10
(2.88) (1.20) (0.32) (1.84) (4.64) (2.31)

NYTURN -0.17 -0.12 0.39 0.98 -0.69 -0.20
(-0.22) (-0.02) (0.93) (1.95) (-0.72) (-0.67)

NASDTURN 0.25 0.14 -0.02 -0.04 -0.06 -0.06
(3.85) (2.58) (-0.41) (-0.95) (-1.09) (-0.99)

RET2-3 -1.69 -1.99 0.38 0.99 1.14 1.02
(-2.77) (-3.29) (0.61) (2.23) (4.88) (2.13)

RET4-6 -1.05 -0.86 0.44 0.60 0.96 0.90
(-2.37) (-1.77) (0.89) (0.67) (4.70) (3.90)

RET7-12 -0.03 -0.00 0.57 0.05 0.76 0.59
(-0.09) (-0.02) (1.57) (0.45) (5.72) (4.59)

R2 1.42 1.22 1.01 0.99 5.02 4.99
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Table 2.19: Return Forecast: CAPM

This table reports the cross-sectional averages, median, and standard deviation, of root mean
squared forecast errors (in percentage) of individual stock excess return forecasts based on
various versions (see Table 2.1 for the details) of CAPM.

Avramov and Kitchen Individual Panel with
Unscaled Chordia Sink LASSO Panel LASSO

Mean 9.38 9.58 8.92 8.89 8.86 8.85
Median 8.54 8.59 8.42 8.41 8.28 8.31
Stddev 3.19 3.32 3.01 3.02 3.13 3.08
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(a) Unscaled (b) Avramov and Chordia

(c) Kitchen sink (d) Individual LASSO

(e) Panel regression (f) Panel LASSO

Figure 2.1: Cross-sectional Averages of CAPM Betas

This figure plots the cross-sectional averages of (a) unscaled betas, (b) Avramov and Chordia conditional
betas, (c) conditional betas estimated using kitchen sink, (d) conditional betas estimated using individual
LASSO, (e) conditional betas estimated using panel regression, and (f) conditional betas estimated using
panel LASSO, of the CAPM.
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(a) Unscaled (b) Avramov and Chordia

(c) Kitchen sink (d) Individual LASSO

(e) Panel regression (f) Panel LASSO

Figure 2.2: Cross-sectional Standard Deviations of CAPM Betas

This figure plots the cross-sectional standard deviations of (a) unscaled betas, (b) Avramov and Chordia
conditional betas, (c) conditional betas estimated using kitchen sink, (d) conditional betas estimated using
individual LASSO, (e) conditional betas estimated using panel regression, and (f) conditional betas estimated
using panel LASSO, of the CAPM.
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(a) Unscaled (b) Avramov and Chordia

(c) Kitchen sink (d) Individual LASSO

(e) Panel regression (f) Panel LASSO

Figure 2.3: Risk Prices for CAPM Betas

This figure plots the risk prices for (a) unscaled beta, (b) Avramov and Chordia conditional beta, (c)
conditional beta estimated using kitchen sink, (d) conditional beta estimated using individual LASSO, (e)
conditional beta estimated using panel regression, and (f) conditional beta estimated using panel LASSO,
of the CAPM.
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CHAPTER 3: REIT Conditional betas: a Machine Learning Approach

3.1 Abstract

Portfolio diversification is the primary reason given by financial advisors for allocating a

portion of client portfolios into Real Estate Investment Trusts (REITs). Beta is perhaps

the most commonly utilized proxy to measure such potential diversification. Accordingly,

betas receive substantial attention within REIT studies, industry reports, and financial mar-

ket websites. The current state of the REIT literature demonstrates the benefits of various

time-varying betas versus static betas. The purpose of this study is to move this liter-

ature forward in a new direction by demonstrating how incorporating more information

and machine learning can be combined to improve beta estimates. More specifically, this

study utilizes macroeconomic, firm performance, and REIT-specific characteristics within a

straightforward machine learning technique to estimate beta on a monthly basis for nearly

three decades. Results from this study demonstrate improved performance relative to time-

varying and static betas in regards to out-of-sample return forecasts, and pricing of market

anomalies. Going forward, future studies have opportunities to utilize more sophisticated

techniques to improve on this inceptive effort.

