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ABSTRACT

LUIS CARLOS GONZÁLEZ GURROLA. A virtual pebble game to ensemble average
graph rigidity. (Under the direction of DR. DENNIS R. LIVESAY)

Previous works have demonstrated that protein rigidity is related to thermodynamic

stability, especially under conditions that favor formation of native structure. Mechanical

network rigidity properties of a single conformation are efficiently calculated using the in-

teger Pebble Game (PG) algorithm. However, thermodynamic properties require averaging

over many samples from the ensemble of accessible conformations, leading to fluctuations

within the network. We have developed a mean field Virtual Pebble Game (VPG) that

provides a probabilistic description of the interaction network, meaning that sampling is

not required. We extensively test the VPG algorithm over a variety of body-bar networks

created on disordered lattices, from these calculations we fully characterize the network

conditions under which the performance of the VPG offers the best solution. The VPG

provides a satisfactory description of the ensemble averaged PG properties, especially in

regions removed from the rigidity transition where ensemble fluctuations are greatest. In

further experiments, we characterized the VPG across a structurally nonredundant dataset

of 272 proteins. Using quantitative and visual assessments of the rigidity characterizations,

the VPG results are shown to accurately reflect the ensemble averaged PG properties. That

is, the fluctuating interaction network is well represented by a single calculation that re-

places density functions with average values, thus speeding up the desired calculation by

several orders of magnitude. Finally, we propose a new algorithm that is based on the

combination of PG and VPG to balance the amount of sampling and mean field treatment.

While offering interesting results, this approach needs to be further optimized to fully lever-

age its utility. All these results positions the VPG as an efficient alternative to understand

the mechanical role that chemical interactions play in maintaining protein stability.
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CHAPTER 1: RIGIDITY ANALYSIS OF PROTEIN NETWORKS USING A MEAN
FIELD APPROACH

1.1 Introduction

Conformational flexibility links protein structure and function. For example, an enzyme

must be rigid enough for reproducibility in molecular recognition, yet flexible enough to

mediate the catalytic mechanism [1]. This inseparability between flexibility and function

makes computational descriptions of protein structure difficult. Nevertheless, high accuracy

in computational modeling of proteins can only be achieved by accounting for the fact that

structure is dynamically changing, thus making the problem computationally expensive.

Therefore, developing new and improved methods that better optimize the balance between

computational cost and model accuracy is necessary to fully understand protein structure

and dynamics.

An important characteristic of a physical system is the number of degrees of freedom

(DOF) that describes its accessible motion. This is particularly true in molecular networks

where structure greatly depends on the degree of cross-linking due to chemical interactions.

Therein, covalent bonds are modeled as a set of distance constraints between atoms. As

more covalent bonds form, more distance constraints are added to the network. If a new

distance constraint is placed in a flexible region, a DOF available to the network will be

removed because motion is reduced, and the distance constraint is said to be independent.

If a distance constraint is placed in a rigid region, there is no change in the number of DOF,

and the distance constraint is said to be redundant. Compared to generic networks, the

DOF calculation in protein structures presents an additional complicating factor because

they include many noncovalent interactions that repetitively break and re-form based on

ambient thermal motion. These noncovalent interactions include: hydrogen bonds (H-

bonds), salt bridges and van der Waals interactions. Consequently, rigidity analyses used

to quantify the number of DOF within a protein structure require averages over an ensemble

of structural networks, each one having a different set of noncovalent interactions.
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From the discussion above, it follows that discrimination between independent and

redundant edges over a set of vertices is a critical aspect of rigidity analyses. The first con-

tributions in this area were given for networks in two dimensions where the first polynomial

algorithm to identify an independent set of edges was proposed by Sugihara [2]. An O(N2)

algorithm was later developed by Imai [3] based on a network flow approach, which was

later matched using matroid sums by Gabow and Westermann [4,5] and by Hendrickson [6]

using a bipartite matching algorithm. In the same direction, a new method based on a

hierarchical decomposition, called red-black hierarchy, that takes quadratic time to identify

Laman graphs (minimally rigid graphs) [7] was developed by Bereg [8].

The algorithm proposed by Hendrickson (bipartite matching) turned out to be a fertile

ground for the appearance of an elegant algorithm called the pebble game, developed by

Jacobs and Hendrickson [9]. The pebble game algorithm was developed to calculate exact

properties of graph rigidity for generic two-dimensional networks using a combinatorial

characterization [9, 10] based on Laman’s theorem [7]. This means that only constraint

topology is necessary to determine rigidity properties, which is completely specified by a

graph. The network rigidity properties include identifying: (1) the number of independent

distance constraints; (2) the rigid and flexible regions within the network; and (3) over-

constrained regions that have more distance constraints than needed for the region to be

rigid. Within the PG algorithm pebbles represent degrees of freedom. Extensions to three-

dimensions using similar pebble game algorithms have been made for a limited number of

network types [11–17], and further generalizations have been made to an entire class of graph

rigidity problems that define a matroid [18, 19]. Interestingly, much of these developments

were motivated by applications to predict flexible and rigid regions within biomolecular

structures, such as proteins [12,20,21].

Developed by the BioMolecular Physics Group at UNC Charlotte, which I am a member

of, thermodynamic properties of protein-like systems have been accurately predicted using

a distance constraint model (DCM) that regards network rigidity as an underlying mechan-

ical interaction, and considers an ensemble of all possible constraint topologies [22–24]. Put

simply, the DCM is a statistical mechanical model that averages over an ensemble of PG

calculations, thus appropriately describing fluctuations within the noncovalent bond net-
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work. Within the DCM, the free energy of the protein is calculated over a two-dimensional

grid specified by number of H-bonds and native torsion interactions. Within each grid point

(called a macrostate), the PG is applied hundreds of times to determine the average proba-

bility for distance constraints to be independent or redundant. From this information, the

average number of DOF remaining in the system can be readily calculated. The free energy

of the protein is subsequently expressed as a function of its global flexibility [23,24].

It was recently demonstrated that the computationally expensive PG calculation could

be replaced by a fast mean-field approach called Maxwell Constraint Counting (MCC),

which is based on the pioneering work of the famous physicist James Clark Maxwell [25].

Therein, only global network properties are considered. Nevertheless, the thermodynamic

properties of structural transitions within polypeptide and protein folding are appropriately

described, including: the β-hairpin to coil transition [26], the α-helix to coil transition [27]

and protein folding [28]. Unfortunately, all details regarding constraint density fluctuations

are lost within MCC.

In this dissertation we present a new mean field approach, called the Virtual Pebble

Game (VPG). The underlying motivation of the VPG is to optimally balance computa-

tional efficiency and descriptions of network rigidity. The VPG calculates ensemble average

rigidity properties using a single network by tracing pebble placement probabilities rather

than the pebbles themselves. In this context, distance constraints associated with fluctu-

ating noncovalent interactions are assigned a probability as well. Constraint probabilities

are translated into pebble capacities, where the greater capacities correspond to increased

probabilities. As such, pebble rearrangements in the VPG correspond to pebble probability

flow through the network. Our objective is to calculate the average number of DOF more

accurately than MCC and to retain localized network rigidity information. Additionally, the

VPG calculation is designed to be much faster than the time it takes to perform repetitive

application of the PG during the process of ensemble averaging.

1.2 Dissertation outline

The organization of this dissertation is as follows.
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1.2.1 Chapter 2: Description of the VPG and body-bar networks

The Virtual Pebble algorithm is described. We compare the PG and VPG over several

networks created on cubic lattices.

1.2.2 Chapter 3: VPG and PG comparison over a nonredundant protein dataset

An extensive comparison of PG and VPG algorithms across a data set of 272 protein

structures is made. The comparisons are based on the rigid clusters identified by both

algorithms, which represent groups of atoms that behave as a single body.

1.2.3 Chapter 4: Meand field + sampling = the best of both worlds

A new hybrid algorithm called VPG-x that integrates the PG and VPG algorithms is

presented. The VPG-x approach bridges the divide between the PG and VPG algorithms,

allowing one to continuously vary from one to the other as a function of x.

1.2.4 Chapter 5: VPG and PG comparison using heterogeneous probabilities

A comparison of PG and VPG is performed over some exemplar protein networks. The

probability of existence of fluctuating interactions (noncovalent bonds) is determined based

on their respective energy. We also present some discussion about using different numbers

of distance constraints to represent a fluctuating interaction.

1.2.5 Chapter 6: Discussion

Several topics are presented, first we elaborate in more detail about similarities and

differences of PG and VPG. Afterwards, we present a number of algorithms that were tested

to try to improve the VPG mechanical predictions. Finally, future work motivated from

this dissertation is suggested.

1.2.6 Chapter 6: Conclusions

Finally, we summarize the conclusions from this dissertation.



CHAPTER 2: A VIRTUAL PEBBLE GAME TO ENSEMBLE AVERAGE GRAPH
RIGIDITY

2.1 Introduction

In this chapter, we algorithmically define for the very first time the Virtual Pebble

Game algorithm (VPG). This definition is given in the context of the body-bar PG that

has been used for determining rigidity properties in proteins. We compare PG and VPG

side by side and schematically explain the differences. We formally introduce the Maxwell

Constraint Counting (MCC) [25] and compare it to both PG and VPG algorithms on

the calculation of degrees of freedom (DOF). For the experimental section, we create an

extensive set of body-bar networks on cubic lattices that will allow us to fully characterize

the performance of the VPG on specific network conditions. We go beyond the calculation

of DOF to identify rigid clusters of atoms and consequently calculate the Rigid Cluster

Susceptibility Curve (RCS), that determines the point where the rigidity transition occur.

To complement the comparison of both algorithms beyond disordered lattices, we introduce

a protein dataset where we compare the number of internal DOF as calculated by PG and

VPG.

2.2 Test Body-Bar Networks

Body-bar networks are represented by a set of rigid bodies connected by one or more

fixed-length bars, where universal joints keep attached the bars to the bodies. This model

allows us to represent a molecular network, where atoms are rigid bodies in space and

the chemical interactions are represented by bars (edges). In order to characterize the

VPG rigidity estimations we created a comprehensive number of body-bar networks. These

networks vary from protein-like networks to topologies with maximal fluctuating edges.

Particular emphasis is given to the latter cases to benchmark the worst case scenario for

the VPG. To test the performance characteristics of the VPG, we consider square (d = 2)

and cubic (d = 3) lattices with L vertices in each dimension, with a total of N = Ld
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vertices. Periodic boundary conditions are used in each dimension. Each vertex models

a rigid body, having 6 DOF. One of two types of edges can be placed between any pair

of vertices: quenched or fluctuating. Quenched and fluctuating edges are used to model

different types of physical/chemical interactions in physical systems such as proteins. For

example, covalent interactions are typically modeled by quenched edges, which are present

in the network with probability one; noncovalent interactions such as hydrogen bonds or

torsion interactions break and re-form with thermal fluctuations, so they are modeled by

fluctuating edges which are present in the network only p-fraction of the time. In the

model lattice, a vertex can be connected to any one of its 2d nearest neighbors either by

a quenched edge with probability qfix or fluctuating edge with probability qfluct. Thus,

any two neighboring vertices are disconnected with probability (1− qfix − qfluct). Based on

earlier works [13, 14] that model covalent bonding and hydrogen bonding using 5 distance

constraints, we designate the pebble capacity of an edge to be 5. In general, the pebble

capacity of an edge will equal the number of distance constraints connecting neighboring

vertices.

(c)

4

876 5

1 2

6 7

3 4

8

(b)(a)

vv1 2

5

3v v

vvvv

v v v v

vvvv

Figure 2.1: Creation of test body-bar network topologies. At the beginning of the process,
(a) the network is a set of disconnected rigid bodies. Then (b), edges between nearest
neighboring vertices are added to the lattice, where some are quenched (solid lines) and
others fluctuate between being and not being present (dashed lines). Missing edges are not
shown. (c) When an edge is present, it represents 5 bars (or distance constraints).

The process of creating test body-bar networks is shown in Fig. 2.1 for a simple case

in two dimensions on a square lattice. Initially, we begin with a set of unconnected ver-

tices, each representing a rigid body (Fig. 2.1a). Next, quenched and fluctuating edges

are randomly placed between neighboring vertices in the lattice based on probabilities qfix

and qfluct, respectively. Specifically, a uniform random number, 0 6 x 6 1, is generated

for each pair of neighboring vertices. When x 6 qfix a quenched edge is placed between

the pair of vertices; when qfix < x 6 (qfix + qfluct) a fluctuating edge is placed; otherwise
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no edge is placed. The probability qfluct determines if an edge is going to be part of the

set of fluctuating edges (shown as dashed lines in Fig. 2.1b). Once an edge is known to

be fluctuating, another probability, p, is introduced to determine if a particular fluctuating

edge is actually present in the network or missing. As p → 0, the fluctuating edge will be

essentially missing. As p→ 1 the fluctuating edge will essentially be present. Thus, once an

edge is classified as being fluctuating, the probability p controls the level of fluctuation of

being present or empty. These possibilities dictate random events that can occur, for each

edge. Over the entire network, we have the identical independent probability, p, assigned

to each fluctuating edge. As such, an ensemble of possible networks characterized by qfix,

qfluct and p can be generated, through a Monte Carlo process.

We apply the PG and the VPG to an ensemble of networks and to a single representative

of that ensemble, respectively. All members of the ensemble and the representative network

are identical with respect to missing and quenched edges. Therefore, we first determine the

edges that are fixed, fluctuating and missing. This is a single network that acts as a common

template between the PG and the VPG. Within the PG, an entire ensemble of networks

is generated based on this template, by randomly determining which fluctuating edge is

present or missing. In the VPG, this is quantified by the probability, p. In the example

shown in Fig. 2.1b the edges v1 − v2, v2 − v6, v6 − v7, v3 − v7 and v3 − v4 are quenched

describing covalent bonding, while edges v1 − v5, v2 − v3 and v7 − v8 fluctuate, describing

noncovalent bonding (such as a hydrogen bond). Whenever an edge is present, it represents

5 distance constraints (referred to as bars) that are generically placed between two vertices

(rigid-bodies) which are bundled together (see Fig. 2.1c). The remaining adjacent vertex

pairs in Fig. 2.1b represent “missing” interactions, e.g., v5 − v6.

Comparisons between the PG and VPG are done on networks with an identical set

of quenched and fluctuating edges, but the fluctuating edges are treated differently. For a

network with Nf fluctuating edges, an ensemble consisting of 2Nf different realizations must

be generated to exactly capture network fluctuations within the PG approach. The word

realization in this context means the observed network of constraints after the presence or

absence of each fluctuating edge is determined as one possible outcome (or random event).

In other words, a single realization refers to a particular arrangement of edges in the network,
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(b)

Unique realization

Realization 1

Realization 

Realization 3

Realization

2

4

(a)

Figure 2.2: (a) A representative VPG network, and, (b) an exhaustive list of possible PG
network topologies. The missing edges and the quenched edges (thick lines) are the same
in both the PG and VPG networks. Multiple realizations are generated for PG analysis to
account for fluctuating edges (dashed lines). The VPG analysis requires only one realization,
in which the fluctuating edges (dotted lines) are assigned an average capacity.

where in one realization a fluctuating edge is present, whereas in another realization the

same fluctuating edge is not present. Furthermore, the only differences between different

realizations occur within the fluctuating edges. The randomness we are dealing with involves

consideration of different body-bar topologies, where each realization in topology represents

a distinct generic body-bar network. It is worth noting that the term realization should not

be confused with the common use in the study of rigidity to make a distinction between

the topology of a network, and the coordinates of the vertices of that network. Because we

are only interested in generic rigidity, this latter sense of the word is not used here.

In practice, only a relatively small number of samples (typically ranging from a few

hundred to hundreds of thousands) can be considered. For each fluctuating edge associated

with probability p, a uniform random number x is generated such that 0 6 x 6 1, and

then an edge is placed in the PG network only when x < p. Within the VPG, fluctuating

edges will have 5 bars with probability p, and 0 bars with probability (1−p). If all bars are

independent, then on average a fluctuating edge can remove up to 5p pebbles. As such, we

assign a pebble capacity of 5p to fluctuating edges, while quenched edges retain a pebble

capacity of 5. As p → 1, the pebble capacity of a fluctuating edge approaches that of a

quenched edge, and as p → 0, the fluctuating edge approaches that of a missing edge. An
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example of how an ensemble of PG networks is represented by a single VPG network is

shown in Fig. 2.2. With two fluctuating edges, the ensemble of the PG networks consist of

4 distinct constraint topologies, which are compactly represented as a single VPG network

where the fluctuating edges are assigned average pebble capacities.