3.2 Introduction

A recent Chatham Partners survey found that 83% of financial advisors allocate 4% to

12% of their client’s investment portfolio in Real Estate Investment Trusts (REITs), with

portfolio diversification being the most common attribute referenced for this allocation.1

With so many investors relying on the diversification aspect of REITs to help provide financial

security during retirement, it is critical to reevaluate the diversification benefits when new

tools and techniques emerge to ensure this reliance is justified.

Modern portfolio theory provides the conceptual framework that motivates the focus on

diversification within an investment portfolio. Within this framework, sufficiently diversified

investors mitigate idiosyncratic (diversifiable) risk so that the remaining risk is the systematic

risk (non-divesifiable) created by an asset’s relationship with the overall stock market. Fur-
1A summary of this analysis is available at: https://www.reit.com/news/blog/market-

commentary/morningstar-analysis-shows-importance-meaningful-reit-allocations
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thermore, modern portfolio theory considers well-diversified investment portfolios to include

allocations to all assets in the market basket, including real estate. A recent Morningstar As-

sociates analysis (sponsored by Nareit) found that the optimal portfolio allocation to REITs

ranges between 5% and 18% depending on the risk-aversion of the investor.2 [Cite original

allocation suggested by MPT??]

As an intuitive measure of an asset’s systematic risk, the market beta ("beta" hereafter) is

perhaps the most commonly utilized proxy to measure such potential diversification. Accord-

ingly, betas receive substantial attention within REIT studies, industry reports, and financial

market websites. For example, NAREIT (National Association of Real Estate Investment

Trusts) has a number of research articles focused on this topic.

The current state of the REIT literature on this topic demonstrates the benefits of various

time-varying betas versus static betas. These studies use various GARCH (Generalized

AutoRegressive Conditional Heteroskedasticity) models in efforts to examine which type of

models produce the best performing (i.e.: lowest mean squared error) time varying estimate

of beta.

The purpose of this study is to embrace the findings of this prior literature while demon-

strating how incorporating more information and machine learning can be combined to im-

prove time varying estimates of beta. More specifically, this study utilizes macroeconomic,

firm performance, and REIT-specific characteristics within a straightforward machine learn-

ing technique to estimate beta on a monthly basis for nearly three decades. Results from

this study demonstrate improved performance relative to time-varying and static betas in

regards to 1) asset pricing models, 2) out-of-sample return forecasts, and 3) pricing of market

anomalies. Furthermore, results reveal substantial hetorgeneity within REIT betas according

to property type, up and down markets, and pre and post crisis.

The remainder of the article is organized as follows. In the next section, we briefly outline

the extant literature. The third section presents our machine learning model, while the

fourth section provides a discussion of the data. In the fifth section, we provide results from

our empirical tests. The article concludes with final remarks and a summary of key findings.
2Available at: https://www.morningstar.com/funds/role-real-estate-investments-portfolio
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3.3 LITERATURE REVIEW

Ferson and Harvey(1999) [1] first mentioned the importance of conditional variables in the

stock returns.Avramov and Chordia(2006) [2] includes more information in beta estimation in

stock market. Najand, Yan and Fitzgerald(2006)[3] proposed the conditional beta in equity

REITs. They raised a conditional CAPM methodology in REITs index using ARCH and

GARCH model and found that the time-varying model outperformed the stock market with

an abnormal return of 2.25%. In this study, we apply an unique set of information variables

in REITs beta estimation, including more comprehensive information to estimate the REITs

conditional betas, not only firm financial performance and macroeconomic trend in real

estate market, but also REITs unique features. Glascock er al.(2018) [4] talks about the

asymetry of conditional betas in REITs. Particularly, they first raised ’semi-beta’ in REITs

industry and compared the betas under different conditions. This application is intuitive in

the REITs which performs diversification purpose for investors, we follow this intuition and

dig deeper on how the conditional beta performs under different market conditions. Aloy

et.al (2021) [5] uses daily REITs indeices to test conditional CAPM model and the out-of-

sample return forecast. While different from their study, we use monthly REITs returns

instead of REITs index to capture more information for each REITs firms. To better capture

the unique feature of each firm, we include a more comprehensive information including

REITs information, the accounting performance and macroeconomic variables to estimate the

conditional beta. Zhou(2013) [6] compares different time-varying models in REITs using daily

REITs index, and found that the time-varying beta shows improvment on return forecast.

However, few literature applies REITs firms returns and ignores unique property REITs

types. While, we also follow Tibshirani (1996)[7] and applies lasso regression to achieve

dimension deductibility, which we believe the first study using Machine Learning techinque

to estimate conditional REITs beta. Besides testing the return predictability of conditional

model, we follow Stambaugh, Yu, Yuan (2012)[8] to test the popular market anomalies. We

also follows Chervachidze andWheaton(2013)[9] to investigate the performance of conditional

beta under financial crisis. We have also put a review matrix table to show our contribution

to conditional beta literature in REITs.
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Figure 3.1: Literature review

Notes: This table summarizes the extant REIT asset pricing literature. Key attributes of
the studies are contrasted with those from the current study. "Anomaly Pricing" refers
to whether the estimated betas were subsequently tested to price some of the known price
anamolies. Simarly, "Out of Sample" refers to whether such forecasts were subsequently
estimated. No prior study reports esimates by property type ("Property Betas") and only
one prior study reports estimates by up/down markets ("Semibetas"). Current study sample
time period is January 1992 - January 2021.

In this study, we also follow Shanken(1992) [10] to implement the asset-pricing model

test. Simin(2008) [11]finds that the estimation error of unconditional model always performs

better than conditional model, while in our study, we find the out-of-sample predictability

following Rapach, Strauss, and Zhou(2010) [12]does a better job to dominate unconditional

CAPM. This study also shows the efficiency of our model on involving more information to

model conditional betas.

3.4 DATA

We consider the REITs observations starting from 1992 to 2021. Our sample is considered

as a comprehensive sample of observations including the Modern REIT Era. The year of

1992 has been regarded as the beginning of the new era of REIT, since the REITs has been

grown from a small group of companies to more developed publicly - traded equity REITs,

including different property types of REITs as well. The initial list of REITs are from S&P

Global. This sample includes all of US domestic firms, which have elected REITs’ status,

property types, locations and essential information.

The REITs returns are from CRSP and the firm characteristics from Compustat. The

market excess return is the difference between the S&P500 index and the 3-month Treasury
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Figure 3.2: REITs sample by year

Notes: The x-axis is calendar years and the y-axis is the count of REITs in the final sample
each year. The sample is an unbalanced panel, as some firms enter and exit the sample in
diffent years.

bill rate. The REITs unique characteristics include Property types, Locations(Northeast,

Northwest, Southeast, and Southwest), Self-managed, Self-advised, and Triple net leased.

Most of the dropped firms were lost due to financial data availablity in Compustat.The

REITs macroeconomic variables used in our research are defined as follows.

1. Risk-free rate: 3-month treasury bill rate

2. Corporate risk premium: the spread between the Moody’s AAA yield and the 10 year

Treasury bond yield.

3. Debt availability: the annual growth rate in the total debt issued divided by the GDP

at the same year.

The REITs characteristics are constructed as below. We provide several variables to depict

REITs purposes.

1. Self-management: used as a dummy variable, is equal to 1 if the REITs is used for
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self-management purpose.

2. Self-advised: used as a dummy variable, is equal to 1 if the REITs is used for self-advised

purpose.

3. Triple Net Leased: used as a dummy variable, is equal to 1 if the REITs is Triple Net

Leased.

4. Ownership by OP voting: used as a dummy variable, is equal to 1 if the REITs’

ownership is decided by OP voting.

5. Operating partnership: used as a dummy variable, is equal to 1 if the property owners

allows the property for exchange for operating partnership.

6. The rest of the REITs characteristics are defined as dummy variables if the property

types are retail, industrial, office, and health care.
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Table 3.1
Summary statistics

Table 1.1 Summary statistics.