2.3 Constraint Counting and Pebble Games

The simplest estimate for the number of internal DOF remaining in a network is given

by Maxwell Constraint Counting (MCC), which assumes that as constraints are added to

the network they will be independent until the network becomes rigid [25]. This assumption

goes wrong when a constraint is added to a rigid region which is nucleated by a localized,

higher than average density of constraints. By suppressing fluctuations in constraint density

throughout the network, MCC provides a rigorous lower bound on the number of DOF

available to the network as constraints are added. It is an easy task to find the average

number of constraints within a network, given the probabilities for the constraints to form.

For the body-bar networks considered here, Eq. 2.1 gives the Maxwell lower bound estimate

for the mean number of independent internal DOF over an ensemble of networks that have

different placements of quenched and fluctuating edges.

FM = Ld max (6− d(qfix + pqfluct)c, 0) (2.1)

In Eq. 2.1, the capacity of an edge is given by c, which is 5 in our study, p is the probability

for a fluctuating edge to be present within the network. If there were no distance constraints

at all (qfix = qfluct = 0), the total number of DOF calculated by MCC would be 6Ld, given

that 6 trivial DOF are assigned to each vertex. As qfix and/or the product of probabilities,

pqfluct increases, more distance constraints are added to the network, which reduces FM .

Since we employ periodic boundary conditions, the total number of possible edges within

the network is dLd because there are d edges per vertex. This local connectivity count is

specific to hyper-dimensional cubic lattices. In the work described here, we consider either

a square lattice representing a sheet (d = 2) embedded in three-dimensional space, or a

cubic lattice (d = 3). Given that every edge consumes c DOF, the maximum amount of

DOF that can be consumed by all the edges associated with a given vertex is dc. However,
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the actual consumption of DOF will depend upon all of the edges found throughout the

network based on the probabilities mentioned above. The max() function must be used

because once the network becomes rigid — the number of independent internal DOF will

be zero. Once the network becomes completely rigid, no additional DOF can be removed by

adding constraints, and consequently, this prevents FM from becoming negative. In other

words, once the network reaches the rigidity transition, no internal DOF are available, and

the remaining edges to be added will all be redundant. An important characteristic of

Eq. 2.1 is that the number of available DOF within the network is an extensive quantity,

being proportional to the number of vertices within the network.

For generic body-bar networks, exact constraint counting using an integer algorithm

can be implemented as a pebble game (PG) [13]. Each DOF is represented by one pebble

and each distance constraint is represented by one bar. A vertex representing a 3D object

has 6 pebbles to account for its 3 translational and 3 rotational DOF. The PG builds up

the network from a set of isolated vertices by placing one edge at a time in a recursive

fashion. When an edge placed in the network is found to be independent, it is covered

by consuming a free pebble from either of its two incident vertices. During this process,

the number of available free pebbles on vertices monotonically decreases. Operationally,

pebbles are rearranged within the network to cover the added edges. A redundant edge is

identified when a free pebble cannot be found. Although the order of edge placements affects

which edge is identified as redundant or independent, the constraint counting (number of

independent constraints or DOF) is independent of the ordering of the edges. Note that

the correctness of this procedure has been proved based on the matroidal property of sparse

graphs [19,29].

The VPG operationally parallels the PG, except pebbles and edge capacities are de-

scribed by real numbers. The term “virtual” is used because pebbles and constraints are not

discrete counting entities. The capacity of an edge represents average numbers of constraints

and need not be an integer. The VPG network is described by an edge-list representation,

where each edge is associated with a capacity, c. The VPG network is built up from a set

of isolated vertices (denoted as {vi}) by placing one edge at a time into the network. A

pebble is free if it is on a vertex, and consumed if it is used to cover an edge. An edge can
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be covered by pebbles from either or both of its two incident vertices, and is fully covered

if the sum of the consumed pebbles on both sides of the edge equals its pebble capacity.

A partially covered edge occurs when the sum of consumed pebbles is less than the edge

capacity. An edge is redundant whenever an insufficient number of pebbles is found within

the network for the edge to be fully covered. An edge can never be covered in excess of its

capacity. As in the PG, the directional nature of a covered edge provides a viable path from

vertex vi to vj when the edge is covered by pebbles from vertex vi, and vice versa. As a

consequence of the non-integer generalization, the VPG is representative of a flow problem.

For instance, it is possible to cover an edge from either of its two incident vertices resulting

in a bidirectional edge. This fact guaranties an exact mapping between the directionality

of individual distance constraints and the bundle of constraints represented by a current

edge. The search for pebbles in this direct graph resembles a network flow problem [30,31],

given that the covered capacity of any edge will determine the maximal flow of pebbles

through that edge. The VPG has the additional important feature that the capacities of

the directed-edges can change over time caused by the rearrangement of pebbles.

2.4 Description of the VPG Algorithm

Consider a network consisting of vertices {vn}, n = 1, 2, . . . N , with a list of edges

{em},m = 1, 2, . . .M . The capacity for the m-th edge is denoted by cm. The VPG follows

the following procedures and operations:

1. Initialize the graph with a set of isolated vertices {vn}, with the free DOF of each

vertex vn being 6.

2. From the list of edges {em}, insert edge ek with capacity ck into the graph. Let vi

and vj be the two incident vertices for edge ek.

3. Collect 6 pebbles for vertex vi by doing a breadth first search.

4. Flag vertex vi as visited, try to collect ck pebbles for vertex vj by doing a breadth first

search while holding the 6 pebbles on vi in place. If not all ck pebbles can be found

in one trial, continue to collect more pebbles by carrying out the search repetitively
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until there are enough free pebbles on vj to cover edge ek, or if no new pebbles are

found (a failed search).

5. If ck or more pebbles are collected on vertex vj , cover edge ek with ck pebbles. Other-

wise, all the visited vertices within the failed search are condensed into a single vertex.

If {em} is not empty, go to step 2.

6. End of VPG.

A simple example shown in Fig. 2.3 illustrates VPG operations. The edge list v1 −

2.5 − v2, v2 − 5.0 − v3, v1 − 2.0 − v3, v2 − 1.5 − v3 is used to construct the graph. The

operations described in Fig. 2.3 include: (1) pebble rearrangements between vertex and

edge (Fig. 2.3a); (2) pebble backtracking (Fig. 2.3c); and (3) condensation (Fig. 2.3g).

Detailed VPG pseudo-codes are provided in the appendix of the chapter.

The essential step in the VPG is to collect ck pebbles on vertex vj by employing a pebble

search multiple times. How the pebble search is implemented does not matter provided it is

exhaustive. We implemented the pebble search as a Breadth-First Search (BFS), although

a Depth-First Search (DFS) is an obvious alternative. The BFS is employed only because

it is physically intuitive to look for free pebbles on vertices near the vertex they are needed,

rather than potentially searching over long paths that traverse to remote vertices to obtain

a free pebble, despite having access to a free pebble that may only be a few neighbors away

in a different direction. However, we are not aware of any change in complexity within

the pebble game by using BFS over DFS, since the main controlling factor is when pebble

searches fail. When a free pebble is found on a remote vertex, it is brought back to vertex

vj along the shortest route through viable edges in a backtracking process.

When a failed search occurs, all the vertices visited become part of a minimally rigid

object in the body-bar representation [32]. We loosely call these failed searches “Laman

subgraphs” because of the analogous correspondence with the original 2D pebble game [9].

A property of a failed search is that no directed edge can point from vertices within the

Laman subgraph to vertices outside the Laman subgraph. This condition is guaranteed by

the fact that the pebble search itself failed to find any excess free pebble. Once a failed

search occurs, the vertices that comprise the Laman subgraph are subsequently condensed
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Figure 2.3: Application of the VPG on a 3 vertex network. A dashed line denotes the edge
that is being added at the current step, whose capacity is indicated in a dashed box. Ap-
pearing at the ends of an edge are the number of pebbles consumed from the corresponding
vertex used to cover the edge. (a-b) Each vertex has 6 pebbles after initialization, and an
edge of capacity 2.5 is added to the graph. (c) Vertex v2 has 3.5 free pebbles and cannot
fully cover the new edge between v2 and v3 (which requires 5 pebbles). A pebble search
is carried out and 1.5 pebbles are backtracked through the edge between v1 and v2. (d-e)
Vertex v1 has enough free pebbles to cover the newly added edge. (f) Adding an additional
edge between v2 and v3, the two edges (of capacity 5 and 1.5) combine, yielding a partially
covered edge with capacity 6.5. (g) Because the edge between v2 and v3 cannot be fully
covered, the pebble search has failed and vertices v2 and v3 condensate into a single vertex
denoted as v2. (h) Edges v1− v2 and v1− v3 in step (g) are combined into one edge v1− v2.



14

into a representative vertex having 6 pebbles. The process used in the VPG is identical to

that used in the corresponding body-bar 3D PG, which is nearly the same as that used in

the 2D Pebble Game [9]. Specifically, no vertices within a Laman subgraph are removed.

Rather, the connectivity of the underlying graph is modified, such that the Laman subgraph

is represented as a star graph, where the sole vertex having 6 pebbles is selected as the

representative condensed vertex, and all other vertices that are depleted of pebbles are

directly connected to this center vertex with 5 bars. In this way, future pebble searches

are dramatically shortened, and the effective size of the network continues to decrease as

more Laman subgraphs are detected. This implementation is both simple and very effective,

transforming the typical performance from O(N2) to O(N).

2.5 Results and Discussion

The average number of internal DOF per vertex (F/N) as a function of the fluctuat-

ing edge probability, p, is shown in Fig. 2.4 at four exemplar values of qfix and qfluct for

four algorithms: MCC, VPG, ensemble averaged PG and ensemble averaged bar-PG. The

bar-PG denotes another type of body-bar network that generally allows {0, 1, 2, 3, 4, 5,

6} generically placed distance constraints between rigid bodies. In the context of the work

presented here, the bar-PG assigns 5 and 0 distance constraints for quenched and missing

edges respectively, and based on a random mechanism there can be 0 to 5 distance con-

straints within a fluctuating edge. The method for how distance constraints are distributed

within fluctuating edges is described in detail below. In the latter three cases, the results

are for the same set of quenched, fluctuating and missing edges placed within a network of

8000 vertices (L = 20, d = 3). For the two PG cases, ensemble averaging is performed over

100 randomly generated realizations that determine for each fluctuating edge whether it is

present or missing. Like the PG, the VPG results for F are independent of the order that

edges are placed in the network, which was extensively verified.

As expected, the results show that MCC overestimates the minimum number of con-

straints needed for the network to become rigid. When invoking MCC, the rigidity threshold

is defined as the lowest value of p for which F = 0, because when F > 0 the network is flexi-

ble, and when F = 0 the network is rigid. However, in the PG, a network will generally have
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many localized rigid and flexible regions. This inhomogeneity is caused by fluctuations of

constraint density due to statistical variations of fluctuating constraints in different network

realizations. As such, the rigidity threshold for the PG is below the MCC prediction.

The VPG results are much closer to PG calculations than MCC, especially on the

rigid side of the rigidity transition, while F is also underestimated compared to the PG

results across intermediate values of p. Relative to MCC, the improved accuracy of the

VPG occurs because it applies a mean-field approximation locally at the edge level. In

contrast to a global mean-field approximation that enforces an average constraint density

across the entire network in MCC, the VPG averages the constraint density at the edge

level, and distinguishes between quenched, missing and fluctuating constraints. At the edge

level, the VPG replaces the random sampling of realizations of placing distance constraints

with its average value without regard to the underlying random process. For example, for

the test body-bar networks described above, a fluctuating edge is associated with either a

bundle of 5 distance constraints present with probability, p, or no distance constraints with

probability, (1 − p). On average, this random process gives 5p distance constraints, per

fluctuating edge.

It is interesting to note that due to the cooperative nature of the distance constraints

that are used to represent a fluctuating edge (i.e., either all 5 distance constraints or nothing)

in the PG network, the fluctuations in the number of distance constraints for a fluctuating

edge is maximal in the PG network. Because the VPG is a mean-field approximation, VPG

and ensemble averaged PG results could be in better agreement if the constraint density

fluctuations at the edge level were less. Although the nature of chemical bonding imposes

this cooperativeness when studying molecular networks, applications of the VPG can extend

beyond molecular networks. Therefore, a different type of body-bar network that minimizes

the constraint density fluctuations within edges is considered using a “bar-PG”.

In the bar-PG, quenched, missing and fluctuating edges are placed in the same way as

described above. However, each of the five distance constraints representing a fluctuating

edge are placed independent of each other, each with probability p. Thus a fluctuating

edge is now allowed to have {0, 1, 2, 3, 4, 5} distance constraints, instead of either 0 or

5. Here, two possible random events defined by whether a distance constraint is present
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(a) qfluct = 0.3, qfix = 0.3 (b) qfluct = 0.3, qfix = 0.2

(c) qfluct = 0.4, qfix = 0.1 (d) qfluct = 0.4, qfix = 0.0

Figure 2.4: The average number of internal DOF within the network, F , for L = 20 are
plotted as a function of fluctuating edge probability, p, based on Maxwell counting (red
triangle), ensemble averaged PG (green cross), VPG (blue circle), and ensemble averaged
bar-PG (purple square). The straight line is the lower bound estimate of F characteristic
of MCC. The VPG always falls between the results for the PG and MCC, being a better
approximation to the PG than MCC. The maximum difference in F between the PG and
VPG occurs at values of p close to the Maxwell rigidity transition.
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or absent is considered 5 independent times drawn from a binomial distribution for each

of the 5 distance constraints that comprise a fluctuating edge. In other words, the single

binomial distribution that was controlling whether a fluctuating edge is present (with 5 dis-

tance constraints) or absent (no distance constraints), is replaced with 5 identical binomial

distributions, one for each distance constraint. Since the average frequency for the presence

of a particular distance constraint is p, the edge maintains the same overall average of 5p

distance constraints. Therefore, the two models share the same average property, while the

fluctuation within the edge is greatly reduced in the bar-PG, compared to the initial body-

bar PG. The VPG is based on the average pebble capacity of an edge, which is identical for

the PG and bar-PG. The average number of constraints for a fluctuating edge remains 5p,

and the VPG results as well as the MCC results remain unchanged. However, the ensemble

average results of the PG (see Fig. 2.4) for the bar-PG networks yields results that are

markedly close to the VPG.

In summary, MCC suppresses constraint density fluctuations within the network, while

the VPG suppresses constraint density fluctuations within individual edges. Therefore,

there is yet another important limit to check when applying the VPG. If there are no

constraint density fluctuations within any edge throughout the entire network, then the

VPG results must be identical to the PG. Indeed, this has been verified by applying the

VPG on a single realization that is used for a PG, and we find that the results are identical.

This result is a verification of the fact that the VPG and the PG are identical for the cases

when p = 0 and p = 1, as discussed above. In view of this result, it becomes clear that

the VPG results will compare best to the ensemble averaged PG results in the limit that

qfluct/qfix is well below 1. One application that motivated this work is to study protein

structures where this ratio is about 5%. In general, it is expected that qfluct = 1 will yield

the greatest difference in results between the VPG and the ensemble averaged PG.

For a comprehensive comparison between the VPG and PG results, contour plots given

in Fig. 2.5 show the maximum deviation of the internal DOF per vertex between the two
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(a) L = 5 (b) L = 10

(c) L = 20 (d) L = 40

Figure 2.5: Contour plots showing the maximum difference between Fpg and Fvpg per vertex
across four different system sizes.

methods, which is given by

∆F
N

=
max[Fpg(p)− Fvpg(p)]

N
. (2.2)

Note that the maximum deviation ∆F/N in Eq. 2.2 is determined by scanning p in the range

(0, 1), where the values of p at which the maximum occurs vary for different qfix and qfluct

values. As expected, the maximum difference occurs when qfluct = 1, where ∆F/N ∼ 0.6,

which is about 10% error considering there are 6 DOF per vertex. However, the maximum

deviation depends on the details of the network topology. Based on the discussions above,

both MCC and VPG are more accurate when the density of constraints in the network is

more uniform.
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(a) 3D networks, VPG and PG (b) 2D networks, VPG and PG

(c) 3D networks, VPG and bar-PG (d) 2D networks, VPG and bar-PG

Figure 2.6: The maximum difference of internal DOF ∆F/N between the PG and VPG is

plotted versus the heterogeneity index. The data are collected for different combinations

of qfix and qfluct. Note the sharp increase in ∆F/N at a threshold value hc
I , which is ∼ 1.0

for 2D systems, and ∼ 1.2 for 3D systems. Below this threshold value, the difference is

negligibly small. Panels (a) and (b) correspond, respectively, to three and two dimensional

lattices with L = 20. Similarly, panels (c) and (d) show that the differences are much

smaller between the VPG and the bar-PG.

To better understand the computational accuracy of the VPG in relation to the het-

erogeneous character of the network topology, a quantitative measure, the heterogeneity

index, is introduced. We define the heterogeneity index, hI , as the standard deviation of

the coordination number (degree of a vertex) across all vertices throughout the network.

This index is given by

hI =

√√√√ 1
N − 1

N∑
i=1

(Ci − C̄i)2 (2.3)
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where Ci is the coordination number of vertex vi, and C̄i is the average coordination of

the network. The heterogeneity index was calculated based on simulation. Operationally,

once a network is generated as described above, where fluctuating edges have been realized

as either being present or not, then, a simple count of edges connecting to each vertex is

averaged. Similarly, the standard deviation, given in Eq. 2.3 is applied. The heterogeneity

index quantifies the amount of variation of vertex connectivities throughout the network.

In agreement with our intuition, the difference in the internal DOF between the PG

and VPG is negligibly small when hI is small. The difference exhibits a sharp increase at

some characteristic value hc
I (≈ 1.2 for d = 3, and ≈ 1.0 for d = 2, see Figs. 2.6a and 2.6b).

Figure 2.6 provides a guidance regarding the accuracy of the VPG when applied to real

systems. The VPG is an excellent approximation to the PG when the heterogeneity index

of the network is below the critical value hc
I . Interestingly, similar behavior between the

2D and 3D networks is found. The main reason for constructing a 2D network is because

fluctuations are generally more important in lower dimensions (mean-field approximations

become more accurate in higher dimensions). As seen in these results, the robustness of

the VPG holds up in 2D networks markedly well, suggesting the heterogeneity index is an

excellent quantity to characterize the accuracy expectation of the VPG by looking at local

connectivity, without concern for the global topological character of the network.

The above analysis reveals that the VPG is more accurate for homogeneous networks.

However, as noted above, the accuracy of VPG is only affected by the density fluctuations

at the edge level, not necessarily at the network level. To test this aspect, the maximum

deviation of internal DOF between VPG and bar-PG is plotted against the heterogeneity

index for the 3D and 2D cases. In both cases (Figs. 2.6c and 2.6d) a similar qualitative

dependence on hI is found (as compared to the difference between VPG and PG). Most sig-

nificantly, the scale of the errors is dramatically decreased by almost an order of magnitude,

demonstrating that the VPG is capturing information about the detailed local properties

of the network topology. In most regimes of the parameter space {qfix, qfluct, p}, the VPG

will provide markedly accurate detailed information regarding the rigidity of the network.

After placing all the constraints, the PG and VPG determine the number of DOF left

in the network. When the network is globally rigid, just the six trivial DOF are remaining,
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(a) qfluct = 0.3, qfix = 0.3 (b) qfluct = 0.3, qfix = 0.2

(c) qfluct = 0.4, qfix = 0.1 (d) qfluct = 0.4, qfix = 0.0

Figure 2.7: Rigid Cluster Susceptibility curves for the four characteristic cases shown in
Fig. 2.4.

identifying a single rigid body (rigid cluster). The number of pebbles exceeding the trivial

DOF represent the degree of flexibility within the network. The localization of these DOF

help identify flexible and rigid regions. For two vertices to belong to the same rigid cluster,

there must be a maximum of six DOF between them. In order to identify rigid clusters,

the counting of pebbles is carried out for all possible pairs of vertices in the network. Once

all the vertices are assigned to a rigid cluster is possible to calculate the Rigid Cluster

Susceptibility (RCS) curve. The RCS is defined as the reduced second moment in rigid

cluster size. That is, the peak in RCS identifies the point where the rigid cluster sizes

are maximally fluctuating, indicating a transition from a globally flexible to globally rigid

network (rigidity transition). In figure 2.7 we compared the RCS for the four exemplar cases

from figure 2.4. These cases where chosen to analyze the behavior of the VPG algorithm

when there is a high percentage of fluctuating and missing edges, i.e., in all four cases this

percentage is more than 70%. According to this figure, the RCS curves qualitatively show

a very similar behavior for both algorithms, meaning that the rigidity transition is well
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detected by the VPG.

(a) Scorpion protein toxin (b) Oncogene MTCP-1

(c) Flap endonuclease (d) Transcription/DNA

Figure 2.8: The average number of internal DOF within the network, F , for four proteins
are plotted as a function of fluctuating edge probability, p, based on ensemble averaged PG
and VPG. For PG the standard deviation is shown for comparison purposes. The VPG
gives a very good approximation to the results for the PG. The maximum difference in F
between the PG and VPG occurs at values of p with maximal fluctuations.

To show the validity of the VPG algorithm we extend the calculation of DOF to

proteins. The procedure to model the protein networks is similar to the one we employed

to create cubic lattices, all the covalent bonds are represented by quenched edges, while

the hydrogen bonds are represented by fluctuating edges. For this analysis we use four

proteins that are non redundant at SCOP [33] family level: a scorpion toxin (pdbid =

1AHO) [34], the biomedical relevant oncogene MTCP-1 (pdbid = 1A1X) [35], the FLAP

endonuclease from M. jannashii (pdbid = 1A76) [36] and a DNA transcription regulator

(pdbid = 3COQ) [37]. Figure 2.8 shows the calculation of DOF by both algorithms over this

protein dataset, the PG algorithm was averaged over 200 realizations. All four calculations

on proteins are consistent with previous results on lattices. The region that shows a larger

difference corresponds to the rigidity transition and it is where the PG presents a larger
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standard deviation as well. VPG continues being a very good approximation to the actual

calculation of the PG ensemble averaged.

Figure 2.9: VPG execution times are plotted versus the number of vertices N within the

network, for 21 uniformly spaced values of p for qfix = 0 and qfluct = 1. In all cases, the

execution time is essentially linear with respect to N .

The last aspect of the VPG to characterize here is to show the execution times for

the VPG is comparable to a single PG on a fixed network. As demonstrated in Fig. 2.9,

the execution time of the VPG (and PG) scales approximately linearly with the number of

vertices, N , in the network. This time benchmarking holds up for all regions of parameter

space {qfix, qfluct, p}, except exceedingly close to the rigidity transition, where the VPG

scales as O(N2). It is generally found from simulation on networks that model molecular

structure that condensation improves the scaling of the VPG from O(N2) to almost always

O(N) above the rigidity transition. This dramatic increase in performance characteristic

follows the same response as that of the 2D and 3D PGs. Here, “almost always” means

that as long as the network is not very near the rigidity transition, we empirically find a

linear dependence on the number of vertices in the network. Interestingly, for the case of

a complete lattice with all fluctuating edges (qfix = 0, qfluct = 1, 0 < p < 1), the rigidity

transition is in perfect agreement with the Maxwell prediction (where the critical transition

probability pc is given by the p in Eq. 1 that sets Fm = 0). Note that the VPG recovers

MCC when no constraint density fluctuations are present. In this atypical case, the scaling

of the VPG is found to be O(N2) at very near the rigidity transition, where p must be well
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within a 1% deviation from pc. The worse case situation is very difficult to find, and almost

will never happen in practice. However, because the accuracy of the VPG algorithm is

comparable to the ensemble average over hundreds of PG network realizations for relatively

homogeneous systems, the VPG provides a tremendous increase in computational speed of

rigidity analyses in the desired applications.

2.6 Conclusions

In this chapter, a Virtual Pebble Game (VPG) algorithm is given that estimates the

average number of internal degrees of freedom (DOF) in a generic body-bar network that

has fluctuating distance constraints. The accuracy of the VPG is compared directly with

ensemble averaged estimates by repetitively employing an exact Pebble Game (PG) a hun-

dred times to perform random sampling. In the network representation for the PG, each

edge corresponds to an integer number of distance constraints, and vertices have integer

number of free pebbles. In the VPG, an ensemble of networks is represented as a single

effective network, where each edge represents an average number of distance constraints.

Consequently, fractional number of pebbles are associated with edges and vertices, which

flow through the network. The VPG has comparable execution time to one run of the

PG, where both algorithms almost always scale linearly with the number of vertices in the

network.

The VPG provides an accurate mean-field approximation to the PG algorithm at the

level of individual edges, rather than across the entire network. Because of its mean-field

nature, the VPG calculation deviates from the ensemble averaged PG when the network

becomes more heterogeneous in distance constraint density. A heterogeneity index measure

(hI) that quantifies the standard deviation in the coordination number of vertices in a

network provides a good indicator to the degree of accuracy of the VPG. The average

number of internal DOF estimated by the VPG is less than 5% error when hI is below a

critical value, which is hc
I ≈ 0.7 for the 2D square lattice, and hc

I ≈ 1.1 for the 3D cubic

lattice. Beyond these critical values the VPG errors increase, but are always less than 10%,

and are rarely that high.

The comparison of both algorithms at their calculation of Rigid Cluster Susceptibility
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(RCS) curves on lattices holds optimistic expectations to apply the rigid cluster decompo-

sition on protein networks. This fact is possible since VPG facilitates detailed analyses of

network rigidity properties that is impossible under the global mean-field approximation

employed by MCC. To show the validity of the VPG, we extended the calculation of DOF

to proteins. The results are promising and consistent with our previous calculations on

lattices where the accuracy was well characterized.

2.7 Appendices: VPG Pseudo-Codes

In this section, we present the pseudo-codes for the virtual pebble game algorithm. Our

pseudo-codes are written such that they are independent of the data structures representing

the network.

Description of the algorithms

1. The virtual pebble game(bars, N) algorithm considers a list of bars and tries to cover

them in full one at a time. When covering a bar, we first pull back the 6 pebbles associated

with one of the vertices corresponding to the bar. Rigidity theory guarantees that 6 pebbles

can be pulled back for any vertex. Then a second search is carried out for the other vertex

corresponding to the bar, while blocking access to the first vertex. If enough pebbles can

be found to cover the bar, the search is successful; otherwise the search fails and all the

vertices that are visited during the search condensate to one representative vertex. The

same procedure is repeated for all the bars.

2. The try to find pebbles(u, pebbles required, blocked vertex) algorithm is applied to

pull back pebbles to a vertex. This algorithm stops when either one of two conditions is

reached: the total pebbles found is equal to the pebbles required or there are no more free

pebbles to pull back. The visited vertices are added to the visited vertices list to block

further visits in the current search.

3. The collect pebbles(vertex queue, visited vertices, pebbles required) algorithm is a

BFS algorithm that is applied when searching the network for free pebbles. It continues

searching for free pebbles until either one of two conditions is satisfied: (1) there are no

more vertices to visit in the vertex queue or (2) the amount of pebbles found is equal to the

amount of pebbles required. When backtracking the pebbles the algorithm needs to make
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sure that vertex containing free pebbles are accessible through a viable path from the root

vertex.

4. The back track(pebbles found, v, route) algorithm follows the route dictated by the

visited vertices list to pull back the pebbles found in the search up to the root vertex.

5. The collapse vertices(visited vertices) algorithm is employed after a pebble search

fails. This algorithm chooses the vertex with the lowest index as the root, and the vertices

in the visited vertices list all assume the same index as the root index. Hence all the vertices

in the visited vertices list condensate to one representative vertex – the root.

Algorithm 1 virtual pebble game(bars, M)

1: edge capacity = {0, 0 . . . 0}
2: vertex capacity = {6, 6 . . . 6}
3: for i = 1 to M do
4: b ← bars[i]
5: u ← first vertex of b
6: v ← second vertex of b
7: c ← capacity of b
8: blocked vertex ← none
9: [visited vertices, collected pebbles] ← try to find pebbles(u, 6, blocked vertex)

10: blocked vertex ← u
11: [visited vertices, collected pebbles] ← try to find pebbles(v, c, blocked vertex)
12: e ← edges(u,v)
13: edge capacity[e] ← edge capacity[e] + collected pebbles
14: vertex capacity[v] ← vertex capacity[v] - collected pebbles
15: if collected pebbles < c then
16: collapse vertices(visited vertices)
17: end if
18: end for

Algorithm 2 try to find pebbles(u, pebbles required, blocked vertex)

1: total pebbles found ← 0
2: fail flag ← false
3: while (total pebbles found < pebbles required) and (fail flag is false) do
4: visited vertices ← empty
5: add blocked vertex to visited vertices
6: vertex queue ← u
7: total pebbles found ← collect pebbles(vertex queue, visited vertices, peb-

bles required)
8: capacity[u] ← total pebbles found
9: end while

10: return (visited vertices, total pebbles found)
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Algorithm 3 collect pebbles(vertex queue, visited vertices, pebbles required)

1: route ← empty
2: filled flag ← false
3: total pebbles found ← 0
4: while (vertex queue is not empty) and (filled flag is false) do
5: w ← front of vertex queue
6: add w to visited vertices
7: p deficit ← pebbles required - total pebbles found
8: pebbles found ← min(p deficit, vertex capacity[w])
9: if pebbles found > 0 then

10: pebbles back tracked ← back track(pebbles found, w, route)
11: if pebbles back tracked < pebbles found then
12: limiting edge found ← true
13: end if
14: pebbles found ← pebbles back tracked
15: end if
16: total pebbles found ← total pebbles found + pebbles found
17: if total pebbles found ≥ pebbles required then
18: filled flag ← true
19: else if limiting edge found is false then
20: for each edge e associated with vertex w do
21: t ← second vertex of e
22: if e is covered by pebbles and vertex t has not been visited then
23: t ← second vertex of e
24: route[t] ← e
25: end if
26: end for
27: end if
28: pop out front vertex from vertex queue
29: end while
30: return total pebbles found
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Algorithm 4 back track(pebbles found, v, route)

1: e ← route[v]
2: while e is not end of route do
3: diff ← pebbles found - edge capacity[e]
4: if diff > 0 then
5: pebbles found ← edge capacity[e]
6: edge capacity[e] ← 0
7: t ← second vertex of e
8: vertex capacity[t] ← vertex capacity[t] + diff
9: else

10: edge capacity[e] ← edge capacity[e] - pebbles found
11: end if
12: er← reverse of edge e
13: edge capacity[er] ← edge capacity[er] + pebbles found
14: v ← first vertex of edge e
15: e ← route[v]
16: end while
17: return pebbles found

Algorithm 5 collapse vertices(visited vertices)

1: root ← vertex with lowest index in visited vertices
2: while visited vertices is not empty do
3: current vertex ← front of visited vertices
4: for each edge e associated with current vertex do
5: t ← second vertex of e
6: if t is not present in visited vertices then
7: first vertex of e ← root
8: end if
9: end for

10: remove current vertex from visited vertices
11: end while



CHAPTER 3: CALCULATING ENSEMBLE AVERAGED DESCRIPTIONS OF
PROTEIN RIGIDITY WITHOUT SAMPLING IN A PROTEIN DATASET

3.1 Introduction

In chapter two we mainly compared the calculation of DOF by the VPG and PG

algorithms over body-bar networks on cubic lattices. The results were positive, supporting

optimistic expectations for the application of VPG. Following the experimental design,

several questions were raised from those comparisons, for example: how would the VPG

behave on protein networks?, does the comparison of the algorithms on the calculation of

DOF is enough to suggest that VPG is a good alternative to PG?, would the mechanical

calculations made by VPG be consistent on larger datasets? This chapter addresses these

questions regarding the applicability of the VPG algorithm in a broader context.

In this chapter, we look to assess the suitability of the VPG algorithm on the proteins

realm. We make an extensive comparison of both algorithms across a nonredundant data set

of 272 protein structures. Our comparisons are based on the rigid clusters identified by both

algorithms, which represent groups of atoms that behave as a single body. We show through

a number of metrics that the VPG rigidity calculations represent an overwhelming majority

of the ones performed by the PG. Varying the number of interactions present in the network

allows us to identify the rigidifying effect that they have on protein structure. Through this

variation we are able to find the rigidity threshold that identifies the greatest number of

fluctuations within the network, which therefore represents the greatest difference between

the PG ensemble averaged (PG) and VPG. Remarkably, the similarity between the two

algorithms at this threshold, previously viewed as the folded/unfolded transition point [38],

is surprisingly high. As such, the VPG is ideally positioned as a viable alternative to

ensemble averaging in the characterization of protein rigidity.
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3.2 Materials and Methods

3.2.1 Protein Structure Description

We consider a dataset composed of 272 protein structures that are nonredundant at

the SCOP [33] family level. Our dataset includes one, two and three domain proteins (see

appendix of this chapter for PDB codes), that range from dozens to 800 residues. We focus

on three types of chemical interactions, which are: intra-residue, linker and hydrogen bond.

The intra-residue interaction models the covalent bonds that exist within a residue. The

linker interaction represents the peptide bond that connects the C-N terminal atoms in

adjacent residues. The reason we make a distinction between these two types of covalent

bonds is due to the number of DOF they consume. While an intra-residue bond consumes

five (leaving one for the dihedral angle), the linker consumes six (locking any possible

rotation) due to the partial double bond character of the amide group. The last interaction

is the hydrogen bond (H-bond), which we specifically control whether a H-bond is present

or not by the parameter 0.0 6 Pnat 6 1.0. In this fashion, all possible H-bonds within

the structure are present when Pnat = 1.0, whereas no cross-linking H-bonds exist when

Pnat = 0.0. An independent H-bond consumes three DOF in order to account for the

distance and angular constraints it imposes.