Variable N Mean Std. Dev. Min Max p-value

Panel A: Macro (monthly)

Corporate Risk Premium 349 0.014 0.004 0.006 0.027 <0.0001

Risk Free Rate 349 0.018 0.020 0.001 0.062 <0.0001

Debt to GDP 349 0.776 0.209 0.54 1.359 <0.0001

Panel B: Firm (firm-month)

Stock Return 34,616 0.011 0.085 -0.724 1.80 <0.0001

Book to Market 34,616 0.672 0.583 -8.471 16.755 <0.0001

Size 25,576 7.094 1.443 2.256 11.263 <0.0001

Momentum 23,461 0.111 0.248 -2.247 2.746 <0.0001

Asset Growth 25,508 25.67 329 -3,792 22,397 <0.0001

Lottery 23,896 0.131 0.104 0.016 1.80 <0.0001

Skewness 23,896 -0.052 0.793 -3.192 3.17 <0.0001

Panel C: REIT (firm-month)

Self-Managed 34,616 0.831 0.375 0 1 <0.0001

Self-Advised 34,616 0.953 0.211 0 1 <0.0001

Triple Net Leased 34,616 0.233 0.422 0 1 <0.0001

Multifamily 34,616 0.156 0.363 0 1 <0.0001

Retail 34,616 0.214 0.410 0 1 <0.0001

Industrial 34,616 0.088 0.283 0 1 <0.0001

Health Care 34,616 0.102 0.302 0 1 <0.0001

Office 34,616 0.167 0.373 0 1 <0.0001

Other 34,616 0.178 0.356 0 1 <0.0001

Geographic Region yes

Notes: This table provides descriptive statistics for the variables utilized in this study. The panels

organize the variables into three main categories of information. Macro variables are monthly. Firm

and REIT variables are at the firm-month level. Six geographic regions (dummies) are utilized. The

reported p-values are based on the results of a t-test of zero means.
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3.5 EMPIRICAL METHODOLOGY

Conditional betas construction

In this study, we apply the CAPM to construct the conditional betas. We estimate the

following conditional CAPM

Ri,t+1 −Rf,t = ai + βi,tMKTt+1 + εi,t, t = 1, . . . , T, (3.1)

whereRi is the return for REITs i, Rf is the risk free rate, MKT is the market excess

returns, and T is the number of observations.

Estimation of conditional betas

1. Lasso regressions, propose

min
ai,bi

T∑
t=1

(Ri,t+1 −Rf,t − ai − βi,tMKTt+1)
2 (3.2)

, where the βi,t is a linear function in macroeconomic variables, firm accounting performance,

REITs unique features, and their interaction terms. And thus the beta of a REITs firm can

be shown as

βi,t = (Xi,t ⊗ Zt)>bi, (3.3)

where Xi,t includes firms’ financial performance and REITs features, Zt refers to the macroe-

conomic variables affecting the REITs industry.

2. Panel Lasso regression

We assume that the bi is the same for every firm for each month. And we run lasso regression

with the penalty parameters at each month for every firm.

Mean Squared Forecast Error(MSFE)

Following Simin (2008)[11] we evaluate the out-of-sample predictability using the mean of

the squared forecast error(MSFE). More precisely, the quadratic function of the difference
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between the expected returns with the true returns.

MSFE(r̂t) = E[(rt − r̂t)2]

where the r̂t is the forecast of the return rt at time t, thus the mean of the squared forecast

error (MSFE) can provide an intuitive measure of accuracy of the out-of-sample predictabil-

ity. The basic idea of Lasso regression is to introduce a little bias so that the variance can

be substantially reduced, which leads to a lower overall MSFE.

3.6 Time varying beta

3.6.1 Semi-betas

Since the year of 1993, which has been widely recognized that, it started the new era of

REITs, which means that the small group of REITs has become a large, publicly-traded

market. More and more investors have recognized a great investment opportunity in the

market. According to a Morningstar survey, an increasing number of investors have started

to allocate more to the REITs. To achieve better diversification purpose, REITs have been

more and more popular. As an alternative investment, REITs always play a role as defensive

investment, which could help to diversification for hedge fund managers, since sometimes

even move to the opposite way of the market overall.