A constraint topology file (CTF) contains a list of all the possible interactions that are

to be considered within a specific protein structure. It is constructed from the original PDB

file. The CTF defines each interaction type, as well as their probabilities. Quenched covalent

interactions never change from one CTF to another, whereas fractional probabilities occur

in H-bonds due to thermal fluctuations as described by the variable Pnat. Fig. 3.1 compares

the PG and VPG descriptions of a toy network with eight nodes, where quenched covalent

bonds are solid and H-bonds are dashed. Two possible H-bonds exist in this example,

leading to an ensemble of 22 PG networks. Within each realization, the H-bond is either

fully present (Pnat = 1) or not (Pnat = 0). PG properties are determined by averaging over

the ensemble. Conversely, the VPG requires only one probabilistic network to describe the

ensemble because each H-bond presence is scaled by its fractional Pnat value.
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Figure 3.1: The respective network descriptions are compared. Equilibrium rigidity proper-
ties (designated as PG) are calculated by averaging across an ensemble of binary networks
where H-bonds are either present or not. Conversely, the VPG describes the network with
fractional H-bond probabilities.

3.2.2 Rigid Cluster Decomposition

After having placed all the constraints, the PG and VPG algorithms determine the

number of DOF left in the network. The trivial case is when there are just six DOF

remaining, meaning that the network is globally rigid and all atoms are contained in a

single rigid cluster. When there are greater than six remaining DOF, pebble location

identifies which regions of the protein network are flexible or rigid. Excess pebbles identify

flexible regions, whereas rigid regions occur when no free pebbles are accessible. From this

information, it is possible to apply a Rigid Cluster Decomposition (RCD) to localize groups

of atoms that move together as a whole body. A rigid cluster is a subgraph with all of its

atoms completely rigid among themselves. The process of finding rigid clusters proceeds as

follows: for any pair of vertices add a hypothetical edge, then try to cover it with ε > 0

DOF, always fixing the six DOF on one of the incident vertices. If ε DOF is found, then

both vertices do not belong to the same rigid cluster, otherwise a failed search is declared

and all the vertices involved in the search are part of the rigid cluster. Fig. 3.2 presents two

example of RCD cases. Notice that all the edges have been covered and they have different
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capacities. In the first case (Fig. 3.2a), there is a total of 7.4 available DOF, therefore for

any pair of vertices always is going to be possible to gather 6 + ε DOF, causing the three

vertices to be independent with respect to each other. For the second case (Fig. 3.2b), the

number of available DOF is exactly six (on vertex four), therefore no ε DOF will be found

under any circumstance, thus creating a rigid cluster that includes all five vertices.
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Figure 3.2: As discussed in the text, two different cases of cluster decomposition are com-
pared. Since ε > 0 DOF are present in the example on (a), the three vertices result in single
bodies. Conversely, only the six trivial DOF can be found in the example on (b), meaning
the five vertices belong to the same rigid cluster.

3.2.3 Network Similarity Metrics

We primarily employ two distinct metrics to compare the networks identified by the

VPG and PG algorithms. To quantify rigid cluster similarity, we employ the Rand Measure

(RM) [39]. The RM is a very well suited metric to compare clusters of elements, if both

clusters are identical the RM is equal to 1.0, otherwise it is equal to 0.0. This metric is a

combinatory count of all possible pairs of elements in the clusters, meaning it counts the

number of cluster composition coincidences between the two approaches. If for a specific

pair of vertices, the two approaches conclude that they belong whether to the same cluster
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or different cluster, it is count as a match. Therefore, the RM is calculated by the num-

ber of matches divided by the total number of possible pairs. A formal definition as given

in [39] is: given N points, X1, X2, ..., XN , and two clusterings of them Y = {Y1, ..., Yk1} and

Y ′ = {Y ′1 , ..., Yk2} there is defined

c(Y, Y ′) = ΣN
i<jλij/

(
N
2

)
where λij = 1 if k, k′ ∃ such that Xi and Xj are in both Yk and Y ′k′ or if Xi is in both Yk

and Y ′k′ while Xj is in neither Yk nor Y ′k′ , otherwise λij = 0.

We also compare the rigidity assessment of a dihedral angle at every particular protein

in the dataset to analyze the agreement at a more sensitive level. That is, we count the

number of times that both approaches agree in their rigid versus flexible assessment, normal-

ized by the total number of comparisons. This calculation leads to an agreement measure

(AM) that ranges from -1 to 1. When the VPG matches the majority of PG realization

rigidity estimations (i.e., torsion is flexible or locked), the AM equals 0. When the VPG

fails to match the majority of PG designations, the AM varies towards ±1 (-1 = flexible and

+1 = rigid). The variance from 0 indicates the proportion of disagreement. To calculate

the AM index for the n-th torsion there is defined

if (Nwrong > Nagree)

if (VPG deemed as rigid the n-th torsion)

measure = 50− 49× (Nwrong −Nagree)/Ntotal

else

measure = 50 + 49× (Nwrong −Nagree)/Ntotal

else

measure = 50

AM = (measure− 50)/49

where Nwrong is the count of times that PG disagreed with VPG, Nagree is the count of times

that PG matched the VPG, and Ntotal = Nagree+Nwrong is the total number of realizations
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for the PG. For instance, if a particular angle has a value of AM = −1, it indicates that

the VPG assesses the angle to be rigid, whereas the PG indicates the opposite (flexible) in

all the realizations.

3.2.4 Rigidity Profiles

To complement the quantities above, we also compare two different graphical descrip-

tions of network rigidity. The Rigid Cluster Map (RCM) identifies co-rigid α−carbons pairs

within the protein structure. By definition the main diagonal is rigid (an α−carbon is rigid

with respect to itself). When constructing the RCM, if a pair of α−carbons belong to the

same rigid cluster a value of 1 is assigned to the intersection of both elements, else 0 is given,

meaning it is a binary plot simply highlighting co-rigid residue pairs. The PG RCM plots

are based on a majority rule across the ensemble. That is, if 50% or more of the realizations

is rigid a 1 is assigned, otherwise 0 is assigned. To better quantify the number of DOF

located in the flexible α−carbons, we also employ the Mechanical Coupling Map (MCM).

The MCM offers the maximum number of available DOF that a pair of α−carbons have.

After fixing the trivial six DOF in one α−carbon a search for pebbles is launched on the

other α−carbon to gather the maximum number of DOF. For normalization purposes, the

DOF found are divided by six (being the maximum number of DOF that an α−carbon can

have). This information is presented using a color code scheme in the MCM that ranges

from zero to one, thus providing a more nuanced view of network rigidity. Since they are

not binary like the RCM, the reported PG MCM values are simply the arithmetic average

across the ensemble.

3.3 Results and Discussion

3.3.1 Quantifying Rigid Cluster Similarity

Characterizing the rigid clusters offers a unique view in terms of the role that chemical

interactions play within proteins. In prior work, we have used rigid cluster composition

to provide a statistically robust description of thermodynamic coupling within double mu-

tant cycles [40]. Moreover, there have been many investigations characterizing the loss of

rigidity that occurs upon protein unfolding using a H-bond dilution model [20, 38, 41–45].

Finally, PG characterizations of rigidity have been used to explain the increased stability
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of thermophilic proteins [46], RNA function [47], the effects of ligand binding [12] and the

identification of critical interactions [48]. In these works, an energy cutoff is used to iden-

tify which H-bonds are present. As the cutoff is relaxed, more H-bonds are included in the

structure, thus increasing rigidity. In the same way, we vary Pnat to control the number of

H-bonds, which we treat uniformly. That is, the probability 3 × Pnat defines the number

of DOF removed from the VPG when the H-bond is independent (recall each H-bond is

described by three distance constraints). Conversely, a random number between zero and

one is assigned to each possible H-bond in each PG realization to determine if it is present

or not (H-bond is present if RAND(0, 1) < Pnat). This process is repeated 1000 times to

generate the PG ensemble, which is much more than necessary to achieve good statistics.

As discussed above, the Rand Measure [39] (RM) compares the rigid cluster composi-

tions from the VPG and PG. Fig. 3.3a presents the RM calculation across the range Pnat

values for four exemplar protein structures. The four example proteins span a range of sizes

(from 64 to 315 residues) and topological architectures. Specifically, they are the chemotaxis

receptor methyltransferase CheR structure (pdbid = 1AF7) [49], the FLAP endonuclease

from M. jannaschii (pdbid = 1A76) [36], a small scorpion protein toxin (pdbid = 1AHO) [34]

and the disulfide oxidoreductase from P. furiosus (pdbid = 1A8L) [50]. In each, there is a

region where the RM decreases sharply, which corresponds to the worst-case situation when

the fluctuations are maximized, for some networks this point represents the transition from

flexible to rigid. A similar pattern was detected across our entire dataset, which appears at

values as low as Pnat = 0.60 and ends at values as high as Pnat = 0.95. To calculate RM at

each Pnat, each one of the 1000 PG realizations is compared to the single VPG description.

The PG RM value is simply the average of the RM 1000 realizations. The Pnat at the

minimum in RM, designated PRM , identifies the worst-case scenario.

The high RM values indicate that the rigid cluster composition is very similar across

the PG and VPG. This point is shown structurally in Table 3.1, which presents the rigid

clusters found by both the PG and VPG algorithms using the same four example proteins.

Each rigid cluster is highlighted in color, meaning that a color change indicates a rigid

cluster boundary. Grey indicates a flexible region. While the similarity is apparent by just

qualitatively comparing the rigid cluster decompositions from each algorithm, the difference
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plots provided in the third column are most compelling. Here red coloring is used to identify

regions that disagree in rigid cluster composition, whereas grey coloring indicates agreement.

Expanding to our entire dataset, Fig. 3.3b plots a histogram of all RM scores at the

respective PRM value for each protein. The worst-case RM scores are encouragingly large

(> 80%) for an overwhelming majority of the proteins, thus indicating that the rigid clusters

identified by the two algorithms are quite similar. Slight shifts to the considered Pnat to

just above and below PRM negligibly affects the histograms.

3.3.2 Over versus Under Prediction of Rigidity

The RM used above is based on rigid cluster composition, but it is also important for

us to determine if the heuristic VPG tends to over and/or underestimate the amount of

rigidity within the structure. To determine how often each happens, we quantify similarity

within the rigidity of all backbone (φ and ψ) dihedral angles. The agreement measure

(AM) ranges from −1 to +1. A value of zero is returned when the PG and VPG agree,

meaning they both identify a particular dihedral as rigid of flexible. AM values of −1

indicate that the VPG identifies a dihedral as rigid, whereas the PG says that it is flexible.

Conversely, AM = +1 when the VPG identifies a dihedral as flexible, but the PG says that

it is rigid. Fig. 3.4a, b and c present histograms of AM values for three of the proteins from

above. In panel (a), it is shown that the VPG slightly overestimates the amount of rigidity

within the methyltransferase CheR structure, whereas panel (b) indicates that it slightly

underestimates the amount of rigidity within FLAP endonuclease. Panel (c) shows that

VPG overestimates the amount of rigidity within the disulfide oxidoreductase. Fig. 3.3c

presents a histogram of the entire dataset. Clearly, the overwhelming majority (> 92%) of

dihedral angles are in close agreement. Disagreement (AM6= 0) between both algorithms is

minimal, especially considering the comparison is at the PRM of each protein that defines

the worst case. Nonetheless, it is interesting to identify when discrepancies are most likely

to occur. A survey of the differences reveals that they generally occur in loop regions and

edges of secondary structures, as typified in Fig. 3.4d.
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Figure 3.3: Quantifying PG and VPG similarity. (a) The Rand Measure (RM) is plotted
versus Pnat for four exemplar proteins that span a range of sizes (from 64 to 315 residues)
and topological architectures. All proteins across the full dataset have the same character-
istic shape where the minima in RM is related to the protein structure’s rigidity transition.
The Pnat value corresponding to the worst RM is defined as PRM . (b) Histogram detailing
PRM values for each protein within our dataset. Encouragingly, an overwhelming majority
of cases have RMs greater than 80%. (c) Histogram detailing the agreement measure for
each backbone torsion within our dataset at each protein’s respective PRM value. (d) His-
togram detailing the Pearson correlation coefficient comparing the PG and VPG mechanical
coupling maps across the dataset at each protein’s respective PRM value.

3.3.3 Rigidity Profile Similarity

We use Rigid Cluster Maps (RCM) to visually highlight pairwise mechanical couplings

within structure. That is, analogous to protein contact maps, RCMs highlight α−carbon

pairs within the same rigid cluster by a red mark, otherwise no mark is provided. For ease

of comparison, the PG results are presented in the upper triangle, whereas the VPG results
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Table 3.1: Rigid Cluster visualizations for four example proteins using the PG (first column)
and VPG (center column). Differences between the two PG variants are highlighted in the
third column.

PG VPG Disagreement (|PG-VPG|)
Scorpion protein toxin, Pnat = 0.62

Disulfide oxidoreductase, Pnat = 0.57

Methyltransferase CheR, Pnat = 0.72

Flap endonuclease, Pnat = 0.75

are presented in the lower triangle. The PG values correspond to majority behavior across

the 1000 realizations. By construction, the protein backbone corresponding to the RCM

diagonal is always rigid in both variants. Using the methyltransferase structure from above
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Figure 3.4: Agreement measure (AM) results. AM histograms for the (a) methyltransferase,
(b) FLAP endonuclease and (c) disulfide oxidoreductase at their respective PRM = values.
(d) Differences between the PG and VPG are mapped to the ribosylglycohydrolase structure
from M. jannaschii, which is presented as a typical case. Red coloring indicates that the
VPG overestimates rigidity relative to PG, whereas blue indicates an underestimate. Across
our dataset, as shown in this example, differences occur most frequently in loop regions.

as a typical cases, the two panels in Fig. 3.5 correspond to two different values of Pnat,

ranging from a completely flexible (unfolded) structure with few crosslinking H-bonds to a

predominantly rigid structure with many crosslinking H-bonds. As one can see, the VPG

and PG algorithms give very similar results.

Going a step further, Fig. 3.6 presents the RCMs of our four example proteins near

PRM , thus Pnat is corresponding to the critical region. The presented values are slightly

shifted from exact PRM values to highlight interesting features. Note that the changes
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(a) Pnat = 0.60 (b) Pnat = 0.75

Figure 3.5: Rigid cluster maps (RCM) of chemotaxis receptor methyltransferase CheR
structure is plotted at two different Pnat values. Red coloring identifies residue pairs that
are co-rigid. PG results are presented in the upper triangle, whereas the VPG is presented
in the lower. At Pnat = 0.60, the protein is mostly flexible due to a lack of crosslinking
H-bonds. However, the structure becomes increasingly rigid as H-bonds are added to the
network. At Pnat = 0.75, the VPG slightly under-predicts the extent of rigidity. For this
protein PRM = 0.80.

in Pnat actually make the RCM plots appear more dissimilar. The large square region

along the backbone corresponds to a rigid α−helix. A similar pattern is is observed in the

disulfide oxidoreductase, which also has few crosslinking interactions at this value of Pnat.

Conversely, the off-diagonal features are mostly conserved in the methyltransferase CheR

structure, but the VPG slightly overestimates the extent of rigidity within the core region

(residues ∼ 75 − 150). The FLAP endonuclease example provides the most interesting

visual differences between the two PG variants, where the VPG underestimates the PG

predictions. That is, the VPG fails to identify rigid clusters present within the PG. However,

the differences are found to be much less severe on closer inspection regarding the number

of available DOF. While there are no free pebbles within the PG in these regions, the

probabilistic VPG identifies a tiny nonzero fraction (3 × 10−3). Clearly, this difference is

negligible, but the binary RCM makes the difference appear much larger than it actually is.

The Mechanical Coupling Maps (MCM) provide a more nuanced view of rigid cluster

decomposition. Unlike the binary RCMs, MCMs are based on a continuous scale that

identifies the fractional number of pebbles shared between each α−carbon pair. In this

way, the MCMs are quite similar to the cooperativity correlation plots calculated by our
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Figure 3.6: Rigid Cluster Maps (RCM) for four different example proteins near their re-
spective PRM values. PG results are presented in the upper triangle, whereas the VPG is
presented in the lower. Note that the presented proteins are the same from Fig. 3.3a.

statistical mechanical DCM [23, 24, 51–54]. All the values are normalized for practical

reasons by the number of trivial DOF. That is, six free pebbles corresponds to a MCM

value of one. Fig. 3.7 compares the MCMs for the same four proteins in Fig. 3.6, using the

same Pnat values. The rigidity over-prediction by the VPG in the methyltransferase example

is again clear. However, there is appreciable co-rigidity within the residue pairs contained

within the range of residues ∼ 60 − 80 and residues ∼ 80 − 150, which was identified as

flexible by the the RCM. Additionally, the MCMs reveal a more interesting set of similarities

throughout the plots. In the same way, the similarity within FLAP endonuclease is also

more pronounced, although the VPG again somewhat overestimates the extent of rigidity.
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Conversely, the MCMs actually show more dissimilarity within the two examples without

any off-diagonal RCM components. In both, there is marginal co-rigidity identified by the

PG (the reddish shadowing) due to some rigidity fluctuations throughout the ensemble that

is suppressed by the VPG.