Glascock (2018)[4] discussed the importance of evaluating conditional betas of REITs

under different market conditions. They measure the performance under different market

conditions of the REITs. The comovement of REITs with the overall financial market are

then supposed to be addressed, specially for both hedge fund manager and for academia. It

is thus intuitively interesting to explore the comovement with market, i.e., the beta of REITs.

Especially, the time-varying beta with changing market conditions. We model the beta of

REITs under a time-varying basis, especially, we take a further look at the conditional beta

and observe the defensive role of REITs. We then implement a sub-sample analysis, seeing

the market excess returns larger or smaller than 0. Particularly, we define the Up- and

Down- market on the market index performance. Using this setup, we investigate how the

conditional beta changes with different market conditions change, so that we can explore the

trend of diversification of REITs and thus provide an intuitive picture for the whole industry.
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The conditional beta trend results are shown below. The left figure dipicts the conditional

beta trend when the market excess return is larger than 0, while the right figure shows the

conditional beta when the market excess return is lower than 0. We can find that among the

whole sample period, the REITs play a role of defensive investment, that the time-varying

beta is always below or lower than 1. These two plots also verify the conclusion that the

REITs can always have diversification effect on the stock portfolio performance no matter

how the market is good or bad. When the stock market goes above 0, the conditional beta

has an average of 0.80. From the New Era of REITs to the 2008 financial crisis, the beta

level is near 0, and even negative before the 2008 Financial Crisis, which proves that the

defensive role in the stock market. The diversification function of REITs is still there even in

the great crisis, the beta is still lower than 1. In other words, when the market excess returns

are larger than 0 even when the market portfolio overall stucks in the crisis, the REITs have

played the defensive role in the stock portfolio all the time. The REITs can still well diversify

the risk in the 2020 Pandemic, the conditional beta goes up but still much lower than 1.

When the market risk premium is lower than 0, the pattern of great diversification exhibits

all over the time. Except for the 2008 Financial crisis higher than 1, the conditional beta is

much lower than 1 in the rest of the sample period. The average conditional beta level as

of 0.81 shows that the strong diversification function of REITs investment. Overall, we can

find that no matter how the market portfolio performs, the defensive role of REITs is always

there. And even in the down market, the REITs can well diversify the risk within a stock

portfolio. The empirical results support that applying the Machine-learning technique can

accurately capture the comovement of REITs with market portfolio.

The graph demonstrates the beta in up- and downside market conditions. From the

comparison, we can clearly find that two different trends have been shown in the Pre- and

Post- crisis, the conditional beta increased larger after the 2008-2009 financial crisis. Before

the financial crisis, the down-market beta is larger than the up-market beta. The REITs

could play the role of diversification.
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Figure 3.3: Conditional Semi-betas

Notes: The x-axis is years and the the y-axis is magnitude of the condtional betas estimated
by the fully specified LASSO model using macroeconomic variables, firm financial perfor-
mance, and REITs attributes. Up and down markets are defined as if the monthly excess
return is larger than 0 or not.

Table 3.2
Conditional beta estimates from LASSO models.This table reports various beta estimates from
the LASSO model using all three categories of variables (Macro+REIT+Firm) as reported
in Panel D, Model 3. Panel A reports estimates for different property types. Panel B reports
estimates separately for up and down markets and by pre- and post-financial crisis eras. Panel
C reports the conditional betas for up and down markets within the pre- and post-financial
crisis eras.