Figure 3.7: Mechanical Coupling Maps (MCM) provide a more nuanced description of co-
rigidity. Specifically, the continuous scale provides a normalized description of how many
free pebbles (DOF) are shared between each residue pair (0 = 0 pebbles, whereas 1 = 6
pebbles). Again, each MCM is plotted near their respective PRM values for the same four
proteins presented Figs. 3.3a and 3.6.

Expanding across the entire dataset, Fig. 3.3d provides a histogram of the Pearson cor-

relation coefficient between the MCM matrices calculated by the PG and the VPG. Clearly,

the VPG is consistently a good estimator of the PG behavior. This point is strengthened

by Fig. 3.8, which compares the MCM of each unique PG realization to the PG plot for
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the same four proteins considered above. That is, the boxplots describe the intrinsic vari-

ability across the PG ensemble. The red line corresponds to the similarity between the PG

and VPG MCMs, which is encouragingly strong. In fact, the VPG similarity to the PG

behavior is better than the third quartile, which is indicated by the top of the box. This

result clearly indicates that VPG approximates PG behavior better than the vast majority

of the single PG realizations. These comparisons are calculated at the same value of PRM

as above, meaning they again correspond to the critical region.

3.3.4 The Rigidity Transition

Following earlier works [23, 24, 38, 51, 54], we define Pt (for transition) as the peak in

the rigid cluster susceptibility (RCS) curve, which is defined as the reduced second moment

in rigid cluster size. That is, the peak in RCS identifies the point in which the rigid cluster

sizes are maximally fluctuating, indicating a transition from a globally flexible to globally

rigid network. Twelve examples (including the four proteins discussed above) of PG and

VPG RCS curves are shown in 3.9, all of which are qualitatively similar. As shown by the

scatter plot in Fig. 3.10a, the rigidity transitions identified by the PG and VPG algorithms

are highly correlated. In addition, the Average Cluster Size (ACS) at Pt is also highly

correlated across the two algorithms (Fig. 3.10b). Since Pt identifies the Pnat value with

maximal variability within the rigid cluster sizes, is is expected to be related to the PRM

because the single VPG mean-field calculations suppresses fluctuations. This is indeed the

case as indicated by the strong correlation between Pt and PRM for both the PG and VPG

algorithms (Fig. 3.10c-d).

3.4 Conclusions

In this chapter we compared the PG versus the VPG algorithms on a extensive set of

protein networks. We demonstrated that ensemble averaged PG properties, which requires

sampling, is approximated well by a single mean field calculation. That is, the probabilis-

tic VPG accurately reproduces a number of ensemble-averaged network rigidity properties.

The high values of the RM clearly indicate that the rigid cluster compositions are very

similar, especially at Pnat 6= PRM . The AM and structural comparisons of the rigid clusters

respectively provide further quantitative and qualitative support for this point. Compar-
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(b) Disulfide oxidoreductase

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(c) Methyltranferase CheR
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(d) FLAP endonuclease

Figure 3.8: Boxplots describing the ensemble of Pearson correlations coefficients comparing
each PG realization to the PG behavior. The red line represents the correlation between the
PG and the VPG. In all cases, the PG to VPG similarity is greater than the 75th percentile
of the intrinsic fluctuations within the PG ensemble.

isons of the RCM and MCM rigidity profiles between the PG and VPG variants also indicate

that the calculated rigidity properties are highly similar. In fact, the PG to VPG MCMs

are much more similar than the intrinsic variability across the ensemble of PG snapshots.

Finally, the mechanical transitions identified by the peak in the rigid cluster susceptibility

curves are highly correlated across the two variants. Taken together, these results collec-

tively demonstrate the utility and power of this new virtual pebble game.
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Figure 3.9: Rigid Cluster Susceptibility (RCS) is plotted versus Pnat for 12 typical protein
examples (PG = solid line and VPG = dashed line). Note that the proteins presented in
the first column are the same from Fig. 3.3a.
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Figure 3.10: Rigidity transition effects. (a) The rigidity transition (Pt) is compared across
the PG and VPG algorithms. (b) Similarly, the average cluster size (ACS) at their respective
Pt values are compared across the two algorithms. The value of Pnat with the worst RM
(called PRM ) is compared to Pt calculated using the (c) VPG and (d) PG. The linear
relationships occur because the mean field approximation is maximally inaccurate in this
range. Note, a few proteins do not have completed peaks in their rigid cluster susceptibility
curves because the protein never crosses the rigidity transition, which have been excluded
from panels (c) and (d).
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3.5 Appendix

PDB codes of the proteins in the dataset.

12AS 1A1X 1A32 1A3A 1A76 1A8L 1A92 1A9N 1AEP 1AF7 1AHO 1AHS 1AIH 1AK0 1AKO
1AL3 1ALV 1ALY 1AM9 1AN9 1AOC 1AOL 1ASH 1ATZ 1AVQ 1AYO 1B1C 1B3A 1B3T 1B5P
1B67 1B77 1B9O 1BAZ 1BBH 1BEA 1BF6 1BGV 1BIF 1BJA 1BKR 1BM8 1BOL 1BRT 1BTN
1BUP 1BX4 1BXY 1BYK 1C1D 1C3G 1C3P 1C4Q 1C5E 1C7K 1C7Q 1C8U 1CC5 1CCZ 1CHD
1CI6 1COJ 1COL 1CQ3 1CQY 1CSH 1CTF 1CV8 1CY5 1CYX 1D4T 1D7P 1D9C 1DFU 1DGW
1DJ7 1DK0 1DK8 1DKQ 1DL5 1DQ3 1DQG 1DQP 1DRW 1DSZ 1DTD 1DZF 1E2W 1E44 1E5K
1ECS 1ED1 1EE6 1EEJ 1EEM 1EFD 1EFV 1EGW 1EJE 1EKG 1EL6 1ELK 1EM8 1EP3 1EQF
1EWF 1EZ3 1F02 1F08 1F0K 1F20 1F5V 1F60 1FD9 1FN9 1G6S 1G73 1G8E 1GAK 1GL4
1GP0 1GQV 1GS5 1GWU 1GWY 1GXJ 1GYX 1H03 1H2C 1H2S 1H8P 1HW1 1HXN 1I0V 1I2A
1I2K 1I3J 1I4M 1I6P 1I78 1I8N 1IIB 1IO1 1IQ4 1IS3 1ISU 1J2L 1J2Z 1J71 1JDC
1JFL 1JH6 1JIW 1JKE 1JOV 1JSD 1JTD 1JUV 1JYH 1K6K 1KEA 1KID 1KNW 1KPT 1KQ3
1KTH 1L5O 1LAM 1LBV 1LGH 1LJ5 1LJO 1LKO 1LLM 1LMB 1LP1 1LYV 1M2K 1M9Z 1MDL
1MLA 1MML 1MSC 1MW7 1N69 1N81 1NH1 1NKD 1NPE 1NRZ 1NTY 1NYK 1O9Y 1OA8 1OAI
1OGD 1OK0 1OKC 1ON2 1OQV 1ORS 1OYG 1P1M 1P6O 1PDO 1PF5 1PTQ 1PUC 1PVM 1PYO
1QB2 1QEX 1QYN 1R7L 1RMD 1RP0 1RQW 1S12 1SCZ 1SFP 1SIQ 1SKN 1SQU 1SR8 1SVB
1SYX 1T5J 1T8K 1T9I 1TFE 1TKE 1TO6 1TUA 1TZV 1U0M 1UHE 1UUN 1V71 1V77 1VMO
1VP2 1VYI 1VZI 1VZY 1WQJ 1YU0 1ZDY 1ZJC 2AG4 2AVU 2B9D 2BH1 2CFQ 2CLY 2D5B
2EDM 2FCW 2G64 2I06 2IZY 2O39 2O4T 2OEB 2P62 2PHC 2PSP 2QFA 2RFT 2SIC 2UUI
2VO9 3COQ



CHAPTER 4: IMPROVING PROTEIN FLEXIBILITY PREDICTIONS BY
COMBINING STATISTICAL SAMPLING WITH A MEAN-FIELD VIRTUAL PEBBLE

GAME

4.1 Introduction

In this chapter we present a new hybrid algorithm called VPG-x that integrates the PG

and VPG treatments. Therein, some percentage of constraints (controlled by the variable

x) are statistically sampled. This approach bridges the divide between the PG and VPG

algorithms, allowing one to continuously vary from one to the other as a function of x.

As summarized below, the hybrid VPG-x algorithm consistently improves upon the com-

pletely mean-field VPG with small additional computational cost. Specifically, the VPG-x

algorithm is able to capture some of the marginal rigidity within frustrated regions that is

missed by the VPG. However, the VPG-x algorithm is unable to quantitatively reproduce

the PG descriptions precisely, and fluctuations are missed for any x that is not essentially

1. In cases where high accuracy is desired regardless of the computational cost involved,

the original PG remains optimal. As the system moves away from the rigidity transition,

VPG-x provides an alternative method. Far away from the rigidity transition, the VPG

is sufficient (i.e. x = 0). These general features reflect the general property that PG and

VPG can be morphed into one another continuously, and the results agree with intuition

that the errors and speed change continuously as a linear function of x as well.

4.2 Materials and methods

4.2.1 Protein network descriptions

The details for the creation of protein networks are the same as the ones explained in

chapter three. The protein dataset that we use for testing purposes has ten proteins. The

PDB codes for these proteins are: 1AHO [34], 1AF7 [49], 1A76 [36], 1A8L [50], 12AS [55],

1AEP [56], 1A1X [35], 2SIC [57], 3COQ [37] and 2PSP [58]. A schematic explanation of

the three algorithms is presented in Fig. 4.1.
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Fig. 4.1 illustrates different topologies for PG, whereas VPG has only one topology. In

this example, there are 2 possible fluctuating constraints representing a H-bond (red dashed

lines), leading to 22 = 4 realizations. The single VPG network is also shown, where the

pebble capacity of each constraint has been attenuated by Pnat. As discussed further below,

the VPG-x algorithm treats some portion (1− x) of the H-bond network probabilistically,

whereas the remainder (x) is sampled with probability Pnat. The network for VPG-x with

x = 0.5 is shown in Fig. 4.1.

4.2.2 The algorithms

In chapter two we saw that despite differences (binary versus probabilistic), the PG

and VPG algorithms have identical pebble search rules, and not surprising share similar

execution times (linear in practice, although quadratic in worst case [18]). However, the

total amount of time needed by PG must be multiplied by the number of realizations

sampled. On the other hand, the single VPG calculation suppresses fluctuations within

the network, making it susceptible to error in regions that have high variance within the

PG. The VPG-x algorithm addresses both issues by balancing the amount of sampling and

mean field character to obtain more accurate results than VPG, while being faster than

PG. VPG-x randomly selects x-fraction of the H-bond edges to sample over, and a mean

field treatment is made for all remaining H-bond edges. Due to sampling, both execution

times and accuracy are increased. When x = 0, the calculation is entirely VPG, whereas

when x = 1, the calculation is entirely PG.

A modification in line 3 of the VPG (algorithm 6) is needed to run the VPG-x algorithm.

The detailed description of this modification is given by algorithm 7. Note that just the

H-bonds are fully evaluated by algorithm 7 (covalent bonds are treated the same in all

variants). A double condition assures the right balance between both regular sampling

and mean field treatment. Let x be the variable that controls the amount of fluctuating

interactions, ek the current edge that is being evaluated and Pnat the probability of existence

of a H-bond. The condition at step 3 (algorithm 7) evaluates which treatment is to be used

for each H-bond. If this condition is true, regular PG sampling is applied. Otherwise the

else clause is evaluated and the constraint is treated probabilistically. When a H-bond is
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Figure 4.1: Comparison of network descriptions for all three PG variants. The PG is
based on an ensemble networks where each constraint is either fully present or not. In this
toy example, all members of the ensemble are described, but this is impossible in protein
structures. As such, we statistically sample networks where presence vs. absence of each
constraint is based on comparing a random number to Pnat. The VPG directly calculates
average properties because DOF have been fractionalized and each constraint is assigned
a pebble capacity defined by Pnat. The VPG-x algorithm integrates both approaches. In
this example, the top constraint is treated probabilistically, whereas the bottom is sampled.
The variable x controls how much of the network is directly sampled.

statistically sampled, another random number is compared against Pnat to evaluate the

presence of that given H-bond, whose capacity is 3 when present and 0 when absent.
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Algorithm 6 VPG
Consider a network consisting of vertices {Vn}, n = 1, 2, ...N, with a list of edges
{em},m = 1, 2, ...M .

1: Initialize: {Vn} with 6 DOF for each vertex
2: for k = 1 to M do
3: insert edge ek with capacity ck, let vi and vj be its two incident vertices
4: collect 6 pebbles on vertex vi
5: flag vertex vi
6: launch a search for ck pebbles on vertex vj
7: if ck pebbles were collected then
8: cover edge ek
9: else

10: condense all visited vertices in the failed search into a single vertex
11: end if
12: end for
Algorithm 7 VPG-x add-on

1: if ek is a H-bond then
2: r ← random(0,1)
3: if r < x then
4: s← random(0,1)
5: if s > Pnat then
6: ck ← 0
7: end if
8: else
9: ck ← ck × Pnat

10: end if
11: end if

4.2.3 Similarity measures

To compare the algorithms in the experimental section below we have employed some

of the metrics that we already defined in previous chapters. The simplest of these metrics

just compares the number of floppy modes at a given Pnat value. Network similarity is also

compared using Rigid Cluster Maps (RCM) and Mechanical Coupling Maps (MCM).

We have compared the RCM and MCM plots over the entire range of Pnat between 0 to

1 for the VPG against PG. We focused only in the worst case scenario where the greatest

difference is found between PG and VPG. The Rand Measure (RM) is a common metric

to compare the similarity between two sets of clusters [39], which we use to compare the

rigid cluster decompositions. That is, the vertices in the network are assigned to clusters
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based on rigid cluster decomposition that comes from a PG and the VPG. The RM is then

averaged over 1000 distinct networks for each Pnat to obtain RM(Pnat). Scanning across the

full range of Pnat, we determine the minimum value of the RM for each respective protein

structure. An exemplar RM curve is shown in Fig. 4.2. In all cases, the RM curves have

this characteristic dip, which approximately corresponds to the rigidity transition, where

maximum fluctuations are found within PG as expected.
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Figure 4.2: The Rand measure (RM) is plotted versus Pnat for a typical case. RM values of
1 indicate identical cluster compositions, whereas values of 0 indicate completely different
compositions. Due to the extreme nature of the networks at low and high values of Pnat
(meaning mostly flexible or mostly rigid), the RM is ∼ 1 indicating that the PG and VPG
algorithms provide nearly identical results. Conversely, pronounced differences arise at the
rigidity transition, as indicated by the dip in RM. While details vary, all proteins under
consideration have the same characteristic shape as shown here.

4.3 Results and discussion

An important quantity of interest that quantifies global network flexibility is the num-

ber of floppy modes in the network once the PG has completed. Fig. 4.3 shows the number

of floppy modes calculated by the various algorithms, including a series of VPG-x variants

corresponding to a range of x values. Corresponding to the dip in RM, the transition from

a flexible to rigid protein structure is identified here by the change in slope, which is where

most fluctuations across the network occur. As a consequence, the disagreement between

the PG and VPG algorithms is maximized here. Fig. 4.3a plots the number of floppy
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modes within a cubic lattice model with boundary conditions. For this homogenous exam-

ple, the PG and VPG-x algorithms are averaged over 100 realizations, which is sufficient

for good statistics. Due to network uniformity, this example cleanly highlights the effect of

different values of x, which systematically morphs from VPG to PG character. Conversely,

the transition is compressed in real protein systems. For example, the number of floppy

modes in the structure of lipoprotein (pdbid = 1AEP) [56], disulfide oxidoreductase (pdbid

= 1A8L) [50] and chemotaxis receptor methyltransferase (pdbid = 1AF7) [49] are also pre-

sented (cf. Fig.4.3b-d). The calculation of PG is averaged over 200 realization, whereas

VPG-x is averaged over 50. Note that fewer VPG-x realizations are needed in practice to

achieve good statistics due to an overall fewer number of fluctuating interactions. Zooming

in, Fig. 4.3e-f focuses on the rigidity transition region of interest, which also highlights the

systematic morphing from VPG to PG behavior.

RCM’s are used to visualize rigid cluster composition (cf. Fig. 4.4). Plotting residue

number versus residue number, red coloring identifies a co-rigid pair, whereas white indi-

cates some degree of flexibility present. Because all possible residue pairs within a protein

structure are contained above or below the diagonal, each RCM compares two PG variants.

In all cases, the most accurate PG results are presented in the upper triangle. To ensure

more than sufficient sampling, these results are averaged over 1000 PG realizations. The

VPG-x results are presented in the lower triangle in the left column, whereas the VPG

results are shown in the lower triangle in the right column. The number of VPG-x samples,

R, and x values are tailored to each protein with the goal of only using a minimal number

of needed samples, which is controlled by protein size and architecture.

Starting with a small neurotoxin structure (pdbid = 1AHO) [34] that lacks crosslinking

H-bonds at this value of Pnat, the RCM’s of both the VPG-x and VPG algorithms reproduce

the PG description (cf. Fig. 4.4a,b). Therein, all PG variants identify two main rigid

clusters, the larger of which corresponds to an α-helix. Due to the lack of complexity within

this network, we simply chose the intermediate value of x = 0.5 and a minimal number of

samples (R = 30). Conversely, the methyltransferase structure from above (pdbid = 1AF7)

is very interesting. Here the PG identifies a main rigid cluster that is somewhat “dented”

(cf. Fig. 4.4c), whereas the VPG in panel (d) overestimates the cluster size. Also, the VPG
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The number of floppy modes (FM) is plotted versus Pnat. In each panel, the
PG and VPG results are shown, which represent two extremes. In panel (a), the results for
a cubic lattice network are presented, whereas the others correspond to protein structure
examples: (b) lipoprotein, (c) oxidoreductase and (d) methyltransferase. The critical region
of panels (c) and (d) are respectively zoomed in on panels (e) and (f). In these latter two
panels, it is clear that the VPG-x results systematically transition from VPG-like at small
values of x to PG-like at larger values of x.

overestimates the three off-diagonal “parallel” lines that correspond to a four stranded β-

sheets that are also part of the main rigid cluster. The VPG-x correctly suppresses rigidity

in all of these regions, returning results more consistent with the PG results (c). In this

case, x is again equal to 0.5, whereas R has been increased to 200 due to its larger size.

While the VPG overestimates the size of the main rigid cluster in the methyltransferase
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Figure 4.4: Rigid cluster maps (RCM) identify all co-rigid (red) residue pairs in four exam-
ple protein structures. In each, the PG results are plotted in the upper triangle, whereas the
lower triangle corresponds to the VPG-x (left column) and VPG (right column) variants.
The considered proteins are: (a-b) a neurotoxin structure at Pnat = 0.63, (c-d) a methyl-
transferase structure at Pnat = 0.72, (e-f) a FLAP endonuclease structure at Pnat = 0.78
and (g-h) an oxidoreductase structure at Pnat = 0.57. In each case, the reported Pnat values
correspond to the lowest value of the Rand Measure comparing the PG and VPG results.
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example, it actually underestimates it in FLAP endonuclease (pdbid = 1A76) [36] (cf.

Fig. 4.4f). Nevertheless, the VPG-x algorithm restores the off-diagonal co-rigidity, again

closely approximating the PG behavior (cf. Fig. 4.4e). In this example, values of x = 0.2

and R = 30 are considered. Finally, the disulfide oxidoreductase from above (pdb = 1A8L)

is shown in the last row using x = 0.5 and R = 100. As with the neurotoxin structure, the

lack of crosslinking H-bonds makes all three rigidity characterizations very similar.

Based on the RCM descriptions, it is clear that the VPG-x better approximates the

PG results. However, this point is further underscored by the MCM comparisons. Using

the same format and parameter values as above, Fig. 4.5 compares across the same four

example protein structures. In these plots, slight “shadowing” occurs in many off-diagonal

regions that are simply colored white in the RCM plots, meaning that the number of DOF

shared by the corresponding pairs is relatively small. In fact, in the two simplest RCM

examples without any off-diagonal components, there is slight (neurotoxin structure) and

extensive (oxidoreductase) shadowing in the PG descriptions. In both cases, the VPG-x

algorithm does a much better job of reproducing the PG results compared to the VPG.

Similarly, the VPG-x variant again does a better job of describing the PG descriptions in

the two more complex examples, meaning it clearly detects subtle properties that the VPG

misses.

Mapping the identified rigid clusters to structures further highlights the differences of

the PG variants. Again using the large methyltransferase structure and parameters from

above as an example, Fig. 4.6 color-codes all rigid clusters identified by the VPG and VPG-

x variants, meaning spatially contiguous co-rigid residues are colored the same, whereas

color changes indicate flexible DOF between clusters. Grey regions specify flexible regions

that do not belong to a rigid cluster. Across the pair, color-coding is conserved to facilitate

comparisons. In both cases, the structure is primarily composed of one large rigid cluster

(shown in red). However, as highlighted above, there were some disagreements between the

two probabilistic treatments, which are highlighted by the black circles corresponding to

the “dented” PG squares in Fig. 4.4c-d. Across the PG ensemble, there is a general lack of

consensus in the descriptions of the small β-sheets and the capping end of the identified α-

helix due to maximal rigidity fluctuations therein. These fluctuations are completely missed
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Figure 4.5: Mechanical coupling maps (MCM) provide a more nuanced view of co-rigidity.
Juxtaposed to the all-or-nothing RCM plots above, MCM values quantitatively indicate
how many spare pebbles are present within each residue pair. As a result, the power of
the VPG-x algorithm is further underscored due to its ability to detect subtle properties
missed by the VPG. The organization of this plot and the parameters used are exactly the
same as Fig. 4.4.
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by the VPG, resulting in both regions to be included in the primary (red) rigid cluster, but

the VPG-x algorithm correctly identifies them as, on average, distinct rigid clusters.

(a) (b)

Figure 4.6: Rigid Cluster decomposition for VPG (a) and VPG-x (b) for a large methyl-
transferase structure (1AF7). The black circles in the bottom panel highlight regions of
disagreement between the algorithms.

We have shown that VPG-x provides a better description of rigidity compared to the

VPG. However, the parameters x and R have been chosen somewhat arbitrarily. A natural

question is thus, “What values of x and R maximize improvement?”. In this regard we

calculated the root mean square distance (RMSD) between the PG and VPG-x MCM plots

(at different values of x and R) versus an “optimal” MCM map, which is defined as PG

averaged over 1000 samples. Fig. 4.7 shows how well the various PG variants that rely

on sampling reproduces the “optimal” behavior as a function of the number of samples.

Here, we use three examples from above (the neurotoxin, lipoprotein and oxidoreductase

structures) and introduce one new example from our dataset that is particularly biomed-

ical important, which is the structure (pdbid = 1A1X) of the oncogene MTCP-1 [35]. In

each case, as more PG samples are considered, the PG better approximates the “optimal”

behavior. In the same way, the VPG-x results also improve as a function of the number of

samples in a systematic and expected way. However, the partial mean-field treatment of the

VPG-x algorithm prevents it from ever exactly reproducing the PG descriptions. Further,

the more PG-like, the better each VPG-x variant does, which is consistent with the results

presented above. While obvious and expected trends are found, no optimal values for x and

R emerge from this analysis. A noteworthy characteristic of the VPG-x algorithms, which
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is inherited from the VPG, is that it converges very rapidly at lower values of x. Conversely,

at high values of x, the number of realizations needed to converge makes the speedup over

PG largely negligible.

(a) (b)

(c) (d)

Figure 4.7: Accuracy vs. computational cost. The inverse root mean square distance
(1/RMSD) between the MCM plots from each PG variant and an “optimal” PG using the
corresponding number of samples is plotted. In all cases, the accuracy improves as more
samples are considered. Similarly, accuracy also improves as the VPG-x variants become
more PG-like. The presented examples are: (a) structure of a neurotoxin, (b) structure of
an oncogene, (c) structure of a lipoprotein and (d) structure of an oxidoreductase enzyme.

4.4 Conclusions

In this chapter, we introduced the VPG-x algorithm. The VPG-x algorithm is based

on a hybrid probabilistic/sampling algorithm where a portion of the interactions are treated

in a VPG-like way and the remaining are statistically sampled using a PG-like treatment.

The results from this hybrid approach clearly provide a more nuanced and accurate descrip-

tion of network rigidity within protein structures compared to those from the VPG, which

suppresses fluctuations. In addition, the results intuitively and systematically transition
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from VPG-like to PG-like as the variable x is adjusted. These same conclusions are arrived

at regardless of which similarity metric is considered. As expected, the VPG-x algorithm

converges quickly at small values of x, but the accuracy fails to approach that of PG because

only a few interactions are sampled. Conversely, at high values of x, the VPG-x algorithm

converges slowly and, more critically, it still fails to reproduce the accuracy of PG. Thus,

in situations where maximal accuracy is required, the original PG variant remains the best

option. However, when such extreme accuracy is not needed, which is frequently the case,

the VPG-x algorithm provides a significant accuracy increase over the VPG at limited

computational cost.

4.5 Future work

The primary purpose of this chapter is to introduce the concept of the VPG-x algo-

rithm and demonstrate its promise. While the VPG-x algorithm has generated encouraging

results, we believe this approach can be significantly improved by two variations. The first

is based on the fact that we are not intelligently determining where to apply the sampling,

meaning we are currently randomly assigning each interaction to the VPG-like versus PG-

like treatments. As such, we are often sampling in regions where the mean-field treatment

is sufficient and often applying mean-field in a critical region where sampling is necessary.

Eliminating both of these contra-situations is expected to greatly improve performance of a

hybrid method. In future work, we will develop a bootstrapping method to identify critical

regions where sampling is most necessary, and then only apply the sampling within those

critical regions. A “background” VPG-like description will correspond to non-critical re-

gions. While the details have not yet been finalized, these critical regions typically occur

near isostatic regions where the network is marginally rigid, thus leading to frustrated be-

havior that suppresses VPG accuracy. These areas can be initially determined by the VPG

as an initial step. Then some regions will be subjected to sampling, keeping a VPG-like

description to the remainder of the structure. After a relatively small number of samples are

taken, a more accurate determination can be made to identify additional regions to sample.

In this way, the increased computational cost of the VPG-x algorithm can be kept in check.

Far away from the rigidity transition, the total number of samples will be very small. As



61

the rigidity transition is approached, the number of samples will increase as fluctuations

play more of an important role, perhaps naturally reaching the limit of the PG.

The second variation is related to our uniform treatment of Pnat, which is an extreme

(unphysical) assumption that makes the results presented here the worst case. By using

context dependent H-bond probabilities lifted from [24], the results of the VPG and VPG-x

will much more readily match with the PG results because most H-bond probabilities are

near 1 or 0, where the VPG and PG give nearly identical results (actually this is shown in

next chapter). The two variations can be combined, since the latter variation is a passive

improvement that should automatically occur when the context dependence of a H-bond is

taken into account. The nature of both variations is to focus on a much smaller number

of H-bond that are critical to the flexibility within a protein. Therefore, the work toward

development of a more efficient algorithm is tied to identifying a critical set of hydrogen

bonds having great influence on protein stability and function.



CHAPTER 5: COMPARISON OF A MEAN FIELD ALGORITHM AGAINST AN
ENSEMBLE-BASED ALGORITHM USING PROBABILITIES FOR HYDROGEN

BONDS DERIVED FROM THEIR RESPECTIVE ENERGY

5.1 Introduction

In chapters two and three we compared the Pebble Game (PG) and the Virtual Pebble

Game (VPG) algorithms using different test cases such as disordered lattices and an exten-

sive 272 protein dataset (non-redundant at SCOP [33] family level). According to a vast

number of metrics that we employed, there is strong evidence to suggest that VPG is a very

good predictor of the mechanical responses calculated by the ensemble of PG descriptions

(PG). This result holds optimistic expectations for using the VPG on real-life applications.

Nonetheless, it is important to note that several abstractions have been made when gener-

ating the test cases. One such abstraction is the uniform probability of existence for all the

fluctuating interactions for any given ensemble. The parameter that controls the existence

of the fluctuating interactions is the variable Pnat. When we compared both algorithms

at a particular Pnat we considered that all the fluctuating interactions were present with

the same probability regardless its strength. This assumption led to a slightly unphysical

test-case that, based on the following discussion, actually represents the worst-case scenario.

We refer to this model hence forth as uniform.

When we analyzed the calculation of degrees of freedom (DOF) in chapter two and

the RAND measure in chapter three, we observed a region where the difference between

both approaches was maximal. This particular point very well corresponds with the rigidity

threshold, where the protein (or lattice) transitions from being globally flexible to globally

rigid. The major discrepancies occur at this point given that the fluctuations are maximized

and that the VPG suppresses fluctuations. As a counterpart, both algorithms yield identical

calculations when Pnat is away from the rigidity transition (near a value of zero or one). In

proteins, the fluctuating interactions are going to range from very weak (barely perceptible)

to very strong (ever present) energy levels. Considering that the probabilities of existence



63

(a)
(b)

Figure 5.1: Potential energy of each H-bond versus its corresponding occupational proba-
bility (a) and the RCS curve (b) for a neurotoxin structure.

for these interactions are directly proportional to their energy, we could expect that a

differentiation in their probabilities may improve the similarity between PG and VPG. We

are going to call this model differentiated.

Fig. 5.1 a) shows the energy and corresponding probability of existence (occupational

probability) for all H-bonds in a neurotoxin protein (1AHO). The stronger the energy (more

negative) the more likely an H-bond will be present within the network at any given moment.

A basic and intuitive approach to know how much fluctuations (on average) correspond

to this particular set of H-bonds implies to calculate the average energy for all H-bonds

(∼ −2.43 kcal/mol) and its respective probability Pavg = 0.98. Panel (b) shows the RCS

curve for the same protein under the uniform model, the rigidity transition occurs at the

peak of the curve, Pt = 0.81. According to the RCS curve, we can observe that Pavg does not

correpond to the point with largest fluctuations, suggesting that a differentiated model may

do a good job driving away from this situation. An important feature of the differentiated

model is that most of the H-bond probabilities will be near 1 or 0 (sharp peak functions),

where the VPG and PG give nearly identical results.

The differentiated model also leads to a more realistic treatment of protein networks.

Figure 5.2 exemplifies this model with a network of eight vertices and three fluctuating

interactions. Assuming that each fluctuating interaction has a different energy and con-

sequently a different probability of existence, note that some fluctuating interactions are
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always present within the PG realizations while others are intermittently or barely present.

Interestingly, some degree of homogeneity in these networks is observed, this is of partic-

ular relevance given that from chapter two we know that VPG is very accurate when the

networks have this property.

In this chapter, we move to a more realistic treatment for the fluctuating interactions

within each protein network. For this purpose we derive the probabilities of each interaction

based on its respective energy. The lowest the energy the highest the probability of existence

for that particular interaction. Using this model we compared both algorithms and we show

through the calculation of DOF, RCMs, MCMs and Rand measure that, as expected, the

VPG algorithms performs better than in the other less realistic test cases. This result is

of great importance given that it offers a more quantifiable perspective of the potential

application of the VPG.

Strength of HBs
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PG realizations
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Figure 5.2: The probability of existence of a fluctuating interaction is based on its respective
energy. Based on this model, for PG several network topologies are created whereas for the
VPG just one topology is needed.
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5.2 Materials and Methods

For comparison purposes we again use the 272 protein dataset presented previously.

This dataset has shown to encompass a variety of protein structures which has helped gener-

alize our results. To compare the PG and VPG over different ensembles of protein networks,

having each ensemble the same average number of hydrogen bonds (order parameter) we

apply algorithm 8. To define the variables in the algorithm, be hbmax the total number of

hydrogen bonds for a specific protein, µ a lagrange multiplier, Ehb a unidimensional vector

of size hbmax that stores the energy of each hydrogen bond and Phb a unidimensional vector

of size hbmax that stores the probability of each hydrogen bond.

When there are hb hydrogen bonds on average in the protein network, the algorithm cal-

culates the probability of each particular hydrogen bond to exist, meaning that the sum over

all the hydrogen bond probabilities must be equal to hb. For example, to calculate the occu-

pational probabilities in Fig. 5.1a, hb was set to 65 H-bonds (Pt×80 H-bonds), since we were

comparing the uniform and differentiated models at the point with maximal fluctuations.

The for loop sweeps all the possible (average) number of hydrogen bonds in the network,

except both end points (when hb = 0 and hb = hbmax), to avoid bad edge effects. Note

that to calculate the mechanical variables, PG or VPG must be included in step 5, when

all the probabilities were already assigned. The function get new µ(hbmax, Ehb, hb, old µ)

calculates the lagrange multiplier µ that makes the Boltzmann sum (
∑hbmax

i e−β(Ehbi
−µ))

of all the probabilities of hydrogen bonds equal to hb. This function starts off with an

initial guess for the lagrange multiplier (old µ) that is constantly updated until the average

number of hydrogen bonds is hb. Afterwards, the function get hb prob(hbmax, Ehb, Phb, µ)

assigns to each hydrogen bond its respective weight (probability) on the sum for which the

lagrange multiplier was previously calculated.