Panel A. Property Type Betas

(1) (2) (3) (4) (5) (6) (7)

All Multifamily Retail Industrial Health Care Office Other

Mean 0.753 0.481 0.634 0.582 0.493 0.701 0.658

Medians 0.498 0.394 0.455 0.571 0.491 0.580 0.755

Std Dev 0.402 0.512 0.398 0.455 0.489 0.344 0.578

N 34,616 5,252 7,172 2,995 2,766 5,276 11,155



88

Panel B. Semi Betas and Financial Crisis Eras

(1) (2) (3) (4)

Up Markets Down Markets Pre-Crisis Post-Crisis

Mean 0.677 0.655 0.458 0.909

Medians 0.539 0.529 0.451 0.878

Std Dev 0.250 0.232 0.317 0.390

N 15,499 19,117 25,576 9,040

Panel C. Semi Betas within Pre- and Post-Financial Crisis Eras

(1) (2) (3) (4)

Pre-Crisis Post-Crisis

Up Markets Down Markets Up Markets Down Markets

Mean 0.452 0.463 0.917 0.897

Medians 0.443 0.466 0.861 0.901

Std Dev 0.266 0.387 0.412 0.398

N 11,378 14,198 4,121 4,919

Panel D. Betas by Variable Types
(1) (2) (3)

Macro Macro+REIT Macro+REIT+Firm
Mean 0.647 0.638 0.655
Medians 0.717 0.664 0.515
Std Dev 0.355 0.387 0.412
N 34,616 34,616 34,511

3.6.2 Conditional betas of different property types

In the REITs investment, it is always interesting to investigate different property types.

Because of the special feature of REITs investment, that those firms own or operate different

types of real estate, and thus the main cash flow of REITs investment comes from kinds of

real estate. The property types of the REITs have important implications to the investors.

From this plot, we can find that different property types REITs show various roles of

diversification in a portfolio. Our estimation of conditional betas can depict the trend of

the REITs intuitively. There are clearly two different regimes, there are clearly different
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features happening before and after the crisis, i.e., the two economic recessions. The REITs

beta could show that the defensive role of investment clearly. The comovement of the REITs

with the market show different degrees accurately show that Especially after the 2008-2009

financial crisis, although all of the property types REITs show an upward trend betas, the

health care type of REITs still keep a low level of betas. Furthermore, in the 2020 Covid

pandemic, compared with other types of REITs, health care still associate lower betas than

other REITs types. On the opposite, the Retail type of REITs suffer the highest upward

change in the 2020 pandemic, it achieves an average beta nearly 2.0. These results can also

reflect the business and core operations of REITs styles. Essentially, the health care REITs

would always behave as the most defensive investment during the Covid pandemic. While,

the retail business would be potentially the business sector that suffers the loss worst.

Figure 3.4: Conditional betas by property types

Notes: The x-axis is calendar years and the y-axis is the magnitude of the condtional betas
estimated by the fully specified LASSO model from Table 3, Panel D, Model 3. Property
type is per the S&P Global Market Intelligence SNL Real Estate Property dataset.
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3.7 EMPIRICAL RESULTS

3.7.1 PRICING MARKET ANOMALIES

In this section, we investigate if our conditional beta models could capture the common

market anomalies in the REITs market. Following Avramov and Chordia (2006)[2] and

Brennan, Chordia, and Subrahmanyam (1998)[13], we run the cross-sectional regression of

risk-adjusted returns, (= Ri,t+1 −Rf,t − âi − β̂i,tMKTt+1) on market anomalies. Intuitively,

the risk adjusted returns are the portion which cannot be explained by the asset pricing

models. From the results shown in Table 1.3, we can find that the conditional beta models can

capture the size and return momentum anomalies. Furthermore, the conditional beta models

with Lasso regression could achieve a lower Adjusted R-square compared with unconditional

model, and could price anomalies more effectively.

3.7.2 RETURN PREDICTABILITY

In this section, we investigate the predictability using time-varying model with Machine

Learning techniques. Specifically, the out-of-sample REITs returns predictability. We com-

pare the predictability of the conditional model with the traditional CAPM model, i.e.,

the unconditional model. We also compare with the rolling window of historical returns

which has been used as a benchmark in both academic and in the industry. Furthermore, in

the REITs literature, Generalized AutoRegressive Conditional Heteroskedasticity (GARCH)

has been widely used. We also evaluate the time-varying model performance with GARCH

model. Applying the data from 1992 to 2021, we find that the conditional models using

Lasso regression can perform better than the other models.