Algorithm 8 get probabilities from energy

1: for hb = 1 to hbmax − 1 do
2: µ← get new µ(hbmax, Ehb, hb, old µ)
3: old µ← µ
4: Phb ← get hb prob(hbmax, Ehb, µ)
5: MECHANICAL ASSESMENT
6: end for
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5.2.1 Network Similarity Metrics

In chapter three you can find a detailed description of the network similarity metrics

that we employ here. We compare PG and VPG at the calculation of available degrees of

freedom (DOF) in the complete network. This calculation is made once all the constraints

were added to the system. According to the number of constraints and the number of degrees

of freedom that they consume we can analyze the excess of pebbles and therefore identify

flexible, constrained and over-constrained regions in the proteins. On average, the number

of DOF is a monotonically decreasing function with respect to the number of constraints

in the system, formerly represented by the variable Pnat and in this chapter represented by

the average number of hydrogen bonds in the network.

A more elaborate comparison is based on the identification of rigid clusters of atoms.

A rigid cluster represents a rigid body in space, meaning that all of its atoms (elements)

move together as a single body. The constraints that are placed within a rigid cluster

have exhausted the excess of pebbles, just leaving the six trivial DOF for its reference in

3D space. The Rand Measure (RM) [39] is a well suited metric to compare clusters of

elements. When we compare the cluster distribution of two networks, a RM equal to one

will represent that the clusters of vertices in both networks have exactly the same elements.

On the contrary, a value of zero will represent that both networks have a totally different

cluster distribution. Interestingly, the latter corresponds to the case where one network

is totally formed by one−element clusters (globally flexible) while in the other there is a

unique n−element cluster (globally rigid).

A way to visualize rigid clusters of elements is provided by the Rigid Cluster Map

(RCM). Two residues are co-rigid if the maximum number of DOF that can be gathered

between them is six. If this is the case, the RCM will color red (1) the intersection of those

residues in the map. On the opposite side, when there are more than six pebbles for a pair

of residues, representing some degree of flexibility, the RCM will leave blank the intersection

(0). A more nuanced view with respect to the number of DOF between a pair of vertices is

given by the Mechanical Coupling Map (MCM). The MCM shows through a color scale the

maximum number (level of flexibility) of DOF for a given pair of residues. This scale has
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been normalized for practical reasons, i.e., a value of one represents the maximum excess of

DOF (six pebbles) for any given pair of residues. Note that the DOF for two elements that

have the full amount of flexibility will be twelve.

5.3 Results and Discussion

First, we compare both approaches regarding the total number of available DOF in

the system. We show eight proteins where we perform this comparison. These proteins

with their respective PDB code are: an oncogene (1A1X [35]), a FLAP endonuclease (1A76

[36]), an oxidoreductase (1A8L [50]), an apolipoprotein (1AEP [56]), methyltransferase

(1AF7 [49]), neurotoxin (1AHO [34]), spasmolytic polypeptide (2PSP [58]) and a subtilisin

BPN’ (2SIC [57]). This information is shown in Figure 5.3. For PG, the average (over

200 realizations) value is reported, standard deviation bars are also shown for comparison

purposes. Most of the figures confirm that the VPG calculation is within, or slightly below,

one PG standard standard deviation. The difference between both approaches in the region

where most fluctuation occur is not as dramatic as when we compared both algorithms

using disordered lattices in chapter two. Overall, VPG shows a remarkable approximation

with respect to PG for the calculation of available DOF.

After the calculation of DOF we compared both algorithms at the identification of

co-rigid residues for the same proteins from above. The RCMs that are shown in Fig.

5.4 contrast PG and VPG at the particular point (worst case) where the difference in the

calculation of degrees of freedom is the largest across the average number of hydrogen

bonds. The RCM compares side by side both approaches, in the left upper triangle the PG

calculation is shown, VPG is opposite. Note that to present the information for PG and

since the RCM is a binary plot, the rigidity calculation corresponds to a majority rule, e.g.

if for most of the individual PG calculations (> 50%) a pair of residues is rigid, then they

are going to be co-rigid in the PG RCM. In general, there is a similar rigidity pattern for

most of the proteins. Although these panels show all the possible outcomes for the VPG

rigidity assessment (under/overestimation) there are minor differences with respect to PG.

The methyltranferase structure (panel e) presents a “mixed” rigidity calculation for VPG,

some regions of the largest rigid cluster are under/overestimated. This cluster is formed by
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(a) Oncogene MTCP-1 (b) FLAP endonuclease

(c) Oxidoreductase (d) Apolipoprotein

(e) Methyltransferase (f) Neurotoxin

(g) Spasmolytic polypeptide (h) Subtilisin BPN’

Figure 5.3: Comparison of the calculation of the total number of available DOF for eight
proteins.
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five α−helices (shown over the diagonal) and six β−sheets (off diagonal elements). Some

regions of the α−helices are underestimated by VPG while sections of the β−sheets are

overestimated. The subtilisin BPN’ structure (panel h) presents the largest contrast, VPG

mainly identifies some α−helices as rigid, while PG markedly found vast co-rigid regions

with respect to the same α−helices. This particular comparison takes us to the next analysis.

Based on the RCMs, how is it possible for the VPG to underestimate rigidity if it

always under-predicts the DOF (cf. 5.4 a,h vs. 5.3 a,h)? Moreover, this question is even

more on-point considering the RCMs are compared at the average number of H-bonds with

maximal deviations between both algorithms. Two possible answers do exist. The first

one is based on the calculation of DOF on the flexible regions (blank areas) in the RCM.

Being RCM a binary plot it is susceptible to small perturbations of pebbles, i.e. there is no

difference whatsoever to have 1×10−9 or 6 pebbles, for a pair of co-flexible residues. Be this

the case, VPG could have an almost perceptible number of pebbles on “flexible” regions,

giving the false impression of global flexibility while a global count of DOF will offer an

opposite conclusion. The second answer is based on the ensemble nature of PG. Since both

plots (calculation of DOF and RMC) show an average calculation, it could be the case that

most of the PG individual calculations are indeed more rigid than VPG, but those where

the PG is flexible, it is far greater more flexible than VPG. Leading to a counting of DOF

greater than the one of VPG, but also, to a more rigid view in the RCM. Our next analysis

addresses this question.

A more nuanced view of the rigidity composition is detected by the Mechanical Coupling

Maps (MCM). Fig. 5.5 shows the MCM for PG and VPG over the same proteins from above

(same parameters as in RCM). Unlike the RCM, the MCM gives a global and detailed view of

flexibility/rigidity throughout the protein network. If the rigidity pattern that was detected

by the RCM is clear, the MCMs confirm it and make it even more evident. As an example

of this latest statement consider the “very contrasting” (in RCM) subtilisin BPN’ protein

(Fig. 5.4 h). In its RCM, this particular protein showed a characteristic behavior that even

made us placed an interesting question regarding VPG underestimating rigidity. While in

the MCM (Fig. 5.5 h) we can clearly detect that, for VPG, the majority of its residue

pairs exhibit some lack of flexibility, very well approaching the PG calculation. This point
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Figure 5.4: Rigid Cluster Maps (RCM) for eight proteins. In each panel a PG-VPG com-
parison is made for: a) an oncogene, b) a FLAP endonuclease, c) an oxidoreductase, d)an
apolipoprotein, e) methyltransferase, f) neurotoxin, g) spasmolytic polyeptide and h) a sub-
tilisin BPN’. PG rigidity assessment is shown in the left upper triangle, VPG is opposite.

supports one of the reasons we previously gave to explain this phenomenon.

For all the proteins, the MCMs complement the rigidity view offered by the RCMs,

confirming that VPG offers excellent approximations to the ones of PG under this model.

According to the MCM plots, the VPG shows a remarkable agreement to the calculation
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and distribution of DOF throughout the protein networks. This fact is also emphasized

given that the comparison was made where the largest difference between both approaches

do occur.

Figure 5.5: Mechanical Coupling Maps (MCM) for eight proteins. In each panel a PG-VPG
comparison is made for: a) an oncogene, b) a FLAP endonuclease, c) an oxidoreductase,
d)an apolipoprotein, e) methyltransferase, f) neurotoxin, g) spasmolytic polyeptide and h)
a subtilisin BPN’. PG rigidity assessment is shown in the right upper triangle, VPG is
opposite.
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5.3.1 Physicality of three bars per hydrogen bond

The model to generate protein networks from PDB files that is explained in detail in

chapter three, considers the representation of a hydrogen bond with three distance con-

straints. This representation is based on the abstraction that two degrees of freedom are

required for each, the donor and the acceptor, while the one that is remaining considers

the angular constraint. The rigidity analysis using this model and its respective conclusions

have been satisfactory, finding in most of the cases (> 80%) a rigidity transition for the

protein networks. Rigid cluster susceptibility curves for some exemplar proteins are shown

in chapter 3 (Figure 3.9), note that the peak of the curve represents the rigidity threshold.

According to this figure, we can observe that effectively the proteins transit from a globally

flexible state to a rigid state under this model.

Within the community of protein rigidity analysis, the topic about the number of dis-

tance constraints to represent hydrogen bonds is far from being settled. Actually, current

software packages to analyze rigidity in proteins [59, 60] leave this parameter open for the

modeler, so that any number of distance constraints can be chosen. In this matter, private

discussions [61] have suggested an alternative to represent a hydrogen bond with five dis-

tance constraint as in other works [13, 14]. It is important to remark some differences that

can occur when the number of distance constraints is increased. The obvious consequence

is that using five bars (distance constraints) will lead to a more rigid structures, given the

requirement for more pebbles when covering a hydrogen bond. In this way, it is expected to

see the rigidity transition for a larger number of protein structures in our dataset. Another

consequence is that the number of fluctuations is increased given the cooperativity nature

of the constraints. This last point proves to be relevant for our studies, given that we know

deviation between the VPG and PG is related to the extent of fluctuations within the en-

semble. As such, our next set of experiments characterize H-bonds with five constraints.

We first analyze the rigidity calculation of the PG algorithm on both models, with three

(PG3) and five constraints (PG5), over 200 realizations. Fig. 5.6 shows the calculation of

degrees of freedom for this comparison (standard deviations are also shown) over an onco-

gene (a), oxidoreductase (b), apolipoprotein (c), neurotoxin (d), spasmolytic polypeptide
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(e) and subtilisin BPN’ (f). As expected, the five-bar model consume a larger number of

DOF. Nonetheless, a qualitatively similar behavior for both models is observed. Based on

this results, we hypothesize that an analysis over a larger set of protein networks will lead

to similar results. Particular deviations between both models are dependent upon specific

network characteristics, such as localization of fluctuating interactions.

After the previous comparison, a natural question would be: how does the VPG compare

to the PG under the five-bar model? The last experimental section where we compared both

algorithms under the five-bar model was in chapter two, using disordered square lattices.

In those comparisons, VPG was several standard deviations away from PG near the rigidity

transition. It is fair to comment that uniform probabilities for fluctuating interactions were

used in that comparison. Given the regularity of square lattices, the calculations of PG

showed very little standard error. Fig. 5.7 shows the comparison between the VPG and

PG under the five-bar model using the same six proteins from above. Interestingly, from

this figure we can observe that although the fluctuations are increased the deviations of

VPG from PG are relatively small, even in some cases falling within one standard deviation

away from PG (similar to the three-bar model comparison). It is encouraging that VPG

maintains its DOF calculation close to the one from PG. Overall, the VPG keeps offering

a very good alternative to the calculation of mechanical responses in comparison to the

traditional PG algorithm.

5.4 Future work

This chapter is the seed of a journal paper. The results presented support our hypoth-

esis regarding the good approximation to PG given by VPG. Nonetheless, we are planning

to extend the experimental section by adding more metrics to this analysis. We would like

to compare both algorithms regarding:

1. Visualization of rigid clusters over the protein structures

2. Comparison of rigidity at dihedral angle level (agreement measure)

3. A statistical analysis of the VPG rigidity assessment with respect to all the PG indi-

vidual rigidity assessments
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Calculation of DOF by PG when using three versus five distance constraints per
hydrogen bond. The protein networks are: a) oncogene, b) oxidoreductase, c) apolipopro-
tein, d) neurotoxin, e) spasmolytic polypeptide and f) subtilisin BPN’

4. The calculation of the rigid cluster susceptibility (RCS) curve and related variables

(average cluster size and largest cluster)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of the calculation of DOF by PG and VPG using the five-bar model.
The protein networks are: a) oncogene, b) oxidoreductase, c) apolipoprotein, d) neurotoxin,
e) spasmolytic polypeptide and f) subtilisin BPN’

5.5 Conclusions

In this chapter, we used a biologically relevant model to compare the PG and VPG

algorithms. To use this model we selected a 272 protein dataset that was introduced in
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a previous chapter. Before this chapter, the probabilities of existence of fluctuating in-

teractions were kept uniform, meaning they were treated equally throughout the rigidity

calculations. In the experimental set up, the probability of each fluctuating interaction was

derived based on its particular strength (energy potential).

Several metrics were employed for comparison purposes. We first compared both algo-

rithms regarding their calculation of DOF. The comparison was made at different average

number of hydrogen bonds in every particular network. Along this comparison we observed

that for most of the cases the VPG calculation fell within one standard deviation of those

of PG.

After the calculation of DOF we were able to detect the point where the difference

between both approaches was maximized, we chose this point to perform the next analysis.

We employed the RCM to compare the identification of residues that are co-rigid throughout

the protein network. Using the RCM we were able to determine how well VPG approached

the rigidity patterns found by PG. To complement this information, we also compared both

algorithms using MCMs. In a more nuanced comparison, we observed that VPG is able to

capture subtle DOF that allow a pair of residues to have some degree of flexibility.

Based on other works, we moved from representing a hydrogen bond with three distance

constraints to five. We compared both algorithms over this model and we conclude that

VPG still continues offering a very good approximation for the calculation of DOF within

protein networks.



CHAPTER 6: DISCUSSION

Through the previous chapters we have quantitatively measured the accuracy of the

VPG algorithm. In this chapter, we would like to complement those analyses by providing

further discussion on several topics of interest.

6.1 Heuristics for the VPG

From an implementation point of view, the VPG and the PG have the same complexity,

because they rely on virtually the same set of algorithms related to pebble searches and

condensation. In practice, the similarity is even greater because a finite precision can be

placed on real variables, allowing the VPG to be integer based. For example, if a desired

precision is to be 10−6, we represent each pebble using a million fractional pebbles. We

have implemented the VPG with double precision variables and with different finite precision

levels, and established consistency in all results. However, the finite precision version that

uses only integers is simpler to implement, and runs faster.

It is important to note that although the VPG does not give the exact answer for

rigidity properties in general, it is exact when no fluctuating constraints are considered. In

this case, the VPG is algorithmically identical to the PG. When there are no fluctuating

constraints each realization for the network topology is exactly the same for the VPG and

the PG. In this limit, no fractional pebble capacity occurs within the network, and as a

result the allowed number of pebbles on a vertex or edge covering is always an integer

ranging from 0 to 6. However, the body-bar PG as implemented by Jacobs [13] treats the

network as a multi-bar network, and performs individual pebble searches for each distance

constraint. As such, it may require 6 different pebble searches to find 6 pebbles on a vertex.

In the VPG, multiple pebbles are searched for and collected simultaneously if possible. This

change in the implementation is a trivial step, but does make the performance about 20%

times faster in typical applications.
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The interesting question is what happens when there are fluctuating edges? The VPG

provides a lower bound estimate to the number of DOF within the network. The heuristic for

the VPG is based on running many PG in parallel over an ensemble of networks differing

only within fluctuating edges, and the pebble flow through a fluctuating edge will self-

average over the ensemble. Then, within the VPG, the flow of pebbles through a fluctuating

edge will be restricted by an average pebble capacity that is determined by the ensemble

average. The structure of the VPG and the PG algorithms govern the flow of pebbles while

maintaining local conservation rules. Consequently, when viewing the VPG as tracking the

average flow of pebbles, it immediately translates to the flow of probability that a pebble

is present.

We know from rigidity percolation [10] that the DOF within a network is very good

at self-averaging away from the rigidity transition, which is why MCC works well in many

applications involving networks with a near uniform density of constraints, and minimal

fluctuations. However, near a rigidity transition where fluctuations are large, the self-

averaging approach (or mean field treatment) breaks down. Self-averaging is a property

that tends to become more robust in higher dimensions. As was described on chapter two,

self-averaging holds up much better in 3D than 2D as expected, yet the VPG performs quite

well in general (even in 2D).

By assigning the predetermined average pebble capacity (of c× p) to each fluctuating

edge, the final results are independent of the ordering of how the edges are placed (quenched

or fluctuating edges). This feature is very important because it means that a single VPG

provides a definitive answer. We tested the property that the answer is independent in a

very stringent way. Not only did we scramble the ordering of the edges placed to show that

all orderings give the same answer, we also subdivided edges into a stack of 10 contribu-

tions with randomized capacities that add up to c × p for fluctuating edges, and cfull for

quenched edges (depending on the edge-type cfull could either represent five or six distance

constraints). We then scrambled the order of all these partial contributions. The VPG un-

der this condition runs slower, but the results are found to be independent of the ordering

of all these components. Although we cannot rule out that there may exist an alternative

averaging-rule that can better capture density fluctuations and provide definitive results
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independent of the edge ordering, we know that the VPG defined above retains this special

and desirable property important in practical applications.

We conclude this section with some final remarks about the correctness of the VPG as

a new algorithm to estimate the average number of DOF within an ensemble of body-bar

networks. Even in the PG, the pebble covering of an edge is actually fractionalized. This

can be seen using the data structures that have been implemented in the VPG, and looking

at the special cases where there is an exact mapping between the VPG and PG algorithms.

We see that if an edge represents 5 distance constraints, the PG allows 0, 1, 2, 3, 4, and

5 of these bars (distance constraints) to be redundant. In this sense, the pebble covering

within a PG is fractionalized (or quantized) to {0, 1/5, 2/5, 3/5, 4/5, 1} of the maximum

capacity allowed when the edge is fully independent. When viewed in this way, the finite

precision implementation of the VPG that we use simply makes these fractions more refined.

For example, representing each pebble as 200 fractional pebbles, then the allowed pebble

fractions for covering an edge in the VPG are {0, 1/1000, 2/1000, . . . 998/1000, 999/1000,

1}. Nonetheless, we agree that the rigor of the VPG as being faithful to generic rigidity for

body-bar networks is an aspect that deserves a formal mathematical treatment.

Based on our heuristic arguments, the reason why the VPG achieves only a lower

bound estimate for the number of DOF within a network (not the exact value) is because the

averaging procedure suppresses fluctuations within the network. Thus the problem is related

to statistics, and the neglecting of correlations that exist within individual realizations

that the PG can capture. This phenomenon is a common occurrence in physical systems

whenever mean-field theory is employed to describe the interactions. Our conjecture is

that the amount of statistical fluctuations that are suppressed characterizes the severity

of the approximation. We already tested this idea on chapter two, the degree of intrinsic

fluctuations was quantified by a heterogeneity index, and we considered another type of

PG where fluctuations play less of a role to see if the VPG provides better estimates.

Our empirical results strongly suggested that the errors generated by the VPG are directly

related to the mean-field nature of the approximation. Moreover, in chapter three, the VPG

algorithm was found faithful in reproducing rigid cluster decompositions within protein

networks that are statistically consistent with the typical response over the ensemble of
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networks determined by the PG.

6.2 On the various ways to improve the accuracy of the VPG

The VPG which assigns an average pebble capacity of c × p (c and p represent the

capacity and probability) to each fluctuating edge is one possible way to perform the self-

averaging of the ensemble of all networks that the PG must be averaged over. This assign-

ment is based on the very important property that the value of c × p is intrinsic to the

edge itself, and does not depend on the state of the system (i.e. any other edge, or what

is flexible or rigid within the network). Since each fluctuating edge could have 0 distance

constraints or c distance constraints with probability (1−p) and p, respectively, the average

value of c × p is a simple and intuitive averaging procedure. However, we have considered

other ways to perform this averaging while the network is being built up. In this section

we elaborate about different rules to averaging for the VPG algorithm. These algorithms

were tested under the cubic lattice model, therefore the capacity c, for any fluctuating or

quenched edge, equals five distance constraints.

The first algorithm that we implemented was called VPG Five WithOut Condensation

(VPG5WOC). The approach VPG5WOC (algorithm 9) looks for five pebbles to cover a

given edge regardless its actual capacity c (0 < c 6 5). Be collected pebbles the maximum

amount of pebbles found. If five pebbles are found, then the edge is going to be covered by

its current capacity (that may be less than five), otherwise the edge is going to be covered

with collected pebbles × p pebbles. Note that if c 6 collected pebbles < 5, the amount

of pebbles to cover the edge would be collected pebbles × p. By implementing this idea,

we tried to spend on average less pebbles on covering an edge since we could end up with

(collected pebbles× p) < c. In this version no condensation is applied.

Algorithm 9 VPG5WOC

1: if collected pebbles > 5 then
2: cover the current capacity c of the edge
3: else
4: cover the edge with collected pebbles ×p pebbles
5: end if

The second algorithm that we proposed is called VPG5M (algorithm 10). This version
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is named “5M” after “Mixing” the rules of the original VPG (classic) and VPG5WOC

(previous algorithm). When covering an edge, if collected pebbles > 5 then the edge is

going to be covered with its actual capacity c (new and classic rules are the same). If

(5× p) 6 collected pebbles < 5 then the edge is going to be covered with collected pebbles

×p pebbles (new rule), otherwise the edge is going to be covered with collected pebbles and

condensation is applied (classic rule).

Algorithm 10 VPG5M

1: if collected pebbles > 5 then
2: cover the full capacity c of the edge
3: else
4: if collected pebbles > c then
5: cover the edge with collected pebbles×p pebbles
6: else
7: cover the edge with collected pebbles
8: apply condensation
9: end if

10: end if

The third algorithm was called VPG5T (algorithm 11), where ‘T’ stands for “Thresh-

old”. In this version if collected pebbles > c then the capacity of the edge will be cov-

ered in full. If T 6 collected pebbles < c then the edge is going to be covered with

collected pebbles × p, otherwise the edge will be covered with collected pebbles and con-

densation will be applied. Note that T plays an important role in this algorithm, since it

indicates the level of “tolerance” to the number of pebbles to find. Given the nature of this

method, a follow up question is, “what value of T shall we use?”. We tested empirically

different threshold values and took into consideration the speed and accuracy of the method

to get the optimum T = 0.15.

6.2.1 Results for the comparison of the VPG methods

To make the comparison between these methods and the VPG and PG algorithms we

run a set of experiments for two different system sizes at L = 5 and L = 10 (L being the

number of vertices per side in the lattice). We followed the procedure to generate the test

cases already described in chapter two. Fig. 6.1 shows the results for systems of size L = 5

at different qfix and qfluct parameters. We can note that there is no significant improvement
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Algorithm 11 VPG5T

1: if collected pebbles > capacity c then
2: cover the full capacity c of the edge
3: else
4: if collected pebbles > T then
5: cover the edge with collected pebbles ×p pebbles
6: else
7: cover the edge with collected pebbles pebbles
8: apply condensation
9: end if

10: end if

between any of the VPG versions with respect to PG, in fact the difference among the VPG

versions themselves is imperceptible.

An interesting point is that the classic VPG rules are the only ones that give the exact same

answer regardless the placement order of the edges. This fact affects the execution time of

the other algorithms, since several runs should be implemented to average over.

Even when we increase the system size the behavior among the algorithms remains

consistent. Fig. 6.2 shows qualitatively similar results for systems of size L = 10 with

respect to L = 5. We can conclude that none of these approaches showed significant

difference with respect to VPG. The execution times for one run of all the algorithms are

comparable (data not shown), except for the VPG5WOC where the no-use of condensation

makes it slower.

Despite much effort in finding an alternative rule that would provide a substantially

better estimate than the VPG, no alternative averaging rule could be found to give a

noticeable improvement to warrant the extra complexity of programming, or in some cases

longer run times. For all the alternative rules we explored, we found a consistent undesirable

property that the estimated DOF within the network depends on the ordering of how the

edges are placed when building the network up recursively one edge at a time. Moreover, we

could not find a preferred ordering that would give us the greatest lower bound. In short,

all alternative averaging rules we considered generated non-definitive answers.
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(a) qfluct = 1.0, qfix = 0.0 (b) qfluct = 0.7, qfix = 0.2

(c) qfluct = 0.6, qfix = 0.2 (d) qfluct = 0.6, qfix = 0.1

Figure 6.1: The free DOF in the system for L = 5 as a function of the probability of the
fluctuating edges for algorithms VPG5M, VPG5T, VPG5WOC, VPG and PG. In general,
we can see that the performances of the VPG-flavor algorithms are similar. The version
5WOC stands for the ”WithOut Condensation” version.

6.3 Future work

Some of the chapters in this dissertation include their own future work, where very

specific follow up projects are proposed. In a more general way, in this section we envision

several interesting projects that can be derived from this Ph.D dissertation.

1. A comprehensive analysis of the VPG on a very well studied set of proteins. A question

that motivates this project is: to what extent does the rigidity assessment made by

VPG correlate with the mechanics in the protein? It would be very interesting to

find out the biological basis of the rigid clusters and flexible regions in proteins as

identified by VPG. For this purpose we propose the analysis of a very well studied set

of proteins to shed light on the biological importance of the findings of VPG.
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(a) qfluct = 1.0, qfix = 0.0 (b) qfluct = 0.7, qfix = 0.2

(c) qfluct = 0.6, qfix = 0.2 (d) qfluct = 0.6, qfix = 0.1

Figure 6.2: The free DOF in the system for L = 10 as a function of the probability of the
fluctuating edges for algorithms VPG5M, VPG5T, VPG5WOC, VPG and PG. In general,
we can see that the performances of the VPG-flavor algorithms is similar.

2. Calculation of the probabilities of H-bonds based on molecular dynamics. There

are many ways in which we can derive the probabilities of existence for fluctuating

interactions within a protein. We propose to consider the employment of statistical

sampling through Molecular Dynamics experiments. Starting from an input structure

we can generate statistical meaningful probabilities for the presence of hydrogen bonds

within a given conformation. Then, we can average the hydrogen bond presence in

the structure via several realizations and obtain their probabilities. This project will

enrich the characterization of the VPG and it will help evaluate our current energy-

derivation method (based on Boltzmann weights).

3. A mathematical analysis of the VPG algorithm. Mathematically speaking, in this dis-

sertation we introduced a new approach into the field of rigidity theory [62]. Rescent
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studies have been carried out to set the theory of (k− l)-sparse graphs [18,19], which

helped prove the correctness of the PG algorithm. The VPG algorithm although intu-

itively similar to PG must be mathematically analyzed to understand its theoretical

basis.

6.4 Products of the dissertation

The caliber or impact of a research project can be measured by published articles.

From this Ph.D. dissertation we are planning to have several articles published. According

to the organization of this document, we submitted for publication chapters two, three, four

and currently working on the fifth.

1. Luis C. González, Hui Wang, Dennis R. Livesay and Don J. Jacobs. Improving

Protein Flexibility Predictions by Combining Statistical Sampling with a Mean-Field

Virtual Pebble Game. ACM Conference on Bioinformatics, Computational Biology

and Biomedicine, ACM-BCB 2011. (In press.)

2. Luis C. González, Hui Wang, Dennis R. Livesay and Don J. Jacobs. Calculating

Ensemble Averaged Descriptions of Protein Rigidity without Sampling (submitted to

journal).

3. Luis C. González, Hui Wang, Dennis R. Livesay and Don J. Jacobs. A virtual pebble

game to ensemble average graph rigidity (submitted to journal).

In addition, chapter five of this dissertation is expected to be published as well.



CHAPTER 7: CONCLUSIONS

In this dissertation, we developed a mean field approach called the body-bar Virtual

Pebble Game algorithm (VPG) to analyze ensembles of protein networks without the costly

process of sampling. In previous models, sampling is required due to the presence of fluctuat-

ing interactions that are intermittently present within the network. The VPG accomplishes

this goal by representing average properties within the ensemble by fractional degrees of

freedom (DOF), and recasting the algorithm as a network flow problem. Compared to the

original body-bar Pebble Game algorithm (PG), the accuracy of the VPG is characterized

by comparing a large number of quantitative and visual network rigidity properties. Our

results indicate that the VPG provides satisfactory mechanical characterizations of the net-

work, especially when not considering the rigidity transition. The four primary conclusions

of this dissertation are:

1. Across both square-lattice and protein networks, the Virtual Pebble Game algorithm

satisfactorily describes ensemble-averaged network rigidity properties by mean-fielding

at the level of individual edges, rather than globally across the entire network as

Maxwell Constraint Counting does.

2. As expected, the Virtual Pebble Game algorithm presents its worst performance when

ensemble fluctuations are maximized (i.e., the rigidity transition). Fortunately, the

rigidity transition rarely represents the domain of interest. Rather, the primary re-

gion of interest corresponds to the native protein structure where the VPG closely

reproduces the PG behavior.

3. As with the original PG algorithm, the Virtual Pebble Game execution time scales

linearly with the number of vertices in the network.

4. The VPG−x algorithm successfully combines the advantages of mean field and sam-

pling approaches, thus resulting in improved network rigidity characterizations.
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We present a brief overview of the information that supports every conclusion.

The first conclusion is supported at two levels, the calculation of degrees of freedom

(DOF) and the identifications of rigid clusters of atoms by the two algorithms. It was

shown that VPG offers a very accurate quantification of the number of DOF available

throughout the network after having placed all the distance constraints, most of the time

this calculation falls within one standard deviation away from the ensemble average PG

values (PG). The statistical comparison, based on boxplots, of the Mechanical Coupling

Maps (MCM) suggest that VPG approximates PG better than the vast majority of the

single PG realizations. This point is strengthen given that this comparison was made at

the worst Rand measure score. The identification of rigid clusters of atoms by the the two

algorithms presents very high similarity as quantified by the Rand Measure, in fact the

point with the largest disagreement corresponds to a RM=∼0.80. The rigidity estimation

at the dihedral angle level indicates that both algorithms coincide more than 92% of the

time, this is a very compelling result of the rigidity agreement of both VPG and PG. All

these results combined show that the Virtual Pebble Game algorithm effectively represents

an ensemble of protein networks by a single network.

We calculated the number of available DOF throughout different networks constructed

on cubic lattices with periodic boundary conditions. We compared the approximation to

PG given by VPG and Maxwell Constraint Counting (MCC). The results show that MCC

overestimates the minimum number of constraints needed for the network to become rigid.

The VPG results are much closer to PG calculations than MCC specially on the rigid side of

the rigidity transition. Relative to MCC, the improved accuracy of the VPG occurs because

it applies mean field approximation locally at the edge level. To prove this last point, we

performed another set of experiments with a variation of the PG algorithm called bar-PG.

In the bar-PG, each of the five distance constraints representing a fluctuating edge are place

independent of each other, each with probability p. In this model, the fluctuations, given

by the cooperativity nature of the original group of five constraints, are drastically reduced,

therefore yielding results that are markedly close to the VPG. Consequently, we conclude

that the Virtual Pebble Game algorithm provides an accurate mean-field approximation to

the Pebble Game algorithm at the level of individual edges, rather than across the entire
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network (Maxwell Constraint Counting).

Regarding the second conclusion, we characterized the network topologies to analyze

the performance of VPG on cubic lattices. We firstly identified the maximum deviation of

the internal DOF per vertex between the two algorithms. The maximum differences occurs

when qfluct = 1, the difference at this point is ∼ 0.6 pebbles, which is about 10% error

considering there are six DOF per vertex. It is important to remark that the region with

maximal fluctuations corresponds to the rigidity transition, but this point rarely represents

the domain of interest. Rather, the primary region of interest corresponds to the native

protein structure where the VPG closely reproduces the PG behavior. To quantify the

heterogeneous character of the network topology, the heterogeneity index hI was introduced.

The hI is defined as the standard deviation of the coordination number across all vertices

throughout the network. The average number of internal DOF estimated by the VPG is

less than 5% error when hI is below a critical value, which is hc
I ≈ 0.7 for the 2D square

lattice, and hc
I ≈ 1.1 for the 3D cubic lattice. Beyond these critical values the VPG errors

increase, but are always less than 10%.

For the third conclusion, we demonstrated that the execution time of the VPG is

comparable to a single PG run in a fixed network. We show that for a case with uniform

values of p, qfix = 0 and qfluct = 1 the execution time is linear with respect the number of

vertices in the system. This time benchmarking holds up for all regions of parameter space

{qfix, qfluct, p}, except exceedingly close to the rigidity transition where the VPG scales as

O(N2). It is generally found from simulation on networks that model molecular structure

that condensation improves the scaling of the VPG from O(N2) to O(N) above the rigidity

transition.

For the last conclusion, we implemented the VPG−x algorithm that effectively com-

bines mean field and sampling. While tuning the parameter x, that controls the amount

of fluctuating edges to sample (the rest are mean field treated), we were able to better

approach the PG results than just using the VPG algorithm. The results intuitively and

systematically transition from VPG-like to PG-like. Contrary to the single calculation by

VPG, the use of the VPG−x algorithm is limited by an increase in the number of realizations

that is directly proportional to the amount of sampling needed.
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