Following Simin (2008)[11] we evaluate the out-of-sample predictability using the mean of

the squared forecast error(MSFE). More precisely, the quadratic function of the difference

between the expected returns with the true returns.

MSFE(r̂t) = E[(rt − r̂t)2]

where the r̂t is the forecast of the return rt at time t, thus the mean of the squared forecast

error (MSFE) can provide an intuitive measure of accuracy of the out-of-sample predictabil-



91

ity.

Our empirical results have shown that our conditional models using Lasso regression have

shown better out-of-sample predictability. We choose the rolling window basis as 60 months,

particularly, the estimation window is fixed at 24 months. Due to the limited observations,

we choose this window size to prevent losing more observations. Extensive research has

shown the importance of stock returns forecast, Rapach, Strauss, and Zhou[12] illustrated

the dramatic difference in the performance of in-sample and out-of-sample analysis, while

very little attention has been paid to the role of REITs returns forecast. This study therefore

intends to assess the Machine-learning application on the REITs out-of-sample predictability.

To apply the Lasso regression, we explore different sets of information on estimating the time-

varying betas, specifically, the macroeconomic conditions in the REITs market, the REITs

unique characteristics (including the property types, locations, and the business features),

and the financial performance of the equity REITs. This comprehensive dataset can not only

capture the movement in the REITs market, but also the unique features of equity REITs.

The performance of predictability has been shown in tables below, the columns represent the

Mean of Forecast Error using our time-varying model, the rolling historical average returns,

the traditional unconditional CAPM, and the GARCH model respectively.

Figure 3.5: In sample mean squared forecast error

Notes: This table reports the distribution of squared errors using different models. Panel
A presents results from in-sample estimates, while Panel B reports results from out-of-
sample forecasts. Mean squared error (MSE) and mean squared forecast error (MSFE) are
presented first, followed by medians and standard deviations. Models 1, 2, and 3 utilize Lasso
regression. Models 4, 5, and 6 utilize historical or rolling average, unconditional CAPM, and
GARCH, respectively. The historical average model (Model 4) in Panel A is switched to a
rolling average model in Panel B in order to generate the out-of-sample forecast.
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We also do the in-sample analysis to compare the difference between conditional beta using

Lasso regression with the actual REITs returns.We apply the whole sample observation to

estimate the conditional betas and the expected returns. We then apply the MSFE as

performance metrics to compare our time-varying beta with the REITs returns. The results

are shown in Figure 1.6, and we can find that the conditional beta still perform better than

the unscaled model, i.e., a lower MSFE.

Figure 3.6: Out of sample mean squared forecast errors.

Notes: This table reports the distribution of squared errors using different models. Panel
A presents results from in-sample estimates, while Panel B reports results from out-of-
sample forecasts. Mean squared error (MSE) and mean squared forecast error (MSFE) are
presented first, followed by medians and standard deviations. Models 1, 2, and 3 utilize Lasso
regression. Models 4, 5, and 6 utilize historical or rolling average, unconditional CAPM, and
GARCH, respectively. The historical average model (Model 4) in Panel A is switched to a
rolling average model in Panel B in order to generate the out-of-sample forecast.

Column 1 shows that conditional models using only the most relevant macroeconomic

conditions in REITs. Conditional on REITs macroeconomic conditions, the time-varying

model using Lasso regression shows a lowest out-of-sample forecast error. The average of

the MSFE is 0.006, which represents a much stronger predictability than the unconditional

CAPM. In most of the recent REITs research,the GARCH model has always been selected

as the model to capture the REITs returns movement, which has shown a MSFE of 0.008

approximately.We also report the median and standard deviation of the MSFE, all of the

statistics have supported that the better predictability of time-varying model compared with

GARCH model. We report the rolling-window historical average as another benchmark, i.e,

the past 60 months average returns. This historical average, which has been widely used in

both academic and for practitioners, has a average MSFE of 0.008. Through the compar-
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ison, the time-varying conditional model has shown better predictability among these four

models. We then apply a more comprehensive information variables including macroeco-

nomic condition variables and REITs unique characteristics. The return prediction results

have been shown in Table 2. When we apply more conditional variables in our time-varying

models, we find that the predictability has improved, i.e., the MSFE decreases even, reaches

to 0.005. This result has advanced that our conditional model does show better prediction

when we combine different perspectives of the REITs returns. We also involve REITs finan-

cial performance in our conditional model construction. The prediction results have been

shown in Table 3. When we include firms’ book to market ratio and liquidity in the condi-

tional model, a slight decrease in the forecast error can be found. That, the dynamic Lasso

regression achieves a MSFE of 0.004, which is better than the other models.

Combining different conditional variables in the time-varying models, we consistently find

that the out-of-sample prediction is improved by using Lasso regression. The results have

shown that the advantage of the time-varying models in the perspective of return predictabil-

ity. It also supports that the comprehensive set of information could help capture the vari-

ations in the REITs returns. Compared with other models, the time-varying conditional

models applying Lasso regression show improvement on the forecast accuracy. Within the

set of conditional models, we find that more information included, less prediction error.

The MSFE estimation demonstrate that the time-varying model can effectively improve the

out-of-sample performance. Conclusively, the Lasso regression could select the more useful

information on the return predictability further.

3.8 CONCLUSIONS

Portfolio diversification is the primary reason given by financial advisors for allocating a

portion of client portfolios into REITs. Therefore, it’s critical to reevaluate the diversification

benefits of REITs as new tools and techniques emerge. Traditionally, beta is commonly used

as a proxy to measure the potential diversification of an investment in relation to the overall

market.

While machine learning has been applied in a wide variety of real estate studies, this study

is the first known effort to incorporate machine learning into the beta estimation process.
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Machine learning algorithms can analyze vast amounts of data and identify patterns that

may not be apparent through traditional methods. By incorporating more information into

the beta estimation process within such models, it becomes possible to enhance the accuracy

and robustness of these estimates.

Overall, results from this study demonstrate that the integration of machine learning

into the beta estimation process represents a promising avenue for improving diversification

analysis and providing more accurate estimates of REIT betas.

In regards to accuracy, the results show improved performance compared to time-varying

and static betas in asset pricing models, out-of-sample return forecasts, and the pricing of

market anomalies.

In regards to the beta estimates, the study reveals a high degree of heterogeneity in

REIT betas based on property types, market conditions, and pre- and post-crisis periods.

Significantly, the results reveal that many property types have betas less than .60 (the

typical beta quoted for REITs in most publications) and that in recent years REIT betas

demonstrate asymmetry in different market condition (where REITs have higher betas in up

markets than in down markets).

Going forward, with so many maching learnine techniques available today and with future

innovations in algorithms and architectures on the way, future studies have opportunities to

utilize more sophisticated machine learning techniques to improve on this inceptive effort.
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Table 3.3
Pricing anomalies

Table 1.3. Pricing anamolies.
Dependent variable = adjusted returns

(1) (2)
LASSO Unconditional CAPM

Book to Market -0.0103*** -0.00949***
(-5.445) (-4.91)

Size 0.000309 0.000309
(0.431) (0.605)

RET_sum -0.00188 -0.00132
(-0.380) (-0.521)

AG -6.791 -8.208
(-0.116) (-0.1835)

ROE 0.0100* 0.00969*
(1.914) (1.928)

Lottery 0.147*** 0.150***
(6.519) (6.43)

Shewness -0.00360*** -0.00320**
(-2.772) (-2.678)

Constant -0.0333*** -0.0345***
(-6.243) (-6.124)

N 23,871 23,871
Groups 338 338
R2 0.302 0.360
Notes: This table reports the results of an cross-sectional regression of
adjusted return (deemed as the portion of return which cannot be explained
by asset pricing models) on a list of seven common pricing anamolies from
the asset pricing literature. A lower R2 implies more accurate pricing by
the beta, as the pricing anomalies do not contribute to the fit of the model.
Model 1 utilizes monthly conditional beta estimates from the fully specified
LASSO model (Table 3, Panel D, Model 3) while Model 2 utilizes monthly
unconditional beta estimates from a CAPM.
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